diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/ChangeLog | 11 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 55 | ||||
-rw-r--r-- | src/algebra/annacat.spad.pamphlet | 496 | ||||
-rw-r--r-- | src/algebra/asp.spad.pamphlet | 4282 | ||||
-rw-r--r-- | src/algebra/cont.spad.pamphlet | 354 | ||||
-rw-r--r-- | src/algebra/exposed.lsp.pamphlet | 45 | ||||
-rw-r--r-- | src/algebra/fortcat.spad.pamphlet | 345 | ||||
-rw-r--r-- | src/algebra/fortmac.spad.pamphlet | 458 | ||||
-rw-r--r-- | src/algebra/fortpak.spad.pamphlet | 641 | ||||
-rw-r--r-- | src/algebra/fortran.spad.pamphlet | 1784 | ||||
-rw-r--r-- | src/algebra/functions.spad.pamphlet | 120 | ||||
-rw-r--r-- | src/algebra/routines.spad.pamphlet | 647 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 3582 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 7057 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 609 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 8133 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 22491 |
17 files changed, 20291 insertions, 30819 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index ed3f4b88..35c60a2a 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,3 +1,14 @@ +2011-09-20 Gabriel Dos Reis <gdr@cs.tamu.edu> + + * algebra/annacat.spad.pamphlet: Remove. + * algebra/routines.spad.pamphlet: Likewise. + * algebra/functions.spad.pamphlet: Likewise. + * algebra/tools.spad.pamphlet: Likewise. + * algebra/cont.spad.pamphlet: Likewise. + * algebra/fortran.spad.pamphlet: Likewise. + * algebra/fortmac.spad.pamphlet: Likewise. + * algebra/fortpak.spad.pamphlet: Likewise. + 2011-09-19 Gabriel Dos Reis <gdr@cs.tamu.edu> * algebra/asp.spad.pamphlet: Remove. diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index cb018420..dcd03071 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -949,7 +949,7 @@ $(OUT)/DMEXT.$(FASLEXT): $(OUT)/DSEXT.$(FASLEXT) $(OUT)/DIFFMOD.$(FASLEXT) \ $(OUT)/STREAM.$(FASLEXT): $(OUT)/LZSTAGG.$(FASLEXT) axiom_algebra_layer_1 = \ - ABELGRP ABELGRP- ABELMON ABELMON- FORTCAT ITUPLE \ + ABELGRP ABELGRP- ABELMON ABELMON- ITUPLE \ CABMON MONOID MONOID- RING RING- COMRING \ DIFRING ENTIRER INTDOM INTDOM- OINTDOM \ GCDDOM GCDDOM- UFD UFD- ES ES- \ @@ -1005,9 +1005,9 @@ $(OUT)/PALETTE.$(FASLEXT): $(OUT)/COLOR.$(FASLEXT) axiom_algebra_layer_4 = \ - ANON OSI COMM COMPPROP ESCONT1 EXIT \ - FAMONC FORMULA1 IDPC NONE NUMINT \ - ODECAT COLOR ONECOMP2 OPTCAT \ + ANON OSI COMM COMPPROP EXIT \ + FAMONC FORMULA1 IDPC NONE \ + COLOR ONECOMP2 \ PALETTE PARPCURV PARPC2 PARSCURV PARSC2 PARSURF \ PARSU2 PATRES2 PATTERN1 PDECAT \ REPSQ REPDB RFDIST RIDIST SPACEC SPLNODE \ @@ -1028,7 +1028,7 @@ $(OUT)/PDRING.$(FASLEXT): $(OUT)/PDSPC.$(FASLEXT) axiom_algebra_layer_5 = \ CHARNZ DVARCAT DVARCAT- ELEMFUN \ - ELEMFUN- ESTOOLS2 FCOMP FPATMAB IDPAM IDPO \ + ELEMFUN- FCOMP FPATMAB IDPAM IDPO \ INCRMAPS KERNEL2 MODMONOM MONADWU MONADWU- \ MRF2 NARNG NARNG- NSUP2 ODVAR OPQUERY \ ORDMON PATMATCH PERMCAT PDRING \ @@ -1081,7 +1081,7 @@ $(OUT)/BSTREE.$(FASLEXT): $(OUT)/BTREE.$(FASLEXT) $(OUT)/ITAYLOR.$(FASLEXT): $(OUT)/STREAM.$(FASLEXT) axiom_algebra_layer_8 = \ - BSTREE BTOURN CARD DRAWHACK FACTFUNC FMTC \ + BSTREE BTOURN CARD DRAWHACK FACTFUNC \ FR2 FRAC2 FRUTIL ITAYLOR MLO NAALG \ NAALG- OP ORDCOMP2 RANDSRC UNISEG2 XALG \ BTREE ARR2CAT ARR2CAT- @@ -1095,14 +1095,13 @@ axiom_algebra_layer_8_objects = \ $(OUT)/FT.$(FASLEXT): $(OUT)/FST.$(FASLEXT) axiom_algebra_layer_9 = \ - AMR AMR- DEGRED DLP EAB ESTOOLS1 \ + AMR AMR- DEGRED DLP EAB \ FAGROUP FAMONOID FLINEXP FLINEXP- FRETRCT FRETRCT- \ FSERIES FT IDPAG IDPOAMS INFINITY LA \ OMLO ORTHPOL PRODUCT PADICCT PMPRED PMASS \ PTFUNC2 RATRET RADUTIL UPXS2 \ XFALG ZLINDEP BBTREE TABLE INTABL \ - NIPROB ODEPROB OPTPROB \ - PDEPROB SIG FMONCAT FST + SIG FMONCAT FST axiom_algebra_layer_9_nrlibs = \ @@ -1129,7 +1128,7 @@ $(OUT)/BTAGG.$(FASLEXT): $(OUT)/BOOLE.$(FASLEXT) $(OUT)/PATLRES.$(FASLEXT): $(OUT)/PATRES.$(FASLEXT) axiom_algebra_layer_10 = \ - RESULT BFUNCT BPADIC ANY \ + BPADIC ANY \ SEXOF CRAPACK DEQUEUE DLIST \ DRAWCX \ DRAWPT FAMR FAMR- FLASORT \ @@ -1209,7 +1208,7 @@ axiom_algebra_layer_13 = \ COORDSYS DBASE DHMATRIX DIOSP \ FAXF FAXF- FFPOLY2 \ FNLA GRAY HB IRSN \ - MCALCFN MHROWRED NUMODE NUMQUAD \ + MHROWRED NUMODE NUMQUAD \ ODESYS ODETOOLS ORDFUNS PERMAN \ PFECAT PFECAT- POINT PSEUDLIN \ PTPACK REP2 SETMN \ @@ -1223,7 +1222,6 @@ axiom_algebra_layer_13_objects = \ $(addprefix $(OUT)/, \ $(addsuffix .$(FASLEXT),$(axiom_algebra_layer_13))) $(OUT)/FS.$(FASLEXT): $(OUT)/UPOLYC.$(FASLEXT) -$(OUT)/FTEM.$(FASLEXT): $(OUT)/TEXTFILE.$(FASLEXT) $(OUT)/FILE.$(FASLEXT): $(OUT)/FNAME.$(FASLEXT) axiom_algebra_layer_14 = \ @@ -1238,8 +1236,8 @@ axiom_algebra_layer_14 = \ FFPOLY FFX FFSLPE FGLMICPK \ FILE FINAALG FINAALG- FINRALG \ FINRALG- FLOATRP FNAME \ - FOP FORMULA FORT FRAC \ - FTEM GENEEZ GENMFACT GENPGCD \ + FORMULA FRAC \ + GENEEZ GENMFACT GENPGCD \ GALFACTU GALPOLYU GB GBEUCLID \ GBF GBINTERN GHENSEL GMODPOL \ GOSPER GRIMAGE GROEBSOL HDMP \ @@ -1251,7 +1249,7 @@ axiom_algebra_layer_14 = \ ISUMP LAUPOL LEADCDET LGROBP \ LIMITRF LINDEP LO LPEFRAC \ LSPP MATLIN MCDEN MDDFACT \ - MFINFACT MFLOAT MINT MLIFT \ + MFINFACT MLIFT \ MMAP MODMON MONOTOOL MPCPF \ MPC2 MPC3 MPOLY MPRFF \ MRATFAC MULTSQFR NORMRETR NPCOEF \ @@ -1272,7 +1270,7 @@ axiom_algebra_layer_14 = \ SMITH SMP SMTS SOLVEFOR \ SPLTREE STINPROD STTFNC SUBRESP \ SUMRF SUP SUPFRACF TANEXP \ - TEMUTL TEX TEXTFILE \ + TEX TEXTFILE \ TWOFACT UNIFACT UP UPCDEN \ UPDECOMP UPDIVP UPMP UPOLYC2 \ UPXSCAT UPSQFREE VIEWDEF VIEW2D \ @@ -1355,13 +1353,12 @@ axiom_algebra_layer_18_objects = \ $(addsuffix .$(FASLEXT),$(axiom_algebra_layer_18))) $(OUT)/TSETCAT.$(FASLEXT): $(OUT)/PSETCAT.$(FASLEXT) $(OUT)/RPOLCAT.$(FASLEXT) $(OUT)/FPARFRAC.$(FASLEXT): $(OUT)/DIFFSPC.$(FASLEXT) -$(OUT)/FEXPR.$(FASLEXT): $(OUT)/EXPR.$(FASLEXT) axiom_algebra_layer_19 = \ - ACPLOT ANTISYM ATTRBUT \ + ACPLOT ANTISYM \ COMPCAT \ COMPCAT- DRAW DRAWCFUN DROPT \ - DROPT0 EP FCPAK1 FEXPR \ + DROPT0 EP \ FFCAT FFCAT- FFCGP FFNBP \ FFP FLOAT FPARFRAC FR \ FRNAALG FRNAALG- EXPR \ @@ -1369,16 +1366,16 @@ axiom_algebra_layer_19 = \ IDEAL INFORM INFORM1 IPRNTPK \ IR ISUPS LIB \ LMDICT LODOOPS MKFLCFN \ - MSET M3D \ + MSET \ NREP NUMFMT OC OC- \ ODERAT \ PATTERN OVAR \ PMKERNEL PMSYM PRIMELT \ QALGSET2 QEQUAT RECLOS REP1 \ QUATCAT QUATCAT- RFFACT \ - ROMAN ROUTINE RNGBIND \ + ROMAN RNGBIND \ RULECOLD SAOS SEGBIND \ - SET SPECOUT SWITCH \ + SET SPECOUT \ SYSSOLP \ VARIABLE WFFINTBS SPADPRSR \ PARSER TSETCAT TSETCAT- @@ -1401,10 +1398,10 @@ axiom_algebra_layer_20 = \ CTRIGMNP \ DBLRESP DERHAM DFSFUN DRAWCURV \ EF EFSTRUC \ - ELFUTS ESTOOLS EXPEXPAN EXPRODE \ - EXPRTUBE EXPR2 FC FDIVCAT \ + ELFUTS EXPEXPAN EXPRODE \ + EXPRTUBE EXPR2 FDIVCAT \ FDIVCAT- FDIV2 FFCAT2 FLOATCP \ - FORDER FORTRAN FSRED FSUPFACT \ + FORDER FSRED FSUPFACT \ FRNAAF2 FSPECF FS2 FS2UPS \ GAUSSFAC GCNAALG GENUFACT GENUPS \ GTSET GPOLSET IAN INEP \ @@ -1413,7 +1410,7 @@ axiom_algebra_layer_20 = \ INTHERAL INTPAF INTPM INTTOOLS \ ITRIGMNP JORDAN KOVACIC LF \ LIE LODOF LSQM \ - MCMPLX MULTFACT NCEP \ + MULTFACT NCEP \ NLINSOL NSMP NUMERIC OCT \ OCTCT2 ODEPAL ODERTRIC PADE \ PAN2EXPR PFO PFOQ \ @@ -1421,7 +1418,7 @@ axiom_algebra_layer_20 = \ PSETPK QUAT QUATCT2 RADFF \ RDEEF RDEEFS RDIV RSETCAT \ RSETCAT- RULE RULESET SIMPAN \ - SFORT SOLVESER SUMFS SUTS \ + SOLVESER SUMFS SUTS \ TOOLSIGN TRIGMNIP TRMANIP ULSCCAT \ ULSCCAT- UPXSSING UTSODE UTSODETL \ UTS2 WUTSET @@ -1439,7 +1436,7 @@ $(OUT)/SUPXS.$(FASLEXT): $(OUT)/PDDOM.$(FASLEXT) axiom_algebra_layer_21 = \ DEFINTEF DFINTTLS DEFINTRF \ - EFULS ESCONT EXPR2UPS \ + EFULS EXPR2UPS \ FDIV FSCINT FSINT FS2EXPXP \ GSERIES HELLFDIV INVLAPLA IR2F \ IRRF2F LAPLACE LIMITPS LODEEF \ @@ -1488,7 +1485,7 @@ axiom_algebra_layer_user = \ QQUTAST DEFAST MACROAST SPADXPT SPADAST PARAMAST \ INBFILE OUTBFILE IOBFILE RGBCMDL RGBCSPC STEPAST \ CTOR IP4ADDR NETCLT INETCLTS \ - FMC FMFUN FORTFN FVC FVFUN IRFORM COMPILER \ + IRFORM COMPILER \ ITFORM ELABOR TALGOP YDIAGRAM LINELT DBASIS \ LINFORM LINBASIS JVMOP JVMCFACC JVMFDACC JVMMDACC \ JVMCSTTG diff --git a/src/algebra/annacat.spad.pamphlet b/src/algebra/annacat.spad.pamphlet deleted file mode 100644 index 1c92b907..00000000 --- a/src/algebra/annacat.spad.pamphlet +++ /dev/null @@ -1,496 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra annacat.spad} -\author{Brian Dupee} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{domain NIPROB NumericalIntegrationProblem} -<<domain NIPROB NumericalIntegrationProblem>>= -)abbrev domain NIPROB NumericalIntegrationProblem -++ Author: Brian Dupee -++ Date Created: December 1997 -++ Date Last Updated: December 1997 -++ Basic Operations: coerce, retract -++ Related Constructors: Union -++ Description: -++ \axiomType{NumericalIntegrationProblem} is a \axiom{domain} -++ for the representation of Numerical Integration problems for use -++ by ANNA. -++ -++ The representation is a Union of two record types - one for integration of -++ a function of one variable: -++ -++ \axiomType{Record}(var:\axiomType{Symbol}, -++ fn:\axiomType{Expression DoubleFloat}, -++ range:\axiomType{Segment OrderedCompletion DoubleFloat}, -++ abserr:\axiomType{DoubleFloat}, -++ relerr:\axiomType{DoubleFloat},) -++ -++ and one for multivariate integration: -++ -++ \axiomType{Record}(fn:\axiomType{Expression DoubleFloat}, -++ range:\axiomType{List Segment OrderedCompletion DoubleFloat}, -++ abserr:\axiomType{DoubleFloat}, -++ relerr:\axiomType{DoubleFloat},). -++ - -EDFA ==> Expression DoubleFloat -SOCDFA ==> Segment OrderedCompletion DoubleFloat -DFA ==> DoubleFloat -NIAA ==> Record(var:Symbol,fn:EDFA,range:SOCDFA,abserr:DFA,relerr:DFA) -MDNIAA ==> Record(fn:EDFA,range:List SOCDFA,abserr:DFA,relerr:DFA) - -NumericalIntegrationProblem():SetCategory with - coerce: NIAA -> % - ++ coerce(x) \undocumented{} - coerce: MDNIAA -> % - ++ coerce(x) \undocumented{} - coerce: Union(nia:NIAA,mdnia:MDNIAA) -> % - ++ coerce(x) \undocumented{} - retract: % -> Union(nia:NIAA,mdnia:MDNIAA) - ++ retract(x) \undocumented{} - - == - - add - Rep := Union(nia:NIAA,mdnia:MDNIAA) - - coerce(s:NIAA) == [s] - coerce(s:MDNIAA) == [s] - coerce(s:Union(nia:NIAA,mdnia:MDNIAA)) == s - coerce(x:%):OutputForm == - (x) case nia => (x.nia)::OutputForm - (x.mdnia)::OutputForm - retract(x:%):Union(nia:NIAA,mdnia:MDNIAA) == - (x) case nia => [x.nia] - [x.mdnia] - -@ -\section{domain ODEPROB NumericalODEProblem} -<<domain ODEPROB NumericalODEProblem>>= -)abbrev domain ODEPROB NumericalODEProblem -++ Author: Brian Dupee -++ Date Created: December 1997 -++ Date Last Updated: December 1997 -++ Basic Operations: coerce, retract -++ Related Constructors: Union -++ Description: -++ \axiomType{NumericalODEProblem} is a \axiom{domain} -++ for the representation of Numerical ODE problems for use -++ by ANNA. -++ -++ The representation is of type: -++ -++ \axiomType{Record}(xinit:\axiomType{DoubleFloat}, -++ xend:\axiomType{DoubleFloat}, -++ fn:\axiomType{Vector Expression DoubleFloat}, -++ yinit:\axiomType{List DoubleFloat},intvals:\axiomType{List DoubleFloat}, -++ g:\axiomType{Expression DoubleFloat},abserr:\axiomType{DoubleFloat}, -++ relerr:\axiomType{DoubleFloat}) -++ - -DFB ==> DoubleFloat -VEDFB ==> Vector Expression DoubleFloat -LDFB ==> List DoubleFloat -EDFB ==> Expression DoubleFloat -ODEAB ==> Record(xinit:DFB,xend:DFB,fn:VEDFB,yinit:LDFB,intvals:LDFB,g:EDFB,abserr:DFB,relerr:DFB) -NumericalODEProblem():SetCategory with - - coerce: ODEAB -> % - ++ coerce(x) \undocumented{} - retract: % -> ODEAB - ++ retract(x) \undocumented{} - - == - - add - Rep := ODEAB - - coerce(s:ODEAB) == s - coerce(x:%):OutputForm == - (retract(x))::OutputForm - retract(x:%):ODEAB == x :: Rep - -@ -\section{domain PDEPROB NumericalPDEProblem} -<<domain PDEPROB NumericalPDEProblem>>= -)abbrev domain PDEPROB NumericalPDEProblem -++ Author: Brian Dupee -++ Date Created: December 1997 -++ Date Last Updated: December 1997 -++ Basic Operations: coerce, retract -++ Related Constructors: Union -++ Description: -++ \axiomType{NumericalPDEProblem} is a \axiom{domain} -++ for the representation of Numerical PDE problems for use -++ by ANNA. -++ -++ The representation is of type: -++ -++ \axiomType{Record}(pde:\axiomType{List Expression DoubleFloat}, -++ constraints:\axiomType{List PDEC}, -++ f:\axiomType{List List Expression DoubleFloat}, -++ st:\axiomType{String}, -++ tol:\axiomType{DoubleFloat}) -++ -++ where \axiomType{PDEC} is of type: -++ -++ \axiomType{Record}(start:\axiomType{DoubleFloat}, -++ finish:\axiomType{DoubleFloat}, -++ grid:\axiomType{NonNegativeInteger}, -++ boundaryType:\axiomType{Integer}, -++ dStart:\axiomType{Matrix DoubleFloat}, -++ dFinish:\axiomType{Matrix DoubleFloat}) -++ - -DFC ==> DoubleFloat -NNIC ==> NonNegativeInteger -INTC ==> Integer -MDFC ==> Matrix DoubleFloat -PDECC ==> Record(start:DFC, finish:DFC, grid:NNIC, boundaryType:INTC, - dStart:MDFC, dFinish:MDFC) -LEDFC ==> List Expression DoubleFloat -PDEBC ==> Record(pde:LEDFC, constraints:List PDECC, f:List LEDFC, - st:String, tol:DFC) -NumericalPDEProblem():SetCategory with - - coerce: PDEBC -> % - ++ coerce(x) \undocumented{} - retract: % -> PDEBC - ++ retract(x) \undocumented{} - - == - - add - Rep := PDEBC - - coerce(s:PDEBC) == s - coerce(x:%):OutputForm == - (retract(x))::OutputForm - retract(x:%):PDEBC == x :: Rep - -@ -\section{domain OPTPROB NumericalOptimizationProblem} -<<domain OPTPROB NumericalOptimizationProblem>>= -)abbrev domain OPTPROB NumericalOptimizationProblem -++ Author: Brian Dupee -++ Date Created: December 1997 -++ Date Last Updated: December 1997 -++ Basic Operations: coerce, retract -++ Related Constructors: Union -++ Description: -++ \axiomType{NumericalOptimizationProblem} is a \axiom{domain} -++ for the representation of Numerical Optimization problems for use -++ by ANNA. -++ -++ The representation is a Union of two record types - one for otimization of -++ a single function of one or more variables: -++ -++ \axiomType{Record}( -++ fn:\axiomType{Expression DoubleFloat}, -++ init:\axiomType{List DoubleFloat}, -++ lb:\axiomType{List OrderedCompletion DoubleFloat}, -++ cf:\axiomType{List Expression DoubleFloat}, -++ ub:\axiomType{List OrderedCompletion DoubleFloat}) -++ -++ and one for least-squares problems i.e. optimization of a set of -++ observations of a data set: -++ -++ \axiomType{Record}(lfn:\axiomType{List Expression DoubleFloat}, -++ init:\axiomType{List DoubleFloat}). -++ - -LDFD ==> List DoubleFloat -LEDFD ==> List Expression DoubleFloat -LSAD ==> Record(lfn:LEDFD, init:LDFD) -UNOALSAD ==> Union(noa:NOAD,lsa:LSAD) -EDFD ==> Expression DoubleFloat -LOCDFD ==> List OrderedCompletion DoubleFloat -NOAD ==> Record(fn:EDFD, init:LDFD, lb:LOCDFD, cf:LEDFD, ub:LOCDFD) -NumericalOptimizationProblem():SetCategory with - - coerce: NOAD -> % - ++ coerce(x) \undocumented{} - coerce: LSAD -> % - ++ coerce(x) \undocumented{} - coerce: UNOALSAD -> % - ++ coerce(x) \undocumented{} - retract: % -> UNOALSAD - ++ retract(x) \undocumented{} - - == - - add - Rep := UNOALSAD - - coerce(s:NOAD) == [s] - coerce(s:LSAD) == [s] - coerce(x:UNOALSAD) == x - coerce(x:%):OutputForm == - (x) case noa => (x.noa)::OutputForm - (x.lsa)::OutputForm - retract(x:%):UNOALSAD == - (x) case noa => [x.noa] - [x.lsa] - -@ -\section{category NUMINT NumericalIntegrationCategory} -<<category NUMINT NumericalIntegrationCategory>>= -)abbrev category NUMINT NumericalIntegrationCategory -++ Author: Brian Dupee -++ Date Created: February 1994 -++ Date Last Updated: March 1996 -++ Description: -++ \axiomType{NumericalIntegrationCategory} is the \axiom{category} for -++ describing the set of Numerical Integration \axiom{domains} with -++ \axiomFun{measure} and \axiomFun{numericalIntegration}. - -EDFE ==> Expression DoubleFloat -SOCDFE ==> Segment OrderedCompletion DoubleFloat -DFE ==> DoubleFloat -NIAE ==> Record(var:Symbol,fn:EDFE,range:SOCDFE,abserr:DFE,relerr:DFE) -MDNIAE ==> Record(fn:EDFE,range:List SOCDFE,abserr:DFE,relerr:DFE) -NumericalIntegrationCategory(): Category == SetCategory with - - measure:(RoutinesTable,NIAE)->Record(measure:Float,explanations:String,extra:Result) - ++ measure(R,args) calculates an estimate of the ability of a particular - ++ method to solve a problem. - ++ - ++ This method may be either a specific NAG routine or a strategy (such - ++ as transforming the function from one which is difficult to one which - ++ is easier to solve). - ++ - ++ It will call whichever agents are needed to perform analysis on the - ++ problem in order to calculate the measure. There is a parameter, - ++ labelled \axiom{sofar}, which would contain the best compatibility - ++ found so far. - - numericalIntegration: (NIAE, Result) -> Result - ++ numericalIntegration(args,hints) performs the integration of the - ++ function given the strategy or method returned by \axiomFun{measure}. - - measure:(RoutinesTable,MDNIAE)->Record(measure:Float,explanations:String,extra:Result) - ++ measure(R,args) calculates an estimate of the ability of a particular - ++ method to solve a problem. - ++ - ++ This method may be either a specific NAG routine or a strategy (such - ++ as transforming the function from one which is difficult to one which - ++ is easier to solve). - ++ - ++ It will call whichever agents are needed to perform analysis on the - ++ problem in order to calculate the measure. There is a parameter, - ++ labelled \axiom{sofar}, which would contain the best compatibility - ++ found so far. - - numericalIntegration: (MDNIAE, Result) -> Result - ++ numericalIntegration(args,hints) performs the integration of the - ++ function given the strategy or method returned by \axiomFun{measure}. - -@ -\section{category ODECAT OrdinaryDifferentialEquationsSolverCategory} -<<category ODECAT OrdinaryDifferentialEquationsSolverCategory>>= -)abbrev category ODECAT OrdinaryDifferentialEquationsSolverCategory -++ Author: Brian Dupee -++ Date Created: February 1995 -++ Date Last Updated: June 1995 -++ Basic Operations: -++ Description: -++ \axiomType{OrdinaryDifferentialEquationsSolverCategory} is the -++ \axiom{category} for describing the set of ODE solver \axiom{domains} -++ with \axiomFun{measure} and \axiomFun{ODEsolve}. - -DFF ==> DoubleFloat -VEDFF ==> Vector Expression DoubleFloat -LDFF ==> List DoubleFloat -EDFF ==> Expression DoubleFloat -ODEAF ==> Record(xinit:DFF,xend:DFF,fn:VEDFF,yinit:LDFF,intvals:LDFF,g:EDFF,abserr:DFF,relerr:DFF) -OrdinaryDifferentialEquationsSolverCategory(): Category == SetCategory with - - measure:(RoutinesTable,ODEAF) -> Record(measure:Float,explanations:String) - ++ measure(R,args) calculates an estimate of the ability of a particular - ++ method to solve a problem. - ++ - ++ This method may be either a specific NAG routine or a strategy (such - ++ as transforming the function from one which is difficult to one which - ++ is easier to solve). - ++ - ++ It will call whichever agents are needed to perform analysis on the - ++ problem in order to calculate the measure. There is a parameter, - ++ labelled \axiom{sofar}, which would contain the best compatibility - ++ found so far. - - ODESolve: ODEAF -> Result - ++ ODESolve(args) performs the integration of the - ++ function given the strategy or method returned by \axiomFun{measure}. - -@ -\section{category PDECAT PartialDifferentialEquationsSolverCategory} -<<category PDECAT PartialDifferentialEquationsSolverCategory>>= -)abbrev category PDECAT PartialDifferentialEquationsSolverCategory -++ Author: Brian Dupee -++ Date Created: February 1995 -++ Date Last Updated: June 1995 -++ Basic Operations: -++ Description: -++ \axiomType{PartialDifferentialEquationsSolverCategory} is the -++ \axiom{category} for describing the set of PDE solver \axiom{domains} -++ with \axiomFun{measure} and \axiomFun{PDEsolve}. - --- PDEA ==> Record(xmin:F,xmax:F,ymin:F,ymax:F,ngx:NNI,ngy:NNI,_ --- pde:List Expression Float, bounds:List List Expression Float,_ --- st:String, tol:DF) - --- measure:(RoutinesTable,PDEA) -> Record(measure:F,explanations:String) --- ++ measure(R,args) calculates an estimate of the ability of a particular --- ++ method to solve a problem. --- ++ --- ++ This method may be either a specific NAG routine or a strategy (such --- ++ as transforming the function from one which is difficult to one which --- ++ is easier to solve). --- ++ --- ++ It will call whichever agents are needed to perform analysis on the --- ++ problem in order to calculate the measure. There is a parameter, --- ++ labelled \axiom{sofar}, which would contain the best compatibility --- ++ found so far. - --- PDESolve: PDEA -> Result --- ++ PDESolve(args) performs the integration of the --- ++ function given the strategy or method returned by \axiomFun{measure}. - -DFG ==> DoubleFloat -NNIG ==> NonNegativeInteger -INTG ==> Integer -MDFG ==> Matrix DoubleFloat -PDECG ==> Record(start:DFG, finish:DFG, grid:NNIG, boundaryType:INTG, - dStart:MDFG, dFinish:MDFG) -LEDFG ==> List Expression DoubleFloat -PDEBG ==> Record(pde:LEDFG, constraints:List PDECG, f:List LEDFG, - st:String, tol:DFG) -PartialDifferentialEquationsSolverCategory(): Category == SetCategory with - - measure:(RoutinesTable,PDEBG) -> Record(measure:Float,explanations:String) - ++ measure(R,args) calculates an estimate of the ability of a particular - ++ method to solve a problem. - ++ - ++ This method may be either a specific NAG routine or a strategy (such - ++ as transforming the function from one which is difficult to one which - ++ is easier to solve). - ++ - ++ It will call whichever agents are needed to perform analysis on the - ++ problem in order to calculate the measure. There is a parameter, - ++ labelled \axiom{sofar}, which would contain the best compatibility - ++ found so far. - - PDESolve: PDEBG -> Result - ++ PDESolve(args) performs the integration of the - ++ function given the strategy or method returned by \axiomFun{measure}. - -@ -\section{category OPTCAT NumericalOptimizationCategory} -<<category OPTCAT NumericalOptimizationCategory>>= -)abbrev category OPTCAT NumericalOptimizationCategory -++ Author: Brian Dupee -++ Date Created: January 1996 -++ Date Last Updated: March 1996 -++ Description: -++ \axiomType{NumericalOptimizationCategory} is the \axiom{category} for -++ describing the set of Numerical Optimization \axiom{domains} with -++ \axiomFun{measure} and \axiomFun{optimize}. - -LDFH ==> List DoubleFloat -LEDFH ==> List Expression DoubleFloat -LSAH ==> Record(lfn:LEDFH, init:LDFH) -EDFH ==> Expression DoubleFloat -LOCDFH ==> List OrderedCompletion DoubleFloat -NOAH ==> Record(fn:EDFH, init:LDFH, lb:LOCDFH, cf:LEDFH, ub:LOCDFH) -NumericalOptimizationCategory(): Category == SetCategory with - measure:(RoutinesTable,NOAH)->Record(measure:Float,explanations:String) - ++ measure(R,args) calculates an estimate of the ability of a particular - ++ method to solve an optimization problem. - ++ - ++ This method may be either a specific NAG routine or a strategy (such - ++ as transforming the function from one which is difficult to one which - ++ is easier to solve). - ++ - ++ It will call whichever agents are needed to perform analysis on the - ++ problem in order to calculate the measure. There is a parameter, - ++ labelled \axiom{sofar}, which would contain the best compatibility - ++ found so far. - - measure:(RoutinesTable,LSAH)->Record(measure:Float,explanations:String) - ++ measure(R,args) calculates an estimate of the ability of a particular - ++ method to solve an optimization problem. - ++ - ++ This method may be either a specific NAG routine or a strategy (such - ++ as transforming the function from one which is difficult to one which - ++ is easier to solve). - ++ - ++ It will call whichever agents are needed to perform analysis on the - ++ problem in order to calculate the measure. There is a parameter, - ++ labelled \axiom{sofar}, which would contain the best compatibility - ++ found so far. - - numericalOptimization:LSAH -> Result - ++ numericalOptimization(args) performs the optimization of the - ++ function given the strategy or method returned by \axiomFun{measure}. - - numericalOptimization:NOAH -> Result - ++ numericalOptimization(args) performs the optimization of the - ++ function given the strategy or method returned by \axiomFun{measure}. - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<domain NIPROB NumericalIntegrationProblem>> -<<domain ODEPROB NumericalODEProblem>> -<<domain PDEPROB NumericalPDEProblem>> -<<domain OPTPROB NumericalOptimizationProblem>> -<<category NUMINT NumericalIntegrationCategory>> -<<category ODECAT OrdinaryDifferentialEquationsSolverCategory>> -<<category PDECAT PartialDifferentialEquationsSolverCategory>> -<<category OPTCAT NumericalOptimizationCategory>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/asp.spad.pamphlet b/src/algebra/asp.spad.pamphlet deleted file mode 100644 index d95211a8..00000000 --- a/src/algebra/asp.spad.pamphlet +++ /dev/null @@ -1,4282 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra asp.spad} -\author{Mike Dewar, Grant Keady, Godfrey Nolan} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{domain ASP1 Asp1} -<<domain ASP1 Asp1>>= -)abbrev domain ASP1 Asp1 -++ Author: Mike Dewar, Grant Keady, Godfrey Nolan -++ Date Created: Mar 1993 -++ Date Last Updated: 18 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranFunctionCategory, FortranProgramCategory. -++ Description: -++\spadtype{Asp1} produces Fortran for Type 1 ASPs, needed for various -++NAG routines. Type 1 ASPs take a univariate expression (in the symbol -++X) and turn it into a Fortran Function like the following: -++\begin{verbatim} -++ DOUBLE PRECISION FUNCTION F(X) -++ DOUBLE PRECISION X -++ F=DSIN(X) -++ RETURN -++ END -++\end{verbatim} - - -Asp1(name): Exports == Implementation where - name : Symbol - - FEXPR ==> FortranExpression - FST ==> FortranScalarType - FT ==> FortranType - SYMTAB ==> SymbolTable - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - - Exports ==> FortranFunctionCategory with - coerce : FEXPR(['X],[],MachineFloat) -> $ - ++coerce(f) takes an object from the appropriate instantiation of - ++\spadtype{FortranExpression} and turns it into an ASP. - - Implementation ==> add - - -- Build Symbol Table for Rep - syms : SYMTAB := empty()$SYMTAB - declare!(X,fortranReal()$FT,syms)$SYMTAB - real : FST := "real"::FST - - Rep := FortranProgram(name,[real]$Union(fst:FST,void:"void"),[X],syms) - - retract(u:FRAC POLY INT):$ == (retract(u)@FEXPR(['X],[],MachineFloat))::$ - retractIfCan(u:FRAC POLY INT):Union($,"failed") == - foo : Union(FEXPR(['X],[],MachineFloat),"failed") - foo := retractIfCan(u)$FEXPR(['X],[],MachineFloat) - foo case "failed" => "failed" - foo::FEXPR(['X],[],MachineFloat)::$ - - retract(u:FRAC POLY FLOAT):$ == (retract(u)@FEXPR(['X],[],MachineFloat))::$ - retractIfCan(u:FRAC POLY FLOAT):Union($,"failed") == - foo : Union(FEXPR(['X],[],MachineFloat),"failed") - foo := retractIfCan(u)$FEXPR(['X],[],MachineFloat) - foo case "failed" => "failed" - foo::FEXPR(['X],[],MachineFloat)::$ - - retract(u:EXPR FLOAT):$ == (retract(u)@FEXPR(['X],[],MachineFloat))::$ - retractIfCan(u:EXPR FLOAT):Union($,"failed") == - foo : Union(FEXPR(['X],[],MachineFloat),"failed") - foo := retractIfCan(u)$FEXPR(['X],[],MachineFloat) - foo case "failed" => "failed" - foo::FEXPR(['X],[],MachineFloat)::$ - - retract(u:EXPR INT):$ == (retract(u)@FEXPR(['X],[],MachineFloat))::$ - retractIfCan(u:EXPR INT):Union($,"failed") == - foo : Union(FEXPR(['X],[],MachineFloat),"failed") - foo := retractIfCan(u)$FEXPR(['X],[],MachineFloat) - foo case "failed" => "failed" - foo::FEXPR(['X],[],MachineFloat)::$ - - retract(u:POLY FLOAT):$ == (retract(u)@FEXPR(['X],[],MachineFloat))::$ - retractIfCan(u:POLY FLOAT):Union($,"failed") == - foo : Union(FEXPR(['X],[],MachineFloat),"failed") - foo := retractIfCan(u)$FEXPR(['X],[],MachineFloat) - foo case "failed" => "failed" - foo::FEXPR(['X],[],MachineFloat)::$ - - retract(u:POLY INT):$ == (retract(u)@FEXPR(['X],[],MachineFloat))::$ - retractIfCan(u:POLY INT):Union($,"failed") == - foo : Union(FEXPR(['X],[],MachineFloat),"failed") - foo := retractIfCan(u)$FEXPR(['X],[],MachineFloat) - foo case "failed" => "failed" - foo::FEXPR(['X],[],MachineFloat)::$ - - coerce(u:FEXPR(['X],[],MachineFloat)):$ == - coerce((u::Expression(MachineFloat))$FEXPR(['X],[],MachineFloat))$Rep - - coerce(c:List FortranCode):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:FortranCode):$ == coerce(c)$Rep - - coerce(u:$):OutputForm == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - -@ -\section{domain ASP10 Asp10} -<<domain ASP10 Asp10>>= -)abbrev domain ASP10 Asp10 -++ Author: Mike Dewar and Godfrey Nolan -++ Date Created: Mar 1993 -++ Date Last Updated: 18 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{ASP10} produces Fortran for Type 10 ASPs, needed for NAG routine -++\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions, for example: -++\begin{verbatim} -++ SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) -++ DOUBLE PRECISION ELAM,P,Q,X,DQDL -++ INTEGER JINT -++ P=1.0D0 -++ Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) -++ DQDL=1.0D0 -++ RETURN -++ END -++\end{verbatim} - -Asp10(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - FT ==> FortranType - SYMTAB ==> SymbolTable - EXF ==> Expression Float - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - FEXPR ==> FortranExpression(['JINT,'X,'ELAM],[],MFLOAT) - MFLOAT ==> MachineFloat - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - VEC ==> Vector - VF2 ==> VectorFunctions2 - - Exports ==> FortranVectorFunctionCategory with - coerce : Vector FEXPR -> % - ++coerce(f) takes objects from the appropriate instantiation of - ++\spadtype{FortranExpression} and turns them into an ASP. - - Implementation ==> add - - real : FST := "real"::FST - syms : SYMTAB := empty()$SYMTAB - declare!(P,fortranReal()$FT,syms)$SYMTAB - declare!(Q,fortranReal()$FT,syms)$SYMTAB - declare!(DQDL,fortranReal()$FT,syms)$SYMTAB - declare!(X,fortranReal()$FT,syms)$SYMTAB - declare!(ELAM,fortranReal()$FT,syms)$SYMTAB - declare!(JINT,fortranInteger()$FT,syms)$SYMTAB - Rep := FortranProgram(name,["void"]$Union(fst:FST,void:"void"), - [P,Q,DQDL,X,ELAM,JINT],syms) - - retract(u:VEC FRAC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC FRAC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - coerce(c:FortranCode):% == coerce(c)$Rep - - coerce(r:RSFC):% == coerce(r)$Rep - - coerce(c:List FortranCode):% == coerce(c)$Rep - - -- To help the poor old compiler! - localAssign(s:Symbol,u:Expression MFLOAT):FortranCode == - assign(s,u)$FortranCode - - coerce(u:Vector FEXPR):% == - import Vector FEXPR - not (#u = 3) => error "Incorrect Dimension For Vector" - ([localAssign(P,elt(u,1)::Expression MFLOAT),_ - localAssign(Q,elt(u,2)::Expression MFLOAT),_ - localAssign(DQDL,elt(u,3)::Expression MFLOAT),_ - returns()$FortranCode ]$List(FortranCode))::Rep - - coerce(u:%):OutputForm == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - -@ -\section{domain ASP12 Asp12} -<<domain ASP12 Asp12>>= -)abbrev domain ASP12 Asp12 -++ Author: Mike Dewar and Godfrey Nolan -++ Date Created: Oct 1993 -++ Date Last Updated: 18 March 1994 -++ 21 June 1994 Changed print to printStatement -++ Related Constructors: -++ Description: -++\spadtype{Asp12} produces Fortran for Type 12 ASPs, needed for NAG routine -++\axiomOpFrom{d02kef}{d02Package} etc., for example: -++\begin{verbatim} -++ SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) -++ DOUBLE PRECISION ELAM,FINFO(15) -++ INTEGER MAXIT,IFLAG -++ IF(MAXIT.EQ.-1)THEN -++ PRINT*,"Output from Monit" -++ ENDIF -++ PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) -++ RETURN -++ END -++\end{verbatim} -Asp12(name): Exports == Implementation where - name : Symbol - - O ==> OutputForm - S ==> Symbol - FST ==> FortranScalarType - FT ==> FortranType - FC ==> FortranCode - SYMTAB ==> SymbolTable - EXI ==> Expression Integer - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - U ==> Union(I: Expression Integer,F: Expression Float,_ - CF: Expression Complex Float,switch:Switch) - UFST ==> Union(fst:FST,void:"void") - - Exports ==> FortranProgramCategory with - outputAsFortran:() -> Void - ++outputAsFortran() generates the default code for \spadtype{ASP12}. - - Implementation ==> add - - import FC - import Switch - - real : FST := "real"::FST - syms : SYMTAB := empty()$SYMTAB - declare!(MAXIT,fortranInteger()$FT,syms)$SYMTAB - declare!(IFLAG,fortranInteger()$FT,syms)$SYMTAB - declare!(ELAM,fortranReal()$FT,syms)$SYMTAB - fType : FT := construct([real]$UFST,["15"::Symbol],false)$FT - declare!(FINFO,fType,syms)$SYMTAB - Rep := FortranProgram(name,["void"]$UFST,[MAXIT,IFLAG,ELAM,FINFO],syms) - - -- eqn : O := (I::O)=(1@Integer::EXI::O) - code:=([cond(EQ([MAXIT@S::EXI]$U,[-1::EXI]$U), - printStatement(["_"Output from Monit_""::O])), - printStatement([MAXIT::O,IFLAG::O,ELAM::O,subscript("(FINFO"::S,[I::O])::O,"I=1"::S::O,"4)"::S::O]), -- YUCK! - returns()]$List(FortranCode))::Rep - - coerce(u:%):OutputForm == coerce(u)$Rep - - outputAsFortran(u:%):Void == outputAsFortran(u)$Rep - outputAsFortran():Void == outputAsFortran(code)$Rep - -@ -\section{domain ASP19 Asp19} -<<domain ASP19 Asp19>>= -)abbrev domain ASP19 Asp19 -++ Author: Mike Dewar, Godfrey Nolan, Grant Keady -++ Date Created: Mar 1993 -++ Date Last Updated: 18 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp19} produces Fortran for Type 19 ASPs, evaluating a set of -++functions and their jacobian at a given point, for example: -++\begin{verbatim} -++ SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) -++ DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) -++ INTEGER M,N,LJC -++ INTEGER I,J -++ DO 25003 I=1,LJC -++ DO 25004 J=1,N -++ FJACC(I,J)=0.0D0 -++25004 CONTINUE -++25003 CONTINUE -++ FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( -++ &XC(3)+15.0D0*XC(2)) -++ FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( -++ &XC(3)+7.0D0*XC(2)) -++ FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 -++ &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) -++ FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( -++ &XC(3)+3.0D0*XC(2)) -++ FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* -++ &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) -++ FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 -++ &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) -++ FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* -++ &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) -++ FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ -++ &XC(2)) -++ FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 -++ &286D0)/(XC(3)+XC(2)) -++ FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 -++ &6667D0)/(XC(3)+XC(2)) -++ FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) -++ &+XC(2)) -++ FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) -++ &+XC(2)) -++ FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 -++ &3333D0)/(XC(3)+XC(2)) -++ FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X -++ &C(2)) -++ FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 -++ &)+XC(2)) -++ FJACC(1,1)=1.0D0 -++ FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) -++ FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) -++ FJACC(2,1)=1.0D0 -++ FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) -++ FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) -++ FJACC(3,1)=1.0D0 -++ FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( -++ &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) -++ &**2) -++ FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 -++ &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) -++ FJACC(4,1)=1.0D0 -++ FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) -++ FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) -++ FJACC(5,1)=1.0D0 -++ FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 -++ &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) -++ FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 -++ &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) -++ FJACC(6,1)=1.0D0 -++ FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( -++ &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) -++ &**2) -++ FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 -++ &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) -++ FJACC(7,1)=1.0D0 -++ FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( -++ &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) -++ &**2) -++ FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 -++ &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) -++ FJACC(8,1)=1.0D0 -++ FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) -++ FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) -++ FJACC(9,1)=1.0D0 -++ FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* -++ &*2) -++ FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* -++ &*2) -++ FJACC(10,1)=1.0D0 -++ FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) -++ &**2) -++ FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) -++ &**2) -++ FJACC(11,1)=1.0D0 -++ FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) -++ FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) -++ FJACC(12,1)=1.0D0 -++ FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) -++ FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) -++ FJACC(13,1)=1.0D0 -++ FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) -++ &**2) -++ FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) -++ &**2) -++ FJACC(14,1)=1.0D0 -++ FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) -++ FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) -++ FJACC(15,1)=1.0D0 -++ FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) -++ FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) -++ RETURN -++ END -++\end{verbatim} - -Asp19(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - FT ==> FortranType - FC ==> FortranCode - SYMTAB ==> SymbolTable - RSFC ==> Record(localSymbols:SymbolTable,code:List(FC)) - FSTU ==> Union(fst:FST,void:"void") - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - MFLOAT ==> MachineFloat - VEC ==> Vector - VF2 ==> VectorFunctions2 - MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,Matrix FEXPR,EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,Matrix EXPR MFLOAT) - FEXPR ==> FortranExpression([],['XC],MFLOAT) - S ==> Symbol - - Exports ==> FortranVectorFunctionCategory with - coerce : VEC FEXPR -> $ - ++coerce(f) takes objects from the appropriate instantiation of - ++\spadtype{FortranExpression} and turns them into an ASP. - - Implementation ==> add - - real : FSTU := ["real"::FST]$FSTU - syms : SYMTAB := empty()$SYMTAB - declare!(M,fortranInteger()$FT,syms)$SYMTAB - declare!(N,fortranInteger()$FT,syms)$SYMTAB - declare!(LJC,fortranInteger()$FT,syms)$SYMTAB - xcType : FT := construct(real,[N],false)$FT - declare!(XC,xcType,syms)$SYMTAB - fveccType : FT := construct(real,[M],false)$FT - declare!(FVECC,fveccType,syms)$SYMTAB - fjaccType : FT := construct(real,[LJC,N],false)$FT - declare!(FJACC,fjaccType,syms)$SYMTAB - Rep := FortranProgram(name,["void"]$FSTU,[M,N,XC,FVECC,FJACC,LJC],syms) - - coerce(c:List FC):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:FC):$ == coerce(c)$Rep - - -- Take a symbol, pull of the script and turn it into an integer!! - o2int(u:S):Integer == - o : OutputForm := first elt(scripts(u)$S,sub) - o pretend Integer - - -- To help the poor old compiler! - fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR - - localAssign1(s:S,j:Matrix FEXPR):FC == - j' : Matrix EXPR MFLOAT := map(fexpr2expr,j)$MF2 - assign(s,j')$FC - - localAssign2(s:S,j:VEC FEXPR):FC == - j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT) - assign(s,j')$FC - - coerce(u:VEC FEXPR):$ == - -- First zero the Jacobian matrix in case we miss some derivatives which - -- are zero. - import POLY INT - seg1 : Segment (POLY INT) := segment(1::(POLY INT),LJC@S::(POLY INT)) - seg2 : Segment (POLY INT) := segment(1::(POLY INT),N@S::(POLY INT)) - s1 : SegmentBinding POLY INT := equation(I@S,seg1) - s2 : SegmentBinding POLY INT := equation(J@S,seg2) - as : FC := assign(FJACC,[I@S::(POLY INT),J@S::(POLY INT)],0.0::EXPR FLOAT) - clear : FC := forLoop(s1,forLoop(s2,as)) - x:S := XC::S - pu:List(S) := [] - -- Work out which variables appear in the expressions - for e in entries(u) repeat - pu := setUnion(pu,variables(e)$FEXPR) - scriptList : List Integer := map(o2int,pu)$ListFunctions2(S,Integer) - -- This should be the maximum XC_n which occurs (there may be others - -- which don't): - n:Integer := reduce(max,scriptList)$List(Integer) - p:List(S) := [] - for j in 1..n repeat p:= cons(subscript(x,[j::OutputForm])$S,p) - p:= reverse(p) - jac:Matrix(FEXPR) := _ - jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S)) - c1:FC := localAssign2(FVECC,u) - c2:FC := localAssign1(FJACC,jac) - [clear,c1,c2,returns()]$List(FC)::$ - - coerce(u:$):OutputForm == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - - - retract(u:VEC FRAC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC FRAC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - -@ -\section{domain ASP20 Asp20} -<<domain ASP20 Asp20>>= -)abbrev domain ASP20 Asp20 -++ Author: Mike Dewar and Godfrey Nolan and Grant Keady -++ Date Created: Dec 1993 -++ Date Last Updated: 21 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp20} produces Fortran for Type 20 ASPs, for example: -++\begin{verbatim} -++ SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) -++ DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) -++ INTEGER JTHCOL,N,NROWH,NCOLH -++ HX(1)=2.0D0*X(1) -++ HX(2)=2.0D0*X(2) -++ HX(3)=2.0D0*X(4)+2.0D0*X(3) -++ HX(4)=2.0D0*X(4)+2.0D0*X(3) -++ HX(5)=2.0D0*X(5) -++ HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) -++ HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) -++ RETURN -++ END -++\end{verbatim} - -Asp20(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - FT ==> FortranType - SYMTAB ==> SymbolTable - PI ==> PositiveInteger - UFST ==> Union(fst:FST,void:"void") - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - VEC ==> Vector - MAT ==> Matrix - VF2 ==> VectorFunctions2 - MFLOAT ==> MachineFloat - FEXPR ==> FortranExpression([],['X,'HESS],MFLOAT) - O ==> OutputForm - M2 ==> MatrixCategoryFunctions2 - MF2a ==> M2(FRAC POLY INT,VEC FRAC POLY INT,VEC FRAC POLY INT, - MAT FRAC POLY INT,FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2b ==> M2(FRAC POLY FLOAT,VEC FRAC POLY FLOAT,VEC FRAC POLY FLOAT, - MAT FRAC POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2c ==> M2(POLY INT,VEC POLY INT,VEC POLY INT,MAT POLY INT, - FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2d ==> M2(POLY FLOAT,VEC POLY FLOAT,VEC POLY FLOAT, - MAT POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2e ==> M2(EXPR INT,VEC EXPR INT,VEC EXPR INT,MAT EXPR INT, - FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2f ==> M2(EXPR FLOAT,VEC EXPR FLOAT,VEC EXPR FLOAT, - MAT EXPR FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - - - Exports == Join(FortranMatrixFunctionCategory, CoercibleFrom MAT FEXPR) - Implementation == add - - real : UFST := ["real"::FST]$UFST - syms : SYMTAB := empty() - declare!(N,fortranInteger(),syms)$SYMTAB - declare!(NROWH,fortranInteger(),syms)$SYMTAB - declare!(NCOLH,fortranInteger(),syms)$SYMTAB - declare!(JTHCOL,fortranInteger(),syms)$SYMTAB - hessType : FT := construct(real,[NROWH,NCOLH],false)$FT - declare!(HESS,hessType,syms)$SYMTAB - xType : FT := construct(real,[N],false)$FT - declare!(X,xType,syms)$SYMTAB - declare!(HX,xType,syms)$SYMTAB - Rep := FortranProgram(name,["void"]$UFST, - [N,NROWH,NCOLH,JTHCOL,HESS,X,HX],syms) - - coerce(c:List FortranCode):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:FortranCode):$ == coerce(c)$Rep - - -- To help the poor old compiler! - fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR - - localAssign(s:Symbol,j:VEC FEXPR):FortranCode == - j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT) - assign(s,j')$FortranCode - - coerce(u:MAT FEXPR):$ == - x:Symbol := X::Symbol - n := nrows(u)::PI - p:VEC FEXPR := [retract(subscript(x,[j::O])$Symbol)@FEXPR for j in 1..n] - prod:VEC FEXPR := u*p - ([localAssign(HX,prod),returns()$FortranCode]$List(FortranCode))::$ - - retract(u:MAT FRAC POLY INT):$ == - v : MAT FEXPR := map(retract,u)$MF2a - v::$ - - retractIfCan(u:MAT FRAC POLY INT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2a - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT FRAC POLY FLOAT):$ == - v : MAT FEXPR := map(retract,u)$MF2b - v::$ - - retractIfCan(u:MAT FRAC POLY FLOAT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2b - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT EXPR INT):$ == - v : MAT FEXPR := map(retract,u)$MF2e - v::$ - - retractIfCan(u:MAT EXPR INT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2e - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT EXPR FLOAT):$ == - v : MAT FEXPR := map(retract,u)$MF2f - v::$ - - retractIfCan(u:MAT EXPR FLOAT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2f - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT POLY INT):$ == - v : MAT FEXPR := map(retract,u)$MF2c - v::$ - - retractIfCan(u:MAT POLY INT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2c - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT POLY FLOAT):$ == - v : MAT FEXPR := map(retract,u)$MF2d - v::$ - - retractIfCan(u:MAT POLY FLOAT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2d - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - coerce(u:$):O == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - -@ -\section{domain ASP24 Asp24} -<<domain ASP24 Asp24>>= -)abbrev domain ASP24 Asp24 -++ Author: Mike Dewar, Grant Keady and Godfrey Nolan -++ Date Created: Mar 1993 -++ Date Last Updated: 21 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a -++multivariate function at a point (needed for NAG routine \axiomOpFrom{e04jaf}{e04Package}), for example: -++\begin{verbatim} -++ SUBROUTINE FUNCT1(N,XC,FC) -++ DOUBLE PRECISION FC,XC(N) -++ INTEGER N -++ FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 -++ &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X -++ &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ -++ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( -++ &2)+10.0D0*XC(1)**4+XC(1)**2 -++ RETURN -++ END -++\end{verbatim} - -Asp24(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - FT ==> FortranType - SYMTAB ==> SymbolTable - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - FSTU ==> Union(fst:FST,void:"void") - FEXPR ==> FortranExpression([],['XC],MachineFloat) - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - - Exports ==> FortranFunctionCategory with - coerce : FEXPR -> $ - ++ coerce(f) takes an object from the appropriate instantiation of - ++ \spadtype{FortranExpression} and turns it into an ASP. - - - Implementation ==> add - - - real : FSTU := ["real"::FST]$FSTU - syms : SYMTAB := empty() - declare!(N,fortranInteger(),syms)$SYMTAB - xcType : FT := construct(real,[N::Symbol],false)$FT - declare!(XC,xcType,syms)$SYMTAB - declare!(FC,fortranReal(),syms)$SYMTAB - Rep := FortranProgram(name,["void"]$FSTU,[N,XC,FC],syms) - - coerce(c:List FortranCode):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:FortranCode):$ == coerce(c)$Rep - - coerce(u:FEXPR):$ == - coerce(assign(FC,u::Expression(MachineFloat))$FortranCode)$Rep - - retract(u:FRAC POLY INT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:FRAC POLY INT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - (foo::FEXPR)::$ - - retract(u:FRAC POLY FLOAT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:FRAC POLY FLOAT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - (foo::FEXPR)::$ - - retract(u:EXPR FLOAT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:EXPR FLOAT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - (foo::FEXPR)::$ - - retract(u:EXPR INT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:EXPR INT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - (foo::FEXPR)::$ - - retract(u:POLY FLOAT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:POLY FLOAT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - (foo::FEXPR)::$ - - retract(u:POLY INT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:POLY INT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - (foo::FEXPR)::$ - - coerce(u:$):OutputForm == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - -@ -\section{domain ASP27 Asp27} -<<domain ASP27 Asp27>>= -)abbrev domain ASP27 Asp27 -++ Author: Mike Dewar and Godfrey Nolan -++ Date Created: Nov 1993 -++ Date Last Updated: 27 April 1994 -++ 6 October 1994 -++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp27} produces Fortran for Type 27 ASPs, needed for NAG routine -++\axiomOpFrom{f02fjf}{f02Package} ,for example: -++\begin{verbatim} -++ FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) -++ DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) -++ INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) -++ DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 -++ &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( -++ &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 -++ &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( -++ &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) -++ &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) -++ &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. -++ &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 -++ &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( -++ &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) -++ RETURN -++ END -++\end{verbatim} - -Asp27(name): Exports == Implementation where - name : Symbol - - O ==> OutputForm - FST ==> FortranScalarType - FT ==> FortranType - SYMTAB ==> SymbolTable - UFST ==> Union(fst:FST,void:"void") - FC ==> FortranCode - PI ==> PositiveInteger - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - EXPR ==> Expression - MAT ==> Matrix - MFLOAT ==> MachineFloat - - - - Exports == FortranMatrixCategory - - Implementation == add - - - real : UFST := ["real"::FST]$UFST - integer : UFST := ["integer"::FST]$UFST - syms : SYMTAB := empty()$SYMTAB - declare!(IFLAG,fortranInteger(),syms)$SYMTAB - declare!(N,fortranInteger(),syms)$SYMTAB - declare!(LRWORK,fortranInteger(),syms)$SYMTAB - declare!(LIWORK,fortranInteger(),syms)$SYMTAB - zType : FT := construct(real,[N],false)$FT - declare!(Z,zType,syms)$SYMTAB - declare!(W,zType,syms)$SYMTAB - rType : FT := construct(real,[LRWORK],false)$FT - declare!(RWORK,rType,syms)$SYMTAB - iType : FT := construct(integer,[LIWORK],false)$FT - declare!(IWORK,iType,syms)$SYMTAB - Rep := FortranProgram(name,real, - [IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK],syms) - - -- To help the poor old compiler! - localCoerce(u:Symbol):EXPR(MFLOAT) == coerce(u)$EXPR(MFLOAT) - - coerce (u:MAT MFLOAT):$ == - Ws: Symbol := W - Zs: Symbol := Z - code : List FC - l:EXPR MFLOAT := "+"/ _ - [("+"/[localCoerce(elt(Ws,[j::O])$Symbol) * u(j,i)_ - for j in 1..nrows(u)::PI])_ - *localCoerce(elt(Zs,[i::O])$Symbol) for i in 1..ncols(u)::PI] - c := assign(name,l)$FC - code := [c,returns()]$List(FC) - code::$ - - coerce(c:List FortranCode):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:FortranCode):$ == coerce(c)$Rep - - coerce(u:$):OutputForm == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - -@ -\section{domain ASP28 Asp28} -<<domain ASP28 Asp28>>= -)abbrev domain ASP28 Asp28 -++ Author: Mike Dewar -++ Date Created: 21 March 1994 -++ Date Last Updated: 28 April 1994 -++ 6 October 1994 -++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp28} produces Fortran for Type 28 ASPs, used in NAG routine -++\axiomOpFrom{f02fjf}{f02Package}, for example: -++\begin{verbatim} -++ SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) -++ DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) -++ INTEGER N,LIWORK,IFLAG,LRWORK -++ W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 -++ &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 -++ &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 -++ &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( -++ &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. -++ &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 -++ &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z -++ &(1) -++ W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 -++ &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 -++ &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D -++ &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) -++ &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 -++ &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 -++ &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 -++ &)) -++ W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 -++ &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 -++ &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 -++ &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D -++ &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- -++ &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 -++ &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 -++ &D0*Z(1)) -++ W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. -++ &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 -++ &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 -++ &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z -++ &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 -++ &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 -++ &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* -++ &Z(1) -++ W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( -++ &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 -++ &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 -++ &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 -++ &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) -++ &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 -++ &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 -++ &6D0*Z(1) -++ W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 -++ &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 -++ &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 -++ &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( -++ &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 -++ &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 -++ &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) -++ W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 -++ &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 -++ &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 -++ &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( -++ &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 -++ &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 -++ &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 -++ &) -++ W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 -++ &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 -++ &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 -++ &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) -++ &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 -++ &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 -++ &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( -++ &1) -++ W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- -++ &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 -++ &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 -++ &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 -++ &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 -++ &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 -++ &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( -++ &1) -++ W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 -++ &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 -++ &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 -++ &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 -++ &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 -++ &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 -++ &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( -++ &1) -++ W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 -++ &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 -++ &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D -++ &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) -++ &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 -++ &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 -++ &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) -++ W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- -++ &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 -++ &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 -++ &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 -++ &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. -++ &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 -++ &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 -++ &75D0*Z(1) -++ W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( -++ &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 -++ &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 -++ &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( -++ &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 -++ &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 -++ &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 -++ &*Z(1) -++ W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) -++ &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 -++ &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 -++ &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D -++ &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 -++ &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 -++ &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 -++ &02D0*Z(1) -++ W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 -++ &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 -++ &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 -++ &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D -++ &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. -++ &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 -++ &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z -++ &(1) -++ W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. -++ &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 -++ &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 -++ &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z -++ &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 -++ &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 -++ &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* -++ &Z(1) -++ RETURN -++ END -++\end{verbatim} - -Asp28(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - FT ==> FortranType - SYMTAB ==> SymbolTable - FC ==> FortranCode - PI ==> PositiveInteger - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - EXPR ==> Expression - MFLOAT ==> MachineFloat - VEC ==> Vector - UFST ==> Union(fst:FST,void:"void") - MAT ==> Matrix - - Exports == FortranMatrixCategory - - Implementation == add - - - real : UFST := ["real"::FST]$UFST - syms : SYMTAB := empty() - declare!(IFLAG,fortranInteger(),syms)$SYMTAB - declare!(N,fortranInteger(),syms)$SYMTAB - declare!(LRWORK,fortranInteger(),syms)$SYMTAB - declare!(LIWORK,fortranInteger(),syms)$SYMTAB - xType : FT := construct(real,[N],false)$FT - declare!(Z,xType,syms)$SYMTAB - declare!(W,xType,syms)$SYMTAB - rType : FT := construct(real,[LRWORK],false)$FT - declare!(RWORK,rType,syms)$SYMTAB - iType : FT := construct(real,[LIWORK],false)$FT - declare!(IWORK,rType,syms)$SYMTAB - Rep := FortranProgram(name,["void"]$UFST, - [IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK],syms) - - -- To help the poor old compiler! - localCoerce(u:Symbol):EXPR(MFLOAT) == coerce(u)$EXPR(MFLOAT) - - coerce (u:MAT MFLOAT):$ == - Zs: Symbol := Z - code : List FC - r: List EXPR MFLOAT - r := ["+"/[u(j,i)*localCoerce(elt(Zs,[i::OutputForm])$Symbol)_ - for i in 1..ncols(u)$MAT(MFLOAT)::PI]_ - for j in 1..nrows(u)$MAT(MFLOAT)::PI] - code := [assign(W@Symbol,vector(r)$VEC(EXPR MFLOAT)),returns()]$List(FC) - code::$ - - coerce(c:FortranCode):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:List FortranCode):$ == coerce(c)$Rep - - coerce(u:$):OutputForm == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - -@ -\section{domain ASP29 Asp29} -<<domain ASP29 Asp29>>= -)abbrev domain ASP29 Asp29 -++ Author: Mike Dewar and Godfrey Nolan -++ Date Created: Nov 1993 -++ Date Last Updated: 18 March 1994 -++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp29} produces Fortran for Type 29 ASPs, needed for NAG routine -++\axiomOpFrom{f02fjf}{f02Package}, for example: -++\begin{verbatim} -++ SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) -++ DOUBLE PRECISION D(K),F(K) -++ INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE -++ CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) -++ RETURN -++ END -++\end{verbatim} - -Asp29(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - FT ==> FortranType - FSTU ==> Union(fst:FST,void:"void") - SYMTAB ==> SymbolTable - FC ==> FortranCode - PI ==> PositiveInteger - EXF ==> Expression Float - EXI ==> Expression Integer - VEF ==> Vector Expression Float - VEI ==> Vector Expression Integer - MEI ==> Matrix Expression Integer - MEF ==> Matrix Expression Float - UEXPR ==> Union(I: Expression Integer,F: Expression Float,_ - CF: Expression Complex Float) - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - - Exports == FortranProgramCategory with - outputAsFortran:() -> Void - ++outputAsFortran() generates the default code for \spadtype{ASP29}. - - - Implementation == add - - import FST - import FT - import FC - import SYMTAB - - real : FSTU := ["real"::FST]$FSTU - integer : FSTU := ["integer"::FST]$FSTU - syms : SYMTAB := empty() - declare!(ISTATE,fortranInteger(),syms) - declare!(NEXTIT,fortranInteger(),syms) - declare!(NEVALS,fortranInteger(),syms) - declare!(NVECS,fortranInteger(),syms) - declare!(K,fortranInteger(),syms) - kType : FT := construct(real,[K],false)$FT - declare!(F,kType,syms) - declare!(D,kType,syms) - Rep := FortranProgram(name,["void"]$FSTU, - [ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D],syms) - - - outputAsFortran():Void == - callOne := call("F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D)") - code : List FC := [callOne,returns()]$List(FC) - outputAsFortran(coerce(code)@Rep)$Rep - -@ -\section{domain ASP30 Asp30} -<<domain ASP30 Asp30>>= -)abbrev domain ASP30 Asp30 -++ Author: Mike Dewar and Godfrey Nolan -++ Date Created: Nov 1993 -++ Date Last Updated: 28 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp30} produces Fortran for Type 30 ASPs, needed for NAG routine -++\axiomOpFrom{f04qaf}{f04Package}, for example: -++\begin{verbatim} -++ SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) -++ DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) -++ INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE -++ DOUBLE PRECISION A(5,5) -++ EXTERNAL F06PAF -++ A(1,1)=1.0D0 -++ A(1,2)=0.0D0 -++ A(1,3)=0.0D0 -++ A(1,4)=-1.0D0 -++ A(1,5)=0.0D0 -++ A(2,1)=0.0D0 -++ A(2,2)=1.0D0 -++ A(2,3)=0.0D0 -++ A(2,4)=0.0D0 -++ A(2,5)=-1.0D0 -++ A(3,1)=0.0D0 -++ A(3,2)=0.0D0 -++ A(3,3)=1.0D0 -++ A(3,4)=-1.0D0 -++ A(3,5)=0.0D0 -++ A(4,1)=-1.0D0 -++ A(4,2)=0.0D0 -++ A(4,3)=-1.0D0 -++ A(4,4)=4.0D0 -++ A(4,5)=-1.0D0 -++ A(5,1)=0.0D0 -++ A(5,2)=-1.0D0 -++ A(5,3)=0.0D0 -++ A(5,4)=-1.0D0 -++ A(5,5)=4.0D0 -++ IF(MODE.EQ.1)THEN -++ CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) -++ ELSEIF(MODE.EQ.2)THEN -++ CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) -++ ENDIF -++ RETURN -++ END -++\end{verbatim} - -Asp30(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - FT ==> FortranType - SYMTAB ==> SymbolTable - FC ==> FortranCode - PI ==> PositiveInteger - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - UFST ==> Union(fst:FST,void:"void") - MAT ==> Matrix - MFLOAT ==> MachineFloat - EXI ==> Expression Integer - UEXPR ==> Union(I:Expression Integer,F:Expression Float,_ - CF:Expression Complex Float,switch:Switch) - S ==> Symbol - - Exports == FortranMatrixCategory - - Implementation == add - - import FC - import FT - import Switch - - real : UFST := ["real"::FST]$UFST - integer : UFST := ["integer"::FST]$UFST - syms : SYMTAB := empty()$SYMTAB - declare!(MODE,fortranInteger()$FT,syms)$SYMTAB - declare!(M,fortranInteger()$FT,syms)$SYMTAB - declare!(N,fortranInteger()$FT,syms)$SYMTAB - declare!(LRWORK,fortranInteger()$FT,syms)$SYMTAB - declare!(LIWORK,fortranInteger()$FT,syms)$SYMTAB - xType : FT := construct(real,[N],false)$FT - declare!(X,xType,syms)$SYMTAB - yType : FT := construct(real,[M],false)$FT - declare!(Y,yType,syms)$SYMTAB - rType : FT := construct(real,[LRWORK],false)$FT - declare!(RWORK,rType,syms)$SYMTAB - iType : FT := construct(integer,[LIWORK],false)$FT - declare!(IWORK,iType,syms)$SYMTAB - declare!(IFAIL,fortranInteger()$FT,syms)$SYMTAB - Rep := FortranProgram(name,["void"]$UFST, - [MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK],syms) - - coerce(a:MAT MFLOAT):$ == - locals : SYMTAB := empty() - numRows := nrows(a) :: Polynomial Integer - numCols := ncols(a) :: Polynomial Integer - declare!(A,[real,[numRows,numCols],false]$FT,locals) - declare!(F06PAF@S,construct(["void"]$UFST,[]@List(S),true)$FT,locals) - ptA:UEXPR := [("MODE"::S)::EXI] - ptB:UEXPR := [1::EXI] - ptC:UEXPR := [2::EXI] - sw1 : Switch := EQ(ptA,ptB)$Switch - sw2 : Switch := EQ(ptA,ptC)$Switch - callOne := call("F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1)") - callTwo := call("F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1)") - c : FC := cond(sw1,callOne,cond(sw2,callTwo)) - code' : List FC := [assign(A,a),c,returns()] - ([locals,code']$RSFC)::$ - - coerce(c:List FortranCode):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:FortranCode):$ == coerce(c)$Rep - - coerce(u:$):OutputForm == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - -@ -\section{domain ASP31 Asp31} -<<domain ASP31 Asp31>>= -)abbrev domain ASP31 Asp31 -++ Author: Mike Dewar, Grant Keady and Godfrey Nolan -++ Date Created: Mar 1993 -++ Date Last Updated: 22 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranMatrixFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp31} produces Fortran for Type 31 ASPs, needed for NAG routine -++\axiomOpFrom{d02ejf}{d02Package}, for example: -++\begin{verbatim} -++ SUBROUTINE PEDERV(X,Y,PW) -++ DOUBLE PRECISION X,Y(*) -++ DOUBLE PRECISION PW(3,3) -++ PW(1,1)=-0.03999999999999999D0 -++ PW(1,2)=10000.0D0*Y(3) -++ PW(1,3)=10000.0D0*Y(2) -++ PW(2,1)=0.03999999999999999D0 -++ PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) -++ PW(2,3)=-10000.0D0*Y(2) -++ PW(3,1)=0.0D0 -++ PW(3,2)=60000000.0D0*Y(2) -++ PW(3,3)=0.0D0 -++ RETURN -++ END -++\end{verbatim} - -Asp31(name): Exports == Implementation where - name : Symbol - - O ==> OutputForm - FST ==> FortranScalarType - UFST ==> Union(fst:FST,void:"void") - MFLOAT ==> MachineFloat - FEXPR ==> FortranExpression(['X],['Y],MFLOAT) - FT ==> FortranType - FC ==> FortranCode - SYMTAB ==> SymbolTable - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - VEC ==> Vector - MAT ==> Matrix - VF2 ==> VectorFunctions2 - MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR, - EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,MAT EXPR MFLOAT) - - - - Exports ==> FortranVectorFunctionCategory with - coerce : VEC FEXPR -> $ - ++coerce(f) takes objects from the appropriate instantiation of - ++\spadtype{FortranExpression} and turns them into an ASP. - - Implementation ==> add - - - real : UFST := ["real"::FST]$UFST - syms : SYMTAB := empty() - declare!(X,fortranReal(),syms)$SYMTAB - yType : FT := construct(real,["*"::Symbol],false)$FT - declare!(Y,yType,syms)$SYMTAB - Rep := FortranProgram(name,["void"]$UFST,[X,Y,PW],syms) - - -- To help the poor old compiler! - fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR - - localAssign(s:Symbol,j:MAT FEXPR):FC == - j' : MAT EXPR MFLOAT := map(fexpr2expr,j)$MF2 - assign(s,j')$FC - - makeXList(n:Integer):List(Symbol) == - y:Symbol := Y::Symbol - p:List(Symbol) := [] - for j in 1 .. n repeat p:= cons(subscript(y,[j::OutputForm])$Symbol,p) - p:= reverse(p) - - coerce(u:VEC FEXPR):$ == - dimension := #u::Polynomial Integer - locals : SYMTAB := empty() - declare!(PW,[real,[dimension,dimension],false]$FT,locals)$SYMTAB - n:Integer := maxIndex(u)$VEC(FEXPR) - p:List(Symbol) := makeXList(n) - jac: MAT FEXPR := jacobian(u,p)$MultiVariableCalculusFunctions(_ - Symbol,FEXPR ,VEC FEXPR,List(Symbol)) - code' : List FC := [localAssign(PW,jac),returns()$FC]$List(FC) - ([locals,code']$RSFC)::$ - - retract(u:VEC FRAC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC FRAC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - coerce(c:List FC):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:FC):$ == coerce(c)$Rep - - coerce(u:$):O == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - -@ -\section{domain ASP33 Asp33} -<<domain ASP33 Asp33>>= -)abbrev domain ASP33 Asp33 -++ Author: Mike Dewar and Godfrey Nolan -++ Date Created: Nov 1993 -++ Date Last Updated: 30 March 1994 -++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory. -++ Description: -++\spadtype{Asp33} produces Fortran for Type 33 ASPs, needed for NAG routine -++\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP: -++\begin{verbatim} -++ SUBROUTINE REPORT(X,V,JINT) -++ DOUBLE PRECISION V(3),X -++ INTEGER JINT -++ RETURN -++ END -++\end{verbatim} - -Asp33(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - UFST ==> Union(fst:FST,void:"void") - FT ==> FortranType - SYMTAB ==> SymbolTable - FC ==> FortranCode - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - - Exports ==> FortranProgramCategory with - outputAsFortran:() -> Void - ++outputAsFortran() generates the default code for \spadtype{ASP33}. - - - Implementation ==> add - - real : UFST := ["real"::FST]$UFST - syms : SYMTAB := empty() - declare!(JINT,fortranInteger(),syms)$SYMTAB - declare!(X,fortranReal(),syms)$SYMTAB - vType : FT := construct(real,["3"::Symbol],false)$FT - declare!(V,vType,syms)$SYMTAB - Rep := FortranProgram(name,["void"]$UFST,[X,V,JINT],syms) - - outputAsFortran():Void == - outputAsFortran( (returns()$FortranCode)::Rep )$Rep - - outputAsFortran(u):Void == outputAsFortran(u)$Rep - - coerce(u:$):OutputForm == coerce(u)$Rep - -@ -\section{domain ASP34 Asp34} -<<domain ASP34 Asp34>>= -)abbrev domain ASP34 Asp34 -++ Author: Mike Dewar and Godfrey Nolan -++ Date Created: Nov 1993 -++ Date Last Updated: 14 June 1994 (Themos Tsikas) -++ 6 October 1994 -++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp34} produces Fortran for Type 34 ASPs, needed for NAG routine -++\axiomOpFrom{f04mbf}{f04Package}, for example: -++\begin{verbatim} -++ SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) -++ DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) -++ INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) -++ DOUBLE PRECISION W1(3),W2(3),MS(3,3) -++ IFLAG=-1 -++ MS(1,1)=2.0D0 -++ MS(1,2)=1.0D0 -++ MS(1,3)=0.0D0 -++ MS(2,1)=1.0D0 -++ MS(2,2)=2.0D0 -++ MS(2,3)=1.0D0 -++ MS(3,1)=0.0D0 -++ MS(3,2)=1.0D0 -++ MS(3,3)=2.0D0 -++ CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) -++ IFLAG=-IFLAG -++ RETURN -++ END -++\end{verbatim} - -Asp34(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - FT ==> FortranType - UFST ==> Union(fst:FST,void:"void") - SYMTAB ==> SymbolTable - FC ==> FortranCode - PI ==> PositiveInteger - EXI ==> Expression Integer - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - - Exports == FortranMatrixCategory - - Implementation == add - - real : UFST := ["real"::FST]$UFST - integer : UFST := ["integer"::FST]$UFST - syms : SYMTAB := empty()$SYMTAB - declare!('IFLAG,fortranInteger(),syms)$SYMTAB - declare!('N,fortranInteger(),syms)$SYMTAB - xType : FT := construct(real,['N],false)$FT - declare!('X,xType,syms)$SYMTAB - declare!('Y,xType,syms)$SYMTAB - declare!('LRWORK,fortranInteger(),syms)$SYMTAB - declare!('LIWORK,fortranInteger(),syms)$SYMTAB - rType : FT := construct(real,['LRWORK],false)$FT - declare!('RWORK,rType,syms)$SYMTAB - iType : FT := construct(integer,['LIWORK],false)$FT - declare!('IWORK,iType,syms)$SYMTAB - Rep := FortranProgram(name,["void"]$UFST, - ['IFLAG,'N,'X,'Y,'RWORK,'LRWORK,'IWORK,'LIWORK],syms) - - -- To help the poor old compiler - localAssign(s:Symbol,u:EXI):FC == assign(s,u)$FC - - coerce(u:Matrix MachineFloat):$ == - dimension := nrows(u) ::Polynomial Integer - locals : SYMTAB := empty()$SYMTAB - declare!('I,fortranInteger(),syms)$SYMTAB - declare!('J,fortranInteger(),syms)$SYMTAB - declare!('W1,[real,[dimension],false]$FT,locals)$SYMTAB - declare!('W2,[real,[dimension],false]$FT,locals)$SYMTAB - declare!('MS,[real,[dimension,dimension],false]$FT,locals)$SYMTAB - assign1 : FC := localAssign('IFLAG,(-1)@EXI) - call : FC := call("F04ASF(MS,N,X,N,Y,W1,W2,IFLAG)")$FC - assign2 : FC := localAssign('IFLAG,-('IFLAG::EXI)) - assign3 : FC := assign('MS,u)$FC - code' : List FC := [assign1,assign3,call,assign2,returns()]$List(FC) - ([locals,code']$RSFC)::$ - - coerce(c:List FortranCode):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:FortranCode):$ == coerce(c)$Rep - - coerce(u:$):OutputForm == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - -@ -\section{domain ASP35 Asp35} -<<domain ASP35 Asp35>>= -)abbrev domain ASP35 Asp35 -++ Author: Mike Dewar, Godfrey Nolan, Grant Keady -++ Date Created: Mar 1993 -++ Date Last Updated: 22 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp35} produces Fortran for Type 35 ASPs, needed for NAG routines -++\axiomOpFrom{c05pbf}{c05Package}, \axiomOpFrom{c05pcf}{c05Package}, for example: -++\begin{verbatim} -++ SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) -++ DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) -++ INTEGER LDFJAC,N,IFLAG -++ IF(IFLAG.EQ.1)THEN -++ FVEC(1)=(-1.0D0*X(2))+X(1) -++ FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) -++ FVEC(3)=3.0D0*X(3) -++ ELSEIF(IFLAG.EQ.2)THEN -++ FJAC(1,1)=1.0D0 -++ FJAC(1,2)=-1.0D0 -++ FJAC(1,3)=0.0D0 -++ FJAC(2,1)=0.0D0 -++ FJAC(2,2)=2.0D0 -++ FJAC(2,3)=-1.0D0 -++ FJAC(3,1)=0.0D0 -++ FJAC(3,2)=0.0D0 -++ FJAC(3,3)=3.0D0 -++ ENDIF -++ END -++\end{verbatim} - -Asp35(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - FT ==> FortranType - UFST ==> Union(fst:FST,void:"void") - SYMTAB ==> SymbolTable - FC ==> FortranCode - PI ==> PositiveInteger - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - VEC ==> Vector - MAT ==> Matrix - VF2 ==> VectorFunctions2 - MFLOAT ==> MachineFloat - FEXPR ==> FortranExpression([],['X],MFLOAT) - MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR, - EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,MAT EXPR MFLOAT) - SWU ==> Union(I:Expression Integer,F:Expression Float, - CF:Expression Complex Float,switch:Switch) - - Exports ==> FortranVectorFunctionCategory with - coerce : VEC FEXPR -> $ - ++coerce(f) takes objects from the appropriate instantiation of - ++\spadtype{FortranExpression} and turns them into an ASP. - - Implementation ==> add - - real : UFST := ["real"::FST]$UFST - syms : SYMTAB := empty()$SYMTAB - declare!(N,fortranInteger(),syms)$SYMTAB - xType : FT := construct(real,[N],false)$FT - declare!(X,xType,syms)$SYMTAB - declare!(FVEC,xType,syms)$SYMTAB - declare!(LDFJAC,fortranInteger(),syms)$SYMTAB - jType : FT := construct(real,[LDFJAC,N],false)$FT - declare!(FJAC,jType,syms)$SYMTAB - declare!(IFLAG,fortranInteger(),syms)$SYMTAB - Rep := FortranProgram(name,["void"]$UFST,[N,X,FVEC,FJAC,LDFJAC,IFLAG],syms) - - coerce(u:$):OutputForm == coerce(u)$Rep - - makeXList(n:Integer):List(Symbol) == - x:Symbol := X::Symbol - [subscript(x,[j::OutputForm])$Symbol for j in 1..n] - - fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR - - localAssign1(s:Symbol,j:MAT FEXPR):FC == - j' : MAT EXPR MFLOAT := map(fexpr2expr,j)$MF2 - assign(s,j')$FC - - localAssign2(s:Symbol,j:VEC FEXPR):FC == - j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT) - assign(s,j')$FC - - coerce(u:VEC FEXPR):$ == - n:Integer := maxIndex(u) - p:List(Symbol) := makeXList(n) - jac: MAT FEXPR := jacobian(u,p)$MultiVariableCalculusFunctions(_ - Symbol,FEXPR,VEC FEXPR,List(Symbol)) - assf:FC := localAssign2(FVEC,u) - assj:FC := localAssign1(FJAC,jac) - iflag:SWU := [IFLAG@Symbol::EXPR(INT)]$SWU - sw1:Switch := EQ(iflag,[1::EXPR(INT)]$SWU) - sw2:Switch := EQ(iflag,[2::EXPR(INT)]$SWU) - cond(sw1,assf,cond(sw2,assj)$FC)$FC::$ - - coerce(c:List FC):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:FC):$ == coerce(c)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - - retract(u:VEC FRAC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC FRAC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - -@ -\section{domain ASP4 Asp4} -<<domain ASP4 Asp4>>= -)abbrev domain ASP4 Asp4 -++ Author: Mike Dewar, Grant Keady and Godfrey Nolan -++ Date Created: Mar 1993 -++ Date Last Updated: 18 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp4} produces Fortran for Type 4 ASPs, which take an expression -++in X(1) .. X(NDIM) and produce a real function of the form: -++\begin{verbatim} -++ DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) -++ DOUBLE PRECISION X(NDIM) -++ INTEGER NDIM -++ FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* -++ &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) -++ RETURN -++ END -++\end{verbatim} - -Asp4(name): Exports == Implementation where - name : Symbol - - FEXPR ==> FortranExpression([],['X],MachineFloat) - FST ==> FortranScalarType - FT ==> FortranType - SYMTAB ==> SymbolTable - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - FSTU ==> Union(fst:FST,void:"void") - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - - Exports ==> FortranFunctionCategory with - coerce : FEXPR -> $ - ++coerce(f) takes an object from the appropriate instantiation of - ++\spadtype{FortranExpression} and turns it into an ASP. - - Implementation ==> add - - real : FSTU := ["real"::FST]$FSTU - syms : SYMTAB := empty()$SYMTAB - declare!(NDIM,fortranInteger(),syms)$SYMTAB - xType : FT := construct(real,[NDIM],false)$FT - declare!(X,xType,syms)$SYMTAB - Rep := FortranProgram(name,real,[NDIM,X],syms) - - retract(u:FRAC POLY INT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:FRAC POLY INT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - foo::FEXPR::$ - - retract(u:FRAC POLY FLOAT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:FRAC POLY FLOAT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - foo::FEXPR::$ - - retract(u:EXPR FLOAT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:EXPR FLOAT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - foo::FEXPR::$ - - retract(u:EXPR INT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:EXPR INT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - foo::FEXPR::$ - - retract(u:POLY FLOAT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:POLY FLOAT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - foo::FEXPR::$ - - retract(u:POLY INT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:POLY INT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - foo::FEXPR::$ - - coerce(u:FEXPR):$ == - coerce((u::Expression(MachineFloat))$FEXPR)$Rep - - coerce(c:List FortranCode):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:FortranCode):$ == coerce(c)$Rep - - coerce(u:$):OutputForm == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - -@ -\section{domain ASP41 Asp41} -<<domain ASP41 Asp41>>= -)abbrev domain ASP41 Asp41 -++ Author: Mike Dewar, Godfrey Nolan -++ Date Created: -++ Date Last Updated: 29 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranFunctionCategory, FortranProgramCategory. -++ Description: -++\spadtype{Asp41} produces Fortran for Type 41 ASPs, needed for NAG -++routines \axiomOpFrom{d02raf}{d02Package} and \axiomOpFrom{d02saf}{d02Package} -++in particular. These ASPs are in fact -++three Fortran routines which return a vector of functions, and their -++derivatives wrt Y(i) and also a continuation parameter EPS, for example: -++\begin{verbatim} -++ SUBROUTINE FCN(X,EPS,Y,F,N) -++ DOUBLE PRECISION EPS,F(N),X,Y(N) -++ INTEGER N -++ F(1)=Y(2) -++ F(2)=Y(3) -++ F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) -++ RETURN -++ END -++ SUBROUTINE JACOBF(X,EPS,Y,F,N) -++ DOUBLE PRECISION EPS,F(N,N),X,Y(N) -++ INTEGER N -++ F(1,1)=0.0D0 -++ F(1,2)=1.0D0 -++ F(1,3)=0.0D0 -++ F(2,1)=0.0D0 -++ F(2,2)=0.0D0 -++ F(2,3)=1.0D0 -++ F(3,1)=-1.0D0*Y(3) -++ F(3,2)=4.0D0*EPS*Y(2) -++ F(3,3)=-1.0D0*Y(1) -++ RETURN -++ END -++ SUBROUTINE JACEPS(X,EPS,Y,F,N) -++ DOUBLE PRECISION EPS,F(N),X,Y(N) -++ INTEGER N -++ F(1)=0.0D0 -++ F(2)=0.0D0 -++ F(3)=2.0D0*Y(2)**2-2.0D0 -++ RETURN -++ END -++\end{verbatim} - -Asp41(nameOne,nameTwo,nameThree): Exports == Implementation where - nameOne : Symbol - nameTwo : Symbol - nameThree : Symbol - - D ==> differentiate - FST ==> FortranScalarType - UFST ==> Union(fst:FST,void:"void") - FT ==> FortranType - FC ==> FortranCode - SYMTAB ==> SymbolTable - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - VEC ==> Vector - VF2 ==> VectorFunctions2 - MFLOAT ==> MachineFloat - FEXPR ==> FortranExpression(['X,'EPS],['Y],MFLOAT) - S ==> Symbol - MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,Matrix FEXPR, - EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,Matrix EXPR MFLOAT) - - Exports ==> FortranVectorFunctionCategory with - coerce : VEC FEXPR -> $ - ++coerce(f) takes objects from the appropriate instantiation of - ++\spadtype{FortranExpression} and turns them into an ASP. - - Implementation ==> add - real : UFST := ["real"::FST]$UFST - - symOne : SYMTAB := empty()$SYMTAB - declare!(N,fortranInteger(),symOne)$SYMTAB - declare!(X,fortranReal(),symOne)$SYMTAB - declare!(EPS,fortranReal(),symOne)$SYMTAB - yType : FT := construct(real,[N],false)$FT - declare!(Y,yType,symOne)$SYMTAB - declare!(F,yType,symOne)$SYMTAB - - symTwo : SYMTAB := empty()$SYMTAB - declare!(N,fortranInteger(),symTwo)$SYMTAB - declare!(X,fortranReal(),symTwo)$SYMTAB - declare!(EPS,fortranReal(),symTwo)$SYMTAB - declare!(Y,yType,symTwo)$SYMTAB - fType : FT := construct(real,[N,N],false)$FT - declare!(F,fType,symTwo)$SYMTAB - - symThree : SYMTAB := empty()$SYMTAB - declare!(N,fortranInteger(),symThree)$SYMTAB - declare!(X,fortranReal(),symThree)$SYMTAB - declare!(EPS,fortranReal(),symThree)$SYMTAB - declare!(Y,yType,symThree)$SYMTAB - declare!(F,yType,symThree)$SYMTAB - - R1:=FortranProgram(nameOne,["void"]$UFST,[X,EPS,Y,F,N],symOne) - R2:=FortranProgram(nameTwo,["void"]$UFST,[X,EPS,Y,F,N],symTwo) - R3:=FortranProgram(nameThree,["void"]$UFST,[X,EPS,Y,F,N],symThree) - Rep := Record(f:R1,fJacob:R2,eJacob:R3) - Fsym:Symbol:=coerce "F" - - fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR - - localAssign1(s:S,j:Matrix FEXPR):FC == - j' : Matrix EXPR MFLOAT := map(fexpr2expr,j)$MF2 - assign(s,j')$FC - - localAssign2(s:S,j:VEC FEXPR):FC == - j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT) - assign(s,j')$FC - - makeCodeOne(u:VEC FEXPR):FortranCode == - -- simple assign - localAssign2(Fsym,u) - - makeCodeThree(u:VEC FEXPR):FortranCode == - -- compute jacobian wrt to eps - jacEps:VEC FEXPR := [D(v,EPS) for v in entries(u)]$VEC(FEXPR) - makeCodeOne(jacEps) - - makeYList(n:Integer):List(Symbol) == - y:Symbol := Y::Symbol - p:List(Symbol) := [] - [subscript(y,[j::OutputForm])$Symbol for j in 1..n] - - makeCodeTwo(u:VEC FEXPR):FortranCode == - -- compute jacobian wrt to f - n:Integer := maxIndex(u)$VEC(FEXPR) - p:List(Symbol) := makeYList(n) - jac:Matrix(FEXPR) := _ - jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S)) - localAssign1(Fsym,jac) - - coerce(u:VEC FEXPR):$ == - aF:FortranCode := makeCodeOne(u) - bF:FortranCode := makeCodeTwo(u) - cF:FortranCode := makeCodeThree(u) - -- add returns() to complete subroutines - aLF:List(FortranCode) := [aF,returns()$FortranCode]$List(FortranCode) - bLF:List(FortranCode) := [bF,returns()$FortranCode]$List(FortranCode) - cLF:List(FortranCode) := [cF,returns()$FortranCode]$List(FortranCode) - [coerce(aLF)$R1,coerce(bLF)$R2,coerce(cLF)$R3] - - coerce(u:$):OutputForm == - bracket commaSeparate - [nameOne::OutputForm,nameTwo::OutputForm,nameThree::OutputForm] - - outputAsFortran(u:$):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran elt(u,f)$Rep - outputAsFortran elt(u,fJacob)$Rep - outputAsFortran elt(u,eJacob)$Rep - p => restorePrecision()$NAGLinkSupportPackage - - retract(u:VEC FRAC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC FRAC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - -@ -\section{domain ASP42 Asp42} -<<domain ASP42 Asp42>>= -)abbrev domain ASP42 Asp42 -++ Author: Mike Dewar, Godfrey Nolan -++ Date Created: -++ Date Last Updated: 29 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranFunctionCategory, FortranProgramCategory. -++ Description: -++\spadtype{Asp42} produces Fortran for Type 42 ASPs, needed for NAG -++routines \axiomOpFrom{d02raf}{d02Package} and \axiomOpFrom{d02saf}{d02Package} -++in particular. These ASPs are in fact -++three Fortran routines which return a vector of functions, and their -++derivatives wrt Y(i) and also a continuation parameter EPS, for example: -++\begin{verbatim} -++ SUBROUTINE G(EPS,YA,YB,BC,N) -++ DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) -++ INTEGER N -++ BC(1)=YA(1) -++ BC(2)=YA(2) -++ BC(3)=YB(2)-1.0D0 -++ RETURN -++ END -++ SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) -++ DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) -++ INTEGER N -++ AJ(1,1)=1.0D0 -++ AJ(1,2)=0.0D0 -++ AJ(1,3)=0.0D0 -++ AJ(2,1)=0.0D0 -++ AJ(2,2)=1.0D0 -++ AJ(2,3)=0.0D0 -++ AJ(3,1)=0.0D0 -++ AJ(3,2)=0.0D0 -++ AJ(3,3)=0.0D0 -++ BJ(1,1)=0.0D0 -++ BJ(1,2)=0.0D0 -++ BJ(1,3)=0.0D0 -++ BJ(2,1)=0.0D0 -++ BJ(2,2)=0.0D0 -++ BJ(2,3)=0.0D0 -++ BJ(3,1)=0.0D0 -++ BJ(3,2)=1.0D0 -++ BJ(3,3)=0.0D0 -++ RETURN -++ END -++ SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) -++ DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) -++ INTEGER N -++ BCEP(1)=0.0D0 -++ BCEP(2)=0.0D0 -++ BCEP(3)=0.0D0 -++ RETURN -++ END -++\end{verbatim} - -Asp42(nameOne,nameTwo,nameThree): Exports == Implementation where - nameOne : Symbol - nameTwo : Symbol - nameThree : Symbol - - D ==> differentiate - FST ==> FortranScalarType - FT ==> FortranType - FP ==> FortranProgram - FC ==> FortranCode - PI ==> PositiveInteger - NNI ==> NonNegativeInteger - SYMTAB ==> SymbolTable - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - UFST ==> Union(fst:FST,void:"void") - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - VEC ==> Vector - VF2 ==> VectorFunctions2 - MFLOAT ==> MachineFloat - FEXPR ==> FortranExpression(['EPS],['YA,'YB],MFLOAT) - S ==> Symbol - MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,Matrix FEXPR, - EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,Matrix EXPR MFLOAT) - - Exports ==> FortranVectorFunctionCategory with - coerce : VEC FEXPR -> $ - ++coerce(f) takes objects from the appropriate instantiation of - ++\spadtype{FortranExpression} and turns them into an ASP. - - Implementation ==> add - real : UFST := ["real"::FST]$UFST - - symOne : SYMTAB := empty()$SYMTAB - declare!(EPS,fortranReal(),symOne)$SYMTAB - declare!(N,fortranInteger(),symOne)$SYMTAB - yType : FT := construct(real,[N],false)$FT - declare!(YA,yType,symOne)$SYMTAB - declare!(YB,yType,symOne)$SYMTAB - declare!(BC,yType,symOne)$SYMTAB - - symTwo : SYMTAB := empty()$SYMTAB - declare!(EPS,fortranReal(),symTwo)$SYMTAB - declare!(N,fortranInteger(),symTwo)$SYMTAB - declare!(YA,yType,symTwo)$SYMTAB - declare!(YB,yType,symTwo)$SYMTAB - ajType : FT := construct(real,[N,N],false)$FT - declare!(AJ,ajType,symTwo)$SYMTAB - declare!(BJ,ajType,symTwo)$SYMTAB - - symThree : SYMTAB := empty()$SYMTAB - declare!(EPS,fortranReal(),symThree)$SYMTAB - declare!(N,fortranInteger(),symThree)$SYMTAB - declare!(YA,yType,symThree)$SYMTAB - declare!(YB,yType,symThree)$SYMTAB - declare!(BCEP,yType,symThree)$SYMTAB - - rt := ["void"]$UFST - R1:=FortranProgram(nameOne,rt,[EPS,YA,YB,BC,N],symOne) - R2:=FortranProgram(nameTwo,rt,[EPS,YA,YB,AJ,BJ,N],symTwo) - R3:=FortranProgram(nameThree,rt,[EPS,YA,YB,BCEP,N],symThree) - Rep := Record(g:R1,gJacob:R2,geJacob:R3) - BCsym:Symbol:=coerce "BC" - AJsym:Symbol:=coerce "AJ" - BJsym:Symbol:=coerce "BJ" - BCEPsym:Symbol:=coerce "BCEP" - - makeList(n:Integer,s:Symbol):List(Symbol) == - p:List(Symbol) := [] - for j in 1 .. n repeat p:= cons(subscript(s,[j::OutputForm])$Symbol,p) - reverse(p) - - fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR - - localAssign1(s:S,j:Matrix FEXPR):FC == - j' : Matrix EXPR MFLOAT := map(fexpr2expr,j)$MF2 - assign(s,j')$FC - - localAssign2(s:S,j:VEC FEXPR):FC == - j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT) - assign(s,j')$FC - - makeCodeOne(u:VEC FEXPR):FortranCode == - -- simple assign - localAssign2(BCsym,u) - - makeCodeTwo(u:VEC FEXPR):List(FortranCode) == - -- compute jacobian wrt to ya - n:Integer := maxIndex(u) - p:List(Symbol) := makeList(n,YA::Symbol) - jacYA:Matrix(FEXPR) := _ - jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S)) - -- compute jacobian wrt to yb - p:List(Symbol) := makeList(n,YB::Symbol) - jacYB: Matrix(FEXPR) := _ - jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S)) - -- assign jacobians to AJ & BJ - [localAssign1(AJsym,jacYA),localAssign1(BJsym,jacYB),returns()$FC]$List(FC) - - makeCodeThree(u:VEC FEXPR):FortranCode == - -- compute jacobian wrt to eps - jacEps:VEC FEXPR := [D(v,EPS) for v in entries u]$VEC(FEXPR) - localAssign2(BCEPsym,jacEps) - - coerce(u:VEC FEXPR):$ == - aF:FortranCode := makeCodeOne(u) - bF:List(FortranCode) := makeCodeTwo(u) - cF:FortranCode := makeCodeThree(u) - -- add returns() to complete subroutines - aLF:List(FortranCode) := [aF,returns()$FC]$List(FortranCode) - cLF:List(FortranCode) := [cF,returns()$FC]$List(FortranCode) - [coerce(aLF)$R1,coerce(bF)$R2,coerce(cLF)$R3] - - coerce(u:$) : OutputForm == - bracket commaSeparate - [nameOne::OutputForm,nameTwo::OutputForm,nameThree::OutputForm] - - outputAsFortran(u:$):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran elt(u,g)$Rep - outputAsFortran elt(u,gJacob)$Rep - outputAsFortran elt(u,geJacob)$Rep - p => restorePrecision()$NAGLinkSupportPackage - - retract(u:VEC FRAC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC FRAC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - -@ -\section{domain ASP49 Asp49} -<<domain ASP49 Asp49>>= -)abbrev domain ASP49 Asp49 -++ Author: Mike Dewar, Grant Keady and Godfrey Nolan -++ Date Created: Mar 1993 -++ Date Last Updated: 23 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp49} produces Fortran for Type 49 ASPs, needed for NAG routines -++\axiomOpFrom{e04dgf}{e04Package}, \axiomOpFrom{e04ucf}{e04Package}, for example: -++\begin{verbatim} -++ SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) -++ DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) -++ INTEGER N,IUSER(*),MODE,NSTATE -++ OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) -++ &+(-1.0D0*X(2)*X(6)) -++ OBJGRD(1)=X(7) -++ OBJGRD(2)=-1.0D0*X(6) -++ OBJGRD(3)=X(8)+(-1.0D0*X(7)) -++ OBJGRD(4)=X(9) -++ OBJGRD(5)=-1.0D0*X(8) -++ OBJGRD(6)=-1.0D0*X(2) -++ OBJGRD(7)=(-1.0D0*X(3))+X(1) -++ OBJGRD(8)=(-1.0D0*X(5))+X(3) -++ OBJGRD(9)=X(4) -++ RETURN -++ END -++\end{verbatim} - -Asp49(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - UFST ==> Union(fst:FST,void:"void") - FT ==> FortranType - FC ==> FortranCode - SYMTAB ==> SymbolTable - RSFC ==> Record(localSymbols:SymbolTable,code:List(FC)) - MFLOAT ==> MachineFloat - FEXPR ==> FortranExpression([],['X],MFLOAT) - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - VEC ==> Vector - VF2 ==> VectorFunctions2 - S ==> Symbol - - Exports ==> FortranFunctionCategory with - coerce : FEXPR -> $ - ++coerce(f) takes an object from the appropriate instantiation of - ++\spadtype{FortranExpression} and turns it into an ASP. - - Implementation ==> add - - real : UFST := ["real"::FST]$UFST - integer : UFST := ["integer"::FST]$UFST - syms : SYMTAB := empty()$SYMTAB - declare!(MODE,fortranInteger(),syms)$SYMTAB - declare!(N,fortranInteger(),syms)$SYMTAB - xType : FT := construct(real,[N::S],false)$FT - declare!(X,xType,syms)$SYMTAB - declare!(OBJF,fortranReal(),syms)$SYMTAB - declare!(OBJGRD,xType,syms)$SYMTAB - declare!(NSTATE,fortranInteger(),syms)$SYMTAB - iuType : FT := construct(integer,["*"::S],false)$FT - declare!(IUSER,iuType,syms)$SYMTAB - uType : FT := construct(real,["*"::S],false)$FT - declare!(USER,uType,syms)$SYMTAB - Rep := FortranProgram(name,["void"]$UFST, - [MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER],syms) - - fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR - - localAssign(s:S,j:VEC FEXPR):FC == - j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT) - assign(s,j')$FC - - coerce(u:FEXPR):$ == - vars:List(S) := variables(u) - grd:VEC FEXPR := gradient(u,vars)$MultiVariableCalculusFunctions(_ - S,FEXPR,VEC FEXPR,List(S)) - code : List(FC) := [assign(OBJF@S,fexpr2expr u)$FC,_ - localAssign(OBJGRD@S,grd),_ - returns()$FC] - code::$ - - coerce(u:$):OutputForm == coerce(u)$Rep - - coerce(c:List FC):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:FC):$ == coerce(c)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - - retract(u:FRAC POLY INT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:FRAC POLY INT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - (foo::FEXPR)::$ - - retract(u:FRAC POLY FLOAT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:FRAC POLY FLOAT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - (foo::FEXPR)::$ - - retract(u:EXPR FLOAT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:EXPR FLOAT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - (foo::FEXPR)::$ - - retract(u:EXPR INT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:EXPR INT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - (foo::FEXPR)::$ - - retract(u:POLY FLOAT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:POLY FLOAT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - (foo::FEXPR)::$ - - retract(u:POLY INT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:POLY INT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - (foo::FEXPR)::$ - -@ -\section{domain ASP50 Asp50} -<<domain ASP50 Asp50>>= -)abbrev domain ASP50 Asp50 -++ Author: Mike Dewar, Grant Keady and Godfrey Nolan -++ Date Created: Mar 1993 -++ Date Last Updated: 23 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp50} produces Fortran for Type 50 ASPs, needed for NAG routine -++\axiomOpFrom{e04fdf}{e04Package}, for example: -++\begin{verbatim} -++ SUBROUTINE LSFUN1(M,N,XC,FVECC) -++ DOUBLE PRECISION FVECC(M),XC(N) -++ INTEGER I,M,N -++ FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( -++ &XC(3)+15.0D0*XC(2)) -++ FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X -++ &C(3)+7.0D0*XC(2)) -++ FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 -++ &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) -++ FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X -++ &C(3)+3.0D0*XC(2)) -++ FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC -++ &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) -++ FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X -++ &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) -++ FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 -++ &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) -++ FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 -++ &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) -++ FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 -++ &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) -++ FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 -++ &67D0)/(XC(3)+XC(2)) -++ FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 -++ &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) -++ FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) -++ &+XC(2)) -++ FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 -++ &3333D0)/(XC(3)+XC(2)) -++ FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X -++ &C(2)) -++ FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 -++ &)+XC(2)) -++ END -++\end{verbatim} - -Asp50(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - FT ==> FortranType - UFST ==> Union(fst:FST,void:"void") - SYMTAB ==> SymbolTable - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - VEC ==> Vector - VF2 ==> VectorFunctions2 - FEXPR ==> FortranExpression([],['XC],MFLOAT) - MFLOAT ==> MachineFloat - - Exports ==> FortranVectorFunctionCategory with - coerce : VEC FEXPR -> $ - ++coerce(f) takes objects from the appropriate instantiation of - ++\spadtype{FortranExpression} and turns them into an ASP. - - Implementation ==> add - - real : UFST := ["real"::FST]$UFST - syms : SYMTAB := empty()$SYMTAB - declare!(M,fortranInteger(),syms)$SYMTAB - declare!(N,fortranInteger(),syms)$SYMTAB - xcType : FT := construct(real,[N],false)$FT - declare!(XC,xcType,syms)$SYMTAB - fveccType : FT := construct(real,[M],false)$FT - declare!(FVECC,fveccType,syms)$SYMTAB - declare!(I,fortranInteger(),syms)$SYMTAB - tType : FT := construct(real,[M,N],false)$FT --- declare!(TC,tType,syms)$SYMTAB --- declare!(Y,fveccType,syms)$SYMTAB - Rep := FortranProgram(name,["void"]$UFST, [M,N,XC,FVECC],syms) - - fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR - - coerce(u:VEC FEXPR):$ == - u' : VEC EXPR MFLOAT := map(fexpr2expr,u)$VF2(FEXPR,EXPR MFLOAT) - assign(FVECC,u')$FortranCode::$ - - retract(u:VEC FRAC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC FRAC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - coerce(c:List FortranCode):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:FortranCode):$ == coerce(c)$Rep - - coerce(u:$):OutputForm == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - -@ -\section{domain ASP55 Asp55} -<<domain ASP55 Asp55>>= -)abbrev domain ASP55 Asp55 -++ Author: Mike Dewar, Grant Keady and Godfrey Nolan -++ Date Created: June 1993 -++ Date Last Updated: 23 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp55} produces Fortran for Type 55 ASPs, needed for NAG routines -++\axiomOpFrom{e04dgf}{e04Package} and \axiomOpFrom{e04ucf}{e04Package}, for example: -++\begin{verbatim} -++ SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER -++ &,USER) -++ DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) -++ INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE -++ IF(NEEDC(1).GT.0)THEN -++ C(1)=X(6)**2+X(1)**2 -++ CJAC(1,1)=2.0D0*X(1) -++ CJAC(1,2)=0.0D0 -++ CJAC(1,3)=0.0D0 -++ CJAC(1,4)=0.0D0 -++ CJAC(1,5)=0.0D0 -++ CJAC(1,6)=2.0D0*X(6) -++ ENDIF -++ IF(NEEDC(2).GT.0)THEN -++ C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 -++ CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) -++ CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) -++ CJAC(2,3)=0.0D0 -++ CJAC(2,4)=0.0D0 -++ CJAC(2,5)=0.0D0 -++ CJAC(2,6)=0.0D0 -++ ENDIF -++ IF(NEEDC(3).GT.0)THEN -++ C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 -++ CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) -++ CJAC(3,2)=2.0D0*X(2) -++ CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) -++ CJAC(3,4)=0.0D0 -++ CJAC(3,5)=0.0D0 -++ CJAC(3,6)=0.0D0 -++ ENDIF -++ RETURN -++ END -++\end{verbatim} - -Asp55(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - FT ==> FortranType - FSTU ==> Union(fst:FST,void:"void") - SYMTAB ==> SymbolTable - FC ==> FortranCode - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - S ==> Symbol - FLOAT ==> Float - VEC ==> Vector - VF2 ==> VectorFunctions2 - MAT ==> Matrix - MFLOAT ==> MachineFloat - FEXPR ==> FortranExpression([],['X],MFLOAT) - MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR, - EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,MAT EXPR MFLOAT) - SWU ==> Union(I:Expression Integer,F:Expression Float, - CF:Expression Complex Float,switch:Switch) - - Exports ==> FortranVectorFunctionCategory with - coerce : VEC FEXPR -> $ - ++coerce(f) takes objects from the appropriate instantiation of - ++\spadtype{FortranExpression} and turns them into an ASP. - - Implementation ==> add - - real : FSTU := ["real"::FST]$FSTU - integer : FSTU := ["integer"::FST]$FSTU - syms : SYMTAB := empty()$SYMTAB - declare!(MODE,fortranInteger(),syms)$SYMTAB - declare!(NCNLN,fortranInteger(),syms)$SYMTAB - declare!(N,fortranInteger(),syms)$SYMTAB - declare!(NROWJ,fortranInteger(),syms)$SYMTAB - needcType : FT := construct(integer,[NCNLN::Symbol],false)$FT - declare!(NEEDC,needcType,syms)$SYMTAB - xType : FT := construct(real,[N::Symbol],false)$FT - declare!(X,xType,syms)$SYMTAB - cType : FT := construct(real,[NCNLN::Symbol],false)$FT - declare!(C,cType,syms)$SYMTAB - cjacType : FT := construct(real,[NROWJ::Symbol,N::Symbol],false)$FT - declare!(CJAC,cjacType,syms)$SYMTAB - declare!(NSTATE,fortranInteger(),syms)$SYMTAB - iuType : FT := construct(integer,["*"::Symbol],false)$FT - declare!(IUSER,iuType,syms)$SYMTAB - uType : FT := construct(real,["*"::Symbol],false)$FT - declare!(USER,uType,syms)$SYMTAB - Rep := FortranProgram(name,["void"]$FSTU, - [MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER,USER],syms) - - -- Take a symbol, pull of the script and turn it into an integer!! - o2int(u:S):Integer == - o : OutputForm := first elt(scripts(u)$S,sub) - o pretend Integer - - localAssign(s:Symbol,dim:List POLY INT,u:FEXPR):FC == - assign(s,dim,(u::EXPR MFLOAT)$FEXPR)$FC - - makeCond(index:INT,fun:FEXPR,jac:VEC FEXPR):FC == - needc : EXPR INT := (subscript(NEEDC,[index::OutputForm])$S)::EXPR(INT) - sw : Switch := GT([needc]$SWU,[0::EXPR(INT)]$SWU)$Switch - ass : List FC := [localAssign(CJAC,[index::POLY INT,i::POLY INT],jac.i)_ - for i in 1..maxIndex(jac)] - cond(sw,block([localAssign(C,[index::POLY INT],fun),:ass])$FC)$FC - - coerce(u:VEC FEXPR):$ == - ncnln:Integer := maxIndex(u) - x:S := X::S - pu:List(S) := [] - -- Work out which variables appear in the expressions - for e in entries(u) repeat - pu := setUnion(pu,variables(e)$FEXPR) - scriptList : List Integer := map(o2int,pu)$ListFunctions2(S,Integer) - -- This should be the maximum X_n which occurs (there may be others - -- which don't): - n:Integer := reduce(max,scriptList)$List(Integer) - p:List(S) := [] - for j in 1..n repeat p:= cons(subscript(x,[j::OutputForm])$S,p) - p:= reverse(p) - jac:MAT FEXPR := _ - jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S)) - code : List FC := [makeCond(j,u.j,row(jac,j)) for j in 1..ncnln] - [:code,returns()$FC]::$ - - coerce(c:List FC):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:FC):$ == coerce(c)$Rep - - coerce(u:$):OutputForm == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - - retract(u:VEC FRAC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC FRAC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - -@ -\section{domain ASP6 Asp6} -<<domain ASP6 Asp6>>= -)abbrev domain ASP6 Asp6 -++ Author: Mike Dewar and Godfrey Nolan and Grant Keady -++ Date Created: Mar 1993 -++ Date Last Updated: 18 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp6} produces Fortran for Type 6 ASPs, needed for NAG routines -++\axiomOpFrom{c05nbf}{c05Package}, \axiomOpFrom{c05ncf}{c05Package}. -++These represent vectors of functions of X(i) and look like: -++\begin{verbatim} -++ SUBROUTINE FCN(N,X,FVEC,IFLAG) -++ DOUBLE PRECISION X(N),FVEC(N) -++ INTEGER N,IFLAG -++ FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 -++ FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. -++ &0D0 -++ FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. -++ &0D0 -++ FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. -++ &0D0 -++ FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. -++ &0D0 -++ FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. -++ &0D0 -++ FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. -++ &0D0 -++ FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. -++ &0D0 -++ FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 -++ RETURN -++ END -++\end{verbatim} - -Asp6(name): Exports == Implementation where - name : Symbol - - FEXPR ==> FortranExpression([],['X],MFLOAT) - MFLOAT ==> MachineFloat - FST ==> FortranScalarType - FT ==> FortranType - SYMTAB ==> SymbolTable - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - UFST ==> Union(fst:FST,void:"void") - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - VEC ==> Vector - VF2 ==> VectorFunctions2 - - Exports == Join(FortranVectorFunctionCategory, CoercibleFrom Vector FEXPR) - Implementation == add - - real : UFST := ["real"::FST]$UFST - syms : SYMTAB := empty()$SYMTAB - declare!(N,fortranInteger()$FT,syms)$SYMTAB - xType : FT := construct(real,[N],false)$FT - declare!(X,xType,syms)$SYMTAB - declare!(FVEC,xType,syms)$SYMTAB - declare!(IFLAG,fortranInteger()$FT,syms)$SYMTAB - Rep := FortranProgram(name,["void"]$Union(fst:FST,void:"void"), - [N,X,FVEC,IFLAG],syms) - - retract(u:VEC FRAC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC FRAC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VectorFunctions2(FRAC POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR INT):$ == - v : VEC FEXPR := map(retract,u)$VectorFunctions2(EXPR INT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VectorFunctions2(EXPR FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VectorFunctions2(POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VectorFunctions2(POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - fexpr2expr(u:FEXPR):EXPR MFLOAT == - (u::EXPR MFLOAT)$FEXPR - - coerce(u:VEC FEXPR):% == - v : VEC EXPR MFLOAT - v := map(fexpr2expr,u)$VF2(FEXPR,EXPR MFLOAT) - ([assign(FVEC,v)$FortranCode,returns()$FortranCode]$List(FortranCode))::$ - - coerce(c:List FortranCode):% == coerce(c)$Rep - - coerce(r:RSFC):% == coerce(r)$Rep - - coerce(c:FortranCode):% == coerce(c)$Rep - - coerce(u:%):OutputForm == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - -@ -\section{domain ASP7 Asp7} -<<domain ASP7 Asp7>>= -)abbrev domain ASP7 Asp7 -++ Author: Mike Dewar and Godfrey Nolan and Grant Keady -++ Date Created: Mar 1993 -++ Date Last Updated: 18 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp7} produces Fortran for Type 7 ASPs, needed for NAG routines -++\axiomOpFrom{d02bbf}{d02Package}, \axiomOpFrom{d02gaf}{d02Package}. -++These represent a vector of functions of the scalar X and -++the array Z, and look like: -++\begin{verbatim} -++ SUBROUTINE FCN(X,Z,F) -++ DOUBLE PRECISION F(*),X,Z(*) -++ F(1)=DTAN(Z(3)) -++ F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) -++ &**2))/(Z(2)*DCOS(Z(3))) -++ F(3)=-0.03199999999999999D0/(X*Z(2)**2) -++ RETURN -++ END -++\end{verbatim} - -Asp7(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - FT ==> FortranType - SYMTAB ==> SymbolTable - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - MFLOAT ==> MachineFloat - FEXPR ==> FortranExpression(['X],['Y],MFLOAT) - UFST ==> Union(fst:FST,void:"void") - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - VEC ==> Vector - VF2 ==> VectorFunctions2 - - Exports ==> FortranVectorFunctionCategory with - coerce : Vector FEXPR -> % - ++coerce(f) takes objects from the appropriate instantiation of - ++\spadtype{FortranExpression} and turns them into an ASP. - - Implementation ==> add - - real : UFST := ["real"::FST]$UFST - syms : SYMTAB := empty()$SYMTAB - declare!(X,fortranReal(),syms)$SYMTAB - yType : FT := construct(real,["*"::Symbol],false)$FT - declare!(Y,yType,syms)$SYMTAB - declare!(F,yType,syms)$SYMTAB - Rep := FortranProgram(name,["void"]$UFST,[X,Y,F],syms) - - retract(u:VEC FRAC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC FRAC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - fexpr2expr(u:FEXPR):EXPR MFLOAT == - (u::EXPR MFLOAT)$FEXPR - - coerce(u:Vector FEXPR ):% == - v : Vector EXPR MFLOAT - v:=map(fexpr2expr,u)$VF2(FEXPR,EXPR MFLOAT) - ([assign(F,v)$FortranCode,returns()$FortranCode]$List(FortranCode))::% - - coerce(c:List FortranCode):% == coerce(c)$Rep - - coerce(r:RSFC):% == coerce(r)$Rep - - coerce(c:FortranCode):% == coerce(c)$Rep - - coerce(u:%):OutputForm == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - -@ -\section{domain ASP73 Asp73} -<<domain ASP73 Asp73>>= -)abbrev domain ASP73 Asp73 -++ Author: Mike Dewar, Grant Keady and Godfrey Nolan -++ Date Created: Mar 1993 -++ Date Last Updated: 30 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp73} produces Fortran for Type 73 ASPs, needed for NAG routine -++\axiomOpFrom{d03eef}{d03Package}, for example: -++\begin{verbatim} -++ SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) -++ DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI -++ ALPHA=DSIN(X) -++ BETA=Y -++ GAMMA=X*Y -++ DELTA=DCOS(X)*DSIN(Y) -++ EPSOLN=Y+X -++ PHI=X -++ PSI=Y -++ RETURN -++ END -++\end{verbatim} - -Asp73(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - FSTU ==> Union(fst:FST,void:"void") - FEXPR ==> FortranExpression(['X,'Y],[],MachineFloat) - FT ==> FortranType - SYMTAB ==> SymbolTable - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - VEC ==> Vector - VF2 ==> VectorFunctions2 - - Exports ==> FortranVectorFunctionCategory with - coerce : VEC FEXPR -> $ - ++coerce(f) takes objects from the appropriate instantiation of - ++\spadtype{FortranExpression} and turns them into an ASP. - - Implementation ==> add - - syms : SYMTAB := empty()$SYMTAB - declare!(X,fortranReal(),syms) $SYMTAB - declare!(Y,fortranReal(),syms) $SYMTAB - declare!(ALPHA,fortranReal(),syms)$SYMTAB - declare!(BETA,fortranReal(),syms) $SYMTAB - declare!(GAMMA,fortranReal(),syms) $SYMTAB - declare!(DELTA,fortranReal(),syms) $SYMTAB - declare!(EPSOLN,fortranReal(),syms) $SYMTAB - declare!(PHI,fortranReal(),syms) $SYMTAB - declare!(PSI,fortranReal(),syms) $SYMTAB - Rep := FortranProgram(name,["void"]$FSTU, - [X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI],syms) - - -- To help the poor compiler! - localAssign(u:Symbol,v:FEXPR):FortranCode == - assign(u,(v::EXPR MachineFloat)$FEXPR)$FortranCode - - coerce(u:VEC FEXPR):$ == - maxIndex(u) ~= 7 => error "Vector is not of dimension 7" - [localAssign(ALPHA@Symbol,elt(u,1)),_ - localAssign(BETA@Symbol,elt(u,2)),_ - localAssign(GAMMA@Symbol,elt(u,3)),_ - localAssign(DELTA@Symbol,elt(u,4)),_ - localAssign(EPSOLN@Symbol,elt(u,5)),_ - localAssign(PHI@Symbol,elt(u,6)),_ - localAssign(PSI@Symbol,elt(u,7)),_ - returns()$FortranCode]$List(FortranCode)::$ - - coerce(c:FortranCode):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:List FortranCode):$ == coerce(c)$Rep - - coerce(u:$):OutputForm == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - - retract(u:VEC FRAC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC FRAC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - -@ -\section{domain ASP74 Asp74} -<<domain ASP74 Asp74>>= -)abbrev domain ASP74 Asp74 -++ Author: Mike Dewar and Godfrey Nolan -++ Date Created: Oct 1993 -++ Date Last Updated: 30 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory. -++ Description: -++\spadtype{Asp74} produces Fortran for Type 74 ASPs, needed for NAG routine -++\axiomOpFrom{d03eef}{d03Package}, for example: -++\begin{verbatim} -++ SUBROUTINE BNDY(X,Y,A,B,C,IBND) -++ DOUBLE PRECISION A,B,C,X,Y -++ INTEGER IBND -++ IF(IBND.EQ.0)THEN -++ A=0.0D0 -++ B=1.0D0 -++ C=-1.0D0*DSIN(X) -++ ELSEIF(IBND.EQ.1)THEN -++ A=1.0D0 -++ B=0.0D0 -++ C=DSIN(X)*DSIN(Y) -++ ELSEIF(IBND.EQ.2)THEN -++ A=1.0D0 -++ B=0.0D0 -++ C=DSIN(X)*DSIN(Y) -++ ELSEIF(IBND.EQ.3)THEN -++ A=0.0D0 -++ B=1.0D0 -++ C=-1.0D0*DSIN(Y) -++ ENDIF -++ END -++\end{verbatim} - -Asp74(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - FSTU ==> Union(fst:FST,void:"void") - FT ==> FortranType - SYMTAB ==> SymbolTable - FC ==> FortranCode - PI ==> PositiveInteger - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - MFLOAT ==> MachineFloat - FEXPR ==> FortranExpression(['X,'Y],[],MFLOAT) - U ==> Union(I: Expression Integer,F: Expression Float,_ - CF: Expression Complex Float,switch:Switch) - VEC ==> Vector - MAT ==> Matrix - M2 ==> MatrixCategoryFunctions2 - MF2a ==> M2(FRAC POLY INT,VEC FRAC POLY INT,VEC FRAC POLY INT, - MAT FRAC POLY INT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2b ==> M2(FRAC POLY FLOAT,VEC FRAC POLY FLOAT,VEC FRAC POLY FLOAT, - MAT FRAC POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2c ==> M2(POLY INT,VEC POLY INT,VEC POLY INT,MAT POLY INT, - FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2d ==> M2(POLY FLOAT,VEC POLY FLOAT,VEC POLY FLOAT, - MAT POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2e ==> M2(EXPR INT,VEC EXPR INT,VEC EXPR INT,MAT EXPR INT, - FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2f ==> M2(EXPR FLOAT,VEC EXPR FLOAT,VEC EXPR FLOAT, - MAT EXPR FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - - Exports ==> FortranMatrixFunctionCategory with - coerce : MAT FEXPR -> $ - ++coerce(f) takes objects from the appropriate instantiation of - ++\spadtype{FortranExpression} and turns them into an ASP. - - Implementation ==> add - - syms : SYMTAB := empty()$SYMTAB - declare!(X,fortranReal(),syms)$SYMTAB - declare!(Y,fortranReal(),syms)$SYMTAB - declare!(A,fortranReal(),syms)$SYMTAB - declare!(B,fortranReal(),syms)$SYMTAB - declare!(C,fortranReal(),syms)$SYMTAB - declare!(IBND,fortranInteger(),syms)$SYMTAB - Rep := FortranProgram(name,["void"]$FSTU,[X,Y,A,B,C,IBND],syms) - - -- To help the poor compiler! - localAssign(u:Symbol,v:FEXPR):FC == assign(u,(v::EXPR MFLOAT)$FEXPR)$FC - - coerce(u:MAT FEXPR):$ == - (nrows(u) ~= 4 or ncols(u) ~= 3) => error "Not a 4X3 matrix" - flag:U := [IBND@Symbol::EXPR INT]$U - pt0:U := [0::EXPR INT]$U - pt1:U := [1::EXPR INT]$U - pt2:U := [2::EXPR INT]$U - pt3:U := [3::EXPR INT]$U - sw1: Switch := EQ(flag,pt0)$Switch - sw2: Switch := EQ(flag,pt1)$Switch - sw3: Switch := EQ(flag,pt2)$Switch - sw4: Switch := EQ(flag,pt3)$Switch - a11 : FC := localAssign(A,u(1,1)) - a12 : FC := localAssign(B,u(1,2)) - a13 : FC := localAssign(C,u(1,3)) - a21 : FC := localAssign(A,u(2,1)) - a22 : FC := localAssign(B,u(2,2)) - a23 : FC := localAssign(C,u(2,3)) - a31 : FC := localAssign(A,u(3,1)) - a32 : FC := localAssign(B,u(3,2)) - a33 : FC := localAssign(C,u(3,3)) - a41 : FC := localAssign(A,u(4,1)) - a42 : FC := localAssign(B,u(4,2)) - a43 : FC := localAssign(C,u(4,3)) - c : FC := cond(sw1,block([a11,a12,a13])$FC, - cond(sw2,block([a21,a22,a23])$FC, - cond(sw3,block([a31,a32,a33])$FC, - cond(sw4,block([a41,a42,a43])$FC)$FC)$FC)$FC)$FC - c::$ - - coerce(u:$):OutputForm == coerce(u)$Rep - - coerce(c:FortranCode):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:List FortranCode):$ == coerce(c)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - - retract(u:MAT FRAC POLY INT):$ == - v : MAT FEXPR := map(retract,u)$MF2a - v::$ - - retractIfCan(u:MAT FRAC POLY INT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2a - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT FRAC POLY FLOAT):$ == - v : MAT FEXPR := map(retract,u)$MF2b - v::$ - - retractIfCan(u:MAT FRAC POLY FLOAT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2b - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT EXPR INT):$ == - v : MAT FEXPR := map(retract,u)$MF2e - v::$ - - retractIfCan(u:MAT EXPR INT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2e - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT EXPR FLOAT):$ == - v : MAT FEXPR := map(retract,u)$MF2f - v::$ - - retractIfCan(u:MAT EXPR FLOAT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2f - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT POLY INT):$ == - v : MAT FEXPR := map(retract,u)$MF2c - v::$ - - retractIfCan(u:MAT POLY INT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2c - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT POLY FLOAT):$ == - v : MAT FEXPR := map(retract,u)$MF2d - v::$ - - retractIfCan(u:MAT POLY FLOAT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2d - v case "failed" => "failed" - (v::MAT FEXPR)::$ - -@ -\section{domain ASP77 Asp77} -<<domain ASP77 Asp77>>= -)abbrev domain ASP77 Asp77 -++ Author: Mike Dewar, Grant Keady and Godfrey Nolan -++ Date Created: Mar 1993 -++ Date Last Updated: 30 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranMatrixFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp77} produces Fortran for Type 77 ASPs, needed for NAG routine -++\axiomOpFrom{d02gbf}{d02Package}, for example: -++\begin{verbatim} -++ SUBROUTINE FCNF(X,F) -++ DOUBLE PRECISION X -++ DOUBLE PRECISION F(2,2) -++ F(1,1)=0.0D0 -++ F(1,2)=1.0D0 -++ F(2,1)=0.0D0 -++ F(2,2)=-10.0D0 -++ RETURN -++ END -++\end{verbatim} - -Asp77(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - FSTU ==> Union(fst:FST,void:"void") - FT ==> FortranType - FC ==> FortranCode - SYMTAB ==> SymbolTable - RSFC ==> Record(localSymbols:SymbolTable,code:List(FC)) - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - MFLOAT ==> MachineFloat - FEXPR ==> FortranExpression(['X],[],MFLOAT) - VEC ==> Vector - MAT ==> Matrix - M2 ==> MatrixCategoryFunctions2 - MF2 ==> M2(FEXPR,VEC FEXPR,VEC FEXPR,Matrix FEXPR,EXPR MFLOAT, - VEC EXPR MFLOAT,VEC EXPR MFLOAT,Matrix EXPR MFLOAT) - MF2a ==> M2(FRAC POLY INT,VEC FRAC POLY INT,VEC FRAC POLY INT, - MAT FRAC POLY INT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2b ==> M2(FRAC POLY FLOAT,VEC FRAC POLY FLOAT,VEC FRAC POLY FLOAT, - MAT FRAC POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2c ==> M2(POLY INT,VEC POLY INT,VEC POLY INT,MAT POLY INT, - FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2d ==> M2(POLY FLOAT,VEC POLY FLOAT,VEC POLY FLOAT, - MAT POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2e ==> M2(EXPR INT,VEC EXPR INT,VEC EXPR INT,MAT EXPR INT, - FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2f ==> M2(EXPR FLOAT,VEC EXPR FLOAT,VEC EXPR FLOAT, - MAT EXPR FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - - - Exports ==> FortranMatrixFunctionCategory with - coerce : MAT FEXPR -> $ - ++coerce(f) takes objects from the appropriate instantiation of - ++\spadtype{FortranExpression} and turns them into an ASP. - - Implementation ==> add - - real : FSTU := ["real"::FST]$FSTU - syms : SYMTAB := empty()$SYMTAB - declare!(X,fortranReal(),syms)$SYMTAB - Rep := FortranProgram(name,["void"]$FSTU,[X,F],syms) - - fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR - - localAssign(s:Symbol,j:MAT FEXPR):FortranCode == - j' : MAT EXPR MFLOAT := map(fexpr2expr,j)$MF2 - assign(s,j')$FortranCode - - coerce(u:MAT FEXPR):$ == - dimension := nrows(u)::POLY(INT) - locals : SYMTAB := empty() - declare!(F,[real,[dimension,dimension]$List(POLY(INT)),false]$FT,locals) - code' : List FC := [localAssign(F,u),returns()$FC] - ([locals,code']$RSFC)::$ - - coerce(c:List FC):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:FC):$ == coerce(c)$Rep - - coerce(u:$):OutputForm == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - - retract(u:MAT FRAC POLY INT):$ == - v : MAT FEXPR := map(retract,u)$MF2a - v::$ - - retractIfCan(u:MAT FRAC POLY INT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2a - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT FRAC POLY FLOAT):$ == - v : MAT FEXPR := map(retract,u)$MF2b - v::$ - - retractIfCan(u:MAT FRAC POLY FLOAT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2b - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT EXPR INT):$ == - v : MAT FEXPR := map(retract,u)$MF2e - v::$ - - retractIfCan(u:MAT EXPR INT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2e - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT EXPR FLOAT):$ == - v : MAT FEXPR := map(retract,u)$MF2f - v::$ - - retractIfCan(u:MAT EXPR FLOAT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2f - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT POLY INT):$ == - v : MAT FEXPR := map(retract,u)$MF2c - v::$ - - retractIfCan(u:MAT POLY INT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2c - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT POLY FLOAT):$ == - v : MAT FEXPR := map(retract,u)$MF2d - v::$ - - retractIfCan(u:MAT POLY FLOAT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2d - v case "failed" => "failed" - (v::MAT FEXPR)::$ - -@ -\section{domain ASP78 Asp78} -<<domain ASP78 Asp78>>= -)abbrev domain ASP78 Asp78 -++ Author: Mike Dewar, Grant Keady and Godfrey Nolan -++ Date Created: Mar 1993 -++ Date Last Updated: 30 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp78} produces Fortran for Type 78 ASPs, needed for NAG routine -++\axiomOpFrom{d02gbf}{d02Package}, for example: -++\begin{verbatim} -++ SUBROUTINE FCNG(X,G) -++ DOUBLE PRECISION G(*),X -++ G(1)=0.0D0 -++ G(2)=0.0D0 -++ END -++\end{verbatim} - -Asp78(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - FSTU ==> Union(fst:FST,void:"void") - FT ==> FortranType - FC ==> FortranCode - SYMTAB ==> SymbolTable - RSFC ==> Record(localSymbols:SymbolTable,code:List(FC)) - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - VEC ==> Vector - VF2 ==> VectorFunctions2 - MFLOAT ==> MachineFloat - FEXPR ==> FortranExpression(['X],[],MFLOAT) - - Exports ==> FortranVectorFunctionCategory with - coerce : VEC FEXPR -> $ - ++coerce(f) takes objects from the appropriate instantiation of - ++\spadtype{FortranExpression} and turns them into an ASP. - - Implementation ==> add - - real : FSTU := ["real"::FST]$FSTU - syms : SYMTAB := empty()$SYMTAB - declare!(X,fortranReal(),syms)$SYMTAB - gType : FT := construct(real,["*"::Symbol],false)$FT - declare!(G,gType,syms)$SYMTAB - Rep := FortranProgram(name,["void"]$FSTU,[X,G],syms) - - fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR - - coerce(u:VEC FEXPR):$ == - u' : VEC EXPR MFLOAT := map(fexpr2expr,u)$VF2(FEXPR,EXPR MFLOAT) - (assign(G,u')$FC)::$ - - coerce(u:$):OutputForm == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - - coerce(c:List FC):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:FC):$ == coerce(c)$Rep - - retract(u:VEC FRAC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC FRAC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC EXPR FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY INT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY INT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - - retract(u:VEC POLY FLOAT):$ == - v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) - v::$ - - retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == - v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) - v case "failed" => "failed" - (v::VEC FEXPR)::$ - -@ -\section{domain ASP8 Asp8} -<<domain ASP8 Asp8>>= -)abbrev domain ASP8 Asp8 -++ Author: Godfrey Nolan and Mike Dewar -++ Date Created: 11 February 1994 -++ Date Last Updated: 18 March 1994 -++ 31 May 1994 to use alternative interface. MCD -++ 30 June 1994 to handle the end condition correctly. MCD -++ 6 October 1994 -++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp8} produces Fortran for Type 8 ASPs, needed for NAG routine -++\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of -++an ODE and might look like: -++\begin{verbatim} -++ SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) -++ DOUBLE PRECISION Y(N),RESULT(M,N),XSOL -++ INTEGER M,N,COUNT -++ LOGICAL FORWRD -++ DOUBLE PRECISION X02ALF,POINTS(8) -++ EXTERNAL X02ALF -++ INTEGER I -++ POINTS(1)=1.0D0 -++ POINTS(2)=2.0D0 -++ POINTS(3)=3.0D0 -++ POINTS(4)=4.0D0 -++ POINTS(5)=5.0D0 -++ POINTS(6)=6.0D0 -++ POINTS(7)=7.0D0 -++ POINTS(8)=8.0D0 -++ COUNT=COUNT+1 -++ DO 25001 I=1,N -++ RESULT(COUNT,I)=Y(I) -++25001 CONTINUE -++ IF(COUNT.EQ.M)THEN -++ IF(FORWRD)THEN -++ XSOL=X02ALF() -++ ELSE -++ XSOL=-X02ALF() -++ ENDIF -++ ELSE -++ XSOL=POINTS(COUNT) -++ ENDIF -++ END -++\end{verbatim} - -Asp8(name): Exports == Implementation where - name : Symbol - - O ==> OutputForm - S ==> Symbol - FST ==> FortranScalarType - UFST ==> Union(fst:FST,void:"void") - FT ==> FortranType - FC ==> FortranCode - SYMTAB ==> SymbolTable - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - EX ==> Expression Integer - MFLOAT ==> MachineFloat - EXPR ==> Expression - PI ==> Polynomial Integer - EXU ==> Union(I: EXPR Integer,F: EXPR Float,CF: EXPR Complex Float, - switch: Switch) - - Exports ==> FortranVectorCategory - - Implementation ==> add - - real : UFST := ["real"::FST]$UFST - syms : SYMTAB := empty()$SYMTAB - declare!([COUNT,M,N],fortranInteger(),syms)$SYMTAB - declare!(XSOL,fortranReal(),syms)$SYMTAB - yType : FT := construct(real,[N],false)$FT - declare!(Y,yType,syms)$SYMTAB - declare!(FORWRD,fortranLogical(),syms)$SYMTAB - declare!(RESULT,construct(real,[M,N],false)$FT,syms)$SYMTAB - Rep := FortranProgram(name,["void"]$UFST,[XSOL,Y,COUNT,M,N,RESULT,FORWRD],syms) - - coerce(c:List FC):% == coerce(c)$Rep - - coerce(r:RSFC):% == coerce(r)$Rep - - coerce(c:FC):% == coerce(c)$Rep - - coerce(u:%):O == coerce(u)$Rep - - outputAsFortran(u:%):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - - - f2ex(u:MFLOAT):EXPR MFLOAT == (u::EXPR MFLOAT)$EXPR(MFLOAT) - - coerce(points:Vector MFLOAT):% == - import PI - import EXPR Integer - -- Create some extra declarations - locals : SYMTAB := empty()$SYMTAB - nPol : PI := "N"::S::PI - iPol : PI := "I"::S::PI - countPol : PI := "COUNT"::S::PI - pointsDim : PI := max(#points,1)::PI - declare!(POINTS,[real,[pointsDim],false]$FT,locals)$SYMTAB - declare!(X02ALF,[real,[],true]$FT,locals)$SYMTAB - -- Now build up the code fragments - index : SegmentBinding PI := equation(I@S,1::PI..nPol)$SegmentBinding(PI) - ySym : EX := (subscript("Y"::S,[I::O])$S)::EX - loop := forLoop(index,assign(RESULT,[countPol,iPol],ySym)$FC)$FC - v:Vector EXPR MFLOAT - v := map(f2ex,points)$VectorFunctions2(MFLOAT,EXPR MFLOAT) - assign1 : FC := assign(POINTS,v)$FC - countExp: EX := COUNT@S::EX - newValue: EX := 1 + countExp - assign2 : FC := assign(COUNT,newValue)$FC - newSymbol : S := subscript(POINTS,[COUNT]@List(O))$S - assign3 : FC := assign(XSOL, newSymbol::EX )$FC - fphuge : EX := kernel(operator X02ALF,empty()$List(EX)) - assign4 : FC := assign(XSOL, fphuge)$FC - assign5 : FC := assign(XSOL, -fphuge)$FC - innerCond : FC := cond("FORWRD"::Symbol::Switch,assign4,assign5) - mExp : EX := M@S::EX - endCase : FC := cond(EQ([countExp]$EXU,[mExp]$EXU)$Switch,innerCond,assign3) - code' := [assign1, assign2, loop, endCase]$List(FC) - ([locals,code']$RSFC)::% - -@ -\section{domain ASP80 Asp80} -<<domain ASP80 Asp80>>= -)abbrev domain ASP80 Asp80 -++ Author: Mike Dewar and Godfrey Nolan -++ Date Created: Oct 1993 -++ Date Last Updated: 30 March 1994 -++ 6 October 1994 -++ Related Constructors: FortranMatrixFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp80} produces Fortran for Type 80 ASPs, needed for NAG routine -++\axiomOpFrom{d02kef}{d02Package}, for example: -++\begin{verbatim} -++ SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) -++ DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) -++ YL(1)=XL -++ YL(2)=2.0D0 -++ YR(1)=1.0D0 -++ YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) -++ RETURN -++ END -++\end{verbatim} - -Asp80(name): Exports == Implementation where - name : Symbol - - FST ==> FortranScalarType - FSTU ==> Union(fst:FST,void:"void") - FT ==> FortranType - FC ==> FortranCode - SYMTAB ==> SymbolTable - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - MFLOAT ==> MachineFloat - FEXPR ==> FortranExpression(['XL,'XR,'ELAM],[],MFLOAT) - VEC ==> Vector - MAT ==> Matrix - VF2 ==> VectorFunctions2 - M2 ==> MatrixCategoryFunctions2 - MF2a ==> M2(FRAC POLY INT,VEC FRAC POLY INT,VEC FRAC POLY INT, - MAT FRAC POLY INT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2b ==> M2(FRAC POLY FLOAT,VEC FRAC POLY FLOAT,VEC FRAC POLY FLOAT, - MAT FRAC POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2c ==> M2(POLY INT,VEC POLY INT,VEC POLY INT,MAT POLY INT, - FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2d ==> M2(POLY FLOAT,VEC POLY FLOAT,VEC POLY FLOAT, - MAT POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2e ==> M2(EXPR INT,VEC EXPR INT,VEC EXPR INT,MAT EXPR INT, - FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - MF2f ==> M2(EXPR FLOAT,VEC EXPR FLOAT,VEC EXPR FLOAT, - MAT EXPR FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) - - Exports ==> FortranMatrixFunctionCategory with - coerce : MAT FEXPR -> $ - ++coerce(f) takes objects from the appropriate instantiation of - ++\spadtype{FortranExpression} and turns them into an ASP. - - Implementation ==> add - - real : FSTU := ["real"::FST]$FSTU - syms : SYMTAB := empty()$SYMTAB - declare!(XL,fortranReal(),syms)$SYMTAB - declare!(XR,fortranReal(),syms)$SYMTAB - declare!(ELAM,fortranReal(),syms)$SYMTAB - yType : FT := construct(real,["3"::Symbol],false)$FT - declare!(YL,yType,syms)$SYMTAB - declare!(YR,yType,syms)$SYMTAB - Rep := FortranProgram(name,["void"]$FSTU, [XL,XR,ELAM,YL,YR],syms) - - fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR - - vecAssign(s:Symbol,u:VEC FEXPR):FC == - u' : VEC EXPR MFLOAT := map(fexpr2expr,u)$VF2(FEXPR,EXPR MFLOAT) - assign(s,u')$FC - - coerce(u:MAT FEXPR):$ == - [vecAssign(YL,row(u,1)),vecAssign(YR,row(u,2)),returns()$FC]$List(FC)::$ - - coerce(c:List FortranCode):$ == coerce(c)$Rep - - coerce(r:RSFC):$ == coerce(r)$Rep - - coerce(c:FortranCode):$ == coerce(c)$Rep - - coerce(u:$):OutputForm == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - - retract(u:MAT FRAC POLY INT):$ == - v : MAT FEXPR := map(retract,u)$MF2a - v::$ - - retractIfCan(u:MAT FRAC POLY INT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2a - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT FRAC POLY FLOAT):$ == - v : MAT FEXPR := map(retract,u)$MF2b - v::$ - - retractIfCan(u:MAT FRAC POLY FLOAT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2b - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT EXPR INT):$ == - v : MAT FEXPR := map(retract,u)$MF2e - v::$ - - retractIfCan(u:MAT EXPR INT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2e - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT EXPR FLOAT):$ == - v : MAT FEXPR := map(retract,u)$MF2f - v::$ - - retractIfCan(u:MAT EXPR FLOAT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2f - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT POLY INT):$ == - v : MAT FEXPR := map(retract,u)$MF2c - v::$ - - retractIfCan(u:MAT POLY INT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2c - v case "failed" => "failed" - (v::MAT FEXPR)::$ - - retract(u:MAT POLY FLOAT):$ == - v : MAT FEXPR := map(retract,u)$MF2d - v::$ - - retractIfCan(u:MAT POLY FLOAT):Union($,"failed") == - v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2d - v case "failed" => "failed" - (v::MAT FEXPR)::$ - -@ -\section{domain ASP9 Asp9} -<<domain ASP9 Asp9>>= -)abbrev domain ASP9 Asp9 -++ Author: Mike Dewar, Grant Keady and Godfrey Nolan -++ Date Created: Mar 1993 -++ Date Last Updated: 18 March 1994 -++ 12 July 1994 added COMMON blocks for d02cjf, d02ejf -++ 6 October 1994 -++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory -++ Description: -++\spadtype{Asp9} produces Fortran for Type 9 ASPs, needed for NAG routines -++\axiomOpFrom{d02bhf}{d02Package}, \axiomOpFrom{d02cjf}{d02Package}, \axiomOpFrom{d02ejf}{d02Package}. -++These ASPs represent a function of a scalar X and a vector Y, for example: -++\begin{verbatim} -++ DOUBLE PRECISION FUNCTION G(X,Y) -++ DOUBLE PRECISION X,Y(*) -++ G=X+Y(1) -++ RETURN -++ END -++\end{verbatim} -++If the user provides a constant value for G, then extra information is added -++via COMMON blocks used by certain routines. This specifies that the value -++returned by G in this case is to be ignored. - -Asp9(name): Exports == Implementation where - name : Symbol - - FEXPR ==> FortranExpression(['X],['Y],MFLOAT) - MFLOAT ==> MachineFloat - FC ==> FortranCode - FST ==> FortranScalarType - FT ==> FortranType - SYMTAB ==> SymbolTable - RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) - UFST ==> Union(fst:FST,void:"void") - FRAC ==> Fraction - POLY ==> Polynomial - EXPR ==> Expression - INT ==> Integer - FLOAT ==> Float - - Exports ==> FortranFunctionCategory with - coerce : FEXPR -> % - ++coerce(f) takes an object from the appropriate instantiation of - ++\spadtype{FortranExpression} and turns it into an ASP. - - Implementation ==> add - - real : FST := "real"::FST - syms : SYMTAB := empty()$SYMTAB - declare!(X,fortranReal()$FT,syms)$SYMTAB - yType : FT := construct([real]$UFST,["*"::Symbol],false)$FT - declare!(Y,yType,syms)$SYMTAB - Rep := FortranProgram(name,[real]$UFST,[X,Y],syms) - - retract(u:FRAC POLY INT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:FRAC POLY INT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - (foo::FEXPR)::$ - - retract(u:FRAC POLY FLOAT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:FRAC POLY FLOAT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - (foo::FEXPR)::$ - - retract(u:EXPR FLOAT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:EXPR FLOAT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - (foo::FEXPR)::$ - - retract(u:EXPR INT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:EXPR INT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - (foo::FEXPR)::$ - - retract(u:POLY FLOAT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:POLY FLOAT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - (foo::FEXPR)::$ - - retract(u:POLY INT):$ == (retract(u)@FEXPR)::$ - retractIfCan(u:POLY INT):Union($,"failed") == - foo : Union(FEXPR,"failed") - foo := retractIfCan(u)$FEXPR - foo case "failed" => "failed" - (foo::FEXPR)::$ - - coerce(u:FEXPR):% == - expr : Expression MachineFloat := (u::Expression(MachineFloat))$FEXPR - (retractIfCan(u)@Union(MFLOAT,"failed"))$FEXPR case "failed" => - coerce(expr)$Rep - locals : SYMTAB := empty() - charType : FT := construct(["character"::FST]$UFST,[6::POLY(INT)],false)$FT - declare!([CHDUM1,CHDUM2,GOPT1,CHDUM,GOPT2],charType,locals)$SYMTAB - common1 := common(CD02EJ,[CHDUM1,CHDUM2,GOPT1] )$FC - common2 := common(AD02CJ,[CHDUM,GOPT2] )$FC - assign1 := assign(GOPT1,"NOGOPT")$FC - assign2 := assign(GOPT2,"NOGOPT")$FC - result := assign(name,expr)$FC - code' : List FC := [common1,common2,assign1,assign2,result] - ([locals,code']$RSFC)::Rep - - coerce(c:List FortranCode):% == coerce(c)$Rep - - coerce(r:RSFC):% == coerce(r)$Rep - - coerce(c:FortranCode):% == coerce(c)$Rep - - coerce(u:%):OutputForm == coerce(u)$Rep - - outputAsFortran(u):Void == - p := checkPrecision()$NAGLinkSupportPackage - outputAsFortran(u)$Rep - p => restorePrecision()$NAGLinkSupportPackage - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<domain ASP1 Asp1>> -<<domain ASP10 Asp10>> -<<domain ASP12 Asp12>> -<<domain ASP19 Asp19>> -<<domain ASP20 Asp20>> -<<domain ASP24 Asp24>> -<<domain ASP27 Asp27>> -<<domain ASP28 Asp28>> -<<domain ASP29 Asp29>> -<<domain ASP30 Asp30>> -<<domain ASP31 Asp31>> -<<domain ASP33 Asp33>> -<<domain ASP34 Asp34>> -<<domain ASP35 Asp35>> -<<domain ASP4 Asp4>> -<<domain ASP41 Asp41>> -<<domain ASP42 Asp42>> -<<domain ASP49 Asp49>> -<<domain ASP50 Asp50>> -<<domain ASP55 Asp55>> -<<domain ASP6 Asp6>> -<<domain ASP7 Asp7>> -<<domain ASP73 Asp73>> -<<domain ASP74 Asp74>> -<<domain ASP77 Asp77>> -<<domain ASP78 Asp78>> -<<domain ASP8 Asp8>> -<<domain ASP80 Asp80>> -<<domain ASP9 Asp9>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/cont.spad.pamphlet b/src/algebra/cont.spad.pamphlet deleted file mode 100644 index 9444f58f..00000000 --- a/src/algebra/cont.spad.pamphlet +++ /dev/null @@ -1,354 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra cont.spad} -\author{Brian Dupee} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package ESCONT ExpertSystemContinuityPackage} -<<package ESCONT ExpertSystemContinuityPackage>>= -)abbrev package ESCONT ExpertSystemContinuityPackage -++ Author: Brian Dupee -++ Date Created: May 1994 -++ Date Last Updated: June 1995 -++ Basic Operations: problemPoints, singularitiesOf, zerosOf -++ Related Constructors: -++ Description: -++ ExpertSystemContinuityPackage is a package of functions for the use of domains -++ belonging to the category \axiomType{NumericalIntegration}. - -ExpertSystemContinuityPackage(): E == I where - EF2 ==> ExpressionFunctions2 - FI ==> Fraction Integer - EFI ==> Expression Fraction Integer - PFI ==> Polynomial Fraction Integer - DF ==> DoubleFloat - LDF ==> List DoubleFloat - EDF ==> Expression DoubleFloat - VEDF ==> Vector Expression DoubleFloat - SDF ==> Stream DoubleFloat - SS ==> Stream String - EEDF ==> Equation Expression DoubleFloat - LEDF ==> List Expression DoubleFloat - KEDF ==> Kernel Expression DoubleFloat - LKEDF ==> List Kernel Expression DoubleFloat - PDF ==> Polynomial DoubleFloat - FPDF ==> Fraction Polynomial DoubleFloat - OCDF ==> OrderedCompletion DoubleFloat - SOCDF ==> Segment OrderedCompletion DoubleFloat - NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) - UP ==> UnivariatePolynomial - BO ==> BasicOperator - RS ==> Record(zeros: SDF,ones: SDF,singularities: SDF) - - E ==> with - - getlo : SOCDF -> DF - ++ getlo(u) gets the \axiomType{DoubleFloat} equivalent of - ++ the first endpoint of the range \axiom{u} - gethi : SOCDF -> DF - ++ gethi(u) gets the \axiomType{DoubleFloat} equivalent of - ++ the second endpoint of the range \axiom{u} - functionIsFracPolynomial?: NIA -> Boolean - ++ functionIsFracPolynomial?(args) tests whether the function - ++ can be retracted to \axiomType{Fraction(Polynomial(DoubleFloat))} - problemPoints:(EDF,Symbol,SOCDF) -> List DF - ++ problemPoints(f,var,range) returns a list of possible problem points - ++ by looking at the zeros of the denominator of the function \spad{f} - ++ if it can be retracted to \axiomType{Polynomial(DoubleFloat)}. - zerosOf:(EDF,List Symbol,SOCDF) -> SDF - ++ zerosOf(e,vars,range) returns a list of points - ++ (\axiomType{Doublefloat}) at which a NAG fortran version of \spad{e} - ++ will most likely produce an error. - singularitiesOf: (EDF,List Symbol,SOCDF) -> SDF - ++ singularitiesOf(e,vars,range) returns a list of points - ++ (\axiomType{Doublefloat}) at which a NAG fortran - ++ version of \spad{e} will most likely produce - ++ an error. This includes those points which evaluate to 0/0. - singularitiesOf: (Vector EDF,List Symbol,SOCDF) -> SDF - ++ singularitiesOf(v,vars,range) returns a list of points - ++ (\axiomType{Doublefloat}) at which a NAG fortran - ++ version of \spad{v} will most likely produce - ++ an error. This includes those points which evaluate to 0/0. - polynomialZeros:(PFI,Symbol,SOCDF) -> LDF - ++ polynomialZeros(fn,var,range) calculates the real zeros of the - ++ polynomial which are contained in the given interval. It returns - ++ a list of points (\axiomType{Doublefloat}) for which the univariate - ++ polynomial \spad{fn} is zero. - df2st:DF -> String - ++ df2st(n) coerces a \axiomType{DoubleFloat} to \axiomType{String} - ldf2lst:LDF -> List String - ++ ldf2lst(ln) coerces a List of \axiomType{DoubleFloat} to - ++ \axiomType{List}(\axiomType{String}) - sdf2lst:SDF -> List String - ++ sdf2lst(ln) coerces a Stream of \axiomType{DoubleFloat} to - ++ \axiomType{List}(\axiomType{String}) - - I ==> ExpertSystemToolsPackage add - - import ExpertSystemToolsPackage - - functionIsPolynomial?(args:NIA):Boolean == - -- tests whether the function can be retracted to a polynomial - (retractIfCan(args.fn)@Union(PDF,"failed"))$EDF case PDF - - isPolynomial?(f:EDF):Boolean == - -- tests whether the function can be retracted to a polynomial - (retractIfCan(f)@Union(PDF,"failed"))$EDF case PDF - - isConstant?(f:EDF):Boolean == - -- tests whether the function can be retracted to a constant (DoubleFloat) - (retractIfCan(f)@Union(DF,"failed"))$EDF case DF - - denominatorIsPolynomial?(args:NIA):Boolean == - -- tests if the denominator can be retracted to polynomial - a:= copy args - a.fn:=denominator(args.fn) - (functionIsPolynomial?(a))@Boolean - - denIsPolynomial?(f:EDF):Boolean == - -- tests if the denominator can be retracted to polynomial - (isPolynomial?(denominator f))@Boolean - - listInRange(l:LDF,range:SOCDF):LDF == - -- returns a list with only those elements internal to the range range - [t for t in l | in?(t,range)] - - loseUntil(l:SDF,a:DF):SDF == - empty?(l)$SDF => l - f := first(l)$SDF - (abs(f) <= abs(a)) => loseUntil(rest(l)$SDF,a) - l - - retainUntil(l:SDF,a:DF,b:DF,flag:Boolean):SDF == - empty?(l)$SDF => l - f := first(l)$SDF - (in?(f)$ExpertSystemContinuityPackage1(a,b)) => - concat(f,retainUntil(rest(l),a,b,false)) - flag => empty()$SDF - retainUntil(rest(l),a,b,true) - - streamInRange(l:SDF,range:SOCDF):SDF == - -- returns a stream with only those elements internal to the range range - a := getlo(range := dfRange(range)) - b := gethi(range) - explicitlyFinite?(l) => - select(in?$ExpertSystemContinuityPackage1(a,b),l)$SDF - negative?(a*b) => retainUntil(l,a,b,false) - negative?(a) => - l := loseUntil(l,b) - retainUntil(l,a,b,false) - l := loseUntil(l,a) - retainUntil(l,a,b,false) - - getStream(n:Symbol,s:String):SDF == - import RS - entry?(n,bfKeys()$BasicFunctions)$(List(Symbol)) => - c := bfEntry(n)$BasicFunctions - (s = "zeros")@Boolean => c.zeros - (s = "singularities")@Boolean => c.singularities - (s = "ones")@Boolean => c.ones - empty()$SDF - - polynomialZeros(fn:PFI,var:Symbol,range:SOCDF):LDF == - up := unmakeSUP(univariate(fn)$PFI)$UP(var,FI) - range := dfRange(range) - r:Record(left:FI,right:FI) := [df2fi(getlo(range)), df2fi(gethi(range))] - ans:List(Record(left:FI,right:FI)) := - realZeros(up,r,1/1000000000000000000)$RealZeroPackageQ(UP(var,FI)) - listInRange(dflist(ans),range) - - functionIsFracPolynomial?(args:NIA):Boolean == - -- tests whether the function can be retracted to a fraction - -- where both numerator and denominator are polynomial - (retractIfCan(args.fn)@Union(FPDF,"failed"))$EDF case FPDF - - problemPoints(f:EDF,var:Symbol,range:SOCDF):LDF == - (denIsPolynomial?(f))@Boolean => - c := retract(edf2efi(denominator(f)))@PFI - polynomialZeros(c,var,range) - empty()$LDF - - zerosOf(e:EDF,vars:List Symbol,range:SOCDF):SDF == - (u := isQuotient(e)) case EDF => - singularitiesOf(u,vars,range) - k := kernels(e)$EDF - ((nk := # k) = 0)@Boolean => empty()$SDF -- constant found. - (nk = 1)@Boolean => -- single expression found. - ker := first(k)$LKEDF - n := name(operator(ker)$KEDF)$BO - entry?(n,vars) => -- polynomial found. - c := retract(edf2efi(e))@PFI - coerce(polynomialZeros(c,n,range))$SDF - a := first(argument(ker)$KEDF)$LEDF - (not (n = log :: Symbol)@Boolean) and ((w := isPlus a) case LEDF) => - var:Symbol := first(variables(a)) - c:EDF := w.2 - c1:EDF := w.1 - entry?(c1,[b::EDF for b in vars]) and (one?(# vars)) => - c2:DF := edf2df c - c3 := c2 :: OCDF - varEdf := var :: EDF - varEqn := equation(varEdf,c1-c)$EEDF - range2 := (lo(range)+c3)..(hi(range)+c3) - s := zerosOf(subst(e,varEqn)$EDF,vars,range2) - st := map(#1-c2,s)$StreamFunctions2(DF,DF) - streamInRange(st,range) - zerosOf(a,vars,range) - (t := isPlus(e)$EDF) case LEDF => -- constant + expression - # t > 2 => empty()$SDF - entry?(a,[b::EDF for b in vars]) => -- finds entries like sqrt(x) - st := getStream(n,"ones") - o := edf2df(second(t)$LEDF) - one?(o) or one?(-o) => -- is it like (f(x) -/+ 1) - st := map(-#1/o,st)$StreamFunctions2(DF,DF) - streamInRange(st,range) - empty()$SDF - empty()$SDF - entry?(a,[b::EDF for b in vars]) => -- finds entries like sqrt(x) - st := getStream(n,"zeros") - streamInRange(st,range) - (n = tan :: Symbol)@Boolean => - concat([zerosOf(a,vars,range),singularitiesOf(a,vars,range)]) - (n = sin :: Symbol)@Boolean => - concat([zerosOf(a,vars,range),singularitiesOf(a,vars,range)]) - empty()$SDF - (t := isPlus(e)$EDF) case LEDF => empty()$SDF -- INCOMPLETE!!! - (v := isTimes(e)$EDF) case LEDF => - concat([zerosOf(u,vars,range) for u in v]) - empty()$SDF - - singularitiesOf(e:EDF,vars:List Symbol,range:SOCDF):SDF == - (u := isQuotient(e)) case EDF => - zerosOf(u,vars,range) - (t := isPlus e) case LEDF => - concat([singularitiesOf(u,vars,range) for u in t]) - (v := isTimes e) case LEDF => - concat([singularitiesOf(u,vars,range) for u in v]) - (k := mainKernel e) case KEDF => - n := name(operator k) - entry?(n,vars) => coerce(problemPoints(e,n,range))$SDF - a:EDF := (argument k).1 - (not (n = log :: Symbol)@Boolean) and ((w := isPlus a) case LEDF) => - var:Symbol := first(variables(a)) - c:EDF := w.2 - c1:EDF := w.1 - entry?(c1,[b::EDF for b in vars]) and (one?(# vars)) => - c2:DF := edf2df c - c3 := c2 :: OCDF - varEdf := var :: EDF - varEqn := equation(varEdf,c1-c)$EEDF - range2 := (lo(range)+c3)..(hi(range)+c3) - s := singularitiesOf(subst(e,varEqn)$EDF,vars,range2) - st := map(#1-c2,s)$StreamFunctions2(DF,DF) - streamInRange(st,range) - singularitiesOf(a,vars,range) - entry?(a,[b::EDF for b in vars]) => - st := getStream(n,"singularities") - streamInRange(st,range) - (n = log :: Symbol)@Boolean => - concat([zerosOf(a,vars,range),singularitiesOf(a,vars,range)]) - singularitiesOf(a,vars,range) - empty()$SDF - - singularitiesOf(v:VEDF,vars:List Symbol,range:SOCDF):SDF == - ls := [singularitiesOf(u,vars,range) for u in entries(v)$VEDF] - concat(ls)$SDF - -@ -\section{package ESCONT1 ExpertSystemContinuityPackage1} -<<package ESCONT1 ExpertSystemContinuityPackage1>>= -)abbrev package ESCONT1 ExpertSystemContinuityPackage1 -++ Author: Brian Dupee -++ Date Created: May 1994 -++ Date Last Updated: June 1995 -++ Basic Operations: problemPoints, singularitiesOf, zerosOf -++ Related Constructors: -++ Description: -++ ExpertSystemContinuityPackage1 exports a function to check range inclusion - -ExpertSystemContinuityPackage1(A:DF,B:DF): E == I where - EF2 ==> ExpressionFunctions2 - FI ==> Fraction Integer - EFI ==> Expression Fraction Integer - PFI ==> Polynomial Fraction Integer - DF ==> DoubleFloat - LDF ==> List DoubleFloat - EDF ==> Expression DoubleFloat - VEDF ==> Vector Expression DoubleFloat - SDF ==> Stream DoubleFloat - SS ==> Stream String - EEDF ==> Equation Expression DoubleFloat - LEDF ==> List Expression DoubleFloat - KEDF ==> Kernel Expression DoubleFloat - LKEDF ==> List Kernel Expression DoubleFloat - PDF ==> Polynomial DoubleFloat - FPDF ==> Fraction Polynomial DoubleFloat - OCDF ==> OrderedCompletion DoubleFloat - SOCDF ==> Segment OrderedCompletion DoubleFloat - NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) - UP ==> UnivariatePolynomial - BO ==> BasicOperator - RS ==> Record(zeros: SDF,ones: SDF,singularities: SDF) - - E ==> with - - in?:DF -> Boolean - ++ in?(p) tests whether point p is internal to the range [\spad{A..B}] - - I ==> add - - in?(p:DF):Boolean == - a:Boolean := (p < B)$DF - b:Boolean := (A < p)$DF - (a and b)@Boolean - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package ESCONT ExpertSystemContinuityPackage>> -<<package ESCONT1 ExpertSystemContinuityPackage1>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet index 5108f68d..0e75f115 100644 --- a/src/algebra/exposed.lsp.pamphlet +++ b/src/algebra/exposed.lsp.pamphlet @@ -49,7 +49,7 @@ (in-package "BOOT") (defparameter |$globalExposureGroupAlist| '( -;;define the groups |basic| |naglink| |anna| |categories| |Hidden| |defaults| +;;define the groups |basic| |naglink| |categories| |Hidden| |defaults| (|basic| (|AddAst| . ADDAST) (|AlgebraicManipulations| . ALGMANIP) @@ -452,51 +452,11 @@ (|WuWenTsunTriangularSet| . WUTSET) ) (|naglink| - (|FortranCode| . FC) - (|FortranCodePackage1| . FCPAK1) - (|FortranExpression| . FEXPR) - (|FortranMachineTypeCategory| . FMTC) - (|FortranMatrixCategory| . FMC) - (|FortranMatrixFunctionCategory| . FMFUN) - (|FortranOutputStackPackage| . FOP) - (|FortranPackage| . FORT) - (|FortranProgramCategory| . FORTCAT) - (|FortranProgram| . FORTRAN) - (|FortranFunctionCategory| . FORTFN) (|FortranScalarType| . FST) (|FortranType| . FT) - (|FortranTemplate| . FTEM) - (|FortranVectorFunctionCategory| . FVFUN) - (|FortranVectorCategory| . FVC) - (|MachineComplex| . MCMPLX) - (|MachineFloat| . MFLOAT) - (|MachineInteger| . MINT) - (|MultiVariableCalculusFunctions| . MCALCFN) - (|PackedHermitianSequence| . PACKED) - (|Result| . RESULT) - (|SimpleFortranProgram| . SFORT) - (|Switch| . SWITCH) (|SymbolTable| . SYMTAB) - (|TemplateUtilities| . TEMUTL) (|TheSymbolTable| . SYMS) - (|ThreeDimensionalMatrix| . M3D)) -(|anna| - (|AttributeButtons| . ATTRBUT) - (|BasicFunctions| . BFUNCT) - (|ExpertSystemContinuityPackage| . ESCONT) - (|ExpertSystemContinuityPackage1| . ESCONT1) - (|ExpertSystemToolsPackage| . ESTOOLS) - (|ExpertSystemToolsPackage1| . ESTOOLS1) - (|ExpertSystemToolsPackage2| . ESTOOLS2) - (|NumericalIntegrationCategory| . NUMINT) - (|NumericalIntegrationProblem| . NIPROB) - (|NumericalODEProblem| . ODEPROB) - (|NumericalOptimizationCategory| . OPTCAT) - (|NumericalOptimizationProblem| . OPTPROB) - (|NumericalPDEProblem| . PDEPROB) - (|OrdinaryDifferentialEquationsSolverCategory| . ODECAT) - (|PartialDifferentialEquationsSolverCategory| . PDECAT) - (|RoutinesTable| . ROUTINE)) +) (|categories| (|AbelianGroup| . ABELGRP) (|AbelianMonoid| . ABELMON) @@ -1243,7 +1203,6 @@ '|basic| '|categories| '|naglink| -'|anna| ) (LIST ;;These constructors will be explicitly exposed diff --git a/src/algebra/fortcat.spad.pamphlet b/src/algebra/fortcat.spad.pamphlet deleted file mode 100644 index 84c2fd5c..00000000 --- a/src/algebra/fortcat.spad.pamphlet +++ /dev/null @@ -1,345 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra fortcat.spad} -\author{Mike Dewar} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{category FORTFN FortranFunctionCategory} -<<category FORTFN FortranFunctionCategory>>= -)abbrev category FORTFN FortranFunctionCategory -++ Author: Mike Dewar -++ Date Created: 13 January 1994 -++ Date Last Updated: 18 March 1994 -++ Related Constructors: FortranProgramCategory. -++ Description: -++ \axiomType{FortranFunctionCategory} is the category of arguments to -++ NAG Library routines which return (sets of) function values. -FortranFunctionCategory():Category == FortranProgramCategory with - coerce : List FortranCode -> $ - ++ coerce(e) takes an object from \spadtype{List FortranCode} and - ++ uses it as the body of an ASP. - coerce : FortranCode -> $ - ++ coerce(e) takes an object from \spadtype{FortranCode} and - ++ uses it as the body of an ASP. - coerce : Record(localSymbols:SymbolTable,code:List(FortranCode)) -> $ - ++ coerce(e) takes the component of \spad{e} from - ++ \spadtype{List FortranCode} and uses it as the body of the ASP, - ++ making the declarations in the \spadtype{SymbolTable} component. - retract : Expression Float -> $ - ++ retract(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retractIfCan : Expression Float -> Union($,"failed") - ++ retractIfCan(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retract : Expression Integer -> $ - ++ retract(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retractIfCan : Expression Integer -> Union($,"failed") - ++ retractIfCan(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retract : Polynomial Float -> $ - ++ retract(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retractIfCan : Polynomial Float -> Union($,"failed") - ++ retractIfCan(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retract : Polynomial Integer -> $ - ++ retract(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retractIfCan : Polynomial Integer -> Union($,"failed") - ++ retractIfCan(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retract : Fraction Polynomial Float -> $ - ++ retract(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retractIfCan : Fraction Polynomial Float -> Union($,"failed") - ++ retractIfCan(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retract : Fraction Polynomial Integer -> $ - ++ retract(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retractIfCan : Fraction Polynomial Integer -> Union($,"failed") - ++ retractIfCan(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - - -- NB: These ASPs also have a coerce from an appropriate instantiation - -- of FortranExpression. - - -@ -\section{category FMC FortranMatrixCategory} -<<category FMC FortranMatrixCategory>>= -)abbrev category FMC FortranMatrixCategory -++ Author: Mike Dewar -++ Date Created: 21 March 1994 -++ Date Last Updated: -++ Related Constructors: FortranProgramCategory. -++ Description: -++ \axiomType{FortranMatrixCategory} provides support for -++ producing Functions and Subroutines when the input to these -++ is an AXIOM object of type \axiomType{Matrix} or in domains -++ involving \axiomType{FortranCode}. -FortranMatrixCategory():Category == FortranProgramCategory with - coerce : Matrix MachineFloat -> $ - ++ coerce(v) produces an ASP which returns the value of \spad{v}. - coerce : List FortranCode -> $ - ++ coerce(e) takes an object from \spadtype{List FortranCode} and - ++ uses it as the body of an ASP. - coerce : FortranCode -> $ - ++ coerce(e) takes an object from \spadtype{FortranCode} and - ++ uses it as the body of an ASP. - coerce : Record(localSymbols:SymbolTable,code:List(FortranCode)) -> $ - ++ coerce(e) takes the component of \spad{e} from - ++ \spadtype{List FortranCode} and uses it as the body of the ASP, - ++ making the declarations in the \spadtype{SymbolTable} component. - -@ -\section{category FORTCAT FortranProgramCategory} -<<category FORTCAT FortranProgramCategory>>= -)abbrev category FORTCAT FortranProgramCategory -++ Author: Mike Dewar -++ Date Created: November 1992 -++ Date Last Updated: -++ Basic Operations: -++ Related Constructors: FortranType, FortranCode, Switch -++ Also See: -++ AMS Classifications: -++ Keywords: -++ References: -++ Description: -++ \axiomType{FortranProgramCategory} provides various models of -++ FORTRAN subprograms. These can be transformed into actual FORTRAN -++ code. -FortranProgramCategory():Category == Join(Type,CoercibleTo OutputForm) with - outputAsFortran : $ -> Void - ++ \axiom{outputAsFortran(u)} translates \axiom{u} into a legal FORTRAN - ++ subprogram. - -@ -\section{category FVC FortranVectorCategory} -<<category FVC FortranVectorCategory>>= -)abbrev category FVC FortranVectorCategory -++ Author: Mike Dewar -++ Date Created: October 1993 -++ Date Last Updated: 18 March 1994 -++ Related Constructors: FortranProgramCategory. -++ Description: -++ \axiomType{FortranVectorCategory} provides support for -++ producing Functions and Subroutines when the input to these -++ is an AXIOM object of type \axiomType{Vector} or in domains -++ involving \axiomType{FortranCode}. -FortranVectorCategory():Category == FortranProgramCategory with - coerce : Vector MachineFloat -> $ - ++ coerce(v) produces an ASP which returns the value of \spad{v}. - coerce : List FortranCode -> $ - ++ coerce(e) takes an object from \spadtype{List FortranCode} and - ++ uses it as the body of an ASP. - coerce : FortranCode -> $ - ++ coerce(e) takes an object from \spadtype{FortranCode} and - ++ uses it as the body of an ASP. - coerce : Record(localSymbols:SymbolTable,code:List(FortranCode)) -> $ - ++ coerce(e) takes the component of \spad{e} from - ++ \spadtype{List FortranCode} and uses it as the body of the ASP, - ++ making the declarations in the \spadtype{SymbolTable} component. - -@ -\section{category FMTC FortranMachineTypeCategory} -<<category FMTC FortranMachineTypeCategory>>= -)abbrev category FMTC FortranMachineTypeCategory -++ Author: Mike Dewar -++ Date Created: December 1993 -++ Date Last Updated: -++ Basic Operations: -++ Related Domains: -++ Also See: FortranExpression, MachineInteger, MachineFloat, MachineComplex -++ AMS Classifications: -++ Keywords: -++ Examples: -++ References: -++ Description: A category of domains which model machine arithmetic -++ used by machines in the AXIOM-NAG link. -FortranMachineTypeCategory():Category == Join(IntegralDomain,OrderedSet, - RetractableTo(Integer) ) - -@ -\section{category FMFUN FortranMatrixFunctionCategory} -<<category FMFUN FortranMatrixFunctionCategory>>= -)abbrev category FMFUN FortranMatrixFunctionCategory -++ Author: Mike Dewar -++ Date Created: March 18 1994 -++ Date Last Updated: -++ Related Constructors: FortranProgramCategory. -++ Description: -++ \axiomType{FortranMatrixFunctionCategory} provides support for -++ producing Functions and Subroutines representing matrices of -++ expressions. - -FortranMatrixFunctionCategory():Category == FortranProgramCategory with - coerce : List FortranCode -> $ - ++ coerce(e) takes an object from \spadtype{List FortranCode} and - ++ uses it as the body of an ASP. - coerce : FortranCode -> $ - ++ coerce(e) takes an object from \spadtype{FortranCode} and - ++ uses it as the body of an ASP. - coerce : Record(localSymbols:SymbolTable,code:List(FortranCode)) -> $ - ++ coerce(e) takes the component of \spad{e} from - ++ \spadtype{List FortranCode} and uses it as the body of the ASP, - ++ making the declarations in the \spadtype{SymbolTable} component. - retract : Matrix Expression Float -> $ - ++ retract(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retractIfCan : Matrix Expression Float -> Union($,"failed") - ++ retractIfCan(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retract : Matrix Expression Integer -> $ - ++ retract(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retractIfCan : Matrix Expression Integer -> Union($,"failed") - ++ retractIfCan(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retract : Matrix Polynomial Float -> $ - ++ retract(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retractIfCan : Matrix Polynomial Float -> Union($,"failed") - ++ retractIfCan(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retract : Matrix Polynomial Integer -> $ - ++ retract(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retractIfCan : Matrix Polynomial Integer -> Union($,"failed") - ++ retractIfCan(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retract : Matrix Fraction Polynomial Float -> $ - ++ retract(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retractIfCan : Matrix Fraction Polynomial Float -> Union($,"failed") - ++ retractIfCan(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retract : Matrix Fraction Polynomial Integer -> $ - ++ retract(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retractIfCan : Matrix Fraction Polynomial Integer -> Union($,"failed") - ++ retractIfCan(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - - -- NB: These ASPs also have a coerce from an appropriate instantiation - -- of Matrix FortranExpression. - -@ -\section{category FVFUN FortranVectorFunctionCategory} -<<category FVFUN FortranVectorFunctionCategory>>= -)abbrev category FVFUN FortranVectorFunctionCategory -++ Author: Mike Dewar -++ Date Created: 11 March 1994 -++ Date Last Updated: 18 March 1994 -++ Related Constructors: FortranProgramCategory. -++ Description: -++ \axiomType{FortranVectorFunctionCategory} is the catagory of arguments -++ to NAG Library routines which return the values of vectors of functions. -FortranVectorFunctionCategory():Category == FortranProgramCategory with - coerce : List FortranCode -> $ - ++ coerce(e) takes an object from \spadtype{List FortranCode} and - ++ uses it as the body of an ASP. - coerce : FortranCode -> $ - ++ coerce(e) takes an object from \spadtype{FortranCode} and - ++ uses it as the body of an ASP. - coerce : Record(localSymbols:SymbolTable,code:List(FortranCode)) -> $ - ++ coerce(e) takes the component of \spad{e} from - ++ \spadtype{List FortranCode} and uses it as the body of the ASP, - ++ making the declarations in the \spadtype{SymbolTable} component. - retract : Vector Expression Float -> $ - ++ retract(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retractIfCan : Vector Expression Float -> Union($,"failed") - ++ retractIfCan(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retract : Vector Expression Integer -> $ - ++ retract(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retractIfCan : Vector Expression Integer -> Union($,"failed") - ++ retractIfCan(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retract : Vector Polynomial Float -> $ - ++ retract(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retractIfCan : Vector Polynomial Float -> Union($,"failed") - ++ retractIfCan(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retract : Vector Polynomial Integer -> $ - ++ retract(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retractIfCan : Vector Polynomial Integer -> Union($,"failed") - ++ retractIfCan(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retract : Vector Fraction Polynomial Float -> $ - ++ retract(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retractIfCan : Vector Fraction Polynomial Float -> Union($,"failed") - ++ retractIfCan(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retract : Vector Fraction Polynomial Integer -> $ - ++ retract(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - retractIfCan : Vector Fraction Polynomial Integer -> Union($,"failed") - ++ retractIfCan(e) tries to convert \spad{e} into an ASP, checking that - ++ legal Fortran-77 is produced. - - -- NB: These ASPs also have a coerce from an appropriate instantiation - -- of Vector FortranExpression. - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<category FORTFN FortranFunctionCategory>> -<<category FMC FortranMatrixCategory>> -<<category FORTCAT FortranProgramCategory>> -<<category FVC FortranVectorCategory>> -<<category FMTC FortranMachineTypeCategory>> -<<category FMFUN FortranMatrixFunctionCategory>> -<<category FVFUN FortranVectorFunctionCategory>> - -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/fortmac.spad.pamphlet b/src/algebra/fortmac.spad.pamphlet deleted file mode 100644 index 5684244c..00000000 --- a/src/algebra/fortmac.spad.pamphlet +++ /dev/null @@ -1,458 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra fortmac.spad} -\author{Mike Dewar} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{domain MINT MachineInteger} -<<domain MINT MachineInteger>>= -)abbrev domain MINT MachineInteger -++ Author: Mike Dewar -++ Date Created: December 1993 -++ Date Last Updated: -++ Basic Operations: -++ Related Domains: -++ Also See: FortranExpression, FortranMachineTypeCategory, MachineFloat, -++ MachineComplex -++ AMS Classifications: -++ Keywords: -++ Examples: -++ References: -++ Description: A domain which models the integer representation -++ used by machines in the AXIOM-NAG link. -MachineInteger(): Exports == Implementation where - - S ==> String - - Exports ==> Join(FortranMachineTypeCategory,IntegerNumberSystem) with - maxint : PositiveInteger -> PositiveInteger - ++ maxint(u) sets the maximum integer in the model to u - maxint : () -> PositiveInteger - ++ maxint() returns the maximum integer in the model - coerce : Expression Integer -> Expression $ - ++ coerce(x) returns x with coefficients in the domain - - Implementation ==> Integer add - - MAXINT : PositiveInteger := 2**32 - - maxint():PositiveInteger == MAXINT - - maxint(new:PositiveInteger):PositiveInteger == - old := MAXINT - MAXINT := new - old - - coerce(u:Expression Integer):Expression($) == - map(coerce,u)$ExpressionFunctions2(Integer,$) - - coerce(u:Integer):$ == - import S - abs(u) > MAXINT => - message: S := concat [string u," > MAXINT(",string MAXINT,")"] - error message - per u - - retract(u:$):Integer == rep u - - retractIfCan(u:$):Union(Integer,"failed") == rep u - -@ -\section{domain MFLOAT MachineFloat} -<<domain MFLOAT MachineFloat>>= -)abbrev domain MFLOAT MachineFloat -++ Author: Mike Dewar -++ Date Created: December 1993 -++ Date Last Updated: -++ Basic Operations: -++ Related Domains: -++ Also See: FortranExpression, FortranMachineTypeCategory, MachineInteger, -++ MachineComplex -++ AMS Classifications: -++ Keywords: -++ Examples: -++ References: -++ Description: A domain which models the floating point representation -++ used by machines in the AXIOM-NAG link. -MachineFloat(): Exports == Implementation where - - PI ==> PositiveInteger - NNI ==> NonNegativeInteger - F ==> Float - I ==> Integer - S ==> String - FI ==> Fraction Integer - SUP ==> SparseUnivariatePolynomial - SF ==> DoubleFloat - - Exports ==> Join(FloatingPointSystem,FortranMachineTypeCategory,Field, - RetractableTo(Float),RetractableTo(Fraction(Integer)),CharacteristicZero) with - precision : PI -> PI - ++ precision(p) sets the number of digits in the model to p - precision : () -> PI - ++ precision() returns the number of digits in the model - base : PI -> PI - ++ base(b) sets the base of the model to b - maximumExponent : I -> I - ++ maximumExponent(e) sets the maximum exponent in the model to e - maximumExponent : () -> I - ++ maximumExponent() returns the maximum exponent in the model - minimumExponent : I -> I - ++ minimumExponent(e) sets the minimum exponent in the model to e - minimumExponent : () -> I - ++ minimumExponent() returns the minimum exponent in the model - coerce : $ -> F - ++ coerce(u) transforms a MachineFloat to a standard Float - coerce : MachineInteger -> $ - ++ coerce(u) transforms a MachineInteger into a MachineFloat - mantissa : $ -> I - ++ mantissa(u) returns the mantissa of u - exponent : $ -> I - ++ exponent(u) returns the exponent of u - changeBase : (I,I,PI) -> $ - ++ changeBase(exp,man,base) \undocumented{} - - Implementation ==> add - - import F - import FI - - Rep := Record(mantissa:I,exponent:I) - - -- Parameters of the Floating Point Representation - P : PI := 16 -- Precision - B : PI := 2 -- Base - EMIN : I := -1021 -- Minimum Exponent - EMAX : I := 1024 -- Maximum Exponent - - -- Useful constants - POWER : PI := 53 -- The maximum power of B which will yield P - -- decimal digits. - MMAX : PI := B**POWER - - - -- locals - locRound:(FI)->I - checkExponent:($)->$ - normalise:($)->$ - newPower:(PI,PI)->Void - - retractIfCan(u:$):Union(FI,"failed") == - mantissa(u)*(B/1)**(exponent(u)) - - wholePart(u:$):Integer == - man:I:=mantissa u - exp:I:=exponent u - f:= - positive? exp => man*B**(exp pretend PI) - zero? exp => man - wholePart(man/B**((-exp) pretend PI)) - normalise(u:$):$ == - -- We want the largest possible mantissa, to ensure a canonical - -- representation. - exp : I := exponent u - man : I := mantissa u - BB : I := B pretend I - sgn : I := sign man ; man := abs man - zero? man => [0,0]$Rep - if man < MMAX then - while man < MMAX repeat - exp := exp - 1 - man := man * BB - if man > MMAX then - q1:FI:= man/1 - BBF:FI:=BB/1 - while wholePart(q1) > MMAX repeat - q1:= q1 / BBF - exp:=exp + 1 - man := locRound(q1) - positive?(sgn) => checkExponent [man,exp]$Rep - checkExponent [-man,exp]$Rep - - mantissa(u:$):I == elt(u,mantissa)$Rep - exponent(u:$):I == elt(u,exponent)$Rep - - newPower(base:PI,prec:PI):Void == - power : PI := 1 - target : PI := 10**prec - current : PI := base - while (current := current*base) < target repeat power := power+1 - POWER := power - MMAX := B**POWER - - changeBase(exp:I,man:I,base:PI):$ == - newExp : I := 0 - f : FI := man*(base pretend I)::FI**exp - sign : I := sign f - f : FI := abs f - newMan : I := wholePart f - zero? f => [0,0]$Rep - BB : FI := (B pretend I)::FI - if newMan < MMAX then - while newMan < MMAX repeat - newExp := newExp - 1 - f := f*BB - newMan := wholePart f - if newMan > MMAX then - while newMan > MMAX repeat - newExp := newExp + 1 - f := f/BB - newMan := wholePart f - [sign*newMan,newExp]$Rep - - checkExponent(u:$):$ == - exponent(u) < EMIN or exponent(u) > EMAX => - message :S := concat(["Exponent out of range: ", - string EMIN, "..", string EMAX])$S - error message - u - - coerce(u:$):OutputForm == - coerce(u::F) - - coerce(u:MachineInteger):$ == - checkExponent changeBase(0,retract(u)@Integer,10) - - coerce(u:$):F == - oldDigits : PI := digits(P)$F - r : F := float(mantissa u,exponent u,B)$Float - digits(oldDigits)$F - r - - coerce(u:F):$ == - checkExponent changeBase(exponent(u)$F,mantissa(u)$F,base()$F) - - coerce(u:I):$ == - checkExponent changeBase(0,u,10) - - coerce(u:FI):$ == (numer u)::$/(denom u)::$ - - retract(u:$):FI == - value : Union(FI,"failed") := retractIfCan(u) - value case "failed" => error "Cannot retract to a Fraction Integer" - value::FI - - retract(u:$):F == u::F - - retractIfCan(u:$):Union(F,"failed") == u::F::Union(F,"failed") - - retractIfCan(u:$):Union(I,"failed") == - value:FI := mantissa(u)*(B pretend I)::FI**exponent(u) - zero? fractionPart(value) => wholePart(value)::Union(I,"failed") - "failed"::Union(I,"failed") - - retract(u:$):I == - result : Union(I,"failed") := retractIfCan u - result = "failed" => error "Not an Integer" - result::I - - precision(p: PI):PI == - old : PI := P - newPower(B,p) - P := p - old - - precision():PI == P - - base(b:PI):PI == - old : PI := b - newPower(b,P) - B := b - old - - base():PI == B - - maximumExponent(u:I):I == - old : I := EMAX - EMAX := u - old - - maximumExponent():I == EMAX - - minimumExponent(u:I):I == - old : I := EMIN - EMIN := u - old - - minimumExponent():I == EMIN - - 0 == [0,0]$Rep - 1 == changeBase(0,1,10) - - zero?(u:$):Boolean == u=[0,0]$Rep - - - - f1:$ - f2:$ - - - locRound(x:FI):I == - abs(fractionPart(x)) >= 1/2 => wholePart(x)+sign(x) - wholePart(x) - - recip f1 == - zero? f1 => "failed" - normalise [ locRound(B**(2*POWER)/mantissa f1),-(exponent f1 + 2*POWER)] - - f1 * f2 == - normalise [mantissa(f1)*mantissa(f2),exponent(f1)+exponent(f2)]$Rep - - f1 **(p:FI) == - ((f1::F)**p)::% - ---inline - f1 / f2 == - zero? f2 => error "division by zero" - zero? f1 => 0 - f1=f2 => 1 - normalise [locRound(mantissa(f1)*B**(2*POWER)/mantissa(f2)), - exponent(f1)-(exponent f2 + 2*POWER)] - - inv(f1) == 1/f1 - - f1 exquo f2 == f1/f2 - - divide(f1,f2) == [ f1/f2,0] - - f1 quo f2 == f1/f2 - f1 rem f2 == 0 - u:I * f1 == - normalise [u*mantissa(f1),exponent(f1)]$Rep - - f1 = f2 == mantissa(f1)=mantissa(f2) and exponent(f1)=exponent(f2) - - f1 + f2 == - m1 : I := mantissa f1 - m2 : I := mantissa f2 - e1 : I := exponent f1 - e2 : I := exponent f2 - e1 > e2 => ---insignificance - e1 > e2 + POWER + 2 => - zero? f1 => f2 - f1 - normalise [m1*(B pretend I)**((e1-e2) pretend NNI)+m2,e2]$Rep - e2 > e1 + POWER +2 => - zero? f2 => f1 - f2 - normalise [m2*(B pretend I)**((e2-e1) pretend NNI)+m1,e1]$Rep - - - f1 == [- mantissa f1,exponent f1]$Rep - - f1 - f2 == f1 + (-f2) - - f1 < f2 == - m1 : I := mantissa f1 - m2 : I := mantissa f2 - e1 : I := exponent f1 - e2 : I := exponent f2 - sign(m1) = sign(m2) => - e1 < e2 => true - e1 = e2 and m1 < m2 => true - false - sign(m1) = 1 => false - sign(m1) = 0 and sign(m2) = -1 => false - true - - characteristic:NNI == 0 - -@ -\section{domain MCMPLX MachineComplex} -<<domain MCMPLX MachineComplex>>= -)abbrev domain MCMPLX MachineComplex -++ Date Created: December 1993 -++ Date Last Updated: -++ Basic Operations: -++ Related Domains: -++ Also See: FortranExpression, FortranMachineTypeCategory, MachineInteger, -++ MachineFloat -++ AMS Classifications: -++ Keywords: -++ Examples: -++ References: -++ Description: A domain which models the complex number representation -++ used by machines in the AXIOM-NAG link. -MachineComplex():Exports == Implementation where - - Exports ==> Join (FortranMachineTypeCategory, - ComplexCategory(MachineFloat)) with - coerce : Complex Float -> $ - ++ coerce(u) transforms u into a MachineComplex - coerce : Complex Integer -> $ - ++ coerce(u) transforms u into a MachineComplex - coerce : Complex MachineFloat -> $ - ++ coerce(u) transforms u into a MachineComplex - coerce : Complex MachineInteger -> $ - ++ coerce(u) transforms u into a MachineComplex - coerce : $ -> Complex Float - ++ coerce(u) transforms u into a COmplex Float - - Implementation ==> Complex MachineFloat add - - coerce(u:Complex Float):$ == - complex(real(u)::MachineFloat,imag(u)::MachineFloat) - - coerce(u:Complex Integer):$ == - complex(real(u)::MachineFloat,imag(u)::MachineFloat) - - coerce(u:Complex MachineInteger):$ == - complex(real(u)::MachineFloat,imag(u)::MachineFloat) - - coerce(u:Complex MachineFloat):$ == - complex(real(u),imag(u)) - - coerce(u:$):Complex Float == - complex(real(u)::Float,imag(u)::Float) - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<domain MINT MachineInteger>> -<<domain MFLOAT MachineFloat>> -<<domain MCMPLX MachineComplex>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/fortpak.spad.pamphlet b/src/algebra/fortpak.spad.pamphlet deleted file mode 100644 index 05d33441..00000000 --- a/src/algebra/fortpak.spad.pamphlet +++ /dev/null @@ -1,641 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra fortpak.spad} -\author{Grant Keady, Godfrey Nolan, Mike Dewar, Themos Tsikas} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package FCPAK1 FortranCodePackage1} -<<package FCPAK1 FortranCodePackage1>>= -)abbrev package FCPAK1 FortranCodePackage1 -++ Author: Grant Keady and Godfrey Nolan -++ Date Created: April 1993 -++ Date Last Updated: -++ Basic Operations: -++ Related Constructors: -++ Also See: -++ AMS Classifications: -++ Keywords: -++ References: -++ Description: -++ \spadtype{FortranCodePackage1} provides some utilities for -++ producing useful objects in FortranCode domain. -++ The Package may be used with the FortranCode domain and its -++ \spad{printCode} or possibly via an outputAsFortran. -++ (The package provides items of use in connection with ASPs -++ in the AXIOM-NAG link and, where appropriate, naming accords -++ with that in IRENA.) -++ The easy-to-use functions use Fortran loop variables I1, I2, -++ and it is users' responsibility to check that this is sensible. -++ The advanced functions use SegmentBinding to allow users control -++ over Fortran loop variable names. --- Later might add functions to build --- diagonalMatrix from List, i.e. the FC version of the corresponding --- AXIOM function from MatrixCategory; --- bandedMatrix, i.e. the full-matrix-FC version of the corresponding --- AXIOM function in BandedMatrix Domain --- bandedSymmetricMatrix, i.e. the full-matrix-FC version of the corresponding --- AXIOM function in BandedSymmetricMatrix Domain - -FortranCodePackage1: Exports == Implementation where - - NNI ==> NonNegativeInteger - PI ==> PositiveInteger - PIN ==> Polynomial(Integer) - SBINT ==> SegmentBinding(Integer) - SEGINT ==> Segment(Integer) - LSBINT ==> List(SegmentBinding(Integer)) - SBPIN ==> SegmentBinding(Polynomial(Integer)) - SEGPIN ==> Segment(Polynomial(Integer)) - LSBPIN ==> List(SegmentBinding(Polynomial(Integer))) - FC ==> FortranCode - EXPRESSION ==> Union(Expression Integer,Expression Float,Expression Complex Integer,Expression Complex Float) - - Exports == with - - zeroVector: (Symbol,PIN) -> FC - ++ zeroVector(s,p) \undocumented{} - - zeroMatrix: (Symbol,PIN,PIN) -> FC - ++ zeroMatrix(s,p,q) uses loop variables in the Fortran, I1 and I2 - - zeroMatrix: (Symbol,SBPIN,SBPIN) -> FC - ++ zeroMatrix(s,b,d) in this version gives the user control - ++ over names of Fortran variables used in loops. - - zeroSquareMatrix: (Symbol,PIN) -> FC - ++ zeroSquareMatrix(s,p) \undocumented{} - - identitySquareMatrix: (Symbol,PIN) -> FC - ++ identitySquareMatrix(s,p) \undocumented{} - - Implementation ==> add - import FC - - zeroVector(fname:Symbol,n:PIN):FC == - ue:Expression(Integer) := 0 - i1:Symbol := "I1"::Symbol - lp1:PIN := 1::PIN - hp1:PIN := n - segp1:SEGPIN:= segment(lp1,hp1)$SEGPIN - segbp1:SBPIN := equation(i1,segp1)$SBPIN - ip1:PIN := i1::PIN - indices:List(PIN) := [ip1] - fa:FC := forLoop(segbp1,assign(fname,indices,ue)$FC)$FC - fa - - zeroMatrix(fname:Symbol,m:PIN,n:PIN):FC == - ue:Expression(Integer) := 0 - i1:Symbol := "I1"::Symbol - lp1:PIN := 1::PIN - hp1:PIN := m - segp1:SEGPIN:= segment(lp1,hp1)$SEGPIN - segbp1:SBPIN := equation(i1,segp1)$SBPIN - i2:Symbol := "I2"::Symbol - hp2:PIN := n - segp2:SEGPIN:= segment(lp1,hp2)$SEGPIN - segbp2:SBPIN := equation(i2,segp2)$SBPIN - ip1:PIN := i1::PIN - ip2:PIN := i2::PIN - indices:List(PIN) := [ip1,ip2] - fa:FC :=forLoop(segbp1,forLoop(segbp2,assign(fname,indices,ue)$FC)$FC)$FC - fa - - zeroMatrix(fname:Symbol,segbp1:SBPIN,segbp2:SBPIN):FC == - ue:Expression(Integer) := 0 - i1:Symbol := variable(segbp1)$SBPIN - i2:Symbol := variable(segbp2)$SBPIN - ip1:PIN := i1::PIN - ip2:PIN := i2::PIN - indices:List(PIN) := [ip1,ip2] - fa:FC :=forLoop(segbp1,forLoop(segbp2,assign(fname,indices,ue)$FC)$FC)$FC - fa - - zeroSquareMatrix(fname:Symbol,n:PIN):FC == - ue:Expression(Integer) := 0 - i1:Symbol := "I1"::Symbol - lp1:PIN := 1::PIN - hp1:PIN := n - segp1:SEGPIN:= segment(lp1,hp1)$SEGPIN - segbp1:SBPIN := equation(i1,segp1)$SBPIN - i2:Symbol := "I2"::Symbol - segbp2:SBPIN := equation(i2,segp1)$SBPIN - ip1:PIN := i1::PIN - ip2:PIN := i2::PIN - indices:List(PIN) := [ip1,ip2] - fa:FC :=forLoop(segbp1,forLoop(segbp2,assign(fname,indices,ue)$FC)$FC)$FC - fa - - identitySquareMatrix(fname:Symbol,n:PIN):FC == - ue:Expression(Integer) := 0 - u1:Expression(Integer) := 1 - i1:Symbol := "I1"::Symbol - lp1:PIN := 1::PIN - hp1:PIN := n - segp1:SEGPIN:= segment(lp1,hp1)$SEGPIN - segbp1:SBPIN := equation(i1,segp1)$SBPIN - i2:Symbol := "I2"::Symbol - segbp2:SBPIN := equation(i2,segp1)$SBPIN - ip1:PIN := i1::PIN - ip2:PIN := i2::PIN - indice1:List(PIN) := [ip1,ip1] - indices:List(PIN) := [ip1,ip2] - fc:FC := forLoop(segbp2,assign(fname,indices,ue)$FC)$FC - f1:FC := assign(fname,indice1,u1)$FC - fl:List(FC) := [fc,f1] - fa:FC := forLoop(segbp1,block(fl)$FC)$FC - fa - -@ -\section{package NAGSP NAGLinkSupportPackage} -<<package NAGSP NAGLinkSupportPackage>>= -)abbrev package NAGSP NAGLinkSupportPackage -++ Author: Mike Dewar and Godfrey Nolan -++ Date Created: March 1993 -++ Date Last Updated: March 4 1994 -++ October 6 1994 -++ Basic Operations: -++ Related Domains: -++ Also See: -++ AMS Classifications: -++ Keywords: -++ Examples: -++ References: -++ Description: Support functions for the NAG Library Link functions -NAGLinkSupportPackage() : exports == implementation where - - exports ==> with - fortranCompilerName : () -> String - ++ fortranCompilerName() returns the name of the currently selected - ++ Fortran compiler - fortranLinkerArgs : () -> String - ++ fortranLinkerArgs() returns the current linker arguments - aspFilename : String -> String - ++ aspFilename("f") returns a String consisting of "f" suffixed with - ++ an extension identifying the current AXIOM session. - dimensionsOf : (Symbol, Matrix DoubleFloat) -> SExpression - ++ dimensionsOf(s,m) \undocumented{} - dimensionsOf : (Symbol, Matrix Integer) -> SExpression - ++ dimensionsOf(s,m) \undocumented{} - checkPrecision : () -> Boolean - ++ checkPrecision() \undocumented{} - restorePrecision : () -> Void - ++ restorePrecision() \undocumented{} - - implementation ==> add - makeAs: (Symbol,Symbol) -> Symbol - changeVariables: (Expression Integer,Symbol) -> Expression Integer - changeVariablesF: (Expression Float,Symbol) -> Expression Float - - import String - import Symbol - - checkPrecision():Boolean == - (_$fortranPrecision$Lisp = "single"::Symbol) and (_$nagEnforceDouble$Lisp) => - systemCommand("set fortran precision double")$MoreSystemCommands - if _$nagMessages$Lisp then - print("*** Warning: Resetting fortran precision to double")$PrintPackage - true - false - - restorePrecision():Void == - systemCommand("set fortran precision single")$MoreSystemCommands - if _$nagMessages$Lisp then - print("** Warning: Restoring fortran precision to single")$PrintPackage - - uniqueId : String := "" - counter : Integer := 0 - getUniqueId():String == - if uniqueId = "" then - uniqueId := concat(getEnv("HOST")$Lisp,getEnv("SPADNUM")$Lisp) - concat(uniqueId,string (counter:=counter+1)) - - fortranCompilerName() == string _$fortranCompilerName$Lisp - fortranLinkerArgs() == string _$fortranLibraries$Lisp - - aspFilename(f:String):String == concat ["/tmp/",f,getUniqueId(),".f"] - - dimensionsOf(u:Symbol,m:Matrix DoubleFloat):SExpression == - [u,nrows m,ncols m]$Lisp - dimensionsOf(u:Symbol,m:Matrix Integer):SExpression == - [u,nrows m,ncols m]$Lisp - -@ -\section{package FORT FortranPackage} -<<package FORT FortranPackage>>= -)abbrev package FORT FortranPackage - -++ Author: Mike Dewar -++ Date Created: October 6 1991 -++ Date Last Updated: 13 July 1994 -++ Basic Operations: linkToFortran -++ Related Constructors: -++ Also See: -++ AMS Classifications: -++ Keywords: -++ References: -++ Description: provides an interface to the boot code for calling Fortran -FortranPackage(): Exports == Implementation where - FST ==> FortranScalarType - SEX ==> SExpression - L ==> List - S ==> Symbol - FOP ==> FortranOutputStackPackage - U ==> Union(array:L S,scalar:S) - - Exports ==> with - linkToFortran: (S, L U, L L U, L S) -> SEX - ++ linkToFortran(s,l,ll,lv) \undocumented{} - linkToFortran: (S, L U, L L U, L S, S) -> SEX - ++ linkToFortran(s,l,ll,lv,t) \undocumented{} - linkToFortran: (S,L S,TheSymbolTable,L S) -> SEX - ++ linkToFortran(s,l,t,lv) \undocumented{} - outputAsFortran: FileName -> Void - ++ outputAsFortran(fn) \undocumented{} - setLegalFortranSourceExtensions: List String -> List String - ++ setLegalFortranSourceExtensions(l) \undocumented{} - - Implementation ==> add - - legalFortranSourceExtensions : List String := ["f"] - - setLegalFortranSourceExtensions(l:List String):List String == - legalFortranSourceExtensions := l - - checkExtension(fn : FileName) : String == - -- Does it end in a legal extension ? - stringFn := fn::String - not member?(extension fn,legalFortranSourceExtensions) => - error [stringFn,"is not a legal Fortran Source File."] - stringFn - - outputAsFortran(fn:FileName):Void == --- source : String := checkExtension fn - source : String := fn::String - not readable? fn => - popFortranOutputStack()$FOP - error([source,"is not readable"]@List(String)) - target : String := topFortranOutputStack()$FOP - command : String := - concat(["sys rm -f ",target," ; cp ",source," ",target])$String - systemCommand(command)$MoreSystemCommands - - linkToFortran(name:S,args:L U, decls:L L U, res:L(S)):SEX == - makeFort(name,args,decls,res,NIL$Lisp,NIL$Lisp)$Lisp - - linkToFortran(name:S,args:L U, decls:L L U, res:L(S),returnType:S):SEX == - makeFort(name,args,decls,res,returnType,NIL$Lisp)$Lisp - - dimensions(type:FortranType):SEX == - convert([convert(convert(u)@InputForm)@SEX _ - for u in dimensionsOf(type)])@SEX - - ftype(name:S,type:FortranType):SEX == - [name,scalarTypeOf(type),dimensions(type),external? type]$Lisp - - makeAspList(asp:S,syms:TheSymbolTable):SExpression== - symtab : SymbolTable := symbolTableOf(asp,syms) - [asp,returnTypeOf(asp,syms),argumentListOf(asp,syms), _ - [ftype(u,fortranTypeOf(u,symtab)) for u in parametersOf symtab]]$Lisp - - linkToFortran(name:S,aArgs:L S,syms:TheSymbolTable,res:L S):SEX == - arguments : L S := argumentListOf(name,syms)$TheSymbolTable - dummies : L S := setDifference(arguments,aArgs) - symbolTable:SymbolTable := symbolTableOf(name,syms) - symbolList := newTypeLists(symbolTable) - rt:Union(fst: FST,void: "void") := returnTypeOf(name,syms)$TheSymbolTable - - -- Look for arguments which are subprograms - asps :=[makeAspList(u,syms) for u in externalList(symbolTable)$SymbolTable] - rt case fst => - makeFort1(name,arguments,aArgs,dummies,symbolList,res,(rt.fst)::S,asps)$Lisp - makeFort1(name,arguments,aArgs,dummies,symbolList,res,NIL$Lisp,asps)$Lisp - -@ -\section{package FOP FortranOutputStackPackage} -<<package FOP FortranOutputStackPackage>>= -)abbrev package FOP FortranOutputStackPackage - -++ Author: Mike Dewar -++ Date Created: October 1992 -++ Date Last Updated: -++ Basic Operations: -++ Related Domains: -++ Also See: -++ AMS Classifications: -++ Keywords: -++ Examples: -++ References: -++ Description: Code to manipulate Fortran Output Stack -FortranOutputStackPackage() : specification == implementation where - - specification == with - - clearFortranOutputStack : () -> Stack String - ++ clearFortranOutputStack() clears the Fortran output stack - showFortranOutputStack : () -> Stack String - ++ showFortranOutputStack() returns the Fortran output stack - popFortranOutputStack : () -> Void - ++ popFortranOutputStack() pops the Fortran output stack - pushFortranOutputStack : FileName -> Void - ++ pushFortranOutputStack(f) pushes f onto the Fortran output stack - pushFortranOutputStack : String -> Void - ++ pushFortranOutputStack(f) pushes f onto the Fortran output stack - topFortranOutputStack : () -> String - ++ topFortranOutputStack() returns the top element of the Fortran - ++ output stack - - implementation == add - - import MoreSystemCommands - - -- A stack of filenames for Fortran output. We are sharing this with - -- the standard Fortran output code, so want to be a bit careful about - -- how we interact with what the user does independently. We get round - -- potential problems by always examining the top element of the stack - -- before we push. If the user has redirected output then we alter our - -- top value accordingly. - fortranOutputStack : Stack String := empty()@(Stack String) - - topFortranOutputStack():String == string(_$fortranOutputFile$Lisp) - - pushFortranOutputStack(fn:FileName):Void == - if empty? fortranOutputStack then - push!(string(_$fortranOutputFile$Lisp),fortranOutputStack) - else if not(top(fortranOutputStack)=string(_$fortranOutputFile$Lisp)) then - pop! fortranOutputStack - push!(string(_$fortranOutputFile$Lisp),fortranOutputStack) - push!( fn::String,fortranOutputStack) - systemCommand concat(["set output fortran quiet ", fn::String])$String - - pushFortranOutputStack(fn:String):Void == - if empty? fortranOutputStack then - push!(string(_$fortranOutputFile$Lisp),fortranOutputStack) - else if not(top(fortranOutputStack)=string(_$fortranOutputFile$Lisp)) then - pop! fortranOutputStack - push!(string(_$fortranOutputFile$Lisp),fortranOutputStack) - push!( fn,fortranOutputStack) - systemCommand concat(["set output fortran quiet ", fn])$String - - popFortranOutputStack():Void == - if not empty? fortranOutputStack then pop! fortranOutputStack - if empty? fortranOutputStack then push!("CONSOLE",fortranOutputStack) - systemCommand concat(["set output fortran quiet append ",_ - top fortranOutputStack])$String - - clearFortranOutputStack():Stack String == - fortranOutputStack := empty()@(Stack String) - - showFortranOutputStack():Stack String == - fortranOutputStack - -@ -\section{package TEMUTL TemplateUtilities} -<<package TEMUTL TemplateUtilities>>= -)abbrev package TEMUTL TemplateUtilities -++ Author: Mike Dewar -++ Date Created: October 1992 -++ Date Last Updated: -++ Basic Operations: -++ Related Domains: -++ Also See: -++ AMS Classifications: -++ Keywords: -++ Examples: -++ References: -++ Description: This package provides functions for template manipulation -TemplateUtilities(): Exports == Implementation where - - Exports == with - interpretString : String -> Any - ++ interpretString(s) treats a string as a piece of AXIOM input, by - ++ parsing and interpreting it. - stripCommentsAndBlanks : String -> String - ++ stripCommentsAndBlanks(s) treats s as a piece of AXIOM input, and - ++ removes comments, and leading and trailing blanks. - - Implementation == add - - import InputForm - - stripC(s:String,u:String):String == - i : Integer := position(u,s,1) - i = 0 => s - delete(s,i..) - - stripCommentsAndBlanks(s:String):String == - trim(stripC(stripC(s,"++"),"--"),char " ") - - parse(s:String):InputForm == - ncParseFromString(s)$Lisp::InputForm - - interpretString(s:String):Any == - interpret parse s - -@ -\section{package MCALCFN MultiVariableCalculusFunctions} -<<package MCALCFN MultiVariableCalculusFunctions>>= -)abbrev package MCALCFN MultiVariableCalculusFunctions -++ Author: Themos Tsikas, Grant Keady -++ Date Created: December 1992 -++ Date Last Updated: June 1993 -++ Basic Operations: -++ Related Constructors: -++ Also See: -++ AMS Classifications: -++ Keywords: -++ References: -++ Description: -++ \spadtype{MultiVariableCalculusFunctions} Package provides several -++ functions for multivariable calculus. -++ These include gradient, hessian and jacobian, -++ divergence and laplacian. -++ Various forms for banded and sparse storage of matrices are -++ included. -MultiVariableCalculusFunctions(S,F,FLAF,FLAS) : Exports == Implementation where - PI ==> PositiveInteger - NNI ==> NonNegativeInteger - - S: SetCategory - F: PartialDifferentialRing(S) - FLAS: FiniteLinearAggregate(S) - with finiteAggregate - FLAF: FiniteLinearAggregate(F) - - Exports ==> with - gradient: (F,FLAS) -> Vector F - ++ \spad{gradient(v,xlist)} - ++ computes the gradient, the vector of first partial derivatives, - ++ of the scalar field v, - ++ v a function of the variables listed in xlist. - divergence: (FLAF,FLAS) -> F - ++ \spad{divergence(vf,xlist)} - ++ computes the divergence of the vector field vf, - ++ vf a vector function of the variables listed in xlist. - laplacian: (F,FLAS) -> F - ++ \spad{laplacian(v,xlist)} - ++ computes the laplacian of the scalar field v, - ++ v a function of the variables listed in xlist. - hessian: (F,FLAS) -> Matrix F - ++ \spad{hessian(v,xlist)} - ++ computes the hessian, the matrix of second partial derivatives, - ++ of the scalar field v, - ++ v a function of the variables listed in xlist. - bandedHessian: (F,FLAS,NNI) -> Matrix F - ++ \spad{bandedHessian(v,xlist,k)} - ++ computes the hessian, the matrix of second partial derivatives, - ++ of the scalar field v, - ++ v a function of the variables listed in xlist, - ++ k is the semi-bandwidth, the number of nonzero subdiagonals, - ++ 2*k+1 being actual bandwidth. - ++ Stores the nonzero band in lower triangle in a matrix, - ++ dimensions k+1 by #xlist, - ++ whose rows are the vectors formed by diagonal, subdiagonal, etc. - ++ of the real, full-matrix, hessian. - ++ (The notation conforms to LAPACK/NAG-F07 conventions.) - -- At one stage it seemed a good idea to help the ASP<n> domains - -- with the types of their input arguments and this led to the - -- standard Gradient|Hessian|Jacobian functions. - --standardJacobian: (Vector(F),List(S)) -> Matrix F - -- ++ \spad{jacobian(vf,xlist)} - -- ++ computes the jacobian, the matrix of first partial derivatives, - -- ++ of the vector field vf, - -- ++ vf a vector function of the variables listed in xlist. - jacobian: (FLAF,FLAS) -> Matrix F - ++ \spad{jacobian(vf,xlist)} - ++ computes the jacobian, the matrix of first partial derivatives, - ++ of the vector field vf, - ++ vf a vector function of the variables listed in xlist. - bandedJacobian: (FLAF,FLAS,NNI,NNI) -> Matrix F - ++ \spad{bandedJacobian(vf,xlist,kl,ku)} - ++ computes the jacobian, the matrix of first partial derivatives, - ++ of the vector field vf, - ++ vf a vector function of the variables listed in xlist, - ++ kl is the number of nonzero subdiagonals, - ++ ku is the number of nonzero superdiagonals, - ++ kl+ku+1 being actual bandwidth. - ++ Stores the nonzero band in a matrix, - ++ dimensions kl+ku+1 by #xlist. - ++ The upper triangle is in the top ku rows, - ++ the diagonal is in row ku+1, - ++ the lower triangle in the last kl rows. - ++ Entries in a column in the band store correspond to entries - ++ in same column of full store. - ++ (The notation conforms to LAPACK/NAG-F07 conventions.) - - Implementation ==> add - localGradient(v:F,xlist:List(S)):Vector(F) == - vector([D(v,x) for x in xlist]) - gradient(v,xflas) == - --xlist:List(S) := [xflas(i) for i in 1 .. maxIndex(xflas)] - xlist:List(S) := parts(xflas) - localGradient(v,xlist) - localDivergence(vf:Vector(F),xlist:List(S)):F == - n: NNI - ans: F - -- Perhaps should report error if two args of min different - n:= min(#(xlist),((maxIndex(vf))::NNI))$NNI - ans:= 0 - for i in 1 .. n repeat ans := ans + D(vf(i),xlist(i)) - ans - divergence(vf,xflas) == - xlist:List(S) := parts(xflas) - n: NNI - ans: F - -- Perhaps should report error if two args of min different - n:= min(#(xlist),((maxIndex(vf))::NNI))$NNI - ans:= 0 - for i in 1 .. n repeat ans := ans + D(vf(i),xlist(i)) - ans - laplacian(v,xflas) == - xlist:List(S) := parts(xflas) - gv:Vector(F) := localGradient(v,xlist) - localDivergence(gv,xlist) - hessian(v,xflas) == - xlist:List(S) := parts(xflas) - matrix([[D(v,[x,y]) for x in xlist] for y in xlist]) - --standardJacobian(vf,xlist) == - -- i: PI - -- matrix([[D(vf(i),x) for x in xlist] for i in 1 .. maxIndex(vf)]) - jacobian(vf,xflas) == - xlist:List(S) := parts(xflas) - matrix([[D(vf(i),x) for x in xlist] for i in 1 .. maxIndex(vf)]) - bandedHessian(v,xflas,k) == - xlist:List(S) := parts(xflas) - n: NNI - bandM: Matrix F - n:= #(xlist) - bandM:= new(k+1,n,0) - for j in 1 .. n repeat setelt(bandM,1,j,D(v,xlist(j),2)) - for iw in 2 .. (k+1) repeat (_ - for j in 1 .. (n-iw+1) repeat (_ - setelt(bandM,iw,j,D(v,[xlist(j),xlist(j+iw-1)])) ) ) - bandM - bandedJacobian(vf,xflas,kl,ku) == - xlist:List(S) := parts(xflas) - n: NNI - bandM: Matrix F - n:= #(xlist) - bandM:= new(kl+ku+1,n,0) - for j in 1 .. n repeat setelt(bandM,ku+1,j,D(vf(j),xlist(j))) - for iw in (ku+2) .. (ku+kl+1) repeat (_ - for j in 1 .. (n-iw+ku+1) repeat (_ - setelt(bandM,iw,j,D(vf(j+iw-1-ku),xlist(j))) ) ) - for iw in 1 .. ku repeat (_ - for j in (ku+2-iw) .. n repeat (_ - setelt(bandM,iw,j,D(vf(j+iw-1-ku),xlist(j))) ) ) - bandM - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package FCPAK1 FortranCodePackage1>> -<<package NAGSP NAGLinkSupportPackage>> -<<package FORT FortranPackage>> -<<package FOP FortranOutputStackPackage>> -<<package TEMUTL TemplateUtilities>> -<<package MCALCFN MultiVariableCalculusFunctions>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/fortran.spad.pamphlet b/src/algebra/fortran.spad.pamphlet deleted file mode 100644 index 050960e0..00000000 --- a/src/algebra/fortran.spad.pamphlet +++ /dev/null @@ -1,1784 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{src/algebra fortran.spad} -\author{Didier Pinchon, Mike Dewar, William Naylor} -\maketitle - -\begin{abstract} -\end{abstract} -\tableofcontents -\eject - -\section{domain RESULT Result} - -<<domain RESULT Result>>= -import Boolean -import Symbol -import OutputForm -import Any -import TableAggregate -)abbrev domain RESULT Result -++ Author: Didier Pinchon and Mike Dewar -++ Date Created: 8 April 1994 -++ Date Last Updated: 28 June 1994 -++ Basic Operations: -++ Related Domains: -++ Also See: -++ AMS Classifications: -++ Keywords: -++ Examples: -++ References: -++ Description: A domain used to return the results from a call to the NAG -++ Library. It prints as a list of names and types, though the user may -++ choose to display values automatically if he or she wishes. -Result():Exports==Implementation where - - O ==> OutputForm - - Exports ==> TableAggregate(Symbol,Any) with - showScalarValues : Boolean -> Boolean - ++ showScalarValues(true) forces the values of scalar components to be - ++ displayed rather than just their types. - showArrayValues : Boolean -> Boolean - ++ showArrayValues(true) forces the values of array components to be - ++ displayed rather than just their types. - finiteAggregate - - Implementation ==> Table(Symbol,Any) add - import SExpression - - -- Constant - colon := ": "::Symbol::O - elide := "..."::Symbol::O - - -- Flags - showScalarValuesFlag : Boolean := false - showArrayValuesFlag : Boolean := false - - cleanUpDomainForm(d:SExpression):O == - not list? d => d::O - #d=1 => (car d)::O - -- If the car is an atom then we have a domain constructor, if not - -- then we have some kind of value. Since we often can't print these - -- ****ers we just elide them. - not atom? car d => elide - prefix((car d)::O,[cleanUpDomainForm(u) for u in destruct cdr(d)]$List(O)) - - display(v:Any,d:SExpression):O == - not list? d => error "Domain form is non-list" - #d=1 => - showScalarValuesFlag => v::OutputForm - cleanUpDomainForm d - car(d) = convert("Complex"::Symbol)@SExpression => - showScalarValuesFlag => v::OutputForm - cleanUpDomainForm d - showArrayValuesFlag => v::OutputForm - cleanUpDomainForm d - - makeEntry(k:Symbol,v:Any):O == - hconcat [k::O,colon,display(v,dom v)] - - coerce(r:%):O == - bracket [makeEntry(key,r.key) for key in reverse! keys(r)] - - showArrayValues(b:Boolean):Boolean == showArrayValuesFlag := b - showScalarValues(b:Boolean):Boolean == showScalarValuesFlag := b - -@ - -\section{domain FC FortranCode} - -<<domain FC FortranCode>>= -import Void -import List -import Fraction -)abbrev domain FC FortranCode --- The FortranCode domain is used to represent operations which are to be --- translated into FORTRAN. -++ Author: Mike Dewar -++ Date Created: April 1991 -++ Date Last Updated: 22 March 1994 -++ 26 May 1994 Added common, MCD -++ 21 June 1994 Changed print to printStatement, MCD -++ 30 June 1994 Added stop, MCD -++ 12 July 1994 Added assign for String, MCD -++ 9 January 1995 Added fortran2Lines to getCall, MCD -++ Basic Operations: -++ Related Constructors: FortranProgram, Switch, FortranType -++ Also See: -++ AMS Classifications: -++ Keywords: -++ References: -++ Description: -++ This domain builds representations of program code segments for use with -++ the FortranProgram domain. -FortranCode(): public == private where - L ==> List - PI ==> PositiveInteger - PIN ==> Polynomial Integer - SEX ==> SExpression - O ==> OutputForm - OP ==> Union(Null:"null", - Assignment:"assignment", - Conditional:"conditional", - Return:"return", - Block:"block", - Comment:"comment", - Call:"call", - For:"for", - While:"while", - Repeat:"repeat", - Goto:"goto", - Continue:"continue", - ArrayAssignment:"arrayAssignment", - Save:"save", - Stop:"stop", - Common:"common", - Print:"print") - ARRAYASS ==> Record(var:Symbol, rand:O, ints2Floats?:Boolean) - EXPRESSION ==> Record(ints2Floats?:Boolean,expr:O) - ASS ==> Record(var:Symbol, - arrayIndex:L PIN, - rand:EXPRESSION - ) - COND ==> Record(switch: Switch(), - thenClause: $, - elseClause: $ - ) - RETURN ==> Record(empty?:Boolean,value:EXPRESSION) - BLOCK ==> List $ - COMMENT ==> List String - COMMON ==> Record(name:Symbol,contents:List Symbol) - CALL ==> String - FOR ==> Record(range:SegmentBinding PIN, span:PIN, body:$) - LABEL ==> SingleInteger - LOOP ==> Record(switch:Switch(),body:$) - PRINTLIST ==> List O - OPREC ==> Union(nullBranch:"null", assignmentBranch:ASS, - arrayAssignmentBranch:ARRAYASS, - conditionalBranch:COND, returnBranch:RETURN, - blockBranch:BLOCK, commentBranch:COMMENT, callBranch:CALL, - forBranch:FOR, labelBranch:LABEL, loopBranch:LOOP, - commonBranch:COMMON, printBranch:PRINTLIST) - - public == SetCategory with - forLoop: (SegmentBinding PIN,$) -> $ - ++ forLoop(i=1..10,c) creates a representation of a FORTRAN DO loop with - ++ \spad{i} ranging over the values 1 to 10. - forLoop: (SegmentBinding PIN,PIN,$) -> $ - ++ forLoop(i=1..10,n,c) creates a representation of a FORTRAN DO loop with - ++ \spad{i} ranging over the values 1 to 10 by n. - whileLoop: (Switch,$) -> $ - ++ whileLoop(s,c) creates a while loop in FORTRAN. - repeatUntilLoop: (Switch,$) -> $ - ++ repeatUntilLoop(s,c) creates a repeat ... until loop in FORTRAN. - goto: SingleInteger -> $ - ++ goto(l) creates a representation of a FORTRAN GOTO statement - continue: SingleInteger -> $ - ++ continue(l) creates a representation of a FORTRAN CONTINUE labelled - ++ with l - comment: String -> $ - ++ comment(s) creates a representation of the String s as a single FORTRAN - ++ comment. - comment: List String -> $ - ++ comment(s) creates a representation of the Strings s as a multi-line - ++ FORTRAN comment. - call: String -> $ - ++ call(s) creates a representation of a FORTRAN CALL statement - returns: () -> $ - ++ returns() creates a representation of a FORTRAN RETURN statement. - returns: Expression MachineFloat -> $ - ++ returns(e) creates a representation of a FORTRAN RETURN statement - ++ with a returned value. - returns: Expression MachineInteger -> $ - ++ returns(e) creates a representation of a FORTRAN RETURN statement - ++ with a returned value. - returns: Expression MachineComplex -> $ - ++ returns(e) creates a representation of a FORTRAN RETURN statement - ++ with a returned value. - returns: Expression Float -> $ - ++ returns(e) creates a representation of a FORTRAN RETURN statement - ++ with a returned value. - returns: Expression Integer -> $ - ++ returns(e) creates a representation of a FORTRAN RETURN statement - ++ with a returned value. - returns: Expression Complex Float -> $ - ++ returns(e) creates a representation of a FORTRAN RETURN statement - ++ with a returned value. - cond: (Switch,$) -> $ - ++ cond(s,e) creates a representation of the FORTRAN expression - ++ IF (s) THEN e. - cond: (Switch,$,$) -> $ - ++ cond(s,e,f) creates a representation of the FORTRAN expression - ++ IF (s) THEN e ELSE f. - assign: (Symbol,String) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Expression MachineInteger) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Expression MachineFloat) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Expression MachineComplex) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Matrix MachineInteger) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Matrix MachineFloat) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Matrix MachineComplex) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Vector MachineInteger) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Vector MachineFloat) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Vector MachineComplex) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Matrix Expression MachineInteger) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Matrix Expression MachineFloat) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Matrix Expression MachineComplex) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Vector Expression MachineInteger) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Vector Expression MachineFloat) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Vector Expression MachineComplex) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,L PIN,Expression MachineInteger) -> $ - ++ assign(x,l,y) creates a representation of the assignment of \spad{y} - ++ to the \spad{l}'th element of array \spad{x} (\spad{l} is a list of - ++ indices). - assign: (Symbol,L PIN,Expression MachineFloat) -> $ - ++ assign(x,l,y) creates a representation of the assignment of \spad{y} - ++ to the \spad{l}'th element of array \spad{x} (\spad{l} is a list of - ++ indices). - assign: (Symbol,L PIN,Expression MachineComplex) -> $ - ++ assign(x,l,y) creates a representation of the assignment of \spad{y} - ++ to the \spad{l}'th element of array \spad{x} (\spad{l} is a list of - ++ indices). - assign: (Symbol,Expression Integer) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Expression Float) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Expression Complex Float) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Matrix Expression Integer) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Matrix Expression Float) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Matrix Expression Complex Float) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Vector Expression Integer) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Vector Expression Float) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,Vector Expression Complex Float) -> $ - ++ assign(x,y) creates a representation of the FORTRAN expression - ++ x=y. - assign: (Symbol,L PIN,Expression Integer) -> $ - ++ assign(x,l,y) creates a representation of the assignment of \spad{y} - ++ to the \spad{l}'th element of array \spad{x} (\spad{l} is a list of - ++ indices). - assign: (Symbol,L PIN,Expression Float) -> $ - ++ assign(x,l,y) creates a representation of the assignment of \spad{y} - ++ to the \spad{l}'th element of array \spad{x} (\spad{l} is a list of - ++ indices). - assign: (Symbol,L PIN,Expression Complex Float) -> $ - ++ assign(x,l,y) creates a representation of the assignment of \spad{y} - ++ to the \spad{l}'th element of array \spad{x} (\spad{l} is a list of - ++ indices). - block: List($) -> $ - ++ block(l) creates a representation of the statements in l as a block. - stop: () -> $ - ++ stop() creates a representation of a STOP statement. - save: () -> $ - ++ save() creates a representation of a SAVE statement. - printStatement: List O -> $ - ++ printStatement(l) creates a representation of a PRINT statement. - common: (Symbol,List Symbol) -> $ - ++ common(name,contents) creates a representation a named common block. - operation: $ -> OP - ++ operation(f) returns the name of the operation represented by \spad{f}. - code: $ -> OPREC - ++ code(f) returns the internal representation of the object represented - ++ by \spad{f}. - printCode: $ -> Void - ++ printCode(f) prints out \spad{f} in FORTRAN notation. - getCode: $ -> SEX - ++ getCode(f) returns a Lisp list of strings representing \spad{f} - ++ in Fortran notation. This is used by the FortranProgram domain. - setLabelValue:SingleInteger -> SingleInteger - ++ setLabelValue(i) resets the counter which produces labels to i - - private == add - import Void - import ASS - import COND - import RETURN - import L PIN - import O - import SEX - import FortranType - import TheSymbolTable - - Rep := Record(op: OP, data: OPREC) - - -- We need to be able to generate unique labels - labelValue:SingleInteger := 25000::SingleInteger - setLabelValue(u:SingleInteger):SingleInteger == labelValue := u - newLabel():SingleInteger == - labelValue := labelValue + 1$SingleInteger - labelValue - - commaSep(l:List String):List(String) == - [(l.1),:[:[",",u] for u in rest(l)]] - - getReturn(rec:RETURN):SEX == - returnToken : SEX := convert("RETURN"::Symbol::O)$SEX - elt(rec,empty?)$RETURN => - getStatement(returnToken,NIL$Lisp)$Lisp - rt : EXPRESSION := elt(rec,value)$RETURN - rv : O := elt(rt,expr)$EXPRESSION - getStatement([returnToken,convert(rv)$SEX]$Lisp, - elt(rt,ints2Floats?)$EXPRESSION )$Lisp - - getStop():SEX == - fortran2Lines(LIST("STOP")$Lisp)$Lisp - - getSave():SEX == - fortran2Lines(LIST("SAVE")$Lisp)$Lisp - - getCommon(u:COMMON):SEX == - fortran2Lines(APPEND(LIST("COMMON"," /",string (u.name),"/ ")$Lisp,_ - addCommas(u.contents)$Lisp)$Lisp)$Lisp - - getPrint(l:PRINTLIST):SEX == - ll : SEX := LIST("PRINT*")$Lisp - for i in l repeat - ll := APPEND(ll,CONS(",",expression2Fortran(i)$Lisp)$Lisp)$Lisp - fortran2Lines(ll)$Lisp - - getBlock(rec:BLOCK):SEX == - indentFortLevel(convert(1@Integer)$SEX)$Lisp - expr : SEX := LIST()$Lisp - for u in rec repeat - expr := APPEND(expr,getCode(u))$Lisp - indentFortLevel(convert(-1@Integer)$SEX)$Lisp - expr - - getBody(f:$):SEX == - operation(f) case Block => getCode f - indentFortLevel(convert(1@Integer)$SEX)$Lisp - expr := getCode f - indentFortLevel(convert(-1@Integer)$SEX)$Lisp - expr - - getElseIf(f:$):SEX == - rec := code f - expr := - fortFormatElseIf(elt(rec.conditionalBranch,switch)$COND::O)$Lisp - expr := - APPEND(expr,getBody elt(rec.conditionalBranch,thenClause)$COND)$Lisp - elseBranch := elt(rec.conditionalBranch,elseClause)$COND - not(operation(elseBranch) case Null) => - operation(elseBranch) case Conditional => - APPEND(expr,getElseIf elseBranch)$Lisp - expr := APPEND(expr, getStatement(ELSE::O,NIL$Lisp)$Lisp)$Lisp - expr := APPEND(expr, getBody elseBranch)$Lisp - expr - - getContinue(label:SingleInteger):SEX == - lab : O := label::O - if (width(lab) > 6) then error "Label too big" - cnt : O := "CONTINUE"::O - --sp : O := hspace(6-width lab) - sp : O := hspace(_$fortIndent$Lisp -width lab) - LIST(STRCONC(string(label)$String,sp,cnt)$Lisp)$Lisp - - getGoto(label:SingleInteger):SEX == - fortran2Lines( - LIST(STRCONC("GOTO ",string(label)$String)$Lisp)$Lisp)$Lisp - - getRepeat(repRec:LOOP):SEX == - sw : Switch := NOT elt(repRec,switch)$LOOP - lab := newLabel() - bod := elt(repRec,body)$LOOP - APPEND(getContinue lab,getBody bod, - fortFormatIfGoto(sw::O,lab)$Lisp)$Lisp - - getWhile(whileRec:LOOP):SEX == - sw := NOT elt(whileRec,switch)$LOOP - lab1 := newLabel() - lab2 := newLabel() - bod := elt(whileRec,body)$LOOP - APPEND(fortFormatLabelledIfGoto(sw::O,lab1,lab2)$Lisp, - getBody bod, getBody goto(lab1), getContinue lab2)$Lisp - - getArrayAssign(rec:ARRAYASS):SEX == - getfortarrayexp((rec.var)::O,rec.rand,rec.ints2Floats?)$Lisp - - getAssign(rec:ASS):SEX == - indices : L PIN := elt(rec,arrayIndex)$ASS - if indices = []::(L PIN) then - lhs := elt(rec,var)$ASS::O - else - lhs := cons(elt(rec,var)$ASS::PIN,indices)::O - -- Must get the index brackets correct: - lhs := (cdr car cdr convert(lhs)$SEX::SEX)::O -- Yuck! - elt(elt(rec,rand)$ASS,ints2Floats?)$EXPRESSION => - assignment2Fortran1(lhs,elt(elt(rec,rand)$ASS,expr)$EXPRESSION)$Lisp - integerAssignment2Fortran1(lhs,elt(elt(rec,rand)$ASS,expr)$EXPRESSION)$Lisp - - getCond(rec:COND):SEX == - expr := APPEND(fortFormatIf(elt(rec,switch)$COND::O)$Lisp, - getBody elt(rec,thenClause)$COND)$Lisp - elseBranch := elt(rec,elseClause)$COND - if not(operation(elseBranch) case Null) then - operation(elseBranch) case Conditional => - expr := APPEND(expr,getElseIf elseBranch)$Lisp - expr := APPEND(expr,getStatement(ELSE::O,NIL$Lisp)$Lisp, - getBody elseBranch)$Lisp - APPEND(expr,getStatement(ENDIF::O,NIL$Lisp)$Lisp)$Lisp - - getComment(rec:COMMENT):SEX == - convert([convert(concat("C ",c)$String)@SEX for c in rec])@SEX - - getCall(rec:CALL):SEX == - expr := concat("CALL ",rec)$String - #expr > 1320 => error "Fortran CALL too large" - fortran2Lines(convert([convert(expr)@SEX ])@SEX)$Lisp - - getFor(rec:FOR):SEX == - rnge : SegmentBinding PIN := elt(rec,range)$FOR - increment : PIN := elt(rec,span)$FOR - lab : SingleInteger := newLabel() - declare!(variable rnge,fortranInteger()) - expr := fortFormatDo(variable rnge, (lo segment rnge)::O,_ - (hi segment rnge)::O,increment::O,lab)$Lisp - APPEND(expr, getBody elt(rec,body)$FOR, getContinue(lab))$Lisp - - getCode(f:$):SEX == - opp:OP := operation f - rec:OPREC:= code f - opp case Assignment => getAssign(rec.assignmentBranch) - opp case ArrayAssignment => getArrayAssign(rec.arrayAssignmentBranch) - opp case Conditional => getCond(rec.conditionalBranch) - opp case Return => getReturn(rec.returnBranch) - opp case Block => getBlock(rec.blockBranch) - opp case Comment => getComment(rec.commentBranch) - opp case Call => getCall(rec.callBranch) - opp case For => getFor(rec.forBranch) - opp case Continue => getContinue(rec.labelBranch) - opp case Goto => getGoto(rec.labelBranch) - opp case Repeat => getRepeat(rec.loopBranch) - opp case While => getWhile(rec.loopBranch) - opp case Save => getSave() - opp case Stop => getStop() - opp case Print => getPrint(rec.printBranch) - opp case Common => getCommon(rec.commonBranch) - error "Unsupported program construct." - convert(0)@SEX - - printCode(f:$):Void == - displayLines1$Lisp getCode f - - code (f:$):OPREC == - elt(f,data)$Rep - - operation (f:$):OP == - elt(f,op)$Rep - - common(name':Symbol,contents':List Symbol):$ == - [["common"]$OP,[[name',contents']$COMMON]$OPREC]$Rep - - stop():$ == - [["stop"]$OP,["null"]$OPREC]$Rep - - save():$ == - [["save"]$OP,["null"]$OPREC]$Rep - - printStatement(l:List O):$ == - [["print"]$OP,[l]$OPREC]$Rep - - comment(s:List String):$ == - [["comment"]$OP,[s]$OPREC]$Rep - - comment(s:String):$ == - [["comment"]$OP,[list s]$OPREC]$Rep - - forLoop(r:SegmentBinding PIN,body':$):$ == - [["for"]$OP,[[r,(incr segment r)::PIN,body']$FOR]$OPREC]$Rep - - forLoop(r:SegmentBinding PIN,increment:PIN,body':$):$ == - [["for"]$OP,[[r,increment,body']$FOR]$OPREC]$Rep - - goto(l:SingleInteger):$ == - [["goto"]$OP,[l]$OPREC]$Rep - - continue(l:SingleInteger):$ == - [["continue"]$OP,[l]$OPREC]$Rep - - whileLoop(sw:Switch,b:$):$ == - [["while"]$OP,[[sw,b]$LOOP]$OPREC]$Rep - - repeatUntilLoop(sw:Switch,b:$):$ == - [["repeat"]$OP,[[sw,b]$LOOP]$OPREC]$Rep - - returns():$ == - v := [false,0::O]$EXPRESSION - [["return"]$OP,[[true,v]$RETURN]$OPREC]$Rep - - returns(v:Expression MachineInteger):$ == - [["return"]$OP,[[false,[false,v::O]$EXPRESSION]$RETURN]$OPREC]$Rep - - returns(v:Expression MachineFloat):$ == - [["return"]$OP,[[false,[false,v::O]$EXPRESSION]$RETURN]$OPREC]$Rep - - returns(v:Expression MachineComplex):$ == - [["return"]$OP,[[false,[false,v::O]$EXPRESSION]$RETURN]$OPREC]$Rep - - returns(v:Expression Integer):$ == - [["return"]$OP,[[false,[false,v::O]$EXPRESSION]$RETURN]$OPREC]$Rep - - returns(v:Expression Float):$ == - [["return"]$OP,[[false,[false,v::O]$EXPRESSION]$RETURN]$OPREC]$Rep - - returns(v:Expression Complex Float):$ == - [["return"]$OP,[[false,[false,v::O]$EXPRESSION]$RETURN]$OPREC]$Rep - - block(l:List $):$ == - [["block"]$OP,[l]$OPREC]$Rep - - cond(sw:Switch,thenC:$):$ == - [["conditional"]$OP, - [[sw,thenC,[["null"]$OP,["null"]$OPREC]$Rep]$COND]$OPREC]$Rep - - cond(sw:Switch,thenC:$,elseC:$):$ == - [["conditional"]$OP,[[sw,thenC,elseC]$COND]$OPREC]$Rep - - coerce(f : $):O == - (f.op)::O - - assign(v:Symbol,rhs:String):$ == - [["assignment"]$OP,[[v,nil()::L PIN,[false,rhs::O]$EXPRESSION]$ASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Matrix MachineInteger):$ == - [["arrayAssignment"]$OP,[[v,rhs::O,false]$ARRAYASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Matrix MachineFloat):$ == - [["arrayAssignment"]$OP,[[v,rhs::O,true]$ARRAYASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Matrix MachineComplex):$ == - [["arrayAssignment"]$OP,[[v,rhs::O,true]$ARRAYASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Vector MachineInteger):$ == - [["arrayAssignment"]$OP,[[v,rhs::O,false]$ARRAYASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Vector MachineFloat):$ == - [["arrayAssignment"]$OP,[[v,rhs::O,true]$ARRAYASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Vector MachineComplex):$ == - [["arrayAssignment"]$OP,[[v,rhs::O,true]$ARRAYASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Matrix Expression MachineInteger):$ == - [["arrayAssignment"]$OP,[[v,rhs::O,false]$ARRAYASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Matrix Expression MachineFloat):$ == - [["arrayAssignment"]$OP,[[v,rhs::O,true]$ARRAYASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Matrix Expression MachineComplex):$ == - [["arrayAssignment"]$OP,[[v,rhs::O,true]$ARRAYASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Vector Expression MachineInteger):$ == - [["arrayAssignment"]$OP,[[v,rhs::O,false]$ARRAYASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Vector Expression MachineFloat):$ == - [["arrayAssignment"]$OP,[[v,rhs::O,true]$ARRAYASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Vector Expression MachineComplex):$ == - [["arrayAssignment"]$OP,[[v,rhs::O,true]$ARRAYASS]$OPREC]$Rep - - assign(v:Symbol,index:L PIN,rhs:Expression MachineInteger):$ == - [["assignment"]$OP,[[v,index,[false,rhs::O]$EXPRESSION]$ASS]$OPREC]$Rep - - assign(v:Symbol,index:L PIN,rhs:Expression MachineFloat):$ == - [["assignment"]$OP,[[v,index,[true,rhs::O]$EXPRESSION]$ASS]$OPREC]$Rep - - assign(v:Symbol,index:L PIN,rhs:Expression MachineComplex):$ == - [["assignment"]$OP,[[v,index,[true,rhs::O]$EXPRESSION]$ASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Expression MachineInteger):$ == - [["assignment"]$OP,[[v,nil()::L PIN,[false,rhs::O]$EXPRESSION]$ASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Expression MachineFloat):$ == - [["assignment"]$OP,[[v,nil()::L PIN,[true,rhs::O]$EXPRESSION]$ASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Expression MachineComplex):$ == - [["assignment"]$OP,[[v,nil()::L PIN,[true,rhs::O]$EXPRESSION]$ASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Matrix Expression Integer):$ == - [["arrayAssignment"]$OP,[[v,rhs::O,false]$ARRAYASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Matrix Expression Float):$ == - [["arrayAssignment"]$OP,[[v,rhs::O,true]$ARRAYASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Matrix Expression Complex Float):$ == - [["arrayAssignment"]$OP,[[v,rhs::O,true]$ARRAYASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Vector Expression Integer):$ == - [["arrayAssignment"]$OP,[[v,rhs::O,false]$ARRAYASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Vector Expression Float):$ == - [["arrayAssignment"]$OP,[[v,rhs::O,true]$ARRAYASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Vector Expression Complex Float):$ == - [["arrayAssignment"]$OP,[[v,rhs::O,true]$ARRAYASS]$OPREC]$Rep - - assign(v:Symbol,index:L PIN,rhs:Expression Integer):$ == - [["assignment"]$OP,[[v,index,[false,rhs::O]$EXPRESSION]$ASS]$OPREC]$Rep - - assign(v:Symbol,index:L PIN,rhs:Expression Float):$ == - [["assignment"]$OP,[[v,index,[true,rhs::O]$EXPRESSION]$ASS]$OPREC]$Rep - - assign(v:Symbol,index:L PIN,rhs:Expression Complex Float):$ == - [["assignment"]$OP,[[v,index,[true,rhs::O]$EXPRESSION]$ASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Expression Integer):$ == - [["assignment"]$OP,[[v,nil()::L PIN,[false,rhs::O]$EXPRESSION]$ASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Expression Float):$ == - [["assignment"]$OP,[[v,nil()::L PIN,[true,rhs::O]$EXPRESSION]$ASS]$OPREC]$Rep - - assign(v:Symbol,rhs:Expression Complex Float):$ == - [["assignment"]$OP,[[v,nil()::L PIN,[true,rhs::O]$EXPRESSION]$ASS]$OPREC]$Rep - - call(s:String):$ == - [["call"]$OP,[s]$OPREC]$Rep - -@ -\section{domain FORTRAN FortranProgram} -<<domain FORTRAN FortranProgram>>= -)abbrev domain FORTRAN FortranProgram -++ Author: Mike Dewar -++ Date Created: October 1992 -++ Date Last Updated: 13 January 1994 -++ 23 January 1995 Added support for intrinsic functions -++ Basic Operations: -++ Related Constructors: FortranType, FortranCode, Switch -++ Also See: -++ AMS Classifications: -++ Keywords: -++ References: -++ Description: \axiomType{FortranProgram} allows the user to build and manipulate simple -++ models of FORTRAN subprograms. These can then be transformed into actual FORTRAN -++ notation. -FortranProgram(name,returnType,arguments,symbols): Exports == Implement where - name : Symbol - returnType : Union(fst:FortranScalarType,void:"void") - arguments : List Symbol - symbols : SymbolTable - - FC ==> FortranCode - EXPR ==> Expression - INT ==> Integer - CMPX ==> Complex - MINT ==> MachineInteger - MFLOAT ==> MachineFloat - MCMPLX ==> MachineComplex - REP ==> Record(localSymbols : SymbolTable, code : List FortranCode) - - Exports ==> FortranProgramCategory with - coerce : FortranCode -> $ - ++ coerce(fc) \undocumented{} - coerce : List FortranCode -> $ - ++ coerce(lfc) \undocumented{} - coerce : REP -> $ - ++ coerce(r) \undocumented{} - coerce : EXPR MINT -> $ - ++ coerce(e) \undocumented{} - coerce : EXPR MFLOAT -> $ - ++ coerce(e) \undocumented{} - coerce : EXPR MCMPLX -> $ - ++ coerce(e) \undocumented{} - coerce : Equation EXPR MINT -> $ - ++ coerce(eq) \undocumented{} - coerce : Equation EXPR MFLOAT -> $ - ++ coerce(eq) \undocumented{} - coerce : Equation EXPR MCMPLX -> $ - ++ coerce(eq) \undocumented{} - coerce : EXPR INT -> $ - ++ coerce(e) \undocumented{} - coerce : EXPR Float -> $ - ++ coerce(e) \undocumented{} - coerce : EXPR CMPX Float -> $ - ++ coerce(e) \undocumented{} - coerce : Equation EXPR INT -> $ - ++ coerce(eq) \undocumented{} - coerce : Equation EXPR Float -> $ - ++ coerce(eq) \undocumented{} - coerce : Equation EXPR CMPX Float -> $ - ++ coerce(eq) \undocumented{} - - Implement ==> add - - Rep := REP - - import SExpression - import TheSymbolTable - import FortranCode - - makeRep(b:List FortranCode):$ == - construct(empty()$SymbolTable,b)$REP - - codeFrom(u:$):List FortranCode == - elt(u::Rep,code)$REP - - outputAsFortran(p:$):Void == - setLabelValue(25000::SingleInteger)$FC - -- Do this first to catch any extra type declarations: - tempName := "FPTEMP"::Symbol - newSubProgram(tempName) - initialiseIntrinsicList()$Lisp - body : List SExpression := [getCode(l)$FortranCode for l in codeFrom(p)] - intrinsics : SExpression := getIntrinsicList()$Lisp - endSubProgram() - fortFormatHead(returnType::OutputForm, name::OutputForm, _ - arguments::OutputForm)$Lisp - printTypes(symbols)$SymbolTable - printTypes((p::Rep).localSymbols)$SymbolTable - printTypes(tempName)$TheSymbolTable - fortFormatIntrinsics(intrinsics)$Lisp - clearTheSymbolTable(tempName) - for expr in body repeat displayLines1(expr)$Lisp - dispStatement(END::OutputForm)$Lisp - - mkString(l:List Symbol):String == - unparse(convert(l::OutputForm)@InputForm)$InputForm - - checkVariables(user:List Symbol,target:List Symbol):Void == - -- We don't worry about whether the user has subscripted the - -- variables or not. - setDifference(map(name$Symbol,user),target) ~= empty()$List(Symbol) => - s1 : String := mkString(user) - s2 : String := mkString(target) - error ["Incompatible variable lists:", s1, s2] - - coerce(u:EXPR MINT) : $ == - checkVariables(variables(u)$EXPR(MINT),arguments) - l : List(FC) := [assign(name,u)$FC,returns()$FC] - makeRep l - - coerce(u:Equation EXPR MINT) : $ == - retractIfCan(lhs u)@Union(Kernel(EXPR MINT),"failed") case "failed" => - error "left hand side is not a kernel" - vList : List Symbol := variables lhs u - #vList ~= #arguments => - error "Incorrect number of arguments" - veList : List EXPR MINT := [w::EXPR(MINT) for w in vList] - aeList : List EXPR MINT := [w::EXPR(MINT) for w in arguments] - eList : List Equation EXPR MINT := - [equation(w,v) for w in veList for v in aeList] - (subst(rhs u,eList))::$ - - coerce(u:EXPR MFLOAT) : $ == - checkVariables(variables(u)$EXPR(MFLOAT),arguments) - l : List(FC) := [assign(name,u)$FC,returns()$FC] - makeRep l - - coerce(u:Equation EXPR MFLOAT) : $ == - retractIfCan(lhs u)@Union(Kernel(EXPR MFLOAT),"failed") case "failed" => - error "left hand side is not a kernel" - vList : List Symbol := variables lhs u - #vList ~= #arguments => - error "Incorrect number of arguments" - veList : List EXPR MFLOAT := [w::EXPR(MFLOAT) for w in vList] - aeList : List EXPR MFLOAT := [w::EXPR(MFLOAT) for w in arguments] - eList : List Equation EXPR MFLOAT := - [equation(w,v) for w in veList for v in aeList] - (subst(rhs u,eList))::$ - - coerce(u:EXPR MCMPLX) : $ == - checkVariables(variables(u)$EXPR(MCMPLX),arguments) - l : List(FC) := [assign(name,u)$FC,returns()$FC] - makeRep l - - coerce(u:Equation EXPR MCMPLX) : $ == - retractIfCan(lhs u)@Union(Kernel EXPR MCMPLX,"failed") case "failed"=> - error "left hand side is not a kernel" - vList : List Symbol := variables lhs u - #vList ~= #arguments => - error "Incorrect number of arguments" - veList : List EXPR MCMPLX := [w::EXPR(MCMPLX) for w in vList] - aeList : List EXPR MCMPLX := [w::EXPR(MCMPLX) for w in arguments] - eList : List Equation EXPR MCMPLX := - [equation(w,v) for w in veList for v in aeList] - (subst(rhs u,eList))::$ - - - coerce(u:REP):$ == - u@Rep - - coerce(u:$):OutputForm == - coerce(name)$Symbol - - coerce(c:List FortranCode):$ == - makeRep c - - coerce(c:FortranCode):$ == - makeRep [c] - - coerce(u:EXPR INT) : $ == - checkVariables(variables(u)$EXPR(INT),arguments) - l : List(FC) := [assign(name,u)$FC,returns()$FC] - makeRep l - - coerce(u:Equation EXPR INT) : $ == - retractIfCan(lhs u)@Union(Kernel(EXPR INT),"failed") case "failed" => - error "left hand side is not a kernel" - vList : List Symbol := variables lhs u - #vList ~= #arguments => - error "Incorrect number of arguments" - veList : List EXPR INT := [w::EXPR(INT) for w in vList] - aeList : List EXPR INT := [w::EXPR(INT) for w in arguments] - eList : List Equation EXPR INT := - [equation(w,v) for w in veList for v in aeList] - (subst(rhs u,eList))::$ - - coerce(u:EXPR Float) : $ == - checkVariables(variables(u)$EXPR(Float),arguments) - l : List(FC) := [assign(name,u)$FC,returns()$FC] - makeRep l - - coerce(u:Equation EXPR Float) : $ == - retractIfCan(lhs u)@Union(Kernel(EXPR Float),"failed") case "failed" => - error "left hand side is not a kernel" - vList : List Symbol := variables lhs u - #vList ~= #arguments => - error "Incorrect number of arguments" - veList : List EXPR Float := [w::EXPR(Float) for w in vList] - aeList : List EXPR Float := [w::EXPR(Float) for w in arguments] - eList : List Equation EXPR Float := - [equation(w,v) for w in veList for v in aeList] - (subst(rhs u,eList))::$ - - coerce(u:EXPR Complex Float) : $ == - checkVariables(variables(u)$EXPR(Complex Float),arguments) - l : List(FC) := [assign(name,u)$FC,returns()$FC] - makeRep l - - coerce(u:Equation EXPR CMPX Float) : $ == - retractIfCan(lhs u)@Union(Kernel EXPR CMPX Float,"failed") case "failed"=> - error "left hand side is not a kernel" - vList : List Symbol := variables lhs u - #vList ~= #arguments => - error "Incorrect number of arguments" - veList : List EXPR CMPX Float := [w::EXPR(CMPX Float) for w in vList] - aeList : List EXPR CMPX Float := [w::EXPR(CMPX Float) for w in arguments] - eList : List Equation EXPR CMPX Float := - [equation(w,v) for w in veList for v in aeList] - (subst(rhs u,eList))::$ - -@ -\section{domain M3D ThreeDimensionalMatrix} -<<domain M3D ThreeDimensionalMatrix>>= -)abbrev domain M3D ThreeDimensionalMatrix -++ Author: William Naylor -++ Date Created: 20 October 1993 -++ Date Last Updated: 20 May 1994 -++ BasicFunctions: -++ Related Constructors: Matrix -++ Also See: PrimitiveArray -++ AMS Classification: -++ Keywords: -++ References: -++ Description: -++ This domain represents three dimensional matrices over a general object type -ThreeDimensionalMatrix(R) : Exports == Implementation where - - R : SetCategory - L ==> List - NNI ==> NonNegativeInteger - A1AGG ==> OneDimensionalArrayAggregate - ARRAY1 ==> OneDimensionalArray - PA ==> PrimitiveArray - INT ==> Integer - PI ==> PositiveInteger - - Exports ==> HomogeneousAggregate(R) with - - if R has Ring then - zeroMatrix : (NNI,NNI,NNI) -> $ - ++ zeroMatrix(i,j,k) create a matrix with all zero terms - identityMatrix : (NNI) -> $ - ++ identityMatrix(n) create an identity matrix - ++ we note that this must be square - plus : ($,$) -> $ - ++ plus(x,y) adds two matrices, term by term - ++ we note that they must be the same size - construct : (L L L R) -> $ - ++ construct(lll) creates a 3-D matrix from a List List List R lll - elt : ($,NNI,NNI,NNI) -> R - ++ elt(x,i,j,k) extract an element from the matrix x - setelt! :($,NNI,NNI,NNI,R) -> R - ++ setelt!(x,i,j,k,s) (or x.i.j.k:=s) sets a specific element of the array to some value of type R - coerce : (PA PA PA R) -> $ - ++ coerce(p) moves from the representation type - ++ (PrimitiveArray PrimitiveArray PrimitiveArray R) - ++ to the domain - coerce : $ -> (PA PA PA R) - ++ coerce(x) moves from the domain to the representation type - matrixConcat3D : (Symbol,$,$) -> $ - ++ matrixConcat3D(s,x,y) concatenates two 3-D matrices along a specified axis - matrixDimensions : $ -> Vector NNI - ++ matrixDimensions(x) returns the dimensions of a matrix - - Implementation ==> (PA PA PA R) add - - import (PA PA PA R) - import (PA PA R) - import (PA R) - import R - - matrix1,matrix2,resultMatrix : $ - - -- function to concatenate two matrices - -- the first argument must be a symbol, which is either i,j or k - -- to specify the direction in which the concatenation is to take place - matrixConcat3D(dir : Symbol,mat1 : $,mat2 : $) : $ == - not ((dir = (i::Symbol)) or (dir = (j::Symbol)) or (dir = (k::Symbol)))_ - => error "the axis of concatenation must be i,j or k" - mat1Dim := matrixDimensions(mat1) - mat2Dim := matrixDimensions(mat2) - iDim1 := mat1Dim.1 - jDim1 := mat1Dim.2 - kDim1 := mat1Dim.3 - iDim2 := mat2Dim.1 - jDim2 := mat2Dim.2 - kDim2 := mat2Dim.3 - matRep1 : (PA PA PA R) := copy(mat1 :: (PA PA PA R))$(PA PA PA R) - matRep2 : (PA PA PA R) := copy(mat2 :: (PA PA PA R))$(PA PA PA R) - retVal : $ - - if (dir = (i::Symbol)) then - -- j,k dimensions must agree - if (not ((jDim1 = jDim2) and (kDim1=kDim2))) - then - error "jxk do not agree" - else - retVal := (coerce(concat(matRep1,matRep2)$(PA PA PA R))$$)@$ - - if (dir = (j::Symbol)) then - -- i,k dimensions must agree - if (not ((iDim1 = iDim2) and (kDim1=kDim2))) - then - error "ixk do not agree" - else - for i in 0..(iDim1-1) repeat - setelt(matRep1,i,(concat(elt(matRep1,i)$(PA PA PA R)_ - ,elt(matRep2,i)$(PA PA PA R))$(PA PA R))@(PA PA R))$(PA PA PA R) - retVal := (coerce(matRep1)$$)@$ - - if (dir = (k::Symbol)) then - temp : (PA PA R) - -- i,j dimensions must agree - if (not ((iDim1 = iDim2) and (jDim1=jDim2))) - then - error "ixj do not agree" - else - for i in 0..(iDim1-1) repeat - temp := copy(elt(matRep1,i)$(PA PA PA R))$(PA PA R) - for j in 0..(jDim1-1) repeat - setelt(temp,j,concat(elt(elt(matRep1,i)$(PA PA PA R)_ - ,j)$(PA PA R),elt(elt(matRep2,i)$(PA PA PA R),j)$(PA PA R)_ - )$(PA R))$(PA PA R) - setelt(matRep1,i,temp)$(PA PA PA R) - retVal := (coerce(matRep1)$$)@$ - - retVal - - matrixDimensions(mat : $) : Vector NNI == - matRep : (PA PA PA R) := mat :: (PA PA PA R) - iDim : NNI := (#matRep)$(PA PA PA R) - matRep2 : PA PA R := elt(matRep,0)$(PA PA PA R) - jDim : NNI := (#matRep2)$(PA PA R) - matRep3 : (PA R) := elt(matRep2,0)$(PA PA R) - kDim : NNI := (#matRep3)$(PA R) - retVal : Vector NNI := new(3,0)$(Vector NNI) - retVal.1 := iDim - retVal.2 := jDim - retVal.3 := kDim - retVal - - coerce(matrixRep : (PA PA PA R)) : $ == matrixRep pretend $ - - coerce(mat : $) : (PA PA PA R) == mat pretend (PA PA PA R) - - -- i,j,k must be with in the bounds of the matrix - elt(mat : $,i : NNI,j : NNI,k : NNI) : R == - matDims := matrixDimensions(mat) - iLength := matDims.1 - jLength := matDims.2 - kLength := matDims.3 - ((i > iLength) or (j > jLength) or (k > kLength) or (i=0) or (j=0) or_ -(k=0)) => error "coordinates must be within the bounds of the matrix" - matrixRep : PA PA PA R := mat :: (PA PA PA R) - elt(elt(elt(matrixRep,i-1)$(PA PA PA R),j-1)$(PA PA R),k-1)$(PA R) - - setelt!(mat : $,i : NNI,j : NNI,k : NNI,val : R)_ - : R == - matDims := matrixDimensions(mat) - iLength := matDims.1 - jLength := matDims.2 - kLength := matDims.3 - ((i > iLength) or (j > jLength) or (k > kLength) or (i=0) or (j=0) or_ -(k=0)) => error "coordinates must be within the bounds of the matrix" - matrixRep : PA PA PA R := mat :: (PA PA PA R) - row2 : PA PA R := copy(elt(matrixRep,i-1)$(PA PA PA R))$(PA PA R) - row1 : PA R := copy(elt(row2,j-1)$(PA PA R))$(PA R) - setelt(row1,k-1,val)$(PA R) - setelt(row2,j-1,row1)$(PA PA R) - setelt(matrixRep,i-1,row2)$(PA PA PA R) - val - - if R has Ring then - zeroMatrix(iLength:NNI,jLength:NNI,kLength:NNI) : $ == - (new(iLength,new(jLength,new(kLength,(0$R))$(PA R))$(PA PA R))$(PA PA PA R)) :: $ - - identityMatrix(iLength:NNI) : $ == - retValueRep : PA PA PA R := zeroMatrix(iLength,iLength,iLength)$$ :: (PA PA PA R) - row1 : PA R - row2 : PA PA R - row1empty : PA R := new(iLength,0$R)$(PA R) - row2empty : PA PA R := new(iLength,copy(row1empty)$(PA R))$(PA PA R) - for count in 0..(iLength-1) repeat - row1 := copy(row1empty)$(PA R) - setelt(row1,count,1$R)$(PA R) - row2 := copy(row2empty)$(PA PA R) - setelt(row2,count,copy(row1)$(PA R))$(PA PA R) - setelt(retValueRep,count,copy(row2)$(PA PA R))$(PA PA PA R) - retValueRep :: $ - - - plus(mat1 : $,mat2 :$) : $ == - - mat1Dims := matrixDimensions(mat1) - iLength1 := mat1Dims.1 - jLength1 := mat1Dims.2 - kLength1 := mat1Dims.3 - - mat2Dims := matrixDimensions(mat2) - iLength2 := mat2Dims.1 - jLength2 := mat2Dims.2 - kLength2 := mat2Dims.3 - - -- check that the dimensions are the same - (not (iLength1 = iLength2) or not (jLength1 = jLength2) or not(kLength1 = kLength2))_ - => error "error the matrices are different sizes" - - sum : R - row1 : (PA R) := new(kLength1,0$R)$(PA R) - row2 : (PA PA R) := new(jLength1,copy(row1)$(PA R))$(PA PA R) - row3 : (PA PA PA R) := new(iLength1,copy(row2)$(PA PA R))$(PA PA PA R) - - for i in 1..iLength1 repeat - for j in 1..jLength1 repeat - for k in 1..kLength1 repeat - sum := (elt(mat1,i,j,k)::R +$R_ - elt(mat2,i,j,k)::R) - setelt(row1,k-1,sum)$(PA R) - setelt(row2,j-1,copy(row1)$(PA R))$(PA PA R) - setelt(row3,i-1,copy(row2)$(PA PA R))$(PA PA PA R) - - resultMatrix := (row3 pretend $) - - resultMatrix - - construct(listRep : L L L R) : $ == - - (#listRep)$(L L L R) = 0 => error "empty list" - (#(listRep.1))$(L L R) = 0 => error "empty list" - (#((listRep.1).1))$(L R) = 0 => error "empty list" - iLength := (#listRep)$(L L L R) - jLength := (#(listRep.1))$(L L R) - kLength := (#((listRep.1).1))$(L R) - - --first check that the matrix is in the correct form - for subList in listRep repeat - not((#subList)$(L L R) = jLength) => error_ - "can not have an irregular shaped matrix" - for subSubList in subList repeat - not((#(subSubList))$(L R) = kLength) => error_ - "can not have an irregular shaped matrix" - - row1 : (PA R) := new(kLength,((listRep.1).1).1)$(PA R) - row2 : (PA PA R) := new(jLength,copy(row1)$(PA R))$(PA PA R) - row3 : (PA PA PA R) := new(iLength,copy(row2)$(PA PA R))$(PA PA PA R) - - for i in 1..iLength repeat - for j in 1..jLength repeat - for k in 1..kLength repeat - - element := elt(elt(elt(listRep,i)$(L L L R),j)$(L L R),k)$(L R) - setelt(row1,k-1,element)$(PA R) - setelt(row2,j-1,copy(row1)$(PA R))$(PA PA R) - setelt(row3,i-1,copy(row2)$(PA PA R))$(PA PA PA R) - - resultMatrix := (row3 pretend $) - - resultMatrix - -@ -\section{domain SFORT SimpleFortranProgram} -<<domain SFORT SimpleFortranProgram>>= -)abbrev domain SFORT SimpleFortranProgram - -++ Author: Mike Dewar -++ Date Created: November 1992 -++ Date Last Updated: -++ Basic Operations: -++ Related Constructors: FortranType, FortranCode, Switch -++ Also See: -++ AMS Classifications: -++ Keywords: -++ References: -++ Description: -++ \axiomType{SimpleFortranProgram(f,type)} provides a simple model of some -++ FORTRAN subprograms, making it possible to coerce objects of various -++ domains into a FORTRAN subprogram called \axiom{f}. -++ These can then be translated into legal FORTRAN code. -SimpleFortranProgram(R,FS): Exports == Implementation where - R : SetCategory - FS : FunctionSpace(R) - - FST ==> FortranScalarType - - Exports ==> FortranProgramCategory with - fortran : (Symbol,FST,FS) -> $ - ++fortran(fname,ftype,body) builds an object of type - ++\axiomType{FortranProgramCategory}. The three arguments specify - ++the name, the type and the body of the program. - - Implementation ==> add - - Rep := Record(name : Symbol, type : FST, body : FS ) - - fortran(fname, ftype, res) == - construct(fname,ftype,res)$Rep - - nameOf(u:$):Symbol == u . name - - typeOf(u:$):Union(FST,"void") == u . type - - bodyOf(u:$):FS == u . body - - argumentsOf(u:$):List Symbol == variables(bodyOf u)$FS - - coerce(u:$):OutputForm == - coerce(nameOf u)$Symbol - - outputAsFortran(u:$):Void == - ftype := (checkType(typeOf(u)::OutputForm)$Lisp)::OutputForm - fname := nameOf(u)::OutputForm - args := argumentsOf(u) - nargs:=args::OutputForm - val := bodyOf(u)::OutputForm - fortFormatHead(ftype,fname,nargs)$Lisp - fortFormatTypes(ftype,args)$Lisp - dispfortexp1$Lisp ["="::OutputForm, fname, val]@List(OutputForm) - dispfortexp1$Lisp "RETURN"::OutputForm - dispfortexp1$Lisp "END"::OutputForm - -@ -\section{domain SWITCH Switch} -<<domain SWITCH Switch>>= -)abbrev domain SWITCH Switch - -++ Author: Mike Dewar -++ Date Created: April 1991 -++ Date Last Updated: March 1994 -++ 30.6.94 Added coercion from Symbol MCD -++ Basic Operations: -++ Related Constructors: FortranProgram, FortranCode, FortranTypes -++ Also See: -++ AMS Classifications: -++ Keywords: -++ References: -++ Description: -++ This domain builds representations of boolean expressions for use with -++ the \axiomType{FortranCode} domain. -Switch():public == private where - EXPR ==> Union(I:Expression Integer,F:Expression Float, - CF:Expression Complex Float,switch:%) - - public == CoercibleTo OutputForm with - coerce : Symbol -> $ - ++ coerce(s) \undocumented{} - LT : (EXPR,EXPR) -> $ - ++ LT(x,y) returns the \axiomType{Switch} expression representing \spad{x<y}. - GT : (EXPR,EXPR) -> $ - ++ GT(x,y) returns the \axiomType{Switch} expression representing \spad{x>y}. - LE : (EXPR,EXPR) -> $ - ++ LE(x,y) returns the \axiomType{Switch} expression representing \spad{x<=y}. - GE : (EXPR,EXPR) -> $ - ++ GE(x,y) returns the \axiomType{Switch} expression representing \spad{x>=y}. - OR : (EXPR,EXPR) -> $ - ++ OR(x,y) returns the \axiomType{Switch} expression representing \spad{x or y}. - EQ : (EXPR,EXPR) -> $ - ++ EQ(x,y) returns the \axiomType{Switch} expression representing \spad{x = y}. - AND : (EXPR,EXPR) -> $ - ++ AND(x,y) returns the \axiomType{Switch} expression representing \spad{x and y}. - NOT : EXPR -> $ - ++ NOT(x) returns the \axiomType{Switch} expression representing \spad{\~~x}. - NOT : $ -> $ - ++ NOT(x) returns the \axiomType{Switch} expression representing \spad{\~~x}. - - private == add - Rep := Record(op:BasicOperator,rands:List EXPR) - - -- Public function definitions - - nullOp : BasicOperator := operator NULL - - coerce(s:%):OutputForm == - rat := (s . op)::OutputForm - ran := [u::OutputForm for u in s.rands] - (s . op) = nullOp => first ran - #ran = 1 => - prefix(rat,ran) - infix(rat,ran) - - coerce(s:Symbol):$ == [nullOp,[[s::Expression(Integer)]$EXPR]$List(EXPR)]$Rep - - NOT(r:EXPR):% == - [operator("~"::Symbol),[r]$List(EXPR)]$Rep - - NOT(r:%):% == - [operator("~"::Symbol),[[r]$EXPR]$List(EXPR)]$Rep - - LT(r1:EXPR,r2:EXPR):% == - [operator("<"::Symbol),[r1,r2]$List(EXPR)]$Rep - - GT(r1:EXPR,r2:EXPR):% == - [operator(">"::Symbol),[r1,r2]$List(EXPR)]$Rep - - LE(r1:EXPR,r2:EXPR):% == - [operator("<="::Symbol),[r1,r2]$List(EXPR)]$Rep - - GE(r1:EXPR,r2:EXPR):% == - [operator(">="::Symbol),[r1,r2]$List(EXPR)]$Rep - - AND(r1:EXPR,r2:EXPR):% == - [operator("and"::Symbol),[r1,r2]$List(EXPR)]$Rep - - OR(r1:EXPR,r2:EXPR):% == - [operator("or"::Symbol),[r1,r2]$List(EXPR)]$Rep - - EQ(r1:EXPR,r2:EXPR):% == - [operator("EQ"::Symbol),[r1,r2]$List(EXPR)]$Rep - -@ -\section{domain FTEM FortranTemplate} -<<domain FTEM FortranTemplate>>= -)abbrev domain FTEM FortranTemplate -++ Author: Mike Dewar -++ Date Created: October 1992 -++ Date Last Updated: -++ Basic Operations: -++ Related Domains: -++ Also See: -++ AMS Classifications: -++ Keywords: -++ Examples: -++ References: -++ Description: Code to manipulate Fortran templates -FortranTemplate() : specification == implementation where - - specification == FileCategory(FileName, String) with - - processTemplate : (FileName, FileName) -> FileName - ++ processTemplate(tp,fn) processes the template tp, writing the - ++ result out to fn. - processTemplate : (FileName) -> FileName - ++ processTemplate(tp) processes the template tp, writing the - ++ result to the current FORTRAN output stream. - fortranLiteralLine : String -> Void - ++ fortranLiteralLine(s) writes s to the current Fortran output stream, - ++ followed by a carriage return - fortranLiteral : String -> Void - ++ fortranLiteral(s) writes s to the current Fortran output stream - fortranCarriageReturn : () -> Void - ++ fortranCarriageReturn() produces a carriage return on the current - ++ Fortran output stream - - implementation == TextFile add - - import TemplateUtilities - import FortranOutputStackPackage - - Rep := TextFile - - fortranLiteralLine(s:String):Void == - %writeLine(s,_$fortranOutputStream$Lisp)$Foreign(Builtin) - - fortranLiteral(s:String):Void == - %writeString(s,_$fortranOutputStream$Lisp)$Foreign(Builtin) - - fortranCarriageReturn():Void == - %writeNewline(_$fortranOutputStream$Lisp)$Foreign(Builtin) - - writePassiveLine!(line:String):Void == - -- We might want to be a bit clever here and look for new SubPrograms etc. - fortranLiteralLine line - - processTemplate(tp:FileName, fn:FileName):FileName == - pushFortranOutputStack(fn) - processTemplate(tp) - popFortranOutputStack() - fn - - getLine(fp:TextFile):String == - line : String := stripCommentsAndBlanks readLine!(fp) - while not empty?(line) and elt(line,maxIndex line) = char "__" repeat - setelt(line,maxIndex line,char " ") - line := concat(line, stripCommentsAndBlanks readLine!(fp))$String - line - - processTemplate(tp:FileName):FileName == - fp : TextFile := open(tp,"input") - active : Boolean := true - line : String - endInput : Boolean := false - while not (endInput or endOfFile? fp) repeat - if active then - line := getLine fp - line = "endInput" => endInput := true - if line = "beginVerbatim" then - active := false - else - not empty? line => interpretString line - else - line := readLine!(fp) - if line = "endVerbatim" then - active := true - else - writePassiveLine! line - close!(fp) - if not active then - error concat(["Missing `endVerbatim' line in ",tp::String])$String - string(_$fortranOutputFile$Lisp)::FileName - -@ -\section{domain FEXPR FortranExpression} -<<domain FEXPR FortranExpression>>= -)abbrev domain FEXPR FortranExpression -++ Author: Mike Dewar -++ Date Created: December 1993 -++ Date Last Updated: 19 May 1994 -++ 7 July 1994 added %power to f77Functions -++ 12 July 1994 added RetractableTo(R) -++ Basic Operations: -++ Related Domains: -++ Also See: FortranMachineTypeCategory, MachineInteger, MachineFloat, -++ MachineComplex -++ AMS Classifications: -++ Keywords: -++ Examples: -++ References: -++ Description: A domain of expressions involving functions which can be -++ translated into standard Fortran-77, with some extra extensions from -++ the NAG Fortran Library. -FortranExpression(basicSymbols,subscriptedSymbols,R): - Exports==Implementation where - basicSymbols : List Symbol - subscriptedSymbols : List Symbol - R : FortranMachineTypeCategory - - EXPR ==> Expression - EXF2 ==> ExpressionFunctions2 - S ==> Symbol - L ==> List - BO ==> BasicOperator - FRAC ==> Fraction - POLY ==> Polynomial - - Exports ==> Join(ExpressionSpace,Algebra(R),RetractableTo(R), - PartialDifferentialRing(Symbol)) with - retract : EXPR R -> $ - ++ retract(e) takes e and transforms it into a - ++ FortranExpression checking that it contains no non-Fortran - ++ functions, and that it only contains the given basic symbols - ++ and subscripted symbols which correspond to scalar and array - ++ parameters respectively. - retractIfCan : EXPR R -> Union($,"failed") - ++ retractIfCan(e) takes e and tries to transform it into a - ++ FortranExpression checking that it contains no non-Fortran - ++ functions, and that it only contains the given basic symbols - ++ and subscripted symbols which correspond to scalar and array - ++ parameters respectively. - retract : S -> $ - ++ retract(e) takes e and transforms it into a FortranExpression - ++ checking that it is one of the given basic symbols - ++ or subscripted symbols which correspond to scalar and array - ++ parameters respectively. - retractIfCan : S -> Union($,"failed") - ++ retractIfCan(e) takes e and tries to transform it into a FortranExpression - ++ checking that it is one of the given basic symbols - ++ or subscripted symbols which correspond to scalar and array - ++ parameters respectively. - coerce : $ -> EXPR R - ++ coerce(x) \undocumented{} - if (R has RetractableTo(Integer)) then - retract : EXPR Integer -> $ - ++ retract(e) takes e and transforms it into a - ++ FortranExpression checking that it contains no non-Fortran - ++ functions, and that it only contains the given basic symbols - ++ and subscripted symbols which correspond to scalar and array - ++ parameters respectively. - retractIfCan : EXPR Integer -> Union($,"failed") - ++ retractIfCan(e) takes e and tries to transform it into a - ++ FortranExpression checking that it contains no non-Fortran - ++ functions, and that it only contains the given basic symbols - ++ and subscripted symbols which correspond to scalar and array - ++ parameters respectively. - retract : FRAC POLY Integer -> $ - ++ retract(e) takes e and transforms it into a - ++ FortranExpression checking that it contains no non-Fortran - ++ functions, and that it only contains the given basic symbols - ++ and subscripted symbols which correspond to scalar and array - ++ parameters respectively. - retractIfCan : FRAC POLY Integer -> Union($,"failed") - ++ retractIfCan(e) takes e and tries to transform it into a - ++ FortranExpression checking that it contains no non-Fortran - ++ functions, and that it only contains the given basic symbols - ++ and subscripted symbols which correspond to scalar and array - ++ parameters respectively. - retract : POLY Integer -> $ - ++ retract(e) takes e and transforms it into a - ++ FortranExpression checking that it contains no non-Fortran - ++ functions, and that it only contains the given basic symbols - ++ and subscripted symbols which correspond to scalar and array - ++ parameters respectively. - retractIfCan : POLY Integer -> Union($,"failed") - ++ retractIfCan(e) takes e and tries to transform it into a - ++ FortranExpression checking that it contains no non-Fortran - ++ functions, and that it only contains the given basic symbols - ++ and subscripted symbols which correspond to scalar and array - ++ parameters respectively. - if (R has RetractableTo(Float)) then - retract : EXPR Float -> $ - ++ retract(e) takes e and transforms it into a - ++ FortranExpression checking that it contains no non-Fortran - ++ functions, and that it only contains the given basic symbols - ++ and subscripted symbols which correspond to scalar and array - ++ parameters respectively. - retractIfCan : EXPR Float -> Union($,"failed") - ++ retractIfCan(e) takes e and tries to transform it into a - ++ FortranExpression checking that it contains no non-Fortran - ++ functions, and that it only contains the given basic symbols - ++ and subscripted symbols which correspond to scalar and array - ++ parameters respectively. - retract : FRAC POLY Float -> $ - ++ retract(e) takes e and transforms it into a - ++ FortranExpression checking that it contains no non-Fortran - ++ functions, and that it only contains the given basic symbols - ++ and subscripted symbols which correspond to scalar and array - ++ parameters respectively. - retractIfCan : FRAC POLY Float -> Union($,"failed") - ++ retractIfCan(e) takes e and tries to transform it into a - ++ FortranExpression checking that it contains no non-Fortran - ++ functions, and that it only contains the given basic symbols - ++ and subscripted symbols which correspond to scalar and array - ++ parameters respectively. - retract : POLY Float -> $ - ++ retract(e) takes e and transforms it into a - ++ FortranExpression checking that it contains no non-Fortran - ++ functions, and that it only contains the given basic symbols - ++ and subscripted symbols which correspond to scalar and array - ++ parameters respectively. - retractIfCan : POLY Float -> Union($,"failed") - ++ retractIfCan(e) takes e and tries to transform it into a - ++ FortranExpression checking that it contains no non-Fortran - ++ functions, and that it only contains the given basic symbols - ++ and subscripted symbols which correspond to scalar and array - ++ parameters respectively. - abs : $ -> $ - ++ abs(x) represents the Fortran intrinsic function ABS - sqrt : $ -> $ - ++ sqrt(x) represents the Fortran intrinsic function SQRT - exp : $ -> $ - ++ exp(x) represents the Fortran intrinsic function EXP - log : $ -> $ - ++ log(x) represents the Fortran intrinsic function LOG - log10 : $ -> $ - ++ log10(x) represents the Fortran intrinsic function LOG10 - sin : $ -> $ - ++ sin(x) represents the Fortran intrinsic function SIN - cos : $ -> $ - ++ cos(x) represents the Fortran intrinsic function COS - tan : $ -> $ - ++ tan(x) represents the Fortran intrinsic function TAN - asin : $ -> $ - ++ asin(x) represents the Fortran intrinsic function ASIN - acos : $ -> $ - ++ acos(x) represents the Fortran intrinsic function ACOS - atan : $ -> $ - ++ atan(x) represents the Fortran intrinsic function ATAN - sinh : $ -> $ - ++ sinh(x) represents the Fortran intrinsic function SINH - cosh : $ -> $ - ++ cosh(x) represents the Fortran intrinsic function COSH - tanh : $ -> $ - ++ tanh(x) represents the Fortran intrinsic function TANH - pi : () -> $ - ++ pi(x) represents the NAG Library function X01AAF which returns - ++ an approximation to the value of pi - variables : $ -> L S - ++ variables(e) return a list of all the variables in \spad{e}. - useNagFunctions : () -> Boolean - ++ useNagFunctions() indicates whether NAG functions are being used - ++ for mathematical and machine constants. - useNagFunctions : Boolean -> Boolean - ++ useNagFunctions(v) sets the flag which controls whether NAG functions - ++ are being used for mathematical and machine constants. The previous - ++ value is returned. - - Implementation ==> EXPR R add - - -- The standard FORTRAN-77 intrinsic functions, plus nthRoot which - -- can be translated into an arithmetic expression: - f77Functions : L S := [abs,sqrt,exp,log,log10,sin,cos,tan,asin,acos, - atan,sinh,cosh,tanh,nthRoot,%power] - nagFunctions : L S := [pi, X01AAF] - useNagFunctionsFlag : Boolean := true - - -- Local functions to check for "unassigned" symbols etc. - - mkEqn(s1:Symbol,s2:Symbol):Equation EXPR(R) == - equation(s2::EXPR(R),script(s1,scripts(s2))::EXPR(R)) - - fixUpSymbols(u:EXPR R):Union(EXPR R,"failed") == - -- If its a univariate expression then just fix it up: - syms : L S := variables(u) - one?(#basicSymbols) and zero?(#subscriptedSymbols) => - not one?(#syms) => "failed" - subst(u,equation(first(syms)::EXPR(R),first(basicSymbols)::EXPR(R))) - -- We have one variable but it is subscripted: - zero?(#basicSymbols) and one?(#subscriptedSymbols) => - -- Make sure we don't have both X and X_i - for s in syms repeat - not scripted?(s) => return "failed" - not one?(#(syms:=removeDuplicates! [name(s) for s in syms]))=> "failed" - sym : Symbol := first subscriptedSymbols - subst(u,[mkEqn(sym,i) for i in variables(u)]) - "failed" - - extraSymbols?(u:EXPR R):Boolean == - syms : L S := [name(v) for v in variables(u)] - extras : L S := setDifference(syms, - setUnion(basicSymbols,subscriptedSymbols)) - not empty? extras - - checkSymbols(u:EXPR R):EXPR(R) == - syms : L S := [name(v) for v in variables(u)] - extras : L S := setDifference(syms, - setUnion(basicSymbols,subscriptedSymbols)) - not empty? extras => - m := fixUpSymbols(u) - m case EXPR(R) => m::EXPR(R) - error ["Extra symbols detected:",[string(v) for v in extras]$L(String)] - u - - notSymbol?(v:BO):Boolean == - s : S := name v - member?(s,basicSymbols) or - scripted?(s) and member?(name s,subscriptedSymbols) => false - true - - extraOperators?(u:EXPR R):Boolean == - ops : L S := [name v for v in operators(u) | notSymbol?(v)] - if useNagFunctionsFlag then - fortranFunctions : L S := append(f77Functions,nagFunctions) - else - fortranFunctions : L S := f77Functions - extras : L S := setDifference(ops,fortranFunctions) - not empty? extras - - checkOperators(u:EXPR R):Void == - ops : L S := [name v for v in operators(u) | notSymbol?(v)] - if useNagFunctionsFlag then - fortranFunctions : L S := append(f77Functions,nagFunctions) - else - fortranFunctions : L S := f77Functions - extras : L S := setDifference(ops,fortranFunctions) - not empty? extras => - error ["Non FORTRAN-77 functions detected:",[string(v) for v in extras]] - - checkForNagOperators(u:EXPR R):$ == - useNagFunctionsFlag => - import Pi - import PiCoercions(R) - piOp : BasicOperator := operator X01AAF - piSub : Equation EXPR R := - equation(pi()$Pi::EXPR(R),kernel(piOp,0::EXPR(R))$EXPR(R)) - per subst(u,piSub) - per u - - -- Conditional retractions: - - if R has RetractableTo(Integer) then - - retractIfCan(u:POLY Integer):Union($,"failed") == - retractIfCan((u::EXPR Integer)$EXPR(Integer))@Union($,"failed") - - retract(u:POLY Integer):$ == - retract((u::EXPR Integer)$EXPR(Integer))@$ - - retractIfCan(u:FRAC POLY Integer):Union($,"failed") == - retractIfCan((u::EXPR Integer)$EXPR(Integer))@Union($,"failed") - - retract(u:FRAC POLY Integer):$ == - retract((u::EXPR Integer)$EXPR(Integer))@$ - - int2R(u:Integer):R == u::R - - retractIfCan(u:EXPR Integer):Union($,"failed") == - retractIfCan(map(int2R,u)$EXF2(Integer,R))@Union($,"failed") - - retract(u:EXPR Integer):$ == - retract(map(int2R,u)$EXF2(Integer,R))@$ - - if R has RetractableTo(Float) then - - retractIfCan(u:POLY Float):Union($,"failed") == - retractIfCan((u::EXPR Float)$EXPR(Float))@Union($,"failed") - - retract(u:POLY Float):$ == - retract((u::EXPR Float)$EXPR(Float))@$ - - retractIfCan(u:FRAC POLY Float):Union($,"failed") == - retractIfCan((u::EXPR Float)$EXPR(Float))@Union($,"failed") - - retract(u:FRAC POLY Float):$ == - retract((u::EXPR Float)$EXPR(Float))@$ - - float2R(u:Float):R == (u::R) - - retractIfCan(u:EXPR Float):Union($,"failed") == - retractIfCan(map(float2R,u)$EXF2(Float,R))@Union($,"failed") - - retract(u:EXPR Float):$ == - retract(map(float2R,u)$EXF2(Float,R))@$ - - -- Exported Functions - - useNagFunctions():Boolean == useNagFunctionsFlag - useNagFunctions(v:Boolean):Boolean == - old := useNagFunctionsFlag - useNagFunctionsFlag := v - old - - log10(x:$):$ == - kernel(operator log10,x) - - pi():$ == kernel(operator X01AAF,0) - - coerce(u:$):EXPR R == rep u - - retractIfCan(u:EXPR R):Union($,"failed") == - if (extraSymbols? u) then - m := fixUpSymbols(u) - m case "failed" => return "failed" - u := m::EXPR(R) - extraOperators? u => "failed" - checkForNagOperators(u) - - retract(u:EXPR R):$ == - u:=checkSymbols(u) - checkOperators(u) - checkForNagOperators(u) - - retractIfCan(u:Symbol):Union($,"failed") == - not (member?(u,basicSymbols) or - scripted?(u) and member?(name u,subscriptedSymbols)) => "failed" - per (u::EXPR(R)) - - retract(u:Symbol):$ == - res : Union($,"failed") := retractIfCan(u) - res case "failed" => error ["Illegal Symbol Detected:",u::String] - res - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<domain RESULT Result>> -<<domain FC FortranCode>> -<<domain FORTRAN FortranProgram>> -<<domain M3D ThreeDimensionalMatrix>> -<<domain SFORT SimpleFortranProgram>> -<<domain SWITCH Switch>> -<<domain FTEM FortranTemplate>> -<<domain FEXPR FortranExpression>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/functions.spad.pamphlet b/src/algebra/functions.spad.pamphlet deleted file mode 100644 index 63b0e5ea..00000000 --- a/src/algebra/functions.spad.pamphlet +++ /dev/null @@ -1,120 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra functions.spad} -\author{Brian Dupee} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{domain BFUNCT BasicFunctions} -<<domain BFUNCT BasicFunctions>>= -)abbrev domain BFUNCT BasicFunctions -++ Author: Brian Dupee -++ Date Created: August 1994 -++ Date Last Updated: April 1996 -++ Basic Operations: bfKeys, bfEntry -++ Description: A Domain which implements a table containing details of -++ points at which particular functions have evaluation problems. -DF ==> DoubleFloat -SDF ==> Stream DoubleFloat -RS ==> Record(zeros: SDF, ones: SDF, singularities: SDF) - -BasicFunctions(): E == I where - E ==> SetCategory with - bfKeys:() -> List Symbol - ++ bfKeys() returns the names of each function in the - ++ \axiomType{BasicFunctions} table - bfEntry:Symbol -> RS - ++ bfEntry(k) returns the entry in the \axiomType{BasicFunctions} table - ++ corresponding to \spad{k} - finiteAggregate - - I ==> add - - Rep := Table(Symbol,RS) - import Rep, SDF - - f(x:DF):DF == - positive?(x) => -x - -x+1 - - bf():$ == - import RS - dpi := pi()$DF - ndpi:SDF := map(#1*dpi,(z := generate(f,0))) -- [n pi for n in Z] - n1dpi:SDF := map(-(2*(#1)-1)*dpi/2,z) -- [(n+1) pi /2] - n2dpi:SDF := map(2*#1*dpi,z) -- [2 n pi for n in Z] - n3dpi:SDF := map(-(4*(#1)-1)*dpi/4,z) - n4dpi:SDF := map(-(4*(#1)-1)*dpi/2,z) - sinEntry:RS := [ndpi, n4dpi, empty()$SDF] - cosEntry:RS := [n1dpi, n2dpi, esdf := empty()$SDF] - tanEntry:RS := [ndpi, n3dpi, n1dpi] - asinEntry:RS := [construct([0$DF])$SDF, - construct([float(8414709848078965,-16,10)$DF]), esdf] - acosEntry:RS := [construct([1$DF])$SDF, - construct([float(54030230586813977,-17,10)$DF]), esdf] - atanEntry:RS := [construct([0$DF])$SDF, - construct([float(15574077246549023,-16,10)$DF]), esdf] - secEntry:RS := [esdf, n2dpi, n1dpi] - cscEntry:RS := [esdf, n4dpi, ndpi] - cotEntry:RS := [n1dpi, n3dpi, ndpi] - logEntry:RS := [construct([1$DF])$SDF,esdf, construct([0$DF])$SDF] - entryList:List(Record(key:Symbol,entry:RS)) := - [['sin, sinEntry], ['cos, cosEntry], - ['tan, tanEntry], ['sec, secEntry], - ['csc, cscEntry], ['cot, cotEntry], - ['asin, asinEntry], ['acos, acosEntry], - ['atan, atanEntry], ['log, logEntry]] - construct(entryList)$Rep - - bfKeys():List Symbol == keys(bf())$Rep - - bfEntry(k:Symbol):RS == qelt(bf(),k)$Rep - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<domain BFUNCT BasicFunctions>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/routines.spad.pamphlet b/src/algebra/routines.spad.pamphlet deleted file mode 100644 index 5b67f754..00000000 --- a/src/algebra/routines.spad.pamphlet +++ /dev/null @@ -1,647 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra routines.spad} -\author{Brian Dupee} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{domain ROUTINE RoutinesTable} -<<domain ROUTINE RoutinesTable>>= -)abbrev domain ROUTINE RoutinesTable -++ Author: Brian Dupee -++ Date Created: August 1994 -++ Date Last Updated: December 1997 -++ Basic Operations: routines, getMeasure -++ Related Constructors: TableAggregate(Symbol,Any) -++ Description: -++ \axiomType{RoutinesTable} implements a database and associated tuning -++ mechanisms for a set of known NAG routines -RoutinesTable(): E == I where - F ==> Float - ST ==> String - LST ==> List String - Rec ==> Record(key:Symbol,entry:Any) - RList ==> List(Record(key:Symbol,entry:Any)) - IFL ==> List(Record(ifail:Integer,instruction:ST)) - Entry ==> Record(chapter:ST, type:ST, domainName: ST, - defaultMin:F, measure:F, failList:IFL, explList:LST) - - E ==> TableAggregate(Symbol,Any) with - - concat:(%,%) -> % - ++ concat(x,y) merges two tables x and y - routines:() -> % - ++ routines() initialises a database of known NAG routines - selectIntegrationRoutines:% -> % - ++ selectIntegrationRoutines(R) chooses only those routines from - ++ the database which are for integration - selectOptimizationRoutines:% -> % - ++ selectOptimizationRoutines(R) chooses only those routines from - ++ the database which are for integration - selectPDERoutines:% -> % - ++ selectPDERoutines(R) chooses only those routines from the - ++ database which are for the solution of PDE's - selectODEIVPRoutines:% -> % - ++ selectODEIVPRoutines(R) chooses only those routines from the - ++ database which are for the solution of ODE's - selectFiniteRoutines:% -> % - ++ selectFiniteRoutines(R) chooses only those routines from the - ++ database which are designed for use with finite expressions - selectSumOfSquaresRoutines:% -> % - ++ selectSumOfSquaresRoutines(R) chooses only those routines from the - ++ database which are designed for use with sums of squares - selectNonFiniteRoutines:% -> % - ++ selectNonFiniteRoutines(R) chooses only those routines from the - ++ database which are designed for use with non-finite expressions. - selectMultiDimensionalRoutines:% -> % - ++ selectMultiDimensionalRoutines(R) chooses only those routines from - ++ the database which are designed for use with multi-dimensional - ++ expressions - changeThreshhold:(%,Symbol,F) -> % - ++ changeThreshhold(R,s,newValue) changes the value below which, - ++ given a NAG routine generating a higher measure, the routines will - ++ make no attempt to generate a measure. - changeMeasure:(%,Symbol,F) -> % - ++ changeMeasure(R,s,newValue) changes the maximum value for a - ++ measure of the given NAG routine. - getMeasure:(%,Symbol) -> F - ++ getMeasure(R,s) gets the current value of the maximum measure for - ++ the given NAG routine. - getExplanations:(%,ST) -> LST - ++ getExplanations(R,s) gets the explanations of the output parameters for - ++ the given NAG routine. - deleteRoutine!:(%,Symbol) -> % - ++ deleteRoutine!(R,s) destructively deletes the given routine from - ++ the current database of NAG routines - showTheRoutinesTable:() -> % - ++ showTheRoutinesTable() returns the current table of NAG routines. - recoverAfterFail:(%,ST,Integer) -> Union(ST,"failed") - ++ recoverAfterFail(routs,routineName,ifailValue) acts on the - ++ instructions given by the ifail list - finiteAggregate - - I ==> Result add - - Rep := Result - import Rep - - theRoutinesTable:% := routines() - - showTheRoutinesTable():% == theRoutinesTable - - integrationRoutine?(r:Record(key:Symbol,entry:Any)):Boolean == - (a := retractIfCan(r.entry)$AnyFunctions1(Entry)) case Entry => - elt(a,chapter) = "Integration" - false - - selectIntegrationRoutines(R:%):% == select(integrationRoutine?,R) - - optimizationRoutine?(r:Record(key:Symbol,entry:Any)):Boolean == - (a := retractIfCan(r.entry)$AnyFunctions1(Entry)) case Entry => - elt(a,chapter) = "Optimization" - false - - selectOptimizationRoutines(R:%):% == select(optimizationRoutine?,R) - - PDERoutine?(r:Record(key:Symbol,entry:Any)):Boolean == - (a := retractIfCan(r.entry)$AnyFunctions1(Entry)) case Entry => - elt(a,chapter) = "PDE" - false - - selectPDERoutines(R:%):% == select(PDERoutine?,R) - - ODERoutine?(r:Record(key:Symbol,entry:Any)):Boolean == - (a := retractIfCan(r.entry)$AnyFunctions1(Entry)) case Entry => - elt(a,chapter) = "ODE" - false - - selectODEIVPRoutines(R:%):% == select(ODERoutine?,R) - - sumOfSquaresRoutine?(r:Record(key:Symbol,entry:Any)):Boolean == - (a := retractIfCan(r.entry)$AnyFunctions1(Entry)) case Entry => - elt(a,type) = "SS" - false - - selectSumOfSquaresRoutines(R:%):% == select(sumOfSquaresRoutine?,R) - - finiteRoutine?(r:Record(key:Symbol,entry:Any)):Boolean == - (a := retractIfCan(r.entry)$AnyFunctions1(Entry)) case Entry => - elt(a,type) = "One-dimensional finite" - false - - selectFiniteRoutines(R:%):% == select(finiteRoutine?,R) - - infiniteRoutine?(r:Record(key:Symbol,entry:Any)):Boolean == - (a := retractIfCan(r.entry)$AnyFunctions1(Entry)) case Entry => - elt(a,type) = "One-dimensional infinite" - false - - semiInfiniteRoutine?(r:Record(key:Symbol,entry:Any)):Boolean == - (a := retractIfCan(r.entry)$AnyFunctions1(Entry)) case Entry => - elt(a,type) = "One-dimensional semi-infinite" - false - - nonFiniteRoutine?(r:Record(key:Symbol,entry:Any)):Boolean == - (semiInfiniteRoutine?(r) or infiniteRoutine?(r)) - - selectNonFiniteRoutines(R:%):% == select(nonFiniteRoutine?,R) - - multiDimensionalRoutine?(r:Record(key:Symbol,entry:Any)):Boolean == - (a := retractIfCan(r.entry)$AnyFunctions1(Entry)) case Entry => - elt(a,type) = "Multi-dimensional" - false - - selectMultiDimensionalRoutines(R:%):% == select(multiDimensionalRoutine?,R) - - concat(a:%,b:%):% == - membersOfa := (members(a)@List(Record(key:Symbol,entry:Any))) - membersOfb := (members(b)@List(Record(key:Symbol,entry:Any))) - allMembers:= - concat(membersOfa,membersOfb)$List(Record(key:Symbol,entry:Any)) - construct(allMembers) - - changeThreshhold(R:%,s:Symbol,newValue:F):% == - (a := search(s,R)) case Any => - e := retract(a)$AnyFunctions1(Entry) - e.defaultMin := newValue - a := coerce(e)$AnyFunctions1(Entry) - insert!([s,a],R) - error("changeThreshhold","Cannot find routine of that name")$ErrorFunctions - - changeMeasure(R:%,s:Symbol,newValue:F):% == - (a := search(s,R)) case Any => - e := retract(a)$AnyFunctions1(Entry) - e.measure := newValue - a := coerce(e)$AnyFunctions1(Entry) - insert!([s,a],R) - error("changeMeasure","Cannot find routine of that name")$ErrorFunctions - - getMeasure(R:%,s:Symbol):F == - (a := search(s,R)) case Any => - e := retract(a)$AnyFunctions1(Entry) - e.measure - error("getMeasure","Cannot find routine of that name")$ErrorFunctions - - deleteRoutine!(R:%,s:Symbol):% == - (a := search(s,R)) case Any => - e:Record(key:Symbol,entry:Any) := [s,a] - remove!(e,R) - error("deleteRoutine!","Cannot find routine of that name")$ErrorFunctions - - routines():% == - f := "One-dimensional finite" - s := "One-dimensional semi-infinite" - i := "One-dimensional infinite" - m := "Multi-dimensional" - int := "Integration" - ode := "ODE" - pde := "PDE" - opt := "Optimization" - d01ajfExplList:LST := ["result: Calculated value of the integral", - "iw: iw(1) contains the actual number of sub-intervals used, the rest is workspace", - "w: contains the end-points of the sub-intervals used along with the integral contributions and error estimates over the sub-intervals", - "abserr: the estimate of the absolute error of the result", - "ifail: the error warning parameter", - "method: details of the method used and measures of all methods", - "attributes: a list of the attributes pertaining to the integrand which had some bearing on the choice of method"] - d01asfExplList:LST := ["result: Calculated value of the integral", - "iw: iw(1) contains the actual number of sub-intervals used, the rest is workspace", - "lst: contains the actual number of sub-intervals used", - "erlst: contains the error estimates over the sub-intervals", - "rslst: contains the integral contributions of the sub-intervals", - "ierlst: contains the error flags corresponding to the values in rslst", - "abserr: the estimate of the absolute error of the result", - "ifail: the error warning parameter", - "method: details of the method used and measures of all methods", - "attributes: a list of the attributes pertaining to the integrand which had some bearing on the choice of method"] - d01fcfExplList:LST := ["result: Calculated value of the integral", - "acc: the estimate of the relative error of the result", - "minpts: the number of integrand evaluations", - "ifail: the error warning parameter", - "method: details of the method used and measures of all methods", - "attributes: a list of the attributes pertaining to the integrand which had some bearing on the choice of method"] - d01transExplList:LST := ["result: Calculated value of the integral", - "abserr: the estimate of the absolute error of the result", - "method: details of the method and transformation used and measures of all methods", - "d01***AnnaTypeAnswer: the individual results from the routines", - "attributes: a list of the attributes pertaining to the integrand which had some bearing on the choice of method"] - d02bhfExplList:LST := ["x: the value of x at the end of the calculation", - "y: the computed values of Y\[1\]..Y\[n\] at x", - "tol: the (possible) estimate of the error; this is not guarunteed", - "ifail: the error warning parameter", - "method: details of the method used and measures of all methods", - "intensityFunctions: a list of the attributes and values pertaining to the ODE which had some bearing on the choice of method"] - d02bbfExplList:LST := concat(["result: the computed values of the solution at the required points"],d02bhfExplList)$LST - d03eefExplList:LST := ["See the NAG On-line Documentation for D03EEF/D03EDF", - "u: the computed solution u[i][j] is returned in u(i+(j-1)*ngx),for i = 1,2,..ngx; j = 1,2,..ngy"] - e04fdfExplList:LST := ["x: the position of the minimum", - "objf: the value of the objective function at x", - "ifail: the error warning parameter", - "method: details of the method used and measures of all methods", - "attributes: a list of the attributes pertaining to the function or functions which had some bearing on the choice of method"] - e04dgfExplList:LST := concat(e04fdfExplList, - ["objgrd: the values of the derivatives at x", - "iter: the number of iterations performed"])$LST - e04jafExplList:LST := concat(e04fdfExplList, - ["bu: the values of the upper bounds used", - "bl: the values of the lower bounds used"])$LST - e04ucfExplList:LST := concat(e04dgfExplList, - ["istate: the status of every constraint at x", - "clamda: the QP multipliers for the last QP sub-problem", - "For other output parameters see the NAG On-line Documentation for E04UCF"])$LST - e04mbfExplList:LST := concat(e04fdfExplList, - ["istate: the status of every constraint at x", - "clamda: the Lagrange multipliers for each constraint"])$LST - d01ajfIfail:IFL := [[1,"incrFunEvals"], [2,"delete"], [3,"delete"], [4,"delete"], - [5,"delete"], [6,"delete"]] - d01akfIfail:IFL := [[1,"incrFunEvals"], [2,"delete"], [3,"delete"], [4,"delete"]] - d01alfIfail:IFL := [[1,"incrFunEvals"], [2,"delete"], [3,"delete"], [4,"delete"], - [5,"delete"], [6,"delete"], [7,"delete"]] - d01amfIfail:IFL := [[1,"incrFunEvals"], [2,"delete"], [3,"delete"], [4,"delete"], - [5,"delete"], [6,"delete"]] - d01anfIfail:IFL := [[1,"incrFunEvals"], [2,"delete"], [3,"delete"], [4,"delete"], - [5,"delete"], [6,"delete"], [7,"delete"]] - d01apfIfail:IFL := - [[1,"incrFunEvals"], [2,"delete"], [3,"delete"], [4,"delete"], [5,"delete"]] - d01aqfIfail:IFL := - [[1,"incrFunEvals"], [2,"delete"], [3,"delete"], [4,"delete"], [5,"delete"]] - d01asfIfail:IFL := [[1,"incrFunEvals"], [2,"delete"], [3,"delete"], [4,"delete"], - [5,"delete"], [6,"delete"], [7,"delete"], [8,"delete"], [9,"delete"]] - d01fcfIfail:IFL := [[1,"delete"], [2,"incrFunEvals"], [3,"delete"]] - d01gbfIfail:IFL := [[1,"delete"], [2,"incrFunEvals"]] - d02bbfIfail:IFL := - [[1,"delete"], [2,"decrease tolerance"], [3,"increase tolerance"], - [4,"delete"], [5,"delete"], [6,"delete"], [7,"delete"]] - d02bhfIfail:IFL := - [[1,"delete"], [2,"decrease tolerance"], [3,"increase tolerance"], - [4,"no action"], [5,"delete"], [6,"delete"], [7,"delete"]] - d02cjfIfail:IFL := - [[1,"delete"], [2,"decrease tolerance"], [3,"increase tolerance"], - [4,"delete"], [5,"delete"], [6,"no action"], [7,"delete"]] - d02ejfIfail:IFL := - [[1,"delete"], [2,"decrease tolerance"], [3,"increase tolerance"], - [4,"delete"], [5,"delete"], [6,"no action"], [7,"delete"], [8,"delete"], - [9,"delete"]] - e04dgfIfail:IFL := [[3,"delete"], [4,"no action"], [6,"delete"], - [7,"delete"], [8,"delete"], [9,"delete"]] - e04fdfIfail:IFL := - [[1,"delete"], [2,"delete"], [3,"delete"], [4,"delete"], - [5,"no action"], [6,"no action"], [7,"delete"], [8,"delete"]] - e04gcfIfail:IFL := [[1,"delete"], [2,"delete"], [3,"delete"], [4,"delete"], - [5,"no action"], [6,"no action"], [7,"delete"], [8,"delete"], [9,"delete"]] - e04jafIfail:IFL := [[1,"delete"], [2,"delete"], [3,"delete"], [4,"delete"], - [5,"no action"], [6,"no action"], [7,"delete"], [8,"delete"], [9,"delete"]] - e04mbfIfail:IFL := - [[1,"delete"], [2,"delete"], [3,"delete"], [4,"delete"], [5,"delete"]] - e04nafIfail:IFL := - [[1,"delete"], [2,"delete"], [3,"delete"], [4,"delete"], [5,"delete"], - [6,"delete"], [7,"delete"], [8,"delete"], [9,"delete"]] - e04ucfIfail:IFL := [[1,"delete"], [2,"delete"], [3,"delete"], [4,"delete"], - [5,"delete"], [6,"delete"], [7,"delete"], [8,"delete"], [9,"delete"]] - d01ajfEntry:Entry := [int, f, "d01ajfAnnaType",0.4,0.4,d01ajfIfail,d01ajfExplList] - d01akfEntry:Entry := [int, f, "d01akfAnnaType",0.6,1.0,d01akfIfail,d01ajfExplList] - d01alfEntry:Entry := [int, f, "d01alfAnnaType",0.6,0.6,d01alfIfail,d01ajfExplList] - d01amfEntry:Entry := [int, i, "d01amfAnnaType",0.5,0.5,d01amfIfail,d01ajfExplList] - d01anfEntry:Entry := [int, f, "d01anfAnnaType",0.6,0.9,d01anfIfail,d01ajfExplList] - d01apfEntry:Entry := [int, f, "d01apfAnnaType",0.7,0.7,d01apfIfail,d01ajfExplList] - d01aqfEntry:Entry := [int, f, "d01aqfAnnaType",0.6,0.7,d01aqfIfail,d01ajfExplList] - d01asfEntry:Entry := [int, s, "d01asfAnnaType",0.6,0.9,d01asfIfail,d01asfExplList] - d01transEntry:Entry:=[int, i, "d01TransformFunctionType",0.6,0.9,[],d01transExplList] - d01gbfEntry:Entry := [int, m, "d01gbfAnnaType",0.6,0.6,d01gbfIfail,d01fcfExplList] - d01fcfEntry:Entry := [int, m, "d01fcfAnnaType",0.5,0.5,d01fcfIfail,d01fcfExplList] - d02bbfEntry:Entry := [ode, "IVP", "d02bbfAnnaType",0.7,0.5,d02bbfIfail,d02bbfExplList] - d02bhfEntry:Entry := [ode, "IVP", "d02bhfAnnaType",0.7,0.49,d02bhfIfail,d02bhfExplList] - d02cjfEntry:Entry := [ode, "IVP", "d02cjfAnnaType",0.7,0.5,d02cjfIfail,d02bbfExplList] - d02ejfEntry:Entry := [ode, "IVP", "d02ejfAnnaType",0.7,0.5,d02ejfIfail,d02bbfExplList] - d03eefEntry:Entry := [pde, "2", "d03eefAnnaType",0.6,0.5,[],d03eefExplList] - --d03fafEntry:Entry := [pde, "3", "d03fafAnnaType",0.6,0.5,[],[]] - e04dgfEntry:Entry := [opt, "CGA", "e04dgfAnnaType",0.4,0.4,e04dgfIfail,e04dgfExplList] - e04fdfEntry:Entry := [opt, "SS", "e04fdfAnnaType",0.7,0.7,e04fdfIfail,e04fdfExplList] - e04gcfEntry:Entry := [opt, "SS", "e04gcfAnnaType",0.8,0.8,e04gcfIfail,e04fdfExplList] - e04jafEntry:Entry := [opt, "QNA", "e04jafAnnaType",0.5,0.5,e04jafIfail,e04jafExplList] - e04mbfEntry:Entry := [opt, "LP", "e04mbfAnnaType",0.7,0.7,e04mbfIfail,e04mbfExplList] - e04nafEntry:Entry := [opt, "QP", "e04nafAnnaType",0.7,0.7,e04nafIfail,e04mbfExplList] - e04ucfEntry:Entry := [opt, "SQP", "e04ucfAnnaType",0.6,0.6,e04ucfIfail,e04ucfExplList] - rl:RList := - [["d01apf" :: Symbol, coerce(d01apfEntry)$AnyFunctions1(Entry)],_ - ["d01aqf" :: Symbol, coerce(d01aqfEntry)$AnyFunctions1(Entry)],_ - ["d01alf" :: Symbol, coerce(d01alfEntry)$AnyFunctions1(Entry)],_ - ["d01anf" :: Symbol, coerce(d01anfEntry)$AnyFunctions1(Entry)],_ - ["d01akf" :: Symbol, coerce(d01akfEntry)$AnyFunctions1(Entry)],_ - ["d01ajf" :: Symbol, coerce(d01ajfEntry)$AnyFunctions1(Entry)],_ - ["d01asf" :: Symbol, coerce(d01asfEntry)$AnyFunctions1(Entry)],_ - ["d01amf" :: Symbol, coerce(d01amfEntry)$AnyFunctions1(Entry)],_ - ["d01transform" :: Symbol, coerce(d01transEntry)$AnyFunctions1(Entry)],_ - ["d01gbf" :: Symbol, coerce(d01gbfEntry)$AnyFunctions1(Entry)],_ - ["d01fcf" :: Symbol, coerce(d01fcfEntry)$AnyFunctions1(Entry)],_ - ["d02bbf" :: Symbol, coerce(d02bbfEntry)$AnyFunctions1(Entry)],_ - ["d02bhf" :: Symbol, coerce(d02bhfEntry)$AnyFunctions1(Entry)],_ - ["d02cjf" :: Symbol, coerce(d02cjfEntry)$AnyFunctions1(Entry)],_ - ["d02ejf" :: Symbol, coerce(d02ejfEntry)$AnyFunctions1(Entry)],_ - ["d03eef" :: Symbol, coerce(d03eefEntry)$AnyFunctions1(Entry)],_ - --["d03faf" :: Symbol, coerce(d03fafEntry)$AnyFunctions1(Entry)], - ["e04dgf" :: Symbol, coerce(e04dgfEntry)$AnyFunctions1(Entry)],_ - ["e04fdf" :: Symbol, coerce(e04fdfEntry)$AnyFunctions1(Entry)],_ - ["e04gcf" :: Symbol, coerce(e04gcfEntry)$AnyFunctions1(Entry)],_ - ["e04jaf" :: Symbol, coerce(e04jafEntry)$AnyFunctions1(Entry)],_ - ["e04mbf" :: Symbol, coerce(e04mbfEntry)$AnyFunctions1(Entry)],_ - ["e04naf" :: Symbol, coerce(e04nafEntry)$AnyFunctions1(Entry)],_ - ["e04ucf" :: Symbol, coerce(e04ucfEntry)$AnyFunctions1(Entry)]] - construct(rl) - - getIFL(s:Symbol,l:%):Union(IFL,"failed") == - o := search(s,l)$% - o case "failed" => "failed" - e := retractIfCan(o)$AnyFunctions1(Entry) - e case "failed" => "failed" - e.failList - - getInstruction(l:IFL,ifailValue:Integer):Union(ST,"failed") == - output := empty()$ST - for i in 1..#l repeat - if ((l.i).ifail=ifailValue)@Boolean then - output := (l.i).instruction - empty?(output)$ST => "failed" - output - - recoverAfterFail(routs:%,routineName:ST, - ifailValue:Integer):Union(ST,"failed") == - name := routineName :: Symbol - failedList := getIFL(name,routs) - failedList case "failed" => "failed" - empty? failedList => "failed" - instr := getInstruction(failedList,ifailValue) - instr case "failed" => concat(routineName," failed")$ST - (instr = "delete")@Boolean => - deleteRoutine!(routs,name) - concat(routineName," failed - trying alternatives")$ST - instr - - getExplanations(R:%,routineName:ST):LST == - name := routineName :: Symbol - (a := search(name,R)) case Any => - e := retract(a)$AnyFunctions1(Entry) - e.explList - empty()$LST - -@ -\section{domain ATTRBUT AttributeButtons} -<<domain ATTRBUT AttributeButtons>>= -)abbrev domain ATTRBUT AttributeButtons -++ Author: Brian Dupee -++ Date Created: April 1996 -++ Date Last Updated: December 1997 -++ Basic Operations: increase, decrease, getButtonValue, setButtonValue -++ Related Constructors: Table(String,Float) -++ Description: -++ \axiomType{AttributeButtons} implements a database and associated -++ adjustment mechanisms for a set of attributes. -++ -++ For ODEs these attributes are "stiffness", "stability" (i.e. how much -++ affect the cosine or sine component of the solution has on the stability of -++ the result), "accuracy" and "expense" (i.e. how expensive is the evaluation -++ of the ODE). All these have bearing on the cost of calculating the -++ solution given that reducing the step-length to achieve greater accuracy -++ requires considerable number of evaluations and calculations. -++ -++ The effect of each of these attributes can be altered by increasing or -++ decreasing the button value. -++ -++ For Integration there is a button for increasing and decreasing the preset -++ number of function evaluations for each method. This is automatically used -++ by ANNA when a method fails due to insufficient workspace or where the -++ limit of function evaluations has been reached before the required -++ accuracy is achieved. -++ -AttributeButtons(): E == I where - F ==> Float - ST ==> String - LST ==> List String - Rec ==> Record(key:Symbol,entry:Any) - RList ==> List(Record(key:Symbol,entry:Any)) - IFL ==> List(Record(ifail:Integer,instruction:ST)) - Entry ==> Record(chapter:ST, type:ST, domainName: ST, - defaultMin:F, measure:F, failList:IFL, explList:LST) - - - E ==> SetCategory with - - increase:(ST,ST) -> F - ++ \axiom{increase(routineName,attributeName)} increases the value - ++ for the effect of the attribute \axiom{attributeName} with routine - ++ \axiom{routineName}. - ++ - ++ \axiom{attributeName} should be one of the values - ++ "stiffness", "stability", "accuracy", "expense" or - ++ "functionEvaluations". - increase:(ST) -> F - ++ \axiom{increase(attributeName)} increases the value for the - ++ effect of the attribute \axiom{attributeName} with all routines. - ++ - ++ \axiom{attributeName} should be one of the values - ++ "stiffness", "stability", "accuracy", "expense" or - ++ "functionEvaluations". - decrease:(ST,ST) -> F - ++ \axiom{decrease(routineName,attributeName)} decreases the value - ++ for the effect of the attribute \axiom{attributeName} with routine - ++ \axiom{routineName}. - ++ - ++ \axiom{attributeName} should be one of the values - ++ "stiffness", "stability", "accuracy", "expense" or - ++ "functionEvaluations". - decrease:(ST) -> F - ++ \axiom{decrease(attributeName)} decreases the value for the - ++ effect of the attribute \axiom{attributeName} with all routines. - ++ - ++ \axiom{attributeName} should be one of the values - ++ "stiffness", "stability", "accuracy", "expense" or - ++ "functionEvaluations". - getButtonValue:(ST,ST) -> F - ++ \axiom{getButtonValue(routineName,attributeName)} returns the - ++ current value for the effect of the attribute \axiom{attributeName} - ++ with routine \axiom{routineName}. - ++ - ++ \axiom{attributeName} should be one of the values - ++ "stiffness", "stability", "accuracy", "expense" or - ++ "functionEvaluations". - resetAttributeButtons:() -> Void - ++ \axiom{resetAttributeButtons()} resets the Attribute buttons to a - ++ neutral level. - setAttributeButtonStep:(F) -> F - ++ \axiom{setAttributeButtonStep(n)} sets the value of the steps for - ++ increasing and decreasing the button values. \axiom{n} must be - ++ greater than 0 and less than 1. The preset value is 0.5. - setButtonValue:(ST,F) -> F - ++ \axiom{setButtonValue(attributeName,n)} sets the - ++ value of all buttons of attribute \spad{attributeName} - ++ to \spad{n}. \spad{n} must be in the range [0..1]. - ++ - ++ \axiom{attributeName} should be one of the values - ++ "stiffness", "stability", "accuracy", "expense" or - ++ "functionEvaluations". - setButtonValue:(ST,ST,F) -> F - ++ \axiom{setButtonValue(attributeName,routineName,n)} sets the - ++ value of the button of attribute \spad{attributeName} to routine - ++ \spad{routineName} to \spad{n}. \spad{n} must be in the range [0..1]. - ++ - ++ \axiom{attributeName} should be one of the values - ++ "stiffness", "stability", "accuracy", "expense" or - ++ "functionEvaluations". - finiteAggregate - - I ==> add - - Rep := StringTable(F) - import Rep - - buttons:() -> $ - - buttons():$ == - eList := empty()$List(Record(key:ST,entry:F)) - l1:List String := ["stability","stiffness","accuracy","expense"] - l2:List String := ["functionEvaluations"] - ro1 := selectODEIVPRoutines(r := routines()$RoutinesTable)$RoutinesTable - ro2 := selectIntegrationRoutines(r)$RoutinesTable - k1:List String := [string(i)$Symbol for i in keys(ro1)$RoutinesTable] - k2:List String := [string(i)$Symbol for i in keys(ro2)$RoutinesTable] - for i in k1 repeat - for j in l1 repeat - e:Record(key:ST,entry:F) := [i j,0.5] - eList := cons(e,eList)$List(Record(key:ST,entry:F)) - for i in k2 repeat - for j in l2 repeat - e:Record(key:ST,entry:F) := [i j,0.5] - eList := cons(e,eList)$List(Record(key:ST,entry:F)) - construct(eList)$Rep - - attributeButtons:$ := buttons() - - attributeStep:F := 0.5 - - setAttributeButtonStep(n:F):F == - positive?(n)$F and (n<1$F) => attributeStep:F := n - error("setAttributeButtonStep","New value must be in (0..1)")$ErrorFunctions - - resetAttributeButtons():Void == - attributeButtons := buttons() - - setButtonValue(routineName:ST,attributeName:ST,n:F):F == - f := search(routineName attributeName,attributeButtons)$Rep - f case Float => - n>=0$F and n<=1$F => - setelt(attributeButtons,routineName attributeName,n)$Rep - error("setAttributeButtonStep","New value must be in [0..1]")$ErrorFunctions - error("setButtonValue","attribute name " attributeName - " not found for routine " routineName)$ErrorFunctions - - setButtonValue(attributeName:ST,n:F):F == - ro1 := selectODEIVPRoutines(r := routines()$RoutinesTable)$RoutinesTable - ro2 := selectIntegrationRoutines(r)$RoutinesTable - l1:List String := ["stability","stiffness","accuracy","expense"] - l2:List String := ["functionEvaluations"] - if attributeName="functionEvaluations" then - for i in keys(ro2)$RoutinesTable repeat - setButtonValue(string(i)$Symbol,attributeName,n) - else - for i in keys(ro1)$RoutinesTable repeat - setButtonValue(string(i)$Symbol,attributeName,n) - n - - increase(routineName:ST,attributeName:ST):F == - f := search(routineName attributeName,attributeButtons)$Rep - f case Float => - newValue:F := (1$F-attributeStep)*f+attributeStep - setButtonValue(routineName,attributeName,newValue) - error("increase","attribute name " attributeName - " not found for routine " routineName)$ErrorFunctions - - increase(attributeName:ST):F == - ro1 := selectODEIVPRoutines(r := routines()$RoutinesTable)$RoutinesTable - ro2 := selectIntegrationRoutines(r)$RoutinesTable - l1:List String := ["stability","stiffness","accuracy","expense"] - l2:List String := ["functionEvaluations"] - if attributeName="functionEvaluations" then - for i in keys(ro2)$RoutinesTable repeat - increase(string(i)$Symbol,attributeName) - else - for i in keys(ro1)$RoutinesTable repeat - increase(string(i)$Symbol,attributeName) - getButtonValue(string(i)$Symbol,attributeName) - - decrease(routineName:ST,attributeName:ST):F == - f := search(routineName attributeName,attributeButtons)$Rep - f case Float => - newValue:F := (1$F-attributeStep)*f - setButtonValue(routineName,attributeName,newValue) - error("increase","attribute name " attributeName - " not found for routine " routineName)$ErrorFunctions - - decrease(attributeName:ST):F == - ro1 := selectODEIVPRoutines(r := routines()$RoutinesTable)$RoutinesTable - ro2 := selectIntegrationRoutines(r)$RoutinesTable - l1:List String := ["stability","stiffness","accuracy","expense"] - l2:List String := ["functionEvaluations"] - if attributeName="functionEvaluations" then - for i in keys(ro2)$RoutinesTable repeat - decrease(string(i)$Symbol,attributeName) - else - for i in keys(ro1)$RoutinesTable repeat - decrease(string(i)$Symbol,attributeName) - getButtonValue(string(i)$Symbol,attributeName) - - - getButtonValue(routineName:ST,attributeName:ST):F == - f := search(routineName attributeName,attributeButtons)$Rep - f case Float => f - error("getButtonValue","attribute name " attributeName - " not found for routine " routineName)$ErrorFunctions - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<domain ROUTINE RoutinesTable>> -<<domain ATTRBUT AttributeButtons>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 5bbe29bd..83134acf 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2094401 . 3525483391) +(2005181 . 3525500984) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4146 . T) (-4145 . T)) +((-3980 . T) (-3979 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4142 . T) (-4140 . T) (-4139 . T) ((-4147 "*") . T) (-4138 . T) (-4143 . T) (-4137 . T)) +((-3976 . T) (-3974 . T) (-3973 . T) ((-3981 "*") . T) (-3972 . T) (-3977 . T) (-3971 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression `d'.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3215) +(-32 R -3076) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499))))) +((|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4145))) +((|HasAttribute| |#1| (QUOTE -3979))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4145 . T) (-4146 . T)) +((-3979 . T) (-3980 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4139 . T) (-4140 . T) (-4142 . T)) +((-3973 . T) (-3974 . T) (-3976 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an."))) NIL NIL -(-40 -3215 UP UPUP -2733) +(-40 -3076 UP UPUP -2598) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4138 |has| (-361 |#2|) (-318)) (-4143 |has| (-361 |#2|) (-318)) (-4137 |has| (-361 |#2|) (-318)) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| (-361 |#2|) (QUOTE (-118))) (|HasCategory| (-361 |#2|) (QUOTE (-120))) (|HasCategory| (-361 |#2|) (QUOTE (-305))) (-3677 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (QUOTE (-305)))) (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (QUOTE (-323))) (-3677 (-12 (|HasCategory| (-361 |#2|) (QUOTE (-190))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (|HasCategory| (-361 |#2|) (QUOTE (-305)))) (-3677 (-12 (|HasCategory| (-361 |#2|) (QUOTE (-190))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-189))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (|HasCategory| (-361 |#2|) (QUOTE (-305)))) (-3677 (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-305))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -836) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -838) (QUOTE (-1117)))))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -596) (QUOTE (-499)))) (-3677 (|HasCategory| (-361 |#2|) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-323))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-189))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-190))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -836) (QUOTE (-1117)))))) -(-41 R -3215) +((-3972 |has| (-343 |#2|) (-308)) (-3977 |has| (-343 |#2|) (-308)) (-3971 |has| (-343 |#2|) (-308)) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| (-343 |#2|) (QUOTE (-116))) (|HasCategory| (-343 |#2|) (QUOTE (-118))) (|HasCategory| (-343 |#2|) (QUOTE (-295))) (OR (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-295)))) (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-313))) (OR (-12 (|HasCategory| (-343 |#2|) (QUOTE (-188))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (|HasCategory| (-343 |#2|) (QUOTE (-295)))) (OR (-12 (|HasCategory| (-343 |#2|) (QUOTE (-188))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-187))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (|HasCategory| (-343 |#2|) (QUOTE (-295)))) (OR (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (|%list| (QUOTE -802) (QUOTE (-1079))))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-295))) (|HasCategory| (-343 |#2|) (|%list| (QUOTE -802) (QUOTE (-1079)))))) (OR (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (|%list| (QUOTE -802) (QUOTE (-1079))))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (|%list| (QUOTE -804) (QUOTE (-1079)))))) (|HasCategory| (-343 |#2|) (|%list| (QUOTE -575) (QUOTE (-478)))) (OR (|HasCategory| (-343 |#2|) (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (|HasCategory| (-343 |#2|) (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| (-343 |#2|) (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-313))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-187))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (|%list| (QUOTE -804) (QUOTE (-1079))))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-188))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (|%list| (QUOTE -802) (QUOTE (-1079)))))) +(-41 R -3076) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -375) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#2| (|%list| (QUOTE -357) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -103,34 +103,34 @@ NIL (-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-261)))) +((|HasCategory| |#1| (QUOTE (-254)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4142 |has| |#1| (-510)) (-4140 . T) (-4139 . T)) -((|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) +((-3976 |has| |#1| (-489)) (-3974 . T) (-3973 . T)) +((|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4145 . T) (-4146 . T)) -((-3677 (-12 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-781)))) (-12 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041))))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-781))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-3677 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-781))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-781))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-781))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041))) (-3677 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (-12 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041))))) +((-3979 . T) (-3980 . T)) +((OR (-12 (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3844) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-749)))) (-12 (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3844) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005))))) (OR (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-749))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -548) (QUOTE (-467)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-749))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-749))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-749))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005))) (OR (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765))))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (-12 (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3844) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-318)))) +((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3973 . T) (-3974 . T) (-3976 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| $ (QUOTE (-989))) (|HasCategory| $ (|%list| (QUOTE -978) (QUOTE (-499))))) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| $ (QUOTE (-954))) (|HasCategory| $ (|%list| (QUOTE -943) (QUOTE (-478))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4142 . T)) +((-3976 . T)) NIL (-51) ((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and \\spad{AnyFunctions1}.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3215) +(-54 |Base| R -3076) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}rn is applicable to the expression."))) NIL NIL @@ -158,28 +158,28 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4145 . T) (-4146 . T)) +((-3979 . T) (-3980 . T)) NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4146 . T) (-4145 . T)) -((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) +((-3980 . T) (-3979 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (-59 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray's."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) (-61 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}'s.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-318)))) +((|HasCategory| |#1| (QUOTE (-308)))) (-62 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) (-63 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -201,4684 +201,4528 @@ NIL NIL NIL (-68) -((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4145 . T)) -NIL -(-69) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4145 . T) ((-4147 "*") . T) (-4146 . T) (-4142 . T) (-4140 . T) (-4139 . T) (-4138 . T) (-4143 . T) (-4137 . T) (-4136 . T) (-4135 . T) (-4134 . T) (-4133 . T) (-4141 . T) (-4144 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4132 . T)) +((-3979 . T) ((-3981 "*") . T) (-3980 . T) (-3976 . T) (-3974 . T) (-3973 . T) (-3972 . T) (-3977 . T) (-3971 . T) (-3970 . T) (-3969 . T) (-3968 . T) (-3967 . T) (-3975 . T) (-3978 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3966 . T)) NIL -(-70 R) +(-69 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4142 . T)) +((-3976 . T)) NIL -(-71 R UP) +(-70 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) NIL NIL -(-72 S) +(-71 S) ((|constructor| (NIL "\\spadtype{BasicType} is the basic category for describing a collection of elements with \\spadop{=} (equality).")) (|before?| (((|Boolean|) $ $) "\\spad{before?(x,y)} holds if the system representation of \\spad{x} comes before that of \\spad{y} in a an implementation defined manner.")) (~= (((|Boolean|) $ $) "\\spad{x~=y} tests if \\spad{x} and \\spad{y} are not equal.")) (= (((|Boolean|) $ $) "\\spad{x=y} tests if \\spad{x} and \\spad{y} are equal."))) NIL NIL -(-73) +(-72) ((|constructor| (NIL "\\spadtype{BasicType} is the basic category for describing a collection of elements with \\spadop{=} (equality).")) (|before?| (((|Boolean|) $ $) "\\spad{before?(x,y)} holds if the system representation of \\spad{x} comes before that of \\spad{y} in a an implementation defined manner.")) (~= (((|Boolean|) $ $) "\\spad{x~=y} tests if \\spad{x} and \\spad{y} are not equal.")) (= (((|Boolean|) $ $) "\\spad{x=y} tests if \\spad{x} and \\spad{y} are equal."))) NIL NIL -(-74 S) +(-73 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) -(-75 R UP M |Row| |Col|) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-74 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4147 "*")))) -(-76) -((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4145 . T)) -NIL -(-77 A S) +((|HasAttribute| |#1| (QUOTE (-3981 "*")))) +(-75 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) NIL NIL -(-78 S) +(-76 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4146 . T)) +((-3980 . T)) NIL -(-79) +(-77) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| (-499) (QUOTE (-848))) (|HasCategory| (-499) (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| (-499) (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-120))) (|HasCategory| (-499) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-499) (QUOTE (-960))) (|HasCategory| (-499) (QUOTE (-763))) (|HasCategory| (-499) (QUOTE (-781))) (-3677 (|HasCategory| (-499) (QUOTE (-763))) (|HasCategory| (-499) (QUOTE (-781)))) (|HasCategory| (-499) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-499) (QUOTE (-1092))) (|HasCategory| (-499) (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-499) (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-499) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-499) (QUOTE (-189))) (|HasCategory| (-499) (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| (-499) (QUOTE (-190))) (|HasCategory| (-499) (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| (-499) (|%list| (QUOTE -468) (QUOTE (-1117)) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -263) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -240) (QUOTE (-499)) (QUOTE (-499)))) (|HasCategory| (-499) (QUOTE (-261))) (|HasCategory| (-499) (QUOTE (-498))) (|HasCategory| (-499) (|%list| (QUOTE -596) (QUOTE (-499)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-848)))) (-3677 (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-848)))) (|HasCategory| (-499) (QUOTE (-118))))) -(-80) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| (-478) (QUOTE (-814))) (|HasCategory| (-478) (|%list| (QUOTE -943) (QUOTE (-1079)))) (|HasCategory| (-478) (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-118))) (|HasCategory| (-478) (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-478) (QUOTE (-926))) (|HasCategory| (-478) (QUOTE (-733))) (|HasCategory| (-478) (QUOTE (-749))) (OR (|HasCategory| (-478) (QUOTE (-733))) (|HasCategory| (-478) (QUOTE (-749)))) (|HasCategory| (-478) (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| (-478) (QUOTE (-1055))) (|HasCategory| (-478) (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| (-478) (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| (-478) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| (-478) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| (-478) (QUOTE (-187))) (|HasCategory| (-478) (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| (-478) (QUOTE (-188))) (|HasCategory| (-478) (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| (-478) (|%list| (QUOTE -447) (QUOTE (-1079)) (QUOTE (-478)))) (|HasCategory| (-478) (|%list| (QUOTE -256) (QUOTE (-478)))) (|HasCategory| (-478) (|%list| (QUOTE -238) (QUOTE (-478)) (QUOTE (-478)))) (|HasCategory| (-478) (QUOTE (-254))) (|HasCategory| (-478) (QUOTE (-477))) (|HasCategory| (-478) (|%list| (QUOTE -575) (QUOTE (-478)))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-814)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-814)))) (|HasCategory| (-478) (QUOTE (-116))))) +(-78) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL -(-81) +(-79) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4146 . T) (-4145 . T)) -((-12 (|HasCategory| (-85) (QUOTE (-1041))) (|HasCategory| (-85) (|%list| (QUOTE -263) (QUOTE (-85))))) (|HasCategory| (-85) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-85) (QUOTE (-781))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| (-85) (QUOTE (-1041))) (|HasCategory| (-85) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-85) (QUOTE (-73)))) -(-82 R S) +((-3980 . T) (-3979 . T)) +((-12 (|HasCategory| (-83) (QUOTE (-1005))) (|HasCategory| (-83) (|%list| (QUOTE -256) (QUOTE (-83))))) (|HasCategory| (-83) (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-83) (QUOTE (-749))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| (-83) (QUOTE (-1005))) (|HasCategory| (-83) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-83) (QUOTE (-72)))) +(-80 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4140 . T) (-4139 . T)) +((-3974 . T) (-3973 . T)) NIL -(-83 S) +(-81 S) ((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}."))) NIL NIL -(-84) +(-82) ((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}."))) NIL NIL -(-85) +(-83) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) NIL NIL -(-86) +(-84) ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Maybe| (|Mapping| (|InputForm|) (|List| (|InputForm|)))) $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \\spad{nothing} otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Maybe| (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \\spad{nothing} otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If \\spad{op1} and \\spad{op2} have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If \\spad{op1} and \\spad{op2} have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1} and \\spad{op2} should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-87 A) +(-85 A) ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise."))) NIL NIL -(-88 -3215 UP) +(-86 -3076 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL -(-89 |p|) +(-87 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-90 |p|) +(-88 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| (-89 |#1|) (QUOTE (-848))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-89 |#1|) (QUOTE (-960))) (|HasCategory| (-89 |#1|) (QUOTE (-763))) (|HasCategory| (-89 |#1|) (QUOTE (-781))) (-3677 (|HasCategory| (-89 |#1|) (QUOTE (-763))) (|HasCategory| (-89 |#1|) (QUOTE (-781)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-89 |#1|) (QUOTE (-1092))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -468) (QUOTE (-1117)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -263) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -240) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-261))) (|HasCategory| (-89 |#1|) (QUOTE (-498))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-848)))) (-3677 (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-848)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))))) -(-91 A S) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| (-87 |#1|) (QUOTE (-814))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -943) (QUOTE (-1079)))) (|HasCategory| (-87 |#1|) (QUOTE (-116))) (|HasCategory| (-87 |#1|) (QUOTE (-118))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-87 |#1|) (QUOTE (-926))) (|HasCategory| (-87 |#1|) (QUOTE (-733))) (|HasCategory| (-87 |#1|) (QUOTE (-749))) (OR (|HasCategory| (-87 |#1|) (QUOTE (-733))) (|HasCategory| (-87 |#1|) (QUOTE (-749)))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| (-87 |#1|) (QUOTE (-1055))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| (-87 |#1|) (QUOTE (-187))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| (-87 |#1|) (QUOTE (-188))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -447) (QUOTE (-1079)) (|%list| (QUOTE -87) (|devaluate| |#1|)))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -256) (|%list| (QUOTE -87) (|devaluate| |#1|)))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -238) (|%list| (QUOTE -87) (|devaluate| |#1|)) (|%list| (QUOTE -87) (|devaluate| |#1|)))) (|HasCategory| (-87 |#1|) (QUOTE (-254))) (|HasCategory| (-87 |#1|) (QUOTE (-477))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-87 |#1|) (QUOTE (-814)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-87 |#1|) (QUOTE (-814)))) (|HasCategory| (-87 |#1|) (QUOTE (-116))))) +(-89 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4146))) -(-92 S) +((|HasAttribute| |#1| (QUOTE -3980))) +(-90 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL NIL -(-93 UP) +(-91 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} pp. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) NIL NIL -(-94 S) +(-92 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) -(-95 S) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-93 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL -(-96) +(-94) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-4146 . T) (-4145 . T)) +((-3980 . T) (-3979 . T)) NIL -(-97 A S) +(-95 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) NIL NIL -(-98 S) +(-96 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4145 . T) (-4146 . T)) +((-3979 . T) (-3980 . T)) NIL -(-99 S) +(-97 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) -(-100 S) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-98 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) -(-101) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-99) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256."))) NIL NIL -(-102) +(-100) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4146 . T) (-4145 . T)) -((-3677 (-12 (|HasCategory| (-101) (QUOTE (-781))) (|HasCategory| (-101) (|%list| (QUOTE -263) (QUOTE (-101))))) (-12 (|HasCategory| (-101) (QUOTE (-1041))) (|HasCategory| (-101) (|%list| (QUOTE -263) (QUOTE (-101)))))) (-3677 (-12 (|HasCategory| (-101) (QUOTE (-1041))) (|HasCategory| (-101) (|%list| (QUOTE -263) (QUOTE (-101))))) (|HasCategory| (-101) (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| (-101) (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| (-101) (QUOTE (-781))) (|HasCategory| (-101) (QUOTE (-1041)))) (|HasCategory| (-101) (QUOTE (-781))) (-3677 (|HasCategory| (-101) (QUOTE (-73))) (|HasCategory| (-101) (QUOTE (-781))) (|HasCategory| (-101) (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| (-101) (QUOTE (-1041))) (|HasCategory| (-101) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-101) (QUOTE (-73))) (-12 (|HasCategory| (-101) (QUOTE (-1041))) (|HasCategory| (-101) (|%list| (QUOTE -263) (QUOTE (-101)))))) -(-103) +((-3980 . T) (-3979 . T)) +((OR (-12 (|HasCategory| (-99) (QUOTE (-749))) (|HasCategory| (-99) (|%list| (QUOTE -256) (QUOTE (-99))))) (-12 (|HasCategory| (-99) (QUOTE (-1005))) (|HasCategory| (-99) (|%list| (QUOTE -256) (QUOTE (-99)))))) (OR (-12 (|HasCategory| (-99) (QUOTE (-1005))) (|HasCategory| (-99) (|%list| (QUOTE -256) (QUOTE (-99))))) (|HasCategory| (-99) (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| (-99) (|%list| (QUOTE -548) (QUOTE (-467)))) (OR (|HasCategory| (-99) (QUOTE (-749))) (|HasCategory| (-99) (QUOTE (-1005)))) (|HasCategory| (-99) (QUOTE (-749))) (OR (|HasCategory| (-99) (QUOTE (-72))) (|HasCategory| (-99) (QUOTE (-749))) (|HasCategory| (-99) (QUOTE (-1005)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| (-99) (QUOTE (-1005))) (|HasCategory| (-99) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-99) (QUOTE (-72))) (-12 (|HasCategory| (-99) (QUOTE (-1005))) (|HasCategory| (-99) (|%list| (QUOTE -256) (QUOTE (-99)))))) +(-101) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL NIL -(-104) +(-102) ((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x, y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL NIL -(-105) +(-103) ((|constructor| (NIL "A cachable set is a set whose elements keep an integer as part of their structure.")) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) "\\spad{setPosition(x, n)} associates the integer \\spad{n} to \\spad{x}.")) (|position| (((|NonNegativeInteger|) $) "\\spad{position(x)} returns the integer \\spad{n} associated to \\spad{x}."))) NIL NIL -(-106) +(-104) ((|constructor| (NIL "This domain represents the capsule of a domain definition.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of top level expressions appearing in `c'."))) NIL NIL -(-107) +(-105) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4147 "*") . T)) +(((-3981 "*") . T)) NIL -(-108 |minix| -2740 R) +(-106 |minix| -2605 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree."))) NIL NIL -(-109 |minix| -2740 S T$) +(-107 |minix| -2605 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-110) +(-108) ((|constructor| (NIL "This domain represents a `case' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the case expression `e'."))) NIL NIL -(-111) +(-109) ((|constructor| (NIL "This domain represents the unnamed category defined \\indented{2}{by a list of exported signatures}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of exports in category syntax `c'.")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(c)} returns the kind of unnamed category,{} either 'domain' or 'package'."))) NIL NIL -(-112) +(-110) ((|constructor| (NIL "This domain provides representations for category constructors."))) NIL NIL -(-113) +(-111) ((|parents| (((|List| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{parents(c)} returns the list of all category forms directly extended by the category `c'.")) (|principalAncestors| (((|List| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{principalAncestors(c)} returns the list of all category forms that are principal ancestors of the the category `c'.")) (|exportedOperators| (((|List| (|OperatorSignature|)) $) "\\spad{exportedOperators(c)} returns the list of all operator signatures exported by the category `c',{} along with their predicates.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: December 20,{} 2008. Date Last Updated: February 16,{} 2008. Basic Operations: coerce Related Constructors: Also See: Type") (((|CategoryConstructor|) $) "\\spad{constructor(c)} returns the category constructor used to instantiate the category object `c'."))) NIL NIL -(-114) +(-112) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4145 . T) (-4135 . T) (-4146 . T)) -((-3677 (-12 (|HasCategory| (-117) (QUOTE (-323))) (|HasCategory| (-117) (|%list| (QUOTE -263) (QUOTE (-117))))) (-12 (|HasCategory| (-117) (QUOTE (-1041))) (|HasCategory| (-117) (|%list| (QUOTE -263) (QUOTE (-117)))))) (|HasCategory| (-117) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-117) (QUOTE (-323))) (|HasCategory| (-117) (QUOTE (-781))) (|HasCategory| (-117) (QUOTE (-1041))) (|HasCategory| (-117) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-117) (QUOTE (-73))) (-12 (|HasCategory| (-117) (QUOTE (-1041))) (|HasCategory| (-117) (|%list| (QUOTE -263) (QUOTE (-117)))))) -(-115 R Q A) +((-3979 . T) (-3969 . T) (-3980 . T)) +((OR (-12 (|HasCategory| (-115) (QUOTE (-313))) (|HasCategory| (-115) (|%list| (QUOTE -256) (QUOTE (-115))))) (-12 (|HasCategory| (-115) (QUOTE (-1005))) (|HasCategory| (-115) (|%list| (QUOTE -256) (QUOTE (-115)))))) (|HasCategory| (-115) (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-115) (QUOTE (-313))) (|HasCategory| (-115) (QUOTE (-749))) (|HasCategory| (-115) (QUOTE (-1005))) (|HasCategory| (-115) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-115) (QUOTE (-72))) (-12 (|HasCategory| (-115) (QUOTE (-1005))) (|HasCategory| (-115) (|%list| (QUOTE -256) (QUOTE (-115)))))) +(-113 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL NIL -(-116) +(-114) ((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n, m)} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note: \\spad{permutation(n,m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note: \\spad{n! = n (n-1)! when n > 0}; also,{} \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\spad{binomial(n,r)} returns the \\spad{(n,r)} binomial coefficient (often denoted in the literature by \\spad{C(n,r)}). Note: \\spad{C(n,r) = n!/(r!(n-r)!)} where \\spad{n >= r >= 0}."))) NIL NIL -(-117) +(-115) ((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape} designate the escape character.")) (|verticalTab| (($) "\\spad{verticalTab} designates vertical tab.")) (|horizontalTab| (($) "\\spad{horizontalTab} designates horizontal tab.")) (|backspace| (($) "\\spad{backspace} designates the backspace character.")) (|formfeed| (($) "\\spad{formfeed} designates the form feed character.")) (|linefeed| (($) "\\spad{linefeed} designates the line feed character.")) (|carriageReturn| (($) "\\spad{carriageReturn} designates carriage return.")) (|newline| (($) "\\spad{newline} designates the new line character.")) (|underscore| (($) "\\spad{underscore} designates the underbar character.")) (|quote| (($) "\\spad{quote} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|NonNegativeInteger|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|NonNegativeInteger|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}."))) NIL NIL -(-118) +(-116) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4142 . T)) +((-3976 . T)) NIL -(-119 R) +(-117 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial 'x,{} then it returns the characteristic polynomial expressed as a polynomial in 'x."))) NIL NIL -(-120) +(-118) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4142 . T)) +((-3976 . T)) NIL -(-121 -3215 UP UPUP) +(-119 -3076 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL -(-122 R CR) +(-120 R CR) ((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod fj (\\spad{j} \\= \\spad{i}) or equivalently g/prod fj = sum (ai/fi) or returns \"failed\" if no such list exists"))) NIL NIL -(-123 A S) +(-121 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasAttribute| |#1| (QUOTE -4145))) -(-124 S) +((|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasAttribute| |#1| (QUOTE -3979))) +(-122 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL -(-125 |n| K Q) +(-123 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4140 . T) (-4139 . T) (-4142 . T)) +((-3974 . T) (-3973 . T) (-3976 . T)) NIL -(-126) +(-124) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) NIL NIL -(-127) +(-125) ((|constructor| (NIL "This domain represents list comprehension syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the expression being collected by the list comprehension `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of the iterators of the list comprehension `e'."))) NIL NIL -(-128 UP |Par|) +(-126 UP |Par|) ((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly, eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps."))) NIL NIL -(-129) +(-127) ((|constructor| (NIL "This domain represents type specification \\indented{2}{for an identifier or expression.}")) (|rhs| (((|TypeAst|) $) "\\spad{rhs(e)} returns the right hand side of the colon expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the colon expression `e'."))) NIL NIL -(-130) +(-128) ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-131 R -3215) +(-129 R -3076) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} n!.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} n!/(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} n!/(r! * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL -(-132 I) +(-130 I) ((|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,m)} returns the Stirling number of the second kind denoted \\spad{SS[n,m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,m)} returns the Stirling number of the first kind denoted \\spad{S[n,m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n}. This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,[m1,m2,...,mk])} returns the multinomial coefficient \\spad{n!/(m1! m2! ... mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note: \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,r)} returns the binomial coefficient \\spad{C(n,r) = n!/(r! (n-r)!)},{} where \\spad{n >= r >= 0}. This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time."))) NIL NIL -(-133) +(-131) ((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials."))) NIL NIL -(-134) +(-132) ((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) NIL NIL -(-135) +(-133) ((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'."))) NIL NIL -(-136) +(-134) ((|constructor| (NIL "This package exports the elementary operators,{} with some semantics already attached to them. The semantics that is attached here is not dependent on the set in which the operators will be applied.")) (|operator| (((|BasicOperator|) (|Symbol|)) "\\spad{operator(s)} returns an operator with name \\spad{s},{} with the appropriate semantics if \\spad{s} is known. If \\spad{s} is not known,{} the result has no semantics."))) NIL NIL -(-137 R UP UPUP) +(-135 R UP UPUP) ((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,y))} returns \\spad{p}(\\spad{y},{}\\spad{x})."))) NIL NIL -(-138 S R) +(-136 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-498))) (|HasCategory| |#2| (QUOTE (-942))) (|HasCategory| |#2| (QUOTE (-1143))) (|HasCategory| |#2| (QUOTE (-1000))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (QUOTE (-318))) (|HasAttribute| |#2| (QUOTE -4141)) (|HasAttribute| |#2| (QUOTE -4144)) (|HasCategory| |#2| (QUOTE (-261))) (|HasCategory| |#2| (QUOTE (-510)))) -(-139 R) +((|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-477))) (|HasCategory| |#2| (QUOTE (-908))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasAttribute| |#2| (QUOTE -3975)) (|HasAttribute| |#2| (QUOTE -3978)) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-489)))) +(-137 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4138 -3677 (|has| |#1| (-510)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4141 |has| |#1| (-6 -4141)) (-4144 |has| |#1| (-6 -4144)) (-1409 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3972 OR (|has| |#1| (-489)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) (-3977 |has| |#1| (-308)) (-3971 |has| |#1| (-308)) (-3975 |has| |#1| (-6 -3975)) (-3978 |has| |#1| (-6 -3978)) (-1363 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-140 RR PR) +(-138 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-141) +(-139) ((|constructor| (NIL "This package implements a Spad compiler.")) (|elaborate| (((|Maybe| (|Elaboration|)) (|SpadAst|)) "\\spad{elaborate(s)} returns the elaboration of the syntax object \\spad{s} in the empty environement.")) (|macroExpand| (((|SpadAst|) (|SpadAst|) (|Environment|)) "\\spad{macroExpand(s,e)} traverses the syntax object \\spad{s} replacing all (niladic) macro invokations with the corresponding substitution."))) NIL NIL -(-142 R) +(-140 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4138 -3677 (|has| |#1| (-510)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4141 |has| |#1| (-6 -4141)) (-4144 |has| |#1| (-6 -4144)) (-1409 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-305))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-305)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-323))) (-3677 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-305)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-305)))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-305))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-318)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-305))) (|HasCategory| |#1| (QUOTE (-848))))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (QUOTE (-942))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-305))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-305)))) (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#1| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -240) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1000))) (-12 (|HasCategory| |#1| (QUOTE (-1000))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-498))) (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-848))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-318)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasAttribute| |#1| (QUOTE -4141)) (|HasAttribute| |#1| (QUOTE -4144)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-305)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-143 R S) +((-3972 OR (|has| |#1| (-489)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) (-3977 |has| |#1| (-308)) (-3971 |has| |#1| (-308)) (-3975 |has| |#1| (-6 -3975)) (-3978 |has| |#1| (-6 -3978)) (-1363 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-295))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-295)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-313))) (OR (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-295)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-295)))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#1| (|%list| (QUOTE -804) (QUOTE (-1079))))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-295))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-308)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-295))) (|HasCategory| |#1| (QUOTE (-814))))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-908))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (OR (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-295))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-295)))) (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| |#1| (|%list| (QUOTE -447) (QUOTE (-1079)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -238) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-965))) (-12 (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-477))) (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-814))) (OR (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-308)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-187)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-188))) (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasAttribute| |#1| (QUOTE -3975)) (|HasAttribute| |#1| (QUOTE -3978)) (-12 (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-308)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (|%list| (QUOTE -804) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-308)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-295)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-141 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL -(-144 R S CS) +(-142 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL NIL -(-145) +(-143) ((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented"))) NIL NIL -(-146) +(-144) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +(((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-147) +(-145) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) NIL NIL -(-148 R) +(-146 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4147 "*") . T) (-4138 . T) (-4143 . T) (-4137 . T) (-4139 . T) (-4140 . T) (-4142 . T)) +(((-3981 "*") . T) (-3972 . T) (-3977 . T) (-3971 . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-149) +(-147) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with `n'. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding `b'.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) NIL NIL -(-150 R) +(-148 R) ((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,b)} is a function which will map the point \\spad{(lambda,mu,nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,v,phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}."))) NIL NIL -(-151 R |PolR| E) +(-149 R |PolR| E) ((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants"))) NIL NIL -(-152 R S CS) +(-150 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-884 |#2|) (|%list| (QUOTE -821) (|devaluate| |#1|)))) -(-153 R) +((|HasCategory| (-850 |#2|) (|%list| (QUOTE -789) (|devaluate| |#1|)))) +(-151 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)*lm(2)*...*lm(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL NIL -(-154) +(-152) ((|constructor| (NIL "This domain represents `coerce' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-155 R UP) +(-153 R UP) ((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken's idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user's responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage's variant of Graeffe's method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly, eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} -1\". Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,eps,info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} -1\". Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p, eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p, eps, info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p, eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}."))) NIL NIL -(-156 S ST) +(-154 S ST) ((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) NIL NIL -(-157) +(-155) ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-158 C) +(-156 C) ((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") ((|#1| $) "\\spad{constructor(t)} returns the name of the constructor used to make the call."))) NIL NIL -(-159 S) +(-157 S) ((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(\\spad{i+1}) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL -(-160) +(-158) ((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(\\spad{i+1}) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL -(-161) +(-159) ((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) NIL NIL -(-162 R -3215) +(-160 R -3076) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-163 R) +(-161 R) ((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}"))) NIL NIL -(-164) +(-162) ((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{SFunction(li)} is the \\spad{S}-function of the partition \\spad{li} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) NIL NIL -(-165) +(-163) ((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) NIL NIL -(-166 N T$) +(-164 N T$) ((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|qsetelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "setelt(\\spad{b},{}\\spad{i},{}\\spad{x}) sets the \\spad{i}th entry of data buffer `b' to `x'. Indexing is 0-based.")) (|qelt| ((|#2| $ (|NonNegativeInteger|)) "elt(\\spad{b},{}\\spad{i}) returns the \\spad{i}th element in buffer `b'. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}."))) NIL NIL -(-167 S) +(-165 S) ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-168 |vars|) +(-166 |vars|) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis."))) NIL NIL -(-169 -3215 UP UPUP R) +(-167 -3076 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-170 -3215 FP) +(-168 -3076 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and q= size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-171) +(-169) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| (-499) (QUOTE (-848))) (|HasCategory| (-499) (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| (-499) (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-120))) (|HasCategory| (-499) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-499) (QUOTE (-960))) (|HasCategory| (-499) (QUOTE (-763))) (|HasCategory| (-499) (QUOTE (-781))) (-3677 (|HasCategory| (-499) (QUOTE (-763))) (|HasCategory| (-499) (QUOTE (-781)))) (|HasCategory| (-499) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-499) (QUOTE (-1092))) (|HasCategory| (-499) (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-499) (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-499) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-499) (QUOTE (-189))) (|HasCategory| (-499) (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| (-499) (QUOTE (-190))) (|HasCategory| (-499) (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| (-499) (|%list| (QUOTE -468) (QUOTE (-1117)) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -263) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -240) (QUOTE (-499)) (QUOTE (-499)))) (|HasCategory| (-499) (QUOTE (-261))) (|HasCategory| (-499) (QUOTE (-498))) (|HasCategory| (-499) (|%list| (QUOTE -596) (QUOTE (-499)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-848)))) (-3677 (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-848)))) (|HasCategory| (-499) (QUOTE (-118))))) -(-172) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| (-478) (QUOTE (-814))) (|HasCategory| (-478) (|%list| (QUOTE -943) (QUOTE (-1079)))) (|HasCategory| (-478) (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-118))) (|HasCategory| (-478) (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-478) (QUOTE (-926))) (|HasCategory| (-478) (QUOTE (-733))) (|HasCategory| (-478) (QUOTE (-749))) (OR (|HasCategory| (-478) (QUOTE (-733))) (|HasCategory| (-478) (QUOTE (-749)))) (|HasCategory| (-478) (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| (-478) (QUOTE (-1055))) (|HasCategory| (-478) (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| (-478) (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| (-478) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| (-478) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| (-478) (QUOTE (-187))) (|HasCategory| (-478) (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| (-478) (QUOTE (-188))) (|HasCategory| (-478) (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| (-478) (|%list| (QUOTE -447) (QUOTE (-1079)) (QUOTE (-478)))) (|HasCategory| (-478) (|%list| (QUOTE -256) (QUOTE (-478)))) (|HasCategory| (-478) (|%list| (QUOTE -238) (QUOTE (-478)) (QUOTE (-478)))) (|HasCategory| (-478) (QUOTE (-254))) (|HasCategory| (-478) (QUOTE (-477))) (|HasCategory| (-478) (|%list| (QUOTE -575) (QUOTE (-478)))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-814)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-814)))) (|HasCategory| (-478) (QUOTE (-116))))) +(-170) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-173 R -3215) +(-171 R -3076) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-174 R) +(-172 R) ((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-175 R1 R2) +(-173 R1 R2) ((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-176 S) +(-174 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) -(-177 |CoefRing| |listIndVar|) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-175 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4142 . T)) +((-3976 . T)) NIL -(-178 R -3215) +(-176 R -3076) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-179) +(-177) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|nan?| (((|Boolean|) $) "\\spad{nan? x} holds if \\spad{x} is a Not a Number floating point data in the IEEE 754 sense.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3920 . T) (-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3754 . T) (-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-180) +(-178) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) NIL NIL -(-181 R) +(-179 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-510))) (|HasAttribute| |#1| (QUOTE (-4147 "*"))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) -(-182 A S) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-489))) (|HasAttribute| |#1| (QUOTE (-3981 "*"))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-180 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-183 S) +(-181 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4146 . T)) +((-3980 . T)) NIL -(-184 R) +(-182 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%."))) -((-4142 . T)) +((-3976 . T)) NIL -(-185 S T$) +(-183 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) NIL NIL -(-186 T$) +(-184 T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#1| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#1| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) NIL NIL -(-187 R) +(-185 R) ((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) -((-4140 . T) (-4139 . T)) +((-3974 . T) (-3973 . T)) NIL -(-188 S) +(-186 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) NIL NIL -(-189) +(-187) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) NIL NIL -(-190) +(-188) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-4142 . T)) +((-3976 . T)) NIL -(-191 A S) +(-189 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4145))) -(-192 S) +((|HasAttribute| |#1| (QUOTE -3979))) +(-190 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4146 . T)) +((-3980 . T)) NIL -(-193) +(-191) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-194 S -2740 R) +(-192 S -2605 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-781))) (|HasAttribute| |#3| (QUOTE -4142)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (QUOTE (-1041)))) -(-195 -2740 R) +((|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (QUOTE (-749))) (|HasAttribute| |#3| (QUOTE -3976)) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (QUOTE (-1005)))) +(-193 -2605 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4139 |has| |#2| (-989)) (-4140 |has| |#2| (-989)) (-4142 |has| |#2| (-6 -4142)) (-4145 . T)) +((-3973 |has| |#2| (-954)) (-3974 |has| |#2| (-954)) (-3976 |has| |#2| (-6 -3976)) (-3979 . T)) NIL -(-196 -2740 R) +(-194 -2605 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4139 |has| |#2| (-989)) (-4140 |has| |#2| (-989)) (-4142 |has| |#2| (-6 -4142)) (-4145 . T)) -((-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-989)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#2| (QUOTE (-318))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989)))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-318)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-738))) (-3677 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-781)))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-323))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (QUOTE (-190))) (-3677 (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-989))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117))))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (QUOTE (-1041))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-989)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))))) (|HasCategory| (-499) (QUOTE (-781))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-989)))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-989)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasAttribute| |#2| (QUOTE -4142)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-989)))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-73))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))))) -(-197 -2740 A B) +((-3973 |has| |#2| (-954)) (-3974 |has| |#2| (-954)) (-3976 |has| |#2| (-6 -3976)) (-3979 . T)) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-954)))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#2| (QUOTE (-308))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-710))) (OR (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-749)))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-313))) (OR (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#2| (QUOTE (-188))) (OR (|HasCategory| |#2| (QUOTE (-188))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-954))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -804) (QUOTE (-1079))))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#2| (QUOTE (-1005))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478)))))) (|HasCategory| (-478) (QUOTE (-749))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -804) (QUOTE (-1079))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasAttribute| |#2| (QUOTE -3976)) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) +(-195 -2605 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-198) +(-196) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-199 S) +(-197 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-200) +(-198) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4138 . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3972 . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-201 S) +(-199 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) NIL NIL -(-202 S) +(-200 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4146 . T) (-4145 . T)) -((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) -(-203 M) +((-3980 . T) (-3979 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-201 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-204 R) +(-202 R) ((|constructor| (NIL "Category of modules that extend differential rings. \\blankline"))) -((-4140 . T) (-4139 . T)) +((-3974 . T) (-3973 . T)) NIL -(-205 |vl| R) +(-203 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4147 "*") |has| |#2| (-146)) (-4138 |has| |#2| (-510)) (-4143 |has| |#2| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#2| (QUOTE (-848))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-146))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-510)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-318))) (|HasAttribute| |#2| (QUOTE -4143)) (|HasCategory| |#2| (QUOTE (-406))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-206) +(((-3981 "*") |has| |#2| (-144)) (-3972 |has| |#2| (-489)) (-3977 |has| |#2| (-6 -3977)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#2| (QUOTE (-814))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-814)))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-489)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -548) (QUOTE (-467))))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478)))) (OR (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasAttribute| |#2| (QUOTE -3977)) (|HasCategory| |#2| (QUOTE (-385))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) +(-204) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'."))) NIL NIL -(-207) +(-205) ((|constructor| (NIL "This domain provides representations for domains constructors.")) (|functorData| (((|FunctorData|) $) "\\spad{functorData x} returns the functor data associated with the domain constructor \\spad{x}."))) NIL NIL -(-208) +(-206) ((|constructor| (NIL "Represntation of domain templates resulting from compiling a domain constructor")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# x} returns the length of the domain template \\spad{x}."))) NIL NIL -(-209 |n| R M S) +(-207 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4142 -3677 (-2681 (|has| |#4| (-989)) (|has| |#4| (-190))) (|has| |#4| (-6 -4142)) (-2681 (|has| |#4| (-989)) (|has| |#4| (-836 (-1117))))) (-4139 |has| |#4| (-989)) (-4140 |has| |#4| (-989)) (-4145 . T)) -((-3677 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-323))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-684))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-781))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|))) (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#4| (QUOTE (-318))) (-3677 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-989)))) (-3677 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-318)))) (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (QUOTE (-684))) (|HasCategory| |#4| (QUOTE (-738))) (-3677 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (QUOTE (-781)))) (|HasCategory| |#4| (QUOTE (-781))) (|HasCategory| |#4| (QUOTE (-323))) (-3677 (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117)))) (-3677 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#4| (QUOTE (-190))) (-3677 (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-989))))) (-3677 (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -838) (QUOTE (-1117))))) (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#4| (QUOTE (-1041))) (-3677 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (QUOTE (-323))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (QUOTE (-684))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (QUOTE (-781))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))))) (-3677 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-323))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-684))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-781))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#4| (QUOTE (-989)))) (-3677 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-323))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-684))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-781))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499)))))) (|HasCategory| (-499) (QUOTE (-781))) (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -596) (QUOTE (-499))))) (-3677 (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -838) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-989)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-989))))) (-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-3677 (-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#4| (QUOTE (-989)))) (-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasAttribute| |#4| (QUOTE -4142)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-989))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-989)))) (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -838) (QUOTE (-1117))))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#4| (QUOTE (-73))) (-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|))))) -(-210 |n| R S) +((-3976 OR (-2546 (|has| |#4| (-954)) (|has| |#4| (-188))) (|has| |#4| (-6 -3976)) (-2546 (|has| |#4| (-954)) (|has| |#4| (-802 (-1079))))) (-3973 |has| |#4| (-954)) (-3974 |has| |#4| (-954)) (-3979 . T)) +((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-313))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-658))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-710))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-749))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-954))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|))) (|HasCategory| |#4| (|%list| (QUOTE -802) (QUOTE (-1079)))))) (|HasCategory| |#4| (QUOTE (-308))) (OR (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-954)))) (OR (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-308)))) (|HasCategory| |#4| (QUOTE (-954))) (|HasCategory| |#4| (QUOTE (-658))) (|HasCategory| |#4| (QUOTE (-710))) (OR (|HasCategory| |#4| (QUOTE (-710))) (|HasCategory| |#4| (QUOTE (-749)))) (|HasCategory| |#4| (QUOTE (-749))) (|HasCategory| |#4| (QUOTE (-313))) (OR (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-954))) (|HasCategory| |#4| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#4| (|%list| (QUOTE -802) (QUOTE (-1079)))))) (|HasCategory| |#4| (|%list| (QUOTE -802) (QUOTE (-1079)))) (OR (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-954))) (|HasCategory| |#4| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#4| (QUOTE (-188))) (OR (|HasCategory| |#4| (QUOTE (-188))) (-12 (|HasCategory| |#4| (QUOTE (-187))) (|HasCategory| |#4| (QUOTE (-954))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-954))) (|HasCategory| |#4| (|%list| (QUOTE -804) (QUOTE (-1079))))) (|HasCategory| |#4| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#4| (QUOTE (-1005))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#4| (QUOTE (-313))) (|HasCategory| |#4| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#4| (QUOTE (-658))) (|HasCategory| |#4| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#4| (QUOTE (-710))) (|HasCategory| |#4| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#4| (QUOTE (-749))) (|HasCategory| |#4| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#4| (QUOTE (-954))) (|HasCategory| |#4| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#4| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-313))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-658))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-710))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-749))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#4| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-313))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-658))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-710))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-749))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-954))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478)))))) (|HasCategory| (-478) (QUOTE (-749))) (-12 (|HasCategory| |#4| (QUOTE (-954))) (|HasCategory| |#4| (|%list| (QUOTE -575) (QUOTE (-478))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-954))) (|HasCategory| |#4| (|%list| (QUOTE -802) (QUOTE (-1079))))) (-12 (|HasCategory| |#4| (QUOTE (-954))) (|HasCategory| |#4| (|%list| (QUOTE -804) (QUOTE (-1079)))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-954)))) (-12 (|HasCategory| |#4| (QUOTE (-187))) (|HasCategory| |#4| (QUOTE (-954))))) (-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#4| (QUOTE (-954)))) (-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-954))) (|HasCategory| |#4| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasAttribute| |#4| (QUOTE -3976)) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-954))))) (-12 (|HasCategory| |#4| (QUOTE (-187))) (|HasCategory| |#4| (QUOTE (-954)))) (-12 (|HasCategory| |#4| (QUOTE (-954))) (|HasCategory| |#4| (|%list| (QUOTE -804) (QUOTE (-1079))))) (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-102))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#4| (QUOTE (-72))) (-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|))))) +(-208 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4142 -3677 (-2681 (|has| |#3| (-989)) (|has| |#3| (-190))) (|has| |#3| (-6 -4142)) (-2681 (|has| |#3| (-989)) (|has| |#3| (-836 (-1117))))) (-4139 |has| |#3| (-989)) (-4140 |has| |#3| (-989)) (-4145 . T)) -((-3677 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#3| (QUOTE (-318))) (-3677 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-989)))) (-3677 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-318)))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (QUOTE (-738))) (-3677 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-781)))) (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (QUOTE (-323))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))) (-3677 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#3| (QUOTE (-190))) (-3677 (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-989))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -838) (QUOTE (-1117))))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#3| (QUOTE (-1041))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#3| (QUOTE (-989)))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499)))))) (|HasCategory| (-499) (QUOTE (-781))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -838) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-989)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-989))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#3| (QUOTE (-989)))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasAttribute| |#3| (QUOTE -4142)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-989))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-989)))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -838) (QUOTE (-1117))))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#3| (QUOTE (-73))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|))))) -(-211 A R S V E) +((-3976 OR (-2546 (|has| |#3| (-954)) (|has| |#3| (-188))) (|has| |#3| (-6 -3976)) (-2546 (|has| |#3| (-954)) (|has| |#3| (-802 (-1079))))) (-3973 |has| |#3| (-954)) (-3974 |has| |#3| (-954)) (-3979 . T)) +((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079)))))) (|HasCategory| |#3| (QUOTE (-308))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-954)))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-308)))) (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (QUOTE (-710))) (OR (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (QUOTE (-749)))) (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (QUOTE (-313))) (OR (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079)))))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079)))) (OR (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#3| (QUOTE (-188))) (OR (|HasCategory| |#3| (QUOTE (-188))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-954))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -804) (QUOTE (-1079))))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#3| (QUOTE (-1005))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#3| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478)))))) (|HasCategory| (-478) (QUOTE (-749))) (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -575) (QUOTE (-478))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079))))) (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -804) (QUOTE (-1079)))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-954)))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-954))))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#3| (QUOTE (-954)))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasAttribute| |#3| (QUOTE -3976)) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-954))))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-954)))) (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -804) (QUOTE (-1079))))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|))))) +(-209 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-190)))) -(-212 R S V E) +((|HasCategory| |#2| (QUOTE (-188)))) +(-210 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-6 -3977)) (-3974 . T) (-3973 . T) (-3976 . T)) NIL -(-213 S) +(-211 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4145 . T) (-4146 . T)) +((-3979 . T) (-3980 . T)) NIL -(-214 |Ex|) +(-212 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-215) +(-213) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-216 R |Ex|) +(-214 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-217) +(-215) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{f:\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-218 R) +(-216 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-219) +(-217) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-220) +(-218) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-221) +(-219) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn't exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-222 S) +(-220 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-223 S R) +(-221 S R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-189)))) -(-224 R) +((|HasCategory| |#2| (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-187)))) +(-222 R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL NIL -(-225 R S V) +(-223 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-848))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| |#3| (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#3| (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#3| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#3| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#3| (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-226 A S) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-6 -3977)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-814))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| |#3| (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| |#3| (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| |#3| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| |#3| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#3| (|%list| (QUOTE -548) (QUOTE (-467))))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (OR (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasAttribute| |#1| (QUOTE -3977)) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-224 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-227 S) +(-225 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-228) +(-226) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-229 R -3215) +(-227 R -3076) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-230 R -3215) +(-228 R -3076) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-231 |Coef| UTS ULS) +(-229 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-318)))) -(-232 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-308)))) +(-230 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-318)))) -(-233) +((|HasCategory| |#1| (QUOTE (-308)))) +(-231) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|Syntax|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-234) +(-232) ((|environment| (((|Environment|) $) "\\spad{environment(x)} returns the environment of the elaboration \\spad{x}.")) (|typeForm| (((|InternalTypeForm|) $) "\\spad{typeForm(x)} returns the type form of the elaboration \\spad{x}.")) (|irForm| (((|InternalRepresentationForm|) $) "\\spad{irForm(x)} returns the internal representation form of the elaboration \\spad{x}.")) (|elaboration| (($ (|InternalRepresentationForm|) (|InternalTypeForm|) (|Environment|)) "\\spad{elaboration(ir,ty,env)} construct an elaboration object for for the internal representation form \\spad{ir},{} with type \\spad{ty},{} and environment \\spad{env}."))) NIL NIL -(-235 A S) +(-233 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-1041)))) -(-236 S) +((|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-1005)))) +(-234 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4146 . T)) +((-3980 . T)) NIL -(-237 S) +(-235 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-238) +(-236) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-239 |Coef| UTS) +(-237 |Coef| UTS) ((|constructor| (NIL "The elliptic functions sn,{} sc and dn are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function dn as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function cn as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function sn as a Taylor \\indented{1}{series.}"))) NIL NIL -(-240 S T$) +(-238 S T$) ((|constructor| (NIL "An eltable over domains \\spad{S} and \\spad{T} is a structure which can be viewed as a function from \\spad{S} to \\spad{T}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,s)} (also written: \\spad{u.s}) returns the value of \\spad{u} at \\spad{s}. Error: if \\spad{u} is not defined at \\spad{s}."))) NIL NIL -(-241 S |Dom| |Im|) +(-239 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4146))) -(-242 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -3980))) +(-240 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-243 S R |Mod| -2138 -3658 |exactQuo|) +(-241 S R |Mod| -2023 -3502 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-244) +(-242) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4138 . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3972 . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-245) +(-243) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-246 R) +(-244 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-247 S) +(-245 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4142 -3677 (|has| |#1| (-989)) (|has| |#1| (-427))) (-4139 |has| |#1| (-989)) (-4140 |has| |#1| (-989))) -((|HasCategory| |#1| (QUOTE (-318))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-989)))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (-3677 (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-989)))) (-3677 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-684)))) (|HasCategory| |#1| (QUOTE (-427))) (-3677 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-684))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-684))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-252))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-427)))) (-3677 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-684)))) (-3677 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-989)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-684)))) -(-248 S R) +((-3976 OR (|has| |#1| (-954)) (|has| |#1| (-406))) (-3973 |has| |#1| (-954)) (-3974 |has| |#1| (-954))) +((|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-954)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (OR (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-954)))) (OR (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-658)))) (|HasCategory| |#1| (QUOTE (-406))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-658))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-658))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (|%list| (QUOTE -447) (QUOTE (-1079)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-250))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-406)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-658)))) (OR (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-954)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-658)))) +(-246 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-249 |Key| |Entry|) +(-247 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-1041))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) -(-250) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3844) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -548) (QUOTE (-467)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-1005))) (OR (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765))))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +(-248) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-251 S) +(-249 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-989)))) -(-252) +((|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-954)))) +(-250) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-253 -3215 S) +(-251 -3076 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-254 E -3215) +(-252 E -3076) ((|constructor| (NIL "This package allows a mapping \\spad{E} -> \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL -(-255) -((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) -NIL -NIL -(-256 A B) -((|constructor| (NIL "\\spad{ExpertSystemContinuityPackage1} exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) -NIL -NIL -(-257) -((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' -> 0.75 200 `operation units' -> 0.5 83 `operation units' -> 0.25 ** = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) -NIL -NIL -(-258 R1) -((|constructor| (NIL "\\axiom{\\spad{ExpertSystemToolsPackage1}} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) -NIL -NIL -(-259 R1 R2) -((|constructor| (NIL "\\axiom{\\spad{ExpertSystemToolsPackage2}} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping \\spad{f:R1} -> \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) -NIL -NIL -(-260 S) +(-253 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-261) +(-254) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-262 S R) +(-255 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-263 R) +(-256 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-264 -3215) +(-257 -3076) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-265) +(-258) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-266) +(-259) ((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-267 R FE |var| |cen|) +(-260 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-848))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-960))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-763))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-781))) (-3677 (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-763))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-781)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-1092))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -468) (QUOTE (-1117)) (|%list| (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -263) (|%list| (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -240) (|%list| (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-261))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-498))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-848)))) (-3677 (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-848)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-118))))) -(-268 R) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-814))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -943) (QUOTE (-1079)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-116))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-926))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-733))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-749))) (OR (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-733))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-749)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-1055))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-187))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-188))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -447) (QUOTE (-1079)) (|%list| (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -256) (|%list| (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -238) (|%list| (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-254))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-477))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-814)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-814)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-116))))) +(-261 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4142 -3677 (-12 (|has| |#1| (-510)) (-3677 (|has| |#1| (-989)) (|has| |#1| (-427)))) (|has| |#1| (-989)) (|has| |#1| (-427))) (-4140 |has| |#1| (-146)) (-4139 |has| |#1| (-146)) ((-4147 "*") |has| |#1| (-510)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-510)) (-4137 |has| |#1| (-510))) -((-3677 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (QUOTE (-510))) (-3677 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-989)))) (|HasCategory| |#1| (QUOTE (-21))) (-3677 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-989)))) (|HasCategory| |#1| (QUOTE (-989))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))))) (-3677 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499))))) (-3677 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-989)))) (-3677 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-989)))) (-3677 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-989)))) (-12 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1052)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3677 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-989)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| $ (QUOTE (-989))) (|HasCategory| $ (|%list| (QUOTE -978) (QUOTE (-499))))) -(-269 R S) +((-3976 OR (-12 (|has| |#1| (-489)) (OR (|has| |#1| (-954)) (|has| |#1| (-406)))) (|has| |#1| (-954)) (|has| |#1| (-406))) (-3974 |has| |#1| (-144)) (-3973 |has| |#1| (-144)) ((-3981 "*") |has| |#1| (-489)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-489)) (-3971 |has| |#1| (-489))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (QUOTE (-489))) (OR (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-954)))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-954)))) (|HasCategory| |#1| (QUOTE (-954))) (OR (-12 (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478)))))) (OR (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (OR (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-954)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-954)))) (OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-954)))) (-12 (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1015)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| $ (QUOTE (-954))) (|HasCategory| $ (|%list| (QUOTE -943) (QUOTE (-478))))) +(-262 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-270 R FE) +(-263 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-271 R -3215) +(-264 R -3076) ((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL -(-272) +(-265) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-273 FE |var| |cen|) +(-266 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|)))) (|HasCategory| (-361 (-499)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-318))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|))))))) -(-274 M) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-308)) (-3971 |has| |#1| (-308)) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|)))) (|HasCategory| (-343 (-478)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasSignature| |#1| (|%list| (QUOTE -3930) (|%list| (|devaluate| |#1|) (QUOTE (-1079)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3796) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1079))))) (|HasSignature| |#1| (|%list| (QUOTE -3065) (|%list| (|%list| (QUOTE -578) (QUOTE (-1079))) (|devaluate| |#1|))))))) +(-267 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-275 E OV R P) +(-268 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between -k and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-276 S) +(-269 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The operation is commutative."))) -((-4140 . T) (-4139 . T)) -((|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| (-499) (QUOTE (-737)))) -(-277 S E) +((-3974 . T) (-3973 . T)) +((|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| (-478) (QUOTE (-709)))) +(-270 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}'s.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\^\\spad{e1} ... an\\^en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-278 S) +(-271 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-714) (QUOTE (-737)))) -(-279 S R E) +((|HasCategory| (-687) (QUOTE (-709)))) +(-272 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-146)))) -(-280 R E) +((|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-144)))) +(-273 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-281 S) +(-274 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4146 . T) (-4145 . T)) -((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) -(-282 S -3215) +((-3980 . T) (-3979 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-275 S -3076) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-323)))) -(-283 -3215) +((|HasCategory| |#2| (QUOTE (-313)))) +(-276 -3076) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -NIL -(-284) -((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -NIL -(-285 E) +(-277 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-286) -((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables \\spad{I1},{} \\spad{I2},{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,b,d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,p,q)} uses loop variables in the Fortran,{} \\spad{I1} and \\spad{I2}")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,p)} \\undocumented{}"))) -NIL -NIL -(-287) +(-278) ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-288 -3215 UP UPUP R) +(-279 -3076 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-289 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-280 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-290 S -3215 UP UPUP R) +(-281 S -3076 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-291 -3215 UP UPUP R) +(-282 -3076 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-292 S R) +(-283 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -240) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-293 R) +((|HasCategory| |#2| (|%list| (QUOTE -447) (QUOTE (-1079)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -238) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-284 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-294 |basicSymbols| |subscriptedSymbols| R) -((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function \\spad{LOG10}")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-333)))) (|HasCategory| $ (QUOTE (-989))) (|HasCategory| $ (|%list| (QUOTE -978) (QUOTE (-499))))) -(-295 |p| |n|) +(-285 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((-3677 (|HasCategory| (-844 |#1|) (QUOTE (-118))) (|HasCategory| (-844 |#1|) (QUOTE (-323)))) (|HasCategory| (-844 |#1|) (QUOTE (-120))) (|HasCategory| (-844 |#1|) (QUOTE (-323))) (|HasCategory| (-844 |#1|) (QUOTE (-118)))) -(-296 S -3215 UP UPUP) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((OR (|HasCategory| (-810 |#1|) (QUOTE (-116))) (|HasCategory| (-810 |#1|) (QUOTE (-313)))) (|HasCategory| (-810 |#1|) (QUOTE (-118))) (|HasCategory| (-810 |#1|) (QUOTE (-313))) (|HasCategory| (-810 |#1|) (QUOTE (-116)))) +(-286 S -3076 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-318)))) -(-297 -3215 UP UPUP) +((|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-308)))) +(-287 -3076 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4138 |has| (-361 |#2|) (-318)) (-4143 |has| (-361 |#2|) (-318)) (-4137 |has| (-361 |#2|) (-318)) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3972 |has| (-343 |#2|) (-308)) (-3977 |has| (-343 |#2|) (-308)) (-3971 |has| (-343 |#2|) (-308)) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-298 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-288 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-299 |p| |extdeg|) +(-289 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((-3677 (|HasCategory| (-844 |#1|) (QUOTE (-118))) (|HasCategory| (-844 |#1|) (QUOTE (-323)))) (|HasCategory| (-844 |#1|) (QUOTE (-120))) (|HasCategory| (-844 |#1|) (QUOTE (-323))) (|HasCategory| (-844 |#1|) (QUOTE (-118)))) -(-300 GF |defpol|) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((OR (|HasCategory| (-810 |#1|) (QUOTE (-116))) (|HasCategory| (-810 |#1|) (QUOTE (-313)))) (|HasCategory| (-810 |#1|) (QUOTE (-118))) (|HasCategory| (-810 |#1|) (QUOTE (-313))) (|HasCategory| (-810 |#1|) (QUOTE (-116)))) +(-290 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((-3677 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-118)))) -(-301 GF |extdeg|) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-116)))) +(-291 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((-3677 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-118)))) -(-302 GF) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-116)))) +(-292 GF) ((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-303 F1 GF F2) +(-293 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}GF,{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn't divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn't divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-304 S) +(-294 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-305) +(-295) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-306 R UP -3215) +(-296 R UP -3076) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-307 |p| |extdeg|) +(-297 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((-3677 (|HasCategory| (-844 |#1|) (QUOTE (-118))) (|HasCategory| (-844 |#1|) (QUOTE (-323)))) (|HasCategory| (-844 |#1|) (QUOTE (-120))) (|HasCategory| (-844 |#1|) (QUOTE (-323))) (|HasCategory| (-844 |#1|) (QUOTE (-118)))) -(-308 GF |uni|) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((OR (|HasCategory| (-810 |#1|) (QUOTE (-116))) (|HasCategory| (-810 |#1|) (QUOTE (-313)))) (|HasCategory| (-810 |#1|) (QUOTE (-118))) (|HasCategory| (-810 |#1|) (QUOTE (-313))) (|HasCategory| (-810 |#1|) (QUOTE (-116)))) +(-298 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((-3677 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-118)))) -(-309 GF |extdeg|) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-116)))) +(-299 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((-3677 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-118)))) -(-310 GF |defpol|) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-116)))) +(-300 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((-3677 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-118)))) -(-311 GF) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-116)))) +(-301 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-312 -3215 GF) +(-302 -3076 GF) ((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}GF) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-313 -3215 FP FPP) +(-303 -3076 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL -(-314 GF |n|) +(-304 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((-3677 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-118)))) -(-315 R |ls|) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-116)))) +(-305 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}."))) NIL NIL -(-316 S) +(-306 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4142 . T)) +((-3976 . T)) NIL -(-317 S) +(-307 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-318) +(-308) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-319 S) +(-309 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-320 |Name| S) +(-310 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer's file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-321 S R) +(-311 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-510)))) -(-322 R) +((|HasCategory| |#2| (QUOTE (-489)))) +(-312 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4142 |has| |#1| (-510)) (-4140 . T) (-4139 . T)) +((-3976 |has| |#1| (-489)) (-3974 . T) (-3973 . T)) NIL -(-323) +(-313) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-324 S R UP) +(-314 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-318)))) -(-325 R UP) +((|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-308)))) +(-315 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4139 . T) (-4140 . T) (-4142 . T)) +((-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-326 A S) +(-316 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4146)) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-1041)))) -(-327 S) +((|HasAttribute| |#1| (QUOTE -3980)) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-1005)))) +(-317 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4145 . T)) +((-3979 . T)) NIL -(-328 S A R B) +(-318 S A R B) ((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-329 |VarSet| R) +(-319 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr)")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}xn],{} [\\spad{v1},{}...,{}vn])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4140 . T) (-4139 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3974 . T) (-3973 . T)) NIL -(-330 S V) +(-320 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-331 S R) +(-321 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) -(-332 R) +((|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) +(-322 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL NIL -(-333) +(-323) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4128 . T) (-4136 . T) (-3920 . T) (-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3962 . T) (-3970 . T) (-3754 . T) (-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-334 |Par|) +(-324 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-335 |Par|) +(-325 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in lp,{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-336 R S) +(-326 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4140 . T) (-4139 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-1041))))) -(-337 R S) +((-3974 . T) (-3973 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1005))))) +(-327 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.fr)")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4140 . T) (-4139 . T)) -((|HasCategory| |#1| (QUOTE (-146)))) -(-338) -((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -NIL -NIL -(-339 R |Basis|) +((-3974 . T) (-3973 . T)) +((|HasCategory| |#1| (QUOTE (-144)))) +(-328 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.fr)")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4140 . T) (-4139 . T)) -NIL -(-340) -((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) +((-3974 . T) (-3973 . T)) NIL -NIL -(-341 S) +(-329 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-342 S) +(-330 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-781)))) -(-343) -((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -NIL -(-344) +((|HasCategory| |#1| (QUOTE (-749)))) +(-331) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-345) +(-332) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) NIL NIL -(-346 |n| |class| R) +(-333 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4140 . T) (-4139 . T)) -NIL -(-347) -((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) +((-3974 . T) (-3973 . T)) NIL -NIL -(-348 -3215 UP UPUP R) +(-334 -3076 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-349) -((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) -NIL -NIL -(-350) -((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) -NIL -NIL -(-351) -((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -NIL -NIL -(-352 -3690 |returnType| -1456 |symbols|) -((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) -NIL -NIL -(-353 -3215 UP) +(-335 -3076 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-354 R) +(-336 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) NIL NIL -(-355 S) +(-337 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-356) +(-338) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-357 S) +(-339 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4128)) (|HasAttribute| |#1| (QUOTE -4136))) -(-358) +((|HasAttribute| |#1| (QUOTE -3962)) (|HasAttribute| |#1| (QUOTE -3970))) +(-340) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3920 . T) (-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3754 . T) (-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-359 R) +(-341 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -468) (QUOTE (-1117)) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -263) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -240) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#1| (QUOTE (-1162))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-1162)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -240) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-498))) (|HasCategory| |#1| (QUOTE (-406)))) -(-360 R S) +((-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -447) (QUOTE (-1079)) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -256) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -238) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#1| (QUOTE (-1123))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#1| (|%list| (QUOTE -447) (QUOTE (-1079)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -238) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-477))) (|HasCategory| |#1| (QUOTE (-385)))) +(-342 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-361 S) +(-343 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4132 -12 (|has| |#1| (-6 -4143)) (|has| |#1| (-406)) (|has| |#1| (-6 -4132))) (-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-763))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-763))) (|HasCategory| |#1| (QUOTE (-781)))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#1| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -240) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-498))) (-12 (|HasAttribute| |#1| (QUOTE -4132)) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406)))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-362 A B) +((-3966 -12 (|has| |#1| (-6 -3977)) (|has| |#1| (-385)) (|has| |#1| (-6 -3966))) (-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-733))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-733))) (|HasCategory| |#1| (QUOTE (-749)))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#1| (|%list| (QUOTE -447) (QUOTE (-1079)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -238) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-477))) (-12 (|HasAttribute| |#1| (QUOTE -3966)) (|HasAttribute| |#1| (QUOTE -3977)) (|HasCategory| |#1| (QUOTE (-385)))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-344 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-363 S R UP) +(-345 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-364 R UP) +(-346 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4139 . T) (-4140 . T) (-4142 . T)) +((-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-365 A S) +(-347 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) -(-366 S) +((|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) +(-348 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-367 R -3215 UP A) +(-349 R -3076 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4142 . T)) +((-3976 . T)) NIL -(-368 R1 F1 U1 A1 R2 F2 U2 A2) +(-350 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-369 R -3215 UP A |ibasis|) +(-351 R -3076 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (|%list| (QUOTE -978) (|devaluate| |#2|)))) -(-370 AR R AS S) +((|HasCategory| |#4| (|%list| (QUOTE -943) (|devaluate| |#2|)))) +(-352 AR R AS S) ((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-371 S R) +(-353 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-318)))) -(-372 R) +((|HasCategory| |#2| (QUOTE (-308)))) +(-354 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4142 |has| |#1| (-510)) (-4140 . T) (-4139 . T)) +((-3976 |has| |#1| (-489)) (-3974 . T) (-3973 . T)) NIL -(-373 R) +(-355 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL NIL -(-374 S R) +(-356 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488))))) -(-375 R) +((|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467))))) +(-357 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4142 -3677 (|has| |#1| (-989)) (|has| |#1| (-427))) (-4140 |has| |#1| (-146)) (-4139 |has| |#1| (-146)) ((-4147 "*") |has| |#1| (-510)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-510)) (-4137 |has| |#1| (-510))) +((-3976 OR (|has| |#1| (-954)) (|has| |#1| (-406))) (-3974 |has| |#1| (-144)) (-3973 |has| |#1| (-144)) ((-3981 "*") |has| |#1| (-489)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-489)) (-3971 |has| |#1| (-489))) NIL -(-376 R A S B) +(-358 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-377 R FE |x| |cen|) +(-359 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-378 R FE |Expon| UPS TRAN |x|) +(-360 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-379 A S) +(-361 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-323)))) -(-380 S) +((|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-313)))) +(-362 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4145 . T) (-4135 . T) (-4146 . T)) +((-3979 . T) (-3969 . T) (-3980 . T)) NIL -(-381 S A R B) +(-363 S A R B) ((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-382 R -3215) +(-364 R -3076) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-383 R E) +(-365 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4132 -12 (|has| |#1| (-6 -4132)) (|has| |#2| (-6 -4132))) (-4139 . T) (-4140 . T) (-4142 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4132)) (|HasAttribute| |#2| (QUOTE -4132)))) -(-384 R -3215) +((-3966 -12 (|has| |#1| (-6 -3966)) (|has| |#2| (-6 -3966))) (-3973 . T) (-3974 . T) (-3976 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -3966)) (|HasAttribute| |#2| (QUOTE -3966)))) +(-366 R -3076) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-385 R -3215) +(-367 R -3076) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-386 R -3215) +(-368 R -3076) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-387 R -3215) +(-369 R -3076) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-388) +(-370) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-389 R -3215 UP) +(-371 R -3076 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-48))))) -(-390) +((|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-48))))) +(-372) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL -(-391) -((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) -NIL -NIL -(-392 |f|) +(-373 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-393) +(-374) ((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL -(-394) -((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -NIL -NIL -(-395) -((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -NIL -NIL -(-396 UP) +(-375 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-397 R UP -3215) +(-376 R UP -3076) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the lp norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-398 R UP) +(-377 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-399 R) +(-378 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-358)))) -(-400) +((|HasCategory| |#1| (QUOTE (-340)))) +(-379) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-401 |Dom| |Expon| |VarSet| |Dpol|) +(-380 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-318)))) -(-402 |Dom| |Expon| |VarSet| |Dpol|) +((|HasCategory| |#1| (QUOTE (-308)))) +(-381 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-403 |Dom| |Expon| |VarSet| |Dpol|) +(-382 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-404 |Dom| |Expon| |VarSet| |Dpol|) +(-383 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-405 S) +(-384 S) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-406) +(-385) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-407 R |n| |ls| |gamma|) +(-386 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4142 |has| (-361 (-884 |#1|)) (-510)) (-4140 . T) (-4139 . T)) -((|HasCategory| (-361 (-884 |#1|)) (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| (-361 (-884 |#1|)) (QUOTE (-510)))) -(-408 |vl| R E) +((-3976 |has| (-343 (-850 |#1|)) (-489)) (-3974 . T) (-3973 . T)) +((|HasCategory| (-343 (-850 |#1|)) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| (-343 (-850 |#1|)) (QUOTE (-489)))) +(-387 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4147 "*") |has| |#2| (-146)) (-4138 |has| |#2| (-510)) (-4143 |has| |#2| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#2| (QUOTE (-848))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-146))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-510)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-318))) (|HasAttribute| |#2| (QUOTE -4143)) (|HasCategory| |#2| (QUOTE (-406))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-409 R BP) +(((-3981 "*") |has| |#2| (-144)) (-3972 |has| |#2| (-489)) (-3977 |has| |#2| (-6 -3977)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#2| (QUOTE (-814))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-814)))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-489)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -548) (QUOTE (-467))))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478)))) (OR (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasAttribute| |#2| (QUOTE -3977)) (|HasCategory| |#2| (QUOTE (-385))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) +(-388 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional."))) NIL NIL -(-410 OV E S R P) +(-389 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-411 E OV R P) +(-390 E OV R P) ((|constructor| (NIL "This package provides operations for GCD computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the GCD of \\spad{p} and \\spad{q}"))) NIL NIL -(-412 R) +(-391 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-413 R FE) +(-392 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) NIL NIL -(-414 RP TP) +(-393 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-415 |vl| R IS E |ff| P) +(-394 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4140 . T) (-4139 . T)) +((-3974 . T) (-3973 . T)) NIL -(-416 E V R P Q) +(-395 E V R P Q) ((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-417 R E |VarSet| P) +(-396 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}."))) -((-4146 . T) (-4145 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#4| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#4| (QUOTE (-73)))) -(-418 S R E) +((-3980 . T) (-3979 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#4| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-397 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-419 R E) +(-398 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-420) +(-399) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(vv) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-421) +(-400) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-422) +(-401) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}pt) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it's data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it's elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-423 S R E) +(-402 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-424 R E) +(-403 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-425 |lv| -3215 R) +(-404 |lv| -3076 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-426 S) +(-405 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-427) +(-406) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4142 . T)) +((-3976 . T)) NIL -(-428 |Coef| |var| |cen|) +(-407 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|)))) (|HasCategory| (-361 (-499)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-318))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|))))))) -(-429 |Key| |Entry| |Tbl| |dent|) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-308)) (-3971 |has| |#1| (-308)) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|)))) (|HasCategory| (-343 (-478)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasSignature| |#1| (|%list| (QUOTE -3930) (|%list| (|devaluate| |#1|) (QUOTE (-1079)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3796) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1079))))) (|HasSignature| |#1| (|%list| (QUOTE -3065) (|%list| (|%list| (QUOTE -578) (QUOTE (-1079))) (|devaluate| |#1|))))))) +(-408 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4146 . T)) -((-12 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) -(-430 R E V P) +((-3980 . T)) +((-12 (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3844) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -548) (QUOTE (-467)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (OR (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) +(-409 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4146 . T) (-4145 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#4| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#4| (QUOTE (-73)))) -(-431) +((-3980 . T) (-3979 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#4| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-410) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-432) +(-411) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-433 |Key| |Entry| |hashfn|) +(-412 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-1041))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) -(-434) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3844) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -548) (QUOTE (-467)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-1005))) (OR (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765))))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +(-413) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-435 |vl| R) +(-414 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4147 "*") |has| |#2| (-146)) (-4138 |has| |#2| (-510)) (-4143 |has| |#2| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#2| (QUOTE (-848))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-146))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-510)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-318))) (|HasAttribute| |#2| (QUOTE -4143)) (|HasCategory| |#2| (QUOTE (-406))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-436 -2740 S) +(((-3981 "*") |has| |#2| (-144)) (-3972 |has| |#2| (-489)) (-3977 |has| |#2| (-6 -3977)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#2| (QUOTE (-814))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-814)))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-489)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -548) (QUOTE (-467))))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478)))) (OR (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasAttribute| |#2| (QUOTE -3977)) (|HasCategory| |#2| (QUOTE (-385))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) +(-415 -2605 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4139 |has| |#2| (-989)) (-4140 |has| |#2| (-989)) (-4142 |has| |#2| (-6 -4142)) (-4145 . T)) -((-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-989)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#2| (QUOTE (-318))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989)))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-318)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-738))) (-3677 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-781)))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-323))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (QUOTE (-190))) (-3677 (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-989))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117))))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (QUOTE (-1041))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-989)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))))) (|HasCategory| (-499) (QUOTE (-781))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-989)))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-989)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasAttribute| |#2| (QUOTE -4142)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-989)))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-73))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))))) -(-437) +((-3973 |has| |#2| (-954)) (-3974 |has| |#2| (-954)) (-3976 |has| |#2| (-6 -3976)) (-3979 . T)) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-954)))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#2| (QUOTE (-308))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-710))) (OR (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-749)))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-313))) (OR (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#2| (QUOTE (-188))) (OR (|HasCategory| |#2| (QUOTE (-188))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-954))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -804) (QUOTE (-1079))))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#2| (QUOTE (-1005))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478)))))) (|HasCategory| (-478) (QUOTE (-749))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -804) (QUOTE (-1079))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasAttribute| |#2| (QUOTE -3976)) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) +(-416) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL -(-438 S) +(-417 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) -(-439 -3215 UP UPUP R) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-418 -3076 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-440 BP) +(-419 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer gcd. Geddes's algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = gcd of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = gcd and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = gcd and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = gcd of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = gcd of the polynomials \\spad{fi}."))) NIL NIL -(-441) +(-420) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| (-499) (QUOTE (-848))) (|HasCategory| (-499) (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| (-499) (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-120))) (|HasCategory| (-499) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-499) (QUOTE (-960))) (|HasCategory| (-499) (QUOTE (-763))) (|HasCategory| (-499) (QUOTE (-781))) (-3677 (|HasCategory| (-499) (QUOTE (-763))) (|HasCategory| (-499) (QUOTE (-781)))) (|HasCategory| (-499) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-499) (QUOTE (-1092))) (|HasCategory| (-499) (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-499) (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-499) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-499) (QUOTE (-189))) (|HasCategory| (-499) (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| (-499) (QUOTE (-190))) (|HasCategory| (-499) (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| (-499) (|%list| (QUOTE -468) (QUOTE (-1117)) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -263) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -240) (QUOTE (-499)) (QUOTE (-499)))) (|HasCategory| (-499) (QUOTE (-261))) (|HasCategory| (-499) (QUOTE (-498))) (|HasCategory| (-499) (|%list| (QUOTE -596) (QUOTE (-499)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-848)))) (-3677 (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-848)))) (|HasCategory| (-499) (QUOTE (-118))))) -(-442 A S) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| (-478) (QUOTE (-814))) (|HasCategory| (-478) (|%list| (QUOTE -943) (QUOTE (-1079)))) (|HasCategory| (-478) (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-118))) (|HasCategory| (-478) (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-478) (QUOTE (-926))) (|HasCategory| (-478) (QUOTE (-733))) (|HasCategory| (-478) (QUOTE (-749))) (OR (|HasCategory| (-478) (QUOTE (-733))) (|HasCategory| (-478) (QUOTE (-749)))) (|HasCategory| (-478) (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| (-478) (QUOTE (-1055))) (|HasCategory| (-478) (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| (-478) (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| (-478) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| (-478) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| (-478) (QUOTE (-187))) (|HasCategory| (-478) (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| (-478) (QUOTE (-188))) (|HasCategory| (-478) (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| (-478) (|%list| (QUOTE -447) (QUOTE (-1079)) (QUOTE (-478)))) (|HasCategory| (-478) (|%list| (QUOTE -256) (QUOTE (-478)))) (|HasCategory| (-478) (|%list| (QUOTE -238) (QUOTE (-478)) (QUOTE (-478)))) (|HasCategory| (-478) (QUOTE (-254))) (|HasCategory| (-478) (QUOTE (-477))) (|HasCategory| (-478) (|%list| (QUOTE -575) (QUOTE (-478)))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-814)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-814)))) (|HasCategory| (-478) (QUOTE (-116))))) +(-421 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4145)) (|HasAttribute| |#1| (QUOTE -4146)) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) -(-443 S) +((|HasAttribute| |#1| (QUOTE -3979)) (|HasAttribute| |#1| (QUOTE -3980)) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765))))) +(-422 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL -(-444 S) +(-423 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-445) +(-424) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name `n'."))) NIL NIL -(-446 S) +(-425 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-447) +(-426) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-448 -3215 UP |AlExt| |AlPol|) +(-427 -3076 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-449) +(-428) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| $ (QUOTE (-989))) (|HasCategory| $ (|%list| (QUOTE -978) (QUOTE (-499))))) -(-450 S |mn|) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| $ (QUOTE (-954))) (|HasCategory| $ (|%list| (QUOTE -943) (QUOTE (-478))))) +(-429 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type."))) -((-4146 . T) (-4145 . T)) -((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) -(-451 R |mnRow| |mnCol|) +((-3980 . T) (-3979 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-430 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray's with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) -(-452 K R UP) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-431 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-453 R UP -3215) +(-432 R UP -3076) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the gcd of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-454 |mn|) +(-433 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4146 . T) (-4145 . T)) -((-12 (|HasCategory| (-85) (QUOTE (-1041))) (|HasCategory| (-85) (|%list| (QUOTE -263) (QUOTE (-85))))) (|HasCategory| (-85) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-85) (QUOTE (-781))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| (-85) (QUOTE (-1041))) (|HasCategory| (-85) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-85) (QUOTE (-73)))) -(-455 K R UP L) +((-3980 . T) (-3979 . T)) +((-12 (|HasCategory| (-83) (QUOTE (-1005))) (|HasCategory| (-83) (|%list| (QUOTE -256) (QUOTE (-83))))) (|HasCategory| (-83) (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-83) (QUOTE (-749))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| (-83) (QUOTE (-1005))) (|HasCategory| (-83) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-83) (QUOTE (-72)))) +(-434 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-456) +(-435) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-457 R Q A B) +(-436 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL NIL -(-458 -3215 |Expon| |VarSet| |DPoly|) +(-437 -3076 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -569) (QUOTE (-1117))))) -(-459 |vl| |nv|) +((|HasCategory| |#3| (|%list| (QUOTE -548) (QUOTE (-1079))))) +(-438 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-460) +(-439) ((|constructor| (NIL "This domain provides representation for plain identifiers. It differs from Symbol in that it does not support any form of scripting. It is a plain basic data structure. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system"))) NIL NIL -(-461 A S) +(-440 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-1041))))) -(-462 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1005))))) +(-441 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-1041))))) -(-463 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1005))))) +(-442 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|Pair| |#2| |#1|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-464 A S) +(-443 A S) ((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-1041))))) -(-465 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1005))))) +(-444 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-1041))))) -(-466 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1005))))) +(-445 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-1041))))) -(-467 S A B) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1005))))) +(-446 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-468 A B) +(-447 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-469 S E |un|) +(-448 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-737)))) -(-470 S |mn|) +((|HasCategory| |#2| (QUOTE (-709)))) +(-449 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4146 . T) (-4145 . T)) -((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) -(-471) +((-3980 . T) (-3979 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-450) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-472 |p| |n|) +(-451 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((-3677 (|HasCategory| (-532 |#1|) (QUOTE (-118))) (|HasCategory| (-532 |#1|) (QUOTE (-323)))) (|HasCategory| (-532 |#1|) (QUOTE (-120))) (|HasCategory| (-532 |#1|) (QUOTE (-323))) (|HasCategory| (-532 |#1|) (QUOTE (-118)))) -(-473 R |mnRow| |mnCol| |Row| |Col|) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((OR (|HasCategory| (-511 |#1|) (QUOTE (-116))) (|HasCategory| (-511 |#1|) (QUOTE (-313)))) (|HasCategory| (-511 |#1|) (QUOTE (-118))) (|HasCategory| (-511 |#1|) (QUOTE (-313))) (|HasCategory| (-511 |#1|) (QUOTE (-116)))) +(-452 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) -(-474 R |Row| |Col| M) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-453 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4146))) -(-475 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -3980))) +(-454 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4146))) -(-476 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -3980))) +(-455 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-510))) (|HasAttribute| |#1| (QUOTE (-4147 "*"))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) -(-477) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-489))) (|HasAttribute| |#1| (QUOTE (-3981 "*"))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-456) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-478) +(-457) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-479 S) +(-458 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-480) +(-459) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-481 GF) +(-460 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(GF) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{**}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in GF(2^m) using normal bases\",{} Information and Computation 78,{} pp.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in GF(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} pp.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field GF."))) NIL NIL -(-482) +(-461) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file `f'.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-483 R) +(-462 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} := increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} := increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-484 |Varset|) +(-463 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| (-714) (QUOTE (-1041))))) -(-485 K -3215 |Par|) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| (-687) (QUOTE (-1005))))) +(-464 K -3076 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to br used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-486) +(-465) NIL NIL NIL -(-487) +(-466) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-488) +(-467) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}'s are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-489 R) +(-468 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-490 |Coef| UTS) +(-469 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-491 K -3215 |Par|) +(-470 K -3076 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-492 R BP |pMod| |nextMod|) +(-471 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the gcd of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the gcd of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-493 OV E R P) +(-472 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-494 K UP |Coef| UTS) +(-473 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-495 |Coef| UTS) +(-474 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-496 R UP) +(-475 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL -(-497 S) +(-476 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-498) +(-477) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4143 . T) (-4144 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3977 . T) (-3978 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-499) +(-478) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4133 . T) (-4137 . T) (-4132 . T) (-4143 . T) (-4144 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3967 . T) (-3971 . T) (-3966 . T) (-3977 . T) (-3978 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-500) +(-479) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-501) +(-480) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-502) +(-481) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-503) +(-482) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-504 |Key| |Entry| |addDom|) +(-483 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-1041))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) -(-505 R -3215) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3844) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -548) (QUOTE (-467)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-1005))) (OR (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765))))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +(-484 R -3076) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-506 R0 -3215 UP UPUP R) +(-485 R0 -3076 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-507) +(-486) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-508 R) +(-487 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3920 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3754 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-509 S) +(-488 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-510) +(-489) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-511 R -3215) +(-490 R -3076) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-512 I) +(-491 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra's eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-513 R -3215 L) +(-492 R -3076 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -616) (|devaluate| |#2|)))) -(-514) +((|HasCategory| |#3| (|%list| (QUOTE -595) (|devaluate| |#2|)))) +(-493) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-515 -3215 UP UPUP R) +(-494 -3076 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-516 -3215 UP) +(-495 -3076 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-517 R -3215 L) +(-496 R -3076 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -616) (|devaluate| |#2|)))) -(-518 R -3215) +((|HasCategory| |#3| (|%list| (QUOTE -595) (|devaluate| |#2|)))) +(-497 R -3076) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-585))))) -(-519 -3215 UP) +((-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| |#2| (QUOTE (-564))))) +(-498 -3076 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-520 S) +(-499 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-521 -3215) +(-500 -3076) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-522 R) +(-501 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3920 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3754 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-523) +(-502) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL -(-524 R -3215) +(-503 R -3076) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-585))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#1| (QUOTE (-510)))) -(-525 -3215 UP) +((-12 (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| |#2| (QUOTE (-236))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-236)))) (|HasCategory| |#1| (QUOTE (-489)))) +(-504 -3076 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-526 R -3215) +(-505 R -3076) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-527) +(-506) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-528) +(-507) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if `f' is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by `f' as a binary file."))) NIL NIL -(-529) +(-508) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input."))) NIL NIL -(-530) +(-509) ((|constructor| (NIL "This domain provides representation for ARPA Internet \\spad{IP4} addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the \\spad{IP4} address of host `h'.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address `x'.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-531 |p| |unBalanced?|) +(-510 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements Zp,{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-532 |p|) +(-511 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-323)))) -(-533) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| $ (QUOTE (-313)))) +(-512) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-534 -3215) +(-513 -3076) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4140 . T) (-4139 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-1117))))) -(-535 E -3215) +((-3974 . T) (-3973 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-1079))))) +(-514 E -3076) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-536 R -3215) +(-515 R -3076) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL NIL -(-537) +(-516) ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-538 I) +(-517 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-539 GF) +(-518 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-540 R) +(-519 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL -((|HasCategory| |#1| (QUOTE (-120)))) -(-541) +((|HasCategory| |#1| (QUOTE (-118)))) +(-520) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young's natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young's natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young's natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young's natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-542 R E V P TS) +(-521 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-543) +(-522) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-544 E V R P) +(-523 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-545 |Coef|) +(-524 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-510))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))) (|HasCategory| (-499) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-318))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-499)))))) -(-546 |Coef|) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))) (|HasCategory| (-478) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-308))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3930) (|%list| (|devaluate| |#1|) (QUOTE (-1079)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-478)))))) +(-525 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4147 "*") |has| |#1| (-510)) (-4138 |has| |#1| (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-510)))) -(-547) +(((-3981 "*") |has| |#1| (-489)) (-3972 |has| |#1| (-489)) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-489)))) +(-526) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) NIL NIL -(-548 A B) +(-527 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-549 A B C) +(-528 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-550 R -3215 FG) +(-529 R -3076 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and FG should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-551 S) +(-530 S) ((|constructor| (NIL "This package implements 'infinite tuples' for the interpreter. The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-552 R |mn|) +(-531 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4146 . T) (-4145 . T)) -((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-684))) (|HasCategory| |#1| (QUOTE (-989))) (-12 (|HasCategory| |#1| (QUOTE (-942))) (|HasCategory| |#1| (QUOTE (-989)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) -(-553 S |Index| |Entry|) +((-3980 . T) (-3979 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-658))) (|HasCategory| |#1| (QUOTE (-954))) (-12 (|HasCategory| |#1| (QUOTE (-908))) (|HasCategory| |#1| (QUOTE (-954)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-532 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4146)) (|HasCategory| |#2| (QUOTE (-781))) (|HasAttribute| |#1| (QUOTE -4145)) (|HasCategory| |#3| (QUOTE (-1041)))) -(-554 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -3980)) (|HasCategory| |#2| (QUOTE (-749))) (|HasAttribute| |#1| (QUOTE -3979)) (|HasCategory| |#3| (QUOTE (-1005)))) +(-533 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-555) +(-534) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join `x'.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-556 R A) +(-535 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4142 -3677 (-2681 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) (-4140 . T) (-4139 . T)) -((-3677 (|HasCategory| |#2| (|%list| (QUOTE -322) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -372) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -372) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -372) (|devaluate| |#1|)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#2| (|%list| (QUOTE -322) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#2| (|%list| (QUOTE -372) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -322) (|devaluate| |#1|)))) -(-557) +((-3976 OR (-2546 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) (-3974 . T) (-3973 . T)) +((OR (|HasCategory| |#2| (|%list| (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -354) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -354) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -354) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#2| (|%list| (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#2| (|%list| (QUOTE -354) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -312) (|devaluate| |#1|)))) +(-536) ((|constructor| (NIL "This is the datatype for the JVM bytecodes."))) NIL NIL -(-558) +(-537) ((|constructor| (NIL "JVM class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the JVM to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package"))) NIL NIL -(-559) +(-538) ((|constructor| (NIL "JVM class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java \\spad{UTF8} string constant."))) NIL NIL -(-560) +(-539) ((|constructor| (NIL "JVM class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-561) +(-540) ((|constructor| (NIL "JVM class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is FP-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-562) +(-541) ((|constructor| (NIL "This is the datatype for the JVM opcodes."))) NIL NIL -(-563 |Entry|) +(-542 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (QUOTE (-1099))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| (-1099) (QUOTE (-781))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-73)))) -(-564 S |Key| |Entry|) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3844) (QUOTE (-1062))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (QUOTE (-1005)))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (|%list| (QUOTE -548) (QUOTE (-467)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| (-1062) (QUOTE (-749))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (QUOTE (-72)))) +(-543 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-565 |Key| |Entry|) +(-544 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4146 . T)) +((-3980 . T)) NIL -(-566 S) +(-545 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) -(-567 R S) +((|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) +(-546 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-568 S) +(-547 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-569 S) +(-548 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-570 -3215 UP) +(-549 -3076 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-571 S) +(-550 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-572) +(-551) ((|constructor| (NIL "This domain implements Kleene's 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of `x' is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of `x' is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of `x' is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-573 S) +(-552 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-574 A R S) +(-553 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-780)))) -(-575 S R) +((-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-748)))) +(-554 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-576 R) +(-555 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4142 . T)) +((-3976 . T)) NIL -(-577 R -3215) +(-556 R -3076) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-578 R UP) +(-557 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4140 . T) (-4139 . T) ((-4147 "*") . T) (-4138 . T) (-4142 . T)) -((|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499))))) -(-579 R E V P TS ST) +((-3974 . T) (-3973 . T) ((-3981 "*") . T) (-3972 . T) (-3976 . T)) +((|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#2| (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478))))) +(-558 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional."))) NIL NIL -(-580 OV E Z P) +(-559 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \"F\".")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-581) +(-560) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-582 |VarSet| R |Order|) +(-561 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4142 . T)) +((-3976 . T)) NIL -(-583 R |ls|) +(-562 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}."))) NIL NIL -(-584 R -3215) +(-563 R -3076) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-585) +(-564) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-586 |lv| -3215) +(-565 |lv| -3076) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-587) +(-566) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4146 . T)) -((-12 (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (QUOTE (-1099))) (|%list| (QUOTE |:|) (QUOTE |entry|) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (QUOTE (-1041)))) (-3677 (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (QUOTE (-1041)))) (-3677 (|HasCategory| (-51) (QUOTE (-73))) (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-51) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-51) (|%list| (QUOTE -263) (QUOTE (-51))))) (|HasCategory| (-1099) (QUOTE (-781))) (-3677 (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-51) (|%list| (QUOTE -568) (QUOTE (-797))))) (-3677 (|HasCategory| (-51) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (QUOTE (-73)))) (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-51) (QUOTE (-73))) (|HasCategory| (-51) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (QUOTE (-1041)))) -(-588 R A) +((-3980 . T)) +((-12 (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3844) (QUOTE (-1062))) (|%list| (QUOTE |:|) (QUOTE |entry|) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (QUOTE (-1005)))) (OR (|HasCategory| (-51) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (QUOTE (-1005)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (QUOTE (-1005)))) (OR (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-51) (QUOTE (-1005))) (|HasCategory| (-51) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (QUOTE (-1005)))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (|%list| (QUOTE -548) (QUOTE (-467)))) (-12 (|HasCategory| (-51) (QUOTE (-1005))) (|HasCategory| (-51) (|%list| (QUOTE -256) (QUOTE (-51))))) (|HasCategory| (-1062) (QUOTE (-749))) (OR (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-51) (|%list| (QUOTE -547) (QUOTE (-765))))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-1005))) (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (QUOTE (-1005)))) +(-567 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4142 -3677 (-2681 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) (-4140 . T) (-4139 . T)) -((-3677 (|HasCategory| |#2| (|%list| (QUOTE -322) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -372) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -372) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -372) (|devaluate| |#1|)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#2| (|%list| (QUOTE -322) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#2| (|%list| (QUOTE -372) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -322) (|devaluate| |#1|)))) -(-589 S R) +((-3976 OR (-2546 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) (-3974 . T) (-3973 . T)) +((OR (|HasCategory| |#2| (|%list| (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -354) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -354) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -354) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#2| (|%list| (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#2| (|%list| (QUOTE -354) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -312) (|devaluate| |#1|)))) +(-568 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-318)))) -(-590 R) +((|HasCategory| |#2| (QUOTE (-308)))) +(-569 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4140 . T) (-4139 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3974 . T) (-3973 . T)) NIL -(-591 R FE) +(-570 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-592 R) +(-571 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-593 |vars|) +(-572 |vars|) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a vector space basis,{} given by symbols.}")) (|dual| (($ (|DualBasis| |#1|)) "\\spad{dual f} constructs the dual vector of a linear form which is part of a basis."))) NIL NIL -(-594 S R) +(-573 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2679 (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-318)))) -(-595 K B) +((-2544 (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-308)))) +(-574 K B) ((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}."))) -((-4140 . T) (-4139 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| (-593 |#2|) (QUOTE (-1041))))) -(-596 R) +((-3974 . T) (-3973 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| (-572 |#2|) (QUOTE (-1005))))) +(-575 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL NIL -(-597 K B) +(-576 K B) ((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}."))) -((-4140 . T) (-4139 . T)) +((-3974 . T) (-3973 . T)) NIL -(-598 S) +(-577 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-599 S) +(-578 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4146 . T) (-4145 . T)) -((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) -(-600 A B) +((-3980 . T) (-3979 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-579 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-601 A B) +(-580 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and lb of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index lb. Error: if \\spad{la} and lb are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-602 A B C) +(-581 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-603 T$) +(-582 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-604 S) +(-583 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-605 S) +(-584 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) -(-606 R) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-585 R) ((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline"))) NIL NIL -(-607 S E |un|) +(-586 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-608 A S) +(-587 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4146))) -(-609 S) +((|HasAttribute| |#1| (QUOTE -3980))) +(-588 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-610 M R S) +(-589 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4140 . T) (-4139 . T)) -((|HasCategory| |#1| (QUOTE (-735)))) -(-611 R -3215 L) +((-3974 . T) (-3973 . T)) +((|HasCategory| |#1| (QUOTE (-707)))) +(-590 R -3076 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-612 A -2610) +(-591 A -2476) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-318)))) -(-613 A) +((-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-308)))) +(-592 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-318)))) -(-614 A M) +((-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-308)))) +(-593 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-318)))) -(-615 S A) +((-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-308)))) +(-594 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-318)))) -(-616 A) +((|HasCategory| |#2| (QUOTE (-308)))) +(-595 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4139 . T) (-4140 . T) (-4142 . T)) +((-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-617 -3215 UP) +(-596 -3076 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-618 A L) +(-597 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-619 S) +(-598 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-620) +(-599) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-621 R) +(-600 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-622 |VarSet| R) +(-601 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4140 . T) (-4139 . T)) -((|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-146)))) -(-623 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3974 . T) (-3973 . T)) +((|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-144)))) +(-602 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-624 S) +(-603 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4146 . T) (-4145 . T)) +((-3980 . T) (-3979 . T)) NIL -(-625 -3215 |Row| |Col| M) +(-604 -3076 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-626 -3215) +(-605 -3076) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-627 R E OV P) +(-606 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-628 |n| R) +(-607 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4142 . T) (-4145 . T) (-4139 . T) (-4140 . T)) -((|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-4147 #1="*"))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#2| (QUOTE (-261))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-510))) (-3677 (|HasAttribute| |#2| (QUOTE (-4147 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-73))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) -(-629) +((-3976 . T) (-3979 . T) (-3973 . T) (-3974 . T)) +((|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#2| (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-187))) (|HasAttribute| |#2| (QUOTE (-3981 #1="*"))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))))) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-489))) (OR (|HasAttribute| |#2| (QUOTE (-3981 #1#))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-144)))) +(-608) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-630 |VarSet|) +(-609 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} <= \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.fr).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(vl,{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(vl,{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-631 A S) +(-610 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-632 S) +(-611 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-633 R) -((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) -NIL -((-3677 (-12 (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) -(-634) +(-612) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-635 |VarSet|) +(-613 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{y*z}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-636 A) +(-614 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-637 A C) +(-615 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-638 A B C) +(-616 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-639) +(-617) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for `s'.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of `s'.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} -> \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-640 A) +(-618 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-641 A C) +(-619 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-642 A B C) +(-620 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-643 S R |Row| |Col|) +(-621 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4147 "*"))) (|HasCategory| |#2| (QUOTE (-261))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-510)))) -(-644 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-3981 "*"))) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-489)))) +(-622 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4145 . T) (-4146 . T)) +((-3979 . T) (-3980 . T)) NIL -(-645 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-623 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-646 R |Row| |Col| M) +(-624 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that m*n = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-510)))) -(-647 R) +((|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-489)))) +(-625 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4145 . T) (-4146 . T)) -((-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-510))) (|HasAttribute| |#1| (QUOTE (-4147 "*"))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) -(-648 R) +((-3979 . T) (-3980 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-489))) (|HasAttribute| |#1| (QUOTE (-3981 "*"))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-626 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-649 T$) +(-627 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that `x' really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value `x' into \\%."))) NIL NIL -(-650 S -3215 FLAF FLAS) -((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} \\spad{kl+ku+1} being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions \\spad{kl+ku+1} by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row \\spad{ku+1},{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) -NIL -NIL -(-651 R Q) +(-628 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-652) -((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4138 . T) (-4143 |has| (-657) (-318)) (-4137 |has| (-657) (-318)) (-1409 . T) (-4144 |has| (-657) (-6 -4144)) (-4141 |has| (-657) (-6 -4141)) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| (-657) (QUOTE (-120))) (|HasCategory| (-657) (QUOTE (-118))) (|HasCategory| (-657) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-657) (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| (-657) (QUOTE (-323))) (|HasCategory| (-657) (QUOTE (-318))) (-3677 (|HasCategory| (-657) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-657) (QUOTE (-318)))) (|HasCategory| (-657) (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| (-657) (QUOTE (-190))) (|HasCategory| (-657) (QUOTE (-189))) (-3677 (-12 (|HasCategory| (-657) (QUOTE (-318))) (|HasCategory| (-657) (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| (-657) (|%list| (QUOTE -838) (QUOTE (-1117))))) (-3677 (|HasCategory| (-657) (QUOTE (-318))) (|HasCategory| (-657) (QUOTE (-305)))) (|HasCategory| (-657) (QUOTE (-305))) (|HasCategory| (-657) (|%list| (QUOTE -240) (QUOTE (-657)) (QUOTE (-657)))) (|HasCategory| (-657) (|%list| (QUOTE -263) (QUOTE (-657)))) (|HasCategory| (-657) (|%list| (QUOTE -468) (QUOTE (-1117)) (QUOTE (-657)))) (|HasCategory| (-657) (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-657) (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-657) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-657) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (-3677 (|HasCategory| (-657) (QUOTE (-261))) (|HasCategory| (-657) (QUOTE (-318))) (|HasCategory| (-657) (QUOTE (-305)))) (|HasCategory| (-657) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-657) (QUOTE (-960))) (|HasCategory| (-657) (QUOTE (-1143))) (-12 (|HasCategory| (-657) (QUOTE (-942))) (|HasCategory| (-657) (QUOTE (-1143)))) (-3677 (-12 (|HasCategory| (-657) (QUOTE (-261))) (|HasCategory| (-657) (QUOTE (-848)))) (-12 (|HasCategory| (-657) (QUOTE (-305))) (|HasCategory| (-657) (QUOTE (-848)))) (|HasCategory| (-657) (QUOTE (-318)))) (-3677 (-12 (|HasCategory| (-657) (QUOTE (-261))) (|HasCategory| (-657) (QUOTE (-848)))) (-12 (|HasCategory| (-657) (QUOTE (-318))) (|HasCategory| (-657) (QUOTE (-848)))) (-12 (|HasCategory| (-657) (QUOTE (-305))) (|HasCategory| (-657) (QUOTE (-848))))) (|HasCategory| (-657) (QUOTE (-498))) (-12 (|HasCategory| (-657) (QUOTE (-1000))) (|HasCategory| (-657) (QUOTE (-1143)))) (|HasCategory| (-657) (QUOTE (-1000))) (|HasCategory| (-657) (QUOTE (-261))) (|HasCategory| (-657) (QUOTE (-848))) (-3677 (-12 (|HasCategory| (-657) (QUOTE (-261))) (|HasCategory| (-657) (QUOTE (-848)))) (|HasCategory| (-657) (QUOTE (-318)))) (-3677 (-12 (|HasCategory| (-657) (QUOTE (-190))) (|HasCategory| (-657) (QUOTE (-318)))) (|HasCategory| (-657) (QUOTE (-189)))) (-3677 (-12 (|HasCategory| (-657) (QUOTE (-261))) (|HasCategory| (-657) (QUOTE (-848)))) (|HasCategory| (-657) (QUOTE (-510)))) (-12 (|HasCategory| (-657) (QUOTE (-189))) (|HasCategory| (-657) (QUOTE (-318)))) (-12 (|HasCategory| (-657) (QUOTE (-318))) (|HasCategory| (-657) (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| (-657) (QUOTE (-190))) (|HasCategory| (-657) (QUOTE (-318)))) (-12 (|HasCategory| (-657) (QUOTE (-318))) (|HasCategory| (-657) (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| (-657) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-657) (QUOTE (-510))) (|HasAttribute| (-657) (QUOTE -4144)) (|HasAttribute| (-657) (QUOTE -4141)) (-12 (|HasCategory| (-657) (QUOTE (-261))) (|HasCategory| (-657) (QUOTE (-848)))) (|HasCategory| (-657) (|%list| (QUOTE -838) (QUOTE (-1117)))) (-3677 (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-657) (QUOTE (-261))) (|HasCategory| (-657) (QUOTE (-848)))) (|HasCategory| (-657) (QUOTE (-118)))) (-3677 (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-657) (QUOTE (-261))) (|HasCategory| (-657) (QUOTE (-848)))) (|HasCategory| (-657) (QUOTE (-305))))) -(-653 S) +(-629 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4146 . T)) +((-3980 . T)) NIL -(-654 U) +(-630 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the gcd of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-655) +(-631) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-656 OV E -3215 PG) +(-632 OV E -3076 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-657) -((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-3920 . T) (-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -NIL -(-658 R) +(-633 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-659) -((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4144 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -NIL -(-660 S D1 D2 I) +(-634 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-661 S) +(-635 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-662 S) +(-636 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-663 S T$) +(-637 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}."))) NIL NIL -(-664 S -2790 I) +(-638 S -2653 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-665 E OV R P) +(-639 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-666 R) +(-640 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4139 . T) (-4140 . T) (-4142 . T)) +((-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-667 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-641 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-668) +(-642) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-669 R |Mod| -2138 -3658 |exactQuo|) +(-643 R |Mod| -2023 -3502 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-670 R |Rep|) +(-644 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4141 |has| |#1| (-318)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-1022) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-1022) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-305))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-671 IS E |ff|) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3975 |has| |#1| (-308)) (-3977 |has| |#1| (-6 -3977)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| (-986) (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| (-986) (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| (-986) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| (-986) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-986) (|%list| (QUOTE -548) (QUOTE (-467))))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (OR (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-295))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-188))) (|HasAttribute| |#1| (QUOTE -3977)) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-645 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-672 R M) +(-646 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4140 |has| |#1| (-146)) (-4139 |has| |#1| (-146)) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120)))) -(-673 R |Mod| -2138 -3658 |exactQuo|) +((-3974 |has| |#1| (-144)) (-3973 |has| |#1| (-144)) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118)))) +(-647 R |Mod| -2023 -3502 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4142 . T)) +((-3976 . T)) NIL -(-674 S R) +(-648 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-675 R) +(-649 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4140 . T) (-4139 . T)) +((-3974 . T) (-3973 . T)) NIL -(-676 -3215) +(-650 -3076) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4142 . T)) +((-3976 . T)) NIL -(-677 S) +(-651 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-678) +(-652) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-679 S) +(-653 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-680) +(-654) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-681 S R UP) +(-655 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-305))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-323)))) -(-682 R UP) +((|HasCategory| |#2| (QUOTE (-295))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-313)))) +(-656 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4138 |has| |#1| (-318)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3972 |has| |#1| (-308)) (-3977 |has| |#1| (-308)) (-3971 |has| |#1| (-308)) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-683 S) +(-657 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-684) +(-658) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-685 -3215 UP) +(-659 -3076 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-686 |VarSet| E1 E2 R S PR PS) +(-660 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (PG)")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented "))) NIL NIL -(-687 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-661 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-688 E OV R PPR) +(-662 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-689 |vl| R) +(-663 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4147 "*") |has| |#2| (-146)) (-4138 |has| |#2| (-510)) (-4143 |has| |#2| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#2| (QUOTE (-848))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-146))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-510)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-318))) (|HasAttribute| |#2| (QUOTE -4143)) (|HasCategory| |#2| (QUOTE (-406))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-690 E OV R PRF) +(((-3981 "*") |has| |#2| (-144)) (-3972 |has| |#2| (-489)) (-3977 |has| |#2| (-6 -3977)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#2| (QUOTE (-814))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-814)))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-489)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-766 |#1|) (|%list| (QUOTE -548) (QUOTE (-467))))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478)))) (OR (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasAttribute| |#2| (QUOTE -3977)) (|HasCategory| |#2| (QUOTE (-385))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) +(-664 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-691 E OV R P) +(-665 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-692 R S M) +(-666 R S M) ((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-693 R M) +(-667 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4140 |has| |#1| (-146)) (-4139 |has| |#1| (-146)) (-4142 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-781)))) -(-694 S) +((-3974 |has| |#1| (-144)) (-3973 |has| |#1| (-144)) (-3976 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-749)))) +(-668 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4145 . T) (-4135 . T) (-4146 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) -(-695 S) +((-3979 . T) (-3969 . T) (-3980 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-669 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4135 . T) (-4146 . T)) +((-3969 . T) (-3980 . T)) NIL -(-696) +(-670) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-697 S) +(-671 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-698 |Coef| |Var|) +(-672 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4140 . T) (-4139 . T) (-4142 . T)) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3974 . T) (-3973 . T) (-3976 . T)) NIL -(-699 OV E R P) +(-673 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-700 E OV R P) +(-674 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-701 S R) +(-675 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-702 R) +(-676 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4140 . T) (-4139 . T)) +((-3974 . T) (-3973 . T)) NIL -(-703 S) +(-677 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-704) +(-678) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-705 S) +(-679 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-706) +(-680) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-707 |Par|) +(-681 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-708 -3215) +(-682 -3076) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-709 P -3215) +(-683 P -3076) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''."))) NIL NIL -(-710 T$) +(-684 T$) NIL NIL NIL -(-711 UP -3215) +(-685 UP -3076) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-712) -((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) -NIL -NIL -(-713 R) +(-686 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-714) +(-687) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4147 "*") . T)) +(((-3981 "*") . T)) NIL -(-715 R -3215) +(-688 R -3076) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-716) +(-689) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-717 S) +(-690 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-718 R |PolR| E |PolE|) +(-691 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-719 R E V P TS) +(-692 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}ts)} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}ts)} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}ts)} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-720 -3215 |ExtF| |SUEx| |ExtP| |n|) +(-693 -3076 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-721 BP E OV R P) +(-694 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-722 |Par|) +(-695 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with variable \\spad{x}. Fraction \\spad{P} RN.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with a new symbol as variable."))) NIL NIL -(-723 R |VarSet|) +(-696 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-848))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-1117))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-318))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-1117))))) (-3677 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-1117)))) (-2679 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-1117)))) (-2679 (|HasCategory| |#1| (QUOTE (-498)))) (-2679 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-1117)))) (-2679 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-499))))) (-2679 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-1117)))) (-2679 (|HasCategory| |#1| (|%list| (QUOTE -931) (QUOTE (-499))))))) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-724 R) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-6 -3977)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-814))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467))))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (OR (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-1079))))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-308))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-1079))))) (OR (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-478)))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-1079)))) (-2544 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-1079)))))) (OR (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-478)))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-1079)))) (-2544 (|HasCategory| |#1| (QUOTE (-477)))) (-2544 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-1079)))) (-2544 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-478))))) (-2544 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-1079)))) (-2544 (|HasCategory| |#1| (|%list| (QUOTE -897) (QUOTE (-478))))))) (|HasAttribute| |#1| (QUOTE -3977)) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-697 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4141 |has| |#1| (-318)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-1022) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-1022) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-725 R S) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3975 |has| |#1| (-308)) (-3977 |has| |#1| (-6 -3977)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| (-986) (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| (-986) (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| (-986) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| (-986) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-986) (|%list| (QUOTE -548) (QUOTE (-467))))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (OR (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-188))) (|HasAttribute| |#1| (QUOTE -3977)) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-698 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-726 R) +(-699 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) -(-727 R E V P) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478)))))) +(-700 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4146 . T) (-4145 . T)) +((-3980 . T) (-3979 . T)) NIL -(-728 S) +(-701 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-781)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-146)))) -(-729) +((-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-749)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-144)))) +(-702) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-730) -((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) -NIL -NIL -(-731) +(-703) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})**(\\spad{-1/5})}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation's right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-732) +(-704) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-733 |Curve|) +(-705 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-734 S) +(-706 S) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-735) +(-707) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-736 S) +(-708 S) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-737) +(-709) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-738) +(-710) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-739) +(-711) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-740 S R) +(-712 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-498))) (|HasCategory| |#2| (QUOTE (-1000))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-323)))) -(-741 R) +((|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-477))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-313)))) +(-713 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4139 . T) (-4140 . T) (-4142 . T)) +((-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-742) +(-714) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-743 R) +(-715 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -240) (|devaluate| |#1|) (|devaluate| |#1|))) (-3677 (|HasCategory| (-936 |#1|) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-936 |#1|) (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-1000))) (|HasCategory| |#1| (QUOTE (-498))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-936 |#1|) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-936 |#1|) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499))))) -(-744 -3677 R OS S) +((-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (|%list| (QUOTE -447) (QUOTE (-1079)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -238) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| (-902 |#1|) (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (OR (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| (-902 |#1|) (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-477))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-902 |#1|) (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| (-902 |#1|) (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478))))) +(-716 OR R OS S) ((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-745) -((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) -NIL -NIL -(-746 R -3215 L) +(-717 R -3076 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}'s form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-747 R -3215) +(-718 R -3076) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-748 R -3215) +(-719 R -3076) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-749 -3215 UP UPUP R) +(-720 -3076 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-750 -3215 UP L LQ) +(-721 -3076 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-751) -((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) -NIL -NIL -(-752 -3215 UP L LQ) +(-722 -3076 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}'s in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree mj for some \\spad{j},{} and its leading coefficient is then a zero of pj. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {gcd(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-753 -3215 UP) +(-723 -3076 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-754 -3215 L UP A LO) +(-724 -3076 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-755 -3215 UP) +(-725 -3076 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular ++ part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-756 -3215 LO) +(-726 -3076 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-757 -3215 LODO) +(-727 -3076 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-758 -2740 S |f|) +(-728 -2605 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4139 |has| |#2| (-989)) (-4140 |has| |#2| (-989)) (-4142 |has| |#2| (-6 -4142)) (-4145 . T)) -((-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-989)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#2| (QUOTE (-318))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989)))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-318)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-738))) (-3677 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-781)))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-323))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (QUOTE (-190))) (-3677 (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-989))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117))))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (QUOTE (-1041))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-989)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))))) (|HasCategory| (-499) (QUOTE (-781))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-989)))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-989)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasAttribute| |#2| (QUOTE -4142)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-989)))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-73))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))))) -(-759 R) +((-3973 |has| |#2| (-954)) (-3974 |has| |#2| (-954)) (-3976 |has| |#2| (-6 -3976)) (-3979 . T)) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-954)))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#2| (QUOTE (-308))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-710))) (OR (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-749)))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-313))) (OR (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#2| (QUOTE (-188))) (OR (|HasCategory| |#2| (QUOTE (-188))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-954))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -804) (QUOTE (-1079))))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#2| (QUOTE (-1005))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478)))))) (|HasCategory| (-478) (QUOTE (-749))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -804) (QUOTE (-1079))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasAttribute| |#2| (QUOTE -3976)) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) +(-729 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-848))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-761 (-1117)) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-761 (-1117)) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-761 (-1117)) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-761 (-1117)) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-761 (-1117)) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-760 |Kernels| R |var|) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-6 -3977)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-814))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| (-731 (-1079)) (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| (-731 (-1079)) (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| (-731 (-1079)) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| (-731 (-1079)) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-731 (-1079)) (|%list| (QUOTE -548) (QUOTE (-467))))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (OR (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasAttribute| |#1| (QUOTE -3977)) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-730 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4147 "*") |has| |#2| (-318)) (-4138 |has| |#2| (-318)) (-4143 |has| |#2| (-318)) (-4137 |has| |#2| (-318)) (-4142 . T) (-4140 . T) (-4139 . T)) -((|HasCategory| |#2| (QUOTE (-318)))) -(-761 S) +(((-3981 "*") |has| |#2| (-308)) (-3972 |has| |#2| (-308)) (-3977 |has| |#2| (-308)) (-3971 |has| |#2| (-308)) (-3976 . T) (-3974 . T) (-3973 . T)) +((|HasCategory| |#2| (QUOTE (-308)))) +(-731 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-762 S) +(-732 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-781)))) -(-763) +((|HasCategory| |#1| (QUOTE (-749)))) +(-733) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-764 P R) +(-734 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-190)))) -(-765 S) +((-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-188)))) +(-735 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4145 . T) (-4135 . T) (-4146 . T)) +((-3979 . T) (-3969 . T) (-3980 . T)) NIL -(-766 R) +(-736 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4142 |has| |#1| (-780))) -((|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-21))) (-3677 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-780)))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (-3677 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-498)))) -(-767 R S) +((-3976 |has| |#1| (-748))) +((|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748)))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (OR (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-477)))) +(-737 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-768 R) +(-738 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4140 |has| |#1| (-146)) (-4139 |has| |#1| (-146)) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120)))) -(-769 A S) +((-3974 |has| |#1| (-144)) (-3973 |has| |#1| (-144)) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118)))) +(-739 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-770 S) +(-740 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-771) +(-741) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \"k\" (constructors),{} \"d\" (domains),{} \"c\" (categories) or \"p\" (packages)."))) NIL NIL -(-772) +(-742) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of `x'."))) NIL NIL -(-773) -((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) -NIL -NIL -(-774) -((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) -NIL -NIL -(-775 R) +(-743 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4142 |has| |#1| (-780))) -((|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-21))) (-3677 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-780)))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (-3677 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-498)))) -(-776 R S) +((-3976 |has| |#1| (-748))) +((|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748)))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (OR (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-477)))) +(-744 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-777) +(-745) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-778 -2740 S) +(-746 -2605 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-779) +(-747) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-780) +(-748) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline"))) -((-4142 . T)) +((-3976 . T)) NIL -(-781) +(-749) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}."))) NIL NIL -(-782 T$ |f|) +(-750 T$ |f|) ((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) -(-783 S) +((|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) +(-751 S) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-784) +(-752) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-785 S R) +(-753 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-146)))) -(-786 R) +((|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-144)))) +(-754 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4139 . T) (-4140 . T) (-4142 . T)) +((-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-787 R C) +(-755 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) -(-788 R |sigma| -3382) +((|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) +(-756 R |sigma| -3227) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-318)))) -(-789 |x| R |sigma| -3382) +((-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-308)))) +(-757 |x| R |sigma| -3227) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-318)))) -(-790 R) +((-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-308)))) +(-758 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) -(-791) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478)))))) +(-759) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-792) +(-760) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-793) +(-761) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-794 S) +(-762 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-795) +(-763) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-796) +(-764) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-797) +(-765) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \"x overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \"f super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-798 |VariableList|) +(-766 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-799) +(-767) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-800 R |vl| |wl| |wtlevel|) +(-768 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4140 |has| |#1| (-146)) (-4139 |has| |#1| (-146)) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318)))) -(-801 R PS UP) +((-3974 |has| |#1| (-144)) (-3973 |has| |#1| (-144)) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308)))) +(-769 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-802 R |x| |pt|) +(-770 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-803 |p|) +(-771 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-804 |p|) +(-772 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-805 |p|) +(-773 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| (-803 |#1|) (QUOTE (-848))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| (-803 |#1|) (QUOTE (-118))) (|HasCategory| (-803 |#1|) (QUOTE (-120))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-803 |#1|) (QUOTE (-960))) (|HasCategory| (-803 |#1|) (QUOTE (-763))) (|HasCategory| (-803 |#1|) (QUOTE (-781))) (-3677 (|HasCategory| (-803 |#1|) (QUOTE (-763))) (|HasCategory| (-803 |#1|) (QUOTE (-781)))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-803 |#1|) (QUOTE (-1092))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| (-803 |#1|) (QUOTE (-189))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| (-803 |#1|) (QUOTE (-190))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -468) (QUOTE (-1117)) (|%list| (QUOTE -803) (|devaluate| |#1|)))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -263) (|%list| (QUOTE -803) (|devaluate| |#1|)))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -240) (|%list| (QUOTE -803) (|devaluate| |#1|)) (|%list| (QUOTE -803) (|devaluate| |#1|)))) (|HasCategory| (-803 |#1|) (QUOTE (-261))) (|HasCategory| (-803 |#1|) (QUOTE (-498))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-803 |#1|) (QUOTE (-848)))) (-3677 (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-803 |#1|) (QUOTE (-848)))) (|HasCategory| (-803 |#1|) (QUOTE (-118))))) -(-806 |p| PADIC) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| (-771 |#1|) (QUOTE (-814))) (|HasCategory| (-771 |#1|) (|%list| (QUOTE -943) (QUOTE (-1079)))) (|HasCategory| (-771 |#1|) (QUOTE (-116))) (|HasCategory| (-771 |#1|) (QUOTE (-118))) (|HasCategory| (-771 |#1|) (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-771 |#1|) (QUOTE (-926))) (|HasCategory| (-771 |#1|) (QUOTE (-733))) (|HasCategory| (-771 |#1|) (QUOTE (-749))) (OR (|HasCategory| (-771 |#1|) (QUOTE (-733))) (|HasCategory| (-771 |#1|) (QUOTE (-749)))) (|HasCategory| (-771 |#1|) (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| (-771 |#1|) (QUOTE (-1055))) (|HasCategory| (-771 |#1|) (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| (-771 |#1|) (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| (-771 |#1|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| (-771 |#1|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| (-771 |#1|) (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| (-771 |#1|) (QUOTE (-187))) (|HasCategory| (-771 |#1|) (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| (-771 |#1|) (QUOTE (-188))) (|HasCategory| (-771 |#1|) (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| (-771 |#1|) (|%list| (QUOTE -447) (QUOTE (-1079)) (|%list| (QUOTE -771) (|devaluate| |#1|)))) (|HasCategory| (-771 |#1|) (|%list| (QUOTE -256) (|%list| (QUOTE -771) (|devaluate| |#1|)))) (|HasCategory| (-771 |#1|) (|%list| (QUOTE -238) (|%list| (QUOTE -771) (|devaluate| |#1|)) (|%list| (QUOTE -771) (|devaluate| |#1|)))) (|HasCategory| (-771 |#1|) (QUOTE (-254))) (|HasCategory| (-771 |#1|) (QUOTE (-477))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-771 |#1|) (QUOTE (-814)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-771 |#1|) (QUOTE (-814)))) (|HasCategory| (-771 |#1|) (QUOTE (-116))))) +(-774 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-763))) (|HasCategory| |#2| (QUOTE (-781))) (-3677 (|HasCategory| |#2| (QUOTE (-763))) (|HasCategory| |#2| (QUOTE (-781)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -240) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-261))) (|HasCategory| |#2| (QUOTE (-498))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-807 S T$) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (QUOTE (-733))) (|HasCategory| |#2| (QUOTE (-749))) (OR (|HasCategory| |#2| (QUOTE (-733))) (|HasCategory| |#2| (QUOTE (-749)))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#2| (|%list| (QUOTE -447) (QUOTE (-1079)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -238) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-477))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) +(-775 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-1041))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))))) -(-808) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765))))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1005))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))))) +(-776) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value."))) NIL NIL -(-809) +(-777) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-810) +(-778) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-811 CF1 CF2) +(-779 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-812 |ComponentFunction|) +(-780 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-813 CF1 CF2) +(-781 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-814 |ComponentFunction|) +(-782 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-815) +(-783) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-816 CF1 CF2) +(-784 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-817 |ComponentFunction|) +(-785 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-818) +(-786) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,{}\\spad{l1} 1's,{}\\spad{l2} 2's,{}...,{}\\spad{ln} \\spad{n}'s.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}'s,{} and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-819 R) +(-787 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-820 R S L) +(-788 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-821 S) +(-789 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-822 |Base| |Subject| |Pat|) +(-790 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2679 (|HasCategory| |#2| (QUOTE (-989)))) (-2679 (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-1117)))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (-2679 (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-1117)))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-1117))))) -(-823 R S) +((-12 (-2544 (|HasCategory| |#2| (QUOTE (-954)))) (-2544 (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-1079)))))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (-2544 (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-1079)))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-1079))))) +(-791 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-824 R A B) +(-792 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(vn,{}\\spad{f}(an))]."))) NIL NIL -(-825 R) +(-793 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-826 R -2790) +(-794 R -2653) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-827 R S) +(-795 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-828 |VarSet|) +(-796 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-829 UP R) +(-797 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-830 A T$ S) +(-798 A T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-831 T$ S) +(-799 T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-832) -((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) -NIL -NIL -(-833 UP -3215) +(-800 UP -3076) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-834) -((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) -NIL -NIL -(-835 R S) +(-801 R S) ((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4140 . T) (-4139 . T)) +((-3974 . T) (-3973 . T)) NIL -(-836 S) +(-802 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4142 . T)) +((-3976 . T)) NIL -(-837 A S) +(-803 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-838 S) +(-804 S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-839 S) +(-805 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) -(-840 S) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-806 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4142 . T)) -((-3677 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-781)))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-781)))) -(-841 |n| R) +((-3976 . T)) +((OR (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-749)))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-749)))) +(-807 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-842 S) +(-808 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4142 . T)) +((-3976 . T)) NIL -(-843 S) +(-809 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-844 |p|) +(-810 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-323)))) -(-845 R E |VarSet| S) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| $ (QUOTE (-313)))) +(-811 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-846 R S) +(-812 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-847 S) +(-813 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL -((|HasCategory| |#1| (QUOTE (-118)))) -(-848) +((|HasCategory| |#1| (QUOTE (-116)))) +(-814) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-849 R0 -3215 UP UPUP R) +(-815 R0 -3076 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-850 UP UPUP R) +(-816 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-851 UP UPUP) +(-817 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-852 R) +(-818 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator,{} while the ``p-adic'' form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-853 R) +(-819 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-854 E OV R P) +(-820 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the gcd of the list of primitive polynomials lp.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-855) +(-821) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik's Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 <= \\spad{i} <= 6,{} 1 <= \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-856 -3215) +(-822 -3076) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any gcd domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-857) +(-823) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = y*x")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4147 "*") . T)) +(((-3981 "*") . T)) NIL -(-858 R) +(-824 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-859) +(-825) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \\spad{nothing} if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-860 |xx| -3215) +(-826 |xx| -3076) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-861 -3215 P) +(-827 -3076 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-862 R |Var| |Expon| GR) +(-828 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank >= \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} ~= 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-863) +(-829) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-864 S) +(-830 S) ((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions SF -> SF are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-865) +(-831) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-866) +(-832) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-867) +(-833) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-868 R -3215) +(-834 R -3076) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-869 S A B) +(-835 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-870 S R -3215) +(-836 S R -3076) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-871 I) +(-837 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-872 S E) +(-838 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-873 S R L) +(-839 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-874 S E V R P) +(-840 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -821) (|devaluate| |#1|)))) -(-875 -2790) +((|HasCategory| |#3| (|%list| (QUOTE -789) (|devaluate| |#1|)))) +(-841 -2653) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-876 R -3215 -2790) +(-842 R -3076 -2653) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-877 S R Q) +(-843 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-878 S) +(-844 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-879 S R P) +(-845 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-880) +(-846) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-881 R) +(-847 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4146 . T) (-4145 . T)) -((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-684))) (|HasCategory| |#1| (QUOTE (-989))) (-12 (|HasCategory| |#1| (QUOTE (-942))) (|HasCategory| |#1| (QUOTE (-989)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) -(-882 |lv| R) +((-3980 . T) (-3979 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-658))) (|HasCategory| |#1| (QUOTE (-954))) (-12 (|HasCategory| |#1| (QUOTE (-908))) (|HasCategory| |#1| (QUOTE (-954)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-848 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-883 |TheField| |ThePols|) +(-849 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn,{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-780)))) -(-884 R) +((|HasCategory| |#1| (QUOTE (-748)))) +(-850 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-848))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-1117) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-1117) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-1117) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-1117) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-1117) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-318))) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-885 R S) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-6 -3977)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-814))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| (-1079) (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| (-1079) (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| (-1079) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| (-1079) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-1079) (|%list| (QUOTE -548) (QUOTE (-467))))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (OR (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasAttribute| |#1| (QUOTE -3977)) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-851 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-886 |x| R) +(-852 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-887 S R E |VarSet|) +(-853 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-848))) (|HasAttribute| |#2| (QUOTE -4143)) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| |#4| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#4| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#4| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#4| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488))))) -(-888 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-814))) (|HasAttribute| |#2| (QUOTE -3977)) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#4| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| |#4| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| |#4| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| |#4| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| |#4| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467))))) +(-854 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-6 -3977)) (-3974 . T) (-3973 . T) (-3976 . T)) NIL -(-889 E V R P -3215) +(-855 E V R P -3076) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-890 E |Vars| R P S) +(-856 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-891 E V R P -3215) +(-857 E V R P -3076) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-406)))) -(-892) +((|HasCategory| |#3| (QUOTE (-385)))) +(-858) ((|constructor| (NIL "This domain represents network port numbers (notable TCP and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer `n'."))) NIL NIL -(-893) +(-859) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-894 R E) +(-860 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-510))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -4143))) -(-895 R L) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-6 -3977)) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasAttribute| |#1| (QUOTE -3977))) +(-861 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-896 S) +(-862 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4146 . T) (-4145 . T)) -((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) -(-897 A B) +((-3980 . T) (-3979 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-863 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-898) +(-864) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} dx for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} dx."))) NIL NIL -(-899 -3215) +(-865 -3076) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}."))) NIL NIL -(-900 I) +(-866 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-901) +(-867) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-902 A B) +(-868 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4142 -12 (|has| |#2| (-427)) (|has| |#1| (-427)))) -((-3677 (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-781))))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-427)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-427)))) (-12 (|HasCategory| |#1| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-684))))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-323)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-427)))) (-12 (|HasCategory| |#1| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-684))))) (-12 (|HasCategory| |#1| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-684)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-781))))) -(-903) +((-3976 -12 (|has| |#2| (-406)) (|has| |#1| (-406)))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-710)))) (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-749))))) (-12 (|HasCategory| |#1| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-710)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-12 (|HasCategory| |#1| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-710)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-12 (|HasCategory| |#1| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-710)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-406)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-406)))) (-12 (|HasCategory| |#1| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-658))))) (-12 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-313)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-12 (|HasCategory| |#1| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-710)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-406)))) (-12 (|HasCategory| |#1| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-658))))) (-12 (|HasCategory| |#1| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-658)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-749))))) +(-869) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-904 T$) +(-870 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-905 T$) +(-871 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} ++ returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-906 S T$) +(-872 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-907) +(-873) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of `p',{} `q'.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of `q' by `p'.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-908 S) +(-874 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4145 . T) (-4146 . T)) +((-3979 . T) (-3980 . T)) NIL -(-909 R |polR|) +(-875 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-406)))) -(-910) +((|HasCategory| |#1| (QUOTE (-385)))) +(-876) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-911) +(-877) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-912 S |Coef| |Expon| |Var|) +(-878 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-913 |Coef| |Expon| |Var|) +(-879 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-914) +(-880) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the x-,{} y-,{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-915 S R E |VarSet| P) +(-881 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-510)))) -(-916 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-489)))) +(-882 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4145 . T)) +((-3979 . T)) NIL -(-917 R E V P) +(-883 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-261)))) (|HasCategory| |#1| (QUOTE (-406)))) -(-918 K) +((-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-254)))) (|HasCategory| |#1| (QUOTE (-385)))) +(-884 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-919 |VarSet| E RC P) +(-885 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary gcd domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-920 R) +(-886 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4146 . T) (-4145 . T)) +((-3980 . T) (-3979 . T)) NIL -(-921 R1 R2) +(-887 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-922 R) +(-888 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-923 K) +(-889 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-924 R E OV PPR) +(-890 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-925 K R UP -3215) +(-891 K R UP -3076) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-926 R |Var| |Expon| |Dpoly|) +(-892 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don't know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} ~= 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-261))))) -(-927 |vl| |nv|) +((-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-254))))) +(-893 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-928 R E V P TS) +(-894 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-929) +(-895) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-930 A S) +(-896 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-498))) (|HasCategory| |#2| (QUOTE (-261))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-763))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-1092)))) -(-931 S) +((|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-477))) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (QUOTE (-733))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#2| (QUOTE (-1055)))) +(-897 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-932 A B R S) +(-898 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-933 |n| K) +(-899 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-934) +(-900) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-935 S) +(-901 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4145 . T) (-4146 . T)) +((-3979 . T) (-3980 . T)) NIL -(-936 R) +(-902 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4138 |has| |#1| (-244)) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#1| (QUOTE (-318))) (-3677 (|HasCategory| |#1| (QUOTE (-244))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-244))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -240) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-1000))) (|HasCategory| |#1| (QUOTE (-498)))) -(-937 S R) +((-3972 |has| |#1| (-242)) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-242))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-242))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#1| (|%list| (QUOTE -447) (QUOTE (-1079)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -238) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-477)))) +(-903 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-498))) (|HasCategory| |#2| (QUOTE (-1000))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-244)))) -(-938 R) +((|HasCategory| |#2| (QUOTE (-477))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-242)))) +(-904 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4138 |has| |#1| (-244)) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3972 |has| |#1| (-242)) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-939 QR R QS S) +(-905 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-940 S) +(-906 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) -(-941 S) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-907 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-942) +(-908) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-943 -3215 UP UPUP |radicnd| |n|) +(-909 -3076 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4138 |has| (-361 |#2|) (-318)) (-4143 |has| (-361 |#2|) (-318)) (-4137 |has| (-361 |#2|) (-318)) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| (-361 |#2|) (QUOTE (-118))) (|HasCategory| (-361 |#2|) (QUOTE (-120))) (|HasCategory| (-361 |#2|) (QUOTE (-305))) (-3677 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (QUOTE (-305)))) (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (QUOTE (-323))) (-3677 (-12 (|HasCategory| (-361 |#2|) (QUOTE (-190))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (|HasCategory| (-361 |#2|) (QUOTE (-305)))) (-3677 (-12 (|HasCategory| (-361 |#2|) (QUOTE (-190))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-189))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (|HasCategory| (-361 |#2|) (QUOTE (-305)))) (-3677 (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-305))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -836) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -838) (QUOTE (-1117)))))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -596) (QUOTE (-499)))) (-3677 (|HasCategory| (-361 |#2|) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-323))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-189))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-190))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -836) (QUOTE (-1117)))))) -(-944 |bb|) +((-3972 |has| (-343 |#2|) (-308)) (-3977 |has| (-343 |#2|) (-308)) (-3971 |has| (-343 |#2|) (-308)) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| (-343 |#2|) (QUOTE (-116))) (|HasCategory| (-343 |#2|) (QUOTE (-118))) (|HasCategory| (-343 |#2|) (QUOTE (-295))) (OR (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-295)))) (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-313))) (OR (-12 (|HasCategory| (-343 |#2|) (QUOTE (-188))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (|HasCategory| (-343 |#2|) (QUOTE (-295)))) (OR (-12 (|HasCategory| (-343 |#2|) (QUOTE (-188))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-187))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (|HasCategory| (-343 |#2|) (QUOTE (-295)))) (OR (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (|%list| (QUOTE -802) (QUOTE (-1079))))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-295))) (|HasCategory| (-343 |#2|) (|%list| (QUOTE -802) (QUOTE (-1079)))))) (OR (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (|%list| (QUOTE -802) (QUOTE (-1079))))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (|%list| (QUOTE -804) (QUOTE (-1079)))))) (|HasCategory| (-343 |#2|) (|%list| (QUOTE -575) (QUOTE (-478)))) (OR (|HasCategory| (-343 |#2|) (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (|HasCategory| (-343 |#2|) (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| (-343 |#2|) (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-313))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-187))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (|%list| (QUOTE -804) (QUOTE (-1079))))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-188))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (|%list| (QUOTE -802) (QUOTE (-1079)))))) +(-910 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| (-499) (QUOTE (-848))) (|HasCategory| (-499) (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| (-499) (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-120))) (|HasCategory| (-499) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-499) (QUOTE (-960))) (|HasCategory| (-499) (QUOTE (-763))) (|HasCategory| (-499) (QUOTE (-781))) (-3677 (|HasCategory| (-499) (QUOTE (-763))) (|HasCategory| (-499) (QUOTE (-781)))) (|HasCategory| (-499) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-499) (QUOTE (-1092))) (|HasCategory| (-499) (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-499) (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-499) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-499) (QUOTE (-189))) (|HasCategory| (-499) (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| (-499) (QUOTE (-190))) (|HasCategory| (-499) (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| (-499) (|%list| (QUOTE -468) (QUOTE (-1117)) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -263) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -240) (QUOTE (-499)) (QUOTE (-499)))) (|HasCategory| (-499) (QUOTE (-261))) (|HasCategory| (-499) (QUOTE (-498))) (|HasCategory| (-499) (|%list| (QUOTE -596) (QUOTE (-499)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-848)))) (-3677 (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-848)))) (|HasCategory| (-499) (QUOTE (-118))))) -(-945) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| (-478) (QUOTE (-814))) (|HasCategory| (-478) (|%list| (QUOTE -943) (QUOTE (-1079)))) (|HasCategory| (-478) (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-118))) (|HasCategory| (-478) (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-478) (QUOTE (-926))) (|HasCategory| (-478) (QUOTE (-733))) (|HasCategory| (-478) (QUOTE (-749))) (OR (|HasCategory| (-478) (QUOTE (-733))) (|HasCategory| (-478) (QUOTE (-749)))) (|HasCategory| (-478) (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| (-478) (QUOTE (-1055))) (|HasCategory| (-478) (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| (-478) (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| (-478) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| (-478) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| (-478) (QUOTE (-187))) (|HasCategory| (-478) (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| (-478) (QUOTE (-188))) (|HasCategory| (-478) (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| (-478) (|%list| (QUOTE -447) (QUOTE (-1079)) (QUOTE (-478)))) (|HasCategory| (-478) (|%list| (QUOTE -256) (QUOTE (-478)))) (|HasCategory| (-478) (|%list| (QUOTE -238) (QUOTE (-478)) (QUOTE (-478)))) (|HasCategory| (-478) (QUOTE (-254))) (|HasCategory| (-478) (QUOTE (-477))) (|HasCategory| (-478) (|%list| (QUOTE -575) (QUOTE (-478)))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-814)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-814)))) (|HasCategory| (-478) (QUOTE (-116))))) +(-911) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-946) +(-912) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-947 RP) +(-913 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-948 S) +(-914 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-949 A S) +(-915 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4146)) (|HasCategory| |#2| (QUOTE (-1041)))) -(-950 S) +((|HasAttribute| |#1| (QUOTE -3980)) (|HasCategory| |#2| (QUOTE (-1005)))) +(-916 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-951 S) +(-917 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-952) +(-918) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4138 . T) (-4143 . T) (-4137 . T) (-4140 . T) (-4139 . T) ((-4147 "*") . T) (-4142 . T)) +((-3972 . T) (-3977 . T) (-3971 . T) (-3974 . T) (-3973 . T) ((-3981 "*") . T) (-3976 . T)) NIL -(-953 R -3215) +(-919 R -3076) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-954 R -3215) +(-920 R -3076) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-955 -3215 UP) +(-921 -3076 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-956 -3215 UP) +(-922 -3076 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-957 S) +(-923 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-958 F1 UP UPUP R F2) +(-924 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-959) +(-925) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-960) +(-926) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-961 |Pol|) +(-927 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-962 |Pol|) +(-928 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-963) +(-929) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-964 |TheField|) +(-930 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4138 . T) (-4143 . T) (-4137 . T) (-4140 . T) (-4139 . T) ((-4147 "*") . T) (-4142 . T)) -((-3677 (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-361 (-499)) (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-361 (-499)) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-361 (-499)) (|%list| (QUOTE -978) (QUOTE (-499))))) -(-965 -3215 L) +((-3972 . T) (-3977 . T) (-3971 . T) (-3974 . T) (-3973 . T) ((-3981 "*") . T) (-3976 . T)) +((OR (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| (-343 (-478)) (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| (-343 (-478)) (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| (-343 (-478)) (|%list| (QUOTE -943) (QUOTE (-478))))) +(-931 -3076 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-966 S) +(-932 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1041)))) -(-967 R E V P) +((|HasCategory| |#1| (QUOTE (-1005)))) +(-933 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4146 . T) (-4145 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#4| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#4| (QUOTE (-73)))) -(-968) +((-3980 . T) (-3979 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#4| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-934) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-969 R) +(-935 R) ((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 <= \\spad{i} <= \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 <= \\spad{i} <= \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4147 "*")))) -(-970 R) +((|HasAttribute| |#1| (QUOTE (-3981 "*")))) +(-936 R) ((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker's fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-261)))) -(-971 S) +((-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-254)))) +(-937 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-972 S) +(-938 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-973 S) +(-939 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-974 -3215 |Expon| |VarSet| |FPol| |LFPol|) +(-940 -3076 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +(((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-975) -((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (QUOTE (-1117))) (|%list| (QUOTE |:|) (QUOTE |entry|) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041)))) (-3677 (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041)))) (-3677 (|HasCategory| (-51) (QUOTE (-73))) (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-51) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-51) (|%list| (QUOTE -263) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041))) (|HasCategory| (-1117) (QUOTE (-781))) (|HasCategory| (-51) (QUOTE (-1041))) (-3677 (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-51) (|%list| (QUOTE -568) (QUOTE (-797))))) (-3677 (|HasCategory| (-51) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-73)))) (|HasCategory| (-51) (QUOTE (-73))) (|HasCategory| (-51) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-73)))) -(-976) +(-941) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-977 A S) +(-942 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-978 S) +(-943 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-979 Q R) +(-944 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-980 R) +(-945 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-981) +(-946) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-982 UP) +(-947 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-983 R) +(-948 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-984 T$) +(-949 T$) ((|constructor| (NIL "This category defines the common interface for RGB color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of `c'.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of `c'.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of `c'."))) NIL NIL -(-985 T$) +(-950 T$) ((|constructor| (NIL "This category defines the common interface for RGB color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-986 R |ls|) +(-951 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4146 . T) (-4145 . T)) -((-12 (|HasCategory| (-723 |#1| (-798 |#2|)) (QUOTE (-1041))) (|HasCategory| (-723 |#1| (-798 |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -723) (|devaluate| |#1|) (|%list| (QUOTE -798) (|devaluate| |#2|)))))) (|HasCategory| (-723 |#1| (-798 |#2|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-723 |#1| (-798 |#2|)) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| (-798 |#2|) (QUOTE (-323))) (|HasCategory| (-723 |#1| (-798 |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-723 |#1| (-798 |#2|)) (QUOTE (-73)))) -(-987) +((-3980 . T) (-3979 . T)) +((-12 (|HasCategory| (-696 |#1| (-766 |#2|)) (QUOTE (-1005))) (|HasCategory| (-696 |#1| (-766 |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -696) (|devaluate| |#1|) (|%list| (QUOTE -766) (|devaluate| |#2|)))))) (|HasCategory| (-696 |#1| (-766 |#2|)) (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-696 |#1| (-766 |#2|)) (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| (-766 |#2|) (QUOTE (-313))) (|HasCategory| (-696 |#1| (-766 |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-696 |#1| (-766 |#2|)) (QUOTE (-72)))) +(-952) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-988 S) +(-953 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-989) +(-954) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4142 . T)) +((-3976 . T)) NIL -(-990 |xx| -3215) +(-955 |xx| -3076) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-991 S) +(-956 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-992 S |m| |n| R |Row| |Col|) +(-957 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-261))) (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-510))) (|HasCategory| |#4| (QUOTE (-146)))) -(-993 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-254))) (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-489))) (|HasCategory| |#4| (QUOTE (-144)))) +(-958 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4145 . T) (-4140 . T) (-4139 . T)) +((-3979 . T) (-3974 . T) (-3973 . T)) NIL -(-994 |m| |n| R) +(-959 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4145 . T) (-4140 . T) (-4139 . T)) -((|HasCategory| |#3| (QUOTE (-146))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|))))) (|HasCategory| |#3| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-318)))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (QUOTE (-261))) (|HasCategory| |#3| (QUOTE (-510))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-73))) (|HasCategory| |#3| (|%list| (QUOTE -568) (QUOTE (-797))))) -(-995 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-3979 . T) (-3974 . T) (-3973 . T)) +((|HasCategory| |#3| (QUOTE (-144))) (OR (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|))))) (|HasCategory| |#3| (|%list| (QUOTE -548) (QUOTE (-467)))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-308)))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (QUOTE (-254))) (|HasCategory| |#3| (QUOTE (-489))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (|%list| (QUOTE -547) (QUOTE (-765))))) +(-960 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-996 R) +(-961 R) ((|constructor| (NIL "The category of right modules over an rng (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the rng. \\blankline"))) NIL NIL -(-997) +(-962) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-998 S T$) +(-963 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1041)))) -(-999 S) +((|HasCategory| |#1| (QUOTE (-1005)))) +(-964 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1000) +(-965) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-1001 |TheField| |ThePolDom|) +(-966 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1002) +(-967) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4133 . T) (-4137 . T) (-4132 . T) (-4143 . T) (-4144 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3967 . T) (-3971 . T) (-3966 . T) (-3977 . T) (-3978 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-1003) -((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE's")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE's")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (QUOTE (-1117))) (|%list| (QUOTE |:|) (QUOTE |entry|) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041)))) (-3677 (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041)))) (-3677 (|HasCategory| (-51) (QUOTE (-73))) (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-51) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-51) (|%list| (QUOTE -263) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041))) (|HasCategory| (-1117) (QUOTE (-781))) (|HasCategory| (-51) (QUOTE (-1041))) (-3677 (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-51) (|%list| (QUOTE -568) (QUOTE (-797))))) (-3677 (|HasCategory| (-51) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-73)))) (|HasCategory| (-51) (QUOTE (-73))) (|HasCategory| (-51) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-73)))) -(-1004 S R E V) +(-968 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-498))) (|HasCategory| |#2| (|%list| (QUOTE -38) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -931) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#4| (|%list| (QUOTE -569) (QUOTE (-1117))))) -(-1005 R E V) +((|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#2| (QUOTE (-477))) (|HasCategory| |#2| (|%list| (QUOTE -38) (QUOTE (-478)))) (|HasCategory| |#2| (|%list| (QUOTE -897) (QUOTE (-478)))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#4| (|%list| (QUOTE -548) (QUOTE (-1079))))) +(-969 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-6 -3977)) (-3974 . T) (-3973 . T) (-3976 . T)) NIL -(-1006) +(-970) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1007 S |TheField| |ThePols|) +(-971 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1008 |TheField| |ThePols|) +(-972 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1009 R E V P TS) +(-973 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS). The same way it does not care about the way univariate polynomial gcd (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcd need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1010 S R E V P) +(-974 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1011 R E V P) +(-975 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4146 . T) (-4145 . T)) +((-3980 . T) (-3979 . T)) NIL -(-1012 R E V P TS) +(-976 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1013) +(-977) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1014) +(-978) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1015 |Base| R -3215) +(-979 |Base| R -3076) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}fn are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1016 |f|) +(-980 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1017 |Base| R -3215) +(-981 |Base| R -3076) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-1018 R |ls|) +(-982 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1019 R UP M) +(-983 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4138 |has| |#1| (-318)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-305))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-305)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-323))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-305)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-305)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-305))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-305)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))))) -(-1020 UP SAE UPA) +((-3972 |has| |#1| (-308)) (-3977 |has| |#1| (-308)) (-3971 |has| |#1| (-308)) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-295))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-295)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-313))) (OR (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-295)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-308)))) (-12 (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-295)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (QUOTE (-295))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (|%list| (QUOTE -804) (QUOTE (-1079)))))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-295)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (|%list| (QUOTE -804) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-308)))) (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-308)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))))) +(-984 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1021 UP SAE UPA) +(-985 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1022) +(-986) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1023) +(-987) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1024 S) +(-988 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1025) +(-989) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding `b'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of `n' in `s'; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1026 R) +(-990 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1027 R) +(-991 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-848))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-1028 (-1117)) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-1028 (-1117)) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-1028 (-1117)) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-1028 (-1117)) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-1028 (-1117)) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1028 S) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-6 -3977)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-814))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| (-992 (-1079)) (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| (-992 (-1079)) (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| (-992 (-1079)) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| (-992 (-1079)) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-992 (-1079)) (|%list| (QUOTE -548) (QUOTE (-467))))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (OR (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasAttribute| |#1| (QUOTE -3977)) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-992 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1029 S) +(-993 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-1041)))) -(-1030 R S) +((|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1005)))) +(-994 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-780)))) -(-1031) +((|HasCategory| |#1| (QUOTE (-748)))) +(-995) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment `s'. If `s' designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1032 S) +(-996 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1029 |#1|) (QUOTE (-1041)))) -(-1033 R S) +((|HasCategory| (-993 |#1|) (QUOTE (-1005)))) +(-997 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1034 S) +(-998 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1035 S L) +(-999 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1036) +(-1000) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1037 S) +(-1001 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4145 . T) (-4135 . T) (-4146 . T)) -((-3677 (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) -(-1038 A S) +((-3979 . T) (-3969 . T) (-3980 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-1002 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1039 S) +(-1003 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4135 . T)) +((-3969 . T)) NIL -(-1040 S) +(-1004 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1041) +(-1005) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1042 |m| |n|) +(-1006 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1043) +(-1007) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1044 |Str| |Sym| |Int| |Flt| |Expr|) +(-1008 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns \\spad{a1}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL NIL -(-1045 |Str| |Sym| |Int| |Flt| |Expr|) +(-1009 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1046 R FS) -((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) -NIL -NIL -(-1047 R E V P TS) +(-1010 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(ts,{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1048 R E V P TS) +(-1011 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1049 R E V P) +(-1012 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4146 . T) (-4145 . T)) +((-3980 . T) (-3979 . T)) NIL -(-1050) +(-1013) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1051 S) +(-1014 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1052) +(-1015) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1053 |dimtot| |dim1| S) +(-1016 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4139 |has| |#3| (-989)) (-4140 |has| |#3| (-989)) (-4142 |has| |#3| (-6 -4142)) (-4145 . T)) -((-3677 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-989)))) (|HasCategory| |#3| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#3| (QUOTE (-318))) (-3677 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-989)))) (-3677 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-318)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (QUOTE (-738))) (-3677 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-781)))) (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (QUOTE (-323))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))) (-3677 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-73))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#3| (QUOTE (-190))) (-3677 (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-989))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -838) (QUOTE (-1117))))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#3| (QUOTE (-1041))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#3| (QUOTE (-989)))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499)))))) (|HasCategory| (-499) (QUOTE (-781))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-989)))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -838) (QUOTE (-1117))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#3| (QUOTE (-989)))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasAttribute| |#3| (QUOTE -4142)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-989)))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#3| (QUOTE (-73))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|))))) -(-1054 R |x|) +((-3973 |has| |#3| (-954)) (-3974 |has| |#3| (-954)) (-3976 |has| |#3| (-6 -3976)) (-3979 . T)) +((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079)))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079))))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-954)))) (|HasCategory| |#3| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#3| (QUOTE (-308))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-954)))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-308)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (QUOTE (-710))) (OR (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (QUOTE (-749)))) (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (QUOTE (-313))) (OR (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079)))))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079))))) (OR (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#3| (QUOTE (-188))) (OR (|HasCategory| |#3| (QUOTE (-188))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-954))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -804) (QUOTE (-1079))))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#3| (QUOTE (-1005))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#3| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478)))))) (|HasCategory| (-478) (QUOTE (-749))) (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-954)))) (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -804) (QUOTE (-1079))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#3| (QUOTE (-954)))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasAttribute| |#3| (QUOTE -3976)) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-954)))) (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1005))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|))))) +(-1017 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-406)))) -(-1055) +((|HasCategory| |#1| (QUOTE (-385)))) +(-1018) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of `s'.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature `s'.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by `s',{} and return type indicated by `t'."))) NIL NIL -(-1056) +(-1019) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for `s'.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature `s'.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST n: \\spad{s} -> \\spad{t}"))) NIL NIL -(-1057 R -3215) +(-1020 R -3076) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1058 R) +(-1021 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1059) +(-1022) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1060) +(-1023) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4133 . T) (-4137 . T) (-4132 . T) (-4143 . T) (-4144 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3967 . T) (-3971 . T) (-3966 . T) (-3977 . T) (-3978 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-1061 S) +(-1024 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4145 . T) (-4146 . T)) +((-3979 . T) (-3980 . T)) NIL -(-1062 S |ndim| R |Row| |Col|) +(-1025 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-318))) (|HasAttribute| |#3| (QUOTE (-4147 "*"))) (|HasCategory| |#3| (QUOTE (-146)))) -(-1063 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-308))) (|HasAttribute| |#3| (QUOTE (-3981 "*"))) (|HasCategory| |#3| (QUOTE (-144)))) +(-1026 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) -((-4145 . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3979 . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-1064 R |Row| |Col| M) +(-1027 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1065 R |VarSet|) +(-1028 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-848))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-318))) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1066 |Coef| |Var| SMP) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-6 -3977)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-814))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467))))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (OR (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasAttribute| |#1| (QUOTE -3977)) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-1029 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-318)))) -(-1067 R E V P) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-308)))) +(-1030 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4146 . T) (-4145 . T)) +((-3980 . T) (-3979 . T)) NIL -(-1068 UP -3215) +(-1031 UP -3076) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1069 R) +(-1032 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1070 R) +(-1033 R) ((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1071 R) +(-1034 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1072 S A) +(-1035 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-781)))) -(-1073 R) +((|HasCategory| |#1| (QUOTE (-749)))) +(-1036 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1074 R) +(-1037 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through pn,{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through pn,{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through pn,{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught pn,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through pn defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through pn to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1075) +(-1038) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1076) +(-1039) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1077) +(-1040) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of `s'. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of `s'. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of `s'. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of `s'. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of `s'. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of `s'. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of `s'. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of `s'. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of `s'. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of `s'. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of `s'. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of `s'. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of `s'. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of `s'. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of `s'. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of `s'. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of `s'. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of `s'. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of `s'. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of `s'. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of `s'. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of `s'. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of `s'. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of `s'. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of `s'. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of `s'. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of `s'. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of `s'. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of `s'. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of `s'. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of `s'. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if `s' represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if `s' represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if `s' represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if `s' represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if `s' represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if `s' represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if `s' represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if `s' represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if `s' represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if `s' represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if `s' represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if `s' represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if `s' represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if `s' represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if `s' represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if `s' represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if `s' represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if `s' represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if `s' represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if `s' represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if `s' represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if `s' represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if `s' represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if `s' represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if `s' represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if `s' represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if `s' represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if `s' represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if `s' represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if `s' represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if `s' represents an `import' statement."))) NIL NIL -(-1078) +(-1041) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1079) +(-1042) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1080 V C) +(-1043 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}lt)} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,{}vt.tower) for vt in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,{}vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1081 V C) +(-1044 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| (-1080 |#1| |#2|) (|%list| (QUOTE -263) (|%list| (QUOTE -1080) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1080 |#1| |#2|) (QUOTE (-1041)))) (|HasCategory| (-1080 |#1| |#2|) (QUOTE (-1041))) (-3677 (|HasCategory| (-1080 |#1| |#2|) (QUOTE (-73))) (|HasCategory| (-1080 |#1| |#2|) (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| (-1080 |#1| |#2|) (|%list| (QUOTE -263) (|%list| (QUOTE -1080) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1080 |#1| |#2|) (QUOTE (-1041)))) (|HasCategory| (-1080 |#1| |#2|) (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| (-1080 |#1| |#2|) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-1080 |#1| |#2|) (QUOTE (-73)))) -(-1082 |ndim| R) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| (-1043 |#1| |#2|) (|%list| (QUOTE -256) (|%list| (QUOTE -1043) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1043 |#1| |#2|) (QUOTE (-1005)))) (|HasCategory| (-1043 |#1| |#2|) (QUOTE (-1005))) (OR (|HasCategory| (-1043 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1043 |#1| |#2|) (QUOTE (-1005)))) (OR (-12 (|HasCategory| (-1043 |#1| |#2|) (|%list| (QUOTE -256) (|%list| (QUOTE -1043) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1043 |#1| |#2|) (QUOTE (-1005)))) (|HasCategory| (-1043 |#1| |#2|) (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| (-1043 |#1| |#2|) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-1043 |#1| |#2|) (QUOTE (-72)))) +(-1045 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4142 . T) (-4134 |has| |#2| (-6 (-4147 "*"))) (-4145 . T) (-4139 . T) (-4140 . T)) -((|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-4147 #1="*"))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (QUOTE (-261))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-318))) (-3677 (|HasAttribute| |#2| (QUOTE (-4147 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-73))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) -(-1083 S) +((-3976 . T) (-3968 |has| |#2| (-6 (-3981 "*"))) (-3979 . T) (-3973 . T) (-3974 . T)) +((|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#2| (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-187))) (|HasAttribute| |#2| (QUOTE (-3981 #1="*"))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-308))) (OR (|HasAttribute| |#2| (QUOTE (-3981 #1#))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-144)))) +(-1046 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1084) +(-1047) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4146 . T) (-4145 . T)) +((-3980 . T) (-3979 . T)) NIL -(-1085 R E V P TS) +(-1048 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1086 R E V P) +(-1049 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4146 . T) (-4145 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#4| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#4| (QUOTE (-73)))) -(-1087) +((-3980 . T) (-3979 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#4| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-1050) ((|constructor| (NIL "The category of all semiring structures,{} \\spadignore{e.g.} triples (\\spad{D},{}+,{}*) such that (\\spad{D},{}+) is an Abelian monoid and (\\spad{D},{}*) is a monoid with the following laws:"))) NIL NIL -(-1088 S) +(-1051 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) -(-1089 A S) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1052 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1090 S) +(-1053 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1091 |Key| |Ent| |dent|) +(-1054 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4146 . T)) -((-12 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) -(-1092) +((-3980 . T)) +((-12 (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3844) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -548) (QUOTE (-467)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (OR (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) +(-1055) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For non-fiinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline")) (|nextItem| (((|Maybe| $) $) "\\spad{nextItem(x)} returns the next item,{} or \\spad{failed} if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1093) +(-1056) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1094 |Coef|) +(-1057 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1095 S) +(-1058 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4146 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) -(-1096 S) +((-3980 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1059 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1097 A B) +(-1060 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1098 A B C) +(-1061 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1099) +(-1062) ((|constructor| (NIL "This is the domain of character strings.")) (|string| (($ (|Identifier|)) "\\spad{string id} is the string representation of the identifier \\spad{id}") (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) -((-4146 . T) (-4145 . T)) -((-3677 (-12 (|HasCategory| (-117) (QUOTE (-781))) (|HasCategory| (-117) (|%list| (QUOTE -263) (QUOTE (-117))))) (-12 (|HasCategory| (-117) (QUOTE (-1041))) (|HasCategory| (-117) (|%list| (QUOTE -263) (QUOTE (-117)))))) (-3677 (-12 (|HasCategory| (-117) (QUOTE (-1041))) (|HasCategory| (-117) (|%list| (QUOTE -263) (QUOTE (-117))))) (|HasCategory| (-117) (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| (-117) (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| (-117) (QUOTE (-781))) (|HasCategory| (-117) (QUOTE (-1041)))) (|HasCategory| (-117) (QUOTE (-781))) (-3677 (|HasCategory| (-117) (QUOTE (-73))) (|HasCategory| (-117) (QUOTE (-781))) (|HasCategory| (-117) (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| (-117) (QUOTE (-1041))) (|HasCategory| (-117) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-117) (QUOTE (-73))) (-12 (|HasCategory| (-117) (QUOTE (-1041))) (|HasCategory| (-117) (|%list| (QUOTE -263) (QUOTE (-117)))))) -(-1100 |Entry|) +((-3980 . T) (-3979 . T)) +((OR (-12 (|HasCategory| (-115) (QUOTE (-749))) (|HasCategory| (-115) (|%list| (QUOTE -256) (QUOTE (-115))))) (-12 (|HasCategory| (-115) (QUOTE (-1005))) (|HasCategory| (-115) (|%list| (QUOTE -256) (QUOTE (-115)))))) (OR (-12 (|HasCategory| (-115) (QUOTE (-1005))) (|HasCategory| (-115) (|%list| (QUOTE -256) (QUOTE (-115))))) (|HasCategory| (-115) (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| (-115) (|%list| (QUOTE -548) (QUOTE (-467)))) (OR (|HasCategory| (-115) (QUOTE (-749))) (|HasCategory| (-115) (QUOTE (-1005)))) (|HasCategory| (-115) (QUOTE (-749))) (OR (|HasCategory| (-115) (QUOTE (-72))) (|HasCategory| (-115) (QUOTE (-749))) (|HasCategory| (-115) (QUOTE (-1005)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| (-115) (QUOTE (-1005))) (|HasCategory| (-115) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-115) (QUOTE (-72))) (-12 (|HasCategory| (-115) (QUOTE (-1005))) (|HasCategory| (-115) (|%list| (QUOTE -256) (QUOTE (-115)))))) +(-1063 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (QUOTE (-1099))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-1041))) (|HasCategory| (-1099) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-73)))) (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-73)))) -(-1101 A) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3844) (QUOTE (-1062))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (QUOTE (-1005)))) (OR (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (QUOTE (-1005)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (QUOTE (-1005)))) (OR (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (QUOTE (-1005)))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (|%list| (QUOTE -548) (QUOTE (-467)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (QUOTE (-1005))) (|HasCategory| (-1062) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (QUOTE (-72)))) +(-1064 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) -(-1102 |Coef|) +((|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478)))))) +(-1065 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1103 |Coef|) +(-1066 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1104 R UP) +(-1067 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-261)))) -(-1105 |n| R) +((|HasCategory| |#1| (QUOTE (-254)))) +(-1068 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1106 S1 S2) +(-1069 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form s:t"))) NIL NIL -(-1107) +(-1070) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1108 |Coef| |var| |cen|) +(-1071 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4147 "*") -3677 (-2681 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-763))) (|has| |#1| (-146)) (-2681 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-848)))) (-4138 -3677 (-2681 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-763))) (|has| |#1| (-510)) (-2681 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-848)))) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) -((-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -569) (QUOTE (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -240) (|%list| (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -263) (|%list| (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -468) (QUOTE (-1117)) (|%list| (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-781)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-960)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-1092)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|))))) (|HasCategory| (-499) (QUOTE (-1052))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-318))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -569) (QUOTE (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-960)))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-763)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-781))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-1092)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -240) (|%list| (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -263) (|%list| (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -468) (QUOTE (-1117)) (|%list| (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-499))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-498)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-261)))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-781)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-848)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1109 R -3215) +(((-3981 "*") OR (-2546 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-733))) (|has| |#1| (-144)) (-2546 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-814)))) (-3972 OR (-2546 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-733))) (|has| |#1| (-489)) (-2546 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-814)))) (-3977 |has| |#1| (-308)) (-3971 |has| |#1| (-308)) (-3973 . T) (-3974 . T) (-3976 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-733)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -548) (QUOTE (-467))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -238) (|%list| (QUOTE -1078) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1078) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -256) (|%list| (QUOTE -1078) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -447) (QUOTE (-1079)) (|%list| (QUOTE -1078) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -943) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-749)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-1055)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -802) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -802) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -804) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-188)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-188)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-187)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|))))) (|HasCategory| (-478) (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-308))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -943) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -548) (QUOTE (-467))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-926)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-733)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-733)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-749))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-1055)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -238) (|%list| (QUOTE -1078) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1078) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -256) (|%list| (QUOTE -1078) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -447) (QUOTE (-1079)) (|%list| (QUOTE -1078) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3930) (|%list| (|devaluate| |#1|) (QUOTE (-1079)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-478))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3796) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1079))))) (|HasSignature| |#1| (|%list| (QUOTE -3065) (|%list| (|%list| (QUOTE -578) (QUOTE (-1079))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-477)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-254)))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-116))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-733)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-733)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-144)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (|%list| (QUOTE -804) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-187)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-749)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-814)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-116)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1078 |#1| |#2| |#3|) (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-1072 R -3076) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1110 R) +(-1073 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1111 R) +(-1074 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4141 |has| |#1| (-318)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-1022) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-1022) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1112 R S) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3975 |has| |#1| (-308)) (-3977 |has| |#1| (-6 -3977)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| (-986) (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| (-986) (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| (-986) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| (-986) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-986) (|%list| (QUOTE -548) (QUOTE (-467))))) (|HasCategory| |#1| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (OR (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-188))) (|HasAttribute| |#1| (QUOTE -3977)) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-1075 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1113 E OV R P) +(-1076 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1114 |Coef| |var| |cen|) +(-1077 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|)))) (|HasCategory| (-361 (-499)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-318))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|))))))) -(-1115 |Coef| |var| |cen|) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-308)) (-3971 |has| |#1| (-308)) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|)))) (|HasCategory| (-343 (-478)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasSignature| |#1| (|%list| (QUOTE -3930) (|%list| (|devaluate| |#1|) (QUOTE (-1079)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3796) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1079))))) (|HasSignature| |#1| (|%list| (QUOTE -3065) (|%list| (|%list| (QUOTE -578) (QUOTE (-1079))) (|devaluate| |#1|))))))) +(-1078 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-510))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-714)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-714)) (|devaluate| |#1|)))) (|HasCategory| (-714) (QUOTE (-1052))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-714))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-714))))) (|HasCategory| |#1| (QUOTE (-318))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|))))))) -(-1116) -((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) -NIL -NIL -(-1117) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-687)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-687)) (|devaluate| |#1|)))) (|HasCategory| (-687) (QUOTE (-1015))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-687))))) (|HasSignature| |#1| (|%list| (QUOTE -3930) (|%list| (|devaluate| |#1|) (QUOTE (-1079)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-687))))) (|HasCategory| |#1| (QUOTE (-308))) (OR (-12 (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3796) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1079))))) (|HasSignature| |#1| (|%list| (QUOTE -3065) (|%list| (|%list| (QUOTE -578) (QUOTE (-1079))) (|devaluate| |#1|))))))) +(-1079) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1118 R) +(-1080 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1119 R) +(-1081 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-510))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| (-911) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -4143))) -(-1120) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-6 -3977)) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| (-877) (QUOTE (-102)))) (|HasAttribute| |#1| (QUOTE -3977))) +(-1082) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1121) +(-1083) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1122) +(-1084) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if `x' really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if `x' really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if `x' really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if `x' really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when `x' is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in `x'.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax `x'. The value returned is itself a syntax if `x' really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when `s' is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain `s'; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax `s'; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax `s'.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax `s'.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax `s'.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax `s'")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when `s' is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1123 N) +(-1085 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1124 N) +(-1086 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'."))) NIL NIL -(-1125) +(-1087) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1126 R) +(-1088 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1127) +(-1089) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1128 S) +(-1090 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for mr")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1129 |Key| |Entry|) +(-1091 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4145 . T) (-4146 . T)) -((-12 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-1041))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) -(-1130 S) +((-3979 . T) (-3980 . T)) +((-12 (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3844) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (OR (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -548) (QUOTE (-467)))) (-12 (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-1005))) (OR (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765))))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +(-1092 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1131 S) +(-1093 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1132 R) +(-1094 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1133 S |Key| |Entry|) +(-1095 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1134 |Key| |Entry|) +(-1096 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4146 . T)) +((-3980 . T)) NIL -(-1135 |Key| |Entry|) +(-1097 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1136) -((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) -NIL -NIL -(-1137) +(-1098) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'',{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1138 S) +(-1099 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1139) +(-1100) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1140 R) +(-1101 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1141) +(-1102) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1142 S) +(-1103 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1143) +(-1104) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1144 S) +(-1105 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4146 . T) (-4145 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) -(-1145 S) +((-3980 . T) (-3979 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1005))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1005)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1106 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1146) +(-1107) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1147 R -3215) +(-1108 R -3076) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1148 R |Row| |Col| M) +(-1109 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1149 R -3215) +(-1110 R -3076) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -821) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -821) (|devaluate| |#1|))))) -(-1150 |Coef|) +((-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -789) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -789) (|devaluate| |#1|))))) +(-1111 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-318)))) -(-1151 S R E V P) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-308)))) +(-1112 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-323)))) -(-1152 R E V P) +((|HasCategory| |#4| (QUOTE (-313)))) +(-1113 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4146 . T) (-4145 . T)) +((-3980 . T) (-3979 . T)) NIL -(-1153 |Curve|) +(-1114 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1154) +(-1115) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1155 S) +(-1116 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) -(-1156 -3215) +((|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) +(-1117 -3076) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1157) +(-1118) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1158) +(-1119) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1159 S) +(-1120 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by fn.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}'s and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}'s,{}bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}'s.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}'s.}"))) NIL -((|HasCategory| |#1| (QUOTE (-781)))) -(-1160) +((|HasCategory| |#1| (QUOTE (-749)))) +(-1121) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1161 S) +(-1122 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1162) +(-1123) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-1163) +(-1124) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1164) +(-1125) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1165) +(-1126) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1166) +(-1127) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1167 |Coef| |var| |cen|) +(-1128 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4147 "*") -3677 (-2681 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-763))) (|has| |#1| (-146)) (-2681 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-848)))) (-4138 -3677 (-2681 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-763))) (|has| |#1| (-510)) (-2681 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-848)))) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) -((-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -569) (QUOTE (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -240) (|%list| (QUOTE -1197) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1197) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -263) (|%list| (QUOTE -1197) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -468) (QUOTE (-1117)) (|%list| (QUOTE -1197) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-781)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-960)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-1092)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|))))) (|HasCategory| (-499) (QUOTE (-1052))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-318))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -569) (QUOTE (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-960)))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-763)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-781))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-1092)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -240) (|%list| (QUOTE -1197) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1197) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -263) (|%list| (QUOTE -1197) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -468) (QUOTE (-1117)) (|%list| (QUOTE -1197) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-499))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-498)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-261)))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-763)))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-763)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-781)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-848)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1168 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-3981 "*") OR (-2546 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-733))) (|has| |#1| (-144)) (-2546 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-814)))) (-3972 OR (-2546 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-733))) (|has| |#1| (-489)) (-2546 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-814)))) (-3977 |has| |#1| (-308)) (-3971 |has| |#1| (-308)) (-3973 . T) (-3974 . T) (-3976 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -548) (QUOTE (-467))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -238) (|%list| (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -256) (|%list| (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -447) (QUOTE (-1079)) (|%list| (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -943) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-733)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-749)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-1055)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -802) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -802) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -804) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-188)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-188)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-187)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|))))) (|HasCategory| (-478) (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-308))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -943) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -548) (QUOTE (-467))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-926)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-733)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-733)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-749))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-1055)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -238) (|%list| (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -256) (|%list| (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -447) (QUOTE (-1079)) (|%list| (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3930) (|%list| (|devaluate| |#1|) (QUOTE (-1079)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-478))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3796) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1079))))) (|HasSignature| |#1| (|%list| (QUOTE -3065) (|%list| (|%list| (QUOTE -578) (QUOTE (-1079))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-477)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-254)))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-116))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-733)))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -943) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-733)))) (|HasCategory| |#1| (QUOTE (-144)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (|%list| (QUOTE -804) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-187)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-749)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-814)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-116)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-1129 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1169 |Coef|) +(-1130 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree <= \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-308)) (-3971 |has| |#1| (-308)) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-1170 S |Coef| UTS) +(-1131 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-318)))) -(-1171 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-308)))) +(-1132 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-308)) (-3971 |has| |#1| (-308)) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-1172 |Coef| UTS) +(-1133 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) -((-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -240) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-781)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-118))))) (-3677 (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-120))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))))) (-3677 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-190))))) (-3677 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-499) (QUOTE (-1052))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-318))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-960)))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-763)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-781))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -240) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-781)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-1092)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -240) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-499))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-781)))) (|HasCategory| |#2| (QUOTE (-848))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-498)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-261)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (-3677 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-189))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-189)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-118)))))) -(-1173 ZP) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-308)) (-3971 |has| |#1| (-308)) (-3973 . T) (-3974 . T) (-3976 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -238) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -447) (QUOTE (-1079)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-733)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-749)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (|HasCategory| |#1| (QUOTE (-116))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-116))))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -804) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-188))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-188)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-187))))) (|HasCategory| (-478) (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-308))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-926)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-733)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-733)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-749))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -238) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -447) (QUOTE (-1079)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-733)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-749)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -238) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -447) (QUOTE (-1079)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3930) (|%list| (|devaluate| |#1|) (QUOTE (-1079)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-478))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3796) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1079))))) (|HasSignature| |#1| (|%list| (QUOTE -3065) (|%list| (|%list| (QUOTE -578) (QUOTE (-1079))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-749)))) (|HasCategory| |#2| (QUOTE (-814))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-477)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-254)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-116))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-187))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -804) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -804) (QUOTE (-1079))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-187)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-116)))))) +(-1134 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1174 S) +(-1135 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-1041)))) -(-1175 R S) +((|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1005)))) +(-1136 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-780)))) -(-1176 |x| R) +((|HasCategory| |#1| (QUOTE (-748)))) +(-1137 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4147 "*") |has| |#2| (-146)) (-4138 |has| |#2| (-510)) (-4141 |has| |#2| (-318)) (-4143 |has| |#2| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-146))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-510)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-1022) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-1022) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -4143)) (|HasCategory| |#2| (QUOTE (-406))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-1177 |x| R |y| S) +(((-3981 "*") |has| |#2| (-144)) (-3972 |has| |#2| (-489)) (-3975 |has| |#2| (-308)) (-3977 |has| |#2| (-6 -3977)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-489)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-323)))) (|HasCategory| (-986) (|%list| (QUOTE -789) (QUOTE (-323))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -789) (QUOTE (-478)))) (|HasCategory| (-986) (|%list| (QUOTE -789) (QUOTE (-478))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323))))) (|HasCategory| (-986) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-323)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478))))) (|HasCategory| (-986) (|%list| (QUOTE -548) (|%list| (QUOTE -793) (QUOTE (-478)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| (-986) (|%list| (QUOTE -548) (QUOTE (-467))))) (|HasCategory| |#2| (|%list| (QUOTE -575) (QUOTE (-478)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (QUOTE (-478)))) (OR (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| |#2| (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-814)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (|%list| (QUOTE -804) (QUOTE (-1079)))) (|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-188))) (|HasAttribute| |#2| (QUOTE -3977)) (|HasCategory| |#2| (QUOTE (-385))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) +(-1138 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1178 R Q UP) +(-1139 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a gcd domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1179 R UP) +(-1140 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} fn ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1180 R UP) +(-1141 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1181 R U) +(-1142 R U) ((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all."))) NIL NIL -(-1182 S R) +(-1143 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1092)))) -(-1183 R) +((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-1055)))) +(-1144 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4141 |has| |#1| (-318)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3975 |has| |#1| (-308)) (-3977 |has| |#1| (-6 -3977)) (-3974 . T) (-3973 . T) (-3976 . T)) NIL -(-1184 R PR S PS) +(-1145 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1185 S |Coef| |Expon|) +(-1146 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#2|) (QUOTE (-1117)))))) -(-1186 |Coef| |Expon|) +((|HasCategory| |#2| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1015))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3930) (|%list| (|devaluate| |#2|) (QUOTE (-1079)))))) +(-1147 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-1187 RC P) +(-1148 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1188 |Coef| |var| |cen|) +(-1149 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|)))) (|HasCategory| (-361 (-499)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-318))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|))))))) -(-1189 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-308)) (-3971 |has| |#1| (-308)) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|)))) (|HasCategory| (-343 (-478)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasSignature| |#1| (|%list| (QUOTE -3930) (|%list| (|devaluate| |#1|) (QUOTE (-1079)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3796) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1079))))) (|HasSignature| |#1| (|%list| (QUOTE -3065) (|%list| (|%list| (QUOTE -578) (QUOTE (-1079))) (|devaluate| |#1|))))))) +(-1150 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1190 |Coef|) +(-1151 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-308)) (-3971 |has| |#1| (-308)) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-1191 S |Coef| ULS) +(-1152 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1192 |Coef| ULS) +(-1153 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-308)) (-3971 |has| |#1| (-308)) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-1193 |Coef| ULS) +(-1154 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|)))) (|HasCategory| (-361 (-499)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-318))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) -(-1194 R FE |var| |cen|) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3977 |has| |#1| (-308)) (-3971 |has| |#1| (-308)) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|)))) (|HasCategory| (-343 (-478)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasSignature| |#1| (|%list| (QUOTE -3930) (|%list| (|devaluate| |#1|) (QUOTE (-1079)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3796) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1079))))) (|HasSignature| |#1| (|%list| (QUOTE -3065) (|%list| (|%list| (QUOTE -578) (QUOTE (-1079))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478)))))) +(-1155 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4147 "*") |has| (-1188 |#2| |#3| |#4|) (-146)) (-4138 |has| (-1188 |#2| |#3| |#4|) (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| (-1188 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-1188 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1188 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1188 |#2| |#3| |#4|) (QUOTE (-146))) (-3677 (|HasCategory| (-1188 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-1188 |#2| |#3| |#4|) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| (-1188 |#2| |#3| |#4|) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-1188 |#2| |#3| |#4|) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-1188 |#2| |#3| |#4|) (QUOTE (-318))) (|HasCategory| (-1188 |#2| |#3| |#4|) (QUOTE (-406))) (|HasCategory| (-1188 |#2| |#3| |#4|) (QUOTE (-510)))) -(-1195 A S) +(((-3981 "*") |has| (-1149 |#2| |#3| |#4|) (-144)) (-3972 |has| (-1149 |#2| |#3| |#4|) (-489)) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| (-1149 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| (-1149 |#2| |#3| |#4|) (QUOTE (-116))) (|HasCategory| (-1149 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1149 |#2| |#3| |#4|) (QUOTE (-144))) (OR (|HasCategory| (-1149 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| (-1149 |#2| |#3| |#4|) (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasCategory| (-1149 |#2| |#3| |#4|) (|%list| (QUOTE -943) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| (-1149 |#2| |#3| |#4|) (|%list| (QUOTE -943) (QUOTE (-478)))) (|HasCategory| (-1149 |#2| |#3| |#4|) (QUOTE (-308))) (|HasCategory| (-1149 |#2| |#3| |#4|) (QUOTE (-385))) (|HasCategory| (-1149 |#2| |#3| |#4|) (QUOTE (-489)))) +(-1156 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4146))) -(-1196 S) +((|HasAttribute| |#1| (QUOTE -3980))) +(-1157 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1197 |Coef| |var| |cen|) +(-1158 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-510))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-714)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-714)) (|devaluate| |#1|)))) (|HasCategory| (-714) (QUOTE (-1052))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-714))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-714))))) (|HasCategory| |#1| (QUOTE (-318))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|))))))) -(-1198 |Coef1| |Coef2| UTS1 UTS2) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3973 . T) (-3974 . T) (-3976 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -802) (QUOTE (-1079)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-687)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-687)) (|devaluate| |#1|)))) (|HasCategory| (-687) (QUOTE (-1015))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-687))))) (|HasSignature| |#1| (|%list| (QUOTE -3930) (|%list| (|devaluate| |#1|) (QUOTE (-1079)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-687))))) (|HasCategory| |#1| (QUOTE (-308))) (OR (-12 (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-478))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3796) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1079))))) (|HasSignature| |#1| (|%list| (QUOTE -3065) (|%list| (|%list| (QUOTE -578) (QUOTE (-1079))) (|devaluate| |#1|))))))) +(-1159 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1199 S |Coef|) +(-1160 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -29) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-898))) (|HasCategory| |#2| (QUOTE (-1143))) (|HasSignature| |#2| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1117))))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-318)))) -(-1200 |Coef|) +((|HasCategory| |#2| (|%list| (QUOTE -29) (QUOTE (-478)))) (|HasCategory| |#2| (QUOTE (-864))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasSignature| |#2| (|%list| (QUOTE -3065) (|%list| (|%list| (QUOTE -578) (QUOTE (-1079))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3796) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1079))))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasCategory| |#2| (QUOTE (-308)))) +(-1161 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) +(((-3981 "*") |has| |#1| (-144)) (-3972 |has| |#1| (-489)) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-1201 |Coef| UTS) +(-1162 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1202 -3215 UP L UTS) +(-1163 -3076 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-510)))) -(-1203) +((|HasCategory| |#1| (QUOTE (-489)))) +(-1164) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1204 |sym|) +(-1165 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1205 S R) +(-1166 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-942))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1206 R) +((|HasCategory| |#2| (QUOTE (-908))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1167 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4146 . T) (-4145 . T)) +((-3980 . T) (-3979 . T)) NIL -(-1207 R) +(-1168 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4146 . T) (-4145 . T)) -((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-684))) (|HasCategory| |#1| (QUOTE (-989))) (-12 (|HasCategory| |#1| (QUOTE (-942))) (|HasCategory| |#1| (QUOTE (-989)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) -(-1208 A B) +((-3980 . T) (-3979 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765))))) (|HasCategory| |#1| (|%list| (QUOTE -548) (QUOTE (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-658))) (|HasCategory| |#1| (QUOTE (-954))) (-12 (|HasCategory| |#1| (QUOTE (-908))) (|HasCategory| |#1| (QUOTE (-954)))) (|HasCategory| |#1| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-1169 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1209) +(-1170) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through pn.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1210) +(-1171) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1211) +(-1172) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1212) +(-1173) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1213) +(-1174) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1214 A S) +(-1175 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1215 S) +(-1176 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4140 . T) (-4139 . T)) +((-3974 . T) (-3973 . T)) NIL -(-1216 R) +(-1177 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1217 K R UP -3215) +(-1178 K R UP -3076) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1218) +(-1179) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1219) +(-1180) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1220 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1181 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4140 |has| |#1| (-146)) (-4139 |has| |#1| (-146)) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318)))) -(-1221 R E V P) +((-3974 |has| |#1| (-144)) (-3973 |has| |#1| (-144)) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308)))) +(-1182 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}."))) -((-4146 . T) (-4145 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#4| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#4| (QUOTE (-73)))) -(-1222 R) +((-3980 . T) (-3979 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -548) (QUOTE (-467)))) (|HasCategory| |#4| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#4| (|%list| (QUOTE -547) (QUOTE (-765)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-1183 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)"))) -((-4139 . T) (-4140 . T) (-4142 . T)) +((-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-1223 |vl| R) +(-1184 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4142 . T) (-4138 |has| |#2| (-6 -4138)) (-4140 . T) (-4139 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -4138))) -(-1224 R |VarSet| XPOLY) +((-3976 . T) (-3972 |has| |#2| (-6 -3972)) (-3974 . T) (-3973 . T)) +((|HasCategory| |#2| (QUOTE (-144))) (|HasAttribute| |#2| (QUOTE -3972))) +(-1185 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1225 S -3215) +(-1186 S -3076) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120)))) -(-1226 -3215) +((|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118)))) +(-1187 -3076) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3971 . T) (-3977 . T) (-3972 . T) ((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL -(-1227 |vl| R) +(-1188 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4138 |has| |#2| (-6 -4138)) (-4140 . T) (-4139 . T) (-4142 . T)) +((-3972 |has| |#2| (-6 -3972)) (-3974 . T) (-3973 . T) (-3976 . T)) NIL -(-1228 |VarSet| R) +(-1189 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4138 |has| |#2| (-6 -4138)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -675) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasAttribute| |#2| (QUOTE -4138))) -(-1229 R) +((-3972 |has| |#2| (-6 -3972)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -649) (|%list| (QUOTE -343) (QUOTE (-478))))) (|HasAttribute| |#2| (QUOTE -3972))) +(-1190 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4138 |has| |#1| (-6 -4138)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -4138))) -(-1230 |vl| R) +((-3972 |has| |#1| (-6 -3972)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasAttribute| |#1| (QUOTE -3972))) +(-1191 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4138 |has| |#2| (-6 -4138)) (-4140 . T) (-4139 . T) (-4142 . T)) +((-3972 |has| |#2| (-6 -3972)) (-3974 . T) (-3973 . T) (-3976 . T)) NIL -(-1231 R E) +(-1192 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4142 . T) (-4143 |has| |#1| (-6 -4143)) (-4138 |has| |#1| (-6 -4138)) (-4140 . T) (-4139 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasAttribute| |#1| (QUOTE -4142)) (|HasAttribute| |#1| (QUOTE -4143)) (|HasAttribute| |#1| (QUOTE -4138))) -(-1232 |VarSet| R) +((-3976 . T) (-3977 |has| |#1| (-6 -3977)) (-3972 |has| |#1| (-6 -3972)) (-3974 . T) (-3973 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasAttribute| |#1| (QUOTE -3976)) (|HasAttribute| |#1| (QUOTE -3977)) (|HasAttribute| |#1| (QUOTE -3972))) +(-1193 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4138 |has| |#2| (-6 -4138)) (-4140 . T) (-4139 . T) (-4142 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -4138))) -(-1233) +((-3972 |has| |#2| (-6 -3972)) (-3974 . T) (-3973 . T) (-3976 . T)) +((|HasCategory| |#2| (QUOTE (-144))) (|HasAttribute| |#2| (QUOTE -3972))) +(-1194) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1234 A) +(-1195 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1235 R |ls| |ls2|) +(-1196 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}. ") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1236 R) +(-1197 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}'s exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1237 |p|) +(-1198 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +(((-3981 "*") . T) (-3973 . T) (-3974 . T) (-3976 . T)) NIL NIL NIL @@ -4896,4 +4740,4 @@ NIL NIL NIL NIL -((-3 NIL 2094381 2094386 2094391 2094396) (-2 NIL 2094361 2094366 2094371 2094376) (-1 NIL 2094341 2094346 2094351 2094356) (0 NIL 2094321 2094326 2094331 2094336) (-1237 "ZMOD.spad" 2094130 2094143 2094259 2094316) (-1236 "ZLINDEP.spad" 2093228 2093239 2094120 2094125) (-1235 "ZDSOLVE.spad" 2083188 2083210 2093218 2093223) (-1234 "YSTREAM.spad" 2082683 2082694 2083178 2083183) (-1233 "YDIAGRAM.spad" 2082317 2082326 2082673 2082678) (-1232 "XRPOLY.spad" 2081537 2081557 2082173 2082242) (-1231 "XPR.spad" 2079332 2079345 2081255 2081354) (-1230 "XPOLYC.spad" 2078651 2078667 2079258 2079327) (-1229 "XPOLY.spad" 2078206 2078217 2078507 2078576) (-1228 "XPBWPOLY.spad" 2076645 2076665 2077980 2078049) (-1227 "XFALG.spad" 2073693 2073709 2076571 2076640) (-1226 "XF.spad" 2072156 2072171 2073595 2073688) (-1225 "XF.spad" 2070599 2070616 2072040 2072045) (-1224 "XEXPPKG.spad" 2069858 2069884 2070589 2070594) (-1223 "XDPOLY.spad" 2069472 2069488 2069714 2069783) (-1222 "XALG.spad" 2069140 2069151 2069428 2069467) (-1221 "WUTSET.spad" 2065111 2065128 2068742 2068769) (-1220 "WP.spad" 2064318 2064362 2064969 2065036) (-1219 "WHILEAST.spad" 2064116 2064125 2064308 2064313) (-1218 "WHEREAST.spad" 2063787 2063796 2064106 2064111) (-1217 "WFFINTBS.spad" 2061450 2061472 2063777 2063782) (-1216 "WEIER.spad" 2059672 2059683 2061440 2061445) (-1215 "VSPACE.spad" 2059345 2059356 2059640 2059667) (-1214 "VSPACE.spad" 2059038 2059051 2059335 2059340) (-1213 "VOID.spad" 2058715 2058724 2059028 2059033) (-1212 "VIEWDEF.spad" 2053916 2053925 2058705 2058710) (-1211 "VIEW3D.spad" 2037877 2037886 2053906 2053911) (-1210 "VIEW2D.spad" 2025776 2025785 2037867 2037872) (-1209 "VIEW.spad" 2023496 2023505 2025766 2025771) (-1208 "VECTOR2.spad" 2022135 2022148 2023486 2023491) (-1207 "VECTOR.spad" 2020640 2020651 2020891 2020918) (-1206 "VECTCAT.spad" 2018552 2018563 2020608 2020635) (-1205 "VECTCAT.spad" 2016273 2016286 2018331 2018336) (-1204 "VARIABLE.spad" 2016053 2016068 2016263 2016268) (-1203 "UTYPE.spad" 2015697 2015706 2016043 2016048) (-1202 "UTSODETL.spad" 2014992 2015016 2015653 2015658) (-1201 "UTSODE.spad" 2013208 2013228 2014982 2014987) (-1200 "UTSCAT.spad" 2010687 2010703 2013106 2013203) (-1199 "UTSCAT.spad" 2007786 2007804 2010207 2010212) (-1198 "UTS2.spad" 2007381 2007416 2007776 2007781) (-1197 "UTS.spad" 2002259 2002287 2005779 2005876) (-1196 "URAGG.spad" 1996980 1996991 2002249 2002254) (-1195 "URAGG.spad" 1991665 1991678 1996936 1996941) (-1194 "UPXSSING.spad" 1989286 1989312 1990722 1990855) (-1193 "UPXSCONS.spad" 1986964 1986984 1987337 1987486) (-1192 "UPXSCCA.spad" 1985535 1985555 1986810 1986959) (-1191 "UPXSCCA.spad" 1984248 1984270 1985525 1985530) (-1190 "UPXSCAT.spad" 1982837 1982853 1984094 1984243) (-1189 "UPXS2.spad" 1982380 1982433 1982827 1982832) (-1188 "UPXS.spad" 1979595 1979623 1980431 1980580) (-1187 "UPSQFREE.spad" 1978010 1978024 1979585 1979590) (-1186 "UPSCAT.spad" 1975805 1975829 1977908 1978005) (-1185 "UPSCAT.spad" 1973285 1973311 1975390 1975395) (-1184 "UPOLYC2.spad" 1972756 1972775 1973275 1973280) (-1183 "UPOLYC.spad" 1967836 1967847 1972598 1972751) (-1182 "UPOLYC.spad" 1962802 1962815 1967566 1967571) (-1181 "UPMP.spad" 1961734 1961747 1962792 1962797) (-1180 "UPDIVP.spad" 1961299 1961313 1961724 1961729) (-1179 "UPDECOMP.spad" 1959560 1959574 1961289 1961294) (-1178 "UPCDEN.spad" 1958777 1958793 1959550 1959555) (-1177 "UP2.spad" 1958141 1958162 1958767 1958772) (-1176 "UP.spad" 1955172 1955187 1955559 1955712) (-1175 "UNISEG2.spad" 1954669 1954682 1955128 1955133) (-1174 "UNISEG.spad" 1954022 1954033 1954588 1954593) (-1173 "UNIFACT.spad" 1953125 1953137 1954012 1954017) (-1172 "ULSCONS.spad" 1944046 1944066 1944416 1944565) (-1171 "ULSCCAT.spad" 1941783 1941803 1943892 1944041) (-1170 "ULSCCAT.spad" 1939628 1939650 1941739 1941744) (-1169 "ULSCAT.spad" 1937868 1937884 1939474 1939623) (-1168 "ULS2.spad" 1937382 1937435 1937858 1937863) (-1167 "ULS.spad" 1926960 1926988 1927905 1928334) (-1166 "UINT8.spad" 1926837 1926846 1926950 1926955) (-1165 "UINT64.spad" 1926713 1926722 1926827 1926832) (-1164 "UINT32.spad" 1926589 1926598 1926703 1926708) (-1163 "UINT16.spad" 1926465 1926474 1926579 1926584) (-1162 "UFD.spad" 1925530 1925539 1926391 1926460) (-1161 "UFD.spad" 1924657 1924668 1925520 1925525) (-1160 "UDVO.spad" 1923538 1923547 1924647 1924652) (-1159 "UDPO.spad" 1921119 1921130 1923494 1923499) (-1158 "TYPEAST.spad" 1921038 1921047 1921109 1921114) (-1157 "TYPE.spad" 1920970 1920979 1921028 1921033) (-1156 "TWOFACT.spad" 1919622 1919637 1920960 1920965) (-1155 "TUPLE.spad" 1919113 1919124 1919518 1919523) (-1154 "TUBETOOL.spad" 1915980 1915989 1919103 1919108) (-1153 "TUBE.spad" 1914627 1914644 1915970 1915975) (-1152 "TSETCAT.spad" 1902698 1902715 1914595 1914622) (-1151 "TSETCAT.spad" 1890755 1890774 1902654 1902659) (-1150 "TS.spad" 1889348 1889364 1890314 1890411) (-1149 "TRMANIP.spad" 1883712 1883729 1889036 1889041) (-1148 "TRIMAT.spad" 1882675 1882700 1883702 1883707) (-1147 "TRIGMNIP.spad" 1881202 1881219 1882665 1882670) (-1146 "TRIGCAT.spad" 1880714 1880723 1881192 1881197) (-1145 "TRIGCAT.spad" 1880224 1880235 1880704 1880709) (-1144 "TREE.spad" 1878672 1878683 1879704 1879731) (-1143 "TRANFUN.spad" 1878511 1878520 1878662 1878667) (-1142 "TRANFUN.spad" 1878348 1878359 1878501 1878506) (-1141 "TOPSP.spad" 1878022 1878031 1878338 1878343) (-1140 "TOOLSIGN.spad" 1877685 1877696 1878012 1878017) (-1139 "TEXTFILE.spad" 1876246 1876255 1877675 1877680) (-1138 "TEX1.spad" 1875802 1875813 1876236 1876241) (-1137 "TEX.spad" 1872996 1873005 1875792 1875797) (-1136 "TEMUTL.spad" 1872551 1872560 1872986 1872991) (-1135 "TBCMPPK.spad" 1870652 1870675 1872541 1872546) (-1134 "TBAGG.spad" 1869710 1869733 1870632 1870647) (-1133 "TBAGG.spad" 1868776 1868801 1869700 1869705) (-1132 "TANEXP.spad" 1868184 1868195 1868766 1868771) (-1131 "TALGOP.spad" 1867908 1867919 1868174 1868179) (-1130 "TABLEAU.spad" 1867389 1867400 1867898 1867903) (-1129 "TABLE.spad" 1865300 1865323 1865570 1865597) (-1128 "TABLBUMP.spad" 1862079 1862090 1865290 1865295) (-1127 "SYSTEM.spad" 1861307 1861316 1862069 1862074) (-1126 "SYSSOLP.spad" 1858790 1858801 1861297 1861302) (-1125 "SYSPTR.spad" 1858689 1858698 1858780 1858785) (-1124 "SYSNNI.spad" 1857912 1857923 1858679 1858684) (-1123 "SYSINT.spad" 1857316 1857327 1857902 1857907) (-1122 "SYNTAX.spad" 1853650 1853659 1857306 1857311) (-1121 "SYMTAB.spad" 1851718 1851727 1853640 1853645) (-1120 "SYMS.spad" 1847747 1847756 1851708 1851713) (-1119 "SYMPOLY.spad" 1846730 1846741 1846812 1846939) (-1118 "SYMFUNC.spad" 1846231 1846242 1846720 1846725) (-1117 "SYMBOL.spad" 1843726 1843735 1846221 1846226) (-1116 "SWITCH.spad" 1840497 1840506 1843716 1843721) (-1115 "SUTS.spad" 1837476 1837504 1838895 1838992) (-1114 "SUPXS.spad" 1834678 1834706 1835527 1835676) (-1113 "SUPFRACF.spad" 1833783 1833801 1834668 1834673) (-1112 "SUP2.spad" 1833175 1833188 1833773 1833778) (-1111 "SUP.spad" 1829820 1829831 1830593 1830746) (-1110 "SUMRF.spad" 1828794 1828805 1829810 1829815) (-1109 "SUMFS.spad" 1828423 1828440 1828784 1828789) (-1108 "SULS.spad" 1817988 1818016 1818946 1819375) (-1107 "SUCHTAST.spad" 1817757 1817766 1817978 1817983) (-1106 "SUCH.spad" 1817447 1817462 1817747 1817752) (-1105 "SUBSPACE.spad" 1809578 1809593 1817437 1817442) (-1104 "SUBRESP.spad" 1808748 1808762 1809534 1809539) (-1103 "STTFNC.spad" 1805216 1805232 1808738 1808743) (-1102 "STTF.spad" 1801315 1801331 1805206 1805211) (-1101 "STTAYLOR.spad" 1793960 1793971 1801190 1801195) (-1100 "STRTBL.spad" 1791953 1791970 1792102 1792129) (-1099 "STRING.spad" 1790557 1790566 1790942 1790969) (-1098 "STREAM3.spad" 1790130 1790145 1790547 1790552) (-1097 "STREAM2.spad" 1789258 1789271 1790120 1790125) (-1096 "STREAM1.spad" 1788964 1788975 1789248 1789253) (-1095 "STREAM.spad" 1785752 1785763 1788359 1788374) (-1094 "STINPROD.spad" 1784688 1784704 1785742 1785747) (-1093 "STEPAST.spad" 1783922 1783931 1784678 1784683) (-1092 "STEP.spad" 1783239 1783248 1783912 1783917) (-1091 "STBL.spad" 1781265 1781293 1781432 1781447) (-1090 "STAGG.spad" 1779964 1779975 1781255 1781260) (-1089 "STAGG.spad" 1778661 1778674 1779954 1779959) (-1088 "STACK.spad" 1777891 1777902 1778141 1778168) (-1087 "SRING.spad" 1777651 1777660 1777881 1777886) (-1086 "SREGSET.spad" 1775351 1775368 1777253 1777280) (-1085 "SRDCMPK.spad" 1773928 1773948 1775341 1775346) (-1084 "SRAGG.spad" 1769111 1769120 1773896 1773923) (-1083 "SRAGG.spad" 1764314 1764325 1769101 1769106) (-1082 "SQMATRIX.spad" 1761809 1761827 1762725 1762812) (-1081 "SPLTREE.spad" 1756277 1756290 1761073 1761100) (-1080 "SPLNODE.spad" 1752897 1752910 1756267 1756272) (-1079 "SPFCAT.spad" 1751706 1751715 1752887 1752892) (-1078 "SPECOUT.spad" 1750258 1750267 1751696 1751701) (-1077 "SPADXPT.spad" 1742349 1742358 1750248 1750253) (-1076 "spad-parser.spad" 1741814 1741823 1742339 1742344) (-1075 "SPADAST.spad" 1741515 1741524 1741804 1741809) (-1074 "SPACEC.spad" 1725730 1725741 1741505 1741510) (-1073 "SPACE3.spad" 1725506 1725517 1725720 1725725) (-1072 "SORTPAK.spad" 1725055 1725068 1725462 1725467) (-1071 "SOLVETRA.spad" 1722818 1722829 1725045 1725050) (-1070 "SOLVESER.spad" 1721274 1721285 1722808 1722813) (-1069 "SOLVERAD.spad" 1717300 1717311 1721264 1721269) (-1068 "SOLVEFOR.spad" 1715762 1715780 1717290 1717295) (-1067 "SNTSCAT.spad" 1715362 1715379 1715730 1715757) (-1066 "SMTS.spad" 1713644 1713670 1714921 1715018) (-1065 "SMP.spad" 1711050 1711070 1711440 1711567) (-1064 "SMITH.spad" 1709895 1709920 1711040 1711045) (-1063 "SMATCAT.spad" 1708013 1708043 1709839 1709890) (-1062 "SMATCAT.spad" 1706063 1706095 1707891 1707896) (-1061 "SKAGG.spad" 1705032 1705043 1706031 1706058) (-1060 "SINT.spad" 1703972 1703981 1704898 1705027) (-1059 "SIMPAN.spad" 1703700 1703709 1703962 1703967) (-1058 "SIGNRF.spad" 1702825 1702836 1703690 1703695) (-1057 "SIGNEF.spad" 1702111 1702128 1702815 1702820) (-1056 "SIGAST.spad" 1701528 1701537 1702101 1702106) (-1055 "SIG.spad" 1700890 1700899 1701518 1701523) (-1054 "SHP.spad" 1698834 1698849 1700846 1700851) (-1053 "SHDP.spad" 1686264 1686291 1686781 1686878) (-1052 "SGROUP.spad" 1685872 1685881 1686254 1686259) (-1051 "SGROUP.spad" 1685478 1685489 1685862 1685867) (-1050 "SGCF.spad" 1678617 1678626 1685468 1685473) (-1049 "SFRTCAT.spad" 1677563 1677580 1678585 1678612) (-1048 "SFRGCD.spad" 1676626 1676646 1677553 1677558) (-1047 "SFQCMPK.spad" 1671439 1671459 1676616 1676621) (-1046 "SFORT.spad" 1670878 1670892 1671429 1671434) (-1045 "SEXOF.spad" 1670721 1670761 1670868 1670873) (-1044 "SEXCAT.spad" 1668549 1668589 1670711 1670716) (-1043 "SEX.spad" 1668441 1668450 1668539 1668544) (-1042 "SETMN.spad" 1666901 1666918 1668431 1668436) (-1041 "SETCAT.spad" 1666386 1666395 1666891 1666896) (-1040 "SETCAT.spad" 1665869 1665880 1666376 1666381) (-1039 "SETAGG.spad" 1662418 1662429 1665849 1665864) (-1038 "SETAGG.spad" 1658975 1658988 1662408 1662413) (-1037 "SET.spad" 1657249 1657260 1658346 1658385) (-1036 "SEQAST.spad" 1656952 1656961 1657239 1657244) (-1035 "SEGXCAT.spad" 1656108 1656121 1656942 1656947) (-1034 "SEGCAT.spad" 1655033 1655044 1656098 1656103) (-1033 "SEGBIND2.spad" 1654731 1654744 1655023 1655028) (-1032 "SEGBIND.spad" 1654489 1654500 1654678 1654683) (-1031 "SEGAST.spad" 1654219 1654228 1654479 1654484) (-1030 "SEG2.spad" 1653654 1653667 1654175 1654180) (-1029 "SEG.spad" 1653467 1653478 1653573 1653578) (-1028 "SDVAR.spad" 1652743 1652754 1653457 1653462) (-1027 "SDPOL.spad" 1650001 1650012 1650292 1650419) (-1026 "SCPKG.spad" 1648090 1648101 1649991 1649996) (-1025 "SCOPE.spad" 1647267 1647276 1648080 1648085) (-1024 "SCACHE.spad" 1645963 1645974 1647257 1647262) (-1023 "SASTCAT.spad" 1645872 1645881 1645953 1645958) (-1022 "SAOS.spad" 1645744 1645753 1645862 1645867) (-1021 "SAERFFC.spad" 1645457 1645477 1645734 1645739) (-1020 "SAEFACT.spad" 1645158 1645178 1645447 1645452) (-1019 "SAE.spad" 1642595 1642611 1643206 1643341) (-1018 "RURPK.spad" 1640254 1640270 1642585 1642590) (-1017 "RULESET.spad" 1639707 1639731 1640244 1640249) (-1016 "RULECOLD.spad" 1639559 1639572 1639697 1639702) (-1015 "RULE.spad" 1637807 1637831 1639549 1639554) (-1014 "RTVALUE.spad" 1637542 1637551 1637797 1637802) (-1013 "RSTRCAST.spad" 1637259 1637268 1637532 1637537) (-1012 "RSETGCD.spad" 1633701 1633721 1637249 1637254) (-1011 "RSETCAT.spad" 1623669 1623686 1633669 1633696) (-1010 "RSETCAT.spad" 1613657 1613676 1623659 1623664) (-1009 "RSDCMPK.spad" 1612157 1612177 1613647 1613652) (-1008 "RRCC.spad" 1610541 1610571 1612147 1612152) (-1007 "RRCC.spad" 1608923 1608955 1610531 1610536) (-1006 "RPTAST.spad" 1608625 1608634 1608913 1608918) (-1005 "RPOLCAT.spad" 1588129 1588144 1608493 1608620) (-1004 "RPOLCAT.spad" 1567330 1567347 1587696 1587701) (-1003 "ROUTINE.spad" 1562709 1562718 1565457 1565484) (-1002 "ROMAN.spad" 1562037 1562046 1562575 1562704) (-1001 "ROIRC.spad" 1561117 1561149 1562027 1562032) (-1000 "RNS.spad" 1560093 1560102 1561019 1561112) (-999 "RNS.spad" 1559156 1559166 1560083 1560088) (-998 "RNGBIND.spad" 1558317 1558330 1559111 1559116) (-997 "RNG.spad" 1558053 1558061 1558307 1558312) (-996 "RMODULE.spad" 1557835 1557845 1558043 1558048) (-995 "RMCAT2.spad" 1557256 1557312 1557825 1557830) (-994 "RMATRIX.spad" 1556028 1556046 1556370 1556409) (-993 "RMATCAT.spad" 1551608 1551638 1555984 1556023) (-992 "RMATCAT.spad" 1547078 1547110 1551456 1551461) (-991 "RLINSET.spad" 1546783 1546793 1547068 1547073) (-990 "RINTERP.spad" 1546672 1546691 1546773 1546778) (-989 "RING.spad" 1546143 1546151 1546652 1546667) (-988 "RING.spad" 1545622 1545632 1546133 1546138) (-987 "RIDIST.spad" 1545015 1545023 1545612 1545617) (-986 "RGCHAIN.spad" 1543538 1543553 1544431 1544458) (-985 "RGBCSPC.spad" 1543328 1543339 1543528 1543533) (-984 "RGBCMDL.spad" 1542891 1542902 1543318 1543323) (-983 "RFFACTOR.spad" 1542354 1542364 1542881 1542886) (-982 "RFFACT.spad" 1542090 1542101 1542344 1542349) (-981 "RFDIST.spad" 1541087 1541095 1542080 1542085) (-980 "RF.spad" 1538762 1538772 1541077 1541082) (-979 "RETSOL.spad" 1538182 1538194 1538752 1538757) (-978 "RETRACT.spad" 1537611 1537621 1538172 1538177) (-977 "RETRACT.spad" 1537038 1537050 1537601 1537606) (-976 "RETAST.spad" 1536851 1536859 1537028 1537033) (-975 "RESULT.spad" 1534392 1534400 1534978 1535005) (-974 "RESRING.spad" 1533740 1533786 1534330 1534387) (-973 "RESLATC.spad" 1533065 1533075 1533730 1533735) (-972 "REPSQ.spad" 1532797 1532807 1533055 1533060) (-971 "REPDB.spad" 1532505 1532515 1532787 1532792) (-970 "REP2.spad" 1522220 1522230 1532347 1532352) (-969 "REP1.spad" 1516441 1516451 1522170 1522175) (-968 "REP.spad" 1513996 1514004 1516431 1516436) (-967 "REGSET.spad" 1511790 1511806 1513598 1513625) (-966 "REF.spad" 1511126 1511136 1511745 1511750) (-965 "REDORDER.spad" 1510333 1510349 1511116 1511121) (-964 "RECLOS.spad" 1509099 1509118 1509802 1509895) (-963 "REALSOLV.spad" 1508240 1508248 1509089 1509094) (-962 "REAL0Q.spad" 1505539 1505553 1508230 1508235) (-961 "REAL0.spad" 1502384 1502398 1505529 1505534) (-960 "REAL.spad" 1502257 1502265 1502374 1502379) (-959 "RDUCEAST.spad" 1501979 1501987 1502247 1502252) (-958 "RDIV.spad" 1501635 1501659 1501969 1501974) (-957 "RDIST.spad" 1501203 1501213 1501625 1501630) (-956 "RDETRS.spad" 1500068 1500085 1501193 1501198) (-955 "RDETR.spad" 1498208 1498225 1500058 1500063) (-954 "RDEEFS.spad" 1497308 1497324 1498198 1498203) (-953 "RDEEF.spad" 1496319 1496335 1497298 1497303) (-952 "RCFIELD.spad" 1493538 1493546 1496221 1496314) (-951 "RCFIELD.spad" 1490843 1490853 1493528 1493533) (-950 "RCAGG.spad" 1488780 1488790 1490833 1490838) (-949 "RCAGG.spad" 1486644 1486656 1488699 1488704) (-948 "RATRET.spad" 1486005 1486015 1486634 1486639) (-947 "RATFACT.spad" 1485698 1485709 1485995 1486000) (-946 "RANDSRC.spad" 1485018 1485026 1485688 1485693) (-945 "RADUTIL.spad" 1484775 1484783 1485008 1485013) (-944 "RADIX.spad" 1481558 1481571 1483103 1483196) (-943 "RADFF.spad" 1479265 1479301 1479383 1479539) (-942 "RADCAT.spad" 1478861 1478869 1479255 1479260) (-941 "RADCAT.spad" 1478455 1478465 1478851 1478856) (-940 "QUEUE.spad" 1477677 1477687 1477935 1477962) (-939 "QUATCT2.spad" 1477298 1477316 1477667 1477672) (-938 "QUATCAT.spad" 1475469 1475479 1477228 1477293) (-937 "QUATCAT.spad" 1473388 1473400 1475149 1475154) (-936 "QUAT.spad" 1471844 1471854 1472186 1472251) (-935 "QUAGG.spad" 1470678 1470688 1471812 1471839) (-934 "QQUTAST.spad" 1470447 1470455 1470668 1470673) (-933 "QFORM.spad" 1470066 1470080 1470437 1470442) (-932 "QFCAT2.spad" 1469759 1469775 1470056 1470061) (-931 "QFCAT.spad" 1468462 1468472 1469661 1469754) (-930 "QFCAT.spad" 1466750 1466762 1467951 1467956) (-929 "QEQUAT.spad" 1466309 1466317 1466740 1466745) (-928 "QCMPACK.spad" 1461224 1461243 1466299 1466304) (-927 "QALGSET2.spad" 1459220 1459238 1461214 1461219) (-926 "QALGSET.spad" 1455325 1455357 1459134 1459139) (-925 "PWFFINTB.spad" 1452741 1452762 1455315 1455320) (-924 "PUSHVAR.spad" 1452080 1452099 1452731 1452736) (-923 "PTRANFN.spad" 1448216 1448226 1452070 1452075) (-922 "PTPACK.spad" 1445304 1445314 1448206 1448211) (-921 "PTFUNC2.spad" 1445127 1445141 1445294 1445299) (-920 "PTCAT.spad" 1444382 1444392 1445095 1445122) (-919 "PSQFR.spad" 1443697 1443721 1444372 1444377) (-918 "PSEUDLIN.spad" 1442583 1442593 1443687 1443692) (-917 "PSETPK.spad" 1429288 1429304 1442461 1442466) (-916 "PSETCAT.spad" 1423688 1423711 1429268 1429283) (-915 "PSETCAT.spad" 1418062 1418087 1423644 1423649) (-914 "PSCURVE.spad" 1417061 1417069 1418052 1418057) (-913 "PSCAT.spad" 1415844 1415873 1416959 1417056) (-912 "PSCAT.spad" 1414717 1414748 1415834 1415839) (-911 "PRTITION.spad" 1413415 1413423 1414707 1414712) (-910 "PRTDAST.spad" 1413134 1413142 1413405 1413410) (-909 "PRS.spad" 1402752 1402769 1413090 1413095) (-908 "PRQAGG.spad" 1402187 1402197 1402720 1402747) (-907 "PROPLOG.spad" 1401791 1401799 1402177 1402182) (-906 "PROPFUN2.spad" 1401414 1401427 1401781 1401786) (-905 "PROPFUN1.spad" 1400820 1400831 1401404 1401409) (-904 "PROPFRML.spad" 1399388 1399399 1400810 1400815) (-903 "PROPERTY.spad" 1398884 1398892 1399378 1399383) (-902 "PRODUCT.spad" 1396566 1396578 1396850 1396905) (-901 "PRINT.spad" 1396318 1396326 1396556 1396561) (-900 "PRIMES.spad" 1394579 1394589 1396308 1396313) (-899 "PRIMELT.spad" 1392700 1392714 1394569 1394574) (-898 "PRIMCAT.spad" 1392343 1392351 1392690 1392695) (-897 "PRIMARR2.spad" 1391110 1391122 1392333 1392338) (-896 "PRIMARR.spad" 1389951 1389961 1390121 1390148) (-895 "PREASSOC.spad" 1389333 1389345 1389941 1389946) (-894 "PR.spad" 1387701 1387713 1388400 1388527) (-893 "PPCURVE.spad" 1386838 1386846 1387691 1387696) (-892 "PORTNUM.spad" 1386629 1386637 1386828 1386833) (-891 "POLYROOT.spad" 1385478 1385500 1386585 1386590) (-890 "POLYLIFT.spad" 1384743 1384766 1385468 1385473) (-889 "POLYCATQ.spad" 1382869 1382891 1384733 1384738) (-888 "POLYCAT.spad" 1376371 1376392 1382737 1382864) (-887 "POLYCAT.spad" 1369169 1369192 1375537 1375542) (-886 "POLY2UP.spad" 1368621 1368635 1369159 1369164) (-885 "POLY2.spad" 1368218 1368230 1368611 1368616) (-884 "POLY.spad" 1365484 1365494 1365999 1366126) (-883 "POLUTIL.spad" 1364449 1364478 1365440 1365445) (-882 "POLTOPOL.spad" 1363197 1363212 1364439 1364444) (-881 "POINT.spad" 1361866 1361876 1361953 1361980) (-880 "PNTHEORY.spad" 1358568 1358576 1361856 1361861) (-879 "PMTOOLS.spad" 1357343 1357357 1358558 1358563) (-878 "PMSYM.spad" 1356892 1356902 1357333 1357338) (-877 "PMQFCAT.spad" 1356483 1356497 1356882 1356887) (-876 "PMPREDFS.spad" 1355945 1355967 1356473 1356478) (-875 "PMPRED.spad" 1355432 1355446 1355935 1355940) (-874 "PMPLCAT.spad" 1354509 1354527 1355361 1355366) (-873 "PMLSAGG.spad" 1354094 1354108 1354499 1354504) (-872 "PMKERNEL.spad" 1353673 1353685 1354084 1354089) (-871 "PMINS.spad" 1353253 1353263 1353663 1353668) (-870 "PMFS.spad" 1352830 1352848 1353243 1353248) (-869 "PMDOWN.spad" 1352120 1352134 1352820 1352825) (-868 "PMASSFS.spad" 1351095 1351111 1352110 1352115) (-867 "PMASS.spad" 1350113 1350121 1351085 1351090) (-866 "PLOTTOOL.spad" 1349893 1349901 1350103 1350108) (-865 "PLOT3D.spad" 1346357 1346365 1349883 1349888) (-864 "PLOT1.spad" 1345530 1345540 1346347 1346352) (-863 "PLOT.spad" 1340453 1340461 1345520 1345525) (-862 "PLEQN.spad" 1327855 1327882 1340443 1340448) (-861 "PINTERPA.spad" 1327639 1327655 1327845 1327850) (-860 "PINTERP.spad" 1327261 1327280 1327629 1327634) (-859 "PID.spad" 1326235 1326243 1327187 1327256) (-858 "PICOERCE.spad" 1325892 1325902 1326225 1326230) (-857 "PI.spad" 1325509 1325517 1325866 1325887) (-856 "PGROEB.spad" 1324118 1324132 1325499 1325504) (-855 "PGE.spad" 1315791 1315799 1324108 1324113) (-854 "PGCD.spad" 1314745 1314762 1315781 1315786) (-853 "PFRPAC.spad" 1313894 1313904 1314735 1314740) (-852 "PFR.spad" 1310597 1310607 1313796 1313889) (-851 "PFOTOOLS.spad" 1309855 1309871 1310587 1310592) (-850 "PFOQ.spad" 1309225 1309243 1309845 1309850) (-849 "PFO.spad" 1308644 1308671 1309215 1309220) (-848 "PFECAT.spad" 1306354 1306362 1308570 1308639) (-847 "PFECAT.spad" 1304092 1304102 1306310 1306315) (-846 "PFBRU.spad" 1301980 1301992 1304082 1304087) (-845 "PFBR.spad" 1299540 1299563 1301970 1301975) (-844 "PF.spad" 1299114 1299126 1299345 1299438) (-843 "PERMGRP.spad" 1293884 1293894 1299104 1299109) (-842 "PERMCAT.spad" 1292545 1292555 1293864 1293879) (-841 "PERMAN.spad" 1291101 1291115 1292535 1292540) (-840 "PERM.spad" 1286908 1286918 1290931 1290946) (-839 "PENDTREE.spad" 1286130 1286140 1286410 1286415) (-838 "PDSPC.spad" 1284943 1284953 1286120 1286125) (-837 "PDSPC.spad" 1283754 1283766 1284933 1284938) (-836 "PDRING.spad" 1283596 1283606 1283734 1283749) (-835 "PDMOD.spad" 1283412 1283424 1283564 1283591) (-834 "PDEPROB.spad" 1282427 1282435 1283402 1283407) (-833 "PDECOMP.spad" 1281897 1281914 1282417 1282422) (-832 "PDECAT.spad" 1280253 1280261 1281887 1281892) (-831 "PDDOM.spad" 1279691 1279704 1280243 1280248) (-830 "PDDOM.spad" 1279127 1279142 1279681 1279686) (-829 "PCOMP.spad" 1278980 1278993 1279117 1279122) (-828 "PBWLB.spad" 1277576 1277593 1278970 1278975) (-827 "PATTERN2.spad" 1277314 1277326 1277566 1277571) (-826 "PATTERN1.spad" 1275658 1275674 1277304 1277309) (-825 "PATTERN.spad" 1270229 1270239 1275648 1275653) (-824 "PATRES2.spad" 1269901 1269915 1270219 1270224) (-823 "PATRES.spad" 1267484 1267496 1269891 1269896) (-822 "PATMATCH.spad" 1265677 1265708 1267188 1267193) (-821 "PATMAB.spad" 1265106 1265116 1265667 1265672) (-820 "PATLRES.spad" 1264192 1264206 1265096 1265101) (-819 "PATAB.spad" 1263956 1263966 1264182 1264187) (-818 "PARTPERM.spad" 1262012 1262020 1263946 1263951) (-817 "PARSURF.spad" 1261446 1261474 1262002 1262007) (-816 "PARSU2.spad" 1261243 1261259 1261436 1261441) (-815 "script-parser.spad" 1260763 1260771 1261233 1261238) (-814 "PARSCURV.spad" 1260197 1260225 1260753 1260758) (-813 "PARSC2.spad" 1259988 1260004 1260187 1260192) (-812 "PARPCURV.spad" 1259450 1259478 1259978 1259983) (-811 "PARPC2.spad" 1259241 1259257 1259440 1259445) (-810 "PARAMAST.spad" 1258369 1258377 1259231 1259236) (-809 "PAN2EXPR.spad" 1257781 1257789 1258359 1258364) (-808 "PALETTE.spad" 1256895 1256903 1257771 1257776) (-807 "PAIR.spad" 1255902 1255915 1256471 1256476) (-806 "PADICRC.spad" 1253109 1253127 1254272 1254365) (-805 "PADICRAT.spad" 1250971 1250983 1251184 1251277) (-804 "PADICCT.spad" 1249520 1249532 1250897 1250966) (-803 "PADIC.spad" 1249223 1249235 1249446 1249515) (-802 "PADEPAC.spad" 1247912 1247931 1249213 1249218) (-801 "PADE.spad" 1246664 1246680 1247902 1247907) (-800 "OWP.spad" 1245912 1245942 1246522 1246589) (-799 "OVERSET.spad" 1245485 1245493 1245902 1245907) (-798 "OVAR.spad" 1245266 1245289 1245475 1245480) (-797 "OUTFORM.spad" 1234674 1234682 1245256 1245261) (-796 "OUTBFILE.spad" 1234108 1234116 1234664 1234669) (-795 "OUTBCON.spad" 1233178 1233186 1234098 1234103) (-794 "OUTBCON.spad" 1232246 1232256 1233168 1233173) (-793 "OUT.spad" 1231364 1231372 1232236 1232241) (-792 "OSI.spad" 1230839 1230847 1231354 1231359) (-791 "OSGROUP.spad" 1230757 1230765 1230829 1230834) (-790 "ORTHPOL.spad" 1229236 1229246 1230668 1230673) (-789 "OREUP.spad" 1228682 1228710 1228909 1228948) (-788 "ORESUP.spad" 1227976 1228000 1228355 1228394) (-787 "OREPCTO.spad" 1225865 1225877 1227896 1227901) (-786 "OREPCAT.spad" 1220052 1220062 1225821 1225860) (-785 "OREPCAT.spad" 1214129 1214141 1219900 1219905) (-784 "ORDTYPE.spad" 1213366 1213374 1214119 1214124) (-783 "ORDTYPE.spad" 1212601 1212611 1213356 1213361) (-782 "ORDSTRCT.spad" 1212371 1212386 1212534 1212539) (-781 "ORDSET.spad" 1212071 1212079 1212361 1212366) (-780 "ORDRING.spad" 1211888 1211896 1212051 1212066) (-779 "ORDMON.spad" 1211743 1211751 1211878 1211883) (-778 "ORDFUNS.spad" 1210875 1210891 1211733 1211738) (-777 "ORDFIN.spad" 1210695 1210703 1210865 1210870) (-776 "ORDCOMP2.spad" 1209988 1210000 1210685 1210690) (-775 "ORDCOMP.spad" 1208444 1208454 1209526 1209555) (-774 "OPTPROB.spad" 1207082 1207090 1208434 1208439) (-773 "OPTCAT.spad" 1204761 1204769 1207072 1207077) (-772 "OPSIG.spad" 1204423 1204431 1204751 1204756) (-771 "OPQUERY.spad" 1204004 1204012 1204413 1204418) (-770 "OPERCAT.spad" 1203470 1203480 1203994 1203999) (-769 "OPERCAT.spad" 1202934 1202946 1203460 1203465) (-768 "OP.spad" 1202676 1202686 1202756 1202823) (-767 "ONECOMP2.spad" 1202100 1202112 1202666 1202671) (-766 "ONECOMP.spad" 1200836 1200846 1201638 1201667) (-765 "OMSAGG.spad" 1200624 1200634 1200792 1200831) (-764 "OMLO.spad" 1200057 1200069 1200510 1200549) (-763 "OINTDOM.spad" 1199820 1199828 1199983 1200052) (-762 "OFMONOID.spad" 1197959 1197969 1199776 1199781) (-761 "ODVAR.spad" 1197220 1197230 1197949 1197954) (-760 "ODR.spad" 1196864 1196890 1197032 1197181) (-759 "ODPOL.spad" 1194078 1194088 1194418 1194545) (-758 "ODP.spad" 1181652 1181672 1182025 1182122) (-757 "ODETOOLS.spad" 1180301 1180320 1181642 1181647) (-756 "ODESYS.spad" 1177995 1178012 1180291 1180296) (-755 "ODERTRIC.spad" 1174028 1174045 1177952 1177957) (-754 "ODERED.spad" 1173427 1173451 1174018 1174023) (-753 "ODERAT.spad" 1171060 1171077 1173417 1173422) (-752 "ODEPRRIC.spad" 1168153 1168175 1171050 1171055) (-751 "ODEPROB.spad" 1167410 1167418 1168143 1168148) (-750 "ODEPRIM.spad" 1164808 1164830 1167400 1167405) (-749 "ODEPAL.spad" 1164194 1164218 1164798 1164803) (-748 "ODEINT.spad" 1163629 1163645 1164184 1164189) (-747 "ODEEF.spad" 1159124 1159140 1163619 1163624) (-746 "ODECONST.spad" 1158669 1158687 1159114 1159119) (-745 "ODECAT.spad" 1157267 1157275 1158659 1158664) (-744 "OCTCT2.spad" 1156905 1156926 1157257 1157262) (-743 "OCT.spad" 1155005 1155015 1155719 1155758) (-742 "OCAMON.spad" 1154853 1154861 1154995 1155000) (-741 "OC.spad" 1152649 1152659 1154809 1154848) (-740 "OC.spad" 1150167 1150179 1152329 1152334) (-739 "OASGP.spad" 1149982 1149990 1150157 1150162) (-738 "OAMONS.spad" 1149504 1149512 1149972 1149977) (-737 "OAMON.spad" 1149262 1149270 1149494 1149499) (-736 "OAMON.spad" 1149018 1149028 1149252 1149257) (-735 "OAGROUP.spad" 1148556 1148564 1149008 1149013) (-734 "OAGROUP.spad" 1148092 1148102 1148546 1148551) (-733 "NUMTUBE.spad" 1147683 1147699 1148082 1148087) (-732 "NUMQUAD.spad" 1135659 1135667 1147673 1147678) (-731 "NUMODE.spad" 1127011 1127019 1135649 1135654) (-730 "NUMINT.spad" 1124577 1124585 1127001 1127006) (-729 "NUMFMT.spad" 1123417 1123425 1124567 1124572) (-728 "NUMERIC.spad" 1115532 1115542 1123223 1123228) (-727 "NTSCAT.spad" 1114040 1114056 1115500 1115527) (-726 "NTPOLFN.spad" 1113585 1113595 1113951 1113956) (-725 "NSUP2.spad" 1112977 1112989 1113575 1113580) (-724 "NSUP.spad" 1105975 1105985 1110395 1110548) (-723 "NSMP.spad" 1102079 1102098 1102371 1102498) (-722 "NREP.spad" 1100481 1100495 1102069 1102074) (-721 "NPCOEF.spad" 1099727 1099747 1100471 1100476) (-720 "NORMRETR.spad" 1099325 1099364 1099717 1099722) (-719 "NORMPK.spad" 1097267 1097286 1099315 1099320) (-718 "NORMMA.spad" 1096955 1096981 1097257 1097262) (-717 "NONE1.spad" 1096631 1096641 1096945 1096950) (-716 "NONE.spad" 1096372 1096380 1096621 1096626) (-715 "NODE1.spad" 1095859 1095875 1096362 1096367) (-714 "NNI.spad" 1094754 1094762 1095833 1095854) (-713 "NLINSOL.spad" 1093380 1093390 1094744 1094749) (-712 "NIPROB.spad" 1091921 1091929 1093370 1093375) (-711 "NFINTBAS.spad" 1089481 1089498 1091911 1091916) (-710 "NETCLT.spad" 1089455 1089466 1089471 1089476) (-709 "NCODIV.spad" 1087679 1087695 1089445 1089450) (-708 "NCNTFRAC.spad" 1087321 1087335 1087669 1087674) (-707 "NCEP.spad" 1085487 1085501 1087311 1087316) (-706 "NASRING.spad" 1085091 1085099 1085477 1085482) (-705 "NASRING.spad" 1084693 1084703 1085081 1085086) (-704 "NARNG.spad" 1084093 1084101 1084683 1084688) (-703 "NARNG.spad" 1083491 1083501 1084083 1084088) (-702 "NAALG.spad" 1083056 1083066 1083459 1083486) (-701 "NAALG.spad" 1082641 1082653 1083046 1083051) (-700 "MULTSQFR.spad" 1079599 1079616 1082631 1082636) (-699 "MULTFACT.spad" 1078982 1078999 1079589 1079594) (-698 "MTSCAT.spad" 1077076 1077097 1078880 1078977) (-697 "MTHING.spad" 1076735 1076745 1077066 1077071) (-696 "MSYSCMD.spad" 1076169 1076177 1076725 1076730) (-695 "MSETAGG.spad" 1076014 1076024 1076137 1076164) (-694 "MSET.spad" 1073928 1073938 1075676 1075715) (-693 "MRING.spad" 1070905 1070917 1073636 1073703) (-692 "MRF2.spad" 1070467 1070481 1070895 1070900) (-691 "MRATFAC.spad" 1070013 1070030 1070457 1070462) (-690 "MPRFF.spad" 1068053 1068072 1070003 1070008) (-689 "MPOLY.spad" 1065455 1065470 1065814 1065941) (-688 "MPCPF.spad" 1064719 1064738 1065445 1065450) (-687 "MPC3.spad" 1064536 1064576 1064709 1064714) (-686 "MPC2.spad" 1064189 1064222 1064526 1064531) (-685 "MONOTOOL.spad" 1062540 1062557 1064179 1064184) (-684 "MONOID.spad" 1061859 1061867 1062530 1062535) (-683 "MONOID.spad" 1061176 1061186 1061849 1061854) (-682 "MONOGEN.spad" 1059924 1059937 1061036 1061171) (-681 "MONOGEN.spad" 1058694 1058709 1059808 1059813) (-680 "MONADWU.spad" 1056772 1056780 1058684 1058689) (-679 "MONADWU.spad" 1054848 1054858 1056762 1056767) (-678 "MONAD.spad" 1054008 1054016 1054838 1054843) (-677 "MONAD.spad" 1053166 1053176 1053998 1054003) (-676 "MOEBIUS.spad" 1051902 1051916 1053146 1053161) (-675 "MODULE.spad" 1051772 1051782 1051870 1051897) (-674 "MODULE.spad" 1051662 1051674 1051762 1051767) (-673 "MODRING.spad" 1050997 1051036 1051642 1051657) (-672 "MODOP.spad" 1049654 1049666 1050819 1050886) (-671 "MODMONOM.spad" 1049385 1049403 1049644 1049649) (-670 "MODMON.spad" 1046012 1046028 1046731 1046884) (-669 "MODFIELD.spad" 1045374 1045413 1045914 1046007) (-668 "MMLFORM.spad" 1044234 1044242 1045364 1045369) (-667 "MMAP.spad" 1043976 1044010 1044224 1044229) (-666 "MLO.spad" 1042435 1042445 1043932 1043971) (-665 "MLIFT.spad" 1041047 1041064 1042425 1042430) (-664 "MKUCFUNC.spad" 1040582 1040600 1041037 1041042) (-663 "MKRECORD.spad" 1040170 1040183 1040572 1040577) (-662 "MKFUNC.spad" 1039577 1039587 1040160 1040165) (-661 "MKFLCFN.spad" 1038545 1038555 1039567 1039572) (-660 "MKBCFUNC.spad" 1038040 1038058 1038535 1038540) (-659 "MINT.spad" 1037479 1037487 1037942 1038035) (-658 "MHROWRED.spad" 1035990 1036000 1037469 1037474) (-657 "MFLOAT.spad" 1034510 1034518 1035880 1035985) (-656 "MFINFACT.spad" 1033910 1033932 1034500 1034505) (-655 "MESH.spad" 1031705 1031713 1033900 1033905) (-654 "MDDFACT.spad" 1029924 1029934 1031695 1031700) (-653 "MDAGG.spad" 1029215 1029225 1029904 1029919) (-652 "MCMPLX.spad" 1024585 1024593 1025199 1025400) (-651 "MCDEN.spad" 1023795 1023807 1024575 1024580) (-650 "MCALCFN.spad" 1020893 1020919 1023785 1023790) (-649 "MAYBE.spad" 1020193 1020204 1020883 1020888) (-648 "MATSTOR.spad" 1017509 1017519 1020183 1020188) (-647 "MATRIX.spad" 1016077 1016087 1016561 1016588) (-646 "MATLIN.spad" 1013445 1013469 1015961 1015966) (-645 "MATCAT2.spad" 1012727 1012775 1013435 1013440) (-644 "MATCAT.spad" 1004289 1004311 1012695 1012722) (-643 "MATCAT.spad" 995723 995747 1004131 1004136) (-642 "MAPPKG3.spad" 994638 994652 995713 995718) (-641 "MAPPKG2.spad" 993976 993988 994628 994633) (-640 "MAPPKG1.spad" 992804 992814 993966 993971) (-639 "MAPPAST.spad" 992143 992151 992794 992799) (-638 "MAPHACK3.spad" 991955 991969 992133 992138) (-637 "MAPHACK2.spad" 991724 991736 991945 991950) (-636 "MAPHACK1.spad" 991368 991378 991714 991719) (-635 "MAGMA.spad" 989174 989191 991358 991363) (-634 "MACROAST.spad" 988769 988777 989164 989169) (-633 "M3D.spad" 986358 986368 988016 988021) (-632 "LZSTAGG.spad" 983612 983622 986348 986353) (-631 "LZSTAGG.spad" 980864 980876 983602 983607) (-630 "LWORD.spad" 977609 977626 980854 980859) (-629 "LSTAST.spad" 977393 977401 977599 977604) (-628 "LSQM.spad" 975505 975519 975899 975950) (-627 "LSPP.spad" 975040 975057 975495 975500) (-626 "LSMP1.spad" 972883 972897 975030 975035) (-625 "LSMP.spad" 971740 971768 972873 972878) (-624 "LSAGG.spad" 971409 971419 971708 971735) (-623 "LSAGG.spad" 971098 971110 971399 971404) (-622 "LPOLY.spad" 970060 970079 970954 971023) (-621 "LPEFRAC.spad" 969331 969341 970050 970055) (-620 "LOGIC.spad" 968933 968941 969321 969326) (-619 "LOGIC.spad" 968533 968543 968923 968928) (-618 "LODOOPS.spad" 967463 967475 968523 968528) (-617 "LODOF.spad" 966509 966526 967420 967425) (-616 "LODOCAT.spad" 965175 965185 966465 966504) (-615 "LODOCAT.spad" 963839 963851 965131 965136) (-614 "LODO2.spad" 963105 963117 963512 963551) (-613 "LODO1.spad" 962498 962508 962778 962817) (-612 "LODO.spad" 961875 961891 962171 962210) (-611 "LODEEF.spad" 960677 960695 961865 961870) (-610 "LO.spad" 960078 960092 960611 960638) (-609 "LNAGG.spad" 956265 956275 960068 960073) (-608 "LNAGG.spad" 952416 952428 956221 956226) (-607 "LMOPS.spad" 949184 949201 952406 952411) (-606 "LMODULE.spad" 948968 948978 949174 949179) (-605 "LMDICT.spad" 948141 948151 948389 948416) (-604 "LLINSET.spad" 947848 947858 948131 948136) (-603 "LITERAL.spad" 947754 947765 947838 947843) (-602 "LIST3.spad" 947065 947079 947744 947749) (-601 "LIST2MAP.spad" 943992 944004 947055 947060) (-600 "LIST2.spad" 942694 942706 943982 943987) (-599 "LIST.spad" 940362 940372 941705 941732) (-598 "LINSET.spad" 940141 940151 940352 940357) (-597 "LINFORM.spad" 939604 939616 940109 940136) (-596 "LINEXP.spad" 938347 938357 939594 939599) (-595 "LINELT.spad" 937718 937730 938230 938257) (-594 "LINDEP.spad" 936567 936579 937630 937635) (-593 "LINBASIS.spad" 936203 936218 936557 936562) (-592 "LIMITRF.spad" 934150 934160 936193 936198) (-591 "LIMITPS.spad" 933060 933073 934140 934145) (-590 "LIECAT.spad" 932544 932554 932986 933055) (-589 "LIECAT.spad" 932056 932068 932500 932505) (-588 "LIE.spad" 930051 930063 931325 931470) (-587 "LIB.spad" 927744 927752 928190 928205) (-586 "LGROBP.spad" 925097 925116 927734 927739) (-585 "LFCAT.spad" 924156 924164 925087 925092) (-584 "LF.spad" 923111 923127 924146 924151) (-583 "LEXTRIPK.spad" 918734 918749 923101 923106) (-582 "LEXP.spad" 916753 916780 918714 918729) (-581 "LETAST.spad" 916452 916460 916743 916748) (-580 "LEADCDET.spad" 914858 914875 916442 916447) (-579 "LAZM3PK.spad" 913602 913624 914848 914853) (-578 "LAUPOL.spad" 912189 912202 913089 913158) (-577 "LAPLACE.spad" 911772 911788 912179 912184) (-576 "LALG.spad" 911548 911558 911752 911767) (-575 "LALG.spad" 911332 911344 911538 911543) (-574 "LA.spad" 910772 910786 911254 911293) (-573 "KVTFROM.spad" 910515 910525 910762 910767) (-572 "KTVLOGIC.spad" 910059 910067 910505 910510) (-571 "KRCFROM.spad" 909805 909815 910049 910054) (-570 "KOVACIC.spad" 908536 908553 909795 909800) (-569 "KONVERT.spad" 908258 908268 908526 908531) (-568 "KOERCE.spad" 907995 908005 908248 908253) (-567 "KERNEL2.spad" 907698 907710 907985 907990) (-566 "KERNEL.spad" 906338 906348 907467 907472) (-565 "KDAGG.spad" 905447 905469 906318 906333) (-564 "KDAGG.spad" 904564 904588 905437 905442) (-563 "KAFILE.spad" 903382 903398 903617 903644) (-562 "JVMOP.spad" 903295 903303 903372 903377) (-561 "JVMMDACC.spad" 902349 902357 903285 903290) (-560 "JVMFDACC.spad" 901665 901673 902339 902344) (-559 "JVMCSTTG.spad" 900394 900402 901655 901660) (-558 "JVMCFACC.spad" 899840 899848 900384 900389) (-557 "JVMBCODE.spad" 899751 899759 899830 899835) (-556 "JORDAN.spad" 897559 897571 899020 899165) (-555 "JOINAST.spad" 897261 897269 897549 897554) (-554 "IXAGG.spad" 895394 895418 897251 897256) (-553 "IXAGG.spad" 893382 893408 895241 895246) (-552 "IVECTOR.spad" 891983 891998 892138 892165) (-551 "ITUPLE.spad" 891159 891169 891973 891978) (-550 "ITRIGMNP.spad" 890006 890025 891149 891154) (-549 "ITFUN3.spad" 889512 889526 889996 890001) (-548 "ITFUN2.spad" 889256 889268 889502 889507) (-547 "ITFORM.spad" 888611 888619 889246 889251) (-546 "ITAYLOR.spad" 886605 886620 888475 888572) (-545 "ISUPS.spad" 879003 879018 885540 885637) (-544 "ISUMP.spad" 878504 878520 878993 878998) (-543 "ISAST.spad" 878223 878231 878494 878499) (-542 "IRURPK.spad" 876940 876959 878213 878218) (-541 "IRSN.spad" 874944 874952 876930 876935) (-540 "IRRF2F.spad" 873437 873447 874900 874905) (-539 "IRREDFFX.spad" 873038 873049 873427 873432) (-538 "IROOT.spad" 871377 871387 873028 873033) (-537 "IRFORM.spad" 870701 870709 871367 871372) (-536 "IR2F.spad" 869915 869931 870691 870696) (-535 "IR2.spad" 868943 868959 869905 869910) (-534 "IR.spad" 866747 866761 868793 868820) (-533 "IPRNTPK.spad" 866507 866515 866737 866742) (-532 "IPF.spad" 866072 866084 866312 866405) (-531 "IPADIC.spad" 865841 865867 865998 866067) (-530 "IP4ADDR.spad" 865398 865406 865831 865836) (-529 "IOMODE.spad" 864920 864928 865388 865393) (-528 "IOBFILE.spad" 864305 864313 864910 864915) (-527 "IOBCON.spad" 864170 864178 864295 864300) (-526 "INVLAPLA.spad" 863819 863835 864160 864165) (-525 "INTTR.spad" 857213 857230 863809 863814) (-524 "INTTOOLS.spad" 854957 854973 856776 856781) (-523 "INTSLPE.spad" 854285 854293 854947 854952) (-522 "INTRVL.spad" 853851 853861 854199 854280) (-521 "INTRF.spad" 852283 852297 853841 853846) (-520 "INTRET.spad" 851715 851725 852273 852278) (-519 "INTRAT.spad" 850450 850467 851705 851710) (-518 "INTPM.spad" 848817 848833 850075 850080) (-517 "INTPAF.spad" 846693 846711 848746 848751) (-516 "INTHERTR.spad" 845967 845984 846683 846688) (-515 "INTHERAL.spad" 845637 845661 845957 845962) (-514 "INTHEORY.spad" 842076 842084 845627 845632) (-513 "INTG0.spad" 835840 835858 842005 842010) (-512 "INTFACT.spad" 834907 834917 835830 835835) (-511 "INTEF.spad" 833318 833334 834897 834902) (-510 "INTDOM.spad" 831941 831949 833244 833313) (-509 "INTDOM.spad" 830626 830636 831931 831936) (-508 "INTCAT.spad" 828893 828903 830540 830621) (-507 "INTBIT.spad" 828400 828408 828883 828888) (-506 "INTALG.spad" 827588 827615 828390 828395) (-505 "INTAF.spad" 827088 827104 827578 827583) (-504 "INTABL.spad" 825106 825137 825269 825296) (-503 "INT8.spad" 824986 824994 825096 825101) (-502 "INT64.spad" 824865 824873 824976 824981) (-501 "INT32.spad" 824744 824752 824855 824860) (-500 "INT16.spad" 824623 824631 824734 824739) (-499 "INT.spad" 824149 824157 824489 824618) (-498 "INS.spad" 821652 821660 824051 824144) (-497 "INS.spad" 819241 819251 821642 821647) (-496 "INPSIGN.spad" 818711 818724 819231 819236) (-495 "INPRODPF.spad" 817807 817826 818701 818706) (-494 "INPRODFF.spad" 816895 816919 817797 817802) (-493 "INNMFACT.spad" 815870 815887 816885 816890) (-492 "INMODGCD.spad" 815374 815404 815860 815865) (-491 "INFSP.spad" 813671 813693 815364 815369) (-490 "INFPROD0.spad" 812751 812770 813661 813666) (-489 "INFORM1.spad" 812376 812386 812741 812746) (-488 "INFORM.spad" 809583 809591 812366 812371) (-487 "INFINITY.spad" 809135 809143 809573 809578) (-486 "INETCLTS.spad" 809112 809120 809125 809130) (-485 "INEP.spad" 807658 807680 809102 809107) (-484 "INDE.spad" 807307 807324 807568 807573) (-483 "INCRMAPS.spad" 806744 806754 807297 807302) (-482 "INBFILE.spad" 805840 805848 806734 806739) (-481 "INBFF.spad" 801690 801701 805830 805835) (-480 "INBCON.spad" 799956 799964 801680 801685) (-479 "INBCON.spad" 798220 798230 799946 799951) (-478 "INAST.spad" 797881 797889 798210 798215) (-477 "IMPTAST.spad" 797589 797597 797871 797876) (-476 "IMATRIX.spad" 796407 796433 796919 796946) (-475 "IMATQF.spad" 795501 795545 796363 796368) (-474 "IMATLIN.spad" 794122 794146 795457 795462) (-473 "IIARRAY2.spad" 793399 793437 793602 793629) (-472 "IFF.spad" 792809 792825 793080 793173) (-471 "IFAST.spad" 792423 792431 792799 792804) (-470 "IFARRAY.spad" 789736 789751 791434 791461) (-469 "IFAMON.spad" 789598 789615 789692 789697) (-468 "IEVALAB.spad" 789011 789023 789588 789593) (-467 "IEVALAB.spad" 788422 788436 789001 789006) (-466 "IDPOAMS.spad" 788100 788112 788334 788339) (-465 "IDPOAM.spad" 787742 787754 788012 788017) (-464 "IDPO.spad" 787477 787489 787654 787659) (-463 "IDPC.spad" 786206 786218 787467 787472) (-462 "IDPAM.spad" 785873 785885 786118 786123) (-461 "IDPAG.spad" 785542 785554 785785 785790) (-460 "IDENT.spad" 785194 785202 785532 785537) (-459 "IDECOMP.spad" 782433 782451 785184 785189) (-458 "IDEAL.spad" 777379 777418 782365 782370) (-457 "ICDEN.spad" 776592 776608 777369 777374) (-456 "ICARD.spad" 775985 775993 776582 776587) (-455 "IBPTOOLS.spad" 774592 774609 775975 775980) (-454 "IBITS.spad" 773757 773770 774190 774217) (-453 "IBATOOL.spad" 770742 770761 773747 773752) (-452 "IBACHIN.spad" 769249 769264 770732 770737) (-451 "IARRAY2.spad" 768118 768144 768729 768756) (-450 "IARRAY1.spad" 766983 766998 767129 767156) (-449 "IAN.spad" 765349 765357 766798 766891) (-448 "IALGFACT.spad" 764960 764993 765339 765344) (-447 "HYPCAT.spad" 764384 764392 764950 764955) (-446 "HYPCAT.spad" 763806 763816 764374 764379) (-445 "HOSTNAME.spad" 763622 763630 763796 763801) (-444 "HOMOTOP.spad" 763365 763375 763612 763617) (-443 "HOAGG.spad" 760647 760657 763355 763360) (-442 "HOAGG.spad" 757663 757675 760373 760378) (-441 "HEXADEC.spad" 755626 755634 755991 756084) (-440 "HEUGCD.spad" 754717 754728 755616 755621) (-439 "HELLFDIV.spad" 754323 754347 754707 754712) (-438 "HEAP.spad" 753588 753598 753803 753830) (-437 "HEADAST.spad" 753129 753137 753578 753583) (-436 "HDP.spad" 740699 740715 741076 741173) (-435 "HDMP.spad" 737844 737859 738460 738587) (-434 "HB.spad" 736119 736127 737834 737839) (-433 "HASHTBL.spad" 734089 734120 734300 734327) (-432 "HASAST.spad" 733805 733813 734079 734084) (-431 "HACKPI.spad" 733296 733304 733707 733800) (-430 "GTSET.spad" 732191 732207 732898 732925) (-429 "GSTBL.spad" 730210 730245 730384 730399) (-428 "GSERIES.spad" 727442 727469 728261 728410) (-427 "GROUP.spad" 726715 726723 727422 727437) (-426 "GROUP.spad" 725996 726006 726705 726710) (-425 "GROEBSOL.spad" 724490 724511 725986 725991) (-424 "GRMOD.spad" 723069 723081 724480 724485) (-423 "GRMOD.spad" 721646 721660 723059 723064) (-422 "GRIMAGE.spad" 714559 714567 721636 721641) (-421 "GRDEF.spad" 712938 712946 714549 714554) (-420 "GRAY.spad" 711409 711417 712928 712933) (-419 "GRALG.spad" 710502 710514 711399 711404) (-418 "GRALG.spad" 709593 709607 710492 710497) (-417 "GPOLSET.spad" 709019 709042 709231 709258) (-416 "GOSPER.spad" 708296 708314 709009 709014) (-415 "GMODPOL.spad" 707444 707471 708264 708291) (-414 "GHENSEL.spad" 706527 706541 707434 707439) (-413 "GENUPS.spad" 702820 702833 706517 706522) (-412 "GENUFACT.spad" 702397 702407 702810 702815) (-411 "GENPGCD.spad" 701999 702016 702387 702392) (-410 "GENMFACT.spad" 701451 701470 701989 701994) (-409 "GENEEZ.spad" 699410 699423 701441 701446) (-408 "GDMP.spad" 696397 696414 697171 697298) (-407 "GCNAALG.spad" 690320 690347 696191 696258) (-406 "GCDDOM.spad" 689512 689520 690246 690315) (-405 "GCDDOM.spad" 688766 688776 689502 689507) (-404 "GBINTERN.spad" 684786 684824 688756 688761) (-403 "GBF.spad" 680569 680607 684776 684781) (-402 "GBEUCLID.spad" 678451 678489 680559 680564) (-401 "GB.spad" 675977 676015 678407 678412) (-400 "GAUSSFAC.spad" 675290 675298 675967 675972) (-399 "GALUTIL.spad" 673616 673626 675246 675251) (-398 "GALPOLYU.spad" 672070 672083 673606 673611) (-397 "GALFACTU.spad" 670283 670302 672060 672065) (-396 "GALFACT.spad" 660496 660507 670273 670278) (-395 "FVFUN.spad" 657519 657527 660486 660491) (-394 "FVC.spad" 656571 656579 657509 657514) (-393 "FUNDESC.spad" 656249 656257 656561 656566) (-392 "FUNCTION.spad" 656098 656110 656239 656244) (-391 "FTEM.spad" 655263 655271 656088 656093) (-390 "FT.spad" 653563 653571 655253 655258) (-389 "FSUPFACT.spad" 652461 652480 653497 653502) (-388 "FST.spad" 650547 650555 652451 652456) (-387 "FSRED.spad" 650027 650043 650537 650542) (-386 "FSPRMELT.spad" 648893 648909 649984 649989) (-385 "FSPECF.spad" 646984 647000 648883 648888) (-384 "FSINT.spad" 646644 646660 646974 646979) (-383 "FSERIES.spad" 645835 645847 646464 646563) (-382 "FSCINT.spad" 645152 645168 645825 645830) (-381 "FSAGG2.spad" 643887 643903 645142 645147) (-380 "FSAGG.spad" 643004 643014 643843 643882) (-379 "FSAGG.spad" 642083 642095 642924 642929) (-378 "FS2UPS.spad" 636598 636632 642073 642078) (-377 "FS2EXPXP.spad" 635739 635762 636588 636593) (-376 "FS2.spad" 635394 635410 635729 635734) (-375 "FS.spad" 629663 629673 635170 635389) (-374 "FS.spad" 623705 623717 629214 629219) (-373 "FRUTIL.spad" 622659 622669 623695 623700) (-372 "FRNAALG.spad" 617936 617946 622601 622654) (-371 "FRNAALG.spad" 613225 613237 617892 617897) (-370 "FRNAAF2.spad" 612673 612691 613215 613220) (-369 "FRMOD.spad" 612081 612111 612602 612607) (-368 "FRIDEAL2.spad" 611685 611717 612071 612076) (-367 "FRIDEAL.spad" 610910 610931 611665 611680) (-366 "FRETRCT.spad" 610429 610439 610900 610905) (-365 "FRETRCT.spad" 609807 609819 610280 610285) (-364 "FRAMALG.spad" 608187 608200 609763 609802) (-363 "FRAMALG.spad" 606599 606614 608177 608182) (-362 "FRAC2.spad" 606204 606216 606589 606594) (-361 "FRAC.spad" 603993 604003 604380 604553) (-360 "FR2.spad" 603329 603341 603983 603988) (-359 "FR.spad" 596954 596964 602227 602296) (-358 "FPS.spad" 593793 593801 596844 596949) (-357 "FPS.spad" 590660 590670 593713 593718) (-356 "FPC.spad" 589706 589714 590562 590655) (-355 "FPC.spad" 588838 588848 589696 589701) (-354 "FPATMAB.spad" 588600 588610 588828 588833) (-353 "FPARFRAC.spad" 587442 587459 588590 588595) (-352 "FORTRAN.spad" 585948 585991 587432 587437) (-351 "FORTFN.spad" 583118 583126 585938 585943) (-350 "FORTCAT.spad" 582802 582810 583108 583113) (-349 "FORT.spad" 581751 581759 582792 582797) (-348 "FORDER.spad" 581442 581466 581741 581746) (-347 "FOP.spad" 580643 580651 581432 581437) (-346 "FNLA.spad" 580067 580089 580611 580638) (-345 "FNCAT.spad" 578662 578670 580057 580062) (-344 "FNAME.spad" 578554 578562 578652 578657) (-343 "FMTC.spad" 578352 578360 578480 578549) (-342 "FMONOID.spad" 578033 578043 578308 578313) (-341 "FMONCAT.spad" 575202 575212 578023 578028) (-340 "FMFUN.spad" 572232 572240 575192 575197) (-339 "FMCAT.spad" 569908 569926 572200 572227) (-338 "FMC.spad" 568960 568968 569898 569903) (-337 "FM1.spad" 568325 568337 568894 568921) (-336 "FM.spad" 567940 567952 568179 568206) (-335 "FLOATRP.spad" 565683 565697 567930 567935) (-334 "FLOATCP.spad" 563122 563136 565673 565678) (-333 "FLOAT.spad" 556436 556444 562988 563117) (-332 "FLINEXP.spad" 556158 556168 556426 556431) (-331 "FLINEXP.spad" 555821 555833 556091 556096) (-330 "FLASORT.spad" 555147 555159 555811 555816) (-329 "FLALG.spad" 552817 552836 555073 555142) (-328 "FLAGG2.spad" 551534 551550 552807 552812) (-327 "FLAGG.spad" 548600 548610 551514 551529) (-326 "FLAGG.spad" 545567 545579 548483 548488) (-325 "FINRALG.spad" 543652 543665 545523 545562) (-324 "FINRALG.spad" 541663 541678 543536 543541) (-323 "FINITE.spad" 540815 540823 541653 541658) (-322 "FINAALG.spad" 530000 530010 540757 540810) (-321 "FINAALG.spad" 519197 519209 529956 529961) (-320 "FILECAT.spad" 517731 517748 519187 519192) (-319 "FILE.spad" 517314 517324 517721 517726) (-318 "FIELD.spad" 516720 516728 517216 517309) (-317 "FIELD.spad" 516212 516222 516710 516715) (-316 "FGROUP.spad" 514875 514885 516192 516207) (-315 "FGLMICPK.spad" 513670 513685 514865 514870) (-314 "FFX.spad" 513053 513068 513386 513479) (-313 "FFSLPE.spad" 512564 512585 513043 513048) (-312 "FFPOLY2.spad" 511624 511641 512554 512559) (-311 "FFPOLY.spad" 502966 502977 511614 511619) (-310 "FFP.spad" 502371 502391 502682 502775) (-309 "FFNBX.spad" 500891 500911 502087 502180) (-308 "FFNBP.spad" 499412 499429 500607 500700) (-307 "FFNB.spad" 497877 497898 499093 499186) (-306 "FFINTBAS.spad" 495391 495410 497867 497872) (-305 "FFIELDC.spad" 492976 492984 495293 495386) (-304 "FFIELDC.spad" 490647 490657 492966 492971) (-303 "FFHOM.spad" 489419 489436 490637 490642) (-302 "FFF.spad" 486862 486873 489409 489414) (-301 "FFCGX.spad" 485717 485737 486578 486671) (-300 "FFCGP.spad" 484614 484634 485433 485526) (-299 "FFCG.spad" 483406 483427 484295 484388) (-298 "FFCAT2.spad" 483153 483193 483396 483401) (-297 "FFCAT.spad" 476318 476340 482992 483148) (-296 "FFCAT.spad" 469562 469586 476238 476243) (-295 "FF.spad" 469010 469026 469243 469336) (-294 "FEXPR.spad" 460714 460760 468761 468800) (-293 "FEVALAB.spad" 460422 460432 460704 460709) (-292 "FEVALAB.spad" 459906 459918 460190 460195) (-291 "FDIVCAT.spad" 458002 458026 459896 459901) (-290 "FDIVCAT.spad" 456096 456122 457992 457997) (-289 "FDIV2.spad" 455752 455792 456086 456091) (-288 "FDIV.spad" 455210 455234 455742 455747) (-287 "FCTRDATA.spad" 454218 454226 455200 455205) (-286 "FCPAK1.spad" 452753 452761 454208 454213) (-285 "FCOMP.spad" 452132 452142 452743 452748) (-284 "FC.spad" 442139 442147 452122 452127) (-283 "FAXF.spad" 435174 435188 442041 442134) (-282 "FAXF.spad" 428261 428277 435130 435135) (-281 "FARRAY.spad" 426239 426249 427272 427299) (-280 "FAMR.spad" 424383 424395 426137 426234) (-279 "FAMR.spad" 422511 422525 424267 424272) (-278 "FAMONOID.spad" 422195 422205 422465 422470) (-277 "FAMONC.spad" 420515 420527 422185 422190) (-276 "FAGROUP.spad" 420155 420165 420411 420438) (-275 "FACUTIL.spad" 418367 418384 420145 420150) (-274 "FACTFUNC.spad" 417569 417579 418357 418362) (-273 "EXPUPXS.spad" 414321 414344 415620 415769) (-272 "EXPRTUBE.spad" 411609 411617 414311 414316) (-271 "EXPRODE.spad" 408777 408793 411599 411604) (-270 "EXPR2UPS.spad" 404899 404912 408767 408772) (-269 "EXPR2.spad" 404604 404616 404889 404894) (-268 "EXPR.spad" 399715 399725 400429 400722) (-267 "EXPEXPAN.spad" 396462 396487 397094 397187) (-266 "EXITAST.spad" 396198 396206 396452 396457) (-265 "EXIT.spad" 395869 395877 396188 396193) (-264 "EVALCYC.spad" 395329 395343 395859 395864) (-263 "EVALAB.spad" 394909 394919 395319 395324) (-262 "EVALAB.spad" 394487 394499 394899 394904) (-261 "EUCDOM.spad" 392077 392085 394413 394482) (-260 "EUCDOM.spad" 389729 389739 392067 392072) (-259 "ESTOOLS2.spad" 389324 389338 389719 389724) (-258 "ESTOOLS1.spad" 389001 389012 389314 389319) (-257 "ESTOOLS.spad" 380879 380887 388991 388996) (-256 "ESCONT1.spad" 380620 380632 380869 380874) (-255 "ESCONT.spad" 377413 377421 380610 380615) (-254 "ES2.spad" 376926 376942 377403 377408) (-253 "ES1.spad" 376496 376512 376916 376921) (-252 "ES.spad" 369367 369375 376486 376491) (-251 "ES.spad" 362143 362153 369264 369269) (-250 "ERROR.spad" 359470 359478 362133 362138) (-249 "EQTBL.spad" 357442 357464 357651 357678) (-248 "EQ2.spad" 357160 357172 357432 357437) (-247 "EQ.spad" 351947 351957 354742 354851) (-246 "EP.spad" 348273 348283 351937 351942) (-245 "ENV.spad" 346951 346959 348263 348268) (-244 "ENTIRER.spad" 346619 346627 346895 346946) (-243 "EMR.spad" 345907 345948 346545 346614) (-242 "ELTAGG.spad" 344161 344180 345897 345902) (-241 "ELTAGG.spad" 342379 342400 344117 344122) (-240 "ELTAB.spad" 341854 341867 342369 342374) (-239 "ELFUTS.spad" 341289 341308 341844 341849) (-238 "ELEMFUN.spad" 340978 340986 341279 341284) (-237 "ELEMFUN.spad" 340665 340675 340968 340973) (-236 "ELAGG.spad" 338636 338646 340645 340660) (-235 "ELAGG.spad" 336544 336556 338555 338560) (-234 "ELABOR.spad" 335890 335898 336534 336539) (-233 "ELABEXPR.spad" 334822 334830 335880 335885) (-232 "EFUPXS.spad" 331598 331628 334778 334783) (-231 "EFULS.spad" 328434 328457 331554 331559) (-230 "EFSTRUC.spad" 326449 326465 328424 328429) (-229 "EF.spad" 321225 321241 326439 326444) (-228 "EAB.spad" 319525 319533 321215 321220) (-227 "DVARCAT.spad" 316531 316541 319515 319520) (-226 "DVARCAT.spad" 313535 313547 316521 316526) (-225 "DSMP.spad" 310834 310848 311139 311266) (-224 "DSEXT.spad" 310136 310146 310824 310829) (-223 "DSEXT.spad" 309342 309354 310032 310037) (-222 "DROPT1.spad" 309007 309017 309332 309337) (-221 "DROPT0.spad" 303872 303880 308997 309002) (-220 "DROPT.spad" 297831 297839 303862 303867) (-219 "DRAWPT.spad" 296004 296012 297821 297826) (-218 "DRAWHACK.spad" 295312 295322 295994 295999) (-217 "DRAWCX.spad" 292790 292798 295302 295307) (-216 "DRAWCURV.spad" 292337 292352 292780 292785) (-215 "DRAWCFUN.spad" 281869 281877 292327 292332) (-214 "DRAW.spad" 274745 274758 281859 281864) (-213 "DQAGG.spad" 272923 272933 274713 274740) (-212 "DPOLCAT.spad" 268280 268296 272791 272918) (-211 "DPOLCAT.spad" 263723 263741 268236 268241) (-210 "DPMO.spad" 255306 255322 255444 255653) (-209 "DPMM.spad" 246902 246920 247027 247236) (-208 "DOMTMPLT.spad" 246673 246681 246892 246897) (-207 "DOMCTOR.spad" 246428 246436 246663 246668) (-206 "DOMAIN.spad" 245539 245547 246418 246423) (-205 "DMP.spad" 242730 242745 243300 243427) (-204 "DMEXT.spad" 242597 242607 242698 242725) (-203 "DLP.spad" 241957 241967 242587 242592) (-202 "DLIST.spad" 240364 240374 240968 240995) (-201 "DLAGG.spad" 238781 238791 240354 240359) (-200 "DIVRING.spad" 238323 238331 238725 238776) (-199 "DIVRING.spad" 237909 237919 238313 238318) (-198 "DISPLAY.spad" 236099 236107 237899 237904) (-197 "DIRPROD2.spad" 234917 234935 236089 236094) (-196 "DIRPROD.spad" 222224 222240 222864 222961) (-195 "DIRPCAT.spad" 221419 221435 222122 222219) (-194 "DIRPCAT.spad" 220240 220258 220945 220950) (-193 "DIOSP.spad" 219065 219073 220230 220235) (-192 "DIOPS.spad" 218061 218071 219045 219060) (-191 "DIOPS.spad" 217031 217043 218017 218022) (-190 "DIFRING.spad" 216869 216877 217011 217026) (-189 "DIFFSPC.spad" 216448 216456 216859 216864) (-188 "DIFFSPC.spad" 216025 216035 216438 216443) (-187 "DIFFMOD.spad" 215514 215524 215993 216020) (-186 "DIFFDOM.spad" 214679 214690 215504 215509) (-185 "DIFFDOM.spad" 213842 213855 214669 214674) (-184 "DIFEXT.spad" 213661 213671 213822 213837) (-183 "DIAGG.spad" 213291 213301 213641 213656) (-182 "DIAGG.spad" 212929 212941 213281 213286) (-181 "DHMATRIX.spad" 211114 211124 212259 212286) (-180 "DFSFUN.spad" 204754 204762 211104 211109) (-179 "DFLOAT.spad" 201361 201369 204644 204749) (-178 "DFINTTLS.spad" 199592 199608 201351 201356) (-177 "DERHAM.spad" 197506 197538 199572 199587) (-176 "DEQUEUE.spad" 196703 196713 196986 197013) (-175 "DEGRED.spad" 196320 196334 196693 196698) (-174 "DEFINTRF.spad" 193902 193912 196310 196315) (-173 "DEFINTEF.spad" 192440 192456 193892 193897) (-172 "DEFAST.spad" 191824 191832 192430 192435) (-171 "DECIMAL.spad" 189791 189799 190152 190245) (-170 "DDFACT.spad" 187612 187629 189781 189786) (-169 "DBLRESP.spad" 187212 187236 187602 187607) (-168 "DBASIS.spad" 186838 186853 187202 187207) (-167 "DBASE.spad" 185502 185512 186828 186833) (-166 "DATAARY.spad" 184988 185001 185492 185497) (-165 "CYCLOTOM.spad" 184494 184502 184978 184983) (-164 "CYCLES.spad" 181286 181294 184484 184489) (-163 "CVMP.spad" 180703 180713 181276 181281) (-162 "CTRIGMNP.spad" 179203 179219 180693 180698) (-161 "CTORKIND.spad" 178806 178814 179193 179198) (-160 "CTORCAT.spad" 178047 178055 178796 178801) (-159 "CTORCAT.spad" 177286 177296 178037 178042) (-158 "CTORCALL.spad" 176875 176885 177276 177281) (-157 "CTOR.spad" 176566 176574 176865 176870) (-156 "CSTTOOLS.spad" 175811 175824 176556 176561) (-155 "CRFP.spad" 169583 169596 175801 175806) (-154 "CRCEAST.spad" 169303 169311 169573 169578) (-153 "CRAPACK.spad" 168370 168380 169293 169298) (-152 "CPMATCH.spad" 167871 167886 168292 168297) (-151 "CPIMA.spad" 167576 167595 167861 167866) (-150 "COORDSYS.spad" 162585 162595 167566 167571) (-149 "CONTOUR.spad" 162012 162020 162575 162580) (-148 "CONTFRAC.spad" 157762 157772 161914 162007) (-147 "CONDUIT.spad" 157520 157528 157752 157757) (-146 "COMRING.spad" 157194 157202 157458 157515) (-145 "COMPPROP.spad" 156712 156720 157184 157189) (-144 "COMPLPAT.spad" 156479 156494 156702 156707) (-143 "COMPLEX2.spad" 156194 156206 156469 156474) (-142 "COMPLEX.spad" 151546 151556 151790 152051) (-141 "COMPILER.spad" 151095 151103 151536 151541) (-140 "COMPFACT.spad" 150697 150711 151085 151090) (-139 "COMPCAT.spad" 148769 148779 150431 150692) (-138 "COMPCAT.spad" 146568 146580 148232 148237) (-137 "COMMUPC.spad" 146316 146334 146558 146563) (-136 "COMMONOP.spad" 145849 145857 146306 146311) (-135 "COMMAAST.spad" 145612 145620 145839 145844) (-134 "COMM.spad" 145423 145431 145602 145607) (-133 "COMBOPC.spad" 144346 144354 145413 145418) (-132 "COMBINAT.spad" 143113 143123 144336 144341) (-131 "COMBF.spad" 140535 140551 143103 143108) (-130 "COLOR.spad" 139372 139380 140525 140530) (-129 "COLONAST.spad" 139038 139046 139362 139367) (-128 "CMPLXRT.spad" 138749 138766 139028 139033) (-127 "CLLCTAST.spad" 138411 138419 138739 138744) (-126 "CLIP.spad" 134519 134527 138401 138406) (-125 "CLIF.spad" 133174 133190 134475 134514) (-124 "CLAGG.spad" 129711 129721 133164 133169) (-123 "CLAGG.spad" 126116 126128 129571 129576) (-122 "CINTSLPE.spad" 125471 125484 126106 126111) (-121 "CHVAR.spad" 123609 123631 125461 125466) (-120 "CHARZ.spad" 123524 123532 123589 123604) (-119 "CHARPOL.spad" 123050 123060 123514 123519) (-118 "CHARNZ.spad" 122812 122820 123030 123045) (-117 "CHAR.spad" 120180 120188 122802 122807) (-116 "CFCAT.spad" 119508 119516 120170 120175) (-115 "CDEN.spad" 118728 118742 119498 119503) (-114 "CCLASS.spad" 116825 116833 118087 118126) (-113 "CATEGORY.spad" 115899 115907 116815 116820) (-112 "CATCTOR.spad" 115790 115798 115889 115894) (-111 "CATAST.spad" 115416 115424 115780 115785) (-110 "CASEAST.spad" 115130 115138 115406 115411) (-109 "CARTEN2.spad" 114520 114547 115120 115125) (-108 "CARTEN.spad" 110272 110296 114510 114515) (-107 "CARD.spad" 107567 107575 110246 110267) (-106 "CAPSLAST.spad" 107349 107357 107557 107562) (-105 "CACHSET.spad" 106973 106981 107339 107344) (-104 "CABMON.spad" 106528 106536 106963 106968) (-103 "BYTEORD.spad" 106203 106211 106518 106523) (-102 "BYTEBUF.spad" 103906 103914 105192 105219) (-101 "BYTE.spad" 103381 103389 103896 103901) (-100 "BTREE.spad" 102327 102337 102861 102888) (-99 "BTOURN.spad" 101206 101215 101807 101834) (-98 "BTCAT.spad" 100599 100608 101174 101201) (-97 "BTCAT.spad" 100012 100023 100589 100594) (-96 "BTAGG.spad" 99479 99486 99980 100007) (-95 "BTAGG.spad" 98966 98975 99469 99474) (-94 "BSTREE.spad" 97581 97590 98446 98473) (-93 "BRILL.spad" 95787 95797 97571 97576) (-92 "BRAGG.spad" 94744 94753 95777 95782) (-91 "BRAGG.spad" 93665 93676 94700 94705) (-90 "BPADICRT.spad" 91527 91538 91773 91866) (-89 "BPADIC.spad" 91200 91211 91453 91522) (-88 "BOUNDZRO.spad" 90857 90873 91190 91195) (-87 "BOP1.spad" 88316 88325 90847 90852) (-86 "BOP.spad" 83459 83466 88306 88311) (-85 "BOOLEAN.spad" 83008 83015 83449 83454) (-84 "BOOLE.spad" 82659 82666 82998 83003) (-83 "BOOLE.spad" 82308 82317 82649 82654) (-82 "BMODULE.spad" 82021 82032 82276 82303) (-81 "BITS.spad" 81405 81412 81619 81646) (-80 "BINDING.spad" 80827 80834 81395 81400) (-79 "BINARY.spad" 78800 78807 79155 79248) (-78 "BGAGG.spad" 78006 78015 78780 78795) (-77 "BGAGG.spad" 77220 77231 77996 78001) (-76 "BFUNCT.spad" 76785 76792 77200 77215) (-75 "BEZOUT.spad" 75926 75952 76735 76740) (-74 "BBTREE.spad" 72677 72686 75406 75433) (-73 "BASTYPE.spad" 72177 72184 72667 72672) (-72 "BASTYPE.spad" 71675 71684 72167 72172) (-71 "BALFACT.spad" 71135 71147 71665 71670) (-70 "AUTOMOR.spad" 70586 70595 71115 71130) (-69 "ATTREG.spad" 67309 67316 70338 70581) (-68 "ATTRBUT.spad" 63332 63339 67289 67304) (-67 "ATTRAST.spad" 63049 63056 63322 63327) (-66 "ATRIG.spad" 62519 62526 63039 63044) (-65 "ATRIG.spad" 61987 61996 62509 62514) (-64 "ASTCAT.spad" 61891 61898 61977 61982) (-63 "ASTCAT.spad" 61793 61802 61881 61886) (-62 "ASTACK.spad" 61005 61014 61273 61300) (-61 "ASSOCEQ.spad" 59839 59850 60961 60966) (-60 "ARRAY2.spad" 59080 59089 59319 59346) (-59 "ARRAY12.spad" 57793 57804 59070 59075) (-58 "ARRAY1.spad" 56458 56467 56804 56831) (-57 "ARR2CAT.spad" 52240 52261 56426 56453) (-56 "ARR2CAT.spad" 48042 48065 52230 52235) (-55 "ARITY.spad" 47414 47421 48032 48037) (-54 "APPRULE.spad" 46698 46720 47404 47409) (-53 "APPLYORE.spad" 46317 46330 46688 46693) (-52 "ANY1.spad" 45388 45397 46307 46312) (-51 "ANY.spad" 44239 44246 45378 45383) (-50 "ANTISYM.spad" 42684 42700 44219 44234) (-49 "ANON.spad" 42393 42400 42674 42679) (-48 "AN.spad" 40845 40852 42208 42301) (-47 "AMR.spad" 39030 39041 40743 40840) (-46 "AMR.spad" 37046 37059 38761 38766) (-45 "ALIST.spad" 33842 33863 34192 34219) (-44 "ALGSC.spad" 32977 33003 33714 33767) (-43 "ALGPKG.spad" 28760 28771 32933 32938) (-42 "ALGMFACT.spad" 27953 27967 28750 28755) (-41 "ALGMANIP.spad" 25438 25453 27781 27786) (-40 "ALGFF.spad" 23046 23073 23263 23419) (-39 "ALGFACT.spad" 22165 22175 23036 23041) (-38 "ALGEBRA.spad" 21998 22007 22121 22160) (-37 "ALGEBRA.spad" 21863 21874 21988 21993) (-36 "ALAGG.spad" 21375 21396 21831 21858) (-35 "AHYP.spad" 20756 20763 21365 21370) (-34 "AGG.spad" 19465 19472 20746 20751) (-33 "AGG.spad" 18138 18147 19421 19426) (-32 "AF.spad" 16567 16582 18071 18076) (-31 "ADDAST.spad" 16253 16260 16557 16562) (-30 "ACPLOT.spad" 14844 14851 16243 16248) (-29 "ACFS.spad" 12701 12710 14746 14839) (-28 "ACFS.spad" 10644 10655 12691 12696) (-27 "ACF.spad" 7398 7405 10546 10639) (-26 "ACF.spad" 4238 4247 7388 7393) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2005161 2005166 2005171 2005176) (-2 NIL 2005141 2005146 2005151 2005156) (-1 NIL 2005121 2005126 2005131 2005136) (0 NIL 2005101 2005106 2005111 2005116) (-1198 "ZMOD.spad" 2004910 2004923 2005039 2005096) (-1197 "ZLINDEP.spad" 2004008 2004019 2004900 2004905) (-1196 "ZDSOLVE.spad" 1993968 1993990 2003998 2004003) (-1195 "YSTREAM.spad" 1993463 1993474 1993958 1993963) (-1194 "YDIAGRAM.spad" 1993097 1993106 1993453 1993458) (-1193 "XRPOLY.spad" 1992317 1992337 1992953 1993022) (-1192 "XPR.spad" 1990112 1990125 1992035 1992134) (-1191 "XPOLYC.spad" 1989431 1989447 1990038 1990107) (-1190 "XPOLY.spad" 1988986 1988997 1989287 1989356) (-1189 "XPBWPOLY.spad" 1987425 1987445 1988760 1988829) (-1188 "XFALG.spad" 1984473 1984489 1987351 1987420) (-1187 "XF.spad" 1982936 1982951 1984375 1984468) (-1186 "XF.spad" 1981379 1981396 1982820 1982825) (-1185 "XEXPPKG.spad" 1980638 1980664 1981369 1981374) (-1184 "XDPOLY.spad" 1980252 1980268 1980494 1980563) (-1183 "XALG.spad" 1979920 1979931 1980208 1980247) (-1182 "WUTSET.spad" 1975891 1975908 1979522 1979549) (-1181 "WP.spad" 1975098 1975142 1975749 1975816) (-1180 "WHILEAST.spad" 1974896 1974905 1975088 1975093) (-1179 "WHEREAST.spad" 1974567 1974576 1974886 1974891) (-1178 "WFFINTBS.spad" 1972230 1972252 1974557 1974562) (-1177 "WEIER.spad" 1970452 1970463 1972220 1972225) (-1176 "VSPACE.spad" 1970125 1970136 1970420 1970447) (-1175 "VSPACE.spad" 1969818 1969831 1970115 1970120) (-1174 "VOID.spad" 1969495 1969504 1969808 1969813) (-1173 "VIEWDEF.spad" 1964696 1964705 1969485 1969490) (-1172 "VIEW3D.spad" 1948657 1948666 1964686 1964691) (-1171 "VIEW2D.spad" 1936556 1936565 1948647 1948652) (-1170 "VIEW.spad" 1934276 1934285 1936546 1936551) (-1169 "VECTOR2.spad" 1932915 1932928 1934266 1934271) (-1168 "VECTOR.spad" 1931432 1931443 1931683 1931710) (-1167 "VECTCAT.spad" 1929344 1929355 1931400 1931427) (-1166 "VECTCAT.spad" 1927065 1927078 1929123 1929128) (-1165 "VARIABLE.spad" 1926845 1926860 1927055 1927060) (-1164 "UTYPE.spad" 1926489 1926498 1926835 1926840) (-1163 "UTSODETL.spad" 1925784 1925808 1926445 1926450) (-1162 "UTSODE.spad" 1924000 1924020 1925774 1925779) (-1161 "UTSCAT.spad" 1921479 1921495 1923898 1923995) (-1160 "UTSCAT.spad" 1918578 1918596 1920999 1921004) (-1159 "UTS2.spad" 1918173 1918208 1918568 1918573) (-1158 "UTS.spad" 1913057 1913085 1916577 1916674) (-1157 "URAGG.spad" 1907778 1907789 1913047 1913052) (-1156 "URAGG.spad" 1902463 1902476 1907734 1907739) (-1155 "UPXSSING.spad" 1900087 1900113 1901523 1901656) (-1154 "UPXSCONS.spad" 1897777 1897797 1898150 1898299) (-1153 "UPXSCCA.spad" 1896348 1896368 1897623 1897772) (-1152 "UPXSCCA.spad" 1895061 1895083 1896338 1896343) (-1151 "UPXSCAT.spad" 1893650 1893666 1894907 1895056) (-1150 "UPXS2.spad" 1893193 1893246 1893640 1893645) (-1149 "UPXS.spad" 1890420 1890448 1891256 1891405) (-1148 "UPSQFREE.spad" 1888835 1888849 1890410 1890415) (-1147 "UPSCAT.spad" 1886630 1886654 1888733 1888830) (-1146 "UPSCAT.spad" 1884110 1884136 1886215 1886220) (-1145 "UPOLYC2.spad" 1883581 1883600 1884100 1884105) (-1144 "UPOLYC.spad" 1878661 1878672 1883423 1883576) (-1143 "UPOLYC.spad" 1873627 1873640 1878391 1878396) (-1142 "UPMP.spad" 1872559 1872572 1873617 1873622) (-1141 "UPDIVP.spad" 1872124 1872138 1872549 1872554) (-1140 "UPDECOMP.spad" 1870385 1870399 1872114 1872119) (-1139 "UPCDEN.spad" 1869602 1869618 1870375 1870380) (-1138 "UP2.spad" 1868966 1868987 1869592 1869597) (-1137 "UP.spad" 1866020 1866035 1866407 1866560) (-1136 "UNISEG2.spad" 1865517 1865530 1865976 1865981) (-1135 "UNISEG.spad" 1864870 1864881 1865436 1865441) (-1134 "UNIFACT.spad" 1863973 1863985 1864860 1864865) (-1133 "ULSCONS.spad" 1854942 1854962 1855312 1855461) (-1132 "ULSCCAT.spad" 1852679 1852699 1854788 1854937) (-1131 "ULSCCAT.spad" 1850524 1850546 1852635 1852640) (-1130 "ULSCAT.spad" 1848764 1848780 1850370 1850519) (-1129 "ULS2.spad" 1848278 1848331 1848754 1848759) (-1128 "ULS.spad" 1837910 1837938 1838855 1839278) (-1127 "UINT8.spad" 1837787 1837796 1837900 1837905) (-1126 "UINT64.spad" 1837663 1837672 1837777 1837782) (-1125 "UINT32.spad" 1837539 1837548 1837653 1837658) (-1124 "UINT16.spad" 1837415 1837424 1837529 1837534) (-1123 "UFD.spad" 1836480 1836489 1837341 1837410) (-1122 "UFD.spad" 1835607 1835618 1836470 1836475) (-1121 "UDVO.spad" 1834488 1834497 1835597 1835602) (-1120 "UDPO.spad" 1832069 1832080 1834444 1834449) (-1119 "TYPEAST.spad" 1831988 1831997 1832059 1832064) (-1118 "TYPE.spad" 1831920 1831929 1831978 1831983) (-1117 "TWOFACT.spad" 1830572 1830587 1831910 1831915) (-1116 "TUPLE.spad" 1830063 1830074 1830468 1830473) (-1115 "TUBETOOL.spad" 1826930 1826939 1830053 1830058) (-1114 "TUBE.spad" 1825577 1825594 1826920 1826925) (-1113 "TSETCAT.spad" 1813648 1813665 1825545 1825572) (-1112 "TSETCAT.spad" 1801705 1801724 1813604 1813609) (-1111 "TS.spad" 1800301 1800317 1801267 1801364) (-1110 "TRMANIP.spad" 1794665 1794682 1799989 1799994) (-1109 "TRIMAT.spad" 1793628 1793653 1794655 1794660) (-1108 "TRIGMNIP.spad" 1792155 1792172 1793618 1793623) (-1107 "TRIGCAT.spad" 1791667 1791676 1792145 1792150) (-1106 "TRIGCAT.spad" 1791177 1791188 1791657 1791662) (-1105 "TREE.spad" 1789631 1789642 1790663 1790690) (-1104 "TRANFUN.spad" 1789470 1789479 1789621 1789626) (-1103 "TRANFUN.spad" 1789307 1789318 1789460 1789465) (-1102 "TOPSP.spad" 1788981 1788990 1789297 1789302) (-1101 "TOOLSIGN.spad" 1788644 1788655 1788971 1788976) (-1100 "TEXTFILE.spad" 1787205 1787214 1788634 1788639) (-1099 "TEX1.spad" 1786761 1786772 1787195 1787200) (-1098 "TEX.spad" 1783955 1783964 1786751 1786756) (-1097 "TBCMPPK.spad" 1782056 1782079 1783945 1783950) (-1096 "TBAGG.spad" 1781114 1781137 1782036 1782051) (-1095 "TBAGG.spad" 1780180 1780205 1781104 1781109) (-1094 "TANEXP.spad" 1779588 1779599 1780170 1780175) (-1093 "TALGOP.spad" 1779312 1779323 1779578 1779583) (-1092 "TABLEAU.spad" 1778793 1778804 1779302 1779307) (-1091 "TABLE.spad" 1776719 1776742 1776989 1777016) (-1090 "TABLBUMP.spad" 1773498 1773509 1776709 1776714) (-1089 "SYSTEM.spad" 1772726 1772735 1773488 1773493) (-1088 "SYSSOLP.spad" 1770209 1770220 1772716 1772721) (-1087 "SYSPTR.spad" 1770108 1770117 1770199 1770204) (-1086 "SYSNNI.spad" 1769331 1769342 1770098 1770103) (-1085 "SYSINT.spad" 1768735 1768746 1769321 1769326) (-1084 "SYNTAX.spad" 1765069 1765078 1768725 1768730) (-1083 "SYMTAB.spad" 1763137 1763146 1765059 1765064) (-1082 "SYMS.spad" 1759166 1759175 1763127 1763132) (-1081 "SYMPOLY.spad" 1758155 1758166 1758237 1758364) (-1080 "SYMFUNC.spad" 1757656 1757667 1758145 1758150) (-1079 "SYMBOL.spad" 1755151 1755160 1757646 1757651) (-1078 "SUTS.spad" 1752136 1752164 1753555 1753652) (-1077 "SUPXS.spad" 1749350 1749378 1750199 1750348) (-1076 "SUPFRACF.spad" 1748455 1748473 1749340 1749345) (-1075 "SUP2.spad" 1747847 1747860 1748445 1748450) (-1074 "SUP.spad" 1744515 1744526 1745288 1745441) (-1073 "SUMRF.spad" 1743489 1743500 1744505 1744510) (-1072 "SUMFS.spad" 1743118 1743135 1743479 1743484) (-1071 "SULS.spad" 1732737 1732765 1733695 1734118) (-1070 "SUCHTAST.spad" 1732506 1732515 1732727 1732732) (-1069 "SUCH.spad" 1732196 1732211 1732496 1732501) (-1068 "SUBSPACE.spad" 1724327 1724342 1732186 1732191) (-1067 "SUBRESP.spad" 1723497 1723511 1724283 1724288) (-1066 "STTFNC.spad" 1719965 1719981 1723487 1723492) (-1065 "STTF.spad" 1716064 1716080 1719955 1719960) (-1064 "STTAYLOR.spad" 1708709 1708720 1715939 1715944) (-1063 "STRTBL.spad" 1706717 1706734 1706866 1706893) (-1062 "STRING.spad" 1705333 1705342 1705718 1705745) (-1061 "STREAM3.spad" 1704906 1704921 1705323 1705328) (-1060 "STREAM2.spad" 1704034 1704047 1704896 1704901) (-1059 "STREAM1.spad" 1703740 1703751 1704024 1704029) (-1058 "STREAM.spad" 1700534 1700545 1703141 1703156) (-1057 "STINPROD.spad" 1699470 1699486 1700524 1700529) (-1056 "STEPAST.spad" 1698704 1698713 1699460 1699465) (-1055 "STEP.spad" 1698021 1698030 1698694 1698699) (-1054 "STBL.spad" 1696062 1696090 1696229 1696244) (-1053 "STAGG.spad" 1694761 1694772 1696052 1696057) (-1052 "STAGG.spad" 1693458 1693471 1694751 1694756) (-1051 "STACK.spad" 1692694 1692705 1692944 1692971) (-1050 "SRING.spad" 1692454 1692463 1692684 1692689) (-1049 "SREGSET.spad" 1690154 1690171 1692056 1692083) (-1048 "SRDCMPK.spad" 1688731 1688751 1690144 1690149) (-1047 "SRAGG.spad" 1683914 1683923 1688699 1688726) (-1046 "SRAGG.spad" 1679117 1679128 1683904 1683909) (-1045 "SQMATRIX.spad" 1676618 1676636 1677534 1677621) (-1044 "SPLTREE.spad" 1671092 1671105 1675888 1675915) (-1043 "SPLNODE.spad" 1667712 1667725 1671082 1671087) (-1042 "SPFCAT.spad" 1666521 1666530 1667702 1667707) (-1041 "SPECOUT.spad" 1665073 1665082 1666511 1666516) (-1040 "SPADXPT.spad" 1657164 1657173 1665063 1665068) (-1039 "spad-parser.spad" 1656629 1656638 1657154 1657159) (-1038 "SPADAST.spad" 1656330 1656339 1656619 1656624) (-1037 "SPACEC.spad" 1640545 1640556 1656320 1656325) (-1036 "SPACE3.spad" 1640321 1640332 1640535 1640540) (-1035 "SORTPAK.spad" 1639870 1639883 1640277 1640282) (-1034 "SOLVETRA.spad" 1637633 1637644 1639860 1639865) (-1033 "SOLVESER.spad" 1636089 1636100 1637623 1637628) (-1032 "SOLVERAD.spad" 1632115 1632126 1636079 1636084) (-1031 "SOLVEFOR.spad" 1630577 1630595 1632105 1632110) (-1030 "SNTSCAT.spad" 1630177 1630194 1630545 1630572) (-1029 "SMTS.spad" 1628462 1628488 1629739 1629836) (-1028 "SMP.spad" 1625886 1625906 1626276 1626403) (-1027 "SMITH.spad" 1624731 1624756 1625876 1625881) (-1026 "SMATCAT.spad" 1622849 1622879 1624675 1624726) (-1025 "SMATCAT.spad" 1620899 1620931 1622727 1622732) (-1024 "SKAGG.spad" 1619868 1619879 1620867 1620894) (-1023 "SINT.spad" 1618808 1618817 1619734 1619863) (-1022 "SIMPAN.spad" 1618536 1618545 1618798 1618803) (-1021 "SIGNRF.spad" 1617661 1617672 1618526 1618531) (-1020 "SIGNEF.spad" 1616947 1616964 1617651 1617656) (-1019 "SIGAST.spad" 1616364 1616373 1616937 1616942) (-1018 "SIG.spad" 1615726 1615735 1616354 1616359) (-1017 "SHP.spad" 1613670 1613685 1615682 1615687) (-1016 "SHDP.spad" 1601157 1601184 1601674 1601771) (-1015 "SGROUP.spad" 1600765 1600774 1601147 1601152) (-1014 "SGROUP.spad" 1600371 1600382 1600755 1600760) (-1013 "SGCF.spad" 1593510 1593519 1600361 1600366) (-1012 "SFRTCAT.spad" 1592456 1592473 1593478 1593505) (-1011 "SFRGCD.spad" 1591519 1591539 1592446 1592451) (-1010 "SFQCMPK.spad" 1586332 1586352 1591509 1591514) (-1009 "SEXOF.spad" 1586175 1586215 1586322 1586327) (-1008 "SEXCAT.spad" 1584003 1584043 1586165 1586170) (-1007 "SEX.spad" 1583895 1583904 1583993 1583998) (-1006 "SETMN.spad" 1582355 1582372 1583885 1583890) (-1005 "SETCAT.spad" 1581840 1581849 1582345 1582350) (-1004 "SETCAT.spad" 1581323 1581334 1581830 1581835) (-1003 "SETAGG.spad" 1577872 1577883 1581303 1581318) (-1002 "SETAGG.spad" 1574429 1574442 1577862 1577867) (-1001 "SET.spad" 1572706 1572717 1573803 1573842) (-1000 "SEQAST.spad" 1572409 1572418 1572696 1572701) (-999 "SEGXCAT.spad" 1571566 1571578 1572399 1572404) (-998 "SEGCAT.spad" 1570492 1570502 1571556 1571561) (-997 "SEGBIND2.spad" 1570191 1570203 1570482 1570487) (-996 "SEGBIND.spad" 1569951 1569961 1570139 1570144) (-995 "SEGAST.spad" 1569682 1569690 1569941 1569946) (-994 "SEG2.spad" 1569118 1569130 1569638 1569643) (-993 "SEG.spad" 1568932 1568942 1569037 1569042) (-992 "SDVAR.spad" 1568209 1568219 1568922 1568927) (-991 "SDPOL.spad" 1565491 1565501 1565781 1565908) (-990 "SCPKG.spad" 1563581 1563591 1565481 1565486) (-989 "SCOPE.spad" 1562759 1562767 1563571 1563576) (-988 "SCACHE.spad" 1561456 1561466 1562749 1562754) (-987 "SASTCAT.spad" 1561366 1561374 1561446 1561451) (-986 "SAOS.spad" 1561239 1561247 1561356 1561361) (-985 "SAERFFC.spad" 1560953 1560972 1561229 1561234) (-984 "SAEFACT.spad" 1560655 1560674 1560943 1560948) (-983 "SAE.spad" 1558114 1558129 1558724 1558859) (-982 "RURPK.spad" 1555774 1555789 1558104 1558109) (-981 "RULESET.spad" 1555228 1555251 1555764 1555769) (-980 "RULECOLD.spad" 1555081 1555093 1555218 1555223) (-979 "RULE.spad" 1553330 1553353 1555071 1555076) (-978 "RTVALUE.spad" 1553066 1553074 1553320 1553325) (-977 "RSTRCAST.spad" 1552784 1552792 1553056 1553061) (-976 "RSETGCD.spad" 1549227 1549246 1552774 1552779) (-975 "RSETCAT.spad" 1539196 1539212 1549195 1549222) (-974 "RSETCAT.spad" 1529185 1529203 1539186 1539191) (-973 "RSDCMPK.spad" 1527686 1527705 1529175 1529180) (-972 "RRCC.spad" 1526071 1526100 1527676 1527681) (-971 "RRCC.spad" 1524454 1524485 1526061 1526066) (-970 "RPTAST.spad" 1524157 1524165 1524444 1524449) (-969 "RPOLCAT.spad" 1503662 1503676 1524025 1524152) (-968 "RPOLCAT.spad" 1482864 1482880 1503229 1503234) (-967 "ROMAN.spad" 1482193 1482201 1482730 1482859) (-966 "ROIRC.spad" 1481274 1481305 1482183 1482188) (-965 "RNS.spad" 1480251 1480259 1481176 1481269) (-964 "RNS.spad" 1479314 1479324 1480241 1480246) (-963 "RNGBIND.spad" 1478475 1478488 1479269 1479274) (-962 "RNG.spad" 1478211 1478219 1478465 1478470) (-961 "RMODULE.spad" 1477993 1478003 1478201 1478206) (-960 "RMCAT2.spad" 1477414 1477470 1477983 1477988) (-959 "RMATRIX.spad" 1476192 1476210 1476534 1476573) (-958 "RMATCAT.spad" 1471772 1471802 1476148 1476187) (-957 "RMATCAT.spad" 1467242 1467274 1471620 1471625) (-956 "RLINSET.spad" 1466947 1466957 1467232 1467237) (-955 "RINTERP.spad" 1466836 1466855 1466937 1466942) (-954 "RING.spad" 1466307 1466315 1466816 1466831) (-953 "RING.spad" 1465786 1465796 1466297 1466302) (-952 "RIDIST.spad" 1465179 1465187 1465776 1465781) (-951 "RGCHAIN.spad" 1463702 1463717 1464595 1464622) (-950 "RGBCSPC.spad" 1463492 1463503 1463692 1463697) (-949 "RGBCMDL.spad" 1463055 1463066 1463482 1463487) (-948 "RFFACTOR.spad" 1462518 1462528 1463045 1463050) (-947 "RFFACT.spad" 1462254 1462265 1462508 1462513) (-946 "RFDIST.spad" 1461251 1461259 1462244 1462249) (-945 "RF.spad" 1458926 1458936 1461241 1461246) (-944 "RETSOL.spad" 1458346 1458358 1458916 1458921) (-943 "RETRACT.spad" 1457775 1457785 1458336 1458341) (-942 "RETRACT.spad" 1457202 1457214 1457765 1457770) (-941 "RETAST.spad" 1457015 1457023 1457192 1457197) (-940 "RESRING.spad" 1456363 1456409 1456953 1457010) (-939 "RESLATC.spad" 1455688 1455698 1456353 1456358) (-938 "REPSQ.spad" 1455420 1455430 1455678 1455683) (-937 "REPDB.spad" 1455128 1455138 1455410 1455415) (-936 "REP2.spad" 1444843 1444853 1454970 1454975) (-935 "REP1.spad" 1439064 1439074 1444793 1444798) (-934 "REP.spad" 1436619 1436627 1439054 1439059) (-933 "REGSET.spad" 1434413 1434429 1436221 1436248) (-932 "REF.spad" 1433749 1433759 1434368 1434373) (-931 "REDORDER.spad" 1432956 1432972 1433739 1433744) (-930 "RECLOS.spad" 1431725 1431744 1432428 1432521) (-929 "REALSOLV.spad" 1430866 1430874 1431715 1431720) (-928 "REAL0Q.spad" 1428165 1428179 1430856 1430861) (-927 "REAL0.spad" 1425010 1425024 1428155 1428160) (-926 "REAL.spad" 1424883 1424891 1425000 1425005) (-925 "RDUCEAST.spad" 1424605 1424613 1424873 1424878) (-924 "RDIV.spad" 1424261 1424285 1424595 1424600) (-923 "RDIST.spad" 1423829 1423839 1424251 1424256) (-922 "RDETRS.spad" 1422694 1422711 1423819 1423824) (-921 "RDETR.spad" 1420834 1420851 1422684 1422689) (-920 "RDEEFS.spad" 1419934 1419950 1420824 1420829) (-919 "RDEEF.spad" 1418945 1418961 1419924 1419929) (-918 "RCFIELD.spad" 1416164 1416172 1418847 1418940) (-917 "RCFIELD.spad" 1413469 1413479 1416154 1416159) (-916 "RCAGG.spad" 1411406 1411416 1413459 1413464) (-915 "RCAGG.spad" 1409270 1409282 1411325 1411330) (-914 "RATRET.spad" 1408631 1408641 1409260 1409265) (-913 "RATFACT.spad" 1408324 1408335 1408621 1408626) (-912 "RANDSRC.spad" 1407644 1407652 1408314 1408319) (-911 "RADUTIL.spad" 1407401 1407409 1407634 1407639) (-910 "RADIX.spad" 1404190 1404203 1405735 1405828) (-909 "RADFF.spad" 1401915 1401951 1402033 1402189) (-908 "RADCAT.spad" 1401511 1401519 1401905 1401910) (-907 "RADCAT.spad" 1401105 1401115 1401501 1401506) (-906 "QUEUE.spad" 1400333 1400343 1400591 1400618) (-905 "QUATCT2.spad" 1399954 1399972 1400323 1400328) (-904 "QUATCAT.spad" 1398125 1398135 1399884 1399949) (-903 "QUATCAT.spad" 1396045 1396057 1397806 1397811) (-902 "QUAT.spad" 1394508 1394518 1394850 1394915) (-901 "QUAGG.spad" 1393342 1393352 1394476 1394503) (-900 "QQUTAST.spad" 1393111 1393119 1393332 1393337) (-899 "QFORM.spad" 1392730 1392744 1393101 1393106) (-898 "QFCAT2.spad" 1392423 1392439 1392720 1392725) (-897 "QFCAT.spad" 1391126 1391136 1392325 1392418) (-896 "QFCAT.spad" 1389414 1389426 1390615 1390620) (-895 "QEQUAT.spad" 1388973 1388981 1389404 1389409) (-894 "QCMPACK.spad" 1383888 1383907 1388963 1388968) (-893 "QALGSET2.spad" 1381884 1381902 1383878 1383883) (-892 "QALGSET.spad" 1377989 1378021 1381798 1381803) (-891 "PWFFINTB.spad" 1375405 1375426 1377979 1377984) (-890 "PUSHVAR.spad" 1374744 1374763 1375395 1375400) (-889 "PTRANFN.spad" 1370880 1370890 1374734 1374739) (-888 "PTPACK.spad" 1367968 1367978 1370870 1370875) (-887 "PTFUNC2.spad" 1367791 1367805 1367958 1367963) (-886 "PTCAT.spad" 1367046 1367056 1367759 1367786) (-885 "PSQFR.spad" 1366361 1366385 1367036 1367041) (-884 "PSEUDLIN.spad" 1365247 1365257 1366351 1366356) (-883 "PSETPK.spad" 1351952 1351968 1365125 1365130) (-882 "PSETCAT.spad" 1346352 1346375 1351932 1351947) (-881 "PSETCAT.spad" 1340726 1340751 1346308 1346313) (-880 "PSCURVE.spad" 1339725 1339733 1340716 1340721) (-879 "PSCAT.spad" 1338508 1338537 1339623 1339720) (-878 "PSCAT.spad" 1337381 1337412 1338498 1338503) (-877 "PRTITION.spad" 1336079 1336087 1337371 1337376) (-876 "PRTDAST.spad" 1335798 1335806 1336069 1336074) (-875 "PRS.spad" 1325416 1325433 1335754 1335759) (-874 "PRQAGG.spad" 1324851 1324861 1325384 1325411) (-873 "PROPLOG.spad" 1324455 1324463 1324841 1324846) (-872 "PROPFUN2.spad" 1324078 1324091 1324445 1324450) (-871 "PROPFUN1.spad" 1323484 1323495 1324068 1324073) (-870 "PROPFRML.spad" 1322052 1322063 1323474 1323479) (-869 "PROPERTY.spad" 1321548 1321556 1322042 1322047) (-868 "PRODUCT.spad" 1319245 1319257 1319529 1319584) (-867 "PRINT.spad" 1318997 1319005 1319235 1319240) (-866 "PRIMES.spad" 1317258 1317268 1318987 1318992) (-865 "PRIMELT.spad" 1315379 1315393 1317248 1317253) (-864 "PRIMCAT.spad" 1315022 1315030 1315369 1315374) (-863 "PRIMARR2.spad" 1313789 1313801 1315012 1315017) (-862 "PRIMARR.spad" 1312642 1312652 1312812 1312839) (-861 "PREASSOC.spad" 1312024 1312036 1312632 1312637) (-860 "PR.spad" 1310398 1310410 1311097 1311224) (-859 "PPCURVE.spad" 1309535 1309543 1310388 1310393) (-858 "PORTNUM.spad" 1309326 1309334 1309525 1309530) (-857 "POLYROOT.spad" 1308175 1308197 1309282 1309287) (-856 "POLYLIFT.spad" 1307440 1307463 1308165 1308170) (-855 "POLYCATQ.spad" 1305566 1305588 1307430 1307435) (-854 "POLYCAT.spad" 1299068 1299089 1305434 1305561) (-853 "POLYCAT.spad" 1291866 1291889 1298234 1298239) (-852 "POLY2UP.spad" 1291318 1291332 1291856 1291861) (-851 "POLY2.spad" 1290915 1290927 1291308 1291313) (-850 "POLY.spad" 1288199 1288209 1288714 1288841) (-849 "POLUTIL.spad" 1287164 1287193 1288155 1288160) (-848 "POLTOPOL.spad" 1285912 1285927 1287154 1287159) (-847 "POINT.spad" 1284593 1284603 1284680 1284707) (-846 "PNTHEORY.spad" 1281295 1281303 1284583 1284588) (-845 "PMTOOLS.spad" 1280070 1280084 1281285 1281290) (-844 "PMSYM.spad" 1279619 1279629 1280060 1280065) (-843 "PMQFCAT.spad" 1279210 1279224 1279609 1279614) (-842 "PMPREDFS.spad" 1278672 1278694 1279200 1279205) (-841 "PMPRED.spad" 1278159 1278173 1278662 1278667) (-840 "PMPLCAT.spad" 1277236 1277254 1278088 1278093) (-839 "PMLSAGG.spad" 1276821 1276835 1277226 1277231) (-838 "PMKERNEL.spad" 1276400 1276412 1276811 1276816) (-837 "PMINS.spad" 1275980 1275990 1276390 1276395) (-836 "PMFS.spad" 1275557 1275575 1275970 1275975) (-835 "PMDOWN.spad" 1274847 1274861 1275547 1275552) (-834 "PMASSFS.spad" 1273822 1273838 1274837 1274842) (-833 "PMASS.spad" 1272840 1272848 1273812 1273817) (-832 "PLOTTOOL.spad" 1272620 1272628 1272830 1272835) (-831 "PLOT3D.spad" 1269084 1269092 1272610 1272615) (-830 "PLOT1.spad" 1268257 1268267 1269074 1269079) (-829 "PLOT.spad" 1263180 1263188 1268247 1268252) (-828 "PLEQN.spad" 1250582 1250609 1263170 1263175) (-827 "PINTERPA.spad" 1250366 1250382 1250572 1250577) (-826 "PINTERP.spad" 1249988 1250007 1250356 1250361) (-825 "PID.spad" 1248962 1248970 1249914 1249983) (-824 "PICOERCE.spad" 1248619 1248629 1248952 1248957) (-823 "PI.spad" 1248236 1248244 1248593 1248614) (-822 "PGROEB.spad" 1246845 1246859 1248226 1248231) (-821 "PGE.spad" 1238518 1238526 1246835 1246840) (-820 "PGCD.spad" 1237472 1237489 1238508 1238513) (-819 "PFRPAC.spad" 1236621 1236631 1237462 1237467) (-818 "PFR.spad" 1233324 1233334 1236523 1236616) (-817 "PFOTOOLS.spad" 1232582 1232598 1233314 1233319) (-816 "PFOQ.spad" 1231952 1231970 1232572 1232577) (-815 "PFO.spad" 1231371 1231398 1231942 1231947) (-814 "PFECAT.spad" 1229081 1229089 1231297 1231366) (-813 "PFECAT.spad" 1226819 1226829 1229037 1229042) (-812 "PFBRU.spad" 1224707 1224719 1226809 1226814) (-811 "PFBR.spad" 1222267 1222290 1224697 1224702) (-810 "PF.spad" 1221841 1221853 1222072 1222165) (-809 "PERMGRP.spad" 1216611 1216621 1221831 1221836) (-808 "PERMCAT.spad" 1215272 1215282 1216591 1216606) (-807 "PERMAN.spad" 1213828 1213842 1215262 1215267) (-806 "PERM.spad" 1209638 1209648 1213661 1213676) (-805 "PENDTREE.spad" 1208866 1208876 1209146 1209151) (-804 "PDSPC.spad" 1207679 1207689 1208856 1208861) (-803 "PDSPC.spad" 1206490 1206502 1207669 1207674) (-802 "PDRING.spad" 1206332 1206342 1206470 1206485) (-801 "PDMOD.spad" 1206148 1206160 1206300 1206327) (-800 "PDECOMP.spad" 1205618 1205635 1206138 1206143) (-799 "PDDOM.spad" 1205056 1205069 1205608 1205613) (-798 "PDDOM.spad" 1204492 1204507 1205046 1205051) (-797 "PCOMP.spad" 1204345 1204358 1204482 1204487) (-796 "PBWLB.spad" 1202941 1202958 1204335 1204340) (-795 "PATTERN2.spad" 1202679 1202691 1202931 1202936) (-794 "PATTERN1.spad" 1201023 1201039 1202669 1202674) (-793 "PATTERN.spad" 1195594 1195604 1201013 1201018) (-792 "PATRES2.spad" 1195266 1195280 1195584 1195589) (-791 "PATRES.spad" 1192849 1192861 1195256 1195261) (-790 "PATMATCH.spad" 1191042 1191073 1192553 1192558) (-789 "PATMAB.spad" 1190471 1190481 1191032 1191037) (-788 "PATLRES.spad" 1189557 1189571 1190461 1190466) (-787 "PATAB.spad" 1189321 1189331 1189547 1189552) (-786 "PARTPERM.spad" 1187377 1187385 1189311 1189316) (-785 "PARSURF.spad" 1186811 1186839 1187367 1187372) (-784 "PARSU2.spad" 1186608 1186624 1186801 1186806) (-783 "script-parser.spad" 1186128 1186136 1186598 1186603) (-782 "PARSCURV.spad" 1185562 1185590 1186118 1186123) (-781 "PARSC2.spad" 1185353 1185369 1185552 1185557) (-780 "PARPCURV.spad" 1184815 1184843 1185343 1185348) (-779 "PARPC2.spad" 1184606 1184622 1184805 1184810) (-778 "PARAMAST.spad" 1183734 1183742 1184596 1184601) (-777 "PAN2EXPR.spad" 1183146 1183154 1183724 1183729) (-776 "PALETTE.spad" 1182260 1182268 1183136 1183141) (-775 "PAIR.spad" 1181270 1181283 1181839 1181844) (-774 "PADICRC.spad" 1178483 1178501 1179646 1179739) (-773 "PADICRAT.spad" 1176351 1176363 1176564 1176657) (-772 "PADICCT.spad" 1174900 1174912 1176277 1176346) (-771 "PADIC.spad" 1174603 1174615 1174826 1174895) (-770 "PADEPAC.spad" 1173292 1173311 1174593 1174598) (-769 "PADE.spad" 1172044 1172060 1173282 1173287) (-768 "OWP.spad" 1171292 1171322 1171902 1171969) (-767 "OVERSET.spad" 1170865 1170873 1171282 1171287) (-766 "OVAR.spad" 1170646 1170669 1170855 1170860) (-765 "OUTFORM.spad" 1160054 1160062 1170636 1170641) (-764 "OUTBFILE.spad" 1159488 1159496 1160044 1160049) (-763 "OUTBCON.spad" 1158558 1158566 1159478 1159483) (-762 "OUTBCON.spad" 1157626 1157636 1158548 1158553) (-761 "OUT.spad" 1156744 1156752 1157616 1157621) (-760 "OSI.spad" 1156219 1156227 1156734 1156739) (-759 "OSGROUP.spad" 1156137 1156145 1156209 1156214) (-758 "ORTHPOL.spad" 1154616 1154626 1156048 1156053) (-757 "OREUP.spad" 1154062 1154090 1154289 1154328) (-756 "ORESUP.spad" 1153356 1153380 1153735 1153774) (-755 "OREPCTO.spad" 1151245 1151257 1153276 1153281) (-754 "OREPCAT.spad" 1145432 1145442 1151201 1151240) (-753 "OREPCAT.spad" 1139509 1139521 1145280 1145285) (-752 "ORDTYPE.spad" 1138746 1138754 1139499 1139504) (-751 "ORDTYPE.spad" 1137981 1137991 1138736 1138741) (-750 "ORDSTRCT.spad" 1137751 1137766 1137914 1137919) (-749 "ORDSET.spad" 1137451 1137459 1137741 1137746) (-748 "ORDRING.spad" 1137268 1137276 1137431 1137446) (-747 "ORDMON.spad" 1137123 1137131 1137258 1137263) (-746 "ORDFUNS.spad" 1136255 1136271 1137113 1137118) (-745 "ORDFIN.spad" 1136075 1136083 1136245 1136250) (-744 "ORDCOMP2.spad" 1135368 1135380 1136065 1136070) (-743 "ORDCOMP.spad" 1133830 1133840 1134912 1134941) (-742 "OPSIG.spad" 1133492 1133500 1133820 1133825) (-741 "OPQUERY.spad" 1133073 1133081 1133482 1133487) (-740 "OPERCAT.spad" 1132539 1132549 1133063 1133068) (-739 "OPERCAT.spad" 1132003 1132015 1132529 1132534) (-738 "OP.spad" 1131745 1131755 1131825 1131892) (-737 "ONECOMP2.spad" 1131169 1131181 1131735 1131740) (-736 "ONECOMP.spad" 1129911 1129921 1130713 1130742) (-735 "OMSAGG.spad" 1129699 1129709 1129867 1129906) (-734 "OMLO.spad" 1129132 1129144 1129585 1129624) (-733 "OINTDOM.spad" 1128895 1128903 1129058 1129127) (-732 "OFMONOID.spad" 1127034 1127044 1128851 1128856) (-731 "ODVAR.spad" 1126295 1126305 1127024 1127029) (-730 "ODR.spad" 1125939 1125965 1126107 1126256) (-729 "ODPOL.spad" 1123171 1123181 1123511 1123638) (-728 "ODP.spad" 1110802 1110822 1111175 1111272) (-727 "ODETOOLS.spad" 1109451 1109470 1110792 1110797) (-726 "ODESYS.spad" 1107145 1107162 1109441 1109446) (-725 "ODERTRIC.spad" 1103178 1103195 1107102 1107107) (-724 "ODERED.spad" 1102577 1102601 1103168 1103173) (-723 "ODERAT.spad" 1100210 1100227 1102567 1102572) (-722 "ODEPRRIC.spad" 1097303 1097325 1100200 1100205) (-721 "ODEPRIM.spad" 1094701 1094723 1097293 1097298) (-720 "ODEPAL.spad" 1094087 1094111 1094691 1094696) (-719 "ODEINT.spad" 1093522 1093538 1094077 1094082) (-718 "ODEEF.spad" 1089017 1089033 1093512 1093517) (-717 "ODECONST.spad" 1088562 1088580 1089007 1089012) (-716 "OCTCT2.spad" 1088203 1088221 1088552 1088557) (-715 "OCT.spad" 1086310 1086320 1087024 1087063) (-714 "OCAMON.spad" 1086158 1086166 1086300 1086305) (-713 "OC.spad" 1083954 1083964 1086114 1086153) (-712 "OC.spad" 1081473 1081485 1083635 1083640) (-711 "OASGP.spad" 1081288 1081296 1081463 1081468) (-710 "OAMONS.spad" 1080810 1080818 1081278 1081283) (-709 "OAMON.spad" 1080568 1080576 1080800 1080805) (-708 "OAMON.spad" 1080324 1080334 1080558 1080563) (-707 "OAGROUP.spad" 1079862 1079870 1080314 1080319) (-706 "OAGROUP.spad" 1079398 1079408 1079852 1079857) (-705 "NUMTUBE.spad" 1078989 1079005 1079388 1079393) (-704 "NUMQUAD.spad" 1066965 1066973 1078979 1078984) (-703 "NUMODE.spad" 1058317 1058325 1066955 1066960) (-702 "NUMFMT.spad" 1057157 1057165 1058307 1058312) (-701 "NUMERIC.spad" 1049272 1049282 1056963 1056968) (-700 "NTSCAT.spad" 1047780 1047796 1049240 1049267) (-699 "NTPOLFN.spad" 1047325 1047335 1047691 1047696) (-698 "NSUP2.spad" 1046717 1046729 1047315 1047320) (-697 "NSUP.spad" 1039738 1039748 1044158 1044311) (-696 "NSMP.spad" 1035866 1035885 1036158 1036285) (-695 "NREP.spad" 1034268 1034282 1035856 1035861) (-694 "NPCOEF.spad" 1033514 1033534 1034258 1034263) (-693 "NORMRETR.spad" 1033112 1033151 1033504 1033509) (-692 "NORMPK.spad" 1031054 1031073 1033102 1033107) (-691 "NORMMA.spad" 1030742 1030768 1031044 1031049) (-690 "NONE1.spad" 1030418 1030428 1030732 1030737) (-689 "NONE.spad" 1030159 1030167 1030408 1030413) (-688 "NODE1.spad" 1029646 1029662 1030149 1030154) (-687 "NNI.spad" 1028541 1028549 1029620 1029641) (-686 "NLINSOL.spad" 1027167 1027177 1028531 1028536) (-685 "NFINTBAS.spad" 1024727 1024744 1027157 1027162) (-684 "NETCLT.spad" 1024701 1024712 1024717 1024722) (-683 "NCODIV.spad" 1022925 1022941 1024691 1024696) (-682 "NCNTFRAC.spad" 1022567 1022581 1022915 1022920) (-681 "NCEP.spad" 1020733 1020747 1022557 1022562) (-680 "NASRING.spad" 1020337 1020345 1020723 1020728) (-679 "NASRING.spad" 1019939 1019949 1020327 1020332) (-678 "NARNG.spad" 1019339 1019347 1019929 1019934) (-677 "NARNG.spad" 1018737 1018747 1019329 1019334) (-676 "NAALG.spad" 1018302 1018312 1018705 1018732) (-675 "NAALG.spad" 1017887 1017899 1018292 1018297) (-674 "MULTSQFR.spad" 1014845 1014862 1017877 1017882) (-673 "MULTFACT.spad" 1014228 1014245 1014835 1014840) (-672 "MTSCAT.spad" 1012322 1012343 1014126 1014223) (-671 "MTHING.spad" 1011981 1011991 1012312 1012317) (-670 "MSYSCMD.spad" 1011415 1011423 1011971 1011976) (-669 "MSETAGG.spad" 1011260 1011270 1011383 1011410) (-668 "MSET.spad" 1009174 1009184 1010922 1010961) (-667 "MRING.spad" 1006151 1006163 1008882 1008949) (-666 "MRF2.spad" 1005713 1005727 1006141 1006146) (-665 "MRATFAC.spad" 1005259 1005276 1005703 1005708) (-664 "MPRFF.spad" 1003299 1003318 1005249 1005254) (-663 "MPOLY.spad" 1000719 1000734 1001078 1001205) (-662 "MPCPF.spad" 999983 1000002 1000709 1000714) (-661 "MPC3.spad" 999800 999840 999973 999978) (-660 "MPC2.spad" 999453 999486 999790 999795) (-659 "MONOTOOL.spad" 997804 997821 999443 999448) (-658 "MONOID.spad" 997123 997131 997794 997799) (-657 "MONOID.spad" 996440 996450 997113 997118) (-656 "MONOGEN.spad" 995188 995201 996300 996435) (-655 "MONOGEN.spad" 993958 993973 995072 995077) (-654 "MONADWU.spad" 992036 992044 993948 993953) (-653 "MONADWU.spad" 990112 990122 992026 992031) (-652 "MONAD.spad" 989272 989280 990102 990107) (-651 "MONAD.spad" 988430 988440 989262 989267) (-650 "MOEBIUS.spad" 987166 987180 988410 988425) (-649 "MODULE.spad" 987036 987046 987134 987161) (-648 "MODULE.spad" 986926 986938 987026 987031) (-647 "MODRING.spad" 986261 986300 986906 986921) (-646 "MODOP.spad" 984918 984930 986083 986150) (-645 "MODMONOM.spad" 984649 984667 984908 984913) (-644 "MODMON.spad" 981299 981315 982018 982171) (-643 "MODFIELD.spad" 980661 980700 981201 981294) (-642 "MMLFORM.spad" 979521 979529 980651 980656) (-641 "MMAP.spad" 979263 979297 979511 979516) (-640 "MLO.spad" 977722 977732 979219 979258) (-639 "MLIFT.spad" 976334 976351 977712 977717) (-638 "MKUCFUNC.spad" 975869 975887 976324 976329) (-637 "MKRECORD.spad" 975457 975470 975859 975864) (-636 "MKFUNC.spad" 974864 974874 975447 975452) (-635 "MKFLCFN.spad" 973832 973842 974854 974859) (-634 "MKBCFUNC.spad" 973327 973345 973822 973827) (-633 "MHROWRED.spad" 971838 971848 973317 973322) (-632 "MFINFACT.spad" 971238 971260 971828 971833) (-631 "MESH.spad" 969033 969041 971228 971233) (-630 "MDDFACT.spad" 967252 967262 969023 969028) (-629 "MDAGG.spad" 966543 966553 967232 967247) (-628 "MCDEN.spad" 965753 965765 966533 966538) (-627 "MAYBE.spad" 965053 965064 965743 965748) (-626 "MATSTOR.spad" 962369 962379 965043 965048) (-625 "MATRIX.spad" 960946 960956 961430 961457) (-624 "MATLIN.spad" 958314 958338 960830 960835) (-623 "MATCAT2.spad" 957596 957644 958304 958309) (-622 "MATCAT.spad" 949158 949180 957564 957591) (-621 "MATCAT.spad" 940592 940616 949000 949005) (-620 "MAPPKG3.spad" 939507 939521 940582 940587) (-619 "MAPPKG2.spad" 938845 938857 939497 939502) (-618 "MAPPKG1.spad" 937673 937683 938835 938840) (-617 "MAPPAST.spad" 937012 937020 937663 937668) (-616 "MAPHACK3.spad" 936824 936838 937002 937007) (-615 "MAPHACK2.spad" 936593 936605 936814 936819) (-614 "MAPHACK1.spad" 936237 936247 936583 936588) (-613 "MAGMA.spad" 934043 934060 936227 936232) (-612 "MACROAST.spad" 933638 933646 934033 934038) (-611 "LZSTAGG.spad" 930892 930902 933628 933633) (-610 "LZSTAGG.spad" 928144 928156 930882 930887) (-609 "LWORD.spad" 924889 924906 928134 928139) (-608 "LSTAST.spad" 924673 924681 924879 924884) (-607 "LSQM.spad" 922791 922805 923185 923236) (-606 "LSPP.spad" 922326 922343 922781 922786) (-605 "LSMP1.spad" 920169 920183 922316 922321) (-604 "LSMP.spad" 919026 919054 920159 920164) (-603 "LSAGG.spad" 918695 918705 918994 919021) (-602 "LSAGG.spad" 918384 918396 918685 918690) (-601 "LPOLY.spad" 917346 917365 918240 918309) (-600 "LPEFRAC.spad" 916617 916627 917336 917341) (-599 "LOGIC.spad" 916219 916227 916607 916612) (-598 "LOGIC.spad" 915819 915829 916209 916214) (-597 "LODOOPS.spad" 914749 914761 915809 915814) (-596 "LODOF.spad" 913795 913812 914706 914711) (-595 "LODOCAT.spad" 912461 912471 913751 913790) (-594 "LODOCAT.spad" 911125 911137 912417 912422) (-593 "LODO2.spad" 910391 910403 910798 910837) (-592 "LODO1.spad" 909784 909794 910064 910103) (-591 "LODO.spad" 909161 909177 909457 909496) (-590 "LODEEF.spad" 907963 907981 909151 909156) (-589 "LO.spad" 907364 907378 907897 907924) (-588 "LNAGG.spad" 903551 903561 907354 907359) (-587 "LNAGG.spad" 899702 899714 903507 903512) (-586 "LMOPS.spad" 896470 896487 899692 899697) (-585 "LMODULE.spad" 896254 896264 896460 896465) (-584 "LMDICT.spad" 895433 895443 895681 895708) (-583 "LLINSET.spad" 895140 895150 895423 895428) (-582 "LITERAL.spad" 895046 895057 895130 895135) (-581 "LIST3.spad" 894357 894371 895036 895041) (-580 "LIST2MAP.spad" 891284 891296 894347 894352) (-579 "LIST2.spad" 889986 889998 891274 891279) (-578 "LIST.spad" 887666 887676 889009 889036) (-577 "LINSET.spad" 887445 887455 887656 887661) (-576 "LINFORM.spad" 886908 886920 887413 887440) (-575 "LINEXP.spad" 885651 885661 886898 886903) (-574 "LINELT.spad" 885022 885034 885534 885561) (-573 "LINDEP.spad" 883871 883883 884934 884939) (-572 "LINBASIS.spad" 883507 883522 883861 883866) (-571 "LIMITRF.spad" 881454 881464 883497 883502) (-570 "LIMITPS.spad" 880364 880377 881444 881449) (-569 "LIECAT.spad" 879848 879858 880290 880359) (-568 "LIECAT.spad" 879360 879372 879804 879809) (-567 "LIE.spad" 877364 877376 878638 878780) (-566 "LIB.spad" 875072 875080 875518 875533) (-565 "LGROBP.spad" 872425 872444 875062 875067) (-564 "LFCAT.spad" 871484 871492 872415 872420) (-563 "LF.spad" 870439 870455 871474 871479) (-562 "LEXTRIPK.spad" 866062 866077 870429 870434) (-561 "LEXP.spad" 864081 864108 866042 866057) (-560 "LETAST.spad" 863780 863788 864071 864076) (-559 "LEADCDET.spad" 862186 862203 863770 863775) (-558 "LAZM3PK.spad" 860930 860952 862176 862181) (-557 "LAUPOL.spad" 859517 859530 860417 860486) (-556 "LAPLACE.spad" 859100 859116 859507 859512) (-555 "LALG.spad" 858876 858886 859080 859095) (-554 "LALG.spad" 858660 858672 858866 858871) (-553 "LA.spad" 858100 858114 858582 858621) (-552 "KVTFROM.spad" 857843 857853 858090 858095) (-551 "KTVLOGIC.spad" 857387 857395 857833 857838) (-550 "KRCFROM.spad" 857133 857143 857377 857382) (-549 "KOVACIC.spad" 855864 855881 857123 857128) (-548 "KONVERT.spad" 855586 855596 855854 855859) (-547 "KOERCE.spad" 855323 855333 855576 855581) (-546 "KERNEL2.spad" 855026 855038 855313 855318) (-545 "KERNEL.spad" 853666 853676 854795 854800) (-544 "KDAGG.spad" 852775 852797 853646 853661) (-543 "KDAGG.spad" 851892 851916 852765 852770) (-542 "KAFILE.spad" 850710 850726 850945 850972) (-541 "JVMOP.spad" 850623 850631 850700 850705) (-540 "JVMMDACC.spad" 849677 849685 850613 850618) (-539 "JVMFDACC.spad" 848993 849001 849667 849672) (-538 "JVMCSTTG.spad" 847722 847730 848983 848988) (-537 "JVMCFACC.spad" 847168 847176 847712 847717) (-536 "JVMBCODE.spad" 847079 847087 847158 847163) (-535 "JORDAN.spad" 844896 844908 846357 846499) (-534 "JOINAST.spad" 844598 844606 844886 844891) (-533 "IXAGG.spad" 842731 842755 844588 844593) (-532 "IXAGG.spad" 840719 840745 842578 842583) (-531 "IVECTOR.spad" 839332 839347 839487 839514) (-530 "ITUPLE.spad" 838508 838518 839322 839327) (-529 "ITRIGMNP.spad" 837355 837374 838498 838503) (-528 "ITFUN3.spad" 836861 836875 837345 837350) (-527 "ITFUN2.spad" 836605 836617 836851 836856) (-526 "ITFORM.spad" 835960 835968 836595 836600) (-525 "ITAYLOR.spad" 833954 833969 835824 835921) (-524 "ISUPS.spad" 826355 826370 832892 832989) (-523 "ISUMP.spad" 825856 825872 826345 826350) (-522 "ISAST.spad" 825575 825583 825846 825851) (-521 "IRURPK.spad" 824292 824311 825565 825570) (-520 "IRSN.spad" 822296 822304 824282 824287) (-519 "IRRF2F.spad" 820789 820799 822252 822257) (-518 "IRREDFFX.spad" 820390 820401 820779 820784) (-517 "IROOT.spad" 818729 818739 820380 820385) (-516 "IRFORM.spad" 818053 818061 818719 818724) (-515 "IR2F.spad" 817267 817283 818043 818048) (-514 "IR2.spad" 816295 816311 817257 817262) (-513 "IR.spad" 814099 814113 816145 816172) (-512 "IPRNTPK.spad" 813859 813867 814089 814094) (-511 "IPF.spad" 813424 813436 813664 813757) (-510 "IPADIC.spad" 813193 813219 813350 813419) (-509 "IP4ADDR.spad" 812750 812758 813183 813188) (-508 "IOMODE.spad" 812272 812280 812740 812745) (-507 "IOBFILE.spad" 811657 811665 812262 812267) (-506 "IOBCON.spad" 811522 811530 811647 811652) (-505 "INVLAPLA.spad" 811171 811187 811512 811517) (-504 "INTTR.spad" 804565 804582 811161 811166) (-503 "INTTOOLS.spad" 802309 802325 804128 804133) (-502 "INTSLPE.spad" 801637 801645 802299 802304) (-501 "INTRVL.spad" 801203 801213 801551 801632) (-500 "INTRF.spad" 799635 799649 801193 801198) (-499 "INTRET.spad" 799067 799077 799625 799630) (-498 "INTRAT.spad" 797802 797819 799057 799062) (-497 "INTPM.spad" 796169 796185 797427 797432) (-496 "INTPAF.spad" 794045 794063 796098 796103) (-495 "INTHERTR.spad" 793319 793336 794035 794040) (-494 "INTHERAL.spad" 792989 793013 793309 793314) (-493 "INTHEORY.spad" 789428 789436 792979 792984) (-492 "INTG0.spad" 783192 783210 789357 789362) (-491 "INTFACT.spad" 782259 782269 783182 783187) (-490 "INTEF.spad" 780670 780686 782249 782254) (-489 "INTDOM.spad" 779293 779301 780596 780665) (-488 "INTDOM.spad" 777978 777988 779283 779288) (-487 "INTCAT.spad" 776245 776255 777892 777973) (-486 "INTBIT.spad" 775752 775760 776235 776240) (-485 "INTALG.spad" 774940 774967 775742 775747) (-484 "INTAF.spad" 774440 774456 774930 774935) (-483 "INTABL.spad" 772473 772504 772636 772663) (-482 "INT8.spad" 772353 772361 772463 772468) (-481 "INT64.spad" 772232 772240 772343 772348) (-480 "INT32.spad" 772111 772119 772222 772227) (-479 "INT16.spad" 771990 771998 772101 772106) (-478 "INT.spad" 771516 771524 771856 771985) (-477 "INS.spad" 769019 769027 771418 771511) (-476 "INS.spad" 766608 766618 769009 769014) (-475 "INPSIGN.spad" 766078 766091 766598 766603) (-474 "INPRODPF.spad" 765174 765193 766068 766073) (-473 "INPRODFF.spad" 764262 764286 765164 765169) (-472 "INNMFACT.spad" 763237 763254 764252 764257) (-471 "INMODGCD.spad" 762741 762771 763227 763232) (-470 "INFSP.spad" 761038 761060 762731 762736) (-469 "INFPROD0.spad" 760118 760137 761028 761033) (-468 "INFORM1.spad" 759743 759753 760108 760113) (-467 "INFORM.spad" 756950 756958 759733 759738) (-466 "INFINITY.spad" 756502 756510 756940 756945) (-465 "INETCLTS.spad" 756479 756487 756492 756497) (-464 "INEP.spad" 755025 755047 756469 756474) (-463 "INDE.spad" 754674 754691 754935 754940) (-462 "INCRMAPS.spad" 754111 754121 754664 754669) (-461 "INBFILE.spad" 753207 753215 754101 754106) (-460 "INBFF.spad" 749057 749068 753197 753202) (-459 "INBCON.spad" 747323 747331 749047 749052) (-458 "INBCON.spad" 745587 745597 747313 747318) (-457 "INAST.spad" 745248 745256 745577 745582) (-456 "IMPTAST.spad" 744956 744964 745238 745243) (-455 "IMATRIX.spad" 743780 743806 744292 744319) (-454 "IMATQF.spad" 742874 742918 743736 743741) (-453 "IMATLIN.spad" 741495 741519 742830 742835) (-452 "IIARRAY2.spad" 740778 740816 740981 741008) (-451 "IFF.spad" 740191 740207 740462 740555) (-450 "IFAST.spad" 739805 739813 740181 740186) (-449 "IFARRAY.spad" 737130 737145 738828 738855) (-448 "IFAMON.spad" 736992 737009 737086 737091) (-447 "IEVALAB.spad" 736405 736417 736982 736987) (-446 "IEVALAB.spad" 735816 735830 736395 736400) (-445 "IDPOAMS.spad" 735494 735506 735728 735733) (-444 "IDPOAM.spad" 735136 735148 735406 735411) (-443 "IDPO.spad" 734871 734883 735048 735053) (-442 "IDPC.spad" 733600 733612 734861 734866) (-441 "IDPAM.spad" 733267 733279 733512 733517) (-440 "IDPAG.spad" 732936 732948 733179 733184) (-439 "IDENT.spad" 732588 732596 732926 732931) (-438 "IDECOMP.spad" 729827 729845 732578 732583) (-437 "IDEAL.spad" 724773 724812 729759 729764) (-436 "ICDEN.spad" 723986 724002 724763 724768) (-435 "ICARD.spad" 723379 723387 723976 723981) (-434 "IBPTOOLS.spad" 721986 722003 723369 723374) (-433 "IBITS.spad" 721151 721164 721584 721611) (-432 "IBATOOL.spad" 718136 718155 721141 721146) (-431 "IBACHIN.spad" 716643 716658 718126 718131) (-430 "IARRAY2.spad" 715518 715544 716129 716156) (-429 "IARRAY1.spad" 714395 714410 714541 714568) (-428 "IAN.spad" 712761 712769 714210 714303) (-427 "IALGFACT.spad" 712372 712405 712751 712756) (-426 "HYPCAT.spad" 711796 711804 712362 712367) (-425 "HYPCAT.spad" 711218 711228 711786 711791) (-424 "HOSTNAME.spad" 711034 711042 711208 711213) (-423 "HOMOTOP.spad" 710777 710787 711024 711029) (-422 "HOAGG.spad" 708059 708069 710767 710772) (-421 "HOAGG.spad" 705075 705087 707785 707790) (-420 "HEXADEC.spad" 703044 703052 703409 703502) (-419 "HEUGCD.spad" 702135 702146 703034 703039) (-418 "HELLFDIV.spad" 701741 701765 702125 702130) (-417 "HEAP.spad" 701012 701022 701227 701254) (-416 "HEADAST.spad" 700553 700561 701002 701007) (-415 "HDP.spad" 688180 688196 688557 688654) (-414 "HDMP.spad" 685343 685358 685959 686086) (-413 "HB.spad" 683618 683626 685333 685338) (-412 "HASHTBL.spad" 681603 681634 681814 681841) (-411 "HASAST.spad" 681319 681327 681593 681598) (-410 "HACKPI.spad" 680810 680818 681221 681314) (-409 "GTSET.spad" 679705 679721 680412 680439) (-408 "GSTBL.spad" 677739 677774 677913 677928) (-407 "GSERIES.spad" 674983 675010 675802 675951) (-406 "GROUP.spad" 674256 674264 674963 674978) (-405 "GROUP.spad" 673537 673547 674246 674251) (-404 "GROEBSOL.spad" 672031 672052 673527 673532) (-403 "GRMOD.spad" 670610 670622 672021 672026) (-402 "GRMOD.spad" 669187 669201 670600 670605) (-401 "GRIMAGE.spad" 662100 662108 669177 669182) (-400 "GRDEF.spad" 660479 660487 662090 662095) (-399 "GRAY.spad" 658950 658958 660469 660474) (-398 "GRALG.spad" 658043 658055 658940 658945) (-397 "GRALG.spad" 657134 657148 658033 658038) (-396 "GPOLSET.spad" 656560 656583 656772 656799) (-395 "GOSPER.spad" 655837 655855 656550 656555) (-394 "GMODPOL.spad" 654985 655012 655805 655832) (-393 "GHENSEL.spad" 654068 654082 654975 654980) (-392 "GENUPS.spad" 650361 650374 654058 654063) (-391 "GENUFACT.spad" 649938 649948 650351 650356) (-390 "GENPGCD.spad" 649540 649557 649928 649933) (-389 "GENMFACT.spad" 648992 649011 649530 649535) (-388 "GENEEZ.spad" 646951 646964 648982 648987) (-387 "GDMP.spad" 643956 643973 644730 644857) (-386 "GCNAALG.spad" 637879 637906 643750 643817) (-385 "GCDDOM.spad" 637071 637079 637805 637874) (-384 "GCDDOM.spad" 636325 636335 637061 637066) (-383 "GBINTERN.spad" 632345 632383 636315 636320) (-382 "GBF.spad" 628128 628166 632335 632340) (-381 "GBEUCLID.spad" 626010 626048 628118 628123) (-380 "GB.spad" 623536 623574 625966 625971) (-379 "GAUSSFAC.spad" 622849 622857 623526 623531) (-378 "GALUTIL.spad" 621175 621185 622805 622810) (-377 "GALPOLYU.spad" 619629 619642 621165 621170) (-376 "GALFACTU.spad" 617842 617861 619619 619624) (-375 "GALFACT.spad" 608055 608066 617832 617837) (-374 "FUNDESC.spad" 607733 607741 608045 608050) (-373 "FUNCTION.spad" 607582 607594 607723 607728) (-372 "FT.spad" 605882 605890 607572 607577) (-371 "FSUPFACT.spad" 604780 604799 605816 605821) (-370 "FST.spad" 602866 602874 604770 604775) (-369 "FSRED.spad" 602346 602362 602856 602861) (-368 "FSPRMELT.spad" 601212 601228 602303 602308) (-367 "FSPECF.spad" 599303 599319 601202 601207) (-366 "FSINT.spad" 598963 598979 599293 599298) (-365 "FSERIES.spad" 598154 598166 598783 598882) (-364 "FSCINT.spad" 597471 597487 598144 598149) (-363 "FSAGG2.spad" 596206 596222 597461 597466) (-362 "FSAGG.spad" 595323 595333 596162 596201) (-361 "FSAGG.spad" 594402 594414 595243 595248) (-360 "FS2UPS.spad" 588917 588951 594392 594397) (-359 "FS2EXPXP.spad" 588058 588081 588907 588912) (-358 "FS2.spad" 587713 587729 588048 588053) (-357 "FS.spad" 581985 581995 587492 587708) (-356 "FS.spad" 576027 576039 581536 581541) (-355 "FRUTIL.spad" 574981 574991 576017 576022) (-354 "FRNAALG.spad" 570258 570268 574923 574976) (-353 "FRNAALG.spad" 565547 565559 570214 570219) (-352 "FRNAAF2.spad" 564995 565013 565537 565542) (-351 "FRMOD.spad" 564403 564433 564924 564929) (-350 "FRIDEAL2.spad" 564007 564039 564393 564398) (-349 "FRIDEAL.spad" 563232 563253 563987 564002) (-348 "FRETRCT.spad" 562751 562761 563222 563227) (-347 "FRETRCT.spad" 562129 562141 562602 562607) (-346 "FRAMALG.spad" 560509 560522 562085 562124) (-345 "FRAMALG.spad" 558921 558936 560499 560504) (-344 "FRAC2.spad" 558526 558538 558911 558916) (-343 "FRAC.spad" 556321 556331 556708 556881) (-342 "FR2.spad" 555657 555669 556311 556316) (-341 "FR.spad" 549285 549295 554558 554627) (-340 "FPS.spad" 546124 546132 549175 549280) (-339 "FPS.spad" 542991 543001 546044 546049) (-338 "FPC.spad" 542037 542045 542893 542986) (-337 "FPC.spad" 541169 541179 542027 542032) (-336 "FPATMAB.spad" 540931 540941 541159 541164) (-335 "FPARFRAC.spad" 539773 539790 540921 540926) (-334 "FORDER.spad" 539464 539488 539763 539768) (-333 "FNLA.spad" 538888 538910 539432 539459) (-332 "FNCAT.spad" 537483 537491 538878 538883) (-331 "FNAME.spad" 537375 537383 537473 537478) (-330 "FMONOID.spad" 537056 537066 537331 537336) (-329 "FMONCAT.spad" 534225 534235 537046 537051) (-328 "FMCAT.spad" 531901 531919 534193 534220) (-327 "FM1.spad" 531266 531278 531835 531862) (-326 "FM.spad" 530881 530893 531120 531147) (-325 "FLOATRP.spad" 528624 528638 530871 530876) (-324 "FLOATCP.spad" 526063 526077 528614 528619) (-323 "FLOAT.spad" 519377 519385 525929 526058) (-322 "FLINEXP.spad" 519099 519109 519367 519372) (-321 "FLINEXP.spad" 518762 518774 519032 519037) (-320 "FLASORT.spad" 518088 518100 518752 518757) (-319 "FLALG.spad" 515758 515777 518014 518083) (-318 "FLAGG2.spad" 514475 514491 515748 515753) (-317 "FLAGG.spad" 511541 511551 514455 514470) (-316 "FLAGG.spad" 508508 508520 511424 511429) (-315 "FINRALG.spad" 506593 506606 508464 508503) (-314 "FINRALG.spad" 504604 504619 506477 506482) (-313 "FINITE.spad" 503756 503764 504594 504599) (-312 "FINAALG.spad" 492941 492951 503698 503751) (-311 "FINAALG.spad" 482138 482150 492897 492902) (-310 "FILECAT.spad" 480672 480689 482128 482133) (-309 "FILE.spad" 480255 480265 480662 480667) (-308 "FIELD.spad" 479661 479669 480157 480250) (-307 "FIELD.spad" 479153 479163 479651 479656) (-306 "FGROUP.spad" 477816 477826 479133 479148) (-305 "FGLMICPK.spad" 476611 476626 477806 477811) (-304 "FFX.spad" 475997 476012 476330 476423) (-303 "FFSLPE.spad" 475508 475529 475987 475992) (-302 "FFPOLY2.spad" 474568 474585 475498 475503) (-301 "FFPOLY.spad" 465910 465921 474558 474563) (-300 "FFP.spad" 465318 465338 465629 465722) (-299 "FFNBX.spad" 463841 463861 465037 465130) (-298 "FFNBP.spad" 462365 462382 463560 463653) (-297 "FFNB.spad" 460833 460854 462049 462142) (-296 "FFINTBAS.spad" 458347 458366 460823 460828) (-295 "FFIELDC.spad" 455932 455940 458249 458342) (-294 "FFIELDC.spad" 453603 453613 455922 455927) (-293 "FFHOM.spad" 452375 452392 453593 453598) (-292 "FFF.spad" 449818 449829 452365 452370) (-291 "FFCGX.spad" 448676 448696 449537 449630) (-290 "FFCGP.spad" 447576 447596 448395 448488) (-289 "FFCG.spad" 446371 446392 447260 447353) (-288 "FFCAT2.spad" 446118 446158 446361 446366) (-287 "FFCAT.spad" 439283 439305 445957 446113) (-286 "FFCAT.spad" 432527 432551 439203 439208) (-285 "FF.spad" 431978 431994 432211 432304) (-284 "FEVALAB.spad" 431686 431696 431968 431973) (-283 "FEVALAB.spad" 431170 431182 431454 431459) (-282 "FDIVCAT.spad" 429266 429290 431160 431165) (-281 "FDIVCAT.spad" 427360 427386 429256 429261) (-280 "FDIV2.spad" 427016 427056 427350 427355) (-279 "FDIV.spad" 426474 426498 427006 427011) (-278 "FCTRDATA.spad" 425482 425490 426464 426469) (-277 "FCOMP.spad" 424861 424871 425472 425477) (-276 "FAXF.spad" 417896 417910 424763 424856) (-275 "FAXF.spad" 410983 410999 417852 417857) (-274 "FARRAY.spad" 408973 408983 410006 410033) (-273 "FAMR.spad" 407117 407129 408871 408968) (-272 "FAMR.spad" 405245 405259 407001 407006) (-271 "FAMONOID.spad" 404929 404939 405199 405204) (-270 "FAMONC.spad" 403249 403261 404919 404924) (-269 "FAGROUP.spad" 402889 402899 403145 403172) (-268 "FACUTIL.spad" 401101 401118 402879 402884) (-267 "FACTFUNC.spad" 400303 400313 401091 401096) (-266 "EXPUPXS.spad" 397067 397090 398366 398515) (-265 "EXPRTUBE.spad" 394355 394363 397057 397062) (-264 "EXPRODE.spad" 391523 391539 394345 394350) (-263 "EXPR2UPS.spad" 387645 387658 391513 391518) (-262 "EXPR2.spad" 387350 387362 387635 387640) (-261 "EXPR.spad" 382515 382525 383229 383516) (-260 "EXPEXPAN.spad" 379268 379293 379900 379993) (-259 "EXITAST.spad" 379004 379012 379258 379263) (-258 "EXIT.spad" 378675 378683 378994 378999) (-257 "EVALCYC.spad" 378135 378149 378665 378670) (-256 "EVALAB.spad" 377715 377725 378125 378130) (-255 "EVALAB.spad" 377293 377305 377705 377710) (-254 "EUCDOM.spad" 374883 374891 377219 377288) (-253 "EUCDOM.spad" 372535 372545 374873 374878) (-252 "ES2.spad" 372048 372064 372525 372530) (-251 "ES1.spad" 371618 371634 372038 372043) (-250 "ES.spad" 364489 364497 371608 371613) (-249 "ES.spad" 357265 357275 364386 364391) (-248 "ERROR.spad" 354592 354600 357255 357260) (-247 "EQTBL.spad" 352579 352601 352788 352815) (-246 "EQ2.spad" 352297 352309 352569 352574) (-245 "EQ.spad" 347123 347133 349918 350024) (-244 "EP.spad" 343449 343459 347113 347118) (-243 "ENV.spad" 342127 342135 343439 343444) (-242 "ENTIRER.spad" 341795 341803 342071 342122) (-241 "EMR.spad" 341083 341124 341721 341790) (-240 "ELTAGG.spad" 339337 339356 341073 341078) (-239 "ELTAGG.spad" 337555 337576 339293 339298) (-238 "ELTAB.spad" 337030 337043 337545 337550) (-237 "ELFUTS.spad" 336465 336484 337020 337025) (-236 "ELEMFUN.spad" 336154 336162 336455 336460) (-235 "ELEMFUN.spad" 335841 335851 336144 336149) (-234 "ELAGG.spad" 333812 333822 335821 335836) (-233 "ELAGG.spad" 331720 331732 333731 333736) (-232 "ELABOR.spad" 331066 331074 331710 331715) (-231 "ELABEXPR.spad" 329998 330006 331056 331061) (-230 "EFUPXS.spad" 326774 326804 329954 329959) (-229 "EFULS.spad" 323610 323633 326730 326735) (-228 "EFSTRUC.spad" 321625 321641 323600 323605) (-227 "EF.spad" 316401 316417 321615 321620) (-226 "EAB.spad" 314701 314709 316391 316396) (-225 "DVARCAT.spad" 311707 311717 314691 314696) (-224 "DVARCAT.spad" 308711 308723 311697 311702) (-223 "DSMP.spad" 306028 306042 306333 306460) (-222 "DSEXT.spad" 305330 305340 306018 306023) (-221 "DSEXT.spad" 304536 304548 305226 305231) (-220 "DROPT1.spad" 304201 304211 304526 304531) (-219 "DROPT0.spad" 299066 299074 304191 304196) (-218 "DROPT.spad" 293025 293033 299056 299061) (-217 "DRAWPT.spad" 291198 291206 293015 293020) (-216 "DRAWHACK.spad" 290506 290516 291188 291193) (-215 "DRAWCX.spad" 287984 287992 290496 290501) (-214 "DRAWCURV.spad" 287531 287546 287974 287979) (-213 "DRAWCFUN.spad" 277063 277071 287521 287526) (-212 "DRAW.spad" 269939 269952 277053 277058) (-211 "DQAGG.spad" 268117 268127 269907 269934) (-210 "DPOLCAT.spad" 263474 263490 267985 268112) (-209 "DPOLCAT.spad" 258917 258935 263430 263435) (-208 "DPMO.spad" 250548 250564 250686 250892) (-207 "DPMM.spad" 242192 242210 242317 242523) (-206 "DOMTMPLT.spad" 241963 241971 242182 242187) (-205 "DOMCTOR.spad" 241718 241726 241953 241958) (-204 "DOMAIN.spad" 240829 240837 241708 241713) (-203 "DMP.spad" 238038 238053 238608 238735) (-202 "DMEXT.spad" 237905 237915 238006 238033) (-201 "DLP.spad" 237265 237275 237895 237900) (-200 "DLIST.spad" 235684 235694 236288 236315) (-199 "DLAGG.spad" 234101 234111 235674 235679) (-198 "DIVRING.spad" 233643 233651 234045 234096) (-197 "DIVRING.spad" 233229 233239 233633 233638) (-196 "DISPLAY.spad" 231419 231427 233219 233224) (-195 "DIRPROD2.spad" 230237 230255 231409 231414) (-194 "DIRPROD.spad" 217601 217617 218241 218338) (-193 "DIRPCAT.spad" 216796 216812 217499 217596) (-192 "DIRPCAT.spad" 215617 215635 216322 216327) (-191 "DIOSP.spad" 214442 214450 215607 215612) (-190 "DIOPS.spad" 213438 213448 214422 214437) (-189 "DIOPS.spad" 212408 212420 213394 213399) (-188 "DIFRING.spad" 212246 212254 212388 212403) (-187 "DIFFSPC.spad" 211825 211833 212236 212241) (-186 "DIFFSPC.spad" 211402 211412 211815 211820) (-185 "DIFFMOD.spad" 210891 210901 211370 211397) (-184 "DIFFDOM.spad" 210056 210067 210881 210886) (-183 "DIFFDOM.spad" 209219 209232 210046 210051) (-182 "DIFEXT.spad" 209038 209048 209199 209214) (-181 "DIAGG.spad" 208668 208678 209018 209033) (-180 "DIAGG.spad" 208306 208318 208658 208663) (-179 "DHMATRIX.spad" 206497 206507 207642 207669) (-178 "DFSFUN.spad" 200137 200145 206487 206492) (-177 "DFLOAT.spad" 196744 196752 200027 200132) (-176 "DFINTTLS.spad" 194975 194991 196734 196739) (-175 "DERHAM.spad" 192889 192921 194955 194970) (-174 "DEQUEUE.spad" 192092 192102 192375 192402) (-173 "DEGRED.spad" 191709 191723 192082 192087) (-172 "DEFINTRF.spad" 189291 189301 191699 191704) (-171 "DEFINTEF.spad" 187829 187845 189281 189286) (-170 "DEFAST.spad" 187213 187221 187819 187824) (-169 "DECIMAL.spad" 185186 185194 185547 185640) (-168 "DDFACT.spad" 183007 183024 185176 185181) (-167 "DBLRESP.spad" 182607 182631 182997 183002) (-166 "DBASIS.spad" 182233 182248 182597 182602) (-165 "DBASE.spad" 180897 180907 182223 182228) (-164 "DATAARY.spad" 180383 180396 180887 180892) (-163 "CYCLOTOM.spad" 179889 179897 180373 180378) (-162 "CYCLES.spad" 176681 176689 179879 179884) (-161 "CVMP.spad" 176098 176108 176671 176676) (-160 "CTRIGMNP.spad" 174598 174614 176088 176093) (-159 "CTORKIND.spad" 174201 174209 174588 174593) (-158 "CTORCAT.spad" 173442 173450 174191 174196) (-157 "CTORCAT.spad" 172681 172691 173432 173437) (-156 "CTORCALL.spad" 172270 172280 172671 172676) (-155 "CTOR.spad" 171961 171969 172260 172265) (-154 "CSTTOOLS.spad" 171206 171219 171951 171956) (-153 "CRFP.spad" 164978 164991 171196 171201) (-152 "CRCEAST.spad" 164698 164706 164968 164973) (-151 "CRAPACK.spad" 163765 163775 164688 164693) (-150 "CPMATCH.spad" 163266 163281 163687 163692) (-149 "CPIMA.spad" 162971 162990 163256 163261) (-148 "COORDSYS.spad" 157980 157990 162961 162966) (-147 "CONTOUR.spad" 157407 157415 157970 157975) (-146 "CONTFRAC.spad" 153157 153167 157309 157402) (-145 "CONDUIT.spad" 152915 152923 153147 153152) (-144 "COMRING.spad" 152589 152597 152853 152910) (-143 "COMPPROP.spad" 152107 152115 152579 152584) (-142 "COMPLPAT.spad" 151874 151889 152097 152102) (-141 "COMPLEX2.spad" 151589 151601 151864 151869) (-140 "COMPLEX.spad" 146991 147001 147235 147493) (-139 "COMPILER.spad" 146540 146548 146981 146986) (-138 "COMPFACT.spad" 146142 146156 146530 146535) (-137 "COMPCAT.spad" 144217 144227 145879 146137) (-136 "COMPCAT.spad" 142017 142029 143681 143686) (-135 "COMMUPC.spad" 141765 141783 142007 142012) (-134 "COMMONOP.spad" 141298 141306 141755 141760) (-133 "COMMAAST.spad" 141061 141069 141288 141293) (-132 "COMM.spad" 140872 140880 141051 141056) (-131 "COMBOPC.spad" 139795 139803 140862 140867) (-130 "COMBINAT.spad" 138562 138572 139785 139790) (-129 "COMBF.spad" 135984 136000 138552 138557) (-128 "COLOR.spad" 134821 134829 135974 135979) (-127 "COLONAST.spad" 134487 134495 134811 134816) (-126 "CMPLXRT.spad" 134198 134215 134477 134482) (-125 "CLLCTAST.spad" 133860 133868 134188 134193) (-124 "CLIP.spad" 129968 129976 133850 133855) (-123 "CLIF.spad" 128623 128639 129924 129963) (-122 "CLAGG.spad" 125160 125170 128613 128618) (-121 "CLAGG.spad" 121565 121577 125020 125025) (-120 "CINTSLPE.spad" 120920 120933 121555 121560) (-119 "CHVAR.spad" 119058 119080 120910 120915) (-118 "CHARZ.spad" 118973 118981 119038 119053) (-117 "CHARPOL.spad" 118499 118509 118963 118968) (-116 "CHARNZ.spad" 118261 118269 118479 118494) (-115 "CHAR.spad" 115629 115637 118251 118256) (-114 "CFCAT.spad" 114957 114965 115619 115624) (-113 "CDEN.spad" 114177 114191 114947 114952) (-112 "CCLASS.spad" 112277 112285 113539 113578) (-111 "CATEGORY.spad" 111351 111359 112267 112272) (-110 "CATCTOR.spad" 111242 111250 111341 111346) (-109 "CATAST.spad" 110868 110876 111232 111237) (-108 "CASEAST.spad" 110582 110590 110858 110863) (-107 "CARTEN2.spad" 109972 109999 110572 110577) (-106 "CARTEN.spad" 105724 105748 109962 109967) (-105 "CARD.spad" 103019 103027 105698 105719) (-104 "CAPSLAST.spad" 102801 102809 103009 103014) (-103 "CACHSET.spad" 102425 102433 102791 102796) (-102 "CABMON.spad" 101980 101988 102415 102420) (-101 "BYTEORD.spad" 101655 101663 101970 101975) (-100 "BYTEBUF.spad" 99393 99401 100679 100706) (-99 "BYTE.spad" 98869 98876 99383 99388) (-98 "BTREE.spad" 97822 97831 98355 98382) (-97 "BTOURN.spad" 96707 96716 97308 97335) (-96 "BTCAT.spad" 96100 96109 96675 96702) (-95 "BTCAT.spad" 95513 95524 96090 96095) (-94 "BTAGG.spad" 94980 94987 95481 95508) (-93 "BTAGG.spad" 94467 94476 94970 94975) (-92 "BSTREE.spad" 93088 93097 93953 93980) (-91 "BRILL.spad" 91294 91304 93078 93083) (-90 "BRAGG.spad" 90251 90260 91284 91289) (-89 "BRAGG.spad" 89172 89183 90207 90212) (-88 "BPADICRT.spad" 87040 87051 87286 87379) (-87 "BPADIC.spad" 86713 86724 86966 87035) (-86 "BOUNDZRO.spad" 86370 86386 86703 86708) (-85 "BOP1.spad" 83829 83838 86360 86365) (-84 "BOP.spad" 78972 78979 83819 83824) (-83 "BOOLEAN.spad" 78521 78528 78962 78967) (-82 "BOOLE.spad" 78172 78179 78511 78516) (-81 "BOOLE.spad" 77821 77830 78162 78167) (-80 "BMODULE.spad" 77534 77545 77789 77816) (-79 "BITS.spad" 76918 76925 77132 77159) (-78 "BINDING.spad" 76340 76347 76908 76913) (-77 "BINARY.spad" 74319 74326 74674 74767) (-76 "BGAGG.spad" 73525 73534 74299 74314) (-75 "BGAGG.spad" 72739 72750 73515 73520) (-74 "BEZOUT.spad" 71880 71906 72689 72694) (-73 "BBTREE.spad" 68637 68646 71366 71393) (-72 "BASTYPE.spad" 68137 68144 68627 68632) (-71 "BASTYPE.spad" 67635 67644 68127 68132) (-70 "BALFACT.spad" 67095 67107 67625 67630) (-69 "AUTOMOR.spad" 66546 66555 67075 67090) (-68 "ATTREG.spad" 63269 63276 66298 66541) (-67 "ATTRAST.spad" 62986 62993 63259 63264) (-66 "ATRIG.spad" 62456 62463 62976 62981) (-65 "ATRIG.spad" 61924 61933 62446 62451) (-64 "ASTCAT.spad" 61828 61835 61914 61919) (-63 "ASTCAT.spad" 61730 61739 61818 61823) (-62 "ASTACK.spad" 60948 60957 61216 61243) (-61 "ASSOCEQ.spad" 59782 59793 60904 60909) (-60 "ARRAY2.spad" 59029 59038 59268 59295) (-59 "ARRAY12.spad" 57742 57753 59019 59024) (-58 "ARRAY1.spad" 56419 56428 56765 56792) (-57 "ARR2CAT.spad" 52201 52222 56387 56414) (-56 "ARR2CAT.spad" 48003 48026 52191 52196) (-55 "ARITY.spad" 47375 47382 47993 47998) (-54 "APPRULE.spad" 46659 46681 47365 47370) (-53 "APPLYORE.spad" 46278 46291 46649 46654) (-52 "ANY1.spad" 45349 45358 46268 46273) (-51 "ANY.spad" 44200 44207 45339 45344) (-50 "ANTISYM.spad" 42645 42661 44180 44195) (-49 "ANON.spad" 42354 42361 42635 42640) (-48 "AN.spad" 40806 40813 42169 42262) (-47 "AMR.spad" 38991 39002 40704 40801) (-46 "AMR.spad" 37007 37020 38722 38727) (-45 "ALIST.spad" 33824 33845 34174 34201) (-44 "ALGSC.spad" 32959 32985 33696 33749) (-43 "ALGPKG.spad" 28742 28753 32915 32920) (-42 "ALGMFACT.spad" 27935 27949 28732 28737) (-41 "ALGMANIP.spad" 25420 25435 27763 27768) (-40 "ALGFF.spad" 23046 23073 23263 23419) (-39 "ALGFACT.spad" 22165 22175 23036 23041) (-38 "ALGEBRA.spad" 21998 22007 22121 22160) (-37 "ALGEBRA.spad" 21863 21874 21988 21993) (-36 "ALAGG.spad" 21375 21396 21831 21858) (-35 "AHYP.spad" 20756 20763 21365 21370) (-34 "AGG.spad" 19465 19472 20746 20751) (-33 "AGG.spad" 18138 18147 19421 19426) (-32 "AF.spad" 16567 16582 18071 18076) (-31 "ADDAST.spad" 16253 16260 16557 16562) (-30 "ACPLOT.spad" 14844 14851 16243 16248) (-29 "ACFS.spad" 12701 12710 14746 14839) (-28 "ACFS.spad" 10644 10655 12691 12696) (-27 "ACF.spad" 7398 7405 10546 10639) (-26 "ACF.spad" 4238 4247 7388 7393) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 79c7b45e..a0a0e03c 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,288 +1,286 @@ -(205312 . 3525483396) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-361 |#2|) |#3|) . T)) -((((-361 (-499))) |has| (-361 |#2|) (-978 (-361 (-499)))) (((-499)) |has| (-361 |#2|) (-978 (-499))) (((-361 |#2|)) . T)) -((((-361 |#2|)) . T)) -((((-499)) |has| (-361 |#2|) (-596 (-499))) (((-361 |#2|)) . T)) -((((-361 |#2|)) . T)) -((((-361 |#2|) |#3|) . T)) -(|has| (-361 |#2|) (-120)) -((((-361 |#2|) |#3|) . T)) -(|has| (-361 |#2|) (-118)) -((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) -(|has| (-361 |#2|) (-190)) -((($) -3677 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-189)))) -(-3677 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-189))) -((((-361 |#2|)) . T)) -((($ (-1117)) -3677 (|has| (-361 |#2|) (-836 (-1117))) (|has| (-361 |#2|) (-838 (-1117))))) -((((-1117)) -3677 (|has| (-361 |#2|) (-836 (-1117))) (|has| (-361 |#2|) (-838 (-1117))))) -((((-1117)) |has| (-361 |#2|) (-836 (-1117)))) -((((-361 |#2|)) . T)) +(198677 . 3525500987) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-343 |#2|) |#3|) . T)) +((((-343 (-478))) |has| (-343 |#2|) (-943 (-343 (-478)))) (((-478)) |has| (-343 |#2|) (-943 (-478))) (((-343 |#2|)) . T)) +((((-343 |#2|)) . T)) +((((-478)) |has| (-343 |#2|) (-575 (-478))) (((-343 |#2|)) . T)) +((((-343 |#2|)) . T)) +((((-343 |#2|) |#3|) . T)) +(|has| (-343 |#2|) (-118)) +((((-343 |#2|) |#3|) . T)) +(|has| (-343 |#2|) (-116)) +((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) +(|has| (-343 |#2|) (-188)) +((($) OR (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-187)))) +(OR (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-187))) +((((-343 |#2|)) . T)) +((($ (-1079)) OR (|has| (-343 |#2|) (-802 (-1079))) (|has| (-343 |#2|) (-804 (-1079))))) +((((-1079)) OR (|has| (-343 |#2|) (-802 (-1079))) (|has| (-343 |#2|) (-804 (-1079))))) +((((-1079)) |has| (-343 |#2|) (-802 (-1079)))) +((((-343 |#2|)) . T)) (((|#3|) . T)) -((((-361 |#2|) (-361 |#2|)) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) -((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-797)) . T)) -((((-361 |#2|)) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -((((-499)) |has| (-361 |#2|) (-596 (-499))) (((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) +((((-343 |#2|) (-343 |#2|)) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) +((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-765)) . T)) +((((-343 |#2|)) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +((((-478)) |has| (-343 |#2|) (-575 (-478))) (((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) (((|#1| |#2| |#3|) . T)) -((((-499) |#1|) . T)) +((((-478) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1082 |#2| |#1|)) . T) ((|#1|) . T)) -((((-797)) . T)) -((((-1082 |#2| |#1|)) . T) ((|#1|) . T) (((-499)) . T)) +((((-1045 |#2| |#1|)) . T) ((|#1|) . T)) +((((-765)) . T)) +((((-1045 |#2| |#1|)) . T) ((|#1|) . T) (((-478)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-797)) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-765)) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) -((((-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) (((-1174 (-499)) $) . T) ((|#1| |#2|) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) -((((-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) +((((-478) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) +((((-478) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) (((-1135 (-478)) $) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005)))) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005)))) +((((-478) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) (((|#1| |#2|) . T)) ((($) . T)) -((((-142 (-333))) . T) (((-179)) . T) (((-333)) . T)) -((((-361 (-499))) . T) (((-499)) . T)) -((($) . T) (((-361 (-499))) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) . T)) -((((-499)) . T) (($) . T) (((-361 (-499))) . T)) -((($) . T) (((-361 (-499))) . T)) -((($) . T) (((-361 (-499))) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-566 $) $) . T)) -((((-361 (-499))) . T) (((-499)) . T) (((-566 $)) . T)) -((((-1065 (-499) (-566 $))) . T) (($) . T) (((-499)) . T) (((-361 (-499))) . T) (((-566 $)) . T)) -((((-797)) . T)) -((((-797)) . T)) -(((|#1|) . T)) -((((-797)) . T)) -(((|#1|) . T) (((-499)) . T) (($) . T)) +((((-140 (-323))) . T) (((-177)) . T) (((-323)) . T)) +((((-343 (-478))) . T) (((-478)) . T)) +((($) . T) (((-343 (-478))) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) . T)) +((((-478)) . T) (($) . T) (((-343 (-478))) . T)) +((($) . T) (((-343 (-478))) . T)) +((($) . T) (((-343 (-478))) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-545 $) $) . T)) +((((-343 (-478))) . T) (((-478)) . T) (((-545 $)) . T)) +((((-1028 (-478) (-545 $))) . T) (($) . T) (((-478)) . T) (((-343 (-478))) . T) (((-545 $)) . T)) +((((-765)) . T)) +((((-765)) . T)) +(((|#1|) . T)) +((((-765)) . T)) +(((|#1|) . T) (((-478)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-499)) . T)) +(((|#1|) . T) (((-478)) . T)) (((|#1|) . T)) -((((-797)) . T)) -((((-714)) . T)) -((((-714)) . T)) -((((-797)) . T)) +((((-765)) . T)) +((((-687)) . T)) +((((-687)) . T)) +((((-765)) . T)) (((|#1|) . T)) -(|has| |#1| (-781)) -(|has| |#1| (-781)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) (((|#1|) . T)) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) +(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1005))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-749)) (|has| |#1| (-1005))) (((|#1|) . T)) -((((-488)) |has| |#1| (-569 (-488)))) -((((-499) |#1|) . T)) -((((-1174 (-499)) $) . T) (((-499) |#1|) . T)) -((((-499) |#1|) . T)) +((((-467)) |has| |#1| (-548 (-467)))) +((((-478) |#1|) . T)) +((((-1135 (-478)) $) . T) (((-478) |#1|) . T)) +((((-478) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1041)) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) +(|has| |#1| (-1005)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) (((|#1| (-58 |#1|) (-58 |#1|)) . T)) (((|#1|) . T)) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(|has| |#1| (-1041)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(|has| |#1| (-1005)) (((|#1|) . T)) (((|#1|) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-797)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) (((|#1| |#1|) . T)) -((((-797)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1041)) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-797)) . T)) -((((-944 2)) . T) (((-361 (-499))) . T) (((-797)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((($) . T)) -((((-499)) . T) (($) . T) (((-361 (-499))) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) . T)) -((((-499)) . T) (($) . T) (((-361 (-499))) . T)) -((((-499)) . T) (($) . T) (((-361 (-499))) . T)) -((((-499)) . T) (((-361 (-499))) . T) (($) . T)) -((((-499)) . T) (((-361 (-499))) . T) (($) . T)) -((((-499) (-499)) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-488)) . T) (((-825 (-499))) . T) (((-333)) . T) (((-179)) . T)) -((((-361 (-499))) . T) (((-499)) . T)) -((((-499)) . T) (($) . T) (((-361 (-499))) . T)) -((((-499)) . T)) -((((-797)) . T)) -((((-85)) . T)) -((((-85)) . T)) -((((-499) (-85)) . T)) -((((-499) (-85)) . T)) -((((-499) (-85)) . T) (((-1174 (-499)) $) . T)) -((((-488)) . T)) -((((-85)) . T)) -((((-797)) . T)) -((((-85)) . T)) -((((-85)) . T)) -((((-488)) . T)) -((((-797)) . T)) -((((-1117)) . T)) -((((-797)) . T)) -((($) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T)) +((((-765)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1005)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-910 2)) . T) (((-343 (-478))) . T) (((-765)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((($) . T)) +((((-478)) . T) (($) . T) (((-343 (-478))) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) . T)) +((((-478)) . T) (($) . T) (((-343 (-478))) . T)) +((((-478)) . T) (($) . T) (((-343 (-478))) . T)) +((((-478)) . T) (((-343 (-478))) . T) (($) . T)) +((((-478)) . T) (((-343 (-478))) . T) (($) . T)) +((((-478) (-478)) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-467)) . T) (((-793 (-478))) . T) (((-323)) . T) (((-177)) . T)) +((((-343 (-478))) . T) (((-478)) . T)) +((((-478)) . T) (($) . T) (((-343 (-478))) . T)) +((((-478)) . T)) +((((-765)) . T)) +((((-83)) . T)) +((((-83)) . T)) +((((-478) (-83)) . T)) +((((-478) (-83)) . T)) +((((-478) (-83)) . T) (((-1135 (-478)) $) . T)) +((((-467)) . T)) +((((-83)) . T)) +((((-765)) . T)) +((((-83)) . T)) +((((-83)) . T)) +((((-467)) . T)) +((((-765)) . T)) +((((-1079)) . T)) +((((-765)) . T)) +((($) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-499)) . T) (($) . T)) -(((|#1|) . T)) -((((-797)) . T)) -((((-89 |#1|)) . T)) -((((-89 |#1|)) . T)) -((((-89 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) -((($) . T) (((-499)) . T) (((-89 |#1|)) . T) (((-361 (-499))) . T)) -((((-89 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) -((((-89 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) -((((-89 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-89 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-89 |#1|) (-89 |#1|)) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) -((((-89 |#1|)) . T)) -((((-1117) (-89 |#1|)) |has| (-89 |#1|) (-468 (-1117) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-263 (-89 |#1|)))) -((((-89 |#1|)) |has| (-89 |#1|) (-263 (-89 |#1|)))) -((((-89 |#1|) $) |has| (-89 |#1|) (-240 (-89 |#1|) (-89 |#1|)))) -((((-89 |#1|)) . T)) -((($) . T) (((-89 |#1|)) . T) (((-361 (-499))) . T)) -((((-89 |#1|)) . T)) -((((-89 |#1|)) . T)) -((((-89 |#1|)) . T)) -((((-499)) . T) (((-89 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) -((((-89 |#1|)) . T)) -((((-89 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1041)) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1041)) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1041)) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-797)) . T)) -((((-101)) . T)) -((((-101)) . T)) -((((-1099)) . T) (((-896 (-101))) . T) (((-797)) . T)) -((((-101)) . T)) -((((-499) (-101)) . T)) -((((-1174 (-499)) $) . T) (((-499) (-101)) . T)) -((((-499) (-101)) . T)) -((((-101)) . T)) -((((-101)) . T)) -((((-797)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-714)) . T)) -((((-714)) . T)) -((((-797)) . T)) -((((-499) |#3|) . T)) -((((-499) (-714)) . T) ((|#3| (-714)) . T)) -((((-797)) . T)) +((((-478)) . T) (($) . T)) +(((|#1|) . T)) +((((-765)) . T)) +((((-87 |#1|)) . T)) +((((-87 |#1|)) . T)) +((((-87 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) +((($) . T) (((-478)) . T) (((-87 |#1|)) . T) (((-343 (-478))) . T)) +((((-87 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) +((((-87 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) +((((-87 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-87 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-87 |#1|) (-87 |#1|)) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) +((((-87 |#1|)) . T)) +((((-1079) (-87 |#1|)) |has| (-87 |#1|) (-447 (-1079) (-87 |#1|))) (((-87 |#1|) (-87 |#1|)) |has| (-87 |#1|) (-256 (-87 |#1|)))) +((((-87 |#1|)) |has| (-87 |#1|) (-256 (-87 |#1|)))) +((((-87 |#1|) $) |has| (-87 |#1|) (-238 (-87 |#1|) (-87 |#1|)))) +((((-87 |#1|)) . T)) +((($) . T) (((-87 |#1|)) . T) (((-343 (-478))) . T)) +((((-87 |#1|)) . T)) +((((-87 |#1|)) . T)) +((((-87 |#1|)) . T)) +((((-478)) . T) (((-87 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) +((((-87 |#1|)) . T)) +((((-87 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1005)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1005)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1005)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-765)) . T)) +((((-99)) . T)) +((((-99)) . T)) +((((-1062)) . T) (((-862 (-99))) . T) (((-765)) . T)) +((((-99)) . T)) +((((-478) (-99)) . T)) +((((-1135 (-478)) $) . T) (((-478) (-99)) . T)) +((((-478) (-99)) . T)) +((((-99)) . T)) +((((-99)) . T)) +((((-765)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-687)) . T)) +((((-687)) . T)) +((((-765)) . T)) +((((-478) |#3|) . T)) +((((-478) (-687)) . T) ((|#3| (-687)) . T)) +((((-765)) . T)) (((|#3|) . T)) -((((-599 $)) . T) (((-599 |#3|)) . T) (((-1082 |#2| |#3|)) . T) (((-196 |#2| |#3|)) . T) ((|#3|) . T)) -(((|#3| (-714)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-460)) . T)) -((((-157)) . T) (((-797)) . T)) -((((-797)) . T)) -((((-117)) . T)) -((((-117)) . T)) -((((-117)) . T)) -((((-117)) . T)) -((((-117)) . T)) -((((-117)) . T)) -((((-117)) . T)) -((((-599 (-117))) . T) (((-1099)) . T)) -((((-797)) . T)) -((((-797)) . T)) +((((-578 $)) . T) (((-578 |#3|)) . T) (((-1045 |#2| |#3|)) . T) (((-194 |#2| |#3|)) . T) ((|#3|) . T)) +(((|#3| (-687)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-439)) . T)) +((((-155)) . T) (((-765)) . T)) +((((-765)) . T)) +((((-115)) . T)) +((((-115)) . T)) +((((-115)) . T)) +((((-115)) . T)) +((((-115)) . T)) +((((-115)) . T)) +((((-115)) . T)) +((((-578 (-115))) . T) (((-1062)) . T)) +((((-765)) . T)) +((((-765)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -290,1356 +288,1336 @@ (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) -(((|#2|) . T) (((-499)) . T)) +(((|#2|) . T) (((-478)) . T)) (((|#2|) . T) (($) . T)) -((((-797)) . T)) -(((|#2|) . T) (($) . T) (((-499)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -(-3677 (|has| |#1| (-118)) (|has| |#1| (-305))) -((((-797)) . T)) -(|has| |#1| (-120)) -(((|#1|) . T)) -((((-1117)) |has| |#1| (-836 (-1117)))) -((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117))))) -((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117))))) -(((|#1|) . T)) -(-3677 (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-305))) -((($) -3677 (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-305)))) -(-3677 (|has| |#1| (-190)) (|has| |#1| (-305))) -(-3677 (|has| |#1| (-261)) (|has| |#1| (-318)) (|has| |#1| (-305))) -(-3677 (|has| |#1| (-261)) (|has| |#1| (-318)) (|has| |#1| (-305))) -(-3677 (|has| |#1| (-261)) (|has| |#1| (-318)) (|has| |#1| (-305)) (|has| |#1| (-510))) -(-3677 (|has| |#1| (-261)) (|has| |#1| (-318)) (|has| |#1| (-305)) (|has| |#1| (-510))) -(-3677 (|has| |#1| (-261)) (|has| |#1| (-318)) (|has| |#1| (-305))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) -(-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-318)) (|has| |#1| (-305))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) -(((|#1|) . T)) -((((-1117) |#1|) |has| |#1| (-468 (-1117) |#1|)) ((|#1| |#1|) |has| |#1| (-263 |#1|))) -(((|#1|) |has| |#1| (-263 |#1|))) -(((|#1| $) |has| |#1| (-240 |#1| |#1|))) -(((|#1|) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) -((($) . T) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) -(((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) -(((|#1|) . T)) -((((-499)) |has| |#1| (-821 (-499))) (((-333)) |has| |#1| (-821 (-333)))) -(((|#1|) . T)) -((((-499)) . T) (($) -3677 (|has| |#1| (-261)) (|has| |#1| (-318)) (|has| |#1| (-305)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305)) (|has| |#1| (-978 (-361 (-499))))) ((|#1|) . T)) -(((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) -(((|#1| (-1111 |#1|)) . T)) -(((|#1| (-1111 |#1|)) . T)) -((($) -3677 (|has| |#1| (-261)) (|has| |#1| (-318)) (|has| |#1| (-305)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) -((($) -3677 (|has| |#1| (-261)) (|has| |#1| (-318)) (|has| |#1| (-305)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) -((($) . T) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) -((($) . T) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) -((($ $) . T) (((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1| |#1|) . T)) -((($) -3677 (|has| |#1| (-261)) (|has| |#1| (-318)) (|has| |#1| (-305)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) -(((|#1| (-1111 |#1|)) . T)) -(|has| |#1| (-305)) -(|has| |#1| (-305)) -(|has| |#1| (-305)) -(-3677 (|has| |#1| (-323)) (|has| |#1| (-305))) -(((|#1|) . T)) -((((-142 (-179))) |has| |#1| (-960)) (((-142 (-333))) |has| |#1| (-960)) (((-488)) |has| |#1| (-569 (-488))) (((-1111 |#1|)) . T) (((-825 (-499))) |has| |#1| (-569 (-825 (-499)))) (((-825 (-333))) |has| |#1| (-569 (-825 (-333))))) -(-12 (|has| |#1| (-261)) (|has| |#1| (-848))) -(-12 (|has| |#1| (-942)) (|has| |#1| (-1143))) -(|has| |#1| (-1143)) -(|has| |#1| (-1143)) -(|has| |#1| (-1143)) -(|has| |#1| (-1143)) -(|has| |#1| (-1143)) -(|has| |#1| (-1143)) -(((|#1|) . T)) -((((-797)) . T)) -((((-361 (-499))) . T) (($) . T) (((-361 |#1|)) . T) ((|#1|) . T)) -((((-361 (-499))) . T) (($) . T) (((-361 |#1|)) . T) ((|#1|) . T)) -((((-797)) . T)) -((($) . T) (((-361 (-499))) . T) (((-361 |#1|)) . T) ((|#1|) . T)) -((($) . T) (((-361 (-499))) . T) (((-361 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) (((-361 (-499)) (-361 (-499))) . T) (((-361 |#1|) (-361 |#1|)) . T) ((|#1| |#1|) . T)) -((((-361 (-499))) . T) (((-361 |#1|)) . T) ((|#1|) . T) (((-499)) . T) (($) . T)) -((((-361 (-499))) . T) (((-361 |#1|)) . T) ((|#1|) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T) (((-361 |#1|)) . T) ((|#1|) . T) (((-499)) . T)) -((((-361 (-499))) . T) (($) . T) (((-361 |#1|)) . T) ((|#1|) . T)) -((((-797)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-460)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-599 |#1|)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-944 10)) . T) (((-361 (-499))) . T) (((-797)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((($) . T)) -((((-499)) . T) (($) . T) (((-361 (-499))) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) . T)) -((((-499)) . T) (($) . T) (((-361 (-499))) . T)) -((((-499)) . T) (($) . T) (((-361 (-499))) . T)) -((((-499)) . T) (((-361 (-499))) . T) (($) . T)) -((((-499)) . T) (((-361 (-499))) . T) (($) . T)) -((((-499) (-499)) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-488)) . T) (((-825 (-499))) . T) (((-333)) . T) (((-179)) . T)) -((((-361 (-499))) . T) (((-499)) . T)) -((((-499)) . T) (($) . T) (((-361 (-499))) . T)) -((((-499)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1041)) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-268 |#1|)) . T)) -((((-797)) . T)) -((((-268 |#1|)) . T) (((-499)) . T) (($) . T)) -((((-268 |#1|)) . T) (($) . T)) -((((-268 |#1|)) . T) (((-499)) . T)) -((((-268 |#1|)) . T)) -((($) . T)) -((((-499)) . T) (((-361 (-499))) . T)) -((((-333)) . T)) -((($) . T) (((-361 (-499))) . T)) -((($) . T) (((-361 (-499))) . T)) -((($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-488)) . T) (((-179)) . T) (((-333)) . T) (((-825 (-333))) . T)) -((((-797)) . T)) -((((-361 (-499))) . T) (((-499)) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T) (((-499)) . T)) -(((|#1| (-1207 |#1|) (-1207 |#1|)) . T)) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(|has| |#1| (-1041)) -(((|#1|) . T)) -(((|#1| (-1207 |#1|) (-1207 |#1|)) . T)) -(-3677 (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989))) -(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-738)) (|has| |#2| (-989))) -(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-323)) (|has| |#2| (-684)) (|has| |#2| (-738)) (|has| |#2| (-781)) (|has| |#2| (-989)) (|has| |#2| (-1041))) -(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-73)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-323)) (|has| |#2| (-684)) (|has| |#2| (-738)) (|has| |#2| (-781)) (|has| |#2| (-989)) (|has| |#2| (-1041))) -(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-738)) (|has| |#2| (-989))) -(-3677 (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-738)) (|has| |#2| (-989))) -(((|#2| |#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989)))) -(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-684)) (|has| |#2| (-989)))) -(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989)))) -((((-797)) -3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-568 (-797))) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-323)) (|has| |#2| (-684)) (|has| |#2| (-738)) (|has| |#2| (-781)) (|has| |#2| (-989)) (|has| |#2| (-1041))) (((-1207 |#2|)) . T)) -(((|#2|) |has| |#2| (-989))) -((((-1117)) -12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989)))) -((((-1117)) -3677 (-12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989))) (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))))) -((($ (-1117)) -3677 (-12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989))) (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))))) -(((|#2|) |has| |#2| (-989))) -(-3677 (-12 (|has| |#2| (-190)) (|has| |#2| (-989))) (-12 (|has| |#2| (-189)) (|has| |#2| (-989)))) -((($) -3677 (-12 (|has| |#2| (-190)) (|has| |#2| (-989))) (-12 (|has| |#2| (-189)) (|has| |#2| (-989))))) -(|has| |#2| (-989)) -(|has| |#2| (-989)) -(|has| |#2| (-989)) -(|has| |#2| (-989)) -((((-499)) -3677 (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989))) ((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-684)) (|has| |#2| (-989))) (($) |has| |#2| (-989))) -(-12 (|has| |#2| (-190)) (|has| |#2| (-989))) -(|has| |#2| (-323)) -(((|#2|) |has| |#2| (-989))) -(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989))) (($) |has| |#2| (-989)) (((-499)) -12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989)))) -(((|#2|) |has| |#2| (-989)) (((-499)) -12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989)))) -(((|#2|) |has| |#2| (-1041))) -((((-499)) -3677 (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (|has| |#2| (-989))) ((|#2|) |has| |#2| (-1041)) (((-361 (-499))) -12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041)))) -(((|#2|) |has| |#2| (-1041)) (((-499)) -12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (((-361 (-499))) -12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041)))) -((((-499) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) -(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) -(((|#2|) . T)) -((((-499) |#2|) . T)) -((((-499) |#2|) . T)) -(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-684)))) -(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)))) -(|has| |#2| (-738)) -(|has| |#2| (-738)) -(-3677 (|has| |#2| (-738)) (|has| |#2| (-781))) -(-3677 (|has| |#2| (-738)) (|has| |#2| (-781))) -(|has| |#2| (-738)) -(|has| |#2| (-738)) -(((|#2|) |has| |#2| (-318))) +((((-765)) . T)) +(((|#2|) . T) (($) . T) (((-478)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +(OR (|has| |#1| (-116)) (|has| |#1| (-295))) +((((-765)) . T)) +(|has| |#1| (-118)) +(((|#1|) . T)) +((((-1079)) |has| |#1| (-802 (-1079)))) +((((-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079))))) +((($ (-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079))))) +(((|#1|) . T)) +(OR (|has| |#1| (-188)) (|has| |#1| (-187)) (|has| |#1| (-295))) +((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)) (|has| |#1| (-295)))) +(OR (|has| |#1| (-188)) (|has| |#1| (-295))) +(OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295))) +(OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295))) +(OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-489))) +(OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-489))) +(OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295))) +(OR (|has| |#1| (-308)) (|has| |#1| (-295))) +(OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-308)) (|has| |#1| (-295))) +(OR (|has| |#1| (-308)) (|has| |#1| (-295))) +(((|#1|) . T)) +((((-1079) |#1|) |has| |#1| (-447 (-1079) |#1|)) ((|#1| |#1|) |has| |#1| (-256 |#1|))) +(((|#1|) |has| |#1| (-256 |#1|))) +(((|#1| $) |has| |#1| (-238 |#1| |#1|))) +(((|#1|) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($) . T) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) +(((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) +(((|#1|) . T)) +((((-478)) |has| |#1| (-789 (-478))) (((-323)) |has| |#1| (-789 (-323)))) +(((|#1|) . T)) +((((-478)) . T) (($) OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-943 (-343 (-478))))) ((|#1|) . T)) +(((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) +(((|#1| (-1074 |#1|)) . T)) +(((|#1| (-1074 |#1|)) . T)) +((($) OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($) OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($) . T) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($) . T) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($ $) . T) (((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +(((|#1| (-1074 |#1|)) . T)) +(|has| |#1| (-295)) +(|has| |#1| (-295)) +(|has| |#1| (-295)) +(OR (|has| |#1| (-313)) (|has| |#1| (-295))) +(((|#1|) . T)) +((((-140 (-177))) |has| |#1| (-926)) (((-140 (-323))) |has| |#1| (-926)) (((-467)) |has| |#1| (-548 (-467))) (((-1074 |#1|)) . T) (((-793 (-478))) |has| |#1| (-548 (-793 (-478)))) (((-793 (-323))) |has| |#1| (-548 (-793 (-323))))) +(-12 (|has| |#1| (-254)) (|has| |#1| (-814))) +(-12 (|has| |#1| (-908)) (|has| |#1| (-1104))) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +(((|#1|) . T)) +((((-765)) . T)) +((((-343 (-478))) . T) (($) . T) (((-343 |#1|)) . T) ((|#1|) . T)) +((((-343 (-478))) . T) (($) . T) (((-343 |#1|)) . T) ((|#1|) . T)) +((((-765)) . T)) +((($) . T) (((-343 (-478))) . T) (((-343 |#1|)) . T) ((|#1|) . T)) +((($) . T) (((-343 (-478))) . T) (((-343 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) (((-343 (-478)) (-343 (-478))) . T) (((-343 |#1|) (-343 |#1|)) . T) ((|#1| |#1|) . T)) +((((-343 (-478))) . T) (((-343 |#1|)) . T) ((|#1|) . T) (((-478)) . T) (($) . T)) +((((-343 (-478))) . T) (((-343 |#1|)) . T) ((|#1|) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T) (((-343 |#1|)) . T) ((|#1|) . T) (((-478)) . T)) +((((-343 (-478))) . T) (($) . T) (((-343 |#1|)) . T) ((|#1|) . T)) +((((-765)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-439)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-578 |#1|)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-910 10)) . T) (((-343 (-478))) . T) (((-765)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((($) . T)) +((((-478)) . T) (($) . T) (((-343 (-478))) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) . T)) +((((-478)) . T) (($) . T) (((-343 (-478))) . T)) +((((-478)) . T) (($) . T) (((-343 (-478))) . T)) +((((-478)) . T) (((-343 (-478))) . T) (($) . T)) +((((-478)) . T) (((-343 (-478))) . T) (($) . T)) +((((-478) (-478)) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-467)) . T) (((-793 (-478))) . T) (((-323)) . T) (((-177)) . T)) +((((-343 (-478))) . T) (((-478)) . T)) +((((-478)) . T) (($) . T) (((-343 (-478))) . T)) +((((-478)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1005)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-261 |#1|)) . T)) +((((-765)) . T)) +((((-261 |#1|)) . T) (((-478)) . T) (($) . T)) +((((-261 |#1|)) . T) (($) . T)) +((((-261 |#1|)) . T) (((-478)) . T)) +((((-261 |#1|)) . T)) +((($) . T)) +((((-478)) . T) (((-343 (-478))) . T)) +((((-323)) . T)) +((($) . T) (((-343 (-478))) . T)) +((($) . T) (((-343 (-478))) . T)) +((($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-467)) . T) (((-177)) . T) (((-323)) . T) (((-793 (-323))) . T)) +((((-765)) . T)) +((((-343 (-478))) . T) (((-478)) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(((|#1| (-1168 |#1|) (-1168 |#1|)) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(|has| |#1| (-1005)) +(((|#1|) . T)) +(((|#1| (-1168 |#1|) (-1168 |#1|)) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-710)) (|has| |#2| (-954))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-313)) (|has| |#2| (-658)) (|has| |#2| (-710)) (|has| |#2| (-749)) (|has| |#2| (-954)) (|has| |#2| (-1005))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-313)) (|has| |#2| (-658)) (|has| |#2| (-710)) (|has| |#2| (-749)) (|has| |#2| (-954)) (|has| |#2| (-1005))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-710)) (|has| |#2| (-954))) +(OR (|has| |#2| (-21)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-710)) (|has| |#2| (-954))) +(((|#2| |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954)))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-658)) (|has| |#2| (-954)))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954)))) +((((-765)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-547 (-765))) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-313)) (|has| |#2| (-658)) (|has| |#2| (-710)) (|has| |#2| (-749)) (|has| |#2| (-954)) (|has| |#2| (-1005))) (((-1168 |#2|)) . T)) +(((|#2|) |has| |#2| (-954))) +((((-1079)) -12 (|has| |#2| (-802 (-1079))) (|has| |#2| (-954)))) +((((-1079)) OR (-12 (|has| |#2| (-802 (-1079))) (|has| |#2| (-954))) (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))))) +((($ (-1079)) OR (-12 (|has| |#2| (-802 (-1079))) (|has| |#2| (-954))) (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))))) +(((|#2|) |has| |#2| (-954))) +(OR (-12 (|has| |#2| (-188)) (|has| |#2| (-954))) (-12 (|has| |#2| (-187)) (|has| |#2| (-954)))) +((($) OR (-12 (|has| |#2| (-188)) (|has| |#2| (-954))) (-12 (|has| |#2| (-187)) (|has| |#2| (-954))))) +(|has| |#2| (-954)) +(|has| |#2| (-954)) +(|has| |#2| (-954)) +(|has| |#2| (-954)) +((((-478)) OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954))) ((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-658)) (|has| |#2| (-954))) (($) |has| |#2| (-954))) +(-12 (|has| |#2| (-188)) (|has| |#2| (-954))) +(|has| |#2| (-313)) +(((|#2|) |has| |#2| (-954))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954))) (($) |has| |#2| (-954)) (((-478)) -12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954)))) +(((|#2|) |has| |#2| (-954)) (((-478)) -12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954)))) +(((|#2|) |has| |#2| (-1005))) +((((-478)) OR (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) (|has| |#2| (-954))) ((|#2|) |has| |#2| (-1005)) (((-343 (-478))) -12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005)))) +(((|#2|) |has| |#2| (-1005)) (((-478)) -12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) (((-343 (-478))) -12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005)))) +((((-478) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005)))) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005)))) +(((|#2|) . T)) +((((-478) |#2|) . T)) +((((-478) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-658)))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)))) +(|has| |#2| (-710)) +(|has| |#2| (-710)) +(OR (|has| |#2| (-710)) (|has| |#2| (-749))) +(OR (|has| |#2| (-710)) (|has| |#2| (-749))) +(|has| |#2| (-710)) +(|has| |#2| (-710)) +(((|#2|) |has| |#2| (-308))) (((|#1| |#2|) . T)) -((((-599 |#1|)) . T)) -((((-599 |#1|)) . T)) +((((-578 |#1|)) . T)) +((((-578 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) -((((-599 |#1|)) . T) (((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) +(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1005))) +((((-578 |#1|)) . T) (((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-749)) (|has| |#1| (-1005))) (((|#1|) . T)) -((((-488)) |has| |#1| (-569 (-488)))) -((((-499) |#1|) . T)) -((((-1174 (-499)) $) . T) (((-499) |#1|) . T)) -((((-499) |#1|) . T)) +((((-467)) |has| |#1| (-548 (-467)))) +((((-478) |#1|) . T)) +((((-1135 (-478)) $) . T) (((-478) |#1|) . T)) +((((-478) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-781)) -(|has| |#1| (-781)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-488)) |has| |#2| (-569 (-488))) (((-825 (-333))) |has| |#2| (-569 (-825 (-333)))) (((-825 (-499))) |has| |#2| (-569 (-825 (-499))))) +((((-467)) |has| |#2| (-548 (-467))) (((-793 (-323))) |has| |#2| (-548 (-793 (-323)))) (((-793 (-478))) |has| |#2| (-548 (-793 (-478))))) ((($) . T)) -(((|#2| (-196 (-4107 |#1|) (-714))) . T)) +(((|#2| (-194 (-3941 |#1|) (-687))) . T)) (((|#2|) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T)) +(|has| |#2| (-116)) (|has| |#2| (-118)) -(|has| |#2| (-120)) -(-3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (($) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (($) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -((((-361 (-499)) (-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2| |#2|) . T) (($ $) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -(-3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) -(-3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -(((|#2| (-196 (-4107 |#1|) (-714))) . T)) -(((|#2|) . T)) -((($) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) -(((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) -(-3677 (|has| |#2| (-406)) (|has| |#2| (-848))) -((($ $) . T) (((-798 |#1|) $) . T) (((-798 |#1|) |#2|) . T)) -((((-798 |#1|)) . T)) -((($ (-798 |#1|)) . T)) -((((-798 |#1|)) . T)) -(|has| |#2| (-848)) -(|has| |#2| (-848)) -((((-361 (-499))) |has| |#2| (-978 (-361 (-499)))) (((-499)) |has| |#2| (-978 (-499))) ((|#2|) . T) (((-798 |#1|)) . T)) -((((-499)) . T) (((-361 (-499))) -3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499))))) ((|#2|) . T) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) (((-798 |#1|)) . T)) -(((|#2| (-196 (-4107 |#1|) (-714)) (-798 |#1|)) . T)) -((((-797)) . T)) -((((-460)) . T)) -((((-157)) . T) (((-797)) . T)) -((((-714) (-1122)) . T)) -((((-797)) . T)) -(((|#4| |#4|) -3677 (|has| |#4| (-146)) (|has| |#4| (-318)) (|has| |#4| (-989)))) -(((|#4|) -3677 (|has| |#4| (-146)) (|has| |#4| (-318)) (|has| |#4| (-684)) (|has| |#4| (-989)))) -(((|#4|) -3677 (|has| |#4| (-146)) (|has| |#4| (-318)) (|has| |#4| (-989)))) -((((-797)) . T) (((-1207 |#4|)) . T)) -(((|#4|) |has| |#4| (-989))) -((((-1117)) -12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989)))) -((((-1117)) -3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989))))) -((($ (-1117)) -3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989))))) -(((|#4|) |has| |#4| (-989))) -(-3677 (-12 (|has| |#4| (-190)) (|has| |#4| (-989))) (-12 (|has| |#4| (-189)) (|has| |#4| (-989)))) -((($) -3677 (-12 (|has| |#4| (-190)) (|has| |#4| (-989))) (-12 (|has| |#4| (-189)) (|has| |#4| (-989))))) -(|has| |#4| (-989)) -(|has| |#4| (-989)) -(|has| |#4| (-989)) -(|has| |#4| (-989)) -(((|#3|) . T) ((|#2|) . T) (((-499)) . T) ((|#4|) -3677 (|has| |#4| (-146)) (|has| |#4| (-318)) (|has| |#4| (-684)) (|has| |#4| (-989))) (($) |has| |#4| (-989))) -(-12 (|has| |#4| (-190)) (|has| |#4| (-989))) -(|has| |#4| (-323)) -(((|#4|) |has| |#4| (-989))) -(((|#3|) . T) ((|#2|) . T) ((|#4|) -3677 (|has| |#4| (-146)) (|has| |#4| (-318)) (|has| |#4| (-989))) (($) |has| |#4| (-989)) (((-499)) -12 (|has| |#4| (-596 (-499))) (|has| |#4| (-989)))) -(((|#4|) |has| |#4| (-989)) (((-499)) -12 (|has| |#4| (-596 (-499))) (|has| |#4| (-989)))) -(((|#4|) |has| |#4| (-1041))) -((((-499)) -3677 (-12 (|has| |#4| (-978 (-499))) (|has| |#4| (-1041))) (|has| |#4| (-989))) ((|#4|) |has| |#4| (-1041)) (((-361 (-499))) -12 (|has| |#4| (-978 (-361 (-499)))) (|has| |#4| (-1041)))) -(((|#4|) |has| |#4| (-1041)) (((-499)) -12 (|has| |#4| (-978 (-499))) (|has| |#4| (-1041))) (((-361 (-499))) -12 (|has| |#4| (-978 (-361 (-499)))) (|has| |#4| (-1041)))) -((((-499) |#4|) . T)) -(((|#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) -(((|#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) +(OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +((((-343 (-478)) (-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +(OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) +(OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +(((|#2| (-194 (-3941 |#1|) (-687))) . T)) +(((|#2|) . T)) +((($) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) +(((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) +(OR (|has| |#2| (-385)) (|has| |#2| (-814))) +((($ $) . T) (((-766 |#1|) $) . T) (((-766 |#1|) |#2|) . T)) +((((-766 |#1|)) . T)) +((($ (-766 |#1|)) . T)) +((((-766 |#1|)) . T)) +(|has| |#2| (-814)) +(|has| |#2| (-814)) +((((-343 (-478))) |has| |#2| (-943 (-343 (-478)))) (((-478)) |has| |#2| (-943 (-478))) ((|#2|) . T) (((-766 |#1|)) . T)) +((((-478)) . T) (((-343 (-478))) OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478))))) ((|#2|) . T) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) (((-766 |#1|)) . T)) +(((|#2| (-194 (-3941 |#1|) (-687)) (-766 |#1|)) . T)) +((((-765)) . T)) +((((-439)) . T)) +((((-155)) . T) (((-765)) . T)) +((((-687) (-1084)) . T)) +((((-765)) . T)) +(((|#4| |#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)) (|has| |#4| (-954)))) +(((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)) (|has| |#4| (-658)) (|has| |#4| (-954)))) +(((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)) (|has| |#4| (-954)))) +((((-765)) . T) (((-1168 |#4|)) . T)) +(((|#4|) |has| |#4| (-954))) +((((-1079)) -12 (|has| |#4| (-802 (-1079))) (|has| |#4| (-954)))) +((((-1079)) OR (-12 (|has| |#4| (-802 (-1079))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1079))) (|has| |#4| (-954))))) +((($ (-1079)) OR (-12 (|has| |#4| (-802 (-1079))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1079))) (|has| |#4| (-954))))) +(((|#4|) |has| |#4| (-954))) +(OR (-12 (|has| |#4| (-188)) (|has| |#4| (-954))) (-12 (|has| |#4| (-187)) (|has| |#4| (-954)))) +((($) OR (-12 (|has| |#4| (-188)) (|has| |#4| (-954))) (-12 (|has| |#4| (-187)) (|has| |#4| (-954))))) +(|has| |#4| (-954)) +(|has| |#4| (-954)) +(|has| |#4| (-954)) +(|has| |#4| (-954)) +(((|#3|) . T) ((|#2|) . T) (((-478)) . T) ((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)) (|has| |#4| (-658)) (|has| |#4| (-954))) (($) |has| |#4| (-954))) +(-12 (|has| |#4| (-188)) (|has| |#4| (-954))) +(|has| |#4| (-313)) +(((|#4|) |has| |#4| (-954))) +(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)) (|has| |#4| (-954))) (($) |has| |#4| (-954)) (((-478)) -12 (|has| |#4| (-575 (-478))) (|has| |#4| (-954)))) +(((|#4|) |has| |#4| (-954)) (((-478)) -12 (|has| |#4| (-575 (-478))) (|has| |#4| (-954)))) +(((|#4|) |has| |#4| (-1005))) +((((-478)) OR (-12 (|has| |#4| (-943 (-478))) (|has| |#4| (-1005))) (|has| |#4| (-954))) ((|#4|) |has| |#4| (-1005)) (((-343 (-478))) -12 (|has| |#4| (-943 (-343 (-478)))) (|has| |#4| (-1005)))) +(((|#4|) |has| |#4| (-1005)) (((-478)) -12 (|has| |#4| (-943 (-478))) (|has| |#4| (-1005))) (((-343 (-478))) -12 (|has| |#4| (-943 (-343 (-478)))) (|has| |#4| (-1005)))) +((((-478) |#4|) . T)) +(((|#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005)))) +(((|#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005)))) (((|#4|) . T)) -((((-499) |#4|) . T)) -((((-499) |#4|) . T)) -(((|#4|) -3677 (|has| |#4| (-146)) (|has| |#4| (-318)) (|has| |#4| (-684)))) -(((|#4|) -3677 (|has| |#4| (-146)) (|has| |#4| (-318)))) -(|has| |#4| (-738)) -(|has| |#4| (-738)) -(-3677 (|has| |#4| (-738)) (|has| |#4| (-781))) -(-3677 (|has| |#4| (-738)) (|has| |#4| (-781))) -(|has| |#4| (-738)) -(|has| |#4| (-738)) -(((|#4|) |has| |#4| (-318))) +((((-478) |#4|) . T)) +((((-478) |#4|) . T)) +(((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)) (|has| |#4| (-658)))) +(((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)))) +(|has| |#4| (-710)) +(|has| |#4| (-710)) +(OR (|has| |#4| (-710)) (|has| |#4| (-749))) +(OR (|has| |#4| (-710)) (|has| |#4| (-749))) +(|has| |#4| (-710)) +(|has| |#4| (-710)) +(((|#4|) |has| |#4| (-308))) (((|#1| |#4|) . T)) -(((|#3| |#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-989)))) -(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-684)) (|has| |#3| (-989)))) -(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-989)))) -((((-797)) . T) (((-1207 |#3|)) . T)) -(((|#3|) |has| |#3| (-989))) -((((-1117)) -12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989)))) -((((-1117)) -3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))))) -((($ (-1117)) -3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))))) -(((|#3|) |has| |#3| (-989))) -(-3677 (-12 (|has| |#3| (-190)) (|has| |#3| (-989))) (-12 (|has| |#3| (-189)) (|has| |#3| (-989)))) -((($) -3677 (-12 (|has| |#3| (-190)) (|has| |#3| (-989))) (-12 (|has| |#3| (-189)) (|has| |#3| (-989))))) -(|has| |#3| (-989)) -(|has| |#3| (-989)) -(|has| |#3| (-989)) -(|has| |#3| (-989)) -(((|#2|) . T) (((-499)) . T) ((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-684)) (|has| |#3| (-989))) (($) |has| |#3| (-989))) -(-12 (|has| |#3| (-190)) (|has| |#3| (-989))) -(|has| |#3| (-323)) -(((|#3|) |has| |#3| (-989))) -(((|#2|) . T) ((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-989))) (($) |has| |#3| (-989)) (((-499)) -12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989)))) -(((|#3|) |has| |#3| (-989)) (((-499)) -12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989)))) -(((|#3|) |has| |#3| (-1041))) -((((-499)) -3677 (-12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) (|has| |#3| (-989))) ((|#3|) |has| |#3| (-1041)) (((-361 (-499))) -12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041)))) -(((|#3|) |has| |#3| (-1041)) (((-499)) -12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) (((-361 (-499))) -12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041)))) -((((-499) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041)))) -(((|#3| |#3|) -12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041)))) +(((|#3| |#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-954)))) +(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-658)) (|has| |#3| (-954)))) +(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-954)))) +((((-765)) . T) (((-1168 |#3|)) . T)) +(((|#3|) |has| |#3| (-954))) +((((-1079)) -12 (|has| |#3| (-802 (-1079))) (|has| |#3| (-954)))) +((((-1079)) OR (-12 (|has| |#3| (-802 (-1079))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954))))) +((($ (-1079)) OR (-12 (|has| |#3| (-802 (-1079))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954))))) +(((|#3|) |has| |#3| (-954))) +(OR (-12 (|has| |#3| (-188)) (|has| |#3| (-954))) (-12 (|has| |#3| (-187)) (|has| |#3| (-954)))) +((($) OR (-12 (|has| |#3| (-188)) (|has| |#3| (-954))) (-12 (|has| |#3| (-187)) (|has| |#3| (-954))))) +(|has| |#3| (-954)) +(|has| |#3| (-954)) +(|has| |#3| (-954)) +(|has| |#3| (-954)) +(((|#2|) . T) (((-478)) . T) ((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-658)) (|has| |#3| (-954))) (($) |has| |#3| (-954))) +(-12 (|has| |#3| (-188)) (|has| |#3| (-954))) +(|has| |#3| (-313)) +(((|#3|) |has| |#3| (-954))) +(((|#2|) . T) ((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-954))) (($) |has| |#3| (-954)) (((-478)) -12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954)))) +(((|#3|) |has| |#3| (-954)) (((-478)) -12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954)))) +(((|#3|) |has| |#3| (-1005))) +((((-478)) OR (-12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1005))) (|has| |#3| (-954))) ((|#3|) |has| |#3| (-1005)) (((-343 (-478))) -12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1005)))) +(((|#3|) |has| |#3| (-1005)) (((-478)) -12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1005))) (((-343 (-478))) -12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1005)))) +((((-478) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005)))) +(((|#3| |#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005)))) (((|#3|) . T)) -((((-499) |#3|) . T)) -((((-499) |#3|) . T)) -(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-684)))) -(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)))) -(|has| |#3| (-738)) -(|has| |#3| (-738)) -(-3677 (|has| |#3| (-738)) (|has| |#3| (-781))) -(-3677 (|has| |#3| (-738)) (|has| |#3| (-781))) -(|has| |#3| (-738)) -(|has| |#3| (-738)) -(((|#3|) |has| |#3| (-318))) +((((-478) |#3|) . T)) +((((-478) |#3|) . T)) +(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-658)))) +(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)))) +(|has| |#3| (-710)) +(|has| |#3| (-710)) +(OR (|has| |#3| (-710)) (|has| |#3| (-749))) +(OR (|has| |#3| (-710)) (|has| |#3| (-749))) +(|has| |#3| (-710)) +(|has| |#3| (-710)) +(((|#3|) |has| |#3| (-308))) (((|#1| |#3|) . T)) -((((-797)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3677 (|has| |#1| (-190)) (|has| |#1| (-189))) -((($) -3677 (|has| |#1| (-190)) (|has| |#1| (-189)))) -((((-797)) . T)) -(|has| |#1| (-190)) -((($) . T)) -(((|#1| (-484 |#3|) |#3|) . T)) -(|has| |#1| (-848)) -(|has| |#1| (-848)) -((((-499)) -12 (|has| |#1| (-821 (-499))) (|has| |#3| (-821 (-499)))) (((-333)) -12 (|has| |#1| (-821 (-333))) (|has| |#3| (-821 (-333))))) -((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) ((|#3|) . T)) -((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (($ |#3|) . T)) -((((-1117)) |has| |#1| (-836 (-1117))) ((|#3|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-190)) ((|#2| |#1|) |has| |#1| (-190)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-848))) -((((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-484 |#3|)) . T)) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(|has| |#1| (-120)) +((((-765)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-188)) (|has| |#1| (-187))) +((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)))) +((((-765)) . T)) +(|has| |#1| (-188)) +((($) . T)) +(((|#1| (-463 |#3|) |#3|) . T)) +(|has| |#1| (-814)) +(|has| |#1| (-814)) +((((-478)) -12 (|has| |#1| (-789 (-478))) (|has| |#3| (-789 (-478)))) (((-323)) -12 (|has| |#1| (-789 (-323))) (|has| |#3| (-789 (-323))))) +((((-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079)))) ((|#3|) . T)) +((($ (-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079)))) (($ |#3|) . T)) +((((-1079)) |has| |#1| (-802 (-1079))) ((|#3|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-188)) ((|#2| |#1|) |has| |#1| (-188)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(OR (|has| |#1| (-385)) (|has| |#1| (-814))) +((((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-463 |#3|)) . T)) +(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) (|has| |#1| (-118)) -((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) . T) (((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((((-499)) . T) (($) . T) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -(((|#1|) . T)) -(((|#1| (-484 |#3|)) . T)) -((((-825 (-499))) -12 (|has| |#1| (-569 (-825 (-499)))) (|has| |#3| (-569 (-825 (-499))))) (((-825 (-333))) -12 (|has| |#1| (-569 (-825 (-333)))) (|has| |#3| (-569 (-825 (-333))))) (((-488)) -12 (|has| |#1| (-569 (-488))) (|has| |#3| (-569 (-488))))) -((((-1065 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((|#2|) . T)) -((((-1065 |#1| |#2|)) . T) (((-499)) . T) ((|#3|) . T) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ((|#2|) . T)) -(((|#1| |#2| |#3| (-484 |#3|)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) +(|has| |#1| (-116)) +((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) . T) (((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((((-478)) . T) (($) . T) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +(((|#1|) . T)) +(((|#1| (-463 |#3|)) . T)) +((((-793 (-478))) -12 (|has| |#1| (-548 (-793 (-478)))) (|has| |#3| (-548 (-793 (-478))))) (((-793 (-323))) -12 (|has| |#1| (-548 (-793 (-323)))) (|has| |#3| (-548 (-793 (-323))))) (((-467)) -12 (|has| |#1| (-548 (-467))) (|has| |#3| (-548 (-467))))) +((((-1028 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((|#2|) . T)) +((((-1028 |#1| |#2|)) . T) (((-478)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ((|#2|) . T)) +(((|#1| |#2| |#3| (-463 |#3|)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) (((|#2| |#2|) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) -((($) . T) (((-499)) . T)) -((($) . T)) -((((-797)) . T)) -(((|#1|) |has| |#1| (-318))) -((((-1117)) |has| |#1| (-836 (-1117)))) -((($ (-1117)) |has| |#1| (-836 (-1117)))) -((((-1117)) |has| |#1| (-836 (-1117)))) -(((|#1|) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)))) -(((|#1|) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)))) -(((|#1|) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-989)))) -(((|#1|) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-989)))) -(((|#1| |#1|) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-989)))) -((((-499)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-989)))) -(((|#1|) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-989))) (($) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-989)))) -(-3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-989))) -(-3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-989))) -(|has| |#1| (-427)) -(-3677 (|has| |#1| (-427)) (|has| |#1| (-684)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989))) -(-3677 (|has| |#1| (-427)) (|has| |#1| (-684)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989)) (|has| |#1| (-1052))) -(-3677 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989))) -(-3677 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989))) -(((|#1|) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-989))) (($) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-989))) (((-499)) -3677 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989)))) -(-3677 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989))) -(-3677 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989))) -(-3677 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-427)) (|has| |#1| (-684)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989)) (|has| |#1| (-1052)) (|has| |#1| (-1041))) -((((-85)) |has| |#1| (-1041)) (((-797)) -3677 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-427)) (|has| |#1| (-684)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989)) (|has| |#1| (-1052)) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-427)) (|has| |#1| (-684)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989)) (|has| |#1| (-1052)) (|has| |#1| (-1041))) -((((-1117) |#1|) |has| |#1| (-468 (-1117) |#1|))) +((($) . T) (((-478)) . T)) +((($) . T)) +((((-765)) . T)) +(((|#1|) |has| |#1| (-308))) +((((-1079)) |has| |#1| (-802 (-1079)))) +((($ (-1079)) |has| |#1| (-802 (-1079)))) +((((-1079)) |has| |#1| (-802 (-1079)))) +(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)))) +(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)))) +(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-954)))) +(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-954)))) +(((|#1| |#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-954)))) +((((-478)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-954)))) +(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-954))) (($) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-954)))) +(OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-954))) +(OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-954))) +(|has| |#1| (-406)) +(OR (|has| |#1| (-406)) (|has| |#1| (-658)) (|has| |#1| (-802 (-1079))) (|has| |#1| (-954))) +(OR (|has| |#1| (-406)) (|has| |#1| (-658)) (|has| |#1| (-802 (-1079))) (|has| |#1| (-954)) (|has| |#1| (-1015))) +(OR (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-802 (-1079))) (|has| |#1| (-954))) +(OR (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-802 (-1079))) (|has| |#1| (-954))) +(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-954))) (($) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-954))) (((-478)) OR (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-802 (-1079))) (|has| |#1| (-954)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-802 (-1079))) (|has| |#1| (-954))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-802 (-1079))) (|has| |#1| (-954))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-406)) (|has| |#1| (-658)) (|has| |#1| (-802 (-1079))) (|has| |#1| (-954)) (|has| |#1| (-1015)) (|has| |#1| (-1005))) +((((-83)) |has| |#1| (-1005)) (((-765)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-406)) (|has| |#1| (-658)) (|has| |#1| (-802 (-1079))) (|has| |#1| (-954)) (|has| |#1| (-1015)) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-406)) (|has| |#1| (-658)) (|has| |#1| (-802 (-1079))) (|has| |#1| (-954)) (|has| |#1| (-1015)) (|has| |#1| (-1005))) +((((-1079) |#1|) |has| |#1| (-447 (-1079) |#1|))) (((|#1| |#2|) . T)) -((((-797)) . T)) +((((-765)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-797)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-797)) . T)) -(|has| (-1194 |#1| |#2| |#3| |#4|) (-118)) -(|has| (-1194 |#1| |#2| |#3| |#4|) (-120)) -((((-1194 |#1| |#2| |#3| |#4|)) . T)) -((((-1194 |#1| |#2| |#3| |#4|)) . T)) -((((-1194 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-361 (-499))) . T)) -((($) . T) (((-499)) . T) (((-1194 |#1| |#2| |#3| |#4|)) . T) (((-361 (-499))) . T)) -((((-1194 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-361 (-499))) . T)) -((((-1194 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-361 (-499))) . T)) -((((-1194 |#1| |#2| |#3| |#4|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-1194 |#1| |#2| |#3| |#4|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|)) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) -((((-1194 |#1| |#2| |#3| |#4|)) . T)) -((((-1117) (-1194 |#1| |#2| |#3| |#4|)) |has| (-1194 |#1| |#2| |#3| |#4|) (-468 (-1117) (-1194 |#1| |#2| |#3| |#4|))) (((-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|)) |has| (-1194 |#1| |#2| |#3| |#4|) (-263 (-1194 |#1| |#2| |#3| |#4|)))) -((((-1194 |#1| |#2| |#3| |#4|)) |has| (-1194 |#1| |#2| |#3| |#4|) (-263 (-1194 |#1| |#2| |#3| |#4|)))) -((((-1194 |#1| |#2| |#3| |#4|) $) |has| (-1194 |#1| |#2| |#3| |#4|) (-240 (-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|)))) -((((-1194 |#1| |#2| |#3| |#4|)) . T)) -((($) . T) (((-1194 |#1| |#2| |#3| |#4|)) . T) (((-361 (-499))) . T)) -((((-1194 |#1| |#2| |#3| |#4|)) . T)) -((((-1194 |#1| |#2| |#3| |#4|)) . T)) -((((-1194 |#1| |#2| |#3| |#4|)) . T)) -((((-1188 |#2| |#3| |#4|)) . T) (((-499)) . T) (((-1194 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-361 (-499))) . T)) -((((-1188 |#2| |#3| |#4|)) . T) (((-1194 |#1| |#2| |#3| |#4|)) . T)) -((((-1194 |#1| |#2| |#3| |#4|)) . T)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(((|#1|) |has| |#1| (-510))) -(-3677 (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-989))) -(-3677 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-989))) -((((-797)) . T)) -(-3677 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-989))) -(-3677 (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-989))) -(-3677 (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-427)) (|has| |#1| (-510)) (|has| |#1| (-989)) (|has| |#1| (-1052))) -(-3677 (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-427)) (|has| |#1| (-510)) (|has| |#1| (-989)) (|has| |#1| (-1052))) -(-3677 (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-989))) -(-3677 (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-989))) +((((-765)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-765)) . T)) +(|has| (-1155 |#1| |#2| |#3| |#4|) (-116)) +(|has| (-1155 |#1| |#2| |#3| |#4|) (-118)) +((((-1155 |#1| |#2| |#3| |#4|)) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-343 (-478))) . T)) +((($) . T) (((-478)) . T) (((-1155 |#1| |#2| |#3| |#4|)) . T) (((-343 (-478))) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-343 (-478))) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-343 (-478))) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|)) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T)) +((((-1079) (-1155 |#1| |#2| |#3| |#4|)) |has| (-1155 |#1| |#2| |#3| |#4|) (-447 (-1079) (-1155 |#1| |#2| |#3| |#4|))) (((-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|)) |has| (-1155 |#1| |#2| |#3| |#4|) (-256 (-1155 |#1| |#2| |#3| |#4|)))) +((((-1155 |#1| |#2| |#3| |#4|)) |has| (-1155 |#1| |#2| |#3| |#4|) (-256 (-1155 |#1| |#2| |#3| |#4|)))) +((((-1155 |#1| |#2| |#3| |#4|) $) |has| (-1155 |#1| |#2| |#3| |#4|) (-238 (-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|)))) +((((-1155 |#1| |#2| |#3| |#4|)) . T)) +((($) . T) (((-1155 |#1| |#2| |#3| |#4|)) . T) (((-343 (-478))) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T)) +((((-1149 |#2| |#3| |#4|)) . T) (((-478)) . T) (((-1155 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-343 (-478))) . T)) +((((-1149 |#2| |#3| |#4|)) . T) (((-1155 |#1| |#2| |#3| |#4|)) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(((|#1|) |has| |#1| (-489))) +(OR (|has| |#1| (-21)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-954))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-954))) +((((-765)) . T)) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-954))) +(OR (|has| |#1| (-21)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-954))) +(OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-406)) (|has| |#1| (-489)) (|has| |#1| (-954)) (|has| |#1| (-1015))) +(OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-406)) (|has| |#1| (-489)) (|has| |#1| (-954)) (|has| |#1| (-1015))) +(OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-954))) +(OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-954))) +(|has| |#1| (-116)) (|has| |#1| (-118)) -(|has| |#1| (-120)) -((((-566 $) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510)) (((-361 (-499))) |has| |#1| (-510))) -((((-499)) -3677 (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-989))) (($) -3677 (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-989))) ((|#1|) -3677 (|has| |#1| (-146)) (|has| |#1| (-989))) (((-361 (-499))) |has| |#1| (-510))) -(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510)) (((-361 (-499))) |has| |#1| (-510))) -(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510)) (((-361 (-499))) |has| |#1| (-510))) -(|has| |#1| (-510)) -(((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-510)) (($) |has| |#1| (-510))) -(((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-510)) (($) |has| |#1| (-510))) -(((|#1| |#1|) |has| |#1| (-146)) (((-361 (-499)) (-361 (-499))) |has| |#1| (-510)) (($ $) |has| |#1| (-510))) -(|has| |#1| (-510)) -(((|#1|) |has| |#1| (-989))) -((($) -3677 (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-989))) ((|#1|) -3677 (|has| |#1| (-146)) (|has| |#1| (-989))) (((-361 (-499))) |has| |#1| (-510)) (((-499)) -12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) -(((|#1|) |has| |#1| (-989)) (((-499)) -12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) -(((|#1|) . T)) -((((-499)) |has| |#1| (-821 (-499))) (((-333)) |has| |#1| (-821 (-333)))) -(((|#1|) . T)) -(|has| |#1| (-427)) -((((-1117)) |has| |#1| (-989))) -((($ (-1117)) |has| |#1| (-989))) -((((-1117)) |has| |#1| (-989))) -(((|#1|) . T)) -((((-488)) |has| |#1| (-569 (-488))) (((-825 (-499))) |has| |#1| (-569 (-825 (-499)))) (((-825 (-333))) |has| |#1| (-569 (-825 (-333))))) -((((-48)) -12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499)))) (((-566 $)) . T) ((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) -3677 (-12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499)))) (|has| |#1| (-978 (-361 (-499))))) (((-361 (-884 |#1|))) |has| |#1| (-510)) (((-884 |#1|)) |has| |#1| (-989)) (((-1117)) . T)) -((((-48)) -12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499)))) (((-499)) -3677 (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-978 (-499))) (|has| |#1| (-989))) ((|#1|) . T) (((-566 $)) . T) (($) |has| |#1| (-510)) (((-361 (-499))) -3677 (|has| |#1| (-510)) (|has| |#1| (-978 (-361 (-499))))) (((-361 (-884 |#1|))) |has| |#1| (-510)) (((-884 |#1|)) |has| |#1| (-989)) (((-1117)) . T)) -(((|#1|) . T)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -((((-797)) . T)) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) -(|has| |#1| (-318)) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(((|#1| (-361 (-499))) . T)) -(((|#1| (-361 (-499))) . T)) -(|has| |#1| (-120)) +((((-545 $) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489)) (((-343 (-478))) |has| |#1| (-489))) +((((-478)) OR (|has| |#1| (-21)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-954))) (($) OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-954))) ((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-954))) (((-343 (-478))) |has| |#1| (-489))) +(((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489)) (((-343 (-478))) |has| |#1| (-489))) +(((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489)) (((-343 (-478))) |has| |#1| (-489))) +(|has| |#1| (-489)) +(((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-489)) (($) |has| |#1| (-489))) +(((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-489)) (($) |has| |#1| (-489))) +(((|#1| |#1|) |has| |#1| (-144)) (((-343 (-478)) (-343 (-478))) |has| |#1| (-489)) (($ $) |has| |#1| (-489))) +(|has| |#1| (-489)) +(((|#1|) |has| |#1| (-954))) +((($) OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-954))) ((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-954))) (((-343 (-478))) |has| |#1| (-489)) (((-478)) -12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) +(((|#1|) |has| |#1| (-954)) (((-478)) -12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) +(((|#1|) . T)) +((((-478)) |has| |#1| (-789 (-478))) (((-323)) |has| |#1| (-789 (-323)))) +(((|#1|) . T)) +(|has| |#1| (-406)) +((((-1079)) |has| |#1| (-954))) +((($ (-1079)) |has| |#1| (-954))) +((((-1079)) |has| |#1| (-954))) +(((|#1|) . T)) +((((-467)) |has| |#1| (-548 (-467))) (((-793 (-478))) |has| |#1| (-548 (-793 (-478)))) (((-793 (-323))) |has| |#1| (-548 (-793 (-323))))) +((((-48)) -12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478)))) (((-545 $)) . T) ((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) OR (-12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478)))) (|has| |#1| (-943 (-343 (-478))))) (((-343 (-850 |#1|))) |has| |#1| (-489)) (((-850 |#1|)) |has| |#1| (-954)) (((-1079)) . T)) +((((-48)) -12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478)))) (((-478)) OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-943 (-478))) (|has| |#1| (-954))) ((|#1|) . T) (((-545 $)) . T) (($) |has| |#1| (-489)) (((-343 (-478))) OR (|has| |#1| (-489)) (|has| |#1| (-943 (-343 (-478))))) (((-343 (-850 |#1|))) |has| |#1| (-489)) (((-850 |#1|)) |has| |#1| (-954)) (((-1079)) . T)) +(((|#1|) . T)) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +((((-765)) . T)) +(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(|has| |#1| (-308)) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(((|#1| (-343 (-478))) . T)) +(((|#1| (-343 (-478))) . T)) (|has| |#1| (-118)) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-499)) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) |has| |#1| (-146))) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) |has| |#1| (-146))) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) |has| |#1| (-146))) -((($) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) . T)) -((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) ((|#1|) . T)) -((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) ((|#1|) . T)) -((((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) ((|#1| |#1|) . T)) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) |has| |#1| (-146))) -(((|#1| (-361 (-499)) (-1022)) . T)) -((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) -((($ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) -((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) -((((-361 (-499)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) -(((|#1|) . T)) -(|has| |#1| (-781)) -(|has| |#1| (-781)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-499)) . T)) -((((-499) (-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-797)) . T)) -((((-499)) . T)) -((((-797)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-714)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-781)) -(|has| |#1| (-781)) -(((|#1|) . T)) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) -(((|#1|) . T)) -((((-488)) |has| |#1| (-569 (-488)))) -((((-499) |#1|) . T)) -((((-1174 (-499)) $) . T) (((-499) |#1|) . T)) -((((-499) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-499)) . T)) -((((-797)) . T)) +(|has| |#1| (-116)) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-478)) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) +((($) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) . T)) +((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) ((|#1|) . T)) +((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) ((|#1|) . T)) +((((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) +(((|#1| (-343 (-478)) (-986)) . T)) +((((-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) +((($ (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) +((((-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) +((((-343 (-478)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) +(((|#1|) . T)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-478)) . T)) +((((-478) (-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-765)) . T)) +((((-478)) . T)) +((((-765)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-687)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1005))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-749)) (|has| |#1| (-1005))) +(((|#1|) . T)) +((((-467)) |has| |#1| (-548 (-467)))) +((((-478) |#1|) . T)) +((((-1135 (-478)) $) . T) (((-478) |#1|) . T)) +((((-478) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-478)) . T)) +((((-765)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-1117)) . T)) -((($ (-1117)) . T)) -((((-1117)) . T)) -(((|#3|) . T)) -(((|#3|) . T)) -(((|#3|) . T)) -(((|#3|) . T)) -(((|#3| |#3|) . T)) -(((|#3|) . T) (((-499)) . T) (($) . T)) -(((|#3|) . T) (($) . T)) -(((|#3|) . T)) -((($) . T)) -((($ $) . T) (((-566 $) $) . T)) -(((|#3|) . T) (((-566 $)) . T)) -(((|#3|) . T) (((-499)) . T) (((-566 $)) . T)) -((((-797)) . T)) -((((-844 |#1|)) . T)) -((((-844 |#1|)) . T)) -((((-844 |#1|)) . T)) -((((-844 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) -((((-844 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) -((((-844 |#1|) (-844 |#1|)) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-797)) . T)) -((((-844 |#1|)) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) -(|has| $ (-120)) -((($) . T)) -((((-844 |#1|)) . T)) -((((-844 |#1|)) . T)) -((((-844 |#1|)) . T)) -((((-844 |#1|)) . T)) -((((-844 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) -((((-844 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) -((((-844 |#1|) (-844 |#1|)) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-797)) . T)) -((((-844 |#1|)) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) -(|has| $ (-120)) -((($) . T)) -((((-844 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) -(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) -(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) -(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) -((((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -((((-797)) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) -(|has| |#1| (-120)) -(|has| |#1| (-323)) -(|has| |#1| (-323)) -(|has| |#1| (-323)) -(|has| |#1| (-323)) -((($) |has| |#1| (-323))) -(|has| |#1| (-323)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) -(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) -(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) -(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) -((((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -((((-797)) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) -(|has| |#1| (-120)) -(|has| |#1| (-323)) -(|has| |#1| (-323)) -(|has| |#1| (-323)) -(|has| |#1| (-323)) -((($) |has| |#1| (-323))) -(|has| |#1| (-323)) -(((|#1|) . T)) -((((-844 |#1|)) . T)) -((((-844 |#1|)) . T)) -((((-844 |#1|)) . T)) -((((-844 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) -((((-844 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) -((((-844 |#1|) (-844 |#1|)) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-797)) . T)) -((((-844 |#1|)) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) -(|has| $ (-120)) -((($) . T)) -((((-844 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) -(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) -(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) -(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) -((((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -((((-797)) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) -(|has| |#1| (-120)) -(|has| |#1| (-323)) -(|has| |#1| (-323)) -(|has| |#1| (-323)) -(|has| |#1| (-323)) -((($) |has| |#1| (-323))) -(|has| |#1| (-323)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) -(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) -(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) -(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) -((((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -((((-797)) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) -(|has| |#1| (-120)) -(|has| |#1| (-323)) -(|has| |#1| (-323)) -(|has| |#1| (-323)) -(|has| |#1| (-323)) -((($) |has| |#1| (-323))) -(|has| |#1| (-323)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) -(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) -(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) -(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) -((((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -((((-797)) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) -(|has| |#1| (-120)) -(|has| |#1| (-323)) -(|has| |#1| (-323)) -(|has| |#1| (-323)) -(|has| |#1| (-323)) -((($) |has| |#1| (-323))) -(|has| |#1| (-323)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) -(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) -(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) -(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) -((((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -((((-797)) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) -(|has| |#1| (-120)) -(|has| |#1| (-323)) -(|has| |#1| (-323)) -(|has| |#1| (-323)) -(|has| |#1| (-323)) -((($) |has| |#1| (-323))) -(|has| |#1| (-323)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-344) |#1|) . T)) -((((-179)) . T)) -((($) . T)) -((((-499)) . T) (((-361 (-499))) . T)) -((((-333)) . T)) -((($) . T) (((-361 (-499))) . T)) -((($) . T) (((-361 (-499))) . T)) -((($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-488)) . T) (((-1099)) . T) (((-179)) . T) (((-333)) . T) (((-825 (-333))) . T)) -((((-179)) . T) (((-797)) . T)) -((((-361 (-499))) . T) (((-499)) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T) (((-499)) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) +((((-810 |#1|)) . T)) +((((-810 |#1|)) . T)) +((((-810 |#1|)) . T)) +((((-810 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) +((((-810 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) +((((-810 |#1|) (-810 |#1|)) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-765)) . T)) +((((-810 |#1|)) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(|has| $ (-118)) +((($) . T)) +((((-810 |#1|)) . T)) +((((-810 |#1|)) . T)) +((((-810 |#1|)) . T)) +((((-810 |#1|)) . T)) +((((-810 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) +((((-810 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) +((((-810 |#1|) (-810 |#1|)) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-765)) . T)) +((((-810 |#1|)) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(|has| $ (-118)) +((($) . T)) +((((-810 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-116)) (|has| |#1| (-313))) +(OR (|has| |#1| (-116)) (|has| |#1| (-313))) +(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) +(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) +((((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +((((-765)) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(|has| |#1| (-118)) +(|has| |#1| (-313)) +(|has| |#1| (-313)) +(|has| |#1| (-313)) +(|has| |#1| (-313)) +((($) |has| |#1| (-313))) +(|has| |#1| (-313)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-116)) (|has| |#1| (-313))) +(OR (|has| |#1| (-116)) (|has| |#1| (-313))) +(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) +(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) +((((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +((((-765)) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(|has| |#1| (-118)) +(|has| |#1| (-313)) +(|has| |#1| (-313)) +(|has| |#1| (-313)) +(|has| |#1| (-313)) +((($) |has| |#1| (-313))) +(|has| |#1| (-313)) +(((|#1|) . T)) +((((-810 |#1|)) . T)) +((((-810 |#1|)) . T)) +((((-810 |#1|)) . T)) +((((-810 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) +((((-810 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) +((((-810 |#1|) (-810 |#1|)) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-765)) . T)) +((((-810 |#1|)) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(|has| $ (-118)) +((($) . T)) +((((-810 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-116)) (|has| |#1| (-313))) +(OR (|has| |#1| (-116)) (|has| |#1| (-313))) +(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) +(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) +((((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +((((-765)) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(|has| |#1| (-118)) +(|has| |#1| (-313)) +(|has| |#1| (-313)) +(|has| |#1| (-313)) +(|has| |#1| (-313)) +((($) |has| |#1| (-313))) +(|has| |#1| (-313)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-116)) (|has| |#1| (-313))) +(OR (|has| |#1| (-116)) (|has| |#1| (-313))) +(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) +(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) +((((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +((((-765)) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(|has| |#1| (-118)) +(|has| |#1| (-313)) +(|has| |#1| (-313)) +(|has| |#1| (-313)) +(|has| |#1| (-313)) +((($) |has| |#1| (-313))) +(|has| |#1| (-313)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-116)) (|has| |#1| (-313))) +(OR (|has| |#1| (-116)) (|has| |#1| (-313))) +(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) +(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) +((((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +((((-765)) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(|has| |#1| (-118)) +(|has| |#1| (-313)) +(|has| |#1| (-313)) +(|has| |#1| (-313)) +(|has| |#1| (-313)) +((($) |has| |#1| (-313))) +(|has| |#1| (-313)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-116)) (|has| |#1| (-313))) +(OR (|has| |#1| (-116)) (|has| |#1| (-313))) +(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) +(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) +((((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +((((-765)) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(|has| |#1| (-118)) +(|has| |#1| (-313)) +(|has| |#1| (-313)) +(|has| |#1| (-313)) +(|has| |#1| (-313)) +((($) |has| |#1| (-313))) +(|has| |#1| (-313)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-331) |#1|) . T)) +((((-177)) . T)) +((($) . T)) +((((-478)) . T) (((-343 (-478))) . T)) +((((-323)) . T)) +((($) . T) (((-343 (-478))) . T)) +((($) . T) (((-343 (-478))) . T)) +((($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-467)) . T) (((-1062)) . T) (((-177)) . T) (((-323)) . T) (((-793 (-323))) . T)) +((((-177)) . T) (((-765)) . T)) +((((-343 (-478))) . T) (((-478)) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-797)) . T)) -(((|#1|) . T) (((-499)) . T)) +((((-765)) . T)) +(((|#1|) . T) (((-478)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-797)) . T)) -((((-499)) . T) ((|#1|) . T)) +((((-765)) . T)) +((((-478)) . T) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-797)) . T)) -(|has| |#1| (-781)) -(|has| |#1| (-781)) +((((-765)) . T)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1099)) . T)) -((((-1099)) . T)) -((((-1099)) . T) (((-797)) . T)) +((((-1062)) . T)) +((((-1062)) . T)) +((((-1062)) . T) (((-765)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-797)) . T)) -(((|#3|) . T) (((-499)) . T)) +((((-765)) . T)) +(((|#3|) . T) (((-478)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3| |#3|) . T)) (((|#3|) . T)) -((((-797)) . T)) -((((-361 |#2|)) . T)) +((((-343 |#2|)) . T)) ((($) . T)) -((((-797)) . T)) -(|has| |#1| (-1162)) -((((-488)) |has| |#1| (-569 (-488))) (((-179)) |has| |#1| (-960)) (((-333)) |has| |#1| (-960))) -(|has| |#1| (-960)) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-1162))) -((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) |has| |#1| (-978 (-499))) ((|#1|) . T)) +((((-765)) . T)) +(|has| |#1| (-1123)) +((((-467)) |has| |#1| (-548 (-467))) (((-177)) |has| |#1| (-926)) (((-323)) |has| |#1| (-926))) +(|has| |#1| (-926)) +(OR (|has| |#1| (-385)) (|has| |#1| (-1123))) +((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) |has| |#1| (-943 (-478))) ((|#1|) . T)) (((|#1|) . T)) -((($ $) |has| |#1| (-240 $ $)) ((|#1| $) |has| |#1| (-240 |#1| |#1|))) -((($) |has| |#1| (-263 $)) ((|#1|) |has| |#1| (-263 |#1|))) -((((-1117) $) |has| |#1| (-468 (-1117) $)) (($ $) |has| |#1| (-263 $)) ((|#1| |#1|) |has| |#1| (-263 |#1|)) (((-1117) |#1|) |has| |#1| (-468 (-1117) |#1|))) +((($ $) |has| |#1| (-238 $ $)) ((|#1| $) |has| |#1| (-238 |#1| |#1|))) +((($) |has| |#1| (-256 $)) ((|#1|) |has| |#1| (-256 |#1|))) +((((-1079) $) |has| |#1| (-447 (-1079) $)) (($ $) |has| |#1| (-256 $)) ((|#1| |#1|) |has| |#1| (-256 |#1|)) (((-1079) |#1|) |has| |#1| (-447 (-1079) |#1|))) (((|#1|) . T)) -(|has| |#1| (-190)) -((($) -3677 (|has| |#1| (-190)) (|has| |#1| (-189)))) -(-3677 (|has| |#1| (-190)) (|has| |#1| (-189))) +(|has| |#1| (-188)) +((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)))) +(OR (|has| |#1| (-188)) (|has| |#1| (-187))) (((|#1|) . T)) -((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117))))) -((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117))))) -((((-1117)) |has| |#1| (-836 (-1117)))) +((($ (-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079))))) +((((-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079))))) +((((-1079)) |has| |#1| (-802 (-1079)))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-797)) . T)) -(((|#1|) . T) (((-499)) . T) (($) . T)) +((((-765)) . T)) +(((|#1|) . T) (((-478)) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((|#1|) . T) (((-499)) . T) (($) . T)) -((((-797)) . T)) +((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((|#1|) . T) (((-478)) . T) (($) . T)) +((((-765)) . T)) +(|has| |#1| (-116)) (|has| |#1| (-118)) -(|has| |#1| (-120)) -(((|#1|) . T)) -((((-1117)) |has| |#1| (-836 (-1117)))) -((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117))))) -((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117))))) -(((|#1|) . T)) -(-3677 (|has| |#1| (-190)) (|has| |#1| (-189))) -((($) -3677 (|has| |#1| (-190)) (|has| |#1| (-189)))) -(|has| |#1| (-190)) -(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) -((($) . T) (((-499)) . T) ((|#1|) . T) (((-361 (-499))) . T)) -(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) -(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) -(((|#1|) . T)) -((((-1117) |#1|) |has| |#1| (-468 (-1117) |#1|)) ((|#1| |#1|) |has| |#1| (-263 |#1|))) -(((|#1|) |has| |#1| (-263 |#1|))) -(((|#1| $) |has| |#1| (-240 |#1| |#1|))) -(((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-361 (-499))) . T) (((-499)) |has| |#1| (-596 (-499)))) -(((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) -(((|#1|) . T)) -((((-499)) |has| |#1| (-821 (-499))) (((-333)) |has| |#1| (-821 (-333)))) -(|has| |#1| (-763)) -(|has| |#1| (-763)) -(|has| |#1| (-763)) -(-3677 (|has| |#1| (-763)) (|has| |#1| (-781))) -(-3677 (|has| |#1| (-763)) (|has| |#1| (-781))) -(|has| |#1| (-763)) -(|has| |#1| (-763)) -(|has| |#1| (-763)) -(((|#1|) . T)) -(|has| |#1| (-848)) -(|has| |#1| (-960)) -((((-488)) |has| |#1| (-569 (-488))) (((-825 (-499))) |has| |#1| (-569 (-825 (-499)))) (((-825 (-333))) |has| |#1| (-569 (-825 (-333)))) (((-333)) |has| |#1| (-960)) (((-179)) |has| |#1| (-960))) -((((-499)) . T) ((|#1|) . T) (($) . T) (((-361 (-499))) . T) (((-1117)) |has| |#1| (-978 (-1117)))) -((((-361 (-499))) |has| |#1| (-978 (-499))) (((-499)) |has| |#1| (-978 (-499))) (((-1117)) |has| |#1| (-978 (-1117))) ((|#1|) . T)) -(|has| |#1| (-1092)) -(((|#1|) . T)) -((((-797)) . T)) -((((-797)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-797)) . T)) +(((|#1|) . T)) +((((-1079)) |has| |#1| (-802 (-1079)))) +((((-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079))))) +((($ (-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079))))) +(((|#1|) . T)) +(OR (|has| |#1| (-188)) (|has| |#1| (-187))) +((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)))) +(|has| |#1| (-188)) +(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) +((($) . T) (((-478)) . T) ((|#1|) . T) (((-343 (-478))) . T)) +(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) +(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) +(((|#1|) . T)) +((((-1079) |#1|) |has| |#1| (-447 (-1079) |#1|)) ((|#1| |#1|) |has| |#1| (-256 |#1|))) +(((|#1|) |has| |#1| (-256 |#1|))) +(((|#1| $) |has| |#1| (-238 |#1| |#1|))) +(((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-343 (-478))) . T) (((-478)) |has| |#1| (-575 (-478)))) +(((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) +(((|#1|) . T)) +((((-478)) |has| |#1| (-789 (-478))) (((-323)) |has| |#1| (-789 (-323)))) +(|has| |#1| (-733)) +(|has| |#1| (-733)) +(|has| |#1| (-733)) +(OR (|has| |#1| (-733)) (|has| |#1| (-749))) +(OR (|has| |#1| (-733)) (|has| |#1| (-749))) +(|has| |#1| (-733)) +(|has| |#1| (-733)) +(|has| |#1| (-733)) +(((|#1|) . T)) +(|has| |#1| (-814)) +(|has| |#1| (-926)) +((((-467)) |has| |#1| (-548 (-467))) (((-793 (-478))) |has| |#1| (-548 (-793 (-478)))) (((-793 (-323))) |has| |#1| (-548 (-793 (-323)))) (((-323)) |has| |#1| (-926)) (((-177)) |has| |#1| (-926))) +((((-478)) . T) ((|#1|) . T) (($) . T) (((-343 (-478))) . T) (((-1079)) |has| |#1| (-943 (-1079)))) +((((-343 (-478))) |has| |#1| (-943 (-478))) (((-478)) |has| |#1| (-943 (-478))) (((-1079)) |has| |#1| (-943 (-1079))) ((|#1|) . T)) +(|has| |#1| (-1055)) +(((|#1|) . T)) +((((-765)) . T)) +((((-765)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-765)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-478)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-499)) . T)) -(((|#1|) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-344) (-1099)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-499) (-361 (-884 |#1|))) . T)) -((((-361 (-884 |#1|))) . T)) -((((-361 (-884 |#1|))) . T)) -((((-361 (-884 |#1|))) . T)) -((((-1082 |#2| (-361 (-884 |#1|)))) . T) (((-361 (-884 |#1|))) . T)) -((((-797)) . T)) -((((-1082 |#2| (-361 (-884 |#1|)))) . T) (((-361 (-884 |#1|))) . T) (((-499)) . T)) -((((-361 (-884 |#1|))) . T)) -((((-361 (-884 |#1|))) . T)) -((((-361 (-884 |#1|)) (-361 (-884 |#1|))) . T)) -((((-361 (-884 |#1|))) . T)) -((((-361 (-884 |#1|))) . T)) -((((-488)) |has| |#2| (-569 (-488))) (((-825 (-333))) |has| |#2| (-569 (-825 (-333)))) (((-825 (-499))) |has| |#2| (-569 (-825 (-499))))) +(((|#1|) . T) (((-478)) . T)) +(((|#1|) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-478) (-343 (-850 |#1|))) . T)) +((((-343 (-850 |#1|))) . T)) +((((-343 (-850 |#1|))) . T)) +((((-343 (-850 |#1|))) . T)) +((((-1045 |#2| (-343 (-850 |#1|)))) . T) (((-343 (-850 |#1|))) . T)) +((((-765)) . T)) +((((-1045 |#2| (-343 (-850 |#1|)))) . T) (((-343 (-850 |#1|))) . T) (((-478)) . T)) +((((-343 (-850 |#1|))) . T)) +((((-343 (-850 |#1|))) . T)) +((((-343 (-850 |#1|)) (-343 (-850 |#1|))) . T)) +((((-343 (-850 |#1|))) . T)) +((((-343 (-850 |#1|))) . T)) +((((-467)) |has| |#2| (-548 (-467))) (((-793 (-323))) |has| |#2| (-548 (-793 (-323)))) (((-793 (-478))) |has| |#2| (-548 (-793 (-478))))) ((($) . T)) (((|#2| |#3|) . T)) (((|#2|) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T)) +(|has| |#2| (-116)) (|has| |#2| (-118)) -(|has| |#2| (-120)) -(-3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (($) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (($) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -((((-361 (-499)) (-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2| |#2|) . T) (($ $) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -(-3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) -(-3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +(OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +((((-343 (-478)) (-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +(OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) +(OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) (((|#2| |#3|) . T)) (((|#2|) . T)) -((($) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) -(((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) -(-3677 (|has| |#2| (-406)) (|has| |#2| (-848))) -((($ $) . T) (((-798 |#1|) $) . T) (((-798 |#1|) |#2|) . T)) -((((-798 |#1|)) . T)) -((($ (-798 |#1|)) . T)) -((((-798 |#1|)) . T)) -(|has| |#2| (-848)) -(|has| |#2| (-848)) -((((-361 (-499))) |has| |#2| (-978 (-361 (-499)))) (((-499)) |has| |#2| (-978 (-499))) ((|#2|) . T) (((-798 |#1|)) . T)) -((((-499)) . T) (((-361 (-499))) -3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499))))) ((|#2|) . T) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) (((-798 |#1|)) . T)) -(((|#2| |#3| (-798 |#1|)) . T)) +((($) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) +(((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) +(OR (|has| |#2| (-385)) (|has| |#2| (-814))) +((($ $) . T) (((-766 |#1|) $) . T) (((-766 |#1|) |#2|) . T)) +((((-766 |#1|)) . T)) +((($ (-766 |#1|)) . T)) +((((-766 |#1|)) . T)) +(|has| |#2| (-814)) +(|has| |#2| (-814)) +((((-343 (-478))) |has| |#2| (-943 (-343 (-478)))) (((-478)) |has| |#2| (-943 (-478))) ((|#2|) . T) (((-766 |#1|)) . T)) +((((-478)) . T) (((-343 (-478))) OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478))))) ((|#2|) . T) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) (((-766 |#1|)) . T)) +(((|#2| |#3| (-766 |#1|)) . T)) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) -((((-797)) . T)) -(((|#2|) . T) (((-499)) . T) ((|#6|) . T)) +((((-765)) . T)) +(((|#2|) . T) (((-478)) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#4|) . T)) -((((-599 |#4|)) . T) (((-797)) . T)) -(((|#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) -(((|#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) +((((-578 |#4|)) . T) (((-765)) . T)) +(((|#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005)))) +(((|#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005)))) (((|#4|) . T)) -((((-488)) |has| |#4| (-569 (-488)))) +((((-467)) |has| |#4| (-548 (-467)))) (((|#1| |#2| |#3| |#4|) . T)) -((((-797)) . T)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -((((-797)) . T)) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) -(|has| |#1| (-318)) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(((|#1| (-361 (-499))) . T)) -(((|#1| (-361 (-499))) . T)) -(|has| |#1| (-120)) +((((-765)) . T)) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +((((-765)) . T)) +(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(|has| |#1| (-308)) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(((|#1| (-343 (-478))) . T)) +(((|#1| (-343 (-478))) . T)) (|has| |#1| (-118)) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-499)) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) |has| |#1| (-146))) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) |has| |#1| (-146))) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) |has| |#1| (-146))) -((($) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) . T)) -((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) ((|#1|) . T)) -((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) ((|#1|) . T)) -((((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) ((|#1| |#1|) . T)) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) |has| |#1| (-146))) -(((|#1| (-361 (-499)) (-1022)) . T)) -((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) -((($ (-1204 |#2|)) . T) (($ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) -((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) -((((-361 (-499)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) +(|has| |#1| (-116)) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-478)) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) +((($) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) . T)) +((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) ((|#1|) . T)) +((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) ((|#1|) . T)) +((((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) +(((|#1| (-343 (-478)) (-986)) . T)) +((((-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) +((($ (-1165 |#2|)) . T) (($ (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) +((((-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) +((((-343 (-478)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-797)) . T)) +((((-765)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-488)) |has| |#4| (-569 (-488)))) +((((-467)) |has| |#4| (-548 (-467)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) -(((|#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) +(((|#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005)))) +(((|#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005)))) (((|#4|) . T)) -((((-797)) . T) (((-599 |#4|)) . T)) +((((-765)) . T) (((-578 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-488)) . T) (((-361 (-1111 (-499)))) . T) (((-179)) . T) (((-333)) . T)) -((((-361 (-499))) . T) (((-499)) . T)) -((((-333)) . T) (((-179)) . T) (((-797)) . T)) -((($) . T) (((-361 (-499))) . T)) -((($) . T) (((-361 (-499))) . T)) -((($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) -((((-361 (-499))) . T) (((-499)) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (((-499)) . T) (($) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) +((((-467)) . T) (((-343 (-1074 (-478)))) . T) (((-177)) . T) (((-323)) . T)) +((((-343 (-478))) . T) (((-478)) . T)) +((((-323)) . T) (((-177)) . T) (((-765)) . T)) +((($) . T) (((-343 (-478))) . T)) +((($) . T) (((-343 (-478))) . T)) +((($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) +((((-343 (-478))) . T) (((-478)) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (((-478)) . T) (($) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) (((|#1| |#2|) . T)) -((((-797)) . T)) +((((-765)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-488)) |has| |#2| (-569 (-488))) (((-825 (-333))) |has| |#2| (-569 (-825 (-333)))) (((-825 (-499))) |has| |#2| (-569 (-825 (-499))))) +((((-467)) |has| |#2| (-548 (-467))) (((-793 (-323))) |has| |#2| (-548 (-793 (-323)))) (((-793 (-478))) |has| |#2| (-548 (-793 (-478))))) ((($) . T)) -(((|#2| (-436 (-4107 |#1|) (-714))) . T)) +(((|#2| (-415 (-3941 |#1|) (-687))) . T)) (((|#2|) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T)) +(|has| |#2| (-116)) (|has| |#2| (-118)) -(|has| |#2| (-120)) -(-3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (($) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (($) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -((((-361 (-499)) (-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2| |#2|) . T) (($ $) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -(-3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) -(-3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -(((|#2| (-436 (-4107 |#1|) (-714))) . T)) -(((|#2|) . T)) -((($) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) -(((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) -(-3677 (|has| |#2| (-406)) (|has| |#2| (-848))) -((($ $) . T) (((-798 |#1|) $) . T) (((-798 |#1|) |#2|) . T)) -((((-798 |#1|)) . T)) -((($ (-798 |#1|)) . T)) -((((-798 |#1|)) . T)) -(|has| |#2| (-848)) -(|has| |#2| (-848)) -((((-361 (-499))) |has| |#2| (-978 (-361 (-499)))) (((-499)) |has| |#2| (-978 (-499))) ((|#2|) . T) (((-798 |#1|)) . T)) -((((-499)) . T) (((-361 (-499))) -3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499))))) ((|#2|) . T) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) (((-798 |#1|)) . T)) -(((|#2| (-436 (-4107 |#1|) (-714)) (-798 |#1|)) . T)) -(-3677 (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989))) -(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-738)) (|has| |#2| (-989))) -(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-323)) (|has| |#2| (-684)) (|has| |#2| (-738)) (|has| |#2| (-781)) (|has| |#2| (-989)) (|has| |#2| (-1041))) -(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-73)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-323)) (|has| |#2| (-684)) (|has| |#2| (-738)) (|has| |#2| (-781)) (|has| |#2| (-989)) (|has| |#2| (-1041))) -(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-738)) (|has| |#2| (-989))) -(-3677 (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-738)) (|has| |#2| (-989))) -(((|#2| |#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989)))) -(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-684)) (|has| |#2| (-989)))) -(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989)))) -((((-797)) -3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-568 (-797))) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-323)) (|has| |#2| (-684)) (|has| |#2| (-738)) (|has| |#2| (-781)) (|has| |#2| (-989)) (|has| |#2| (-1041))) (((-1207 |#2|)) . T)) -(((|#2|) |has| |#2| (-989))) -((((-1117)) -12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989)))) -((((-1117)) -3677 (-12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989))) (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))))) -((($ (-1117)) -3677 (-12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989))) (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))))) -(((|#2|) |has| |#2| (-989))) -(-3677 (-12 (|has| |#2| (-190)) (|has| |#2| (-989))) (-12 (|has| |#2| (-189)) (|has| |#2| (-989)))) -((($) -3677 (-12 (|has| |#2| (-190)) (|has| |#2| (-989))) (-12 (|has| |#2| (-189)) (|has| |#2| (-989))))) -(|has| |#2| (-989)) -(|has| |#2| (-989)) -(|has| |#2| (-989)) -(|has| |#2| (-989)) -((((-499)) -3677 (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989))) ((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-684)) (|has| |#2| (-989))) (($) |has| |#2| (-989))) -(-12 (|has| |#2| (-190)) (|has| |#2| (-989))) -(|has| |#2| (-323)) -(((|#2|) |has| |#2| (-989))) -(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989))) (($) |has| |#2| (-989)) (((-499)) -12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989)))) -(((|#2|) |has| |#2| (-989)) (((-499)) -12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989)))) -(((|#2|) |has| |#2| (-1041))) -((((-499)) -3677 (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (|has| |#2| (-989))) ((|#2|) |has| |#2| (-1041)) (((-361 (-499))) -12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041)))) -(((|#2|) |has| |#2| (-1041)) (((-499)) -12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (((-361 (-499))) -12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041)))) -((((-499) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) -(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) -(((|#2|) . T)) -((((-499) |#2|) . T)) -((((-499) |#2|) . T)) -(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-684)))) -(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)))) -(|has| |#2| (-738)) -(|has| |#2| (-738)) -(-3677 (|has| |#2| (-738)) (|has| |#2| (-781))) -(-3677 (|has| |#2| (-738)) (|has| |#2| (-781))) -(|has| |#2| (-738)) -(|has| |#2| (-738)) -(((|#2|) |has| |#2| (-318))) +(OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +((((-343 (-478)) (-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +(OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) +(OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +(((|#2| (-415 (-3941 |#1|) (-687))) . T)) +(((|#2|) . T)) +((($) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) +(((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) +(OR (|has| |#2| (-385)) (|has| |#2| (-814))) +((($ $) . T) (((-766 |#1|) $) . T) (((-766 |#1|) |#2|) . T)) +((((-766 |#1|)) . T)) +((($ (-766 |#1|)) . T)) +((((-766 |#1|)) . T)) +(|has| |#2| (-814)) +(|has| |#2| (-814)) +((((-343 (-478))) |has| |#2| (-943 (-343 (-478)))) (((-478)) |has| |#2| (-943 (-478))) ((|#2|) . T) (((-766 |#1|)) . T)) +((((-478)) . T) (((-343 (-478))) OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478))))) ((|#2|) . T) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) (((-766 |#1|)) . T)) +(((|#2| (-415 (-3941 |#1|) (-687)) (-766 |#1|)) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-710)) (|has| |#2| (-954))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-313)) (|has| |#2| (-658)) (|has| |#2| (-710)) (|has| |#2| (-749)) (|has| |#2| (-954)) (|has| |#2| (-1005))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-313)) (|has| |#2| (-658)) (|has| |#2| (-710)) (|has| |#2| (-749)) (|has| |#2| (-954)) (|has| |#2| (-1005))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-710)) (|has| |#2| (-954))) +(OR (|has| |#2| (-21)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-710)) (|has| |#2| (-954))) +(((|#2| |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954)))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-658)) (|has| |#2| (-954)))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954)))) +((((-765)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-547 (-765))) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-313)) (|has| |#2| (-658)) (|has| |#2| (-710)) (|has| |#2| (-749)) (|has| |#2| (-954)) (|has| |#2| (-1005))) (((-1168 |#2|)) . T)) +(((|#2|) |has| |#2| (-954))) +((((-1079)) -12 (|has| |#2| (-802 (-1079))) (|has| |#2| (-954)))) +((((-1079)) OR (-12 (|has| |#2| (-802 (-1079))) (|has| |#2| (-954))) (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))))) +((($ (-1079)) OR (-12 (|has| |#2| (-802 (-1079))) (|has| |#2| (-954))) (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))))) +(((|#2|) |has| |#2| (-954))) +(OR (-12 (|has| |#2| (-188)) (|has| |#2| (-954))) (-12 (|has| |#2| (-187)) (|has| |#2| (-954)))) +((($) OR (-12 (|has| |#2| (-188)) (|has| |#2| (-954))) (-12 (|has| |#2| (-187)) (|has| |#2| (-954))))) +(|has| |#2| (-954)) +(|has| |#2| (-954)) +(|has| |#2| (-954)) +(|has| |#2| (-954)) +((((-478)) OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954))) ((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-658)) (|has| |#2| (-954))) (($) |has| |#2| (-954))) +(-12 (|has| |#2| (-188)) (|has| |#2| (-954))) +(|has| |#2| (-313)) +(((|#2|) |has| |#2| (-954))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954))) (($) |has| |#2| (-954)) (((-478)) -12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954)))) +(((|#2|) |has| |#2| (-954)) (((-478)) -12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954)))) +(((|#2|) |has| |#2| (-1005))) +((((-478)) OR (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) (|has| |#2| (-954))) ((|#2|) |has| |#2| (-1005)) (((-343 (-478))) -12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005)))) +(((|#2|) |has| |#2| (-1005)) (((-478)) -12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) (((-343 (-478))) -12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005)))) +((((-478) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005)))) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005)))) +(((|#2|) . T)) +((((-478) |#2|) . T)) +((((-478) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-658)))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)))) +(|has| |#2| (-710)) +(|has| |#2| (-710)) +(OR (|has| |#2| (-710)) (|has| |#2| (-749))) +(OR (|has| |#2| (-710)) (|has| |#2| (-749))) +(|has| |#2| (-710)) +(|has| |#2| (-710)) +(((|#2|) |has| |#2| (-308))) (((|#1| |#2|) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) (((|#1|) . T)) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(|has| |#1| (-1041)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(|has| |#1| (-1005)) (((|#1|) . T)) (((|#1|) . T)) -((((-499)) . T)) -((((-797)) . T)) +((((-478)) . T)) +((((-765)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-944 16)) . T) (((-361 (-499))) . T) (((-797)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((($) . T)) -((((-499)) . T) (($) . T) (((-361 (-499))) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) . T)) -((((-499)) . T) (($) . T) (((-361 (-499))) . T)) -((((-499)) . T) (($) . T) (((-361 (-499))) . T)) -((((-499)) . T) (((-361 (-499))) . T) (($) . T)) -((((-499)) . T) (((-361 (-499))) . T) (($) . T)) -((((-499) (-499)) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-488)) . T) (((-825 (-499))) . T) (((-333)) . T) (((-179)) . T)) -((((-361 (-499))) . T) (((-499)) . T)) -((((-499)) . T) (($) . T) (((-361 (-499))) . T)) -((((-499)) . T)) -((((-1099)) . T) (((-797)) . T)) -((($) . T)) -((((-142 (-333))) . T) (((-179)) . T) (((-333)) . T)) -((((-361 (-499))) . T) (((-499)) . T)) -((($) . T) (((-361 (-499))) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) . T)) -((((-499)) . T) (($) . T) (((-361 (-499))) . T)) -((($) . T) (((-361 (-499))) . T)) -((($) . T) (((-361 (-499))) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-566 $) $) . T)) -((((-361 (-499))) . T) (((-499)) . T) (((-566 $)) . T)) -((((-1065 (-499) (-566 $))) . T) (($) . T) (((-499)) . T) (((-361 (-499))) . T) (((-566 $)) . T)) -((((-797)) . T)) -(((|#1|) . T)) -(|has| |#1| (-781)) -(|has| |#1| (-781)) -(((|#1|) . T)) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) -(((|#1|) . T)) -((((-488)) |has| |#1| (-569 (-488)))) -((((-499) |#1|) . T)) -((((-1174 (-499)) $) . T) (((-499) |#1|) . T)) -((((-499) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1041)) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) -(((|#1| (-450 |#1| |#3|) (-450 |#1| |#2|)) . T)) -((((-85)) . T)) -((((-85)) . T)) -((((-499) (-85)) . T)) -((((-499) (-85)) . T)) -((((-499) (-85)) . T) (((-1174 (-499)) $) . T)) -((((-488)) . T)) -((((-85)) . T)) -((((-797)) . T)) -((((-85)) . T)) -((((-85)) . T)) -((((-1099)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) +((((-910 16)) . T) (((-343 (-478))) . T) (((-765)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((($) . T)) +((((-478)) . T) (($) . T) (((-343 (-478))) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) . T)) +((((-478)) . T) (($) . T) (((-343 (-478))) . T)) +((((-478)) . T) (($) . T) (((-343 (-478))) . T)) +((((-478)) . T) (((-343 (-478))) . T) (($) . T)) +((((-478)) . T) (((-343 (-478))) . T) (($) . T)) +((((-478) (-478)) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-467)) . T) (((-793 (-478))) . T) (((-323)) . T) (((-177)) . T)) +((((-343 (-478))) . T) (((-478)) . T)) +((((-478)) . T) (($) . T) (((-343 (-478))) . T)) +((((-478)) . T)) +((((-1062)) . T) (((-765)) . T)) +((($) . T)) +((((-140 (-323))) . T) (((-177)) . T) (((-323)) . T)) +((((-343 (-478))) . T) (((-478)) . T)) +((($) . T) (((-343 (-478))) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) . T)) +((((-478)) . T) (($) . T) (((-343 (-478))) . T)) +((($) . T) (((-343 (-478))) . T)) +((($) . T) (((-343 (-478))) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-545 $) $) . T)) +((((-343 (-478))) . T) (((-478)) . T) (((-545 $)) . T)) +((((-1028 (-478) (-545 $))) . T) (($) . T) (((-478)) . T) (((-343 (-478))) . T) (((-545 $)) . T)) +((((-765)) . T)) +(((|#1|) . T)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1005))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-749)) (|has| |#1| (-1005))) +(((|#1|) . T)) +((((-467)) |has| |#1| (-548 (-467)))) +((((-478) |#1|) . T)) +((((-1135 (-478)) $) . T) (((-478) |#1|) . T)) +((((-478) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1005)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) +(((|#1| (-429 |#1| |#3|) (-429 |#1| |#2|)) . T)) +((((-83)) . T)) +((((-83)) . T)) +((((-478) (-83)) . T)) +((((-478) (-83)) . T)) +((((-478) (-83)) . T) (((-1135 (-478)) $) . T)) +((((-467)) . T)) +((((-83)) . T)) +((((-765)) . T)) +((((-83)) . T)) +((((-83)) . T)) +((((-1062)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) (((|#1| |#2|) . T)) -((((-797)) . T)) -((((-499)) . T)) +((((-765)) . T)) +((((-478)) . T)) (((|#1| |#2|) . T)) -((((-797)) . T)) -(-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) -((((-797)) -12 (|has| |#1| (-1041)) (|has| |#2| (-1041)))) +((((-765)) . T)) +(-12 (|has| |#1| (-1005)) (|has| |#2| (-1005))) +((((-765)) -12 (|has| |#1| (-1005)) (|has| |#2| (-1005)))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-797)) . T)) +((((-765)) . T)) (((|#1| |#2|) . T)) -((((-797)) . T)) -((((-797)) . T)) +((((-765)) . T)) +((((-765)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-781)) -(|has| |#1| (-781)) -(((|#1|) . T)) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) -(((|#1|) . T)) -((((-488)) |has| |#1| (-569 (-488)))) -((((-499) |#1|) . T)) -((((-1174 (-499)) $) . T) (((-499) |#1|) . T)) -((((-499) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-532 |#1|)) . T)) -((((-532 |#1|)) . T)) -((((-532 |#1|)) . T)) -((((-532 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) -((((-532 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) -((((-532 |#1|) (-532 |#1|)) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-532 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-532 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-797)) . T)) -((((-532 |#1|)) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -((((-532 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-532 |#1|)) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) -(|has| $ (-120)) -((($) . T)) -((((-532 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1041)) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1005))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-749)) (|has| |#1| (-1005))) +(((|#1|) . T)) +((((-467)) |has| |#1| (-548 (-467)))) +((((-478) |#1|) . T)) +((((-1135 (-478)) $) . T) (((-478) |#1|) . T)) +((((-478) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-511 |#1|)) . T)) +((((-511 |#1|)) . T)) +((((-511 |#1|)) . T)) +((((-511 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) +((((-511 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) +((((-511 |#1|) (-511 |#1|)) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-511 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-511 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-765)) . T)) +((((-511 |#1|)) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +((((-511 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-511 |#1|)) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(|has| $ (-118)) +((($) . T)) +((((-511 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1005)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) (((|#1| |#4| |#5|) . T)) -(((|#1| (-552 |#1| |#3|) (-552 |#1| |#2|)) . T)) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(|has| |#1| (-1041)) -(((|#1|) . T)) -(((|#1| (-552 |#1| |#3|) (-552 |#1| |#2|)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-797)) . T)) -((((-714) |#1|) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-530)) . T)) -((((-1043)) . T)) -((((-599 $)) . T) (((-1099)) . T) (((-1117)) . T) (((-499)) . T) (((-179)) . T) (((-797)) . T)) -((((-499) $) . T) (((-599 (-499)) $) . T)) -((((-797)) . T)) -((((-1099) (-1117) (-499) (-179) (-797)) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T)) +(((|#1| (-531 |#1| |#3|) (-531 |#1| |#2|)) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(|has| |#1| (-1005)) +(((|#1|) . T)) +(((|#1| (-531 |#1| |#3|) (-531 |#1| |#2|)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-765)) . T)) +((((-687) |#1|) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-509)) . T)) +((((-1007)) . T)) +((((-578 $)) . T) (((-1062)) . T) (((-1079)) . T) (((-478)) . T) (((-177)) . T) (((-765)) . T)) +((((-478) $) . T) (((-578 (-478)) $) . T)) +((((-765)) . T)) +((((-1062) (-1079) (-478) (-177) (-765)) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -1647,1341 +1625,1278 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-499)) . T) (($) . T)) -((((-499)) . T)) -((($) . T) (((-499)) . T)) -((((-499)) . T)) -((((-488)) . T) (((-499)) . T) (((-825 (-499))) . T) (((-333)) . T) (((-179)) . T)) -((((-499)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) +((((-478)) . T) (($) . T)) +((((-478)) . T)) +((($) . T) (((-478)) . T)) +((((-478)) . T)) +((((-467)) . T) (((-478)) . T) (((-793 (-478))) . T) (((-323)) . T) (((-177)) . T)) +((((-478)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) (((|#1| |#2|) . T)) -((((-797)) . T)) +((((-765)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-797)) . T)) -((((-499)) . T) (($) . T)) +((((-765)) . T)) +((((-478)) . T) (($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-499)) . T) (($) . T)) -((((-499)) . T)) +((((-478)) . T) (($) . T)) +((((-478)) . T)) (((|#1|) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) ((($) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-499)) . T) (($) . T)) +((((-478)) . T) (($) . T)) (((|#1|) . T)) -((((-499)) . T)) +((((-478)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -(|has| $ (-120)) +(|has| $ (-118)) ((($) . T)) -((((-797)) . T)) +((((-765)) . T)) ((($) . T)) -((($) . T) (((-361 (-499))) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) . T)) -((($) . T) (((-361 (-499))) . T)) -((($) . T) (((-361 (-499))) . T)) -((($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-499)) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-361 (-499)) (-361 (-499))) . T)) -((((-361 (-499))) . T)) -((((-361 (-499))) . T)) -((((-797)) . T)) -((((-499)) . T) (((-361 (-499))) . T)) -((((-361 (-499))) . T)) -((((-361 (-499))) . T)) -((((-361 (-499))) . T)) -((((-1122)) . T)) -((((-1122)) . T)) -((((-1122)) . T) (((-797)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -(|has| |#1| (-15 * (|#1| (-499) |#1|))) -((((-797)) . T)) -((($) |has| |#1| (-15 * (|#1| (-499) |#1|)))) -(|has| |#1| (-15 * (|#1| (-499) |#1|))) -((($ $) . T) (((-499) |#1|) . T)) -((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) -((($ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) -((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) -(((|#1| (-499) (-1022)) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T)) -((($) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T)) +((($) . T) (((-343 (-478))) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) . T)) +((($) . T) (((-343 (-478))) . T)) +((($) . T) (((-343 (-478))) . T)) +((($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-478)) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-343 (-478)) (-343 (-478))) . T)) +((((-343 (-478))) . T)) +((((-343 (-478))) . T)) +((((-765)) . T)) +((((-478)) . T) (((-343 (-478))) . T)) +((((-343 (-478))) . T)) +((((-343 (-478))) . T)) +((((-343 (-478))) . T)) +((((-1084)) . T)) +((((-1084)) . T)) +((((-1084)) . T) (((-765)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +(|has| |#1| (-15 * (|#1| (-478) |#1|))) +((((-765)) . T)) +((($) |has| |#1| (-15 * (|#1| (-478) |#1|)))) +(|has| |#1| (-15 * (|#1| (-478) |#1|))) +((($ $) . T) (((-478) |#1|) . T)) +((((-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) +((($ (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) +((((-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) +(((|#1| (-478) (-986)) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T)) +((($) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T)) +(|has| |#1| (-116)) (|has| |#1| (-118)) -(|has| |#1| (-120)) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-510))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510)))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510)))) -((((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1| |#1|) . T) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-510)))) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -((((-499)) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) -(((|#1| (-499)) . T)) -(((|#1| (-499)) . T)) -((($) |has| |#1| (-510))) -((($) |has| |#1| (-510))) -((($) |has| |#1| (-510))) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -((($) |has| |#1| (-510)) ((|#1|) . T)) -((($) |has| |#1| (-510)) ((|#1|) . T)) -((($ $) |has| |#1| (-510)) ((|#1| |#1|) . T)) -((($) |has| |#1| (-510)) (((-499)) . T)) +(OR (|has| |#1| (-144)) (|has| |#1| (-489))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-489)))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-489)))) +((((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-489)))) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +((((-478)) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) +(((|#1| (-478)) . T)) +(((|#1| (-478)) . T)) +((($) |has| |#1| (-489))) +((($) |has| |#1| (-489))) +((($) |has| |#1| (-489))) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +((($) |has| |#1| (-489)) ((|#1|) . T)) +((($) |has| |#1| (-489)) ((|#1|) . T)) +((($ $) |has| |#1| (-489)) ((|#1| |#1|) . T)) +((($) |has| |#1| (-489)) (((-478)) . T)) (((|#1|) . T) (($) . T)) -((((-797)) . T)) -(((|#1|) . T) (($) . T) (((-499)) . T)) -((((-1122)) . T)) -((((-1122)) . T)) -((((-1122)) . T) (((-797)) . T)) -((((-797)) . T)) +((((-765)) . T)) +(((|#1|) . T) (($) . T) (((-478)) . T)) +((((-1084)) . T)) +((((-1084)) . T)) +((((-1084)) . T) (((-765)) . T)) +((((-765)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-499) |#1|) . T)) -((((-499) |#1|) . T)) -((((-499) |#1|) . T) (((-1174 (-499)) $) . T)) -((((-488)) |has| |#1| (-569 (-488)))) +((((-478) |#1|) . T)) +((((-478) |#1|) . T)) +((((-478) |#1|) . T) (((-1135 (-478)) $) . T)) +((((-467)) |has| |#1| (-548 (-467)))) (((|#1|) . T)) -(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) +(OR (|has| |#1| (-749)) (|has| |#1| (-1005))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1005))) (((|#1|) . T)) -(|has| |#1| (-781)) -(|has| |#1| (-781)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) (((|#1|) . T)) (((|#1|) . T)) -((((-1122)) . T)) -((((-1158)) . T) (((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-499) |#1|) |has| |#2| (-372 |#1|))) -(((|#1|) -3677 (|has| |#2| (-322 |#1|)) (|has| |#2| (-372 |#1|)))) -(((|#1|) |has| |#2| (-372 |#1|))) +((((-1084)) . T)) +((((-1119)) . T) (((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-478) |#1|) |has| |#2| (-354 |#1|))) +(((|#1|) OR (|has| |#2| (-312 |#1|)) (|has| |#2| (-354 |#1|)))) +(((|#1|) |has| |#2| (-354 |#1|))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-797)) . T)) -(((|#1|) . T) (((-499)) . T)) +(((|#2|) . T) (((-765)) . T)) +(((|#1|) . T) (((-478)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-101)) . T)) -((((-101)) . T)) -((((-101)) . T) (((-797)) . T)) -((((-797)) . T)) -((((-101)) . T) (((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-101)) . T) (((-557)) . T)) -((((-101)) . T) (((-557)) . T)) -((((-101)) . T) (((-557)) . T) (((-797)) . T)) -((((-1099) |#1|) . T)) -((((-1099) |#1|) . T)) -((((-1099) |#1|) . T)) -((((-1099) |#1|) . T)) -((((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) |has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) |has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))))) -((((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) -((((-1099) |#1|) . T)) -((((-797)) . T)) -((((-344) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) -((((-488)) |has| |#1| (-569 (-488))) (((-825 (-333))) |has| |#1| (-569 (-825 (-333)))) (((-825 (-499))) |has| |#1| (-569 (-825 (-499))))) -(((|#1|) . T)) -((((-797)) . T)) -((((-797)) . T)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-797)) . T)) +((((-99)) . T)) +((((-99)) . T)) +((((-99)) . T) (((-765)) . T)) +((((-765)) . T)) +((((-99)) . T) (((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-99)) . T) (((-536)) . T)) +((((-99)) . T) (((-536)) . T)) +((((-99)) . T) (((-536)) . T) (((-765)) . T)) +((((-1062) |#1|) . T)) +((((-1062) |#1|) . T)) +((((-1062) |#1|) . T)) +((((-1062) |#1|) . T)) +((((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) (((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) |has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) (((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) |has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))))) +((((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) . T)) +((((-1062) |#1|) . T)) +((((-765)) . T)) +((((-331) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) . T)) +((((-467)) |has| |#1| (-548 (-467))) (((-793 (-323))) |has| |#1| (-548 (-793 (-323)))) (((-793 (-478))) |has| |#1| (-548 (-793 (-478))))) +(((|#1|) . T)) +((((-765)) . T)) +((((-765)) . T)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-765)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) -(((|#2|) . T) (((-499)) . T) (($) . T)) +(((|#2|) . T) (((-478)) . T) (($) . T)) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-499)) . T)) +(((|#2|) . T) (((-478)) . T)) (((|#2|) . T)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(|has| |#1| (-116)) (|has| |#1| (-118)) -(|has| |#1| (-120)) -(((|#2|) . T) (((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) |has| |#1| (-978 (-499))) ((|#1|) . T)) +(((|#2|) . T) (((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) |has| |#1| (-943 (-478))) ((|#1|) . T)) (((|#1|) . T)) -((((-361 |#2|)) . T)) +((((-343 |#2|)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -(|has| |#2| (-190)) -(((|#2|) . T) (((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((|#1|) . T) (($) . T) (((-499)) . T)) +(|has| |#2| (-188)) +(((|#2|) . T) (((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((|#1|) . T) (($) . T) (((-478)) . T)) ((($) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T)) -((($) -3677 (|has| |#2| (-190)) (|has| |#2| (-189)))) -(-3677 (|has| |#2| (-190)) (|has| |#2| (-189))) +((((-765)) . T)) +((($) . T) (((-478)) . T)) +((($) OR (|has| |#2| (-188)) (|has| |#2| (-187)))) +(OR (|has| |#2| (-188)) (|has| |#2| (-187))) (((|#2|) . T)) -((($ (-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117))))) -((((-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117))))) -((((-1117)) |has| |#2| (-836 (-1117)))) +((($ (-1079)) OR (|has| |#2| (-802 (-1079))) (|has| |#2| (-804 (-1079))))) +((((-1079)) OR (|has| |#2| (-802 (-1079))) (|has| |#2| (-804 (-1079))))) +((((-1079)) |has| |#2| (-802 (-1079)))) (((|#2|) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-797)) . T)) -((((-1099) (-51)) . T)) -((((-797)) . T)) -((((-1117) (-51)) . T) (((-1099) (-51)) . T)) -((((-1099) (-51)) . T)) -((((-1099) (-51)) . T)) -((((-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) . T)) -((((-51)) . T) (((-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) |has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))))) -((((-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) |has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))))) -((((-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) . T)) -((((-1099) (-51)) . T)) -((((-499) |#1|) |has| |#2| (-372 |#1|))) -(((|#1|) -3677 (|has| |#2| (-322 |#1|)) (|has| |#2| (-372 |#1|)))) -(((|#1|) |has| |#2| (-372 |#1|))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-797)) . T)) -(((|#1|) . T) (((-499)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-765)) . T)) +((((-1062) (-51)) . T)) +((((-765)) . T)) +((((-1079) (-51)) . T) (((-1062) (-51)) . T)) +((((-1062) (-51)) . T)) +((((-1062) (-51)) . T)) +((((-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) . T)) +((((-51)) . T) (((-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) |has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-256 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))))) +((((-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) |has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-256 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))))) +((((-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) . T)) +((((-1062) (-51)) . T)) +((((-478) |#1|) |has| |#2| (-354 |#1|))) +(((|#1|) OR (|has| |#2| (-312 |#1|)) (|has| |#2| (-354 |#1|)))) +(((|#1|) |has| |#2| (-354 |#1|))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-765)) . T)) +(((|#1|) . T) (((-478)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-798 |#1|)) . T)) -((((-797)) . T)) -(((|#1| (-593 |#2|)) . T)) -((((-593 |#2|)) . T)) +((((-766 |#1|)) . T)) +((((-765)) . T)) +(((|#1| (-572 |#2|)) . T)) +((((-572 |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-797)) . T)) -(((|#1|) . T) (((-499)) . T)) +((((-765)) . T)) +(((|#1|) . T) (((-478)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-595 |#1| |#2|) |#1|) . T)) +((((-574 |#1| |#2|) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-797)) . T)) -(((|#1|) . T) (((-499)) . T)) +((((-765)) . T)) +(((|#1|) . T) (((-478)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) +(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1005))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-749)) (|has| |#1| (-1005))) (((|#1|) . T)) -((((-488)) |has| |#1| (-569 (-488)))) -((((-499) |#1|) . T)) -((((-1174 (-499)) $) . T) (((-499) |#1|) . T)) -((((-499) |#1|) . T)) +((((-467)) |has| |#1| (-548 (-467)))) +((((-478) |#1|) . T)) +((((-1135 (-478)) $) . T) (((-478) |#1|) . T)) +((((-478) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-781)) -(|has| |#1| (-781)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1122)) . T)) -(((|#1|) . T) (((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) +((((-1084)) . T)) +(((|#1|) . T) (((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) (((|#1|) . T)) -((((-488)) |has| |#1| (-569 (-488)))) +((((-467)) |has| |#1| (-548 (-467)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1041)) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) +(|has| |#1| (-1005)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-797)) . T)) -(|has| |#1| (-735)) -(|has| |#1| (-735)) -(|has| |#1| (-735)) -(|has| |#1| (-735)) -(|has| |#1| (-735)) -(|has| |#1| (-735)) +((((-765)) . T)) +(|has| |#1| (-707)) +(|has| |#1| (-707)) +(|has| |#1| (-707)) +(|has| |#1| (-707)) +(|has| |#1| (-707)) +(|has| |#1| (-707)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-797)) . T)) -((((-499)) . T) ((|#2|) . T)) +((((-765)) . T)) +((((-478)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) |has| |#1| (-978 (-499))) ((|#1|) . T)) +((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) |has| |#1| (-943 (-478))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -((((-797)) . T)) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +((((-765)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-478)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((|#1|) . T) (((-499)) . T)) -(((|#1|) |has| |#1| (-146))) +((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((|#1|) . T) (((-478)) . T)) +(((|#1|) |has| |#1| (-144))) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) |has| |#1| (-978 (-499))) ((|#1|) . T)) +((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) |has| |#1| (-943 (-478))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -((((-797)) . T)) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +((((-765)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-478)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((|#1|) . T) (((-499)) . T)) -(((|#1|) |has| |#1| (-146))) +((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((|#1|) . T) (((-478)) . T)) +(((|#1|) |has| |#1| (-144))) (((|#1|) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) (((|#1|) . T)) -((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) |has| |#1| (-978 (-499))) ((|#1|) . T)) +((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) |has| |#1| (-943 (-478))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -((((-797)) . T)) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +((((-765)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-478)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((|#1|) . T) (((-499)) . T)) -(((|#1|) |has| |#1| (-146))) +((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((|#1|) . T) (((-478)) . T)) +(((|#1|) |has| |#1| (-144))) (((|#1|) . T)) -((((-630 |#1|)) . T)) -((((-630 |#1|)) . T)) -(((|#2| (-630 |#1|)) . T)) +((((-609 |#1|)) . T)) +((((-609 |#1|)) . T)) +(((|#2| (-609 |#1|)) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-797)) . T)) -((((-499)) . T) ((|#2|) . T)) +((((-765)) . T)) +((((-478)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-499) |#2|) . T)) +((((-478) |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-6 (-4147 "*")))) +(((|#2|) |has| |#2| (-6 (-3981 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-647 |#2|)) . T) (((-797)) . T)) -((($) . T) (((-499)) . T) ((|#2|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-1117)) |has| |#2| (-836 (-1117)))) -((((-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117))))) -((($ (-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117))))) -(((|#2|) . T)) -(-3677 (|has| |#2| (-190)) (|has| |#2| (-189))) -((($) -3677 (|has| |#2| (-190)) (|has| |#2| (-189)))) -(|has| |#2| (-190)) -(((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) -(((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) -(((|#2|) . T)) -((((-499)) . T) ((|#2|) . T) (((-361 (-499))) |has| |#2| (-978 (-361 (-499))))) -(((|#2|) . T) (((-499)) |has| |#2| (-978 (-499))) (((-361 (-499))) |has| |#2| (-978 (-361 (-499))))) -(((|#1| |#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) -(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) -(((|#2|) . T)) -(((|#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-797)) . T)) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(|has| |#1| (-1041)) -(((|#1|) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-797)) . T)) -((((-1122)) . T)) -((((-1158)) . T) (((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-488)) |has| |#1| (-569 (-488)))) -(((|#1| (-1207 |#1|) (-1207 |#1|)) . T)) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(|has| |#1| (-1041)) -(((|#1|) . T)) -(((|#1| (-1207 |#1|) (-1207 |#1|)) . T)) -((((-797)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-657)) . T)) -((((-657)) . T)) -((((-657)) . T)) -((((-657)) . T)) -((((-657)) . T)) -((((-657)) . T)) -((((-333)) . T)) -((((-657)) . T)) -((((-657) (-1111 (-657))) . T)) -((((-657) (-1111 (-657))) . T)) -((((-657) (-1111 (-657))) . T)) -((((-657)) . T)) -((((-142 (-179))) . T) (((-142 (-333))) . T) (((-1111 (-657))) . T) (((-825 (-333))) . T)) -((((-657)) . T)) -((((-361 (-499))) . T) (((-657)) . T) (($) . T)) -((((-361 (-499))) . T) (((-657)) . T) (($) . T)) -((((-361 (-499))) . T) (((-657)) . T) (($) . T)) -((((-797)) . T)) -((((-361 (-499))) . T) (((-657)) . T) (($) . T) (((-499)) . T)) -((((-361 (-499))) . T) (((-657)) . T) (($) . T)) -((((-361 (-499))) . T) (((-657)) . T) (($) . T)) -((((-361 (-499)) (-361 (-499))) . T) (((-657) (-657)) . T) (($ $) . T)) -((((-361 (-499))) . T) (((-657)) . T) (($) . T) (((-499)) . T)) -((((-361 (-499))) . T) (((-657)) . T) (($) . T)) -((((-657)) . T) (((-361 (-499))) . T) (((-499)) . T)) -((((-333)) . T) (((-499)) . T) (((-361 (-499))) . T)) -((((-333)) . T)) -((($) . T) (((-361 (-499))) . T)) -((($) . T) (((-361 (-499))) . T)) -((($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-179)) . T) (((-333)) . T) (((-825 (-333))) . T)) -((((-797)) . T)) -((((-361 (-499))) . T) (((-499)) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-333)) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) -((($) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-488)) . T) (((-499)) . T) (((-825 (-499))) . T) (((-333)) . T) (((-179)) . T)) -((($) . T)) -((($) . T)) -((((-499)) . T) (($) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T)) -((($) . T)) -((($) . T)) -((($ $) . T)) -((($) . T) (((-499)) . T)) -((($) . T)) -((((-499)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((($) . T) (((-361 (-499))) . T)) -((($) . T) (((-361 (-499))) . T)) -((($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) -((((-361 (-499))) . T) (((-499)) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (((-499)) . T) (($) . T)) -(|has| |#1| (-323)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-797)) . T)) -((((-361 $) (-361 $)) |has| |#1| (-510)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-318)) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(|has| |#1| (-318)) -(((|#1| (-714) (-1022)) . T)) -(|has| |#1| (-848)) -(|has| |#1| (-848)) -((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (((-1022)) . T)) -((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (($ (-1022)) . T)) -((((-1117)) |has| |#1| (-836 (-1117))) (((-1022)) . T)) -((((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-714)) . T)) -(|has| |#1| (-120)) +((((-625 |#2|)) . T) (((-765)) . T)) +((($) . T) (((-478)) . T) ((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-1079)) |has| |#2| (-802 (-1079)))) +((((-1079)) OR (|has| |#2| (-802 (-1079))) (|has| |#2| (-804 (-1079))))) +((($ (-1079)) OR (|has| |#2| (-802 (-1079))) (|has| |#2| (-804 (-1079))))) +(((|#2|) . T)) +(OR (|has| |#2| (-188)) (|has| |#2| (-187))) +((($) OR (|has| |#2| (-188)) (|has| |#2| (-187)))) +(|has| |#2| (-188)) +(((|#2|) . T)) +((($) . T) ((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) +(((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) +(((|#2|) . T)) +((((-478)) . T) ((|#2|) . T) (((-343 (-478))) |has| |#2| (-943 (-343 (-478))))) +(((|#2|) . T) (((-478)) |has| |#2| (-943 (-478))) (((-343 (-478))) |has| |#2| (-943 (-343 (-478))))) +(((|#1| |#1| |#2| (-194 |#1| |#2|) (-194 |#1| |#2|)) . T)) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005)))) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005)))) +(((|#2|) . T)) +(((|#1| |#2| (-194 |#1| |#2|) (-194 |#1| |#2|)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-765)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-765)) . T)) +((((-1084)) . T)) +((((-1119)) . T) (((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-467)) |has| |#1| (-548 (-467)))) +(((|#1| (-1168 |#1|) (-1168 |#1|)) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(|has| |#1| (-1005)) +(((|#1|) . T)) +(((|#1| (-1168 |#1|) (-1168 |#1|)) . T)) +((((-765)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-765)) . T)) +((((-765)) . T)) +((($) . T) (((-343 (-478))) . T)) +((($) . T) (((-343 (-478))) . T)) +((($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) +((((-343 (-478))) . T) (((-478)) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (((-478)) . T) (($) . T)) +(|has| |#1| (-313)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-765)) . T)) +((((-343 $) (-343 $)) |has| |#1| (-489)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-308)) +(OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-814))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(|has| |#1| (-308)) +(((|#1| (-687) (-986)) . T)) +(|has| |#1| (-814)) +(|has| |#1| (-814)) +((((-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079)))) (((-986)) . T)) +((($ (-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079)))) (($ (-986)) . T)) +((((-1079)) |has| |#1| (-802 (-1079))) (((-986)) . T)) +((((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-687)) . T)) (|has| |#1| (-118)) -(((|#2|) . T) (((-499)) . T) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) (((-1022)) . T) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499)))))) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) . T) (((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((((-499)) . T) (($) . T) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -(((|#1|) . T)) -((((-1022)) . T) ((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) -(((|#1| (-714)) . T)) -((((-1022) |#1|) . T) (((-1022) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-1092)) -(((|#1|) . T)) -((((-2 (|:| -2518 |#1|) (|:| -2519 |#2|))) . T)) -((((-2 (|:| -2518 |#1|) (|:| -2519 |#2|))) . T)) -((((-2 (|:| -2518 |#1|) (|:| -2519 |#2|))) . T) (((-797)) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1| |#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) +(|has| |#1| (-116)) +(((|#2|) . T) (((-478)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) (((-986)) . T) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478)))))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) . T) (((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((((-478)) . T) (($) . T) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +(((|#1|) . T)) +((((-986)) . T) ((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) +(((|#1| (-687)) . T)) +((((-986) |#1|) . T) (((-986) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-1055)) +(((|#1|) . T)) +((((-2 (|:| -2386 |#1|) (|:| -2387 |#2|))) . T)) +((((-2 (|:| -2386 |#1|) (|:| -2387 |#2|))) . T)) +((((-2 (|:| -2386 |#1|) (|:| -2387 |#2|))) . T) (((-765)) . T)) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +(((|#1| |#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +(|has| |#1| (-116)) (|has| |#1| (-118)) -(|has| |#1| (-120)) (((|#2| |#2|) . T)) -((((-86)) . T) ((|#1|) . T)) -((((-86)) . T) ((|#1|) . T) (((-499)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T)) -((((-797)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-499)) . T)) -((((-499)) . T)) -((($) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T)) -((((-797)) . T)) -((((-488)) |has| |#2| (-569 (-488))) (((-825 (-333))) |has| |#2| (-569 (-825 (-333)))) (((-825 (-499))) |has| |#2| (-569 (-825 (-499))))) -((($) . T)) -(((|#2| (-484 (-798 |#1|))) . T)) -(((|#2|) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T)) +((((-84)) . T) ((|#1|) . T)) +((((-84)) . T) ((|#1|) . T) (((-478)) . T)) +(((|#1|) |has| |#1| (-144)) (($) . T)) +((((-765)) . T)) +(((|#1|) |has| |#1| (-144)) (($) . T) (((-478)) . T)) +((((-478)) . T)) +((($) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T)) +((((-765)) . T)) +((((-467)) |has| |#2| (-548 (-467))) (((-793 (-323))) |has| |#2| (-548 (-793 (-323)))) (((-793 (-478))) |has| |#2| (-548 (-793 (-478))))) +((($) . T)) +(((|#2| (-463 (-766 |#1|))) . T)) +(((|#2|) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T)) +(|has| |#2| (-116)) (|has| |#2| (-118)) -(|has| |#2| (-120)) -(-3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (($) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (($) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -((((-361 (-499)) (-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2| |#2|) . T) (($ $) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -(-3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) -(-3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) -(((|#2| (-484 (-798 |#1|))) . T)) -(((|#2|) . T)) -((($) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) -(((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) -(-3677 (|has| |#2| (-406)) (|has| |#2| (-848))) -((($ $) . T) (((-798 |#1|) $) . T) (((-798 |#1|) |#2|) . T)) -((((-798 |#1|)) . T)) -((($ (-798 |#1|)) . T)) -((((-798 |#1|)) . T)) -(|has| |#2| (-848)) -(|has| |#2| (-848)) -((((-361 (-499))) |has| |#2| (-978 (-361 (-499)))) (((-499)) |has| |#2| (-978 (-499))) ((|#2|) . T) (((-798 |#1|)) . T)) -((((-499)) . T) (((-361 (-499))) -3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499))))) ((|#2|) . T) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) (((-798 |#1|)) . T)) -(((|#2| (-484 (-798 |#1|)) (-798 |#1|)) . T)) -(-12 (|has| |#1| (-323)) (|has| |#2| (-323))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1| |#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) +(OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +((((-343 (-478)) (-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +(OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) +(OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +(((|#2| (-463 (-766 |#1|))) . T)) +(((|#2|) . T)) +((($) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) +(((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) +(OR (|has| |#2| (-385)) (|has| |#2| (-814))) +((($ $) . T) (((-766 |#1|) $) . T) (((-766 |#1|) |#2|) . T)) +((((-766 |#1|)) . T)) +((($ (-766 |#1|)) . T)) +((((-766 |#1|)) . T)) +(|has| |#2| (-814)) +(|has| |#2| (-814)) +((((-343 (-478))) |has| |#2| (-943 (-343 (-478)))) (((-478)) |has| |#2| (-943 (-478))) ((|#2|) . T) (((-766 |#1|)) . T)) +((((-478)) . T) (((-343 (-478))) OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478))))) ((|#2|) . T) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) (((-766 |#1|)) . T)) +(((|#2| (-463 (-766 |#1|)) (-766 |#1|)) . T)) +(-12 (|has| |#1| (-313)) (|has| |#2| (-313))) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +(((|#1| |#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +(|has| |#1| (-116)) (|has| |#1| (-118)) -(|has| |#1| (-120)) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) ((|#2|) . T) (((-499)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T)) -((((-797)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-499)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-478)) . T)) +(((|#1|) |has| |#1| (-144)) (($) . T)) +((((-765)) . T)) +(((|#1|) |has| |#1| (-144)) (($) . T) (((-478)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-797)) . T)) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +((((-765)) . T)) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) (((|#1|) . T)) (((|#1|) . T)) -((((-488)) |has| |#1| (-569 (-488)))) +((((-467)) |has| |#1| (-548 (-467)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) -(((|#1| (-484 |#2|) |#2|) . T)) -(|has| |#1| (-848)) -(|has| |#1| (-848)) -((((-499)) -12 (|has| |#1| (-821 (-499))) (|has| |#2| (-821 (-499)))) (((-333)) -12 (|has| |#1| (-821 (-333))) (|has| |#2| (-821 (-333))))) +((((-765)) . T)) +((((-765)) . T)) +(((|#1| (-463 |#2|) |#2|) . T)) +(|has| |#1| (-814)) +(|has| |#1| (-814)) +((((-478)) -12 (|has| |#1| (-789 (-478))) (|has| |#2| (-789 (-478)))) (((-323)) -12 (|has| |#1| (-789 (-323))) (|has| |#2| (-789 (-323))))) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-848))) -((((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-484 |#2|)) . T)) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(|has| |#1| (-120)) +(OR (|has| |#1| (-385)) (|has| |#1| (-814))) +((((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-463 |#2|)) . T)) +(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) (|has| |#1| (-118)) -((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((((-1065 |#1| |#2|)) . T) (((-884 |#1|)) |has| |#2| (-569 (-1117))) (((-797)) . T)) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -(((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (((-499)) . T) (($) . T)) -((((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (($) . T)) -((((-1065 |#1| |#2|)) . T) ((|#2|) . T) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) (((-499)) . T)) -((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -(((|#1|) . T)) -((((-1065 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) -(((|#1| (-484 |#2|)) . T)) +(|has| |#1| (-116)) +((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((((-1028 |#1| |#2|)) . T) (((-850 |#1|)) |has| |#2| (-548 (-1079))) (((-765)) . T)) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +(((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (((-478)) . T) (($) . T)) +((((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (($) . T)) +((((-1028 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) (((-478)) . T)) +((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +(((|#1|) . T)) +((((-1028 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) +(((|#1| (-463 |#2|)) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) ((($) . T)) -((((-884 |#1|)) |has| |#2| (-569 (-1117))) (((-1099)) -12 (|has| |#1| (-978 (-499))) (|has| |#2| (-569 (-1117)))) (((-825 (-499))) -12 (|has| |#1| (-569 (-825 (-499)))) (|has| |#2| (-569 (-825 (-499))))) (((-825 (-333))) -12 (|has| |#1| (-569 (-825 (-333)))) (|has| |#2| (-569 (-825 (-333))))) (((-488)) -12 (|has| |#1| (-569 (-488))) (|has| |#2| (-569 (-488))))) -(((|#1| (-484 |#2|) |#2|) . T)) +((((-850 |#1|)) |has| |#2| (-548 (-1079))) (((-1062)) -12 (|has| |#1| (-943 (-478))) (|has| |#2| (-548 (-1079)))) (((-793 (-478))) -12 (|has| |#1| (-548 (-793 (-478)))) (|has| |#2| (-548 (-793 (-478))))) (((-793 (-323))) -12 (|has| |#1| (-548 (-793 (-323)))) (|has| |#2| (-548 (-793 (-323))))) (((-467)) -12 (|has| |#1| (-548 (-467))) (|has| |#2| (-548 (-467))))) +(((|#1| (-463 |#2|) |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-1111 |#1|)) . T) (((-797)) . T)) -((((-361 $) (-361 $)) |has| |#1| (-510)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-318)) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(|has| |#1| (-318)) -(((|#1| (-714) (-1022)) . T)) -(|has| |#1| (-848)) -(|has| |#1| (-848)) -((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (((-1022)) . T)) -((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (($ (-1022)) . T)) -((((-1117)) |has| |#1| (-836 (-1117))) (((-1022)) . T)) -((((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-714)) . T)) -(|has| |#1| (-120)) +((((-1074 |#1|)) . T) (((-765)) . T)) +((((-343 $) (-343 $)) |has| |#1| (-489)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-308)) +(OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-814))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(|has| |#1| (-308)) +(((|#1| (-687) (-986)) . T)) +(|has| |#1| (-814)) +(|has| |#1| (-814)) +((((-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079)))) (((-986)) . T)) +((($ (-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079)))) (($ (-986)) . T)) +((((-1079)) |has| |#1| (-802 (-1079))) (((-986)) . T)) +((((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-687)) . T)) (|has| |#1| (-118)) -((((-1111 |#1|)) . T) (((-499)) . T) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) (((-1022)) . T) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499)))))) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) . T) (((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((((-499)) . T) (($) . T) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -(((|#1|) . T)) -((((-1111 |#1|)) . T) (((-1022)) . T) ((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) -(((|#1| (-714)) . T)) -((((-1022) |#1|) . T) (((-1022) $) . T) (($ $) . T)) +(|has| |#1| (-116)) +((((-1074 |#1|)) . T) (((-478)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) (((-986)) . T) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478)))))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) . T) (((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((((-478)) . T) (($) . T) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +(((|#1|) . T)) +((((-1074 |#1|)) . T) (((-986)) . T) ((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) +(((|#1| (-687)) . T)) +((((-986) |#1|) . T) (((-986) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1092)) +(|has| |#1| (-1055)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T) ((|#1|) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) +(|has| |#1| (-116)) (|has| |#1| (-118)) -(|has| |#1| (-120)) -((((-488)) |has| |#1| (-569 (-488)))) -(|has| |#1| (-323)) -(((|#1|) . T)) -((((-1117) |#1|) |has| |#1| (-468 (-1117) |#1|)) ((|#1| |#1|) |has| |#1| (-263 |#1|))) -(((|#1|) |has| |#1| (-263 |#1|))) -(((|#1| $) |has| |#1| (-240 |#1| |#1|))) -((((-936 |#1|)) . T) ((|#1|) . T)) -((((-936 |#1|)) . T) (((-499)) . T) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| (-936 |#1|) (-978 (-361 (-499)))))) -((((-936 |#1|)) . T) ((|#1|) . T) (((-499)) -3677 (|has| |#1| (-978 (-499))) (|has| (-936 |#1|) (-978 (-499)))) (((-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| (-936 |#1|) (-978 (-361 (-499)))))) -(|has| |#1| (-781)) -(|has| |#1| (-781)) -(((|#1|) . T)) -((((-797)) . T)) -(-3677 (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989))) -(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-738)) (|has| |#2| (-989))) -(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-323)) (|has| |#2| (-684)) (|has| |#2| (-738)) (|has| |#2| (-781)) (|has| |#2| (-989)) (|has| |#2| (-1041))) -(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-73)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-323)) (|has| |#2| (-684)) (|has| |#2| (-738)) (|has| |#2| (-781)) (|has| |#2| (-989)) (|has| |#2| (-1041))) -(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-738)) (|has| |#2| (-989))) -(-3677 (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-738)) (|has| |#2| (-989))) -(((|#2| |#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989)))) -(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-684)) (|has| |#2| (-989)))) -(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989)))) -((((-797)) -3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-568 (-797))) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-323)) (|has| |#2| (-684)) (|has| |#2| (-738)) (|has| |#2| (-781)) (|has| |#2| (-989)) (|has| |#2| (-1041))) (((-1207 |#2|)) . T)) -(((|#2|) |has| |#2| (-989))) -((((-1117)) -12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989)))) -((((-1117)) -3677 (-12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989))) (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))))) -((($ (-1117)) -3677 (-12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989))) (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))))) -(((|#2|) |has| |#2| (-989))) -(-3677 (-12 (|has| |#2| (-190)) (|has| |#2| (-989))) (-12 (|has| |#2| (-189)) (|has| |#2| (-989)))) -((($) -3677 (-12 (|has| |#2| (-190)) (|has| |#2| (-989))) (-12 (|has| |#2| (-189)) (|has| |#2| (-989))))) -(|has| |#2| (-989)) -(|has| |#2| (-989)) -(|has| |#2| (-989)) -(|has| |#2| (-989)) -((((-499)) -3677 (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989))) ((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-684)) (|has| |#2| (-989))) (($) |has| |#2| (-989))) -(-12 (|has| |#2| (-190)) (|has| |#2| (-989))) -(|has| |#2| (-323)) -(((|#2|) |has| |#2| (-989))) -(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989))) (($) |has| |#2| (-989)) (((-499)) -12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989)))) -(((|#2|) |has| |#2| (-989)) (((-499)) -12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989)))) -(((|#2|) |has| |#2| (-1041))) -((((-499)) -3677 (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (|has| |#2| (-989))) ((|#2|) |has| |#2| (-1041)) (((-361 (-499))) -12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041)))) -(((|#2|) |has| |#2| (-1041)) (((-499)) -12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (((-361 (-499))) -12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041)))) -((((-499) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) -(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) -(((|#2|) . T)) -((((-499) |#2|) . T)) -((((-499) |#2|) . T)) -(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-684)))) -(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)))) -(|has| |#2| (-738)) -(|has| |#2| (-738)) -(-3677 (|has| |#2| (-738)) (|has| |#2| (-781))) -(-3677 (|has| |#2| (-738)) (|has| |#2| (-781))) -(|has| |#2| (-738)) -(|has| |#2| (-738)) -(((|#2|) |has| |#2| (-318))) +((((-467)) |has| |#1| (-548 (-467)))) +(|has| |#1| (-313)) +(((|#1|) . T)) +((((-1079) |#1|) |has| |#1| (-447 (-1079) |#1|)) ((|#1| |#1|) |has| |#1| (-256 |#1|))) +(((|#1|) |has| |#1| (-256 |#1|))) +(((|#1| $) |has| |#1| (-238 |#1| |#1|))) +((((-902 |#1|)) . T) ((|#1|) . T)) +((((-902 |#1|)) . T) (((-478)) . T) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| (-902 |#1|) (-943 (-343 (-478)))))) +((((-902 |#1|)) . T) ((|#1|) . T) (((-478)) OR (|has| |#1| (-943 (-478))) (|has| (-902 |#1|) (-943 (-478)))) (((-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| (-902 |#1|) (-943 (-343 (-478)))))) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(((|#1|) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-710)) (|has| |#2| (-954))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-313)) (|has| |#2| (-658)) (|has| |#2| (-710)) (|has| |#2| (-749)) (|has| |#2| (-954)) (|has| |#2| (-1005))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-313)) (|has| |#2| (-658)) (|has| |#2| (-710)) (|has| |#2| (-749)) (|has| |#2| (-954)) (|has| |#2| (-1005))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-710)) (|has| |#2| (-954))) +(OR (|has| |#2| (-21)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-710)) (|has| |#2| (-954))) +(((|#2| |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954)))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-658)) (|has| |#2| (-954)))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954)))) +((((-765)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-547 (-765))) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-313)) (|has| |#2| (-658)) (|has| |#2| (-710)) (|has| |#2| (-749)) (|has| |#2| (-954)) (|has| |#2| (-1005))) (((-1168 |#2|)) . T)) +(((|#2|) |has| |#2| (-954))) +((((-1079)) -12 (|has| |#2| (-802 (-1079))) (|has| |#2| (-954)))) +((((-1079)) OR (-12 (|has| |#2| (-802 (-1079))) (|has| |#2| (-954))) (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))))) +((($ (-1079)) OR (-12 (|has| |#2| (-802 (-1079))) (|has| |#2| (-954))) (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))))) +(((|#2|) |has| |#2| (-954))) +(OR (-12 (|has| |#2| (-188)) (|has| |#2| (-954))) (-12 (|has| |#2| (-187)) (|has| |#2| (-954)))) +((($) OR (-12 (|has| |#2| (-188)) (|has| |#2| (-954))) (-12 (|has| |#2| (-187)) (|has| |#2| (-954))))) +(|has| |#2| (-954)) +(|has| |#2| (-954)) +(|has| |#2| (-954)) +(|has| |#2| (-954)) +((((-478)) OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954))) ((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-658)) (|has| |#2| (-954))) (($) |has| |#2| (-954))) +(-12 (|has| |#2| (-188)) (|has| |#2| (-954))) +(|has| |#2| (-313)) +(((|#2|) |has| |#2| (-954))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954))) (($) |has| |#2| (-954)) (((-478)) -12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954)))) +(((|#2|) |has| |#2| (-954)) (((-478)) -12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954)))) +(((|#2|) |has| |#2| (-1005))) +((((-478)) OR (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) (|has| |#2| (-954))) ((|#2|) |has| |#2| (-1005)) (((-343 (-478))) -12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005)))) +(((|#2|) |has| |#2| (-1005)) (((-478)) -12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) (((-343 (-478))) -12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005)))) +((((-478) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005)))) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005)))) +(((|#2|) . T)) +((((-478) |#2|) . T)) +((((-478) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-658)))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)))) +(|has| |#2| (-710)) +(|has| |#2| (-710)) +(OR (|has| |#2| (-710)) (|has| |#2| (-749))) +(OR (|has| |#2| (-710)) (|has| |#2| (-749))) +(|has| |#2| (-710)) +(|has| |#2| (-710)) +(((|#2|) |has| |#2| (-308))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3677 (|has| |#1| (-190)) (|has| |#1| (-189))) -((($) -3677 (|has| |#1| (-190)) (|has| |#1| (-189)))) -((((-797)) . T)) -(|has| |#1| (-190)) -((($) . T)) -(((|#1| (-484 (-761 (-1117))) (-761 (-1117))) . T)) -(|has| |#1| (-848)) -(|has| |#1| (-848)) -((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (((-761 (-1117))) . T)) -((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (($ (-761 (-1117))) . T)) -((((-1117)) |has| |#1| (-836 (-1117))) (((-761 (-1117))) . T)) -((($ $) . T) (((-1117) $) |has| |#1| (-190)) (((-1117) |#1|) |has| |#1| (-190)) (((-761 (-1117)) |#1|) . T) (((-761 (-1117)) $) . T)) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-848))) -((((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-484 (-761 (-1117)))) . T)) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(|has| |#1| (-120)) +(OR (|has| |#1| (-188)) (|has| |#1| (-187))) +((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)))) +((((-765)) . T)) +(|has| |#1| (-188)) +((($) . T)) +(((|#1| (-463 (-731 (-1079))) (-731 (-1079))) . T)) +(|has| |#1| (-814)) +(|has| |#1| (-814)) +((((-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079)))) (((-731 (-1079))) . T)) +((($ (-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079)))) (($ (-731 (-1079))) . T)) +((((-1079)) |has| |#1| (-802 (-1079))) (((-731 (-1079))) . T)) +((($ $) . T) (((-1079) $) |has| |#1| (-188)) (((-1079) |#1|) |has| |#1| (-188)) (((-731 (-1079)) |#1|) . T) (((-731 (-1079)) $) . T)) +(OR (|has| |#1| (-385)) (|has| |#1| (-814))) +((((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-463 (-731 (-1079)))) . T)) +(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) (|has| |#1| (-118)) -((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) . T) (((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((((-499)) . T) (($) . T) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -(((|#1|) . T)) -(((|#1| (-484 (-761 (-1117)))) . T)) -((((-1065 |#1| (-1117))) . T) (((-761 (-1117))) . T) ((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-1117)) . T)) -((((-1065 |#1| (-1117))) . T) (((-499)) . T) (((-761 (-1117))) . T) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) (((-1117)) . T)) -(((|#1| (-1117) (-761 (-1117)) (-484 (-761 (-1117)))) . T)) -(|has| |#2| (-318)) -(|has| |#2| (-318)) -(|has| |#2| (-318)) -(|has| |#2| (-318)) -((((-361 (-499))) |has| |#2| (-318)) (($) |has| |#2| (-318))) -((((-361 (-499))) |has| |#2| (-318)) (($) |has| |#2| (-318))) -((((-361 (-499))) |has| |#2| (-318)) (($) |has| |#2| (-318))) -(|has| |#2| (-318)) -(|has| |#2| (-318)) -(|has| |#2| (-318)) -(|has| |#2| (-318)) -(|has| |#2| (-318)) -(((|#2|) . T)) -((($) . T)) -((((-361 (-499))) |has| |#2| (-318)) (($) |has| |#2| (-318)) ((|#2|) . T) (((-499)) . T)) -((((-361 (-499))) |has| |#2| (-318)) (($) . T)) -(((|#2|) . T) (((-797)) . T)) -((((-361 (-499))) |has| |#2| (-318)) (($) . T) (((-499)) . T)) -((((-361 (-499))) |has| |#2| (-318)) (($) . T)) -((((-361 (-499))) |has| |#2| (-318)) (($) . T)) -((((-361 (-499)) (-361 (-499))) |has| |#2| (-318)) (($ $) . T)) -((($) . T)) -((((-797)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-797)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-190)) -((($) |has| |#1| (-190))) -(|has| |#1| (-190)) -(((|#2|) |has| |#2| (-146))) +(|has| |#1| (-116)) +((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) . T) (((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((((-478)) . T) (($) . T) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +(((|#1|) . T)) +(((|#1| (-463 (-731 (-1079)))) . T)) +((((-1028 |#1| (-1079))) . T) (((-731 (-1079))) . T) ((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-1079)) . T)) +((((-1028 |#1| (-1079))) . T) (((-478)) . T) (((-731 (-1079))) . T) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) (((-1079)) . T)) +(((|#1| (-1079) (-731 (-1079)) (-463 (-731 (-1079)))) . T)) +(|has| |#2| (-308)) +(|has| |#2| (-308)) +(|has| |#2| (-308)) +(|has| |#2| (-308)) +((((-343 (-478))) |has| |#2| (-308)) (($) |has| |#2| (-308))) +((((-343 (-478))) |has| |#2| (-308)) (($) |has| |#2| (-308))) +((((-343 (-478))) |has| |#2| (-308)) (($) |has| |#2| (-308))) +(|has| |#2| (-308)) +(|has| |#2| (-308)) +(|has| |#2| (-308)) +(|has| |#2| (-308)) +(|has| |#2| (-308)) +(((|#2|) . T)) +((($) . T)) +((((-343 (-478))) |has| |#2| (-308)) (($) |has| |#2| (-308)) ((|#2|) . T) (((-478)) . T)) +((((-343 (-478))) |has| |#2| (-308)) (($) . T)) +(((|#2|) . T) (((-765)) . T)) +((((-343 (-478))) |has| |#2| (-308)) (($) . T) (((-478)) . T)) +((((-343 (-478))) |has| |#2| (-308)) (($) . T)) +((((-343 (-478))) |has| |#2| (-308)) (($) . T)) +((((-343 (-478)) (-343 (-478))) |has| |#2| (-308)) (($ $) . T)) +((($) . T)) +((((-765)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-765)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-188)) +((($) |has| |#1| (-188))) +(|has| |#1| (-188)) +(((|#2|) |has| |#2| (-144))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T) ((|#2|) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-146))) -(((|#2|) |has| |#2| (-146))) -((((-499)) . T) ((|#2|) |has| |#2| (-146))) -(((|#2|) . T)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -((($) |has| |#1| (-780))) -(|has| |#1| (-780)) -(-3677 (|has| |#1| (-21)) (|has| |#1| (-780))) -(-3677 (|has| |#1| (-21)) (|has| |#1| (-780))) -(-3677 (|has| |#1| (-21)) (|has| |#1| (-780))) -((($) |has| |#1| (-780)) (((-499)) -3677 (|has| |#1| (-21)) (|has| |#1| (-780)))) -(-3677 (|has| |#1| (-21)) (|has| |#1| (-780))) -((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) |has| |#1| (-978 (-499))) ((|#1|) . T)) -((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) -3677 (|has| |#1| (-780)) (|has| |#1| (-978 (-499)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-797)) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1| |#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) +(((|#2|) |has| |#2| (-144))) +(((|#2|) |has| |#2| (-144))) +((((-478)) . T) ((|#2|) |has| |#2| (-144))) +(((|#2|) . T)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +((($) |has| |#1| (-748))) +(|has| |#1| (-748)) +(OR (|has| |#1| (-21)) (|has| |#1| (-748))) +(OR (|has| |#1| (-21)) (|has| |#1| (-748))) +(OR (|has| |#1| (-21)) (|has| |#1| (-748))) +((($) |has| |#1| (-748)) (((-478)) OR (|has| |#1| (-21)) (|has| |#1| (-748)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-748))) +((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) |has| |#1| (-943 (-478))) ((|#1|) . T)) +((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) OR (|has| |#1| (-748)) (|has| |#1| (-943 (-478)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-765)) . T)) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +(((|#1| |#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +(|has| |#1| (-116)) (|has| |#1| (-118)) -(|has| |#1| (-120)) (((|#1| |#1|) . T)) -((((-86)) . T) ((|#1|) . T)) -((((-86)) . T) ((|#1|) . T) (((-499)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T)) -((((-797)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-499)) . T)) -((((-797)) . T)) -((((-460)) . T)) -((((-797)) . T)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -((($) |has| |#1| (-780))) -(|has| |#1| (-780)) -(-3677 (|has| |#1| (-21)) (|has| |#1| (-780))) -(-3677 (|has| |#1| (-21)) (|has| |#1| (-780))) -(-3677 (|has| |#1| (-21)) (|has| |#1| (-780))) -((($) |has| |#1| (-780)) (((-499)) -3677 (|has| |#1| (-21)) (|has| |#1| (-780)))) -(-3677 (|has| |#1| (-21)) (|has| |#1| (-780))) -((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) |has| |#1| (-978 (-499))) ((|#1|) . T)) -((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) -3677 (|has| |#1| (-780)) (|has| |#1| (-978 (-499)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-797)) . T)) -(((|#1|) . T)) -((((-797)) |has| |#1| (-568 (-797))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-146))) +((((-84)) . T) ((|#1|) . T)) +((((-84)) . T) ((|#1|) . T) (((-478)) . T)) +(((|#1|) |has| |#1| (-144)) (($) . T)) +((((-765)) . T)) +(((|#1|) |has| |#1| (-144)) (($) . T) (((-478)) . T)) +((((-765)) . T)) +((((-439)) . T)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +(|has| |#1| (-748)) +((($) |has| |#1| (-748))) +(|has| |#1| (-748)) +(OR (|has| |#1| (-21)) (|has| |#1| (-748))) +(OR (|has| |#1| (-21)) (|has| |#1| (-748))) +(OR (|has| |#1| (-21)) (|has| |#1| (-748))) +((($) |has| |#1| (-748)) (((-478)) OR (|has| |#1| (-21)) (|has| |#1| (-748)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-748))) +((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) |has| |#1| (-943 (-478))) ((|#1|) . T)) +((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) OR (|has| |#1| (-748)) (|has| |#1| (-943 (-478)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-765)) . T)) +(((|#1|) . T)) +((((-765)) |has| |#1| (-547 (-765))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-144))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T) ((|#1|) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) (((|#1|) . T)) -((((-499)) . T) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) -(((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) +((((-478)) . T) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) +(((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) (((|#1|) . T)) -(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-144))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T) ((|#2|) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-146))) -(((|#2|) |has| |#2| (-146))) -(((|#2|) . T)) -((((-1204 |#1|)) . T) (((-499)) . T) ((|#2|) . T) (((-361 (-499))) |has| |#2| (-978 (-361 (-499))))) -(((|#2|) . T) (((-499)) |has| |#2| (-978 (-499))) (((-361 (-499))) |has| |#2| (-978 (-361 (-499))))) -(((|#2|) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-825 (-499))) . T) (((-825 (-333))) . T) (((-488)) . T) (((-1117)) . T)) -((((-797)) . T)) -((((-797)) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1| |#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -((((-884 |#1|)) . T)) -(((|#1|) |has| |#1| (-146)) (((-884 |#1|)) . T) (((-499)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T)) -((((-884 |#1|)) . T) (((-797)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-499)) . T)) -((($) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T)) +(((|#2|) |has| |#2| (-144))) +(((|#2|) |has| |#2| (-144))) +(((|#2|) . T)) +((((-1165 |#1|)) . T) (((-478)) . T) ((|#2|) . T) (((-343 (-478))) |has| |#2| (-943 (-343 (-478))))) +(((|#2|) . T) (((-478)) |has| |#2| (-943 (-478))) (((-343 (-478))) |has| |#2| (-943 (-343 (-478))))) +(((|#2|) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-793 (-478))) . T) (((-793 (-323))) . T) (((-467)) . T) (((-1079)) . T)) +((((-765)) . T)) +((((-765)) . T)) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +(((|#1| |#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +((((-850 |#1|)) . T)) +(((|#1|) |has| |#1| (-144)) (((-850 |#1|)) . T) (((-478)) . T)) +(((|#1|) |has| |#1| (-144)) (($) . T)) +((((-850 |#1|)) . T) (((-765)) . T)) +(((|#1|) |has| |#1| (-144)) (($) . T) (((-478)) . T)) +((($) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-499)) . T) (($) . T)) -(((|#1|) . T)) -((((-797)) . T)) -((((-803 |#1|)) . T)) -((((-803 |#1|)) . T)) -((((-803 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) -((($) . T) (((-499)) . T) (((-803 |#1|)) . T) (((-361 (-499))) . T)) -((((-803 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) -((((-803 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) -((((-803 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-803 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-803 |#1|) (-803 |#1|)) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) -((((-803 |#1|)) . T)) -((((-1117) (-803 |#1|)) |has| (-803 |#1|) (-468 (-1117) (-803 |#1|))) (((-803 |#1|) (-803 |#1|)) |has| (-803 |#1|) (-263 (-803 |#1|)))) -((((-803 |#1|)) |has| (-803 |#1|) (-263 (-803 |#1|)))) -((((-803 |#1|) $) |has| (-803 |#1|) (-240 (-803 |#1|) (-803 |#1|)))) -((((-803 |#1|)) . T)) -((($) . T) (((-803 |#1|)) . T) (((-361 (-499))) . T)) -((((-803 |#1|)) . T)) -((((-803 |#1|)) . T)) -((((-803 |#1|)) . T)) -((((-499)) . T) (((-803 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) -((((-803 |#1|)) . T)) -((((-803 |#1|)) . T)) -((((-797)) . T)) +((((-478)) . T) (($) . T)) +(((|#1|) . T)) +((((-765)) . T)) +((((-771 |#1|)) . T)) +((((-771 |#1|)) . T)) +((((-771 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) +((($) . T) (((-478)) . T) (((-771 |#1|)) . T) (((-343 (-478))) . T)) +((((-771 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) +((((-771 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) +((((-771 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-771 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-771 |#1|) (-771 |#1|)) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) +((((-771 |#1|)) . T)) +((((-1079) (-771 |#1|)) |has| (-771 |#1|) (-447 (-1079) (-771 |#1|))) (((-771 |#1|) (-771 |#1|)) |has| (-771 |#1|) (-256 (-771 |#1|)))) +((((-771 |#1|)) |has| (-771 |#1|) (-256 (-771 |#1|)))) +((((-771 |#1|) $) |has| (-771 |#1|) (-238 (-771 |#1|) (-771 |#1|)))) +((((-771 |#1|)) . T)) +((($) . T) (((-771 |#1|)) . T) (((-343 (-478))) . T)) +((((-771 |#1|)) . T)) +((((-771 |#1|)) . T)) +((((-771 |#1|)) . T)) +((((-478)) . T) (((-771 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) +((((-771 |#1|)) . T)) +((((-771 |#1|)) . T)) +((((-765)) . T)) +(|has| |#2| (-116)) (|has| |#2| (-118)) -(|has| |#2| (-120)) -(((|#2|) . T)) -((((-1117)) |has| |#2| (-836 (-1117)))) -((((-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117))))) -((($ (-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117))))) (((|#2|) . T)) -(-3677 (|has| |#2| (-190)) (|has| |#2| (-189))) -((($) -3677 (|has| |#2| (-190)) (|has| |#2| (-189)))) -(|has| |#2| (-190)) -(((|#2|) . T) (($) . T) (((-361 (-499))) . T)) -((($) . T) (((-499)) . T) ((|#2|) . T) (((-361 (-499))) . T)) -(((|#2|) . T) (($) . T) (((-361 (-499))) . T)) -(((|#2|) . T) (($) . T) (((-361 (-499))) . T)) -(((|#2|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#2|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#2| |#2|) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) -(((|#2|) . T)) -((((-1117) |#2|) |has| |#2| (-468 (-1117) |#2|)) ((|#2| |#2|) |has| |#2| (-263 |#2|))) -(((|#2|) |has| |#2| (-263 |#2|))) -(((|#2| $) |has| |#2| (-240 |#2| |#2|))) -(((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-361 (-499))) . T) (((-499)) |has| |#2| (-596 (-499)))) -(((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) -(((|#2|) . T)) -((((-499)) |has| |#2| (-821 (-499))) (((-333)) |has| |#2| (-821 (-333)))) -(|has| |#2| (-763)) -(|has| |#2| (-763)) -(|has| |#2| (-763)) -(-3677 (|has| |#2| (-763)) (|has| |#2| (-781))) -(-3677 (|has| |#2| (-763)) (|has| |#2| (-781))) -(|has| |#2| (-763)) -(|has| |#2| (-763)) -(|has| |#2| (-763)) -(((|#2|) . T)) -(|has| |#2| (-848)) -(|has| |#2| (-960)) -((((-488)) |has| |#2| (-569 (-488))) (((-825 (-499))) |has| |#2| (-569 (-825 (-499)))) (((-825 (-333))) |has| |#2| (-569 (-825 (-333)))) (((-333)) |has| |#2| (-960)) (((-179)) |has| |#2| (-960))) -((((-499)) . T) ((|#2|) . T) (($) . T) (((-361 (-499))) . T) (((-1117)) |has| |#2| (-978 (-1117)))) -((((-361 (-499))) |has| |#2| (-978 (-499))) (((-499)) |has| |#2| (-978 (-499))) (((-1117)) |has| |#2| (-978 (-1117))) ((|#2|) . T)) -(|has| |#2| (-1092)) -(((|#2|) . T)) -(-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) -(-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) -((((-797)) -3677 (-12 (|has| |#1| (-568 (-797))) (|has| |#2| (-568 (-797)))) (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))))) -((((-130)) . T)) -((((-797)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-1117)) . T) ((|#1|) . T)) -((((-1117)) . T) ((|#1|) . T)) -((((-797)) . T)) -((((-630 |#1|)) . T)) -((((-630 |#1|)) . T)) -((((-797)) . T)) -((((-797)) . T)) -(((|#1|) . T)) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) -((((-1144 |#1|)) . T) (((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(|has| |#1| (-1041)) +((((-1079)) |has| |#2| (-802 (-1079)))) +((((-1079)) OR (|has| |#2| (-802 (-1079))) (|has| |#2| (-804 (-1079))))) +((($ (-1079)) OR (|has| |#2| (-802 (-1079))) (|has| |#2| (-804 (-1079))))) +(((|#2|) . T)) +(OR (|has| |#2| (-188)) (|has| |#2| (-187))) +((($) OR (|has| |#2| (-188)) (|has| |#2| (-187)))) +(|has| |#2| (-188)) +(((|#2|) . T) (($) . T) (((-343 (-478))) . T)) +((($) . T) (((-478)) . T) ((|#2|) . T) (((-343 (-478))) . T)) +(((|#2|) . T) (($) . T) (((-343 (-478))) . T)) +(((|#2|) . T) (($) . T) (((-343 (-478))) . T)) +(((|#2|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#2|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#2| |#2|) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) +(((|#2|) . T)) +((((-1079) |#2|) |has| |#2| (-447 (-1079) |#2|)) ((|#2| |#2|) |has| |#2| (-256 |#2|))) +(((|#2|) |has| |#2| (-256 |#2|))) +(((|#2| $) |has| |#2| (-238 |#2| |#2|))) +(((|#2|) . T)) +((($) . T) ((|#2|) . T) (((-343 (-478))) . T) (((-478)) |has| |#2| (-575 (-478)))) +(((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) +(((|#2|) . T)) +((((-478)) |has| |#2| (-789 (-478))) (((-323)) |has| |#2| (-789 (-323)))) +(|has| |#2| (-733)) +(|has| |#2| (-733)) +(|has| |#2| (-733)) +(OR (|has| |#2| (-733)) (|has| |#2| (-749))) +(OR (|has| |#2| (-733)) (|has| |#2| (-749))) +(|has| |#2| (-733)) +(|has| |#2| (-733)) +(|has| |#2| (-733)) +(((|#2|) . T)) +(|has| |#2| (-814)) +(|has| |#2| (-926)) +((((-467)) |has| |#2| (-548 (-467))) (((-793 (-478))) |has| |#2| (-548 (-793 (-478)))) (((-793 (-323))) |has| |#2| (-548 (-793 (-323)))) (((-323)) |has| |#2| (-926)) (((-177)) |has| |#2| (-926))) +((((-478)) . T) ((|#2|) . T) (($) . T) (((-343 (-478))) . T) (((-1079)) |has| |#2| (-943 (-1079)))) +((((-343 (-478))) |has| |#2| (-943 (-478))) (((-478)) |has| |#2| (-943 (-478))) (((-1079)) |has| |#2| (-943 (-1079))) ((|#2|) . T)) +(|has| |#2| (-1055)) +(((|#2|) . T)) +(-12 (|has| |#1| (-1005)) (|has| |#2| (-1005))) +(-12 (|has| |#1| (-1005)) (|has| |#2| (-1005))) +((((-765)) OR (-12 (|has| |#1| (-547 (-765))) (|has| |#2| (-547 (-765)))) (-12 (|has| |#1| (-1005)) (|has| |#2| (-1005))))) +((((-128)) . T)) +((((-765)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-1079)) . T) ((|#1|) . T)) +((((-1079)) . T) ((|#1|) . T)) +((((-765)) . T)) +((((-609 |#1|)) . T)) +((((-609 |#1|)) . T)) +((((-765)) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) +((((-1105 |#1|)) . T) (((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(|has| |#1| (-1005)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -((((-797)) . T)) -(-3677 (|has| |#1| (-323)) (|has| |#1| (-781))) -(-3677 (|has| |#1| (-323)) (|has| |#1| (-781))) +((((-765)) . T)) +(OR (|has| |#1| (-313)) (|has| |#1| (-749))) +(OR (|has| |#1| (-313)) (|has| |#1| (-749))) (((|#1|) . T)) -((((-797)) . T)) -((((-499)) . T)) +((((-765)) . T)) +((((-478)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -(|has| $ (-120)) +(|has| $ (-118)) ((($) . T)) -((((-797)) . T)) +((((-765)) . T)) ((($) . T)) -((($) . T) (((-361 (-499))) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) . T)) -((($) . T) (((-361 (-499))) . T)) -((($) . T) (((-361 (-499))) . T)) -((($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-361 (-499))) . T) (($) . T)) -((((-499)) . T) (((-361 (-499))) . T) (($) . T)) -((((-797)) . T)) -(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) -(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-599 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-781)) -(|has| |#1| (-781)) -(((|#1|) . T)) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) -(((|#1|) . T)) -((((-488)) |has| |#1| (-569 (-488)))) -((((-499) |#1|) . T)) -((((-1174 (-499)) $) . T) (((-499) |#1|) . T)) -((((-499) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-488)) |has| |#1| (-569 (-488))) (((-825 (-333))) |has| |#1| (-569 (-825 (-333)))) (((-825 (-499))) |has| |#1| (-569 (-825 (-499))))) +((($) . T) (((-343 (-478))) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) . T)) +((($) . T) (((-343 (-478))) . T)) +((($) . T) (((-343 (-478))) . T)) +((($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-343 (-478))) . T) (($) . T)) +((((-478)) . T) (((-343 (-478))) . T) (($) . T)) +((((-765)) . T)) +(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) +(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-578 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1005))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-749)) (|has| |#1| (-1005))) +(((|#1|) . T)) +((((-467)) |has| |#1| (-548 (-467)))) +((((-478) |#1|) . T)) +((((-1135 (-478)) $) . T) (((-478) |#1|) . T)) +((((-478) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-467)) |has| |#1| (-548 (-467))) (((-793 (-323))) |has| |#1| (-548 (-793 (-323)))) (((-793 (-478))) |has| |#1| (-548 (-793 (-478))))) ((($) . T)) -(((|#1| (-484 (-1117))) . T)) +(((|#1| (-463 (-1079))) . T)) (((|#1|) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T)) +(|has| |#1| (-116)) (|has| |#1| (-118)) -(|has| |#1| (-120)) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) -((((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1| |#1|) . T) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) -(((|#1| (-484 (-1117))) . T)) -(((|#1|) . T)) -((($) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) -(((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-848))) -((($ $) . T) (((-1117) $) . T) (((-1117) |#1|) . T)) -((((-1117)) . T)) -((($ (-1117)) . T)) -((((-1117)) . T)) -((((-333)) |has| |#1| (-821 (-333))) (((-499)) |has| |#1| (-821 (-499)))) -(|has| |#1| (-848)) -(|has| |#1| (-848)) -((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) |has| |#1| (-978 (-499))) ((|#1|) . T) (((-1117)) . T)) -((((-499)) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ((|#1|) . T) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) (((-1117)) . T)) -(((|#1| (-484 (-1117)) (-1117)) . T)) -((((-1060)) . T) (((-797)) . T)) +(OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) +((((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) +(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) +(((|#1| (-463 (-1079))) . T)) +(((|#1|) . T)) +((($) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) +(((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) +(OR (|has| |#1| (-385)) (|has| |#1| (-814))) +((($ $) . T) (((-1079) $) . T) (((-1079) |#1|) . T)) +((((-1079)) . T)) +((($ (-1079)) . T)) +((((-1079)) . T)) +((((-323)) |has| |#1| (-789 (-323))) (((-478)) |has| |#1| (-789 (-478)))) +(|has| |#1| (-814)) +(|has| |#1| (-814)) +((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) |has| |#1| (-943 (-478))) ((|#1|) . T) (((-1079)) . T)) +((((-478)) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ((|#1|) . T) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) (((-1079)) . T)) +(((|#1| (-463 (-1079)) (-1079)) . T)) +((((-1023)) . T) (((-765)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-510))) -(|has| |#1| (-120)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(OR (|has| |#1| (-144)) (|has| |#1| (-489))) (|has| |#1| (-118)) -((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((((-797)) . T)) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -(((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (((-499)) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (($) . T)) -((($) |has| |#1| (-510)) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) (((-499)) . T)) -((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -(((|#1|) . T)) -(((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) +(|has| |#1| (-116)) +((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((((-765)) . T)) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +(((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (($) . T)) +((($) |has| |#1| (-489)) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) (((-478)) . T)) +((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +(((|#1|) . T)) +(((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) (((|#1| |#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-781)) -(|has| |#1| (-781)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) (((|#1|) . T)) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) +(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1005))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-749)) (|has| |#1| (-1005))) (((|#1|) . T)) -((((-488)) |has| |#1| (-569 (-488)))) -((((-499) |#1|) . T)) -((((-1174 (-499)) $) . T) (((-499) |#1|) . T)) -((((-499) |#1|) . T)) +((((-467)) |has| |#1| (-548 (-467)))) +((((-478) |#1|) . T)) +((((-1135 (-478)) $) . T) (((-478) |#1|) . T)) +((((-478) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-738)) (|has| |#2| (-738))) -(-12 (|has| |#1| (-738)) (|has| |#2| (-738))) -(-3677 (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-781)) (|has| |#2| (-781)))) -(-3677 (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-781)) (|has| |#2| (-781)))) -(-12 (|has| |#1| (-738)) (|has| |#2| (-738))) -(-12 (|has| |#1| (-738)) (|has| |#2| (-738))) -((((-499)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +(-12 (|has| |#1| (-710)) (|has| |#2| (-710))) +(-12 (|has| |#1| (-710)) (|has| |#2| (-710))) +(OR (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) (-12 (|has| |#1| (-749)) (|has| |#2| (-749)))) +(OR (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) (-12 (|has| |#1| (-749)) (|has| |#2| (-749)))) +(-12 (|has| |#1| (-710)) (|has| |#2| (-710))) +(-12 (|has| |#1| (-710)) (|has| |#2| (-710))) +((((-478)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -(-12 (|has| |#1| (-427)) (|has| |#2| (-427))) -(-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) -(-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) -(-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) -(-3677 (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) (-12 (|has| |#1| (-684)) (|has| |#2| (-684)))) -(-3677 (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) (-12 (|has| |#1| (-684)) (|has| |#2| (-684)))) -(-12 (|has| |#1| (-323)) (|has| |#2| (-323))) -((((-797)) . T)) -((((-797)) . T)) -(((|#1|) . T)) -((((-797)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-599 (-857))) . T) (((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-196 |#1| |#2|) |#2|) . T)) -((((-797)) . T)) -((((-499)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-797)) . T)) +(-12 (|has| |#1| (-406)) (|has| |#2| (-406))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) +(OR (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) (-12 (|has| |#1| (-658)) (|has| |#2| (-658)))) +(OR (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) (-12 (|has| |#1| (-658)) (|has| |#2| (-658)))) +(-12 (|has| |#1| (-313)) (|has| |#2| (-313))) +((((-765)) . T)) +((((-765)) . T)) +(((|#1|) . T)) +((((-765)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-578 (-823))) . T) (((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-194 |#1| |#2|) |#2|) . T)) +((((-765)) . T)) +((((-478)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-765)) . T)) +(|has| |#1| (-116)) (|has| |#1| (-118)) -(|has| |#1| (-120)) -((((-488)) |has| |#1| (-569 (-488)))) -(((|#1|) . T)) -((((-1117)) |has| |#1| (-836 (-1117)))) -((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117))))) -((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117))))) -(((|#1|) . T)) -(-3677 (|has| |#1| (-190)) (|has| |#1| (-189))) -((($) -3677 (|has| |#1| (-190)) (|has| |#1| (-189)))) -(|has| |#1| (-190)) -(|has| |#1| (-318)) -(-3677 (|has| |#1| (-244)) (|has| |#1| (-318))) -((((-499)) . T) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-978 (-361 (-499)))))) -(((|#1|) . T) (((-361 (-499))) |has| |#1| (-318))) -(((|#1|) . T) (((-361 (-499))) |has| |#1| (-318))) -((($) . T) (((-499)) . T) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-318))) -(((|#1|) . T) (($) -3677 (|has| |#1| (-244)) (|has| |#1| (-318))) (((-361 (-499))) |has| |#1| (-318))) -(((|#1|) . T) (($) -3677 (|has| |#1| (-244)) (|has| |#1| (-318))) (((-361 (-499))) |has| |#1| (-318))) -(((|#1| |#1|) . T) (($ $) -3677 (|has| |#1| (-244)) (|has| |#1| (-318))) (((-361 (-499)) (-361 (-499))) |has| |#1| (-318))) -(((|#1|) . T) (((-361 (-499))) |has| |#1| (-318))) -(((|#1|) . T)) -((((-1117) |#1|) |has| |#1| (-468 (-1117) |#1|)) ((|#1| |#1|) |has| |#1| (-263 |#1|))) -(((|#1|) |has| |#1| (-263 |#1|))) -(((|#1| $) |has| |#1| (-240 |#1| |#1|))) -(((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-318)) (((-499)) |has| |#1| (-596 (-499)))) -(((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) -(((|#1|) . T)) -(((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) -(|has| |#1| (-781)) -(|has| |#1| (-781)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(|has| |#1| (-1041)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-361 |#2|) |#3|) . T)) -((((-361 (-499))) |has| (-361 |#2|) (-978 (-361 (-499)))) (((-499)) |has| (-361 |#2|) (-978 (-499))) (((-361 |#2|)) . T)) -((((-361 |#2|)) . T)) -((((-499)) |has| (-361 |#2|) (-596 (-499))) (((-361 |#2|)) . T)) -((((-361 |#2|)) . T)) -((((-361 |#2|) |#3|) . T)) -(|has| (-361 |#2|) (-120)) -((((-361 |#2|) |#3|) . T)) -(|has| (-361 |#2|) (-118)) -((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) -(|has| (-361 |#2|) (-190)) -((($) -3677 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-189)))) -(-3677 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-189))) -((((-361 |#2|)) . T)) -((($ (-1117)) -3677 (|has| (-361 |#2|) (-836 (-1117))) (|has| (-361 |#2|) (-838 (-1117))))) -((((-1117)) -3677 (|has| (-361 |#2|) (-836 (-1117))) (|has| (-361 |#2|) (-838 (-1117))))) -((((-1117)) |has| (-361 |#2|) (-836 (-1117)))) -((((-361 |#2|)) . T)) +((((-467)) |has| |#1| (-548 (-467)))) +(((|#1|) . T)) +((((-1079)) |has| |#1| (-802 (-1079)))) +((((-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079))))) +((($ (-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079))))) +(((|#1|) . T)) +(OR (|has| |#1| (-188)) (|has| |#1| (-187))) +((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)))) +(|has| |#1| (-188)) +(|has| |#1| (-308)) +(OR (|has| |#1| (-242)) (|has| |#1| (-308))) +((((-478)) . T) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-943 (-343 (-478)))))) +(((|#1|) . T) (((-343 (-478))) |has| |#1| (-308))) +(((|#1|) . T) (((-343 (-478))) |has| |#1| (-308))) +((($) . T) (((-478)) . T) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-308))) +(((|#1|) . T) (($) OR (|has| |#1| (-242)) (|has| |#1| (-308))) (((-343 (-478))) |has| |#1| (-308))) +(((|#1|) . T) (($) OR (|has| |#1| (-242)) (|has| |#1| (-308))) (((-343 (-478))) |has| |#1| (-308))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-242)) (|has| |#1| (-308))) (((-343 (-478)) (-343 (-478))) |has| |#1| (-308))) +(((|#1|) . T) (((-343 (-478))) |has| |#1| (-308))) +(((|#1|) . T)) +((((-1079) |#1|) |has| |#1| (-447 (-1079) |#1|)) ((|#1| |#1|) |has| |#1| (-256 |#1|))) +(((|#1|) |has| |#1| (-256 |#1|))) +(((|#1| $) |has| |#1| (-238 |#1| |#1|))) +(((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-308)) (((-478)) |has| |#1| (-575 (-478)))) +(((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) +(((|#1|) . T)) +(((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(|has| |#1| (-1005)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-343 |#2|) |#3|) . T)) +((((-343 (-478))) |has| (-343 |#2|) (-943 (-343 (-478)))) (((-478)) |has| (-343 |#2|) (-943 (-478))) (((-343 |#2|)) . T)) +((((-343 |#2|)) . T)) +((((-478)) |has| (-343 |#2|) (-575 (-478))) (((-343 |#2|)) . T)) +((((-343 |#2|)) . T)) +((((-343 |#2|) |#3|) . T)) +(|has| (-343 |#2|) (-118)) +((((-343 |#2|) |#3|) . T)) +(|has| (-343 |#2|) (-116)) +((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) +(|has| (-343 |#2|) (-188)) +((($) OR (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-187)))) +(OR (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-187))) +((((-343 |#2|)) . T)) +((($ (-1079)) OR (|has| (-343 |#2|) (-802 (-1079))) (|has| (-343 |#2|) (-804 (-1079))))) +((((-1079)) OR (|has| (-343 |#2|) (-802 (-1079))) (|has| (-343 |#2|) (-804 (-1079))))) +((((-1079)) |has| (-343 |#2|) (-802 (-1079)))) +((((-343 |#2|)) . T)) (((|#3|) . T)) -((((-361 |#2|) (-361 |#2|)) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) -((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-797)) . T)) -((((-361 |#2|)) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -((((-499)) |has| (-361 |#2|) (-596 (-499))) (((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) -((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) +((((-343 |#2|) (-343 |#2|)) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) +((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-765)) . T)) +((((-343 |#2|)) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +((((-478)) |has| (-343 |#2|) (-575 (-478))) (((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) +((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) (((|#1| |#2| |#3|) . T)) -((((-361 (-499))) . T) (((-797)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((($) . T)) -((((-499)) . T) (($) . T) (((-361 (-499))) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) . T)) -((((-499)) . T) (($) . T) (((-361 (-499))) . T)) -((((-499)) . T) (($) . T) (((-361 (-499))) . T)) -((((-499)) . T) (((-361 (-499))) . T) (($) . T)) -((((-499)) . T) (((-361 (-499))) . T) (($) . T)) -((((-499) (-499)) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-499)) . T)) -((((-488)) . T) (((-825 (-499))) . T) (((-333)) . T) (((-179)) . T)) -((((-361 (-499))) . T) (((-499)) . T)) -((((-499)) . T) (($) . T) (((-361 (-499))) . T)) -((((-499)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-797)) . T)) -(((|#1|) . T) (($) . T) (((-499)) . T) (((-361 (-499))) . T)) -(((|#1|) . T) (($) . T) (((-361 (-499))) . T) (((-499)) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -(((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) . T) (((-499) (-499)) . T) (($ $) . T)) -(((|#1|) . T) (((-499)) . T) (((-361 (-499))) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) . T)) -(((|#1|) . T) (((-499)) -3677 (|has| |#1| (-978 (-499))) (|has| (-361 (-499)) (-978 (-499)))) (((-361 (-499))) . T)) -(|has| |#1| (-1041)) -((((-797)) |has| |#1| (-1041))) -(|has| |#1| (-1041)) +((((-343 (-478))) . T) (((-765)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((($) . T)) +((((-478)) . T) (($) . T) (((-343 (-478))) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) . T)) +((((-478)) . T) (($) . T) (((-343 (-478))) . T)) +((((-478)) . T) (($) . T) (((-343 (-478))) . T)) +((((-478)) . T) (((-343 (-478))) . T) (($) . T)) +((((-478)) . T) (((-343 (-478))) . T) (($) . T)) +((((-478) (-478)) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-478)) . T)) +((((-467)) . T) (((-793 (-478))) . T) (((-323)) . T) (((-177)) . T)) +((((-343 (-478))) . T) (((-478)) . T)) +((((-478)) . T) (($) . T) (((-343 (-478))) . T)) +((((-478)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-765)) . T)) +(((|#1|) . T) (($) . T) (((-478)) . T) (((-343 (-478))) . T)) +(((|#1|) . T) (($) . T) (((-343 (-478))) . T) (((-478)) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +(((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) . T) (((-478) (-478)) . T) (($ $) . T)) +(((|#1|) . T) (((-478)) . T) (((-343 (-478))) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) . T)) +(((|#1|) . T) (((-478)) OR (|has| |#1| (-943 (-478))) (|has| (-343 (-478)) (-943 (-478)))) (((-343 (-478))) . T)) +(|has| |#1| (-1005)) +((((-765)) |has| |#1| (-1005))) +(|has| |#1| (-1005)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-599 |#4|)) . T) (((-797)) . T)) -(((|#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) -(((|#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) +((((-578 |#4|)) . T) (((-765)) . T)) +(((|#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005)))) +(((|#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005)))) (((|#4|) . T)) -((((-488)) |has| |#4| (-569 (-488)))) +((((-467)) |has| |#4| (-548 (-467)))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) @@ -2990,57 +2905,44 @@ (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-797)) . T)) -(((|#1|) . T) (((-499)) . T) (($) . T)) +((((-765)) . T)) +(((|#1|) . T) (((-478)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-499)) . T)) -((((-1117) (-51)) . T)) -((((-797)) . T)) -((((-1117) (-51)) . T)) -((((-1117) (-51)) . T)) -((((-1117) (-51)) . T)) -((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) -((((-51)) . T) (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) |has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))))) -((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) |has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))))) -((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) -((((-1117) (-51)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -(((|#1| (-484 (-798 |#2|)) (-798 |#2|) (-723 |#1| (-798 |#2|))) . T)) -((((-723 |#1| (-798 |#2|))) . T)) -((((-599 (-723 |#1| (-798 |#2|)))) . T) (((-797)) . T)) -((((-723 |#1| (-798 |#2|))) |has| (-723 |#1| (-798 |#2|)) (-263 (-723 |#1| (-798 |#2|))))) -((((-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) |has| (-723 |#1| (-798 |#2|)) (-263 (-723 |#1| (-798 |#2|))))) -((((-723 |#1| (-798 |#2|))) . T)) -((((-488)) |has| (-723 |#1| (-798 |#2|)) (-569 (-488)))) -(((|#1| (-484 (-798 |#2|)) (-798 |#2|) (-723 |#1| (-798 |#2|))) . T)) -(((|#1| (-484 (-798 |#2|)) (-798 |#2|) (-723 |#1| (-798 |#2|))) . T)) -((((-488)) |has| |#3| (-569 (-488)))) -(((|#3|) |has| |#3| (-318))) +(((|#1|) . T) (((-478)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +(((|#1| (-463 (-766 |#2|)) (-766 |#2|) (-696 |#1| (-766 |#2|))) . T)) +((((-696 |#1| (-766 |#2|))) . T)) +((((-578 (-696 |#1| (-766 |#2|)))) . T) (((-765)) . T)) +((((-696 |#1| (-766 |#2|))) |has| (-696 |#1| (-766 |#2|)) (-256 (-696 |#1| (-766 |#2|))))) +((((-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) |has| (-696 |#1| (-766 |#2|)) (-256 (-696 |#1| (-766 |#2|))))) +((((-696 |#1| (-766 |#2|))) . T)) +((((-467)) |has| (-696 |#1| (-766 |#2|)) (-548 (-467)))) +(((|#1| (-463 (-766 |#2|)) (-766 |#2|) (-696 |#1| (-766 |#2|))) . T)) +(((|#1| (-463 (-766 |#2|)) (-766 |#2|) (-696 |#1| (-766 |#2|))) . T)) +((((-467)) |has| |#3| (-548 (-467)))) +(((|#3|) |has| |#3| (-308))) (((|#3| |#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-647 |#3|)) . T) (((-797)) . T)) -((((-499)) . T) ((|#3|) . T)) +((((-625 |#3|)) . T) (((-765)) . T)) +((((-478)) . T) ((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041)))) -(((|#3|) -12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041)))) -(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)))) -(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)))) -(((|#1| |#2| |#3| (-196 |#2| |#3|) (-196 |#1| |#3|)) . T)) -(|has| |#1| (-1041)) -((((-797)) |has| |#1| (-1041))) -(|has| |#1| (-1041)) -((((-797)) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005)))) +(((|#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005)))) +(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)))) +(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)))) +(((|#1| |#2| |#3| (-194 |#2| |#3|) (-194 |#1| |#3|)) . T)) +(|has| |#1| (-1005)) +((((-765)) |has| |#1| (-1005))) +(|has| |#1| (-1005)) +((((-765)) . T)) (((|#1| |#2|) . T)) -((((-1117)) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T)) +((((-1079)) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -3048,212 +2950,198 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-499)) . T) (($) . T)) -((((-499)) . T)) -((($) . T) (((-499)) . T)) -((((-499)) . T)) -((((-488)) . T) (((-499)) . T) (((-825 (-499))) . T) (((-333)) . T) (((-179)) . T)) -((((-499)) . T)) -((((-1117) (-51)) . T)) -((((-797)) . T)) -((((-1117) (-51)) . T)) -((((-1117) (-51)) . T)) -((((-1117) (-51)) . T)) -((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) -((((-51)) . T) (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) |has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))))) -((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) |has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))))) -((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) -((((-1117) (-51)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-247 |#3|)) . T)) -((((-247 |#3|)) . T)) +((((-478)) . T) (($) . T)) +((((-478)) . T)) +((($) . T) (((-478)) . T)) +((((-478)) . T)) +((((-467)) . T) (((-478)) . T) (((-793 (-478))) . T) (((-323)) . T) (((-177)) . T)) +((((-478)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-245 |#3|)) . T)) +((((-245 |#3|)) . T)) (((|#3| |#3|) . T)) -((((-797)) . T)) -((((-797)) . T)) +((((-765)) . T)) +((((-765)) . T)) (((|#3| |#3|) . T)) -((((-797)) . T)) -((((-797)) . T)) -(((|#2|) . T)) -(((|#1|) |has| |#1| (-318))) -((((-1117)) -12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117))))) -((((-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))))) -((($ (-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))))) -(((|#1|) |has| |#1| (-318))) -(-3677 (-12 (|has| |#1| (-190)) (|has| |#1| (-318))) (-12 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305))) -((($) -3677 (-12 (|has| |#1| (-190)) (|has| |#1| (-318))) (-12 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305)))) -(-3677 (-12 (|has| |#1| (-190)) (|has| |#1| (-318))) (|has| |#1| (-305))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) -(-3677 (|has| |#1| (-323)) (|has| |#1| (-305))) -(|has| |#1| (-305)) -(|has| |#1| (-305)) -(-3677 (|has| |#1| (-118)) (|has| |#1| (-305))) -(|has| |#1| (-305)) +((((-765)) . T)) +((((-765)) . T)) +(((|#2|) . T)) +(((|#1|) |has| |#1| (-308))) +((((-1079)) -12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079))))) +((((-1079)) OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))))) +((($ (-1079)) OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))))) +(((|#1|) |has| |#1| (-308))) +(OR (-12 (|has| |#1| (-188)) (|has| |#1| (-308))) (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) +((($) OR (-12 (|has| |#1| (-188)) (|has| |#1| (-308))) (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295)))) +(OR (-12 (|has| |#1| (-188)) (|has| |#1| (-308))) (|has| |#1| (-295))) +(OR (|has| |#1| (-308)) (|has| |#1| (-295))) +(OR (|has| |#1| (-308)) (|has| |#1| (-295))) +(OR (|has| |#1| (-308)) (|has| |#1| (-295))) +(OR (|has| |#1| (-308)) (|has| |#1| (-295))) +(OR (|has| |#1| (-308)) (|has| |#1| (-295))) +(OR (|has| |#1| (-308)) (|has| |#1| (-295))) +(OR (|has| |#1| (-308)) (|has| |#1| (-295))) +(OR (|has| |#1| (-308)) (|has| |#1| (-295))) +(OR (|has| |#1| (-313)) (|has| |#1| (-295))) +(|has| |#1| (-295)) +(|has| |#1| (-295)) +(OR (|has| |#1| (-116)) (|has| |#1| (-295))) +(|has| |#1| (-295)) (((|#1| |#2|) . T)) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) -((($ $) . T) (((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1| |#1|) . T)) -((($) . T) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) -((($) . T) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) -((((-499)) . T) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305)) (|has| |#1| (-978 (-361 (-499))))) ((|#1|) . T)) -(|has| |#1| (-120)) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-295))) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($ $) . T) (((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1| |#1|) . T)) +((($) . T) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($) . T) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-295))) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-295))) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((((-478)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-295))) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-943 (-343 (-478))))) ((|#1|) . T)) +(|has| |#1| (-118)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((($) . T) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) -(((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) +((($) . T) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) +(((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) (((|#1|) . T)) -(((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) +(((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) (((|#1| |#2|) . T)) -((((-1117)) . T)) -((((-797)) . T)) -((((-797)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3677 (|has| |#1| (-190)) (|has| |#1| (-189))) -((($) -3677 (|has| |#1| (-190)) (|has| |#1| (-189)))) -((((-797)) . T)) -(|has| |#1| (-190)) -((($) . T)) -(((|#1| (-484 (-1028 (-1117))) (-1028 (-1117))) . T)) -(|has| |#1| (-848)) -(|has| |#1| (-848)) -((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (((-1028 (-1117))) . T)) -((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (($ (-1028 (-1117))) . T)) -((((-1117)) |has| |#1| (-836 (-1117))) (((-1028 (-1117))) . T)) -((($ $) . T) (((-1117) $) |has| |#1| (-190)) (((-1117) |#1|) |has| |#1| (-190)) (((-1028 (-1117)) |#1|) . T) (((-1028 (-1117)) $) . T)) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-848))) -((((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-484 (-1028 (-1117)))) . T)) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(|has| |#1| (-120)) +((((-1079)) . T)) +((((-765)) . T)) +((((-765)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-188)) (|has| |#1| (-187))) +((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)))) +((((-765)) . T)) +(|has| |#1| (-188)) +((($) . T)) +(((|#1| (-463 (-992 (-1079))) (-992 (-1079))) . T)) +(|has| |#1| (-814)) +(|has| |#1| (-814)) +((((-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079)))) (((-992 (-1079))) . T)) +((($ (-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079)))) (($ (-992 (-1079))) . T)) +((((-1079)) |has| |#1| (-802 (-1079))) (((-992 (-1079))) . T)) +((($ $) . T) (((-1079) $) |has| |#1| (-188)) (((-1079) |#1|) |has| |#1| (-188)) (((-992 (-1079)) |#1|) . T) (((-992 (-1079)) $) . T)) +(OR (|has| |#1| (-385)) (|has| |#1| (-814))) +((((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-463 (-992 (-1079)))) . T)) +(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) (|has| |#1| (-118)) -((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) . T) (((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((((-499)) . T) (($) . T) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -(((|#1|) . T)) -(((|#1| (-484 (-1028 (-1117)))) . T)) -((((-1065 |#1| (-1117))) . T) (((-1028 (-1117))) . T) ((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-1117)) . T)) -((((-1065 |#1| (-1117))) . T) (((-499)) . T) (((-1028 (-1117))) . T) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) (((-1117)) . T)) -(((|#1| (-1117) (-1028 (-1117)) (-484 (-1028 (-1117)))) . T)) +(|has| |#1| (-116)) +((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) . T) (((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((((-478)) . T) (($) . T) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +(((|#1|) . T)) +(((|#1| (-463 (-992 (-1079)))) . T)) +((((-1028 |#1| (-1079))) . T) (((-992 (-1079))) . T) ((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-1079)) . T)) +((((-1028 |#1| (-1079))) . T) (((-478)) . T) (((-992 (-1079))) . T) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) (((-1079)) . T)) +(((|#1| (-1079) (-992 (-1079)) (-463 (-992 (-1079)))) . T)) ((($) . T)) -((((-797)) . T)) +((((-765)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-599 |#1|)) |has| |#1| (-780))) -(|has| |#1| (-1041)) -(|has| |#1| (-1041)) -((((-797)) |has| |#1| (-1041))) -(|has| |#1| (-1041)) +(((|#1| (-578 |#1|)) |has| |#1| (-748))) +(|has| |#1| (-1005)) +(|has| |#1| (-1005)) +((((-765)) |has| |#1| (-1005))) +(|has| |#1| (-1005)) (((|#1|) . T)) (((|#1|) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -(|has| (-1029 |#1|) (-1041)) -((((-797)) |has| (-1029 |#1|) (-1041))) -(|has| (-1029 |#1|) (-1041)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +(|has| (-993 |#1|) (-1005)) +((((-765)) |has| (-993 |#1|) (-1005))) +(|has| (-993 |#1|) (-1005)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-797)) . T)) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +((((-765)) . T)) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) (((|#1|) . T)) (((|#1|) . T)) -((((-488)) |has| |#1| (-569 (-488)))) +((((-467)) |has| |#1| (-548 (-467)))) (((|#1|) . T)) -(|has| |#1| (-323)) +(|has| |#1| (-313)) (((|#1|) . T)) (((|#1|) . T)) -((((-797)) . T)) -((((-599 $)) . T) (((-1099)) . T) (((-1117)) . T) (((-499)) . T) (((-179)) . T) (((-797)) . T)) -((((-499) $) . T) (((-599 (-499)) $) . T)) -((((-797)) . T)) -((((-1099) (-1117) (-499) (-179) (-797)) . T)) -((((-599 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -((((-499) $) . T) (((-599 (-499)) $) . T)) -((((-797)) . T)) +((((-765)) . T)) +((((-578 $)) . T) (((-1062)) . T) (((-1079)) . T) (((-478)) . T) (((-177)) . T) (((-765)) . T)) +((((-478) $) . T) (((-578 (-478)) $) . T)) +((((-765)) . T)) +((((-1062) (-1079) (-478) (-177) (-765)) . T)) +((((-578 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +((((-478) $) . T) (((-578 (-478)) $) . T)) +((((-765)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -((((-797)) . T)) -(-3677 (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-989))) -(-3677 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-738)) (|has| |#3| (-989))) -(-3677 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-323)) (|has| |#3| (-684)) (|has| |#3| (-738)) (|has| |#3| (-781)) (|has| |#3| (-989)) (|has| |#3| (-1041))) -(-3677 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-73)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-323)) (|has| |#3| (-684)) (|has| |#3| (-738)) (|has| |#3| (-781)) (|has| |#3| (-989)) (|has| |#3| (-1041))) -(-3677 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-738)) (|has| |#3| (-989))) -(-3677 (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-738)) (|has| |#3| (-989))) -(((|#3| |#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-989)))) -(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-684)) (|has| |#3| (-989)))) -(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-989)))) -((((-797)) -3677 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-568 (-797))) (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-323)) (|has| |#3| (-684)) (|has| |#3| (-738)) (|has| |#3| (-781)) (|has| |#3| (-989)) (|has| |#3| (-1041))) (((-1207 |#3|)) . T)) -(((|#3|) |has| |#3| (-989))) -((((-1117)) -12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989)))) -((((-1117)) -3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))))) -((($ (-1117)) -3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))))) -(((|#3|) |has| |#3| (-989))) -(-3677 (-12 (|has| |#3| (-190)) (|has| |#3| (-989))) (-12 (|has| |#3| (-189)) (|has| |#3| (-989)))) -((($) -3677 (-12 (|has| |#3| (-190)) (|has| |#3| (-989))) (-12 (|has| |#3| (-189)) (|has| |#3| (-989))))) -(|has| |#3| (-989)) -(|has| |#3| (-989)) -(|has| |#3| (-989)) -(|has| |#3| (-989)) -((((-499)) -3677 (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-989))) ((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-684)) (|has| |#3| (-989))) (($) |has| |#3| (-989))) -(-12 (|has| |#3| (-190)) (|has| |#3| (-989))) -(|has| |#3| (-323)) -(((|#3|) |has| |#3| (-989))) -(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-989))) (($) |has| |#3| (-989)) (((-499)) -12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989)))) -(((|#3|) |has| |#3| (-989)) (((-499)) -12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989)))) -(((|#3|) |has| |#3| (-1041))) -((((-499)) -3677 (-12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) (|has| |#3| (-989))) ((|#3|) |has| |#3| (-1041)) (((-361 (-499))) -12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041)))) -(((|#3|) |has| |#3| (-1041)) (((-499)) -12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) (((-361 (-499))) -12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041)))) -((((-499) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041)))) -(((|#3| |#3|) -12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041)))) +(OR (|has| |#3| (-21)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-954))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-710)) (|has| |#3| (-954))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-313)) (|has| |#3| (-658)) (|has| |#3| (-710)) (|has| |#3| (-749)) (|has| |#3| (-954)) (|has| |#3| (-1005))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-313)) (|has| |#3| (-658)) (|has| |#3| (-710)) (|has| |#3| (-749)) (|has| |#3| (-954)) (|has| |#3| (-1005))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-710)) (|has| |#3| (-954))) +(OR (|has| |#3| (-21)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-710)) (|has| |#3| (-954))) +(((|#3| |#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-954)))) +(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-658)) (|has| |#3| (-954)))) +(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-954)))) +((((-765)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-547 (-765))) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-313)) (|has| |#3| (-658)) (|has| |#3| (-710)) (|has| |#3| (-749)) (|has| |#3| (-954)) (|has| |#3| (-1005))) (((-1168 |#3|)) . T)) +(((|#3|) |has| |#3| (-954))) +((((-1079)) -12 (|has| |#3| (-802 (-1079))) (|has| |#3| (-954)))) +((((-1079)) OR (-12 (|has| |#3| (-802 (-1079))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954))))) +((($ (-1079)) OR (-12 (|has| |#3| (-802 (-1079))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954))))) +(((|#3|) |has| |#3| (-954))) +(OR (-12 (|has| |#3| (-188)) (|has| |#3| (-954))) (-12 (|has| |#3| (-187)) (|has| |#3| (-954)))) +((($) OR (-12 (|has| |#3| (-188)) (|has| |#3| (-954))) (-12 (|has| |#3| (-187)) (|has| |#3| (-954))))) +(|has| |#3| (-954)) +(|has| |#3| (-954)) +(|has| |#3| (-954)) +(|has| |#3| (-954)) +((((-478)) OR (|has| |#3| (-21)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-954))) ((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-658)) (|has| |#3| (-954))) (($) |has| |#3| (-954))) +(-12 (|has| |#3| (-188)) (|has| |#3| (-954))) +(|has| |#3| (-313)) +(((|#3|) |has| |#3| (-954))) +(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-954))) (($) |has| |#3| (-954)) (((-478)) -12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954)))) +(((|#3|) |has| |#3| (-954)) (((-478)) -12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954)))) +(((|#3|) |has| |#3| (-1005))) +((((-478)) OR (-12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1005))) (|has| |#3| (-954))) ((|#3|) |has| |#3| (-1005)) (((-343 (-478))) -12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1005)))) +(((|#3|) |has| |#3| (-1005)) (((-478)) -12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1005))) (((-343 (-478))) -12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1005)))) +((((-478) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005)))) +(((|#3| |#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005)))) (((|#3|) . T)) -((((-499) |#3|) . T)) -((((-499) |#3|) . T)) -(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-684)))) -(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)))) -(|has| |#3| (-738)) -(|has| |#3| (-738)) -(-3677 (|has| |#3| (-738)) (|has| |#3| (-781))) -(-3677 (|has| |#3| (-738)) (|has| |#3| (-781))) -(|has| |#3| (-738)) -(|has| |#3| (-738)) -(((|#3|) |has| |#3| (-318))) +((((-478) |#3|) . T)) +((((-478) |#3|) . T)) +(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-658)))) +(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)))) +(|has| |#3| (-710)) +(|has| |#3| (-710)) +(OR (|has| |#3| (-710)) (|has| |#3| (-749))) +(OR (|has| |#3| (-710)) (|has| |#3| (-749))) +(|has| |#3| (-710)) +(|has| |#3| (-710)) +(((|#3|) |has| |#3| (-308))) (((|#1| |#3|) . T)) -((((-797)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T)) +((((-765)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -3261,873 +3149,872 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-499)) . T) (($) . T)) -((((-499)) . T)) -((($) . T) (((-499)) . T)) -((((-499)) . T)) -((((-488)) . T) (((-499)) . T) (((-825 (-499))) . T) (((-333)) . T) (((-179)) . T)) -((((-499)) . T)) -((((-488)) -12 (|has| |#1| (-569 (-488))) (|has| |#2| (-569 (-488)))) (((-825 (-333))) -12 (|has| |#1| (-569 (-825 (-333)))) (|has| |#2| (-569 (-825 (-333))))) (((-825 (-499))) -12 (|has| |#1| (-569 (-825 (-499)))) (|has| |#2| (-569 (-825 (-499)))))) +((((-478)) . T) (($) . T)) +((((-478)) . T)) +((($) . T) (((-478)) . T)) +((((-478)) . T)) +((((-467)) . T) (((-478)) . T) (((-793 (-478))) . T) (((-323)) . T) (((-177)) . T)) +((((-478)) . T)) +((((-467)) -12 (|has| |#1| (-548 (-467))) (|has| |#2| (-548 (-467)))) (((-793 (-323))) -12 (|has| |#1| (-548 (-793 (-323)))) (|has| |#2| (-548 (-793 (-323))))) (((-793 (-478))) -12 (|has| |#1| (-548 (-793 (-478)))) (|has| |#2| (-548 (-793 (-478)))))) ((($) . T)) -(((|#1| (-484 |#2|)) . T)) +(((|#1| (-463 |#2|)) . T)) (((|#1|) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T)) +(|has| |#1| (-116)) (|has| |#1| (-118)) -(|has| |#1| (-120)) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) -((((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1| |#1|) . T) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) -(((|#1| (-484 |#2|)) . T)) -(((|#1|) . T)) -((($) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) -(((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) -(-3677 (|has| |#1| (-406)) (|has| |#1| (-848))) +(OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) +((((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) +(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) +(((|#1| (-463 |#2|)) . T)) +(((|#1|) . T)) +((($) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) +(((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) +(OR (|has| |#1| (-385)) (|has| |#1| (-814))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -((((-333)) -12 (|has| |#1| (-821 (-333))) (|has| |#2| (-821 (-333)))) (((-499)) -12 (|has| |#1| (-821 (-499))) (|has| |#2| (-821 (-499))))) -(|has| |#1| (-848)) -(|has| |#1| (-848)) -((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) |has| |#1| (-978 (-499))) ((|#1|) . T) ((|#2|) . T)) -((((-499)) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ((|#1|) . T) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#2|) . T)) -(((|#1| (-484 |#2|) |#2|) . T)) +((((-323)) -12 (|has| |#1| (-789 (-323))) (|has| |#2| (-789 (-323)))) (((-478)) -12 (|has| |#1| (-789 (-478))) (|has| |#2| (-789 (-478))))) +(|has| |#1| (-814)) +(|has| |#1| (-814)) +((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) |has| |#1| (-943 (-478))) ((|#1|) . T) ((|#2|) . T)) +((((-478)) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ((|#1|) . T) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#2|) . T)) +(((|#1| (-463 |#2|) |#2|) . T)) ((($) . T)) ((($ $) . T) ((|#2| $) . T)) (((|#2|) . T)) -((((-797)) . T)) +((((-765)) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(((|#1| (-484 |#2|) |#2|) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T)) -((($) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T)) +(((|#1| (-463 |#2|) |#2|) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T)) +((($) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T)) +(|has| |#1| (-116)) (|has| |#1| (-118)) -(|has| |#1| (-120)) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-510))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510)))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510)))) -((((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1| |#1|) . T) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-510)))) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -((((-499)) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) -(((|#1| (-484 |#2|)) . T)) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) +(OR (|has| |#1| (-144)) (|has| |#1| (-489))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-489)))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-489)))) +((((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-489)))) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +((((-478)) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) +(((|#1| (-463 |#2|)) . T)) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) (((|#1| |#2|) . T)) -((((-797)) . T)) -(((|#1|) . T)) -((((-1122)) . T)) -((((-1122)) . T)) -((((-1122)) . T) (((-797)) . T)) -((((-797)) . T)) -((((-1080 |#1| |#2|)) . T)) -((((-1080 |#1| |#2|) (-1080 |#1| |#2|)) |has| (-1080 |#1| |#2|) (-263 (-1080 |#1| |#2|)))) -((((-1080 |#1| |#2|)) |has| (-1080 |#1| |#2|) (-263 (-1080 |#1| |#2|)))) -((((-797)) . T)) -((((-1080 |#1| |#2|)) . T)) -((((-488)) |has| |#2| (-569 (-488)))) -(((|#2|) |has| |#2| (-6 (-4147 "*")))) +((((-765)) . T)) +(((|#1|) . T)) +((((-1084)) . T)) +((((-1084)) . T)) +((((-1084)) . T) (((-765)) . T)) +((((-765)) . T)) +((((-1043 |#1| |#2|)) . T)) +((((-1043 |#1| |#2|) (-1043 |#1| |#2|)) |has| (-1043 |#1| |#2|) (-256 (-1043 |#1| |#2|)))) +((((-1043 |#1| |#2|)) |has| (-1043 |#1| |#2|) (-256 (-1043 |#1| |#2|)))) +((((-765)) . T)) +((((-1043 |#1| |#2|)) . T)) +((((-467)) |has| |#2| (-548 (-467)))) +(((|#2|) |has| |#2| (-6 (-3981 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-647 |#2|)) . T) (((-797)) . T)) -((($) . T) (((-499)) . T) ((|#2|) . T)) -(((|#2|) -3677 (|has| |#2| (-6 (-4147 "*"))) (|has| |#2| (-146)))) -(((|#2|) -3677 (|has| |#2| (-6 (-4147 "*"))) (|has| |#2| (-146)))) +((((-625 |#2|)) . T) (((-765)) . T)) +((($) . T) (((-478)) . T) ((|#2|) . T)) +(((|#2|) OR (|has| |#2| (-6 (-3981 "*"))) (|has| |#2| (-144)))) +(((|#2|) OR (|has| |#2| (-6 (-3981 "*"))) (|has| |#2| (-144)))) (((|#2|) . T)) -((((-1117)) |has| |#2| (-836 (-1117)))) -((((-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117))))) -((($ (-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117))))) +((((-1079)) |has| |#2| (-802 (-1079)))) +((((-1079)) OR (|has| |#2| (-802 (-1079))) (|has| |#2| (-804 (-1079))))) +((($ (-1079)) OR (|has| |#2| (-802 (-1079))) (|has| |#2| (-804 (-1079))))) (((|#2|) . T)) -(-3677 (|has| |#2| (-190)) (|has| |#2| (-189))) -((($) -3677 (|has| |#2| (-190)) (|has| |#2| (-189)))) -(|has| |#2| (-190)) +(OR (|has| |#2| (-188)) (|has| |#2| (-187))) +((($) OR (|has| |#2| (-188)) (|has| |#2| (-187)))) +(|has| |#2| (-188)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) -(((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) +((($) . T) ((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) +(((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) (((|#2|) . T)) -((((-499)) . T) ((|#2|) . T) (((-361 (-499))) |has| |#2| (-978 (-361 (-499))))) -(((|#2|) . T) (((-499)) |has| |#2| (-978 (-499))) (((-361 (-499))) |has| |#2| (-978 (-361 (-499))))) -(((|#1| |#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) -(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) +((((-478)) . T) ((|#2|) . T) (((-343 (-478))) |has| |#2| (-943 (-343 (-478))))) +(((|#2|) . T) (((-478)) |has| |#2| (-943 (-478))) (((-343 (-478))) |has| |#2| (-943 (-343 (-478))))) +(((|#1| |#1| |#2| (-194 |#1| |#2|) (-194 |#1| |#2|)) . T)) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005)))) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005)))) (((|#2|) . T)) -(((|#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) . T)) +(((|#1| |#2| (-194 |#1| |#2|) (-194 |#1| |#2|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-488)) |has| |#4| (-569 (-488)))) +((((-467)) |has| |#4| (-548 (-467)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) -(((|#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) +(((|#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005)))) +(((|#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005)))) (((|#4|) . T)) -((((-797)) . T) (((-599 |#4|)) . T)) +((((-765)) . T) (((-578 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(|has| |#1| (-1041)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(|has| |#1| (-1005)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-797)) . T)) +((((-765)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-599 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(|has| |#1| (-1041)) -(((|#1|) . T)) -((((-488)) |has| |#1| (-569 (-488)))) -((((-499) |#1|) . T)) -((((-1174 (-499)) $) . T) (((-499) |#1|) . T)) -((((-499) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-117)) . T)) -((((-117)) . T)) -((((-499) (-117)) . T)) -((((-499) (-117)) . T)) -((((-499) (-117)) . T) (((-1174 (-499)) $) . T)) -((((-117)) . T)) -((((-797)) . T)) -((((-117)) . T)) -((((-117)) . T)) -((((-1099) |#1|) . T)) -((((-797)) . T)) -((((-1099) |#1|) . T)) -((((-1099) |#1|) . T)) -((((-1099) |#1|) . T)) -((((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) |has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) |has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))))) -((((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) -((((-1099) |#1|) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-1115 |#1| |#2| |#3|)) |has| |#1| (-318))) -((((-1115 |#1| |#2| |#3|)) . T)) -((((-1115 |#1| |#2| |#3|)) |has| |#1| (-318))) -((((-1115 |#1| |#2| |#3|)) |has| |#1| (-318))) -((((-1115 |#1| |#2| |#3|)) |has| |#1| (-318))) -((((-1115 |#1| |#2| |#3|)) |has| |#1| (-318))) -((((-1115 |#1| |#2| |#3|)) -12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-263 (-1115 |#1| |#2| |#3|))))) -((((-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) -12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-263 (-1115 |#1| |#2| |#3|)))) (((-1117) (-1115 |#1| |#2| |#3|)) -12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-468 (-1117) (-1115 |#1| |#2| |#3|))))) -((((-1115 |#1| |#2| |#3|)) |has| |#1| (-318))) -(|has| |#1| (-318)) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(-3677 (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) -((($) -3677 (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) -(-3677 (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) -((((-1115 |#1| |#2| |#3|)) |has| |#1| (-318))) -((($ (-1204 |#2|)) . T) (($ (-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117)))) (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117)))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))))) -((((-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117)))) (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117)))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))))) -((((-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117)))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))))) -((((-1115 |#1| |#2| |#3|)) |has| |#1| (-318))) -(-3677 (|has| |#1| (-120)) (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-120)))) -(-3677 (|has| |#1| (-118)) (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-118)))) -((((-797)) . T)) -(((|#1|) . T)) -((((-1115 |#1| |#2| |#3|) $) -12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-240 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)))) (($ $) . T) (((-499) |#1|) . T)) -(((|#1| (-499) (-1022)) . T)) -((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) |has| |#1| (-146))) -((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1| |#1|) . T)) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) . T)) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) . T)) -((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-318)) (((-499)) . T) (($) . T) ((|#1|) . T)) -((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-318)) (($) . T) ((|#1|) . T)) -((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) |has| |#1| (-146))) -((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) |has| |#1| (-146))) -((((-1115 |#1| |#2| |#3|)) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-499)) . T) ((|#1|) |has| |#1| (-146))) -(((|#1| (-499)) . T)) -(((|#1| (-499)) . T)) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(((|#1| (-1115 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-797)) . T)) -((((-361 $) (-361 $)) |has| |#1| (-510)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-318)) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) -(|has| |#1| (-318)) -(((|#1| (-714) (-1022)) . T)) -(|has| |#1| (-848)) -(|has| |#1| (-848)) -((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (((-1022)) . T)) -((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (($ (-1022)) . T)) -((((-1117)) |has| |#1| (-836 (-1117))) (((-1022)) . T)) -((((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-714)) . T)) -(|has| |#1| (-120)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-578 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(|has| |#1| (-1005)) +(((|#1|) . T)) +((((-467)) |has| |#1| (-548 (-467)))) +((((-478) |#1|) . T)) +((((-1135 (-478)) $) . T) (((-478) |#1|) . T)) +((((-478) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-115)) . T)) +((((-115)) . T)) +((((-478) (-115)) . T)) +((((-478) (-115)) . T)) +((((-478) (-115)) . T) (((-1135 (-478)) $) . T)) +((((-115)) . T)) +((((-765)) . T)) +((((-115)) . T)) +((((-115)) . T)) +((((-1062) |#1|) . T)) +((((-765)) . T)) +((((-1062) |#1|) . T)) +((((-1062) |#1|) . T)) +((((-1062) |#1|) . T)) +((((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) (((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) |has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) (((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) |has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))))) +((((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) . T)) +((((-1062) |#1|) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-1078 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1078 |#1| |#2| |#3|)) . T)) +((((-1078 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1078 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1078 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1078 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1078 |#1| |#2| |#3|)) -12 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-256 (-1078 |#1| |#2| |#3|))))) +((((-1078 |#1| |#2| |#3|) (-1078 |#1| |#2| |#3|)) -12 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-256 (-1078 |#1| |#2| |#3|)))) (((-1079) (-1078 |#1| |#2| |#3|)) -12 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-447 (-1079) (-1078 |#1| |#2| |#3|))))) +((((-1078 |#1| |#2| |#3|)) |has| |#1| (-308))) +(|has| |#1| (-308)) +(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) +(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(OR (-12 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-188))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) +((($) OR (-12 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-188))) (-12 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) +(OR (-12 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-188))) (-12 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) +((((-1078 |#1| |#2| |#3|)) |has| |#1| (-308))) +((($ (-1165 |#2|)) . T) (($ (-1079)) OR (-12 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-802 (-1079)))) (-12 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-804 (-1079)))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))))) +((((-1079)) OR (-12 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-802 (-1079)))) (-12 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-804 (-1079)))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))))) +((((-1079)) OR (-12 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-802 (-1079)))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))))) +((((-1078 |#1| |#2| |#3|)) |has| |#1| (-308))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-118)))) +(OR (|has| |#1| (-116)) (-12 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-116)))) +((((-765)) . T)) +(((|#1|) . T)) +((((-1078 |#1| |#2| |#3|) $) -12 (|has| |#1| (-308)) (|has| (-1078 |#1| |#2| |#3|) (-238 (-1078 |#1| |#2| |#3|) (-1078 |#1| |#2| |#3|)))) (($ $) . T) (((-478) |#1|) . T)) +(((|#1| (-478) (-986)) . T)) +((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-1078 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1078 |#1| |#2| |#3|) (-1078 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1078 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) . T)) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1078 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) . T)) +((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1078 |#1| |#2| |#3|)) |has| |#1| (-308)) (((-478)) . T) (($) . T) ((|#1|) . T)) +((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1078 |#1| |#2| |#3|)) |has| |#1| (-308)) (($) . T) ((|#1|) . T)) +((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-1078 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) +((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-1078 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) +((((-1078 |#1| |#2| |#3|)) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-478)) . T) ((|#1|) |has| |#1| (-144))) +(((|#1| (-478)) . T)) +(((|#1| (-478)) . T)) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(((|#1| (-1078 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-765)) . T)) +((((-343 $) (-343 $)) |has| |#1| (-489)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-308)) +(OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-814))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(|has| |#1| (-308)) +(((|#1| (-687) (-986)) . T)) +(|has| |#1| (-814)) +(|has| |#1| (-814)) +((((-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079)))) (((-986)) . T)) +((($ (-1079)) OR (|has| |#1| (-802 (-1079))) (|has| |#1| (-804 (-1079)))) (($ (-986)) . T)) +((((-1079)) |has| |#1| (-802 (-1079))) (((-986)) . T)) +((((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-687)) . T)) (|has| |#1| (-118)) -((((-499)) . T) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) (((-1022)) . T) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499)))))) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) . T) (((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((((-499)) . T) (($) . T) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -(((|#1|) . T)) -((((-1022)) . T) ((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) -(((|#1| (-714)) . T)) -((((-1022) |#1|) . T) (((-1022) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-1092)) -(((|#1|) . T)) -((((-1115 |#1| |#2| |#3|)) . T) (((-1108 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) -((($ $) . T) (((-361 (-499)) |#1|) . T)) -((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) -((($ (-1204 |#2|)) . T) (($ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) -((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) -(((|#1| (-361 (-499)) (-1022)) . T)) +(|has| |#1| (-116)) +((((-478)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) (((-986)) . T) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478)))))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) . T) (((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((((-478)) . T) (($) . T) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +(((|#1|) . T)) +((((-986)) . T) ((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) +(((|#1| (-687)) . T)) +((((-986) |#1|) . T) (((-986) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-1055)) +(((|#1|) . T)) +((((-1078 |#1| |#2| |#3|)) . T) (((-1071 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) +((($ $) . T) (((-343 (-478)) |#1|) . T)) +((((-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) +((($ (-1165 |#2|)) . T) (($ (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) +((((-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) +(((|#1| (-343 (-478)) (-986)) . T)) +(|has| |#1| (-116)) (|has| |#1| (-118)) -(|has| |#1| (-120)) -(((|#1| (-361 (-499))) . T)) -(((|#1| (-361 (-499))) . T)) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-318)) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) -((((-797)) . T)) -(((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318)))) -(((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318)))) -(((|#1| |#1|) . T) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318)))) -(((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-499)) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) . T)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) -(((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) -(((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) -((((-1204 |#2|)) . T) (((-1115 |#1| |#2| |#3|)) . T) (((-1108 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-499)) . T) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(((|#1| (-1108 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(((|#1| (-714)) . T)) -(((|#1| (-714)) . T)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-510))) -(|has| |#1| (-120)) +(((|#1| (-343 (-478))) . T)) +(((|#1| (-343 (-478))) . T)) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-308)) +(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +((((-765)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308)))) +(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308)))) +(((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) . T)) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) +(((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) +(((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) +((((-1165 |#2|)) . T) (((-1078 |#1| |#2| |#3|)) . T) (((-1071 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-478)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) +(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(((|#1| (-1071 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(((|#1| (-687)) . T)) +(((|#1| (-687)) . T)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(OR (|has| |#1| (-144)) (|has| |#1| (-489))) (|has| |#1| (-118)) -((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -(((|#1| (-714) (-1022)) . T)) -((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|))))) -((($ (-1204 |#2|)) . T) (($ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|))))) -((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|))))) -((((-714) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-714) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-714) |#1|)))) -((((-797)) . T)) -(((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (((-499)) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (($) . T)) -((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (((-499)) . T)) -(|has| |#1| (-15 * (|#1| (-714) |#1|))) -(((|#1|) . T)) -((((-797)) . T)) -((((-333)) . T) (((-499)) . T)) -((((-460)) . T)) -((((-460)) . T) (((-1099)) . T)) -((((-825 (-333))) . T) (((-825 (-499))) . T) (((-1117)) . T) (((-488)) . T)) -((((-797)) . T)) -(((|#1| (-911)) . T)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-510))) -(|has| |#1| (-120)) +(|has| |#1| (-116)) +((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +(((|#1| (-687) (-986)) . T)) +((((-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|))))) +((($ (-1165 |#2|)) . T) (($ (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|))))) +((((-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|))))) +((((-687) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-687) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-687) |#1|)))) +((((-765)) . T)) +(((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (($) . T)) +((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (((-478)) . T)) +(|has| |#1| (-15 * (|#1| (-687) |#1|))) +(((|#1|) . T)) +((((-323)) . T) (((-478)) . T)) +((((-439)) . T)) +((((-439)) . T) (((-1062)) . T)) +((((-793 (-323))) . T) (((-793 (-478))) . T) (((-1079)) . T) (((-467)) . T)) +((((-765)) . T)) +(((|#1| (-877)) . T)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(OR (|has| |#1| (-144)) (|has| |#1| (-489))) (|has| |#1| (-118)) -((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((((-797)) . T)) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -(((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (((-499)) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (($) . T)) -((($) |has| |#1| (-510)) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) (((-499)) . T)) -((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -(((|#1|) . T)) -(((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) -(((|#1| (-911)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-1099)) . T) (((-460)) . T) (((-179)) . T) (((-499)) . T)) -((((-1099)) . T) (((-460)) . T) (((-179)) . T) (((-499)) . T)) -((((-488)) . T) (((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) +(|has| |#1| (-116)) +((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((((-765)) . T)) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +(((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (($) . T)) +((($) |has| |#1| (-489)) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) (((-478)) . T)) +((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +(((|#1|) . T)) +(((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) +(((|#1| (-877)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-1062)) . T) (((-439)) . T) (((-177)) . T) (((-478)) . T)) +((((-1062)) . T) (((-439)) . T) (((-177)) . T) (((-478)) . T)) +((((-467)) . T) (((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) (((|#1| |#2|) . T)) -((((-797)) . T)) +((((-765)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-797)) . T)) -(((|#1|) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-344) (-1099)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1041)) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) -(((|#1|) . T)) -((($) . T)) -((($ $) . T) (((-1117) $) . T)) -((((-1117)) . T)) -((((-797)) . T)) -((($ (-1117)) . T)) -((((-1117)) . T)) -(((|#1| (-484 (-1117)) (-1117)) . T)) -((($) . T) (((-499)) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T)) -((($) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T)) +((((-765)) . T)) +(((|#1|) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-331) (-1062)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1005)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1005))) +(((|#1|) . T)) +((($) . T)) +((($ $) . T) (((-1079) $) . T)) +((((-1079)) . T)) +((((-765)) . T)) +((($ (-1079)) . T)) +((((-1079)) . T)) +(((|#1| (-463 (-1079)) (-1079)) . T)) +((($) . T) (((-478)) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T)) +((($) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T)) +(|has| |#1| (-116)) (|has| |#1| (-118)) -(|has| |#1| (-120)) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-510))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510)))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510)))) -((((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1| |#1|) . T) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-510)))) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -((((-499)) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) -((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) -(((|#1| (-484 (-1117))) . T)) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(((|#1| (-1117)) . T)) -(|has| |#1| (-1041)) -(|has| |#1| (-1041)) -(|has| |#1| (-1041)) -((((-896 |#1|)) . T)) -((((-797)) |has| |#1| (-568 (-797))) (((-896 |#1|)) . T)) -((((-896 |#1|)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-1197 |#1| |#2| |#3|)) |has| |#1| (-318))) -((((-1197 |#1| |#2| |#3|)) . T)) -((((-1197 |#1| |#2| |#3|)) |has| |#1| (-318))) -((((-1197 |#1| |#2| |#3|)) |has| |#1| (-318))) -((((-1197 |#1| |#2| |#3|)) |has| |#1| (-318))) -((((-1197 |#1| |#2| |#3|)) |has| |#1| (-318))) -((((-1197 |#1| |#2| |#3|)) -12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-263 (-1197 |#1| |#2| |#3|))))) -((((-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|)) -12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-263 (-1197 |#1| |#2| |#3|)))) (((-1117) (-1197 |#1| |#2| |#3|)) -12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-468 (-1117) (-1197 |#1| |#2| |#3|))))) -((((-1197 |#1| |#2| |#3|)) |has| |#1| (-318))) -(|has| |#1| (-318)) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(-3677 (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) -((($) -3677 (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) -(-3677 (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) -((((-1197 |#1| |#2| |#3|)) |has| |#1| (-318))) -((($ (-1204 |#2|)) . T) (($ (-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117)))) (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117)))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))))) -((((-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117)))) (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117)))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))))) -((((-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117)))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))))) -((((-1197 |#1| |#2| |#3|)) |has| |#1| (-318))) -(-3677 (|has| |#1| (-120)) (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-120)))) -(-3677 (|has| |#1| (-118)) (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-118)))) -((((-797)) . T)) -(((|#1|) . T)) -((((-1197 |#1| |#2| |#3|) $) -12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-240 (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|)))) (($ $) . T) (((-499) |#1|) . T)) -(((|#1| (-499) (-1022)) . T)) -((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-1197 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) |has| |#1| (-146))) -((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1| |#1|) . T)) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1197 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) . T)) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1197 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) . T)) -((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1197 |#1| |#2| |#3|)) |has| |#1| (-318)) (((-499)) . T) (($) . T) ((|#1|) . T)) -((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1197 |#1| |#2| |#3|)) |has| |#1| (-318)) (($) . T) ((|#1|) . T)) -((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-1197 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) |has| |#1| (-146))) -((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-1197 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) |has| |#1| (-146))) -((((-1197 |#1| |#2| |#3|)) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-499)) . T) ((|#1|) |has| |#1| (-146))) -(((|#1| (-499)) . T)) -(((|#1| (-499)) . T)) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(((|#1| (-1197 |#1| |#2| |#3|)) . T)) -(((|#2|) |has| |#1| (-318))) -(-12 (|has| |#1| (-318)) (|has| |#2| (-1092))) -(((|#2|) . T) (((-1117)) -12 (|has| |#1| (-318)) (|has| |#2| (-978 (-1117)))) (((-499)) -12 (|has| |#1| (-318)) (|has| |#2| (-978 (-499)))) (((-361 (-499))) -12 (|has| |#1| (-318)) (|has| |#2| (-978 (-499))))) -(-12 (|has| |#1| (-318)) (|has| |#2| (-960))) -(-12 (|has| |#1| (-318)) (|has| |#2| (-848))) -(((|#2|) |has| |#1| (-318))) -(-12 (|has| |#1| (-318)) (|has| |#2| (-763))) -(-12 (|has| |#1| (-318)) (|has| |#2| (-763))) -(-12 (|has| |#1| (-318)) (|has| |#2| (-763))) -(-3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-763))) (-12 (|has| |#1| (-318)) (|has| |#2| (-781)))) -(-3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-763))) (-12 (|has| |#1| (-318)) (|has| |#2| (-781)))) -(-12 (|has| |#1| (-318)) (|has| |#2| (-763))) -(-12 (|has| |#1| (-318)) (|has| |#2| (-763))) -(-12 (|has| |#1| (-318)) (|has| |#2| (-763))) -((((-333)) -12 (|has| |#1| (-318)) (|has| |#2| (-821 (-333)))) (((-499)) -12 (|has| |#1| (-318)) (|has| |#2| (-821 (-499))))) -(((|#2|) |has| |#1| (-318))) -((((-499)) -12 (|has| |#1| (-318)) (|has| |#2| (-596 (-499)))) ((|#2|) |has| |#1| (-318))) -(((|#2|) |has| |#1| (-318))) -(((|#2|) -12 (|has| |#1| (-318)) (|has| |#2| (-263 |#2|)))) -(((|#2| |#2|) -12 (|has| |#1| (-318)) (|has| |#2| (-263 |#2|))) (((-1117) |#2|) -12 (|has| |#1| (-318)) (|has| |#2| (-468 (-1117) |#2|)))) -(((|#2|) |has| |#1| (-318))) -(|has| |#1| (-318)) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(-3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-190))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) -((($) -3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-190))) (-12 (|has| |#1| (-318)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) -(-3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-190))) (-12 (|has| |#1| (-318)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) -(((|#2|) |has| |#1| (-318))) -((($ (-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-836 (-1117)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117)))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))))) -((((-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-836 (-1117)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117)))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))))) -((((-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-836 (-1117)))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))))) -(((|#2|) |has| |#1| (-318))) -((((-179)) -12 (|has| |#1| (-318)) (|has| |#2| (-960))) (((-333)) -12 (|has| |#1| (-318)) (|has| |#2| (-960))) (((-825 (-333))) -12 (|has| |#1| (-318)) (|has| |#2| (-569 (-825 (-333))))) (((-825 (-499))) -12 (|has| |#1| (-318)) (|has| |#2| (-569 (-825 (-499))))) (((-488)) -12 (|has| |#1| (-318)) (|has| |#2| (-569 (-488))))) -(-3677 (|has| |#1| (-120)) (-12 (|has| |#1| (-318)) (|has| |#2| (-120)))) -(-3677 (|has| |#1| (-118)) (-12 (|has| |#1| (-318)) (|has| |#2| (-118)))) -((((-797)) . T)) -(((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-318)) (|has| |#2| (-240 |#2| |#2|))) (($ $) . T) (((-499) |#1|) . T)) -(((|#1| (-499) (-1022)) . T)) -((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) ((|#2|) |has| |#1| (-318)) ((|#1|) |has| |#1| (-146))) -((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#2| |#2|) |has| |#1| (-318)) ((|#1| |#1|) . T)) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#2|) |has| |#1| (-318)) ((|#1|) . T)) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#2|) |has| |#1| (-318)) ((|#1|) . T)) -((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#2|) |has| |#1| (-318)) (((-499)) . T) (($) . T) ((|#1|) . T)) -((((-499)) -12 (|has| |#1| (-318)) (|has| |#2| (-596 (-499)))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#2|) |has| |#1| (-318)) (($) . T) ((|#1|) . T)) -((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) ((|#2|) |has| |#1| (-318)) ((|#1|) |has| |#1| (-146))) -((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) ((|#2|) |has| |#1| (-318)) ((|#1|) |has| |#1| (-146))) -(((|#2|) . T) (((-1117)) -12 (|has| |#1| (-318)) (|has| |#2| (-978 (-1117)))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-499)) . T) ((|#1|) |has| |#1| (-146))) -(((|#1| (-499)) . T)) -(((|#1| (-499)) . T)) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) +(OR (|has| |#1| (-144)) (|has| |#1| (-489))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-489)))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-489)))) +((((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-489)))) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +((((-478)) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) +((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) +(((|#1| (-463 (-1079))) . T)) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(((|#1| (-1079)) . T)) +(|has| |#1| (-1005)) +(|has| |#1| (-1005)) +(|has| |#1| (-1005)) +((((-862 |#1|)) . T)) +((((-765)) |has| |#1| (-547 (-765))) (((-862 |#1|)) . T)) +((((-862 |#1|)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-1158 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1158 |#1| |#2| |#3|)) . T)) +((((-1158 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1158 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1158 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1158 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1158 |#1| |#2| |#3|)) -12 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-256 (-1158 |#1| |#2| |#3|))))) +((((-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) -12 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-256 (-1158 |#1| |#2| |#3|)))) (((-1079) (-1158 |#1| |#2| |#3|)) -12 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-447 (-1079) (-1158 |#1| |#2| |#3|))))) +((((-1158 |#1| |#2| |#3|)) |has| |#1| (-308))) +(|has| |#1| (-308)) +(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) +(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(OR (-12 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-188))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) +((($) OR (-12 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-188))) (-12 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) +(OR (-12 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-188))) (-12 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) +((((-1158 |#1| |#2| |#3|)) |has| |#1| (-308))) +((($ (-1165 |#2|)) . T) (($ (-1079)) OR (-12 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-802 (-1079)))) (-12 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-804 (-1079)))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))))) +((((-1079)) OR (-12 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-802 (-1079)))) (-12 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-804 (-1079)))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))))) +((((-1079)) OR (-12 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-802 (-1079)))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))))) +((((-1158 |#1| |#2| |#3|)) |has| |#1| (-308))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-118)))) +(OR (|has| |#1| (-116)) (-12 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-116)))) +((((-765)) . T)) +(((|#1|) . T)) +((((-1158 |#1| |#2| |#3|) $) -12 (|has| |#1| (-308)) (|has| (-1158 |#1| |#2| |#3|) (-238 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)))) (($ $) . T) (((-478) |#1|) . T)) +(((|#1| (-478) (-986)) . T)) +((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-1158 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1158 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) . T)) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1158 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) . T)) +((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1158 |#1| |#2| |#3|)) |has| |#1| (-308)) (((-478)) . T) (($) . T) ((|#1|) . T)) +((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1158 |#1| |#2| |#3|)) |has| |#1| (-308)) (($) . T) ((|#1|) . T)) +((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-1158 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) +((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-1158 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) +((((-1158 |#1| |#2| |#3|)) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-478)) . T) ((|#1|) |has| |#1| (-144))) +(((|#1| (-478)) . T)) +(((|#1| (-478)) . T)) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(((|#1| (-1158 |#1| |#2| |#3|)) . T)) +(((|#2|) |has| |#1| (-308))) +(-12 (|has| |#1| (-308)) (|has| |#2| (-1055))) +(((|#2|) . T) (((-1079)) -12 (|has| |#1| (-308)) (|has| |#2| (-943 (-1079)))) (((-478)) -12 (|has| |#1| (-308)) (|has| |#2| (-943 (-478)))) (((-343 (-478))) -12 (|has| |#1| (-308)) (|has| |#2| (-943 (-478))))) +(-12 (|has| |#1| (-308)) (|has| |#2| (-926))) +(-12 (|has| |#1| (-308)) (|has| |#2| (-814))) +(((|#2|) |has| |#1| (-308))) +(-12 (|has| |#1| (-308)) (|has| |#2| (-733))) +(-12 (|has| |#1| (-308)) (|has| |#2| (-733))) +(-12 (|has| |#1| (-308)) (|has| |#2| (-733))) +(OR (-12 (|has| |#1| (-308)) (|has| |#2| (-733))) (-12 (|has| |#1| (-308)) (|has| |#2| (-749)))) +(OR (-12 (|has| |#1| (-308)) (|has| |#2| (-733))) (-12 (|has| |#1| (-308)) (|has| |#2| (-749)))) +(-12 (|has| |#1| (-308)) (|has| |#2| (-733))) +(-12 (|has| |#1| (-308)) (|has| |#2| (-733))) +(-12 (|has| |#1| (-308)) (|has| |#2| (-733))) +((((-323)) -12 (|has| |#1| (-308)) (|has| |#2| (-789 (-323)))) (((-478)) -12 (|has| |#1| (-308)) (|has| |#2| (-789 (-478))))) +(((|#2|) |has| |#1| (-308))) +((((-478)) -12 (|has| |#1| (-308)) (|has| |#2| (-575 (-478)))) ((|#2|) |has| |#1| (-308))) +(((|#2|) |has| |#1| (-308))) +(((|#2|) -12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) (((-1079) |#2|) -12 (|has| |#1| (-308)) (|has| |#2| (-447 (-1079) |#2|)))) +(((|#2|) |has| |#1| (-308))) +(|has| |#1| (-308)) +(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) +(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(OR (-12 (|has| |#1| (-308)) (|has| |#2| (-188))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) +((($) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-188))) (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) +(OR (-12 (|has| |#1| (-308)) (|has| |#2| (-188))) (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) +(((|#2|) |has| |#1| (-308))) +((($ (-1079)) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-802 (-1079)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1079)))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))))) +((((-1079)) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-802 (-1079)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1079)))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))))) +((((-1079)) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-802 (-1079)))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))))) +(((|#2|) |has| |#1| (-308))) +((((-177)) -12 (|has| |#1| (-308)) (|has| |#2| (-926))) (((-323)) -12 (|has| |#1| (-308)) (|has| |#2| (-926))) (((-793 (-323))) -12 (|has| |#1| (-308)) (|has| |#2| (-548 (-793 (-323))))) (((-793 (-478))) -12 (|has| |#1| (-308)) (|has| |#2| (-548 (-793 (-478))))) (((-467)) -12 (|has| |#1| (-308)) (|has| |#2| (-548 (-467))))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-308)) (|has| |#2| (-118)))) +(OR (|has| |#1| (-116)) (-12 (|has| |#1| (-308)) (|has| |#2| (-116)))) +((((-765)) . T)) +(((|#1|) . T)) +(((|#2| $) -12 (|has| |#1| (-308)) (|has| |#2| (-238 |#2| |#2|))) (($ $) . T) (((-478) |#1|) . T)) +(((|#1| (-478) (-986)) . T)) +((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) ((|#2|) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#2| |#2|) |has| |#1| (-308)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#2|) |has| |#1| (-308)) ((|#1|) . T)) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#2|) |has| |#1| (-308)) ((|#1|) . T)) +((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#2|) |has| |#1| (-308)) (((-478)) . T) (($) . T) ((|#1|) . T)) +((((-478)) -12 (|has| |#1| (-308)) (|has| |#2| (-575 (-478)))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#2|) |has| |#1| (-308)) (($) . T) ((|#1|) . T)) +((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) ((|#2|) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) +((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) ((|#2|) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) +(((|#2|) . T) (((-1079)) -12 (|has| |#1| (-308)) (|has| |#2| (-943 (-1079)))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-478)) . T) ((|#1|) |has| |#1| (-144))) +(((|#1| (-478)) . T)) +(((|#1| (-478)) . T)) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) (((|#1| |#2|) . T)) -(((|#1| (-1095 |#1|)) |has| |#1| (-780))) -(|has| |#1| (-1041)) -(|has| |#1| (-1041)) -((((-797)) |has| |#1| (-1041))) -(|has| |#1| (-1041)) +(((|#1| (-1058 |#1|)) |has| |#1| (-748))) +(|has| |#1| (-1005)) +(|has| |#1| (-1005)) +((((-765)) |has| |#1| (-1005))) +(|has| |#1| (-1005)) (((|#1|) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) ((($) . T)) -((((-797)) . T)) -((((-361 $) (-361 $)) |has| |#2| (-510)) (($ $) . T) ((|#2| |#2|) . T)) -(|has| |#2| (-318)) -(-3677 (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-848))) -(-3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) -(-3677 (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) -(-3677 (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) -(|has| |#2| (-318)) -(((|#2| (-714) (-1022)) . T)) -(|has| |#2| (-848)) -(|has| |#2| (-848)) -((((-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117)))) (((-1022)) . T)) -((($ (-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117)))) (($ (-1022)) . T)) -((((-1117)) |has| |#2| (-836 (-1117))) (((-1022)) . T)) -((((-499)) |has| |#2| (-596 (-499))) ((|#2|) . T)) +((((-765)) . T)) +((((-343 $) (-343 $)) |has| |#2| (-489)) (($ $) . T) ((|#2| |#2|) . T)) +(|has| |#2| (-308)) +(OR (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-814))) +(OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) +(OR (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) +(OR (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) +(|has| |#2| (-308)) +(((|#2| (-687) (-986)) . T)) +(|has| |#2| (-814)) +(|has| |#2| (-814)) +((((-1079)) OR (|has| |#2| (-802 (-1079))) (|has| |#2| (-804 (-1079)))) (((-986)) . T)) +((($ (-1079)) OR (|has| |#2| (-802 (-1079))) (|has| |#2| (-804 (-1079)))) (($ (-986)) . T)) +((((-1079)) |has| |#2| (-802 (-1079))) (((-986)) . T)) +((((-478)) |has| |#2| (-575 (-478))) ((|#2|) . T)) (((|#2|) . T)) -(((|#2| (-714)) . T)) -(|has| |#2| (-120)) +(((|#2| (-687)) . T)) (|has| |#2| (-118)) -((((-1204 |#1|)) . T) (((-499)) . T) (($) -3677 (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) (((-1022)) . T) ((|#2|) . T) (((-361 (-499))) -3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499)))))) -((($) -3677 (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) ((|#2|) |has| |#2| (-146)) (((-361 (-499))) |has| |#2| (-38 (-361 (-499))))) -((($) -3677 (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) ((|#2|) |has| |#2| (-146)) (((-361 (-499))) |has| |#2| (-38 (-361 (-499))))) -((($) . T) (((-499)) |has| |#2| (-596 (-499))) ((|#2|) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499))))) -((((-499)) . T) (($) . T) ((|#2|) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499))))) -((($) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) ((|#2|) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499))))) -((($) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) ((|#2|) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499))))) -((($ $) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) ((|#2| |#2|) . T) (((-361 (-499)) (-361 (-499))) |has| |#2| (-38 (-361 (-499))))) -((($) -3677 (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) ((|#2|) |has| |#2| (-146)) (((-361 (-499))) |has| |#2| (-38 (-361 (-499))))) -(((|#2|) . T)) -((((-1022)) . T) ((|#2|) . T) (((-499)) |has| |#2| (-978 (-499))) (((-361 (-499))) |has| |#2| (-978 (-361 (-499))))) -(((|#2| (-714)) . T)) -((((-1022) |#2|) . T) (((-1022) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#2| (-1092)) -(((|#2|) . T)) -((((-1197 |#1| |#2| |#3|)) . T) (((-1167 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) -((($ $) . T) (((-361 (-499)) |#1|) . T)) -((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) -((($ (-1204 |#2|)) . T) (($ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) -((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) -(((|#1| (-361 (-499)) (-1022)) . T)) +(|has| |#2| (-116)) +((((-1165 |#1|)) . T) (((-478)) . T) (($) OR (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) (((-986)) . T) ((|#2|) . T) (((-343 (-478))) OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478)))))) +((($) OR (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) ((|#2|) |has| |#2| (-144)) (((-343 (-478))) |has| |#2| (-38 (-343 (-478))))) +((($) OR (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) ((|#2|) |has| |#2| (-144)) (((-343 (-478))) |has| |#2| (-38 (-343 (-478))))) +((($) . T) (((-478)) |has| |#2| (-575 (-478))) ((|#2|) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478))))) +((((-478)) . T) (($) . T) ((|#2|) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478))))) +((($) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) ((|#2|) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478))))) +((($) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) ((|#2|) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478))))) +((($ $) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) ((|#2| |#2|) . T) (((-343 (-478)) (-343 (-478))) |has| |#2| (-38 (-343 (-478))))) +((($) OR (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) ((|#2|) |has| |#2| (-144)) (((-343 (-478))) |has| |#2| (-38 (-343 (-478))))) +(((|#2|) . T)) +((((-986)) . T) ((|#2|) . T) (((-478)) |has| |#2| (-943 (-478))) (((-343 (-478))) |has| |#2| (-943 (-343 (-478))))) +(((|#2| (-687)) . T)) +((((-986) |#2|) . T) (((-986) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#2| (-1055)) +(((|#2|) . T)) +((((-1158 |#1| |#2| |#3|)) . T) (((-1128 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) +((($ $) . T) (((-343 (-478)) |#1|) . T)) +((((-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) +((($ (-1165 |#2|)) . T) (($ (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) +((((-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) +(((|#1| (-343 (-478)) (-986)) . T)) +(|has| |#1| (-116)) (|has| |#1| (-118)) -(|has| |#1| (-120)) -(((|#1| (-361 (-499))) . T)) -(((|#1| (-361 (-499))) . T)) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-318)) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) -((((-797)) . T)) -(((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318)))) -(((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318)))) -(((|#1| |#1|) . T) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318)))) -(((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-499)) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) . T)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) -(((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) -(((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) -((((-1204 |#2|)) . T) (((-1197 |#1| |#2| |#3|)) . T) (((-1167 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-499)) . T) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(((|#1| (-1167 |#1| |#2| |#3|)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) -((($ $) . T) (((-361 (-499)) |#1|) . T)) -((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) -((($ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) -((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) -(((|#1| (-361 (-499)) (-1022)) . T)) +(((|#1| (-343 (-478))) . T)) +(((|#1| (-343 (-478))) . T)) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-308)) +(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +((((-765)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308)))) +(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308)))) +(((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) . T)) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) +(((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) +(((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) +((((-1165 |#2|)) . T) (((-1158 |#1| |#2| |#3|)) . T) (((-1128 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-478)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) +(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(((|#1| (-1128 |#1| |#2| |#3|)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) +((($ $) . T) (((-343 (-478)) |#1|) . T)) +((((-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) +((($ (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) +((((-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) +(((|#1| (-343 (-478)) (-986)) . T)) +(|has| |#1| (-116)) (|has| |#1| (-118)) -(|has| |#1| (-120)) -(((|#1| (-361 (-499))) . T)) -(((|#1| (-361 (-499))) . T)) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-318)) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) -((((-797)) . T)) -(((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318)))) -(((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318)))) -(((|#1| |#1|) . T) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318)))) -(((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-499)) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) . T)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) -(((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) -(((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) -(((|#2|) . T) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-499)) . T) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) -(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) +(((|#1| (-343 (-478))) . T)) +(((|#1| (-343 (-478))) . T)) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-308)) +(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +((((-765)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308)))) +(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308)))) +(((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) . T)) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) +(((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) +(((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) +(((|#2|) . T) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-478)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) +(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(|has| |#1| (-308)) +(|has| |#1| (-308)) +(|has| |#1| (-308)) (((|#1| |#2|) . T)) -((((-1188 |#2| |#3| |#4|) (-273 |#2| |#3| |#4|)) . T)) -(|has| (-1188 |#2| |#3| |#4|) (-120)) -(|has| (-1188 |#2| |#3| |#4|) (-118)) -((($) . T) (((-1188 |#2| |#3| |#4|)) |has| (-1188 |#2| |#3| |#4|) (-146)) (((-361 (-499))) |has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499))))) -((($) . T) (((-1188 |#2| |#3| |#4|)) |has| (-1188 |#2| |#3| |#4|) (-146)) (((-361 (-499))) |has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499))))) -((((-797)) . T)) -((($) . T) (((-1188 |#2| |#3| |#4|)) . T) (((-361 (-499))) |has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499))))) -((($) . T) (((-1188 |#2| |#3| |#4|)) . T) (((-361 (-499))) |has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499))))) -((($ $) . T) (((-1188 |#2| |#3| |#4|) (-1188 |#2| |#3| |#4|)) . T) (((-361 (-499)) (-361 (-499))) |has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499))))) -((((-1188 |#2| |#3| |#4|)) . T) (((-361 (-499))) |has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499)))) (((-499)) . T) (($) . T)) -((((-1188 |#2| |#3| |#4|)) . T) (((-361 (-499))) |has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499)))) (($) . T)) -((($) . T) (((-1188 |#2| |#3| |#4|)) . T) (((-361 (-499))) |has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499)))) (((-499)) . T)) -((($) . T) (((-1188 |#2| |#3| |#4|)) |has| (-1188 |#2| |#3| |#4|) (-146)) (((-361 (-499))) |has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499))))) -((((-1188 |#2| |#3| |#4|)) . T)) -((((-1188 |#2| |#3| |#4|)) . T)) -((((-1188 |#2| |#3| |#4|) (-273 |#2| |#3| |#4|)) . T)) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(|has| |#1| (-38 (-361 (-499)))) -(((|#1| (-714)) . T)) -(((|#1| (-714)) . T)) -(|has| |#1| (-510)) -(|has| |#1| (-510)) -(-3677 (|has| |#1| (-146)) (|has| |#1| (-510))) -(|has| |#1| (-120)) +((((-1149 |#2| |#3| |#4|) (-266 |#2| |#3| |#4|)) . T)) +(|has| (-1149 |#2| |#3| |#4|) (-118)) +(|has| (-1149 |#2| |#3| |#4|) (-116)) +((($) . T) (((-1149 |#2| |#3| |#4|)) |has| (-1149 |#2| |#3| |#4|) (-144)) (((-343 (-478))) |has| (-1149 |#2| |#3| |#4|) (-38 (-343 (-478))))) +((($) . T) (((-1149 |#2| |#3| |#4|)) |has| (-1149 |#2| |#3| |#4|) (-144)) (((-343 (-478))) |has| (-1149 |#2| |#3| |#4|) (-38 (-343 (-478))))) +((((-765)) . T)) +((($) . T) (((-1149 |#2| |#3| |#4|)) . T) (((-343 (-478))) |has| (-1149 |#2| |#3| |#4|) (-38 (-343 (-478))))) +((($) . T) (((-1149 |#2| |#3| |#4|)) . T) (((-343 (-478))) |has| (-1149 |#2| |#3| |#4|) (-38 (-343 (-478))))) +((($ $) . T) (((-1149 |#2| |#3| |#4|) (-1149 |#2| |#3| |#4|)) . T) (((-343 (-478)) (-343 (-478))) |has| (-1149 |#2| |#3| |#4|) (-38 (-343 (-478))))) +((((-1149 |#2| |#3| |#4|)) . T) (((-343 (-478))) |has| (-1149 |#2| |#3| |#4|) (-38 (-343 (-478)))) (((-478)) . T) (($) . T)) +((((-1149 |#2| |#3| |#4|)) . T) (((-343 (-478))) |has| (-1149 |#2| |#3| |#4|) (-38 (-343 (-478)))) (($) . T)) +((($) . T) (((-1149 |#2| |#3| |#4|)) . T) (((-343 (-478))) |has| (-1149 |#2| |#3| |#4|) (-38 (-343 (-478)))) (((-478)) . T)) +((($) . T) (((-1149 |#2| |#3| |#4|)) |has| (-1149 |#2| |#3| |#4|) (-144)) (((-343 (-478))) |has| (-1149 |#2| |#3| |#4|) (-38 (-343 (-478))))) +((((-1149 |#2| |#3| |#4|)) . T)) +((((-1149 |#2| |#3| |#4|)) . T)) +((((-1149 |#2| |#3| |#4|) (-266 |#2| |#3| |#4|)) . T)) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(|has| |#1| (-38 (-343 (-478)))) +(((|#1| (-687)) . T)) +(((|#1| (-687)) . T)) +(|has| |#1| (-489)) +(|has| |#1| (-489)) +(OR (|has| |#1| (-144)) (|has| |#1| (-489))) (|has| |#1| (-118)) -((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) -(((|#1| (-714) (-1022)) . T)) -((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|))))) -((($ (-1204 |#2|)) . T) (($ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|))))) -((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|))))) -((((-714) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-714) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-714) |#1|)))) -((((-797)) . T)) -(((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (((-499)) . T) (($) . T)) -(((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (($) . T)) -((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (((-499)) . T)) -(|has| |#1| (-15 * (|#1| (-714) |#1|))) -(((|#1|) . T)) -((((-1117)) . T) (((-797)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-499) |#1|) . T)) -((((-499) |#1|) . T)) -((((-499) |#1|) . T) (((-1174 (-499)) $) . T)) -((((-488)) |has| |#1| (-569 (-488)))) -(((|#1|) . T)) -(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) -(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) -((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) -(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) -(((|#1|) . T)) -(|has| |#1| (-781)) -(|has| |#1| (-781)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-797)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -((((-1122)) . T)) -((((-797)) . T) (((-1122)) . T)) -((((-1122)) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1| |#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) +(|has| |#1| (-116)) +((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +(((|#1| (-687) (-986)) . T)) +((((-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|))))) +((($ (-1165 |#2|)) . T) (($ (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|))))) +((((-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|))))) +((((-687) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-687) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-687) |#1|)))) +((((-765)) . T)) +(((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (($) . T)) +((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (((-478)) . T)) +(|has| |#1| (-15 * (|#1| (-687) |#1|))) +(((|#1|) . T)) +((((-1079)) . T) (((-765)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-478) |#1|) . T)) +((((-478) |#1|) . T)) +((((-478) |#1|) . T) (((-1135 (-478)) $) . T)) +((((-467)) |has| |#1| (-548 (-467)))) +(((|#1|) . T)) +(OR (|has| |#1| (-749)) (|has| |#1| (-1005))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005)))) +((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1005)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1005))) +(((|#1|) . T)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-765)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +((((-1084)) . T)) +((((-765)) . T) (((-1084)) . T)) +((((-1084)) . T)) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) +(((|#1| |#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) (((|#4|) . T)) -(((|#1|) |has| |#1| (-146)) ((|#4|) . T) (((-499)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T)) -(((|#4|) . T) (((-797)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-499)) . T)) +(((|#1|) |has| |#1| (-144)) ((|#4|) . T) (((-478)) . T)) +(((|#1|) |has| |#1| (-144)) (($) . T)) +(((|#4|) . T) (((-765)) . T)) +(((|#1|) |has| |#1| (-144)) (($) . T) (((-478)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-488)) |has| |#4| (-569 (-488)))) +((((-467)) |has| |#4| (-548 (-467)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) -(((|#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) +(((|#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005)))) +(((|#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005)))) (((|#4|) . T)) -((((-797)) . T) (((-599 |#4|)) . T)) +((((-765)) . T) (((-578 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-144))) (((|#2|) . T)) (((|#1| |#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-797)) . T)) -((($) . T) (((-499)) . T) ((|#2|) . T)) +((((-765)) . T)) +((($) . T) (((-478)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-146))) -(((|#2|) |has| |#2| (-146))) -((((-762 |#1|)) . T)) -(((|#2|) . T) (((-499)) . T) (((-762 |#1|)) . T)) -(((|#2| (-762 |#1|)) . T)) -(((|#2| (-828 |#1|)) . T)) +(((|#2|) |has| |#2| (-144))) +(((|#2|) |has| |#2| (-144))) +((((-732 |#1|)) . T)) +(((|#2|) . T) (((-478)) . T) (((-732 |#1|)) . T)) +(((|#2| (-732 |#1|)) . T)) +(((|#2| (-796 |#1|)) . T)) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-144))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-146))) -(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-144))) +(((|#2|) |has| |#2| (-144))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-797)) . T)) -(((|#2|) . T) (($) . T) (((-499)) . T)) -((((-828 |#1|)) . T) ((|#2|) . T) (((-499)) . T) (((-762 |#1|)) . T)) -((((-828 |#1|)) . T) (((-762 |#1|)) . T)) +((((-765)) . T)) +(((|#2|) . T) (($) . T) (((-478)) . T)) +((((-796 |#1|)) . T) ((|#2|) . T) (((-478)) . T) (((-732 |#1|)) . T)) +((((-796 |#1|)) . T) (((-732 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1117) |#1|) . T)) -(((|#1|) |has| |#1| (-146))) +((((-1079) |#1|) . T)) +(((|#1|) |has| |#1| (-144))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-797)) . T)) -(((|#1|) . T) (($) . T) (((-499)) . T)) -(((|#1|) . T) (((-499)) . T) (((-762 (-1117))) . T)) -((((-762 (-1117))) . T)) -((((-1117) |#1|) . T)) +((((-765)) . T)) +(((|#1|) . T) (($) . T) (((-478)) . T)) +(((|#1|) . T) (((-478)) . T) (((-732 (-1079))) . T)) +((((-732 (-1079))) . T)) +((((-1079) |#1|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-144))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-144))) +(((|#1|) |has| |#1| (-144))) (((|#1|) . T)) -(((|#2|) . T) ((|#1|) . T) (((-499)) . T)) +(((|#2|) . T) ((|#1|) . T) (((-478)) . T)) (((|#1|) . T) (($) . T)) -((((-797)) . T)) -(((|#1|) . T) (($) . T) (((-499)) . T)) +((((-765)) . T)) +(((|#1|) . T) (($) . T) (((-478)) . T)) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-144))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-146))) -(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-144))) +(((|#2|) |has| |#2| (-144))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-797)) . T)) -(((|#2|) . T) (($) . T) (((-499)) . T)) -(((|#2|) . T) (((-499)) . T) (((-762 |#1|)) . T)) -((((-762 |#1|)) . T)) +((((-765)) . T)) +(((|#2|) . T) (($) . T) (((-478)) . T)) +(((|#2|) . T) (((-478)) . T) (((-732 |#1|)) . T)) +((((-732 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-911)) . T)) -((((-911)) . T)) -((((-911)) . T) (((-797)) . T)) -((((-499)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T) (((-765)) . T)) +((((-478)) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-797)) . T)) -((((-499)) . T) (($) . T)) +((((-765)) . T)) +((((-478)) . T) (($) . T)) ((($) . T)) -((((-499)) . T)) -(((-3) T) ((-2) T) ((-1) T) ((0) T) ((-1237 . -146) T) ((-1237 . -571) 205294) ((-1237 . -684) T) ((-1237 . -1052) T) ((-1237 . -997) T) ((-1237 . -989) T) ((-1237 . -606) 205281) ((-1237 . -604) 205253) ((-1237 . -104) T) ((-1237 . -25) T) ((-1237 . -73) T) ((-1237 . -1157) T) ((-1237 . -568) 205235) ((-1237 . -1041) T) ((-1237 . -23) T) ((-1237 . -21) T) ((-1237 . -996) 205222) ((-1237 . -991) 205209) ((-1237 . -82) 205194) ((-1237 . -323) T) ((-1237 . -569) 205176) ((-1237 . -1092) T) ((-1233 . -1041) T) ((-1233 . -568) 205143) ((-1233 . -1157) T) ((-1233 . -73) T) ((-1233 . -444) 205125) ((-1233 . -571) 205107) ((-1232 . -1230) 205086) ((-1232 . -978) 205063) ((-1232 . -571) 205012) ((-1232 . -989) T) ((-1232 . -997) T) ((-1232 . -1052) T) ((-1232 . -684) T) ((-1232 . -21) T) ((-1232 . -604) 204971) ((-1232 . -23) T) ((-1232 . -1041) T) ((-1232 . -568) 204953) ((-1232 . -1157) T) ((-1232 . -73) T) ((-1232 . -25) T) ((-1232 . -104) T) ((-1232 . -606) 204927) ((-1232 . -1222) 204911) ((-1232 . -675) 204881) ((-1232 . -598) 204851) ((-1232 . -996) 204835) ((-1232 . -991) 204819) ((-1232 . -82) 204798) ((-1232 . -38) 204768) ((-1232 . -1227) 204747) ((-1231 . -989) T) ((-1231 . -997) T) ((-1231 . -1052) T) ((-1231 . -684) T) ((-1231 . -21) T) ((-1231 . -604) 204706) ((-1231 . -23) T) ((-1231 . -1041) T) ((-1231 . -568) 204688) ((-1231 . -1157) T) ((-1231 . -73) T) ((-1231 . -25) T) ((-1231 . -104) T) ((-1231 . -606) 204662) ((-1231 . -571) 204618) ((-1231 . -1222) 204602) ((-1231 . -675) 204572) ((-1231 . -598) 204542) ((-1231 . -996) 204526) ((-1231 . -991) 204510) ((-1231 . -82) 204489) ((-1231 . -38) 204459) ((-1231 . -339) 204438) ((-1231 . -978) 204422) ((-1229 . -1230) 204398) ((-1229 . -978) 204372) ((-1229 . -571) 204318) ((-1229 . -989) T) ((-1229 . -997) T) ((-1229 . -1052) T) ((-1229 . -684) T) ((-1229 . -21) T) ((-1229 . -604) 204277) ((-1229 . -23) T) ((-1229 . -1041) T) ((-1229 . -568) 204259) ((-1229 . -1157) T) ((-1229 . -73) T) ((-1229 . -25) T) ((-1229 . -104) T) ((-1229 . -606) 204233) ((-1229 . -1222) 204217) ((-1229 . -675) 204187) ((-1229 . -598) 204157) ((-1229 . -996) 204141) ((-1229 . -991) 204125) ((-1229 . -82) 204104) ((-1229 . -38) 204074) ((-1229 . -1227) 204050) ((-1228 . -1230) 204029) ((-1228 . -978) 203986) ((-1228 . -571) 203915) ((-1228 . -989) T) ((-1228 . -997) T) ((-1228 . -1052) T) ((-1228 . -684) T) ((-1228 . -21) T) ((-1228 . -604) 203874) ((-1228 . -23) T) ((-1228 . -1041) T) ((-1228 . -568) 203856) ((-1228 . -1157) T) ((-1228 . -73) T) ((-1228 . -25) T) ((-1228 . -104) T) ((-1228 . -606) 203830) ((-1228 . -1222) 203814) ((-1228 . -675) 203784) ((-1228 . -598) 203754) ((-1228 . -996) 203738) ((-1228 . -991) 203722) ((-1228 . -82) 203701) ((-1228 . -38) 203671) ((-1228 . -1227) 203650) ((-1228 . -339) 203622) ((-1223 . -339) 203594) ((-1223 . -571) 203543) ((-1223 . -978) 203520) ((-1223 . -598) 203490) ((-1223 . -675) 203460) ((-1223 . -606) 203434) ((-1223 . -604) 203393) ((-1223 . -104) T) ((-1223 . -25) T) ((-1223 . -73) T) ((-1223 . -1157) T) ((-1223 . -568) 203375) ((-1223 . -1041) T) ((-1223 . -23) T) ((-1223 . -21) T) ((-1223 . -996) 203359) ((-1223 . -991) 203343) ((-1223 . -82) 203322) ((-1223 . -1230) 203301) ((-1223 . -989) T) ((-1223 . -997) T) ((-1223 . -1052) T) ((-1223 . -684) T) ((-1223 . -1222) 203285) ((-1223 . -38) 203255) ((-1223 . -1227) 203234) ((-1221 . -1152) 203203) ((-1221 . -568) 203165) ((-1221 . -124) 203149) ((-1221 . -34) T) ((-1221 . -1157) T) ((-1221 . -73) T) ((-1221 . -263) 203087) ((-1221 . -468) 203020) ((-1221 . -1041) T) ((-1221 . -443) 203004) ((-1221 . -569) 202965) ((-1221 . -916) 202934) ((-1220 . -989) T) ((-1220 . -997) T) ((-1220 . -1052) T) ((-1220 . -684) T) ((-1220 . -21) T) ((-1220 . -604) 202879) ((-1220 . -23) T) ((-1220 . -1041) T) ((-1220 . -568) 202848) ((-1220 . -1157) T) ((-1220 . -73) T) ((-1220 . -25) T) ((-1220 . -104) T) ((-1220 . -606) 202808) ((-1220 . -571) 202750) ((-1220 . -444) 202734) ((-1220 . -38) 202704) ((-1220 . -82) 202669) ((-1220 . -991) 202639) ((-1220 . -996) 202609) ((-1220 . -598) 202579) ((-1220 . -675) 202549) ((-1219 . -1023) T) ((-1219 . -444) 202530) ((-1219 . -568) 202496) ((-1219 . -571) 202477) ((-1219 . -1041) T) ((-1219 . -1157) T) ((-1219 . -73) T) ((-1219 . -64) T) ((-1218 . -1023) T) ((-1218 . -444) 202458) ((-1218 . -568) 202424) ((-1218 . -571) 202405) ((-1218 . -1041) T) ((-1218 . -1157) T) ((-1218 . -73) T) ((-1218 . -64) T) ((-1213 . -568) 202387) ((-1211 . -1041) T) ((-1211 . -568) 202369) ((-1211 . -1157) T) ((-1211 . -73) T) ((-1210 . -1041) T) ((-1210 . -568) 202351) ((-1210 . -1157) T) ((-1210 . -73) T) ((-1207 . -1206) 202335) ((-1207 . -327) 202319) ((-1207 . -784) 202298) ((-1207 . -781) 202277) ((-1207 . -124) 202261) ((-1207 . -34) T) ((-1207 . -1157) T) ((-1207 . -73) 202192) ((-1207 . -568) 202104) ((-1207 . -263) 202042) ((-1207 . -468) 201975) ((-1207 . -1041) 201925) ((-1207 . -443) 201909) ((-1207 . -569) 201870) ((-1207 . -240) 201822) ((-1207 . -554) 201799) ((-1207 . -242) 201776) ((-1207 . -609) 201760) ((-1207 . -19) 201744) ((-1204 . -1041) T) ((-1204 . -568) 201710) ((-1204 . -1157) T) ((-1204 . -73) T) ((-1197 . -1200) 201694) ((-1197 . -190) 201653) ((-1197 . -571) 201535) ((-1197 . -606) 201460) ((-1197 . -604) 201370) ((-1197 . -104) T) ((-1197 . -25) T) ((-1197 . -73) T) ((-1197 . -568) 201352) ((-1197 . -1041) T) ((-1197 . -23) T) ((-1197 . -21) T) ((-1197 . -684) T) ((-1197 . -1052) T) ((-1197 . -997) T) ((-1197 . -989) T) ((-1197 . -186) 201305) ((-1197 . -1157) T) ((-1197 . -189) 201264) ((-1197 . -240) 201229) ((-1197 . -836) 201142) ((-1197 . -831) 201030) ((-1197 . -838) 200943) ((-1197 . -913) 200912) ((-1197 . -38) 200809) ((-1197 . -82) 200671) ((-1197 . -991) 200554) ((-1197 . -996) 200437) ((-1197 . -598) 200334) ((-1197 . -675) 200231) ((-1197 . -118) 200210) ((-1197 . -120) 200189) ((-1197 . -146) 200140) ((-1197 . -510) 200119) ((-1197 . -244) 200098) ((-1197 . -47) 200075) ((-1197 . -1186) 200052) ((-1197 . -35) 200018) ((-1197 . -66) 199984) ((-1197 . -238) 199950) ((-1197 . -447) 199916) ((-1197 . -1146) 199882) ((-1197 . -1143) 199848) ((-1197 . -942) 199814) ((-1194 . -280) 199758) ((-1194 . -978) 199724) ((-1194 . -366) 199690) ((-1194 . -38) 199547) ((-1194 . -571) 199421) ((-1194 . -606) 199310) ((-1194 . -604) 199184) ((-1194 . -684) T) ((-1194 . -1052) T) ((-1194 . -997) T) ((-1194 . -989) T) ((-1194 . -82) 199034) ((-1194 . -991) 198923) ((-1194 . -996) 198812) ((-1194 . -21) T) ((-1194 . -23) T) ((-1194 . -1041) T) ((-1194 . -568) 198794) ((-1194 . -1157) T) ((-1194 . -73) T) ((-1194 . -25) T) ((-1194 . -104) T) ((-1194 . -598) 198651) ((-1194 . -675) 198508) ((-1194 . -118) 198469) ((-1194 . -120) 198430) ((-1194 . -146) T) ((-1194 . -510) T) ((-1194 . -244) T) ((-1194 . -47) 198374) ((-1193 . -1192) 198353) ((-1193 . -318) 198332) ((-1193 . -1162) 198311) ((-1193 . -859) 198290) ((-1193 . -510) 198241) ((-1193 . -146) 198172) ((-1193 . -571) 197985) ((-1193 . -675) 197826) ((-1193 . -598) 197667) ((-1193 . -38) 197508) ((-1193 . -406) 197487) ((-1193 . -261) 197466) ((-1193 . -606) 197363) ((-1193 . -604) 197245) ((-1193 . -684) T) ((-1193 . -1052) T) ((-1193 . -997) T) ((-1193 . -989) T) ((-1193 . -82) 197059) ((-1193 . -991) 196894) ((-1193 . -996) 196729) ((-1193 . -21) T) ((-1193 . -23) T) ((-1193 . -1041) T) ((-1193 . -568) 196711) ((-1193 . -1157) T) ((-1193 . -73) T) ((-1193 . -25) T) ((-1193 . -104) T) ((-1193 . -244) 196662) ((-1193 . -200) 196641) ((-1193 . -942) 196607) ((-1193 . -1143) 196573) ((-1193 . -1146) 196539) ((-1193 . -447) 196505) ((-1193 . -238) 196471) ((-1193 . -66) 196437) ((-1193 . -35) 196403) ((-1193 . -1186) 196373) ((-1193 . -47) 196343) ((-1193 . -120) 196322) ((-1193 . -118) 196301) ((-1193 . -913) 196263) ((-1193 . -838) 196169) ((-1193 . -831) 196073) ((-1193 . -836) 195979) ((-1193 . -240) 195937) ((-1193 . -189) 195889) ((-1193 . -186) 195835) ((-1193 . -190) 195787) ((-1193 . -1190) 195771) ((-1193 . -978) 195755) ((-1188 . -1192) 195716) ((-1188 . -318) 195695) ((-1188 . -1162) 195674) ((-1188 . -859) 195653) ((-1188 . -510) 195604) ((-1188 . -146) 195535) ((-1188 . -571) 195278) ((-1188 . -675) 195119) ((-1188 . -598) 194960) ((-1188 . -38) 194801) ((-1188 . -406) 194780) ((-1188 . -261) 194759) ((-1188 . -606) 194656) ((-1188 . -604) 194538) ((-1188 . -684) T) ((-1188 . -1052) T) ((-1188 . -997) T) ((-1188 . -989) T) ((-1188 . -82) 194352) ((-1188 . -991) 194187) ((-1188 . -996) 194022) ((-1188 . -21) T) ((-1188 . -23) T) ((-1188 . -1041) T) ((-1188 . -568) 194004) ((-1188 . -1157) T) ((-1188 . -73) T) ((-1188 . -25) T) ((-1188 . -104) T) ((-1188 . -244) 193955) ((-1188 . -200) 193934) ((-1188 . -942) 193900) ((-1188 . -1143) 193866) ((-1188 . -1146) 193832) ((-1188 . -447) 193798) ((-1188 . -238) 193764) ((-1188 . -66) 193730) ((-1188 . -35) 193696) ((-1188 . -1186) 193666) ((-1188 . -47) 193636) ((-1188 . -120) 193615) ((-1188 . -118) 193594) ((-1188 . -913) 193556) ((-1188 . -838) 193462) ((-1188 . -831) 193343) ((-1188 . -836) 193249) ((-1188 . -240) 193207) ((-1188 . -189) 193159) ((-1188 . -186) 193105) ((-1188 . -190) 193057) ((-1188 . -1190) 193041) ((-1188 . -978) 192976) ((-1176 . -1183) 192960) ((-1176 . -1092) 192938) ((-1176 . -569) NIL) ((-1176 . -263) 192925) ((-1176 . -468) 192871) ((-1176 . -280) 192848) ((-1176 . -978) 192730) ((-1176 . -366) 192714) ((-1176 . -38) 192543) ((-1176 . -82) 192345) ((-1176 . -991) 192168) ((-1176 . -996) 191991) ((-1176 . -604) 191901) ((-1176 . -606) 191790) ((-1176 . -598) 191619) ((-1176 . -675) 191448) ((-1176 . -571) 191197) ((-1176 . -118) 191176) ((-1176 . -120) 191155) ((-1176 . -47) 191132) ((-1176 . -332) 191116) ((-1176 . -596) 191064) ((-1176 . -836) 191007) ((-1176 . -831) 190910) ((-1176 . -838) 190817) ((-1176 . -821) NIL) ((-1176 . -848) 190796) ((-1176 . -1162) 190775) ((-1176 . -888) 190744) ((-1176 . -859) 190723) ((-1176 . -510) 190634) ((-1176 . -244) 190545) ((-1176 . -146) 190436) ((-1176 . -406) 190367) ((-1176 . -261) 190346) ((-1176 . -240) 190273) ((-1176 . -190) T) ((-1176 . -104) T) ((-1176 . -25) T) ((-1176 . -73) T) ((-1176 . -568) 190255) ((-1176 . -1041) T) ((-1176 . -23) T) ((-1176 . -21) T) ((-1176 . -684) T) ((-1176 . -1052) T) ((-1176 . -997) T) ((-1176 . -989) T) ((-1176 . -186) 190242) ((-1176 . -1157) T) ((-1176 . -189) T) ((-1176 . -224) 190226) ((-1176 . -184) 190210) ((-1174 . -1034) 190194) ((-1174 . -573) 190178) ((-1174 . -1041) 190156) ((-1174 . -568) 190123) ((-1174 . -1157) 190101) ((-1174 . -73) 190079) ((-1174 . -1035) 190036) ((-1172 . -1171) 190015) ((-1172 . -942) 189981) ((-1172 . -1143) 189947) ((-1172 . -1146) 189913) ((-1172 . -447) 189879) ((-1172 . -238) 189845) ((-1172 . -66) 189811) ((-1172 . -35) 189777) ((-1172 . -1186) 189754) ((-1172 . -47) 189731) ((-1172 . -571) 189480) ((-1172 . -675) 189294) ((-1172 . -598) 189108) ((-1172 . -606) 188916) ((-1172 . -604) 188771) ((-1172 . -996) 188579) ((-1172 . -991) 188387) ((-1172 . -82) 188169) ((-1172 . -38) 187983) ((-1172 . -913) 187952) ((-1172 . -240) 187852) ((-1172 . -1169) 187836) ((-1172 . -684) T) ((-1172 . -1052) T) ((-1172 . -997) T) ((-1172 . -989) T) ((-1172 . -21) T) ((-1172 . -23) T) ((-1172 . -1041) T) ((-1172 . -568) 187818) ((-1172 . -1157) T) ((-1172 . -73) T) ((-1172 . -25) T) ((-1172 . -104) T) ((-1172 . -118) 187743) ((-1172 . -120) 187668) ((-1172 . -569) 187341) ((-1172 . -184) 187311) ((-1172 . -836) 187162) ((-1172 . -838) 186959) ((-1172 . -831) 186754) ((-1172 . -224) 186724) ((-1172 . -189) 186583) ((-1172 . -186) 186436) ((-1172 . -190) 186341) ((-1172 . -318) 186320) ((-1172 . -1162) 186299) ((-1172 . -859) 186278) ((-1172 . -510) 186229) ((-1172 . -146) 186160) ((-1172 . -406) 186139) ((-1172 . -261) 186118) ((-1172 . -244) 186069) ((-1172 . -200) 186048) ((-1172 . -293) 186018) ((-1172 . -468) 185878) ((-1172 . -263) 185817) ((-1172 . -332) 185787) ((-1172 . -596) 185695) ((-1172 . -354) 185665) ((-1172 . -821) 185538) ((-1172 . -763) 185491) ((-1172 . -735) 185444) ((-1172 . -737) 185397) ((-1172 . -781) 185296) ((-1172 . -784) 185195) ((-1172 . -739) 185148) ((-1172 . -742) 185101) ((-1172 . -780) 185054) ((-1172 . -819) 185024) ((-1172 . -848) 184977) ((-1172 . -960) 184930) ((-1172 . -978) 184719) ((-1172 . -1092) 184671) ((-1172 . -931) 184641) ((-1167 . -1171) 184602) ((-1167 . -942) 184568) ((-1167 . -1143) 184534) ((-1167 . -1146) 184500) ((-1167 . -447) 184466) ((-1167 . -238) 184432) ((-1167 . -66) 184398) ((-1167 . -35) 184364) ((-1167 . -1186) 184341) ((-1167 . -47) 184318) ((-1167 . -571) 184113) ((-1167 . -675) 183909) ((-1167 . -598) 183705) ((-1167 . -606) 183557) ((-1167 . -604) 183394) ((-1167 . -996) 183184) ((-1167 . -991) 182974) ((-1167 . -82) 182720) ((-1167 . -38) 182516) ((-1167 . -913) 182485) ((-1167 . -240) 182313) ((-1167 . -1169) 182297) ((-1167 . -684) T) ((-1167 . -1052) T) ((-1167 . -997) T) ((-1167 . -989) T) ((-1167 . -21) T) ((-1167 . -23) T) ((-1167 . -1041) T) ((-1167 . -568) 182279) ((-1167 . -1157) T) ((-1167 . -73) T) ((-1167 . -25) T) ((-1167 . -104) T) ((-1167 . -118) 182186) ((-1167 . -120) 182093) ((-1167 . -569) NIL) ((-1167 . -184) 182045) ((-1167 . -836) 181878) ((-1167 . -838) 181639) ((-1167 . -831) 181375) ((-1167 . -224) 181327) ((-1167 . -189) 181150) ((-1167 . -186) 180967) ((-1167 . -190) 180854) ((-1167 . -318) 180833) ((-1167 . -1162) 180812) ((-1167 . -859) 180791) ((-1167 . -510) 180742) ((-1167 . -146) 180673) ((-1167 . -406) 180652) ((-1167 . -261) 180631) ((-1167 . -244) 180582) ((-1167 . -200) 180561) ((-1167 . -293) 180513) ((-1167 . -468) 180247) ((-1167 . -263) 180132) ((-1167 . -332) 180084) ((-1167 . -596) 180036) ((-1167 . -354) 179988) ((-1167 . -821) NIL) ((-1167 . -763) NIL) ((-1167 . -735) NIL) ((-1167 . -737) NIL) ((-1167 . -781) NIL) ((-1167 . -784) NIL) ((-1167 . -739) NIL) ((-1167 . -742) NIL) ((-1167 . -780) NIL) ((-1167 . -819) 179940) ((-1167 . -848) NIL) ((-1167 . -960) NIL) ((-1167 . -978) 179906) ((-1167 . -1092) NIL) ((-1167 . -931) 179858) ((-1166 . -777) T) ((-1166 . -784) T) ((-1166 . -781) T) ((-1166 . -1041) T) ((-1166 . -568) 179840) ((-1166 . -1157) T) ((-1166 . -73) T) ((-1166 . -323) T) ((-1166 . -620) T) ((-1165 . -777) T) ((-1165 . -784) T) ((-1165 . -781) T) ((-1165 . -1041) T) ((-1165 . -568) 179822) ((-1165 . -1157) T) ((-1165 . -73) T) ((-1165 . -323) T) ((-1165 . -620) T) ((-1164 . -777) T) ((-1164 . -784) T) ((-1164 . -781) T) ((-1164 . -1041) T) ((-1164 . -568) 179804) ((-1164 . -1157) T) ((-1164 . -73) T) ((-1164 . -323) T) ((-1164 . -620) T) ((-1163 . -777) T) ((-1163 . -784) T) ((-1163 . -781) T) ((-1163 . -1041) T) ((-1163 . -568) 179786) ((-1163 . -1157) T) ((-1163 . -73) T) ((-1163 . -323) T) ((-1163 . -620) T) ((-1158 . -1023) T) ((-1158 . -444) 179767) ((-1158 . -568) 179733) ((-1158 . -571) 179714) ((-1158 . -1041) T) ((-1158 . -1157) T) ((-1158 . -73) T) ((-1158 . -64) T) ((-1155 . -444) 179691) ((-1155 . -568) 179632) ((-1155 . -571) 179609) ((-1155 . -1041) 179587) ((-1155 . -1157) 179565) ((-1155 . -73) 179543) ((-1150 . -698) 179519) ((-1150 . -35) 179485) ((-1150 . -66) 179451) ((-1150 . -238) 179417) ((-1150 . -447) 179383) ((-1150 . -1146) 179349) ((-1150 . -1143) 179315) ((-1150 . -942) 179281) ((-1150 . -47) 179250) ((-1150 . -38) 179147) ((-1150 . -598) 179044) ((-1150 . -675) 178941) ((-1150 . -571) 178823) ((-1150 . -244) 178802) ((-1150 . -510) 178781) ((-1150 . -82) 178643) ((-1150 . -991) 178526) ((-1150 . -996) 178409) ((-1150 . -146) 178360) ((-1150 . -120) 178339) ((-1150 . -118) 178318) ((-1150 . -606) 178243) ((-1150 . -604) 178153) ((-1150 . -913) 178114) ((-1150 . -838) 178095) ((-1150 . -1157) T) ((-1150 . -831) 178074) ((-1150 . -989) T) ((-1150 . -997) T) ((-1150 . -1052) T) ((-1150 . -684) T) ((-1150 . -21) T) ((-1150 . -23) T) ((-1150 . -1041) T) ((-1150 . -568) 178056) ((-1150 . -73) T) ((-1150 . -25) T) ((-1150 . -104) T) ((-1150 . -836) 178037) ((-1150 . -468) 178004) ((-1150 . -263) 177991) ((-1144 . -950) 177975) ((-1144 . -34) T) ((-1144 . -1157) T) ((-1144 . -73) 177926) ((-1144 . -568) 177858) ((-1144 . -263) 177796) ((-1144 . -468) 177729) ((-1144 . -1041) 177707) ((-1144 . -443) 177691) ((-1139 . -320) 177665) ((-1139 . -73) T) ((-1139 . -1157) T) ((-1139 . -568) 177647) ((-1139 . -1041) T) ((-1137 . -1041) T) ((-1137 . -568) 177629) ((-1137 . -1157) T) ((-1137 . -73) T) ((-1137 . -571) 177611) ((-1131 . -770) 177595) ((-1131 . -73) T) ((-1131 . -1157) T) ((-1131 . -568) 177577) ((-1131 . -1041) T) ((-1129 . -1134) 177556) ((-1129 . -183) 177504) ((-1129 . -78) 177452) ((-1129 . -263) 177250) ((-1129 . -468) 177002) ((-1129 . -443) 176937) ((-1129 . -124) 176885) ((-1129 . -569) NIL) ((-1129 . -192) 176833) ((-1129 . -565) 176812) ((-1129 . -242) 176791) ((-1129 . -1157) T) ((-1129 . -240) 176770) ((-1129 . -1041) T) ((-1129 . -568) 176752) ((-1129 . -73) T) ((-1129 . -34) T) ((-1129 . -554) 176731) ((-1125 . -1041) T) ((-1125 . -568) 176713) ((-1125 . -1157) T) ((-1125 . -73) T) ((-1124 . -777) T) ((-1124 . -784) T) ((-1124 . -781) T) ((-1124 . -1041) T) ((-1124 . -568) 176695) ((-1124 . -1157) T) ((-1124 . -73) T) ((-1124 . -323) T) ((-1124 . -620) T) ((-1123 . -777) T) ((-1123 . -784) T) ((-1123 . -781) T) ((-1123 . -1041) T) ((-1123 . -568) 176677) ((-1123 . -1157) T) ((-1123 . -73) T) ((-1123 . -323) T) ((-1122 . -1203) T) ((-1122 . -1041) T) ((-1122 . -568) 176644) ((-1122 . -1157) T) ((-1122 . -73) T) ((-1122 . -978) 176580) ((-1122 . -571) 176516) ((-1121 . -568) 176498) ((-1120 . -568) 176480) ((-1119 . -280) 176457) ((-1119 . -978) 176355) ((-1119 . -366) 176339) ((-1119 . -38) 176236) ((-1119 . -571) 176090) ((-1119 . -606) 176015) ((-1119 . -604) 175925) ((-1119 . -684) T) ((-1119 . -1052) T) ((-1119 . -997) T) ((-1119 . -989) T) ((-1119 . -82) 175787) ((-1119 . -991) 175670) ((-1119 . -996) 175553) ((-1119 . -21) T) ((-1119 . -23) T) ((-1119 . -1041) T) ((-1119 . -568) 175535) ((-1119 . -1157) T) ((-1119 . -73) T) ((-1119 . -25) T) ((-1119 . -104) T) ((-1119 . -598) 175432) ((-1119 . -675) 175329) ((-1119 . -118) 175308) ((-1119 . -120) 175287) ((-1119 . -146) 175238) ((-1119 . -510) 175217) ((-1119 . -244) 175196) ((-1119 . -47) 175173) ((-1117 . -781) T) ((-1117 . -568) 175155) ((-1117 . -1041) T) ((-1117 . -73) T) ((-1117 . -1157) T) ((-1117 . -784) T) ((-1117 . -569) 175077) ((-1117 . -571) 175043) ((-1117 . -978) 175025) ((-1117 . -821) 174992) ((-1116 . -568) 174974) ((-1115 . -1200) 174958) ((-1115 . -190) 174917) ((-1115 . -571) 174799) ((-1115 . -606) 174724) ((-1115 . -604) 174634) ((-1115 . -104) T) ((-1115 . -25) T) ((-1115 . -73) T) ((-1115 . -568) 174616) ((-1115 . -1041) T) ((-1115 . -23) T) ((-1115 . -21) T) ((-1115 . -684) T) ((-1115 . -1052) T) ((-1115 . -997) T) ((-1115 . -989) T) ((-1115 . -186) 174569) ((-1115 . -1157) T) ((-1115 . -189) 174528) ((-1115 . -240) 174493) ((-1115 . -836) 174406) ((-1115 . -831) 174294) ((-1115 . -838) 174207) ((-1115 . -913) 174176) ((-1115 . -38) 174073) ((-1115 . -82) 173935) ((-1115 . -991) 173818) ((-1115 . -996) 173701) ((-1115 . -598) 173598) ((-1115 . -675) 173495) ((-1115 . -118) 173474) ((-1115 . -120) 173453) ((-1115 . -146) 173404) ((-1115 . -510) 173383) ((-1115 . -244) 173362) ((-1115 . -47) 173339) ((-1115 . -1186) 173316) ((-1115 . -35) 173282) ((-1115 . -66) 173248) ((-1115 . -238) 173214) ((-1115 . -447) 173180) ((-1115 . -1146) 173146) ((-1115 . -1143) 173112) ((-1115 . -942) 173078) ((-1114 . -1192) 173039) ((-1114 . -318) 173018) ((-1114 . -1162) 172997) ((-1114 . -859) 172976) ((-1114 . -510) 172927) ((-1114 . -146) 172858) ((-1114 . -571) 172601) ((-1114 . -675) 172442) ((-1114 . -598) 172283) ((-1114 . -38) 172124) ((-1114 . -406) 172103) ((-1114 . -261) 172082) ((-1114 . -606) 171979) ((-1114 . -604) 171861) ((-1114 . -684) T) ((-1114 . -1052) T) ((-1114 . -997) T) ((-1114 . -989) T) ((-1114 . -82) 171675) ((-1114 . -991) 171510) ((-1114 . -996) 171345) ((-1114 . -21) T) ((-1114 . -23) T) ((-1114 . -1041) T) ((-1114 . -568) 171327) ((-1114 . -1157) T) ((-1114 . -73) T) ((-1114 . -25) T) ((-1114 . -104) T) ((-1114 . -244) 171278) ((-1114 . -200) 171257) ((-1114 . -942) 171223) ((-1114 . -1143) 171189) ((-1114 . -1146) 171155) ((-1114 . -447) 171121) ((-1114 . -238) 171087) ((-1114 . -66) 171053) ((-1114 . -35) 171019) ((-1114 . -1186) 170989) ((-1114 . -47) 170959) ((-1114 . -120) 170938) ((-1114 . -118) 170917) ((-1114 . -913) 170879) ((-1114 . -838) 170785) ((-1114 . -831) 170666) ((-1114 . -836) 170572) ((-1114 . -240) 170530) ((-1114 . -189) 170482) ((-1114 . -186) 170428) ((-1114 . -190) 170380) ((-1114 . -1190) 170364) ((-1114 . -978) 170299) ((-1111 . -1183) 170283) ((-1111 . -1092) 170261) ((-1111 . -569) NIL) ((-1111 . -263) 170248) ((-1111 . -468) 170194) ((-1111 . -280) 170171) ((-1111 . -978) 170053) ((-1111 . -366) 170037) ((-1111 . -38) 169866) ((-1111 . -82) 169668) ((-1111 . -991) 169491) ((-1111 . -996) 169314) ((-1111 . -604) 169224) ((-1111 . -606) 169113) ((-1111 . -598) 168942) ((-1111 . -675) 168771) ((-1111 . -571) 168541) ((-1111 . -118) 168520) ((-1111 . -120) 168499) ((-1111 . -47) 168476) ((-1111 . -332) 168460) ((-1111 . -596) 168408) ((-1111 . -836) 168351) ((-1111 . -831) 168254) ((-1111 . -838) 168161) ((-1111 . -821) NIL) ((-1111 . -848) 168140) ((-1111 . -1162) 168119) ((-1111 . -888) 168088) ((-1111 . -859) 168067) ((-1111 . -510) 167978) ((-1111 . -244) 167889) ((-1111 . -146) 167780) ((-1111 . -406) 167711) ((-1111 . -261) 167690) ((-1111 . -240) 167617) ((-1111 . -190) T) ((-1111 . -104) T) ((-1111 . -25) T) ((-1111 . -73) T) ((-1111 . -568) 167599) ((-1111 . -1041) T) ((-1111 . -23) T) ((-1111 . -21) T) ((-1111 . -684) T) ((-1111 . -1052) T) ((-1111 . -997) T) ((-1111 . -989) T) ((-1111 . -186) 167586) ((-1111 . -1157) T) ((-1111 . -189) T) ((-1111 . -224) 167570) ((-1111 . -184) 167554) ((-1108 . -1171) 167515) ((-1108 . -942) 167481) ((-1108 . -1143) 167447) ((-1108 . -1146) 167413) ((-1108 . -447) 167379) ((-1108 . -238) 167345) ((-1108 . -66) 167311) ((-1108 . -35) 167277) ((-1108 . -1186) 167254) ((-1108 . -47) 167231) ((-1108 . -571) 167026) ((-1108 . -675) 166822) ((-1108 . -598) 166618) ((-1108 . -606) 166470) ((-1108 . -604) 166307) ((-1108 . -996) 166097) ((-1108 . -991) 165887) ((-1108 . -82) 165633) ((-1108 . -38) 165429) ((-1108 . -913) 165398) ((-1108 . -240) 165226) ((-1108 . -1169) 165210) ((-1108 . -684) T) ((-1108 . -1052) T) ((-1108 . -997) T) ((-1108 . -989) T) ((-1108 . -21) T) ((-1108 . -23) T) ((-1108 . -1041) T) ((-1108 . -568) 165192) ((-1108 . -1157) T) ((-1108 . -73) T) ((-1108 . -25) T) ((-1108 . -104) T) ((-1108 . -118) 165099) ((-1108 . -120) 165006) ((-1108 . -569) NIL) ((-1108 . -184) 164958) ((-1108 . -836) 164791) ((-1108 . -838) 164552) ((-1108 . -831) 164288) ((-1108 . -224) 164240) ((-1108 . -189) 164063) ((-1108 . -186) 163880) ((-1108 . -190) 163767) ((-1108 . -318) 163746) ((-1108 . -1162) 163725) ((-1108 . -859) 163704) ((-1108 . -510) 163655) ((-1108 . -146) 163586) ((-1108 . -406) 163565) ((-1108 . -261) 163544) ((-1108 . -244) 163495) ((-1108 . -200) 163474) ((-1108 . -293) 163426) ((-1108 . -468) 163160) ((-1108 . -263) 163045) ((-1108 . -332) 162997) ((-1108 . -596) 162949) ((-1108 . -354) 162901) ((-1108 . -821) NIL) ((-1108 . -763) NIL) ((-1108 . -735) NIL) ((-1108 . -737) NIL) ((-1108 . -781) NIL) ((-1108 . -784) NIL) ((-1108 . -739) NIL) ((-1108 . -742) NIL) ((-1108 . -780) NIL) ((-1108 . -819) 162853) ((-1108 . -848) NIL) ((-1108 . -960) NIL) ((-1108 . -978) 162819) ((-1108 . -1092) NIL) ((-1108 . -931) 162771) ((-1107 . -1023) T) ((-1107 . -444) 162752) ((-1107 . -568) 162718) ((-1107 . -571) 162699) ((-1107 . -1041) T) ((-1107 . -1157) T) ((-1107 . -73) T) ((-1107 . -64) T) ((-1106 . -1041) T) ((-1106 . -568) 162681) ((-1106 . -1157) T) ((-1106 . -73) T) ((-1105 . -1041) T) ((-1105 . -568) 162663) ((-1105 . -1157) T) ((-1105 . -73) T) ((-1100 . -1134) 162639) ((-1100 . -183) 162584) ((-1100 . -78) 162529) ((-1100 . -263) 162318) ((-1100 . -468) 162058) ((-1100 . -443) 161990) ((-1100 . -124) 161935) ((-1100 . -569) NIL) ((-1100 . -192) 161880) ((-1100 . -565) 161856) ((-1100 . -242) 161832) ((-1100 . -1157) T) ((-1100 . -240) 161808) ((-1100 . -1041) T) ((-1100 . -568) 161790) ((-1100 . -73) T) ((-1100 . -34) T) ((-1100 . -554) 161766) ((-1099 . -1084) T) ((-1099 . -327) 161748) ((-1099 . -784) T) ((-1099 . -781) T) ((-1099 . -124) 161730) ((-1099 . -34) T) ((-1099 . -1157) T) ((-1099 . -73) T) ((-1099 . -568) 161712) ((-1099 . -263) NIL) ((-1099 . -468) NIL) ((-1099 . -1041) T) ((-1099 . -443) 161694) ((-1099 . -569) NIL) ((-1099 . -240) 161644) ((-1099 . -554) 161619) ((-1099 . -242) 161594) ((-1099 . -609) 161576) ((-1099 . -19) 161558) ((-1095 . -632) 161542) ((-1095 . -609) 161526) ((-1095 . -242) 161503) ((-1095 . -240) 161455) ((-1095 . -554) 161432) ((-1095 . -569) 161393) ((-1095 . -443) 161377) ((-1095 . -1041) 161355) ((-1095 . -468) 161288) ((-1095 . -263) 161226) ((-1095 . -568) 161158) ((-1095 . -73) 161109) ((-1095 . -1157) T) ((-1095 . -34) T) ((-1095 . -124) 161093) ((-1095 . -1196) 161077) ((-1095 . -950) 161061) ((-1095 . -1090) 161045) ((-1095 . -571) 161022) ((-1093 . -1023) T) ((-1093 . -444) 161003) ((-1093 . -568) 160969) ((-1093 . -571) 160950) ((-1093 . -1041) T) ((-1093 . -1157) T) ((-1093 . -73) T) ((-1093 . -64) T) ((-1091 . -1134) 160929) ((-1091 . -183) 160877) ((-1091 . -78) 160825) ((-1091 . -263) 160623) ((-1091 . -468) 160375) ((-1091 . -443) 160310) ((-1091 . -124) 160258) ((-1091 . -569) NIL) ((-1091 . -192) 160206) ((-1091 . -565) 160185) ((-1091 . -242) 160164) ((-1091 . -1157) T) ((-1091 . -240) 160143) ((-1091 . -1041) T) ((-1091 . -568) 160125) ((-1091 . -73) T) ((-1091 . -34) T) ((-1091 . -554) 160104) ((-1088 . -1061) 160088) ((-1088 . -443) 160072) ((-1088 . -1041) 160050) ((-1088 . -468) 159983) ((-1088 . -263) 159921) ((-1088 . -568) 159853) ((-1088 . -73) 159804) ((-1088 . -1157) T) ((-1088 . -34) T) ((-1088 . -78) 159788) ((-1086 . -1049) 159757) ((-1086 . -1152) 159726) ((-1086 . -568) 159688) ((-1086 . -124) 159672) ((-1086 . -34) T) ((-1086 . -1157) T) ((-1086 . -73) T) ((-1086 . -263) 159610) ((-1086 . -468) 159543) ((-1086 . -1041) T) ((-1086 . -443) 159527) ((-1086 . -569) 159488) ((-1086 . -916) 159457) ((-1086 . -1011) 159426) ((-1082 . -1063) 159371) ((-1082 . -443) 159355) ((-1082 . -468) 159288) ((-1082 . -263) 159226) ((-1082 . -34) T) ((-1082 . -993) 159166) ((-1082 . -978) 159064) ((-1082 . -571) 158983) ((-1082 . -366) 158967) ((-1082 . -596) 158915) ((-1082 . -606) 158853) ((-1082 . -332) 158837) ((-1082 . -190) 158816) ((-1082 . -186) 158761) ((-1082 . -189) 158712) ((-1082 . -224) 158696) ((-1082 . -831) 158617) ((-1082 . -838) 158540) ((-1082 . -836) 158499) ((-1082 . -184) 158483) ((-1082 . -675) 158415) ((-1082 . -598) 158347) ((-1082 . -604) 158306) ((-1082 . -104) T) ((-1082 . -25) T) ((-1082 . -73) T) ((-1082 . -1157) T) ((-1082 . -568) 158268) ((-1082 . -1041) T) ((-1082 . -23) T) ((-1082 . -21) T) ((-1082 . -996) 158252) ((-1082 . -991) 158236) ((-1082 . -82) 158215) ((-1082 . -989) T) ((-1082 . -997) T) ((-1082 . -1052) T) ((-1082 . -684) T) ((-1082 . -38) 158175) ((-1082 . -569) 158136) ((-1081 . -950) 158107) ((-1081 . -34) T) ((-1081 . -1157) T) ((-1081 . -73) T) ((-1081 . -568) 158089) ((-1081 . -263) 158015) ((-1081 . -468) 157923) ((-1081 . -1041) T) ((-1081 . -443) 157894) ((-1080 . -1041) T) ((-1080 . -568) 157876) ((-1080 . -1157) T) ((-1080 . -73) T) ((-1075 . -1077) T) ((-1075 . -1203) T) ((-1075 . -64) T) ((-1075 . -73) T) ((-1075 . -1157) T) ((-1075 . -568) 157842) ((-1075 . -1041) T) ((-1075 . -571) 157823) ((-1075 . -444) 157804) ((-1075 . -1023) T) ((-1073 . -1074) 157788) ((-1073 . -73) T) ((-1073 . -1157) T) ((-1073 . -568) 157770) ((-1073 . -1041) T) ((-1066 . -698) 157749) ((-1066 . -35) 157715) ((-1066 . -66) 157681) ((-1066 . -238) 157647) ((-1066 . -447) 157613) ((-1066 . -1146) 157579) ((-1066 . -1143) 157545) ((-1066 . -942) 157511) ((-1066 . -47) 157483) ((-1066 . -38) 157380) ((-1066 . -598) 157277) ((-1066 . -675) 157174) ((-1066 . -571) 157056) ((-1066 . -244) 157035) ((-1066 . -510) 157014) ((-1066 . -82) 156876) ((-1066 . -991) 156759) ((-1066 . -996) 156642) ((-1066 . -146) 156593) ((-1066 . -120) 156572) ((-1066 . -118) 156551) ((-1066 . -606) 156476) ((-1066 . -604) 156386) ((-1066 . -913) 156353) ((-1066 . -838) 156337) ((-1066 . -1157) T) ((-1066 . -831) 156319) ((-1066 . -989) T) ((-1066 . -997) T) ((-1066 . -1052) T) ((-1066 . -684) T) ((-1066 . -21) T) ((-1066 . -23) T) ((-1066 . -1041) T) ((-1066 . -568) 156301) ((-1066 . -73) T) ((-1066 . -25) T) ((-1066 . -104) T) ((-1066 . -836) 156285) ((-1066 . -468) 156255) ((-1066 . -263) 156242) ((-1065 . -888) 156209) ((-1065 . -571) 156002) ((-1065 . -978) 155887) ((-1065 . -1162) 155866) ((-1065 . -848) 155845) ((-1065 . -821) 155704) ((-1065 . -838) 155688) ((-1065 . -831) 155670) ((-1065 . -836) 155654) ((-1065 . -468) 155606) ((-1065 . -406) 155557) ((-1065 . -596) 155505) ((-1065 . -606) 155394) ((-1065 . -332) 155378) ((-1065 . -47) 155350) ((-1065 . -38) 155199) ((-1065 . -598) 155048) ((-1065 . -675) 154897) ((-1065 . -244) 154828) ((-1065 . -510) 154759) ((-1065 . -82) 154581) ((-1065 . -991) 154424) ((-1065 . -996) 154267) ((-1065 . -146) 154178) ((-1065 . -120) 154157) ((-1065 . -118) 154136) ((-1065 . -604) 154046) ((-1065 . -104) T) ((-1065 . -25) T) ((-1065 . -73) T) ((-1065 . -1157) T) ((-1065 . -568) 154028) ((-1065 . -1041) T) ((-1065 . -23) T) ((-1065 . -21) T) ((-1065 . -989) T) ((-1065 . -997) T) ((-1065 . -1052) T) ((-1065 . -684) T) ((-1065 . -366) 154012) ((-1065 . -280) 153984) ((-1065 . -263) 153971) ((-1065 . -569) 153719) ((-1060 . -498) T) ((-1060 . -1162) T) ((-1060 . -1092) T) ((-1060 . -978) 153701) ((-1060 . -569) 153616) ((-1060 . -960) T) ((-1060 . -821) 153598) ((-1060 . -780) T) ((-1060 . -742) T) ((-1060 . -739) T) ((-1060 . -784) T) ((-1060 . -781) T) ((-1060 . -737) T) ((-1060 . -735) T) ((-1060 . -763) T) ((-1060 . -606) 153570) ((-1060 . -596) 153552) ((-1060 . -859) T) ((-1060 . -510) T) ((-1060 . -244) T) ((-1060 . -146) T) ((-1060 . -571) 153524) ((-1060 . -675) 153511) ((-1060 . -598) 153498) ((-1060 . -996) 153485) ((-1060 . -991) 153472) ((-1060 . -82) 153457) ((-1060 . -38) 153444) ((-1060 . -406) T) ((-1060 . -261) T) ((-1060 . -189) T) ((-1060 . -186) 153431) ((-1060 . -190) T) ((-1060 . -116) T) ((-1060 . -989) T) ((-1060 . -997) T) ((-1060 . -1052) T) ((-1060 . -684) T) ((-1060 . -21) T) ((-1060 . -604) 153403) ((-1060 . -23) T) ((-1060 . -1041) T) ((-1060 . -568) 153385) ((-1060 . -1157) T) ((-1060 . -73) T) ((-1060 . -25) T) ((-1060 . -104) T) ((-1060 . -120) T) ((-1060 . -777) T) ((-1060 . -323) T) ((-1060 . -84) T) ((-1060 . -620) T) ((-1056 . -1023) T) ((-1056 . -444) 153366) ((-1056 . -568) 153332) ((-1056 . -571) 153313) ((-1056 . -1041) T) ((-1056 . -1157) T) ((-1056 . -73) T) ((-1056 . -64) T) ((-1055 . -1041) T) ((-1055 . -568) 153295) ((-1055 . -1157) T) ((-1055 . -73) T) ((-1053 . -195) 153274) ((-1053 . -1215) 153244) ((-1053 . -742) 153223) ((-1053 . -739) 153202) ((-1053 . -784) 153153) ((-1053 . -781) 153104) ((-1053 . -737) 153083) ((-1053 . -738) 153062) ((-1053 . -675) 153004) ((-1053 . -598) 152926) ((-1053 . -242) 152903) ((-1053 . -240) 152880) ((-1053 . -443) 152864) ((-1053 . -468) 152797) ((-1053 . -263) 152735) ((-1053 . -34) T) ((-1053 . -554) 152712) ((-1053 . -978) 152541) ((-1053 . -571) 152342) ((-1053 . -366) 152311) ((-1053 . -596) 152219) ((-1053 . -606) 152055) ((-1053 . -332) 152025) ((-1053 . -323) 152004) ((-1053 . -190) 151957) ((-1053 . -604) 151739) ((-1053 . -684) 151718) ((-1053 . -1052) 151697) ((-1053 . -997) 151676) ((-1053 . -989) 151655) ((-1053 . -186) 151548) ((-1053 . -189) 151447) ((-1053 . -224) 151417) ((-1053 . -831) 151286) ((-1053 . -838) 151157) ((-1053 . -836) 151090) ((-1053 . -184) 151060) ((-1053 . -568) 150754) ((-1053 . -996) 150676) ((-1053 . -991) 150578) ((-1053 . -82) 150495) ((-1053 . -104) 150367) ((-1053 . -25) 150201) ((-1053 . -73) 149935) ((-1053 . -1157) T) ((-1053 . -1041) 149688) ((-1053 . -23) 149541) ((-1053 . -21) 149453) ((-1046 . -350) T) ((-1046 . -1157) T) ((-1046 . -568) 149435) ((-1045 . -1044) 149399) ((-1045 . -73) T) ((-1045 . -568) 149381) ((-1045 . -1041) T) ((-1045 . -240) 149337) ((-1045 . -1157) T) ((-1045 . -573) 149252) ((-1043 . -1044) 149204) ((-1043 . -73) T) ((-1043 . -568) 149186) ((-1043 . -1041) T) ((-1043 . -240) 149142) ((-1043 . -1157) T) ((-1043 . -573) 149045) ((-1042 . -323) T) ((-1042 . -73) T) ((-1042 . -1157) T) ((-1042 . -568) 149027) ((-1042 . -1041) T) ((-1037 . -380) 149011) ((-1037 . -1039) 148995) ((-1037 . -323) 148974) ((-1037 . -192) 148958) ((-1037 . -569) 148919) ((-1037 . -124) 148903) ((-1037 . -443) 148887) ((-1037 . -1041) T) ((-1037 . -468) 148820) ((-1037 . -263) 148758) ((-1037 . -568) 148740) ((-1037 . -73) T) ((-1037 . -1157) T) ((-1037 . -34) T) ((-1037 . -78) 148724) ((-1037 . -183) 148708) ((-1036 . -1023) T) ((-1036 . -444) 148689) ((-1036 . -568) 148655) ((-1036 . -571) 148636) ((-1036 . -1041) T) ((-1036 . -1157) T) ((-1036 . -73) T) ((-1036 . -64) T) ((-1032 . -1157) T) ((-1032 . -1041) 148606) ((-1032 . -568) 148565) ((-1032 . -73) 148535) ((-1031 . -1023) T) ((-1031 . -444) 148516) ((-1031 . -568) 148482) ((-1031 . -571) 148463) ((-1031 . -1041) T) ((-1031 . -1157) T) ((-1031 . -73) T) ((-1031 . -64) T) ((-1029 . -1034) 148447) ((-1029 . -573) 148431) ((-1029 . -1041) 148409) ((-1029 . -568) 148376) ((-1029 . -1157) 148354) ((-1029 . -73) 148332) ((-1029 . -1035) 148290) ((-1028 . -227) 148274) ((-1028 . -571) 148258) ((-1028 . -978) 148242) ((-1028 . -784) T) ((-1028 . -73) T) ((-1028 . -1041) T) ((-1028 . -568) 148224) ((-1028 . -781) T) ((-1028 . -186) 148211) ((-1028 . -1157) T) ((-1028 . -189) T) ((-1027 . -212) 148148) ((-1027 . -571) 147885) ((-1027 . -978) 147714) ((-1027 . -569) NIL) ((-1027 . -280) 147675) ((-1027 . -366) 147659) ((-1027 . -38) 147508) ((-1027 . -82) 147330) ((-1027 . -991) 147173) ((-1027 . -996) 147016) ((-1027 . -604) 146926) ((-1027 . -606) 146815) ((-1027 . -598) 146664) ((-1027 . -675) 146513) ((-1027 . -118) 146492) ((-1027 . -120) 146471) ((-1027 . -146) 146382) ((-1027 . -510) 146313) ((-1027 . -244) 146244) ((-1027 . -47) 146205) ((-1027 . -332) 146189) ((-1027 . -596) 146137) ((-1027 . -406) 146088) ((-1027 . -468) 145951) ((-1027 . -836) 145886) ((-1027 . -831) 145781) ((-1027 . -838) 145680) ((-1027 . -821) NIL) ((-1027 . -848) 145659) ((-1027 . -1162) 145638) ((-1027 . -888) 145583) ((-1027 . -263) 145570) ((-1027 . -190) 145549) ((-1027 . -104) T) ((-1027 . -25) T) ((-1027 . -73) T) ((-1027 . -568) 145531) ((-1027 . -1041) T) ((-1027 . -23) T) ((-1027 . -21) T) ((-1027 . -684) T) ((-1027 . -1052) T) ((-1027 . -997) T) ((-1027 . -989) T) ((-1027 . -186) 145476) ((-1027 . -1157) T) ((-1027 . -189) 145427) ((-1027 . -224) 145411) ((-1027 . -184) 145395) ((-1025 . -568) 145377) ((-1022 . -781) T) ((-1022 . -568) 145359) ((-1022 . -1041) T) ((-1022 . -73) T) ((-1022 . -1157) T) ((-1022 . -784) T) ((-1022 . -569) 145340) ((-1019 . -682) 145319) ((-1019 . -978) 145217) ((-1019 . -366) 145201) ((-1019 . -596) 145149) ((-1019 . -606) 145023) ((-1019 . -332) 145007) ((-1019 . -325) 144986) ((-1019 . -120) 144965) ((-1019 . -571) 144784) ((-1019 . -675) 144652) ((-1019 . -598) 144520) ((-1019 . -604) 144415) ((-1019 . -996) 144325) ((-1019 . -991) 144235) ((-1019 . -82) 144124) ((-1019 . -38) 143992) ((-1019 . -364) 143971) ((-1019 . -356) 143950) ((-1019 . -118) 143901) ((-1019 . -1092) 143880) ((-1019 . -305) 143859) ((-1019 . -323) 143810) ((-1019 . -200) 143761) ((-1019 . -244) 143712) ((-1019 . -261) 143663) ((-1019 . -406) 143614) ((-1019 . -510) 143565) ((-1019 . -859) 143516) ((-1019 . -1162) 143467) ((-1019 . -318) 143418) ((-1019 . -190) 143343) ((-1019 . -186) 143216) ((-1019 . -189) 143095) ((-1019 . -224) 143065) ((-1019 . -831) 142934) ((-1019 . -838) 142805) ((-1019 . -836) 142738) ((-1019 . -184) 142708) ((-1019 . -569) 142692) ((-1019 . -21) T) ((-1019 . -23) T) ((-1019 . -1041) T) ((-1019 . -568) 142674) ((-1019 . -1157) T) ((-1019 . -73) T) ((-1019 . -25) T) ((-1019 . -104) T) ((-1019 . -989) T) ((-1019 . -997) T) ((-1019 . -1052) T) ((-1019 . -684) T) ((-1019 . -146) T) ((-1017 . -1041) T) ((-1017 . -568) 142656) ((-1017 . -1157) T) ((-1017 . -73) T) ((-1017 . -240) 142635) ((-1016 . -1041) T) ((-1016 . -568) 142617) ((-1016 . -1157) T) ((-1016 . -73) T) ((-1015 . -1041) T) ((-1015 . -568) 142599) ((-1015 . -1157) T) ((-1015 . -73) T) ((-1015 . -240) 142578) ((-1015 . -978) 142555) ((-1015 . -571) 142532) ((-1014 . -1157) T) ((-1013 . -1023) T) ((-1013 . -444) 142513) ((-1013 . -568) 142479) ((-1013 . -571) 142460) ((-1013 . -1041) T) ((-1013 . -1157) T) ((-1013 . -73) T) ((-1013 . -64) T) ((-1006 . -1023) T) ((-1006 . -444) 142441) ((-1006 . -568) 142407) ((-1006 . -571) 142388) ((-1006 . -1041) T) ((-1006 . -1157) T) ((-1006 . -73) T) ((-1006 . -64) T) ((-1003 . -1134) 142363) ((-1003 . -183) 142307) ((-1003 . -78) 142251) ((-1003 . -263) 142096) ((-1003 . -468) 141896) ((-1003 . -443) 141826) ((-1003 . -124) 141770) ((-1003 . -569) NIL) ((-1003 . -192) 141714) ((-1003 . -565) 141689) ((-1003 . -242) 141664) ((-1003 . -1157) T) ((-1003 . -240) 141639) ((-1003 . -1041) T) ((-1003 . -568) 141621) ((-1003 . -73) T) ((-1003 . -34) T) ((-1003 . -554) 141596) ((-1002 . -498) T) ((-1002 . -1162) T) ((-1002 . -1092) T) ((-1002 . -978) 141578) ((-1002 . -569) 141493) ((-1002 . -960) T) ((-1002 . -821) 141475) ((-1002 . -780) T) ((-1002 . -742) T) ((-1002 . -739) T) ((-1002 . -784) T) ((-1002 . -781) T) ((-1002 . -737) T) ((-1002 . -735) T) ((-1002 . -763) T) ((-1002 . -606) 141447) ((-1002 . -596) 141429) ((-1002 . -859) T) ((-1002 . -510) T) ((-1002 . -244) T) ((-1002 . -146) T) ((-1002 . -571) 141401) ((-1002 . -675) 141388) ((-1002 . -598) 141375) ((-1002 . -996) 141362) ((-1002 . -991) 141349) ((-1002 . -82) 141334) ((-1002 . -38) 141321) ((-1002 . -406) T) ((-1002 . -261) T) ((-1002 . -189) T) ((-1002 . -186) 141308) ((-1002 . -190) T) ((-1002 . -116) T) ((-1002 . -989) T) ((-1002 . -997) T) ((-1002 . -1052) T) ((-1002 . -684) T) ((-1002 . -21) T) ((-1002 . -604) 141280) ((-1002 . -23) T) ((-1002 . -1041) T) ((-1002 . -568) 141262) ((-1002 . -1157) T) ((-1002 . -73) T) ((-1002 . -25) T) ((-1002 . -104) T) ((-1002 . -120) T) ((-1002 . -573) 141243) ((-1001 . -1008) 141222) ((-1001 . -73) T) ((-1001 . -1157) T) ((-1001 . -568) 141204) ((-1001 . -1041) T) ((-998 . -1157) T) ((-998 . -1041) 141182) ((-998 . -568) 141149) ((-998 . -73) 141127) ((-994 . -993) 141067) ((-994 . -598) 141009) ((-994 . -675) 140951) ((-994 . -34) T) ((-994 . -263) 140889) ((-994 . -468) 140822) ((-994 . -443) 140806) ((-994 . -606) 140790) ((-994 . -604) 140759) ((-994 . -104) T) ((-994 . -25) T) ((-994 . -73) T) ((-994 . -1157) T) ((-994 . -568) 140721) ((-994 . -1041) T) ((-994 . -23) T) ((-994 . -21) T) ((-994 . -996) 140705) ((-994 . -991) 140689) ((-994 . -82) 140668) ((-994 . -1215) 140638) ((-994 . -569) 140599) ((-986 . -1011) 140528) ((-986 . -916) 140457) ((-986 . -569) 140399) ((-986 . -443) 140364) ((-986 . -1041) T) ((-986 . -468) 140248) ((-986 . -263) 140156) ((-986 . -568) 140099) ((-986 . -73) T) ((-986 . -1157) T) ((-986 . -34) T) ((-986 . -124) 140064) ((-986 . -1152) 139993) ((-976 . -1023) T) ((-976 . -444) 139974) ((-976 . -568) 139940) ((-976 . -571) 139921) ((-976 . -1041) T) ((-976 . -1157) T) ((-976 . -73) T) ((-976 . -64) T) ((-975 . -1134) 139896) ((-975 . -183) 139840) ((-975 . -78) 139784) ((-975 . -263) 139629) ((-975 . -468) 139429) ((-975 . -443) 139359) ((-975 . -124) 139303) ((-975 . -569) NIL) ((-975 . -192) 139247) ((-975 . -565) 139222) ((-975 . -242) 139197) ((-975 . -1157) T) ((-975 . -240) 139172) ((-975 . -1041) T) ((-975 . -568) 139154) ((-975 . -73) T) ((-975 . -34) T) ((-975 . -554) 139129) ((-974 . -146) T) ((-974 . -571) 139098) ((-974 . -684) T) ((-974 . -1052) T) ((-974 . -997) T) ((-974 . -989) T) ((-974 . -606) 139072) ((-974 . -604) 139031) ((-974 . -104) T) ((-974 . -25) T) ((-974 . -73) T) ((-974 . -1157) T) ((-974 . -568) 139013) ((-974 . -1041) T) ((-974 . -23) T) ((-974 . -21) T) ((-974 . -996) 138987) ((-974 . -991) 138961) ((-974 . -82) 138928) ((-974 . -38) 138912) ((-974 . -598) 138896) ((-974 . -675) 138880) ((-967 . -1011) 138849) ((-967 . -916) 138818) ((-967 . -569) 138779) ((-967 . -443) 138763) ((-967 . -1041) T) ((-967 . -468) 138696) ((-967 . -263) 138634) ((-967 . -568) 138596) ((-967 . -73) T) ((-967 . -1157) T) ((-967 . -34) T) ((-967 . -124) 138580) ((-967 . -1152) 138549) ((-966 . -1157) T) ((-966 . -1041) 138527) ((-966 . -568) 138494) ((-966 . -73) 138472) ((-964 . -952) T) ((-964 . -942) T) ((-964 . -735) T) ((-964 . -737) T) ((-964 . -781) T) ((-964 . -784) T) ((-964 . -739) T) ((-964 . -742) T) ((-964 . -780) T) ((-964 . -978) 138354) ((-964 . -366) 138316) ((-964 . -200) T) ((-964 . -244) T) ((-964 . -261) T) ((-964 . -406) T) ((-964 . -38) 138253) ((-964 . -598) 138190) ((-964 . -675) 138127) ((-964 . -571) 138064) ((-964 . -510) T) ((-964 . -859) T) ((-964 . -1162) T) ((-964 . -318) T) ((-964 . -82) 137973) ((-964 . -991) 137910) ((-964 . -996) 137847) ((-964 . -146) T) ((-964 . -120) T) ((-964 . -606) 137784) ((-964 . -604) 137721) ((-964 . -104) T) ((-964 . -25) T) ((-964 . -73) T) ((-964 . -1157) T) ((-964 . -568) 137703) ((-964 . -1041) T) ((-964 . -23) T) ((-964 . -21) T) ((-964 . -989) T) ((-964 . -997) T) ((-964 . -1052) T) ((-964 . -684) T) ((-959 . -1023) T) ((-959 . -444) 137684) ((-959 . -568) 137650) ((-959 . -571) 137631) ((-959 . -1041) T) ((-959 . -1157) T) ((-959 . -73) T) ((-959 . -64) T) ((-944 . -931) 137613) ((-944 . -1092) T) ((-944 . -571) 137563) ((-944 . -978) 137523) ((-944 . -569) 137453) ((-944 . -960) T) ((-944 . -848) NIL) ((-944 . -819) 137435) ((-944 . -780) T) ((-944 . -742) T) ((-944 . -739) T) ((-944 . -784) T) ((-944 . -781) T) ((-944 . -737) T) ((-944 . -735) T) ((-944 . -763) T) ((-944 . -821) 137417) ((-944 . -354) 137399) ((-944 . -596) 137381) ((-944 . -332) 137363) ((-944 . -240) NIL) ((-944 . -263) NIL) ((-944 . -468) NIL) ((-944 . -293) 137345) ((-944 . -200) T) ((-944 . -82) 137272) ((-944 . -991) 137222) ((-944 . -996) 137172) ((-944 . -244) T) ((-944 . -675) 137122) ((-944 . -598) 137072) ((-944 . -606) 137022) ((-944 . -604) 136972) ((-944 . -38) 136922) ((-944 . -261) T) ((-944 . -406) T) ((-944 . -146) T) ((-944 . -510) T) ((-944 . -859) T) ((-944 . -1162) T) ((-944 . -318) T) ((-944 . -190) T) ((-944 . -186) 136909) ((-944 . -189) T) ((-944 . -224) 136891) ((-944 . -831) NIL) ((-944 . -838) NIL) ((-944 . -836) NIL) ((-944 . -184) 136873) ((-944 . -120) T) ((-944 . -118) NIL) ((-944 . -104) T) ((-944 . -25) T) ((-944 . -73) T) ((-944 . -1157) T) ((-944 . -568) 136833) ((-944 . -1041) T) ((-944 . -23) T) ((-944 . -21) T) ((-944 . -989) T) ((-944 . -997) T) ((-944 . -1052) T) ((-944 . -684) T) ((-943 . -297) 136807) ((-943 . -146) T) ((-943 . -571) 136737) ((-943 . -684) T) ((-943 . -1052) T) ((-943 . -997) T) ((-943 . -989) T) ((-943 . -606) 136639) ((-943 . -604) 136569) ((-943 . -104) T) ((-943 . -25) T) ((-943 . -73) T) ((-943 . -1157) T) ((-943 . -568) 136551) ((-943 . -1041) T) ((-943 . -23) T) ((-943 . -21) T) ((-943 . -996) 136496) ((-943 . -991) 136441) ((-943 . -82) 136358) ((-943 . -569) 136342) ((-943 . -184) 136319) ((-943 . -836) 136271) ((-943 . -838) 136180) ((-943 . -831) 136087) ((-943 . -224) 136064) ((-943 . -189) 136001) ((-943 . -186) 135932) ((-943 . -190) 135904) ((-943 . -318) T) ((-943 . -1162) T) ((-943 . -859) T) ((-943 . -510) T) ((-943 . -675) 135849) ((-943 . -598) 135794) ((-943 . -38) 135739) ((-943 . -406) T) ((-943 . -261) T) ((-943 . -244) T) ((-943 . -200) T) ((-943 . -323) NIL) ((-943 . -305) NIL) ((-943 . -1092) NIL) ((-943 . -118) 135711) ((-943 . -356) NIL) ((-943 . -364) 135683) ((-943 . -120) 135655) ((-943 . -325) 135627) ((-943 . -332) 135604) ((-943 . -596) 135538) ((-943 . -366) 135515) ((-943 . -978) 135392) ((-943 . -682) 135364) ((-940 . -935) 135348) ((-940 . -443) 135332) ((-940 . -1041) 135310) ((-940 . -468) 135243) ((-940 . -263) 135181) ((-940 . -568) 135113) ((-940 . -73) 135064) ((-940 . -1157) T) ((-940 . -34) T) ((-940 . -78) 135048) ((-936 . -938) 135032) ((-936 . -784) 135011) ((-936 . -781) 134990) ((-936 . -978) 134888) ((-936 . -366) 134872) ((-936 . -596) 134820) ((-936 . -606) 134722) ((-936 . -332) 134706) ((-936 . -240) 134664) ((-936 . -263) 134629) ((-936 . -468) 134541) ((-936 . -293) 134525) ((-936 . -38) 134473) ((-936 . -82) 134348) ((-936 . -991) 134244) ((-936 . -996) 134140) ((-936 . -604) 134063) ((-936 . -598) 134011) ((-936 . -675) 133959) ((-936 . -571) 133850) ((-936 . -244) 133801) ((-936 . -200) 133780) ((-936 . -190) 133759) ((-936 . -186) 133704) ((-936 . -189) 133655) ((-936 . -224) 133639) ((-936 . -831) 133560) ((-936 . -838) 133483) ((-936 . -836) 133442) ((-936 . -184) 133426) ((-936 . -569) 133387) ((-936 . -120) 133366) ((-936 . -118) 133345) ((-936 . -104) T) ((-936 . -25) T) ((-936 . -73) T) ((-936 . -1157) T) ((-936 . -568) 133327) ((-936 . -1041) T) ((-936 . -23) T) ((-936 . -21) T) ((-936 . -989) T) ((-936 . -997) T) ((-936 . -1052) T) ((-936 . -684) T) ((-934 . -1023) T) ((-934 . -444) 133308) ((-934 . -568) 133274) ((-934 . -571) 133255) ((-934 . -1041) T) ((-934 . -1157) T) ((-934 . -73) T) ((-934 . -64) T) ((-933 . -21) T) ((-933 . -604) 133237) ((-933 . -23) T) ((-933 . -1041) T) ((-933 . -568) 133219) ((-933 . -1157) T) ((-933 . -73) T) ((-933 . -25) T) ((-933 . -104) T) ((-933 . -240) 133186) ((-929 . -568) 133168) ((-926 . -1041) T) ((-926 . -568) 133150) ((-926 . -1157) T) ((-926 . -73) T) ((-911 . -742) T) ((-911 . -739) T) ((-911 . -784) T) ((-911 . -781) T) ((-911 . -737) T) ((-911 . -23) T) ((-911 . -1041) T) ((-911 . -568) 133110) ((-911 . -1157) T) ((-911 . -73) T) ((-911 . -25) T) ((-911 . -104) T) ((-910 . -1023) T) ((-910 . -444) 133091) ((-910 . -568) 133057) ((-910 . -571) 133038) ((-910 . -1041) T) ((-910 . -1157) T) ((-910 . -73) T) ((-910 . -64) T) ((-904 . -907) T) ((-904 . -73) T) ((-904 . -568) 133020) ((-904 . -1041) T) ((-904 . -620) T) ((-904 . -1157) T) ((-904 . -84) T) ((-904 . -571) 133004) ((-903 . -568) 132986) ((-902 . -1041) T) ((-902 . -568) 132968) ((-902 . -1157) T) ((-902 . -73) T) ((-902 . -323) 132921) ((-902 . -684) 132820) ((-902 . -1052) 132719) ((-902 . -23) 132530) ((-902 . -25) 132341) ((-902 . -104) 132196) ((-902 . -427) 132149) ((-902 . -21) 132104) ((-902 . -604) 132048) ((-902 . -738) 132001) ((-902 . -737) 131954) ((-902 . -781) 131853) ((-902 . -784) 131752) ((-902 . -739) 131705) ((-902 . -742) 131658) ((-896 . -19) 131642) ((-896 . -609) 131626) ((-896 . -242) 131603) ((-896 . -240) 131555) ((-896 . -554) 131532) ((-896 . -569) 131493) ((-896 . -443) 131477) ((-896 . -1041) 131427) ((-896 . -468) 131360) ((-896 . -263) 131298) ((-896 . -568) 131210) ((-896 . -73) 131141) ((-896 . -1157) T) ((-896 . -34) T) ((-896 . -124) 131125) ((-896 . -781) 131104) ((-896 . -784) 131083) ((-896 . -327) 131067) ((-894 . -280) 131046) ((-894 . -978) 130944) ((-894 . -366) 130928) ((-894 . -38) 130825) ((-894 . -571) 130679) ((-894 . -606) 130604) ((-894 . -604) 130514) ((-894 . -684) T) ((-894 . -1052) T) ((-894 . -997) T) ((-894 . -989) T) ((-894 . -82) 130376) ((-894 . -991) 130259) ((-894 . -996) 130142) ((-894 . -21) T) ((-894 . -23) T) ((-894 . -1041) T) ((-894 . -568) 130124) ((-894 . -1157) T) ((-894 . -73) T) ((-894 . -25) T) ((-894 . -104) T) ((-894 . -598) 130021) ((-894 . -675) 129918) ((-894 . -118) 129897) ((-894 . -120) 129876) ((-894 . -146) 129827) ((-894 . -510) 129806) ((-894 . -244) 129785) ((-894 . -47) 129764) ((-892 . -1041) T) ((-892 . -568) 129730) ((-892 . -1157) T) ((-892 . -73) T) ((-884 . -888) 129691) ((-884 . -571) 129481) ((-884 . -978) 129363) ((-884 . -1162) 129342) ((-884 . -848) 129321) ((-884 . -821) 129246) ((-884 . -838) 129227) ((-884 . -831) 129206) ((-884 . -836) 129187) ((-884 . -468) 129133) ((-884 . -406) 129084) ((-884 . -596) 129032) ((-884 . -606) 128921) ((-884 . -332) 128905) ((-884 . -47) 128874) ((-884 . -38) 128723) ((-884 . -598) 128572) ((-884 . -675) 128421) ((-884 . -244) 128352) ((-884 . -510) 128283) ((-884 . -82) 128105) ((-884 . -991) 127948) ((-884 . -996) 127791) ((-884 . -146) 127702) ((-884 . -120) 127681) ((-884 . -118) 127660) ((-884 . -604) 127570) ((-884 . -104) T) ((-884 . -25) T) ((-884 . -73) T) ((-884 . -1157) T) ((-884 . -568) 127552) ((-884 . -1041) T) ((-884 . -23) T) ((-884 . -21) T) ((-884 . -989) T) ((-884 . -997) T) ((-884 . -1052) T) ((-884 . -684) T) ((-884 . -366) 127536) ((-884 . -280) 127505) ((-884 . -263) 127492) ((-884 . -569) 127353) ((-881 . -920) 127337) ((-881 . -19) 127321) ((-881 . -609) 127305) ((-881 . -242) 127282) ((-881 . -240) 127234) ((-881 . -554) 127211) ((-881 . -569) 127172) ((-881 . -443) 127156) ((-881 . -1041) 127106) ((-881 . -468) 127039) ((-881 . -263) 126977) ((-881 . -568) 126889) ((-881 . -73) 126820) ((-881 . -1157) T) ((-881 . -34) T) ((-881 . -124) 126804) ((-881 . -781) 126783) ((-881 . -784) 126762) ((-881 . -327) 126746) ((-881 . -1206) 126730) ((-881 . -573) 126707) ((-865 . -914) T) ((-865 . -568) 126689) ((-863 . -893) T) ((-863 . -568) 126671) ((-857 . -739) T) ((-857 . -784) T) ((-857 . -781) T) ((-857 . -1041) T) ((-857 . -568) 126653) ((-857 . -1157) T) ((-857 . -73) T) ((-857 . -25) T) ((-857 . -684) T) ((-857 . -1052) T) ((-852 . -318) T) ((-852 . -1162) T) ((-852 . -859) T) ((-852 . -510) T) ((-852 . -146) T) ((-852 . -571) 126590) ((-852 . -675) 126542) ((-852 . -598) 126494) ((-852 . -38) 126446) ((-852 . -406) T) ((-852 . -261) T) ((-852 . -606) 126398) ((-852 . -604) 126335) ((-852 . -684) T) ((-852 . -1052) T) ((-852 . -997) T) ((-852 . -989) T) ((-852 . -82) 126266) ((-852 . -991) 126218) ((-852 . -996) 126170) ((-852 . -21) T) ((-852 . -23) T) ((-852 . -1041) T) ((-852 . -568) 126152) ((-852 . -1157) T) ((-852 . -73) T) ((-852 . -25) T) ((-852 . -104) T) ((-852 . -244) T) ((-852 . -200) T) ((-844 . -305) T) ((-844 . -1092) T) ((-844 . -323) T) ((-844 . -118) T) ((-844 . -318) T) ((-844 . -1162) T) ((-844 . -859) T) ((-844 . -510) T) ((-844 . -146) T) ((-844 . -571) 126102) ((-844 . -675) 126067) ((-844 . -598) 126032) ((-844 . -38) 125997) ((-844 . -406) T) ((-844 . -261) T) ((-844 . -82) 125946) ((-844 . -991) 125911) ((-844 . -996) 125876) ((-844 . -604) 125826) ((-844 . -606) 125791) ((-844 . -244) T) ((-844 . -200) T) ((-844 . -356) T) ((-844 . -189) T) ((-844 . -1157) T) ((-844 . -186) 125778) ((-844 . -989) T) ((-844 . -997) T) ((-844 . -1052) T) ((-844 . -684) T) ((-844 . -21) T) ((-844 . -23) T) ((-844 . -1041) T) ((-844 . -568) 125760) ((-844 . -73) T) ((-844 . -25) T) ((-844 . -104) T) ((-844 . -190) T) ((-844 . -283) 125747) ((-844 . -120) 125729) ((-844 . -978) 125716) ((-844 . -1215) 125703) ((-844 . -1226) 125690) ((-844 . -569) 125672) ((-843 . -1041) T) ((-843 . -568) 125654) ((-843 . -1157) T) ((-843 . -73) T) ((-840 . -842) 125638) ((-840 . -784) 125589) ((-840 . -781) 125540) ((-840 . -684) T) ((-840 . -1041) T) ((-840 . -568) 125522) ((-840 . -73) T) ((-840 . -1052) T) ((-840 . -427) T) ((-840 . -1157) T) ((-840 . -240) 125501) ((-839 . -92) 125485) ((-839 . -443) 125469) ((-839 . -1041) 125447) ((-839 . -468) 125380) ((-839 . -263) 125318) ((-839 . -568) 125229) ((-839 . -73) 125180) ((-839 . -1157) T) ((-839 . -34) T) ((-839 . -950) 125164) ((-834 . -1041) T) ((-834 . -568) 125146) ((-834 . -1157) T) ((-834 . -73) T) ((-828 . -781) T) ((-828 . -568) 125128) ((-828 . -1041) T) ((-828 . -73) T) ((-828 . -1157) T) ((-828 . -784) T) ((-828 . -978) 125105) ((-828 . -571) 125082) ((-825 . -1041) T) ((-825 . -568) 125064) ((-825 . -1157) T) ((-825 . -73) T) ((-825 . -978) 125032) ((-825 . -571) 125000) ((-823 . -1041) T) ((-823 . -568) 124982) ((-823 . -1157) T) ((-823 . -73) T) ((-820 . -1041) T) ((-820 . -568) 124964) ((-820 . -1157) T) ((-820 . -73) T) ((-810 . -1023) T) ((-810 . -444) 124945) ((-810 . -568) 124911) ((-810 . -571) 124892) ((-810 . -1041) T) ((-810 . -1157) T) ((-810 . -73) T) ((-810 . -64) T) ((-810 . -1203) T) ((-808 . -1041) T) ((-808 . -568) 124874) ((-808 . -1157) T) ((-808 . -73) T) ((-808 . -571) 124856) ((-807 . -1157) T) ((-807 . -568) 124728) ((-807 . -1041) 124679) ((-807 . -73) 124630) ((-806 . -931) 124614) ((-806 . -1092) 124592) ((-806 . -978) 124459) ((-806 . -571) 124358) ((-806 . -569) 124161) ((-806 . -960) 124140) ((-806 . -848) 124119) ((-806 . -819) 124103) ((-806 . -780) 124082) ((-806 . -742) 124061) ((-806 . -739) 124040) ((-806 . -784) 123991) ((-806 . -781) 123942) ((-806 . -737) 123921) ((-806 . -735) 123900) ((-806 . -763) 123879) ((-806 . -821) 123804) ((-806 . -354) 123788) ((-806 . -596) 123736) ((-806 . -606) 123652) ((-806 . -332) 123636) ((-806 . -240) 123594) ((-806 . -263) 123559) ((-806 . -468) 123471) ((-806 . -293) 123455) ((-806 . -200) T) ((-806 . -82) 123386) ((-806 . -991) 123338) ((-806 . -996) 123290) ((-806 . -244) T) ((-806 . -675) 123242) ((-806 . -598) 123194) ((-806 . -604) 123131) ((-806 . -38) 123083) ((-806 . -261) T) ((-806 . -406) T) ((-806 . -146) T) ((-806 . -510) T) ((-806 . -859) T) ((-806 . -1162) T) ((-806 . -318) T) ((-806 . -190) 123062) ((-806 . -186) 123007) ((-806 . -189) 122958) ((-806 . -224) 122942) ((-806 . -831) 122863) ((-806 . -838) 122786) ((-806 . -836) 122745) ((-806 . -184) 122729) ((-806 . -120) 122708) ((-806 . -118) 122687) ((-806 . -104) T) ((-806 . -25) T) ((-806 . -73) T) ((-806 . -1157) T) ((-806 . -568) 122669) ((-806 . -1041) T) ((-806 . -23) T) ((-806 . -21) T) ((-806 . -989) T) ((-806 . -997) T) ((-806 . -1052) T) ((-806 . -684) T) ((-805 . -931) 122646) ((-805 . -1092) NIL) ((-805 . -978) 122623) ((-805 . -571) 122553) ((-805 . -569) NIL) ((-805 . -960) NIL) ((-805 . -848) NIL) ((-805 . -819) 122530) ((-805 . -780) NIL) ((-805 . -742) NIL) ((-805 . -739) NIL) ((-805 . -784) NIL) ((-805 . -781) NIL) ((-805 . -737) NIL) ((-805 . -735) NIL) ((-805 . -763) NIL) ((-805 . -821) NIL) ((-805 . -354) 122507) ((-805 . -596) 122484) ((-805 . -606) 122429) ((-805 . -332) 122406) ((-805 . -240) 122336) ((-805 . -263) 122280) ((-805 . -468) 122143) ((-805 . -293) 122120) ((-805 . -200) T) ((-805 . -82) 122037) ((-805 . -991) 121982) ((-805 . -996) 121927) ((-805 . -244) T) ((-805 . -675) 121872) ((-805 . -598) 121817) ((-805 . -604) 121747) ((-805 . -38) 121692) ((-805 . -261) T) ((-805 . -406) T) ((-805 . -146) T) ((-805 . -510) T) ((-805 . -859) T) ((-805 . -1162) T) ((-805 . -318) T) ((-805 . -190) NIL) ((-805 . -186) NIL) ((-805 . -189) NIL) ((-805 . -224) 121669) ((-805 . -831) NIL) ((-805 . -838) NIL) ((-805 . -836) NIL) ((-805 . -184) 121646) ((-805 . -120) T) ((-805 . -118) NIL) ((-805 . -104) T) ((-805 . -25) T) ((-805 . -73) T) ((-805 . -1157) T) ((-805 . -568) 121628) ((-805 . -1041) T) ((-805 . -23) T) ((-805 . -21) T) ((-805 . -989) T) ((-805 . -997) T) ((-805 . -1052) T) ((-805 . -684) T) ((-803 . -804) 121612) ((-803 . -859) T) ((-803 . -510) T) ((-803 . -244) T) ((-803 . -146) T) ((-803 . -571) 121584) ((-803 . -675) 121571) ((-803 . -598) 121558) ((-803 . -996) 121545) ((-803 . -991) 121532) ((-803 . -82) 121517) ((-803 . -38) 121504) ((-803 . -406) T) ((-803 . -261) T) ((-803 . -989) T) ((-803 . -997) T) ((-803 . -1052) T) ((-803 . -684) T) ((-803 . -21) T) ((-803 . -604) 121476) ((-803 . -23) T) ((-803 . -1041) T) ((-803 . -568) 121458) ((-803 . -1157) T) ((-803 . -73) T) ((-803 . -25) T) ((-803 . -104) T) ((-803 . -606) 121445) ((-803 . -120) T) ((-800 . -989) T) ((-800 . -997) T) ((-800 . -1052) T) ((-800 . -684) T) ((-800 . -21) T) ((-800 . -604) 121390) ((-800 . -23) T) ((-800 . -1041) T) ((-800 . -568) 121352) ((-800 . -1157) T) ((-800 . -73) T) ((-800 . -25) T) ((-800 . -104) T) ((-800 . -606) 121312) ((-800 . -571) 121247) ((-800 . -444) 121224) ((-800 . -38) 121194) ((-800 . -82) 121159) ((-800 . -991) 121129) ((-800 . -996) 121099) ((-800 . -598) 121069) ((-800 . -675) 121039) ((-799 . -1041) T) ((-799 . -568) 121021) ((-799 . -1157) T) ((-799 . -73) T) ((-798 . -777) T) ((-798 . -784) T) ((-798 . -781) T) ((-798 . -1041) T) ((-798 . -568) 121003) ((-798 . -1157) T) ((-798 . -73) T) ((-798 . -323) T) ((-798 . -569) 120925) ((-797 . -1041) T) ((-797 . -568) 120907) ((-797 . -1157) T) ((-797 . -73) T) ((-796 . -795) T) ((-796 . -147) T) ((-796 . -568) 120889) ((-792 . -781) T) ((-792 . -568) 120871) ((-792 . -1041) T) ((-792 . -73) T) ((-792 . -1157) T) ((-792 . -784) T) ((-789 . -786) 120855) ((-789 . -978) 120753) ((-789 . -571) 120651) ((-789 . -366) 120635) ((-789 . -675) 120605) ((-789 . -598) 120575) ((-789 . -606) 120549) ((-789 . -604) 120508) ((-789 . -104) T) ((-789 . -25) T) ((-789 . -73) T) ((-789 . -1157) T) ((-789 . -568) 120490) ((-789 . -1041) T) ((-789 . -23) T) ((-789 . -21) T) ((-789 . -996) 120474) ((-789 . -991) 120458) ((-789 . -82) 120437) ((-789 . -989) T) ((-789 . -997) T) ((-789 . -1052) T) ((-789 . -684) T) ((-789 . -38) 120407) ((-788 . -786) 120391) ((-788 . -978) 120289) ((-788 . -571) 120208) ((-788 . -366) 120192) ((-788 . -675) 120162) ((-788 . -598) 120132) ((-788 . -606) 120106) ((-788 . -604) 120065) ((-788 . -104) T) ((-788 . -25) T) ((-788 . -73) T) ((-788 . -1157) T) ((-788 . -568) 120047) ((-788 . -1041) T) ((-788 . -23) T) ((-788 . -21) T) ((-788 . -996) 120031) ((-788 . -991) 120015) ((-788 . -82) 119994) ((-788 . -989) T) ((-788 . -997) T) ((-788 . -1052) T) ((-788 . -684) T) ((-788 . -38) 119964) ((-782 . -784) T) ((-782 . -1157) T) ((-782 . -73) T) ((-782 . -444) 119948) ((-782 . -568) 119896) ((-782 . -571) 119880) ((-775 . -1041) T) ((-775 . -568) 119862) ((-775 . -1157) T) ((-775 . -73) T) ((-775 . -366) 119846) ((-775 . -571) 119716) ((-775 . -978) 119614) ((-775 . -21) 119566) ((-775 . -604) 119483) ((-775 . -23) 119435) ((-775 . -25) 119387) ((-775 . -104) 119339) ((-775 . -780) 119318) ((-775 . -606) 119291) ((-775 . -997) 119270) ((-775 . -989) 119249) ((-775 . -742) 119228) ((-775 . -739) 119207) ((-775 . -784) 119186) ((-775 . -781) 119165) ((-775 . -737) 119144) ((-775 . -735) 119123) ((-775 . -1052) 119102) ((-775 . -684) 119081) ((-774 . -1041) T) ((-774 . -568) 119063) ((-774 . -1157) T) ((-774 . -73) T) ((-772 . -770) 119045) ((-772 . -73) T) ((-772 . -1157) T) ((-772 . -568) 119027) ((-772 . -1041) T) ((-768 . -989) T) ((-768 . -997) T) ((-768 . -1052) T) ((-768 . -684) T) ((-768 . -21) T) ((-768 . -604) 118972) ((-768 . -23) T) ((-768 . -1041) T) ((-768 . -568) 118954) ((-768 . -1157) T) ((-768 . -73) T) ((-768 . -25) T) ((-768 . -104) T) ((-768 . -606) 118914) ((-768 . -571) 118869) ((-768 . -978) 118839) ((-768 . -240) 118818) ((-768 . -120) 118797) ((-768 . -118) 118776) ((-768 . -38) 118746) ((-768 . -82) 118711) ((-768 . -991) 118681) ((-768 . -996) 118651) ((-768 . -598) 118621) ((-768 . -675) 118591) ((-766 . -1041) T) ((-766 . -568) 118573) ((-766 . -1157) T) ((-766 . -73) T) ((-766 . -366) 118557) ((-766 . -571) 118427) ((-766 . -978) 118325) ((-766 . -21) 118277) ((-766 . -604) 118194) ((-766 . -23) 118146) ((-766 . -25) 118098) ((-766 . -104) 118050) ((-766 . -780) 118029) ((-766 . -606) 118002) ((-766 . -997) 117981) ((-766 . -989) 117960) ((-766 . -742) 117939) ((-766 . -739) 117918) ((-766 . -784) 117897) ((-766 . -781) 117876) ((-766 . -737) 117855) ((-766 . -735) 117834) ((-766 . -1052) 117813) ((-766 . -684) 117792) ((-764 . -666) 117776) ((-764 . -571) 117731) ((-764 . -675) 117701) ((-764 . -598) 117671) ((-764 . -606) 117645) ((-764 . -604) 117604) ((-764 . -104) T) ((-764 . -25) T) ((-764 . -73) T) ((-764 . -1157) T) ((-764 . -568) 117586) ((-764 . -1041) T) ((-764 . -23) T) ((-764 . -21) T) ((-764 . -996) 117570) ((-764 . -991) 117554) ((-764 . -82) 117533) ((-764 . -989) T) ((-764 . -997) T) ((-764 . -1052) T) ((-764 . -684) T) ((-764 . -38) 117503) ((-764 . -190) 117482) ((-764 . -186) 117455) ((-764 . -189) 117434) ((-762 . -341) 117418) ((-762 . -571) 117402) ((-762 . -978) 117386) ((-762 . -784) T) ((-762 . -781) T) ((-762 . -1052) T) ((-762 . -73) T) ((-762 . -1157) T) ((-762 . -568) 117368) ((-762 . -1041) T) ((-762 . -684) T) ((-762 . -779) T) ((-762 . -791) T) ((-761 . -227) 117352) ((-761 . -571) 117336) ((-761 . -978) 117320) ((-761 . -784) T) ((-761 . -73) T) ((-761 . -1041) T) ((-761 . -568) 117302) ((-761 . -781) T) ((-761 . -186) 117289) ((-761 . -1157) T) ((-761 . -189) T) ((-760 . -82) 117224) ((-760 . -991) 117175) ((-760 . -996) 117126) ((-760 . -21) T) ((-760 . -604) 117062) ((-760 . -23) T) ((-760 . -1041) T) ((-760 . -568) 117031) ((-760 . -1157) T) ((-760 . -73) T) ((-760 . -25) T) ((-760 . -104) T) ((-760 . -606) 116982) ((-760 . -190) T) ((-760 . -571) 116891) ((-760 . -684) T) ((-760 . -1052) T) ((-760 . -997) T) ((-760 . -989) T) ((-760 . -186) 116878) ((-760 . -189) T) ((-760 . -444) 116862) ((-760 . -318) 116841) ((-760 . -1162) 116820) ((-760 . -859) 116799) ((-760 . -510) 116778) ((-760 . -146) 116757) ((-760 . -675) 116694) ((-760 . -598) 116631) ((-760 . -38) 116568) ((-760 . -406) 116547) ((-760 . -261) 116526) ((-760 . -244) 116505) ((-760 . -200) 116484) ((-759 . -212) 116423) ((-759 . -571) 116161) ((-759 . -978) 115991) ((-759 . -569) NIL) ((-759 . -280) 115953) ((-759 . -366) 115937) ((-759 . -38) 115786) ((-759 . -82) 115608) ((-759 . -991) 115451) ((-759 . -996) 115294) ((-759 . -604) 115204) ((-759 . -606) 115093) ((-759 . -598) 114942) ((-759 . -675) 114791) ((-759 . -118) 114770) ((-759 . -120) 114749) ((-759 . -146) 114660) ((-759 . -510) 114591) ((-759 . -244) 114522) ((-759 . -47) 114484) ((-759 . -332) 114468) ((-759 . -596) 114416) ((-759 . -406) 114367) ((-759 . -468) 114232) ((-759 . -836) 114168) ((-759 . -831) 114064) ((-759 . -838) 113964) ((-759 . -821) NIL) ((-759 . -848) 113943) ((-759 . -1162) 113922) ((-759 . -888) 113869) ((-759 . -263) 113856) ((-759 . -190) 113835) ((-759 . -104) T) ((-759 . -25) T) ((-759 . -73) T) ((-759 . -568) 113817) ((-759 . -1041) T) ((-759 . -23) T) ((-759 . -21) T) ((-759 . -684) T) ((-759 . -1052) T) ((-759 . -997) T) ((-759 . -989) T) ((-759 . -186) 113762) ((-759 . -1157) T) ((-759 . -189) 113713) ((-759 . -224) 113697) ((-759 . -184) 113681) ((-758 . -195) 113660) ((-758 . -1215) 113630) ((-758 . -742) 113609) ((-758 . -739) 113588) ((-758 . -784) 113539) ((-758 . -781) 113490) ((-758 . -737) 113469) ((-758 . -738) 113448) ((-758 . -675) 113390) ((-758 . -598) 113312) ((-758 . -242) 113289) ((-758 . -240) 113266) ((-758 . -443) 113250) ((-758 . -468) 113183) ((-758 . -263) 113121) ((-758 . -34) T) ((-758 . -554) 113098) ((-758 . -978) 112927) ((-758 . -571) 112728) ((-758 . -366) 112697) ((-758 . -596) 112605) ((-758 . -606) 112441) ((-758 . -332) 112411) ((-758 . -323) 112390) ((-758 . -190) 112343) ((-758 . -604) 112125) ((-758 . -684) 112104) ((-758 . -1052) 112083) ((-758 . -997) 112062) ((-758 . -989) 112041) ((-758 . -186) 111934) ((-758 . -189) 111833) ((-758 . -224) 111803) ((-758 . -831) 111672) ((-758 . -838) 111543) ((-758 . -836) 111476) ((-758 . -184) 111446) ((-758 . -568) 111140) ((-758 . -996) 111062) ((-758 . -991) 110964) ((-758 . -82) 110881) ((-758 . -104) 110753) ((-758 . -25) 110587) ((-758 . -73) 110321) ((-758 . -1157) T) ((-758 . -1041) 110074) ((-758 . -23) 109927) ((-758 . -21) 109839) ((-751 . -1041) T) ((-751 . -568) 109821) ((-751 . -1157) T) ((-751 . -73) T) ((-743 . -741) 109805) ((-743 . -784) 109784) ((-743 . -781) 109763) ((-743 . -978) 109550) ((-743 . -571) 109400) ((-743 . -366) 109364) ((-743 . -240) 109322) ((-743 . -263) 109287) ((-743 . -468) 109199) ((-743 . -293) 109183) ((-743 . -323) 109162) ((-743 . -569) 109123) ((-743 . -120) 109102) ((-743 . -118) 109081) ((-743 . -675) 109065) ((-743 . -598) 109049) ((-743 . -606) 109023) ((-743 . -604) 108982) ((-743 . -104) T) ((-743 . -25) T) ((-743 . -73) T) ((-743 . -1157) T) ((-743 . -568) 108964) ((-743 . -1041) T) ((-743 . -23) T) ((-743 . -21) T) ((-743 . -996) 108948) ((-743 . -991) 108932) ((-743 . -82) 108911) ((-743 . -989) T) ((-743 . -997) T) ((-743 . -1052) T) ((-743 . -684) T) ((-743 . -38) 108895) ((-724 . -1183) 108879) ((-724 . -1092) 108857) ((-724 . -569) NIL) ((-724 . -263) 108844) ((-724 . -468) 108790) ((-724 . -280) 108767) ((-724 . -978) 108628) ((-724 . -366) 108612) ((-724 . -38) 108441) ((-724 . -82) 108243) ((-724 . -991) 108066) ((-724 . -996) 107889) ((-724 . -604) 107799) ((-724 . -606) 107688) ((-724 . -598) 107517) ((-724 . -675) 107346) ((-724 . -571) 107095) ((-724 . -118) 107074) ((-724 . -120) 107053) ((-724 . -47) 107030) ((-724 . -332) 107014) ((-724 . -596) 106962) ((-724 . -836) 106905) ((-724 . -831) 106808) ((-724 . -838) 106715) ((-724 . -821) NIL) ((-724 . -848) 106694) ((-724 . -1162) 106673) ((-724 . -888) 106642) ((-724 . -859) 106621) ((-724 . -510) 106532) ((-724 . -244) 106443) ((-724 . -146) 106334) ((-724 . -406) 106265) ((-724 . -261) 106244) ((-724 . -240) 106171) ((-724 . -190) T) ((-724 . -104) T) ((-724 . -25) T) ((-724 . -73) T) ((-724 . -568) 106132) ((-724 . -1041) T) ((-724 . -23) T) ((-724 . -21) T) ((-724 . -684) T) ((-724 . -1052) T) ((-724 . -997) T) ((-724 . -989) T) ((-724 . -186) 106119) ((-724 . -1157) T) ((-724 . -189) T) ((-724 . -224) 106103) ((-724 . -184) 106087) ((-723 . -1005) 106054) ((-723 . -569) 105689) ((-723 . -263) 105676) ((-723 . -468) 105628) ((-723 . -280) 105600) ((-723 . -978) 105459) ((-723 . -366) 105443) ((-723 . -38) 105292) ((-723 . -571) 105059) ((-723 . -606) 104948) ((-723 . -604) 104858) ((-723 . -684) T) ((-723 . -1052) T) ((-723 . -997) T) ((-723 . -989) T) ((-723 . -82) 104680) ((-723 . -991) 104523) ((-723 . -996) 104366) ((-723 . -21) T) ((-723 . -23) T) ((-723 . -1041) T) ((-723 . -568) 104280) ((-723 . -1157) T) ((-723 . -73) T) ((-723 . -25) T) ((-723 . -104) T) ((-723 . -598) 104129) ((-723 . -675) 103978) ((-723 . -118) 103957) ((-723 . -120) 103936) ((-723 . -146) 103847) ((-723 . -510) 103778) ((-723 . -244) 103709) ((-723 . -47) 103681) ((-723 . -332) 103665) ((-723 . -596) 103613) ((-723 . -406) 103564) ((-723 . -836) 103548) ((-723 . -831) 103530) ((-723 . -838) 103514) ((-723 . -821) 103373) ((-723 . -848) 103352) ((-723 . -1162) 103331) ((-723 . -888) 103298) ((-716 . -1041) T) ((-716 . -568) 103280) ((-716 . -1157) T) ((-716 . -73) T) ((-714 . -738) T) ((-714 . -104) T) ((-714 . -25) T) ((-714 . -73) T) ((-714 . -1157) T) ((-714 . -568) 103262) ((-714 . -1041) T) ((-714 . -23) T) ((-714 . -737) T) ((-714 . -781) T) ((-714 . -784) T) ((-714 . -739) T) ((-714 . -742) T) ((-714 . -684) T) ((-714 . -1052) T) ((-712 . -1041) T) ((-712 . -568) 103244) ((-712 . -1157) T) ((-712 . -73) T) ((-694 . -695) 103228) ((-694 . -1039) 103212) ((-694 . -192) 103196) ((-694 . -569) 103157) ((-694 . -124) 103141) ((-694 . -443) 103125) ((-694 . -1041) T) ((-694 . -468) 103058) ((-694 . -263) 102996) ((-694 . -568) 102978) ((-694 . -73) T) ((-694 . -1157) T) ((-694 . -34) T) ((-694 . -78) 102962) ((-694 . -653) 102946) ((-693 . -989) T) ((-693 . -997) T) ((-693 . -1052) T) ((-693 . -684) T) ((-693 . -21) T) ((-693 . -604) 102891) ((-693 . -23) T) ((-693 . -1041) T) ((-693 . -568) 102873) ((-693 . -1157) T) ((-693 . -73) T) ((-693 . -25) T) ((-693 . -104) T) ((-693 . -606) 102833) ((-693 . -571) 102789) ((-693 . -978) 102760) ((-693 . -120) 102739) ((-693 . -118) 102718) ((-693 . -38) 102688) ((-693 . -82) 102653) ((-693 . -991) 102623) ((-693 . -996) 102593) ((-693 . -598) 102563) ((-693 . -675) 102533) ((-693 . -323) 102486) ((-689 . -888) 102439) ((-689 . -571) 102225) ((-689 . -978) 102103) ((-689 . -1162) 102082) ((-689 . -848) 102061) ((-689 . -821) NIL) ((-689 . -838) 102038) ((-689 . -831) 102013) ((-689 . -836) 101990) ((-689 . -468) 101928) ((-689 . -406) 101879) ((-689 . -596) 101827) ((-689 . -606) 101716) ((-689 . -332) 101700) ((-689 . -47) 101665) ((-689 . -38) 101514) ((-689 . -598) 101363) ((-689 . -675) 101212) ((-689 . -244) 101143) ((-689 . -510) 101074) ((-689 . -82) 100896) ((-689 . -991) 100739) ((-689 . -996) 100582) ((-689 . -146) 100493) ((-689 . -120) 100472) ((-689 . -118) 100451) ((-689 . -604) 100361) ((-689 . -104) T) ((-689 . -25) T) ((-689 . -73) T) ((-689 . -1157) T) ((-689 . -568) 100343) ((-689 . -1041) T) ((-689 . -23) T) ((-689 . -21) T) ((-689 . -989) T) ((-689 . -997) T) ((-689 . -1052) T) ((-689 . -684) T) ((-689 . -366) 100327) ((-689 . -280) 100292) ((-689 . -263) 100279) ((-689 . -569) 100140) ((-676 . -427) T) ((-676 . -1052) T) ((-676 . -73) T) ((-676 . -1157) T) ((-676 . -568) 100122) ((-676 . -1041) T) ((-676 . -684) T) ((-673 . -989) T) ((-673 . -997) T) ((-673 . -1052) T) ((-673 . -684) T) ((-673 . -21) T) ((-673 . -604) 100094) ((-673 . -23) T) ((-673 . -1041) T) ((-673 . -568) 100076) ((-673 . -1157) T) ((-673 . -73) T) ((-673 . -25) T) ((-673 . -104) T) ((-673 . -606) 100063) ((-673 . -571) 100045) ((-672 . -989) T) ((-672 . -997) T) ((-672 . -1052) T) ((-672 . -684) T) ((-672 . -21) T) ((-672 . -604) 99990) ((-672 . -23) T) ((-672 . -1041) T) ((-672 . -568) 99972) ((-672 . -1157) T) ((-672 . -73) T) ((-672 . -25) T) ((-672 . -104) T) ((-672 . -606) 99932) ((-672 . -571) 99887) ((-672 . -978) 99857) ((-672 . -240) 99836) ((-672 . -120) 99815) ((-672 . -118) 99794) ((-672 . -38) 99764) ((-672 . -82) 99729) ((-672 . -991) 99699) ((-672 . -996) 99669) ((-672 . -598) 99639) ((-672 . -675) 99609) ((-671 . -781) T) ((-671 . -568) 99544) ((-671 . -1041) T) ((-671 . -73) T) ((-671 . -1157) T) ((-671 . -784) T) ((-671 . -444) 99494) ((-671 . -571) 99444) ((-670 . -1183) 99428) ((-670 . -1092) 99406) ((-670 . -569) NIL) ((-670 . -263) 99393) ((-670 . -468) 99339) ((-670 . -280) 99316) ((-670 . -978) 99198) ((-670 . -366) 99182) ((-670 . -38) 99011) ((-670 . -82) 98813) ((-670 . -991) 98636) ((-670 . -996) 98459) ((-670 . -604) 98369) ((-670 . -606) 98258) ((-670 . -598) 98087) ((-670 . -675) 97916) ((-670 . -571) 97673) ((-670 . -118) 97652) ((-670 . -120) 97631) ((-670 . -47) 97608) ((-670 . -332) 97592) ((-670 . -596) 97540) ((-670 . -836) 97483) ((-670 . -831) 97386) ((-670 . -838) 97293) ((-670 . -821) NIL) ((-670 . -848) 97272) ((-670 . -1162) 97251) ((-670 . -888) 97220) ((-670 . -859) 97199) ((-670 . -510) 97110) ((-670 . -244) 97021) ((-670 . -146) 96912) ((-670 . -406) 96843) ((-670 . -261) 96822) ((-670 . -240) 96749) ((-670 . -190) T) ((-670 . -104) T) ((-670 . -25) T) ((-670 . -73) T) ((-670 . -568) 96731) ((-670 . -1041) T) ((-670 . -23) T) ((-670 . -21) T) ((-670 . -684) T) ((-670 . -1052) T) ((-670 . -997) T) ((-670 . -989) T) ((-670 . -186) 96718) ((-670 . -1157) T) ((-670 . -189) T) ((-670 . -224) 96702) ((-670 . -184) 96686) ((-670 . -323) 96665) ((-669 . -318) T) ((-669 . -1162) T) ((-669 . -859) T) ((-669 . -510) T) ((-669 . -146) T) ((-669 . -571) 96615) ((-669 . -675) 96580) ((-669 . -598) 96545) ((-669 . -38) 96510) ((-669 . -406) T) ((-669 . -261) T) ((-669 . -606) 96475) ((-669 . -604) 96425) ((-669 . -684) T) ((-669 . -1052) T) ((-669 . -997) T) ((-669 . -989) T) ((-669 . -82) 96374) ((-669 . -991) 96339) ((-669 . -996) 96304) ((-669 . -21) T) ((-669 . -23) T) ((-669 . -1041) T) ((-669 . -568) 96286) ((-669 . -1157) T) ((-669 . -73) T) ((-669 . -25) T) ((-669 . -104) T) ((-669 . -244) T) ((-669 . -200) T) ((-668 . -1041) T) ((-668 . -568) 96268) ((-668 . -1157) T) ((-668 . -73) T) ((-659 . -343) T) ((-659 . -978) 96250) ((-659 . -784) T) ((-659 . -781) T) ((-659 . -38) 96237) ((-659 . -571) 96209) ((-659 . -684) T) ((-659 . -1052) T) ((-659 . -997) T) ((-659 . -989) T) ((-659 . -82) 96194) ((-659 . -991) 96181) ((-659 . -996) 96168) ((-659 . -21) T) ((-659 . -604) 96140) ((-659 . -23) T) ((-659 . -1041) T) ((-659 . -568) 96122) ((-659 . -1157) T) ((-659 . -73) T) ((-659 . -25) T) ((-659 . -104) T) ((-659 . -606) 96094) ((-659 . -598) 96081) ((-659 . -675) 96068) ((-659 . -146) T) ((-659 . -244) T) ((-659 . -510) T) ((-659 . -498) T) ((-659 . -1162) T) ((-659 . -1092) T) ((-659 . -569) 95983) ((-659 . -960) T) ((-659 . -821) 95965) ((-659 . -780) T) ((-659 . -742) T) ((-659 . -739) T) ((-659 . -737) T) ((-659 . -735) T) ((-659 . -763) T) ((-659 . -596) 95947) ((-659 . -859) T) ((-659 . -406) T) ((-659 . -261) T) ((-659 . -189) T) ((-659 . -186) 95934) ((-659 . -190) T) ((-659 . -116) T) ((-659 . -120) T) ((-657 . -358) T) ((-657 . -120) T) ((-657 . -571) 95869) ((-657 . -606) 95834) ((-657 . -604) 95784) ((-657 . -104) T) ((-657 . -25) T) ((-657 . -73) T) ((-657 . -1157) T) ((-657 . -568) 95766) ((-657 . -1041) T) ((-657 . -23) T) ((-657 . -21) T) ((-657 . -684) T) ((-657 . -1052) T) ((-657 . -997) T) ((-657 . -989) T) ((-657 . -569) 95711) ((-657 . -318) T) ((-657 . -1162) T) ((-657 . -859) T) ((-657 . -510) T) ((-657 . -146) T) ((-657 . -675) 95676) ((-657 . -598) 95641) ((-657 . -38) 95606) ((-657 . -406) T) ((-657 . -261) T) ((-657 . -82) 95555) ((-657 . -991) 95520) ((-657 . -996) 95485) ((-657 . -244) T) ((-657 . -200) T) ((-657 . -780) T) ((-657 . -742) T) ((-657 . -739) T) ((-657 . -784) T) ((-657 . -781) T) ((-657 . -737) T) ((-657 . -735) T) ((-657 . -821) 95467) ((-657 . -942) T) ((-657 . -960) T) ((-657 . -978) 95412) ((-657 . -1000) T) ((-657 . -343) T) ((-652 . -343) T) ((-652 . -978) 95357) ((-652 . -784) T) ((-652 . -781) T) ((-652 . -38) 95307) ((-652 . -571) 95242) ((-652 . -684) T) ((-652 . -1052) T) ((-652 . -997) T) ((-652 . -989) T) ((-652 . -82) 95169) ((-652 . -991) 95119) ((-652 . -996) 95069) ((-652 . -21) T) ((-652 . -604) 95004) ((-652 . -23) T) ((-652 . -1041) T) ((-652 . -568) 94986) ((-652 . -1157) T) ((-652 . -73) T) ((-652 . -25) T) ((-652 . -104) T) ((-652 . -606) 94936) ((-652 . -598) 94886) ((-652 . -675) 94836) ((-652 . -146) T) ((-652 . -244) T) ((-652 . -510) T) ((-652 . -139) 94818) ((-652 . -35) NIL) ((-652 . -66) NIL) ((-652 . -238) NIL) ((-652 . -447) NIL) ((-652 . -1146) NIL) ((-652 . -1143) NIL) ((-652 . -942) NIL) ((-652 . -848) NIL) ((-652 . -569) 94726) ((-652 . -819) 94708) ((-652 . -323) NIL) ((-652 . -305) NIL) ((-652 . -1092) NIL) ((-652 . -356) NIL) ((-652 . -364) 94675) ((-652 . -325) 94642) ((-652 . -682) 94609) ((-652 . -366) 94591) ((-652 . -821) 94573) ((-652 . -354) 94555) ((-652 . -596) 94537) ((-652 . -332) 94519) ((-652 . -240) NIL) ((-652 . -263) NIL) ((-652 . -468) NIL) ((-652 . -293) 94501) ((-652 . -200) T) ((-652 . -1162) T) ((-652 . -318) T) ((-652 . -859) T) ((-652 . -406) T) ((-652 . -261) T) ((-652 . -190) NIL) ((-652 . -186) NIL) ((-652 . -189) NIL) ((-652 . -224) 94483) ((-652 . -831) NIL) ((-652 . -838) NIL) ((-652 . -836) NIL) ((-652 . -184) 94465) ((-652 . -120) T) ((-652 . -118) NIL) ((-649 . -1203) T) ((-649 . -978) 94449) ((-649 . -571) 94433) ((-649 . -568) 94415) ((-647 . -644) 94373) ((-647 . -443) 94357) ((-647 . -1041) 94335) ((-647 . -468) 94268) ((-647 . -263) 94206) ((-647 . -568) 94138) ((-647 . -73) 94089) ((-647 . -1157) T) ((-647 . -34) T) ((-647 . -57) 94047) ((-647 . -569) 94008) ((-639 . -1023) T) ((-639 . -444) 93989) ((-639 . -568) 93939) ((-639 . -571) 93920) ((-639 . -1041) T) ((-639 . -1157) T) ((-639 . -73) T) ((-639 . -64) T) ((-635 . -781) T) ((-635 . -568) 93902) ((-635 . -1041) T) ((-635 . -73) T) ((-635 . -1157) T) ((-635 . -784) T) ((-635 . -978) 93886) ((-635 . -571) 93870) ((-634 . -1023) T) ((-634 . -444) 93851) ((-634 . -568) 93817) ((-634 . -571) 93798) ((-634 . -1041) T) ((-634 . -1157) T) ((-634 . -73) T) ((-634 . -64) T) ((-633 . -443) 93782) ((-633 . -1041) 93760) ((-633 . -468) 93693) ((-633 . -263) 93631) ((-633 . -568) 93563) ((-633 . -73) 93514) ((-633 . -1157) T) ((-633 . -34) T) ((-630 . -781) T) ((-630 . -568) 93496) ((-630 . -1041) T) ((-630 . -73) T) ((-630 . -1157) T) ((-630 . -784) T) ((-630 . -978) 93480) ((-630 . -571) 93464) ((-629 . -1023) T) ((-629 . -444) 93445) ((-629 . -568) 93411) ((-629 . -571) 93392) ((-629 . -1041) T) ((-629 . -1157) T) ((-629 . -73) T) ((-629 . -64) T) ((-628 . -1063) 93337) ((-628 . -443) 93321) ((-628 . -468) 93254) ((-628 . -263) 93192) ((-628 . -34) T) ((-628 . -993) 93132) ((-628 . -978) 93030) ((-628 . -571) 92949) ((-628 . -366) 92933) ((-628 . -596) 92881) ((-628 . -606) 92819) ((-628 . -332) 92803) ((-628 . -190) 92782) ((-628 . -186) 92727) ((-628 . -189) 92678) ((-628 . -224) 92662) ((-628 . -831) 92583) ((-628 . -838) 92506) ((-628 . -836) 92465) ((-628 . -184) 92449) ((-628 . -675) 92433) ((-628 . -598) 92417) ((-628 . -604) 92376) ((-628 . -104) T) ((-628 . -25) T) ((-628 . -73) T) ((-628 . -1157) T) ((-628 . -568) 92338) ((-628 . -1041) T) ((-628 . -23) T) ((-628 . -21) T) ((-628 . -996) 92322) ((-628 . -991) 92306) ((-628 . -82) 92285) ((-628 . -989) T) ((-628 . -997) T) ((-628 . -1052) T) ((-628 . -684) T) ((-628 . -38) 92245) ((-628 . -372) 92229) ((-628 . -702) 92213) ((-628 . -678) T) ((-628 . -704) T) ((-628 . -322) 92197) ((-628 . -240) 92174) ((-622 . -329) 92153) ((-622 . -675) 92137) ((-622 . -598) 92121) ((-622 . -606) 92105) ((-622 . -604) 92074) ((-622 . -104) T) ((-622 . -25) T) ((-622 . -73) T) ((-622 . -1157) T) ((-622 . -568) 92056) ((-622 . -1041) T) ((-622 . -23) T) ((-622 . -21) T) ((-622 . -996) 92040) ((-622 . -991) 92024) ((-622 . -82) 92003) ((-622 . -590) 91987) ((-622 . -339) 91959) ((-622 . -571) 91936) ((-622 . -978) 91913) ((-614 . -616) 91897) ((-614 . -38) 91867) ((-614 . -571) 91786) ((-614 . -606) 91760) ((-614 . -604) 91719) ((-614 . -684) T) ((-614 . -1052) T) ((-614 . -997) T) ((-614 . -989) T) ((-614 . -82) 91698) ((-614 . -991) 91682) ((-614 . -996) 91666) ((-614 . -21) T) ((-614 . -23) T) ((-614 . -1041) T) ((-614 . -568) 91648) ((-614 . -73) T) ((-614 . -25) T) ((-614 . -104) T) ((-614 . -598) 91618) ((-614 . -675) 91588) ((-614 . -366) 91572) ((-614 . -978) 91470) ((-614 . -786) 91454) ((-614 . -1157) T) ((-614 . -240) 91415) ((-613 . -616) 91399) ((-613 . -38) 91369) ((-613 . -571) 91288) ((-613 . -606) 91262) ((-613 . -604) 91221) ((-613 . -684) T) ((-613 . -1052) T) ((-613 . -997) T) ((-613 . -989) T) ((-613 . -82) 91200) ((-613 . -991) 91184) ((-613 . -996) 91168) ((-613 . -21) T) ((-613 . -23) T) ((-613 . -1041) T) ((-613 . -568) 91150) ((-613 . -73) T) ((-613 . -25) T) ((-613 . -104) T) ((-613 . -598) 91120) ((-613 . -675) 91090) ((-613 . -366) 91074) ((-613 . -978) 90972) ((-613 . -786) 90956) ((-613 . -1157) T) ((-613 . -240) 90935) ((-612 . -616) 90919) ((-612 . -38) 90889) ((-612 . -571) 90808) ((-612 . -606) 90782) ((-612 . -604) 90741) ((-612 . -684) T) ((-612 . -1052) T) ((-612 . -997) T) ((-612 . -989) T) ((-612 . -82) 90720) ((-612 . -991) 90704) ((-612 . -996) 90688) ((-612 . -21) T) ((-612 . -23) T) ((-612 . -1041) T) ((-612 . -568) 90670) ((-612 . -73) T) ((-612 . -25) T) ((-612 . -104) T) ((-612 . -598) 90640) ((-612 . -675) 90610) ((-612 . -366) 90594) ((-612 . -978) 90492) ((-612 . -786) 90476) ((-612 . -1157) T) ((-612 . -240) 90455) ((-610 . -675) 90439) ((-610 . -598) 90423) ((-610 . -606) 90407) ((-610 . -604) 90376) ((-610 . -104) T) ((-610 . -25) T) ((-610 . -73) T) ((-610 . -1157) T) ((-610 . -568) 90358) ((-610 . -1041) T) ((-610 . -23) T) ((-610 . -21) T) ((-610 . -996) 90342) ((-610 . -991) 90326) ((-610 . -82) 90305) ((-610 . -735) 90284) ((-610 . -737) 90263) ((-610 . -781) 90242) ((-610 . -784) 90221) ((-610 . -739) 90200) ((-610 . -742) 90179) ((-607 . -1041) T) ((-607 . -568) 90161) ((-607 . -1157) T) ((-607 . -73) T) ((-607 . -978) 90145) ((-607 . -571) 90129) ((-605 . -653) 90113) ((-605 . -78) 90097) ((-605 . -34) T) ((-605 . -1157) T) ((-605 . -73) 90048) ((-605 . -568) 89980) ((-605 . -263) 89918) ((-605 . -468) 89851) ((-605 . -1041) 89829) ((-605 . -443) 89813) ((-605 . -124) 89797) ((-605 . -569) 89758) ((-605 . -192) 89742) ((-603 . -1023) T) ((-603 . -444) 89723) ((-603 . -568) 89676) ((-603 . -571) 89657) ((-603 . -1041) T) ((-603 . -1157) T) ((-603 . -73) T) ((-603 . -64) T) ((-599 . -624) 89641) ((-599 . -1196) 89625) ((-599 . -950) 89609) ((-599 . -1090) 89593) ((-599 . -781) 89572) ((-599 . -784) 89551) ((-599 . -327) 89535) ((-599 . -609) 89519) ((-599 . -242) 89496) ((-599 . -240) 89448) ((-599 . -554) 89425) ((-599 . -569) 89386) ((-599 . -443) 89370) ((-599 . -1041) 89320) ((-599 . -468) 89253) ((-599 . -263) 89191) ((-599 . -568) 89103) ((-599 . -73) 89034) ((-599 . -1157) T) ((-599 . -34) T) ((-599 . -124) 89018) ((-599 . -236) 89002) ((-597 . -1215) 88986) ((-597 . -82) 88965) ((-597 . -991) 88949) ((-597 . -996) 88933) ((-597 . -21) T) ((-597 . -604) 88902) ((-597 . -23) T) ((-597 . -1041) T) ((-597 . -568) 88884) ((-597 . -1157) T) ((-597 . -73) T) ((-597 . -25) T) ((-597 . -104) T) ((-597 . -606) 88868) ((-597 . -598) 88852) ((-597 . -675) 88836) ((-597 . -240) 88803) ((-595 . -1215) 88787) ((-595 . -82) 88766) ((-595 . -991) 88750) ((-595 . -996) 88734) ((-595 . -21) T) ((-595 . -604) 88703) ((-595 . -23) T) ((-595 . -1041) T) ((-595 . -568) 88685) ((-595 . -1157) T) ((-595 . -73) T) ((-595 . -25) T) ((-595 . -104) T) ((-595 . -606) 88669) ((-595 . -598) 88653) ((-595 . -675) 88637) ((-595 . -571) 88614) ((-595 . -463) 88586) ((-593 . -777) T) ((-593 . -784) T) ((-593 . -781) T) ((-593 . -1041) T) ((-593 . -568) 88568) ((-593 . -1157) T) ((-593 . -73) T) ((-593 . -323) T) ((-593 . -571) 88545) ((-588 . -702) 88529) ((-588 . -678) T) ((-588 . -704) T) ((-588 . -82) 88508) ((-588 . -991) 88492) ((-588 . -996) 88476) ((-588 . -21) T) ((-588 . -604) 88445) ((-588 . -23) T) ((-588 . -1041) T) ((-588 . -568) 88414) ((-588 . -1157) T) ((-588 . -73) T) ((-588 . -25) T) ((-588 . -104) T) ((-588 . -606) 88398) ((-588 . -598) 88382) ((-588 . -675) 88366) ((-588 . -372) 88331) ((-588 . -322) 88263) ((-588 . -240) 88221) ((-587 . -1134) 88196) ((-587 . -183) 88140) ((-587 . -78) 88084) ((-587 . -263) 87929) ((-587 . -468) 87729) ((-587 . -443) 87659) ((-587 . -124) 87603) ((-587 . -569) NIL) ((-587 . -192) 87547) ((-587 . -565) 87522) ((-587 . -242) 87497) ((-587 . -1157) T) ((-587 . -240) 87450) ((-587 . -1041) T) ((-587 . -568) 87432) ((-587 . -73) T) ((-587 . -34) T) ((-587 . -554) 87407) ((-582 . -427) T) ((-582 . -1052) T) ((-582 . -73) T) ((-582 . -1157) T) ((-582 . -568) 87389) ((-582 . -1041) T) ((-582 . -684) T) ((-581 . -1023) T) ((-581 . -444) 87370) ((-581 . -568) 87336) ((-581 . -571) 87317) ((-581 . -1041) T) ((-581 . -1157) T) ((-581 . -73) T) ((-581 . -64) T) ((-578 . -184) 87301) ((-578 . -836) 87260) ((-578 . -838) 87183) ((-578 . -831) 87104) ((-578 . -224) 87088) ((-578 . -189) 87039) ((-578 . -1157) T) ((-578 . -186) 86984) ((-578 . -989) T) ((-578 . -997) T) ((-578 . -1052) T) ((-578 . -684) T) ((-578 . -21) T) ((-578 . -604) 86956) ((-578 . -23) T) ((-578 . -1041) T) ((-578 . -568) 86938) ((-578 . -73) T) ((-578 . -25) T) ((-578 . -104) T) ((-578 . -606) 86925) ((-578 . -571) 86821) ((-578 . -190) 86800) ((-578 . -510) T) ((-578 . -244) T) ((-578 . -146) T) ((-578 . -675) 86787) ((-578 . -598) 86774) ((-578 . -996) 86761) ((-578 . -991) 86748) ((-578 . -82) 86733) ((-578 . -38) 86720) ((-578 . -569) 86697) ((-578 . -366) 86681) ((-578 . -978) 86566) ((-578 . -120) 86545) ((-578 . -118) 86524) ((-578 . -261) 86503) ((-578 . -406) 86482) ((-578 . -859) 86461) ((-574 . -38) 86445) ((-574 . -571) 86414) ((-574 . -606) 86388) ((-574 . -604) 86347) ((-574 . -684) T) ((-574 . -1052) T) ((-574 . -997) T) ((-574 . -989) T) ((-574 . -82) 86326) ((-574 . -991) 86310) ((-574 . -996) 86294) ((-574 . -21) T) ((-574 . -23) T) ((-574 . -1041) T) ((-574 . -568) 86276) ((-574 . -1157) T) ((-574 . -73) T) ((-574 . -25) T) ((-574 . -104) T) ((-574 . -598) 86260) ((-574 . -675) 86244) ((-574 . -780) 86223) ((-574 . -742) 86202) ((-574 . -739) 86181) ((-574 . -784) 86160) ((-574 . -781) 86139) ((-574 . -737) 86118) ((-574 . -735) 86097) ((-572 . -907) T) ((-572 . -73) T) ((-572 . -568) 86079) ((-572 . -1041) T) ((-572 . -620) T) ((-572 . -1157) T) ((-572 . -84) T) ((-566 . -105) T) ((-566 . -73) T) ((-566 . -1157) T) ((-566 . -568) 86061) ((-566 . -1041) T) ((-566 . -781) T) ((-566 . -784) T) ((-566 . -819) 86045) ((-566 . -569) 85906) ((-563 . -320) 85844) ((-563 . -73) T) ((-563 . -1157) T) ((-563 . -568) 85826) ((-563 . -1041) T) ((-563 . -1134) 85802) ((-563 . -183) 85747) ((-563 . -78) 85692) ((-563 . -263) 85481) ((-563 . -468) 85221) ((-563 . -443) 85153) ((-563 . -124) 85098) ((-563 . -569) NIL) ((-563 . -192) 85043) ((-563 . -565) 85019) ((-563 . -242) 84995) ((-563 . -240) 84971) ((-563 . -34) T) ((-563 . -554) 84947) ((-562 . -1041) T) ((-562 . -568) 84899) ((-562 . -1157) T) ((-562 . -73) T) ((-562 . -444) 84866) ((-562 . -571) 84833) ((-561 . -1041) T) ((-561 . -568) 84815) ((-561 . -1157) T) ((-561 . -73) T) ((-561 . -620) T) ((-560 . -1041) T) ((-560 . -568) 84797) ((-560 . -1157) T) ((-560 . -73) T) ((-560 . -620) T) ((-559 . -1041) T) ((-559 . -568) 84764) ((-559 . -1157) T) ((-559 . -73) T) ((-558 . -1041) T) ((-558 . -568) 84746) ((-558 . -1157) T) ((-558 . -73) T) ((-558 . -620) T) ((-557 . -1041) T) ((-557 . -568) 84713) ((-557 . -1157) T) ((-557 . -73) T) ((-557 . -444) 84695) ((-557 . -571) 84677) ((-556 . -702) 84661) ((-556 . -678) T) ((-556 . -704) T) ((-556 . -82) 84640) ((-556 . -991) 84624) ((-556 . -996) 84608) ((-556 . -21) T) ((-556 . -604) 84577) ((-556 . -23) T) ((-556 . -1041) T) ((-556 . -568) 84546) ((-556 . -1157) T) ((-556 . -73) T) ((-556 . -25) T) ((-556 . -104) T) ((-556 . -606) 84530) ((-556 . -598) 84514) ((-556 . -675) 84498) ((-556 . -372) 84463) ((-556 . -322) 84395) ((-556 . -240) 84353) ((-555 . -1023) T) ((-555 . -444) 84334) ((-555 . -568) 84284) ((-555 . -571) 84265) ((-555 . -1041) T) ((-555 . -1157) T) ((-555 . -73) T) ((-555 . -64) T) ((-552 . -1206) 84249) ((-552 . -327) 84233) ((-552 . -784) 84212) ((-552 . -781) 84191) ((-552 . -124) 84175) ((-552 . -34) T) ((-552 . -1157) T) ((-552 . -73) 84106) ((-552 . -568) 84018) ((-552 . -263) 83956) ((-552 . -468) 83889) ((-552 . -1041) 83839) ((-552 . -443) 83823) ((-552 . -569) 83784) ((-552 . -240) 83736) ((-552 . -554) 83713) ((-552 . -242) 83690) ((-552 . -609) 83674) ((-552 . -19) 83658) ((-551 . -568) 83640) ((-547 . -1041) T) ((-547 . -568) 83606) ((-547 . -1157) T) ((-547 . -73) T) ((-547 . -444) 83587) ((-547 . -571) 83568) ((-546 . -989) T) ((-546 . -997) T) ((-546 . -1052) T) ((-546 . -684) T) ((-546 . -21) T) ((-546 . -604) 83527) ((-546 . -23) T) ((-546 . -1041) T) ((-546 . -568) 83509) ((-546 . -1157) T) ((-546 . -73) T) ((-546 . -25) T) ((-546 . -104) T) ((-546 . -606) 83483) ((-546 . -571) 83441) ((-546 . -82) 83394) ((-546 . -991) 83354) ((-546 . -996) 83314) ((-546 . -510) 83293) ((-546 . -244) 83272) ((-546 . -146) 83251) ((-546 . -675) 83224) ((-546 . -598) 83197) ((-546 . -38) 83170) ((-545 . -1186) 83147) ((-545 . -47) 83124) ((-545 . -38) 83021) ((-545 . -598) 82918) ((-545 . -675) 82815) ((-545 . -571) 82697) ((-545 . -244) 82676) ((-545 . -510) 82655) ((-545 . -82) 82517) ((-545 . -991) 82400) ((-545 . -996) 82283) ((-545 . -146) 82234) ((-545 . -120) 82213) ((-545 . -118) 82192) ((-545 . -606) 82117) ((-545 . -604) 82027) ((-545 . -913) 81996) ((-545 . -838) 81909) ((-545 . -831) 81820) ((-545 . -836) 81733) ((-545 . -240) 81698) ((-545 . -189) 81657) ((-545 . -1157) T) ((-545 . -186) 81610) ((-545 . -989) T) ((-545 . -997) T) ((-545 . -1052) T) ((-545 . -684) T) ((-545 . -21) T) ((-545 . -23) T) ((-545 . -1041) T) ((-545 . -568) 81592) ((-545 . -73) T) ((-545 . -25) T) ((-545 . -104) T) ((-545 . -190) 81551) ((-543 . -1023) T) ((-543 . -444) 81532) ((-543 . -568) 81498) ((-543 . -571) 81479) ((-543 . -1041) T) ((-543 . -1157) T) ((-543 . -73) T) ((-543 . -64) T) ((-537 . -1041) T) ((-537 . -568) 81445) ((-537 . -1157) T) ((-537 . -73) T) ((-537 . -444) 81426) ((-537 . -571) 81407) ((-534 . -675) 81382) ((-534 . -598) 81357) ((-534 . -606) 81332) ((-534 . -604) 81292) ((-534 . -104) T) ((-534 . -25) T) ((-534 . -73) T) ((-534 . -1157) T) ((-534 . -568) 81274) ((-534 . -1041) T) ((-534 . -23) T) ((-534 . -21) T) ((-534 . -996) 81249) ((-534 . -991) 81224) ((-534 . -82) 81185) ((-534 . -978) 81169) ((-534 . -571) 81153) ((-532 . -305) T) ((-532 . -1092) T) ((-532 . -323) T) ((-532 . -118) T) ((-532 . -318) T) ((-532 . -1162) T) ((-532 . -859) T) ((-532 . -510) T) ((-532 . -146) T) ((-532 . -571) 81103) ((-532 . -675) 81068) ((-532 . -598) 81033) ((-532 . -38) 80998) ((-532 . -406) T) ((-532 . -261) T) ((-532 . -82) 80947) ((-532 . -991) 80912) ((-532 . -996) 80877) ((-532 . -604) 80827) ((-532 . -606) 80792) ((-532 . -244) T) ((-532 . -200) T) ((-532 . -356) T) ((-532 . -189) T) ((-532 . -1157) T) ((-532 . -186) 80779) ((-532 . -989) T) ((-532 . -997) T) ((-532 . -1052) T) ((-532 . -684) T) ((-532 . -21) T) ((-532 . -23) T) ((-532 . -1041) T) ((-532 . -568) 80761) ((-532 . -73) T) ((-532 . -25) T) ((-532 . -104) T) ((-532 . -190) T) ((-532 . -283) 80748) ((-532 . -120) 80730) ((-532 . -978) 80717) ((-532 . -1215) 80704) ((-532 . -1226) 80691) ((-532 . -569) 80673) ((-531 . -804) 80657) ((-531 . -859) T) ((-531 . -510) T) ((-531 . -244) T) ((-531 . -146) T) ((-531 . -571) 80629) ((-531 . -675) 80616) ((-531 . -598) 80603) ((-531 . -996) 80590) ((-531 . -991) 80577) ((-531 . -82) 80562) ((-531 . -38) 80549) ((-531 . -406) T) ((-531 . -261) T) ((-531 . -989) T) ((-531 . -997) T) ((-531 . -1052) T) ((-531 . -684) T) ((-531 . -21) T) ((-531 . -604) 80521) ((-531 . -23) T) ((-531 . -1041) T) ((-531 . -568) 80503) ((-531 . -1157) T) ((-531 . -73) T) ((-531 . -25) T) ((-531 . -104) T) ((-531 . -606) 80490) ((-531 . -120) T) ((-530 . -1041) T) ((-530 . -568) 80472) ((-530 . -1157) T) ((-530 . -73) T) ((-529 . -1041) T) ((-529 . -568) 80454) ((-529 . -1157) T) ((-529 . -73) T) ((-528 . -527) T) ((-528 . -795) T) ((-528 . -147) T) ((-528 . -480) T) ((-528 . -568) 80436) ((-522 . -508) 80420) ((-522 . -35) T) ((-522 . -66) T) ((-522 . -238) T) ((-522 . -447) T) ((-522 . -1146) T) ((-522 . -1143) T) ((-522 . -978) 80402) ((-522 . -942) T) ((-522 . -784) T) ((-522 . -781) T) ((-522 . -510) T) ((-522 . -244) T) ((-522 . -146) T) ((-522 . -571) 80374) ((-522 . -675) 80361) ((-522 . -598) 80348) ((-522 . -606) 80335) ((-522 . -604) 80307) ((-522 . -104) T) ((-522 . -25) T) ((-522 . -73) T) ((-522 . -1157) T) ((-522 . -568) 80289) ((-522 . -1041) T) ((-522 . -23) T) ((-522 . -21) T) ((-522 . -996) 80276) ((-522 . -991) 80263) ((-522 . -82) 80248) ((-522 . -989) T) ((-522 . -997) T) ((-522 . -1052) T) ((-522 . -684) T) ((-522 . -38) 80235) ((-522 . -406) T) ((-504 . -1134) 80214) ((-504 . -183) 80162) ((-504 . -78) 80110) ((-504 . -263) 79908) ((-504 . -468) 79660) ((-504 . -443) 79595) ((-504 . -124) 79543) ((-504 . -569) NIL) ((-504 . -192) 79491) ((-504 . -565) 79470) ((-504 . -242) 79449) ((-504 . -1157) T) ((-504 . -240) 79428) ((-504 . -1041) T) ((-504 . -568) 79410) ((-504 . -73) T) ((-504 . -34) T) ((-504 . -554) 79389) ((-503 . -777) T) ((-503 . -784) T) ((-503 . -781) T) ((-503 . -1041) T) ((-503 . -568) 79371) ((-503 . -1157) T) ((-503 . -73) T) ((-503 . -323) T) ((-502 . -777) T) ((-502 . -784) T) ((-502 . -781) T) ((-502 . -1041) T) ((-502 . -568) 79353) ((-502 . -1157) T) ((-502 . -73) T) ((-502 . -323) T) ((-501 . -777) T) ((-501 . -784) T) ((-501 . -781) T) ((-501 . -1041) T) ((-501 . -568) 79335) ((-501 . -1157) T) ((-501 . -73) T) ((-501 . -323) T) ((-500 . -777) T) ((-500 . -784) T) ((-500 . -781) T) ((-500 . -1041) T) ((-500 . -568) 79317) ((-500 . -1157) T) ((-500 . -73) T) ((-500 . -323) T) ((-499 . -498) T) ((-499 . -1162) T) ((-499 . -1092) T) ((-499 . -978) 79299) ((-499 . -569) 79214) ((-499 . -960) T) ((-499 . -821) 79196) ((-499 . -780) T) ((-499 . -742) T) ((-499 . -739) T) ((-499 . -784) T) ((-499 . -781) T) ((-499 . -737) T) ((-499 . -735) T) ((-499 . -763) T) ((-499 . -606) 79168) ((-499 . -596) 79150) ((-499 . -859) T) ((-499 . -510) T) ((-499 . -244) T) ((-499 . -146) T) ((-499 . -571) 79122) ((-499 . -675) 79109) ((-499 . -598) 79096) ((-499 . -996) 79083) ((-499 . -991) 79070) ((-499 . -82) 79055) ((-499 . -38) 79042) ((-499 . -406) T) ((-499 . -261) T) ((-499 . -189) T) ((-499 . -186) 79029) ((-499 . -190) T) ((-499 . -116) T) ((-499 . -989) T) ((-499 . -997) T) ((-499 . -1052) T) ((-499 . -684) T) ((-499 . -21) T) ((-499 . -604) 79001) ((-499 . -23) T) ((-499 . -1041) T) ((-499 . -568) 78983) ((-499 . -1157) T) ((-499 . -73) T) ((-499 . -25) T) ((-499 . -104) T) ((-499 . -120) T) ((-488 . -1044) 78935) ((-488 . -73) T) ((-488 . -568) 78917) ((-488 . -1041) T) ((-488 . -240) 78873) ((-488 . -1157) T) ((-488 . -573) 78776) ((-488 . -569) 78757) ((-486 . -710) 78739) ((-486 . -480) T) ((-486 . -147) T) ((-486 . -795) T) ((-486 . -527) T) ((-486 . -568) 78721) ((-484 . -738) T) ((-484 . -104) T) ((-484 . -25) T) ((-484 . -73) T) ((-484 . -1157) T) ((-484 . -568) 78703) ((-484 . -1041) T) ((-484 . -23) T) ((-484 . -737) T) ((-484 . -781) T) ((-484 . -784) T) ((-484 . -739) T) ((-484 . -742) T) ((-484 . -463) 78680) ((-482 . -480) T) ((-482 . -147) T) ((-482 . -568) 78662) ((-478 . -1023) T) ((-478 . -444) 78643) ((-478 . -568) 78609) ((-478 . -571) 78590) ((-478 . -1041) T) ((-478 . -1157) T) ((-478 . -73) T) ((-478 . -64) T) ((-477 . -1023) T) ((-477 . -444) 78571) ((-477 . -568) 78537) ((-477 . -571) 78518) ((-477 . -1041) T) ((-477 . -1157) T) ((-477 . -73) T) ((-477 . -64) T) ((-476 . -644) 78468) ((-476 . -443) 78452) ((-476 . -1041) 78430) ((-476 . -468) 78363) ((-476 . -263) 78301) ((-476 . -568) 78233) ((-476 . -73) 78184) ((-476 . -1157) T) ((-476 . -34) T) ((-476 . -57) 78134) ((-473 . -57) 78108) ((-473 . -34) T) ((-473 . -1157) T) ((-473 . -73) 78059) ((-473 . -568) 77991) ((-473 . -263) 77929) ((-473 . -468) 77862) ((-473 . -1041) 77840) ((-473 . -443) 77824) ((-472 . -283) 77801) ((-472 . -190) T) ((-472 . -186) 77788) ((-472 . -189) T) ((-472 . -323) T) ((-472 . -1092) T) ((-472 . -305) T) ((-472 . -120) 77770) ((-472 . -571) 77700) ((-472 . -606) 77645) ((-472 . -604) 77575) ((-472 . -104) T) ((-472 . -25) T) ((-472 . -73) T) ((-472 . -1157) T) ((-472 . -568) 77557) ((-472 . -1041) T) ((-472 . -23) T) ((-472 . -21) T) ((-472 . -684) T) ((-472 . -1052) T) ((-472 . -997) T) ((-472 . -989) T) ((-472 . -318) T) ((-472 . -1162) T) ((-472 . -859) T) ((-472 . -510) T) ((-472 . -146) T) ((-472 . -675) 77502) ((-472 . -598) 77447) ((-472 . -38) 77412) ((-472 . -406) T) ((-472 . -261) T) ((-472 . -82) 77329) ((-472 . -991) 77274) ((-472 . -996) 77219) ((-472 . -244) T) ((-472 . -200) T) ((-472 . -356) T) ((-472 . -118) T) ((-472 . -978) 77196) ((-472 . -1215) 77173) ((-472 . -1226) 77150) ((-471 . -1023) T) ((-471 . -444) 77131) ((-471 . -568) 77097) ((-471 . -571) 77078) ((-471 . -1041) T) ((-471 . -1157) T) ((-471 . -73) T) ((-471 . -64) T) ((-470 . -19) 77062) ((-470 . -609) 77046) ((-470 . -242) 77023) ((-470 . -240) 76975) ((-470 . -554) 76952) ((-470 . -569) 76913) ((-470 . -443) 76897) ((-470 . -1041) 76847) ((-470 . -468) 76780) ((-470 . -263) 76718) ((-470 . -568) 76630) ((-470 . -73) 76561) ((-470 . -1157) T) ((-470 . -34) T) ((-470 . -124) 76545) ((-470 . -781) 76524) ((-470 . -784) 76503) ((-470 . -327) 76487) ((-470 . -236) 76471) ((-469 . -277) 76450) ((-469 . -571) 76434) ((-469 . -978) 76418) ((-469 . -23) T) ((-469 . -1041) T) ((-469 . -568) 76400) ((-469 . -1157) T) ((-469 . -73) T) ((-469 . -25) T) ((-469 . -104) T) ((-466 . -738) T) ((-466 . -104) T) ((-466 . -25) T) ((-466 . -73) T) ((-466 . -1157) T) ((-466 . -568) 76382) ((-466 . -1041) T) ((-466 . -23) T) ((-466 . -737) T) ((-466 . -781) T) ((-466 . -784) T) ((-466 . -739) T) ((-466 . -742) T) ((-466 . -463) 76361) ((-465 . -737) T) ((-465 . -781) T) ((-465 . -784) T) ((-465 . -739) T) ((-465 . -25) T) ((-465 . -73) T) ((-465 . -1157) T) ((-465 . -568) 76343) ((-465 . -1041) T) ((-465 . -23) T) ((-465 . -463) 76322) ((-464 . -463) 76301) ((-464 . -568) 76241) ((-464 . -1041) 76192) ((-464 . -1157) T) ((-464 . -73) T) ((-462 . -23) T) ((-462 . -1041) T) ((-462 . -568) 76174) ((-462 . -1157) T) ((-462 . -73) T) ((-462 . -25) T) ((-462 . -463) 76153) ((-461 . -21) T) ((-461 . -604) 76135) ((-461 . -23) T) ((-461 . -1041) T) ((-461 . -568) 76117) ((-461 . -1157) T) ((-461 . -73) T) ((-461 . -25) T) ((-461 . -104) T) ((-461 . -463) 76096) ((-460 . -1041) T) ((-460 . -568) 76078) ((-460 . -1157) T) ((-460 . -73) T) ((-458 . -1041) T) ((-458 . -568) 76060) ((-458 . -1157) T) ((-458 . -73) T) ((-456 . -781) T) ((-456 . -568) 76042) ((-456 . -1041) T) ((-456 . -73) T) ((-456 . -1157) T) ((-456 . -784) T) ((-456 . -571) 76023) ((-454 . -96) T) ((-454 . -327) 76006) ((-454 . -784) T) ((-454 . -781) T) ((-454 . -124) 75989) ((-454 . -34) T) ((-454 . -73) T) ((-454 . -568) 75971) ((-454 . -263) NIL) ((-454 . -468) NIL) ((-454 . -1041) T) ((-454 . -443) 75954) ((-454 . -569) 75936) ((-454 . -240) 75887) ((-454 . -554) 75863) ((-454 . -242) 75839) ((-454 . -609) 75822) ((-454 . -19) 75805) ((-454 . -620) T) ((-454 . -1157) T) ((-454 . -84) T) ((-451 . -57) 75755) ((-451 . -34) T) ((-451 . -1157) T) ((-451 . -73) 75706) ((-451 . -568) 75638) ((-451 . -263) 75576) ((-451 . -468) 75509) ((-451 . -1041) 75487) ((-451 . -443) 75471) ((-450 . -19) 75455) ((-450 . -609) 75439) ((-450 . -242) 75416) ((-450 . -240) 75368) ((-450 . -554) 75345) ((-450 . -569) 75306) ((-450 . -443) 75290) ((-450 . -1041) 75240) ((-450 . -468) 75173) ((-450 . -263) 75111) ((-450 . -568) 75023) ((-450 . -73) 74954) ((-450 . -1157) T) ((-450 . -34) T) ((-450 . -124) 74938) ((-450 . -781) 74917) ((-450 . -784) 74896) ((-450 . -327) 74880) ((-449 . -252) T) ((-449 . -73) T) ((-449 . -1157) T) ((-449 . -568) 74862) ((-449 . -1041) T) ((-449 . -571) 74763) ((-449 . -978) 74706) ((-449 . -468) 74672) ((-449 . -263) 74659) ((-449 . -27) T) ((-449 . -942) T) ((-449 . -200) T) ((-449 . -82) 74608) ((-449 . -991) 74573) ((-449 . -996) 74538) ((-449 . -244) T) ((-449 . -675) 74503) ((-449 . -598) 74468) ((-449 . -606) 74418) ((-449 . -604) 74368) ((-449 . -104) T) ((-449 . -25) T) ((-449 . -23) T) ((-449 . -21) T) ((-449 . -989) T) ((-449 . -997) T) ((-449 . -1052) T) ((-449 . -684) T) ((-449 . -38) 74333) ((-449 . -261) T) ((-449 . -406) T) ((-449 . -146) T) ((-449 . -510) T) ((-449 . -859) T) ((-449 . -1162) T) ((-449 . -318) T) ((-449 . -596) 74293) ((-449 . -960) T) ((-449 . -569) 74238) ((-449 . -120) T) ((-449 . -190) T) ((-449 . -186) 74225) ((-449 . -189) T) ((-445 . -1041) T) ((-445 . -568) 74191) ((-445 . -1157) T) ((-445 . -73) T) ((-441 . -931) 74173) ((-441 . -1092) T) ((-441 . -571) 74123) ((-441 . -978) 74083) ((-441 . -569) 74013) ((-441 . -960) T) ((-441 . -848) NIL) ((-441 . -819) 73995) ((-441 . -780) T) ((-441 . -742) T) ((-441 . -739) T) ((-441 . -784) T) ((-441 . -781) T) ((-441 . -737) T) ((-441 . -735) T) ((-441 . -763) T) ((-441 . -821) 73977) ((-441 . -354) 73959) ((-441 . -596) 73941) ((-441 . -332) 73923) ((-441 . -240) NIL) ((-441 . -263) NIL) ((-441 . -468) NIL) ((-441 . -293) 73905) ((-441 . -200) T) ((-441 . -82) 73832) ((-441 . -991) 73782) ((-441 . -996) 73732) ((-441 . -244) T) ((-441 . -675) 73682) ((-441 . -598) 73632) ((-441 . -606) 73582) ((-441 . -604) 73532) ((-441 . -38) 73482) ((-441 . -261) T) ((-441 . -406) T) ((-441 . -146) T) ((-441 . -510) T) ((-441 . -859) T) ((-441 . -1162) T) ((-441 . -318) T) ((-441 . -190) T) ((-441 . -186) 73469) ((-441 . -189) T) ((-441 . -224) 73451) ((-441 . -831) NIL) ((-441 . -838) NIL) ((-441 . -836) NIL) ((-441 . -184) 73433) ((-441 . -120) T) ((-441 . -118) NIL) ((-441 . -104) T) ((-441 . -25) T) ((-441 . -73) T) ((-441 . -1157) T) ((-441 . -568) 73375) ((-441 . -1041) T) ((-441 . -23) T) ((-441 . -21) T) ((-441 . -989) T) ((-441 . -997) T) ((-441 . -1052) T) ((-441 . -684) T) ((-439 . -291) 73344) ((-439 . -104) T) ((-439 . -25) T) ((-439 . -73) T) ((-439 . -1157) T) ((-439 . -568) 73326) ((-439 . -1041) T) ((-439 . -23) T) ((-439 . -604) 73308) ((-439 . -21) T) ((-438 . -908) 73292) ((-438 . -443) 73276) ((-438 . -1041) 73254) ((-438 . -468) 73187) ((-438 . -263) 73125) ((-438 . -568) 73057) ((-438 . -73) 73008) ((-438 . -1157) T) ((-438 . -34) T) ((-438 . -78) 72992) ((-437 . -1023) T) ((-437 . -444) 72973) ((-437 . -568) 72939) ((-437 . -571) 72920) ((-437 . -1041) T) ((-437 . -1157) T) ((-437 . -73) T) ((-437 . -64) T) ((-436 . -195) 72899) ((-436 . -1215) 72869) ((-436 . -742) 72848) ((-436 . -739) 72827) ((-436 . -784) 72778) ((-436 . -781) 72729) ((-436 . -737) 72708) ((-436 . -738) 72687) ((-436 . -675) 72629) ((-436 . -598) 72551) ((-436 . -242) 72528) ((-436 . -240) 72505) ((-436 . -443) 72489) ((-436 . -468) 72422) ((-436 . -263) 72360) ((-436 . -34) T) ((-436 . -554) 72337) ((-436 . -978) 72166) ((-436 . -571) 71967) ((-436 . -366) 71936) ((-436 . -596) 71844) ((-436 . -606) 71680) ((-436 . -332) 71650) ((-436 . -323) 71629) ((-436 . -190) 71582) ((-436 . -604) 71364) ((-436 . -684) 71343) ((-436 . -1052) 71322) ((-436 . -997) 71301) ((-436 . -989) 71280) ((-436 . -186) 71173) ((-436 . -189) 71072) ((-436 . -224) 71042) ((-436 . -831) 70911) ((-436 . -838) 70782) ((-436 . -836) 70715) ((-436 . -184) 70685) ((-436 . -568) 70379) ((-436 . -996) 70301) ((-436 . -991) 70203) ((-436 . -82) 70120) ((-436 . -104) 69992) ((-436 . -25) 69826) ((-436 . -73) 69560) ((-436 . -1157) T) ((-436 . -1041) 69313) ((-436 . -23) 69166) ((-436 . -21) 69078) ((-435 . -888) 69023) ((-435 . -571) 68809) ((-435 . -978) 68687) ((-435 . -1162) 68666) ((-435 . -848) 68645) ((-435 . -821) NIL) ((-435 . -838) 68622) ((-435 . -831) 68597) ((-435 . -836) 68574) ((-435 . -468) 68512) ((-435 . -406) 68463) ((-435 . -596) 68411) ((-435 . -606) 68300) ((-435 . -332) 68284) ((-435 . -47) 68241) ((-435 . -38) 68090) ((-435 . -598) 67939) ((-435 . -675) 67788) ((-435 . -244) 67719) ((-435 . -510) 67650) ((-435 . -82) 67472) ((-435 . -991) 67315) ((-435 . -996) 67158) ((-435 . -146) 67069) ((-435 . -120) 67048) ((-435 . -118) 67027) ((-435 . -604) 66937) ((-435 . -104) T) ((-435 . -25) T) ((-435 . -73) T) ((-435 . -1157) T) ((-435 . -568) 66919) ((-435 . -1041) T) ((-435 . -23) T) ((-435 . -21) T) ((-435 . -989) T) ((-435 . -997) T) ((-435 . -1052) T) ((-435 . -684) T) ((-435 . -366) 66903) ((-435 . -280) 66860) ((-435 . -263) 66847) ((-435 . -569) 66708) ((-433 . -1134) 66687) ((-433 . -183) 66635) ((-433 . -78) 66583) ((-433 . -263) 66381) ((-433 . -468) 66133) ((-433 . -443) 66068) ((-433 . -124) 66016) ((-433 . -569) NIL) ((-433 . -192) 65964) ((-433 . -565) 65943) ((-433 . -242) 65922) ((-433 . -1157) T) ((-433 . -240) 65901) ((-433 . -1041) T) ((-433 . -568) 65883) ((-433 . -73) T) ((-433 . -34) T) ((-433 . -554) 65862) ((-432 . -1023) T) ((-432 . -444) 65843) ((-432 . -568) 65809) ((-432 . -571) 65790) ((-432 . -1041) T) ((-432 . -1157) T) ((-432 . -73) T) ((-432 . -64) T) ((-431 . -318) T) ((-431 . -1162) T) ((-431 . -859) T) ((-431 . -510) T) ((-431 . -146) T) ((-431 . -571) 65740) ((-431 . -675) 65705) ((-431 . -598) 65670) ((-431 . -38) 65635) ((-431 . -406) T) ((-431 . -261) T) ((-431 . -606) 65600) ((-431 . -604) 65550) ((-431 . -684) T) ((-431 . -1052) T) ((-431 . -997) T) ((-431 . -989) T) ((-431 . -82) 65499) ((-431 . -991) 65464) ((-431 . -996) 65429) ((-431 . -21) T) ((-431 . -23) T) ((-431 . -1041) T) ((-431 . -568) 65381) ((-431 . -1157) T) ((-431 . -73) T) ((-431 . -25) T) ((-431 . -104) T) ((-431 . -244) T) ((-431 . -200) T) ((-431 . -120) T) ((-431 . -978) 65341) ((-431 . -960) T) ((-431 . -569) 65263) ((-430 . -1152) 65232) ((-430 . -568) 65194) ((-430 . -124) 65178) ((-430 . -34) T) ((-430 . -1157) T) ((-430 . -73) T) ((-430 . -263) 65116) ((-430 . -468) 65049) ((-430 . -1041) T) ((-430 . -443) 65033) ((-430 . -569) 64994) ((-430 . -916) 64963) ((-429 . -1134) 64942) ((-429 . -183) 64890) ((-429 . -78) 64838) ((-429 . -263) 64636) ((-429 . -468) 64388) ((-429 . -443) 64323) ((-429 . -124) 64271) ((-429 . -569) NIL) ((-429 . -192) 64219) ((-429 . -565) 64198) ((-429 . -242) 64177) ((-429 . -1157) T) ((-429 . -240) 64156) ((-429 . -1041) T) ((-429 . -568) 64138) ((-429 . -73) T) ((-429 . -34) T) ((-429 . -554) 64117) ((-428 . -1190) 64101) ((-428 . -190) 64053) ((-428 . -186) 63999) ((-428 . -189) 63951) ((-428 . -240) 63909) ((-428 . -836) 63815) ((-428 . -831) 63696) ((-428 . -838) 63602) ((-428 . -913) 63564) ((-428 . -38) 63405) ((-428 . -82) 63219) ((-428 . -991) 63054) ((-428 . -996) 62889) ((-428 . -604) 62771) ((-428 . -606) 62668) ((-428 . -598) 62509) ((-428 . -675) 62350) ((-428 . -571) 62176) ((-428 . -118) 62155) ((-428 . -120) 62134) ((-428 . -47) 62104) ((-428 . -1186) 62074) ((-428 . -35) 62040) ((-428 . -66) 62006) ((-428 . -238) 61972) ((-428 . -447) 61938) ((-428 . -1146) 61904) ((-428 . -1143) 61870) ((-428 . -942) 61836) ((-428 . -200) 61815) ((-428 . -244) 61766) ((-428 . -104) T) ((-428 . -25) T) ((-428 . -73) T) ((-428 . -1157) T) ((-428 . -568) 61748) ((-428 . -1041) T) ((-428 . -23) T) ((-428 . -21) T) ((-428 . -989) T) ((-428 . -997) T) ((-428 . -1052) T) ((-428 . -684) T) ((-428 . -261) 61727) ((-428 . -406) 61706) ((-428 . -146) 61637) ((-428 . -510) 61588) ((-428 . -859) 61567) ((-428 . -1162) 61546) ((-428 . -318) 61525) ((-422 . -1041) T) ((-422 . -568) 61507) ((-422 . -1157) T) ((-422 . -73) T) ((-417 . -916) 61476) ((-417 . -569) 61437) ((-417 . -443) 61421) ((-417 . -1041) T) ((-417 . -468) 61354) ((-417 . -263) 61292) ((-417 . -568) 61254) ((-417 . -73) T) ((-417 . -1157) T) ((-417 . -34) T) ((-417 . -124) 61238) ((-415 . -675) 61209) ((-415 . -598) 61180) ((-415 . -606) 61151) ((-415 . -604) 61107) ((-415 . -104) T) ((-415 . -25) T) ((-415 . -73) T) ((-415 . -1157) T) ((-415 . -568) 61089) ((-415 . -1041) T) ((-415 . -23) T) ((-415 . -21) T) ((-415 . -996) 61060) ((-415 . -991) 61031) ((-415 . -82) 60992) ((-408 . -888) 60959) ((-408 . -571) 60745) ((-408 . -978) 60623) ((-408 . -1162) 60602) ((-408 . -848) 60581) ((-408 . -821) NIL) ((-408 . -838) 60558) ((-408 . -831) 60533) ((-408 . -836) 60510) ((-408 . -468) 60448) ((-408 . -406) 60399) ((-408 . -596) 60347) ((-408 . -606) 60236) ((-408 . -332) 60220) ((-408 . -47) 60199) ((-408 . -38) 60048) ((-408 . -598) 59897) ((-408 . -675) 59746) ((-408 . -244) 59677) ((-408 . -510) 59608) ((-408 . -82) 59430) ((-408 . -991) 59273) ((-408 . -996) 59116) ((-408 . -146) 59027) ((-408 . -120) 59006) ((-408 . -118) 58985) ((-408 . -604) 58895) ((-408 . -104) T) ((-408 . -25) T) ((-408 . -73) T) ((-408 . -1157) T) ((-408 . -568) 58877) ((-408 . -1041) T) ((-408 . -23) T) ((-408 . -21) T) ((-408 . -989) T) ((-408 . -997) T) ((-408 . -1052) T) ((-408 . -684) T) ((-408 . -366) 58861) ((-408 . -280) 58840) ((-408 . -263) 58827) ((-408 . -569) 58688) ((-407 . -372) 58658) ((-407 . -702) 58628) ((-407 . -678) T) ((-407 . -704) T) ((-407 . -82) 58579) ((-407 . -991) 58549) ((-407 . -996) 58519) ((-407 . -21) T) ((-407 . -604) 58434) ((-407 . -23) T) ((-407 . -1041) T) ((-407 . -568) 58416) ((-407 . -73) T) ((-407 . -25) T) ((-407 . -104) T) ((-407 . -606) 58346) ((-407 . -598) 58316) ((-407 . -675) 58286) ((-407 . -322) 58256) ((-407 . -1157) T) ((-407 . -240) 58219) ((-393 . -1041) T) ((-393 . -568) 58201) ((-393 . -1157) T) ((-393 . -73) T) ((-392 . -1041) T) ((-392 . -568) 58183) ((-392 . -1157) T) ((-392 . -73) T) ((-391 . -320) 58157) ((-391 . -73) T) ((-391 . -1157) T) ((-391 . -568) 58139) ((-391 . -1041) T) ((-390 . -1041) T) ((-390 . -568) 58121) ((-390 . -1157) T) ((-390 . -73) T) ((-388 . -568) 58103) ((-383 . -38) 58087) ((-383 . -571) 58056) ((-383 . -606) 58030) ((-383 . -604) 57989) ((-383 . -684) T) ((-383 . -1052) T) ((-383 . -997) T) ((-383 . -989) T) ((-383 . -82) 57968) ((-383 . -991) 57952) ((-383 . -996) 57936) ((-383 . -21) T) ((-383 . -23) T) ((-383 . -1041) T) ((-383 . -568) 57918) ((-383 . -1157) T) ((-383 . -73) T) ((-383 . -25) T) ((-383 . -104) T) ((-383 . -598) 57902) ((-383 . -675) 57886) ((-369 . -684) T) ((-369 . -1041) T) ((-369 . -568) 57868) ((-369 . -1157) T) ((-369 . -73) T) ((-369 . -1052) T) ((-367 . -427) T) ((-367 . -1052) T) ((-367 . -73) T) ((-367 . -1157) T) ((-367 . -568) 57850) ((-367 . -1041) T) ((-367 . -684) T) ((-361 . -931) 57834) ((-361 . -1092) 57812) ((-361 . -978) 57679) ((-361 . -571) 57578) ((-361 . -569) 57381) ((-361 . -960) 57360) ((-361 . -848) 57339) ((-361 . -819) 57323) ((-361 . -780) 57302) ((-361 . -742) 57281) ((-361 . -739) 57260) ((-361 . -784) 57211) ((-361 . -781) 57162) ((-361 . -737) 57141) ((-361 . -735) 57120) ((-361 . -763) 57099) ((-361 . -821) 57024) ((-361 . -354) 57008) ((-361 . -596) 56956) ((-361 . -606) 56872) ((-361 . -332) 56856) ((-361 . -240) 56814) ((-361 . -263) 56779) ((-361 . -468) 56691) ((-361 . -293) 56675) ((-361 . -200) T) ((-361 . -82) 56606) ((-361 . -991) 56558) ((-361 . -996) 56510) ((-361 . -244) T) ((-361 . -675) 56462) ((-361 . -598) 56414) ((-361 . -604) 56351) ((-361 . -38) 56303) ((-361 . -261) T) ((-361 . -406) T) ((-361 . -146) T) ((-361 . -510) T) ((-361 . -859) T) ((-361 . -1162) T) ((-361 . -318) T) ((-361 . -190) 56282) ((-361 . -186) 56227) ((-361 . -189) 56178) ((-361 . -224) 56162) ((-361 . -831) 56083) ((-361 . -838) 56006) ((-361 . -836) 55965) ((-361 . -184) 55949) ((-361 . -120) 55928) ((-361 . -118) 55907) ((-361 . -104) T) ((-361 . -25) T) ((-361 . -73) T) ((-361 . -1157) T) ((-361 . -568) 55889) ((-361 . -1041) T) ((-361 . -23) T) ((-361 . -21) T) ((-361 . -989) T) ((-361 . -997) T) ((-361 . -1052) T) ((-361 . -684) T) ((-359 . -510) T) ((-359 . -244) T) ((-359 . -146) T) ((-359 . -571) 55798) ((-359 . -675) 55772) ((-359 . -598) 55746) ((-359 . -606) 55720) ((-359 . -604) 55679) ((-359 . -104) T) ((-359 . -25) T) ((-359 . -73) T) ((-359 . -1157) T) ((-359 . -568) 55661) ((-359 . -1041) T) ((-359 . -23) T) ((-359 . -21) T) ((-359 . -996) 55635) ((-359 . -991) 55609) ((-359 . -82) 55576) ((-359 . -989) T) ((-359 . -997) T) ((-359 . -1052) T) ((-359 . -684) T) ((-359 . -38) 55550) ((-359 . -184) 55534) ((-359 . -836) 55493) ((-359 . -838) 55416) ((-359 . -831) 55337) ((-359 . -224) 55321) ((-359 . -189) 55272) ((-359 . -186) 55217) ((-359 . -190) 55196) ((-359 . -293) 55180) ((-359 . -468) 55022) ((-359 . -263) 54961) ((-359 . -240) 54889) ((-359 . -366) 54873) ((-359 . -978) 54771) ((-359 . -406) 54721) ((-359 . -960) 54700) ((-359 . -569) 54603) ((-359 . -1162) 54581) ((-353 . -1041) T) ((-353 . -568) 54563) ((-353 . -1157) T) ((-353 . -73) T) ((-353 . -189) T) ((-353 . -186) 54550) ((-353 . -569) 54527) ((-352 . -350) T) ((-352 . -1157) T) ((-352 . -568) 54509) ((-346 . -702) 54493) ((-346 . -678) T) ((-346 . -704) T) ((-346 . -82) 54472) ((-346 . -991) 54456) ((-346 . -996) 54440) ((-346 . -21) T) ((-346 . -604) 54409) ((-346 . -23) T) ((-346 . -1041) T) ((-346 . -568) 54391) ((-346 . -1157) T) ((-346 . -73) T) ((-346 . -25) T) ((-346 . -104) T) ((-346 . -606) 54375) ((-346 . -598) 54359) ((-346 . -675) 54343) ((-344 . -345) T) ((-344 . -73) T) ((-344 . -1157) T) ((-344 . -568) 54309) ((-344 . -1041) T) ((-344 . -571) 54290) ((-344 . -444) 54271) ((-342 . -341) 54255) ((-342 . -571) 54239) ((-342 . -978) 54223) ((-342 . -784) 54202) ((-342 . -781) 54181) ((-342 . -1052) T) ((-342 . -73) T) ((-342 . -1157) T) ((-342 . -568) 54163) ((-342 . -1041) T) ((-342 . -684) T) ((-337 . -339) 54142) ((-337 . -571) 54126) ((-337 . -978) 54110) ((-337 . -598) 54080) ((-337 . -675) 54050) ((-337 . -606) 54034) ((-337 . -604) 54003) ((-337 . -104) T) ((-337 . -25) T) ((-337 . -73) T) ((-337 . -1157) T) ((-337 . -568) 53985) ((-337 . -1041) T) ((-337 . -23) T) ((-337 . -21) T) ((-337 . -996) 53969) ((-337 . -991) 53953) ((-337 . -82) 53932) ((-336 . -82) 53911) ((-336 . -991) 53895) ((-336 . -996) 53879) ((-336 . -21) T) ((-336 . -604) 53848) ((-336 . -23) T) ((-336 . -1041) T) ((-336 . -568) 53830) ((-336 . -1157) T) ((-336 . -73) T) ((-336 . -25) T) ((-336 . -104) T) ((-336 . -606) 53814) ((-336 . -463) 53793) ((-336 . -675) 53763) ((-336 . -598) 53733) ((-333 . -358) T) ((-333 . -120) T) ((-333 . -571) 53683) ((-333 . -606) 53648) ((-333 . -604) 53598) ((-333 . -104) T) ((-333 . -25) T) ((-333 . -73) T) ((-333 . -1157) T) ((-333 . -568) 53565) ((-333 . -1041) T) ((-333 . -23) T) ((-333 . -21) T) ((-333 . -684) T) ((-333 . -1052) T) ((-333 . -997) T) ((-333 . -989) T) ((-333 . -569) 53479) ((-333 . -318) T) ((-333 . -1162) T) ((-333 . -859) T) ((-333 . -510) T) ((-333 . -146) T) ((-333 . -675) 53444) ((-333 . -598) 53409) ((-333 . -38) 53374) ((-333 . -406) T) ((-333 . -261) T) ((-333 . -82) 53323) ((-333 . -991) 53288) ((-333 . -996) 53253) ((-333 . -244) T) ((-333 . -200) T) ((-333 . -780) T) ((-333 . -742) T) ((-333 . -739) T) ((-333 . -784) T) ((-333 . -781) T) ((-333 . -737) T) ((-333 . -735) T) ((-333 . -821) 53235) ((-333 . -942) T) ((-333 . -960) T) ((-333 . -978) 53195) ((-333 . -1000) T) ((-333 . -190) T) ((-333 . -186) 53182) ((-333 . -189) T) ((-333 . -1143) T) ((-333 . -1146) T) ((-333 . -447) T) ((-333 . -238) T) ((-333 . -66) T) ((-333 . -35) T) ((-333 . -573) 53164) ((-319 . -320) 53141) ((-319 . -73) T) ((-319 . -1157) T) ((-319 . -568) 53123) ((-319 . -1041) T) ((-316 . -427) T) ((-316 . -1052) T) ((-316 . -73) T) ((-316 . -1157) T) ((-316 . -568) 53105) ((-316 . -1041) T) ((-316 . -684) T) ((-316 . -978) 53089) ((-316 . -571) 53073) ((-314 . -283) 53057) ((-314 . -190) 53036) ((-314 . -186) 53009) ((-314 . -189) 52988) ((-314 . -323) 52967) ((-314 . -1092) 52946) ((-314 . -305) 52925) ((-314 . -120) 52904) ((-314 . -571) 52841) ((-314 . -606) 52793) ((-314 . -604) 52730) ((-314 . -104) T) ((-314 . -25) T) ((-314 . -73) T) ((-314 . -1157) T) ((-314 . -568) 52712) ((-314 . -1041) T) ((-314 . -23) T) ((-314 . -21) T) ((-314 . -684) T) ((-314 . -1052) T) ((-314 . -997) T) ((-314 . -989) T) ((-314 . -318) T) ((-314 . -1162) T) ((-314 . -859) T) ((-314 . -510) T) ((-314 . -146) T) ((-314 . -675) 52664) ((-314 . -598) 52616) ((-314 . -38) 52581) ((-314 . -406) T) ((-314 . -261) T) ((-314 . -82) 52512) ((-314 . -991) 52464) ((-314 . -996) 52416) ((-314 . -244) T) ((-314 . -200) T) ((-314 . -356) 52367) ((-314 . -118) 52318) ((-314 . -978) 52302) ((-314 . -1215) 52286) ((-314 . -1226) 52270) ((-310 . -283) 52254) ((-310 . -190) 52233) ((-310 . -186) 52206) ((-310 . -189) 52185) ((-310 . -323) 52164) ((-310 . -1092) 52143) ((-310 . -305) 52122) ((-310 . -120) 52101) ((-310 . -571) 52038) ((-310 . -606) 51990) ((-310 . -604) 51927) ((-310 . -104) T) ((-310 . -25) T) ((-310 . -73) T) ((-310 . -1157) T) ((-310 . -568) 51909) ((-310 . -1041) T) ((-310 . -23) T) ((-310 . -21) T) ((-310 . -684) T) ((-310 . -1052) T) ((-310 . -997) T) ((-310 . -989) T) ((-310 . -318) T) ((-310 . -1162) T) ((-310 . -859) T) ((-310 . -510) T) ((-310 . -146) T) ((-310 . -675) 51861) ((-310 . -598) 51813) ((-310 . -38) 51778) ((-310 . -406) T) ((-310 . -261) T) ((-310 . -82) 51709) ((-310 . -991) 51661) ((-310 . -996) 51613) ((-310 . -244) T) ((-310 . -200) T) ((-310 . -356) 51564) ((-310 . -118) 51515) ((-310 . -978) 51499) ((-310 . -1215) 51483) ((-310 . -1226) 51467) ((-309 . -283) 51451) ((-309 . -190) 51430) ((-309 . -186) 51403) ((-309 . -189) 51382) ((-309 . -323) 51361) ((-309 . -1092) 51340) ((-309 . -305) 51319) ((-309 . -120) 51298) ((-309 . -571) 51235) ((-309 . -606) 51187) ((-309 . -604) 51124) ((-309 . -104) T) ((-309 . -25) T) ((-309 . -73) T) ((-309 . -1157) T) ((-309 . -568) 51106) ((-309 . -1041) T) ((-309 . -23) T) ((-309 . -21) T) ((-309 . -684) T) ((-309 . -1052) T) ((-309 . -997) T) ((-309 . -989) T) ((-309 . -318) T) ((-309 . -1162) T) ((-309 . -859) T) ((-309 . -510) T) ((-309 . -146) T) ((-309 . -675) 51058) ((-309 . -598) 51010) ((-309 . -38) 50975) ((-309 . -406) T) ((-309 . -261) T) ((-309 . -82) 50906) ((-309 . -991) 50858) ((-309 . -996) 50810) ((-309 . -244) T) ((-309 . -200) T) ((-309 . -356) 50761) ((-309 . -118) 50712) ((-309 . -978) 50696) ((-309 . -1215) 50680) ((-309 . -1226) 50664) ((-308 . -283) 50648) ((-308 . -190) 50627) ((-308 . -186) 50600) ((-308 . -189) 50579) ((-308 . -323) 50558) ((-308 . -1092) 50537) ((-308 . -305) 50516) ((-308 . -120) 50495) ((-308 . -571) 50432) ((-308 . -606) 50384) ((-308 . -604) 50321) ((-308 . -104) T) ((-308 . -25) T) ((-308 . -73) T) ((-308 . -1157) T) ((-308 . -568) 50303) ((-308 . -1041) T) ((-308 . -23) T) ((-308 . -21) T) ((-308 . -684) T) ((-308 . -1052) T) ((-308 . -997) T) ((-308 . -989) T) ((-308 . -318) T) ((-308 . -1162) T) ((-308 . -859) T) ((-308 . -510) T) ((-308 . -146) T) ((-308 . -675) 50255) ((-308 . -598) 50207) ((-308 . -38) 50172) ((-308 . -406) T) ((-308 . -261) T) ((-308 . -82) 50103) ((-308 . -991) 50055) ((-308 . -996) 50007) ((-308 . -244) T) ((-308 . -200) T) ((-308 . -356) 49958) ((-308 . -118) 49909) ((-308 . -978) 49893) ((-308 . -1215) 49877) ((-308 . -1226) 49861) ((-307 . -283) 49838) ((-307 . -190) T) ((-307 . -186) 49825) ((-307 . -189) T) ((-307 . -323) T) ((-307 . -1092) T) ((-307 . -305) T) ((-307 . -120) 49807) ((-307 . -571) 49737) ((-307 . -606) 49682) ((-307 . -604) 49612) ((-307 . -104) T) ((-307 . -25) T) ((-307 . -73) T) ((-307 . -1157) T) ((-307 . -568) 49594) ((-307 . -1041) T) ((-307 . -23) T) ((-307 . -21) T) ((-307 . -684) T) ((-307 . -1052) T) ((-307 . -997) T) ((-307 . -989) T) ((-307 . -318) T) ((-307 . -1162) T) ((-307 . -859) T) ((-307 . -510) T) ((-307 . -146) T) ((-307 . -675) 49539) ((-307 . -598) 49484) ((-307 . -38) 49449) ((-307 . -406) T) ((-307 . -261) T) ((-307 . -82) 49366) ((-307 . -991) 49311) ((-307 . -996) 49256) ((-307 . -244) T) ((-307 . -200) T) ((-307 . -356) T) ((-307 . -118) T) ((-307 . -978) 49233) ((-307 . -1215) 49210) ((-307 . -1226) 49187) ((-301 . -283) 49171) ((-301 . -190) 49150) ((-301 . -186) 49123) ((-301 . -189) 49102) ((-301 . -323) 49081) ((-301 . -1092) 49060) ((-301 . -305) 49039) ((-301 . -120) 49018) ((-301 . -571) 48955) ((-301 . -606) 48907) ((-301 . -604) 48844) ((-301 . -104) T) ((-301 . -25) T) ((-301 . -73) T) ((-301 . -1157) T) ((-301 . -568) 48826) ((-301 . -1041) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -684) T) ((-301 . -1052) T) ((-301 . -997) T) ((-301 . -989) T) ((-301 . -318) T) ((-301 . -1162) T) ((-301 . -859) T) ((-301 . -510) T) ((-301 . -146) T) ((-301 . -675) 48778) ((-301 . -598) 48730) ((-301 . -38) 48695) ((-301 . -406) T) ((-301 . -261) T) ((-301 . -82) 48626) ((-301 . -991) 48578) ((-301 . -996) 48530) ((-301 . -244) T) ((-301 . -200) T) ((-301 . -356) 48481) ((-301 . -118) 48432) ((-301 . -978) 48416) ((-301 . -1215) 48400) ((-301 . -1226) 48384) ((-300 . -283) 48368) ((-300 . -190) 48347) ((-300 . -186) 48320) ((-300 . -189) 48299) ((-300 . -323) 48278) ((-300 . -1092) 48257) ((-300 . -305) 48236) ((-300 . -120) 48215) ((-300 . -571) 48152) ((-300 . -606) 48104) ((-300 . -604) 48041) ((-300 . -104) T) ((-300 . -25) T) ((-300 . -73) T) ((-300 . -1157) T) ((-300 . -568) 48023) ((-300 . -1041) T) ((-300 . -23) T) ((-300 . -21) T) ((-300 . -684) T) ((-300 . -1052) T) ((-300 . -997) T) ((-300 . -989) T) ((-300 . -318) T) ((-300 . -1162) T) ((-300 . -859) T) ((-300 . -510) T) ((-300 . -146) T) ((-300 . -675) 47975) ((-300 . -598) 47927) ((-300 . -38) 47892) ((-300 . -406) T) ((-300 . -261) T) ((-300 . -82) 47823) ((-300 . -991) 47775) ((-300 . -996) 47727) ((-300 . -244) T) ((-300 . -200) T) ((-300 . -356) 47678) ((-300 . -118) 47629) ((-300 . -978) 47613) ((-300 . -1215) 47597) ((-300 . -1226) 47581) ((-299 . -283) 47558) ((-299 . -190) T) ((-299 . -186) 47545) ((-299 . -189) T) ((-299 . -323) T) ((-299 . -1092) T) ((-299 . -305) T) ((-299 . -120) 47527) ((-299 . -571) 47457) ((-299 . -606) 47402) ((-299 . -604) 47332) ((-299 . -104) T) ((-299 . -25) T) ((-299 . -73) T) ((-299 . -1157) T) ((-299 . -568) 47314) ((-299 . -1041) T) ((-299 . -23) T) ((-299 . -21) T) ((-299 . -684) T) ((-299 . -1052) T) ((-299 . -997) T) ((-299 . -989) T) ((-299 . -318) T) ((-299 . -1162) T) ((-299 . -859) T) ((-299 . -510) T) ((-299 . -146) T) ((-299 . -675) 47259) ((-299 . -598) 47204) ((-299 . -38) 47169) ((-299 . -406) T) ((-299 . -261) T) ((-299 . -82) 47086) ((-299 . -991) 47031) ((-299 . -996) 46976) ((-299 . -244) T) ((-299 . -200) T) ((-299 . -356) T) ((-299 . -118) T) ((-299 . -978) 46953) ((-299 . -1215) 46930) ((-299 . -1226) 46907) ((-295 . -283) 46884) ((-295 . -190) T) ((-295 . -186) 46871) ((-295 . -189) T) ((-295 . -323) T) ((-295 . -1092) T) ((-295 . -305) T) ((-295 . -120) 46853) ((-295 . -571) 46783) ((-295 . -606) 46728) ((-295 . -604) 46658) ((-295 . -104) T) ((-295 . -25) T) ((-295 . -73) T) ((-295 . -1157) T) ((-295 . -568) 46640) ((-295 . -1041) T) ((-295 . -23) T) ((-295 . -21) T) ((-295 . -684) T) ((-295 . -1052) T) ((-295 . -997) T) ((-295 . -989) T) ((-295 . -318) T) ((-295 . -1162) T) ((-295 . -859) T) ((-295 . -510) T) ((-295 . -146) T) ((-295 . -675) 46585) ((-295 . -598) 46530) ((-295 . -38) 46495) ((-295 . -406) T) ((-295 . -261) T) ((-295 . -82) 46412) ((-295 . -991) 46357) ((-295 . -996) 46302) ((-295 . -244) T) ((-295 . -200) T) ((-295 . -356) T) ((-295 . -118) T) ((-295 . -978) 46279) ((-295 . -1215) 46256) ((-295 . -1226) 46233) ((-294 . -252) T) ((-294 . -73) T) ((-294 . -1157) T) ((-294 . -568) 46215) ((-294 . -1041) T) ((-294 . -571) 46167) ((-294 . -978) 46134) ((-294 . -468) 46100) ((-294 . -263) 46087) ((-294 . -38) 46071) ((-294 . -606) 46045) ((-294 . -604) 46004) ((-294 . -684) T) ((-294 . -1052) T) ((-294 . -997) T) ((-294 . -989) T) ((-294 . -82) 45983) ((-294 . -991) 45967) ((-294 . -996) 45951) ((-294 . -21) T) ((-294 . -23) T) ((-294 . -25) T) ((-294 . -104) T) ((-294 . -598) 45935) ((-294 . -675) 45919) ((-294 . -836) 45900) ((-294 . -831) 45879) ((-294 . -838) 45860) ((-288 . -291) 45829) ((-288 . -104) T) ((-288 . -25) T) ((-288 . -73) T) ((-288 . -1157) T) ((-288 . -568) 45811) ((-288 . -1041) T) ((-288 . -23) T) ((-288 . -604) 45793) ((-288 . -21) T) ((-287 . -1041) T) ((-287 . -568) 45775) ((-287 . -1157) T) ((-287 . -73) T) ((-285 . -781) T) ((-285 . -568) 45757) ((-285 . -1041) T) ((-285 . -73) T) ((-285 . -1157) T) ((-285 . -784) T) ((-284 . -1041) T) ((-284 . -568) 45739) ((-284 . -1157) T) ((-284 . -73) T) ((-281 . -19) 45723) ((-281 . -609) 45707) ((-281 . -242) 45684) ((-281 . -240) 45636) ((-281 . -554) 45613) ((-281 . -569) 45574) ((-281 . -443) 45558) ((-281 . -1041) 45508) ((-281 . -468) 45441) ((-281 . -263) 45379) ((-281 . -568) 45291) ((-281 . -73) 45222) ((-281 . -1157) T) ((-281 . -34) T) ((-281 . -124) 45206) ((-281 . -781) 45185) ((-281 . -784) 45164) ((-281 . -327) 45148) ((-281 . -236) 45132) ((-278 . -277) 45109) ((-278 . -571) 45093) ((-278 . -978) 45077) ((-278 . -23) T) ((-278 . -1041) T) ((-278 . -568) 45059) ((-278 . -1157) T) ((-278 . -73) T) ((-278 . -25) T) ((-278 . -104) T) ((-276 . -21) T) ((-276 . -604) 45041) ((-276 . -23) T) ((-276 . -1041) T) ((-276 . -568) 45023) ((-276 . -1157) T) ((-276 . -73) T) ((-276 . -25) T) ((-276 . -104) T) ((-276 . -675) 45005) ((-276 . -598) 44987) ((-276 . -606) 44969) ((-276 . -996) 44951) ((-276 . -991) 44933) ((-276 . -82) 44908) ((-276 . -277) 44885) ((-276 . -571) 44869) ((-276 . -978) 44853) ((-276 . -781) 44832) ((-276 . -784) 44811) ((-273 . -1190) 44795) ((-273 . -190) 44747) ((-273 . -186) 44693) ((-273 . -189) 44645) ((-273 . -240) 44603) ((-273 . -836) 44509) ((-273 . -831) 44413) ((-273 . -838) 44319) ((-273 . -913) 44281) ((-273 . -38) 44122) ((-273 . -82) 43936) ((-273 . -991) 43771) ((-273 . -996) 43606) ((-273 . -604) 43488) ((-273 . -606) 43385) ((-273 . -598) 43226) ((-273 . -675) 43067) ((-273 . -571) 42893) ((-273 . -118) 42872) ((-273 . -120) 42851) ((-273 . -47) 42821) ((-273 . -1186) 42791) ((-273 . -35) 42757) ((-273 . -66) 42723) ((-273 . -238) 42689) ((-273 . -447) 42655) ((-273 . -1146) 42621) ((-273 . -1143) 42587) ((-273 . -942) 42553) ((-273 . -200) 42532) ((-273 . -244) 42483) ((-273 . -104) T) ((-273 . -25) T) ((-273 . -73) T) ((-273 . -1157) T) ((-273 . -568) 42465) ((-273 . -1041) T) ((-273 . -23) T) ((-273 . -21) T) ((-273 . -989) T) ((-273 . -997) T) ((-273 . -1052) T) ((-273 . -684) T) ((-273 . -261) 42444) ((-273 . -406) 42423) ((-273 . -146) 42354) ((-273 . -510) 42305) ((-273 . -859) 42284) ((-273 . -1162) 42263) ((-273 . -318) 42242) ((-273 . -737) T) ((-273 . -781) T) ((-273 . -784) T) ((-273 . -739) T) ((-268 . -375) 42226) ((-268 . -571) 41795) ((-268 . -978) 41463) ((-268 . -569) 41324) ((-268 . -819) 41308) ((-268 . -838) 41275) ((-268 . -831) 41240) ((-268 . -836) 41207) ((-268 . -427) 41186) ((-268 . -366) 41170) ((-268 . -821) 41095) ((-268 . -354) 41079) ((-268 . -596) 40987) ((-268 . -606) 40719) ((-268 . -332) 40689) ((-268 . -200) 40668) ((-268 . -82) 40557) ((-268 . -991) 40467) ((-268 . -996) 40377) ((-268 . -244) 40356) ((-268 . -675) 40266) ((-268 . -598) 40176) ((-268 . -604) 39834) ((-268 . -38) 39744) ((-268 . -261) 39723) ((-268 . -406) 39702) ((-268 . -146) 39681) ((-268 . -510) 39660) ((-268 . -859) 39639) ((-268 . -1162) 39618) ((-268 . -318) 39597) ((-268 . -263) 39584) ((-268 . -468) 39550) ((-268 . -252) T) ((-268 . -120) 39529) ((-268 . -118) 39508) ((-268 . -989) 39399) ((-268 . -997) 39290) ((-268 . -1052) 39140) ((-268 . -684) 38990) ((-268 . -104) 38862) ((-268 . -25) 38715) ((-268 . -73) T) ((-268 . -1157) T) ((-268 . -568) 38697) ((-268 . -1041) T) ((-268 . -23) 38550) ((-268 . -21) 38422) ((-268 . -29) 38392) ((-268 . -942) 38371) ((-268 . -27) 38350) ((-268 . -1143) 38329) ((-268 . -1146) 38308) ((-268 . -447) 38287) ((-268 . -238) 38266) ((-268 . -66) 38245) ((-268 . -35) 38224) ((-268 . -133) 38203) ((-268 . -116) 38182) ((-268 . -585) 38161) ((-268 . -898) 38140) ((-268 . -1079) 38119) ((-267 . -931) 38080) ((-267 . -1092) NIL) ((-267 . -978) 38010) ((-267 . -571) 37893) ((-267 . -569) NIL) ((-267 . -960) NIL) ((-267 . -848) NIL) ((-267 . -819) 37854) ((-267 . -780) NIL) ((-267 . -742) NIL) ((-267 . -739) NIL) ((-267 . -784) NIL) ((-267 . -781) NIL) ((-267 . -737) NIL) ((-267 . -735) NIL) ((-267 . -763) NIL) ((-267 . -821) NIL) ((-267 . -354) 37815) ((-267 . -596) 37776) ((-267 . -606) 37705) ((-267 . -332) 37666) ((-267 . -240) 37532) ((-267 . -263) 37428) ((-267 . -468) 37179) ((-267 . -293) 37140) ((-267 . -200) T) ((-267 . -82) 37025) ((-267 . -991) 36954) ((-267 . -996) 36883) ((-267 . -244) T) ((-267 . -675) 36812) ((-267 . -598) 36741) ((-267 . -604) 36655) ((-267 . -38) 36584) ((-267 . -261) T) ((-267 . -406) T) ((-267 . -146) T) ((-267 . -510) T) ((-267 . -859) T) ((-267 . -1162) T) ((-267 . -318) T) ((-267 . -190) NIL) ((-267 . -186) NIL) ((-267 . -189) NIL) ((-267 . -224) 36545) ((-267 . -831) NIL) ((-267 . -838) NIL) ((-267 . -836) NIL) ((-267 . -184) 36506) ((-267 . -120) 36462) ((-267 . -118) 36418) ((-267 . -104) T) ((-267 . -25) T) ((-267 . -73) T) ((-267 . -1157) T) ((-267 . -568) 36400) ((-267 . -1041) T) ((-267 . -23) T) ((-267 . -21) T) ((-267 . -989) T) ((-267 . -997) T) ((-267 . -1052) T) ((-267 . -684) T) ((-266 . -1023) T) ((-266 . -444) 36381) ((-266 . -568) 36347) ((-266 . -571) 36328) ((-266 . -1041) T) ((-266 . -1157) T) ((-266 . -73) T) ((-266 . -64) T) ((-265 . -1041) T) ((-265 . -568) 36310) ((-265 . -1157) T) ((-265 . -73) T) ((-249 . -1134) 36289) ((-249 . -183) 36237) ((-249 . -78) 36185) ((-249 . -263) 35983) ((-249 . -468) 35735) ((-249 . -443) 35670) ((-249 . -124) 35618) ((-249 . -569) NIL) ((-249 . -192) 35566) ((-249 . -565) 35545) ((-249 . -242) 35524) ((-249 . -1157) T) ((-249 . -240) 35503) ((-249 . -1041) T) ((-249 . -568) 35485) ((-249 . -73) T) ((-249 . -34) T) ((-249 . -554) 35464) ((-247 . -1157) T) ((-247 . -468) 35413) ((-247 . -1041) 35196) ((-247 . -568) 34939) ((-247 . -73) 34722) ((-247 . -25) 34587) ((-247 . -21) 34471) ((-247 . -604) 34209) ((-247 . -23) 34093) ((-247 . -104) 33977) ((-247 . -1052) 33859) ((-247 . -684) 33762) ((-247 . -427) 33741) ((-247 . -989) 33684) ((-247 . -997) 33627) ((-247 . -606) 33489) ((-247 . -571) 33421) ((-247 . -82) 33338) ((-247 . -991) 33260) ((-247 . -996) 33182) ((-247 . -675) 33124) ((-247 . -598) 33066) ((-247 . -836) 33025) ((-247 . -831) 32982) ((-247 . -838) 32941) ((-247 . -1215) 32911) ((-245 . -568) 32893) ((-243 . -261) T) ((-243 . -406) T) ((-243 . -38) 32880) ((-243 . -571) 32852) ((-243 . -684) T) ((-243 . -1052) T) ((-243 . -997) T) ((-243 . -989) T) ((-243 . -82) 32837) ((-243 . -991) 32824) ((-243 . -996) 32811) ((-243 . -21) T) ((-243 . -604) 32783) ((-243 . -23) T) ((-243 . -1041) T) ((-243 . -568) 32765) ((-243 . -1157) T) ((-243 . -73) T) ((-243 . -25) T) ((-243 . -104) T) ((-243 . -606) 32752) ((-243 . -598) 32739) ((-243 . -675) 32726) ((-243 . -146) T) ((-243 . -244) T) ((-243 . -510) T) ((-243 . -859) T) ((-243 . -240) 32705) ((-234 . -568) 32687) ((-233 . -568) 32669) ((-228 . -781) T) ((-228 . -568) 32651) ((-228 . -1041) T) ((-228 . -73) T) ((-228 . -1157) T) ((-228 . -784) T) ((-225 . -212) 32613) ((-225 . -571) 32367) ((-225 . -978) 32213) ((-225 . -569) 31961) ((-225 . -280) 31933) ((-225 . -366) 31917) ((-225 . -38) 31766) ((-225 . -82) 31588) ((-225 . -991) 31431) ((-225 . -996) 31274) ((-225 . -604) 31184) ((-225 . -606) 31073) ((-225 . -598) 30922) ((-225 . -675) 30771) ((-225 . -118) 30750) ((-225 . -120) 30729) ((-225 . -146) 30640) ((-225 . -510) 30571) ((-225 . -244) 30502) ((-225 . -47) 30474) ((-225 . -332) 30458) ((-225 . -596) 30406) ((-225 . -406) 30357) ((-225 . -468) 30248) ((-225 . -836) 30194) ((-225 . -831) 30100) ((-225 . -838) 30010) ((-225 . -821) 29869) ((-225 . -848) 29848) ((-225 . -1162) 29827) ((-225 . -888) 29794) ((-225 . -263) 29781) ((-225 . -190) 29760) ((-225 . -104) T) ((-225 . -25) T) ((-225 . -73) T) ((-225 . -568) 29742) ((-225 . -1041) T) ((-225 . -23) T) ((-225 . -21) T) ((-225 . -684) T) ((-225 . -1052) T) ((-225 . -997) T) ((-225 . -989) T) ((-225 . -186) 29687) ((-225 . -1157) T) ((-225 . -189) 29638) ((-225 . -224) 29622) ((-225 . -184) 29606) ((-220 . -1041) T) ((-220 . -568) 29588) ((-220 . -1157) T) ((-220 . -73) T) ((-210 . -195) 29567) ((-210 . -1215) 29537) ((-210 . -742) 29516) ((-210 . -739) 29495) ((-210 . -784) 29446) ((-210 . -781) 29397) ((-210 . -737) 29376) ((-210 . -738) 29355) ((-210 . -675) 29297) ((-210 . -598) 29219) ((-210 . -242) 29196) ((-210 . -240) 29173) ((-210 . -443) 29157) ((-210 . -468) 29090) ((-210 . -263) 29028) ((-210 . -34) T) ((-210 . -554) 29005) ((-210 . -978) 28834) ((-210 . -571) 28635) ((-210 . -366) 28604) ((-210 . -596) 28512) ((-210 . -606) 28335) ((-210 . -332) 28305) ((-210 . -323) 28284) ((-210 . -190) 28237) ((-210 . -604) 28087) ((-210 . -684) 28066) ((-210 . -1052) 28045) ((-210 . -997) 28024) ((-210 . -989) 28003) ((-210 . -186) 27896) ((-210 . -189) 27795) ((-210 . -224) 27765) ((-210 . -831) 27634) ((-210 . -838) 27505) ((-210 . -836) 27438) ((-210 . -184) 27408) ((-210 . -568) 27369) ((-210 . -996) 27291) ((-210 . -991) 27193) ((-210 . -82) 27110) ((-210 . -104) T) ((-210 . -25) T) ((-210 . -73) T) ((-210 . -1157) T) ((-210 . -1041) T) ((-210 . -23) T) ((-210 . -21) T) ((-209 . -195) 27089) ((-209 . -1215) 27059) ((-209 . -742) 27038) ((-209 . -739) 27017) ((-209 . -784) 26968) ((-209 . -781) 26919) ((-209 . -737) 26898) ((-209 . -738) 26877) ((-209 . -675) 26819) ((-209 . -598) 26741) ((-209 . -242) 26718) ((-209 . -240) 26695) ((-209 . -443) 26679) ((-209 . -468) 26612) ((-209 . -263) 26550) ((-209 . -34) T) ((-209 . -554) 26527) ((-209 . -978) 26356) ((-209 . -571) 26157) ((-209 . -366) 26126) ((-209 . -596) 26034) ((-209 . -606) 25844) ((-209 . -332) 25814) ((-209 . -323) 25793) ((-209 . -190) 25746) ((-209 . -604) 25583) ((-209 . -684) 25562) ((-209 . -1052) 25541) ((-209 . -997) 25520) ((-209 . -989) 25499) ((-209 . -186) 25392) ((-209 . -189) 25291) ((-209 . -224) 25261) ((-209 . -831) 25130) ((-209 . -838) 25001) ((-209 . -836) 24934) ((-209 . -184) 24904) ((-209 . -568) 24865) ((-209 . -996) 24787) ((-209 . -991) 24689) ((-209 . -82) 24606) ((-209 . -104) T) ((-209 . -25) T) ((-209 . -73) T) ((-209 . -1157) T) ((-209 . -1041) T) ((-209 . -23) T) ((-209 . -21) T) ((-208 . -1041) T) ((-208 . -568) 24588) ((-208 . -1157) T) ((-208 . -73) T) ((-208 . -240) 24562) ((-207 . -160) T) ((-207 . -1041) T) ((-207 . -568) 24529) ((-207 . -1157) T) ((-207 . -73) T) ((-207 . -770) 24511) ((-206 . -1041) T) ((-206 . -568) 24493) ((-206 . -1157) T) ((-206 . -73) T) ((-205 . -888) 24438) ((-205 . -571) 24224) ((-205 . -978) 24102) ((-205 . -1162) 24081) ((-205 . -848) 24060) ((-205 . -821) NIL) ((-205 . -838) 24037) ((-205 . -831) 24012) ((-205 . -836) 23989) ((-205 . -468) 23927) ((-205 . -406) 23878) ((-205 . -596) 23826) ((-205 . -606) 23715) ((-205 . -332) 23699) ((-205 . -47) 23656) ((-205 . -38) 23505) ((-205 . -598) 23354) ((-205 . -675) 23203) ((-205 . -244) 23134) ((-205 . -510) 23065) ((-205 . -82) 22887) ((-205 . -991) 22730) ((-205 . -996) 22573) ((-205 . -146) 22484) ((-205 . -120) 22463) ((-205 . -118) 22442) ((-205 . -604) 22352) ((-205 . -104) T) ((-205 . -25) T) ((-205 . -73) T) ((-205 . -1157) T) ((-205 . -568) 22334) ((-205 . -1041) T) ((-205 . -23) T) ((-205 . -21) T) ((-205 . -989) T) ((-205 . -997) T) ((-205 . -1052) T) ((-205 . -684) T) ((-205 . -366) 22318) ((-205 . -280) 22275) ((-205 . -263) 22262) ((-205 . -569) 22123) ((-202 . -624) 22107) ((-202 . -1196) 22091) ((-202 . -950) 22075) ((-202 . -1090) 22059) ((-202 . -781) 22038) ((-202 . -784) 22017) ((-202 . -327) 22001) ((-202 . -609) 21985) ((-202 . -242) 21962) ((-202 . -240) 21914) ((-202 . -554) 21891) ((-202 . -569) 21852) ((-202 . -443) 21836) ((-202 . -1041) 21786) ((-202 . -468) 21719) ((-202 . -263) 21657) ((-202 . -568) 21549) ((-202 . -73) 21480) ((-202 . -1157) T) ((-202 . -34) T) ((-202 . -124) 21464) ((-202 . -236) 21448) ((-202 . -444) 21425) ((-202 . -571) 21402) ((-196 . -195) 21381) ((-196 . -1215) 21351) ((-196 . -742) 21330) ((-196 . -739) 21309) ((-196 . -784) 21260) ((-196 . -781) 21211) ((-196 . -737) 21190) ((-196 . -738) 21169) ((-196 . -675) 21111) ((-196 . -598) 21033) ((-196 . -242) 21010) ((-196 . -240) 20987) ((-196 . -443) 20971) ((-196 . -468) 20904) ((-196 . -263) 20842) ((-196 . -34) T) ((-196 . -554) 20819) ((-196 . -978) 20648) ((-196 . -571) 20449) ((-196 . -366) 20418) ((-196 . -596) 20326) ((-196 . -606) 20162) ((-196 . -332) 20132) ((-196 . -323) 20111) ((-196 . -190) 20064) ((-196 . -604) 19846) ((-196 . -684) 19825) ((-196 . -1052) 19804) ((-196 . -997) 19783) ((-196 . -989) 19762) ((-196 . -186) 19655) ((-196 . -189) 19554) ((-196 . -224) 19524) ((-196 . -831) 19393) ((-196 . -838) 19264) ((-196 . -836) 19197) ((-196 . -184) 19167) ((-196 . -568) 18861) ((-196 . -996) 18783) ((-196 . -991) 18685) ((-196 . -82) 18602) ((-196 . -104) 18474) ((-196 . -25) 18308) ((-196 . -73) 18042) ((-196 . -1157) T) ((-196 . -1041) 17795) ((-196 . -23) 17648) ((-196 . -21) 17560) ((-181 . -644) 17518) ((-181 . -443) 17502) ((-181 . -1041) 17480) ((-181 . -468) 17413) ((-181 . -263) 17351) ((-181 . -568) 17283) ((-181 . -73) 17234) ((-181 . -1157) T) ((-181 . -34) T) ((-181 . -57) 17192) ((-179 . -358) T) ((-179 . -120) T) ((-179 . -571) 17142) ((-179 . -606) 17107) ((-179 . -604) 17057) ((-179 . -104) T) ((-179 . -25) T) ((-179 . -73) T) ((-179 . -1157) T) ((-179 . -568) 17039) ((-179 . -1041) T) ((-179 . -23) T) ((-179 . -21) T) ((-179 . -684) T) ((-179 . -1052) T) ((-179 . -997) T) ((-179 . -989) T) ((-179 . -569) 16969) ((-179 . -318) T) ((-179 . -1162) T) ((-179 . -859) T) ((-179 . -510) T) ((-179 . -146) T) ((-179 . -675) 16934) ((-179 . -598) 16899) ((-179 . -38) 16864) ((-179 . -406) T) ((-179 . -261) T) ((-179 . -82) 16813) ((-179 . -991) 16778) ((-179 . -996) 16743) ((-179 . -244) T) ((-179 . -200) T) ((-179 . -780) T) ((-179 . -742) T) ((-179 . -739) T) ((-179 . -784) T) ((-179 . -781) T) ((-179 . -737) T) ((-179 . -735) T) ((-179 . -821) 16725) ((-179 . -942) T) ((-179 . -960) T) ((-179 . -978) 16685) ((-179 . -1000) T) ((-179 . -190) T) ((-179 . -186) 16672) ((-179 . -189) T) ((-179 . -1143) T) ((-179 . -1146) T) ((-179 . -447) T) ((-179 . -238) T) ((-179 . -66) T) ((-179 . -35) T) ((-177 . -576) 16649) ((-177 . -571) 16611) ((-177 . -606) 16578) ((-177 . -604) 16530) ((-177 . -684) T) ((-177 . -1052) T) ((-177 . -997) T) ((-177 . -989) T) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1041) T) ((-177 . -568) 16512) ((-177 . -1157) T) ((-177 . -73) T) ((-177 . -25) T) ((-177 . -104) T) ((-177 . -978) 16489) ((-176 . -213) 16473) ((-176 . -1061) 16457) ((-176 . -78) 16441) ((-176 . -34) T) ((-176 . -1157) T) ((-176 . -73) 16392) ((-176 . -568) 16324) ((-176 . -263) 16262) ((-176 . -468) 16195) ((-176 . -1041) 16173) ((-176 . -443) 16157) ((-176 . -935) 16141) ((-172 . -1023) T) ((-172 . -444) 16122) ((-172 . -568) 16088) ((-172 . -571) 16069) ((-172 . -1041) T) ((-172 . -1157) T) ((-172 . -73) T) ((-172 . -64) T) ((-171 . -931) 16051) ((-171 . -1092) T) ((-171 . -571) 16001) ((-171 . -978) 15961) ((-171 . -569) 15891) ((-171 . -960) T) ((-171 . -848) NIL) ((-171 . -819) 15873) ((-171 . -780) T) ((-171 . -742) T) ((-171 . -739) T) ((-171 . -784) T) ((-171 . -781) T) ((-171 . -737) T) ((-171 . -735) T) ((-171 . -763) T) ((-171 . -821) 15855) ((-171 . -354) 15837) ((-171 . -596) 15819) ((-171 . -332) 15801) ((-171 . -240) NIL) ((-171 . -263) NIL) ((-171 . -468) NIL) ((-171 . -293) 15783) ((-171 . -200) T) ((-171 . -82) 15710) ((-171 . -991) 15660) ((-171 . -996) 15610) ((-171 . -244) T) ((-171 . -675) 15560) ((-171 . -598) 15510) ((-171 . -606) 15460) ((-171 . -604) 15410) ((-171 . -38) 15360) ((-171 . -261) T) ((-171 . -406) T) ((-171 . -146) T) ((-171 . -510) T) ((-171 . -859) T) ((-171 . -1162) T) ((-171 . -318) T) ((-171 . -190) T) ((-171 . -186) 15347) ((-171 . -189) T) ((-171 . -224) 15329) ((-171 . -831) NIL) ((-171 . -838) NIL) ((-171 . -836) NIL) ((-171 . -184) 15311) ((-171 . -120) T) ((-171 . -118) NIL) ((-171 . -104) T) ((-171 . -25) T) ((-171 . -73) T) ((-171 . -1157) T) ((-171 . -568) 15253) ((-171 . -1041) T) ((-171 . -23) T) ((-171 . -21) T) ((-171 . -989) T) ((-171 . -997) T) ((-171 . -1052) T) ((-171 . -684) T) ((-168 . -777) T) ((-168 . -784) T) ((-168 . -781) T) ((-168 . -1041) T) ((-168 . -568) 15235) ((-168 . -1157) T) ((-168 . -73) T) ((-168 . -323) T) ((-167 . -1041) T) ((-167 . -568) 15217) ((-167 . -1157) T) ((-167 . -73) T) ((-167 . -571) 15194) ((-166 . -1041) T) ((-166 . -568) 15176) ((-166 . -1157) T) ((-166 . -73) T) ((-161 . -1041) T) ((-161 . -568) 15158) ((-161 . -1157) T) ((-161 . -73) T) ((-158 . -1041) T) ((-158 . -568) 15140) ((-158 . -1157) T) ((-158 . -73) T) ((-157 . -160) T) ((-157 . -1041) T) ((-157 . -568) 15122) ((-157 . -1157) T) ((-157 . -73) T) ((-157 . -770) 15104) ((-154 . -1023) T) ((-154 . -444) 15085) ((-154 . -568) 15051) ((-154 . -571) 15032) ((-154 . -1041) T) ((-154 . -1157) T) ((-154 . -73) T) ((-154 . -64) T) ((-149 . -568) 15014) ((-148 . -38) 14946) ((-148 . -571) 14863) ((-148 . -606) 14795) ((-148 . -604) 14712) ((-148 . -684) T) ((-148 . -1052) T) ((-148 . -997) T) ((-148 . -989) T) ((-148 . -82) 14611) ((-148 . -991) 14543) ((-148 . -996) 14475) ((-148 . -21) T) ((-148 . -23) T) ((-148 . -1041) T) ((-148 . -568) 14457) ((-148 . -1157) T) ((-148 . -73) T) ((-148 . -25) T) ((-148 . -104) T) ((-148 . -598) 14389) ((-148 . -675) 14321) ((-148 . -318) T) ((-148 . -1162) T) ((-148 . -859) T) ((-148 . -510) T) ((-148 . -146) T) ((-148 . -406) T) ((-148 . -261) T) ((-148 . -244) T) ((-148 . -200) T) ((-145 . -1041) T) ((-145 . -568) 14303) ((-145 . -1157) T) ((-145 . -73) T) ((-142 . -139) 14287) ((-142 . -35) 14265) ((-142 . -66) 14243) ((-142 . -238) 14221) ((-142 . -447) 14199) ((-142 . -1146) 14177) ((-142 . -1143) 14155) ((-142 . -942) 14107) ((-142 . -848) 14060) ((-142 . -569) 13828) ((-142 . -819) 13812) ((-142 . -323) 13763) ((-142 . -305) 13742) ((-142 . -1092) 13721) ((-142 . -356) 13700) ((-142 . -364) 13671) ((-142 . -38) 13499) ((-142 . -82) 13388) ((-142 . -991) 13298) ((-142 . -996) 13208) ((-142 . -598) 13036) ((-142 . -675) 12864) ((-142 . -325) 12835) ((-142 . -682) 12806) ((-142 . -978) 12704) ((-142 . -571) 12483) ((-142 . -366) 12467) ((-142 . -821) 12392) ((-142 . -354) 12376) ((-142 . -596) 12324) ((-142 . -606) 12198) ((-142 . -604) 12093) ((-142 . -332) 12077) ((-142 . -240) 12035) ((-142 . -263) 12000) ((-142 . -468) 11912) ((-142 . -293) 11896) ((-142 . -200) 11847) ((-142 . -1162) 11752) ((-142 . -318) 11703) ((-142 . -859) 11634) ((-142 . -510) 11545) ((-142 . -244) 11456) ((-142 . -406) 11387) ((-142 . -261) 11318) ((-142 . -190) 11269) ((-142 . -186) 11194) ((-142 . -189) 11125) ((-142 . -224) 11109) ((-142 . -831) 11030) ((-142 . -838) 10953) ((-142 . -836) 10912) ((-142 . -184) 10896) ((-142 . -146) T) ((-142 . -120) 10875) ((-142 . -989) T) ((-142 . -997) T) ((-142 . -1052) T) ((-142 . -684) T) ((-142 . -21) T) ((-142 . -23) T) ((-142 . -1041) T) ((-142 . -568) 10857) ((-142 . -1157) T) ((-142 . -73) T) ((-142 . -25) T) ((-142 . -104) T) ((-142 . -118) 10808) ((-135 . -1023) T) ((-135 . -444) 10789) ((-135 . -568) 10755) ((-135 . -571) 10736) ((-135 . -1041) T) ((-135 . -1157) T) ((-135 . -73) T) ((-135 . -64) T) ((-134 . -1041) T) ((-134 . -568) 10718) ((-134 . -1157) T) ((-134 . -73) T) ((-130 . -25) T) ((-130 . -73) T) ((-130 . -1157) T) ((-130 . -568) 10700) ((-130 . -1041) T) ((-129 . -1023) T) ((-129 . -444) 10681) ((-129 . -568) 10647) ((-129 . -571) 10628) ((-129 . -1041) T) ((-129 . -1157) T) ((-129 . -73) T) ((-129 . -64) T) ((-127 . -1023) T) ((-127 . -444) 10609) ((-127 . -568) 10575) ((-127 . -571) 10556) ((-127 . -1041) T) ((-127 . -1157) T) ((-127 . -73) T) ((-127 . -64) T) ((-125 . -989) T) ((-125 . -997) T) ((-125 . -1052) T) ((-125 . -684) T) ((-125 . -21) T) ((-125 . -604) 10515) ((-125 . -23) T) ((-125 . -1041) T) ((-125 . -568) 10497) ((-125 . -1157) T) ((-125 . -73) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -606) 10471) ((-125 . -571) 10440) ((-125 . -38) 10424) ((-125 . -82) 10403) ((-125 . -991) 10387) ((-125 . -996) 10371) ((-125 . -598) 10355) ((-125 . -675) 10339) ((-125 . -1215) 10323) ((-117 . -777) T) ((-117 . -784) T) ((-117 . -781) T) ((-117 . -1041) T) ((-117 . -568) 10305) ((-117 . -1157) T) ((-117 . -73) T) ((-117 . -323) T) ((-114 . -1041) T) ((-114 . -568) 10287) ((-114 . -1157) T) ((-114 . -73) T) ((-114 . -569) 10246) ((-114 . -380) 10228) ((-114 . -1039) 10210) ((-114 . -323) T) ((-114 . -192) 10192) ((-114 . -124) 10174) ((-114 . -443) 10156) ((-114 . -468) NIL) ((-114 . -263) NIL) ((-114 . -34) T) ((-114 . -78) 10138) ((-114 . -183) 10120) ((-113 . -568) 10102) ((-112 . -160) T) ((-112 . -1041) T) ((-112 . -568) 10069) ((-112 . -1157) T) ((-112 . -73) T) ((-112 . -770) 10051) ((-111 . -1023) T) ((-111 . -444) 10032) ((-111 . -568) 9998) ((-111 . -571) 9979) ((-111 . -1041) T) ((-111 . -1157) T) ((-111 . -73) T) ((-111 . -64) T) ((-110 . -1023) T) ((-110 . -444) 9960) ((-110 . -568) 9926) ((-110 . -571) 9907) ((-110 . -1041) T) ((-110 . -1157) T) ((-110 . -73) T) ((-110 . -64) T) ((-108 . -419) 9884) ((-108 . -571) 9780) ((-108 . -978) 9764) ((-108 . -1041) T) ((-108 . -568) 9746) ((-108 . -1157) T) ((-108 . -73) T) ((-108 . -424) 9701) ((-108 . -240) 9678) ((-107 . -781) T) ((-107 . -568) 9660) ((-107 . -1041) T) ((-107 . -73) T) ((-107 . -1157) T) ((-107 . -784) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -684) T) ((-107 . -1052) T) ((-107 . -978) 9642) ((-107 . -571) 9624) ((-106 . -1023) T) ((-106 . -444) 9605) ((-106 . -568) 9571) ((-106 . -571) 9552) ((-106 . -1041) T) ((-106 . -1157) T) ((-106 . -73) T) ((-106 . -64) T) ((-103 . -1041) T) ((-103 . -568) 9534) ((-103 . -1157) T) ((-103 . -73) T) ((-102 . -19) 9516) ((-102 . -609) 9498) ((-102 . -242) 9473) ((-102 . -240) 9423) ((-102 . -554) 9398) ((-102 . -569) NIL) ((-102 . -443) 9380) ((-102 . -1041) T) ((-102 . -468) NIL) ((-102 . -263) NIL) ((-102 . -568) 9324) ((-102 . -73) T) ((-102 . -1157) T) ((-102 . -34) T) ((-102 . -124) 9306) ((-102 . -781) T) ((-102 . -784) T) ((-102 . -327) 9288) ((-101 . -777) T) ((-101 . -784) T) ((-101 . -781) T) ((-101 . -1041) T) ((-101 . -568) 9270) ((-101 . -1157) T) ((-101 . -73) T) ((-101 . -323) T) ((-101 . -620) T) ((-100 . -98) 9254) ((-100 . -950) 9238) ((-100 . -34) T) ((-100 . -1157) T) ((-100 . -73) 9189) ((-100 . -568) 9121) ((-100 . -263) 9059) ((-100 . -468) 8992) ((-100 . -1041) 8970) ((-100 . -443) 8954) ((-100 . -92) 8938) ((-99 . -98) 8922) ((-99 . -950) 8906) ((-99 . -34) T) ((-99 . -1157) T) ((-99 . -73) 8857) ((-99 . -568) 8789) ((-99 . -263) 8727) ((-99 . -468) 8660) ((-99 . -1041) 8638) ((-99 . -443) 8622) ((-99 . -92) 8606) ((-94 . -98) 8590) ((-94 . -950) 8574) ((-94 . -34) T) ((-94 . -1157) T) ((-94 . -73) 8525) ((-94 . -568) 8457) ((-94 . -263) 8395) ((-94 . -468) 8328) ((-94 . -1041) 8306) ((-94 . -443) 8290) ((-94 . -92) 8274) ((-90 . -931) 8252) ((-90 . -1092) NIL) ((-90 . -978) 8230) ((-90 . -571) 8161) ((-90 . -569) NIL) ((-90 . -960) NIL) ((-90 . -848) NIL) ((-90 . -819) 8139) ((-90 . -780) NIL) ((-90 . -742) NIL) ((-90 . -739) NIL) ((-90 . -784) NIL) ((-90 . -781) NIL) ((-90 . -737) NIL) ((-90 . -735) NIL) ((-90 . -763) NIL) ((-90 . -821) NIL) ((-90 . -354) 8117) ((-90 . -596) 8095) ((-90 . -606) 8041) ((-90 . -332) 8019) ((-90 . -240) 7953) ((-90 . -263) 7900) ((-90 . -468) 7770) ((-90 . -293) 7748) ((-90 . -200) T) ((-90 . -82) 7667) ((-90 . -991) 7613) ((-90 . -996) 7559) ((-90 . -244) T) ((-90 . -675) 7505) ((-90 . -598) 7451) ((-90 . -604) 7382) ((-90 . -38) 7328) ((-90 . -261) T) ((-90 . -406) T) ((-90 . -146) T) ((-90 . -510) T) ((-90 . -859) T) ((-90 . -1162) T) ((-90 . -318) T) ((-90 . -190) NIL) ((-90 . -186) NIL) ((-90 . -189) NIL) ((-90 . -224) 7306) ((-90 . -831) NIL) ((-90 . -838) NIL) ((-90 . -836) NIL) ((-90 . -184) 7284) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -73) T) ((-90 . -1157) T) ((-90 . -568) 7266) ((-90 . -1041) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -989) T) ((-90 . -997) T) ((-90 . -1052) T) ((-90 . -684) T) ((-89 . -804) 7250) ((-89 . -859) T) ((-89 . -510) T) ((-89 . -244) T) ((-89 . -146) T) ((-89 . -571) 7222) ((-89 . -675) 7209) ((-89 . -598) 7196) ((-89 . -996) 7183) ((-89 . -991) 7170) ((-89 . -82) 7155) ((-89 . -38) 7142) ((-89 . -406) T) ((-89 . -261) T) ((-89 . -989) T) ((-89 . -997) T) ((-89 . -1052) T) ((-89 . -684) T) ((-89 . -21) T) ((-89 . -604) 7114) ((-89 . -23) T) ((-89 . -1041) T) ((-89 . -568) 7096) ((-89 . -1157) T) ((-89 . -73) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -606) 7083) ((-89 . -120) T) ((-86 . -781) T) ((-86 . -568) 7065) ((-86 . -1041) T) ((-86 . -73) T) ((-86 . -1157) T) ((-86 . -784) T) ((-86 . -770) 7046) ((-85 . -777) T) ((-85 . -784) T) ((-85 . -781) T) ((-85 . -1041) T) ((-85 . -568) 7028) ((-85 . -1157) T) ((-85 . -73) T) ((-85 . -323) T) ((-85 . -907) T) ((-85 . -620) T) ((-85 . -84) T) ((-85 . -569) 7010) ((-81 . -96) T) ((-81 . -327) 6993) ((-81 . -784) T) ((-81 . -781) T) ((-81 . -124) 6976) ((-81 . -34) T) ((-81 . -73) T) ((-81 . -568) 6958) ((-81 . -263) NIL) ((-81 . -468) NIL) ((-81 . -1041) T) ((-81 . -443) 6941) ((-81 . -569) 6923) ((-81 . -240) 6874) ((-81 . -554) 6850) ((-81 . -242) 6826) ((-81 . -609) 6809) ((-81 . -19) 6792) ((-81 . -620) T) ((-81 . -1157) T) ((-81 . -84) T) ((-80 . -568) 6774) ((-79 . -931) 6756) ((-79 . -1092) T) ((-79 . -571) 6706) ((-79 . -978) 6666) ((-79 . -569) 6596) ((-79 . -960) T) ((-79 . -848) NIL) ((-79 . -819) 6578) ((-79 . -780) T) ((-79 . -742) T) ((-79 . -739) T) ((-79 . -784) T) ((-79 . -781) T) ((-79 . -737) T) ((-79 . -735) T) ((-79 . -763) T) ((-79 . -821) 6560) ((-79 . -354) 6542) ((-79 . -596) 6524) ((-79 . -332) 6506) ((-79 . -240) NIL) ((-79 . -263) NIL) ((-79 . -468) NIL) ((-79 . -293) 6488) ((-79 . -200) T) ((-79 . -82) 6415) ((-79 . -991) 6365) ((-79 . -996) 6315) ((-79 . -244) T) ((-79 . -675) 6265) ((-79 . -598) 6215) ((-79 . -606) 6165) ((-79 . -604) 6115) ((-79 . -38) 6065) ((-79 . -261) T) ((-79 . -406) T) ((-79 . -146) T) ((-79 . -510) T) ((-79 . -859) T) ((-79 . -1162) T) ((-79 . -318) T) ((-79 . -190) T) ((-79 . -186) 6052) ((-79 . -189) T) ((-79 . -224) 6034) ((-79 . -831) NIL) ((-79 . -838) NIL) ((-79 . -836) NIL) ((-79 . -184) 6016) ((-79 . -120) T) ((-79 . -118) NIL) ((-79 . -104) T) ((-79 . -25) T) ((-79 . -73) T) ((-79 . -1157) T) ((-79 . -568) 5959) ((-79 . -1041) T) ((-79 . -23) T) ((-79 . -21) T) ((-79 . -989) T) ((-79 . -997) T) ((-79 . -1052) T) ((-79 . -684) T) ((-76 . -1041) T) ((-76 . -568) 5941) ((-76 . -1157) T) ((-76 . -73) T) ((-74 . -98) 5925) ((-74 . -950) 5909) ((-74 . -34) T) ((-74 . -1157) T) ((-74 . -73) 5860) ((-74 . -568) 5792) ((-74 . -263) 5730) ((-74 . -468) 5663) ((-74 . -1041) 5641) ((-74 . -443) 5625) ((-74 . -92) 5609) ((-70 . -427) T) ((-70 . -1052) T) ((-70 . -73) T) ((-70 . -1157) T) ((-70 . -568) 5591) ((-70 . -1041) T) ((-70 . -684) T) ((-70 . -240) 5570) ((-68 . -1041) T) ((-68 . -568) 5552) ((-68 . -1157) T) ((-68 . -73) T) ((-67 . -1023) T) ((-67 . -444) 5533) ((-67 . -568) 5499) ((-67 . -571) 5480) ((-67 . -1041) T) ((-67 . -1157) T) ((-67 . -73) T) ((-67 . -64) T) ((-62 . -1061) 5464) ((-62 . -443) 5448) ((-62 . -1041) 5426) ((-62 . -468) 5359) ((-62 . -263) 5297) ((-62 . -568) 5229) ((-62 . -73) 5180) ((-62 . -1157) T) ((-62 . -34) T) ((-62 . -78) 5164) ((-60 . -57) 5126) ((-60 . -34) T) ((-60 . -1157) T) ((-60 . -73) 5077) ((-60 . -568) 5009) ((-60 . -263) 4947) ((-60 . -468) 4880) ((-60 . -1041) 4858) ((-60 . -443) 4842) ((-58 . -19) 4826) ((-58 . -609) 4810) ((-58 . -242) 4787) ((-58 . -240) 4739) ((-58 . -554) 4716) ((-58 . -569) 4677) ((-58 . -443) 4661) ((-58 . -1041) 4611) ((-58 . -468) 4544) ((-58 . -263) 4482) ((-58 . -568) 4394) ((-58 . -73) 4325) ((-58 . -1157) T) ((-58 . -34) T) ((-58 . -124) 4309) ((-58 . -781) 4288) ((-58 . -784) 4267) ((-58 . -327) 4251) ((-55 . -1041) T) ((-55 . -568) 4233) ((-55 . -1157) T) ((-55 . -73) T) ((-55 . -978) 4215) ((-55 . -571) 4197) ((-51 . -1041) T) ((-51 . -568) 4179) ((-51 . -1157) T) ((-51 . -73) T) ((-50 . -576) 4163) ((-50 . -571) 4132) ((-50 . -606) 4106) ((-50 . -604) 4065) ((-50 . -684) T) ((-50 . -1052) T) ((-50 . -997) T) ((-50 . -989) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1041) T) ((-50 . -568) 4047) ((-50 . -1157) T) ((-50 . -73) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -978) 4031) ((-49 . -1041) T) ((-49 . -568) 4013) ((-49 . -1157) T) ((-49 . -73) T) ((-48 . -252) T) ((-48 . -73) T) ((-48 . -1157) T) ((-48 . -568) 3995) ((-48 . -1041) T) ((-48 . -571) 3896) ((-48 . -978) 3839) ((-48 . -468) 3805) ((-48 . -263) 3792) ((-48 . -27) T) ((-48 . -942) T) ((-48 . -200) T) ((-48 . -82) 3741) ((-48 . -991) 3706) ((-48 . -996) 3671) ((-48 . -244) T) ((-48 . -675) 3636) ((-48 . -598) 3601) ((-48 . -606) 3551) ((-48 . -604) 3501) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -989) T) ((-48 . -997) T) ((-48 . -1052) T) ((-48 . -684) T) ((-48 . -38) 3466) ((-48 . -261) T) ((-48 . -406) T) ((-48 . -146) T) ((-48 . -510) T) ((-48 . -859) T) ((-48 . -1162) T) ((-48 . -318) T) ((-48 . -596) 3426) ((-48 . -960) T) ((-48 . -569) 3371) ((-48 . -120) T) ((-48 . -190) T) ((-48 . -186) 3358) ((-48 . -189) T) ((-45 . -36) 3337) ((-45 . -554) 3260) ((-45 . -263) 3058) ((-45 . -468) 2810) ((-45 . -443) 2745) ((-45 . -240) 2643) ((-45 . -242) 2566) ((-45 . -565) 2545) ((-45 . -192) 2493) ((-45 . -78) 2441) ((-45 . -183) 2389) ((-45 . -1134) 2368) ((-45 . -236) 2316) ((-45 . -124) 2264) ((-45 . -34) T) ((-45 . -1157) T) ((-45 . -73) T) ((-45 . -568) 2246) ((-45 . -1041) T) ((-45 . -569) NIL) ((-45 . -609) 2194) ((-45 . -327) 2142) ((-45 . -784) NIL) ((-45 . -781) NIL) ((-45 . -1090) 2090) ((-45 . -950) 2038) ((-45 . -1196) 1986) ((-45 . -624) 1934) ((-44 . -372) 1918) ((-44 . -702) 1902) ((-44 . -678) T) ((-44 . -704) T) ((-44 . -82) 1881) ((-44 . -991) 1865) ((-44 . -996) 1849) ((-44 . -21) T) ((-44 . -604) 1792) ((-44 . -23) T) ((-44 . -1041) T) ((-44 . -568) 1774) ((-44 . -73) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -606) 1732) ((-44 . -598) 1716) ((-44 . -675) 1700) ((-44 . -322) 1684) ((-44 . -1157) T) ((-44 . -240) 1661) ((-40 . -297) 1635) ((-40 . -146) T) ((-40 . -571) 1565) ((-40 . -684) T) ((-40 . -1052) T) ((-40 . -997) T) ((-40 . -989) T) ((-40 . -606) 1467) ((-40 . -604) 1397) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -73) T) ((-40 . -1157) T) ((-40 . -568) 1379) ((-40 . -1041) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -996) 1324) ((-40 . -991) 1269) ((-40 . -82) 1186) ((-40 . -569) 1170) ((-40 . -184) 1147) ((-40 . -836) 1099) ((-40 . -838) 1008) ((-40 . -831) 915) ((-40 . -224) 892) ((-40 . -189) 829) ((-40 . -186) 760) ((-40 . -190) 732) ((-40 . -318) T) ((-40 . -1162) T) ((-40 . -859) T) ((-40 . -510) T) ((-40 . -675) 677) ((-40 . -598) 622) ((-40 . -38) 567) ((-40 . -406) T) ((-40 . -261) T) ((-40 . -244) T) ((-40 . -200) T) ((-40 . -323) NIL) ((-40 . -305) NIL) ((-40 . -1092) NIL) ((-40 . -118) 539) ((-40 . -356) NIL) ((-40 . -364) 511) ((-40 . -120) 483) ((-40 . -325) 455) ((-40 . -332) 432) ((-40 . -596) 366) ((-40 . -366) 343) ((-40 . -978) 220) ((-40 . -682) 192) ((-31 . -1023) T) ((-31 . -444) 173) ((-31 . -568) 139) ((-31 . -571) 120) ((-31 . -1041) T) ((-31 . -1157) T) ((-31 . -73) T) ((-31 . -64) T) ((-30 . -893) T) ((-30 . -568) 102) ((0 . |EnumerationCategory|) T) ((0 . -568) 84) ((0 . -1041) T) ((0 . -73) T) ((0 . -1157) T) ((-2 . |RecordCategory|) T) ((-2 . -568) 66) ((-2 . -1041) T) ((-2 . -73) T) ((-2 . -1157) T) ((-3 . |UnionCategory|) T) ((-3 . -568) 48) ((-3 . -1041) T) ((-3 . -73) T) ((-3 . -1157) T) ((-1 . -1041) T) ((-1 . -568) 30) ((-1 . -1157) T) ((-1 . -73) T))
\ No newline at end of file +((((-478)) . T)) +(((-3) T) ((-2) T) ((-1) T) ((0) T) ((-1198 . -144) T) ((-1198 . -550) 198659) ((-1198 . -658) T) ((-1198 . -1015) T) ((-1198 . -962) T) ((-1198 . -954) T) ((-1198 . -585) 198646) ((-1198 . -583) 198618) ((-1198 . -102) T) ((-1198 . -25) T) ((-1198 . -72) T) ((-1198 . -1118) T) ((-1198 . -547) 198600) ((-1198 . -1005) T) ((-1198 . -23) T) ((-1198 . -21) T) ((-1198 . -961) 198587) ((-1198 . -956) 198574) ((-1198 . -80) 198559) ((-1198 . -313) T) ((-1198 . -548) 198541) ((-1198 . -1055) T) ((-1194 . -1005) T) ((-1194 . -547) 198508) ((-1194 . -1118) T) ((-1194 . -72) T) ((-1194 . -423) 198490) ((-1194 . -550) 198472) ((-1193 . -1191) 198451) ((-1193 . -943) 198428) ((-1193 . -550) 198377) ((-1193 . -954) T) ((-1193 . -962) T) ((-1193 . -1015) T) ((-1193 . -658) T) ((-1193 . -21) T) ((-1193 . -583) 198336) ((-1193 . -23) T) ((-1193 . -1005) T) ((-1193 . -547) 198318) ((-1193 . -1118) T) ((-1193 . -72) T) ((-1193 . -25) T) ((-1193 . -102) T) ((-1193 . -585) 198292) ((-1193 . -1183) 198276) ((-1193 . -649) 198246) ((-1193 . -577) 198216) ((-1193 . -961) 198200) ((-1193 . -956) 198184) ((-1193 . -80) 198163) ((-1193 . -38) 198133) ((-1193 . -1188) 198112) ((-1192 . -954) T) ((-1192 . -962) T) ((-1192 . -1015) T) ((-1192 . -658) T) ((-1192 . -21) T) ((-1192 . -583) 198071) ((-1192 . -23) T) ((-1192 . -1005) T) ((-1192 . -547) 198053) ((-1192 . -1118) T) ((-1192 . -72) T) ((-1192 . -25) T) ((-1192 . -102) T) ((-1192 . -585) 198027) ((-1192 . -550) 197983) ((-1192 . -1183) 197967) ((-1192 . -649) 197937) ((-1192 . -577) 197907) ((-1192 . -961) 197891) ((-1192 . -956) 197875) ((-1192 . -80) 197854) ((-1192 . -38) 197824) ((-1192 . -328) 197803) ((-1192 . -943) 197787) ((-1190 . -1191) 197763) ((-1190 . -943) 197737) ((-1190 . -550) 197683) ((-1190 . -954) T) ((-1190 . -962) T) ((-1190 . -1015) T) ((-1190 . -658) T) ((-1190 . -21) T) ((-1190 . -583) 197642) ((-1190 . -23) T) ((-1190 . -1005) T) ((-1190 . -547) 197624) ((-1190 . -1118) T) ((-1190 . -72) T) ((-1190 . -25) T) ((-1190 . -102) T) ((-1190 . -585) 197598) ((-1190 . -1183) 197582) ((-1190 . -649) 197552) ((-1190 . -577) 197522) ((-1190 . -961) 197506) ((-1190 . -956) 197490) ((-1190 . -80) 197469) ((-1190 . -38) 197439) ((-1190 . -1188) 197415) ((-1189 . -1191) 197394) ((-1189 . -943) 197351) ((-1189 . -550) 197280) ((-1189 . -954) T) ((-1189 . -962) T) ((-1189 . -1015) T) ((-1189 . -658) T) ((-1189 . -21) T) ((-1189 . -583) 197239) ((-1189 . -23) T) ((-1189 . -1005) T) ((-1189 . -547) 197221) ((-1189 . -1118) T) ((-1189 . -72) T) ((-1189 . -25) T) ((-1189 . -102) T) ((-1189 . -585) 197195) ((-1189 . -1183) 197179) ((-1189 . -649) 197149) ((-1189 . -577) 197119) ((-1189 . -961) 197103) ((-1189 . -956) 197087) ((-1189 . -80) 197066) ((-1189 . -38) 197036) ((-1189 . -1188) 197015) ((-1189 . -328) 196987) ((-1184 . -328) 196959) ((-1184 . -550) 196908) ((-1184 . -943) 196885) ((-1184 . -577) 196855) ((-1184 . -649) 196825) ((-1184 . -585) 196799) ((-1184 . -583) 196758) ((-1184 . -102) T) ((-1184 . -25) T) ((-1184 . -72) T) ((-1184 . -1118) T) ((-1184 . -547) 196740) ((-1184 . -1005) T) ((-1184 . -23) T) ((-1184 . -21) T) ((-1184 . -961) 196724) ((-1184 . -956) 196708) ((-1184 . -80) 196687) ((-1184 . -1191) 196666) ((-1184 . -954) T) ((-1184 . -962) T) ((-1184 . -1015) T) ((-1184 . -658) T) ((-1184 . -1183) 196650) ((-1184 . -38) 196620) ((-1184 . -1188) 196599) ((-1182 . -1113) 196568) ((-1182 . -547) 196530) ((-1182 . -122) 196514) ((-1182 . -34) T) ((-1182 . -1118) T) ((-1182 . -72) T) ((-1182 . -256) 196452) ((-1182 . -447) 196385) ((-1182 . -1005) T) ((-1182 . -422) 196369) ((-1182 . -548) 196330) ((-1182 . -882) 196299) ((-1181 . -954) T) ((-1181 . -962) T) ((-1181 . -1015) T) ((-1181 . -658) T) ((-1181 . -21) T) ((-1181 . -583) 196244) ((-1181 . -23) T) ((-1181 . -1005) T) ((-1181 . -547) 196213) ((-1181 . -1118) T) ((-1181 . -72) T) ((-1181 . -25) T) ((-1181 . -102) T) ((-1181 . -585) 196173) ((-1181 . -550) 196115) ((-1181 . -423) 196099) ((-1181 . -38) 196069) ((-1181 . -80) 196034) ((-1181 . -956) 196004) ((-1181 . -961) 195974) ((-1181 . -577) 195944) ((-1181 . -649) 195914) ((-1180 . -987) T) ((-1180 . -423) 195895) ((-1180 . -547) 195861) ((-1180 . -550) 195842) ((-1180 . -1005) T) ((-1180 . -1118) T) ((-1180 . -72) T) ((-1180 . -64) T) ((-1179 . -987) T) ((-1179 . -423) 195823) ((-1179 . -547) 195789) ((-1179 . -550) 195770) ((-1179 . -1005) T) ((-1179 . -1118) T) ((-1179 . -72) T) ((-1179 . -64) T) ((-1174 . -547) 195752) ((-1172 . -1005) T) ((-1172 . -547) 195734) ((-1172 . -1118) T) ((-1172 . -72) T) ((-1171 . -1005) T) ((-1171 . -547) 195716) ((-1171 . -1118) T) ((-1171 . -72) T) ((-1168 . -1167) 195700) ((-1168 . -317) 195684) ((-1168 . -752) 195663) ((-1168 . -749) 195642) ((-1168 . -122) 195626) ((-1168 . -34) T) ((-1168 . -1118) T) ((-1168 . -72) 195560) ((-1168 . -547) 195475) ((-1168 . -256) 195413) ((-1168 . -447) 195346) ((-1168 . -1005) 195299) ((-1168 . -422) 195283) ((-1168 . -548) 195244) ((-1168 . -238) 195196) ((-1168 . -533) 195173) ((-1168 . -240) 195150) ((-1168 . -588) 195134) ((-1168 . -19) 195118) ((-1165 . -1005) T) ((-1165 . -547) 195084) ((-1165 . -1118) T) ((-1165 . -72) T) ((-1158 . -1161) 195068) ((-1158 . -188) 195027) ((-1158 . -550) 194909) ((-1158 . -585) 194834) ((-1158 . -583) 194744) ((-1158 . -102) T) ((-1158 . -25) T) ((-1158 . -72) T) ((-1158 . -547) 194726) ((-1158 . -1005) T) ((-1158 . -23) T) ((-1158 . -21) T) ((-1158 . -658) T) ((-1158 . -1015) T) ((-1158 . -962) T) ((-1158 . -954) T) ((-1158 . -184) 194679) ((-1158 . -1118) T) ((-1158 . -187) 194638) ((-1158 . -238) 194603) ((-1158 . -802) 194516) ((-1158 . -799) 194404) ((-1158 . -804) 194317) ((-1158 . -879) 194287) ((-1158 . -38) 194184) ((-1158 . -80) 194049) ((-1158 . -956) 193935) ((-1158 . -961) 193821) ((-1158 . -577) 193718) ((-1158 . -649) 193615) ((-1158 . -116) 193594) ((-1158 . -118) 193573) ((-1158 . -144) 193527) ((-1158 . -489) 193506) ((-1158 . -242) 193485) ((-1158 . -47) 193462) ((-1158 . -1147) 193439) ((-1158 . -35) 193405) ((-1158 . -66) 193371) ((-1158 . -236) 193337) ((-1158 . -426) 193303) ((-1158 . -1107) 193269) ((-1158 . -1104) 193235) ((-1158 . -908) 193201) ((-1155 . -273) 193145) ((-1155 . -943) 193111) ((-1155 . -348) 193077) ((-1155 . -38) 192934) ((-1155 . -550) 192808) ((-1155 . -585) 192697) ((-1155 . -583) 192571) ((-1155 . -658) T) ((-1155 . -1015) T) ((-1155 . -962) T) ((-1155 . -954) T) ((-1155 . -80) 192421) ((-1155 . -956) 192310) ((-1155 . -961) 192199) ((-1155 . -21) T) ((-1155 . -23) T) ((-1155 . -1005) T) ((-1155 . -547) 192181) ((-1155 . -1118) T) ((-1155 . -72) T) ((-1155 . -25) T) ((-1155 . -102) T) ((-1155 . -577) 192038) ((-1155 . -649) 191895) ((-1155 . -116) 191856) ((-1155 . -118) 191817) ((-1155 . -144) T) ((-1155 . -489) T) ((-1155 . -242) T) ((-1155 . -47) 191761) ((-1154 . -1153) 191740) ((-1154 . -308) 191719) ((-1154 . -1123) 191698) ((-1154 . -825) 191677) ((-1154 . -489) 191631) ((-1154 . -144) 191565) ((-1154 . -550) 191384) ((-1154 . -649) 191231) ((-1154 . -577) 191078) ((-1154 . -38) 190925) ((-1154 . -385) 190904) ((-1154 . -254) 190883) ((-1154 . -585) 190783) ((-1154 . -583) 190668) ((-1154 . -658) T) ((-1154 . -1015) T) ((-1154 . -962) T) ((-1154 . -954) T) ((-1154 . -80) 190488) ((-1154 . -956) 190329) ((-1154 . -961) 190170) ((-1154 . -21) T) ((-1154 . -23) T) ((-1154 . -1005) T) ((-1154 . -547) 190152) ((-1154 . -1118) T) ((-1154 . -72) T) ((-1154 . -25) T) ((-1154 . -102) T) ((-1154 . -242) 190106) ((-1154 . -198) 190085) ((-1154 . -908) 190051) ((-1154 . -1104) 190017) ((-1154 . -1107) 189983) ((-1154 . -426) 189949) ((-1154 . -236) 189915) ((-1154 . -66) 189881) ((-1154 . -35) 189847) ((-1154 . -1147) 189817) ((-1154 . -47) 189787) ((-1154 . -118) 189766) ((-1154 . -116) 189745) ((-1154 . -879) 189708) ((-1154 . -804) 189614) ((-1154 . -799) 189518) ((-1154 . -802) 189424) ((-1154 . -238) 189382) ((-1154 . -187) 189334) ((-1154 . -184) 189280) ((-1154 . -188) 189232) ((-1154 . -1151) 189216) ((-1154 . -943) 189200) ((-1149 . -1153) 189161) ((-1149 . -308) 189140) ((-1149 . -1123) 189119) ((-1149 . -825) 189098) ((-1149 . -489) 189052) ((-1149 . -144) 188986) ((-1149 . -550) 188735) ((-1149 . -649) 188582) ((-1149 . -577) 188429) ((-1149 . -38) 188276) ((-1149 . -385) 188255) ((-1149 . -254) 188234) ((-1149 . -585) 188134) ((-1149 . -583) 188019) ((-1149 . -658) T) ((-1149 . -1015) T) ((-1149 . -962) T) ((-1149 . -954) T) ((-1149 . -80) 187839) ((-1149 . -956) 187680) ((-1149 . -961) 187521) ((-1149 . -21) T) ((-1149 . -23) T) ((-1149 . -1005) T) ((-1149 . -547) 187503) ((-1149 . -1118) T) ((-1149 . -72) T) ((-1149 . -25) T) ((-1149 . -102) T) ((-1149 . -242) 187457) ((-1149 . -198) 187436) ((-1149 . -908) 187402) ((-1149 . -1104) 187368) ((-1149 . -1107) 187334) ((-1149 . -426) 187300) ((-1149 . -236) 187266) ((-1149 . -66) 187232) ((-1149 . -35) 187198) ((-1149 . -1147) 187168) ((-1149 . -47) 187138) ((-1149 . -118) 187117) ((-1149 . -116) 187096) ((-1149 . -879) 187059) ((-1149 . -804) 186965) ((-1149 . -799) 186846) ((-1149 . -802) 186752) ((-1149 . -238) 186710) ((-1149 . -187) 186662) ((-1149 . -184) 186608) ((-1149 . -188) 186560) ((-1149 . -1151) 186544) ((-1149 . -943) 186479) ((-1137 . -1144) 186463) ((-1137 . -1055) 186441) ((-1137 . -548) NIL) ((-1137 . -256) 186428) ((-1137 . -447) 186376) ((-1137 . -273) 186353) ((-1137 . -943) 186236) ((-1137 . -348) 186220) ((-1137 . -38) 186052) ((-1137 . -80) 185857) ((-1137 . -956) 185683) ((-1137 . -961) 185509) ((-1137 . -583) 185419) ((-1137 . -585) 185308) ((-1137 . -577) 185140) ((-1137 . -649) 184972) ((-1137 . -550) 184728) ((-1137 . -116) 184707) ((-1137 . -118) 184686) ((-1137 . -47) 184663) ((-1137 . -322) 184647) ((-1137 . -575) 184595) ((-1137 . -802) 184539) ((-1137 . -799) 184446) ((-1137 . -804) 184357) ((-1137 . -789) NIL) ((-1137 . -814) 184336) ((-1137 . -1123) 184315) ((-1137 . -854) 184285) ((-1137 . -825) 184264) ((-1137 . -489) 184178) ((-1137 . -242) 184092) ((-1137 . -144) 183986) ((-1137 . -385) 183920) ((-1137 . -254) 183899) ((-1137 . -238) 183826) ((-1137 . -188) T) ((-1137 . -102) T) ((-1137 . -25) T) ((-1137 . -72) T) ((-1137 . -547) 183808) ((-1137 . -1005) T) ((-1137 . -23) T) ((-1137 . -21) T) ((-1137 . -658) T) ((-1137 . -1015) T) ((-1137 . -962) T) ((-1137 . -954) T) ((-1137 . -184) 183795) ((-1137 . -1118) T) ((-1137 . -187) T) ((-1137 . -222) 183779) ((-1137 . -182) 183763) ((-1135 . -998) 183747) ((-1135 . -552) 183731) ((-1135 . -1005) 183709) ((-1135 . -547) 183676) ((-1135 . -1118) 183654) ((-1135 . -72) 183632) ((-1135 . -999) 183589) ((-1133 . -1132) 183568) ((-1133 . -908) 183534) ((-1133 . -1104) 183500) ((-1133 . -1107) 183466) ((-1133 . -426) 183432) ((-1133 . -236) 183398) ((-1133 . -66) 183364) ((-1133 . -35) 183330) ((-1133 . -1147) 183307) ((-1133 . -47) 183284) ((-1133 . -550) 183039) ((-1133 . -649) 182859) ((-1133 . -577) 182679) ((-1133 . -585) 182490) ((-1133 . -583) 182348) ((-1133 . -961) 182162) ((-1133 . -956) 181976) ((-1133 . -80) 181764) ((-1133 . -38) 181584) ((-1133 . -879) 181554) ((-1133 . -238) 181454) ((-1133 . -1130) 181438) ((-1133 . -658) T) ((-1133 . -1015) T) ((-1133 . -962) T) ((-1133 . -954) T) ((-1133 . -21) T) ((-1133 . -23) T) ((-1133 . -1005) T) ((-1133 . -547) 181420) ((-1133 . -1118) T) ((-1133 . -72) T) ((-1133 . -25) T) ((-1133 . -102) T) ((-1133 . -116) 181348) ((-1133 . -118) 181276) ((-1133 . -548) 180949) ((-1133 . -182) 180919) ((-1133 . -802) 180773) ((-1133 . -804) 180573) ((-1133 . -799) 180371) ((-1133 . -222) 180341) ((-1133 . -187) 180203) ((-1133 . -184) 180059) ((-1133 . -188) 179967) ((-1133 . -308) 179946) ((-1133 . -1123) 179925) ((-1133 . -825) 179904) ((-1133 . -489) 179858) ((-1133 . -144) 179792) ((-1133 . -385) 179771) ((-1133 . -254) 179750) ((-1133 . -242) 179704) ((-1133 . -198) 179683) ((-1133 . -284) 179653) ((-1133 . -447) 179513) ((-1133 . -256) 179452) ((-1133 . -322) 179422) ((-1133 . -575) 179330) ((-1133 . -336) 179300) ((-1133 . -789) 179173) ((-1133 . -733) 179126) ((-1133 . -707) 179079) ((-1133 . -709) 179032) ((-1133 . -749) 178934) ((-1133 . -752) 178836) ((-1133 . -711) 178789) ((-1133 . -714) 178742) ((-1133 . -748) 178695) ((-1133 . -787) 178665) ((-1133 . -814) 178618) ((-1133 . -926) 178571) ((-1133 . -943) 178360) ((-1133 . -1055) 178312) ((-1133 . -897) 178282) ((-1128 . -1132) 178243) ((-1128 . -908) 178209) ((-1128 . -1104) 178175) ((-1128 . -1107) 178141) ((-1128 . -426) 178107) ((-1128 . -236) 178073) ((-1128 . -66) 178039) ((-1128 . -35) 178005) ((-1128 . -1147) 177982) ((-1128 . -47) 177959) ((-1128 . -550) 177760) ((-1128 . -649) 177562) ((-1128 . -577) 177364) ((-1128 . -585) 177219) ((-1128 . -583) 177059) ((-1128 . -961) 176855) ((-1128 . -956) 176651) ((-1128 . -80) 176403) ((-1128 . -38) 176205) ((-1128 . -879) 176175) ((-1128 . -238) 176003) ((-1128 . -1130) 175987) ((-1128 . -658) T) ((-1128 . -1015) T) ((-1128 . -962) T) ((-1128 . -954) T) ((-1128 . -21) T) ((-1128 . -23) T) ((-1128 . -1005) T) ((-1128 . -547) 175969) ((-1128 . -1118) T) ((-1128 . -72) T) ((-1128 . -25) T) ((-1128 . -102) T) ((-1128 . -116) 175879) ((-1128 . -118) 175789) ((-1128 . -548) NIL) ((-1128 . -182) 175741) ((-1128 . -802) 175577) ((-1128 . -804) 175341) ((-1128 . -799) 175080) ((-1128 . -222) 175032) ((-1128 . -187) 174858) ((-1128 . -184) 174678) ((-1128 . -188) 174568) ((-1128 . -308) 174547) ((-1128 . -1123) 174526) ((-1128 . -825) 174505) ((-1128 . -489) 174459) ((-1128 . -144) 174393) ((-1128 . -385) 174372) ((-1128 . -254) 174351) ((-1128 . -242) 174305) ((-1128 . -198) 174284) ((-1128 . -284) 174236) ((-1128 . -447) 173970) ((-1128 . -256) 173855) ((-1128 . -322) 173807) ((-1128 . -575) 173759) ((-1128 . -336) 173711) ((-1128 . -789) NIL) ((-1128 . -733) NIL) ((-1128 . -707) NIL) ((-1128 . -709) NIL) ((-1128 . -749) NIL) ((-1128 . -752) NIL) ((-1128 . -711) NIL) ((-1128 . -714) NIL) ((-1128 . -748) NIL) ((-1128 . -787) 173663) ((-1128 . -814) NIL) ((-1128 . -926) NIL) ((-1128 . -943) 173629) ((-1128 . -1055) NIL) ((-1128 . -897) 173581) ((-1127 . -745) T) ((-1127 . -752) T) ((-1127 . -749) T) ((-1127 . -1005) T) ((-1127 . -547) 173563) ((-1127 . -1118) T) ((-1127 . -72) T) ((-1127 . -313) T) ((-1127 . -599) T) ((-1126 . -745) T) ((-1126 . -752) T) ((-1126 . -749) T) ((-1126 . -1005) T) ((-1126 . -547) 173545) ((-1126 . -1118) T) ((-1126 . -72) T) ((-1126 . -313) T) ((-1126 . -599) T) ((-1125 . -745) T) ((-1125 . -752) T) ((-1125 . -749) T) ((-1125 . -1005) T) ((-1125 . -547) 173527) ((-1125 . -1118) T) ((-1125 . -72) T) ((-1125 . -313) T) ((-1125 . -599) T) ((-1124 . -745) T) ((-1124 . -752) T) ((-1124 . -749) T) ((-1124 . -1005) T) ((-1124 . -547) 173509) ((-1124 . -1118) T) ((-1124 . -72) T) ((-1124 . -313) T) ((-1124 . -599) T) ((-1119 . -987) T) ((-1119 . -423) 173490) ((-1119 . -547) 173456) ((-1119 . -550) 173437) ((-1119 . -1005) T) ((-1119 . -1118) T) ((-1119 . -72) T) ((-1119 . -64) T) ((-1116 . -423) 173414) ((-1116 . -547) 173355) ((-1116 . -550) 173332) ((-1116 . -1005) 173310) ((-1116 . -1118) 173288) ((-1116 . -72) 173266) ((-1111 . -672) 173242) ((-1111 . -35) 173208) ((-1111 . -66) 173174) ((-1111 . -236) 173140) ((-1111 . -426) 173106) ((-1111 . -1107) 173072) ((-1111 . -1104) 173038) ((-1111 . -908) 173004) ((-1111 . -47) 172973) ((-1111 . -38) 172870) ((-1111 . -577) 172767) ((-1111 . -649) 172664) ((-1111 . -550) 172546) ((-1111 . -242) 172525) ((-1111 . -489) 172504) ((-1111 . -80) 172369) ((-1111 . -956) 172255) ((-1111 . -961) 172141) ((-1111 . -144) 172095) ((-1111 . -118) 172074) ((-1111 . -116) 172053) ((-1111 . -585) 171978) ((-1111 . -583) 171888) ((-1111 . -879) 171849) ((-1111 . -804) 171830) ((-1111 . -1118) T) ((-1111 . -799) 171809) ((-1111 . -954) T) ((-1111 . -962) T) ((-1111 . -1015) T) ((-1111 . -658) T) ((-1111 . -21) T) ((-1111 . -23) T) ((-1111 . -1005) T) ((-1111 . -547) 171791) ((-1111 . -72) T) ((-1111 . -25) T) ((-1111 . -102) T) ((-1111 . -802) 171772) ((-1111 . -447) 171739) ((-1111 . -256) 171726) ((-1105 . -916) 171710) ((-1105 . -34) T) ((-1105 . -1118) T) ((-1105 . -72) 171664) ((-1105 . -547) 171599) ((-1105 . -256) 171537) ((-1105 . -447) 171470) ((-1105 . -1005) 171448) ((-1105 . -422) 171432) ((-1100 . -310) 171406) ((-1100 . -72) T) ((-1100 . -1118) T) ((-1100 . -547) 171388) ((-1100 . -1005) T) ((-1098 . -1005) T) ((-1098 . -547) 171370) ((-1098 . -1118) T) ((-1098 . -72) T) ((-1098 . -550) 171352) ((-1093 . -740) 171336) ((-1093 . -72) T) ((-1093 . -1118) T) ((-1093 . -547) 171318) ((-1093 . -1005) T) ((-1091 . -1096) 171297) ((-1091 . -181) 171245) ((-1091 . -76) 171193) ((-1091 . -256) 170991) ((-1091 . -447) 170743) ((-1091 . -422) 170678) ((-1091 . -122) 170626) ((-1091 . -548) NIL) ((-1091 . -190) 170574) ((-1091 . -544) 170553) ((-1091 . -240) 170532) ((-1091 . -1118) T) ((-1091 . -238) 170511) ((-1091 . -1005) T) ((-1091 . -547) 170493) ((-1091 . -72) T) ((-1091 . -34) T) ((-1091 . -533) 170472) ((-1087 . -1005) T) ((-1087 . -547) 170454) ((-1087 . -1118) T) ((-1087 . -72) T) ((-1086 . -745) T) ((-1086 . -752) T) ((-1086 . -749) T) ((-1086 . -1005) T) ((-1086 . -547) 170436) ((-1086 . -1118) T) ((-1086 . -72) T) ((-1086 . -313) T) ((-1086 . -599) T) ((-1085 . -745) T) ((-1085 . -752) T) ((-1085 . -749) T) ((-1085 . -1005) T) ((-1085 . -547) 170418) ((-1085 . -1118) T) ((-1085 . -72) T) ((-1085 . -313) T) ((-1084 . -1164) T) ((-1084 . -1005) T) ((-1084 . -547) 170385) ((-1084 . -1118) T) ((-1084 . -72) T) ((-1084 . -943) 170321) ((-1084 . -550) 170257) ((-1083 . -547) 170239) ((-1082 . -547) 170221) ((-1081 . -273) 170198) ((-1081 . -943) 170096) ((-1081 . -348) 170080) ((-1081 . -38) 169977) ((-1081 . -550) 169834) ((-1081 . -585) 169759) ((-1081 . -583) 169669) ((-1081 . -658) T) ((-1081 . -1015) T) ((-1081 . -962) T) ((-1081 . -954) T) ((-1081 . -80) 169534) ((-1081 . -956) 169420) ((-1081 . -961) 169306) ((-1081 . -21) T) ((-1081 . -23) T) ((-1081 . -1005) T) ((-1081 . -547) 169288) ((-1081 . -1118) T) ((-1081 . -72) T) ((-1081 . -25) T) ((-1081 . -102) T) ((-1081 . -577) 169185) ((-1081 . -649) 169082) ((-1081 . -116) 169061) ((-1081 . -118) 169040) ((-1081 . -144) 168994) ((-1081 . -489) 168973) ((-1081 . -242) 168952) ((-1081 . -47) 168929) ((-1079 . -749) T) ((-1079 . -547) 168911) ((-1079 . -1005) T) ((-1079 . -72) T) ((-1079 . -1118) T) ((-1079 . -752) T) ((-1079 . -548) 168833) ((-1079 . -550) 168799) ((-1079 . -943) 168781) ((-1079 . -789) 168748) ((-1078 . -1161) 168732) ((-1078 . -188) 168691) ((-1078 . -550) 168573) ((-1078 . -585) 168498) ((-1078 . -583) 168408) ((-1078 . -102) T) ((-1078 . -25) T) ((-1078 . -72) T) ((-1078 . -547) 168390) ((-1078 . -1005) T) ((-1078 . -23) T) ((-1078 . -21) T) ((-1078 . -658) T) ((-1078 . -1015) T) ((-1078 . -962) T) ((-1078 . -954) T) ((-1078 . -184) 168343) ((-1078 . -1118) T) ((-1078 . -187) 168302) ((-1078 . -238) 168267) ((-1078 . -802) 168180) ((-1078 . -799) 168068) ((-1078 . -804) 167981) ((-1078 . -879) 167951) ((-1078 . -38) 167848) ((-1078 . -80) 167713) ((-1078 . -956) 167599) ((-1078 . -961) 167485) ((-1078 . -577) 167382) ((-1078 . -649) 167279) ((-1078 . -116) 167258) ((-1078 . -118) 167237) ((-1078 . -144) 167191) ((-1078 . -489) 167170) ((-1078 . -242) 167149) ((-1078 . -47) 167126) ((-1078 . -1147) 167103) ((-1078 . -35) 167069) ((-1078 . -66) 167035) ((-1078 . -236) 167001) ((-1078 . -426) 166967) ((-1078 . -1107) 166933) ((-1078 . -1104) 166899) ((-1078 . -908) 166865) ((-1077 . -1153) 166826) ((-1077 . -308) 166805) ((-1077 . -1123) 166784) ((-1077 . -825) 166763) ((-1077 . -489) 166717) ((-1077 . -144) 166651) ((-1077 . -550) 166400) ((-1077 . -649) 166247) ((-1077 . -577) 166094) ((-1077 . -38) 165941) ((-1077 . -385) 165920) ((-1077 . -254) 165899) ((-1077 . -585) 165799) ((-1077 . -583) 165684) ((-1077 . -658) T) ((-1077 . -1015) T) ((-1077 . -962) T) ((-1077 . -954) T) ((-1077 . -80) 165504) ((-1077 . -956) 165345) ((-1077 . -961) 165186) ((-1077 . -21) T) ((-1077 . -23) T) ((-1077 . -1005) T) ((-1077 . -547) 165168) ((-1077 . -1118) T) ((-1077 . -72) T) ((-1077 . -25) T) ((-1077 . -102) T) ((-1077 . -242) 165122) ((-1077 . -198) 165101) ((-1077 . -908) 165067) ((-1077 . -1104) 165033) ((-1077 . -1107) 164999) ((-1077 . -426) 164965) ((-1077 . -236) 164931) ((-1077 . -66) 164897) ((-1077 . -35) 164863) ((-1077 . -1147) 164833) ((-1077 . -47) 164803) ((-1077 . -118) 164782) ((-1077 . -116) 164761) ((-1077 . -879) 164724) ((-1077 . -804) 164630) ((-1077 . -799) 164511) ((-1077 . -802) 164417) ((-1077 . -238) 164375) ((-1077 . -187) 164327) ((-1077 . -184) 164273) ((-1077 . -188) 164225) ((-1077 . -1151) 164209) ((-1077 . -943) 164144) ((-1074 . -1144) 164128) ((-1074 . -1055) 164106) ((-1074 . -548) NIL) ((-1074 . -256) 164093) ((-1074 . -447) 164041) ((-1074 . -273) 164018) ((-1074 . -943) 163901) ((-1074 . -348) 163885) ((-1074 . -38) 163717) ((-1074 . -80) 163522) ((-1074 . -956) 163348) ((-1074 . -961) 163174) ((-1074 . -583) 163084) ((-1074 . -585) 162973) ((-1074 . -577) 162805) ((-1074 . -649) 162637) ((-1074 . -550) 162414) ((-1074 . -116) 162393) ((-1074 . -118) 162372) ((-1074 . -47) 162349) ((-1074 . -322) 162333) ((-1074 . -575) 162281) ((-1074 . -802) 162225) ((-1074 . -799) 162132) ((-1074 . -804) 162043) ((-1074 . -789) NIL) ((-1074 . -814) 162022) ((-1074 . -1123) 162001) ((-1074 . -854) 161971) ((-1074 . -825) 161950) ((-1074 . -489) 161864) ((-1074 . -242) 161778) ((-1074 . -144) 161672) ((-1074 . -385) 161606) ((-1074 . -254) 161585) ((-1074 . -238) 161512) ((-1074 . -188) T) ((-1074 . -102) T) ((-1074 . -25) T) ((-1074 . -72) T) ((-1074 . -547) 161494) ((-1074 . -1005) T) ((-1074 . -23) T) ((-1074 . -21) T) ((-1074 . -658) T) ((-1074 . -1015) T) ((-1074 . -962) T) ((-1074 . -954) T) ((-1074 . -184) 161481) ((-1074 . -1118) T) ((-1074 . -187) T) ((-1074 . -222) 161465) ((-1074 . -182) 161449) ((-1071 . -1132) 161410) ((-1071 . -908) 161376) ((-1071 . -1104) 161342) ((-1071 . -1107) 161308) ((-1071 . -426) 161274) ((-1071 . -236) 161240) ((-1071 . -66) 161206) ((-1071 . -35) 161172) ((-1071 . -1147) 161149) ((-1071 . -47) 161126) ((-1071 . -550) 160927) ((-1071 . -649) 160729) ((-1071 . -577) 160531) ((-1071 . -585) 160386) ((-1071 . -583) 160226) ((-1071 . -961) 160022) ((-1071 . -956) 159818) ((-1071 . -80) 159570) ((-1071 . -38) 159372) ((-1071 . -879) 159342) ((-1071 . -238) 159170) ((-1071 . -1130) 159154) ((-1071 . -658) T) ((-1071 . -1015) T) ((-1071 . -962) T) ((-1071 . -954) T) ((-1071 . -21) T) ((-1071 . -23) T) ((-1071 . -1005) T) ((-1071 . -547) 159136) ((-1071 . -1118) T) ((-1071 . -72) T) ((-1071 . -25) T) ((-1071 . -102) T) ((-1071 . -116) 159046) ((-1071 . -118) 158956) ((-1071 . -548) NIL) ((-1071 . -182) 158908) ((-1071 . -802) 158744) ((-1071 . -804) 158508) ((-1071 . -799) 158247) ((-1071 . -222) 158199) ((-1071 . -187) 158025) ((-1071 . -184) 157845) ((-1071 . -188) 157735) ((-1071 . -308) 157714) ((-1071 . -1123) 157693) ((-1071 . -825) 157672) ((-1071 . -489) 157626) ((-1071 . -144) 157560) ((-1071 . -385) 157539) ((-1071 . -254) 157518) ((-1071 . -242) 157472) ((-1071 . -198) 157451) ((-1071 . -284) 157403) ((-1071 . -447) 157137) ((-1071 . -256) 157022) ((-1071 . -322) 156974) ((-1071 . -575) 156926) ((-1071 . -336) 156878) ((-1071 . -789) NIL) ((-1071 . -733) NIL) ((-1071 . -707) NIL) ((-1071 . -709) NIL) ((-1071 . -749) NIL) ((-1071 . -752) NIL) ((-1071 . -711) NIL) ((-1071 . -714) NIL) ((-1071 . -748) NIL) ((-1071 . -787) 156830) ((-1071 . -814) NIL) ((-1071 . -926) NIL) ((-1071 . -943) 156796) ((-1071 . -1055) NIL) ((-1071 . -897) 156748) ((-1070 . -987) T) ((-1070 . -423) 156729) ((-1070 . -547) 156695) ((-1070 . -550) 156676) ((-1070 . -1005) T) ((-1070 . -1118) T) ((-1070 . -72) T) ((-1070 . -64) T) ((-1069 . -1005) T) ((-1069 . -547) 156658) ((-1069 . -1118) T) ((-1069 . -72) T) ((-1068 . -1005) T) ((-1068 . -547) 156640) ((-1068 . -1118) T) ((-1068 . -72) T) ((-1063 . -1096) 156616) ((-1063 . -181) 156561) ((-1063 . -76) 156506) ((-1063 . -256) 156295) ((-1063 . -447) 156035) ((-1063 . -422) 155967) ((-1063 . -122) 155912) ((-1063 . -548) NIL) ((-1063 . -190) 155857) ((-1063 . -544) 155833) ((-1063 . -240) 155809) ((-1063 . -1118) T) ((-1063 . -238) 155785) ((-1063 . -1005) T) ((-1063 . -547) 155767) ((-1063 . -72) T) ((-1063 . -34) T) ((-1063 . -533) 155743) ((-1062 . -1047) T) ((-1062 . -317) 155725) ((-1062 . -752) T) ((-1062 . -749) T) ((-1062 . -122) 155707) ((-1062 . -34) T) ((-1062 . -1118) T) ((-1062 . -72) T) ((-1062 . -547) 155689) ((-1062 . -256) NIL) ((-1062 . -447) NIL) ((-1062 . -1005) T) ((-1062 . -422) 155671) ((-1062 . -548) NIL) ((-1062 . -238) 155621) ((-1062 . -533) 155596) ((-1062 . -240) 155571) ((-1062 . -588) 155553) ((-1062 . -19) 155535) ((-1058 . -611) 155519) ((-1058 . -588) 155503) ((-1058 . -240) 155480) ((-1058 . -238) 155432) ((-1058 . -533) 155409) ((-1058 . -548) 155370) ((-1058 . -422) 155354) ((-1058 . -1005) 155332) ((-1058 . -447) 155265) ((-1058 . -256) 155203) ((-1058 . -547) 155138) ((-1058 . -72) 155092) ((-1058 . -1118) T) ((-1058 . -34) T) ((-1058 . -122) 155076) ((-1058 . -1157) 155060) ((-1058 . -916) 155044) ((-1058 . -1053) 155028) ((-1058 . -550) 155005) ((-1056 . -987) T) ((-1056 . -423) 154986) ((-1056 . -547) 154952) ((-1056 . -550) 154933) ((-1056 . -1005) T) ((-1056 . -1118) T) ((-1056 . -72) T) ((-1056 . -64) T) ((-1054 . -1096) 154912) ((-1054 . -181) 154860) ((-1054 . -76) 154808) ((-1054 . -256) 154606) ((-1054 . -447) 154358) ((-1054 . -422) 154293) ((-1054 . -122) 154241) ((-1054 . -548) NIL) ((-1054 . -190) 154189) ((-1054 . -544) 154168) ((-1054 . -240) 154147) ((-1054 . -1118) T) ((-1054 . -238) 154126) ((-1054 . -1005) T) ((-1054 . -547) 154108) ((-1054 . -72) T) ((-1054 . -34) T) ((-1054 . -533) 154087) ((-1051 . -1024) 154071) ((-1051 . -422) 154055) ((-1051 . -1005) 154033) ((-1051 . -447) 153966) ((-1051 . -256) 153904) ((-1051 . -547) 153839) ((-1051 . -72) 153793) ((-1051 . -1118) T) ((-1051 . -34) T) ((-1051 . -76) 153777) ((-1049 . -1012) 153746) ((-1049 . -1113) 153715) ((-1049 . -547) 153677) ((-1049 . -122) 153661) ((-1049 . -34) T) ((-1049 . -1118) T) ((-1049 . -72) T) ((-1049 . -256) 153599) ((-1049 . -447) 153532) ((-1049 . -1005) T) ((-1049 . -422) 153516) ((-1049 . -548) 153477) ((-1049 . -882) 153446) ((-1049 . -975) 153415) ((-1045 . -1026) 153360) ((-1045 . -422) 153344) ((-1045 . -447) 153277) ((-1045 . -256) 153215) ((-1045 . -34) T) ((-1045 . -958) 153155) ((-1045 . -943) 153053) ((-1045 . -550) 152972) ((-1045 . -348) 152956) ((-1045 . -575) 152904) ((-1045 . -585) 152842) ((-1045 . -322) 152826) ((-1045 . -188) 152805) ((-1045 . -184) 152753) ((-1045 . -187) 152707) ((-1045 . -222) 152691) ((-1045 . -799) 152615) ((-1045 . -804) 152541) ((-1045 . -802) 152500) ((-1045 . -182) 152484) ((-1045 . -649) 152419) ((-1045 . -577) 152354) ((-1045 . -583) 152313) ((-1045 . -102) T) ((-1045 . -25) T) ((-1045 . -72) T) ((-1045 . -1118) T) ((-1045 . -547) 152275) ((-1045 . -1005) T) ((-1045 . -23) T) ((-1045 . -21) T) ((-1045 . -961) 152259) ((-1045 . -956) 152243) ((-1045 . -80) 152222) ((-1045 . -954) T) ((-1045 . -962) T) ((-1045 . -1015) T) ((-1045 . -658) T) ((-1045 . -38) 152182) ((-1045 . -548) 152143) ((-1044 . -916) 152114) ((-1044 . -34) T) ((-1044 . -1118) T) ((-1044 . -72) T) ((-1044 . -547) 152096) ((-1044 . -256) 152022) ((-1044 . -447) 151930) ((-1044 . -1005) T) ((-1044 . -422) 151901) ((-1043 . -1005) T) ((-1043 . -547) 151883) ((-1043 . -1118) T) ((-1043 . -72) T) ((-1038 . -1040) T) ((-1038 . -1164) T) ((-1038 . -64) T) ((-1038 . -72) T) ((-1038 . -1118) T) ((-1038 . -547) 151849) ((-1038 . -1005) T) ((-1038 . -550) 151830) ((-1038 . -423) 151811) ((-1038 . -987) T) ((-1036 . -1037) 151795) ((-1036 . -72) T) ((-1036 . -1118) T) ((-1036 . -547) 151777) ((-1036 . -1005) T) ((-1029 . -672) 151756) ((-1029 . -35) 151722) ((-1029 . -66) 151688) ((-1029 . -236) 151654) ((-1029 . -426) 151620) ((-1029 . -1107) 151586) ((-1029 . -1104) 151552) ((-1029 . -908) 151518) ((-1029 . -47) 151490) ((-1029 . -38) 151387) ((-1029 . -577) 151284) ((-1029 . -649) 151181) ((-1029 . -550) 151063) ((-1029 . -242) 151042) ((-1029 . -489) 151021) ((-1029 . -80) 150886) ((-1029 . -956) 150772) ((-1029 . -961) 150658) ((-1029 . -144) 150612) ((-1029 . -118) 150591) ((-1029 . -116) 150570) ((-1029 . -585) 150495) ((-1029 . -583) 150405) ((-1029 . -879) 150372) ((-1029 . -804) 150356) ((-1029 . -1118) T) ((-1029 . -799) 150338) ((-1029 . -954) T) ((-1029 . -962) T) ((-1029 . -1015) T) ((-1029 . -658) T) ((-1029 . -21) T) ((-1029 . -23) T) ((-1029 . -1005) T) ((-1029 . -547) 150320) ((-1029 . -72) T) ((-1029 . -25) T) ((-1029 . -102) T) ((-1029 . -802) 150304) ((-1029 . -447) 150274) ((-1029 . -256) 150261) ((-1028 . -854) 150228) ((-1028 . -550) 150027) ((-1028 . -943) 149912) ((-1028 . -1123) 149891) ((-1028 . -814) 149870) ((-1028 . -789) 149729) ((-1028 . -804) 149713) ((-1028 . -799) 149695) ((-1028 . -802) 149679) ((-1028 . -447) 149631) ((-1028 . -385) 149585) ((-1028 . -575) 149533) ((-1028 . -585) 149422) ((-1028 . -322) 149406) ((-1028 . -47) 149378) ((-1028 . -38) 149230) ((-1028 . -577) 149082) ((-1028 . -649) 148934) ((-1028 . -242) 148868) ((-1028 . -489) 148802) ((-1028 . -80) 148627) ((-1028 . -956) 148473) ((-1028 . -961) 148319) ((-1028 . -144) 148233) ((-1028 . -118) 148212) ((-1028 . -116) 148191) ((-1028 . -583) 148101) ((-1028 . -102) T) ((-1028 . -25) T) ((-1028 . -72) T) ((-1028 . -1118) T) ((-1028 . -547) 148083) ((-1028 . -1005) T) ((-1028 . -23) T) ((-1028 . -21) T) ((-1028 . -954) T) ((-1028 . -962) T) ((-1028 . -1015) T) ((-1028 . -658) T) ((-1028 . -348) 148067) ((-1028 . -273) 148039) ((-1028 . -256) 148026) ((-1028 . -548) 147774) ((-1023 . -477) T) ((-1023 . -1123) T) ((-1023 . -1055) T) ((-1023 . -943) 147756) ((-1023 . -548) 147671) ((-1023 . -926) T) ((-1023 . -789) 147653) ((-1023 . -748) T) ((-1023 . -714) T) ((-1023 . -711) T) ((-1023 . -752) T) ((-1023 . -749) T) ((-1023 . -709) T) ((-1023 . -707) T) ((-1023 . -733) T) ((-1023 . -585) 147625) ((-1023 . -575) 147607) ((-1023 . -825) T) ((-1023 . -489) T) ((-1023 . -242) T) ((-1023 . -144) T) ((-1023 . -550) 147579) ((-1023 . -649) 147566) ((-1023 . -577) 147553) ((-1023 . -961) 147540) ((-1023 . -956) 147527) ((-1023 . -80) 147512) ((-1023 . -38) 147499) ((-1023 . -385) T) ((-1023 . -254) T) ((-1023 . -187) T) ((-1023 . -184) 147486) ((-1023 . -188) T) ((-1023 . -114) T) ((-1023 . -954) T) ((-1023 . -962) T) ((-1023 . -1015) T) ((-1023 . -658) T) ((-1023 . -21) T) ((-1023 . -583) 147458) ((-1023 . -23) T) ((-1023 . -1005) T) ((-1023 . -547) 147440) ((-1023 . -1118) T) ((-1023 . -72) T) ((-1023 . -25) T) ((-1023 . -102) T) ((-1023 . -118) T) ((-1023 . -745) T) ((-1023 . -313) T) ((-1023 . -82) T) ((-1023 . -599) T) ((-1019 . -987) T) ((-1019 . -423) 147421) ((-1019 . -547) 147387) ((-1019 . -550) 147368) ((-1019 . -1005) T) ((-1019 . -1118) T) ((-1019 . -72) T) ((-1019 . -64) T) ((-1018 . -1005) T) ((-1018 . -547) 147350) ((-1018 . -1118) T) ((-1018 . -72) T) ((-1016 . -193) 147329) ((-1016 . -1176) 147299) ((-1016 . -714) 147278) ((-1016 . -711) 147257) ((-1016 . -752) 147211) ((-1016 . -749) 147165) ((-1016 . -709) 147144) ((-1016 . -710) 147123) ((-1016 . -649) 147068) ((-1016 . -577) 146993) ((-1016 . -240) 146970) ((-1016 . -238) 146947) ((-1016 . -422) 146931) ((-1016 . -447) 146864) ((-1016 . -256) 146802) ((-1016 . -34) T) ((-1016 . -533) 146779) ((-1016 . -943) 146608) ((-1016 . -550) 146412) ((-1016 . -348) 146381) ((-1016 . -575) 146289) ((-1016 . -585) 146128) ((-1016 . -322) 146098) ((-1016 . -313) 146077) ((-1016 . -188) 146030) ((-1016 . -583) 145818) ((-1016 . -658) 145797) ((-1016 . -1015) 145776) ((-1016 . -962) 145755) ((-1016 . -954) 145734) ((-1016 . -184) 145630) ((-1016 . -187) 145532) ((-1016 . -222) 145502) ((-1016 . -799) 145374) ((-1016 . -804) 145248) ((-1016 . -802) 145181) ((-1016 . -182) 145151) ((-1016 . -547) 144848) ((-1016 . -961) 144773) ((-1016 . -956) 144678) ((-1016 . -80) 144598) ((-1016 . -102) 144473) ((-1016 . -25) 144310) ((-1016 . -72) 144047) ((-1016 . -1118) T) ((-1016 . -1005) 143803) ((-1016 . -23) 143659) ((-1016 . -21) 143574) ((-1009 . -1008) 143538) ((-1009 . -72) T) ((-1009 . -547) 143520) ((-1009 . -1005) T) ((-1009 . -238) 143476) ((-1009 . -1118) T) ((-1009 . -552) 143391) ((-1007 . -1008) 143343) ((-1007 . -72) T) ((-1007 . -547) 143325) ((-1007 . -1005) T) ((-1007 . -238) 143281) ((-1007 . -1118) T) ((-1007 . -552) 143184) ((-1006 . -313) T) ((-1006 . -72) T) ((-1006 . -1118) T) ((-1006 . -547) 143166) ((-1006 . -1005) T) ((-1001 . -362) 143150) ((-1001 . -1003) 143134) ((-1001 . -313) 143113) ((-1001 . -190) 143097) ((-1001 . -548) 143058) ((-1001 . -122) 143042) ((-1001 . -422) 143026) ((-1001 . -1005) T) ((-1001 . -447) 142959) ((-1001 . -256) 142897) ((-1001 . -547) 142879) ((-1001 . -72) T) ((-1001 . -1118) T) ((-1001 . -34) T) ((-1001 . -76) 142863) ((-1001 . -181) 142847) ((-1000 . -987) T) ((-1000 . -423) 142828) ((-1000 . -547) 142794) ((-1000 . -550) 142775) ((-1000 . -1005) T) ((-1000 . -1118) T) ((-1000 . -72) T) ((-1000 . -64) T) ((-996 . -1118) T) ((-996 . -1005) 142746) ((-996 . -547) 142706) ((-996 . -72) 142677) ((-995 . -987) T) ((-995 . -423) 142658) ((-995 . -547) 142624) ((-995 . -550) 142605) ((-995 . -1005) T) ((-995 . -1118) T) ((-995 . -72) T) ((-995 . -64) T) ((-993 . -998) 142589) ((-993 . -552) 142573) ((-993 . -1005) 142551) ((-993 . -547) 142518) ((-993 . -1118) 142496) ((-993 . -72) 142474) ((-993 . -999) 142432) ((-992 . -225) 142416) ((-992 . -550) 142400) ((-992 . -943) 142384) ((-992 . -752) T) ((-992 . -72) T) ((-992 . -1005) T) ((-992 . -547) 142366) ((-992 . -749) T) ((-992 . -184) 142353) ((-992 . -1118) T) ((-992 . -187) T) ((-991 . -210) 142292) ((-991 . -550) 142036) ((-991 . -943) 141866) ((-991 . -548) NIL) ((-991 . -273) 141828) ((-991 . -348) 141812) ((-991 . -38) 141664) ((-991 . -80) 141489) ((-991 . -956) 141335) ((-991 . -961) 141181) ((-991 . -583) 141091) ((-991 . -585) 140980) ((-991 . -577) 140832) ((-991 . -649) 140684) ((-991 . -116) 140663) ((-991 . -118) 140642) ((-991 . -144) 140556) ((-991 . -489) 140490) ((-991 . -242) 140424) ((-991 . -47) 140386) ((-991 . -322) 140370) ((-991 . -575) 140318) ((-991 . -385) 140272) ((-991 . -447) 140137) ((-991 . -802) 140073) ((-991 . -799) 139972) ((-991 . -804) 139875) ((-991 . -789) NIL) ((-991 . -814) 139854) ((-991 . -1123) 139833) ((-991 . -854) 139780) ((-991 . -256) 139767) ((-991 . -188) 139746) ((-991 . -102) T) ((-991 . -25) T) ((-991 . -72) T) ((-991 . -547) 139728) ((-991 . -1005) T) ((-991 . -23) T) ((-991 . -21) T) ((-991 . -658) T) ((-991 . -1015) T) ((-991 . -962) T) ((-991 . -954) T) ((-991 . -184) 139676) ((-991 . -1118) T) ((-991 . -187) 139630) ((-991 . -222) 139614) ((-991 . -182) 139598) ((-989 . -547) 139580) ((-986 . -749) T) ((-986 . -547) 139562) ((-986 . -1005) T) ((-986 . -72) T) ((-986 . -1118) T) ((-986 . -752) T) ((-986 . -548) 139543) ((-983 . -656) 139522) ((-983 . -943) 139420) ((-983 . -348) 139404) ((-983 . -575) 139352) ((-983 . -585) 139229) ((-983 . -322) 139213) ((-983 . -315) 139192) ((-983 . -118) 139171) ((-983 . -550) 138996) ((-983 . -649) 138870) ((-983 . -577) 138744) ((-983 . -583) 138642) ((-983 . -961) 138555) ((-983 . -956) 138468) ((-983 . -80) 138360) ((-983 . -38) 138234) ((-983 . -346) 138213) ((-983 . -338) 138192) ((-983 . -116) 138146) ((-983 . -1055) 138125) ((-983 . -295) 138104) ((-983 . -313) 138058) ((-983 . -198) 138012) ((-983 . -242) 137966) ((-983 . -254) 137920) ((-983 . -385) 137874) ((-983 . -489) 137828) ((-983 . -825) 137782) ((-983 . -1123) 137736) ((-983 . -308) 137690) ((-983 . -188) 137618) ((-983 . -184) 137494) ((-983 . -187) 137376) ((-983 . -222) 137346) ((-983 . -799) 137218) ((-983 . -804) 137092) ((-983 . -802) 137025) ((-983 . -182) 136995) ((-983 . -548) 136979) ((-983 . -21) T) ((-983 . -23) T) ((-983 . -1005) T) ((-983 . -547) 136961) ((-983 . -1118) T) ((-983 . -72) T) ((-983 . -25) T) ((-983 . -102) T) ((-983 . -954) T) ((-983 . -962) T) ((-983 . -1015) T) ((-983 . -658) T) ((-983 . -144) T) ((-981 . -1005) T) ((-981 . -547) 136943) ((-981 . -1118) T) ((-981 . -72) T) ((-981 . -238) 136922) ((-980 . -1005) T) ((-980 . -547) 136904) ((-980 . -1118) T) ((-980 . -72) T) ((-979 . -1005) T) ((-979 . -547) 136886) ((-979 . -1118) T) ((-979 . -72) T) ((-979 . -238) 136865) ((-979 . -943) 136842) ((-979 . -550) 136819) ((-978 . -1118) T) ((-977 . -987) T) ((-977 . -423) 136800) ((-977 . -547) 136766) ((-977 . -550) 136747) ((-977 . -1005) T) ((-977 . -1118) T) ((-977 . -72) T) ((-977 . -64) T) ((-970 . -987) T) ((-970 . -423) 136728) ((-970 . -547) 136694) ((-970 . -550) 136675) ((-970 . -1005) T) ((-970 . -1118) T) ((-970 . -72) T) ((-970 . -64) T) ((-967 . -477) T) ((-967 . -1123) T) ((-967 . -1055) T) ((-967 . -943) 136657) ((-967 . -548) 136572) ((-967 . -926) T) ((-967 . -789) 136554) ((-967 . -748) T) ((-967 . -714) T) ((-967 . -711) T) ((-967 . -752) T) ((-967 . -749) T) ((-967 . -709) T) ((-967 . -707) T) ((-967 . -733) T) ((-967 . -585) 136526) ((-967 . -575) 136508) ((-967 . -825) T) ((-967 . -489) T) ((-967 . -242) T) ((-967 . -144) T) ((-967 . -550) 136480) ((-967 . -649) 136467) ((-967 . -577) 136454) ((-967 . -961) 136441) ((-967 . -956) 136428) ((-967 . -80) 136413) ((-967 . -38) 136400) ((-967 . -385) T) ((-967 . -254) T) ((-967 . -187) T) ((-967 . -184) 136387) ((-967 . -188) T) ((-967 . -114) T) ((-967 . -954) T) ((-967 . -962) T) ((-967 . -1015) T) ((-967 . -658) T) ((-967 . -21) T) ((-967 . -583) 136359) ((-967 . -23) T) ((-967 . -1005) T) ((-967 . -547) 136341) ((-967 . -1118) T) ((-967 . -72) T) ((-967 . -25) T) ((-967 . -102) T) ((-967 . -118) T) ((-967 . -552) 136322) ((-966 . -972) 136301) ((-966 . -72) T) ((-966 . -1118) T) ((-966 . -547) 136283) ((-966 . -1005) T) ((-963 . -1118) T) ((-963 . -1005) 136261) ((-963 . -547) 136228) ((-963 . -72) 136206) ((-959 . -958) 136146) ((-959 . -577) 136091) ((-959 . -649) 136036) ((-959 . -34) T) ((-959 . -256) 135974) ((-959 . -447) 135907) ((-959 . -422) 135891) ((-959 . -585) 135875) ((-959 . -583) 135844) ((-959 . -102) T) ((-959 . -25) T) ((-959 . -72) T) ((-959 . -1118) T) ((-959 . -547) 135806) ((-959 . -1005) T) ((-959 . -23) T) ((-959 . -21) T) ((-959 . -961) 135790) ((-959 . -956) 135774) ((-959 . -80) 135753) ((-959 . -1176) 135723) ((-959 . -548) 135684) ((-951 . -975) 135613) ((-951 . -882) 135542) ((-951 . -548) 135484) ((-951 . -422) 135449) ((-951 . -1005) T) ((-951 . -447) 135333) ((-951 . -256) 135241) ((-951 . -547) 135184) ((-951 . -72) T) ((-951 . -1118) T) ((-951 . -34) T) ((-951 . -122) 135149) ((-951 . -1113) 135078) ((-941 . -987) T) ((-941 . -423) 135059) ((-941 . -547) 135025) ((-941 . -550) 135006) ((-941 . -1005) T) ((-941 . -1118) T) ((-941 . -72) T) ((-941 . -64) T) ((-940 . -144) T) ((-940 . -550) 134975) ((-940 . -658) T) ((-940 . -1015) T) ((-940 . -962) T) ((-940 . -954) T) ((-940 . -585) 134949) ((-940 . -583) 134908) ((-940 . -102) T) ((-940 . -25) T) ((-940 . -72) T) ((-940 . -1118) T) ((-940 . -547) 134890) ((-940 . -1005) T) ((-940 . -23) T) ((-940 . -21) T) ((-940 . -961) 134864) ((-940 . -956) 134838) ((-940 . -80) 134805) ((-940 . -38) 134789) ((-940 . -577) 134773) ((-940 . -649) 134757) ((-933 . -975) 134726) ((-933 . -882) 134695) ((-933 . -548) 134656) ((-933 . -422) 134640) ((-933 . -1005) T) ((-933 . -447) 134573) ((-933 . -256) 134511) ((-933 . -547) 134473) ((-933 . -72) T) ((-933 . -1118) T) ((-933 . -34) T) ((-933 . -122) 134457) ((-933 . -1113) 134426) ((-932 . -1118) T) ((-932 . -1005) 134404) ((-932 . -547) 134371) ((-932 . -72) 134349) ((-930 . -918) T) ((-930 . -908) T) ((-930 . -707) T) ((-930 . -709) T) ((-930 . -749) T) ((-930 . -752) T) ((-930 . -711) T) ((-930 . -714) T) ((-930 . -748) T) ((-930 . -943) 134234) ((-930 . -348) 134196) ((-930 . -198) T) ((-930 . -242) T) ((-930 . -254) T) ((-930 . -385) T) ((-930 . -38) 134133) ((-930 . -577) 134070) ((-930 . -649) 134007) ((-930 . -550) 133944) ((-930 . -489) T) ((-930 . -825) T) ((-930 . -1123) T) ((-930 . -308) T) ((-930 . -80) 133853) ((-930 . -956) 133790) ((-930 . -961) 133727) ((-930 . -144) T) ((-930 . -118) T) ((-930 . -585) 133664) ((-930 . -583) 133601) ((-930 . -102) T) ((-930 . -25) T) ((-930 . -72) T) ((-930 . -1118) T) ((-930 . -547) 133583) ((-930 . -1005) T) ((-930 . -23) T) ((-930 . -21) T) ((-930 . -954) T) ((-930 . -962) T) ((-930 . -1015) T) ((-930 . -658) T) ((-925 . -987) T) ((-925 . -423) 133564) ((-925 . -547) 133530) ((-925 . -550) 133511) ((-925 . -1005) T) ((-925 . -1118) T) ((-925 . -72) T) ((-925 . -64) T) ((-910 . -897) 133493) ((-910 . -1055) T) ((-910 . -550) 133443) ((-910 . -943) 133403) ((-910 . -548) 133333) ((-910 . -926) T) ((-910 . -814) NIL) ((-910 . -787) 133315) ((-910 . -748) T) ((-910 . -714) T) ((-910 . -711) T) ((-910 . -752) T) ((-910 . -749) T) ((-910 . -709) T) ((-910 . -707) T) ((-910 . -733) T) ((-910 . -789) 133297) ((-910 . -336) 133279) ((-910 . -575) 133261) ((-910 . -322) 133243) ((-910 . -238) NIL) ((-910 . -256) NIL) ((-910 . -447) NIL) ((-910 . -284) 133225) ((-910 . -198) T) ((-910 . -80) 133152) ((-910 . -956) 133102) ((-910 . -961) 133052) ((-910 . -242) T) ((-910 . -649) 133002) ((-910 . -577) 132952) ((-910 . -585) 132902) ((-910 . -583) 132852) ((-910 . -38) 132802) ((-910 . -254) T) ((-910 . -385) T) ((-910 . -144) T) ((-910 . -489) T) ((-910 . -825) T) ((-910 . -1123) T) ((-910 . -308) T) ((-910 . -188) T) ((-910 . -184) 132789) ((-910 . -187) T) ((-910 . -222) 132771) ((-910 . -799) NIL) ((-910 . -804) NIL) ((-910 . -802) NIL) ((-910 . -182) 132753) ((-910 . -118) T) ((-910 . -116) NIL) ((-910 . -102) T) ((-910 . -25) T) ((-910 . -72) T) ((-910 . -1118) T) ((-910 . -547) 132713) ((-910 . -1005) T) ((-910 . -23) T) ((-910 . -21) T) ((-910 . -954) T) ((-910 . -962) T) ((-910 . -1015) T) ((-910 . -658) T) ((-909 . -287) 132687) ((-909 . -144) T) ((-909 . -550) 132617) ((-909 . -658) T) ((-909 . -1015) T) ((-909 . -962) T) ((-909 . -954) T) ((-909 . -585) 132519) ((-909 . -583) 132449) ((-909 . -102) T) ((-909 . -25) T) ((-909 . -72) T) ((-909 . -1118) T) ((-909 . -547) 132431) ((-909 . -1005) T) ((-909 . -23) T) ((-909 . -21) T) ((-909 . -961) 132376) ((-909 . -956) 132321) ((-909 . -80) 132238) ((-909 . -548) 132222) ((-909 . -182) 132199) ((-909 . -802) 132151) ((-909 . -804) 132063) ((-909 . -799) 131973) ((-909 . -222) 131950) ((-909 . -187) 131890) ((-909 . -184) 131824) ((-909 . -188) 131796) ((-909 . -308) T) ((-909 . -1123) T) ((-909 . -825) T) ((-909 . -489) T) ((-909 . -649) 131741) ((-909 . -577) 131686) ((-909 . -38) 131631) ((-909 . -385) T) ((-909 . -254) T) ((-909 . -242) T) ((-909 . -198) T) ((-909 . -313) NIL) ((-909 . -295) NIL) ((-909 . -1055) NIL) ((-909 . -116) 131603) ((-909 . -338) NIL) ((-909 . -346) 131575) ((-909 . -118) 131547) ((-909 . -315) 131519) ((-909 . -322) 131496) ((-909 . -575) 131430) ((-909 . -348) 131407) ((-909 . -943) 131284) ((-909 . -656) 131256) ((-906 . -901) 131240) ((-906 . -422) 131224) ((-906 . -1005) 131202) ((-906 . -447) 131135) ((-906 . -256) 131073) ((-906 . -547) 131008) ((-906 . -72) 130962) ((-906 . -1118) T) ((-906 . -34) T) ((-906 . -76) 130946) ((-902 . -904) 130930) ((-902 . -752) 130909) ((-902 . -749) 130888) ((-902 . -943) 130786) ((-902 . -348) 130770) ((-902 . -575) 130718) ((-902 . -585) 130620) ((-902 . -322) 130604) ((-902 . -238) 130562) ((-902 . -256) 130527) ((-902 . -447) 130439) ((-902 . -284) 130423) ((-902 . -38) 130371) ((-902 . -80) 130249) ((-902 . -956) 130148) ((-902 . -961) 130047) ((-902 . -583) 129970) ((-902 . -577) 129918) ((-902 . -649) 129866) ((-902 . -550) 129760) ((-902 . -242) 129714) ((-902 . -198) 129693) ((-902 . -188) 129672) ((-902 . -184) 129620) ((-902 . -187) 129574) ((-902 . -222) 129558) ((-902 . -799) 129482) ((-902 . -804) 129408) ((-902 . -802) 129367) ((-902 . -182) 129351) ((-902 . -548) 129312) ((-902 . -118) 129291) ((-902 . -116) 129270) ((-902 . -102) T) ((-902 . -25) T) ((-902 . -72) T) ((-902 . -1118) T) ((-902 . -547) 129252) ((-902 . -1005) T) ((-902 . -23) T) ((-902 . -21) T) ((-902 . -954) T) ((-902 . -962) T) ((-902 . -1015) T) ((-902 . -658) T) ((-900 . -987) T) ((-900 . -423) 129233) ((-900 . -547) 129199) ((-900 . -550) 129180) ((-900 . -1005) T) ((-900 . -1118) T) ((-900 . -72) T) ((-900 . -64) T) ((-899 . -21) T) ((-899 . -583) 129162) ((-899 . -23) T) ((-899 . -1005) T) ((-899 . -547) 129144) ((-899 . -1118) T) ((-899 . -72) T) ((-899 . -25) T) ((-899 . -102) T) ((-899 . -238) 129111) ((-895 . -547) 129093) ((-892 . -1005) T) ((-892 . -547) 129075) ((-892 . -1118) T) ((-892 . -72) T) ((-877 . -714) T) ((-877 . -711) T) ((-877 . -752) T) ((-877 . -749) T) ((-877 . -709) T) ((-877 . -23) T) ((-877 . -1005) T) ((-877 . -547) 129035) ((-877 . -1118) T) ((-877 . -72) T) ((-877 . -25) T) ((-877 . -102) T) ((-876 . -987) T) ((-876 . -423) 129016) ((-876 . -547) 128982) ((-876 . -550) 128963) ((-876 . -1005) T) ((-876 . -1118) T) ((-876 . -72) T) ((-876 . -64) T) ((-870 . -873) T) ((-870 . -72) T) ((-870 . -547) 128945) ((-870 . -1005) T) ((-870 . -599) T) ((-870 . -1118) T) ((-870 . -82) T) ((-870 . -550) 128929) ((-869 . -547) 128911) ((-868 . -1005) T) ((-868 . -547) 128893) ((-868 . -1118) T) ((-868 . -72) T) ((-868 . -313) 128846) ((-868 . -658) 128748) ((-868 . -1015) 128650) ((-868 . -23) 128464) ((-868 . -25) 128278) ((-868 . -102) 128136) ((-868 . -406) 128089) ((-868 . -21) 128044) ((-868 . -583) 127988) ((-868 . -710) 127941) ((-868 . -709) 127894) ((-868 . -749) 127796) ((-868 . -752) 127698) ((-868 . -711) 127651) ((-868 . -714) 127604) ((-862 . -19) 127588) ((-862 . -588) 127572) ((-862 . -240) 127549) ((-862 . -238) 127501) ((-862 . -533) 127478) ((-862 . -548) 127439) ((-862 . -422) 127423) ((-862 . -1005) 127376) ((-862 . -447) 127309) ((-862 . -256) 127247) ((-862 . -547) 127162) ((-862 . -72) 127096) ((-862 . -1118) T) ((-862 . -34) T) ((-862 . -122) 127080) ((-862 . -749) 127059) ((-862 . -752) 127038) ((-862 . -317) 127022) ((-860 . -273) 127001) ((-860 . -943) 126899) ((-860 . -348) 126883) ((-860 . -38) 126780) ((-860 . -550) 126637) ((-860 . -585) 126562) ((-860 . -583) 126472) ((-860 . -658) T) ((-860 . -1015) T) ((-860 . -962) T) ((-860 . -954) T) ((-860 . -80) 126337) ((-860 . -956) 126223) ((-860 . -961) 126109) ((-860 . -21) T) ((-860 . -23) T) ((-860 . -1005) T) ((-860 . -547) 126091) ((-860 . -1118) T) ((-860 . -72) T) ((-860 . -25) T) ((-860 . -102) T) ((-860 . -577) 125988) ((-860 . -649) 125885) ((-860 . -116) 125864) ((-860 . -118) 125843) ((-860 . -144) 125797) ((-860 . -489) 125776) ((-860 . -242) 125755) ((-860 . -47) 125734) ((-858 . -1005) T) ((-858 . -547) 125700) ((-858 . -1118) T) ((-858 . -72) T) ((-850 . -854) 125661) ((-850 . -550) 125457) ((-850 . -943) 125339) ((-850 . -1123) 125318) ((-850 . -814) 125297) ((-850 . -789) 125222) ((-850 . -804) 125203) ((-850 . -799) 125182) ((-850 . -802) 125163) ((-850 . -447) 125109) ((-850 . -385) 125063) ((-850 . -575) 125011) ((-850 . -585) 124900) ((-850 . -322) 124884) ((-850 . -47) 124853) ((-850 . -38) 124705) ((-850 . -577) 124557) ((-850 . -649) 124409) ((-850 . -242) 124343) ((-850 . -489) 124277) ((-850 . -80) 124102) ((-850 . -956) 123948) ((-850 . -961) 123794) ((-850 . -144) 123708) ((-850 . -118) 123687) ((-850 . -116) 123666) ((-850 . -583) 123576) ((-850 . -102) T) ((-850 . -25) T) ((-850 . -72) T) ((-850 . -1118) T) ((-850 . -547) 123558) ((-850 . -1005) T) ((-850 . -23) T) ((-850 . -21) T) ((-850 . -954) T) ((-850 . -962) T) ((-850 . -1015) T) ((-850 . -658) T) ((-850 . -348) 123542) ((-850 . -273) 123511) ((-850 . -256) 123498) ((-850 . -548) 123359) ((-847 . -886) 123343) ((-847 . -19) 123327) ((-847 . -588) 123311) ((-847 . -240) 123288) ((-847 . -238) 123240) ((-847 . -533) 123217) ((-847 . -548) 123178) ((-847 . -422) 123162) ((-847 . -1005) 123115) ((-847 . -447) 123048) ((-847 . -256) 122986) ((-847 . -547) 122901) ((-847 . -72) 122835) ((-847 . -1118) T) ((-847 . -34) T) ((-847 . -122) 122819) ((-847 . -749) 122798) ((-847 . -752) 122777) ((-847 . -317) 122761) ((-847 . -1167) 122745) ((-847 . -552) 122722) ((-831 . -880) T) ((-831 . -547) 122704) ((-829 . -859) T) ((-829 . -547) 122686) ((-823 . -711) T) ((-823 . -752) T) ((-823 . -749) T) ((-823 . -1005) T) ((-823 . -547) 122668) ((-823 . -1118) T) ((-823 . -72) T) ((-823 . -25) T) ((-823 . -658) T) ((-823 . -1015) T) ((-818 . -308) T) ((-818 . -1123) T) ((-818 . -825) T) ((-818 . -489) T) ((-818 . -144) T) ((-818 . -550) 122605) ((-818 . -649) 122557) ((-818 . -577) 122509) ((-818 . -38) 122461) ((-818 . -385) T) ((-818 . -254) T) ((-818 . -585) 122413) ((-818 . -583) 122350) ((-818 . -658) T) ((-818 . -1015) T) ((-818 . -962) T) ((-818 . -954) T) ((-818 . -80) 122281) ((-818 . -956) 122233) ((-818 . -961) 122185) ((-818 . -21) T) ((-818 . -23) T) ((-818 . -1005) T) ((-818 . -547) 122167) ((-818 . -1118) T) ((-818 . -72) T) ((-818 . -25) T) ((-818 . -102) T) ((-818 . -242) T) ((-818 . -198) T) ((-810 . -295) T) ((-810 . -1055) T) ((-810 . -313) T) ((-810 . -116) T) ((-810 . -308) T) ((-810 . -1123) T) ((-810 . -825) T) ((-810 . -489) T) ((-810 . -144) T) ((-810 . -550) 122117) ((-810 . -649) 122082) ((-810 . -577) 122047) ((-810 . -38) 122012) ((-810 . -385) T) ((-810 . -254) T) ((-810 . -80) 121961) ((-810 . -956) 121926) ((-810 . -961) 121891) ((-810 . -583) 121841) ((-810 . -585) 121806) ((-810 . -242) T) ((-810 . -198) T) ((-810 . -338) T) ((-810 . -187) T) ((-810 . -1118) T) ((-810 . -184) 121793) ((-810 . -954) T) ((-810 . -962) T) ((-810 . -1015) T) ((-810 . -658) T) ((-810 . -21) T) ((-810 . -23) T) ((-810 . -1005) T) ((-810 . -547) 121775) ((-810 . -72) T) ((-810 . -25) T) ((-810 . -102) T) ((-810 . -188) T) ((-810 . -276) 121762) ((-810 . -118) 121744) ((-810 . -943) 121731) ((-810 . -1176) 121718) ((-810 . -1187) 121705) ((-810 . -548) 121687) ((-809 . -1005) T) ((-809 . -547) 121669) ((-809 . -1118) T) ((-809 . -72) T) ((-806 . -808) 121653) ((-806 . -752) 121607) ((-806 . -749) 121561) ((-806 . -658) T) ((-806 . -1005) T) ((-806 . -547) 121543) ((-806 . -72) T) ((-806 . -1015) T) ((-806 . -406) T) ((-806 . -1118) T) ((-806 . -238) 121522) ((-805 . -90) 121506) ((-805 . -422) 121490) ((-805 . -1005) 121468) ((-805 . -447) 121401) ((-805 . -256) 121339) ((-805 . -547) 121253) ((-805 . -72) 121207) ((-805 . -1118) T) ((-805 . -34) T) ((-805 . -916) 121191) ((-796 . -749) T) ((-796 . -547) 121173) ((-796 . -1005) T) ((-796 . -72) T) ((-796 . -1118) T) ((-796 . -752) T) ((-796 . -943) 121150) ((-796 . -550) 121127) ((-793 . -1005) T) ((-793 . -547) 121109) ((-793 . -1118) T) ((-793 . -72) T) ((-793 . -943) 121077) ((-793 . -550) 121045) ((-791 . -1005) T) ((-791 . -547) 121027) ((-791 . -1118) T) ((-791 . -72) T) ((-788 . -1005) T) ((-788 . -547) 121009) ((-788 . -1118) T) ((-788 . -72) T) ((-778 . -987) T) ((-778 . -423) 120990) ((-778 . -547) 120956) ((-778 . -550) 120937) ((-778 . -1005) T) ((-778 . -1118) T) ((-778 . -72) T) ((-778 . -64) T) ((-778 . -1164) T) ((-776 . -1005) T) ((-776 . -547) 120919) ((-776 . -1118) T) ((-776 . -72) T) ((-776 . -550) 120901) ((-775 . -1118) T) ((-775 . -547) 120776) ((-775 . -1005) 120727) ((-775 . -72) 120678) ((-774 . -897) 120662) ((-774 . -1055) 120640) ((-774 . -943) 120507) ((-774 . -550) 120406) ((-774 . -548) 120209) ((-774 . -926) 120188) ((-774 . -814) 120167) ((-774 . -787) 120151) ((-774 . -748) 120130) ((-774 . -714) 120109) ((-774 . -711) 120088) ((-774 . -752) 120042) ((-774 . -749) 119996) ((-774 . -709) 119975) ((-774 . -707) 119954) ((-774 . -733) 119933) ((-774 . -789) 119858) ((-774 . -336) 119842) ((-774 . -575) 119790) ((-774 . -585) 119706) ((-774 . -322) 119690) ((-774 . -238) 119648) ((-774 . -256) 119613) ((-774 . -447) 119525) ((-774 . -284) 119509) ((-774 . -198) T) ((-774 . -80) 119440) ((-774 . -956) 119392) ((-774 . -961) 119344) ((-774 . -242) T) ((-774 . -649) 119296) ((-774 . -577) 119248) ((-774 . -583) 119185) ((-774 . -38) 119137) ((-774 . -254) T) ((-774 . -385) T) ((-774 . -144) T) ((-774 . -489) T) ((-774 . -825) T) ((-774 . -1123) T) ((-774 . -308) T) ((-774 . -188) 119116) ((-774 . -184) 119064) ((-774 . -187) 119018) ((-774 . -222) 119002) ((-774 . -799) 118926) ((-774 . -804) 118852) ((-774 . -802) 118811) ((-774 . -182) 118795) ((-774 . -118) 118774) ((-774 . -116) 118753) ((-774 . -102) T) ((-774 . -25) T) ((-774 . -72) T) ((-774 . -1118) T) ((-774 . -547) 118735) ((-774 . -1005) T) ((-774 . -23) T) ((-774 . -21) T) ((-774 . -954) T) ((-774 . -962) T) ((-774 . -1015) T) ((-774 . -658) T) ((-773 . -897) 118712) ((-773 . -1055) NIL) ((-773 . -943) 118689) ((-773 . -550) 118619) ((-773 . -548) NIL) ((-773 . -926) NIL) ((-773 . -814) NIL) ((-773 . -787) 118596) ((-773 . -748) NIL) ((-773 . -714) NIL) ((-773 . -711) NIL) ((-773 . -752) NIL) ((-773 . -749) NIL) ((-773 . -709) NIL) ((-773 . -707) NIL) ((-773 . -733) NIL) ((-773 . -789) NIL) ((-773 . -336) 118573) ((-773 . -575) 118550) ((-773 . -585) 118495) ((-773 . -322) 118472) ((-773 . -238) 118402) ((-773 . -256) 118346) ((-773 . -447) 118209) ((-773 . -284) 118186) ((-773 . -198) T) ((-773 . -80) 118103) ((-773 . -956) 118048) ((-773 . -961) 117993) ((-773 . -242) T) ((-773 . -649) 117938) ((-773 . -577) 117883) ((-773 . -583) 117813) ((-773 . -38) 117758) ((-773 . -254) T) ((-773 . -385) T) ((-773 . -144) T) ((-773 . -489) T) ((-773 . -825) T) ((-773 . -1123) T) ((-773 . -308) T) ((-773 . -188) NIL) ((-773 . -184) NIL) ((-773 . -187) NIL) ((-773 . -222) 117735) ((-773 . -799) NIL) ((-773 . -804) NIL) ((-773 . -802) NIL) ((-773 . -182) 117712) ((-773 . -118) T) ((-773 . -116) NIL) ((-773 . -102) T) ((-773 . -25) T) ((-773 . -72) T) ((-773 . -1118) T) ((-773 . -547) 117694) ((-773 . -1005) T) ((-773 . -23) T) ((-773 . -21) T) ((-773 . -954) T) ((-773 . -962) T) ((-773 . -1015) T) ((-773 . -658) T) ((-771 . -772) 117678) ((-771 . -825) T) ((-771 . -489) T) ((-771 . -242) T) ((-771 . -144) T) ((-771 . -550) 117650) ((-771 . -649) 117637) ((-771 . -577) 117624) ((-771 . -961) 117611) ((-771 . -956) 117598) ((-771 . -80) 117583) ((-771 . -38) 117570) ((-771 . -385) T) ((-771 . -254) T) ((-771 . -954) T) ((-771 . -962) T) ((-771 . -1015) T) ((-771 . -658) T) ((-771 . -21) T) ((-771 . -583) 117542) ((-771 . -23) T) ((-771 . -1005) T) ((-771 . -547) 117524) ((-771 . -1118) T) ((-771 . -72) T) ((-771 . -25) T) ((-771 . -102) T) ((-771 . -585) 117511) ((-771 . -118) T) ((-768 . -954) T) ((-768 . -962) T) ((-768 . -1015) T) ((-768 . -658) T) ((-768 . -21) T) ((-768 . -583) 117456) ((-768 . -23) T) ((-768 . -1005) T) ((-768 . -547) 117418) ((-768 . -1118) T) ((-768 . -72) T) ((-768 . -25) T) ((-768 . -102) T) ((-768 . -585) 117378) ((-768 . -550) 117313) ((-768 . -423) 117290) ((-768 . -38) 117260) ((-768 . -80) 117225) ((-768 . -956) 117195) ((-768 . -961) 117165) ((-768 . -577) 117135) ((-768 . -649) 117105) ((-767 . -1005) T) ((-767 . -547) 117087) ((-767 . -1118) T) ((-767 . -72) T) ((-766 . -745) T) ((-766 . -752) T) ((-766 . -749) T) ((-766 . -1005) T) ((-766 . -547) 117069) ((-766 . -1118) T) ((-766 . -72) T) ((-766 . -313) T) ((-766 . -548) 116991) ((-765 . -1005) T) ((-765 . -547) 116973) ((-765 . -1118) T) ((-765 . -72) T) ((-764 . -763) T) ((-764 . -145) T) ((-764 . -547) 116955) ((-760 . -749) T) ((-760 . -547) 116937) ((-760 . -1005) T) ((-760 . -72) T) ((-760 . -1118) T) ((-760 . -752) T) ((-757 . -754) 116921) ((-757 . -943) 116819) ((-757 . -550) 116717) ((-757 . -348) 116701) ((-757 . -649) 116671) ((-757 . -577) 116641) ((-757 . -585) 116615) ((-757 . -583) 116574) ((-757 . -102) T) ((-757 . -25) T) ((-757 . -72) T) ((-757 . -1118) T) ((-757 . -547) 116556) ((-757 . -1005) T) ((-757 . -23) T) ((-757 . -21) T) ((-757 . -961) 116540) ((-757 . -956) 116524) ((-757 . -80) 116503) ((-757 . -954) T) ((-757 . -962) T) ((-757 . -1015) T) ((-757 . -658) T) ((-757 . -38) 116473) ((-756 . -754) 116457) ((-756 . -943) 116355) ((-756 . -550) 116274) ((-756 . -348) 116258) ((-756 . -649) 116228) ((-756 . -577) 116198) ((-756 . -585) 116172) ((-756 . -583) 116131) ((-756 . -102) T) ((-756 . -25) T) ((-756 . -72) T) ((-756 . -1118) T) ((-756 . -547) 116113) ((-756 . -1005) T) ((-756 . -23) T) ((-756 . -21) T) ((-756 . -961) 116097) ((-756 . -956) 116081) ((-756 . -80) 116060) ((-756 . -954) T) ((-756 . -962) T) ((-756 . -1015) T) ((-756 . -658) T) ((-756 . -38) 116030) ((-750 . -752) T) ((-750 . -1118) T) ((-750 . -72) T) ((-750 . -423) 116014) ((-750 . -547) 115962) ((-750 . -550) 115946) ((-743 . -1005) T) ((-743 . -547) 115928) ((-743 . -1118) T) ((-743 . -72) T) ((-743 . -348) 115912) ((-743 . -550) 115785) ((-743 . -943) 115683) ((-743 . -21) 115638) ((-743 . -583) 115558) ((-743 . -23) 115513) ((-743 . -25) 115468) ((-743 . -102) 115423) ((-743 . -748) 115402) ((-743 . -585) 115375) ((-743 . -962) 115354) ((-743 . -954) 115333) ((-743 . -714) 115312) ((-743 . -711) 115291) ((-743 . -752) 115270) ((-743 . -749) 115249) ((-743 . -709) 115228) ((-743 . -707) 115207) ((-743 . -1015) 115186) ((-743 . -658) 115165) ((-742 . -740) 115147) ((-742 . -72) T) ((-742 . -1118) T) ((-742 . -547) 115129) ((-742 . -1005) T) ((-738 . -954) T) ((-738 . -962) T) ((-738 . -1015) T) ((-738 . -658) T) ((-738 . -21) T) ((-738 . -583) 115074) ((-738 . -23) T) ((-738 . -1005) T) ((-738 . -547) 115056) ((-738 . -1118) T) ((-738 . -72) T) ((-738 . -25) T) ((-738 . -102) T) ((-738 . -585) 115016) ((-738 . -550) 114971) ((-738 . -943) 114941) ((-738 . -238) 114920) ((-738 . -118) 114899) ((-738 . -116) 114878) ((-738 . -38) 114848) ((-738 . -80) 114813) ((-738 . -956) 114783) ((-738 . -961) 114753) ((-738 . -577) 114723) ((-738 . -649) 114693) ((-736 . -1005) T) ((-736 . -547) 114675) ((-736 . -1118) T) ((-736 . -72) T) ((-736 . -348) 114659) ((-736 . -550) 114532) ((-736 . -943) 114430) ((-736 . -21) 114385) ((-736 . -583) 114305) ((-736 . -23) 114260) ((-736 . -25) 114215) ((-736 . -102) 114170) ((-736 . -748) 114149) ((-736 . -585) 114122) ((-736 . -962) 114101) ((-736 . -954) 114080) ((-736 . -714) 114059) ((-736 . -711) 114038) ((-736 . -752) 114017) ((-736 . -749) 113996) ((-736 . -709) 113975) ((-736 . -707) 113954) ((-736 . -1015) 113933) ((-736 . -658) 113912) ((-734 . -640) 113896) ((-734 . -550) 113851) ((-734 . -649) 113821) ((-734 . -577) 113791) ((-734 . -585) 113765) ((-734 . -583) 113724) ((-734 . -102) T) ((-734 . -25) T) ((-734 . -72) T) ((-734 . -1118) T) ((-734 . -547) 113706) ((-734 . -1005) T) ((-734 . -23) T) ((-734 . -21) T) ((-734 . -961) 113690) ((-734 . -956) 113674) ((-734 . -80) 113653) ((-734 . -954) T) ((-734 . -962) T) ((-734 . -1015) T) ((-734 . -658) T) ((-734 . -38) 113623) ((-734 . -188) 113602) ((-734 . -184) 113575) ((-734 . -187) 113554) ((-732 . -329) 113538) ((-732 . -550) 113522) ((-732 . -943) 113506) ((-732 . -752) T) ((-732 . -749) T) ((-732 . -1015) T) ((-732 . -72) T) ((-732 . -1118) T) ((-732 . -547) 113488) ((-732 . -1005) T) ((-732 . -658) T) ((-732 . -747) T) ((-732 . -759) T) ((-731 . -225) 113472) ((-731 . -550) 113456) ((-731 . -943) 113440) ((-731 . -752) T) ((-731 . -72) T) ((-731 . -1005) T) ((-731 . -547) 113422) ((-731 . -749) T) ((-731 . -184) 113409) ((-731 . -1118) T) ((-731 . -187) T) ((-730 . -80) 113344) ((-730 . -956) 113295) ((-730 . -961) 113246) ((-730 . -21) T) ((-730 . -583) 113182) ((-730 . -23) T) ((-730 . -1005) T) ((-730 . -547) 113151) ((-730 . -1118) T) ((-730 . -72) T) ((-730 . -25) T) ((-730 . -102) T) ((-730 . -585) 113102) ((-730 . -188) T) ((-730 . -550) 113011) ((-730 . -658) T) ((-730 . -1015) T) ((-730 . -962) T) ((-730 . -954) T) ((-730 . -184) 112998) ((-730 . -187) T) ((-730 . -423) 112982) ((-730 . -308) 112961) ((-730 . -1123) 112940) ((-730 . -825) 112919) ((-730 . -489) 112898) ((-730 . -144) 112877) ((-730 . -649) 112814) ((-730 . -577) 112751) ((-730 . -38) 112688) ((-730 . -385) 112667) ((-730 . -254) 112646) ((-730 . -242) 112625) ((-730 . -198) 112604) ((-729 . -210) 112543) ((-729 . -550) 112287) ((-729 . -943) 112117) ((-729 . -548) NIL) ((-729 . -273) 112079) ((-729 . -348) 112063) ((-729 . -38) 111915) ((-729 . -80) 111740) ((-729 . -956) 111586) ((-729 . -961) 111432) ((-729 . -583) 111342) ((-729 . -585) 111231) ((-729 . -577) 111083) ((-729 . -649) 110935) ((-729 . -116) 110914) ((-729 . -118) 110893) ((-729 . -144) 110807) ((-729 . -489) 110741) ((-729 . -242) 110675) ((-729 . -47) 110637) ((-729 . -322) 110621) ((-729 . -575) 110569) ((-729 . -385) 110523) ((-729 . -447) 110388) ((-729 . -802) 110324) ((-729 . -799) 110223) ((-729 . -804) 110126) ((-729 . -789) NIL) ((-729 . -814) 110105) ((-729 . -1123) 110084) ((-729 . -854) 110031) ((-729 . -256) 110018) ((-729 . -188) 109997) ((-729 . -102) T) ((-729 . -25) T) ((-729 . -72) T) ((-729 . -547) 109979) ((-729 . -1005) T) ((-729 . -23) T) ((-729 . -21) T) ((-729 . -658) T) ((-729 . -1015) T) ((-729 . -962) T) ((-729 . -954) T) ((-729 . -184) 109927) ((-729 . -1118) T) ((-729 . -187) 109881) ((-729 . -222) 109865) ((-729 . -182) 109849) ((-728 . -193) 109828) ((-728 . -1176) 109798) ((-728 . -714) 109777) ((-728 . -711) 109756) ((-728 . -752) 109710) ((-728 . -749) 109664) ((-728 . -709) 109643) ((-728 . -710) 109622) ((-728 . -649) 109567) ((-728 . -577) 109492) ((-728 . -240) 109469) ((-728 . -238) 109446) ((-728 . -422) 109430) ((-728 . -447) 109363) ((-728 . -256) 109301) ((-728 . -34) T) ((-728 . -533) 109278) ((-728 . -943) 109107) ((-728 . -550) 108911) ((-728 . -348) 108880) ((-728 . -575) 108788) ((-728 . -585) 108627) ((-728 . -322) 108597) ((-728 . -313) 108576) ((-728 . -188) 108529) ((-728 . -583) 108317) ((-728 . -658) 108296) ((-728 . -1015) 108275) ((-728 . -962) 108254) ((-728 . -954) 108233) ((-728 . -184) 108129) ((-728 . -187) 108031) ((-728 . -222) 108001) ((-728 . -799) 107873) ((-728 . -804) 107747) ((-728 . -802) 107680) ((-728 . -182) 107650) ((-728 . -547) 107347) ((-728 . -961) 107272) ((-728 . -956) 107177) ((-728 . -80) 107097) ((-728 . -102) 106972) ((-728 . -25) 106809) ((-728 . -72) 106546) ((-728 . -1118) T) ((-728 . -1005) 106302) ((-728 . -23) 106158) ((-728 . -21) 106073) ((-715 . -713) 106057) ((-715 . -752) 106036) ((-715 . -749) 106015) ((-715 . -943) 105808) ((-715 . -550) 105661) ((-715 . -348) 105625) ((-715 . -238) 105583) ((-715 . -256) 105548) ((-715 . -447) 105460) ((-715 . -284) 105444) ((-715 . -313) 105423) ((-715 . -548) 105384) ((-715 . -118) 105363) ((-715 . -116) 105342) ((-715 . -649) 105326) ((-715 . -577) 105310) ((-715 . -585) 105284) ((-715 . -583) 105243) ((-715 . -102) T) ((-715 . -25) T) ((-715 . -72) T) ((-715 . -1118) T) ((-715 . -547) 105225) ((-715 . -1005) T) ((-715 . -23) T) ((-715 . -21) T) ((-715 . -961) 105209) ((-715 . -956) 105193) ((-715 . -80) 105172) ((-715 . -954) T) ((-715 . -962) T) ((-715 . -1015) T) ((-715 . -658) T) ((-715 . -38) 105156) ((-697 . -1144) 105140) ((-697 . -1055) 105118) ((-697 . -548) NIL) ((-697 . -256) 105105) ((-697 . -447) 105053) ((-697 . -273) 105030) ((-697 . -943) 104892) ((-697 . -348) 104876) ((-697 . -38) 104708) ((-697 . -80) 104513) ((-697 . -956) 104339) ((-697 . -961) 104165) ((-697 . -583) 104075) ((-697 . -585) 103964) ((-697 . -577) 103796) ((-697 . -649) 103628) ((-697 . -550) 103384) ((-697 . -116) 103363) ((-697 . -118) 103342) ((-697 . -47) 103319) ((-697 . -322) 103303) ((-697 . -575) 103251) ((-697 . -802) 103195) ((-697 . -799) 103102) ((-697 . -804) 103013) ((-697 . -789) NIL) ((-697 . -814) 102992) ((-697 . -1123) 102971) ((-697 . -854) 102941) ((-697 . -825) 102920) ((-697 . -489) 102834) ((-697 . -242) 102748) ((-697 . -144) 102642) ((-697 . -385) 102576) ((-697 . -254) 102555) ((-697 . -238) 102482) ((-697 . -188) T) ((-697 . -102) T) ((-697 . -25) T) ((-697 . -72) T) ((-697 . -547) 102443) ((-697 . -1005) T) ((-697 . -23) T) ((-697 . -21) T) ((-697 . -658) T) ((-697 . -1015) T) ((-697 . -962) T) ((-697 . -954) T) ((-697 . -184) 102430) ((-697 . -1118) T) ((-697 . -187) T) ((-697 . -222) 102414) ((-697 . -182) 102398) ((-696 . -969) 102365) ((-696 . -548) 102000) ((-696 . -256) 101987) ((-696 . -447) 101939) ((-696 . -273) 101911) ((-696 . -943) 101770) ((-696 . -348) 101754) ((-696 . -38) 101606) ((-696 . -550) 101379) ((-696 . -585) 101268) ((-696 . -583) 101178) ((-696 . -658) T) ((-696 . -1015) T) ((-696 . -962) T) ((-696 . -954) T) ((-696 . -80) 101003) ((-696 . -956) 100849) ((-696 . -961) 100695) ((-696 . -21) T) ((-696 . -23) T) ((-696 . -1005) T) ((-696 . -547) 100609) ((-696 . -1118) T) ((-696 . -72) T) ((-696 . -25) T) ((-696 . -102) T) ((-696 . -577) 100461) ((-696 . -649) 100313) ((-696 . -116) 100292) ((-696 . -118) 100271) ((-696 . -144) 100185) ((-696 . -489) 100119) ((-696 . -242) 100053) ((-696 . -47) 100025) ((-696 . -322) 100009) ((-696 . -575) 99957) ((-696 . -385) 99911) ((-696 . -802) 99895) ((-696 . -799) 99877) ((-696 . -804) 99861) ((-696 . -789) 99720) ((-696 . -814) 99699) ((-696 . -1123) 99678) ((-696 . -854) 99645) ((-689 . -1005) T) ((-689 . -547) 99627) ((-689 . -1118) T) ((-689 . -72) T) ((-687 . -710) T) ((-687 . -102) T) ((-687 . -25) T) ((-687 . -72) T) ((-687 . -1118) T) ((-687 . -547) 99609) ((-687 . -1005) T) ((-687 . -23) T) ((-687 . -709) T) ((-687 . -749) T) ((-687 . -752) T) ((-687 . -711) T) ((-687 . -714) T) ((-687 . -658) T) ((-687 . -1015) T) ((-668 . -669) 99593) ((-668 . -1003) 99577) ((-668 . -190) 99561) ((-668 . -548) 99522) ((-668 . -122) 99506) ((-668 . -422) 99490) ((-668 . -1005) T) ((-668 . -447) 99423) ((-668 . -256) 99361) ((-668 . -547) 99343) ((-668 . -72) T) ((-668 . -1118) T) ((-668 . -34) T) ((-668 . -76) 99327) ((-668 . -629) 99311) ((-667 . -954) T) ((-667 . -962) T) ((-667 . -1015) T) ((-667 . -658) T) ((-667 . -21) T) ((-667 . -583) 99256) ((-667 . -23) T) ((-667 . -1005) T) ((-667 . -547) 99238) ((-667 . -1118) T) ((-667 . -72) T) ((-667 . -25) T) ((-667 . -102) T) ((-667 . -585) 99198) ((-667 . -550) 99154) ((-667 . -943) 99125) ((-667 . -118) 99104) ((-667 . -116) 99083) ((-667 . -38) 99053) ((-667 . -80) 99018) ((-667 . -956) 98988) ((-667 . -961) 98958) ((-667 . -577) 98928) ((-667 . -649) 98898) ((-667 . -313) 98851) ((-663 . -854) 98804) ((-663 . -550) 98596) ((-663 . -943) 98474) ((-663 . -1123) 98453) ((-663 . -814) 98432) ((-663 . -789) NIL) ((-663 . -804) 98409) ((-663 . -799) 98384) ((-663 . -802) 98361) ((-663 . -447) 98299) ((-663 . -385) 98253) ((-663 . -575) 98201) ((-663 . -585) 98090) ((-663 . -322) 98074) ((-663 . -47) 98039) ((-663 . -38) 97891) ((-663 . -577) 97743) ((-663 . -649) 97595) ((-663 . -242) 97529) ((-663 . -489) 97463) ((-663 . -80) 97288) ((-663 . -956) 97134) ((-663 . -961) 96980) ((-663 . -144) 96894) ((-663 . -118) 96873) ((-663 . -116) 96852) ((-663 . -583) 96762) ((-663 . -102) T) ((-663 . -25) T) ((-663 . -72) T) ((-663 . -1118) T) ((-663 . -547) 96744) ((-663 . -1005) T) ((-663 . -23) T) ((-663 . -21) T) ((-663 . -954) T) ((-663 . -962) T) ((-663 . -1015) T) ((-663 . -658) T) ((-663 . -348) 96728) ((-663 . -273) 96693) ((-663 . -256) 96680) ((-663 . -548) 96541) ((-650 . -406) T) ((-650 . -1015) T) ((-650 . -72) T) ((-650 . -1118) T) ((-650 . -547) 96523) ((-650 . -1005) T) ((-650 . -658) T) ((-647 . -954) T) ((-647 . -962) T) ((-647 . -1015) T) ((-647 . -658) T) ((-647 . -21) T) ((-647 . -583) 96495) ((-647 . -23) T) ((-647 . -1005) T) ((-647 . -547) 96477) ((-647 . -1118) T) ((-647 . -72) T) ((-647 . -25) T) ((-647 . -102) T) ((-647 . -585) 96464) ((-647 . -550) 96446) ((-646 . -954) T) ((-646 . -962) T) ((-646 . -1015) T) ((-646 . -658) T) ((-646 . -21) T) ((-646 . -583) 96391) ((-646 . -23) T) ((-646 . -1005) T) ((-646 . -547) 96373) ((-646 . -1118) T) ((-646 . -72) T) ((-646 . -25) T) ((-646 . -102) T) ((-646 . -585) 96333) ((-646 . -550) 96288) ((-646 . -943) 96258) ((-646 . -238) 96237) ((-646 . -118) 96216) ((-646 . -116) 96195) ((-646 . -38) 96165) ((-646 . -80) 96130) ((-646 . -956) 96100) ((-646 . -961) 96070) ((-646 . -577) 96040) ((-646 . -649) 96010) ((-645 . -749) T) ((-645 . -547) 95945) ((-645 . -1005) T) ((-645 . -72) T) ((-645 . -1118) T) ((-645 . -752) T) ((-645 . -423) 95895) ((-645 . -550) 95845) ((-644 . -1144) 95829) ((-644 . -1055) 95807) ((-644 . -548) NIL) ((-644 . -256) 95794) ((-644 . -447) 95742) ((-644 . -273) 95719) ((-644 . -943) 95602) ((-644 . -348) 95586) ((-644 . -38) 95418) ((-644 . -80) 95223) ((-644 . -956) 95049) ((-644 . -961) 94875) ((-644 . -583) 94785) ((-644 . -585) 94674) ((-644 . -577) 94506) ((-644 . -649) 94338) ((-644 . -550) 94102) ((-644 . -116) 94081) ((-644 . -118) 94060) ((-644 . -47) 94037) ((-644 . -322) 94021) ((-644 . -575) 93969) ((-644 . -802) 93913) ((-644 . -799) 93820) ((-644 . -804) 93731) ((-644 . -789) NIL) ((-644 . -814) 93710) ((-644 . -1123) 93689) ((-644 . -854) 93659) ((-644 . -825) 93638) ((-644 . -489) 93552) ((-644 . -242) 93466) ((-644 . -144) 93360) ((-644 . -385) 93294) ((-644 . -254) 93273) ((-644 . -238) 93200) ((-644 . -188) T) ((-644 . -102) T) ((-644 . -25) T) ((-644 . -72) T) ((-644 . -547) 93182) ((-644 . -1005) T) ((-644 . -23) T) ((-644 . -21) T) ((-644 . -658) T) ((-644 . -1015) T) ((-644 . -962) T) ((-644 . -954) T) ((-644 . -184) 93169) ((-644 . -1118) T) ((-644 . -187) T) ((-644 . -222) 93153) ((-644 . -182) 93137) ((-644 . -313) 93116) ((-643 . -308) T) ((-643 . -1123) T) ((-643 . -825) T) ((-643 . -489) T) ((-643 . -144) T) ((-643 . -550) 93066) ((-643 . -649) 93031) ((-643 . -577) 92996) ((-643 . -38) 92961) ((-643 . -385) T) ((-643 . -254) T) ((-643 . -585) 92926) ((-643 . -583) 92876) ((-643 . -658) T) ((-643 . -1015) T) ((-643 . -962) T) ((-643 . -954) T) ((-643 . -80) 92825) ((-643 . -956) 92790) ((-643 . -961) 92755) ((-643 . -21) T) ((-643 . -23) T) ((-643 . -1005) T) ((-643 . -547) 92737) ((-643 . -1118) T) ((-643 . -72) T) ((-643 . -25) T) ((-643 . -102) T) ((-643 . -242) T) ((-643 . -198) T) ((-642 . -1005) T) ((-642 . -547) 92719) ((-642 . -1118) T) ((-642 . -72) T) ((-627 . -1164) T) ((-627 . -943) 92703) ((-627 . -550) 92687) ((-627 . -547) 92669) ((-625 . -622) 92627) ((-625 . -422) 92611) ((-625 . -1005) 92589) ((-625 . -447) 92522) ((-625 . -256) 92460) ((-625 . -547) 92395) ((-625 . -72) 92349) ((-625 . -1118) T) ((-625 . -34) T) ((-625 . -57) 92307) ((-625 . -548) 92268) ((-617 . -987) T) ((-617 . -423) 92249) ((-617 . -547) 92199) ((-617 . -550) 92180) ((-617 . -1005) T) ((-617 . -1118) T) ((-617 . -72) T) ((-617 . -64) T) ((-613 . -749) T) ((-613 . -547) 92162) ((-613 . -1005) T) ((-613 . -72) T) ((-613 . -1118) T) ((-613 . -752) T) ((-613 . -943) 92146) ((-613 . -550) 92130) ((-612 . -987) T) ((-612 . -423) 92111) ((-612 . -547) 92077) ((-612 . -550) 92058) ((-612 . -1005) T) ((-612 . -1118) T) ((-612 . -72) T) ((-612 . -64) T) ((-609 . -749) T) ((-609 . -547) 92040) ((-609 . -1005) T) ((-609 . -72) T) ((-609 . -1118) T) ((-609 . -752) T) ((-609 . -943) 92024) ((-609 . -550) 92008) ((-608 . -987) T) ((-608 . -423) 91989) ((-608 . -547) 91955) ((-608 . -550) 91936) ((-608 . -1005) T) ((-608 . -1118) T) ((-608 . -72) T) ((-608 . -64) T) ((-607 . -1026) 91881) ((-607 . -422) 91865) ((-607 . -447) 91798) ((-607 . -256) 91736) ((-607 . -34) T) ((-607 . -958) 91676) ((-607 . -943) 91574) ((-607 . -550) 91493) ((-607 . -348) 91477) ((-607 . -575) 91425) ((-607 . -585) 91363) ((-607 . -322) 91347) ((-607 . -188) 91326) ((-607 . -184) 91274) ((-607 . -187) 91228) ((-607 . -222) 91212) ((-607 . -799) 91136) ((-607 . -804) 91062) ((-607 . -802) 91021) ((-607 . -182) 91005) ((-607 . -649) 90989) ((-607 . -577) 90973) ((-607 . -583) 90932) ((-607 . -102) T) ((-607 . -25) T) ((-607 . -72) T) ((-607 . -1118) T) ((-607 . -547) 90894) ((-607 . -1005) T) ((-607 . -23) T) ((-607 . -21) T) ((-607 . -961) 90878) ((-607 . -956) 90862) ((-607 . -80) 90841) ((-607 . -954) T) ((-607 . -962) T) ((-607 . -1015) T) ((-607 . -658) T) ((-607 . -38) 90801) ((-607 . -354) 90785) ((-607 . -676) 90769) ((-607 . -652) T) ((-607 . -678) T) ((-607 . -312) 90753) ((-607 . -238) 90730) ((-601 . -319) 90709) ((-601 . -649) 90693) ((-601 . -577) 90677) ((-601 . -585) 90661) ((-601 . -583) 90630) ((-601 . -102) T) ((-601 . -25) T) ((-601 . -72) T) ((-601 . -1118) T) ((-601 . -547) 90612) ((-601 . -1005) T) ((-601 . -23) T) ((-601 . -21) T) ((-601 . -961) 90596) ((-601 . -956) 90580) ((-601 . -80) 90559) ((-601 . -569) 90543) ((-601 . -328) 90515) ((-601 . -550) 90492) ((-601 . -943) 90469) ((-593 . -595) 90453) ((-593 . -38) 90423) ((-593 . -550) 90342) ((-593 . -585) 90316) ((-593 . -583) 90275) ((-593 . -658) T) ((-593 . -1015) T) ((-593 . -962) T) ((-593 . -954) T) ((-593 . -80) 90254) ((-593 . -956) 90238) ((-593 . -961) 90222) ((-593 . -21) T) ((-593 . -23) T) ((-593 . -1005) T) ((-593 . -547) 90204) ((-593 . -72) T) ((-593 . -25) T) ((-593 . -102) T) ((-593 . -577) 90174) ((-593 . -649) 90144) ((-593 . -348) 90128) ((-593 . -943) 90026) ((-593 . -754) 90010) ((-593 . -1118) T) ((-593 . -238) 89971) ((-592 . -595) 89955) ((-592 . -38) 89925) ((-592 . -550) 89844) ((-592 . -585) 89818) ((-592 . -583) 89777) ((-592 . -658) T) ((-592 . -1015) T) ((-592 . -962) T) ((-592 . -954) T) ((-592 . -80) 89756) ((-592 . -956) 89740) ((-592 . -961) 89724) ((-592 . -21) T) ((-592 . -23) T) ((-592 . -1005) T) ((-592 . -547) 89706) ((-592 . -72) T) ((-592 . -25) T) ((-592 . -102) T) ((-592 . -577) 89676) ((-592 . -649) 89646) ((-592 . -348) 89630) ((-592 . -943) 89528) ((-592 . -754) 89512) ((-592 . -1118) T) ((-592 . -238) 89491) ((-591 . -595) 89475) ((-591 . -38) 89445) ((-591 . -550) 89364) ((-591 . -585) 89338) ((-591 . -583) 89297) ((-591 . -658) T) ((-591 . -1015) T) ((-591 . -962) T) ((-591 . -954) T) ((-591 . -80) 89276) ((-591 . -956) 89260) ((-591 . -961) 89244) ((-591 . -21) T) ((-591 . -23) T) ((-591 . -1005) T) ((-591 . -547) 89226) ((-591 . -72) T) ((-591 . -25) T) ((-591 . -102) T) ((-591 . -577) 89196) ((-591 . -649) 89166) ((-591 . -348) 89150) ((-591 . -943) 89048) ((-591 . -754) 89032) ((-591 . -1118) T) ((-591 . -238) 89011) ((-589 . -649) 88995) ((-589 . -577) 88979) ((-589 . -585) 88963) ((-589 . -583) 88932) ((-589 . -102) T) ((-589 . -25) T) ((-589 . -72) T) ((-589 . -1118) T) ((-589 . -547) 88914) ((-589 . -1005) T) ((-589 . -23) T) ((-589 . -21) T) ((-589 . -961) 88898) ((-589 . -956) 88882) ((-589 . -80) 88861) ((-589 . -707) 88840) ((-589 . -709) 88819) ((-589 . -749) 88798) ((-589 . -752) 88777) ((-589 . -711) 88756) ((-589 . -714) 88735) ((-586 . -1005) T) ((-586 . -547) 88717) ((-586 . -1118) T) ((-586 . -72) T) ((-586 . -943) 88701) ((-586 . -550) 88685) ((-584 . -629) 88669) ((-584 . -76) 88653) ((-584 . -34) T) ((-584 . -1118) T) ((-584 . -72) 88607) ((-584 . -547) 88542) ((-584 . -256) 88480) ((-584 . -447) 88413) ((-584 . -1005) 88391) ((-584 . -422) 88375) ((-584 . -122) 88359) ((-584 . -548) 88320) ((-584 . -190) 88304) ((-582 . -987) T) ((-582 . -423) 88285) ((-582 . -547) 88238) ((-582 . -550) 88219) ((-582 . -1005) T) ((-582 . -1118) T) ((-582 . -72) T) ((-582 . -64) T) ((-578 . -603) 88203) ((-578 . -1157) 88187) ((-578 . -916) 88171) ((-578 . -1053) 88155) ((-578 . -749) 88134) ((-578 . -752) 88113) ((-578 . -317) 88097) ((-578 . -588) 88081) ((-578 . -240) 88058) ((-578 . -238) 88010) ((-578 . -533) 87987) ((-578 . -548) 87948) ((-578 . -422) 87932) ((-578 . -1005) 87885) ((-578 . -447) 87818) ((-578 . -256) 87756) ((-578 . -547) 87671) ((-578 . -72) 87605) ((-578 . -1118) T) ((-578 . -34) T) ((-578 . -122) 87589) ((-578 . -234) 87573) ((-576 . -1176) 87557) ((-576 . -80) 87536) ((-576 . -956) 87520) ((-576 . -961) 87504) ((-576 . -21) T) ((-576 . -583) 87473) ((-576 . -23) T) ((-576 . -1005) T) ((-576 . -547) 87455) ((-576 . -1118) T) ((-576 . -72) T) ((-576 . -25) T) ((-576 . -102) T) ((-576 . -585) 87439) ((-576 . -577) 87423) ((-576 . -649) 87407) ((-576 . -238) 87374) ((-574 . -1176) 87358) ((-574 . -80) 87337) ((-574 . -956) 87321) ((-574 . -961) 87305) ((-574 . -21) T) ((-574 . -583) 87274) ((-574 . -23) T) ((-574 . -1005) T) ((-574 . -547) 87256) ((-574 . -1118) T) ((-574 . -72) T) ((-574 . -25) T) ((-574 . -102) T) ((-574 . -585) 87240) ((-574 . -577) 87224) ((-574 . -649) 87208) ((-574 . -550) 87185) ((-574 . -442) 87157) ((-572 . -745) T) ((-572 . -752) T) ((-572 . -749) T) ((-572 . -1005) T) ((-572 . -547) 87139) ((-572 . -1118) T) ((-572 . -72) T) ((-572 . -313) T) ((-572 . -550) 87116) ((-567 . -676) 87100) ((-567 . -652) T) ((-567 . -678) T) ((-567 . -80) 87079) ((-567 . -956) 87063) ((-567 . -961) 87047) ((-567 . -21) T) ((-567 . -583) 87016) ((-567 . -23) T) ((-567 . -1005) T) ((-567 . -547) 86985) ((-567 . -1118) T) ((-567 . -72) T) ((-567 . -25) T) ((-567 . -102) T) ((-567 . -585) 86969) ((-567 . -577) 86953) ((-567 . -649) 86937) ((-567 . -354) 86902) ((-567 . -312) 86837) ((-567 . -238) 86795) ((-566 . -1096) 86770) ((-566 . -181) 86714) ((-566 . -76) 86658) ((-566 . -256) 86503) ((-566 . -447) 86303) ((-566 . -422) 86233) ((-566 . -122) 86177) ((-566 . -548) NIL) ((-566 . -190) 86121) ((-566 . -544) 86096) ((-566 . -240) 86071) ((-566 . -1118) T) ((-566 . -238) 86024) ((-566 . -1005) T) ((-566 . -547) 86006) ((-566 . -72) T) ((-566 . -34) T) ((-566 . -533) 85981) ((-561 . -406) T) ((-561 . -1015) T) ((-561 . -72) T) ((-561 . -1118) T) ((-561 . -547) 85963) ((-561 . -1005) T) ((-561 . -658) T) ((-560 . -987) T) ((-560 . -423) 85944) ((-560 . -547) 85910) ((-560 . -550) 85891) ((-560 . -1005) T) ((-560 . -1118) T) ((-560 . -72) T) ((-560 . -64) T) ((-557 . -182) 85875) ((-557 . -802) 85834) ((-557 . -804) 85760) ((-557 . -799) 85684) ((-557 . -222) 85668) ((-557 . -187) 85622) ((-557 . -1118) T) ((-557 . -184) 85570) ((-557 . -954) T) ((-557 . -962) T) ((-557 . -1015) T) ((-557 . -658) T) ((-557 . -21) T) ((-557 . -583) 85542) ((-557 . -23) T) ((-557 . -1005) T) ((-557 . -547) 85524) ((-557 . -72) T) ((-557 . -25) T) ((-557 . -102) T) ((-557 . -585) 85511) ((-557 . -550) 85407) ((-557 . -188) 85386) ((-557 . -489) T) ((-557 . -242) T) ((-557 . -144) T) ((-557 . -649) 85373) ((-557 . -577) 85360) ((-557 . -961) 85347) ((-557 . -956) 85334) ((-557 . -80) 85319) ((-557 . -38) 85306) ((-557 . -548) 85283) ((-557 . -348) 85267) ((-557 . -943) 85152) ((-557 . -118) 85131) ((-557 . -116) 85110) ((-557 . -254) 85089) ((-557 . -385) 85068) ((-557 . -825) 85047) ((-553 . -38) 85031) ((-553 . -550) 85000) ((-553 . -585) 84974) ((-553 . -583) 84933) ((-553 . -658) T) ((-553 . -1015) T) ((-553 . -962) T) ((-553 . -954) T) ((-553 . -80) 84912) ((-553 . -956) 84896) ((-553 . -961) 84880) ((-553 . -21) T) ((-553 . -23) T) ((-553 . -1005) T) ((-553 . -547) 84862) ((-553 . -1118) T) ((-553 . -72) T) ((-553 . -25) T) ((-553 . -102) T) ((-553 . -577) 84846) ((-553 . -649) 84830) ((-553 . -748) 84809) ((-553 . -714) 84788) ((-553 . -711) 84767) ((-553 . -752) 84746) ((-553 . -749) 84725) ((-553 . -709) 84704) ((-553 . -707) 84683) ((-551 . -873) T) ((-551 . -72) T) ((-551 . -547) 84665) ((-551 . -1005) T) ((-551 . -599) T) ((-551 . -1118) T) ((-551 . -82) T) ((-545 . -103) T) ((-545 . -72) T) ((-545 . -1118) T) ((-545 . -547) 84647) ((-545 . -1005) T) ((-545 . -749) T) ((-545 . -752) T) ((-545 . -787) 84631) ((-545 . -548) 84492) ((-542 . -310) 84430) ((-542 . -72) T) ((-542 . -1118) T) ((-542 . -547) 84412) ((-542 . -1005) T) ((-542 . -1096) 84388) ((-542 . -181) 84333) ((-542 . -76) 84278) ((-542 . -256) 84067) ((-542 . -447) 83807) ((-542 . -422) 83739) ((-542 . -122) 83684) ((-542 . -548) NIL) ((-542 . -190) 83629) ((-542 . -544) 83605) ((-542 . -240) 83581) ((-542 . -238) 83557) ((-542 . -34) T) ((-542 . -533) 83533) ((-541 . -1005) T) ((-541 . -547) 83486) ((-541 . -1118) T) ((-541 . -72) T) ((-541 . -423) 83454) ((-541 . -550) 83422) ((-540 . -1005) T) ((-540 . -547) 83404) ((-540 . -1118) T) ((-540 . -72) T) ((-540 . -599) T) ((-539 . -1005) T) ((-539 . -547) 83386) ((-539 . -1118) T) ((-539 . -72) T) ((-539 . -599) T) ((-538 . -1005) T) ((-538 . -547) 83354) ((-538 . -1118) T) ((-538 . -72) T) ((-537 . -1005) T) ((-537 . -547) 83336) ((-537 . -1118) T) ((-537 . -72) T) ((-537 . -599) T) ((-536 . -1005) T) ((-536 . -547) 83304) ((-536 . -1118) T) ((-536 . -72) T) ((-536 . -423) 83287) ((-536 . -550) 83270) ((-535 . -676) 83254) ((-535 . -652) T) ((-535 . -678) T) ((-535 . -80) 83233) ((-535 . -956) 83217) ((-535 . -961) 83201) ((-535 . -21) T) ((-535 . -583) 83170) ((-535 . -23) T) ((-535 . -1005) T) ((-535 . -547) 83139) ((-535 . -1118) T) ((-535 . -72) T) ((-535 . -25) T) ((-535 . -102) T) ((-535 . -585) 83123) ((-535 . -577) 83107) ((-535 . -649) 83091) ((-535 . -354) 83056) ((-535 . -312) 82991) ((-535 . -238) 82949) ((-534 . -987) T) ((-534 . -423) 82930) ((-534 . -547) 82880) ((-534 . -550) 82861) ((-534 . -1005) T) ((-534 . -1118) T) ((-534 . -72) T) ((-534 . -64) T) ((-531 . -1167) 82845) ((-531 . -317) 82829) ((-531 . -752) 82808) ((-531 . -749) 82787) ((-531 . -122) 82771) ((-531 . -34) T) ((-531 . -1118) T) ((-531 . -72) 82705) ((-531 . -547) 82620) ((-531 . -256) 82558) ((-531 . -447) 82491) ((-531 . -1005) 82444) ((-531 . -422) 82428) ((-531 . -548) 82389) ((-531 . -238) 82341) ((-531 . -533) 82318) ((-531 . -240) 82295) ((-531 . -588) 82279) ((-531 . -19) 82263) ((-530 . -547) 82245) ((-526 . -1005) T) ((-526 . -547) 82211) ((-526 . -1118) T) ((-526 . -72) T) ((-526 . -423) 82192) ((-526 . -550) 82173) ((-525 . -954) T) ((-525 . -962) T) ((-525 . -1015) T) ((-525 . -658) T) ((-525 . -21) T) ((-525 . -583) 82132) ((-525 . -23) T) ((-525 . -1005) T) ((-525 . -547) 82114) ((-525 . -1118) T) ((-525 . -72) T) ((-525 . -25) T) ((-525 . -102) T) ((-525 . -585) 82088) ((-525 . -550) 82046) ((-525 . -80) 81999) ((-525 . -956) 81959) ((-525 . -961) 81919) ((-525 . -489) 81898) ((-525 . -242) 81877) ((-525 . -144) 81856) ((-525 . -649) 81829) ((-525 . -577) 81802) ((-525 . -38) 81775) ((-524 . -1147) 81752) ((-524 . -47) 81729) ((-524 . -38) 81626) ((-524 . -577) 81523) ((-524 . -649) 81420) ((-524 . -550) 81302) ((-524 . -242) 81281) ((-524 . -489) 81260) ((-524 . -80) 81125) ((-524 . -956) 81011) ((-524 . -961) 80897) ((-524 . -144) 80851) ((-524 . -118) 80830) ((-524 . -116) 80809) ((-524 . -585) 80734) ((-524 . -583) 80644) ((-524 . -879) 80614) ((-524 . -804) 80527) ((-524 . -799) 80438) ((-524 . -802) 80351) ((-524 . -238) 80316) ((-524 . -187) 80275) ((-524 . -1118) T) ((-524 . -184) 80228) ((-524 . -954) T) ((-524 . -962) T) ((-524 . -1015) T) ((-524 . -658) T) ((-524 . -21) T) ((-524 . -23) T) ((-524 . -1005) T) ((-524 . -547) 80210) ((-524 . -72) T) ((-524 . -25) T) ((-524 . -102) T) ((-524 . -188) 80169) ((-522 . -987) T) ((-522 . -423) 80150) ((-522 . -547) 80116) ((-522 . -550) 80097) ((-522 . -1005) T) ((-522 . -1118) T) ((-522 . -72) T) ((-522 . -64) T) ((-516 . -1005) T) ((-516 . -547) 80063) ((-516 . -1118) T) ((-516 . -72) T) ((-516 . -423) 80044) ((-516 . -550) 80025) ((-513 . -649) 80000) ((-513 . -577) 79975) ((-513 . -585) 79950) ((-513 . -583) 79910) ((-513 . -102) T) ((-513 . -25) T) ((-513 . -72) T) ((-513 . -1118) T) ((-513 . -547) 79892) ((-513 . -1005) T) ((-513 . -23) T) ((-513 . -21) T) ((-513 . -961) 79867) ((-513 . -956) 79842) ((-513 . -80) 79803) ((-513 . -943) 79787) ((-513 . -550) 79771) ((-511 . -295) T) ((-511 . -1055) T) ((-511 . -313) T) ((-511 . -116) T) ((-511 . -308) T) ((-511 . -1123) T) ((-511 . -825) T) ((-511 . -489) T) ((-511 . -144) T) ((-511 . -550) 79721) ((-511 . -649) 79686) ((-511 . -577) 79651) ((-511 . -38) 79616) ((-511 . -385) T) ((-511 . -254) T) ((-511 . -80) 79565) ((-511 . -956) 79530) ((-511 . -961) 79495) ((-511 . -583) 79445) ((-511 . -585) 79410) ((-511 . -242) T) ((-511 . -198) T) ((-511 . -338) T) ((-511 . -187) T) ((-511 . -1118) T) ((-511 . -184) 79397) ((-511 . -954) T) ((-511 . -962) T) ((-511 . -1015) T) ((-511 . -658) T) ((-511 . -21) T) ((-511 . -23) T) ((-511 . -1005) T) ((-511 . -547) 79379) ((-511 . -72) T) ((-511 . -25) T) ((-511 . -102) T) ((-511 . -188) T) ((-511 . -276) 79366) ((-511 . -118) 79348) ((-511 . -943) 79335) ((-511 . -1176) 79322) ((-511 . -1187) 79309) ((-511 . -548) 79291) ((-510 . -772) 79275) ((-510 . -825) T) ((-510 . -489) T) ((-510 . -242) T) ((-510 . -144) T) ((-510 . -550) 79247) ((-510 . -649) 79234) ((-510 . -577) 79221) ((-510 . -961) 79208) ((-510 . -956) 79195) ((-510 . -80) 79180) ((-510 . -38) 79167) ((-510 . -385) T) ((-510 . -254) T) ((-510 . -954) T) ((-510 . -962) T) ((-510 . -1015) T) ((-510 . -658) T) ((-510 . -21) T) ((-510 . -583) 79139) ((-510 . -23) T) ((-510 . -1005) T) ((-510 . -547) 79121) ((-510 . -1118) T) ((-510 . -72) T) ((-510 . -25) T) ((-510 . -102) T) ((-510 . -585) 79108) ((-510 . -118) T) ((-509 . -1005) T) ((-509 . -547) 79090) ((-509 . -1118) T) ((-509 . -72) T) ((-508 . -1005) T) ((-508 . -547) 79072) ((-508 . -1118) T) ((-508 . -72) T) ((-507 . -506) T) ((-507 . -763) T) ((-507 . -145) T) ((-507 . -459) T) ((-507 . -547) 79054) ((-501 . -487) 79038) ((-501 . -35) T) ((-501 . -66) T) ((-501 . -236) T) ((-501 . -426) T) ((-501 . -1107) T) ((-501 . -1104) T) ((-501 . -943) 79020) ((-501 . -908) T) ((-501 . -752) T) ((-501 . -749) T) ((-501 . -489) T) ((-501 . -242) T) ((-501 . -144) T) ((-501 . -550) 78992) ((-501 . -649) 78979) ((-501 . -577) 78966) ((-501 . -585) 78953) ((-501 . -583) 78925) ((-501 . -102) T) ((-501 . -25) T) ((-501 . -72) T) ((-501 . -1118) T) ((-501 . -547) 78907) ((-501 . -1005) T) ((-501 . -23) T) ((-501 . -21) T) ((-501 . -961) 78894) ((-501 . -956) 78881) ((-501 . -80) 78866) ((-501 . -954) T) ((-501 . -962) T) ((-501 . -1015) T) ((-501 . -658) T) ((-501 . -38) 78853) ((-501 . -385) T) ((-483 . -1096) 78832) ((-483 . -181) 78780) ((-483 . -76) 78728) ((-483 . -256) 78526) ((-483 . -447) 78278) ((-483 . -422) 78213) ((-483 . -122) 78161) ((-483 . -548) NIL) ((-483 . -190) 78109) ((-483 . -544) 78088) ((-483 . -240) 78067) ((-483 . -1118) T) ((-483 . -238) 78046) ((-483 . -1005) T) ((-483 . -547) 78028) ((-483 . -72) T) ((-483 . -34) T) ((-483 . -533) 78007) ((-482 . -745) T) ((-482 . -752) T) ((-482 . -749) T) ((-482 . -1005) T) ((-482 . -547) 77989) ((-482 . -1118) T) ((-482 . -72) T) ((-482 . -313) T) ((-481 . -745) T) ((-481 . -752) T) ((-481 . -749) T) ((-481 . -1005) T) ((-481 . -547) 77971) ((-481 . -1118) T) ((-481 . -72) T) ((-481 . -313) T) ((-480 . -745) T) ((-480 . -752) T) ((-480 . -749) T) ((-480 . -1005) T) ((-480 . -547) 77953) ((-480 . -1118) T) ((-480 . -72) T) ((-480 . -313) T) ((-479 . -745) T) ((-479 . -752) T) ((-479 . -749) T) ((-479 . -1005) T) ((-479 . -547) 77935) ((-479 . -1118) T) ((-479 . -72) T) ((-479 . -313) T) ((-478 . -477) T) ((-478 . -1123) T) ((-478 . -1055) T) ((-478 . -943) 77917) ((-478 . -548) 77832) ((-478 . -926) T) ((-478 . -789) 77814) ((-478 . -748) T) ((-478 . -714) T) ((-478 . -711) T) ((-478 . -752) T) ((-478 . -749) T) ((-478 . -709) T) ((-478 . -707) T) ((-478 . -733) T) ((-478 . -585) 77786) ((-478 . -575) 77768) ((-478 . -825) T) ((-478 . -489) T) ((-478 . -242) T) ((-478 . -144) T) ((-478 . -550) 77740) ((-478 . -649) 77727) ((-478 . -577) 77714) ((-478 . -961) 77701) ((-478 . -956) 77688) ((-478 . -80) 77673) ((-478 . -38) 77660) ((-478 . -385) T) ((-478 . -254) T) ((-478 . -187) T) ((-478 . -184) 77647) ((-478 . -188) T) ((-478 . -114) T) ((-478 . -954) T) ((-478 . -962) T) ((-478 . -1015) T) ((-478 . -658) T) ((-478 . -21) T) ((-478 . -583) 77619) ((-478 . -23) T) ((-478 . -1005) T) ((-478 . -547) 77601) ((-478 . -1118) T) ((-478 . -72) T) ((-478 . -25) T) ((-478 . -102) T) ((-478 . -118) T) ((-467 . -1008) 77553) ((-467 . -72) T) ((-467 . -547) 77535) ((-467 . -1005) T) ((-467 . -238) 77491) ((-467 . -1118) T) ((-467 . -552) 77394) ((-467 . -548) 77375) ((-465 . -684) 77357) ((-465 . -459) T) ((-465 . -145) T) ((-465 . -763) T) ((-465 . -506) T) ((-465 . -547) 77339) ((-463 . -710) T) ((-463 . -102) T) ((-463 . -25) T) ((-463 . -72) T) ((-463 . -1118) T) ((-463 . -547) 77321) ((-463 . -1005) T) ((-463 . -23) T) ((-463 . -709) T) ((-463 . -749) T) ((-463 . -752) T) ((-463 . -711) T) ((-463 . -714) T) ((-463 . -442) 77298) ((-461 . -459) T) ((-461 . -145) T) ((-461 . -547) 77280) ((-457 . -987) T) ((-457 . -423) 77261) ((-457 . -547) 77227) ((-457 . -550) 77208) ((-457 . -1005) T) ((-457 . -1118) T) ((-457 . -72) T) ((-457 . -64) T) ((-456 . -987) T) ((-456 . -423) 77189) ((-456 . -547) 77155) ((-456 . -550) 77136) ((-456 . -1005) T) ((-456 . -1118) T) ((-456 . -72) T) ((-456 . -64) T) ((-455 . -622) 77086) ((-455 . -422) 77070) ((-455 . -1005) 77048) ((-455 . -447) 76981) ((-455 . -256) 76919) ((-455 . -547) 76854) ((-455 . -72) 76808) ((-455 . -1118) T) ((-455 . -34) T) ((-455 . -57) 76758) ((-452 . -57) 76732) ((-452 . -34) T) ((-452 . -1118) T) ((-452 . -72) 76686) ((-452 . -547) 76621) ((-452 . -256) 76559) ((-452 . -447) 76492) ((-452 . -1005) 76470) ((-452 . -422) 76454) ((-451 . -276) 76431) ((-451 . -188) T) ((-451 . -184) 76418) ((-451 . -187) T) ((-451 . -313) T) ((-451 . -1055) T) ((-451 . -295) T) ((-451 . -118) 76400) ((-451 . -550) 76330) ((-451 . -585) 76275) ((-451 . -583) 76205) ((-451 . -102) T) ((-451 . -25) T) ((-451 . -72) T) ((-451 . -1118) T) ((-451 . -547) 76187) ((-451 . -1005) T) ((-451 . -23) T) ((-451 . -21) T) ((-451 . -658) T) ((-451 . -1015) T) ((-451 . -962) T) ((-451 . -954) T) ((-451 . -308) T) ((-451 . -1123) T) ((-451 . -825) T) ((-451 . -489) T) ((-451 . -144) T) ((-451 . -649) 76132) ((-451 . -577) 76077) ((-451 . -38) 76042) ((-451 . -385) T) ((-451 . -254) T) ((-451 . -80) 75959) ((-451 . -956) 75904) ((-451 . -961) 75849) ((-451 . -242) T) ((-451 . -198) T) ((-451 . -338) T) ((-451 . -116) T) ((-451 . -943) 75826) ((-451 . -1176) 75803) ((-451 . -1187) 75780) ((-450 . -987) T) ((-450 . -423) 75761) ((-450 . -547) 75727) ((-450 . -550) 75708) ((-450 . -1005) T) ((-450 . -1118) T) ((-450 . -72) T) ((-450 . -64) T) ((-449 . -19) 75692) ((-449 . -588) 75676) ((-449 . -240) 75653) ((-449 . -238) 75605) ((-449 . -533) 75582) ((-449 . -548) 75543) ((-449 . -422) 75527) ((-449 . -1005) 75480) ((-449 . -447) 75413) ((-449 . -256) 75351) ((-449 . -547) 75266) ((-449 . -72) 75200) ((-449 . -1118) T) ((-449 . -34) T) ((-449 . -122) 75184) ((-449 . -749) 75163) ((-449 . -752) 75142) ((-449 . -317) 75126) ((-449 . -234) 75110) ((-448 . -270) 75089) ((-448 . -550) 75073) ((-448 . -943) 75057) ((-448 . -23) T) ((-448 . -1005) T) ((-448 . -547) 75039) ((-448 . -1118) T) ((-448 . -72) T) ((-448 . -25) T) ((-448 . -102) T) ((-445 . -710) T) ((-445 . -102) T) ((-445 . -25) T) ((-445 . -72) T) ((-445 . -1118) T) ((-445 . -547) 75021) ((-445 . -1005) T) ((-445 . -23) T) ((-445 . -709) T) ((-445 . -749) T) ((-445 . -752) T) ((-445 . -711) T) ((-445 . -714) T) ((-445 . -442) 75000) ((-444 . -709) T) ((-444 . -749) T) ((-444 . -752) T) ((-444 . -711) T) ((-444 . -25) T) ((-444 . -72) T) ((-444 . -1118) T) ((-444 . -547) 74982) ((-444 . -1005) T) ((-444 . -23) T) ((-444 . -442) 74961) ((-443 . -442) 74940) ((-443 . -547) 74880) ((-443 . -1005) 74831) ((-443 . -1118) T) ((-443 . -72) T) ((-441 . -23) T) ((-441 . -1005) T) ((-441 . -547) 74813) ((-441 . -1118) T) ((-441 . -72) T) ((-441 . -25) T) ((-441 . -442) 74792) ((-440 . -21) T) ((-440 . -583) 74774) ((-440 . -23) T) ((-440 . -1005) T) ((-440 . -547) 74756) ((-440 . -1118) T) ((-440 . -72) T) ((-440 . -25) T) ((-440 . -102) T) ((-440 . -442) 74735) ((-439 . -1005) T) ((-439 . -547) 74717) ((-439 . -1118) T) ((-439 . -72) T) ((-437 . -1005) T) ((-437 . -547) 74699) ((-437 . -1118) T) ((-437 . -72) T) ((-435 . -749) T) ((-435 . -547) 74681) ((-435 . -1005) T) ((-435 . -72) T) ((-435 . -1118) T) ((-435 . -752) T) ((-435 . -550) 74662) ((-433 . -94) T) ((-433 . -317) 74645) ((-433 . -752) T) ((-433 . -749) T) ((-433 . -122) 74628) ((-433 . -34) T) ((-433 . -72) T) ((-433 . -547) 74610) ((-433 . -256) NIL) ((-433 . -447) NIL) ((-433 . -1005) T) ((-433 . -422) 74593) ((-433 . -548) 74575) ((-433 . -238) 74526) ((-433 . -533) 74502) ((-433 . -240) 74478) ((-433 . -588) 74461) ((-433 . -19) 74444) ((-433 . -599) T) ((-433 . -1118) T) ((-433 . -82) T) ((-430 . -57) 74394) ((-430 . -34) T) ((-430 . -1118) T) ((-430 . -72) 74348) ((-430 . -547) 74283) ((-430 . -256) 74221) ((-430 . -447) 74154) ((-430 . -1005) 74132) ((-430 . -422) 74116) ((-429 . -19) 74100) ((-429 . -588) 74084) ((-429 . -240) 74061) ((-429 . -238) 74013) ((-429 . -533) 73990) ((-429 . -548) 73951) ((-429 . -422) 73935) ((-429 . -1005) 73888) ((-429 . -447) 73821) ((-429 . -256) 73759) ((-429 . -547) 73674) ((-429 . -72) 73608) ((-429 . -1118) T) ((-429 . -34) T) ((-429 . -122) 73592) ((-429 . -749) 73571) ((-429 . -752) 73550) ((-429 . -317) 73534) ((-428 . -250) T) ((-428 . -72) T) ((-428 . -1118) T) ((-428 . -547) 73516) ((-428 . -1005) T) ((-428 . -550) 73417) ((-428 . -943) 73360) ((-428 . -447) 73326) ((-428 . -256) 73313) ((-428 . -27) T) ((-428 . -908) T) ((-428 . -198) T) ((-428 . -80) 73262) ((-428 . -956) 73227) ((-428 . -961) 73192) ((-428 . -242) T) ((-428 . -649) 73157) ((-428 . -577) 73122) ((-428 . -585) 73072) ((-428 . -583) 73022) ((-428 . -102) T) ((-428 . -25) T) ((-428 . -23) T) ((-428 . -21) T) ((-428 . -954) T) ((-428 . -962) T) ((-428 . -1015) T) ((-428 . -658) T) ((-428 . -38) 72987) ((-428 . -254) T) ((-428 . -385) T) ((-428 . -144) T) ((-428 . -489) T) ((-428 . -825) T) ((-428 . -1123) T) ((-428 . -308) T) ((-428 . -575) 72947) ((-428 . -926) T) ((-428 . -548) 72892) ((-428 . -118) T) ((-428 . -188) T) ((-428 . -184) 72879) ((-428 . -187) T) ((-424 . -1005) T) ((-424 . -547) 72845) ((-424 . -1118) T) ((-424 . -72) T) ((-420 . -897) 72827) ((-420 . -1055) T) ((-420 . -550) 72777) ((-420 . -943) 72737) ((-420 . -548) 72667) ((-420 . -926) T) ((-420 . -814) NIL) ((-420 . -787) 72649) ((-420 . -748) T) ((-420 . -714) T) ((-420 . -711) T) ((-420 . -752) T) ((-420 . -749) T) ((-420 . -709) T) ((-420 . -707) T) ((-420 . -733) T) ((-420 . -789) 72631) ((-420 . -336) 72613) ((-420 . -575) 72595) ((-420 . -322) 72577) ((-420 . -238) NIL) ((-420 . -256) NIL) ((-420 . -447) NIL) ((-420 . -284) 72559) ((-420 . -198) T) ((-420 . -80) 72486) ((-420 . -956) 72436) ((-420 . -961) 72386) ((-420 . -242) T) ((-420 . -649) 72336) ((-420 . -577) 72286) ((-420 . -585) 72236) ((-420 . -583) 72186) ((-420 . -38) 72136) ((-420 . -254) T) ((-420 . -385) T) ((-420 . -144) T) ((-420 . -489) T) ((-420 . -825) T) ((-420 . -1123) T) ((-420 . -308) T) ((-420 . -188) T) ((-420 . -184) 72123) ((-420 . -187) T) ((-420 . -222) 72105) ((-420 . -799) NIL) ((-420 . -804) NIL) ((-420 . -802) NIL) ((-420 . -182) 72087) ((-420 . -118) T) ((-420 . -116) NIL) ((-420 . -102) T) ((-420 . -25) T) ((-420 . -72) T) ((-420 . -1118) T) ((-420 . -547) 72029) ((-420 . -1005) T) ((-420 . -23) T) ((-420 . -21) T) ((-420 . -954) T) ((-420 . -962) T) ((-420 . -1015) T) ((-420 . -658) T) ((-418 . -282) 71998) ((-418 . -102) T) ((-418 . -25) T) ((-418 . -72) T) ((-418 . -1118) T) ((-418 . -547) 71980) ((-418 . -1005) T) ((-418 . -23) T) ((-418 . -583) 71962) ((-418 . -21) T) ((-417 . -874) 71946) ((-417 . -422) 71930) ((-417 . -1005) 71908) ((-417 . -447) 71841) ((-417 . -256) 71779) ((-417 . -547) 71714) ((-417 . -72) 71668) ((-417 . -1118) T) ((-417 . -34) T) ((-417 . -76) 71652) ((-416 . -987) T) ((-416 . -423) 71633) ((-416 . -547) 71599) ((-416 . -550) 71580) ((-416 . -1005) T) ((-416 . -1118) T) ((-416 . -72) T) ((-416 . -64) T) ((-415 . -193) 71559) ((-415 . -1176) 71529) ((-415 . -714) 71508) ((-415 . -711) 71487) ((-415 . -752) 71441) ((-415 . -749) 71395) ((-415 . -709) 71374) ((-415 . -710) 71353) ((-415 . -649) 71298) ((-415 . -577) 71223) ((-415 . -240) 71200) ((-415 . -238) 71177) ((-415 . -422) 71161) ((-415 . -447) 71094) ((-415 . -256) 71032) ((-415 . -34) T) ((-415 . -533) 71009) ((-415 . -943) 70838) ((-415 . -550) 70642) ((-415 . -348) 70611) ((-415 . -575) 70519) ((-415 . -585) 70358) ((-415 . -322) 70328) ((-415 . -313) 70307) ((-415 . -188) 70260) ((-415 . -583) 70048) ((-415 . -658) 70027) ((-415 . -1015) 70006) ((-415 . -962) 69985) ((-415 . -954) 69964) ((-415 . -184) 69860) ((-415 . -187) 69762) ((-415 . -222) 69732) ((-415 . -799) 69604) ((-415 . -804) 69478) ((-415 . -802) 69411) ((-415 . -182) 69381) ((-415 . -547) 69078) ((-415 . -961) 69003) ((-415 . -956) 68908) ((-415 . -80) 68828) ((-415 . -102) 68703) ((-415 . -25) 68540) ((-415 . -72) 68277) ((-415 . -1118) T) ((-415 . -1005) 68033) ((-415 . -23) 67889) ((-415 . -21) 67804) ((-414 . -854) 67749) ((-414 . -550) 67541) ((-414 . -943) 67419) ((-414 . -1123) 67398) ((-414 . -814) 67377) ((-414 . -789) NIL) ((-414 . -804) 67354) ((-414 . -799) 67329) ((-414 . -802) 67306) ((-414 . -447) 67244) ((-414 . -385) 67198) ((-414 . -575) 67146) ((-414 . -585) 67035) ((-414 . -322) 67019) ((-414 . -47) 66976) ((-414 . -38) 66828) ((-414 . -577) 66680) ((-414 . -649) 66532) ((-414 . -242) 66466) ((-414 . -489) 66400) ((-414 . -80) 66225) ((-414 . -956) 66071) ((-414 . -961) 65917) ((-414 . -144) 65831) ((-414 . -118) 65810) ((-414 . -116) 65789) ((-414 . -583) 65699) ((-414 . -102) T) ((-414 . -25) T) ((-414 . -72) T) ((-414 . -1118) T) ((-414 . -547) 65681) ((-414 . -1005) T) ((-414 . -23) T) ((-414 . -21) T) ((-414 . -954) T) ((-414 . -962) T) ((-414 . -1015) T) ((-414 . -658) T) ((-414 . -348) 65665) ((-414 . -273) 65622) ((-414 . -256) 65609) ((-414 . -548) 65470) ((-412 . -1096) 65449) ((-412 . -181) 65397) ((-412 . -76) 65345) ((-412 . -256) 65143) ((-412 . -447) 64895) ((-412 . -422) 64830) ((-412 . -122) 64778) ((-412 . -548) NIL) ((-412 . -190) 64726) ((-412 . -544) 64705) ((-412 . -240) 64684) ((-412 . -1118) T) ((-412 . -238) 64663) ((-412 . -1005) T) ((-412 . -547) 64645) ((-412 . -72) T) ((-412 . -34) T) ((-412 . -533) 64624) ((-411 . -987) T) ((-411 . -423) 64605) ((-411 . -547) 64571) ((-411 . -550) 64552) ((-411 . -1005) T) ((-411 . -1118) T) ((-411 . -72) T) ((-411 . -64) T) ((-410 . -308) T) ((-410 . -1123) T) ((-410 . -825) T) ((-410 . -489) T) ((-410 . -144) T) ((-410 . -550) 64502) ((-410 . -649) 64467) ((-410 . -577) 64432) ((-410 . -38) 64397) ((-410 . -385) T) ((-410 . -254) T) ((-410 . -585) 64362) ((-410 . -583) 64312) ((-410 . -658) T) ((-410 . -1015) T) ((-410 . -962) T) ((-410 . -954) T) ((-410 . -80) 64261) ((-410 . -956) 64226) ((-410 . -961) 64191) ((-410 . -21) T) ((-410 . -23) T) ((-410 . -1005) T) ((-410 . -547) 64143) ((-410 . -1118) T) ((-410 . -72) T) ((-410 . -25) T) ((-410 . -102) T) ((-410 . -242) T) ((-410 . -198) T) ((-410 . -118) T) ((-410 . -943) 64103) ((-410 . -926) T) ((-410 . -548) 64025) ((-409 . -1113) 63994) ((-409 . -547) 63956) ((-409 . -122) 63940) ((-409 . -34) T) ((-409 . -1118) T) ((-409 . -72) T) ((-409 . -256) 63878) ((-409 . -447) 63811) ((-409 . -1005) T) ((-409 . -422) 63795) ((-409 . -548) 63756) ((-409 . -882) 63725) ((-408 . -1096) 63704) ((-408 . -181) 63652) ((-408 . -76) 63600) ((-408 . -256) 63398) ((-408 . -447) 63150) ((-408 . -422) 63085) ((-408 . -122) 63033) ((-408 . -548) NIL) ((-408 . -190) 62981) ((-408 . -544) 62960) ((-408 . -240) 62939) ((-408 . -1118) T) ((-408 . -238) 62918) ((-408 . -1005) T) ((-408 . -547) 62900) ((-408 . -72) T) ((-408 . -34) T) ((-408 . -533) 62879) ((-407 . -1151) 62863) ((-407 . -188) 62815) ((-407 . -184) 62761) ((-407 . -187) 62713) ((-407 . -238) 62671) ((-407 . -802) 62577) ((-407 . -799) 62458) ((-407 . -804) 62364) ((-407 . -879) 62327) ((-407 . -38) 62174) ((-407 . -80) 61994) ((-407 . -956) 61835) ((-407 . -961) 61676) ((-407 . -583) 61561) ((-407 . -585) 61461) ((-407 . -577) 61308) ((-407 . -649) 61155) ((-407 . -550) 60987) ((-407 . -116) 60966) ((-407 . -118) 60945) ((-407 . -47) 60915) ((-407 . -1147) 60885) ((-407 . -35) 60851) ((-407 . -66) 60817) ((-407 . -236) 60783) ((-407 . -426) 60749) ((-407 . -1107) 60715) ((-407 . -1104) 60681) ((-407 . -908) 60647) ((-407 . -198) 60626) ((-407 . -242) 60580) ((-407 . -102) T) ((-407 . -25) T) ((-407 . -72) T) ((-407 . -1118) T) ((-407 . -547) 60562) ((-407 . -1005) T) ((-407 . -23) T) ((-407 . -21) T) ((-407 . -954) T) ((-407 . -962) T) ((-407 . -1015) T) ((-407 . -658) T) ((-407 . -254) 60541) ((-407 . -385) 60520) ((-407 . -144) 60454) ((-407 . -489) 60408) ((-407 . -825) 60387) ((-407 . -1123) 60366) ((-407 . -308) 60345) ((-401 . -1005) T) ((-401 . -547) 60327) ((-401 . -1118) T) ((-401 . -72) T) ((-396 . -882) 60296) ((-396 . -548) 60257) ((-396 . -422) 60241) ((-396 . -1005) T) ((-396 . -447) 60174) ((-396 . -256) 60112) ((-396 . -547) 60074) ((-396 . -72) T) ((-396 . -1118) T) ((-396 . -34) T) ((-396 . -122) 60058) ((-394 . -649) 60029) ((-394 . -577) 60000) ((-394 . -585) 59971) ((-394 . -583) 59927) ((-394 . -102) T) ((-394 . -25) T) ((-394 . -72) T) ((-394 . -1118) T) ((-394 . -547) 59909) ((-394 . -1005) T) ((-394 . -23) T) ((-394 . -21) T) ((-394 . -961) 59880) ((-394 . -956) 59851) ((-394 . -80) 59812) ((-387 . -854) 59779) ((-387 . -550) 59571) ((-387 . -943) 59449) ((-387 . -1123) 59428) ((-387 . -814) 59407) ((-387 . -789) NIL) ((-387 . -804) 59384) ((-387 . -799) 59359) ((-387 . -802) 59336) ((-387 . -447) 59274) ((-387 . -385) 59228) ((-387 . -575) 59176) ((-387 . -585) 59065) ((-387 . -322) 59049) ((-387 . -47) 59028) ((-387 . -38) 58880) ((-387 . -577) 58732) ((-387 . -649) 58584) ((-387 . -242) 58518) ((-387 . -489) 58452) ((-387 . -80) 58277) ((-387 . -956) 58123) ((-387 . -961) 57969) ((-387 . -144) 57883) ((-387 . -118) 57862) ((-387 . -116) 57841) ((-387 . -583) 57751) ((-387 . -102) T) ((-387 . -25) T) ((-387 . -72) T) ((-387 . -1118) T) ((-387 . -547) 57733) ((-387 . -1005) T) ((-387 . -23) T) ((-387 . -21) T) ((-387 . -954) T) ((-387 . -962) T) ((-387 . -1015) T) ((-387 . -658) T) ((-387 . -348) 57717) ((-387 . -273) 57696) ((-387 . -256) 57683) ((-387 . -548) 57544) ((-386 . -354) 57514) ((-386 . -676) 57484) ((-386 . -652) T) ((-386 . -678) T) ((-386 . -80) 57435) ((-386 . -956) 57405) ((-386 . -961) 57375) ((-386 . -21) T) ((-386 . -583) 57290) ((-386 . -23) T) ((-386 . -1005) T) ((-386 . -547) 57272) ((-386 . -72) T) ((-386 . -25) T) ((-386 . -102) T) ((-386 . -585) 57202) ((-386 . -577) 57172) ((-386 . -649) 57142) ((-386 . -312) 57112) ((-386 . -1118) T) ((-386 . -238) 57075) ((-374 . -1005) T) ((-374 . -547) 57057) ((-374 . -1118) T) ((-374 . -72) T) ((-373 . -1005) T) ((-373 . -547) 57039) ((-373 . -1118) T) ((-373 . -72) T) ((-372 . -1005) T) ((-372 . -547) 57021) ((-372 . -1118) T) ((-372 . -72) T) ((-370 . -547) 57003) ((-365 . -38) 56987) ((-365 . -550) 56956) ((-365 . -585) 56930) ((-365 . -583) 56889) ((-365 . -658) T) ((-365 . -1015) T) ((-365 . -962) T) ((-365 . -954) T) ((-365 . -80) 56868) ((-365 . -956) 56852) ((-365 . -961) 56836) ((-365 . -21) T) ((-365 . -23) T) ((-365 . -1005) T) ((-365 . -547) 56818) ((-365 . -1118) T) ((-365 . -72) T) ((-365 . -25) T) ((-365 . -102) T) ((-365 . -577) 56802) ((-365 . -649) 56786) ((-351 . -658) T) ((-351 . -1005) T) ((-351 . -547) 56768) ((-351 . -1118) T) ((-351 . -72) T) ((-351 . -1015) T) ((-349 . -406) T) ((-349 . -1015) T) ((-349 . -72) T) ((-349 . -1118) T) ((-349 . -547) 56750) ((-349 . -1005) T) ((-349 . -658) T) ((-343 . -897) 56734) ((-343 . -1055) 56712) ((-343 . -943) 56579) ((-343 . -550) 56478) ((-343 . -548) 56281) ((-343 . -926) 56260) ((-343 . -814) 56239) ((-343 . -787) 56223) ((-343 . -748) 56202) ((-343 . -714) 56181) ((-343 . -711) 56160) ((-343 . -752) 56114) ((-343 . -749) 56068) ((-343 . -709) 56047) ((-343 . -707) 56026) ((-343 . -733) 56005) ((-343 . -789) 55930) ((-343 . -336) 55914) ((-343 . -575) 55862) ((-343 . -585) 55778) ((-343 . -322) 55762) ((-343 . -238) 55720) ((-343 . -256) 55685) ((-343 . -447) 55597) ((-343 . -284) 55581) ((-343 . -198) T) ((-343 . -80) 55512) ((-343 . -956) 55464) ((-343 . -961) 55416) ((-343 . -242) T) ((-343 . -649) 55368) ((-343 . -577) 55320) ((-343 . -583) 55257) ((-343 . -38) 55209) ((-343 . -254) T) ((-343 . -385) T) ((-343 . -144) T) ((-343 . -489) T) ((-343 . -825) T) ((-343 . -1123) T) ((-343 . -308) T) ((-343 . -188) 55188) ((-343 . -184) 55136) ((-343 . -187) 55090) ((-343 . -222) 55074) ((-343 . -799) 54998) ((-343 . -804) 54924) ((-343 . -802) 54883) ((-343 . -182) 54867) ((-343 . -118) 54846) ((-343 . -116) 54825) ((-343 . -102) T) ((-343 . -25) T) ((-343 . -72) T) ((-343 . -1118) T) ((-343 . -547) 54807) ((-343 . -1005) T) ((-343 . -23) T) ((-343 . -21) T) ((-343 . -954) T) ((-343 . -962) T) ((-343 . -1015) T) ((-343 . -658) T) ((-341 . -489) T) ((-341 . -242) T) ((-341 . -144) T) ((-341 . -550) 54716) ((-341 . -649) 54690) ((-341 . -577) 54664) ((-341 . -585) 54638) ((-341 . -583) 54597) ((-341 . -102) T) ((-341 . -25) T) ((-341 . -72) T) ((-341 . -1118) T) ((-341 . -547) 54579) ((-341 . -1005) T) ((-341 . -23) T) ((-341 . -21) T) ((-341 . -961) 54553) ((-341 . -956) 54527) ((-341 . -80) 54494) ((-341 . -954) T) ((-341 . -962) T) ((-341 . -1015) T) ((-341 . -658) T) ((-341 . -38) 54468) ((-341 . -182) 54452) ((-341 . -802) 54411) ((-341 . -804) 54337) ((-341 . -799) 54261) ((-341 . -222) 54245) ((-341 . -187) 54199) ((-341 . -184) 54147) ((-341 . -188) 54126) ((-341 . -284) 54110) ((-341 . -447) 53952) ((-341 . -256) 53891) ((-341 . -238) 53819) ((-341 . -348) 53803) ((-341 . -943) 53701) ((-341 . -385) 53654) ((-341 . -926) 53633) ((-341 . -548) 53536) ((-341 . -1123) 53514) ((-335 . -1005) T) ((-335 . -547) 53496) ((-335 . -1118) T) ((-335 . -72) T) ((-335 . -187) T) ((-335 . -184) 53483) ((-335 . -548) 53460) ((-333 . -676) 53444) ((-333 . -652) T) ((-333 . -678) T) ((-333 . -80) 53423) ((-333 . -956) 53407) ((-333 . -961) 53391) ((-333 . -21) T) ((-333 . -583) 53360) ((-333 . -23) T) ((-333 . -1005) T) ((-333 . -547) 53342) ((-333 . -1118) T) ((-333 . -72) T) ((-333 . -25) T) ((-333 . -102) T) ((-333 . -585) 53326) ((-333 . -577) 53310) ((-333 . -649) 53294) ((-331 . -332) T) ((-331 . -72) T) ((-331 . -1118) T) ((-331 . -547) 53260) ((-331 . -1005) T) ((-331 . -550) 53241) ((-331 . -423) 53222) ((-330 . -329) 53206) ((-330 . -550) 53190) ((-330 . -943) 53174) ((-330 . -752) 53153) ((-330 . -749) 53132) ((-330 . -1015) T) ((-330 . -72) T) ((-330 . -1118) T) ((-330 . -547) 53114) ((-330 . -1005) T) ((-330 . -658) T) ((-327 . -328) 53093) ((-327 . -550) 53077) ((-327 . -943) 53061) ((-327 . -577) 53031) ((-327 . -649) 53001) ((-327 . -585) 52985) ((-327 . -583) 52954) ((-327 . -102) T) ((-327 . -25) T) ((-327 . -72) T) ((-327 . -1118) T) ((-327 . -547) 52936) ((-327 . -1005) T) ((-327 . -23) T) ((-327 . -21) T) ((-327 . -961) 52920) ((-327 . -956) 52904) ((-327 . -80) 52883) ((-326 . -80) 52862) ((-326 . -956) 52846) ((-326 . -961) 52830) ((-326 . -21) T) ((-326 . -583) 52799) ((-326 . -23) T) ((-326 . -1005) T) ((-326 . -547) 52781) ((-326 . -1118) T) ((-326 . -72) T) ((-326 . -25) T) ((-326 . -102) T) ((-326 . -585) 52765) ((-326 . -442) 52744) ((-326 . -649) 52714) ((-326 . -577) 52684) ((-323 . -340) T) ((-323 . -118) T) ((-323 . -550) 52634) ((-323 . -585) 52599) ((-323 . -583) 52549) ((-323 . -102) T) ((-323 . -25) T) ((-323 . -72) T) ((-323 . -1118) T) ((-323 . -547) 52516) ((-323 . -1005) T) ((-323 . -23) T) ((-323 . -21) T) ((-323 . -658) T) ((-323 . -1015) T) ((-323 . -962) T) ((-323 . -954) T) ((-323 . -548) 52430) ((-323 . -308) T) ((-323 . -1123) T) ((-323 . -825) T) ((-323 . -489) T) ((-323 . -144) T) ((-323 . -649) 52395) ((-323 . -577) 52360) ((-323 . -38) 52325) ((-323 . -385) T) ((-323 . -254) T) ((-323 . -80) 52274) ((-323 . -956) 52239) ((-323 . -961) 52204) ((-323 . -242) T) ((-323 . -198) T) ((-323 . -748) T) ((-323 . -714) T) ((-323 . -711) T) ((-323 . -752) T) ((-323 . -749) T) ((-323 . -709) T) ((-323 . -707) T) ((-323 . -789) 52186) ((-323 . -908) T) ((-323 . -926) T) ((-323 . -943) 52146) ((-323 . -965) T) ((-323 . -188) T) ((-323 . -184) 52133) ((-323 . -187) T) ((-323 . -1104) T) ((-323 . -1107) T) ((-323 . -426) T) ((-323 . -236) T) ((-323 . -66) T) ((-323 . -35) T) ((-323 . -552) 52115) ((-309 . -310) 52092) ((-309 . -72) T) ((-309 . -1118) T) ((-309 . -547) 52074) ((-309 . -1005) T) ((-306 . -406) T) ((-306 . -1015) T) ((-306 . -72) T) ((-306 . -1118) T) ((-306 . -547) 52056) ((-306 . -1005) T) ((-306 . -658) T) ((-306 . -943) 52040) ((-306 . -550) 52024) ((-304 . -276) 52008) ((-304 . -188) 51987) ((-304 . -184) 51960) ((-304 . -187) 51939) ((-304 . -313) 51918) ((-304 . -1055) 51897) ((-304 . -295) 51876) ((-304 . -118) 51855) ((-304 . -550) 51792) ((-304 . -585) 51744) ((-304 . -583) 51681) ((-304 . -102) T) ((-304 . -25) T) ((-304 . -72) T) ((-304 . -1118) T) ((-304 . -547) 51663) ((-304 . -1005) T) ((-304 . -23) T) ((-304 . -21) T) ((-304 . -658) T) ((-304 . -1015) T) ((-304 . -962) T) ((-304 . -954) T) ((-304 . -308) T) ((-304 . -1123) T) ((-304 . -825) T) ((-304 . -489) T) ((-304 . -144) T) ((-304 . -649) 51615) ((-304 . -577) 51567) ((-304 . -38) 51532) ((-304 . -385) T) ((-304 . -254) T) ((-304 . -80) 51463) ((-304 . -956) 51415) ((-304 . -961) 51367) ((-304 . -242) T) ((-304 . -198) T) ((-304 . -338) 51321) ((-304 . -116) 51275) ((-304 . -943) 51259) ((-304 . -1176) 51243) ((-304 . -1187) 51227) ((-300 . -276) 51211) ((-300 . -188) 51190) ((-300 . -184) 51163) ((-300 . -187) 51142) ((-300 . -313) 51121) ((-300 . -1055) 51100) ((-300 . -295) 51079) ((-300 . -118) 51058) ((-300 . -550) 50995) ((-300 . -585) 50947) ((-300 . -583) 50884) ((-300 . -102) T) ((-300 . -25) T) ((-300 . -72) T) ((-300 . -1118) T) ((-300 . -547) 50866) ((-300 . -1005) T) ((-300 . -23) T) ((-300 . -21) T) ((-300 . -658) T) ((-300 . -1015) T) ((-300 . -962) T) ((-300 . -954) T) ((-300 . -308) T) ((-300 . -1123) T) ((-300 . -825) T) ((-300 . -489) T) ((-300 . -144) T) ((-300 . -649) 50818) ((-300 . -577) 50770) ((-300 . -38) 50735) ((-300 . -385) T) ((-300 . -254) T) ((-300 . -80) 50666) ((-300 . -956) 50618) ((-300 . -961) 50570) ((-300 . -242) T) ((-300 . -198) T) ((-300 . -338) 50524) ((-300 . -116) 50478) ((-300 . -943) 50462) ((-300 . -1176) 50446) ((-300 . -1187) 50430) ((-299 . -276) 50414) ((-299 . -188) 50393) ((-299 . -184) 50366) ((-299 . -187) 50345) ((-299 . -313) 50324) ((-299 . -1055) 50303) ((-299 . -295) 50282) ((-299 . -118) 50261) ((-299 . -550) 50198) ((-299 . -585) 50150) ((-299 . -583) 50087) ((-299 . -102) T) ((-299 . -25) T) ((-299 . -72) T) ((-299 . -1118) T) ((-299 . -547) 50069) ((-299 . -1005) T) ((-299 . -23) T) ((-299 . -21) T) ((-299 . -658) T) ((-299 . -1015) T) ((-299 . -962) T) ((-299 . -954) T) ((-299 . -308) T) ((-299 . -1123) T) ((-299 . -825) T) ((-299 . -489) T) ((-299 . -144) T) ((-299 . -649) 50021) ((-299 . -577) 49973) ((-299 . -38) 49938) ((-299 . -385) T) ((-299 . -254) T) ((-299 . -80) 49869) ((-299 . -956) 49821) ((-299 . -961) 49773) ((-299 . -242) T) ((-299 . -198) T) ((-299 . -338) 49727) ((-299 . -116) 49681) ((-299 . -943) 49665) ((-299 . -1176) 49649) ((-299 . -1187) 49633) ((-298 . -276) 49617) ((-298 . -188) 49596) ((-298 . -184) 49569) ((-298 . -187) 49548) ((-298 . -313) 49527) ((-298 . -1055) 49506) ((-298 . -295) 49485) ((-298 . -118) 49464) ((-298 . -550) 49401) ((-298 . -585) 49353) ((-298 . -583) 49290) ((-298 . -102) T) ((-298 . -25) T) ((-298 . -72) T) ((-298 . -1118) T) ((-298 . -547) 49272) ((-298 . -1005) T) ((-298 . -23) T) ((-298 . -21) T) ((-298 . -658) T) ((-298 . -1015) T) ((-298 . -962) T) ((-298 . -954) T) ((-298 . -308) T) ((-298 . -1123) T) ((-298 . -825) T) ((-298 . -489) T) ((-298 . -144) T) ((-298 . -649) 49224) ((-298 . -577) 49176) ((-298 . -38) 49141) ((-298 . -385) T) ((-298 . -254) T) ((-298 . -80) 49072) ((-298 . -956) 49024) ((-298 . -961) 48976) ((-298 . -242) T) ((-298 . -198) T) ((-298 . -338) 48930) ((-298 . -116) 48884) ((-298 . -943) 48868) ((-298 . -1176) 48852) ((-298 . -1187) 48836) ((-297 . -276) 48813) ((-297 . -188) T) ((-297 . -184) 48800) ((-297 . -187) T) ((-297 . -313) T) ((-297 . -1055) T) ((-297 . -295) T) ((-297 . -118) 48782) ((-297 . -550) 48712) ((-297 . -585) 48657) ((-297 . -583) 48587) ((-297 . -102) T) ((-297 . -25) T) ((-297 . -72) T) ((-297 . -1118) T) ((-297 . -547) 48569) ((-297 . -1005) T) ((-297 . -23) T) ((-297 . -21) T) ((-297 . -658) T) ((-297 . -1015) T) ((-297 . -962) T) ((-297 . -954) T) ((-297 . -308) T) ((-297 . -1123) T) ((-297 . -825) T) ((-297 . -489) T) ((-297 . -144) T) ((-297 . -649) 48514) ((-297 . -577) 48459) ((-297 . -38) 48424) ((-297 . -385) T) ((-297 . -254) T) ((-297 . -80) 48341) ((-297 . -956) 48286) ((-297 . -961) 48231) ((-297 . -242) T) ((-297 . -198) T) ((-297 . -338) T) ((-297 . -116) T) ((-297 . -943) 48208) ((-297 . -1176) 48185) ((-297 . -1187) 48162) ((-291 . -276) 48146) ((-291 . -188) 48125) ((-291 . -184) 48098) ((-291 . -187) 48077) ((-291 . -313) 48056) ((-291 . -1055) 48035) ((-291 . -295) 48014) ((-291 . -118) 47993) ((-291 . -550) 47930) ((-291 . -585) 47882) ((-291 . -583) 47819) ((-291 . -102) T) ((-291 . -25) T) ((-291 . -72) T) ((-291 . -1118) T) ((-291 . -547) 47801) ((-291 . -1005) T) ((-291 . -23) T) ((-291 . -21) T) ((-291 . -658) T) ((-291 . -1015) T) ((-291 . -962) T) ((-291 . -954) T) ((-291 . -308) T) ((-291 . -1123) T) ((-291 . -825) T) ((-291 . -489) T) ((-291 . -144) T) ((-291 . -649) 47753) ((-291 . -577) 47705) ((-291 . -38) 47670) ((-291 . -385) T) ((-291 . -254) T) ((-291 . -80) 47601) ((-291 . -956) 47553) ((-291 . -961) 47505) ((-291 . -242) T) ((-291 . -198) T) ((-291 . -338) 47459) ((-291 . -116) 47413) ((-291 . -943) 47397) ((-291 . -1176) 47381) ((-291 . -1187) 47365) ((-290 . -276) 47349) ((-290 . -188) 47328) ((-290 . -184) 47301) ((-290 . -187) 47280) ((-290 . -313) 47259) ((-290 . -1055) 47238) ((-290 . -295) 47217) ((-290 . -118) 47196) ((-290 . -550) 47133) ((-290 . -585) 47085) ((-290 . -583) 47022) ((-290 . -102) T) ((-290 . -25) T) ((-290 . -72) T) ((-290 . -1118) T) ((-290 . -547) 47004) ((-290 . -1005) T) ((-290 . -23) T) ((-290 . -21) T) ((-290 . -658) T) ((-290 . -1015) T) ((-290 . -962) T) ((-290 . -954) T) ((-290 . -308) T) ((-290 . -1123) T) ((-290 . -825) T) ((-290 . -489) T) ((-290 . -144) T) ((-290 . -649) 46956) ((-290 . -577) 46908) ((-290 . -38) 46873) ((-290 . -385) T) ((-290 . -254) T) ((-290 . -80) 46804) ((-290 . -956) 46756) ((-290 . -961) 46708) ((-290 . -242) T) ((-290 . -198) T) ((-290 . -338) 46662) ((-290 . -116) 46616) ((-290 . -943) 46600) ((-290 . -1176) 46584) ((-290 . -1187) 46568) ((-289 . -276) 46545) ((-289 . -188) T) ((-289 . -184) 46532) ((-289 . -187) T) ((-289 . -313) T) ((-289 . -1055) T) ((-289 . -295) T) ((-289 . -118) 46514) ((-289 . -550) 46444) ((-289 . -585) 46389) ((-289 . -583) 46319) ((-289 . -102) T) ((-289 . -25) T) ((-289 . -72) T) ((-289 . -1118) T) ((-289 . -547) 46301) ((-289 . -1005) T) ((-289 . -23) T) ((-289 . -21) T) ((-289 . -658) T) ((-289 . -1015) T) ((-289 . -962) T) ((-289 . -954) T) ((-289 . -308) T) ((-289 . -1123) T) ((-289 . -825) T) ((-289 . -489) T) ((-289 . -144) T) ((-289 . -649) 46246) ((-289 . -577) 46191) ((-289 . -38) 46156) ((-289 . -385) T) ((-289 . -254) T) ((-289 . -80) 46073) ((-289 . -956) 46018) ((-289 . -961) 45963) ((-289 . -242) T) ((-289 . -198) T) ((-289 . -338) T) ((-289 . -116) T) ((-289 . -943) 45940) ((-289 . -1176) 45917) ((-289 . -1187) 45894) ((-285 . -276) 45871) ((-285 . -188) T) ((-285 . -184) 45858) ((-285 . -187) T) ((-285 . -313) T) ((-285 . -1055) T) ((-285 . -295) T) ((-285 . -118) 45840) ((-285 . -550) 45770) ((-285 . -585) 45715) ((-285 . -583) 45645) ((-285 . -102) T) ((-285 . -25) T) ((-285 . -72) T) ((-285 . -1118) T) ((-285 . -547) 45627) ((-285 . -1005) T) ((-285 . -23) T) ((-285 . -21) T) ((-285 . -658) T) ((-285 . -1015) T) ((-285 . -962) T) ((-285 . -954) T) ((-285 . -308) T) ((-285 . -1123) T) ((-285 . -825) T) ((-285 . -489) T) ((-285 . -144) T) ((-285 . -649) 45572) ((-285 . -577) 45517) ((-285 . -38) 45482) ((-285 . -385) T) ((-285 . -254) T) ((-285 . -80) 45399) ((-285 . -956) 45344) ((-285 . -961) 45289) ((-285 . -242) T) ((-285 . -198) T) ((-285 . -338) T) ((-285 . -116) T) ((-285 . -943) 45266) ((-285 . -1176) 45243) ((-285 . -1187) 45220) ((-279 . -282) 45189) ((-279 . -102) T) ((-279 . -25) T) ((-279 . -72) T) ((-279 . -1118) T) ((-279 . -547) 45171) ((-279 . -1005) T) ((-279 . -23) T) ((-279 . -583) 45153) ((-279 . -21) T) ((-278 . -1005) T) ((-278 . -547) 45135) ((-278 . -1118) T) ((-278 . -72) T) ((-277 . -749) T) ((-277 . -547) 45117) ((-277 . -1005) T) ((-277 . -72) T) ((-277 . -1118) T) ((-277 . -752) T) ((-274 . -19) 45101) ((-274 . -588) 45085) ((-274 . -240) 45062) ((-274 . -238) 45014) ((-274 . -533) 44991) ((-274 . -548) 44952) ((-274 . -422) 44936) ((-274 . -1005) 44889) ((-274 . -447) 44822) ((-274 . -256) 44760) ((-274 . -547) 44675) ((-274 . -72) 44609) ((-274 . -1118) T) ((-274 . -34) T) ((-274 . -122) 44593) ((-274 . -749) 44572) ((-274 . -752) 44551) ((-274 . -317) 44535) ((-274 . -234) 44519) ((-271 . -270) 44496) ((-271 . -550) 44480) ((-271 . -943) 44464) ((-271 . -23) T) ((-271 . -1005) T) ((-271 . -547) 44446) ((-271 . -1118) T) ((-271 . -72) T) ((-271 . -25) T) ((-271 . -102) T) ((-269 . -21) T) ((-269 . -583) 44428) ((-269 . -23) T) ((-269 . -1005) T) ((-269 . -547) 44410) ((-269 . -1118) T) ((-269 . -72) T) ((-269 . -25) T) ((-269 . -102) T) ((-269 . -649) 44392) ((-269 . -577) 44374) ((-269 . -585) 44356) ((-269 . -961) 44338) ((-269 . -956) 44320) ((-269 . -80) 44295) ((-269 . -270) 44272) ((-269 . -550) 44256) ((-269 . -943) 44240) ((-269 . -749) 44219) ((-269 . -752) 44198) ((-266 . -1151) 44182) ((-266 . -188) 44134) ((-266 . -184) 44080) ((-266 . -187) 44032) ((-266 . -238) 43990) ((-266 . -802) 43896) ((-266 . -799) 43800) ((-266 . -804) 43706) ((-266 . -879) 43669) ((-266 . -38) 43516) ((-266 . -80) 43336) ((-266 . -956) 43177) ((-266 . -961) 43018) ((-266 . -583) 42903) ((-266 . -585) 42803) ((-266 . -577) 42650) ((-266 . -649) 42497) ((-266 . -550) 42329) ((-266 . -116) 42308) ((-266 . -118) 42287) ((-266 . -47) 42257) ((-266 . -1147) 42227) ((-266 . -35) 42193) ((-266 . -66) 42159) ((-266 . -236) 42125) ((-266 . -426) 42091) ((-266 . -1107) 42057) ((-266 . -1104) 42023) ((-266 . -908) 41989) ((-266 . -198) 41968) ((-266 . -242) 41922) ((-266 . -102) T) ((-266 . -25) T) ((-266 . -72) T) ((-266 . -1118) T) ((-266 . -547) 41904) ((-266 . -1005) T) ((-266 . -23) T) ((-266 . -21) T) ((-266 . -954) T) ((-266 . -962) T) ((-266 . -1015) T) ((-266 . -658) T) ((-266 . -254) 41883) ((-266 . -385) 41862) ((-266 . -144) 41796) ((-266 . -489) 41750) ((-266 . -825) 41729) ((-266 . -1123) 41708) ((-266 . -308) 41687) ((-266 . -709) T) ((-266 . -749) T) ((-266 . -752) T) ((-266 . -711) T) ((-261 . -357) 41671) ((-261 . -550) 41246) ((-261 . -943) 40917) ((-261 . -548) 40778) ((-261 . -787) 40762) ((-261 . -804) 40729) ((-261 . -799) 40694) ((-261 . -802) 40661) ((-261 . -406) 40640) ((-261 . -348) 40624) ((-261 . -789) 40549) ((-261 . -336) 40533) ((-261 . -575) 40441) ((-261 . -585) 40179) ((-261 . -322) 40149) ((-261 . -198) 40128) ((-261 . -80) 40017) ((-261 . -956) 39927) ((-261 . -961) 39837) ((-261 . -242) 39816) ((-261 . -649) 39726) ((-261 . -577) 39636) ((-261 . -583) 39303) ((-261 . -38) 39213) ((-261 . -254) 39192) ((-261 . -385) 39171) ((-261 . -144) 39150) ((-261 . -489) 39129) ((-261 . -825) 39108) ((-261 . -1123) 39087) ((-261 . -308) 39066) ((-261 . -256) 39053) ((-261 . -447) 39019) ((-261 . -250) T) ((-261 . -118) 38998) ((-261 . -116) 38977) ((-261 . -954) 38871) ((-261 . -962) 38765) ((-261 . -1015) 38618) ((-261 . -658) 38471) ((-261 . -102) 38346) ((-261 . -25) 38202) ((-261 . -72) T) ((-261 . -1118) T) ((-261 . -547) 38184) ((-261 . -1005) T) ((-261 . -23) 38040) ((-261 . -21) 37915) ((-261 . -29) 37885) ((-261 . -908) 37864) ((-261 . -27) 37843) ((-261 . -1104) 37822) ((-261 . -1107) 37801) ((-261 . -426) 37780) ((-261 . -236) 37759) ((-261 . -66) 37738) ((-261 . -35) 37717) ((-261 . -131) 37696) ((-261 . -114) 37675) ((-261 . -564) 37654) ((-261 . -864) 37633) ((-261 . -1042) 37612) ((-260 . -897) 37573) ((-260 . -1055) NIL) ((-260 . -943) 37503) ((-260 . -550) 37386) ((-260 . -548) NIL) ((-260 . -926) NIL) ((-260 . -814) NIL) ((-260 . -787) 37347) ((-260 . -748) NIL) ((-260 . -714) NIL) ((-260 . -711) NIL) ((-260 . -752) NIL) ((-260 . -749) NIL) ((-260 . -709) NIL) ((-260 . -707) NIL) ((-260 . -733) NIL) ((-260 . -789) NIL) ((-260 . -336) 37308) ((-260 . -575) 37269) ((-260 . -585) 37198) ((-260 . -322) 37159) ((-260 . -238) 37025) ((-260 . -256) 36921) ((-260 . -447) 36672) ((-260 . -284) 36633) ((-260 . -198) T) ((-260 . -80) 36518) ((-260 . -956) 36447) ((-260 . -961) 36376) ((-260 . -242) T) ((-260 . -649) 36305) ((-260 . -577) 36234) ((-260 . -583) 36148) ((-260 . -38) 36077) ((-260 . -254) T) ((-260 . -385) T) ((-260 . -144) T) ((-260 . -489) T) ((-260 . -825) T) ((-260 . -1123) T) ((-260 . -308) T) ((-260 . -188) NIL) ((-260 . -184) NIL) ((-260 . -187) NIL) ((-260 . -222) 36038) ((-260 . -799) NIL) ((-260 . -804) NIL) ((-260 . -802) NIL) ((-260 . -182) 35999) ((-260 . -118) 35955) ((-260 . -116) 35911) ((-260 . -102) T) ((-260 . -25) T) ((-260 . -72) T) ((-260 . -1118) T) ((-260 . -547) 35893) ((-260 . -1005) T) ((-260 . -23) T) ((-260 . -21) T) ((-260 . -954) T) ((-260 . -962) T) ((-260 . -1015) T) ((-260 . -658) T) ((-259 . -987) T) ((-259 . -423) 35874) ((-259 . -547) 35840) ((-259 . -550) 35821) ((-259 . -1005) T) ((-259 . -1118) T) ((-259 . -72) T) ((-259 . -64) T) ((-258 . -1005) T) ((-258 . -547) 35803) ((-258 . -1118) T) ((-258 . -72) T) ((-247 . -1096) 35782) ((-247 . -181) 35730) ((-247 . -76) 35678) ((-247 . -256) 35476) ((-247 . -447) 35228) ((-247 . -422) 35163) ((-247 . -122) 35111) ((-247 . -548) NIL) ((-247 . -190) 35059) ((-247 . -544) 35038) ((-247 . -240) 35017) ((-247 . -1118) T) ((-247 . -238) 34996) ((-247 . -1005) T) ((-247 . -547) 34978) ((-247 . -72) T) ((-247 . -34) T) ((-247 . -533) 34957) ((-245 . -1118) T) ((-245 . -447) 34906) ((-245 . -1005) 34692) ((-245 . -547) 34438) ((-245 . -72) 34224) ((-245 . -25) 34092) ((-245 . -21) 33979) ((-245 . -583) 33726) ((-245 . -23) 33613) ((-245 . -102) 33500) ((-245 . -1015) 33385) ((-245 . -658) 33291) ((-245 . -406) 33270) ((-245 . -954) 33216) ((-245 . -962) 33162) ((-245 . -585) 33030) ((-245 . -550) 32965) ((-245 . -80) 32885) ((-245 . -956) 32810) ((-245 . -961) 32735) ((-245 . -649) 32680) ((-245 . -577) 32625) ((-245 . -802) 32584) ((-245 . -799) 32541) ((-245 . -804) 32500) ((-245 . -1176) 32470) ((-243 . -547) 32452) ((-241 . -254) T) ((-241 . -385) T) ((-241 . -38) 32439) ((-241 . -550) 32411) ((-241 . -658) T) ((-241 . -1015) T) ((-241 . -962) T) ((-241 . -954) T) ((-241 . -80) 32396) ((-241 . -956) 32383) ((-241 . -961) 32370) ((-241 . -21) T) ((-241 . -583) 32342) ((-241 . -23) T) ((-241 . -1005) T) ((-241 . -547) 32324) ((-241 . -1118) T) ((-241 . -72) T) ((-241 . -25) T) ((-241 . -102) T) ((-241 . -585) 32311) ((-241 . -577) 32298) ((-241 . -649) 32285) ((-241 . -144) T) ((-241 . -242) T) ((-241 . -489) T) ((-241 . -825) T) ((-241 . -238) 32264) ((-232 . -547) 32246) ((-231 . -547) 32228) ((-226 . -749) T) ((-226 . -547) 32210) ((-226 . -1005) T) ((-226 . -72) T) ((-226 . -1118) T) ((-226 . -752) T) ((-223 . -210) 32172) ((-223 . -550) 31932) ((-223 . -943) 31778) ((-223 . -548) 31526) ((-223 . -273) 31498) ((-223 . -348) 31482) ((-223 . -38) 31334) ((-223 . -80) 31159) ((-223 . -956) 31005) ((-223 . -961) 30851) ((-223 . -583) 30761) ((-223 . -585) 30650) ((-223 . -577) 30502) ((-223 . -649) 30354) ((-223 . -116) 30333) ((-223 . -118) 30312) ((-223 . -144) 30226) ((-223 . -489) 30160) ((-223 . -242) 30094) ((-223 . -47) 30066) ((-223 . -322) 30050) ((-223 . -575) 29998) ((-223 . -385) 29952) ((-223 . -447) 29843) ((-223 . -802) 29789) ((-223 . -799) 29698) ((-223 . -804) 29611) ((-223 . -789) 29470) ((-223 . -814) 29449) ((-223 . -1123) 29428) ((-223 . -854) 29395) ((-223 . -256) 29382) ((-223 . -188) 29361) ((-223 . -102) T) ((-223 . -25) T) ((-223 . -72) T) ((-223 . -547) 29343) ((-223 . -1005) T) ((-223 . -23) T) ((-223 . -21) T) ((-223 . -658) T) ((-223 . -1015) T) ((-223 . -962) T) ((-223 . -954) T) ((-223 . -184) 29291) ((-223 . -1118) T) ((-223 . -187) 29245) ((-223 . -222) 29229) ((-223 . -182) 29213) ((-218 . -1005) T) ((-218 . -547) 29195) ((-218 . -1118) T) ((-218 . -72) T) ((-208 . -193) 29174) ((-208 . -1176) 29144) ((-208 . -714) 29123) ((-208 . -711) 29102) ((-208 . -752) 29056) ((-208 . -749) 29010) ((-208 . -709) 28989) ((-208 . -710) 28968) ((-208 . -649) 28913) ((-208 . -577) 28838) ((-208 . -240) 28815) ((-208 . -238) 28792) ((-208 . -422) 28776) ((-208 . -447) 28709) ((-208 . -256) 28647) ((-208 . -34) T) ((-208 . -533) 28624) ((-208 . -943) 28453) ((-208 . -550) 28257) ((-208 . -348) 28226) ((-208 . -575) 28134) ((-208 . -585) 27960) ((-208 . -322) 27930) ((-208 . -313) 27909) ((-208 . -188) 27862) ((-208 . -583) 27715) ((-208 . -658) 27694) ((-208 . -1015) 27673) ((-208 . -962) 27652) ((-208 . -954) 27631) ((-208 . -184) 27527) ((-208 . -187) 27429) ((-208 . -222) 27399) ((-208 . -799) 27271) ((-208 . -804) 27145) ((-208 . -802) 27078) ((-208 . -182) 27048) ((-208 . -547) 27009) ((-208 . -961) 26934) ((-208 . -956) 26839) ((-208 . -80) 26759) ((-208 . -102) T) ((-208 . -25) T) ((-208 . -72) T) ((-208 . -1118) T) ((-208 . -1005) T) ((-208 . -23) T) ((-208 . -21) T) ((-207 . -193) 26738) ((-207 . -1176) 26708) ((-207 . -714) 26687) ((-207 . -711) 26666) ((-207 . -752) 26620) ((-207 . -749) 26574) ((-207 . -709) 26553) ((-207 . -710) 26532) ((-207 . -649) 26477) ((-207 . -577) 26402) ((-207 . -240) 26379) ((-207 . -238) 26356) ((-207 . -422) 26340) ((-207 . -447) 26273) ((-207 . -256) 26211) ((-207 . -34) T) ((-207 . -533) 26188) ((-207 . -943) 26017) ((-207 . -550) 25821) ((-207 . -348) 25790) ((-207 . -575) 25698) ((-207 . -585) 25511) ((-207 . -322) 25481) ((-207 . -313) 25460) ((-207 . -188) 25413) ((-207 . -583) 25253) ((-207 . -658) 25232) ((-207 . -1015) 25211) ((-207 . -962) 25190) ((-207 . -954) 25169) ((-207 . -184) 25065) ((-207 . -187) 24967) ((-207 . -222) 24937) ((-207 . -799) 24809) ((-207 . -804) 24683) ((-207 . -802) 24616) ((-207 . -182) 24586) ((-207 . -547) 24547) ((-207 . -961) 24472) ((-207 . -956) 24377) ((-207 . -80) 24297) ((-207 . -102) T) ((-207 . -25) T) ((-207 . -72) T) ((-207 . -1118) T) ((-207 . -1005) T) ((-207 . -23) T) ((-207 . -21) T) ((-206 . -1005) T) ((-206 . -547) 24279) ((-206 . -1118) T) ((-206 . -72) T) ((-206 . -238) 24253) ((-205 . -158) T) ((-205 . -1005) T) ((-205 . -547) 24220) ((-205 . -1118) T) ((-205 . -72) T) ((-205 . -740) 24202) ((-204 . -1005) T) ((-204 . -547) 24184) ((-204 . -1118) T) ((-204 . -72) T) ((-203 . -854) 24129) ((-203 . -550) 23921) ((-203 . -943) 23799) ((-203 . -1123) 23778) ((-203 . -814) 23757) ((-203 . -789) NIL) ((-203 . -804) 23734) ((-203 . -799) 23709) ((-203 . -802) 23686) ((-203 . -447) 23624) ((-203 . -385) 23578) ((-203 . -575) 23526) ((-203 . -585) 23415) ((-203 . -322) 23399) ((-203 . -47) 23356) ((-203 . -38) 23208) ((-203 . -577) 23060) ((-203 . -649) 22912) ((-203 . -242) 22846) ((-203 . -489) 22780) ((-203 . -80) 22605) ((-203 . -956) 22451) ((-203 . -961) 22297) ((-203 . -144) 22211) ((-203 . -118) 22190) ((-203 . -116) 22169) ((-203 . -583) 22079) ((-203 . -102) T) ((-203 . -25) T) ((-203 . -72) T) ((-203 . -1118) T) ((-203 . -547) 22061) ((-203 . -1005) T) ((-203 . -23) T) ((-203 . -21) T) ((-203 . -954) T) ((-203 . -962) T) ((-203 . -1015) T) ((-203 . -658) T) ((-203 . -348) 22045) ((-203 . -273) 22002) ((-203 . -256) 21989) ((-203 . -548) 21850) ((-200 . -603) 21834) ((-200 . -1157) 21818) ((-200 . -916) 21802) ((-200 . -1053) 21786) ((-200 . -749) 21765) ((-200 . -752) 21744) ((-200 . -317) 21728) ((-200 . -588) 21712) ((-200 . -240) 21689) ((-200 . -238) 21641) ((-200 . -533) 21618) ((-200 . -548) 21579) ((-200 . -422) 21563) ((-200 . -1005) 21516) ((-200 . -447) 21449) ((-200 . -256) 21387) ((-200 . -547) 21282) ((-200 . -72) 21216) ((-200 . -1118) T) ((-200 . -34) T) ((-200 . -122) 21200) ((-200 . -234) 21184) ((-200 . -423) 21161) ((-200 . -550) 21138) ((-194 . -193) 21117) ((-194 . -1176) 21087) ((-194 . -714) 21066) ((-194 . -711) 21045) ((-194 . -752) 20999) ((-194 . -749) 20953) ((-194 . -709) 20932) ((-194 . -710) 20911) ((-194 . -649) 20856) ((-194 . -577) 20781) ((-194 . -240) 20758) ((-194 . -238) 20735) ((-194 . -422) 20719) ((-194 . -447) 20652) ((-194 . -256) 20590) ((-194 . -34) T) ((-194 . -533) 20567) ((-194 . -943) 20396) ((-194 . -550) 20200) ((-194 . -348) 20169) ((-194 . -575) 20077) ((-194 . -585) 19916) ((-194 . -322) 19886) ((-194 . -313) 19865) ((-194 . -188) 19818) ((-194 . -583) 19606) ((-194 . -658) 19585) ((-194 . -1015) 19564) ((-194 . -962) 19543) ((-194 . -954) 19522) ((-194 . -184) 19418) ((-194 . -187) 19320) ((-194 . -222) 19290) ((-194 . -799) 19162) ((-194 . -804) 19036) ((-194 . -802) 18969) ((-194 . -182) 18939) ((-194 . -547) 18636) ((-194 . -961) 18561) ((-194 . -956) 18466) ((-194 . -80) 18386) ((-194 . -102) 18261) ((-194 . -25) 18098) ((-194 . -72) 17835) ((-194 . -1118) T) ((-194 . -1005) 17591) ((-194 . -23) 17447) ((-194 . -21) 17362) ((-179 . -622) 17320) ((-179 . -422) 17304) ((-179 . -1005) 17282) ((-179 . -447) 17215) ((-179 . -256) 17153) ((-179 . -547) 17088) ((-179 . -72) 17042) ((-179 . -1118) T) ((-179 . -34) T) ((-179 . -57) 17000) ((-177 . -340) T) ((-177 . -118) T) ((-177 . -550) 16950) ((-177 . -585) 16915) ((-177 . -583) 16865) ((-177 . -102) T) ((-177 . -25) T) ((-177 . -72) T) ((-177 . -1118) T) ((-177 . -547) 16847) ((-177 . -1005) T) ((-177 . -23) T) ((-177 . -21) T) ((-177 . -658) T) ((-177 . -1015) T) ((-177 . -962) T) ((-177 . -954) T) ((-177 . -548) 16777) ((-177 . -308) T) ((-177 . -1123) T) ((-177 . -825) T) ((-177 . -489) T) ((-177 . -144) T) ((-177 . -649) 16742) ((-177 . -577) 16707) ((-177 . -38) 16672) ((-177 . -385) T) ((-177 . -254) T) ((-177 . -80) 16621) ((-177 . -956) 16586) ((-177 . -961) 16551) ((-177 . -242) T) ((-177 . -198) T) ((-177 . -748) T) ((-177 . -714) T) ((-177 . -711) T) ((-177 . -752) T) ((-177 . -749) T) ((-177 . -709) T) ((-177 . -707) T) ((-177 . -789) 16533) ((-177 . -908) T) ((-177 . -926) T) ((-177 . -943) 16493) ((-177 . -965) T) ((-177 . -188) T) ((-177 . -184) 16480) ((-177 . -187) T) ((-177 . -1104) T) ((-177 . -1107) T) ((-177 . -426) T) ((-177 . -236) T) ((-177 . -66) T) ((-177 . -35) T) ((-175 . -555) 16457) ((-175 . -550) 16419) ((-175 . -585) 16386) ((-175 . -583) 16338) ((-175 . -658) T) ((-175 . -1015) T) ((-175 . -962) T) ((-175 . -954) T) ((-175 . -21) T) ((-175 . -23) T) ((-175 . -1005) T) ((-175 . -547) 16320) ((-175 . -1118) T) ((-175 . -72) T) ((-175 . -25) T) ((-175 . -102) T) ((-175 . -943) 16297) ((-174 . -211) 16281) ((-174 . -1024) 16265) ((-174 . -76) 16249) ((-174 . -34) T) ((-174 . -1118) T) ((-174 . -72) 16203) ((-174 . -547) 16138) ((-174 . -256) 16076) ((-174 . -447) 16009) ((-174 . -1005) 15987) ((-174 . -422) 15971) ((-174 . -901) 15955) ((-170 . -987) T) ((-170 . -423) 15936) ((-170 . -547) 15902) ((-170 . -550) 15883) ((-170 . -1005) T) ((-170 . -1118) T) ((-170 . -72) T) ((-170 . -64) T) ((-169 . -897) 15865) ((-169 . -1055) T) ((-169 . -550) 15815) ((-169 . -943) 15775) ((-169 . -548) 15705) ((-169 . -926) T) ((-169 . -814) NIL) ((-169 . -787) 15687) ((-169 . -748) T) ((-169 . -714) T) ((-169 . -711) T) ((-169 . -752) T) ((-169 . -749) T) ((-169 . -709) T) ((-169 . -707) T) ((-169 . -733) T) ((-169 . -789) 15669) ((-169 . -336) 15651) ((-169 . -575) 15633) ((-169 . -322) 15615) ((-169 . -238) NIL) ((-169 . -256) NIL) ((-169 . -447) NIL) ((-169 . -284) 15597) ((-169 . -198) T) ((-169 . -80) 15524) ((-169 . -956) 15474) ((-169 . -961) 15424) ((-169 . -242) T) ((-169 . -649) 15374) ((-169 . -577) 15324) ((-169 . -585) 15274) ((-169 . -583) 15224) ((-169 . -38) 15174) ((-169 . -254) T) ((-169 . -385) T) ((-169 . -144) T) ((-169 . -489) T) ((-169 . -825) T) ((-169 . -1123) T) ((-169 . -308) T) ((-169 . -188) T) ((-169 . -184) 15161) ((-169 . -187) T) ((-169 . -222) 15143) ((-169 . -799) NIL) ((-169 . -804) NIL) ((-169 . -802) NIL) ((-169 . -182) 15125) ((-169 . -118) T) ((-169 . -116) NIL) ((-169 . -102) T) ((-169 . -25) T) ((-169 . -72) T) ((-169 . -1118) T) ((-169 . -547) 15067) ((-169 . -1005) T) ((-169 . -23) T) ((-169 . -21) T) ((-169 . -954) T) ((-169 . -962) T) ((-169 . -1015) T) ((-169 . -658) T) ((-166 . -745) T) ((-166 . -752) T) ((-166 . -749) T) ((-166 . -1005) T) ((-166 . -547) 15049) ((-166 . -1118) T) ((-166 . -72) T) ((-166 . -313) T) ((-165 . -1005) T) ((-165 . -547) 15031) ((-165 . -1118) T) ((-165 . -72) T) ((-165 . -550) 15008) ((-164 . -1005) T) ((-164 . -547) 14990) ((-164 . -1118) T) ((-164 . -72) T) ((-159 . -1005) T) ((-159 . -547) 14972) ((-159 . -1118) T) ((-159 . -72) T) ((-156 . -1005) T) ((-156 . -547) 14954) ((-156 . -1118) T) ((-156 . -72) T) ((-155 . -158) T) ((-155 . -1005) T) ((-155 . -547) 14936) ((-155 . -1118) T) ((-155 . -72) T) ((-155 . -740) 14918) ((-152 . -987) T) ((-152 . -423) 14899) ((-152 . -547) 14865) ((-152 . -550) 14846) ((-152 . -1005) T) ((-152 . -1118) T) ((-152 . -72) T) ((-152 . -64) T) ((-147 . -547) 14828) ((-146 . -38) 14760) ((-146 . -550) 14677) ((-146 . -585) 14609) ((-146 . -583) 14526) ((-146 . -658) T) ((-146 . -1015) T) ((-146 . -962) T) ((-146 . -954) T) ((-146 . -80) 14425) ((-146 . -956) 14357) ((-146 . -961) 14289) ((-146 . -21) T) ((-146 . -23) T) ((-146 . -1005) T) ((-146 . -547) 14271) ((-146 . -1118) T) ((-146 . -72) T) ((-146 . -25) T) ((-146 . -102) T) ((-146 . -577) 14203) ((-146 . -649) 14135) ((-146 . -308) T) ((-146 . -1123) T) ((-146 . -825) T) ((-146 . -489) T) ((-146 . -144) T) ((-146 . -385) T) ((-146 . -254) T) ((-146 . -242) T) ((-146 . -198) T) ((-143 . -1005) T) ((-143 . -547) 14117) ((-143 . -1118) T) ((-143 . -72) T) ((-140 . -137) 14101) ((-140 . -35) 14079) ((-140 . -66) 14057) ((-140 . -236) 14035) ((-140 . -426) 14013) ((-140 . -1107) 13991) ((-140 . -1104) 13969) ((-140 . -908) 13921) ((-140 . -814) 13874) ((-140 . -548) 13642) ((-140 . -787) 13626) ((-140 . -313) 13580) ((-140 . -295) 13559) ((-140 . -1055) 13538) ((-140 . -338) 13517) ((-140 . -346) 13488) ((-140 . -38) 13322) ((-140 . -80) 13214) ((-140 . -956) 13127) ((-140 . -961) 13040) ((-140 . -577) 12874) ((-140 . -649) 12708) ((-140 . -315) 12679) ((-140 . -656) 12650) ((-140 . -943) 12548) ((-140 . -550) 12333) ((-140 . -348) 12317) ((-140 . -789) 12242) ((-140 . -336) 12226) ((-140 . -575) 12174) ((-140 . -585) 12051) ((-140 . -583) 11949) ((-140 . -322) 11933) ((-140 . -238) 11891) ((-140 . -256) 11856) ((-140 . -447) 11768) ((-140 . -284) 11752) ((-140 . -198) 11706) ((-140 . -1123) 11614) ((-140 . -308) 11568) ((-140 . -825) 11502) ((-140 . -489) 11416) ((-140 . -242) 11330) ((-140 . -385) 11264) ((-140 . -254) 11198) ((-140 . -188) 11152) ((-140 . -184) 11080) ((-140 . -187) 11014) ((-140 . -222) 10998) ((-140 . -799) 10922) ((-140 . -804) 10848) ((-140 . -802) 10807) ((-140 . -182) 10791) ((-140 . -144) T) ((-140 . -118) 10770) ((-140 . -954) T) ((-140 . -962) T) ((-140 . -1015) T) ((-140 . -658) T) ((-140 . -21) T) ((-140 . -23) T) ((-140 . -1005) T) ((-140 . -547) 10752) ((-140 . -1118) T) ((-140 . -72) T) ((-140 . -25) T) ((-140 . -102) T) ((-140 . -116) 10706) ((-133 . -987) T) ((-133 . -423) 10687) ((-133 . -547) 10653) ((-133 . -550) 10634) ((-133 . -1005) T) ((-133 . -1118) T) ((-133 . -72) T) ((-133 . -64) T) ((-132 . -1005) T) ((-132 . -547) 10616) ((-132 . -1118) T) ((-132 . -72) T) ((-128 . -25) T) ((-128 . -72) T) ((-128 . -1118) T) ((-128 . -547) 10598) ((-128 . -1005) T) ((-127 . -987) T) ((-127 . -423) 10579) ((-127 . -547) 10545) ((-127 . -550) 10526) ((-127 . -1005) T) ((-127 . -1118) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -987) T) ((-125 . -423) 10507) ((-125 . -547) 10473) ((-125 . -550) 10454) ((-125 . -1005) T) ((-125 . -1118) T) ((-125 . -72) T) ((-125 . -64) T) ((-123 . -954) T) ((-123 . -962) T) ((-123 . -1015) T) ((-123 . -658) T) ((-123 . -21) T) ((-123 . -583) 10413) ((-123 . -23) T) ((-123 . -1005) T) ((-123 . -547) 10395) ((-123 . -1118) T) ((-123 . -72) T) ((-123 . -25) T) ((-123 . -102) T) ((-123 . -585) 10369) ((-123 . -550) 10338) ((-123 . -38) 10322) ((-123 . -80) 10301) ((-123 . -956) 10285) ((-123 . -961) 10269) ((-123 . -577) 10253) ((-123 . -649) 10237) ((-123 . -1176) 10221) ((-115 . -745) T) ((-115 . -752) T) ((-115 . -749) T) ((-115 . -1005) T) ((-115 . -547) 10203) ((-115 . -1118) T) ((-115 . -72) T) ((-115 . -313) T) ((-112 . -1005) T) ((-112 . -547) 10185) ((-112 . -1118) T) ((-112 . -72) T) ((-112 . -548) 10144) ((-112 . -362) 10126) ((-112 . -1003) 10108) ((-112 . -313) T) ((-112 . -190) 10090) ((-112 . -122) 10072) ((-112 . -422) 10054) ((-112 . -447) NIL) ((-112 . -256) NIL) ((-112 . -34) T) ((-112 . -76) 10036) ((-112 . -181) 10018) ((-111 . -547) 10000) ((-110 . -158) T) ((-110 . -1005) T) ((-110 . -547) 9967) ((-110 . -1118) T) ((-110 . -72) T) ((-110 . -740) 9949) ((-109 . -987) T) ((-109 . -423) 9930) ((-109 . -547) 9896) ((-109 . -550) 9877) ((-109 . -1005) T) ((-109 . -1118) T) ((-109 . -72) T) ((-109 . -64) T) ((-108 . -987) T) ((-108 . -423) 9858) ((-108 . -547) 9824) ((-108 . -550) 9805) ((-108 . -1005) T) ((-108 . -1118) T) ((-108 . -72) T) ((-108 . -64) T) ((-106 . -398) 9782) ((-106 . -550) 9678) ((-106 . -943) 9662) ((-106 . -1005) T) ((-106 . -547) 9644) ((-106 . -1118) T) ((-106 . -72) T) ((-106 . -403) 9599) ((-106 . -238) 9576) ((-105 . -749) T) ((-105 . -547) 9558) ((-105 . -1005) T) ((-105 . -72) T) ((-105 . -1118) T) ((-105 . -752) T) ((-105 . -23) T) ((-105 . -25) T) ((-105 . -658) T) ((-105 . -1015) T) ((-105 . -943) 9540) ((-105 . -550) 9522) ((-104 . -987) T) ((-104 . -423) 9503) ((-104 . -547) 9469) ((-104 . -550) 9450) ((-104 . -1005) T) ((-104 . -1118) T) ((-104 . -72) T) ((-104 . -64) T) ((-101 . -1005) T) ((-101 . -547) 9432) ((-101 . -1118) T) ((-101 . -72) T) ((-100 . -19) 9415) ((-100 . -588) 9398) ((-100 . -240) 9374) ((-100 . -238) 9325) ((-100 . -533) 9301) ((-100 . -548) NIL) ((-100 . -422) 9284) ((-100 . -1005) T) ((-100 . -447) NIL) ((-100 . -256) NIL) ((-100 . -547) 9229) ((-100 . -72) T) ((-100 . -1118) T) ((-100 . -34) T) ((-100 . -122) 9212) ((-100 . -749) T) ((-100 . -752) T) ((-100 . -317) 9195) ((-99 . -745) T) ((-99 . -752) T) ((-99 . -749) T) ((-99 . -1005) T) ((-99 . -547) 9177) ((-99 . -1118) T) ((-99 . -72) T) ((-99 . -313) T) ((-99 . -599) T) ((-98 . -96) 9161) ((-98 . -916) 9145) ((-98 . -34) T) ((-98 . -1118) T) ((-98 . -72) 9099) ((-98 . -547) 9034) ((-98 . -256) 8972) ((-98 . -447) 8905) ((-98 . -1005) 8883) ((-98 . -422) 8867) ((-98 . -90) 8851) ((-97 . -96) 8835) ((-97 . -916) 8819) ((-97 . -34) T) ((-97 . -1118) T) ((-97 . -72) 8773) ((-97 . -547) 8708) ((-97 . -256) 8646) ((-97 . -447) 8579) ((-97 . -1005) 8557) ((-97 . -422) 8541) ((-97 . -90) 8525) ((-92 . -96) 8509) ((-92 . -916) 8493) ((-92 . -34) T) ((-92 . -1118) T) ((-92 . -72) 8447) ((-92 . -547) 8382) ((-92 . -256) 8320) ((-92 . -447) 8253) ((-92 . -1005) 8231) ((-92 . -422) 8215) ((-92 . -90) 8199) ((-88 . -897) 8177) ((-88 . -1055) NIL) ((-88 . -943) 8155) ((-88 . -550) 8086) ((-88 . -548) NIL) ((-88 . -926) NIL) ((-88 . -814) NIL) ((-88 . -787) 8064) ((-88 . -748) NIL) ((-88 . -714) NIL) ((-88 . -711) NIL) ((-88 . -752) NIL) ((-88 . -749) NIL) ((-88 . -709) NIL) ((-88 . -707) NIL) ((-88 . -733) NIL) ((-88 . -789) NIL) ((-88 . -336) 8042) ((-88 . -575) 8020) ((-88 . -585) 7966) ((-88 . -322) 7944) ((-88 . -238) 7878) ((-88 . -256) 7825) ((-88 . -447) 7695) ((-88 . -284) 7673) ((-88 . -198) T) ((-88 . -80) 7592) ((-88 . -956) 7538) ((-88 . -961) 7484) ((-88 . -242) T) ((-88 . -649) 7430) ((-88 . -577) 7376) ((-88 . -583) 7307) ((-88 . -38) 7253) ((-88 . -254) T) ((-88 . -385) T) ((-88 . -144) T) ((-88 . -489) T) ((-88 . -825) T) ((-88 . -1123) T) ((-88 . -308) T) ((-88 . -188) NIL) ((-88 . -184) NIL) ((-88 . -187) NIL) ((-88 . -222) 7231) ((-88 . -799) NIL) ((-88 . -804) NIL) ((-88 . -802) NIL) ((-88 . -182) 7209) ((-88 . -118) T) ((-88 . -116) NIL) ((-88 . -102) T) ((-88 . -25) T) ((-88 . -72) T) ((-88 . -1118) T) ((-88 . -547) 7191) ((-88 . -1005) T) ((-88 . -23) T) ((-88 . -21) T) ((-88 . -954) T) ((-88 . -962) T) ((-88 . -1015) T) ((-88 . -658) T) ((-87 . -772) 7175) ((-87 . -825) T) ((-87 . -489) T) ((-87 . -242) T) ((-87 . -144) T) ((-87 . -550) 7147) ((-87 . -649) 7134) ((-87 . -577) 7121) ((-87 . -961) 7108) ((-87 . -956) 7095) ((-87 . -80) 7080) ((-87 . -38) 7067) ((-87 . -385) T) ((-87 . -254) T) ((-87 . -954) T) ((-87 . -962) T) ((-87 . -1015) T) ((-87 . -658) T) ((-87 . -21) T) ((-87 . -583) 7039) ((-87 . -23) T) ((-87 . -1005) T) ((-87 . -547) 7021) ((-87 . -1118) T) ((-87 . -72) T) ((-87 . -25) T) ((-87 . -102) T) ((-87 . -585) 7008) ((-87 . -118) T) ((-84 . -749) T) ((-84 . -547) 6990) ((-84 . -1005) T) ((-84 . -72) T) ((-84 . -1118) T) ((-84 . -752) T) ((-84 . -740) 6971) ((-83 . -745) T) ((-83 . -752) T) ((-83 . -749) T) ((-83 . -1005) T) ((-83 . -547) 6953) ((-83 . -1118) T) ((-83 . -72) T) ((-83 . -313) T) ((-83 . -873) T) ((-83 . -599) T) ((-83 . -82) T) ((-83 . -548) 6935) ((-79 . -94) T) ((-79 . -317) 6918) ((-79 . -752) T) ((-79 . -749) T) ((-79 . -122) 6901) ((-79 . -34) T) ((-79 . -72) T) ((-79 . -547) 6883) ((-79 . -256) NIL) ((-79 . -447) NIL) ((-79 . -1005) T) ((-79 . -422) 6866) ((-79 . -548) 6848) ((-79 . -238) 6799) ((-79 . -533) 6775) ((-79 . -240) 6751) ((-79 . -588) 6734) ((-79 . -19) 6717) ((-79 . -599) T) ((-79 . -1118) T) ((-79 . -82) T) ((-78 . -547) 6699) ((-77 . -897) 6681) ((-77 . -1055) T) ((-77 . -550) 6631) ((-77 . -943) 6591) ((-77 . -548) 6521) ((-77 . -926) T) ((-77 . -814) NIL) ((-77 . -787) 6503) ((-77 . -748) T) ((-77 . -714) T) ((-77 . -711) T) ((-77 . -752) T) ((-77 . -749) T) ((-77 . -709) T) ((-77 . -707) T) ((-77 . -733) T) ((-77 . -789) 6485) ((-77 . -336) 6467) ((-77 . -575) 6449) ((-77 . -322) 6431) ((-77 . -238) NIL) ((-77 . -256) NIL) ((-77 . -447) NIL) ((-77 . -284) 6413) ((-77 . -198) T) ((-77 . -80) 6340) ((-77 . -956) 6290) ((-77 . -961) 6240) ((-77 . -242) T) ((-77 . -649) 6190) ((-77 . -577) 6140) ((-77 . -585) 6090) ((-77 . -583) 6040) ((-77 . -38) 5990) ((-77 . -254) T) ((-77 . -385) T) ((-77 . -144) T) ((-77 . -489) T) ((-77 . -825) T) ((-77 . -1123) T) ((-77 . -308) T) ((-77 . -188) T) ((-77 . -184) 5977) ((-77 . -187) T) ((-77 . -222) 5959) ((-77 . -799) NIL) ((-77 . -804) NIL) ((-77 . -802) NIL) ((-77 . -182) 5941) ((-77 . -118) T) ((-77 . -116) NIL) ((-77 . -102) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -1118) T) ((-77 . -547) 5884) ((-77 . -1005) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -954) T) ((-77 . -962) T) ((-77 . -1015) T) ((-77 . -658) T) ((-73 . -96) 5868) ((-73 . -916) 5852) ((-73 . -34) T) ((-73 . -1118) T) ((-73 . -72) 5806) ((-73 . -547) 5741) ((-73 . -256) 5679) ((-73 . -447) 5612) ((-73 . -1005) 5590) ((-73 . -422) 5574) ((-73 . -90) 5558) ((-69 . -406) T) ((-69 . -1015) T) ((-69 . -72) T) ((-69 . -1118) T) ((-69 . -547) 5540) ((-69 . -1005) T) ((-69 . -658) T) ((-69 . -238) 5519) ((-67 . -987) T) ((-67 . -423) 5500) ((-67 . -547) 5466) ((-67 . -550) 5447) ((-67 . -1005) T) ((-67 . -1118) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1024) 5431) ((-62 . -422) 5415) ((-62 . -1005) 5393) ((-62 . -447) 5326) ((-62 . -256) 5264) ((-62 . -547) 5199) ((-62 . -72) 5153) ((-62 . -1118) T) ((-62 . -34) T) ((-62 . -76) 5137) ((-60 . -57) 5099) ((-60 . -34) T) ((-60 . -1118) T) ((-60 . -72) 5053) ((-60 . -547) 4988) ((-60 . -256) 4926) ((-60 . -447) 4859) ((-60 . -1005) 4837) ((-60 . -422) 4821) ((-58 . -19) 4805) ((-58 . -588) 4789) ((-58 . -240) 4766) ((-58 . -238) 4718) ((-58 . -533) 4695) ((-58 . -548) 4656) ((-58 . -422) 4640) ((-58 . -1005) 4593) ((-58 . -447) 4526) ((-58 . -256) 4464) ((-58 . -547) 4379) ((-58 . -72) 4313) ((-58 . -1118) T) ((-58 . -34) T) ((-58 . -122) 4297) ((-58 . -749) 4276) ((-58 . -752) 4255) ((-58 . -317) 4239) ((-55 . -1005) T) ((-55 . -547) 4221) ((-55 . -1118) T) ((-55 . -72) T) ((-55 . -943) 4203) ((-55 . -550) 4185) ((-51 . -1005) T) ((-51 . -547) 4167) ((-51 . -1118) T) ((-51 . -72) T) ((-50 . -555) 4151) ((-50 . -550) 4120) ((-50 . -585) 4094) ((-50 . -583) 4053) ((-50 . -658) T) ((-50 . -1015) T) ((-50 . -962) T) ((-50 . -954) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1005) T) ((-50 . -547) 4035) ((-50 . -1118) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -102) T) ((-50 . -943) 4019) ((-49 . -1005) T) ((-49 . -547) 4001) ((-49 . -1118) T) ((-49 . -72) T) ((-48 . -250) T) ((-48 . -72) T) ((-48 . -1118) T) ((-48 . -547) 3983) ((-48 . -1005) T) ((-48 . -550) 3884) ((-48 . -943) 3827) ((-48 . -447) 3793) ((-48 . -256) 3780) ((-48 . -27) T) ((-48 . -908) T) ((-48 . -198) T) ((-48 . -80) 3729) ((-48 . -956) 3694) ((-48 . -961) 3659) ((-48 . -242) T) ((-48 . -649) 3624) ((-48 . -577) 3589) ((-48 . -585) 3539) ((-48 . -583) 3489) ((-48 . -102) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -954) T) ((-48 . -962) T) ((-48 . -1015) T) ((-48 . -658) T) ((-48 . -38) 3454) ((-48 . -254) T) ((-48 . -385) T) ((-48 . -144) T) ((-48 . -489) T) ((-48 . -825) T) ((-48 . -1123) T) ((-48 . -308) T) ((-48 . -575) 3414) ((-48 . -926) T) ((-48 . -548) 3359) ((-48 . -118) T) ((-48 . -188) T) ((-48 . -184) 3346) ((-48 . -187) T) ((-45 . -36) 3325) ((-45 . -533) 3248) ((-45 . -256) 3046) ((-45 . -447) 2798) ((-45 . -422) 2733) ((-45 . -238) 2631) ((-45 . -240) 2554) ((-45 . -544) 2533) ((-45 . -190) 2481) ((-45 . -76) 2429) ((-45 . -181) 2377) ((-45 . -1096) 2356) ((-45 . -234) 2304) ((-45 . -122) 2252) ((-45 . -34) T) ((-45 . -1118) T) ((-45 . -72) T) ((-45 . -547) 2234) ((-45 . -1005) T) ((-45 . -548) NIL) ((-45 . -588) 2182) ((-45 . -317) 2130) ((-45 . -752) NIL) ((-45 . -749) NIL) ((-45 . -1053) 2078) ((-45 . -916) 2026) ((-45 . -1157) 1974) ((-45 . -603) 1922) ((-44 . -354) 1906) ((-44 . -676) 1890) ((-44 . -652) T) ((-44 . -678) T) ((-44 . -80) 1869) ((-44 . -956) 1853) ((-44 . -961) 1837) ((-44 . -21) T) ((-44 . -583) 1780) ((-44 . -23) T) ((-44 . -1005) T) ((-44 . -547) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -102) T) ((-44 . -585) 1720) ((-44 . -577) 1704) ((-44 . -649) 1688) ((-44 . -312) 1672) ((-44 . -1118) T) ((-44 . -238) 1649) ((-40 . -287) 1623) ((-40 . -144) T) ((-40 . -550) 1553) ((-40 . -658) T) ((-40 . -1015) T) ((-40 . -962) T) ((-40 . -954) T) ((-40 . -585) 1455) ((-40 . -583) 1385) ((-40 . -102) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -1118) T) ((-40 . -547) 1367) ((-40 . -1005) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -961) 1312) ((-40 . -956) 1257) ((-40 . -80) 1174) ((-40 . -548) 1158) ((-40 . -182) 1135) ((-40 . -802) 1087) ((-40 . -804) 999) ((-40 . -799) 909) ((-40 . -222) 886) ((-40 . -187) 826) ((-40 . -184) 760) ((-40 . -188) 732) ((-40 . -308) T) ((-40 . -1123) T) ((-40 . -825) T) ((-40 . -489) T) ((-40 . -649) 677) ((-40 . -577) 622) ((-40 . -38) 567) ((-40 . -385) T) ((-40 . -254) T) ((-40 . -242) T) ((-40 . -198) T) ((-40 . -313) NIL) ((-40 . -295) NIL) ((-40 . -1055) NIL) ((-40 . -116) 539) ((-40 . -338) NIL) ((-40 . -346) 511) ((-40 . -118) 483) ((-40 . -315) 455) ((-40 . -322) 432) ((-40 . -575) 366) ((-40 . -348) 343) ((-40 . -943) 220) ((-40 . -656) 192) ((-31 . -987) T) ((-31 . -423) 173) ((-31 . -547) 139) ((-31 . -550) 120) ((-31 . -1005) T) ((-31 . -1118) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -859) T) ((-30 . -547) 102) ((0 . |EnumerationCategory|) T) ((0 . -547) 84) ((0 . -1005) T) ((0 . -72) T) ((0 . -1118) T) ((-2 . |RecordCategory|) T) ((-2 . -547) 66) ((-2 . -1005) T) ((-2 . -72) T) ((-2 . -1118) T) ((-3 . |UnionCategory|) T) ((-3 . -547) 48) ((-3 . -1005) T) ((-3 . -72) T) ((-3 . -1118) T) ((-1 . -1005) T) ((-1 . -547) 30) ((-1 . -1118) T) ((-1 . -72) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 1135c00d..52675c3a 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3525483390) -(4148 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3525500983) +(3982 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| @@ -18,22 +18,22 @@ |OneDimensionalArray| |OneDimensionalArrayFunctions2| |TwoDimensionalArray| |AssociatedEquations| |ArrayStack| |AbstractSyntaxCategory&| |AbstractSyntaxCategory| |ArcTrigonometricFunctionCategory&| - |ArcTrigonometricFunctionCategory| |AttributeAst| |AttributeButtons| - |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| - |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| - |BagAggregate&| |BagAggregate| |BinaryExpansion| |Binding| |Bits| |BiModule| - |BooleanLogic&| |BooleanLogic| |Boolean| |BasicOperator| - |BasicOperatorFunctions1| |BoundIntegerRoots| |BalancedPAdicInteger| - |BalancedPAdicRational| |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| - |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| - |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| |BinaryTree| - |Byte| |ByteBuffer| |ByteOrder| |CancellationAbelianMonoid| |CachableSet| - |CapsuleAst| |CardinalNumber| |CartesianTensor| |CartesianTensorFunctions2| - |CaseAst| |CategoryAst| |CategoryConstructor| |Category| |CharacterClass| - |CommonDenominator| |CombinatorialFunctionCategory| |Character| - |CharacteristicNonZero| |CharacteristicPolynomialPackage| |CharacteristicZero| - |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| - |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| |CollectAst| + |ArcTrigonometricFunctionCategory| |AttributeAst| |AttributeRegistry| + |Automorphism| |BalancedFactorisation| |BasicType&| |BasicType| + |BalancedBinaryTree| |BezoutMatrix| |BagAggregate&| |BagAggregate| + |BinaryExpansion| |Binding| |Bits| |BiModule| |BooleanLogic&| |BooleanLogic| + |Boolean| |BasicOperator| |BasicOperatorFunctions1| |BoundIntegerRoots| + |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&| + |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&| + |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| + |BinaryTree| |Byte| |ByteBuffer| |ByteOrder| |CancellationAbelianMonoid| + |CachableSet| |CapsuleAst| |CardinalNumber| |CartesianTensor| + |CartesianTensorFunctions2| |CaseAst| |CategoryAst| |CategoryConstructor| + |Category| |CharacterClass| |CommonDenominator| + |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| + |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable| + |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection| + |CliffordAlgebra| |TwoDimensionalPlotClipping| |CollectAst| |ComplexRootPackage| |ColonAst| |Color| |CombinatorialFunction| |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| |CommaAst| |CommonOperators| |CommuteUnivariatePolynomialCategory| @@ -76,22 +76,20 @@ |EltableAggregate| |EuclideanModularRing| |EntireRing| |Environment| |EigenPackage| |Equation| |EquationFunctions2| |EqTable| |ErrorFunctions| |ExpressionSpace&| |ExpressionSpace| |ExpressionSpaceFunctions1| - |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage| - |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage| - |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |EuclideanDomain&| - |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit| - |ExitAst| |ExponentialExpansion| |Expression| |ExpressionFunctions2| - |ExpressionToUnivariatePowerSeries| |ExpressionSpaceODESolver| - |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries| - |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup| - |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| - |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&| - |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent| - |FortranCodePackage1| |FunctorData| |FiniteDivisor| |FiniteDivisorFunctions2| - |FiniteDivisorCategory&| |FiniteDivisorCategory| |FullyEvalableOver&| - |FullyEvalableOver| |FortranExpression| |FiniteField| |FunctionFieldCategory&| - |FunctionFieldCategory| |FunctionFieldCategoryFunctions2| - |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial| + |ExpressionSpaceFunctions2| |EuclideanDomain&| |EuclideanDomain| |Evalable&| + |Evalable| |EvaluateCycleIndicators| |Exit| |ExitAst| |ExponentialExpansion| + |Expression| |ExpressionFunctions2| |ExpressionToUnivariatePowerSeries| + |ExpressionSpaceODESolver| |ExpressionTubePlot| + |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions| + |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory| + |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| |FiniteAbelianMonoidRing| + |FlexibleArray| |FiniteAlgebraicExtensionField&| + |FiniteAlgebraicExtensionField| |FourierComponent| |FunctorData| + |FiniteDivisor| |FiniteDivisorFunctions2| |FiniteDivisorCategory&| + |FiniteDivisorCategory| |FullyEvalableOver&| |FullyEvalableOver| |FiniteField| + |FunctionFieldCategory&| |FunctionFieldCategory| + |FunctionFieldCategoryFunctions2| |FiniteFieldCyclicGroup| + |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory| |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis| @@ -105,17 +103,14 @@ |FiniteLinearAggregate| |FiniteLinearAggregateFunctions2| |FreeLieAlgebra| |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| |Float| |FloatingComplexPackage| - |FloatingRealPackage| |FreeModule| |FreeModule1| |FortranMatrixCategory| - |FreeModuleCat| |FortranMatrixFunctionCategory| |FreeMonoidCategory| - |FreeMonoid| |FortranMachineTypeCategory| |FileName| |FileNameCategory| - |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite| - |FortranPackage| |FortranProgramCategory| |FortranFunctionCategory| - |FortranProgram| |FullPartialFractionExpansion| |FullyPatternMatchable| - |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic| - |FloatingPointSystem&| |FloatingPointSystem| |Factored| |FactoredFunctions2| - |Fraction| |FractionFunctions2| |FramedAlgebra&| |FramedAlgebra| - |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdeal| - |FractionalIdealFunctions2| |FramedModule| + |FloatingRealPackage| |FreeModule| |FreeModule1| |FreeModuleCat| + |FreeMonoidCategory| |FreeMonoid| |FileName| |FileNameCategory| + |FreeNilpotentLie| |FindOrderFinite| |FullPartialFractionExpansion| + |FullyPatternMatchable| |FieldOfPrimeCharacteristic&| + |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem| + |Factored| |FactoredFunctions2| |Fraction| |FractionFunctions2| + |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo| + |FractionalIdeal| |FractionalIdealFunctions2| |FramedModule| |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebra| |FactoredFunctionUtilities| |FunctionSpace&| |FunctionSpace| |FunctionSpaceFunctions2| @@ -124,9 +119,8 @@ |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration| |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FortranScalarType| - |FunctionSpaceUnivariatePolynomialFactor| |FortranType| |FortranTemplate| - |FunctionCalled| |FunctionDescriptor| |FortranVectorCategory| - |FortranVectorFunctionCategory| |GaloisGroupFactorizer| + |FunctionSpaceUnivariatePolynomialFactor| |FortranType| |FunctionCalled| + |FunctionDescriptor| |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GaussianFactorizationPackage| |GroebnerPackage| |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage| @@ -203,16 +197,15 @@ |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&| |ListAggregate| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1| |LinearSystemPolynomialPackage| |LieSquareMatrix| |ConstructAst| |LyndonWord| - |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix| - |MacroAst| |Magma| |MappingPackageInternalHacks1| - |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingAst| - |MappingPackage1| |MappingPackage2| |MappingPackage3| |MatrixCategory&| - |MatrixCategory| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| - |Matrix| |StorageEfficientMatrixOperations| |Maybe| - |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex| + |LazyStreamAggregate&| |LazyStreamAggregate| |MacroAst| |Magma| + |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| + |MappingPackageInternalHacks3| |MappingAst| |MappingPackage1| + |MappingPackage2| |MappingPackage3| |MatrixCategory&| |MatrixCategory| + |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| |Matrix| + |StorageEfficientMatrixOperations| |Maybe| |MatrixCommonDenominator| |MultiDictionary| |ModularDistinctDegreeFactorizer| - |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat| - |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction| + |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| + |ModularHermitianRowReduction| |MakeBinaryCompiledFunction| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator| |MultipleMap| |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial| @@ -228,53 +221,48 @@ |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing| |NumericComplexEigenPackage| |NumericContinuedFraction| |NonCommutativeOperatorDivision| |NetworkClientSocket| - |NumberFieldIntegralBasis| |NumericalIntegrationProblem| - |NonLinearSolvePackage| |NonNegativeInteger| |NonLinearFirstOrderODESolver| - |None| |NoneFunctions1| |NormInMonogenicAlgebra| |NormalizationPackage| - |NormRetractPackage| |NPCoef| |NumericRealEigenPackage| - |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| - |NewSparseUnivariatePolynomialFunctions2| |NumberTheoreticPolynomialFunctions| - |NormalizedTriangularSetCategory| |Numeric| |NumberFormats| - |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations| + |NumberFieldIntegralBasis| |NonLinearSolvePackage| |NonNegativeInteger| + |NonLinearFirstOrderODESolver| |None| |NoneFunctions1| + |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef| + |NumericRealEigenPackage| |NewSparseMultivariatePolynomial| + |NewSparseUnivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2| + |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory| + |Numeric| |NumberFormats| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup&| |OrderedAbelianGroup| |OrderedAbelianMonoid&| |OrderedAbelianMonoid| |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OctonionCategory&| |OctonionCategory| |OrderedCancellationAbelianMonoid| |Octonion| - |OctonionCategoryFunctions2| |OrdinaryDifferentialEquationsSolverCategory| - |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntegration| - |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| + |OctonionCategoryFunctions2| |ConstantLODE| |ElementaryFunctionODESolver| + |ODEIntegration| |PureAlgebraicLODE| |PrimitiveRatDE| |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools| |OrderedDirectProduct| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid| |OrderedIntegralDomain| |OppositeMonogenicLinearOperator| |OrderedMultisetAggregate| |OnePointCompletion| |OnePointCompletionFunctions2| |Operator| |OperatorCategory&| |OperatorCategory| |OperationsQuery| - |OperatorSignature| |NumericalOptimizationCategory| - |NumericalOptimizationProblem| |OrderedCompletion| - |OrderedCompletionFunctions2| |OrderedFinite| |OrderingFunctions| - |OrderedMonoid| |OrderedRing| |OrderedSet| |OrderedStructure| |OrderedType&| - |OrderedType| |UnivariateSkewPolynomialCategory&| - |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| - |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| - |OrthogonalPolynomialFunctions| |OrderedSemiGroup| |OrdSetInts| - |OutputPackage| |OutputByteConduit&| |OutputByteConduit| |OutputBinaryFile| - |OutputForm| |OrderedVariableList| |OverloadSet| |OrdinaryWeightedPolynomials| - |PadeApproximants| |PadeApproximantPackage| |PAdicInteger| - |PAdicIntegerCategory| |PAdicRational| |PAdicRationalConstructor| |Pair| - |Palette| |PolynomialAN2Expression| |ParameterAst| - |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve| + |OperatorSignature| |OrderedCompletion| |OrderedCompletionFunctions2| + |OrderedFinite| |OrderingFunctions| |OrderedMonoid| |OrderedRing| |OrderedSet| + |OrderedStructure| |OrderedType&| |OrderedType| + |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategory| + |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| + |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| |OrderedSemiGroup| + |OrdSetInts| |OutputPackage| |OutputByteConduit&| |OutputByteConduit| + |OutputBinaryFile| |OutputForm| |OrderedVariableList| |OverloadSet| + |OrdinaryWeightedPolynomials| |PadeApproximants| |PadeApproximantPackage| + |PAdicInteger| |PAdicIntegerCategory| |PAdicRational| + |PAdicRationalConstructor| |Pair| |Palette| |PolynomialAN2Expression| + |ParameterAst| |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |Parser| |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations| |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch| |PatternMatchResult| |PatternMatchResultFunctions2| |Pattern| |PatternFunctions1| |PatternFunctions2| |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| |PartialDifferentialDomain&| - |PartialDifferentialDomain| |PartialDifferentialEquationsSolverCategory| - |PolynomialDecomposition| |NumericalPDEProblem| |PartialDifferentialModule| - |PartialDifferentialRing| |PartialDifferentialSpace&| - |PartialDifferentialSpace| |PendantTree| |Permutation| |Permanent| - |PermutationCategory| |PermutationGroup| |PrimeField| - |PolynomialFactorizationByRecursion| + |PartialDifferentialDomain| |PolynomialDecomposition| + |PartialDifferentialModule| |PartialDifferentialRing| + |PartialDifferentialSpace&| |PartialDifferentialSpace| |PendantTree| + |Permutation| |Permanent| |PermutationCategory| |PermutationGroup| + |PrimeField| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| @@ -317,15 +305,15 @@ |RealZeroPackageQ| |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference| |RegularTriangularSet| |RadicalEigenPackage| |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling| - |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result| - |ReturnAst| |RetractableTo&| |RetractableTo| |RetractSolvePackage| - |RationalFunction| |RandomFloatDistributions| |RationalFunctionFactor| + |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |ReturnAst| + |RetractableTo&| |RetractableTo| |RetractSolvePackage| |RationalFunction| + |RandomFloatDistributions| |RationalFunctionFactor| |RationalFunctionFactorizer| |RGBColorModel| |RGBColorSpace| |RegularChain| |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation| |RightLinearSet| |RectangularMatrixCategory&| |RectangularMatrixCategory| |RectangularMatrix| |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RangeBinding| |RealNumberSystem&| |RealNumberSystem| - |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| + |RightOpenIntervalRootCharacterization| |RomanNumeral| |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RepeatAst| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| @@ -339,8 +327,8 @@ |SegmentBinding| |SegmentBindingFunctions2| |SegmentCategory| |SegmentExpansionCategory| |SequenceAst| |Set| |SetAggregate&| |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |SExpression| - |SExpressionCategory| |SExpressionOf| |SimpleFortranProgram| - |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| + |SExpressionCategory| |SExpressionOf| |SquareFreeQuasiComponentPackage| + |SquareFreeRegularTriangularSetGcdPackage| |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |Signature| |SignatureAst| |ElementaryFunctionSign| |RationalFunctionSign| @@ -362,21 +350,20 @@ |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer| |SparseUnivariatePuiseuxSeries| - |SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions| + |SparseUnivariateTaylorSeries| |Symbol| |SymmetricFunctions| |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax| |SystemInteger| |SystemNonNegativeInteger| |SystemPointer| |SystemSolvePackage| |System| |TableauxBumpers| |Table| |Tableau| |TermAlgebraOperator| |TangentExpansions| - |TableAggregate&| |TableAggregate| |TabulatedComputationPackage| - |TemplateUtilities| |TexFormat| |TexFormat1| |TextFile| |ToolsForSign| - |TopLevelThreeSpace| |TranscendentalFunctionCategory&| - |TranscendentalFunctionCategory| |Tree| |TrigonometricFunctionCategory&| - |TrigonometricFunctionCategory| |TrigonometricManipulations| - |TriangularMatrixOperations| |TranscendentalManipulations| |TaylorSeries| - |TriangularSetCategory&| |TriangularSetCategory| |TubePlot| |TubePlotTools| - |Tuple| |TwoFactorize| |Type| |TypeAst| |UserDefinedPartialOrdering| - |UserDefinedVariableOrdering| |UniqueFactorizationDomain&| - |UniqueFactorizationDomain| |UInt16| |UInt32| |UInt64| |UInt8| - |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2| + |TableAggregate&| |TableAggregate| |TabulatedComputationPackage| |TexFormat| + |TexFormat1| |TextFile| |ToolsForSign| |TopLevelThreeSpace| + |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree| + |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory| + |TrigonometricManipulations| |TriangularMatrixOperations| + |TranscendentalManipulations| |TaylorSeries| |TriangularSetCategory&| + |TriangularSetCategory| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| + |Type| |TypeAst| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| + |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UInt16| |UInt32| + |UInt64| |UInt8| |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesConstructorCategory| @@ -407,23 +394,22 @@ |XPolynomialsCat| |XPolynomialRing| |XRecursivePolynomial| |YoungDiagram| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record| - |Union| |zeroOf| |rootsOf| |makeSketch| |inrootof| |droot| |iroot| |eq?| - |assoc| |doublyTransitive?| |knownInfBasis| |rootSplit| |ratDenom| |ratPoly| - |rootPower| |rootProduct| |rootSimp| |rootKerSimp| |leftRank| |rightRank| - |doubleRank| |weakBiRank| |biRank| |basisOfCommutingElements| + |Union| |zerosOf| |zeroOf| |rootsOf| |makeSketch| |inrootof| |droot| |iroot| + |eq?| |assoc| |doublyTransitive?| |knownInfBasis| |rootSplit| |ratDenom| + |ratPoly| |rootPower| |rootProduct| |rootSimp| |rootKerSimp| |leftRank| + |rightRank| |doubleRank| |weakBiRank| |biRank| |basisOfCommutingElements| |basisOfLeftAnnihilator| |basisOfRightAnnihilator| |basisOfLeftNucleus| |basisOfRightNucleus| |basisOfMiddleNucleus| |basisOfNucleus| |basisOfCenter| |basisOfLeftNucloid| |basisOfRightNucloid| |basisOfCentroid| |radicalOfLeftTraceForm| |obj| |dom| |any| |applyRules| |localUnquote| |arbitrary| |setColumn!| |setRow!| |oneDimensionalArray| |associatedSystem| - |uncouplingMatrices| |associatedEquations| |arrayStack| |setButtonValue| - |setAttributeButtonStep| |resetAttributeButtons| |getButtonValue| |decrease| - |increase| |morphism| |balancedFactorisation| |before?| |mapDown!| |mapUp!| - |setleaves!| |balancedBinaryTree| |sylvesterMatrix| |bezoutMatrix| - |bezoutResultant| |bezoutDiscriminant| |bfEntry| |bfKeys| |inspect| |extract!| - |bag| |binding| |setProperties| |setProperty| |deleteProperty!| |has?| - |comparison| |equality| |nary?| |unary?| |nullary?| |properties| |derivative| - |constantOperator| |constantOpIfCan| |integerBound| |setright!| |setleft!| + |uncouplingMatrices| |associatedEquations| |arrayStack| |morphism| + |balancedFactorisation| |before?| |mapDown!| |mapUp!| |setleaves!| + |balancedBinaryTree| |sylvesterMatrix| |bezoutMatrix| |bezoutResultant| + |bezoutDiscriminant| |inspect| |extract!| |bag| |binding| |setProperties| + |setProperty| |deleteProperty!| |has?| |comparison| |equality| |nary?| + |unary?| |nullary?| |properties| |derivative| |constantOperator| + |constantOpIfCan| |integerBound| |setright!| |setleft!| |brillhartIrreducible?| |brillhartTrials| |noLinearFactor?| |insertRoot!| |binarySearchTree| |nor| |nand| |node| |binaryTournament| |binaryTree| |byte| |setLength!| |capacity| |byteBuffer| |unknownEndian| |bigEndian| @@ -480,74 +466,62 @@ |eigenvector| |generalizedEigenvector| |generalizedEigenvectors| |eigenvectors| |factorAndSplit| |rightOne| |leftOne| |rightZero| |leftZero| |swap| |error| |minPoly| |freeOf?| |operators| |tower| |kernels| |mainKernel| - |distribute| |subst| |functionIsFracPolynomial?| |problemPoints| |zerosOf| - |singularitiesOf| |polynomialZeros| |f2df| |ef2edf| |ocf2ocdf| |socf2socdf| - |df2fi| |edf2fi| |edf2df| |expenseOfEvaluation| |numberOfOperations| |edf2efi| - |dfRange| |dflist| |df2mf| |ldf2vmf| |edf2ef| |vedf2vef| |df2st| |f2st| - |ldf2lst| |sdf2lst| |getlo| |gethi| |outputMeasure| |measure2Result| - |att2Result| |iflist2Result| |pdf2ef| |pdf2df| |df2ef| |fi2df| |mat| |neglist| - |multiEuclidean| |extendedEuclidean| |euclideanSize| |sizeLess?| - |simplifyPower| |number?| |seriesSolve| |constantToUnaryFunction| |tubePlot| - |exponentialOrder| |completeEval| |lowerPolynomial| |raisePolynomial| - |normalDeriv| |ran| |highCommonTerms| |mapCoef| |nthCoef| |binomThmExpt| - |pomopo!| |mapExponents| |linearAssociatedLog| |linearAssociatedOrder| - |linearAssociatedExp| |createNormalElement| |setLabelValue| |getCode| - |printCode| |code| |operation| |common| |printStatement| |save| |stop| |block| - |cond| |returns| |call| |comment| |continue| |goto| |repeatUntilLoop| - |whileLoop| |forLoop| |sin?| |zeroVector| |zeroSquareMatrix| - |identitySquareMatrix| |lookupFunction| |encodingDirectory| |attributeData| - |domainTemplate| |lSpaceBasis| |finiteBasis| |principal?| |divisor| - |useNagFunctions| |rationalPoints| |nonSingularModel| |algSplitSimple| - |hyperelliptic| |elliptic| |integralDerivationMatrix| |integralRepresents| - |integralCoordinates| |yCoordinates| |inverseIntegralMatrixAtInfinity| - |integralMatrixAtInfinity| |inverseIntegralMatrix| |integralMatrix| - |reduceBasisAtInfinity| |normalizeAtInfinity| |complementaryBasis| |integral?| - |integralAtInfinity?| |integralBasisAtInfinity| |ramified?| - |ramifiedAtInfinity?| |singular?| |singularAtInfinity?| |branchPoint?| - |branchPointAtInfinity?| |rationalPoint?| |absolutelyIrreducible?| |genus| - |getZechTable| |createZechTable| |createMultiplicationTable| - |createMultiplicationMatrix| |createLowComplexityTable| - |createLowComplexityNormalBasis| |representationType| |createPrimitiveElement| - |tableForDiscreteLogarithm| |factorsOfCyclicGroupSize| |sizeMultiplication| - |getMultiplicationMatrix| |getMultiplicationTable| |primitive?| - |numberOfIrreduciblePoly| |numberOfPrimitivePoly| |numberOfNormalPoly| - |createIrreduciblePoly| |createPrimitivePoly| |createNormalPoly| - |createNormalPrimitivePoly| |createPrimitiveNormalPoly| |nextIrreduciblePoly| - |nextPrimitivePoly| |nextNormalPoly| |nextNormalPrimitivePoly| - |nextPrimitiveNormalPoly| |leastAffineMultiple| |reducedQPowers| - |rootOfIrreduciblePoly| |write!| |read!| |iomode| |close!| |reopen!| |open| - |rightUnit| |leftUnit| |rightMinimalPolynomial| |leftMinimalPolynomial| - |associatorDependence| |lieAlgebra?| |jordanAlgebra?| - |noncommutativeJordanAlgebra?| |jordanAdmissible?| |lieAdmissible?| - |jacobiIdentity?| |powerAssociative?| |alternative?| |flexible?| - |rightAlternative?| |leftAlternative?| |antiAssociative?| |associative?| - |antiCommutative?| |commutative?| |rightCharacteristicPolynomial| - |leftCharacteristicPolynomial| |rightNorm| |leftNorm| |rightTrace| |leftTrace| - |someBasis| |sort!| |copyInto!| |sorted?| |LiePoly| |quickSort| |heapSort| - |shellSort| |outputSpacing| |outputGeneral| |outputFixed| |outputFloating| - |exp1| |log10| |log2| |rationalApproximation| |relerror| |complexSolve| - |complexRoots| |realRoots| |leadingTerm| |overlap| |hcrf| |hclf| |writable?| - |readable?| |exists?| |extension| |directory| |filename| |shallowExpand| - |deepExpand| |clearFortranOutputStack| |showFortranOutputStack| - |popFortranOutputStack| |pushFortranOutputStack| |topFortranOutputStack| - |linkToFortran| |setLegalFortranSourceExtensions| |fracPart| |polyPart| + |distribute| |subst| |multiEuclidean| |extendedEuclidean| |euclideanSize| + |sizeLess?| |simplifyPower| |number?| |seriesSolve| |constantToUnaryFunction| + |tubePlot| |exponentialOrder| |completeEval| |lowerPolynomial| + |raisePolynomial| |normalDeriv| |ran| |highCommonTerms| |mapCoef| |nthCoef| + |binomThmExpt| |pomopo!| |mapExponents| |linearAssociatedLog| + |linearAssociatedOrder| |linearAssociatedExp| |createNormalElement| |sin?| + |lookupFunction| |encodingDirectory| |attributeData| |domainTemplate| + |lSpaceBasis| |finiteBasis| |principal?| |divisor| |rationalPoints| + |nonSingularModel| |algSplitSimple| |hyperelliptic| |elliptic| + |integralDerivationMatrix| |integralRepresents| |integralCoordinates| + |yCoordinates| |inverseIntegralMatrixAtInfinity| |integralMatrixAtInfinity| + |inverseIntegralMatrix| |integralMatrix| |reduceBasisAtInfinity| + |normalizeAtInfinity| |complementaryBasis| |integral?| |integralAtInfinity?| + |integralBasisAtInfinity| |ramified?| |ramifiedAtInfinity?| |singular?| + |singularAtInfinity?| |branchPoint?| |branchPointAtInfinity?| |rationalPoint?| + |absolutelyIrreducible?| |genus| |getZechTable| |createZechTable| + |createMultiplicationTable| |createMultiplicationMatrix| + |createLowComplexityTable| |createLowComplexityNormalBasis| + |representationType| |createPrimitiveElement| |tableForDiscreteLogarithm| + |factorsOfCyclicGroupSize| |sizeMultiplication| |getMultiplicationMatrix| + |getMultiplicationTable| |primitive?| |numberOfIrreduciblePoly| + |numberOfPrimitivePoly| |numberOfNormalPoly| |createIrreduciblePoly| + |createPrimitivePoly| |createNormalPoly| |createNormalPrimitivePoly| + |createPrimitiveNormalPoly| |nextIrreduciblePoly| |nextPrimitivePoly| + |nextNormalPoly| |nextNormalPrimitivePoly| |nextPrimitiveNormalPoly| + |leastAffineMultiple| |reducedQPowers| |rootOfIrreduciblePoly| |write!| + |read!| |iomode| |close!| |reopen!| |open| |rightUnit| |leftUnit| + |rightMinimalPolynomial| |leftMinimalPolynomial| |associatorDependence| + |lieAlgebra?| |jordanAlgebra?| |noncommutativeJordanAlgebra?| + |jordanAdmissible?| |lieAdmissible?| |jacobiIdentity?| |powerAssociative?| + |alternative?| |flexible?| |rightAlternative?| |leftAlternative?| + |antiAssociative?| |associative?| |antiCommutative?| |commutative?| + |rightCharacteristicPolynomial| |leftCharacteristicPolynomial| |rightNorm| + |leftNorm| |rightTrace| |leftTrace| |someBasis| |sort!| |copyInto!| |sorted?| + |LiePoly| |quickSort| |heapSort| |shellSort| |outputSpacing| |outputGeneral| + |outputFixed| |outputFloating| |exp1| |log10| |log2| |rationalApproximation| + |relerror| |complexSolve| |complexRoots| |realRoots| |leadingTerm| |overlap| + |hcrf| |hclf| |writable?| |readable?| |exists?| |extension| |directory| + |filename| |shallowExpand| |deepExpand| |fracPart| |polyPart| |fullPartialFraction| |primeFrobenius| |discreteLog| |decreasePrecision| - |increasePrecision| |bits| |unitNormalize| |unit| |flagFactor| |sqfrFactor| - |primeFactor| |nthFlag| |nthExponent| |irreducibleFactor| |factors| - |nilFactor| |regularRepresentation| |traceMatrix| |randomLC| |minimize| - |module| |rightRegularRepresentation| |leftRegularRepresentation| - |rightTraceMatrix| |leftTraceMatrix| |rightDiscriminant| |leftDiscriminant| - |represents| |mergeFactors| |isMult| |applyQuote| |ground| |ground?| - |exprToXXP| |exprToUPS| |exprToGenUPS| |localAbs| |universe| |complement| - |cardinality| |internalIntegrate0| |makeCos| |makeSin| |iiGamma| |iiabs| - |bringDown| |newReduc| |logical?| |character?| |doubleComplex?| |complex?| - |double?| |ffactor| |qfactor| |UP2ifCan| |anfactor| |fortranCharacter| - |fortranDoubleComplex| |fortranComplex| |fortranLogical| |fortranInteger| - |fortranDouble| |fortranReal| |external?| |dimensionsOf| |scalarTypeOf| - |fortranCarriageReturn| |fortranLiteral| |fortranLiteralLine| - |processTemplate| |makeFR| |musserTrials| |stopMusserTrials| |numberOfFactors| - |modularFactor| |useSingleFactorBound?| |useSingleFactorBound| - |useEisensteinCriterion?| |useEisensteinCriterion| |eisensteinIrreducible?| + |increasePrecision| |precision| |bits| |mantissa| |unitNormalize| |unit| + |flagFactor| |sqfrFactor| |primeFactor| |nthFlag| |nthExponent| + |irreducibleFactor| |factors| |nilFactor| |regularRepresentation| + |traceMatrix| |randomLC| |minimize| |module| |rightRegularRepresentation| + |leftRegularRepresentation| |rightTraceMatrix| |leftTraceMatrix| + |rightDiscriminant| |leftDiscriminant| |represents| |mergeFactors| |isMult| + |applyQuote| |ground| |ground?| |exprToXXP| |exprToUPS| |exprToGenUPS| + |localAbs| |universe| |complement| |cardinality| |internalIntegrate0| + |makeCos| |makeSin| |iiGamma| |iiabs| |bringDown| |newReduc| |logical?| + |character?| |doubleComplex?| |complex?| |double?| |ffactor| |qfactor| + |UP2ifCan| |anfactor| |fortranCharacter| |fortranDoubleComplex| + |fortranComplex| |fortranLogical| |fortranInteger| |fortranDouble| + |fortranReal| |external?| |dimensionsOf| |scalarTypeOf| |makeFR| + |musserTrials| |stopMusserTrials| |numberOfFactors| |modularFactor| + |useSingleFactorBound?| |useSingleFactorBound| |useEisensteinCriterion?| + |useEisensteinCriterion| |eisensteinIrreducible?| |tryFunctionalDecomposition?| |tryFunctionalDecomposition| |btwFact| |beauzamyBound| |bombieriNorm| |rootBound| |singleFactorBound| |quadraticNorm| |infinityNorm| |scaleRoots| |shiftRoots| |degreePartition| |factorOfDegree| @@ -631,26 +605,22 @@ |complexLimit| |limit| |linearlyDependent?| |linearDependence| |solveLinear| |linearElement| |reducedSystem| |leftReducedSystem| |linearForm| |setDifference| |setIntersection| |setUnion| |append| |null| |nil| - |substitute| |duplicates?| |mapGen| |mapExpon| |commutativeEquality| + |substitute| |duplicates?| |mapGen| |mapExpon| |commutativeEquality| |plus| |leftMult| |rightMult| |makeUnit| |reverse!| |reverse| |nthFactor| |nthExpon| |makeMulti| |makeTerm| |listOfMonoms| |insert| |delete| |symmetricSquare| |factor1| |symmetricProduct| |symmetricPower| |directSum| |\\/| |/\\| ~ |solveLinearPolynomialEquationByFractions| |hasSolution?| |linSolve| |LyndonWordsList| |LyndonWordsList1| |lyndonIfCan| |lyndon| |lyndon?| |numberOfComputedEntries| |rst| |frst| |lazyEvaluate| |lazy?| - |explicitlyEmpty?| |explicitEntries?| |matrixDimensions| |matrixConcat3D| - |setelt!| |plus| |identityMatrix| |zeroMatrix| |iter| |arg1| |arg2| |comp| - |mappingAst| |nullary| |fixedPoint| |id| |recur| |const| |curry| |diag| - |curryRight| |curryLeft| |constantRight| |constantLeft| |twist| - |setsubMatrix!| |subMatrix| |swapColumns!| |swapRows!| |vertConcat| - |horizConcat| |squareTop| |elRow1!| |elRow2!| |elColumn2!| - |fractionFreeGauss!| |invertIfCan| |copy!| |plus!| |minus!| |leftScalarTimes!| - |rightScalarTimes!| |times!| |power!| |nothing| |just| |gradient| |divergence| - |laplacian| |hessian| |bandedHessian| |jacobian| |bandedJacobian| |duplicates| - |removeDuplicates!| |linears| |ddFact| |separateFactors| |exptMod| - |meshPar2Var| |meshFun2Var| |meshPar1Var| |ptFunc| |minimumExponent| - |maximumExponent| |precision| |mantissa| |rowEch| |rowEchLocal| - |rowEchelonLocal| |normalizedDivide| |maxint| |binaryFunction| + |explicitlyEmpty?| |explicitEntries?| |iter| |arg1| |arg2| |comp| |mappingAst| + |nullary| |fixedPoint| |id| |recur| |const| |curry| |diag| |curryRight| + |curryLeft| |constantRight| |constantLeft| |twist| |setsubMatrix!| |subMatrix| + |swapColumns!| |swapRows!| |vertConcat| |horizConcat| |squareTop| |elRow1!| + |elRow2!| |elColumn2!| |fractionFreeGauss!| |invertIfCan| |copy!| |plus!| + |minus!| |leftScalarTimes!| |rightScalarTimes!| |times!| |power!| |nothing| + |just| |duplicates| |removeDuplicates!| |linears| |ddFact| |separateFactors| + |exptMod| |meshPar2Var| |meshFun2Var| |meshPar1Var| |ptFunc| |rowEch| + |rowEchLocal| |rowEchelonLocal| |normalizedDivide| |binaryFunction| |makeFloatFunction| |function| |makeRecord| |unaryFunction| |compiledFunction| |corrPoly| |lifting| |lifting1| |exprex| |coerceL| |coerceS| |frobenius| |computePowers| |pow| |An| |UnVectorise| |Vectorise| |setPoly| |index| @@ -668,45 +638,45 @@ |subResultantsChain| |lazyPseudoQuotient| |lazyPseudoRemainder| |bernoulliB| |eulerE| |numeric| |complexNumeric| |numericIfCan| |complexNumericIfCan| |FormatArabic| |ScanArabic| |FormatRoman| |ScanRoman| |ScanFloatIgnoreSpaces| - |ScanFloatIgnoreSpacesIfCan| |numericalIntegration| |rk4| |rk4a| |rk4qc| - |rk4f| |aromberg| |asimpson| |atrapezoidal| |romberg| |simpson| |trapezoidal| - |rombergo| |simpsono| |trapezoidalo| |sup| |inv| |imagE| |imagk| |imagj| - |imagi| |octon| |ODESolve| |constDsolve| |expint| |diff| |algDsolve| - |denomLODE| |indicialEquations| |indicialEquation| |denomRicDE| - |leadingCoefficientRicDE| |constantCoefficientRicDE| |changeVar| |ratDsolve| + |ScanFloatIgnoreSpacesIfCan| |rk4| |rk4a| |rk4qc| |rk4f| |aromberg| |asimpson| + |atrapezoidal| |romberg| |simpson| |trapezoidal| |rombergo| |simpsono| + |trapezoidalo| |sup| |inv| |imagE| |imagk| |imagj| |imagi| |octon| + |constDsolve| |expint| |diff| |algDsolve| |denomLODE| |indicialEquations| + |indicialEquation| |denomRicDE| |leadingCoefficientRicDE| + |constantCoefficientRicDE| |changeVar| |ratDsolve| |indicialEquationAtInfinity| |reduceLODE| |singRicDE| |polyRicDE| |ricDsolve| |triangulate| |solveInField| |wronskianMatrix| |variationOfParameters| |lexico| |po| |op| |infinity| |makeop| |opeval| |evaluateInverse| |evaluate| - |conjug| |adjoint| |arity| |getDatabase| |numericalOptimization| - |whatInfinity| |infinite?| |finite?| |minusInfinity| |plusInfinity| |pureLex| - |totalLex| |reverseLex| |min| |leftLcm| |rightExtendedGcd| |rightGcd| - |rightExactQuotient| |rightRemainder| |rightQuotient| |rightLcm| - |leftExtendedGcd| |leftGcd| |leftExactQuotient| |leftRemainder| |leftQuotient| - |times| |apply| |monicLeftDivide| |monicRightDivide| |leftDivide| - |rightDivide| |hermiteH| |laguerreL| |legendreP| |outputList| |writeBytes!| - |writeUInt8!| |writeInt8!| |writeByte!| |isOpen?| |outputBinaryFile| |not| - |or| |and| |quo| |rem| |div| >= > ~= |blankSeparate| |semicolonSeparate| - |commaSeparate| |pile| |paren| |bracket| |prod| |overlabel| |overbar| |prime| - |quote| |supersub| |presuper| |presub| |super| |sub| |rarrow| |assign| |slash| - |over| |zag| |box| |label| |infix?| |postfix| |infix| |prefix| |vconcat| - |hconcat| |rspace| |vspace| |hspace| |superHeight| |subHeight| |height| - |width| |doubleFloatFormat| |messagePrint| |message| |members| |padecf| |pade| - |root| |quotientByP| |moduloP| |modulus| |digits| |continuedFraction| |pair| - |light| |pastel| |bright| |dim| |dark| |getSyntaxFormsFromFile| |surface| - |coordinate| |conjugates| |shuffle| |shufflein| |sequences| |permutations| - |lists| |makeResult| |is?| |Is| |addMatchRestricted| |insertMatch| |addMatch| - |getMatch| |failed| |failed?| |optpair| |getBadValues| |resetBadValues| - |hasTopPredicate?| |topPredicate| |setTopPredicate| |patternVariable| - |withPredicates| |setPredicates| |predicates| |hasPredicate?| |optional?| - |multiple?| |generic?| |quoted?| |inR?| |isList| |isQuotient| |isOp| |Zero| - |satisfy?| |addBadValue| |badValues| |retractable?| |ListOfTerms| |One| - |PDESolve| |measure| |leftFactor| |rightFactorCandidate| D |ptree| - |coerceImages| |fixedPoints| |odd?| |even?| |numberOfCycles| |cyclePartition| - |coerceListOfPairs| |coercePreimagesImages| |listRepresentation| |permanent| - |cycles| |cycle| |initializeGroupForWordProblem| <= < |support| - |wordInGenerators| |wordInStrongGenerators| |orbits| |orbit| - |permutationGroup| |wordsForStrongGenerators| |strongGenerators| |base| - |generators| |bivariateSLPEBR| |solveLinearPolynomialEquationByRecursion| + |conjug| |adjoint| |arity| |getDatabase| |whatInfinity| |infinite?| |finite?| + |minusInfinity| |plusInfinity| |pureLex| |totalLex| |reverseLex| |min| + |leftLcm| |rightExtendedGcd| |rightGcd| |rightExactQuotient| |rightRemainder| + |rightQuotient| |rightLcm| |leftExtendedGcd| |leftGcd| |leftExactQuotient| + |leftRemainder| |leftQuotient| |times| |apply| |monicLeftDivide| + |monicRightDivide| |leftDivide| |rightDivide| |hermiteH| |laguerreL| + |legendreP| |outputList| |writeBytes!| |writeUInt8!| |writeInt8!| |writeByte!| + |isOpen?| |outputBinaryFile| |not| |or| |and| |quo| |rem| |div| >= > ~= + |blankSeparate| |semicolonSeparate| |commaSeparate| |pile| |paren| |bracket| + |prod| |overlabel| |overbar| |prime| |quote| |supersub| |presuper| |presub| + |super| |sub| |rarrow| |assign| |slash| |over| |zag| |box| |label| |infix?| + |postfix| |infix| |prefix| |vconcat| |hconcat| |rspace| |vspace| |hspace| + |superHeight| |subHeight| |height| |width| |doubleFloatFormat| |messagePrint| + |message| |members| |padecf| |pade| |root| |quotientByP| |moduloP| |modulus| + |digits| |continuedFraction| |pair| |light| |pastel| |bright| |dim| |dark| + |getSyntaxFormsFromFile| |surface| |coordinate| |conjugates| |shuffle| + |shufflein| |sequences| |permutations| |lists| |makeResult| |is?| |Is| + |addMatchRestricted| |insertMatch| |addMatch| |getMatch| |failed| |failed?| + |optpair| |getBadValues| |resetBadValues| |hasTopPredicate?| |topPredicate| + |setTopPredicate| |patternVariable| |withPredicates| |setPredicates| + |predicates| |hasPredicate?| |optional?| |multiple?| |generic?| |quoted?| + |inR?| |isList| |isQuotient| |isOp| |Zero| |satisfy?| |addBadValue| + |badValues| |retractable?| |ListOfTerms| |One| |leftFactor| + |rightFactorCandidate| D |ptree| |coerceImages| |fixedPoints| |odd?| |even?| + |numberOfCycles| |cyclePartition| |coerceListOfPairs| |coercePreimagesImages| + |listRepresentation| |permanent| |cycles| |cycle| + |initializeGroupForWordProblem| <= < |support| |wordInGenerators| + |wordInStrongGenerators| |orbits| |orbit| |permutationGroup| + |wordsForStrongGenerators| |strongGenerators| |base| |generators| + |bivariateSLPEBR| |solveLinearPolynomialEquationByRecursion| |factorByRecursion| |factorSquareFreeByRecursion| |randomR| |factorSFBRlcUnit| |charthRoot| |conditionP| |solveLinearPolynomialEquation| |factorSquareFreePolynomial| |factorPolynomial| |squareFreePolynomial| @@ -789,22 +759,16 @@ |tensorProduct| |permutationRepresentation| |completeEchelonBasis| |createRandomElement| |cyclicSubmodule| |standardBasisOfCyclicSubmodule| |areEquivalent?| |isAbsolutelyIrreducible?| |meatAxe| |scanOneDimSubspaces| - |double| |expt| |lift| |showArrayValues| |showScalarValues| |solveRetract| - |variables| |mainVariable| |univariate| |multivariate| |uniform01| |normal01| - |exponential1| |chiSquare1| |normal| |exponential| |chiSquare| F |t| - |factorFraction| |componentUpperBound| |blue| |green| |red| |whitePoint| - |uniform| |binomial| |poisson| |geometric| |ridHack1| |interpolate| - |nullSpace| |nullity| |rank| |rowEchelon| |column| |row| |qelt| |ncols| - |nrows| |maxColIndex| |minColIndex| |maxRowIndex| |minRowIndex| - |antisymmetric?| |symmetric?| |diagonal?| |square?| |matrix| + |double| |expt| |lift| |solveRetract| |variables| |mainVariable| |univariate| + |multivariate| |uniform01| |normal01| |exponential1| |chiSquare1| |normal| + |exponential| |chiSquare| F |t| |factorFraction| |componentUpperBound| |blue| + |green| |red| |whitePoint| |uniform| |binomial| |poisson| |geometric| + |ridHack1| |interpolate| |nullSpace| |nullity| |rank| |rowEchelon| |column| + |row| |qelt| |ncols| |nrows| |maxColIndex| |minColIndex| |maxRowIndex| + |minRowIndex| |antisymmetric?| |symmetric?| |diagonal?| |square?| |matrix| |rectangularMatrix| |characteristic| |round| |fractionPart| |wholePart| |floor| |ceiling| |norm| |mightHaveRoots| |refine| |middle| |size| |right| - |left| |roman| |recoverAfterFail| |showTheRoutinesTable| |deleteRoutine!| - |getExplanations| |getMeasure| |changeMeasure| |changeThreshhold| - |selectMultiDimensionalRoutines| |selectNonFiniteRoutines| - |selectSumOfSquaresRoutines| |selectFiniteRoutines| |selectODEIVPRoutines| - |selectPDERoutines| |selectOptimizationRoutines| |selectIntegrationRoutines| - |routines| |mainSquareFreePart| |mainPrimitivePart| |mainContent| + |left| |roman| |mainSquareFreePart| |mainPrimitivePart| |mainContent| |primitivePart!| |gcd| |nextsubResultant2| |LazardQuotient2| |LazardQuotient| |subResultantChain| |halfExtendedSubResultantGcd2| |halfExtendedSubResultantGcd1| |extendedSubResultantGcd| |exactQuotient!| @@ -829,7 +793,7 @@ |hash| |delta| |member?| |enumerate| |setOfMinN| |elements| |replaceKthElement| |incrementKthElement| |cdr| |car| |expr| |float| |integer| |symbol| |destruct| |float?| |integer?| |symbol?| |string?| |list?| |pair?| - |atom?| |null?| |eq| |fortran| |startTable!| |stopTable!| |supDimElseRittWu?| + |atom?| |null?| |eq| |startTable!| |stopTable!| |supDimElseRittWu?| |algebraicSort| |moreAlgebraic?| |subTriSet?| |subPolSet?| |internalSubPolSet?| |internalInfRittWu?| |internalSubQuasiComponent?| |subQuasiComponent?| |removeSuperfluousQuasiComponents| |subCase?| @@ -879,79 +843,78 @@ |defineProperty| |closeComponent| |modifyPoint| |addPointLast| |addPoint2| |addPoint| |merge| |deepCopy| |shallowCopy| |numberOfChildren| |children| |child| |birth| |internal?| |root?| |leaf?| |rhs| |lhs| |construct| - |predicate| |sum| |outputForm| NOT AND EQ OR GE LE GT LT |list| |string| - |argscript| |superscript| |subscript| |script| |scripts| |scripted?| |name| - |resetNew| |symFunc| |symbolTableOf| |argumentListOf| |returnTypeOf| - |printHeader| |returnType!| |argumentList!| |endSubProgram| - |currentSubProgram| |newSubProgram| |clearTheSymbolTable| |showTheSymbolTable| - |symbolTable| |printTypes| |newTypeLists| |typeLists| |externalList| - |typeList| |parametersOf| |fortranTypeOf| |declare!| |empty| |case| - |compound?| |getOperands| |getOperator| |nil?| |buildSyntax| |autoCoerce| - |solve| |triangularSystems| |loadNativeModule| |nativeModuleExtension| - |hostByteOrder| |hostPlatform| |rootDirectory| |bumprow| |bumptab| |bumptab1| - |untab| |bat1| |bat| |tab1| |tab| |lex| |slex| |inverse| |maxrow| |mr| - |tableau| |listOfLists| |operator| |tanSum| |tanAn| |tanNa| |table| - |initTable!| |printInfo!| |startStats!| |printStats!| |clearTable!| - |usingTable?| |printingInfo?| |makingStats?| |extractIfCan| |insert!| - |interpretString| |stripCommentsAndBlanks| |setPrologue!| |setTex!| - |setEpilogue!| |prologue| |new| |tex| |epilogue| |display| |endOfFile?| - |readIfCan!| |readLineIfCan!| |readLine!| |writeLine!| |sign| |nonQsign| - |direction| |createThreeSpace| |pi| |cyclicParents| |cyclicEqual?| - |cyclicEntries| |cyclicCopy| |tree| |cyclic?| |cos| |cot| |csc| |sec| |sin| - |tan| |complexNormalize| |complexElementary| |trigs| |real| |imag| |real?| - |complexForm| |UpTriBddDenomInv| |LowTriBddDenomInv| |simplify| |htrigs| - |simplifyExp| |simplifyLog| |expandPower| |expandLog| |cos2sec| |cosh2sech| - |cot2trig| |coth2trigh| |csc2sin| |csch2sinh| |sec2cos| |sech2cosh| |sin2csc| - |sinh2csch| |tan2trig| |tanh2trigh| |tan2cot| |tanh2coth| |cot2tan| - |coth2tanh| |removeCosSq| |removeSinSq| |removeCoshSq| |removeSinhSq| - |expandTrigProducts| |fintegrate| |coefficient| |coHeight| |extendIfCan| - |algebraicVariables| |zeroSetSplitIntoTriangularSystems| |zeroSetSplit| - |reduceByQuasiMonic| |collectQuasiMonic| |removeZero| |initiallyReduce| - |headReduce| |stronglyReduce| |rewriteSetWithReduction| |autoReduced?| - |initiallyReduced?| |headReduced?| |stronglyReduced?| |reduced?| |normalized?| - |quasiComponent| |initials| |basicSet| |infRittWu?| |getCurve| |listLoops| - |closed?| |open?| |setClosed| |tube| |point| |unitVector| |cosSinInfo| - |loopPoints| |select| |generalTwoFactor| |generalSqFr| |twoFactor| |setOrder| - |getOrder| |less?| |userOrdered?| |largest| |more?| |setVariableOrder| - |getVariableOrder| |resetVariableOrder| |prime?| |sample| |bitior| |bitand| - |rationalFunction| |taylorIfCan| |taylor| |removeZeroes| |taylorRep| |factor| - |factorSquareFree| |henselFact| |hasHi| |segment| SEGMENT |fmecg| - |commonDenominator| |clearDenominator| |splitDenominator| - |monicRightFactorIfCan| |rightFactorIfCan| |leftFactorIfCan| - |monicDecomposeIfCan| |monicCompleteDecompose| |divideIfCan| |noKaratsuba| - |karatsubaOnce| |karatsuba| |separate| |pseudoDivide| |pseudoQuotient| - |composite| |subResultantGcd| |resultant| |discriminant| |differentiate| - |pseudoRemainder| |shiftLeft| |shiftRight| |karatsubaDivide| |monicDivide| - |divideExponents| |unmakeSUP| |makeSUP| |vectorise| |eval| |extend| - |approximate| |truncate| |order| |center| |terms| |squareFreePart| - |BumInSepFFE| |multiplyExponents| |laurentIfCan| |laurent| |laurentRep| - |rationalPower| |puiseux| |dominantTerm| |limitPlus| |split!| |setlast!| - |setrest!| |setelt| |setfirst!| |cycleSplit!| |concat!| |cycleTail| - |cycleLength| |cycleEntry| |third| |second| |tail| |last| |rest| |elt| |first| - |concat| |invmultisect| |multisect| |revert| |generalLambert| |evenlambert| - |oddlambert| |lambert| |lagrange| |univariatePolynomial| |integrate| ** - |polynomial| |multiplyCoefficients| |quoByVar| |coefficients| |series| - |stFunc1| |stFunc2| |stFuncN| |fixedPointExquo| |ode1| |ode2| |ode| |mpsode| - UP2UTS UTS2UP LODO2FUN RF2UTS |variable| |magnitude| |length| |cross| - |outerProduct| |dot| - |zero| + |vector| |scan| |reduce| |graphCurves| - |drawCurves| |update| |show| |scale| |connect| |region| |points| |units| - |getGraph| |putGraph| |graphs| |graphStates| |graphState| |makeViewport2D| - |viewport2D| |getPickedPoints| |key| |close| |write| |colorDef| |reset| - |intensity| |lighting| |clipSurface| |showClipRegion| |showRegion| - |hitherPlane| |eyeDistance| |perspective| |translate| |zoom| |rotate| - |drawStyle| |outlineRender| |diagonals| |axes| |controlPanel| |viewpoint| - |dimensions| |title| |resize| |move| |options| |modifyPointData| |subspace| - |makeViewport3D| |viewport3D| |viewDeltaYDefault| |viewDeltaXDefault| - |viewZoomDefault| |viewPhiDefault| |viewThetaDefault| |pointColorDefault| - |lineColorDefault| |axesColorDefault| |unitsColorDefault| |pointSizeDefault| - |viewPosDefault| |viewSizeDefault| |viewDefaults| |viewWriteDefault| - |viewWriteAvailable| |var1StepsDefault| |var2StepsDefault| |tubePointsDefault| - |tubeRadiusDefault| |void| |dimension| |crest| |cfirst| |sts2stst| |clikeUniv| - |weierstrass| |qqq| |integralBasis| |localIntegralBasis| |qualifier| - |mainExpression| |condition| |changeWeightLevel| |characteristicSerie| - |characteristicSet| |medialSet| |Hausdorff| |Frobenius| |transcendenceDegree| - |extensionDegree| |inGroundField?| |transcendent?| |algebraic?| |varList| |sh| - |mirror| |monomial?| |monom| |rquo| |lquo| |mindegTerm| |log| |exp| |product| + |predicate| |sum| |outputForm| |list| |string| |argscript| |superscript| + |subscript| |script| |scripts| |scripted?| |name| |resetNew| |symFunc| + |symbolTableOf| |argumentListOf| |returnTypeOf| |printHeader| |returnType!| + |argumentList!| |endSubProgram| |currentSubProgram| |newSubProgram| + |clearTheSymbolTable| |showTheSymbolTable| |symbolTable| |printTypes| + |newTypeLists| |typeLists| |externalList| |typeList| |parametersOf| + |fortranTypeOf| |declare!| |empty| |case| |compound?| |getOperands| + |getOperator| |nil?| |buildSyntax| |autoCoerce| |solve| |triangularSystems| + |loadNativeModule| |nativeModuleExtension| |hostByteOrder| |hostPlatform| + |rootDirectory| |bumprow| |bumptab| |bumptab1| |untab| |bat1| |bat| |tab1| + |tab| |lex| |slex| |inverse| |maxrow| |mr| |tableau| |listOfLists| |operator| + |tanSum| |tanAn| |tanNa| |table| |initTable!| |printInfo!| |startStats!| + |printStats!| |clearTable!| |usingTable?| |printingInfo?| |makingStats?| + |extractIfCan| |insert!| |setPrologue!| |setTex!| |setEpilogue!| |prologue| + |new| |tex| |epilogue| |display| |endOfFile?| |readIfCan!| |readLineIfCan!| + |readLine!| |writeLine!| |sign| |nonQsign| |direction| |createThreeSpace| |pi| + |cyclicParents| |cyclicEqual?| |cyclicEntries| |cyclicCopy| |tree| |cyclic?| + |cos| |cot| |csc| |sec| |sin| |tan| |complexNormalize| |complexElementary| + |trigs| |real| |imag| |real?| |complexForm| |UpTriBddDenomInv| + |LowTriBddDenomInv| |simplify| |htrigs| |simplifyExp| |simplifyLog| + |expandPower| |expandLog| |cos2sec| |cosh2sech| |cot2trig| |coth2trigh| + |csc2sin| |csch2sinh| |sec2cos| |sech2cosh| |sin2csc| |sinh2csch| |tan2trig| + |tanh2trigh| |tan2cot| |tanh2coth| |cot2tan| |coth2tanh| |removeCosSq| + |removeSinSq| |removeCoshSq| |removeSinhSq| |expandTrigProducts| |fintegrate| + |coefficient| |coHeight| |extendIfCan| |algebraicVariables| + |zeroSetSplitIntoTriangularSystems| |zeroSetSplit| |reduceByQuasiMonic| + |collectQuasiMonic| |removeZero| |initiallyReduce| |headReduce| + |stronglyReduce| |rewriteSetWithReduction| |autoReduced?| |initiallyReduced?| + |headReduced?| |stronglyReduced?| |reduced?| |normalized?| |quasiComponent| + |initials| |basicSet| |infRittWu?| |getCurve| |listLoops| |closed?| |open?| + |setClosed| |tube| |point| |unitVector| |cosSinInfo| |loopPoints| |select| + |generalTwoFactor| |generalSqFr| |twoFactor| |setOrder| |getOrder| |less?| + |userOrdered?| |largest| |more?| |setVariableOrder| |getVariableOrder| + |resetVariableOrder| |prime?| |sample| |bitior| |bitand| |rationalFunction| + |taylorIfCan| |taylor| |removeZeroes| |taylorRep| |factor| |factorSquareFree| + |henselFact| |hasHi| |segment| SEGMENT |fmecg| |commonDenominator| + |clearDenominator| |splitDenominator| |monicRightFactorIfCan| + |rightFactorIfCan| |leftFactorIfCan| |monicDecomposeIfCan| + |monicCompleteDecompose| |divideIfCan| |noKaratsuba| |karatsubaOnce| + |karatsuba| |separate| |pseudoDivide| |pseudoQuotient| |composite| + |subResultantGcd| |resultant| |discriminant| |differentiate| |pseudoRemainder| + |shiftLeft| |shiftRight| |karatsubaDivide| |monicDivide| |divideExponents| + |unmakeSUP| |makeSUP| |vectorise| |eval| |extend| |approximate| |truncate| + |order| |center| |terms| |squareFreePart| |BumInSepFFE| |multiplyExponents| + |laurentIfCan| |laurent| |laurentRep| |rationalPower| |puiseux| |dominantTerm| + |limitPlus| |split!| |setlast!| |setrest!| |setelt| |setfirst!| |cycleSplit!| + |concat!| |cycleTail| |cycleLength| |cycleEntry| |third| |second| |tail| + |last| |rest| |elt| |first| |concat| |invmultisect| |multisect| |revert| + |generalLambert| |evenlambert| |oddlambert| |lambert| |lagrange| + |univariatePolynomial| |integrate| ** |polynomial| |multiplyCoefficients| + |quoByVar| |coefficients| |series| |stFunc1| |stFunc2| |stFuncN| + |fixedPointExquo| |ode1| |ode2| |ode| |mpsode| UP2UTS UTS2UP LODO2FUN RF2UTS + |variable| |magnitude| |length| |cross| |outerProduct| |dot| - |zero| + + |vector| |scan| |reduce| |graphCurves| |drawCurves| |update| |show| |scale| + |connect| |region| |points| |units| |getGraph| |putGraph| |graphs| + |graphStates| |graphState| |makeViewport2D| |viewport2D| |getPickedPoints| + |key| |close| |write| |colorDef| |reset| |intensity| |lighting| |clipSurface| + |showClipRegion| |showRegion| |hitherPlane| |eyeDistance| |perspective| + |translate| |zoom| |rotate| |drawStyle| |outlineRender| |diagonals| |axes| + |controlPanel| |viewpoint| |dimensions| |title| |resize| |move| |options| + |modifyPointData| |subspace| |makeViewport3D| |viewport3D| |viewDeltaYDefault| + |viewDeltaXDefault| |viewZoomDefault| |viewPhiDefault| |viewThetaDefault| + |pointColorDefault| |lineColorDefault| |axesColorDefault| |unitsColorDefault| + |pointSizeDefault| |viewPosDefault| |viewSizeDefault| |viewDefaults| + |viewWriteDefault| |viewWriteAvailable| |var1StepsDefault| |var2StepsDefault| + |tubePointsDefault| |tubeRadiusDefault| |void| |dimension| |crest| |cfirst| + |sts2stst| |clikeUniv| |weierstrass| |qqq| |integralBasis| + |localIntegralBasis| |qualifier| |mainExpression| |condition| + |changeWeightLevel| |characteristicSerie| |characteristicSet| |medialSet| + |Hausdorff| |Frobenius| |transcendenceDegree| |extensionDegree| + |inGroundField?| |transcendent?| |algebraic?| |varList| |sh| |mirror| + |monomial?| |monom| |rquo| |lquo| |mindegTerm| |log| |exp| |product| |LiePolyIfCan| |coerce| |trunc| |degree| / |quasiRegular| |quasiRegular?| |constant| |constant?| |coef| |mindeg| |maxdeg| |#| |map| |reductum| * |RemainderList| |unexpand| |expand| |shape| |youngDiagram| Y |triangSolve| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 4c2e1365..adcb6b6a 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,4140 +1,4001 @@ -(2928076 . 3525483402) -((-1825 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1823 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3938 ((|#2| $ (-499) |#2|) NIL T ELT) ((|#2| $ (-1174 (-499)) |#2|) 44 T ELT)) (-2397 (($ $) 80 T ELT)) (-3992 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3559 (((-499) (-1 (-85) |#2|) $) 27 T ELT) (((-499) |#2| $) NIL T ELT) (((-499) |#2| $ (-499)) 96 T ELT)) (-3010 (((-599 |#2|) $) 13 T ELT)) (-3658 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-2051 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2404 (($ |#2| $ (-499)) NIL T ELT) (($ $ $ (-499)) 67 T ELT)) (-1387 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3950 ((|#2| $ (-499) |#2|) NIL T ELT) ((|#2| $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) 66 T ELT)) (-2405 (($ $ (-499)) 76 T ELT) (($ $ (-1174 (-499))) 75 T ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) 34 T ELT) (((-714) |#2| $) NIL T ELT)) (-1824 (($ $ $ (-499)) 69 T ELT)) (-3540 (($ $) 68 T ELT)) (-3670 (($ (-599 |#2|)) 73 T ELT)) (-3952 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-599 $)) 85 T ELT)) (-4096 (((-797) $) 92 T ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3174 (((-85) $ $) 95 T ELT)) (-2806 (((-85) $ $) 99 T ELT))) -(((-18 |#1| |#2|) (-10 -7 (-15 -3174 ((-85) |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -2806 ((-85) |#1| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -1823 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2397 (|#1| |#1|)) (-15 -1824 (|#1| |#1| |#1| (-499))) (-15 -1825 ((-85) |#1|)) (-15 -3658 (|#1| |#1| |#1|)) (-15 -3559 ((-499) |#2| |#1| (-499))) (-15 -3559 ((-499) |#2| |#1|)) (-15 -3559 ((-499) (-1 (-85) |#2|) |#1|)) (-15 -1825 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3658 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3938 (|#2| |#1| (-1174 (-499)) |#2|)) (-15 -2404 (|#1| |#1| |#1| (-499))) (-15 -2404 (|#1| |#2| |#1| (-499))) (-15 -2405 (|#1| |#1| (-1174 (-499)))) (-15 -2405 (|#1| |#1| (-499))) (-15 -4108 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3952 (|#1| (-599 |#1|))) (-15 -3952 (|#1| |#1| |#1|)) (-15 -3952 (|#1| |#2| |#1|)) (-15 -3952 (|#1| |#1| |#2|)) (-15 -3950 (|#1| |#1| (-1174 (-499)))) (-15 -3670 (|#1| (-599 |#2|))) (-15 -1387 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3992 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3992 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3992 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3950 (|#2| |#1| (-499))) (-15 -3950 (|#2| |#1| (-499) |#2|)) (-15 -3938 (|#2| |#1| (-499) |#2|)) (-15 -2048 ((-714) |#2| |#1|)) (-15 -3010 ((-599 |#2|) |#1|)) (-15 -2048 ((-714) (-1 (-85) |#2|) |#1|)) (-15 -2049 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -2050 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -2051 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4108 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3540 (|#1| |#1|))) (-19 |#2|) (-1157)) (T -18)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) 44 (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -4146)) ELT) (($ $) 97 (-12 (|has| |#1| (-781)) (|has| $ (-6 -4146))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) 56 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-2397 (($ $) 99 (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) 109 T ELT)) (-1386 (($ $) 84 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#1| $) 83 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) 57 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 55 T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) 106 T ELT) (((-499) |#1| $) 105 (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) 104 (|has| |#1| (-1041)) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) |#1|) 74 T ELT)) (-2301 (((-499) $) 47 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) 91 (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 48 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) 92 (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) 66 T ELT) (($ $ $ (-499)) 65 T ELT)) (-2304 (((-599 (-499)) $) 50 T ELT)) (-2305 (((-85) (-499) $) 51 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 46 (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2300 (($ $ |#1|) 45 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ (-499) |#1|) 54 T ELT) ((|#1| $ (-499)) 53 T ELT) (($ $ (-1174 (-499))) 75 T ELT)) (-2405 (($ $ (-499)) 68 T ELT) (($ $ (-1174 (-499))) 67 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-1824 (($ $ $ (-499)) 100 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 85 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 76 T ELT)) (-3952 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-599 $)) 70 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) 93 (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) 95 (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) 94 (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 96 (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-19 |#1|) (-113) (-1157)) (T -19)) -NIL -(-13 (-327 |t#1|) (-10 -7 (-6 -4146))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 (-499) |#1|) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-327 |#1|) . T) ((-443 |#1|) . T) ((-554 (-499) |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-609 |#1|) . T) ((-781) |has| |#1| (-781)) ((-784) |has| |#1| (-781)) ((-1041) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781))) ((-1157) . T)) -((-1345 (((-3 $ "failed") $ $) 12 T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) 16 T ELT) (($ (-499) $) 25 T ELT))) -(((-20 |#1|) (-10 -7 (-15 -3987 (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 -1345 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 * (|#1| (-857) |#1|))) (-21)) (T -20)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT))) -(((-21) (-113)) (T -21)) -((-3987 (*1 *1 *1) (-4 *1 (-21))) (-3987 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-104) (-604 (-499)) (-10 -8 (-15 -3987 ($ $)) (-15 -3987 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-1041) . T) ((-1157) . T)) -((-3326 (((-85) $) 10 T ELT)) (-3874 (($) 15 T ELT)) (* (($ (-857) $) 14 T ELT) (($ (-714) $) 19 T ELT))) -(((-22 |#1|) (-10 -7 (-15 * (|#1| (-714) |#1|)) (-15 -3326 ((-85) |#1|)) (-15 -3874 (|#1|)) (-15 * (|#1| (-857) |#1|))) (-23)) (T -22)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT))) -(((-23) (-113)) (T -23)) -((-2779 (*1 *1) (-4 *1 (-23))) (-3874 (*1 *1) (-4 *1 (-23))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-714))))) -(-13 (-25) (-10 -8 (-15 (-2779) ($) -4102) (-15 -3874 ($) -4102) (-15 -3326 ((-85) $)) (-15 * ($ (-714) $)))) -(((-25) . T) ((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((* (($ (-857) $) 10 T ELT))) -(((-24 |#1|) (-10 -7 (-15 * (|#1| (-857) |#1|))) (-25)) (T -24)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT))) -(((-25) (-113)) (T -25)) -((-3989 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-857))))) -(-13 (-1041) (-10 -8 (-15 -3989 ($ $ $)) (-15 * ($ (-857) $)))) -(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-1640 (((-599 $) (-884 $)) 32 T ELT) (((-599 $) (-1111 $)) 16 T ELT) (((-599 $) (-1111 $) (-1117)) 20 T ELT)) (-1242 (($ (-884 $)) 30 T ELT) (($ (-1111 $)) 11 T ELT) (($ (-1111 $) (-1117)) 60 T ELT)) (-1243 (((-599 $) (-884 $)) 33 T ELT) (((-599 $) (-1111 $)) 18 T ELT) (((-599 $) (-1111 $) (-1117)) 19 T ELT)) (-3321 (($ (-884 $)) 31 T ELT) (($ (-1111 $)) 13 T ELT) (($ (-1111 $) (-1117)) NIL T ELT))) -(((-26 |#1|) (-10 -7 (-15 -1640 ((-599 |#1|) (-1111 |#1|) (-1117))) (-15 -1640 ((-599 |#1|) (-1111 |#1|))) (-15 -1640 ((-599 |#1|) (-884 |#1|))) (-15 -1242 (|#1| (-1111 |#1|) (-1117))) (-15 -1242 (|#1| (-1111 |#1|))) (-15 -1242 (|#1| (-884 |#1|))) (-15 -1243 ((-599 |#1|) (-1111 |#1|) (-1117))) (-15 -1243 ((-599 |#1|) (-1111 |#1|))) (-15 -1243 ((-599 |#1|) (-884 |#1|))) (-15 -3321 (|#1| (-1111 |#1|) (-1117))) (-15 -3321 (|#1| (-1111 |#1|))) (-15 -3321 (|#1| (-884 |#1|)))) (-27)) (T -26)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-1640 (((-599 $) (-884 $)) 95 T ELT) (((-599 $) (-1111 $)) 94 T ELT) (((-599 $) (-1111 $) (-1117)) 93 T ELT)) (-1242 (($ (-884 $)) 98 T ELT) (($ (-1111 $)) 97 T ELT) (($ (-1111 $) (-1117)) 96 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-3158 (($ $) 107 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3874 (($) 22 T CONST)) (-1243 (((-599 $) (-884 $)) 101 T ELT) (((-599 $) (-1111 $)) 100 T ELT) (((-599 $) (-1111 $) (-1117)) 99 T ELT)) (-3321 (($ (-884 $)) 104 T ELT) (($ (-1111 $)) 103 T ELT) (($ (-1111 $) (-1117)) 102 T ELT)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-3873 (((-85) $) 86 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 106 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 65 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 85 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 80 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT) (($ $ (-361 (-499))) 105 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT))) -(((-27) (-113)) (T -27)) -((-3321 (*1 *1 *2) (-12 (-5 *2 (-884 *1)) (-4 *1 (-27)))) (-3321 (*1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-27)))) (-3321 (*1 *1 *2 *3) (-12 (-5 *2 (-1111 *1)) (-5 *3 (-1117)) (-4 *1 (-27)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-884 *1)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-1111 *1)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-1111 *1)) (-5 *4 (-1117)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) (-1242 (*1 *1 *2) (-12 (-5 *2 (-884 *1)) (-4 *1 (-27)))) (-1242 (*1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-27)))) (-1242 (*1 *1 *2 *3) (-12 (-5 *2 (-1111 *1)) (-5 *3 (-1117)) (-4 *1 (-27)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-884 *1)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-1111 *1)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) (-1640 (*1 *2 *3 *4) (-12 (-5 *3 (-1111 *1)) (-5 *4 (-1117)) (-4 *1 (-27)) (-5 *2 (-599 *1))))) -(-13 (-318) (-942) (-10 -8 (-15 -3321 ($ (-884 $))) (-15 -3321 ($ (-1111 $))) (-15 -3321 ($ (-1111 $) (-1117))) (-15 -1243 ((-599 $) (-884 $))) (-15 -1243 ((-599 $) (-1111 $))) (-15 -1243 ((-599 $) (-1111 $) (-1117))) (-15 -1242 ($ (-884 $))) (-15 -1242 ($ (-1111 $))) (-15 -1242 ($ (-1111 $) (-1117))) (-15 -1640 ((-599 $) (-884 $))) (-15 -1640 ((-599 $) (-1111 $))) (-15 -1640 ((-599 $) (-1111 $) (-1117))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-200) . T) ((-244) . T) ((-261) . T) ((-318) . T) ((-406) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 $) . T) ((-675 (-361 (-499))) . T) ((-675 $) . T) ((-684) . T) ((-859) . T) ((-942) . T) ((-991 (-361 (-499))) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) . T)) -((-1640 (((-599 $) (-884 $)) NIL T ELT) (((-599 $) (-1111 $)) NIL T ELT) (((-599 $) (-1111 $) (-1117)) 54 T ELT) (((-599 $) $) 22 T ELT) (((-599 $) $ (-1117)) 45 T ELT)) (-1242 (($ (-884 $)) NIL T ELT) (($ (-1111 $)) NIL T ELT) (($ (-1111 $) (-1117)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1117)) 39 T ELT)) (-1243 (((-599 $) (-884 $)) NIL T ELT) (((-599 $) (-1111 $)) NIL T ELT) (((-599 $) (-1111 $) (-1117)) 52 T ELT) (((-599 $) $) 18 T ELT) (((-599 $) $ (-1117)) 47 T ELT)) (-3321 (($ (-884 $)) NIL T ELT) (($ (-1111 $)) NIL T ELT) (($ (-1111 $) (-1117)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1117)) 41 T ELT))) -(((-28 |#1| |#2|) (-10 -7 (-15 -1640 ((-599 |#1|) |#1| (-1117))) (-15 -1242 (|#1| |#1| (-1117))) (-15 -1640 ((-599 |#1|) |#1|)) (-15 -1242 (|#1| |#1|)) (-15 -1243 ((-599 |#1|) |#1| (-1117))) (-15 -3321 (|#1| |#1| (-1117))) (-15 -1243 ((-599 |#1|) |#1|)) (-15 -3321 (|#1| |#1|)) (-15 -1640 ((-599 |#1|) (-1111 |#1|) (-1117))) (-15 -1640 ((-599 |#1|) (-1111 |#1|))) (-15 -1640 ((-599 |#1|) (-884 |#1|))) (-15 -1242 (|#1| (-1111 |#1|) (-1117))) (-15 -1242 (|#1| (-1111 |#1|))) (-15 -1242 (|#1| (-884 |#1|))) (-15 -1243 ((-599 |#1|) (-1111 |#1|) (-1117))) (-15 -1243 ((-599 |#1|) (-1111 |#1|))) (-15 -1243 ((-599 |#1|) (-884 |#1|))) (-15 -3321 (|#1| (-1111 |#1|) (-1117))) (-15 -3321 (|#1| (-1111 |#1|))) (-15 -3321 (|#1| (-884 |#1|)))) (-29 |#2|) (-510)) (T -28)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-1640 (((-599 $) (-884 $)) 95 T ELT) (((-599 $) (-1111 $)) 94 T ELT) (((-599 $) (-1111 $) (-1117)) 93 T ELT) (((-599 $) $) 145 T ELT) (((-599 $) $ (-1117)) 143 T ELT)) (-1242 (($ (-884 $)) 98 T ELT) (($ (-1111 $)) 97 T ELT) (($ (-1111 $) (-1117)) 96 T ELT) (($ $) 146 T ELT) (($ $ (-1117)) 144 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 (-1117)) $) 214 T ELT)) (-3206 (((-361 (-1111 $)) $ (-566 $)) 246 (|has| |#1| (-510)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1633 (((-599 (-566 $)) $) 177 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-1637 (($ $ (-599 (-566 $)) (-599 $)) 167 T ELT) (($ $ (-599 (-247 $))) 166 T ELT) (($ $ (-247 $)) 165 T ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-3158 (($ $) 107 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3874 (($) 22 T CONST)) (-1243 (((-599 $) (-884 $)) 101 T ELT) (((-599 $) (-1111 $)) 100 T ELT) (((-599 $) (-1111 $) (-1117)) 99 T ELT) (((-599 $) $) 149 T ELT) (((-599 $) $ (-1117)) 147 T ELT)) (-3321 (($ (-884 $)) 104 T ELT) (($ (-1111 $)) 103 T ELT) (($ (-1111 $) (-1117)) 102 T ELT) (($ $) 150 T ELT) (($ $ (-1117)) 148 T ELT)) (-3295 (((-3 (-884 |#1|) #1="failed") $) 265 (|has| |#1| (-989)) ELT) (((-3 (-361 (-884 |#1|)) #1#) $) 248 (|has| |#1| (-510)) ELT) (((-3 |#1| #1#) $) 210 T ELT) (((-3 (-499) #1#) $) 207 (|has| |#1| (-978 (-499))) ELT) (((-3 (-1117) #1#) $) 201 T ELT) (((-3 (-566 $) #1#) $) 152 T ELT) (((-3 (-361 (-499)) #1#) $) 140 (-3677 (-12 (|has| |#1| (-978 (-499))) (|has| |#1| (-510))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-3294 (((-884 |#1|) $) 264 (|has| |#1| (-989)) ELT) (((-361 (-884 |#1|)) $) 247 (|has| |#1| (-510)) ELT) ((|#1| $) 209 T ELT) (((-499) $) 208 (|has| |#1| (-978 (-499))) ELT) (((-1117) $) 200 T ELT) (((-566 $) $) 151 T ELT) (((-361 (-499)) $) 141 (-3677 (-12 (|has| |#1| (-978 (-499))) (|has| |#1| (-510))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-2683 (($ $ $) 68 T ELT)) (-2380 (((-647 |#1|) (-647 $)) 253 (|has| |#1| (-989)) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 252 (|has| |#1| (-989)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 139 (-3677 (-2681 (|has| |#1| (-989)) (|has| |#1| (-596 (-499)))) (-2681 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT) (((-647 (-499)) (-647 $)) 138 (-3677 (-2681 (|has| |#1| (-989)) (|has| |#1| (-596 (-499)))) (-2681 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-3873 (((-85) $) 86 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 206 (|has| |#1| (-821 (-333))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 205 (|has| |#1| (-821 (-499))) ELT)) (-2692 (($ (-599 $)) 171 T ELT) (($ $) 170 T ELT)) (-1632 (((-599 (-86)) $) 178 T ELT)) (-3743 (((-86) (-86)) 179 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-2794 (((-85) $) 199 (|has| $ (-978 (-499))) ELT)) (-3117 (($ $) 231 (|has| |#1| (-989)) ELT)) (-3119 (((-1065 |#1| (-566 $)) $) 230 (|has| |#1| (-989)) ELT)) (-3132 (($ $ (-499)) 106 T ELT)) (-1675 (((-3 (-599 $) #2="failed") (-599 $) $) 65 T ELT)) (-1630 (((-1111 $) (-566 $)) 196 (|has| $ (-989)) ELT)) (-4108 (($ (-1 $ $) (-566 $)) 185 T ELT)) (-1635 (((-3 (-566 $) "failed") $) 175 T ELT)) (-2381 (((-647 |#1|) (-1207 $)) 255 (|has| |#1| (-989)) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 254 (|has| |#1| (-989)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 137 (-3677 (-2681 (|has| |#1| (-989)) (|has| |#1| (-596 (-499)))) (-2681 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT) (((-647 (-499)) (-1207 $)) 136 (-3677 (-2681 (|has| |#1| (-989)) (|has| |#1| (-596 (-499)))) (-2681 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1634 (((-599 (-566 $)) $) 176 T ELT)) (-2336 (($ (-86) (-599 $)) 184 T ELT) (($ (-86) $) 183 T ELT)) (-2944 (((-3 (-599 $) #3="failed") $) 225 (|has| |#1| (-1052)) ELT)) (-2946 (((-3 (-2 (|:| |val| $) (|:| -2519 (-499))) #3#) $) 234 (|has| |#1| (-989)) ELT)) (-2943 (((-3 (-599 $) #3#) $) 227 (|has| |#1| (-25)) ELT)) (-1892 (((-3 (-2 (|:| -4104 (-499)) (|:| |var| (-566 $))) #3#) $) 228 (|has| |#1| (-25)) ELT)) (-2945 (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) #3#) $ (-1117)) 233 (|has| |#1| (-989)) ELT) (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) #3#) $ (-86)) 232 (|has| |#1| (-989)) ELT) (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) #3#) $) 226 (|has| |#1| (-1052)) ELT)) (-2752 (((-85) $ (-1117)) 182 T ELT) (((-85) $ (-86)) 181 T ELT)) (-2601 (($ $) 85 T ELT)) (-2722 (((-714) $) 174 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1895 (((-85) $) 212 T ELT)) (-1894 ((|#1| $) 213 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-1631 (((-85) $ (-1117)) 187 T ELT) (((-85) $ $) 186 T ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-2795 (((-85) $) 198 (|has| $ (-978 (-499))) ELT)) (-3918 (($ $ (-1117) (-714) (-1 $ $)) 238 (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714) (-1 $ (-599 $))) 237 (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ (-599 $)))) 236 (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ $))) 235 (|has| |#1| (-989)) ELT) (($ $ (-599 (-86)) (-599 $) (-1117)) 224 (|has| |#1| (-569 (-488))) ELT) (($ $ (-86) $ (-1117)) 223 (|has| |#1| (-569 (-488))) ELT) (($ $) 222 (|has| |#1| (-569 (-488))) ELT) (($ $ (-599 (-1117))) 221 (|has| |#1| (-569 (-488))) ELT) (($ $ (-1117)) 220 (|has| |#1| (-569 (-488))) ELT) (($ $ (-86) (-1 $ $)) 195 T ELT) (($ $ (-86) (-1 $ (-599 $))) 194 T ELT) (($ $ (-599 (-86)) (-599 (-1 $ (-599 $)))) 193 T ELT) (($ $ (-599 (-86)) (-599 (-1 $ $))) 192 T ELT) (($ $ (-1117) (-1 $ $)) 191 T ELT) (($ $ (-1117) (-1 $ (-599 $))) 190 T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ (-599 $)))) 189 T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ $))) 188 T ELT) (($ $ (-599 $) (-599 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-247 $)) 157 T ELT) (($ $ (-599 (-247 $))) 156 T ELT) (($ $ (-599 (-566 $)) (-599 $)) 155 T ELT) (($ $ (-566 $) $) 154 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3950 (($ (-86) (-599 $)) 164 T ELT) (($ (-86) $ $ $ $) 163 T ELT) (($ (-86) $ $ $) 162 T ELT) (($ (-86) $ $) 161 T ELT) (($ (-86) $) 160 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-1636 (($ $ $) 173 T ELT) (($ $) 172 T ELT)) (-3908 (($ $ (-599 (-1117)) (-599 (-714))) 260 (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714)) 259 (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117))) 258 (|has| |#1| (-989)) ELT) (($ $ (-1117)) 256 (|has| |#1| (-989)) ELT)) (-3116 (($ $) 241 (|has| |#1| (-510)) ELT)) (-3118 (((-1065 |#1| (-566 $)) $) 240 (|has| |#1| (-510)) ELT)) (-3323 (($ $) 197 (|has| $ (-989)) ELT)) (-4122 (((-488) $) 269 (|has| |#1| (-569 (-488))) ELT) (($ (-359 $)) 239 (|has| |#1| (-510)) ELT) (((-825 (-333)) $) 204 (|has| |#1| (-569 (-825 (-333)))) ELT) (((-825 (-499)) $) 203 (|has| |#1| (-569 (-825 (-499)))) ELT)) (-3130 (($ $ $) 268 (|has| |#1| (-427)) ELT)) (-2551 (($ $ $) 267 (|has| |#1| (-427)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT) (($ (-884 |#1|)) 266 (|has| |#1| (-989)) ELT) (($ (-361 (-884 |#1|))) 249 (|has| |#1| (-510)) ELT) (($ (-361 (-884 (-361 |#1|)))) 245 (|has| |#1| (-510)) ELT) (($ (-884 (-361 |#1|))) 244 (|has| |#1| (-510)) ELT) (($ (-361 |#1|)) 243 (|has| |#1| (-510)) ELT) (($ (-1065 |#1| (-566 $))) 229 (|has| |#1| (-989)) ELT) (($ |#1|) 211 T ELT) (($ (-1117)) 202 T ELT) (($ (-566 $)) 153 T ELT)) (-2823 (((-649 $) $) 251 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-2709 (($ (-599 $)) 169 T ELT) (($ $) 168 T ELT)) (-2355 (((-85) (-86)) 180 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-1893 (($ (-1117) (-599 $)) 219 T ELT) (($ (-1117) $ $ $ $) 218 T ELT) (($ (-1117) $ $ $) 217 T ELT) (($ (-1117) $ $) 216 T ELT) (($ (-1117) $) 215 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-599 (-1117)) (-599 (-714))) 263 (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714)) 262 (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117))) 261 (|has| |#1| (-989)) ELT) (($ $ (-1117)) 257 (|has| |#1| (-989)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 80 T ELT) (($ (-1065 |#1| (-566 $)) (-1065 |#1| (-566 $))) 242 (|has| |#1| (-510)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT) (($ $ (-361 (-499))) 105 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT) (($ $ |#1|) 250 (|has| |#1| (-146)) ELT) (($ |#1| $) 142 (|has| |#1| (-989)) ELT))) -(((-29 |#1|) (-113) (-510)) (T -29)) -((-3321 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-510)))) (-1243 (*1 *2 *1) (-12 (-4 *3 (-510)) (-5 *2 (-599 *1)) (-4 *1 (-29 *3)))) (-3321 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-4 *1 (-29 *3)) (-4 *3 (-510)))) (-1243 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *2 (-599 *1)) (-4 *1 (-29 *4)))) (-1242 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-510)))) (-1640 (*1 *2 *1) (-12 (-4 *3 (-510)) (-5 *2 (-599 *1)) (-4 *1 (-29 *3)))) (-1242 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-4 *1 (-29 *3)) (-4 *3 (-510)))) (-1640 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *2 (-599 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-375 |t#1|) (-10 -8 (-15 -3321 ($ $)) (-15 -1243 ((-599 $) $)) (-15 -3321 ($ $ (-1117))) (-15 -1243 ((-599 $) $ (-1117))) (-15 -1242 ($ $)) (-15 -1640 ((-599 $) $)) (-15 -1242 ($ $ (-1117))) (-15 -1640 ((-599 $) $ (-1117))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) . T) ((-27) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) . T) ((-571 (-361 (-884 |#1|))) |has| |#1| (-510)) ((-571 (-499)) . T) ((-571 (-566 $)) . T) ((-571 (-884 |#1|)) |has| |#1| (-989)) ((-571 (-1117)) . T) ((-571 |#1|) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-569 (-825 (-333))) |has| |#1| (-569 (-825 (-333)))) ((-569 (-825 (-499))) |has| |#1| (-569 (-825 (-499)))) ((-200) . T) ((-244) . T) ((-261) . T) ((-263 $) . T) ((-252) . T) ((-318) . T) ((-332 |#1|) |has| |#1| (-989)) ((-354 |#1|) . T) ((-366 |#1|) . T) ((-375 |#1|) . T) ((-406) . T) ((-427) |has| |#1| (-427)) ((-468 (-566 $) $) . T) ((-468 $ $) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 |#1|) -3677 (|has| |#1| (-989)) (|has| |#1| (-146))) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 (-499)) -12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ((-606 |#1|) -3677 (|has| |#1| (-989)) (|has| |#1| (-146))) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) . T) ((-596 (-499)) -12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ((-596 |#1|) |has| |#1| (-989)) ((-675 (-361 (-499))) . T) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) . T) ((-684) . T) ((-831 $ (-1117)) |has| |#1| (-989)) ((-836 (-1117)) |has| |#1| (-989)) ((-838 (-1117)) |has| |#1| (-989)) ((-821 (-333)) |has| |#1| (-821 (-333))) ((-821 (-499)) |has| |#1| (-821 (-499))) ((-819 |#1|) . T) ((-859) . T) ((-942) . T) ((-978 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (-12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499))))) ((-978 (-361 (-884 |#1|))) |has| |#1| (-510)) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 (-566 $)) . T) ((-978 (-884 |#1|)) |has| |#1| (-989)) ((-978 (-1117)) . T) ((-978 |#1|) . T) ((-991 (-361 (-499))) . T) ((-991 |#1|) |has| |#1| (-146)) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 |#1|) |has| |#1| (-146)) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) . T)) -((-3017 (((-1029 (-179)) $) NIL T ELT)) (-3018 (((-1029 (-179)) $) NIL T ELT)) (-3256 (($ $ (-179)) 164 T ELT)) (-1244 (($ (-884 (-499)) (-1117) (-1117) (-1029 (-361 (-499))) (-1029 (-361 (-499)))) 103 T ELT)) (-3019 (((-599 (-599 (-881 (-179)))) $) 181 T ELT)) (-4096 (((-797) $) 195 T ELT))) -(((-30) (-13 (-893) (-10 -8 (-15 -1244 ($ (-884 (-499)) (-1117) (-1117) (-1029 (-361 (-499))) (-1029 (-361 (-499))))) (-15 -3256 ($ $ (-179)))))) (T -30)) -((-1244 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-884 (-499))) (-5 *3 (-1117)) (-5 *4 (-1029 (-361 (-499)))) (-5 *1 (-30)))) (-3256 (*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 17 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-1075) $) 11 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2815 (((-1075) $) 9 T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-31) (-13 (-1023) (-10 -8 (-15 -2815 ((-1075) $)) (-15 -3371 ((-1075) $))))) (T -31)) -((-2815 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-31)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-31))))) -((-3321 ((|#2| (-1111 |#2|) (-1117)) 39 T ELT)) (-3743 (((-86) (-86)) 53 T ELT)) (-1630 (((-1111 |#2|) (-566 |#2|)) 150 (|has| |#1| (-978 (-499))) ELT)) (-1247 ((|#2| |#1| (-499)) 138 (|has| |#1| (-978 (-499))) ELT)) (-1245 ((|#2| (-1111 |#2|) |#2|) 29 T ELT)) (-1246 (((-797) (-599 |#2|)) 87 T ELT)) (-3323 ((|#2| |#2|) 145 (|has| |#1| (-978 (-499))) ELT)) (-2355 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-361 (-499))) 104 (|has| |#1| (-978 (-499))) ELT))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3321 (|#2| (-1111 |#2|) (-1117))) (-15 -3743 ((-86) (-86))) (-15 -2355 ((-85) (-86))) (-15 -1245 (|#2| (-1111 |#2|) |#2|)) (-15 -1246 ((-797) (-599 |#2|))) (IF (|has| |#1| (-978 (-499))) (PROGN (-15 ** (|#2| |#2| (-361 (-499)))) (-15 -1630 ((-1111 |#2|) (-566 |#2|))) (-15 -3323 (|#2| |#2|)) (-15 -1247 (|#2| |#1| (-499)))) |%noBranch|)) (-510) (-375 |#1|)) (T -32)) -((-1247 (*1 *2 *3 *4) (-12 (-5 *4 (-499)) (-4 *2 (-375 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-978 *4)) (-4 *3 (-510)))) (-3323 (*1 *2 *2) (-12 (-4 *3 (-978 (-499))) (-4 *3 (-510)) (-5 *1 (-32 *3 *2)) (-4 *2 (-375 *3)))) (-1630 (*1 *2 *3) (-12 (-5 *3 (-566 *5)) (-4 *5 (-375 *4)) (-4 *4 (-978 (-499))) (-4 *4 (-510)) (-5 *2 (-1111 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-361 (-499))) (-4 *4 (-978 (-499))) (-4 *4 (-510)) (-5 *1 (-32 *4 *2)) (-4 *2 (-375 *4)))) (-1246 (*1 *2 *3) (-12 (-5 *3 (-599 *5)) (-4 *5 (-375 *4)) (-4 *4 (-510)) (-5 *2 (-797)) (-5 *1 (-32 *4 *5)))) (-1245 (*1 *2 *3 *2) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-375 *4)) (-4 *4 (-510)) (-5 *1 (-32 *4 *2)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-375 *4)))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-32 *3 *4)) (-4 *4 (-375 *3)))) (-3321 (*1 *2 *3 *4) (-12 (-5 *3 (-1111 *2)) (-5 *4 (-1117)) (-4 *2 (-375 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-510))))) -((-3874 (($) 10 T ELT)) (-1248 (((-85) $ $) 8 T ELT)) (-3543 (((-85) $) 15 T ELT))) -(((-33 |#1|) (-10 -7 (-15 -3874 (|#1|)) (-15 -3543 ((-85) |#1|)) (-15 -1248 ((-85) |#1| |#1|))) (-34)) (T -33)) -NIL -((-3874 (($) 7 T CONST)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3540 (($ $) 10 T ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-34) (-113)) (T -34)) -((-1248 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3540 (*1 *1 *1) (-4 *1 (-34))) (-3713 (*1 *1) (-4 *1 (-34))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3874 (*1 *1) (-4 *1 (-34))) (-4107 (*1 *2 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-34)) (-5 *2 (-714))))) -(-13 (-1157) (-10 -8 (-15 -1248 ((-85) $ $)) (-15 -3540 ($ $)) (-15 -3713 ($)) (-15 -3543 ((-85) $)) (-15 -3874 ($) -4102) (IF (|has| $ (-6 -4145)) (-15 -4107 ((-714) $)) |%noBranch|))) -(((-1157) . T)) -((-3638 (($ $) 11 T ELT)) (-3636 (($ $) 10 T ELT)) (-3640 (($ $) 9 T ELT)) (-3641 (($ $) 8 T ELT)) (-3639 (($ $) 7 T ELT)) (-3637 (($ $) 6 T ELT))) -(((-35) (-113)) (T -35)) -((-3638 (*1 *1 *1) (-4 *1 (-35))) (-3636 (*1 *1 *1) (-4 *1 (-35))) (-3640 (*1 *1 *1) (-4 *1 (-35))) (-3641 (*1 *1 *1) (-4 *1 (-35))) (-3639 (*1 *1 *1) (-4 *1 (-35))) (-3637 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3637 ($ $)) (-15 -3639 ($ $)) (-15 -3641 ($ $)) (-15 -3640 ($ $)) (-15 -3636 ($ $)) (-15 -3638 ($ $)))) -((-2687 (((-85) $ $) 19 (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73))) ELT)) (-3542 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 133 T ELT)) (-3945 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 156 T ELT)) (-3947 (($ $) 154 T ELT)) (-3747 (($) 77 T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2299 (((-1213) $ |#1| |#1|) 104 (|has| $ (-6 -4146)) ELT) (((-1213) $ (-499) (-499)) 186 (|has| $ (-6 -4146)) ELT)) (-3935 (($ $ (-499)) 167 (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 220 T ELT) (((-85) $) 214 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-1823 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 211 (|has| $ (-6 -4146)) ELT) (($ $) 210 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) (|has| $ (-6 -4146))) ELT)) (-3030 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 221 T ELT) (($ $) 215 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-3582 (((-85) $ (-714)) 203 T ELT)) (-3146 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 142 (|has| $ (-6 -4146)) ELT)) (-3937 (($ $ $) 163 (|has| $ (-6 -4146)) ELT)) (-3936 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 165 (|has| $ (-6 -4146)) ELT)) (-3939 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 161 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) 78 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 197 (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-1174 (-499)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 168 (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 166 (|has| $ (-6 -4146)) ELT) (($ $ #2="rest" $) 164 (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 162 (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 141 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 140 (|has| $ (-6 -4146)) ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 227 T ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 183 (|has| $ (-6 -4145)) ELT)) (-3946 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 155 T ELT)) (-2332 (((-3 |#2| #5="failed") |#1| $) 65 T ELT)) (-3874 (($) 7 T CONST)) (-2397 (($ $) 212 (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) 222 T ELT)) (-3949 (($ $ (-714)) 150 T ELT) (($ $) 148 T ELT)) (-2481 (($ $) 225 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-1386 (($ $) 62 (-3677 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145)))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -4145)) ELT) (((-3 |#2| #5#) |#1| $) 66 T ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 231 T ELT) (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 226 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -4145)) ELT) (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 185 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 182 (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 184 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 181 (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 180 (|has| $ (-6 -4145)) ELT)) (-1609 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 198 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) 93 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) 196 T ELT)) (-3583 (((-85) $) 200 T ELT)) (-3559 (((-499) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 219 T ELT) (((-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 218 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT) (((-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) 217 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) 84 (|has| $ (-6 -4145)) ELT) (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 122 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 131 T ELT)) (-3148 (((-85) $ $) 139 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-3764 (($ (-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 176 T ELT)) (-3869 (((-85) $ (-714)) 202 T ELT)) (-2301 ((|#1| $) 101 (|has| |#1| (-781)) ELT) (((-499) $) 188 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) 204 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2977 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ $) 228 T ELT) (($ $ $) 224 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-3658 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ $) 223 T ELT) (($ $ $) 216 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) 85 (|has| $ (-6 -4145)) ELT) (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 123 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (((-85) |#2| $) 87 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT) (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 125 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 ((|#1| $) 100 (|has| |#1| (-781)) ELT) (((-499) $) 189 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) 205 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -4146)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -4146)) ELT) (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 118 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT) (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ $) 173 T ELT) (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 117 T ELT)) (-3682 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 236 T ELT)) (-3866 (((-85) $ (-714)) 201 T ELT)) (-3151 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 136 T ELT)) (-3667 (((-85) $) 132 T ELT)) (-3380 (((-1099) $) 22 (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3948 (($ $ (-714)) 153 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 151 T ELT)) (-2333 (((-599 |#1|) $) 67 T ELT)) (-2334 (((-85) |#1| $) 68 T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 44 T ELT) (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) 230 T ELT) (($ $ $ (-499)) 229 T ELT)) (-2404 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) 170 T ELT) (($ $ $ (-499)) 169 T ELT)) (-2304 (((-599 |#1|) $) 98 T ELT) (((-599 (-499)) $) 191 T ELT)) (-2305 (((-85) |#1| $) 97 T ELT) (((-85) (-499) $) 192 T ELT)) (-3381 (((-1060) $) 21 (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3951 ((|#2| $) 102 (|has| |#1| (-781)) ELT) (($ $ (-714)) 147 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 145 T ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 179 T ELT)) (-2300 (($ $ |#2|) 103 (|has| $ (-6 -4146)) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 187 (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-3584 (((-85) $) 199 T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) 82 (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 120 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) 91 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) 89 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-247 |#2|))) 88 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 129 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 128 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 127 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) 126 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#2| $) 99 (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 190 (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-2306 (((-599 |#2|) $) 96 T ELT) (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 193 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 195 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) 194 T ELT) (($ $ (-1174 (-499))) 177 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #1#) 152 T ELT) (($ $ #2#) 149 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #3#) 146 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #4#) 134 T ELT)) (-3150 (((-499) $ $) 137 T ELT)) (-1499 (($) 53 T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1604 (($ $ (-499)) 233 T ELT) (($ $ (-1174 (-499))) 232 T ELT)) (-2405 (($ $ (-499)) 172 T ELT) (($ $ (-1174 (-499))) 171 T ELT)) (-3783 (((-85) $) 135 T ELT)) (-3942 (($ $) 159 T ELT)) (-3940 (($ $) 160 (|has| $ (-6 -4146)) ELT)) (-3943 (((-714) $) 158 T ELT)) (-3944 (($ $) 157 T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) |#2| $) 86 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#2|) $) 83 (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 124 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 121 (|has| $ (-6 -4145)) ELT)) (-1824 (($ $ $ (-499)) 213 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 63 (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488)))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 54 T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 178 T ELT)) (-3941 (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 235 T ELT) (($ $ $) 234 T ELT)) (-3952 (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 175 T ELT) (($ (-599 $)) 174 T ELT) (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 144 T ELT) (($ $ $) 143 T ELT)) (-4096 (((-797) $) 17 (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-568 (-797))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797)))) ELT)) (-3662 (((-599 $) $) 130 T ELT)) (-3149 (((-85) $ $) 138 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-1297 (((-85) $ $) 20 (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1249 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) "failed") |#1| $) 116 T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) 81 (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 119 (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) 206 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2686 (((-85) $ $) 208 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-3174 (((-85) $ $) 18 (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73))) ELT)) (-2805 (((-85) $ $) 207 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2806 (((-85) $ $) 209 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-36 |#1| |#2|) (-113) (-1041) (-1041)) (T -36)) -((-1249 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-5 *2 (-2 (|:| -4010 *3) (|:| |entry| *4)))))) -(-13 (-1134 |t#1| |t#2|) (-624 (-2 (|:| -4010 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1249 ((-3 (-2 (|:| -4010 |t#1|) (|:| |entry| |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-78 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-73) -3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-1041)) (|has| |#2| (-73))) ((-568 (-797)) -3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-1041)) (|has| |#2| (-568 (-797)))) ((-124 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-569 (-488)) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ((-183 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-192 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-240 (-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-240 (-1174 (-499)) $) . T) ((-240 |#1| |#2|) . T) ((-242 (-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-242 |#1| |#2|) . T) ((-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ((-263 |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-236 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-327 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-443 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-443 |#2|) . T) ((-554 (-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-554 |#1| |#2|) . T) ((-468 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ((-468 |#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-565 |#1| |#2|) . T) ((-609 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-624 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-781) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ((-784) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ((-950 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-1041) -3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) (|has| |#2| (-1041))) ((-1090 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-1134 |#1| |#2|) . T) ((-1157) . T) ((-1196 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) -((-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-37 |#1| |#2|) (-10 -7 (-15 -4096 (|#1| |#2|)) (-15 -4096 (|#1| (-499))) (-15 -4096 ((-797) |#1|))) (-38 |#2|) (-146)) (T -37)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) -(((-38 |#1|) (-113) (-146)) (T -38)) -NIL -(-13 (-989) (-675 |t#1|) (-571 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 |#1|) . T) ((-675 |#1|) . T) ((-684) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-3558 (((-359 |#1|) |#1|) 41 T ELT)) (-3882 (((-359 |#1|) |#1|) 30 T ELT) (((-359 |#1|) |#1| (-599 (-48))) 33 T ELT)) (-1250 (((-85) |#1|) 59 T ELT))) -(((-39 |#1|) (-10 -7 (-15 -3882 ((-359 |#1|) |#1| (-599 (-48)))) (-15 -3882 ((-359 |#1|) |#1|)) (-15 -3558 ((-359 |#1|) |#1|)) (-15 -1250 ((-85) |#1|))) (-1183 (-48))) (T -39)) -((-1250 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1183 (-48))))) (-3558 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1183 (-48))))) (-3882 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1183 (-48))))) (-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-48))) (-5 *2 (-359 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1183 (-48)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1740 (((-2 (|:| |num| (-1207 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2164 (($ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2162 (((-85) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1880 (((-647 (-361 |#2|)) (-1207 $)) NIL T ELT) (((-647 (-361 |#2|))) NIL T ELT)) (-3470 (((-361 |#2|) $) NIL T ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1678 (((-85) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3258 (((-714)) NIL (|has| (-361 |#2|) (-323)) ELT)) (-1754 (((-85)) NIL T ELT)) (-1753 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| (-361 |#2|) (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-361 |#2|) (-978 (-361 (-499)))) ELT) (((-3 (-361 |#2|) #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| (-361 |#2|) (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| (-361 |#2|) (-978 (-361 (-499)))) ELT) (((-361 |#2|) $) NIL T ELT)) (-1890 (($ (-1207 (-361 |#2|)) (-1207 $)) NIL T ELT) (($ (-1207 (-361 |#2|))) 61 T ELT) (($ (-1207 |#2|) |#2|) 131 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-361 |#2|) (-305)) ELT)) (-2683 (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1879 (((-647 (-361 |#2|)) $ (-1207 $)) NIL T ELT) (((-647 (-361 |#2|)) $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-361 |#2|))) (|:| |vec| (-1207 (-361 |#2|)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-361 |#2|)) (-647 $)) NIL T ELT)) (-1745 (((-1207 $) (-1207 $)) NIL T ELT)) (-3992 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-361 |#3|)) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-1732 (((-599 (-599 |#1|))) NIL (|has| |#1| (-323)) ELT)) (-1757 (((-85) |#1| |#1|) NIL T ELT)) (-3231 (((-857)) NIL T ELT)) (-3115 (($) NIL (|has| (-361 |#2|) (-323)) ELT)) (-1752 (((-85)) NIL T ELT)) (-1751 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2682 (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3643 (($ $) NIL T ELT)) (-2954 (($) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1773 (((-85) $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1864 (($ $ (-714)) NIL (|has| (-361 |#2|) (-305)) ELT) (($ $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-3873 (((-85) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3922 (((-857) $) NIL (|has| (-361 |#2|) (-305)) ELT) (((-766 (-857)) $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3517 (((-714)) NIL T ELT)) (-1746 (((-1207 $) (-1207 $)) 106 T ELT)) (-3254 (((-361 |#2|) $) NIL T ELT)) (-1733 (((-599 (-884 |#1|)) (-1117)) NIL (|has| |#1| (-318)) ELT)) (-3585 (((-649 $) $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2115 ((|#3| $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2111 (((-857) $) NIL (|has| (-361 |#2|) (-323)) ELT)) (-3200 ((|#3| $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-361 |#2|))) (|:| |vec| (-1207 (-361 |#2|)))) (-1207 $) $) NIL T ELT) (((-647 (-361 |#2|)) (-1207 $)) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1251 (((-1213) (-714)) 84 T ELT)) (-1741 (((-647 (-361 |#2|))) 56 T ELT)) (-1743 (((-647 (-361 |#2|))) 49 T ELT)) (-2601 (($ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1738 (($ (-1207 |#2|) |#2|) 132 T ELT)) (-1742 (((-647 (-361 |#2|))) 50 T ELT)) (-1744 (((-647 (-361 |#2|))) 48 T ELT)) (-1737 (((-2 (|:| |num| (-647 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130 T ELT)) (-1739 (((-2 (|:| |num| (-1207 |#2|)) (|:| |den| |#2|)) $) 68 T ELT)) (-1750 (((-1207 $)) 47 T ELT)) (-4068 (((-1207 $)) 46 T ELT)) (-1749 (((-85) $) NIL T ELT)) (-1748 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3586 (($) NIL (|has| (-361 |#2|) (-305)) CONST)) (-2518 (($ (-857)) NIL (|has| (-361 |#2|) (-323)) ELT)) (-1735 (((-3 |#2| #1#)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1759 (((-714)) NIL T ELT)) (-2527 (($) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| (-361 |#2|) (-305)) ELT)) (-3882 (((-359 $) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-361 |#2|) (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1677 (((-714) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3950 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1736 (((-3 |#2| #1#)) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3907 (((-361 |#2|) (-1207 $)) NIL T ELT) (((-361 |#2|)) 44 T ELT)) (-1865 (((-714) $) NIL (|has| (-361 |#2|) (-305)) ELT) (((-3 (-714) #1#) $ $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-3908 (($ $ (-1 (-361 |#2|) (-361 |#2|))) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-1 (-361 |#2|) (-361 |#2|)) (-714)) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-1 |#2| |#2|)) 126 T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT) (($ $) NIL (-3677 (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT)) (-2526 (((-647 (-361 |#2|)) (-1207 $) (-1 (-361 |#2|) (-361 |#2|))) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3323 ((|#3|) 55 T ELT)) (-1767 (($) NIL (|has| (-361 |#2|) (-305)) ELT)) (-3362 (((-1207 (-361 |#2|)) $ (-1207 $)) NIL T ELT) (((-647 (-361 |#2|)) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 (-361 |#2|)) $) 62 T ELT) (((-647 (-361 |#2|)) (-1207 $)) 107 T ELT)) (-4122 (((-1207 (-361 |#2|)) $) NIL T ELT) (($ (-1207 (-361 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1747 (((-1207 $) (-1207 $)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-361 |#2|)) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2823 (($ $) NIL (|has| (-361 |#2|) (-305)) ELT) (((-649 $) $) NIL (|has| (-361 |#2|) (-118)) ELT)) (-2565 ((|#3| $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1756 (((-85)) 42 T ELT)) (-1755 (((-85) |#1|) 54 T ELT) (((-85) |#2|) 138 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1734 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1758 (((-85)) NIL T ELT)) (-2779 (($) 17 T CONST)) (-2785 (($) 27 T CONST)) (-2790 (($ $ (-1 (-361 |#2|) (-361 |#2|))) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-1 (-361 |#2|) (-361 |#2|)) (-714)) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT) (($ $) NIL (-3677 (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| (-361 |#2|) (-318)) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 |#2|)) NIL T ELT) (($ (-361 |#2|) $) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-361 (-499))) NIL (|has| (-361 |#2|) (-318)) ELT))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-297 |#1| |#2| |#3|) (-10 -7 (-15 -1251 ((-1213) (-714))))) (-318) (-1183 |#1|) (-1183 (-361 |#2|)) |#3|) (T -40)) -((-1251 (*1 *2 *3) (-12 (-5 *3 (-714)) (-4 *4 (-318)) (-4 *5 (-1183 *4)) (-5 *2 (-1213)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1183 (-361 *5))) (-14 *7 *6)))) -((-1252 ((|#2| |#2|) 47 T ELT)) (-1257 ((|#2| |#2|) 138 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-13 (-406) (-978 (-499))))) ELT)) (-1256 ((|#2| |#2|) 100 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-13 (-406) (-978 (-499))))) ELT)) (-1255 ((|#2| |#2|) 101 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-13 (-406) (-978 (-499))))) ELT)) (-1258 ((|#2| (-86) |#2| (-714)) 134 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-13 (-406) (-978 (-499))))) ELT)) (-1254 (((-1111 |#2|) |#2|) 44 T ELT)) (-1253 ((|#2| |#2| (-599 (-566 |#2|))) 18 T ELT) ((|#2| |#2| (-599 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1252 (|#2| |#2|)) (-15 -1253 (|#2| |#2|)) (-15 -1253 (|#2| |#2| |#2|)) (-15 -1253 (|#2| |#2| (-599 |#2|))) (-15 -1253 (|#2| |#2| (-599 (-566 |#2|)))) (-15 -1254 ((-1111 |#2|) |#2|)) (IF (|has| |#1| (-13 (-406) (-978 (-499)))) (IF (|has| |#2| (-375 |#1|)) (PROGN (-15 -1255 (|#2| |#2|)) (-15 -1256 (|#2| |#2|)) (-15 -1257 (|#2| |#2|)) (-15 -1258 (|#2| (-86) |#2| (-714)))) |%noBranch|) |%noBranch|)) (-510) (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 |#1| (-566 $)) $)) (-15 -3118 ((-1065 |#1| (-566 $)) $)) (-15 -4096 ($ (-1065 |#1| (-566 $))))))) (T -41)) -((-1258 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-714)) (-4 *5 (-13 (-406) (-978 (-499)))) (-4 *5 (-510)) (-5 *1 (-41 *5 *2)) (-4 *2 (-375 *5)) (-4 *2 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *5 (-566 $)) $)) (-15 -3118 ((-1065 *5 (-566 $)) $)) (-15 -4096 ($ (-1065 *5 (-566 $))))))))) (-1257 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)))) (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) (-4 *2 (-375 *3)) (-4 *2 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) (-15 -3118 ((-1065 *3 (-566 $)) $)) (-15 -4096 ($ (-1065 *3 (-566 $))))))))) (-1256 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)))) (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) (-4 *2 (-375 *3)) (-4 *2 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) (-15 -3118 ((-1065 *3 (-566 $)) $)) (-15 -4096 ($ (-1065 *3 (-566 $))))))))) (-1255 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)))) (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) (-4 *2 (-375 *3)) (-4 *2 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) (-15 -3118 ((-1065 *3 (-566 $)) $)) (-15 -4096 ($ (-1065 *3 (-566 $))))))))) (-1254 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-1111 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *4 (-566 $)) $)) (-15 -3118 ((-1065 *4 (-566 $)) $)) (-15 -4096 ($ (-1065 *4 (-566 $))))))))) (-1253 (*1 *2 *2 *3) (-12 (-5 *3 (-599 (-566 *2))) (-4 *2 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *4 (-566 $)) $)) (-15 -3118 ((-1065 *4 (-566 $)) $)) (-15 -4096 ($ (-1065 *4 (-566 $))))))) (-4 *4 (-510)) (-5 *1 (-41 *4 *2)))) (-1253 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *4 (-566 $)) $)) (-15 -3118 ((-1065 *4 (-566 $)) $)) (-15 -4096 ($ (-1065 *4 (-566 $))))))) (-4 *4 (-510)) (-5 *1 (-41 *4 *2)))) (-1253 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) (-15 -3118 ((-1065 *3 (-566 $)) $)) (-15 -4096 ($ (-1065 *3 (-566 $))))))))) (-1253 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) (-15 -3118 ((-1065 *3 (-566 $)) $)) (-15 -4096 ($ (-1065 *3 (-566 $))))))))) (-1252 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) (-15 -3118 ((-1065 *3 (-566 $)) $)) (-15 -4096 ($ (-1065 *3 (-566 $)))))))))) -((-3882 (((-359 (-1111 |#3|)) (-1111 |#3|) (-599 (-48))) 23 T ELT) (((-359 |#3|) |#3| (-599 (-48))) 19 T ELT))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3882 ((-359 |#3|) |#3| (-599 (-48)))) (-15 -3882 ((-359 (-1111 |#3|)) (-1111 |#3|) (-599 (-48))))) (-781) (-738) (-888 (-48) |#2| |#1|)) (T -42)) -((-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-48))) (-4 *5 (-781)) (-4 *6 (-738)) (-4 *7 (-888 (-48) *6 *5)) (-5 *2 (-359 (-1111 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1111 *7)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-48))) (-4 *5 (-781)) (-4 *6 (-738)) (-5 *2 (-359 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-888 (-48) *6 *5))))) -((-1262 (((-714) |#2|) 70 T ELT)) (-1260 (((-714) |#2|) 74 T ELT)) (-1275 (((-599 |#2|)) 37 T ELT)) (-1259 (((-714) |#2|) 73 T ELT)) (-1261 (((-714) |#2|) 69 T ELT)) (-1263 (((-714) |#2|) 72 T ELT)) (-1273 (((-599 (-647 |#1|))) 65 T ELT)) (-1268 (((-599 |#2|)) 60 T ELT)) (-1266 (((-599 |#2|) |#2|) 48 T ELT)) (-1270 (((-599 |#2|)) 62 T ELT)) (-1269 (((-599 |#2|)) 61 T ELT)) (-1272 (((-599 (-647 |#1|))) 53 T ELT)) (-1267 (((-599 |#2|)) 59 T ELT)) (-1265 (((-599 |#2|) |#2|) 47 T ELT)) (-1264 (((-599 |#2|)) 55 T ELT)) (-1274 (((-599 (-647 |#1|))) 66 T ELT)) (-1271 (((-599 |#2|)) 64 T ELT)) (-2113 (((-1207 |#2|) (-1207 |#2|)) 99 (|has| |#1| (-261)) ELT))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1259 ((-714) |#2|)) (-15 -1260 ((-714) |#2|)) (-15 -1261 ((-714) |#2|)) (-15 -1262 ((-714) |#2|)) (-15 -1263 ((-714) |#2|)) (-15 -1264 ((-599 |#2|))) (-15 -1265 ((-599 |#2|) |#2|)) (-15 -1266 ((-599 |#2|) |#2|)) (-15 -1267 ((-599 |#2|))) (-15 -1268 ((-599 |#2|))) (-15 -1269 ((-599 |#2|))) (-15 -1270 ((-599 |#2|))) (-15 -1271 ((-599 |#2|))) (-15 -1272 ((-599 (-647 |#1|)))) (-15 -1273 ((-599 (-647 |#1|)))) (-15 -1274 ((-599 (-647 |#1|)))) (-15 -1275 ((-599 |#2|))) (IF (|has| |#1| (-261)) (-15 -2113 ((-1207 |#2|) (-1207 |#2|))) |%noBranch|)) (-510) (-372 |#1|)) (T -43)) -((-2113 (*1 *2 *2) (-12 (-5 *2 (-1207 *4)) (-4 *4 (-372 *3)) (-4 *3 (-261)) (-4 *3 (-510)) (-5 *1 (-43 *3 *4)))) (-1275 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1274 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 (-647 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1273 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 (-647 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1272 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 (-647 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1271 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1270 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1269 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1268 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1267 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1266 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-599 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4)))) (-1265 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-599 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4)))) (-1264 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1263 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4)))) (-1262 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4)))) (-1261 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4)))) (-1260 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4)))) (-1259 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1870 (((-3 $ #1="failed")) NIL (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ #1#) $ $) NIL T ELT)) (-3361 (((-1207 (-647 |#1|)) (-1207 $)) NIL T ELT) (((-1207 (-647 |#1|))) 24 T ELT)) (-1822 (((-1207 $)) 52 T ELT)) (-3874 (($) NIL T CONST)) (-2008 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL (|has| |#1| (-510)) ELT)) (-1796 (((-3 $ #1#)) NIL (|has| |#1| (-510)) ELT)) (-1886 (((-647 |#1|) (-1207 $)) NIL T ELT) (((-647 |#1|)) NIL T ELT)) (-1820 ((|#1| $) NIL T ELT)) (-1884 (((-647 |#1|) $ (-1207 $)) NIL T ELT) (((-647 |#1|) $) NIL T ELT)) (-2522 (((-3 $ #1#) $) NIL (|has| |#1| (-510)) ELT)) (-2002 (((-1111 (-884 |#1|))) NIL (|has| |#1| (-318)) ELT)) (-2525 (($ $ (-857)) NIL T ELT)) (-1818 ((|#1| $) NIL T ELT)) (-1798 (((-1111 |#1|) $) NIL (|has| |#1| (-510)) ELT)) (-1888 ((|#1| (-1207 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1816 (((-1111 |#1|) $) NIL T ELT)) (-1810 (((-85)) 99 T ELT)) (-1890 (($ (-1207 |#1|) (-1207 $)) NIL T ELT) (($ (-1207 |#1|)) NIL T ELT)) (-3607 (((-3 $ #1#) $) 14 (|has| |#1| (-510)) ELT)) (-3231 (((-857)) 53 T ELT)) (-1807 (((-85)) NIL T ELT)) (-2549 (($ $ (-857)) NIL T ELT)) (-1803 (((-85)) NIL T ELT)) (-1801 (((-85)) NIL T ELT)) (-1805 (((-85)) 101 T ELT)) (-2009 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL (|has| |#1| (-510)) ELT)) (-1797 (((-3 $ #1#)) NIL (|has| |#1| (-510)) ELT)) (-1887 (((-647 |#1|) (-1207 $)) NIL T ELT) (((-647 |#1|)) NIL T ELT)) (-1821 ((|#1| $) NIL T ELT)) (-1885 (((-647 |#1|) $ (-1207 $)) NIL T ELT) (((-647 |#1|) $) NIL T ELT)) (-2523 (((-3 $ #1#) $) NIL (|has| |#1| (-510)) ELT)) (-2006 (((-1111 (-884 |#1|))) NIL (|has| |#1| (-318)) ELT)) (-2524 (($ $ (-857)) NIL T ELT)) (-1819 ((|#1| $) NIL T ELT)) (-1799 (((-1111 |#1|) $) NIL (|has| |#1| (-510)) ELT)) (-1889 ((|#1| (-1207 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1817 (((-1111 |#1|) $) NIL T ELT)) (-1811 (((-85)) 98 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1802 (((-85)) 106 T ELT)) (-1804 (((-85)) 105 T ELT)) (-1806 (((-85)) 107 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1809 (((-85)) 100 T ELT)) (-3950 ((|#1| $ (-499)) 55 T ELT)) (-3362 (((-1207 |#1|) $ (-1207 $)) 48 T ELT) (((-647 |#1|) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 |#1|) $) 28 T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-4122 (((-1207 |#1|) $) NIL T ELT) (($ (-1207 |#1|)) NIL T ELT)) (-1994 (((-599 (-884 |#1|)) (-1207 $)) NIL T ELT) (((-599 (-884 |#1|))) NIL T ELT)) (-2551 (($ $ $) NIL T ELT)) (-1815 (((-85)) 95 T ELT)) (-4096 (((-797) $) 71 T ELT) (($ (-1207 |#1|)) 22 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) 51 T ELT)) (-1800 (((-599 (-1207 |#1|))) NIL (|has| |#1| (-510)) ELT)) (-2552 (($ $ $ $) NIL T ELT)) (-1813 (((-85)) 91 T ELT)) (-2664 (($ (-647 |#1|) $) 18 T ELT)) (-2550 (($ $ $) NIL T ELT)) (-1814 (((-85)) 97 T ELT)) (-1812 (((-85)) 92 T ELT)) (-1808 (((-85)) 90 T ELT)) (-2779 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1082 |#2| |#1|) $) 19 T ELT))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-372 |#1|) (-606 (-1082 |#2| |#1|)) (-10 -8 (-15 -4096 ($ (-1207 |#1|))))) (-318) (-857) (-599 (-1117)) (-1207 (-647 |#1|))) (T -44)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-318)) (-14 *6 (-1207 (-647 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-857)) (-14 *5 (-599 (-1117)))))) -((-2687 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-3542 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3945 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3947 (($ $) NIL T ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2299 (((-1213) $ |#1| |#1|) NIL (|has| $ (-6 -4146)) ELT) (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3935 (($ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-1823 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781))) ELT)) (-3030 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-3582 (((-85) $ (-714)) NIL T ELT)) (-3146 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4146)) ELT)) (-3937 (($ $ $) 33 (|has| $ (-6 -4146)) ELT)) (-3936 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4146)) ELT)) (-3939 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 35 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) 53 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-1174 (-499)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4146)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) NIL (|has| $ (-6 -4146)) ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3946 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2332 (((-3 |#2| #5="failed") |#1| $) 43 T ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-3949 (($ $ (-714)) NIL T ELT) (($ $) 29 T ELT)) (-2481 (($ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#2| #5#) |#1| $) 56 T ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) NIL T ELT)) (-3583 (((-85) $) NIL T ELT)) (-3559 (((-499) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT) (((-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 20 (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 20 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) NIL T ELT)) (-3148 (((-85) $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-3764 (($ (-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3869 (((-85) $ (-714)) NIL T ELT)) (-2301 ((|#1| $) NIL (|has| |#1| (-781)) ELT) (((-499) $) 38 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2977 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-3658 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-2302 ((|#1| $) NIL (|has| |#1| (-781)) ELT) (((-499) $) 40 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3682 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3866 (((-85) $ (-714)) NIL T ELT)) (-3151 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3667 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) 49 (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-3948 (($ $ (-714)) NIL T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2333 (((-599 |#1|) $) 22 T ELT)) (-2334 (((-85) |#1| $) NIL T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2404 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 |#1|) $) NIL T ELT) (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) |#1| $) NIL T ELT) (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-3951 ((|#2| $) NIL (|has| |#1| (-781)) ELT) (($ $ (-714)) NIL T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 27 T ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3584 (((-85) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT) (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 19 T ELT)) (-3543 (((-85) $) 18 T ELT)) (-3713 (($) 14 T ELT)) (-3950 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3150 (((-499) $ $) NIL T ELT)) (-1499 (($) 13 T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1604 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-3783 (((-85) $) NIL T ELT)) (-3942 (($ $) NIL T ELT)) (-3940 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-3943 (((-714) $) NIL T ELT)) (-3944 (($ $) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3941 (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3952 (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-599 $)) NIL T ELT) (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 31 T ELT) (($ $ $) NIL T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-568 (-797)))) ELT)) (-3662 (((-599 $) $) NIL T ELT)) (-3149 (((-85) $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1249 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #5#) |#1| $) 51 T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-2805 (((-85) $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-4107 (((-714) $) 25 (|has| $ (-6 -4145)) ELT))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1041) (-1041)) (T -45)) -NIL -((-4087 (((-85) $) 12 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-361 (-499)) $) 25 T ELT) (($ $ (-361 (-499))) NIL T ELT))) -(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-361 (-499)))) (-15 * (|#1| (-361 (-499)) |#1|)) (-15 -4087 ((-85) |#1|)) (-15 -4108 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 * (|#1| (-857) |#1|))) (-47 |#2| |#3|) (-989) (-737)) (T -46)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 68 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 69 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 71 (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-4109 (($ $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-4087 (((-85) $) 79 T ELT)) (-3014 (($ |#1| |#2|) 78 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3015 (($ $) 82 T ELT)) (-3312 ((|#1| $) 83 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3606 (((-3 $ "failed") $ $) 67 (|has| |#1| (-510)) ELT)) (-4098 ((|#2| $) 81 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 (-499))) 74 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) 66 (|has| |#1| (-510)) ELT) (($ |#1|) 64 (|has| |#1| (-146)) ELT)) (-3827 ((|#1| $ |#2|) 76 T ELT)) (-2823 (((-649 $) $) 65 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 70 (|has| |#1| (-510)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 75 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-361 (-499)) $) 73 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 72 (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-47 |#1| |#2|) (-113) (-989) (-737)) (T -47)) -((-3312 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989)))) (-3015 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) (-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)))) (-4087 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-85)))) (-3014 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)))) (-4109 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)))) (-3827 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989)))) (-4099 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)) (-4 *2 (-318))))) -(-13 (-989) (-82 |t#1| |t#1|) (-10 -8 (-15 -3312 (|t#1| $)) (-15 -3015 ($ $)) (-15 -4098 (|t#2| $)) (-15 -4108 ($ (-1 |t#1| |t#1|) $)) (-15 -4087 ((-85) $)) (-15 -3014 ($ |t#1| |t#2|)) (-15 -4109 ($ $)) (-15 -3827 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-318)) (-15 -4099 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-6 (-146)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-510)) (-6 (-510)) |%noBranch|) (IF (|has| |t#1| (-38 (-361 (-499)))) (-6 (-38 (-361 (-499)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-510)) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-571 (-499)) . T) ((-571 |#1|) |has| |#1| (-146)) ((-571 $) |has| |#1| (-510)) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-244) |has| |#1| (-510)) ((-510) |has| |#1| (-510)) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) |has| |#1| (-510)) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) |has| |#1| (-510)) ((-684) . T) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-1640 (((-599 $) (-1111 $) (-1117)) NIL T ELT) (((-599 $) (-1111 $)) NIL T ELT) (((-599 $) (-884 $)) NIL T ELT)) (-1242 (($ (-1111 $) (-1117)) NIL T ELT) (($ (-1111 $)) NIL T ELT) (($ (-884 $)) NIL T ELT)) (-3326 (((-85) $) 9 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1633 (((-599 (-566 $)) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1637 (($ $ (-247 $)) NIL T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-3158 (($ $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-1243 (((-599 $) (-1111 $) (-1117)) NIL T ELT) (((-599 $) (-1111 $)) NIL T ELT) (((-599 $) (-884 $)) NIL T ELT)) (-3321 (($ (-1111 $) (-1117)) NIL T ELT) (($ (-1111 $)) NIL T ELT) (($ (-884 $)) NIL T ELT)) (-3295 (((-3 (-566 $) #1#) $) NIL T ELT) (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT)) (-3294 (((-566 $) $) NIL T ELT) (((-499) $) NIL T ELT) (((-361 (-499)) $) NIL T ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-499)) (-647 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-361 (-499)))) (|:| |vec| (-1207 (-361 (-499))))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-361 (-499))) (-647 $)) NIL T ELT)) (-3992 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2692 (($ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1632 (((-599 (-86)) $) NIL T ELT)) (-3743 (((-86) (-86)) NIL T ELT)) (-2528 (((-85) $) 11 T ELT)) (-2794 (((-85) $) NIL (|has| $ (-978 (-499))) ELT)) (-3119 (((-1065 (-499) (-566 $)) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL T ELT)) (-3254 (((-1111 $) (-1111 $) (-566 $)) NIL T ELT) (((-1111 $) (-1111 $) (-599 (-566 $))) NIL T ELT) (($ $ (-566 $)) NIL T ELT) (($ $ (-599 (-566 $))) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-1630 (((-1111 $) (-566 $)) NIL (|has| $ (-989)) ELT)) (-4108 (($ (-1 $ $) (-566 $)) NIL T ELT)) (-1635 (((-3 (-566 $) #1#) $) NIL T ELT)) (-2381 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT) (((-647 (-499)) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-361 (-499)))) (|:| |vec| (-1207 (-361 (-499))))) (-1207 $) $) NIL T ELT) (((-647 (-361 (-499))) (-1207 $)) NIL T ELT)) (-1993 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1634 (((-599 (-566 $)) $) NIL T ELT)) (-2336 (($ (-86) $) NIL T ELT) (($ (-86) (-599 $)) NIL T ELT)) (-2752 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1117)) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-2722 (((-714) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1631 (((-85) $ $) NIL T ELT) (((-85) $ (-1117)) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2795 (((-85) $) NIL (|has| $ (-978 (-499))) ELT)) (-3918 (($ $ (-566 $) $) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) NIL T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ $))) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-1117) (-1 $ (-599 $))) NIL T ELT) (($ $ (-1117) (-1 $ $)) NIL T ELT) (($ $ (-599 (-86)) (-599 (-1 $ $))) NIL T ELT) (($ $ (-599 (-86)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-599 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-599 $)) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1636 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3908 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3118 (((-1065 (-499) (-566 $)) $) NIL T ELT)) (-3323 (($ $) NIL (|has| $ (-989)) ELT)) (-4122 (((-333) $) NIL T ELT) (((-179) $) NIL T ELT) (((-142 (-333)) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-566 $)) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-1065 (-499) (-566 $))) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-2709 (($ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-2355 (((-85) (-86)) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2779 (($) 6 T CONST)) (-2785 (($) 10 T CONST)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3174 (((-85) $ $) 13 T ELT)) (-4099 (($ $ $) NIL T ELT)) (-3987 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-361 (-499))) NIL T ELT) (($ $ (-499)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-857)) NIL T ELT)) (* (($ (-361 (-499)) $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-857) $) NIL T ELT))) -(((-48) (-13 (-252) (-27) (-978 (-499)) (-978 (-361 (-499))) (-596 (-499)) (-960) (-596 (-361 (-499))) (-120) (-569 (-142 (-333))) (-190) (-571 (-1065 (-499) (-566 $))) (-10 -8 (-15 -3119 ((-1065 (-499) (-566 $)) $)) (-15 -3118 ((-1065 (-499) (-566 $)) $)) (-15 -3992 ($ $)) (-15 -3254 ((-1111 $) (-1111 $) (-566 $))) (-15 -3254 ((-1111 $) (-1111 $) (-599 (-566 $)))) (-15 -3254 ($ $ (-566 $))) (-15 -3254 ($ $ (-599 (-566 $))))))) (T -48)) -((-3119 (*1 *2 *1) (-12 (-5 *2 (-1065 (-499) (-566 (-48)))) (-5 *1 (-48)))) (-3118 (*1 *2 *1) (-12 (-5 *2 (-1065 (-499) (-566 (-48)))) (-5 *1 (-48)))) (-3992 (*1 *1 *1) (-5 *1 (-48))) (-3254 (*1 *2 *2 *3) (-12 (-5 *2 (-1111 (-48))) (-5 *3 (-566 (-48))) (-5 *1 (-48)))) (-3254 (*1 *2 *2 *3) (-12 (-5 *2 (-1111 (-48))) (-5 *3 (-599 (-566 (-48)))) (-5 *1 (-48)))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-566 (-48))) (-5 *1 (-48)))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-566 (-48)))) (-5 *1 (-48))))) -((-2687 (((-85) $ $) NIL T ELT)) (-2040 (((-599 (-460)) $) 17 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 7 T ELT)) (-3371 (((-1122) $) 18 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-49) (-13 (-1041) (-10 -8 (-15 -2040 ((-599 (-460)) $)) (-15 -3371 ((-1122) $))))) (T -49)) -((-2040 (*1 *2 *1) (-12 (-5 *2 (-599 (-460))) (-5 *1 (-49)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-49))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 85 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2783 (((-85) $) 30 T ELT)) (-3295 (((-3 |#1| #1#) $) 33 T ELT)) (-3294 ((|#1| $) 34 T ELT)) (-4109 (($ $) 40 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3312 ((|#1| $) 31 T ELT)) (-1488 (($ $) 74 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1487 (((-85) $) 43 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($ (-714)) 72 T ELT)) (-4093 (($ (-599 (-499))) 73 T ELT)) (-4098 (((-714) $) 44 T ELT)) (-4096 (((-797) $) 91 T ELT) (($ (-499)) 69 T ELT) (($ |#1|) 67 T ELT)) (-3827 ((|#1| $ $) 28 T ELT)) (-3248 (((-714)) 71 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 45 T CONST)) (-2785 (($) 17 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 64 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 65 T ELT) (($ |#1| $) 58 T ELT))) -(((-50 |#1| |#2|) (-13 (-576 |#1|) (-978 |#1|) (-10 -8 (-15 -3312 (|#1| $)) (-15 -1488 ($ $)) (-15 -4109 ($ $)) (-15 -3827 (|#1| $ $)) (-15 -2527 ($ (-714))) (-15 -4093 ($ (-599 (-499)))) (-15 -1487 ((-85) $)) (-15 -2783 ((-85) $)) (-15 -4098 ((-714) $)) (-15 -4108 ($ (-1 |#1| |#1|) $)))) (-989) (-599 (-1117))) (T -50)) -((-3312 (*1 *2 *1) (-12 (-4 *2 (-989)) (-5 *1 (-50 *2 *3)) (-14 *3 (-599 (-1117))))) (-1488 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-989)) (-14 *3 (-599 (-1117))))) (-4109 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-989)) (-14 *3 (-599 (-1117))))) (-3827 (*1 *2 *1 *1) (-12 (-4 *2 (-989)) (-5 *1 (-50 *2 *3)) (-14 *3 (-599 (-1117))))) (-2527 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) (-14 *4 (-599 (-1117))))) (-4093 (*1 *1 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) (-14 *4 (-599 (-1117))))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) (-14 *4 (-599 (-1117))))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) (-14 *4 (-599 (-1117))))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) (-14 *4 (-599 (-1117))))) (-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-50 *3 *4)) (-14 *4 (-599 (-1117)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-1276 (((-716) $) 8 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1277 (((-1043) $) 10 T ELT)) (-4096 (((-797) $) 15 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-1278 (($ (-1043) (-716)) 16 T ELT)) (-3174 (((-85) $ $) 12 T ELT))) -(((-51) (-13 (-1041) (-10 -8 (-15 -1278 ($ (-1043) (-716))) (-15 -1277 ((-1043) $)) (-15 -1276 ((-716) $))))) (T -51)) -((-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1043)) (-5 *3 (-716)) (-5 *1 (-51)))) (-1277 (*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-51)))) (-1276 (*1 *2 *1) (-12 (-5 *2 (-716)) (-5 *1 (-51))))) -((-2783 (((-85) (-51)) 18 T ELT)) (-3295 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3294 ((|#1| (-51)) 21 T ELT)) (-4096 (((-51) |#1|) 14 T ELT))) -(((-52 |#1|) (-10 -7 (-15 -4096 ((-51) |#1|)) (-15 -3295 ((-3 |#1| "failed") (-51))) (-15 -2783 ((-85) (-51))) (-15 -3294 (|#1| (-51)))) (-1157)) (T -52)) -((-3294 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1157)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1157)))) (-3295 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1157)))) (-4096 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1157))))) -((-2664 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2664 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-989) (-606 |#1|) (-786 |#1|)) (T -53)) -((-2664 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-606 *5)) (-4 *5 (-989)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-786 *5))))) -((-1280 ((|#3| |#3| (-599 (-1117))) 44 T ELT)) (-1279 ((|#3| (-599 (-1015 |#1| |#2| |#3|)) |#3| (-857)) 32 T ELT) ((|#3| (-599 (-1015 |#1| |#2| |#3|)) |#3|) 31 T ELT))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1279 (|#3| (-599 (-1015 |#1| |#2| |#3|)) |#3|)) (-15 -1279 (|#3| (-599 (-1015 |#1| |#2| |#3|)) |#3| (-857))) (-15 -1280 (|#3| |#3| (-599 (-1117))))) (-1041) (-13 (-989) (-821 |#1|) (-569 (-825 |#1|))) (-13 (-375 |#2|) (-821 |#1|) (-569 (-825 |#1|)))) (T -54)) -((-1280 (*1 *2 *2 *3) (-12 (-5 *3 (-599 (-1117))) (-4 *4 (-1041)) (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))))) (-1279 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-599 (-1015 *5 *6 *2))) (-5 *4 (-857)) (-4 *5 (-1041)) (-4 *6 (-13 (-989) (-821 *5) (-569 (-825 *5)))) (-4 *2 (-13 (-375 *6) (-821 *5) (-569 (-825 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1279 (*1 *2 *3 *2) (-12 (-5 *3 (-599 (-1015 *4 *5 *2))) (-4 *4 (-1041)) (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-54 *4 *5 *2))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 14 T ELT)) (-3295 (((-3 (-714) "failed") $) 32 T ELT)) (-3294 (((-714) $) NIL T ELT)) (-2528 (((-85) $) 16 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) 18 T ELT)) (-4096 (((-797) $) 23 T ELT) (($ (-714)) 29 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-1281 (($) 11 T CONST)) (-3174 (((-85) $ $) 20 T ELT))) -(((-55) (-13 (-1041) (-978 (-714)) (-10 -8 (-15 -1281 ($) -4102) (-15 -3326 ((-85) $)) (-15 -2528 ((-85) $))))) (T -55)) -((-1281 (*1 *1) (-5 *1 (-55))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))) -((-1283 (($ $ (-499) |#3|) 60 T ELT)) (-1282 (($ $ (-499) |#4|) 64 T ELT)) (-3234 ((|#3| $ (-499)) 73 T ELT)) (-3010 (((-599 |#2|) $) 41 T ELT)) (-3383 (((-85) |#2| $) 68 T ELT)) (-2051 (($ (-1 |#2| |#2|) $) 49 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) 48 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 52 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 56 T ELT)) (-2300 (($ $ |#2|) 46 T ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3950 ((|#2| $ (-499) (-499)) NIL T ELT) ((|#2| $ (-499) (-499) |#2|) 29 T ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) 35 T ELT) (((-714) |#2| $) 70 T ELT)) (-3540 (($ $) 45 T ELT)) (-3233 ((|#4| $ (-499)) 76 T ELT)) (-4096 (((-797) $) 82 T ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3174 (((-85) $ $) 67 T ELT)) (-4107 (((-714) $) 26 T ELT))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3174 ((-85) |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -4108 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4108 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2051 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1282 (|#1| |#1| (-499) |#4|)) (-15 -1283 (|#1| |#1| (-499) |#3|)) (-15 -3010 ((-599 |#2|) |#1|)) (-15 -3233 (|#4| |#1| (-499))) (-15 -3234 (|#3| |#1| (-499))) (-15 -3950 (|#2| |#1| (-499) (-499) |#2|)) (-15 -3950 (|#2| |#1| (-499) (-499))) (-15 -2300 (|#1| |#1| |#2|)) (-15 -3383 ((-85) |#2| |#1|)) (-15 -2048 ((-714) |#2| |#1|)) (-15 -2048 ((-714) (-1 (-85) |#2|) |#1|)) (-15 -2049 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -2050 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -4108 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4107 ((-714) |#1|)) (-15 -3540 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1157) (-327 |#2|) (-327 |#2|)) (T -56)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3938 ((|#1| $ (-499) (-499) |#1|) 48 T ELT)) (-1283 (($ $ (-499) |#2|) 46 T ELT)) (-1282 (($ $ (-499) |#3|) 45 T ELT)) (-3874 (($) 7 T CONST)) (-3234 ((|#2| $ (-499)) 50 T ELT)) (-1609 ((|#1| $ (-499) (-499) |#1|) 47 T ELT)) (-3235 ((|#1| $ (-499) (-499)) 52 T ELT)) (-3010 (((-599 |#1|) $) 30 T ELT)) (-3237 (((-714) $) 55 T ELT)) (-3764 (($ (-714) (-714) |#1|) 61 T ELT)) (-3236 (((-714) $) 54 T ELT)) (-3241 (((-499) $) 59 T ELT)) (-3239 (((-499) $) 57 T ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3240 (((-499) $) 58 T ELT)) (-3238 (((-499) $) 56 T ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-2300 (($ $ |#1|) 60 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ (-499) (-499)) 53 T ELT) ((|#1| $ (-499) (-499) |#1|) 51 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-3233 ((|#3| $ (-499)) 49 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-57 |#1| |#2| |#3|) (-113) (-1157) (-327 |t#1|) (-327 |t#1|)) (T -57)) -((-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-3764 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-714)) (-4 *3 (-1157)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-2300 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1157)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-499)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-499)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-499)))) (-3238 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-499)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-714)))) (-3236 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-714)))) (-3950 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-327 *2)) (-4 *5 (-327 *2)) (-4 *2 (-1157)))) (-3235 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-327 *2)) (-4 *5 (-327 *2)) (-4 *2 (-1157)))) (-3950 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1157)) (-4 *4 (-327 *2)) (-4 *5 (-327 *2)))) (-3234 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1157)) (-4 *5 (-327 *4)) (-4 *2 (-327 *4)))) (-3233 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1157)) (-4 *5 (-327 *4)) (-4 *2 (-327 *4)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-599 *3)))) (-3938 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1157)) (-4 *4 (-327 *2)) (-4 *5 (-327 *2)))) (-1609 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1157)) (-4 *4 (-327 *2)) (-4 *5 (-327 *2)))) (-1283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-499)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1157)) (-4 *3 (-327 *4)) (-4 *5 (-327 *4)))) (-1282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-499)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1157)) (-4 *5 (-327 *4)) (-4 *3 (-327 *4)))) (-2051 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-4108 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-4108 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3))))) -(-13 (-443 |t#1|) (-10 -8 (-6 -4146) (-6 -4145) (-15 -3764 ($ (-714) (-714) |t#1|)) (-15 -2300 ($ $ |t#1|)) (-15 -3241 ((-499) $)) (-15 -3240 ((-499) $)) (-15 -3239 ((-499) $)) (-15 -3238 ((-499) $)) (-15 -3237 ((-714) $)) (-15 -3236 ((-714) $)) (-15 -3950 (|t#1| $ (-499) (-499))) (-15 -3235 (|t#1| $ (-499) (-499))) (-15 -3950 (|t#1| $ (-499) (-499) |t#1|)) (-15 -3234 (|t#2| $ (-499))) (-15 -3233 (|t#3| $ (-499))) (-15 -3010 ((-599 |t#1|) $)) (-15 -3938 (|t#1| $ (-499) (-499) |t#1|)) (-15 -1609 (|t#1| $ (-499) (-499) |t#1|)) (-15 -1283 ($ $ (-499) |t#2|)) (-15 -1282 ($ $ (-499) |t#3|)) (-15 -4108 ($ (-1 |t#1| |t#1|) $)) (-15 -2051 ($ (-1 |t#1| |t#1|) $)) (-15 -4108 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4108 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) NIL T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) NIL T ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-1284 (($ (-599 |#1|)) 11 T ELT) (($ (-714) |#1|) 14 T ELT)) (-3764 (($ (-714) |#1|) 13 T ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) |#1|) NIL T ELT) ((|#1| $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 10 T ELT)) (-3952 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1284 ($ (-599 |#1|))) (-15 -1284 ($ (-714) |#1|)))) (-1157)) (T -58)) -((-1284 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-58 *3)))) (-1284 (*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-5 *1 (-58 *3)) (-4 *3 (-1157))))) -((-3991 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3992 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-4108 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) -(((-59 |#1| |#2|) (-10 -7 (-15 -3991 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3992 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4108 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1157) (-1157)) (T -59)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3992 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) (-5 *1 (-59 *5 *2)))) (-3991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1157)) (-4 *5 (-1157)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3938 ((|#1| $ (-499) (-499) |#1|) NIL T ELT)) (-1283 (($ $ (-499) (-58 |#1|)) NIL T ELT)) (-1282 (($ $ (-499) (-58 |#1|)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3234 (((-58 |#1|) $ (-499)) NIL T ELT)) (-1609 ((|#1| $ (-499) (-499) |#1|) NIL T ELT)) (-3235 ((|#1| $ (-499) (-499)) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL T ELT)) (-3237 (((-714) $) NIL T ELT)) (-3764 (($ (-714) (-714) |#1|) NIL T ELT)) (-3236 (((-714) $) NIL T ELT)) (-3241 (((-499) $) NIL T ELT)) (-3239 (((-499) $) NIL T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3240 (((-499) $) NIL T ELT)) (-3238 (((-499) $) NIL T ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2300 (($ $ |#1|) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) (-499)) NIL T ELT) ((|#1| $ (-499) (-499) |#1|) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-3233 (((-58 |#1|) $ (-499)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4146))) (-1157)) (T -60)) -NIL -((-1286 (((-1207 (-647 |#1|)) (-647 |#1|)) 61 T ELT)) (-1285 (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 (-599 (-857))))) |#2| (-857)) 49 T ELT)) (-1287 (((-2 (|:| |minor| (-599 (-857))) (|:| -3404 |#2|) (|:| |minors| (-599 (-599 (-857)))) (|:| |ops| (-599 |#2|))) |#2| (-857)) 72 (|has| |#1| (-318)) ELT))) -(((-61 |#1| |#2|) (-10 -7 (-15 -1285 ((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 (-599 (-857))))) |#2| (-857))) (-15 -1286 ((-1207 (-647 |#1|)) (-647 |#1|))) (IF (|has| |#1| (-318)) (-15 -1287 ((-2 (|:| |minor| (-599 (-857))) (|:| -3404 |#2|) (|:| |minors| (-599 (-599 (-857)))) (|:| |ops| (-599 |#2|))) |#2| (-857))) |%noBranch|)) (-510) (-616 |#1|)) (T -61)) -((-1287 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-4 *5 (-510)) (-5 *2 (-2 (|:| |minor| (-599 (-857))) (|:| -3404 *3) (|:| |minors| (-599 (-599 (-857)))) (|:| |ops| (-599 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-857)) (-4 *3 (-616 *5)))) (-1286 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-1207 (-647 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-647 *4)) (-4 *5 (-616 *4)))) (-1285 (*1 *2 *3 *4) (-12 (-4 *5 (-510)) (-5 *2 (-2 (|:| -1673 (-647 *5)) (|:| |vec| (-1207 (-599 (-857)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-857)) (-4 *3 (-616 *5))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3464 ((|#1| $) 40 T ELT)) (-3874 (($) NIL T CONST)) (-3466 ((|#1| |#1| $) 35 T ELT)) (-3465 ((|#1| $) 33 T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) NIL T ELT)) (-3757 (($ |#1| $) 36 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-1309 ((|#1| $) 34 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 18 T ELT)) (-3713 (($) 45 T ELT)) (-3463 (((-714) $) 31 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) 17 T ELT)) (-4096 (((-797) $) 30 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) NIL T ELT)) (-1288 (($ (-599 |#1|)) 42 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 15 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 12 (|has| $ (-6 -4145)) ELT))) -(((-62 |#1|) (-13 (-1061 |#1|) (-10 -8 (-15 -1288 ($ (-599 |#1|))))) (-1041)) (T -62)) -((-1288 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-62 *3))))) -((-4096 (((-797) $) 13 T ELT) (($ (-1122)) 9 T ELT) (((-1122) $) 8 T ELT))) -(((-63 |#1|) (-10 -7 (-15 -4096 ((-1122) |#1|)) (-15 -4096 (|#1| (-1122))) (-15 -4096 ((-797) |#1|))) (-64)) (T -63)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-1122)) 20 T ELT) (((-1122) $) 19 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-64) (-113)) (T -64)) -NIL -(-13 (-1041) (-444 (-1122))) -(((-73) . T) ((-571 (-1122)) . T) ((-568 (-797)) . T) ((-568 (-1122)) . T) ((-444 (-1122)) . T) ((-1041) . T) ((-1157) . T)) -((-3628 (($ $) 10 T ELT)) (-3629 (($ $) 12 T ELT))) -(((-65 |#1|) (-10 -7 (-15 -3629 (|#1| |#1|)) (-15 -3628 (|#1| |#1|))) (-66)) (T -65)) -NIL -((-3626 (($ $) 11 T ELT)) (-3624 (($ $) 10 T ELT)) (-3628 (($ $) 9 T ELT)) (-3629 (($ $) 8 T ELT)) (-3627 (($ $) 7 T ELT)) (-3625 (($ $) 6 T ELT))) -(((-66) (-113)) (T -66)) -((-3626 (*1 *1 *1) (-4 *1 (-66))) (-3624 (*1 *1 *1) (-4 *1 (-66))) (-3628 (*1 *1 *1) (-4 *1 (-66))) (-3629 (*1 *1 *1) (-4 *1 (-66))) (-3627 (*1 *1 *1) (-4 *1 (-66))) (-3625 (*1 *1 *1) (-4 *1 (-66)))) -(-13 (-10 -8 (-15 -3625 ($ $)) (-15 -3627 ($ $)) (-15 -3629 ($ $)) (-15 -3628 ($ $)) (-15 -3624 ($ $)) (-15 -3626 ($ $)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3690 (((-1075) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 15 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-67) (-13 (-1023) (-10 -8 (-15 -3690 ((-1075) $))))) (T -67)) -((-3690 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-67))))) -((-2687 (((-85) $ $) NIL T ELT)) (-1289 (((-333) (-1099) (-333)) 46 T ELT) (((-333) (-1099) (-1099) (-333)) 44 T ELT)) (-1290 (((-333) (-333)) 35 T ELT)) (-1291 (((-1213)) 37 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1294 (((-333) (-1099) (-1099)) 50 T ELT) (((-333) (-1099)) 52 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1292 (((-333) (-1099) (-1099)) 51 T ELT)) (-1293 (((-333) (-1099) (-1099)) 53 T ELT) (((-333) (-1099)) 54 T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-68) (-13 (-1041) (-10 -7 (-15 -1294 ((-333) (-1099) (-1099))) (-15 -1294 ((-333) (-1099))) (-15 -1293 ((-333) (-1099) (-1099))) (-15 -1293 ((-333) (-1099))) (-15 -1292 ((-333) (-1099) (-1099))) (-15 -1291 ((-1213))) (-15 -1290 ((-333) (-333))) (-15 -1289 ((-333) (-1099) (-333))) (-15 -1289 ((-333) (-1099) (-1099) (-333))) (-6 -4145)))) (T -68)) -((-1294 (*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68)))) (-1294 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68)))) (-1293 (*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68)))) (-1293 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68)))) (-1292 (*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68)))) (-1291 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-68)))) (-1290 (*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-68)))) (-1289 (*1 *2 *3 *2) (-12 (-5 *2 (-333)) (-5 *3 (-1099)) (-5 *1 (-68)))) (-1289 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-333)) (-5 *3 (-1099)) (-5 *1 (-68))))) -NIL -(((-69) (-113)) (T -69)) -NIL -(-13 (-10 -7 (-6 -4145) (-6 (-4147 "*")) (-6 -4146) (-6 -4142) (-6 -4140) (-6 -4139) (-6 -4138) (-6 -4143) (-6 -4137) (-6 -4136) (-6 -4135) (-6 -4134) (-6 -4133) (-6 -4141) (-6 -4144) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4132))) -((-2687 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ "failed") $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1295 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-499))) 24 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 16 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3950 ((|#1| $ |#1|) 13 T ELT)) (-3130 (($ $ $) NIL T ELT)) (-2551 (($ $ $) NIL T ELT)) (-4096 (((-797) $) 22 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2785 (($) 8 T CONST)) (-3174 (((-85) $ $) 10 T ELT)) (-4099 (($ $ $) NIL T ELT)) (** (($ $ (-857)) 30 T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 18 T ELT)) (* (($ $ $) 31 T ELT))) -(((-70 |#1|) (-13 (-427) (-240 |#1| |#1|) (-10 -8 (-15 -1295 ($ (-1 |#1| |#1|))) (-15 -1295 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1295 ($ (-1 |#1| |#1| (-499)))))) (-989)) (T -70)) -((-1295 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-70 *3)))) (-1295 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-70 *3)))) (-1295 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-499))) (-4 *3 (-989)) (-5 *1 (-70 *3))))) -((-1296 (((-359 |#2|) |#2| (-599 |#2|)) 10 T ELT) (((-359 |#2|) |#2| |#2|) 11 T ELT))) -(((-71 |#1| |#2|) (-10 -7 (-15 -1296 ((-359 |#2|) |#2| |#2|)) (-15 -1296 ((-359 |#2|) |#2| (-599 |#2|)))) (-13 (-406) (-120)) (-1183 |#1|)) (T -71)) -((-1296 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-13 (-406) (-120))) (-5 *2 (-359 *3)) (-5 *1 (-71 *5 *3)))) (-1296 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-406) (-120))) (-5 *2 (-359 *3)) (-5 *1 (-71 *4 *3)) (-4 *3 (-1183 *4))))) -((-2687 (((-85) $ $) 13 T ELT)) (-1297 (((-85) $ $) 14 T ELT)) (-3174 (((-85) $ $) 11 T ELT))) -(((-72 |#1|) (-10 -7 (-15 -1297 ((-85) |#1| |#1|)) (-15 -2687 ((-85) |#1| |#1|)) (-15 -3174 ((-85) |#1| |#1|))) (-73)) (T -72)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-73) (-113)) (T -73)) -((-3174 (*1 *2 *1 *1) (-12 (-4 *1 (-73)) (-5 *2 (-85)))) (-2687 (*1 *2 *1 *1) (-12 (-4 *1 (-73)) (-5 *2 (-85)))) (-1297 (*1 *2 *1 *1) (-12 (-4 *1 (-73)) (-5 *2 (-85))))) -(-13 (-1157) (-10 -8 (-15 -3174 ((-85) $ $)) (-15 -2687 ((-85) $ $)) (-15 -1297 ((-85) $ $)))) -(((-1157) . T)) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) NIL T ELT)) (-3146 ((|#1| $ |#1|) 24 (|has| $ (-6 -4146)) ELT)) (-1326 (($ $ $) NIL (|has| $ (-6 -4146)) ELT)) (-1327 (($ $ $) NIL (|has| $ (-6 -4146)) ELT)) (-1300 (($ $ (-599 |#1|)) 30 T ELT)) (-3938 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4146)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4146)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3259 (($ $) 12 T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) NIL T ELT)) (-3148 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1335 (($ $ |#1| $) 32 T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1299 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1298 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-599 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3260 (($ $) 11 T ELT)) (-3151 (((-599 |#1|) $) NIL T ELT)) (-3667 (((-85) $) 13 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 9 T ELT)) (-3713 (($) 31 T ELT)) (-3950 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3150 (((-499) $ $) NIL T ELT)) (-3783 (((-85) $) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) NIL T ELT)) (-3149 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-1301 (($ (-714) |#1|) 33 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-74 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -4145) (-6 -4146) (-15 -1301 ($ (-714) |#1|)) (-15 -1300 ($ $ (-599 |#1|))) (-15 -1299 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1299 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1298 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1298 ($ $ |#1| (-1 (-599 |#1|) |#1| |#1| |#1|))))) (-1041)) (T -74)) -((-1301 (*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-5 *1 (-74 *3)) (-4 *3 (-1041)))) (-1300 (*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-74 *3)))) (-1299 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-74 *2)) (-4 *2 (-1041)))) (-1299 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1041)) (-5 *1 (-74 *3)))) (-1298 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1041)) (-5 *1 (-74 *2)))) (-1298 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-599 *2) *2 *2 *2)) (-4 *2 (-1041)) (-5 *1 (-74 *2))))) -((-1302 ((|#3| |#2| |#2|) 34 T ELT)) (-1304 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4147 #1="*"))) ELT)) (-1303 ((|#3| |#2| |#2|) 36 T ELT)) (-1305 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4147 #1#))) ELT))) -(((-75 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1302 (|#3| |#2| |#2|)) (-15 -1303 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4147 "*"))) (PROGN (-15 -1304 (|#1| |#2| |#2|)) (-15 -1305 (|#1| |#2|))) |%noBranch|)) (-989) (-1183 |#1|) (-644 |#1| |#4| |#5|) (-327 |#1|) (-327 |#1|)) (T -75)) -((-1305 (*1 *2 *3) (-12 (|has| *2 (-6 (-4147 #1="*"))) (-4 *5 (-327 *2)) (-4 *6 (-327 *2)) (-4 *2 (-989)) (-5 *1 (-75 *2 *3 *4 *5 *6)) (-4 *3 (-1183 *2)) (-4 *4 (-644 *2 *5 *6)))) (-1304 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4147 #1#))) (-4 *5 (-327 *2)) (-4 *6 (-327 *2)) (-4 *2 (-989)) (-5 *1 (-75 *2 *3 *4 *5 *6)) (-4 *3 (-1183 *2)) (-4 *4 (-644 *2 *5 *6)))) (-1303 (*1 *2 *3 *3) (-12 (-4 *4 (-989)) (-4 *2 (-644 *4 *5 *6)) (-5 *1 (-75 *4 *3 *2 *5 *6)) (-4 *3 (-1183 *4)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)))) (-1302 (*1 *2 *3 *3) (-12 (-4 *4 (-989)) (-4 *2 (-644 *4 *5 *6)) (-5 *1 (-75 *4 *3 *2 *5 *6)) (-4 *3 (-1183 *4)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1307 (((-599 (-1117))) 37 T ELT)) (-1306 (((-2 (|:| |zeros| (-1095 (-179))) (|:| |ones| (-1095 (-179))) (|:| |singularities| (-1095 (-179)))) (-1117)) 39 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-76) (-13 (-1041) (-10 -7 (-15 -1307 ((-599 (-1117)))) (-15 -1306 ((-2 (|:| |zeros| (-1095 (-179))) (|:| |ones| (-1095 (-179))) (|:| |singularities| (-1095 (-179)))) (-1117))) (-6 -4145)))) (T -76)) -((-1307 (*1 *2) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-76)))) (-1306 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-2 (|:| |zeros| (-1095 (-179))) (|:| |ones| (-1095 (-179))) (|:| |singularities| (-1095 (-179))))) (-5 *1 (-76))))) -((-1310 (($ (-599 |#2|)) 11 T ELT))) -(((-77 |#1| |#2|) (-10 -7 (-15 -1310 (|#1| (-599 |#2|)))) (-78 |#2|) (-1157)) (T -77)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3874 (($) 7 T CONST)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-78 |#1|) (-113) (-1157)) (T -78)) -((-1310 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-4 *1 (-78 *3)))) (-1309 (*1 *2 *1) (-12 (-4 *1 (-78 *2)) (-4 *2 (-1157)))) (-3757 (*1 *1 *2 *1) (-12 (-4 *1 (-78 *2)) (-4 *2 (-1157)))) (-1308 (*1 *2 *1) (-12 (-4 *1 (-78 *2)) (-4 *2 (-1157))))) -(-13 (-443 |t#1|) (-10 -8 (-6 -4146) (-15 -1310 ($ (-599 |t#1|))) (-15 -1309 (|t#1| $)) (-15 -3757 ($ |t#1| $)) (-15 -1308 (|t#1| $)))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 (((-499) $) NIL (|has| (-499) (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| (-499) (-763)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL (|has| (-499) (-978 (-1117))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-499) (-978 (-499))) ELT) (((-3 (-499) #1#) $) NIL (|has| (-499) (-978 (-499))) ELT)) (-3294 (((-499) $) NIL T ELT) (((-1117) $) NIL (|has| (-499) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL (|has| (-499) (-978 (-499))) ELT) (((-499) $) NIL (|has| (-499) (-978 (-499))) ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-499)) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-499) (-498)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3324 (((-85) $) NIL (|has| (-499) (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| (-499) (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| (-499) (-821 (-333))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL T ELT)) (-3119 (((-499) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| (-499) (-1092)) ELT)) (-3325 (((-85) $) NIL (|has| (-499) (-763)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-499) (-781)) ELT)) (-4108 (($ (-1 (-499) (-499)) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT) (((-647 (-499)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-499) (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL (|has| (-499) (-261)) ELT) (((-361 (-499)) $) NIL T ELT)) (-3252 (((-499) $) NIL (|has| (-499) (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-3918 (($ $ (-599 (-499)) (-599 (-499))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-499) (-499)) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-247 (-499))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-599 (-247 (-499)))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-599 (-1117)) (-599 (-499))) NIL (|has| (-499) (-468 (-1117) (-499))) ELT) (($ $ (-1117) (-499)) NIL (|has| (-499) (-468 (-1117) (-499))) ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ $ (-499)) NIL (|has| (-499) (-240 (-499) (-499))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-1 (-499) (-499))) NIL T ELT) (($ $ (-1 (-499) (-499)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $) NIL (|has| (-499) (-189)) ELT) (($ $ (-714)) NIL (|has| (-499) (-189)) ELT)) (-3116 (($ $) NIL T ELT)) (-3118 (((-499) $) NIL T ELT)) (-4122 (((-825 (-499)) $) NIL (|has| (-499) (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| (-499) (-569 (-825 (-333)))) ELT) (((-488) $) NIL (|has| (-499) (-569 (-488))) ELT) (((-333) $) NIL (|has| (-499) (-960)) ELT) (((-179) $) NIL (|has| (-499) (-960)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| (-499) (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) 8 T ELT) (($ (-499)) NIL T ELT) (($ (-1117)) NIL (|has| (-499) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL T ELT) (((-944 2) $) 10 T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| (-499) (-848))) (|has| (-499) (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-3253 (((-499) $) NIL (|has| (-499) (-498)) ELT)) (-2130 (($ (-361 (-499))) 9 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3523 (($ $) NIL (|has| (-499) (-763)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1 (-499) (-499))) NIL T ELT) (($ $ (-1 (-499) (-499)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $) NIL (|has| (-499) (-189)) ELT) (($ $ (-714)) NIL (|has| (-499) (-189)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-4099 (($ $ $) NIL T ELT) (($ (-499) (-499)) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ (-499)) NIL T ELT))) -(((-79) (-13 (-931 (-499)) (-568 (-361 (-499))) (-568 (-944 2)) (-10 -8 (-15 -3250 ((-361 (-499)) $)) (-15 -2130 ($ (-361 (-499))))))) (T -79)) -((-3250 (*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-79)))) (-2130 (*1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-79))))) -((-1321 (((-599 (-903)) $) 13 T ELT)) (-3690 (((-460) $) 9 T ELT)) (-4096 (((-797) $) 20 T ELT)) (-1311 (($ (-460) (-599 (-903))) 15 T ELT))) -(((-80) (-13 (-568 (-797)) (-10 -8 (-15 -3690 ((-460) $)) (-15 -1321 ((-599 (-903)) $)) (-15 -1311 ($ (-460) (-599 (-903))))))) (T -80)) -((-3690 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-80)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-599 (-903))) (-5 *1 (-80)))) (-1311 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-599 (-903))) (-5 *1 (-80))))) -((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-3462 (($ $ $) NIL T ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) $) NIL (|has| (-85) (-781)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1823 (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| (-85) (-781))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -4146)) ELT)) (-3030 (($ $) NIL (|has| (-85) (-781)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3938 (((-85) $ (-1174 (-499)) (-85)) NIL (|has| $ (-6 -4146)) ELT) (((-85) $ (-499) (-85)) NIL (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-3546 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-3992 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-1609 (((-85) $ (-499) (-85)) NIL (|has| $ (-6 -4146)) ELT)) (-3235 (((-85) $ (-499)) NIL T ELT)) (-3559 (((-499) (-85) $ (-499)) NIL (|has| (-85) (-1041)) ELT) (((-499) (-85) $) NIL (|has| (-85) (-1041)) ELT) (((-499) (-1 (-85) (-85)) $) NIL T ELT)) (-3010 (((-599 (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-2680 (($ $ $) NIL T ELT)) (-2679 (($ $) NIL T ELT)) (-1333 (($ $ $) NIL T ELT)) (-3764 (($ (-714) (-85)) 10 T ELT)) (-1334 (($ $ $) NIL T ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL T ELT)) (-3658 (($ $ $) NIL (|has| (-85) (-781)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2727 (((-599 (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL T ELT)) (-2051 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2404 (($ $ $ (-499)) NIL T ELT) (($ (-85) $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 (((-85) $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2300 (($ $ (-85)) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-85)) (-599 (-85))) NIL (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT) (($ $ (-247 (-85))) NIL (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT) (($ $ (-599 (-247 (-85)))) NIL (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-2306 (((-599 (-85)) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 (($ $ (-1174 (-499))) NIL T ELT) (((-85) $ (-499)) NIL T ELT) (((-85) $ (-499) (-85)) NIL T ELT)) (-2405 (($ $ (-1174 (-499))) NIL T ELT) (($ $ (-499)) NIL T ELT)) (-2048 (((-714) (-85) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT) (((-714) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-85) (-569 (-488))) ELT)) (-3670 (($ (-599 (-85))) NIL T ELT)) (-3952 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1868 (($ (-714) (-85)) 11 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-2681 (($ $ $) NIL T ELT)) (-2411 (($ $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-81) (-13 (-96) (-10 -8 (-15 -1868 ($ (-714) (-85)))))) (T -81)) -((-1868 (*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-5 *3 (-85)) (-5 *1 (-81))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) -(((-82 |#1| |#2|) (-113) (-989) (-989)) (T -82)) -NIL -(-13 (-606 |t#1|) (-996 |t#2|) (-10 -7 (-6 -4140) (-6 -4139))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-991 |#2|) . T) ((-996 |#2|) . T) ((-1041) . T) ((-1157) . T)) -((-2413 (($ $) 8 T ELT))) -(((-83 |#1|) (-10 -7 (-15 -2413 (|#1| |#1|))) (-84)) (T -83)) -NIL -((-2413 (($ $) 8 T ELT)) (-2680 (($ $ $) 9 T ELT)) (-2679 (($ $) 11 T ELT)) (-2681 (($ $ $) 10 T ELT)) (-2411 (($ $ $) 6 T ELT)) (-2412 (($ $ $) 7 T ELT))) -(((-84) (-113)) (T -84)) -((-2679 (*1 *1 *1) (-4 *1 (-84))) (-2681 (*1 *1 *1 *1) (-4 *1 (-84))) (-2680 (*1 *1 *1 *1) (-4 *1 (-84)))) -(-13 (-620) (-10 -8 (-15 -2679 ($ $)) (-15 -2681 ($ $ $)) (-15 -2680 ($ $ $)))) -(((-620) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) 9 T ELT)) (-3462 (($ $ $) 14 T ELT)) (-2976 (($) 6 T CONST)) (-3258 (((-714)) 23 T ELT)) (-3115 (($) 31 T ELT)) (-2680 (($ $ $) 12 T ELT)) (-2679 (($ $) 8 T ELT)) (-1333 (($ $ $) 15 T ELT)) (-1334 (($ $ $) 16 T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) 29 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) 27 T ELT)) (-2974 (($ $ $) 19 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2975 (($) 7 T CONST)) (-2973 (($ $ $) 20 T ELT)) (-4122 (((-488) $) 33 T ELT)) (-4096 (((-797) $) 35 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2681 (($ $ $) 10 T ELT)) (-2411 (($ $ $) 13 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 18 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 21 T ELT)) (-2412 (($ $ $) 11 T ELT))) -(((-85) (-13 (-777) (-907) (-569 (-488)) (-10 -8 (-15 -3462 ($ $ $)) (-15 -1334 ($ $ $)) (-15 -1333 ($ $ $))))) (T -85)) -((-3462 (*1 *1 *1 *1) (-5 *1 (-85))) (-1334 (*1 *1 *1 *1) (-5 *1 (-85))) (-1333 (*1 *1 *1 *1) (-5 *1 (-85)))) -((-2687 (((-85) $ $) NIL T ELT)) (-1555 (((-714) $) 92 T ELT) (($ $ (-714)) 38 T ELT)) (-1319 (((-85) $) 42 T ELT)) (-1313 (($ $ (-1099) (-716)) 59 T ELT) (($ $ (-460) (-716)) 34 T ELT)) (-1312 (($ $ (-45 (-1099) (-716))) 16 T ELT)) (-2962 (((-3 (-716) "failed") $ (-1099)) 27 T ELT) (((-649 (-716)) $ (-460)) 33 T ELT)) (-1321 (((-45 (-1099) (-716)) $) 15 T ELT)) (-3743 (($ (-1117)) 20 T ELT) (($ (-1117) (-714)) 23 T ELT) (($ (-1117) (-55)) 24 T ELT)) (-1320 (((-85) $) 40 T ELT)) (-1318 (((-85) $) 44 T ELT)) (-3690 (((-1117) $) 8 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2752 (((-85) $ (-1117)) 11 T ELT)) (-2229 (($ $ (-1 (-488) (-599 (-488)))) 65 T ELT) (((-649 (-1 (-488) (-599 (-488)))) $) 69 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1315 (((-85) $ (-460)) 37 T ELT)) (-1317 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3767 (((-649 (-1 (-797) (-599 (-797)))) $) 67 T ELT) (($ $ (-1 (-797) (-599 (-797)))) 52 T ELT) (($ $ (-1 (-797) (-797))) 54 T ELT)) (-1314 (($ $ (-1099)) 56 T ELT) (($ $ (-460)) 57 T ELT)) (-3540 (($ $) 75 T ELT)) (-1316 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-4096 (((-797) $) 61 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2913 (($ $ (-460)) 35 T ELT)) (-2639 (((-55) $) 70 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 88 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 104 T ELT))) -(((-86) (-13 (-781) (-770 (-1117)) (-10 -8 (-15 -1321 ((-45 (-1099) (-716)) $)) (-15 -3540 ($ $)) (-15 -3743 ($ (-1117))) (-15 -3743 ($ (-1117) (-714))) (-15 -3743 ($ (-1117) (-55))) (-15 -1320 ((-85) $)) (-15 -1319 ((-85) $)) (-15 -1318 ((-85) $)) (-15 -1555 ((-714) $)) (-15 -1555 ($ $ (-714))) (-15 -1317 ($ $ (-1 (-85) $ $))) (-15 -1316 ($ $ (-1 (-85) $ $))) (-15 -3767 ((-649 (-1 (-797) (-599 (-797)))) $)) (-15 -3767 ($ $ (-1 (-797) (-599 (-797))))) (-15 -3767 ($ $ (-1 (-797) (-797)))) (-15 -2229 ($ $ (-1 (-488) (-599 (-488))))) (-15 -2229 ((-649 (-1 (-488) (-599 (-488)))) $)) (-15 -1315 ((-85) $ (-460))) (-15 -2913 ($ $ (-460))) (-15 -1314 ($ $ (-1099))) (-15 -1314 ($ $ (-460))) (-15 -2962 ((-3 (-716) "failed") $ (-1099))) (-15 -2962 ((-649 (-716)) $ (-460))) (-15 -1313 ($ $ (-1099) (-716))) (-15 -1313 ($ $ (-460) (-716))) (-15 -1312 ($ $ (-45 (-1099) (-716))))))) (T -86)) -((-1321 (*1 *2 *1) (-12 (-5 *2 (-45 (-1099) (-716))) (-5 *1 (-86)))) (-3540 (*1 *1 *1) (-5 *1 (-86))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-86)))) (-3743 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-714)) (-5 *1 (-86)))) (-3743 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1320 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1555 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-86)))) (-1555 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-86)))) (-1317 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1316 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3767 (*1 *2 *1) (-12 (-5 *2 (-649 (-1 (-797) (-599 (-797))))) (-5 *1 (-86)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-797) (-599 (-797)))) (-5 *1 (-86)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-797) (-797))) (-5 *1 (-86)))) (-2229 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-488) (-599 (-488)))) (-5 *1 (-86)))) (-2229 (*1 *2 *1) (-12 (-5 *2 (-649 (-1 (-488) (-599 (-488))))) (-5 *1 (-86)))) (-1315 (*1 *2 *1 *3) (-12 (-5 *3 (-460)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2913 (*1 *1 *1 *2) (-12 (-5 *2 (-460)) (-5 *1 (-86)))) (-1314 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-86)))) (-1314 (*1 *1 *1 *2) (-12 (-5 *2 (-460)) (-5 *1 (-86)))) (-2962 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-716)) (-5 *1 (-86)))) (-2962 (*1 *2 *1 *3) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-716))) (-5 *1 (-86)))) (-1313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-716)) (-5 *1 (-86)))) (-1313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-716)) (-5 *1 (-86)))) (-1312 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1099) (-716))) (-5 *1 (-86))))) -((-2636 (((-3 (-1 |#1| (-599 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-599 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-599 |#1|)) 25 T ELT)) (-1322 (((-3 (-599 (-1 |#1| (-599 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-599 (-1 |#1| (-599 |#1|)))) 30 T ELT)) (-1323 (((-86) |#1|) 63 T ELT)) (-1324 (((-3 |#1| #1#) (-86)) 58 T ELT))) -(((-87 |#1|) (-10 -7 (-15 -2636 ((-3 |#1| #1="failed") (-86) (-599 |#1|))) (-15 -2636 ((-86) (-86) (-1 |#1| (-599 |#1|)))) (-15 -2636 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2636 ((-3 (-1 |#1| (-599 |#1|)) #1#) (-86))) (-15 -1322 ((-86) (-86) (-599 (-1 |#1| (-599 |#1|))))) (-15 -1322 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1322 ((-3 (-599 (-1 |#1| (-599 |#1|))) #1#) (-86))) (-15 -1323 ((-86) |#1|)) (-15 -1324 ((-3 |#1| #1#) (-86)))) (-1041)) (T -87)) -((-1324 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1041)))) (-1323 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1041)))) (-1322 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-599 (-1 *4 (-599 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1041)))) (-1322 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1041)) (-5 *1 (-87 *4)))) (-1322 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-599 (-1 *4 (-599 *4)))) (-4 *4 (-1041)) (-5 *1 (-87 *4)))) (-2636 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-599 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1041)))) (-2636 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1041)) (-5 *1 (-87 *4)))) (-2636 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-599 *4))) (-4 *4 (-1041)) (-5 *1 (-87 *4)))) (-2636 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-599 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1041))))) -((-1325 (((-499) |#2|) 41 T ELT))) -(((-88 |#1| |#2|) (-10 -7 (-15 -1325 ((-499) |#2|))) (-13 (-318) (-978 (-361 (-499)))) (-1183 |#1|)) (T -88)) -((-1325 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-978 (-361 *2)))) (-5 *2 (-499)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1183 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3158 (($ $ (-499)) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2730 (($ (-1111 (-499)) (-499)) NIL T ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2731 (($ $) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3922 (((-714) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2733 (((-499)) NIL T ELT)) (-2732 (((-499) $) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3919 (($ $ (-499)) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-2734 (((-1095 (-499)) $) NIL T ELT)) (-3012 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3920 (((-499) $ (-499)) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-89 |#1|) (-804 |#1|) (-499)) (T -89)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-89 |#1|) (-848)) ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| (-89 |#1|) (-848)) ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| (-89 |#1|) (-763)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL (|has| (-89 |#1|) (-978 (-1117))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-89 |#1|) (-978 (-499))) ELT) (((-3 (-499) #1#) $) NIL (|has| (-89 |#1|) (-978 (-499))) ELT)) (-3294 (((-89 |#1|) $) NIL T ELT) (((-1117) $) NIL (|has| (-89 |#1|) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL (|has| (-89 |#1|) (-978 (-499))) ELT) (((-499) $) NIL (|has| (-89 |#1|) (-978 (-499))) ELT)) (-3880 (($ $) NIL T ELT) (($ (-499) $) NIL T ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| (-89 |#1|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-89 |#1|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-89 |#1|))) (|:| |vec| (-1207 (-89 |#1|)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-89 |#1|)) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-89 |#1|) (-498)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3324 (((-85) $) NIL (|has| (-89 |#1|) (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| (-89 |#1|) (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| (-89 |#1|) (-821 (-333))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL T ELT)) (-3119 (((-89 |#1|) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| (-89 |#1|) (-1092)) ELT)) (-3325 (((-85) $) NIL (|has| (-89 |#1|) (-763)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| (-89 |#1|) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-89 |#1|) (-781)) ELT)) (-4108 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| (-89 |#1|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-89 |#1|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-89 |#1|))) (|:| |vec| (-1207 (-89 |#1|)))) (-1207 $) $) NIL T ELT) (((-647 (-89 |#1|)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-89 |#1|) (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL (|has| (-89 |#1|) (-261)) ELT)) (-3252 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-89 |#1|) (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-89 |#1|) (-848)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-3918 (($ $ (-599 (-89 |#1|)) (-599 (-89 |#1|))) NIL (|has| (-89 |#1|) (-263 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-263 (-89 |#1|))) ELT) (($ $ (-247 (-89 |#1|))) NIL (|has| (-89 |#1|) (-263 (-89 |#1|))) ELT) (($ $ (-599 (-247 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-263 (-89 |#1|))) ELT) (($ $ (-599 (-1117)) (-599 (-89 |#1|))) NIL (|has| (-89 |#1|) (-468 (-1117) (-89 |#1|))) ELT) (($ $ (-1117) (-89 |#1|)) NIL (|has| (-89 |#1|) (-468 (-1117) (-89 |#1|))) ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-240 (-89 |#1|) (-89 |#1|))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-89 |#1|) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-89 |#1|) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-89 |#1|) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-89 |#1|) (-838 (-1117))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-714)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-3116 (($ $) NIL T ELT)) (-3118 (((-89 |#1|) $) NIL T ELT)) (-4122 (((-825 (-499)) $) NIL (|has| (-89 |#1|) (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| (-89 |#1|) (-569 (-825 (-333)))) ELT) (((-488) $) NIL (|has| (-89 |#1|) (-569 (-488))) ELT) (((-333) $) NIL (|has| (-89 |#1|) (-960)) ELT) (((-179) $) NIL (|has| (-89 |#1|) (-960)) ELT)) (-2735 (((-148 (-361 (-499))) $) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1117)) NIL (|has| (-89 |#1|) (-978 (-1117))) ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-848))) (|has| (-89 |#1|) (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-3253 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-498)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3920 (((-361 (-499)) $ (-499)) NIL T ELT)) (-3523 (($ $) NIL (|has| (-89 |#1|) (-763)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-89 |#1|) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-89 |#1|) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-89 |#1|) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-89 |#1|) (-838 (-1117))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-714)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-89 |#1|) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-89 |#1|) (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| (-89 |#1|) (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| (-89 |#1|) (-781)) ELT)) (-4099 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT))) -(((-90 |#1|) (-13 (-931 (-89 |#1|)) (-10 -8 (-15 -3920 ((-361 (-499)) $ (-499))) (-15 -2735 ((-148 (-361 (-499))) $)) (-15 -3880 ($ $)) (-15 -3880 ($ (-499) $)))) (-499)) (T -90)) -((-3920 (*1 *2 *1 *3) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-499)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-148 (-361 (-499)))) (-5 *1 (-90 *3)) (-14 *3 (-499)))) (-3880 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-499)))) (-3880 (*1 *1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-90 *3)) (-14 *3 *2)))) -((-3938 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3152 (((-599 $) $) 31 T ELT)) (-3148 (((-85) $ $) 36 T ELT)) (-3383 (((-85) |#2| $) 40 T ELT)) (-3151 (((-599 |#2|) $) 25 T ELT)) (-3667 (((-85) $) 18 T ELT)) (-3950 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3783 (((-85) $) 57 T ELT)) (-4096 (((-797) $) 47 T ELT)) (-3662 (((-599 $) $) 32 T ELT)) (-3174 (((-85) $ $) 38 T ELT)) (-4107 (((-714) $) 50 T ELT))) -(((-91 |#1| |#2|) (-10 -7 (-15 -3174 ((-85) |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -3938 (|#1| |#1| #1="right" |#1|)) (-15 -3938 (|#1| |#1| #2="left" |#1|)) (-15 -3950 (|#1| |#1| #1#)) (-15 -3950 (|#1| |#1| #2#)) (-15 -3938 (|#2| |#1| #3="value" |#2|)) (-15 -3148 ((-85) |#1| |#1|)) (-15 -3151 ((-599 |#2|) |#1|)) (-15 -3783 ((-85) |#1|)) (-15 -3950 (|#2| |#1| #3#)) (-15 -3667 ((-85) |#1|)) (-15 -3152 ((-599 |#1|) |#1|)) (-15 -3662 ((-599 |#1|) |#1|)) (-15 -3383 ((-85) |#2| |#1|)) (-15 -4107 ((-714) |#1|))) (-92 |#2|) (-1157)) (T -91)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 52 T ELT)) (-3146 ((|#1| $ |#1|) 43 (|has| $ (-6 -4146)) ELT)) (-1326 (($ $ $) 58 (|has| $ (-6 -4146)) ELT)) (-1327 (($ $ $) 60 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4146)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -4146)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 45 (|has| $ (-6 -4146)) ELT)) (-3874 (($) 7 T CONST)) (-3259 (($ $) 63 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 54 T ELT)) (-3148 (((-85) $ $) 46 (|has| |#1| (-1041)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3260 (($ $) 65 T ELT)) (-3151 (((-599 |#1|) $) 49 T ELT)) (-3667 (((-85) $) 53 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3150 (((-499) $ $) 48 T ELT)) (-3783 (((-85) $) 50 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) 55 T ELT)) (-3149 (((-85) $ $) 47 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-92 |#1|) (-113) (-1157)) (T -92)) -((-3260 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1157)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1157)))) (-3259 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1157)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1157)))) (-3938 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4146)) (-4 *1 (-92 *3)) (-4 *3 (-1157)))) (-1327 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-92 *2)) (-4 *2 (-1157)))) (-3938 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4146)) (-4 *1 (-92 *3)) (-4 *3 (-1157)))) (-1326 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-92 *2)) (-4 *2 (-1157))))) -(-13 (-950 |t#1|) (-10 -8 (-15 -3260 ($ $)) (-15 -3950 ($ $ "left")) (-15 -3259 ($ $)) (-15 -3950 ($ $ "right")) (IF (|has| $ (-6 -4146)) (PROGN (-15 -3938 ($ $ "left" $)) (-15 -1327 ($ $ $)) (-15 -3938 ($ $ "right" $)) (-15 -1326 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-950 |#1|) . T) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) -((-1330 (((-85) |#1|) 29 T ELT)) (-1329 (((-714) (-714)) 28 T ELT) (((-714)) 27 T ELT)) (-1328 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT))) -(((-93 |#1|) (-10 -7 (-15 -1328 ((-85) |#1|)) (-15 -1328 ((-85) |#1| (-85))) (-15 -1329 ((-714))) (-15 -1329 ((-714) (-714))) (-15 -1330 ((-85) |#1|))) (-1183 (-499))) (T -93)) -((-1330 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499))))) (-1329 (*1 *2 *2) (-12 (-5 *2 (-714)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499))))) (-1329 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499))))) (-1328 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499))))) (-1328 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499)))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 18 T ELT)) (-3558 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3146 ((|#1| $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-1326 (($ $ $) 21 (|has| $ (-6 -4146)) ELT)) (-1327 (($ $ $) 23 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4146)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4146)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3259 (($ $) 20 T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) NIL T ELT)) (-3148 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1335 (($ $ |#1| $) 27 T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3260 (($ $) 22 T ELT)) (-3151 (((-599 |#1|) $) NIL T ELT)) (-3667 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-1331 (($ |#1| $) 28 T ELT)) (-3757 (($ |#1| $) 15 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 17 T ELT)) (-3713 (($) 11 T ELT)) (-3950 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3150 (((-499) $ $) NIL T ELT)) (-3783 (((-85) $) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) NIL T ELT)) (-3149 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1332 (($ (-599 |#1|)) 16 T ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -4146) (-6 -4145) (-15 -1332 ($ (-599 |#1|))) (-15 -3757 ($ |#1| $)) (-15 -1331 ($ |#1| $)) (-15 -3558 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-781)) (T -94)) -((-1332 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-94 *3)))) (-3757 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-781)))) (-1331 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-781)))) (-3558 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-781))))) -((-2413 (($ $) 13 T ELT)) (-2679 (($ $) 11 T ELT)) (-1333 (($ $ $) 23 T ELT)) (-1334 (($ $ $) 21 T ELT)) (-2411 (($ $ $) 19 T ELT)) (-2412 (($ $ $) 17 T ELT))) -(((-95 |#1|) (-10 -7 (-15 -1333 (|#1| |#1| |#1|)) (-15 -1334 (|#1| |#1| |#1|)) (-15 -2413 (|#1| |#1|)) (-15 -2412 (|#1| |#1| |#1|)) (-15 -2411 (|#1| |#1| |#1|)) (-15 -2679 (|#1| |#1|))) (-96)) (T -95)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-2413 (($ $) 103 T ELT)) (-3462 (($ $ $) 31 T ELT)) (-2299 (((-1213) $ (-499) (-499)) 66 (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) $) 98 (|has| (-85) (-781)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 92 T ELT)) (-1823 (($ $) 102 (-12 (|has| (-85) (-781)) (|has| $ (-6 -4146))) ELT) (($ (-1 (-85) (-85) (-85)) $) 101 (|has| $ (-6 -4146)) ELT)) (-3030 (($ $) 97 (|has| (-85) (-781)) ELT) (($ (-1 (-85) (-85) (-85)) $) 91 T ELT)) (-3938 (((-85) $ (-1174 (-499)) (-85)) 88 (|has| $ (-6 -4146)) ELT) (((-85) $ (-499) (-85)) 54 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) (-85)) $) 71 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 38 T CONST)) (-2397 (($ $) 100 (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) 90 T ELT)) (-1386 (($ $) 68 (-12 (|has| (-85) (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ (-1 (-85) (-85)) $) 72 (|has| $ (-6 -4145)) ELT) (($ (-85) $) 69 (-12 (|has| (-85) (-1041)) (|has| $ (-6 -4145))) ELT)) (-3992 (((-85) (-1 (-85) (-85) (-85)) $) 74 (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 73 (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 70 (-12 (|has| (-85) (-1041)) (|has| $ (-6 -4145))) ELT)) (-1609 (((-85) $ (-499) (-85)) 53 (|has| $ (-6 -4146)) ELT)) (-3235 (((-85) $ (-499)) 55 T ELT)) (-3559 (((-499) (-85) $ (-499)) 95 (|has| (-85) (-1041)) ELT) (((-499) (-85) $) 94 (|has| (-85) (-1041)) ELT) (((-499) (-1 (-85) (-85)) $) 93 T ELT)) (-3010 (((-599 (-85)) $) 45 (|has| $ (-6 -4145)) ELT)) (-2680 (($ $ $) 108 T ELT)) (-2679 (($ $) 106 T ELT)) (-1333 (($ $ $) 32 T ELT)) (-3764 (($ (-714) (-85)) 78 T ELT)) (-1334 (($ $ $) 33 T ELT)) (-2301 (((-499) $) 63 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) 23 T ELT)) (-3658 (($ $ $) 96 (|has| (-85) (-781)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 89 T ELT)) (-2727 (((-599 (-85)) $) 46 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-85) $) 48 (-12 (|has| (-85) (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 62 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) 22 T ELT)) (-2051 (($ (-1 (-85) (-85)) $) 41 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-85) (-85) (-85)) $ $) 83 T ELT) (($ (-1 (-85) (-85)) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2404 (($ $ $ (-499)) 87 T ELT) (($ (-85) $ (-499)) 86 T ELT)) (-2304 (((-599 (-499)) $) 60 T ELT)) (-2305 (((-85) (-499) $) 59 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3951 (((-85) $) 64 (|has| (-499) (-781)) ELT)) (-1387 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 75 T ELT)) (-2300 (($ $ (-85)) 65 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) (-85)) $) 43 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-85)) (-599 (-85))) 52 (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT) (($ $ (-85) (-85)) 51 (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT) (($ $ (-247 (-85))) 50 (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT) (($ $ (-599 (-247 (-85)))) 49 (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT)) (-1248 (((-85) $ $) 34 T ELT)) (-2303 (((-85) (-85) $) 61 (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-2306 (((-599 (-85)) $) 58 T ELT)) (-3543 (((-85) $) 37 T ELT)) (-3713 (($) 36 T ELT)) (-3950 (($ $ (-1174 (-499))) 77 T ELT) (((-85) $ (-499)) 57 T ELT) (((-85) $ (-499) (-85)) 56 T ELT)) (-2405 (($ $ (-1174 (-499))) 85 T ELT) (($ $ (-499)) 84 T ELT)) (-2048 (((-714) (-85) $) 47 (-12 (|has| (-85) (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) (-85)) $) 44 (|has| $ (-6 -4145)) ELT)) (-1824 (($ $ $ (-499)) 99 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 35 T ELT)) (-4122 (((-488) $) 67 (|has| (-85) (-569 (-488))) ELT)) (-3670 (($ (-599 (-85))) 76 T ELT)) (-3952 (($ (-599 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-85) $) 80 T ELT) (($ $ (-85)) 79 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2050 (((-85) (-1 (-85) (-85)) $) 42 (|has| $ (-6 -4145)) ELT)) (-2681 (($ $ $) 107 T ELT)) (-2411 (($ $ $) 105 T ELT)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT)) (-2412 (($ $ $) 104 T ELT)) (-4107 (((-714) $) 39 (|has| $ (-6 -4145)) ELT))) -(((-96) (-113)) (T -96)) -((-1334 (*1 *1 *1 *1) (-4 *1 (-96))) (-1333 (*1 *1 *1 *1) (-4 *1 (-96))) (-3462 (*1 *1 *1 *1) (-4 *1 (-96)))) -(-13 (-781) (-84) (-620) (-19 (-85)) (-10 -8 (-15 -1334 ($ $ $)) (-15 -1333 ($ $ $)) (-15 -3462 ($ $ $)))) -(((-34) . T) ((-73) . T) ((-84) . T) ((-568 (-797)) . T) ((-124 (-85)) . T) ((-569 (-488)) |has| (-85) (-569 (-488))) ((-240 (-499) (-85)) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) (-85)) . T) ((-263 (-85)) -12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ((-327 (-85)) . T) ((-443 (-85)) . T) ((-554 (-499) (-85)) . T) ((-468 (-85) (-85)) -12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ((-609 (-85)) . T) ((-620) . T) ((-19 (-85)) . T) ((-781) . T) ((-784) . T) ((-1041) . T) ((-1157) . T)) -((-2051 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3540 (($ $) 16 T ELT)) (-4107 (((-714) $) 25 T ELT))) -(((-97 |#1| |#2|) (-10 -7 (-15 -2051 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4107 ((-714) |#1|)) (-15 -3540 (|#1| |#1|))) (-98 |#2|) (-1041)) (T -97)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 52 T ELT)) (-3146 ((|#1| $ |#1|) 43 (|has| $ (-6 -4146)) ELT)) (-1326 (($ $ $) 58 (|has| $ (-6 -4146)) ELT)) (-1327 (($ $ $) 60 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4146)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -4146)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 45 (|has| $ (-6 -4146)) ELT)) (-3874 (($) 7 T CONST)) (-3259 (($ $) 63 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 54 T ELT)) (-3148 (((-85) $ $) 46 (|has| |#1| (-1041)) ELT)) (-1335 (($ $ |#1| $) 66 T ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3260 (($ $) 65 T ELT)) (-3151 (((-599 |#1|) $) 49 T ELT)) (-3667 (((-85) $) 53 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3150 (((-499) $ $) 48 T ELT)) (-3783 (((-85) $) 50 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) 55 T ELT)) (-3149 (((-85) $ $) 47 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-98 |#1|) (-113) (-1041)) (T -98)) -((-1335 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1041))))) -(-13 (-92 |t#1|) (-10 -8 (-6 -4146) (-6 -4145) (-15 -1335 ($ $ |t#1| $)))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-92 |#1|) . T) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-950 |#1|) . T) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 18 T ELT)) (-3146 ((|#1| $ |#1|) 22 (|has| $ (-6 -4146)) ELT)) (-1326 (($ $ $) 23 (|has| $ (-6 -4146)) ELT)) (-1327 (($ $ $) 21 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4146)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4146)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3259 (($ $) 24 T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) NIL T ELT)) (-3148 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1335 (($ $ |#1| $) NIL T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3260 (($ $) NIL T ELT)) (-3151 (((-599 |#1|) $) NIL T ELT)) (-3667 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3757 (($ |#1| $) 15 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 17 T ELT)) (-3713 (($) 11 T ELT)) (-3950 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3150 (((-499) $ $) NIL T ELT)) (-3783 (((-85) $) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) 20 T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) NIL T ELT)) (-3149 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1336 (($ (-599 |#1|)) 16 T ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -4146) (-15 -1336 ($ (-599 |#1|))) (-15 -3757 ($ |#1| $)))) (-781)) (T -99)) -((-1336 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-99 *3)))) (-3757 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-781))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 30 T ELT)) (-3146 ((|#1| $ |#1|) 32 (|has| $ (-6 -4146)) ELT)) (-1326 (($ $ $) 36 (|has| $ (-6 -4146)) ELT)) (-1327 (($ $ $) 34 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4146)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4146)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3259 (($ $) 23 T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) NIL T ELT)) (-3148 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1335 (($ $ |#1| $) 16 T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3260 (($ $) 22 T ELT)) (-3151 (((-599 |#1|) $) NIL T ELT)) (-3667 (((-85) $) 25 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 20 T ELT)) (-3713 (($) 11 T ELT)) (-3950 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3150 (((-499) $ $) NIL T ELT)) (-3783 (((-85) $) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) NIL T ELT)) (-3149 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1337 (($ |#1|) 18 T ELT) (($ $ |#1| $) 17 T ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 10 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1337 ($ |#1|)) (-15 -1337 ($ $ |#1| $)))) (-1041)) (T -100)) -((-1337 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1041)))) (-1337 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1041))))) -((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) 34 T ELT)) (-3258 (((-714)) 20 T ELT)) (-3874 (($) 12 T CONST)) (-3115 (($) 29 T ELT)) (-2650 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2978 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2111 (((-857) $) 27 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) 25 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1338 (($ (-714)) 8 T ELT)) (-3875 (($ $ $) 31 T ELT)) (-3876 (($ $ $) 30 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2411 (($ $ $) 33 T ELT)) (-2685 (((-85) $ $) 17 T ELT)) (-2686 (((-85) $ $) 15 T ELT)) (-3174 (((-85) $ $) 13 T ELT)) (-2805 (((-85) $ $) 16 T ELT)) (-2806 (((-85) $ $) 14 T ELT)) (-2412 (($ $ $) 32 T ELT))) -(((-101) (-13 (-777) (-620) (-10 -8 (-15 -1338 ($ (-714))) (-15 -3876 ($ $ $)) (-15 -3875 ($ $ $)) (-15 -3874 ($) -4102)))) (T -101)) -((-1338 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-101)))) (-3876 (*1 *1 *1 *1) (-5 *1 (-101))) (-3875 (*1 *1 *1 *1) (-5 *1 (-101))) (-3874 (*1 *1) (-5 *1 (-101)))) -((-714) (|%ilt| |#1| 256)) -((-2687 (((-85) $ $) NIL (|has| (-101) (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-781)) ELT)) (-1823 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| (-101) (-781))) ELT)) (-3030 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-781)) ELT)) (-3938 (((-101) $ (-499) (-101)) 26 (|has| $ (-6 -4146)) ELT) (((-101) $ (-1174 (-499)) (-101)) NIL (|has| $ (-6 -4146)) ELT)) (-1339 (((-714) $ (-714)) 34 T ELT)) (-3860 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-101) (-1041))) ELT)) (-3546 (($ (-101) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-101) (-1041))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (-12 (|has| $ (-6 -4145)) (|has| (-101) (-1041))) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL (|has| $ (-6 -4145)) ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 (((-101) $ (-499) (-101)) 25 (|has| $ (-6 -4146)) ELT)) (-3235 (((-101) $ (-499)) 20 T ELT)) (-3559 (((-499) (-1 (-85) (-101)) $) NIL T ELT) (((-499) (-101) $) NIL (|has| (-101) (-1041)) ELT) (((-499) (-101) $ (-499)) NIL (|has| (-101) (-1041)) ELT)) (-3010 (((-599 (-101)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) (-101)) 14 T ELT)) (-2301 (((-499) $) 27 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| (-101) (-781)) ELT)) (-3658 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-781)) ELT)) (-2727 (((-599 (-101)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-101) (-1041))) ELT)) (-2302 (((-499) $) 30 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-101) (-781)) ELT)) (-2051 (($ (-1 (-101) (-101)) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| (-101) (-1041)) ELT)) (-2404 (($ (-101) $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| (-101) (-1041)) ELT)) (-3951 (((-101) $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2300 (($ $ (-101)) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-101)))) NIL (-12 (|has| (-101) (-263 (-101))) (|has| (-101) (-1041))) ELT) (($ $ (-247 (-101))) NIL (-12 (|has| (-101) (-263 (-101))) (|has| (-101) (-1041))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-263 (-101))) (|has| (-101) (-1041))) ELT) (($ $ (-599 (-101)) (-599 (-101))) NIL (-12 (|has| (-101) (-263 (-101))) (|has| (-101) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-101) (-1041))) ELT)) (-2306 (((-599 (-101)) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) 12 T ELT)) (-3950 (((-101) $ (-499) (-101)) NIL T ELT) (((-101) $ (-499)) 23 T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-101) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-101) (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-101) (-569 (-488))) ELT)) (-3670 (($ (-599 (-101))) 40 T ELT)) (-3952 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 44 T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-896 (-101)) $) 35 T ELT) (((-1099) $) 37 T ELT) (((-797) $) NIL (|has| (-101) (-568 (-797))) ELT)) (-1340 (((-714) $) 18 T ELT)) (-1341 (($ (-714)) 8 T ELT)) (-1297 (((-85) $ $) NIL (|has| (-101) (-73)) ELT)) (-2050 (((-85) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-101) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-101) (-781)) ELT)) (-3174 (((-85) $ $) 32 (|has| (-101) (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| (-101) (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| (-101) (-781)) ELT)) (-4107 (((-714) $) 15 (|has| $ (-6 -4145)) ELT))) -(((-102) (-13 (-19 (-101)) (-568 (-896 (-101))) (-568 (-1099)) (-10 -8 (-15 -1341 ($ (-714))) (-15 -1340 ((-714) $)) (-15 -1339 ((-714) $ (-714))) (-6 -4145)))) (T -102)) -((-1341 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-102)))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-102)))) (-1339 (*1 *2 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-102))))) -((-2687 (((-85) $ $) NIL T ELT)) (-1342 (($) 6 T CONST)) (-1344 (($) 7 T CONST)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 14 T ELT)) (-1343 (($) 8 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 10 T ELT))) -(((-103) (-13 (-1041) (-10 -8 (-15 -1344 ($) -4102) (-15 -1343 ($) -4102) (-15 -1342 ($) -4102)))) (T -103)) -((-1344 (*1 *1) (-5 *1 (-103))) (-1343 (*1 *1) (-5 *1 (-103))) (-1342 (*1 *1) (-5 *1 (-103)))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT))) -(((-104) (-113)) (T -104)) -((-1345 (*1 *1 *1 *1) (|partial| -4 *1 (-104)))) -(-13 (-23) (-10 -8 (-15 -1345 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) 7 T ELT)) (-1346 (((-1213) $ (-714)) 17 T ELT)) (-3559 (((-714) $) 18 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-105) (-113)) (T -105)) -((-3559 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-714)))) (-1346 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-714)) (-5 *2 (-1213))))) -(-13 (-1041) (-10 -8 (-15 -3559 ((-714) $)) (-15 -1346 ((-1213) $ (-714))))) -(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 16 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-599 (-1075)) $) 10 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-106) (-13 (-1023) (-10 -8 (-15 -3371 ((-599 (-1075)) $))))) (T -106)) -((-3371 (*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-106))))) -((-2687 (((-85) $ $) 49 T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-714) #1="failed") $) 60 T ELT)) (-3294 (((-714) $) 58 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) 37 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1348 (((-85)) 61 T ELT)) (-1347 (((-85) (-85)) 63 T ELT)) (-2644 (((-85) $) 30 T ELT)) (-1349 (((-85) $) 57 T ELT)) (-4096 (((-797) $) 28 T ELT) (($ (-714)) 20 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 18 T CONST)) (-2785 (($) 19 T CONST)) (-1350 (($ (-714)) 21 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 40 T ELT)) (-3174 (((-85) $ $) 32 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 35 T ELT)) (-3987 (((-3 $ #1#) $ $) 42 T ELT)) (-3989 (($ $ $) 38 T ELT)) (** (($ $ (-714)) NIL T ELT) (($ $ (-857)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-714) $) 48 T ELT) (($ (-857) $) NIL T ELT) (($ $ $) 45 T ELT))) -(((-107) (-13 (-781) (-23) (-684) (-978 (-714)) (-10 -8 (-6 (-4147 "*")) (-15 -3987 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1350 ($ (-714))) (-15 -2644 ((-85) $)) (-15 -1349 ((-85) $)) (-15 -1348 ((-85))) (-15 -1347 ((-85) (-85)))))) (T -107)) -((-3987 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1350 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-107)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1349 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1348 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1347 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) -((-2687 (((-85) $ $) NIL T ELT)) (-1351 (($ (-599 |#3|)) 62 T ELT)) (-3554 (($ $) 125 T ELT) (($ $ (-499) (-499)) 124 T ELT)) (-3874 (($) 20 T ELT)) (-3295 (((-3 |#3| "failed") $) 85 T ELT)) (-3294 ((|#3| $) NIL T ELT)) (-1355 (($ $ (-599 (-499))) 126 T ELT)) (-1352 (((-599 |#3|) $) 57 T ELT)) (-3231 (((-714) $) 67 T ELT)) (-4094 (($ $ $) 119 T ELT)) (-1353 (($) 66 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1354 (($) 19 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3950 ((|#3| $ (-499)) 71 T ELT) ((|#3| $) 70 T ELT) ((|#3| $ (-499) (-499)) 72 T ELT) ((|#3| $ (-499) (-499) (-499)) 73 T ELT) ((|#3| $ (-499) (-499) (-499) (-499)) 74 T ELT) ((|#3| $ (-599 (-499))) 75 T ELT)) (-4098 (((-714) $) 68 T ELT)) (-2084 (($ $ (-499) $ (-499)) 120 T ELT) (($ $ (-499) (-499)) 122 T ELT)) (-4096 (((-797) $) 93 T ELT) (($ |#3|) 94 T ELT) (($ (-196 |#2| |#3|)) 101 T ELT) (($ (-1082 |#2| |#3|)) 104 T ELT) (($ (-599 |#3|)) 76 T ELT) (($ (-599 $)) 82 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 95 T CONST)) (-2785 (($) 96 T CONST)) (-3174 (((-85) $ $) 106 T ELT)) (-3987 (($ $) 112 T ELT) (($ $ $) 110 T ELT)) (-3989 (($ $ $) 108 T ELT)) (* (($ |#3| $) 117 T ELT) (($ $ |#3|) 118 T ELT) (($ $ (-499)) 115 T ELT) (($ (-499) $) 114 T ELT) (($ $ $) 121 T ELT))) -(((-108 |#1| |#2| |#3|) (-13 (-419 |#3| (-714)) (-424 (-499) (-714)) (-240 (-499) |#3|) (-571 (-196 |#2| |#3|)) (-571 (-1082 |#2| |#3|)) (-571 (-599 |#3|)) (-571 (-599 $)) (-10 -8 (-15 -3231 ((-714) $)) (-15 -3950 (|#3| $)) (-15 -3950 (|#3| $ (-499) (-499))) (-15 -3950 (|#3| $ (-499) (-499) (-499))) (-15 -3950 (|#3| $ (-499) (-499) (-499) (-499))) (-15 -3950 (|#3| $ (-599 (-499)))) (-15 -4094 ($ $ $)) (-15 * ($ $ $)) (-15 -2084 ($ $ (-499) $ (-499))) (-15 -2084 ($ $ (-499) (-499))) (-15 -3554 ($ $)) (-15 -3554 ($ $ (-499) (-499))) (-15 -1355 ($ $ (-599 (-499)))) (-15 -1354 ($)) (-15 -1353 ($)) (-15 -1352 ((-599 |#3|) $)) (-15 -1351 ($ (-599 |#3|))) (-15 -3874 ($)))) (-499) (-714) (-146)) (T -108)) -((-4094 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-499)) (-14 *4 *2) (-4 *5 (-146)))) (-3950 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-499)) (-14 *4 (-714)))) (-3950 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-499)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-714)))) (-3950 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-499)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-714)))) (-3950 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-499)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-714)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 (-599 (-499))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-499)) (-14 *5 (-714)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146)))) (-2084 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-714)) (-4 *5 (-146)))) (-2084 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-714)) (-4 *5 (-146)))) (-3554 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146)))) (-3554 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-714)) (-4 *5 (-146)))) (-1355 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-499)) (-14 *4 (-714)) (-4 *5 (-146)))) (-1354 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146)))) (-1353 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146)))) (-1352 (*1 *2 *1) (-12 (-5 *2 (-599 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-499)) (-14 *4 (-714)) (-4 *5 (-146)))) (-1351 (*1 *1 *2) (-12 (-5 *2 (-599 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-499)) (-14 *4 (-714)))) (-3874 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146))))) -((-2531 (((-108 |#1| |#2| |#4|) (-599 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-4108 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT))) -(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2531 ((-108 |#1| |#2| |#4|) (-599 |#4|) (-108 |#1| |#2| |#3|))) (-15 -4108 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-499) (-714) (-146) (-146)) (T -109)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-499)) (-14 *6 (-714)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2531 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-499)) (-14 *6 (-714)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3668 (((-1075) $) 11 T ELT)) (-3669 (((-1075) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 17 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-110) (-13 (-1023) (-10 -8 (-15 -3669 ((-1075) $)) (-15 -3668 ((-1075) $))))) (T -110)) -((-3669 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-110)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-110))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1459 (((-161) $) 10 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 20 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-599 (-1075)) $) 13 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-111) (-13 (-1023) (-10 -8 (-15 -1459 ((-161) $)) (-15 -3371 ((-599 (-1075)) $))))) (T -111)) -((-1459 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-111))))) -((-2687 (((-85) $ $) NIL T ELT)) (-1457 (((-599 (-799)) $) NIL T ELT)) (-3690 (((-460) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1459 (((-161) $) NIL T ELT)) (-2752 (((-85) $ (-460)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1458 (((-599 (-85)) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (((-157) $) 6 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2639 (((-55) $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-112) (-13 (-160) (-568 (-157)))) (T -112)) -NIL -((-1357 (((-599 (-158 (-112))) $) 13 T ELT)) (-1356 (((-599 (-158 (-112))) $) 14 T ELT)) (-1358 (((-599 (-772)) $) 10 T ELT)) (-1515 (((-112) $) 7 T ELT)) (-4096 (((-797) $) 16 T ELT))) -(((-113) (-13 (-568 (-797)) (-10 -8 (-15 -1515 ((-112) $)) (-15 -1358 ((-599 (-772)) $)) (-15 -1357 ((-599 (-158 (-112))) $)) (-15 -1356 ((-599 (-158 (-112))) $))))) (T -113)) -((-1515 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1358 (*1 *2 *1) (-12 (-5 *2 (-599 (-772))) (-5 *1 (-113)))) (-1357 (*1 *2 *1) (-12 (-5 *2 (-599 (-158 (-112)))) (-5 *1 (-113)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-599 (-158 (-112)))) (-5 *1 (-113))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3567 (($) 17 T CONST)) (-1900 (($) NIL (|has| (-117) (-323)) ELT)) (-3372 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3374 (($ $ $) NIL T ELT)) (-3373 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| (-117) (-323)) ELT)) (-3377 (($) NIL T ELT) (($ (-599 (-117))) NIL T ELT)) (-1603 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT)) (-3545 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-117) $) 55 (|has| $ (-6 -4145)) ELT)) (-3546 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-117) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT)) (-3992 (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -4145)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -4145)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT)) (-3115 (($) NIL (|has| (-117) (-323)) ELT)) (-3010 (((-599 (-117)) $) 64 (|has| $ (-6 -4145)) ELT)) (-3379 (((-85) $ $) NIL T ELT)) (-2650 (((-117) $) NIL (|has| (-117) (-781)) ELT)) (-2727 (((-599 (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-117) $) 27 (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT)) (-2978 (((-117) $) NIL (|has| (-117) (-781)) ELT)) (-2051 (($ (-1 (-117) (-117)) $) 63 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-117) (-117)) $) 59 T ELT)) (-3569 (($) 18 T CONST)) (-2111 (((-857) $) NIL (|has| (-117) (-323)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3376 (($ $ $) 30 T ELT)) (-1308 (((-117) $) 56 T ELT)) (-3757 (($ (-117) $) 54 T ELT)) (-2518 (($ (-857)) NIL (|has| (-117) (-323)) ELT)) (-1361 (($) 16 T CONST)) (-3381 (((-1060) $) NIL T ELT)) (-1387 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1309 (((-117) $) 57 T ELT)) (-2049 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-117)) (-599 (-117))) NIL (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT) (($ $ (-247 (-117))) NIL (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT) (($ $ (-599 (-247 (-117)))) NIL (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) 52 T ELT)) (-1362 (($) 15 T CONST)) (-3375 (($ $ $) 32 T ELT) (($ $ (-117)) NIL T ELT)) (-1499 (($ (-599 (-117))) NIL T ELT) (($) NIL T ELT)) (-2048 (((-714) (-117) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT) (((-714) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-1099) $) 37 T ELT) (((-488) $) NIL (|has| (-117) (-569 (-488))) ELT) (((-599 (-117)) $) 35 T ELT)) (-3670 (($ (-599 (-117))) NIL T ELT)) (-1901 (($ $) 33 (|has| (-117) (-323)) ELT)) (-4096 (((-797) $) 49 T ELT)) (-1363 (($ (-1099)) 14 T ELT) (($ (-599 (-117))) 46 T ELT)) (-1902 (((-714) $) NIL T ELT)) (-3378 (($) 53 T ELT) (($ (-599 (-117))) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-1310 (($ (-599 (-117))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-1359 (($) 21 T CONST)) (-1360 (($) 20 T CONST)) (-3174 (((-85) $ $) 24 T ELT)) (-4107 (((-714) $) 51 (|has| $ (-6 -4145)) ELT))) -(((-114) (-13 (-1041) (-569 (-1099)) (-380 (-117)) (-569 (-599 (-117))) (-10 -8 (-15 -1363 ($ (-1099))) (-15 -1363 ($ (-599 (-117)))) (-15 -1362 ($) -4102) (-15 -1361 ($) -4102) (-15 -3567 ($) -4102) (-15 -3569 ($) -4102) (-15 -1360 ($) -4102) (-15 -1359 ($) -4102)))) (T -114)) -((-1363 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-114)))) (-1363 (*1 *1 *2) (-12 (-5 *2 (-599 (-117))) (-5 *1 (-114)))) (-1362 (*1 *1) (-5 *1 (-114))) (-1361 (*1 *1) (-5 *1 (-114))) (-3567 (*1 *1) (-5 *1 (-114))) (-3569 (*1 *1) (-5 *1 (-114))) (-1360 (*1 *1) (-5 *1 (-114))) (-1359 (*1 *1) (-5 *1 (-114)))) -((-3891 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3889 ((|#1| |#3|) 9 T ELT)) (-3890 ((|#3| |#3|) 15 T ELT))) -(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3889 (|#1| |#3|)) (-15 -3890 (|#3| |#3|)) (-15 -3891 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-510) (-931 |#1|) (-327 |#2|)) (T -115)) -((-3891 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-931 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-327 *5)))) (-3890 (*1 *2 *2) (-12 (-4 *3 (-510)) (-4 *4 (-931 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-327 *4)))) (-3889 (*1 *2 *3) (-12 (-4 *4 (-931 *2)) (-4 *2 (-510)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-327 *4))))) -((-1402 (($ $ $) 8 T ELT)) (-1400 (($ $) 7 T ELT)) (-3224 (($ $ $) 6 T ELT))) -(((-116) (-113)) (T -116)) -((-1402 (*1 *1 *1 *1) (-4 *1 (-116))) (-1400 (*1 *1 *1) (-4 *1 (-116))) (-3224 (*1 *1 *1 *1) (-4 *1 (-116)))) -(-13 (-10 -8 (-15 -3224 ($ $ $)) (-15 -1400 ($ $)) (-15 -1402 ($ $ $)))) -((-2687 (((-85) $ $) NIL T ELT)) (-1371 (($) 30 T CONST)) (-1366 (((-85) $) 42 T ELT)) (-3567 (($ $) 52 T ELT)) (-1378 (($) 23 T CONST)) (-1551 (($) 21 T CONST)) (-3258 (((-714)) 13 T ELT)) (-3115 (($) 20 T ELT)) (-2698 (($) 22 T CONST)) (-1380 (((-714) $) 17 T ELT)) (-1377 (($) 24 T CONST)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1365 (((-85) $) 44 T ELT)) (-3569 (($ $) 53 T ELT)) (-2111 (((-857) $) 18 T ELT)) (-1375 (($) 26 T CONST)) (-3380 (((-1099) $) 50 T ELT)) (-2518 (($ (-857)) 16 T ELT)) (-1372 (($) 29 T CONST)) (-1368 (((-85) $) 40 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1374 (($) 27 T CONST)) (-1370 (($) 31 T CONST)) (-1369 (((-85) $) 38 T ELT)) (-4096 (((-797) $) 33 T ELT)) (-1379 (($ (-714)) 14 T ELT) (($ (-1099)) 51 T ELT)) (-1376 (($) 25 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-1373 (($) 28 T CONST)) (-1364 (((-85) $) 48 T ELT)) (-1367 (((-85) $) 46 T ELT)) (-2685 (((-85) $ $) 11 T ELT)) (-2686 (((-85) $ $) 9 T ELT)) (-3174 (((-85) $ $) 7 T ELT)) (-2805 (((-85) $ $) 10 T ELT)) (-2806 (((-85) $ $) 8 T ELT))) -(((-117) (-13 (-777) (-10 -8 (-15 -1380 ((-714) $)) (-15 -1379 ($ (-714))) (-15 -1379 ($ (-1099))) (-15 -1551 ($) -4102) (-15 -2698 ($) -4102) (-15 -1378 ($) -4102) (-15 -1377 ($) -4102) (-15 -1376 ($) -4102) (-15 -1375 ($) -4102) (-15 -1374 ($) -4102) (-15 -1373 ($) -4102) (-15 -1372 ($) -4102) (-15 -1371 ($) -4102) (-15 -1370 ($) -4102) (-15 -3567 ($ $)) (-15 -3569 ($ $)) (-15 -1369 ((-85) $)) (-15 -1368 ((-85) $)) (-15 -1367 ((-85) $)) (-15 -1366 ((-85) $)) (-15 -1365 ((-85) $)) (-15 -1364 ((-85) $))))) (T -117)) -((-1380 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-117)))) (-1379 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-117)))) (-1379 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-117)))) (-1551 (*1 *1) (-5 *1 (-117))) (-2698 (*1 *1) (-5 *1 (-117))) (-1378 (*1 *1) (-5 *1 (-117))) (-1377 (*1 *1) (-5 *1 (-117))) (-1376 (*1 *1) (-5 *1 (-117))) (-1375 (*1 *1) (-5 *1 (-117))) (-1374 (*1 *1) (-5 *1 (-117))) (-1373 (*1 *1) (-5 *1 (-117))) (-1372 (*1 *1) (-5 *1 (-117))) (-1371 (*1 *1) (-5 *1 (-117))) (-1370 (*1 *1) (-5 *1 (-117))) (-3567 (*1 *1 *1) (-5 *1 (-117))) (-3569 (*1 *1 *1) (-5 *1 (-117))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1368 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1365 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT)) (-2823 (((-649 $) $) 44 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-118) (-113)) (T -118)) -((-2823 (*1 *2 *1) (-12 (-5 *2 (-649 *1)) (-4 *1 (-118))))) -(-13 (-989) (-10 -8 (-15 -2823 ((-649 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-684) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2565 ((|#1| (-647 |#1|) |#1|) 19 T ELT))) -(((-119 |#1|) (-10 -7 (-15 -2565 (|#1| (-647 |#1|) |#1|))) (-146)) (T -119)) -((-2565 (*1 *2 *3 *2) (-12 (-5 *3 (-647 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-120) (-113)) (T -120)) -NIL -(-13 (-989)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-684) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-1383 (((-2 (|:| -2519 (-714)) (|:| -4104 (-361 |#2|)) (|:| |radicand| |#2|)) (-361 |#2|) (-714)) 76 T ELT)) (-1382 (((-3 (-2 (|:| |radicand| (-361 |#2|)) (|:| |deg| (-714))) "failed") |#3|) 56 T ELT)) (-1381 (((-2 (|:| -4104 (-361 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1384 ((|#1| |#3| |#3|) 44 T ELT)) (-3918 ((|#3| |#3| (-361 |#2|) (-361 |#2|)) 20 T ELT)) (-1385 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-361 |#2|)) (|:| |c2| (-361 |#2|)) (|:| |deg| (-714))) |#3| |#3|) 53 T ELT))) -(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1381 ((-2 (|:| -4104 (-361 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1382 ((-3 (-2 (|:| |radicand| (-361 |#2|)) (|:| |deg| (-714))) "failed") |#3|)) (-15 -1383 ((-2 (|:| -2519 (-714)) (|:| -4104 (-361 |#2|)) (|:| |radicand| |#2|)) (-361 |#2|) (-714))) (-15 -1384 (|#1| |#3| |#3|)) (-15 -3918 (|#3| |#3| (-361 |#2|) (-361 |#2|))) (-15 -1385 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-361 |#2|)) (|:| |c2| (-361 |#2|)) (|:| |deg| (-714))) |#3| |#3|))) (-1162) (-1183 |#1|) (-1183 (-361 |#2|))) (T -121)) -((-1385 (*1 *2 *3 *3) (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-361 *5)) (|:| |c2| (-361 *5)) (|:| |deg| (-714)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1183 (-361 *5))))) (-3918 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-361 *5)) (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1183 *3)))) (-1384 (*1 *2 *3 *3) (-12 (-4 *4 (-1183 *2)) (-4 *2 (-1162)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1183 (-361 *4))))) (-1383 (*1 *2 *3 *4) (-12 (-5 *3 (-361 *6)) (-4 *5 (-1162)) (-4 *6 (-1183 *5)) (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-714)) (-4 *7 (-1183 *3)))) (-1382 (*1 *2 *3) (|partial| -12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-5 *2 (-2 (|:| |radicand| (-361 *5)) (|:| |deg| (-714)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1183 (-361 *5))))) (-1381 (*1 *2 *3) (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-5 *2 (-2 (|:| -4104 (-361 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1183 (-361 *5)))))) -((-2825 (((-3 (-599 (-1111 |#2|)) "failed") (-599 (-1111 |#2|)) (-1111 |#2|)) 35 T ELT))) -(((-122 |#1| |#2|) (-10 -7 (-15 -2825 ((-3 (-599 (-1111 |#2|)) "failed") (-599 (-1111 |#2|)) (-1111 |#2|)))) (-498) (-139 |#1|)) (T -122)) -((-2825 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 (-1111 *5))) (-5 *3 (-1111 *5)) (-4 *5 (-139 *4)) (-4 *4 (-498)) (-5 *1 (-122 *4 *5))))) -((-3860 (($ (-1 (-85) |#2|) $) 37 T ELT)) (-1386 (($ $) 44 T ELT)) (-3546 (($ (-1 (-85) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-3992 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1387 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 27 T ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) 18 T ELT) (((-714) |#2| $) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-4107 (((-714) $) 12 T ELT))) -(((-123 |#1| |#2|) (-10 -7 (-15 -1386 (|#1| |#1|)) (-15 -3546 (|#1| |#2| |#1|)) (-15 -3992 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3860 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3546 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3992 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3992 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1387 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -2048 ((-714) |#2| |#1|)) (-15 -2048 ((-714) (-1 (-85) |#2|) |#1|)) (-15 -2049 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -2050 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -4107 ((-714) |#1|))) (-124 |#2|) (-1157)) (T -123)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-1386 (($ $) 45 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -4145)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 52 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 44 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 53 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-124 |#1|) (-113) (-1157)) (T -124)) -((-3670 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-4 *1 (-124 *3)))) (-1387 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1157)))) (-3992 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4145)) (-4 *1 (-124 *2)) (-4 *2 (-1157)))) (-3992 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4145)) (-4 *1 (-124 *2)) (-4 *2 (-1157)))) (-3546 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -4145)) (-4 *1 (-124 *3)) (-4 *3 (-1157)))) (-3860 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -4145)) (-4 *1 (-124 *3)) (-4 *3 (-1157)))) (-3992 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1041)) (|has| *1 (-6 -4145)) (-4 *1 (-124 *2)) (-4 *2 (-1157)))) (-3546 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-124 *2)) (-4 *2 (-1157)) (-4 *2 (-1041)))) (-1386 (*1 *1 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-124 *2)) (-4 *2 (-1157)) (-4 *2 (-1041))))) -(-13 (-443 |t#1|) (-10 -8 (-15 -3670 ($ (-599 |t#1|))) (-15 -1387 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| $ (-6 -4145)) (PROGN (-15 -3992 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3992 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3546 ($ (-1 (-85) |t#1|) $)) (-15 -3860 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1041)) (PROGN (-15 -3992 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3546 ($ |t#1| $)) (-15 -1386 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ #1#) $) 112 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3014 (($ |#2| (-599 (-857))) 71 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1388 (($ (-857)) 57 T ELT)) (-4061 (((-107)) 23 T ELT)) (-4096 (((-797) $) 87 T ELT) (($ (-499)) 53 T ELT) (($ |#2|) 54 T ELT)) (-3827 ((|#2| $ (-599 (-857))) 74 T ELT)) (-3248 (((-714)) 20 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 47 T CONST)) (-2785 (($) 51 T CONST)) (-3174 (((-85) $ $) 33 T ELT)) (-4099 (($ $ |#2|) NIL T ELT)) (-3987 (($ $) 42 T ELT) (($ $ $) 40 T ELT)) (-3989 (($ $ $) 38 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 44 T ELT) (($ $ $) 63 T ELT) (($ |#2| $) 46 T ELT) (($ $ |#2|) NIL T ELT))) -(((-125 |#1| |#2| |#3|) (-13 (-989) (-38 |#2|) (-1215 |#2|) (-10 -8 (-15 -1388 ($ (-857))) (-15 -3014 ($ |#2| (-599 (-857)))) (-15 -3827 (|#2| $ (-599 (-857)))) (-15 -3607 ((-3 $ "failed") $)))) (-857) (-318) (-933 |#1| |#2|)) (T -125)) -((-3607 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-857)) (-4 *3 (-318)) (-14 *4 (-933 *2 *3)))) (-1388 (*1 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-318)) (-14 *5 (-933 *3 *4)))) (-3014 (*1 *1 *2 *3) (-12 (-5 *3 (-599 (-857))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-857)) (-4 *2 (-318)) (-14 *5 (-933 *4 *2)))) (-3827 (*1 *2 *1 *3) (-12 (-5 *3 (-599 (-857))) (-4 *2 (-318)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-857)) (-14 *5 (-933 *4 *2))))) -((-1390 (((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-599 (-599 (-881 (-179)))) (-179) (-179) (-179) (-179)) 59 T ELT)) (-1389 (((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-863) (-361 (-499)) (-361 (-499))) 95 T ELT) (((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-863)) 96 T ELT)) (-1543 (((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-599 (-599 (-881 (-179))))) 99 T ELT) (((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-599 (-881 (-179)))) 98 T ELT) (((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-863) (-361 (-499)) (-361 (-499))) 89 T ELT) (((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-863)) 90 T ELT))) -(((-126) (-10 -7 (-15 -1543 ((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-863))) (-15 -1543 ((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-863) (-361 (-499)) (-361 (-499)))) (-15 -1389 ((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-863))) (-15 -1389 ((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-863) (-361 (-499)) (-361 (-499)))) (-15 -1390 ((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-599 (-599 (-881 (-179)))) (-179) (-179) (-179) (-179))) (-15 -1543 ((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-599 (-881 (-179))))) (-15 -1543 ((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-599 (-599 (-881 (-179)))))))) (T -126)) -((-1543 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) (-5 *1 (-126)) (-5 *3 (-599 (-599 (-881 (-179))))))) (-1543 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) (-5 *1 (-126)) (-5 *3 (-599 (-881 (-179)))))) (-1390 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 (-2 (|:| |brans| (-599 (-599 (-881 *4)))) (|:| |xValues| (-1029 *4)) (|:| |yValues| (-1029 *4)))) (-5 *1 (-126)) (-5 *3 (-599 (-599 (-881 *4)))))) (-1389 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-863)) (-5 *4 (-361 (-499))) (-5 *2 (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) (-5 *1 (-126)))) (-1389 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) (-5 *1 (-126)))) (-1543 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-863)) (-5 *4 (-361 (-499))) (-5 *2 (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) (-5 *1 (-126)))) (-1543 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) (-5 *1 (-126))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3319 (((-599 (-1075)) $) 20 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 27 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-1075) $) 9 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-127) (-13 (-1023) (-10 -8 (-15 -3319 ((-599 (-1075)) $)) (-15 -3371 ((-1075) $))))) (T -127)) -((-3319 (*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-127)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-127))))) -((-1443 (((-599 (-142 |#2|)) |#1| |#2|) 50 T ELT))) -(((-128 |#1| |#2|) (-10 -7 (-15 -1443 ((-599 (-142 |#2|)) |#1| |#2|))) (-1183 (-142 (-499))) (-13 (-318) (-780))) (T -128)) -((-1443 (*1 *2 *3 *4) (-12 (-5 *2 (-599 (-142 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1183 (-142 (-499)))) (-4 *4 (-13 (-318) (-780)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3668 (((-1158) $) 12 T ELT)) (-3669 (((-1075) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 19 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-129) (-13 (-1023) (-10 -8 (-15 -3669 ((-1075) $)) (-15 -3668 ((-1158) $))))) (T -129)) -((-3669 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-129)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-129))))) -((-2687 (((-85) $ $) NIL T ELT)) (-1392 (($) 38 T ELT)) (-3221 (($) 37 T ELT)) (-1391 (((-857)) 43 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3077 (((-499) $) 41 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3220 (($) 39 T ELT)) (-3076 (($ (-499)) 44 T ELT)) (-4096 (((-797) $) 50 T ELT)) (-3219 (($) 40 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 35 T ELT)) (-3989 (($ $ $) 32 T ELT)) (* (($ (-857) $) 42 T ELT) (($ (-179) $) 11 T ELT))) -(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-857) $)) (-15 * ($ (-179) $)) (-15 -3989 ($ $ $)) (-15 -3221 ($)) (-15 -1392 ($)) (-15 -3220 ($)) (-15 -3219 ($)) (-15 -3077 ((-499) $)) (-15 -1391 ((-857))) (-15 -3076 ($ (-499)))))) (T -130)) -((-3989 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) (-3221 (*1 *1) (-5 *1 (-130))) (-1392 (*1 *1) (-5 *1 (-130))) (-3220 (*1 *1) (-5 *1 (-130))) (-3219 (*1 *1) (-5 *1 (-130))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-130)))) (-1391 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-130)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-130))))) -((-1405 ((|#2| |#2| (-1032 |#2|)) 98 T ELT) ((|#2| |#2| (-1117)) 75 T ELT)) (-4094 ((|#2| |#2| (-1032 |#2|)) 97 T ELT) ((|#2| |#2| (-1117)) 74 T ELT)) (-1402 ((|#2| |#2| |#2|) 25 T ELT)) (-3743 (((-86) (-86)) 111 T ELT)) (-1399 ((|#2| (-599 |#2|)) 130 T ELT)) (-1396 ((|#2| (-599 |#2|)) 150 T ELT)) (-1395 ((|#2| (-599 |#2|)) 138 T ELT)) (-1393 ((|#2| |#2|) 136 T ELT)) (-1397 ((|#2| (-599 |#2|)) 124 T ELT)) (-1398 ((|#2| (-599 |#2|)) 125 T ELT)) (-1394 ((|#2| (-599 |#2|)) 148 T ELT)) (-1406 ((|#2| |#2| (-1117)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1400 ((|#2| |#2|) 21 T ELT)) (-3224 ((|#2| |#2| |#2|) 24 T ELT)) (-2355 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) -(((-131 |#1| |#2|) (-10 -7 (-15 -2355 ((-85) (-86))) (-15 -3743 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3224 (|#2| |#2| |#2|)) (-15 -1402 (|#2| |#2| |#2|)) (-15 -1400 (|#2| |#2|)) (-15 -1406 (|#2| |#2|)) (-15 -1406 (|#2| |#2| (-1117))) (-15 -1405 (|#2| |#2| (-1117))) (-15 -1405 (|#2| |#2| (-1032 |#2|))) (-15 -4094 (|#2| |#2| (-1117))) (-15 -4094 (|#2| |#2| (-1032 |#2|))) (-15 -1393 (|#2| |#2|)) (-15 -1394 (|#2| (-599 |#2|))) (-15 -1395 (|#2| (-599 |#2|))) (-15 -1396 (|#2| (-599 |#2|))) (-15 -1397 (|#2| (-599 |#2|))) (-15 -1398 (|#2| (-599 |#2|))) (-15 -1399 (|#2| (-599 |#2|)))) (-510) (-375 |#1|)) (T -131)) -((-1399 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-510)))) (-1398 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-510)))) (-1397 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-510)))) (-1396 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-510)))) (-1395 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-510)))) (-1394 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-510)))) (-1393 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) (-4094 (*1 *2 *2 *3) (-12 (-5 *3 (-1032 *2)) (-4 *2 (-375 *4)) (-4 *4 (-510)) (-5 *1 (-131 *4 *2)))) (-4094 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *1 (-131 *4 *2)) (-4 *2 (-375 *4)))) (-1405 (*1 *2 *2 *3) (-12 (-5 *3 (-1032 *2)) (-4 *2 (-375 *4)) (-4 *4 (-510)) (-5 *1 (-131 *4 *2)))) (-1405 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *1 (-131 *4 *2)) (-4 *2 (-375 *4)))) (-1406 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *1 (-131 *4 *2)) (-4 *2 (-375 *4)))) (-1406 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) (-1400 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) (-1402 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) (-3224 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-131 *3 *4)) (-4 *4 (-375 *3)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-375 *4))))) -((-1404 ((|#1| |#1| |#1|) 66 T ELT)) (-1403 ((|#1| |#1| |#1|) 63 T ELT)) (-1402 ((|#1| |#1| |#1|) 57 T ELT)) (-3011 ((|#1| |#1|) 43 T ELT)) (-1401 ((|#1| |#1| (-599 |#1|)) 55 T ELT)) (-1400 ((|#1| |#1|) 47 T ELT)) (-3224 ((|#1| |#1| |#1|) 51 T ELT))) -(((-132 |#1|) (-10 -7 (-15 -3224 (|#1| |#1| |#1|)) (-15 -1400 (|#1| |#1|)) (-15 -1401 (|#1| |#1| (-599 |#1|))) (-15 -3011 (|#1| |#1|)) (-15 -1402 (|#1| |#1| |#1|)) (-15 -1403 (|#1| |#1| |#1|)) (-15 -1404 (|#1| |#1| |#1|))) (-498)) (T -132)) -((-1404 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498)))) (-1403 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498)))) (-1402 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498)))) (-3011 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498)))) (-1401 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-498)) (-5 *1 (-132 *2)))) (-1400 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498)))) (-3224 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498))))) -((-1405 (($ $ (-1117)) 12 T ELT) (($ $ (-1032 $)) 11 T ELT)) (-4094 (($ $ (-1117)) 10 T ELT) (($ $ (-1032 $)) 9 T ELT)) (-1402 (($ $ $) 8 T ELT)) (-1406 (($ $) 14 T ELT) (($ $ (-1117)) 13 T ELT)) (-1400 (($ $) 7 T ELT)) (-3224 (($ $ $) 6 T ELT))) -(((-133) (-113)) (T -133)) -((-1406 (*1 *1 *1) (-4 *1 (-133))) (-1406 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1117)))) (-1405 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1117)))) (-1405 (*1 *1 *1 *2) (-12 (-5 *2 (-1032 *1)) (-4 *1 (-133)))) (-4094 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1117)))) (-4094 (*1 *1 *1 *2) (-12 (-5 *2 (-1032 *1)) (-4 *1 (-133))))) -(-13 (-116) (-10 -8 (-15 -1406 ($ $)) (-15 -1406 ($ $ (-1117))) (-15 -1405 ($ $ (-1117))) (-15 -1405 ($ $ (-1032 $))) (-15 -4094 ($ $ (-1117))) (-15 -4094 ($ $ (-1032 $))))) -(((-116) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-1407 (($ (-499)) 15 T ELT) (($ $ $) 16 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 19 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 11 T ELT))) -(((-134) (-13 (-1041) (-10 -8 (-15 -1407 ($ (-499))) (-15 -1407 ($ $ $))))) (T -134)) -((-1407 (*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-134)))) (-1407 (*1 *1 *1 *1) (-5 *1 (-134)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 16 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-599 (-1075)) $) 10 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-135) (-13 (-1023) (-10 -8 (-15 -3371 ((-599 (-1075)) $))))) (T -135)) -((-3371 (*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-135))))) -((-3743 (((-86) (-1117)) 103 T ELT))) -(((-136) (-10 -7 (-15 -3743 ((-86) (-1117))))) (T -136)) -((-3743 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-86)) (-5 *1 (-136))))) -((-1628 ((|#3| |#3|) 19 T ELT))) -(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1628 (|#3| |#3|))) (-989) (-1183 |#1|) (-1183 |#2|)) (T -137)) -((-1628 (*1 *2 *2) (-12 (-4 *3 (-989)) (-4 *4 (-1183 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1183 *4))))) -((-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 222 T ELT)) (-3470 ((|#2| $) 102 T ELT)) (-3632 (($ $) 255 T ELT)) (-3789 (($ $) 249 T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1="failed") (-599 (-1111 $)) (-1111 $)) 47 T ELT)) (-3630 (($ $) 253 T ELT)) (-3788 (($ $) 247 T ELT)) (-3295 (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3294 (((-499) $) NIL T ELT) (((-361 (-499)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2683 (($ $ $) 228 T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) 160 T ELT) (((-647 |#2|) (-647 $)) 154 T ELT)) (-3992 (($ (-1111 |#2|)) 125 T ELT) (((-3 $ #1#) (-361 (-1111 |#2|))) NIL T ELT)) (-3607 (((-3 $ #1#) $) 213 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) 203 T ELT)) (-3144 (((-85) $) 198 T ELT)) (-3143 (((-361 (-499)) $) 201 T ELT)) (-3231 (((-857)) 96 T ELT)) (-2682 (($ $ $) 230 T ELT)) (-1408 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3777 (($) 244 T ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 192 T ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 197 T ELT)) (-3254 ((|#2| $) 100 T ELT)) (-2115 (((-1111 |#2|) $) 127 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-4092 (($ $) 246 T ELT)) (-3200 (((-1111 |#2|) $) 126 T ELT)) (-2601 (($ $) 206 T ELT)) (-1410 (($) 103 T ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 95 T ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 64 T ELT)) (-3606 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-4093 (($ $) 245 T ELT)) (-1677 (((-714) $) 225 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 234 T ELT)) (-3907 ((|#2| (-1207 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3908 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-3323 (((-1111 |#2|)) 120 T ELT)) (-3631 (($ $) 254 T ELT)) (-3784 (($ $) 248 T ELT)) (-3362 (((-1207 |#2|) $ (-1207 $)) 136 T ELT) (((-647 |#2|) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 |#2|) $) 116 T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-4122 (((-1207 |#2|) $) NIL T ELT) (($ (-1207 |#2|)) NIL T ELT) (((-1111 |#2|) $) NIL T ELT) (($ (-1111 |#2|)) NIL T ELT) (((-825 (-499)) $) 183 T ELT) (((-825 (-333)) $) 187 T ELT) (((-142 (-333)) $) 172 T ELT) (((-142 (-179)) $) 167 T ELT) (((-488) $) 179 T ELT)) (-3130 (($ $) 104 T ELT)) (-4096 (((-797) $) 143 T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ $) NIL T ELT)) (-2565 (((-1111 |#2|) $) 32 T ELT)) (-3248 (((-714)) 106 T ELT)) (-1297 (((-85) $ $) 13 T ELT)) (-3638 (($ $) 258 T ELT)) (-3626 (($ $) 252 T ELT)) (-3636 (($ $) 256 T ELT)) (-3624 (($ $) 250 T ELT)) (-2337 ((|#2| $) 241 T ELT)) (-3637 (($ $) 257 T ELT)) (-3625 (($ $) 251 T ELT)) (-3523 (($ $) 162 T ELT)) (-3174 (((-85) $ $) 110 T ELT)) (-3987 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 111 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-361 (-499))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT))) -(((-138 |#1| |#2|) (-10 -7 (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -4096 (|#1| |#1|)) (-15 -3606 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2165 ((-2 (|:| -1870 |#1|) (|:| -4132 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1677 ((-714) |#1|)) (-15 -3000 ((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|)) (-15 -2682 (|#1| |#1| |#1|)) (-15 -2683 (|#1| |#1| |#1|)) (-15 -2601 (|#1| |#1|)) (-15 ** (|#1| |#1| (-499))) (-15 * (|#1| |#1| (-361 (-499)))) (-15 * (|#1| (-361 (-499)) |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -4122 ((-488) |#1|)) (-15 -4122 ((-142 (-179)) |#1|)) (-15 -4122 ((-142 (-333)) |#1|)) (-15 -3789 (|#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3784 (|#1| |#1|)) (-15 -3625 (|#1| |#1|)) (-15 -3624 (|#1| |#1|)) (-15 -3626 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -4092 (|#1| |#1|)) (-15 -4093 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3777 (|#1|)) (-15 ** (|#1| |#1| (-361 (-499)))) (-15 -2827 ((-359 (-1111 |#1|)) (-1111 |#1|))) (-15 -2826 ((-359 (-1111 |#1|)) (-1111 |#1|))) (-15 -2825 ((-3 (-599 (-1111 |#1|)) #1#) (-599 (-1111 |#1|)) (-1111 |#1|))) (-15 -3145 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3143 ((-361 (-499)) |#1|)) (-15 -3144 ((-85) |#1|)) (-15 -1408 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2337 (|#2| |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3606 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3130 (|#1| |#1|)) (-15 -1410 (|#1|)) (-15 -4122 ((-825 (-333)) |#1|)) (-15 -4122 ((-825 (-499)) |#1|)) (-15 -2917 ((-823 (-333) |#1|) |#1| (-825 (-333)) (-823 (-333) |#1|))) (-15 -2917 ((-823 (-499) |#1|) |#1| (-825 (-499)) (-823 (-499) |#1|))) (-15 -4108 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|) (-714))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3992 ((-3 |#1| #1#) (-361 (-1111 |#2|)))) (-15 -3200 ((-1111 |#2|) |#1|)) (-15 -4122 (|#1| (-1111 |#2|))) (-15 -3992 (|#1| (-1111 |#2|))) (-15 -3323 ((-1111 |#2|))) (-15 -2380 ((-647 |#2|) (-647 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-647 (-499)) (-647 |#1|))) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -4122 ((-1111 |#2|) |#1|)) (-15 -3907 (|#2|)) (-15 -4122 (|#1| (-1207 |#2|))) (-15 -4122 ((-1207 |#2|) |#1|)) (-15 -3362 ((-647 |#2|) (-1207 |#1|))) (-15 -3362 ((-1207 |#2|) |#1|)) (-15 -2115 ((-1111 |#2|) |#1|)) (-15 -2565 ((-1111 |#2|) |#1|)) (-15 -3907 (|#2| (-1207 |#1|))) (-15 -3362 ((-647 |#2|) (-1207 |#1|) (-1207 |#1|))) (-15 -3362 ((-1207 |#2|) |#1| (-1207 |#1|))) (-15 -3254 (|#2| |#1|)) (-15 -3470 (|#2| |#1|)) (-15 -3231 ((-857))) (-15 -4096 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3248 ((-714))) (-15 -4096 (|#1| (-499))) (-15 ** (|#1| |#1| (-714))) (-15 -3607 ((-3 |#1| #1#) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-857))) (-15 -3987 (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 * (|#1| (-857) |#1|)) (-15 -3989 (|#1| |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -1297 ((-85) |#1| |#1|)) (-15 -3174 ((-85) |#1| |#1|))) (-139 |#2|) (-146)) (T -138)) -((-3248 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-714)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3231 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-857)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3907 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) (-3323 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1111 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 111 (-3677 (|has| |#1| (-510)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT)) (-2164 (($ $) 112 (-3677 (|has| |#1| (-510)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT)) (-2162 (((-85) $) 114 (-3677 (|has| |#1| (-510)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT)) (-1880 (((-647 |#1|) (-1207 $)) 58 T ELT) (((-647 |#1|)) 74 T ELT)) (-3470 ((|#1| $) 64 T ELT)) (-3632 (($ $) 247 (|has| |#1| (-1143)) ELT)) (-3789 (($ $) 230 (|has| |#1| (-1143)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) 164 (|has| |#1| (-305)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 261 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) ELT)) (-3925 (($ $) 131 (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-318))) ELT)) (-4121 (((-359 $) $) 132 (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-318))) ELT)) (-3158 (($ $) 260 (-12 (|has| |#1| (-942)) (|has| |#1| (-1143))) ELT)) (-2825 (((-3 (-599 (-1111 $)) "failed") (-599 (-1111 $)) (-1111 $)) 264 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) ELT)) (-1678 (((-85) $ $) 122 (|has| |#1| (-261)) ELT)) (-3258 (((-714)) 105 (|has| |#1| (-323)) ELT)) (-3630 (($ $) 246 (|has| |#1| (-1143)) ELT)) (-3788 (($ $) 231 (|has| |#1| (-1143)) ELT)) (-3634 (($ $) 245 (|has| |#1| (-1143)) ELT)) (-3787 (($ $) 232 (|has| |#1| (-1143)) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 (-499) #1="failed") $) 191 (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) 189 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3294 (((-499) $) 190 (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) 188 (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 187 T ELT)) (-1890 (($ (-1207 |#1|) (-1207 $)) 60 T ELT) (($ (-1207 |#1|)) 77 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-305)) ELT)) (-2683 (($ $ $) 126 (|has| |#1| (-261)) ELT)) (-1879 (((-647 |#1|) $ (-1207 $)) 65 T ELT) (((-647 |#1|) $) 72 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 183 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 182 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 181 T ELT) (((-647 |#1|) (-647 $)) 180 T ELT)) (-3992 (($ (-1111 |#1|)) 175 T ELT) (((-3 $ "failed") (-361 (-1111 |#1|))) 172 (|has| |#1| (-318)) ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3793 ((|#1| $) 272 T ELT)) (-3145 (((-3 (-361 (-499)) "failed") $) 265 (|has| |#1| (-498)) ELT)) (-3144 (((-85) $) 267 (|has| |#1| (-498)) ELT)) (-3143 (((-361 (-499)) $) 266 (|has| |#1| (-498)) ELT)) (-3231 (((-857)) 66 T ELT)) (-3115 (($) 108 (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) 125 (|has| |#1| (-261)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 120 (|has| |#1| (-261)) ELT)) (-2954 (($) 166 (|has| |#1| (-305)) ELT)) (-1773 (((-85) $) 167 (|has| |#1| (-305)) ELT)) (-1864 (($ $ (-714)) 158 (|has| |#1| (-305)) ELT) (($ $) 157 (|has| |#1| (-305)) ELT)) (-3873 (((-85) $) 133 (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-318))) ELT)) (-1408 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 268 (-12 (|has| |#1| (-1000)) (|has| |#1| (-1143))) ELT)) (-3777 (($) 257 (|has| |#1| (-1143)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 280 (|has| |#1| (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 279 (|has| |#1| (-821 (-333))) ELT)) (-3922 (((-857) $) 169 (|has| |#1| (-305)) ELT) (((-766 (-857)) $) 155 (|has| |#1| (-305)) ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 259 (-12 (|has| |#1| (-942)) (|has| |#1| (-1143))) ELT)) (-3254 ((|#1| $) 63 T ELT)) (-3585 (((-649 $) $) 159 (|has| |#1| (-305)) ELT)) (-1675 (((-3 (-599 $) #2="failed") (-599 $) $) 129 (|has| |#1| (-261)) ELT)) (-2115 (((-1111 |#1|) $) 56 (|has| |#1| (-318)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 281 T ELT)) (-2111 (((-857) $) 107 (|has| |#1| (-323)) ELT)) (-4092 (($ $) 254 (|has| |#1| (-1143)) ELT)) (-3200 (((-1111 |#1|) $) 173 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 185 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 184 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 179 T ELT) (((-647 |#1|) (-1207 $)) 178 T ELT)) (-1993 (($ (-599 $)) 118 (-3677 (|has| |#1| (-261)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT) (($ $ $) 117 (-3677 (|has| |#1| (-261)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 134 (|has| |#1| (-318)) ELT)) (-3586 (($) 160 (|has| |#1| (-305)) CONST)) (-2518 (($ (-857)) 106 (|has| |#1| (-323)) ELT)) (-1410 (($) 276 T ELT)) (-3794 ((|#1| $) 273 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2527 (($) 177 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 119 (-3677 (|has| |#1| (-261)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT)) (-3282 (($ (-599 $)) 116 (-3677 (|has| |#1| (-261)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT) (($ $ $) 115 (-3677 (|has| |#1| (-261)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) 163 (|has| |#1| (-305)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 263 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 262 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) ELT)) (-3882 (((-359 $) $) 130 (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-318))) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-261)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 127 (|has| |#1| (-261)) ELT)) (-3606 (((-3 $ "failed") $ |#1|) 271 (|has| |#1| (-510)) ELT) (((-3 $ "failed") $ $) 110 (-3677 (|has| |#1| (-510)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 121 (|has| |#1| (-261)) ELT)) (-4093 (($ $) 255 (|has| |#1| (-1143)) ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) 287 (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) 286 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) 285 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-247 |#1|))) 284 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) 283 (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) |#1|) 282 (|has| |#1| (-468 (-1117) |#1|)) ELT)) (-1677 (((-714) $) 123 (|has| |#1| (-261)) ELT)) (-3950 (($ $ |#1|) 288 (|has| |#1| (-240 |#1| |#1|)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 124 (|has| |#1| (-261)) ELT)) (-3907 ((|#1| (-1207 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1865 (((-714) $) 168 (|has| |#1| (-305)) ELT) (((-3 (-714) "failed") $ $) 156 (|has| |#1| (-305)) ELT)) (-3908 (($ $ (-1 |#1| |#1|)) 142 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 141 T ELT) (($ $ (-599 (-1117)) (-599 (-714))) 147 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117) (-714)) 146 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-599 (-1117))) 145 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117)) 143 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-714)) 153 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-189))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2681 (|has| |#1| (-189)) (|has| |#1| (-318)))) ELT) (($ $) 151 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-189))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2681 (|has| |#1| (-189)) (|has| |#1| (-318)))) ELT)) (-2526 (((-647 |#1|) (-1207 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-318)) ELT)) (-3323 (((-1111 |#1|)) 176 T ELT)) (-3635 (($ $) 244 (|has| |#1| (-1143)) ELT)) (-3786 (($ $) 233 (|has| |#1| (-1143)) ELT)) (-1767 (($) 165 (|has| |#1| (-305)) ELT)) (-3633 (($ $) 243 (|has| |#1| (-1143)) ELT)) (-3785 (($ $) 234 (|has| |#1| (-1143)) ELT)) (-3631 (($ $) 242 (|has| |#1| (-1143)) ELT)) (-3784 (($ $) 235 (|has| |#1| (-1143)) ELT)) (-3362 (((-1207 |#1|) $ (-1207 $)) 62 T ELT) (((-647 |#1|) (-1207 $) (-1207 $)) 61 T ELT) (((-1207 |#1|) $) 79 T ELT) (((-647 |#1|) (-1207 $)) 78 T ELT)) (-4122 (((-1207 |#1|) $) 76 T ELT) (($ (-1207 |#1|)) 75 T ELT) (((-1111 |#1|) $) 192 T ELT) (($ (-1111 |#1|)) 174 T ELT) (((-825 (-499)) $) 278 (|has| |#1| (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) 277 (|has| |#1| (-569 (-825 (-333)))) ELT) (((-142 (-333)) $) 229 (|has| |#1| (-960)) ELT) (((-142 (-179)) $) 228 (|has| |#1| (-960)) ELT) (((-488) $) 227 (|has| |#1| (-569 (-488))) ELT)) (-3130 (($ $) 275 T ELT)) (-2824 (((-3 (-1207 $) "failed") (-647 $)) 162 (-3677 (-2681 (|has| $ (-118)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) (|has| |#1| (-305))) ELT)) (-1409 (($ |#1| |#1|) 274 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-361 (-499))) 104 (-3677 (|has| |#1| (-318)) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) 109 (-3677 (|has| |#1| (-510)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT)) (-2823 (($ $) 161 (|has| |#1| (-305)) ELT) (((-649 $) $) 55 (-3677 (-2681 (|has| $ (-118)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) (|has| |#1| (-118))) ELT)) (-2565 (((-1111 |#1|) $) 57 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2113 (((-1207 $)) 80 T ELT)) (-3638 (($ $) 253 (|has| |#1| (-1143)) ELT)) (-3626 (($ $) 241 (|has| |#1| (-1143)) ELT)) (-2163 (((-85) $ $) 113 (-3677 (|has| |#1| (-510)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT)) (-3636 (($ $) 252 (|has| |#1| (-1143)) ELT)) (-3624 (($ $) 240 (|has| |#1| (-1143)) ELT)) (-3640 (($ $) 251 (|has| |#1| (-1143)) ELT)) (-3628 (($ $) 239 (|has| |#1| (-1143)) ELT)) (-2337 ((|#1| $) 269 (|has| |#1| (-1143)) ELT)) (-3641 (($ $) 250 (|has| |#1| (-1143)) ELT)) (-3629 (($ $) 238 (|has| |#1| (-1143)) ELT)) (-3639 (($ $) 249 (|has| |#1| (-1143)) ELT)) (-3627 (($ $) 237 (|has| |#1| (-1143)) ELT)) (-3637 (($ $) 248 (|has| |#1| (-1143)) ELT)) (-3625 (($ $) 236 (|has| |#1| (-1143)) ELT)) (-3523 (($ $) 270 (|has| |#1| (-1000)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1 |#1| |#1|)) 140 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 139 T ELT) (($ $ (-599 (-1117)) (-599 (-714))) 150 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117) (-714)) 149 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-599 (-1117))) 148 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117)) 144 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-714)) 154 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-189))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2681 (|has| |#1| (-189)) (|has| |#1| (-318)))) ELT) (($ $) 152 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-189))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2681 (|has| |#1| (-189)) (|has| |#1| (-318)))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 138 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-361 (-499))) 258 (-12 (|has| |#1| (-942)) (|has| |#1| (-1143))) ELT) (($ $ $) 256 (|has| |#1| (-1143)) ELT) (($ $ (-499)) 135 (|has| |#1| (-318)) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-361 (-499)) $) 137 (|has| |#1| (-318)) ELT) (($ $ (-361 (-499))) 136 (|has| |#1| (-318)) ELT))) -(((-139 |#1|) (-113) (-146)) (T -139)) -((-3254 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1410 (*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3130 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1409 (*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3606 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-510)))) (-3523 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1000)))) (-2337 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1143)))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-1000)) (-4 *3 (-1143)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3144 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-85)))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-361 (-499))))) (-3145 (*1 *2 *1) (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-361 (-499)))))) -(-13 (-682 |t#1| (-1111 |t#1|)) (-366 |t#1|) (-184 |t#1|) (-293 |t#1|) (-354 |t#1|) (-819 |t#1|) (-332 |t#1|) (-146) (-10 -8 (-6 -1409) (-15 -1410 ($)) (-15 -3130 ($ $)) (-15 -1409 ($ |t#1| |t#1|)) (-15 -3794 (|t#1| $)) (-15 -3793 (|t#1| $)) (-15 -3254 (|t#1| $)) (IF (|has| |t#1| (-510)) (PROGN (-6 (-510)) (-15 -3606 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-261)) (-6 (-261)) |%noBranch|) (IF (|has| |t#1| (-6 -4144)) (-6 -4144) |%noBranch|) (IF (|has| |t#1| (-6 -4141)) (-6 -4141) |%noBranch|) (IF (|has| |t#1| (-318)) (-6 (-318)) |%noBranch|) (IF (|has| |t#1| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-960)) (PROGN (-6 (-569 (-142 (-179)))) (-6 (-569 (-142 (-333))))) |%noBranch|) (IF (|has| |t#1| (-1000)) (-15 -3523 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1143)) (PROGN (-6 (-1143)) (-15 -2337 (|t#1| $)) (IF (|has| |t#1| (-942)) (-6 (-942)) |%noBranch|) (IF (|has| |t#1| (-1000)) (-15 -1408 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-498)) (PROGN (-15 -3144 ((-85) $)) (-15 -3143 ((-361 (-499)) $)) (-15 -3145 ((-3 (-361 (-499)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-848)) (IF (|has| |t#1| (-261)) (-6 (-848)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-38 |#1|) . T) ((-38 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-305)) (|has| |#1| (-318)) (|has| |#1| (-261))) ((-35) |has| |#1| (-1143)) ((-66) |has| |#1| (-1143)) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) -3677 (|has| |#1| (-305)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-305)) (|has| |#1| (-318))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-571 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-305)) (|has| |#1| (-318)) (|has| |#1| (-261))) ((-568 (-797)) . T) ((-146) . T) ((-569 (-142 (-179))) |has| |#1| (-960)) ((-569 (-142 (-333))) |has| |#1| (-960)) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-569 (-825 (-333))) |has| |#1| (-569 (-825 (-333)))) ((-569 (-825 (-499))) |has| |#1| (-569 (-825 (-499)))) ((-569 (-1111 |#1|)) . T) ((-186 $) -3677 (|has| |#1| (-305)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) -3677 (|has| |#1| (-305)) (|has| |#1| (-190))) ((-189) -3677 (|has| |#1| (-305)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-224 |#1|) . T) ((-200) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-238) |has| |#1| (-1143)) ((-240 |#1| $) |has| |#1| (-240 |#1| |#1|)) ((-244) -3677 (|has| |#1| (-510)) (|has| |#1| (-305)) (|has| |#1| (-318)) (|has| |#1| (-261))) ((-261) -3677 (|has| |#1| (-305)) (|has| |#1| (-318)) (|has| |#1| (-261))) ((-263 |#1|) |has| |#1| (-263 |#1|)) ((-318) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-356) |has| |#1| (-305)) ((-323) -3677 (|has| |#1| (-305)) (|has| |#1| (-323))) ((-305) |has| |#1| (-305)) ((-325 |#1| (-1111 |#1|)) . T) ((-364 |#1| (-1111 |#1|)) . T) ((-293 |#1|) . T) ((-332 |#1|) . T) ((-354 |#1|) . T) ((-366 |#1|) . T) ((-406) -3677 (|has| |#1| (-305)) (|has| |#1| (-318)) (|has| |#1| (-261))) ((-447) |has| |#1| (-1143)) ((-468 (-1117) |#1|) |has| |#1| (-468 (-1117) |#1|)) ((-468 |#1| |#1|) |has| |#1| (-263 |#1|)) ((-510) -3677 (|has| |#1| (-510)) (|has| |#1| (-305)) (|has| |#1| (-318)) (|has| |#1| (-261))) ((-604 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-606 (-499)) |has| |#1| (-596 (-499))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-598 |#1|) . T) ((-598 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-305)) (|has| |#1| (-318)) (|has| |#1| (-261))) ((-596 (-499)) |has| |#1| (-596 (-499))) ((-596 |#1|) . T) ((-675 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-675 |#1|) . T) ((-675 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-305)) (|has| |#1| (-318)) (|has| |#1| (-261))) ((-682 |#1| (-1111 |#1|)) . T) ((-684) . T) ((-831 $ (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-836 (-1117)) |has| |#1| (-836 (-1117))) ((-838 (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-821 (-333)) |has| |#1| (-821 (-333))) ((-821 (-499)) |has| |#1| (-821 (-499))) ((-819 |#1|) . T) ((-848) -12 (|has| |#1| (-261)) (|has| |#1| (-848))) ((-859) -3677 (|has| |#1| (-305)) (|has| |#1| (-318)) (|has| |#1| (-261))) ((-942) -12 (|has| |#1| (-942)) (|has| |#1| (-1143))) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-991 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-991 |#1|) . T) ((-991 $) . T) ((-996 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-996 |#1|) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1092) |has| |#1| (-305)) ((-1143) |has| |#1| (-1143)) ((-1146) |has| |#1| (-1143)) ((-1157) . T) ((-1162) -3677 (|has| |#1| (-305)) (|has| |#1| (-318)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848))))) -((-3882 (((-359 |#2|) |#2|) 67 T ELT))) -(((-140 |#1| |#2|) (-10 -7 (-15 -3882 ((-359 |#2|) |#2|))) (-261) (-1183 (-142 |#1|))) (T -140)) -((-3882 (*1 *2 *3) (-12 (-4 *4 (-261)) (-5 *2 (-359 *3)) (-5 *1 (-140 *4 *3)) (-4 *3 (-1183 (-142 *4)))))) -((-1413 (((-1075) (-1075) (-245)) 8 T ELT)) (-1411 (((-599 (-649 (-234))) (-1099)) 81 T ELT)) (-1412 (((-649 (-234)) (-1075)) 76 T ELT))) -(((-141) (-13 (-1157) (-10 -7 (-15 -1413 ((-1075) (-1075) (-245))) (-15 -1412 ((-649 (-234)) (-1075))) (-15 -1411 ((-599 (-649 (-234))) (-1099)))))) (T -141)) -((-1413 (*1 *2 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-245)) (-5 *1 (-141)))) (-1412 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-649 (-234))) (-5 *1 (-141)))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-599 (-649 (-234)))) (-5 *1 (-141))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 15 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-510))) ELT)) (-2164 (($ $) NIL (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-510))) ELT)) (-2162 (((-85) $) NIL (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-510))) ELT)) (-1880 (((-647 |#1|) (-1207 $)) NIL T ELT) (((-647 |#1|)) NIL T ELT)) (-3470 ((|#1| $) NIL T ELT)) (-3632 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3789 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| |#1| (-305)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) ELT)) (-3925 (($ $) NIL (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-318))) ELT)) (-4121 (((-359 $) $) NIL (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-318))) ELT)) (-3158 (($ $) NIL (-12 (|has| |#1| (-942)) (|has| |#1| (-1143))) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-261)) ELT)) (-3258 (((-714)) NIL (|has| |#1| (-323)) ELT)) (-3630 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3788 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3634 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3787 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT)) (-1890 (($ (-1207 |#1|) (-1207 $)) NIL T ELT) (($ (-1207 |#1|)) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-305)) ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-261)) ELT)) (-1879 (((-647 |#1|) $ (-1207 $)) NIL T ELT) (((-647 |#1|) $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3992 (($ (-1111 |#1|)) NIL T ELT) (((-3 $ #1#) (-361 (-1111 |#1|))) NIL (|has| |#1| (-318)) ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3793 ((|#1| $) 20 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-498)) ELT)) (-3144 (((-85) $) NIL (|has| |#1| (-498)) ELT)) (-3143 (((-361 (-499)) $) NIL (|has| |#1| (-498)) ELT)) (-3231 (((-857)) NIL T ELT)) (-3115 (($) NIL (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-261)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-261)) ELT)) (-2954 (($) NIL (|has| |#1| (-305)) ELT)) (-1773 (((-85) $) NIL (|has| |#1| (-305)) ELT)) (-1864 (($ $ (-714)) NIL (|has| |#1| (-305)) ELT) (($ $) NIL (|has| |#1| (-305)) ELT)) (-3873 (((-85) $) NIL (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-318))) ELT)) (-1408 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1143))) ELT)) (-3777 (($) NIL (|has| |#1| (-1143)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| |#1| (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| |#1| (-821 (-333))) ELT)) (-3922 (((-857) $) NIL (|has| |#1| (-305)) ELT) (((-766 (-857)) $) NIL (|has| |#1| (-305)) ELT)) (-2528 (((-85) $) 17 T ELT)) (-3132 (($ $ (-499)) NIL (-12 (|has| |#1| (-942)) (|has| |#1| (-1143))) ELT)) (-3254 ((|#1| $) 30 T ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-305)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-261)) ELT)) (-2115 (((-1111 |#1|) $) NIL (|has| |#1| (-318)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| |#1| (-323)) ELT)) (-4092 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3200 (((-1111 |#1|) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-261)) ELT) (($ $ $) NIL (|has| |#1| (-261)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3586 (($) NIL (|has| |#1| (-305)) CONST)) (-2518 (($ (-857)) NIL (|has| |#1| (-323)) ELT)) (-1410 (($) NIL T ELT)) (-3794 ((|#1| $) 21 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-261)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-261)) ELT) (($ $ $) NIL (|has| |#1| (-261)) ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| |#1| (-305)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) ELT)) (-3882 (((-359 $) $) NIL (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-318))) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-261)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-261)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) 31 (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-510))) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-261)) ELT)) (-4093 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-247 |#1|))) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) NIL (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) |#1|) NIL (|has| |#1| (-468 (-1117) |#1|)) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-261)) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-240 |#1| |#1|)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-261)) ELT)) (-3907 ((|#1| (-1207 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1865 (((-714) $) NIL (|has| |#1| (-305)) ELT) (((-3 (-714) #1#) $ $) NIL (|has| |#1| (-305)) ELT)) (-3908 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| |#1| (-190)) (|has| |#1| (-318))) (|has| |#1| (-189))) ELT) (($ $) NIL (-3677 (-12 (|has| |#1| (-190)) (|has| |#1| (-318))) (|has| |#1| (-189))) ELT)) (-2526 (((-647 |#1|) (-1207 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-318)) ELT)) (-3323 (((-1111 |#1|)) NIL T ELT)) (-3635 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3786 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-1767 (($) NIL (|has| |#1| (-305)) ELT)) (-3633 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3785 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3631 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3784 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3362 (((-1207 |#1|) $ (-1207 $)) NIL T ELT) (((-647 |#1|) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 |#1|) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-4122 (((-1207 |#1|) $) NIL T ELT) (($ (-1207 |#1|)) NIL T ELT) (((-1111 |#1|) $) NIL T ELT) (($ (-1111 |#1|)) NIL T ELT) (((-825 (-499)) $) NIL (|has| |#1| (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| |#1| (-569 (-825 (-333)))) ELT) (((-142 (-333)) $) NIL (|has| |#1| (-960)) ELT) (((-142 (-179)) $) NIL (|has| |#1| (-960)) ELT) (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3130 (($ $) 29 T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-305))) ELT)) (-1409 (($ |#1| |#1|) 19 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-318)) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) NIL (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-510))) ELT)) (-2823 (($ $) NIL (|has| |#1| (-305)) ELT) (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-2565 (((-1111 |#1|) $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT)) (-3638 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3626 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-2163 (((-85) $ $) NIL (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-510))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3624 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3640 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3628 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-2337 ((|#1| $) NIL (|has| |#1| (-1143)) ELT)) (-3641 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3629 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3639 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3627 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3637 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3625 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3523 (($ $) NIL (|has| |#1| (-1000)) ELT)) (-2779 (($) 8 T CONST)) (-2785 (($) 10 T CONST)) (-2790 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| |#1| (-190)) (|has| |#1| (-318))) (|has| |#1| (-189))) ELT) (($ $) NIL (-3677 (-12 (|has| |#1| (-190)) (|has| |#1| (-318))) (|has| |#1| (-189))) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 23 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-361 (-499))) NIL (-12 (|has| |#1| (-942)) (|has| |#1| (-1143))) ELT) (($ $ $) NIL (|has| |#1| (-1143)) ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-318)) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-318)) ELT))) -(((-142 |#1|) (-139 |#1|) (-146)) (T -142)) -NIL -((-4108 (((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)) 14 T ELT))) -(((-143 |#1| |#2|) (-10 -7 (-15 -4108 ((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)))) (-146) (-146)) (T -143)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6))))) -((-4122 (((-825 |#1|) |#3|) 22 T ELT))) -(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -4122 ((-825 |#1|) |#3|))) (-1041) (-13 (-569 (-825 |#1|)) (-146)) (-139 |#2|)) (T -144)) -((-4122 (*1 *2 *3) (-12 (-4 *5 (-13 (-569 *2) (-146))) (-5 *2 (-825 *4)) (-5 *1 (-144 *4 *5 *3)) (-4 *4 (-1041)) (-4 *3 (-139 *5))))) -((-2687 (((-85) $ $) NIL T ELT)) (-1415 (((-85) $) 9 T ELT)) (-1414 (((-85) $ (-85)) 11 T ELT)) (-3764 (($) 13 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3540 (($ $) 14 T ELT)) (-4096 (((-797) $) 18 T ELT)) (-3852 (((-85) $) 8 T ELT)) (-4011 (((-85) $ (-85)) 10 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-145) (-13 (-1041) (-10 -8 (-15 -3764 ($)) (-15 -3852 ((-85) $)) (-15 -1415 ((-85) $)) (-15 -4011 ((-85) $ (-85))) (-15 -1414 ((-85) $ (-85))) (-15 -3540 ($ $))))) (T -145)) -((-3764 (*1 *1) (-5 *1 (-145))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1415 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-4011 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1414 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3540 (*1 *1 *1) (-5 *1 (-145)))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-146) (-113)) (T -146)) -NIL -(-13 (-989) (-82 $ $) (-10 -7 (-6 (-4147 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-684) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-1793 (($ $) 6 T ELT))) -(((-147) (-113)) (T -147)) -((-1793 (*1 *1 *1) (-4 *1 (-147)))) -(-13 (-10 -8 (-15 -1793 ($ $)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 ((|#1| $) 79 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2683 (($ $ $) NIL T ELT)) (-1420 (($ $) 21 T ELT)) (-1424 (($ |#1| (-1095 |#1|)) 48 T ELT)) (-3607 (((-3 $ #1#) $) 123 T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-1421 (((-1095 |#1|) $) 86 T ELT)) (-1423 (((-1095 |#1|) $) 83 T ELT)) (-1422 (((-1095 |#1|) $) 84 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1417 (((-1095 |#1|) $) 93 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-1993 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT)) (-3919 (($ $ (-499)) 96 T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1416 (((-1095 |#1|) $) 94 T ELT)) (-1418 (((-1095 (-361 |#1|)) $) 14 T ELT)) (-2735 (($ (-361 |#1|)) 17 T ELT) (($ |#1| (-1095 |#1|) (-1095 |#1|)) 38 T ELT)) (-3012 (($ $) 98 T ELT)) (-4096 (((-797) $) 139 T ELT) (($ (-499)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-361 |#1|)) 36 T ELT) (($ (-361 (-499))) NIL T ELT) (($ $) NIL T ELT)) (-3248 (((-714)) 67 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-1419 (((-1095 (-361 |#1|)) $) 20 T ELT)) (-2779 (($) 103 T CONST)) (-2785 (($) 28 T CONST)) (-3174 (((-85) $ $) 35 T ELT)) (-4099 (($ $ $) 121 T ELT)) (-3987 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3989 (($ $ $) 107 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-361 |#1|) $) 117 T ELT) (($ $ (-361 |#1|)) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT))) -(((-148 |#1|) (-13 (-38 |#1|) (-38 (-361 |#1|)) (-318) (-10 -8 (-15 -2735 ($ (-361 |#1|))) (-15 -2735 ($ |#1| (-1095 |#1|) (-1095 |#1|))) (-15 -1424 ($ |#1| (-1095 |#1|))) (-15 -1423 ((-1095 |#1|) $)) (-15 -1422 ((-1095 |#1|) $)) (-15 -1421 ((-1095 |#1|) $)) (-15 -3251 (|#1| $)) (-15 -1420 ($ $)) (-15 -1419 ((-1095 (-361 |#1|)) $)) (-15 -1418 ((-1095 (-361 |#1|)) $)) (-15 -1417 ((-1095 |#1|) $)) (-15 -1416 ((-1095 |#1|) $)) (-15 -3919 ($ $ (-499))) (-15 -3012 ($ $)))) (-261)) (T -148)) -((-2735 (*1 *1 *2) (-12 (-5 *2 (-361 *3)) (-4 *3 (-261)) (-5 *1 (-148 *3)))) (-2735 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-261)) (-5 *1 (-148 *2)))) (-1424 (*1 *1 *2 *3) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-261)) (-5 *1 (-148 *2)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261)))) (-1422 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261)))) (-3251 (*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-261)))) (-1420 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-261)))) (-1419 (*1 *2 *1) (-12 (-5 *2 (-1095 (-361 *3))) (-5 *1 (-148 *3)) (-4 *3 (-261)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-1095 (-361 *3))) (-5 *1 (-148 *3)) (-4 *3 (-261)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261)))) (-3919 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-148 *3)) (-4 *3 (-261)))) (-3012 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-261))))) -((-1425 (($ (-80) $) 15 T ELT)) (-3359 (((-649 (-80)) (-460) $) 14 T ELT)) (-4096 (((-797) $) 18 T ELT)) (-1426 (((-599 (-80)) $) 8 T ELT))) -(((-149) (-13 (-568 (-797)) (-10 -8 (-15 -1426 ((-599 (-80)) $)) (-15 -1425 ($ (-80) $)) (-15 -3359 ((-649 (-80)) (-460) $))))) (T -149)) -((-1426 (*1 *2 *1) (-12 (-5 *2 (-599 (-80))) (-5 *1 (-149)))) (-1425 (*1 *1 *2 *1) (-12 (-5 *2 (-80)) (-5 *1 (-149)))) (-3359 (*1 *2 *3 *1) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-80))) (-5 *1 (-149))))) -((-1439 (((-1 (-881 |#1|) (-881 |#1|)) |#1|) 38 T ELT)) (-1430 (((-881 |#1|) (-881 |#1|)) 22 T ELT)) (-1435 (((-1 (-881 |#1|) (-881 |#1|)) |#1|) 34 T ELT)) (-1428 (((-881 |#1|) (-881 |#1|)) 20 T ELT)) (-1433 (((-881 |#1|) (-881 |#1|)) 28 T ELT)) (-1432 (((-881 |#1|) (-881 |#1|)) 27 T ELT)) (-1431 (((-881 |#1|) (-881 |#1|)) 26 T ELT)) (-1436 (((-1 (-881 |#1|) (-881 |#1|)) |#1|) 35 T ELT)) (-1434 (((-1 (-881 |#1|) (-881 |#1|)) |#1|) 33 T ELT)) (-1736 (((-1 (-881 |#1|) (-881 |#1|)) |#1|) 32 T ELT)) (-1429 (((-881 |#1|) (-881 |#1|)) 21 T ELT)) (-1440 (((-1 (-881 |#1|) (-881 |#1|)) |#1| |#1|) 41 T ELT)) (-1427 (((-881 |#1|) (-881 |#1|)) 8 T ELT)) (-1438 (((-1 (-881 |#1|) (-881 |#1|)) |#1|) 37 T ELT)) (-1437 (((-1 (-881 |#1|) (-881 |#1|)) |#1|) 36 T ELT))) -(((-150 |#1|) (-10 -7 (-15 -1427 ((-881 |#1|) (-881 |#1|))) (-15 -1428 ((-881 |#1|) (-881 |#1|))) (-15 -1429 ((-881 |#1|) (-881 |#1|))) (-15 -1430 ((-881 |#1|) (-881 |#1|))) (-15 -1431 ((-881 |#1|) (-881 |#1|))) (-15 -1432 ((-881 |#1|) (-881 |#1|))) (-15 -1433 ((-881 |#1|) (-881 |#1|))) (-15 -1736 ((-1 (-881 |#1|) (-881 |#1|)) |#1|)) (-15 -1434 ((-1 (-881 |#1|) (-881 |#1|)) |#1|)) (-15 -1435 ((-1 (-881 |#1|) (-881 |#1|)) |#1|)) (-15 -1436 ((-1 (-881 |#1|) (-881 |#1|)) |#1|)) (-15 -1437 ((-1 (-881 |#1|) (-881 |#1|)) |#1|)) (-15 -1438 ((-1 (-881 |#1|) (-881 |#1|)) |#1|)) (-15 -1439 ((-1 (-881 |#1|) (-881 |#1|)) |#1|)) (-15 -1440 ((-1 (-881 |#1|) (-881 |#1|)) |#1| |#1|))) (-13 (-318) (-1143) (-942))) (T -150)) -((-1440 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-318) (-1143) (-942))))) (-1439 (*1 *2 *3) (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-318) (-1143) (-942))))) (-1438 (*1 *2 *3) (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-318) (-1143) (-942))))) (-1437 (*1 *2 *3) (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-318) (-1143) (-942))))) (-1436 (*1 *2 *3) (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-318) (-1143) (-942))))) (-1435 (*1 *2 *3) (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-318) (-1143) (-942))))) (-1434 (*1 *2 *3) (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-318) (-1143) (-942))))) (-1736 (*1 *2 *3) (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-318) (-1143) (-942))))) (-1433 (*1 *2 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) (-5 *1 (-150 *3)))) (-1432 (*1 *2 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) (-5 *1 (-150 *3)))) (-1431 (*1 *2 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) (-5 *1 (-150 *3)))) (-1430 (*1 *2 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) (-5 *1 (-150 *3)))) (-1429 (*1 *2 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) (-5 *1 (-150 *3)))) (-1428 (*1 *2 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) (-5 *1 (-150 *3)))) (-1427 (*1 *2 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) (-5 *1 (-150 *3))))) -((-2565 ((|#2| |#3|) 28 T ELT))) -(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2565 (|#2| |#3|))) (-146) (-1183 |#1|) (-682 |#1| |#2|)) (T -151)) -((-2565 (*1 *2 *3) (-12 (-4 *4 (-146)) (-4 *2 (-1183 *4)) (-5 *1 (-151 *4 *2 *3)) (-4 *3 (-682 *4 *2))))) -((-2917 (((-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|)) 44 (|has| (-884 |#2|) (-821 |#1|)) ELT))) -(((-152 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-884 |#2|) (-821 |#1|)) (-15 -2917 ((-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|))) |%noBranch|)) (-1041) (-13 (-821 |#1|) (-146)) (-139 |#2|)) (T -152)) -((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *3)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-4 *3 (-139 *6)) (-4 (-884 *6) (-821 *5)) (-4 *6 (-13 (-821 *5) (-146))) (-5 *1 (-152 *5 *6 *3))))) -((-1442 (((-599 |#1|) (-599 |#1|) |#1|) 41 T ELT)) (-1441 (((-599 |#1|) |#1| (-599 |#1|)) 20 T ELT)) (-2178 (((-599 |#1|) (-599 (-599 |#1|)) (-599 |#1|)) 36 T ELT) ((|#1| (-599 |#1|) (-599 |#1|)) 32 T ELT))) -(((-153 |#1|) (-10 -7 (-15 -1441 ((-599 |#1|) |#1| (-599 |#1|))) (-15 -2178 (|#1| (-599 |#1|) (-599 |#1|))) (-15 -2178 ((-599 |#1|) (-599 (-599 |#1|)) (-599 |#1|))) (-15 -1442 ((-599 |#1|) (-599 |#1|) |#1|))) (-261)) (T -153)) -((-1442 (*1 *2 *2 *3) (-12 (-5 *2 (-599 *3)) (-4 *3 (-261)) (-5 *1 (-153 *3)))) (-2178 (*1 *2 *3 *2) (-12 (-5 *3 (-599 (-599 *4))) (-5 *2 (-599 *4)) (-4 *4 (-261)) (-5 *1 (-153 *4)))) (-2178 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *2)) (-5 *1 (-153 *2)) (-4 *2 (-261)))) (-1441 (*1 *2 *3 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-261)) (-5 *1 (-153 *3))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3456 (((-1158) $) 13 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3344 (((-1075) $) 10 T ELT)) (-4096 (((-797) $) 20 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-154) (-13 (-1023) (-10 -8 (-15 -3344 ((-1075) $)) (-15 -3456 ((-1158) $))))) (T -154)) -((-3344 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-154)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-154))))) -((-1451 (((-2 (|:| |start| |#2|) (|:| -1877 (-359 |#2|))) |#2|) 66 T ELT)) (-1450 ((|#1| |#1|) 58 T ELT)) (-1449 (((-142 |#1|) |#2|) 93 T ELT)) (-1448 ((|#1| |#2|) 136 T ELT) ((|#1| |#2| |#1|) 89 T ELT)) (-1447 ((|#2| |#2|) 90 T ELT)) (-1446 (((-359 |#2|) |#2| |#1|) 118 T ELT) (((-359 |#2|) |#2| |#1| (-85)) 87 T ELT)) (-3254 ((|#1| |#2|) 117 T ELT)) (-1445 ((|#2| |#2|) 130 T ELT)) (-3882 (((-359 |#2|) |#2|) 153 T ELT) (((-359 |#2|) |#2| |#1|) 33 T ELT) (((-359 |#2|) |#2| |#1| (-85)) 152 T ELT)) (-1444 (((-599 (-2 (|:| -1877 (-599 |#2|)) (|:| -1629 |#1|))) |#2| |#2|) 151 T ELT) (((-599 (-2 (|:| -1877 (-599 |#2|)) (|:| -1629 |#1|))) |#2| |#2| (-85)) 81 T ELT)) (-1443 (((-599 (-142 |#1|)) |#2| |#1|) 42 T ELT) (((-599 (-142 |#1|)) |#2|) 43 T ELT))) -(((-155 |#1| |#2|) (-10 -7 (-15 -1443 ((-599 (-142 |#1|)) |#2|)) (-15 -1443 ((-599 (-142 |#1|)) |#2| |#1|)) (-15 -1444 ((-599 (-2 (|:| -1877 (-599 |#2|)) (|:| -1629 |#1|))) |#2| |#2| (-85))) (-15 -1444 ((-599 (-2 (|:| -1877 (-599 |#2|)) (|:| -1629 |#1|))) |#2| |#2|)) (-15 -3882 ((-359 |#2|) |#2| |#1| (-85))) (-15 -3882 ((-359 |#2|) |#2| |#1|)) (-15 -3882 ((-359 |#2|) |#2|)) (-15 -1445 (|#2| |#2|)) (-15 -3254 (|#1| |#2|)) (-15 -1446 ((-359 |#2|) |#2| |#1| (-85))) (-15 -1446 ((-359 |#2|) |#2| |#1|)) (-15 -1447 (|#2| |#2|)) (-15 -1448 (|#1| |#2| |#1|)) (-15 -1448 (|#1| |#2|)) (-15 -1449 ((-142 |#1|) |#2|)) (-15 -1450 (|#1| |#1|)) (-15 -1451 ((-2 (|:| |start| |#2|) (|:| -1877 (-359 |#2|))) |#2|))) (-13 (-318) (-780)) (-1183 (-142 |#1|))) (T -155)) -((-1451 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-2 (|:| |start| *3) (|:| -1877 (-359 *3)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) (-1450 (*1 *2 *2) (-12 (-4 *2 (-13 (-318) (-780))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1183 (-142 *2))))) (-1449 (*1 *2 *3) (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-318) (-780))) (-4 *3 (-1183 *2)))) (-1448 (*1 *2 *3) (-12 (-4 *2 (-13 (-318) (-780))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1183 (-142 *2))))) (-1448 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-318) (-780))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1183 (-142 *2))))) (-1447 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-780))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1183 (-142 *3))))) (-1446 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) (-1446 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) (-3254 (*1 *2 *3) (-12 (-4 *2 (-13 (-318) (-780))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1183 (-142 *2))))) (-1445 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-780))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1183 (-142 *3))))) (-3882 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) (-3882 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) (-3882 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) (-1444 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-599 (-2 (|:| -1877 (-599 *3)) (|:| -1629 *4)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) (-1444 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-318) (-780))) (-5 *2 (-599 (-2 (|:| -1877 (-599 *3)) (|:| -1629 *5)))) (-5 *1 (-155 *5 *3)) (-4 *3 (-1183 (-142 *5))))) (-1443 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-599 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) (-1443 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-599 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4)))))) -((-1452 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1453 (((-714) |#2|) 18 T ELT)) (-1454 ((|#2| |#2| |#2|) 20 T ELT))) -(((-156 |#1| |#2|) (-10 -7 (-15 -1452 ((-3 |#2| "failed") |#2|)) (-15 -1453 ((-714) |#2|)) (-15 -1454 (|#2| |#2| |#2|))) (-1157) (-632 |#1|)) (T -156)) -((-1454 (*1 *2 *2 *2) (-12 (-4 *3 (-1157)) (-5 *1 (-156 *3 *2)) (-4 *2 (-632 *3)))) (-1453 (*1 *2 *3) (-12 (-4 *4 (-1157)) (-5 *2 (-714)) (-5 *1 (-156 *4 *3)) (-4 *3 (-632 *4)))) (-1452 (*1 *2 *2) (|partial| -12 (-4 *3 (-1157)) (-5 *1 (-156 *3 *2)) (-4 *2 (-632 *3))))) -((-2687 (((-85) $ $) NIL T ELT)) (-1457 (((-599 (-799)) $) NIL T ELT)) (-3690 (((-460) $) 8 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1459 (((-161) $) 10 T ELT)) (-2752 (((-85) $ (-460)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1455 (((-649 $) (-460)) 17 T ELT)) (-1458 (((-599 (-85)) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2639 (((-55) $) 12 T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-157) (-13 (-160) (-10 -8 (-15 -1455 ((-649 $) (-460)))))) (T -157)) -((-1455 (*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-157))) (-5 *1 (-157))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1515 ((|#1| $) 7 T ELT)) (-4096 (((-797) $) 14 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-1456 (((-599 (-1122)) $) 10 T ELT)) (-3174 (((-85) $ $) 12 T ELT))) -(((-158 |#1|) (-13 (-1041) (-10 -8 (-15 -1515 (|#1| $)) (-15 -1456 ((-599 (-1122)) $)))) (-160)) (T -158)) -((-1515 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) (-1456 (*1 *2 *1) (-12 (-5 *2 (-599 (-1122))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) -((-1457 (((-599 (-799)) $) 16 T ELT)) (-1459 (((-161) $) 8 T ELT)) (-1458 (((-599 (-85)) $) 13 T ELT)) (-2639 (((-55) $) 10 T ELT))) -(((-159 |#1|) (-10 -7 (-15 -1457 ((-599 (-799)) |#1|)) (-15 -1458 ((-599 (-85)) |#1|)) (-15 -1459 ((-161) |#1|)) (-15 -2639 ((-55) |#1|))) (-160)) (T -159)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-1457 (((-599 (-799)) $) 22 T ELT)) (-3690 (((-460) $) 19 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1459 (((-161) $) 24 T ELT)) (-2752 (((-85) $ (-460)) 17 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1458 (((-599 (-85)) $) 23 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2639 (((-55) $) 18 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-160) (-113)) (T -160)) -((-1459 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))) (-1458 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-599 (-85))))) (-1457 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-599 (-799)))))) -(-13 (-770 (-460)) (-10 -8 (-15 -1459 ((-161) $)) (-15 -1458 ((-599 (-85)) $)) (-15 -1457 ((-599 (-799)) $)))) -(((-73) . T) ((-568 (-797)) . T) ((-770 (-460)) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-4096 (((-797) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 10 T ELT))) -(((-161) (-13 (-1041) (-10 -8 (-15 -9 ($) -4102) (-15 -8 ($) -4102) (-15 -7 ($) -4102)))) (T -161)) -((-9 (*1 *1) (-5 *1 (-161))) (-8 (*1 *1) (-5 *1 (-161))) (-7 (*1 *1) (-5 *1 (-161)))) -((-3792 ((|#2| |#2|) 28 T ELT)) (-3795 (((-85) |#2|) 19 T ELT)) (-3793 (((-268 |#1|) |#2|) 12 T ELT)) (-3794 (((-268 |#1|) |#2|) 14 T ELT)) (-3790 ((|#2| |#2| (-1117)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3796 (((-142 (-268 |#1|)) |#2|) 10 T ELT)) (-3791 ((|#2| |#2| (-1117)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) -(((-162 |#1| |#2|) (-10 -7 (-15 -3790 (|#2| |#2|)) (-15 -3790 (|#2| |#2| (-1117))) (-15 -3791 (|#2| |#2|)) (-15 -3791 (|#2| |#2| (-1117))) (-15 -3793 ((-268 |#1|) |#2|)) (-15 -3794 ((-268 |#1|) |#2|)) (-15 -3795 ((-85) |#2|)) (-15 -3792 (|#2| |#2|)) (-15 -3796 ((-142 (-268 |#1|)) |#2|))) (-13 (-510) (-978 (-499))) (-13 (-27) (-1143) (-375 (-142 |#1|)))) (T -162)) -((-3796 (*1 *2 *3) (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-142 (-268 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 (-142 *4)))))) (-3792 (*1 *2 *2) (-12 (-4 *3 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 (-142 *3)))))) (-3795 (*1 *2 *3) (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 (-142 *4)))))) (-3794 (*1 *2 *3) (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-268 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 (-142 *4)))))) (-3793 (*1 *2 *3) (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-268 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 (-142 *4)))))) (-3791 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 (-142 *4)))))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 (-142 *3)))))) (-3790 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 (-142 *4)))))) (-3790 (*1 *2 *2) (-12 (-4 *3 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 (-142 *3))))))) -((-1463 (((-1207 (-647 (-884 |#1|))) (-1207 (-647 |#1|))) 26 T ELT)) (-4096 (((-1207 (-647 (-361 (-884 |#1|)))) (-1207 (-647 |#1|))) 37 T ELT))) -(((-163 |#1|) (-10 -7 (-15 -1463 ((-1207 (-647 (-884 |#1|))) (-1207 (-647 |#1|)))) (-15 -4096 ((-1207 (-647 (-361 (-884 |#1|)))) (-1207 (-647 |#1|))))) (-146)) (T -163)) -((-4096 (*1 *2 *3) (-12 (-5 *3 (-1207 (-647 *4))) (-4 *4 (-146)) (-5 *2 (-1207 (-647 (-361 (-884 *4))))) (-5 *1 (-163 *4)))) (-1463 (*1 *2 *3) (-12 (-5 *3 (-1207 (-647 *4))) (-4 *4 (-146)) (-5 *2 (-1207 (-647 (-884 *4)))) (-5 *1 (-163 *4))))) -((-1471 (((-1119 (-361 (-499))) (-1119 (-361 (-499))) (-1119 (-361 (-499)))) 93 T ELT)) (-1473 (((-1119 (-361 (-499))) (-599 (-499)) (-599 (-499))) 106 T ELT)) (-1464 (((-1119 (-361 (-499))) (-857)) 54 T ELT)) (-4004 (((-1119 (-361 (-499))) (-857)) 79 T ELT)) (-3918 (((-361 (-499)) (-1119 (-361 (-499)))) 89 T ELT)) (-1465 (((-1119 (-361 (-499))) (-857)) 37 T ELT)) (-1468 (((-1119 (-361 (-499))) (-857)) 66 T ELT)) (-1467 (((-1119 (-361 (-499))) (-857)) 61 T ELT)) (-1470 (((-1119 (-361 (-499))) (-1119 (-361 (-499))) (-1119 (-361 (-499)))) 87 T ELT)) (-3012 (((-1119 (-361 (-499))) (-857)) 29 T ELT)) (-1469 (((-361 (-499)) (-1119 (-361 (-499))) (-1119 (-361 (-499)))) 91 T ELT)) (-1466 (((-1119 (-361 (-499))) (-857)) 35 T ELT)) (-1472 (((-1119 (-361 (-499))) (-599 (-857))) 100 T ELT))) -(((-164) (-10 -7 (-15 -3012 ((-1119 (-361 (-499))) (-857))) (-15 -1464 ((-1119 (-361 (-499))) (-857))) (-15 -1465 ((-1119 (-361 (-499))) (-857))) (-15 -1466 ((-1119 (-361 (-499))) (-857))) (-15 -1467 ((-1119 (-361 (-499))) (-857))) (-15 -1468 ((-1119 (-361 (-499))) (-857))) (-15 -4004 ((-1119 (-361 (-499))) (-857))) (-15 -1469 ((-361 (-499)) (-1119 (-361 (-499))) (-1119 (-361 (-499))))) (-15 -1470 ((-1119 (-361 (-499))) (-1119 (-361 (-499))) (-1119 (-361 (-499))))) (-15 -3918 ((-361 (-499)) (-1119 (-361 (-499))))) (-15 -1471 ((-1119 (-361 (-499))) (-1119 (-361 (-499))) (-1119 (-361 (-499))))) (-15 -1472 ((-1119 (-361 (-499))) (-599 (-857)))) (-15 -1473 ((-1119 (-361 (-499))) (-599 (-499)) (-599 (-499)))))) (T -164)) -((-1473 (*1 *2 *3 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-599 (-857))) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-1471 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-1119 (-361 (-499)))) (-5 *2 (-361 (-499))) (-5 *1 (-164)))) (-1470 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-1469 (*1 *2 *3 *3) (-12 (-5 *3 (-1119 (-361 (-499)))) (-5 *2 (-361 (-499))) (-5 *1 (-164)))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-1467 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-1464 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-3012 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) -((-1475 (((-359 (-1111 (-499))) (-499)) 38 T ELT)) (-1474 (((-599 (-1111 (-499))) (-499)) 33 T ELT)) (-2922 (((-1111 (-499)) (-499)) 28 T ELT))) -(((-165) (-10 -7 (-15 -1474 ((-599 (-1111 (-499))) (-499))) (-15 -2922 ((-1111 (-499)) (-499))) (-15 -1475 ((-359 (-1111 (-499))) (-499))))) (T -165)) -((-1475 (*1 *2 *3) (-12 (-5 *2 (-359 (-1111 (-499)))) (-5 *1 (-165)) (-5 *3 (-499)))) (-2922 (*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-165)) (-5 *3 (-499)))) (-1474 (*1 *2 *3) (-12 (-5 *2 (-599 (-1111 (-499)))) (-5 *1 (-165)) (-5 *3 (-499))))) -((-2687 (((-85) $ $) NIL T ELT)) (-1476 ((|#2| $ (-714) |#2|) 11 T ELT)) (-3235 ((|#2| $ (-714)) 10 T ELT)) (-3764 (($) 8 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 23 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 13 T ELT))) -(((-166 |#1| |#2|) (-13 (-1041) (-10 -8 (-15 -3764 ($)) (-15 -3235 (|#2| $ (-714))) (-15 -1476 (|#2| $ (-714) |#2|)))) (-857) (-1041)) (T -166)) -((-3764 (*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-857)) (-4 *3 (-1041)))) (-3235 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *2 (-1041)) (-5 *1 (-166 *4 *2)) (-14 *4 (-857)))) (-1476 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-166 *4 *2)) (-14 *4 (-857)) (-4 *2 (-1041))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2066 (((-1213) $) 37 T ELT) (((-1213) $ (-857) (-857)) 41 T ELT)) (-3950 (($ $ (-929)) 19 T ELT) (((-202 (-1099)) $ (-1117)) 15 T ELT)) (-3767 (((-1213) $) 35 T ELT)) (-4096 (((-797) $) 32 T ELT) (($ (-599 |#1|)) 8 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $ $) 27 T ELT)) (-3989 (($ $ $) 22 T ELT))) -(((-167 |#1|) (-13 (-1041) (-571 (-599 |#1|)) (-10 -8 (-15 -3950 ($ $ (-929))) (-15 -3950 ((-202 (-1099)) $ (-1117))) (-15 -3989 ($ $ $)) (-15 -3987 ($ $ $)) (-15 -3767 ((-1213) $)) (-15 -2066 ((-1213) $)) (-15 -2066 ((-1213) $ (-857) (-857))))) (-13 (-781) (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 ((-1213) $)) (-15 -2066 ((-1213) $))))) (T -167)) -((-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-929)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-781) (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 ((-1213) $)) (-15 -2066 ((-1213) $))))))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-202 (-1099))) (-5 *1 (-167 *4)) (-4 *4 (-13 (-781) (-10 -8 (-15 -3950 ((-1099) $ *3)) (-15 -3767 ((-1213) $)) (-15 -2066 ((-1213) $))))))) (-3989 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-781) (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 ((-1213) $)) (-15 -2066 ((-1213) $))))))) (-3987 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-781) (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 ((-1213) $)) (-15 -2066 ((-1213) $))))))) (-3767 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-781) (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 (*2 $)) (-15 -2066 (*2 $))))))) (-2066 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-781) (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 (*2 $)) (-15 -2066 (*2 $))))))) (-2066 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1213)) (-5 *1 (-167 *4)) (-4 *4 (-13 (-781) (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 (*2 $)) (-15 -2066 (*2 $)))))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) 10 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2972 (($ (-593 |#1|)) 11 T ELT)) (-4096 (((-797) $) 18 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT))) -(((-168 |#1|) (-13 (-777) (-10 -8 (-15 -2972 ($ (-593 |#1|))))) (-599 (-1117))) (T -168)) -((-2972 (*1 *1 *2) (-12 (-5 *2 (-593 *3)) (-14 *3 (-599 (-1117))) (-5 *1 (-168 *3))))) -((-1477 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) -(((-169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1477 (|#2| |#4| (-1 |#2| |#2|)))) (-318) (-1183 |#1|) (-1183 (-361 |#2|)) (-297 |#1| |#2| |#3|)) (T -169)) -((-1477 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-318)) (-4 *6 (-1183 (-361 *2))) (-4 *2 (-1183 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-297 *5 *2 *6))))) -((-1481 ((|#2| |#2| (-714) |#2|) 55 T ELT)) (-1480 ((|#2| |#2| (-714) |#2|) 51 T ELT)) (-2484 (((-599 |#2|) (-599 (-2 (|:| |deg| (-714)) (|:| -2694 |#2|)))) 79 T ELT)) (-1479 (((-599 (-2 (|:| |deg| (-714)) (|:| -2694 |#2|))) |#2|) 72 T ELT)) (-1482 (((-85) |#2|) 70 T ELT)) (-3883 (((-359 |#2|) |#2|) 92 T ELT)) (-3882 (((-359 |#2|) |#2|) 91 T ELT)) (-2485 ((|#2| |#2| (-714) |#2|) 49 T ELT)) (-1478 (((-2 (|:| |cont| |#1|) (|:| -1877 (-599 (-2 (|:| |irr| |#2|) (|:| -2513 (-499)))))) |#2| (-85)) 86 T ELT))) -(((-170 |#1| |#2|) (-10 -7 (-15 -3882 ((-359 |#2|) |#2|)) (-15 -3883 ((-359 |#2|) |#2|)) (-15 -1478 ((-2 (|:| |cont| |#1|) (|:| -1877 (-599 (-2 (|:| |irr| |#2|) (|:| -2513 (-499)))))) |#2| (-85))) (-15 -1479 ((-599 (-2 (|:| |deg| (-714)) (|:| -2694 |#2|))) |#2|)) (-15 -2484 ((-599 |#2|) (-599 (-2 (|:| |deg| (-714)) (|:| -2694 |#2|))))) (-15 -2485 (|#2| |#2| (-714) |#2|)) (-15 -1480 (|#2| |#2| (-714) |#2|)) (-15 -1481 (|#2| |#2| (-714) |#2|)) (-15 -1482 ((-85) |#2|))) (-305) (-1183 |#1|)) (T -170)) -((-1482 (*1 *2 *3) (-12 (-4 *4 (-305)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1183 *4)))) (-1481 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-714)) (-4 *4 (-305)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1183 *4)))) (-1480 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-714)) (-4 *4 (-305)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1183 *4)))) (-2485 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-714)) (-4 *4 (-305)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1183 *4)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| |deg| (-714)) (|:| -2694 *5)))) (-4 *5 (-1183 *4)) (-4 *4 (-305)) (-5 *2 (-599 *5)) (-5 *1 (-170 *4 *5)))) (-1479 (*1 *2 *3) (-12 (-4 *4 (-305)) (-5 *2 (-599 (-2 (|:| |deg| (-714)) (|:| -2694 *3)))) (-5 *1 (-170 *4 *3)) (-4 *3 (-1183 *4)))) (-1478 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-305)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1877 (-599 (-2 (|:| |irr| *3) (|:| -2513 (-499))))))) (-5 *1 (-170 *5 *3)) (-4 *3 (-1183 *5)))) (-3883 (*1 *2 *3) (-12 (-4 *4 (-305)) (-5 *2 (-359 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1183 *4)))) (-3882 (*1 *2 *3) (-12 (-4 *4 (-305)) (-5 *2 (-359 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1183 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 (((-499) $) NIL (|has| (-499) (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| (-499) (-763)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL (|has| (-499) (-978 (-1117))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-499) (-978 (-499))) ELT) (((-3 (-499) #1#) $) NIL (|has| (-499) (-978 (-499))) ELT)) (-3294 (((-499) $) NIL T ELT) (((-1117) $) NIL (|has| (-499) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL (|has| (-499) (-978 (-499))) ELT) (((-499) $) NIL (|has| (-499) (-978 (-499))) ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-499)) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-499) (-498)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3324 (((-85) $) NIL (|has| (-499) (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| (-499) (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| (-499) (-821 (-333))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL T ELT)) (-3119 (((-499) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| (-499) (-1092)) ELT)) (-3325 (((-85) $) NIL (|has| (-499) (-763)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-499) (-781)) ELT)) (-4108 (($ (-1 (-499) (-499)) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT) (((-647 (-499)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-499) (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL (|has| (-499) (-261)) ELT) (((-361 (-499)) $) NIL T ELT)) (-3252 (((-499) $) NIL (|has| (-499) (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-3918 (($ $ (-599 (-499)) (-599 (-499))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-499) (-499)) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-247 (-499))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-599 (-247 (-499)))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-599 (-1117)) (-599 (-499))) NIL (|has| (-499) (-468 (-1117) (-499))) ELT) (($ $ (-1117) (-499)) NIL (|has| (-499) (-468 (-1117) (-499))) ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ $ (-499)) NIL (|has| (-499) (-240 (-499) (-499))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-1 (-499) (-499))) NIL T ELT) (($ $ (-1 (-499) (-499)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $) NIL (|has| (-499) (-189)) ELT) (($ $ (-714)) NIL (|has| (-499) (-189)) ELT)) (-3116 (($ $) NIL T ELT)) (-3118 (((-499) $) NIL T ELT)) (-1483 (($ (-361 (-499))) 9 T ELT)) (-4122 (((-825 (-499)) $) NIL (|has| (-499) (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| (-499) (-569 (-825 (-333)))) ELT) (((-488) $) NIL (|has| (-499) (-569 (-488))) ELT) (((-333) $) NIL (|has| (-499) (-960)) ELT) (((-179) $) NIL (|has| (-499) (-960)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| (-499) (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) 8 T ELT) (($ (-499)) NIL T ELT) (($ (-1117)) NIL (|has| (-499) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL T ELT) (((-944 10) $) 10 T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| (-499) (-848))) (|has| (-499) (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-3253 (((-499) $) NIL (|has| (-499) (-498)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3523 (($ $) NIL (|has| (-499) (-763)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1 (-499) (-499))) NIL T ELT) (($ $ (-1 (-499) (-499)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $) NIL (|has| (-499) (-189)) ELT) (($ $ (-714)) NIL (|has| (-499) (-189)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-4099 (($ $ $) NIL T ELT) (($ (-499) (-499)) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ (-499)) NIL T ELT))) -(((-171) (-13 (-931 (-499)) (-568 (-361 (-499))) (-568 (-944 10)) (-10 -8 (-15 -3250 ((-361 (-499)) $)) (-15 -1483 ($ (-361 (-499))))))) (T -171)) -((-3250 (*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-171)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-171))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3457 (((-1055) $) 13 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3316 (((-437) $) 10 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 23 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-1075) $) 15 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-172) (-13 (-1023) (-10 -8 (-15 -3316 ((-437) $)) (-15 -3457 ((-1055) $)) (-15 -3371 ((-1075) $))))) (T -172)) -((-3316 (*1 *2 *1) (-12 (-5 *2 (-437)) (-5 *1 (-172)))) (-3457 (*1 *2 *1) (-12 (-5 *2 (-1055)) (-5 *1 (-172)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-172))))) -((-3962 (((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-599 (-775 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1032 (-775 |#2|)) (-1099)) 29 T ELT) (((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-599 (-775 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1032 (-775 |#2|))) 25 T ELT)) (-1484 (((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-599 (-775 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1117) (-775 |#2|) (-775 |#2|) (-85)) 17 T ELT))) -(((-173 |#1| |#2|) (-10 -7 (-15 -3962 ((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-599 (-775 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1032 (-775 |#2|)))) (-15 -3962 ((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-599 (-775 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1032 (-775 |#2|)) (-1099))) (-15 -1484 ((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-599 (-775 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1117) (-775 |#2|) (-775 |#2|) (-85)))) (-13 (-261) (-120) (-978 (-499)) (-596 (-499))) (-13 (-1143) (-898) (-29 |#1|))) (T -173)) -((-1484 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1117)) (-5 *6 (-85)) (-4 *7 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-4 *3 (-13 (-1143) (-898) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-775 *3)) (|:| |f2| (-599 (-775 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *7 *3)) (-5 *5 (-775 *3)))) (-3962 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1032 (-775 *3))) (-5 *5 (-1099)) (-4 *3 (-13 (-1143) (-898) (-29 *6))) (-4 *6 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 (|:| |f1| (-775 *3)) (|:| |f2| (-599 (-775 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) (-3962 (*1 *2 *3 *4) (-12 (-5 *4 (-1032 (-775 *3))) (-4 *3 (-13 (-1143) (-898) (-29 *5))) (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 (|:| |f1| (-775 *3)) (|:| |f2| (-599 (-775 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5 *3))))) -((-3962 (((-3 (|:| |f1| (-775 (-268 |#1|))) (|:| |f2| (-599 (-775 (-268 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-361 (-884 |#1|)) (-1032 (-775 (-361 (-884 |#1|)))) (-1099)) 49 T ELT) (((-3 (|:| |f1| (-775 (-268 |#1|))) (|:| |f2| (-599 (-775 (-268 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-361 (-884 |#1|)) (-1032 (-775 (-361 (-884 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-775 (-268 |#1|))) (|:| |f2| (-599 (-775 (-268 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-361 (-884 |#1|)) (-1032 (-775 (-268 |#1|))) (-1099)) 50 T ELT) (((-3 (|:| |f1| (-775 (-268 |#1|))) (|:| |f2| (-599 (-775 (-268 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-361 (-884 |#1|)) (-1032 (-775 (-268 |#1|)))) 22 T ELT))) -(((-174 |#1|) (-10 -7 (-15 -3962 ((-3 (|:| |f1| (-775 (-268 |#1|))) (|:| |f2| (-599 (-775 (-268 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-361 (-884 |#1|)) (-1032 (-775 (-268 |#1|))))) (-15 -3962 ((-3 (|:| |f1| (-775 (-268 |#1|))) (|:| |f2| (-599 (-775 (-268 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-361 (-884 |#1|)) (-1032 (-775 (-268 |#1|))) (-1099))) (-15 -3962 ((-3 (|:| |f1| (-775 (-268 |#1|))) (|:| |f2| (-599 (-775 (-268 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-361 (-884 |#1|)) (-1032 (-775 (-361 (-884 |#1|)))))) (-15 -3962 ((-3 (|:| |f1| (-775 (-268 |#1|))) (|:| |f2| (-599 (-775 (-268 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-361 (-884 |#1|)) (-1032 (-775 (-361 (-884 |#1|)))) (-1099)))) (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (T -174)) -((-3962 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1032 (-775 (-361 (-884 *6))))) (-5 *5 (-1099)) (-5 *3 (-361 (-884 *6))) (-4 *6 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 (|:| |f1| (-775 (-268 *6))) (|:| |f2| (-599 (-775 (-268 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-174 *6)))) (-3962 (*1 *2 *3 *4) (-12 (-5 *4 (-1032 (-775 (-361 (-884 *5))))) (-5 *3 (-361 (-884 *5))) (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 (|:| |f1| (-775 (-268 *5))) (|:| |f2| (-599 (-775 (-268 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))) (-3962 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-361 (-884 *6))) (-5 *4 (-1032 (-775 (-268 *6)))) (-5 *5 (-1099)) (-4 *6 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 (|:| |f1| (-775 (-268 *6))) (|:| |f2| (-599 (-775 (-268 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *6)))) (-3962 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1032 (-775 (-268 *5)))) (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 (|:| |f1| (-775 (-268 *5))) (|:| |f2| (-599 (-775 (-268 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5))))) -((-3992 (((-2 (|:| -2105 (-1111 |#1|)) (|:| |deg| (-857))) (-1111 |#1|)) 26 T ELT)) (-4113 (((-599 (-268 |#2|)) (-268 |#2|) (-857)) 51 T ELT))) -(((-175 |#1| |#2|) (-10 -7 (-15 -3992 ((-2 (|:| -2105 (-1111 |#1|)) (|:| |deg| (-857))) (-1111 |#1|))) (-15 -4113 ((-599 (-268 |#2|)) (-268 |#2|) (-857)))) (-989) (-510)) (T -175)) -((-4113 (*1 *2 *3 *4) (-12 (-5 *4 (-857)) (-4 *6 (-510)) (-5 *2 (-599 (-268 *6))) (-5 *1 (-175 *5 *6)) (-5 *3 (-268 *6)) (-4 *5 (-989)))) (-3992 (*1 *2 *3) (-12 (-4 *4 (-989)) (-5 *2 (-2 (|:| -2105 (-1111 *4)) (|:| |deg| (-857)))) (-5 *1 (-175 *4 *5)) (-5 *3 (-1111 *4)) (-4 *5 (-510))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-1528 ((|#1| $) NIL T ELT)) (-3464 ((|#1| $) 30 T ELT)) (-3874 (($) NIL T CONST)) (-3123 (($ $) NIL T ELT)) (-2397 (($ $) 39 T ELT)) (-3466 ((|#1| |#1| $) NIL T ELT)) (-3465 ((|#1| $) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3983 (((-714) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) NIL T ELT)) (-1526 ((|#1| |#1| $) 35 T ELT)) (-1525 ((|#1| |#1| $) 37 T ELT)) (-3757 (($ |#1| $) NIL T ELT)) (-2722 (((-714) $) 33 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3122 ((|#1| $) NIL T ELT)) (-1524 ((|#1| $) 31 T ELT)) (-1523 ((|#1| $) 29 T ELT)) (-1309 ((|#1| $) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3125 ((|#1| |#1| $) NIL T ELT)) (-3543 (((-85) $) 9 T ELT)) (-3713 (($) NIL T ELT)) (-3124 ((|#1| $) NIL T ELT)) (-1529 (($) NIL T ELT) (($ (-599 |#1|)) 16 T ELT)) (-3463 (((-714) $) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1527 ((|#1| $) 13 T ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) NIL T ELT)) (-3121 ((|#1| $) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-176 |#1|) (-13 (-213 |#1|) (-10 -8 (-15 -1529 ($ (-599 |#1|))))) (-1041)) (T -176)) -((-1529 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-176 *3))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1486 (($ (-268 |#1|)) 24 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2783 (((-85) $) NIL T ELT)) (-3295 (((-3 (-268 |#1|) #1#) $) NIL T ELT)) (-3294 (((-268 |#1|) $) NIL T ELT)) (-4109 (($ $) 32 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-4108 (($ (-1 (-268 |#1|) (-268 |#1|)) $) NIL T ELT)) (-3312 (((-268 |#1|) $) NIL T ELT)) (-1488 (($ $) 31 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1487 (((-85) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($ (-714)) NIL T ELT)) (-1485 (($ $) 33 T ELT)) (-4098 (((-499) $) NIL T ELT)) (-4096 (((-797) $) 65 T ELT) (($ (-499)) NIL T ELT) (($ (-268 |#1|)) NIL T ELT)) (-3827 (((-268 |#1|) $ $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 26 T CONST)) (-2785 (($) NIL T CONST)) (-3174 (((-85) $ $) 29 T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 20 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-268 |#1|) $) 19 T ELT))) -(((-177 |#1| |#2|) (-13 (-576 (-268 |#1|)) (-978 (-268 |#1|)) (-10 -8 (-15 -3312 ((-268 |#1|) $)) (-15 -1488 ($ $)) (-15 -4109 ($ $)) (-15 -3827 ((-268 |#1|) $ $)) (-15 -2527 ($ (-714))) (-15 -1487 ((-85) $)) (-15 -2783 ((-85) $)) (-15 -4098 ((-499) $)) (-15 -4108 ($ (-1 (-268 |#1|) (-268 |#1|)) $)) (-15 -1486 ($ (-268 |#1|))) (-15 -1485 ($ $)))) (-13 (-989) (-781)) (-599 (-1117))) (T -177)) -((-3312 (*1 *2 *1) (-12 (-5 *2 (-268 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) (-14 *4 (-599 (-1117))))) (-1488 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-989) (-781))) (-14 *3 (-599 (-1117))))) (-4109 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-989) (-781))) (-14 *3 (-599 (-1117))))) (-3827 (*1 *2 *1 *1) (-12 (-5 *2 (-268 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) (-14 *4 (-599 (-1117))))) (-2527 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) (-14 *4 (-599 (-1117))))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) (-14 *4 (-599 (-1117))))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) (-14 *4 (-599 (-1117))))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) (-14 *4 (-599 (-1117))))) (-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-268 *3) (-268 *3))) (-4 *3 (-13 (-989) (-781))) (-5 *1 (-177 *3 *4)) (-14 *4 (-599 (-1117))))) (-1486 (*1 *1 *2) (-12 (-5 *2 (-268 *3)) (-4 *3 (-13 (-989) (-781))) (-5 *1 (-177 *3 *4)) (-14 *4 (-599 (-1117))))) (-1485 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-989) (-781))) (-14 *3 (-599 (-1117)))))) -((-1489 (((-85) (-1099)) 26 T ELT)) (-1490 (((-3 (-775 |#2|) #1="failed") (-566 |#2|) |#2| (-775 |#2|) (-775 |#2|) (-85)) 35 T ELT)) (-1491 (((-3 (-85) #1#) (-1111 |#2|) (-775 |#2|) (-775 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-884 |#1|) (-1117) (-775 |#2|) (-775 |#2|) (-85)) 84 T ELT))) -(((-178 |#1| |#2|) (-10 -7 (-15 -1489 ((-85) (-1099))) (-15 -1490 ((-3 (-775 |#2|) #1="failed") (-566 |#2|) |#2| (-775 |#2|) (-775 |#2|) (-85))) (-15 -1491 ((-3 (-85) #1#) (-884 |#1|) (-1117) (-775 |#2|) (-775 |#2|) (-85))) (-15 -1491 ((-3 (-85) #1#) (-1111 |#2|) (-775 |#2|) (-775 |#2|) (-85)))) (-13 (-406) (-978 (-499)) (-596 (-499))) (-13 (-1143) (-29 |#1|))) (T -178)) -((-1491 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1111 *6)) (-5 *4 (-775 *6)) (-4 *6 (-13 (-1143) (-29 *5))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-178 *5 *6)))) (-1491 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-884 *6)) (-5 *4 (-1117)) (-5 *5 (-775 *7)) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-4 *7 (-13 (-1143) (-29 *6))) (-5 *1 (-178 *6 *7)))) (-1490 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-775 *4)) (-5 *3 (-566 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1143) (-29 *6))) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-178 *6 *4)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1143) (-29 *4)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 83 T ELT)) (-3251 (((-499) $) 17 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-3921 (($ $) NIL T ELT)) (-3632 (($ $) 72 T ELT)) (-3789 (($ $) 60 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-3158 (($ $) 51 T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3630 (($ $) 70 T ELT)) (-3788 (($ $) 58 T ELT)) (-3773 (((-499) $) 114 T ELT)) (-3634 (($ $) 75 T ELT)) (-3787 (($ $) 62 T ELT)) (-3874 (($) NIL T CONST)) (-3249 (($ $) NIL T ELT)) (-3295 (((-3 (-499) #1#) $) 113 T ELT) (((-3 (-361 (-499)) #1#) $) 110 T ELT)) (-3294 (((-499) $) 111 T ELT) (((-361 (-499)) $) 108 T ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) 88 T ELT)) (-1837 (((-361 (-499)) $ (-714)) 103 T ELT) (((-361 (-499)) $ (-714) (-714)) 102 T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2492 (((-857)) 11 T ELT) (((-857) (-857)) NIL (|has| $ (-6 -4136)) ELT)) (-3324 (((-85) $) 104 T ELT)) (-3777 (($) 30 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL T ELT)) (-3922 (((-499) $) 24 T ELT)) (-2528 (((-85) $) 84 T ELT)) (-3132 (($ $ (-499)) NIL T ELT)) (-3254 (($ $) NIL T ELT)) (-3325 (((-85) $) 82 T ELT)) (-1492 (((-85) $) 140 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) 48 T ELT) (($) 20 (-12 (-2679 (|has| $ (-6 -4128))) (-2679 (|has| $ (-6 -4136)))) ELT)) (-2978 (($ $ $) 47 T ELT) (($) 19 (-12 (-2679 (|has| $ (-6 -4128))) (-2679 (|has| $ (-6 -4136)))) ELT)) (-2493 (((-499) $) 9 T ELT)) (-1836 (($ $) 15 T ELT)) (-1835 (($ $) 52 T ELT)) (-4092 (($ $) 57 T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-1867 (((-857) (-499)) NIL (|has| $ (-6 -4136)) ELT)) (-3381 (((-1060) $) 86 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL T ELT)) (-3252 (($ $) NIL T ELT)) (-3392 (($ (-499) (-499)) NIL T ELT) (($ (-499) (-499) (-857)) 95 T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2519 (((-499) $) 10 T ELT)) (-1834 (($) 29 T ELT)) (-4093 (($ $) 56 T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-2734 (((-857)) NIL T ELT) (((-857) (-857)) NIL (|has| $ (-6 -4136)) ELT)) (-3908 (($ $) 89 T ELT) (($ $ (-714)) NIL T ELT)) (-1866 (((-857) (-499)) NIL (|has| $ (-6 -4136)) ELT)) (-3635 (($ $) 73 T ELT)) (-3786 (($ $) 63 T ELT)) (-3633 (($ $) 74 T ELT)) (-3785 (($ $) 61 T ELT)) (-3631 (($ $) 71 T ELT)) (-3784 (($ $) 59 T ELT)) (-4122 (((-333) $) 99 T ELT) (((-179) $) 96 T ELT) (((-825 (-333)) $) NIL T ELT) (((-488) $) 37 T ELT)) (-4096 (((-797) $) 34 T ELT) (($ (-499)) 139 T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-499)) 139 T ELT) (($ (-361 (-499))) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-3253 (($ $) NIL T ELT)) (-1868 (((-857)) 18 T ELT) (((-857) (-857)) NIL (|has| $ (-6 -4136)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2815 (((-857)) 7 T ELT)) (-3638 (($ $) 78 T ELT)) (-3626 (($ $) 66 T ELT) (($ $ $) 106 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3636 (($ $) 76 T ELT)) (-3624 (($ $) 64 T ELT)) (-3640 (($ $) 81 T ELT)) (-3628 (($ $) 69 T ELT)) (-3641 (($ $) 79 T ELT)) (-3629 (($ $) 67 T ELT)) (-3639 (($ $) 80 T ELT)) (-3627 (($ $) 68 T ELT)) (-3637 (($ $) 77 T ELT)) (-3625 (($ $) 65 T ELT)) (-3523 (($ $) 105 T ELT)) (-2779 (($) 26 T CONST)) (-2785 (($) 27 T CONST)) (-3527 (($ $) 92 T ELT)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3524 (($ $ $) 94 T ELT)) (-2685 (((-85) $ $) 41 T ELT)) (-2686 (((-85) $ $) 39 T ELT)) (-3174 (((-85) $ $) 49 T ELT)) (-2805 (((-85) $ $) 40 T ELT)) (-2806 (((-85) $ $) 38 T ELT)) (-4099 (($ $ $) 28 T ELT) (($ $ (-499)) 50 T ELT)) (-3987 (($ $) 42 T ELT) (($ $ $) 44 T ELT)) (-3989 (($ $ $) 43 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 53 T ELT) (($ $ (-361 (-499))) 138 T ELT) (($ $ $) 54 T ELT)) (* (($ (-857) $) 16 T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 46 T ELT) (($ $ $) 45 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT))) -(((-179) (-13 (-358) (-190) (-1143) (-569 (-488)) (-10 -8 (-15 -4099 ($ $ (-499))) (-15 ** ($ $ $)) (-15 -1834 ($)) (-15 -1836 ($ $)) (-15 -1835 ($ $)) (-15 -3626 ($ $ $)) (-15 -3527 ($ $)) (-15 -3524 ($ $ $)) (-15 -1837 ((-361 (-499)) $ (-714))) (-15 -1837 ((-361 (-499)) $ (-714) (-714))) (-15 -1492 ((-85) $))))) (T -179)) -((** (*1 *1 *1 *1) (-5 *1 (-179))) (-4099 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-179)))) (-1834 (*1 *1) (-5 *1 (-179))) (-1836 (*1 *1 *1) (-5 *1 (-179))) (-1835 (*1 *1 *1) (-5 *1 (-179))) (-3626 (*1 *1 *1 *1) (-5 *1 (-179))) (-3527 (*1 *1 *1) (-5 *1 (-179))) (-3524 (*1 *1 *1 *1) (-5 *1 (-179))) (-1837 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *2 (-361 (-499))) (-5 *1 (-179)))) (-1837 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-361 (-499))) (-5 *1 (-179)))) (-1492 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) -((-3526 (((-142 (-179)) (-714) (-142 (-179))) 11 T ELT) (((-179) (-714) (-179)) 12 T ELT)) (-1493 (((-142 (-179)) (-142 (-179))) 13 T ELT) (((-179) (-179)) 14 T ELT)) (-1494 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 19 T ELT) (((-179) (-179) (-179)) 22 T ELT)) (-3525 (((-142 (-179)) (-142 (-179))) 27 T ELT) (((-179) (-179)) 26 T ELT)) (-3529 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 57 T ELT) (((-179) (-179) (-179)) 49 T ELT)) (-3531 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 62 T ELT) (((-179) (-179) (-179)) 60 T ELT)) (-3528 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 15 T ELT) (((-179) (-179) (-179)) 16 T ELT)) (-3530 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 17 T ELT) (((-179) (-179) (-179)) 18 T ELT)) (-3533 (((-142 (-179)) (-142 (-179))) 74 T ELT) (((-179) (-179)) 73 T ELT)) (-3532 (((-179) (-179)) 68 T ELT) (((-142 (-179)) (-142 (-179))) 72 T ELT)) (-3527 (((-142 (-179)) (-142 (-179))) 8 T ELT) (((-179) (-179)) 9 T ELT)) (-3524 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 35 T ELT) (((-179) (-179) (-179)) 31 T ELT))) -(((-180) (-10 -7 (-15 -3527 ((-179) (-179))) (-15 -3527 ((-142 (-179)) (-142 (-179)))) (-15 -3524 ((-179) (-179) (-179))) (-15 -3524 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -1493 ((-179) (-179))) (-15 -1493 ((-142 (-179)) (-142 (-179)))) (-15 -3525 ((-179) (-179))) (-15 -3525 ((-142 (-179)) (-142 (-179)))) (-15 -3526 ((-179) (-714) (-179))) (-15 -3526 ((-142 (-179)) (-714) (-142 (-179)))) (-15 -3528 ((-179) (-179) (-179))) (-15 -3528 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3529 ((-179) (-179) (-179))) (-15 -3529 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3530 ((-179) (-179) (-179))) (-15 -3530 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3531 ((-179) (-179) (-179))) (-15 -3531 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3532 ((-142 (-179)) (-142 (-179)))) (-15 -3532 ((-179) (-179))) (-15 -3533 ((-179) (-179))) (-15 -3533 ((-142 (-179)) (-142 (-179)))) (-15 -1494 ((-179) (-179) (-179))) (-15 -1494 ((-142 (-179)) (-142 (-179)) (-142 (-179)))))) (T -180)) -((-1494 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1494 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3533 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3533 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3532 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3532 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3531 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3531 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3530 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3530 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3529 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3529 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3528 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3528 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3526 (*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-714)) (-5 *1 (-180)))) (-3526 (*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-714)) (-5 *1 (-180)))) (-3525 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3525 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3524 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3524 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3527 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3527 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3988 (($ (-714) (-714)) NIL T ELT)) (-2456 (($ $ $) NIL T ELT)) (-3554 (($ (-1207 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-4023 (($ |#1| |#1| |#1|) 33 T ELT)) (-3243 (((-85) $) NIL T ELT)) (-2455 (($ $ (-499) (-499)) NIL T ELT)) (-2454 (($ $ (-499) (-499)) NIL T ELT)) (-2453 (($ $ (-499) (-499) (-499) (-499)) NIL T ELT)) (-2458 (($ $) NIL T ELT)) (-3245 (((-85) $) NIL T ELT)) (-2452 (($ $ (-499) (-499) $) NIL T ELT)) (-3938 ((|#1| $ (-499) (-499) |#1|) NIL T ELT) (($ $ (-599 (-499)) (-599 (-499)) $) NIL T ELT)) (-1283 (($ $ (-499) (-1207 |#1|)) NIL T ELT)) (-1282 (($ $ (-499) (-1207 |#1|)) NIL T ELT)) (-3997 (($ |#1| |#1| |#1|) 32 T ELT)) (-3473 (($ (-714) |#1|) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3232 (($ $) NIL (|has| |#1| (-261)) ELT)) (-3234 (((-1207 |#1|) $ (-499)) NIL T ELT)) (-1495 (($ |#1|) 31 T ELT)) (-1496 (($ |#1|) 30 T ELT)) (-1497 (($ |#1|) 29 T ELT)) (-3231 (((-714) $) NIL (|has| |#1| (-510)) ELT)) (-1609 ((|#1| $ (-499) (-499) |#1|) NIL T ELT)) (-3235 ((|#1| $ (-499) (-499)) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL T ELT)) (-3230 (((-714) $) NIL (|has| |#1| (-510)) ELT)) (-3229 (((-599 (-1207 |#1|)) $) NIL (|has| |#1| (-510)) ELT)) (-3237 (((-714) $) NIL T ELT)) (-3764 (($ (-714) (-714) |#1|) NIL T ELT)) (-3236 (((-714) $) NIL T ELT)) (-3467 ((|#1| $) NIL (|has| |#1| (-6 (-4147 #1="*"))) ELT)) (-3241 (((-499) $) NIL T ELT)) (-3239 (((-499) $) NIL T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3240 (((-499) $) NIL T ELT)) (-3238 (((-499) $) NIL T ELT)) (-3246 (($ (-599 (-599 |#1|))) 11 T ELT) (($ (-714) (-714) (-1 |#1| (-499) (-499))) NIL T ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3742 (((-599 (-599 |#1|)) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3738 (((-3 $ #2="failed") $) NIL (|has| |#1| (-318)) ELT)) (-1498 (($) 12 T ELT)) (-2457 (($ $ $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2300 (($ $ |#1|) NIL T ELT)) (-3606 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-510)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) (-499)) NIL T ELT) ((|#1| $ (-499) (-499) |#1|) NIL T ELT) (($ $ (-599 (-499)) (-599 (-499))) NIL T ELT)) (-3472 (($ (-599 |#1|)) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3244 (((-85) $) NIL T ELT)) (-3468 ((|#1| $) NIL (|has| |#1| (-6 (-4147 #1#))) ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-3233 (((-1207 |#1|) $ (-499)) NIL T ELT)) (-4096 (($ (-1207 |#1|)) NIL T ELT) (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3242 (((-85) $) NIL T ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-499) $) NIL T ELT) (((-1207 |#1|) $ (-1207 |#1|)) 15 T ELT) (((-1207 |#1|) (-1207 |#1|) $) NIL T ELT) (((-881 |#1|) $ (-881 |#1|)) 21 T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-181 |#1|) (-13 (-644 |#1| (-1207 |#1|) (-1207 |#1|)) (-10 -8 (-15 * ((-881 |#1|) $ (-881 |#1|))) (-15 -1498 ($)) (-15 -1497 ($ |#1|)) (-15 -1496 ($ |#1|)) (-15 -1495 ($ |#1|)) (-15 -3997 ($ |#1| |#1| |#1|)) (-15 -4023 ($ |#1| |#1| |#1|)))) (-13 (-318) (-1143))) (T -181)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143))) (-5 *1 (-181 *3)))) (-1498 (*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143))))) (-1497 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143))))) (-1496 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143))))) (-1495 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143))))) (-3997 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143))))) (-4023 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143)))))) -((-1603 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3545 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1499 (($) NIL T ELT) (($ (-599 |#2|)) 11 T ELT)) (-3174 (((-85) $ $) 26 T ELT))) -(((-182 |#1| |#2|) (-10 -7 (-15 -3174 ((-85) |#1| |#1|)) (-15 -1603 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3545 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3545 (|#1| |#2| |#1|)) (-15 -1499 (|#1| (-599 |#2|))) (-15 -1499 (|#1|))) (-183 |#2|) (-1041)) (T -182)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-1603 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-1386 (($ $) 62 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ |#1| $) 51 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3546 (($ |#1| $) 61 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-1499 (($) 53 T ELT) (($ (-599 |#1|)) 52 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 63 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 54 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-183 |#1|) (-113) (-1041)) (T -183)) -NIL -(-13 (-192 |t#1|)) -(((-34) . T) ((-78 |#1|) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-192 |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3908 (($ $ (-1 |#1| |#1|) (-714)) 62 T ELT) (($ $ (-1 |#1| |#1|)) 61 T ELT) (($ $ (-1117)) 60 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 58 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 57 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 56 (|has| |#1| (-838 (-1117))) ELT) (($ $) 52 (|has| |#1| (-189)) ELT) (($ $ (-714)) 50 (|has| |#1| (-189)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1 |#1| |#1|) (-714)) 64 T ELT) (($ $ (-1 |#1| |#1|)) 63 T ELT) (($ $ (-1117)) 59 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 55 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 54 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 53 (|has| |#1| (-838 (-1117))) ELT) (($ $) 51 (|has| |#1| (-189)) ELT) (($ $ (-714)) 49 (|has| |#1| (-189)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-184 |#1|) (-113) (-989)) (T -184)) -NIL -(-13 (-989) (-224 |t#1|) (-10 -7 (IF (|has| |t#1| (-190)) (-6 (-190)) |%noBranch|) (IF (|has| |t#1| (-836 (-1117))) (-6 (-836 (-1117))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-186 $) -3677 (|has| |#1| (-189)) (|has| |#1| (-190))) ((-190) |has| |#1| (-190)) ((-189) -3677 (|has| |#1| (-189)) (|has| |#1| (-190))) ((-224 |#1|) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-684) . T) ((-831 $ (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-836 (-1117)) |has| |#1| (-836 (-1117))) ((-838 (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2790 ((|#2| $) 9 T ELT))) -(((-185 |#1| |#2|) (-10 -7 (-15 -2790 (|#2| |#1|))) (-186 |#2|) (-1157)) (T -185)) -NIL -((-3908 ((|#1| $) 7 T ELT)) (-2790 ((|#1| $) 6 T ELT))) -(((-186 |#1|) (-113) (-1157)) (T -186)) -((-3908 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1157)))) (-2790 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1157))))) -(-13 (-1157) (-10 -8 (-15 -3908 (|t#1| $)) (-15 -2790 (|t#1| $)))) -(((-1157) . T)) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3908 (($ $ (-714)) 42 T ELT) (($ $) 40 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2790 (($ $ (-714)) 43 T ELT) (($ $) 41 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-187 |#1|) (-113) (-989)) (T -187)) -NIL -(-13 (-82 |t#1| |t#1|) (-189) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-675 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-568 (-797)) . T) ((-186 $) . T) ((-189) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) |has| |#1| (-146)) ((-675 |#1|) |has| |#1| (-146)) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-3908 (($ $) NIL T ELT) (($ $ (-714)) 9 T ELT)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) 11 T ELT))) -(((-188 |#1|) (-10 -7 (-15 -2790 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1| (-714))) (-15 -2790 (|#1| |#1|)) (-15 -3908 (|#1| |#1|))) (-189)) (T -188)) -NIL -((-3908 (($ $) 7 T ELT) (($ $ (-714)) 10 T ELT)) (-2790 (($ $) 6 T ELT) (($ $ (-714)) 9 T ELT))) -(((-189) (-113)) (T -189)) -((-3908 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-714)))) (-2790 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-714))))) -(-13 (-186 $) (-10 -8 (-15 -3908 ($ $ (-714))) (-15 -2790 ($ $ (-714))))) -(((-186 $) . T) ((-1157) . T)) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3908 (($ $ (-714)) 47 T ELT) (($ $) 45 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-714)) 48 T ELT) (($ $) 46 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-190) (-113)) (T -190)) -NIL -(-13 (-989) (-189)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-186 $) . T) ((-189) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-684) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-1499 (($) 12 T ELT) (($ (-599 |#2|)) NIL T ELT)) (-3540 (($ $) 14 T ELT)) (-3670 (($ (-599 |#2|)) 10 T ELT)) (-4096 (((-797) $) 21 T ELT))) -(((-191 |#1| |#2|) (-10 -7 (-15 -4096 ((-797) |#1|)) (-15 -1499 (|#1| (-599 |#2|))) (-15 -1499 (|#1|)) (-15 -3670 (|#1| (-599 |#2|))) (-15 -3540 (|#1| |#1|))) (-192 |#2|) (-1041)) (T -191)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-1603 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-1386 (($ $) 62 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ |#1| $) 51 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3546 (($ |#1| $) 61 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-1499 (($) 53 T ELT) (($ (-599 |#1|)) 52 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 63 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 54 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-192 |#1|) (-113) (-1041)) (T -192)) -((-1499 (*1 *1) (-12 (-4 *1 (-192 *2)) (-4 *2 (-1041)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-4 *1 (-192 *3)))) (-3545 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-192 *2)) (-4 *2 (-1041)))) (-3545 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -4145)) (-4 *1 (-192 *3)) (-4 *3 (-1041)))) (-1603 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -4145)) (-4 *1 (-192 *3)) (-4 *3 (-1041))))) -(-13 (-78 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1499 ($)) (-15 -1499 ($ (-599 |t#1|))) (IF (|has| $ (-6 -4145)) (PROGN (-15 -3545 ($ |t#1| $)) (-15 -3545 ($ (-1 (-85) |t#1|) $)) (-15 -1603 ($ (-1 (-85) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-78 |#1|) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) -((-1500 (((-2 (|:| |varOrder| (-599 (-1117))) (|:| |inhom| (-3 (-599 (-1207 (-714))) "failed")) (|:| |hom| (-599 (-1207 (-714))))) (-247 (-884 (-499)))) 42 T ELT))) -(((-193) (-10 -7 (-15 -1500 ((-2 (|:| |varOrder| (-599 (-1117))) (|:| |inhom| (-3 (-599 (-1207 (-714))) "failed")) (|:| |hom| (-599 (-1207 (-714))))) (-247 (-884 (-499))))))) (T -193)) -((-1500 (*1 *2 *3) (-12 (-5 *3 (-247 (-884 (-499)))) (-5 *2 (-2 (|:| |varOrder| (-599 (-1117))) (|:| |inhom| (-3 (-599 (-1207 (-714))) "failed")) (|:| |hom| (-599 (-1207 (-714)))))) (-5 *1 (-193))))) -((-3258 (((-714)) 56 T ELT)) (-2380 (((-2 (|:| -1673 (-647 |#3|)) (|:| |vec| (-1207 |#3|))) (-647 $) (-1207 $)) 53 T ELT) (((-647 |#3|) (-647 $)) 44 T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-499)) (-647 $)) NIL T ELT)) (-4061 (((-107)) 62 T ELT)) (-3908 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-4096 (((-1207 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-797) $) NIL T ELT) (($ (-499)) 12 T ELT) (($ (-361 (-499))) NIL T ELT)) (-3248 (((-714)) 15 T ELT)) (-4099 (($ $ |#3|) 59 T ELT))) -(((-194 |#1| |#2| |#3|) (-10 -7 (-15 -4096 (|#1| (-361 (-499)))) (-15 -4096 (|#1| (-499))) (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -4096 ((-797) |#1|)) (-15 -3248 ((-714))) (-15 -2380 ((-647 (-499)) (-647 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 |#1|) (-1207 |#1|))) (-15 -4096 (|#1| |#3|)) (-15 -3908 (|#1| |#1| (-1 |#3| |#3|) (-714))) (-15 -3908 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2380 ((-647 |#3|) (-647 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 |#3|)) (|:| |vec| (-1207 |#3|))) (-647 |#1|) (-1207 |#1|))) (-15 -3258 ((-714))) (-15 -4099 (|#1| |#1| |#3|)) (-15 -4061 ((-107))) (-15 -4096 ((-1207 |#3|) |#1|))) (-195 |#2| |#3|) (-714) (-1157)) (T -194)) -((-4061 (*1 *2) (-12 (-14 *4 (-714)) (-4 *5 (-1157)) (-5 *2 (-107)) (-5 *1 (-194 *3 *4 *5)) (-4 *3 (-195 *4 *5)))) (-3258 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1157)) (-5 *2 (-714)) (-5 *1 (-194 *3 *4 *5)) (-4 *3 (-195 *4 *5)))) (-3248 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1157)) (-5 *2 (-714)) (-5 *1 (-194 *3 *4 *5)) (-4 *3 (-195 *4 *5))))) -((-2687 (((-85) $ $) 19 (|has| |#2| (-73)) ELT)) (-3326 (((-85) $) 80 (|has| |#2| (-23)) ELT)) (-3857 (($ (-857)) 134 (|has| |#2| (-989)) ELT)) (-2299 (((-1213) $ (-499) (-499)) 44 (|has| $ (-6 -4146)) ELT)) (-2600 (($ $ $) 130 (|has| |#2| (-738)) ELT)) (-1345 (((-3 $ "failed") $ $) 82 (|has| |#2| (-104)) ELT)) (-3258 (((-714)) 119 (|has| |#2| (-323)) ELT)) (-3938 ((|#2| $ (-499) |#2|) 56 (|has| $ (-6 -4146)) ELT)) (-3874 (($) 7 T CONST)) (-3295 (((-3 (-499) #1="failed") $) 75 (-2681 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) ELT) (((-3 (-361 (-499)) #1#) $) 72 (-2681 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) (((-3 |#2| #1#) $) 69 (|has| |#2| (-1041)) ELT)) (-3294 (((-499) $) 74 (-2681 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) ELT) (((-361 (-499)) $) 71 (-2681 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) ((|#2| $) 70 (|has| |#2| (-1041)) ELT)) (-2380 (((-647 (-499)) (-647 $)) 116 (-2681 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 115 (-2681 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) 114 (|has| |#2| (-989)) ELT) (((-647 |#2|) (-647 $)) 113 (|has| |#2| (-989)) ELT)) (-3607 (((-3 $ "failed") $) 90 (|has| |#2| (-989)) ELT)) (-3115 (($) 122 (|has| |#2| (-323)) ELT)) (-1609 ((|#2| $ (-499) |#2|) 57 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ (-499)) 55 T ELT)) (-3324 (((-85) $) 129 (|has| |#2| (-738)) ELT)) (-3010 (((-599 |#2|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) 92 (|has| |#2| (-989)) ELT)) (-2301 (((-499) $) 47 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) 123 (|has| |#2| (-781)) ELT)) (-2727 (((-599 |#2|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 48 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) 124 (|has| |#2| (-781)) ELT)) (-2051 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-2111 (((-857) $) 121 (|has| |#2| (-323)) ELT)) (-2381 (((-647 (-499)) (-1207 $)) 118 (-2681 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 117 (-2681 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) 112 (|has| |#2| (-989)) ELT) (((-647 |#2|) (-1207 $)) 111 (|has| |#2| (-989)) ELT)) (-3380 (((-1099) $) 22 (|has| |#2| (-1041)) ELT)) (-2304 (((-599 (-499)) $) 50 T ELT)) (-2305 (((-85) (-499) $) 51 T ELT)) (-2518 (($ (-857)) 120 (|has| |#2| (-323)) ELT)) (-3381 (((-1060) $) 21 (|has| |#2| (-1041)) ELT)) (-3951 ((|#2| $) 46 (|has| (-499) (-781)) ELT)) (-2300 (($ $ |#2|) 45 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#2|))) 26 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) 25 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) 23 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#2| $ (-499) |#2|) 54 T ELT) ((|#2| $ (-499)) 53 T ELT)) (-3986 ((|#2| $ $) 133 (|has| |#2| (-989)) ELT)) (-1501 (($ (-1207 |#2|)) 135 T ELT)) (-4061 (((-107)) 132 (|has| |#2| (-318)) ELT)) (-3908 (($ $ (-714)) 109 (-2681 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $) 107 (-2681 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 103 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117) (-714)) 102 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117))) 101 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117)) 99 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1 |#2| |#2|)) 98 (|has| |#2| (-989)) ELT) (($ $ (-1 |#2| |#2|) (-714)) 97 (|has| |#2| (-989)) ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#2| $) 28 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-1207 |#2|) $) 136 T ELT) (($ (-499)) 76 (-3677 (-2681 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (|has| |#2| (-989))) ELT) (($ (-361 (-499))) 73 (-2681 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) (($ |#2|) 68 (|has| |#2| (-1041)) ELT) (((-797) $) 17 (|has| |#2| (-568 (-797))) ELT)) (-3248 (((-714)) 94 (|has| |#2| (-989)) CONST)) (-1297 (((-85) $ $) 20 (|has| |#2| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -4145)) ELT)) (-2779 (($) 79 (|has| |#2| (-23)) CONST)) (-2785 (($) 93 (|has| |#2| (-989)) CONST)) (-2790 (($ $ (-714)) 110 (-2681 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $) 108 (-2681 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 106 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117) (-714)) 105 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117))) 104 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117)) 100 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1 |#2| |#2|)) 96 (|has| |#2| (-989)) ELT) (($ $ (-1 |#2| |#2|) (-714)) 95 (|has| |#2| (-989)) ELT)) (-2685 (((-85) $ $) 125 (|has| |#2| (-781)) ELT)) (-2686 (((-85) $ $) 127 (|has| |#2| (-781)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#2| (-73)) ELT)) (-2805 (((-85) $ $) 126 (|has| |#2| (-781)) ELT)) (-2806 (((-85) $ $) 128 (|has| |#2| (-781)) ELT)) (-4099 (($ $ |#2|) 131 (|has| |#2| (-318)) ELT)) (-3987 (($ $ $) 85 (|has| |#2| (-21)) ELT) (($ $) 84 (|has| |#2| (-21)) ELT)) (-3989 (($ $ $) 77 (|has| |#2| (-25)) ELT)) (** (($ $ (-714)) 91 (|has| |#2| (-989)) ELT) (($ $ (-857)) 88 (|has| |#2| (-989)) ELT)) (* (($ $ $) 89 (|has| |#2| (-989)) ELT) (($ $ |#2|) 87 (|has| |#2| (-684)) ELT) (($ |#2| $) 86 (|has| |#2| (-684)) ELT) (($ (-499) $) 83 (|has| |#2| (-21)) ELT) (($ (-714) $) 81 (|has| |#2| (-23)) ELT) (($ (-857) $) 78 (|has| |#2| (-25)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-195 |#1| |#2|) (-113) (-714) (-1157)) (T -195)) -((-1501 (*1 *1 *2) (-12 (-5 *2 (-1207 *4)) (-4 *4 (-1157)) (-4 *1 (-195 *3 *4)))) (-3857 (*1 *1 *2) (-12 (-5 *2 (-857)) (-4 *1 (-195 *3 *4)) (-4 *4 (-989)) (-4 *4 (-1157)))) (-3986 (*1 *2 *1 *1) (-12 (-4 *1 (-195 *3 *2)) (-4 *2 (-1157)) (-4 *2 (-989))))) -(-13 (-554 (-499) |t#2|) (-568 (-1207 |t#2|)) (-10 -8 (-6 -4145) (-15 -1501 ($ (-1207 |t#2|))) (IF (|has| |t#2| (-1041)) (-6 (-366 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-989)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-184 |t#2|)) (-6 (-332 |t#2|)) (-15 -3857 ($ (-857))) (-15 -3986 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-684)) (-6 (-598 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-323)) (-6 (-323)) |%noBranch|) (IF (|has| |t#2| (-146)) (-6 (-675 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4142)) (-6 -4142) |%noBranch|) (IF (|has| |t#2| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |t#2| (-738)) (-6 (-738)) |%noBranch|) (IF (|has| |t#2| (-318)) (-6 (-1215 |t#2|)) |%noBranch|))) -(((-21) -3677 (|has| |#2| (-989)) (|has| |#2| (-318)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-23) -3677 (|has| |#2| (-989)) (|has| |#2| (-738)) (|has| |#2| (-318)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -3677 (|has| |#2| (-989)) (|has| |#2| (-738)) (|has| |#2| (-318)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-73) -3677 (|has| |#2| (-1041)) (|has| |#2| (-989)) (|has| |#2| (-781)) (|has| |#2| (-738)) (|has| |#2| (-684)) (|has| |#2| (-323)) (|has| |#2| (-318)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-73)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) -3677 (|has| |#2| (-989)) (|has| |#2| (-318)) (|has| |#2| (-146))) ((-104) -3677 (|has| |#2| (-989)) (|has| |#2| (-738)) (|has| |#2| (-318)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-571 (-361 (-499))) -12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ((-571 (-499)) -3677 (|has| |#2| (-989)) (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041)))) ((-571 |#2|) |has| |#2| (-1041)) ((-568 (-797)) -3677 (|has| |#2| (-1041)) (|has| |#2| (-989)) (|has| |#2| (-781)) (|has| |#2| (-738)) (|has| |#2| (-684)) (|has| |#2| (-323)) (|has| |#2| (-318)) (|has| |#2| (-146)) (|has| |#2| (-568 (-797))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-568 (-1207 |#2|)) . T) ((-186 $) -3677 (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) (-12 (|has| |#2| (-190)) (|has| |#2| (-989)))) ((-184 |#2|) |has| |#2| (-989)) ((-190) -12 (|has| |#2| (-190)) (|has| |#2| (-989))) ((-189) -3677 (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) (-12 (|has| |#2| (-190)) (|has| |#2| (-989)))) ((-224 |#2|) |has| |#2| (-989)) ((-240 (-499) |#2|) . T) ((-242 (-499) |#2|) . T) ((-263 |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-323) |has| |#2| (-323)) ((-332 |#2|) |has| |#2| (-989)) ((-366 |#2|) |has| |#2| (-1041)) ((-443 |#2|) . T) ((-554 (-499) |#2|) . T) ((-468 |#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-604 (-499)) -3677 (|has| |#2| (-989)) (|has| |#2| (-318)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-604 |#2|) -3677 (|has| |#2| (-989)) (|has| |#2| (-684)) (|has| |#2| (-318)) (|has| |#2| (-146))) ((-604 $) |has| |#2| (-989)) ((-606 (-499)) -12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ((-606 |#2|) -3677 (|has| |#2| (-989)) (|has| |#2| (-318)) (|has| |#2| (-146))) ((-606 $) |has| |#2| (-989)) ((-598 |#2|) -3677 (|has| |#2| (-684)) (|has| |#2| (-318)) (|has| |#2| (-146))) ((-596 (-499)) -12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ((-596 |#2|) |has| |#2| (-989)) ((-675 |#2|) -3677 (|has| |#2| (-318)) (|has| |#2| (-146))) ((-684) |has| |#2| (-989)) ((-737) |has| |#2| (-738)) ((-738) |has| |#2| (-738)) ((-739) |has| |#2| (-738)) ((-742) |has| |#2| (-738)) ((-781) -3677 (|has| |#2| (-781)) (|has| |#2| (-738))) ((-784) -3677 (|has| |#2| (-781)) (|has| |#2| (-738))) ((-831 $ (-1117)) -3677 (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) (-12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989)))) ((-836 (-1117)) -12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989))) ((-838 (-1117)) -3677 (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) (-12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989)))) ((-978 (-361 (-499))) -12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ((-978 (-499)) -12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) ((-978 |#2|) |has| |#2| (-1041)) ((-991 |#2|) -3677 (|has| |#2| (-989)) (|has| |#2| (-684)) (|has| |#2| (-318)) (|has| |#2| (-146))) ((-996 |#2|) -3677 (|has| |#2| (-989)) (|has| |#2| (-318)) (|has| |#2| (-146))) ((-989) |has| |#2| (-989)) ((-997) |has| |#2| (-989)) ((-1052) |has| |#2| (-989)) ((-1041) -3677 (|has| |#2| (-1041)) (|has| |#2| (-989)) (|has| |#2| (-781)) (|has| |#2| (-738)) (|has| |#2| (-684)) (|has| |#2| (-323)) (|has| |#2| (-318)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1157) . T) ((-1215 |#2|) |has| |#2| (-318))) -((-2687 (((-85) $ $) NIL (|has| |#2| (-73)) ELT)) (-3326 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3857 (($ (-857)) 63 (|has| |#2| (-989)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-2600 (($ $ $) 69 (|has| |#2| (-738)) ELT)) (-1345 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3258 (((-714)) NIL (|has| |#2| (-323)) ELT)) (-3938 ((|#2| $ (-499) |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1041)) ELT)) (-3294 (((-499) $) NIL (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) ELT) (((-361 (-499)) $) NIL (-12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) ((|#2| $) 29 (|has| |#2| (-1041)) ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL (|has| |#2| (-989)) ELT) (((-647 |#2|) (-647 $)) NIL (|has| |#2| (-989)) ELT)) (-3607 (((-3 $ #1#) $) 59 (|has| |#2| (-989)) ELT)) (-3115 (($) NIL (|has| |#2| (-323)) ELT)) (-1609 ((|#2| $ (-499) |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ (-499)) 57 T ELT)) (-3324 (((-85) $) NIL (|has| |#2| (-738)) ELT)) (-3010 (((-599 |#2|) $) 14 (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) NIL (|has| |#2| (-989)) ELT)) (-2301 (((-499) $) 20 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#2| (-781)) ELT)) (-2727 (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#2| (-781)) ELT)) (-2051 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| |#2| (-323)) ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL (|has| |#2| (-989)) ELT) (((-647 |#2|) (-1207 $)) NIL (|has| |#2| (-989)) ELT)) (-3380 (((-1099) $) NIL (|has| |#2| (-1041)) ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-2518 (($ (-857)) NIL (|has| |#2| (-323)) ELT)) (-3381 (((-1060) $) NIL (|has| |#2| (-1041)) ELT)) (-3951 ((|#2| $) NIL (|has| (-499) (-781)) ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) 24 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ (-499) |#2|) NIL T ELT) ((|#2| $ (-499)) 21 T ELT)) (-3986 ((|#2| $ $) NIL (|has| |#2| (-989)) ELT)) (-1501 (($ (-1207 |#2|)) 18 T ELT)) (-4061 (((-107)) NIL (|has| |#2| (-318)) ELT)) (-3908 (($ $ (-714)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-989)) ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL (|has| |#2| (-989)) ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-1207 |#2|) $) 9 T ELT) (($ (-499)) NIL (-3677 (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (|has| |#2| (-989))) ELT) (($ (-361 (-499))) NIL (-12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) (($ |#2|) 12 (|has| |#2| (-1041)) ELT) (((-797) $) NIL (|has| |#2| (-568 (-797))) ELT)) (-3248 (((-714)) NIL (|has| |#2| (-989)) CONST)) (-1297 (((-85) $ $) NIL (|has| |#2| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2779 (($) 37 (|has| |#2| (-23)) CONST)) (-2785 (($) 41 (|has| |#2| (-989)) CONST)) (-2790 (($ $ (-714)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-989)) ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL (|has| |#2| (-989)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-3174 (((-85) $ $) 28 (|has| |#2| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-2806 (((-85) $ $) 67 (|has| |#2| (-781)) ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3989 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-714)) NIL (|has| |#2| (-989)) ELT) (($ $ (-857)) NIL (|has| |#2| (-989)) ELT)) (* (($ $ $) 47 (|has| |#2| (-989)) ELT) (($ $ |#2|) 45 (|has| |#2| (-684)) ELT) (($ |#2| $) 46 (|has| |#2| (-684)) ELT) (($ (-499) $) NIL (|has| |#2| (-21)) ELT) (($ (-714) $) NIL (|has| |#2| (-23)) ELT) (($ (-857) $) NIL (|has| |#2| (-25)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-196 |#1| |#2|) (-195 |#1| |#2|) (-714) (-1157)) (T -196)) -NIL -((-3991 (((-196 |#1| |#3|) (-1 |#3| |#2| |#3|) (-196 |#1| |#2|) |#3|) 21 T ELT)) (-3992 ((|#3| (-1 |#3| |#2| |#3|) (-196 |#1| |#2|) |#3|) 23 T ELT)) (-4108 (((-196 |#1| |#3|) (-1 |#3| |#2|) (-196 |#1| |#2|)) 18 T ELT))) -(((-197 |#1| |#2| |#3|) (-10 -7 (-15 -3991 ((-196 |#1| |#3|) (-1 |#3| |#2| |#3|) (-196 |#1| |#2|) |#3|)) (-15 -3992 (|#3| (-1 |#3| |#2| |#3|) (-196 |#1| |#2|) |#3|)) (-15 -4108 ((-196 |#1| |#3|) (-1 |#3| |#2|) (-196 |#1| |#2|)))) (-714) (-1157) (-1157)) (T -197)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-196 *5 *6)) (-14 *5 (-714)) (-4 *6 (-1157)) (-4 *7 (-1157)) (-5 *2 (-196 *5 *7)) (-5 *1 (-197 *5 *6 *7)))) (-3992 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-196 *5 *6)) (-14 *5 (-714)) (-4 *6 (-1157)) (-4 *2 (-1157)) (-5 *1 (-197 *5 *6 *2)))) (-3991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-196 *6 *7)) (-14 *6 (-714)) (-4 *7 (-1157)) (-4 *5 (-1157)) (-5 *2 (-196 *6 *5)) (-5 *1 (-197 *6 *7 *5))))) -((-1505 (((-499) (-599 (-1099))) 36 T ELT) (((-499) (-1099)) 29 T ELT)) (-1504 (((-1213) (-599 (-1099))) 40 T ELT) (((-1213) (-1099)) 39 T ELT)) (-1502 (((-1099)) 16 T ELT)) (-1503 (((-1099) (-499) (-1099)) 23 T ELT)) (-3923 (((-599 (-1099)) (-599 (-1099)) (-499) (-1099)) 37 T ELT) (((-1099) (-1099) (-499) (-1099)) 35 T ELT)) (-2739 (((-599 (-1099)) (-599 (-1099))) 15 T ELT) (((-599 (-1099)) (-1099)) 11 T ELT))) -(((-198) (-10 -7 (-15 -2739 ((-599 (-1099)) (-1099))) (-15 -2739 ((-599 (-1099)) (-599 (-1099)))) (-15 -1502 ((-1099))) (-15 -1503 ((-1099) (-499) (-1099))) (-15 -3923 ((-1099) (-1099) (-499) (-1099))) (-15 -3923 ((-599 (-1099)) (-599 (-1099)) (-499) (-1099))) (-15 -1504 ((-1213) (-1099))) (-15 -1504 ((-1213) (-599 (-1099)))) (-15 -1505 ((-499) (-1099))) (-15 -1505 ((-499) (-599 (-1099)))))) (T -198)) -((-1505 (*1 *2 *3) (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-499)) (-5 *1 (-198)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-499)) (-5 *1 (-198)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-1213)) (-5 *1 (-198)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-198)))) (-3923 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-599 (-1099))) (-5 *3 (-499)) (-5 *4 (-1099)) (-5 *1 (-198)))) (-3923 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *3 (-499)) (-5 *1 (-198)))) (-1503 (*1 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *3 (-499)) (-5 *1 (-198)))) (-1502 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-198)))) (-2739 (*1 *2 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-198)))) (-2739 (*1 *2 *3) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-198)) (-5 *3 (-1099))))) -((** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 18 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-361 (-499)) $) 25 T ELT) (($ $ (-361 (-499))) NIL T ELT))) -(((-199 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-499))) (-15 * (|#1| |#1| (-361 (-499)))) (-15 * (|#1| (-361 (-499)) |#1|)) (-15 ** (|#1| |#1| (-714))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-857))) (-15 * (|#1| (-499) |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 * (|#1| (-857) |#1|))) (-200)) (T -199)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 52 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 (-499))) 56 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 53 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-361 (-499)) $) 55 T ELT) (($ $ (-361 (-499))) 54 T ELT))) -(((-200) (-113)) (T -200)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-200)) (-5 *2 (-499)))) (-2601 (*1 *1 *1) (-4 *1 (-200)))) -(-13 (-244) (-38 (-361 (-499))) (-10 -8 (-15 ** ($ $ (-499))) (-15 -2601 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-244) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-675 (-361 (-499))) . T) ((-684) . T) ((-991 (-361 (-499))) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 52 T ELT)) (-3947 (($ $) 63 T ELT)) (-3146 ((|#1| $ |#1|) 43 (|has| $ (-6 -4146)) ELT)) (-1507 (($ $ $) 59 (|has| $ (-6 -4146)) ELT)) (-1506 (($ $ $) 58 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 45 (|has| $ (-6 -4146)) ELT)) (-3874 (($) 7 T CONST)) (-1509 (($ $) 62 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 54 T ELT)) (-3148 (((-85) $ $) 46 (|has| |#1| (-1041)) ELT)) (-1508 (($ $) 61 T ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3151 (((-599 |#1|) $) 49 T ELT)) (-3667 (((-85) $) 53 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3948 ((|#1| $) 65 T ELT)) (-3316 (($ $) 64 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ #1#) 51 T ELT)) (-3150 (((-499) $ $) 48 T ELT)) (-3783 (((-85) $) 50 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-3941 (($ $ $) 60 (|has| $ (-6 -4146)) ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) 55 T ELT)) (-3149 (((-85) $ $) 47 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-201 |#1|) (-113) (-1157)) (T -201)) -((-3948 (*1 *2 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157)))) (-3316 (*1 *1 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157)))) (-3947 (*1 *1 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157)))) (-1509 (*1 *1 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157)))) (-1508 (*1 *1 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157)))) (-3941 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-201 *2)) (-4 *2 (-1157)))) (-1507 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-201 *2)) (-4 *2 (-1157)))) (-1506 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-201 *2)) (-4 *2 (-1157))))) -(-13 (-950 |t#1|) (-10 -8 (-15 -3948 (|t#1| $)) (-15 -3316 ($ $)) (-15 -3947 ($ $)) (-15 -1509 ($ $)) (-15 -1508 ($ $)) (IF (|has| $ (-6 -4146)) (PROGN (-15 -3941 ($ $ $)) (-15 -1507 ($ $ $)) (-15 -1506 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-950 |#1|) . T) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) NIL T ELT)) (-3945 ((|#1| $) NIL T ELT)) (-3947 (($ $) NIL T ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3935 (($ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) $) NIL (|has| |#1| (-781)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1823 (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-3030 (($ $) 10 (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3582 (((-85) $ (-714)) NIL T ELT)) (-3146 ((|#1| $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3937 (($ $ $) NIL (|has| $ (-6 -4146)) ELT)) (-3936 ((|#1| $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3939 ((|#1| $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4146)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) NIL (|has| $ (-6 -4146)) ELT)) (-1603 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3946 ((|#1| $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-3949 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-2481 (($ $) NIL (|has| |#1| (-1041)) ELT)) (-1386 (($ $) 7 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3545 (($ |#1| $) NIL (|has| |#1| (-1041)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3546 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1609 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) NIL T ELT)) (-3583 (((-85) $) NIL T ELT)) (-3559 (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) (-1 (-85) |#1|) $) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) NIL T ELT)) (-3148 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3764 (($ (-714) |#1|) NIL T ELT)) (-3869 (((-85) $ (-714)) NIL T ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2977 (($ $ $) NIL (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3658 (($ $ $) NIL (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3682 (($ |#1|) NIL T ELT)) (-3866 (((-85) $ (-714)) NIL T ELT)) (-3151 (((-599 |#1|) $) NIL T ELT)) (-3667 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3948 ((|#1| $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3757 (($ $ $ (-499)) NIL T ELT) (($ |#1| $ (-499)) NIL T ELT)) (-2404 (($ $ $ (-499)) NIL T ELT) (($ |#1| $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3584 (((-85) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT) ((|#1| $ (-499)) NIL T ELT) ((|#1| $ (-499) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-714) $ "count") 16 T ELT)) (-3150 (((-499) $ $) NIL T ELT)) (-1604 (($ $ (-1174 (-499))) NIL T ELT) (($ $ (-499)) NIL T ELT)) (-2405 (($ $ (-1174 (-499))) NIL T ELT) (($ $ (-499)) NIL T ELT)) (-1510 (($ (-599 |#1|)) 22 T ELT)) (-3783 (((-85) $) NIL T ELT)) (-3942 (($ $) NIL T ELT)) (-3940 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-3943 (((-714) $) NIL T ELT)) (-3944 (($ $) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) NIL T ELT)) (-3941 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3952 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-599 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4096 (($ (-599 |#1|)) 17 T ELT) (((-599 |#1|) $) 18 T ELT) (((-797) $) 21 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) NIL T ELT)) (-3149 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) 14 (|has| $ (-6 -4145)) ELT))) -(((-202 |#1|) (-13 (-624 |#1|) (-444 (-599 |#1|)) (-10 -8 (-15 -1510 ($ (-599 |#1|))) (-15 -3950 ($ $ "unique")) (-15 -3950 ($ $ "sort")) (-15 -3950 ((-714) $ "count")))) (-781)) (T -202)) -((-1510 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-202 *3)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-202 *3)) (-4 *3 (-781)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-202 *3)) (-4 *3 (-781)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-714)) (-5 *1 (-202 *4)) (-4 *4 (-781))))) -((-1511 (((-3 (-714) "failed") |#1| |#1| (-714)) 40 T ELT))) -(((-203 |#1|) (-10 -7 (-15 -1511 ((-3 (-714) "failed") |#1| |#1| (-714)))) (-13 (-684) (-323) (-10 -7 (-15 ** (|#1| |#1| (-499)))))) (T -203)) -((-1511 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-714)) (-4 *3 (-13 (-684) (-323) (-10 -7 (-15 ** (*3 *3 (-499)))))) (-5 *1 (-203 *3))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3908 (($ $) 59 (|has| |#1| (-189)) ELT) (($ $ (-714)) 57 (|has| |#1| (-189)) ELT) (($ $ (-1117)) 55 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 53 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 52 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 51 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1 |#1| |#1|) (-714)) 45 T ELT) (($ $ (-1 |#1| |#1|)) 44 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2790 (($ $) 58 (|has| |#1| (-189)) ELT) (($ $ (-714)) 56 (|has| |#1| (-189)) ELT) (($ $ (-1117)) 54 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 50 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 49 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 48 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1 |#1| |#1|) (-714)) 47 T ELT) (($ $ (-1 |#1| |#1|)) 46 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-204 |#1|) (-113) (-989)) (T -204)) -NIL -(-13 (-82 |t#1| |t#1|) (-224 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-187 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-838 (-1117))) (-6 (-835 |t#1| (-1117))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-568 (-797)) . T) ((-186 $) |has| |#1| (-189)) ((-187 |#1|) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-224 |#1|) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) -3677 (-12 (|has| |#1| (-146)) (|has| |#1| (-838 (-1117)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-675 |#1|) -3677 (-12 (|has| |#1| (-146)) (|has| |#1| (-838 (-1117)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-831 $ (-1117)) |has| |#1| (-838 (-1117))) ((-835 |#1| (-1117)) |has| |#1| (-838 (-1117))) ((-838 (-1117)) |has| |#1| (-838 (-1117))) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-798 |#1|)) $) NIL T ELT)) (-3206 (((-1111 $) $ (-798 |#1|)) NIL T ELT) (((-1111 |#2|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#2| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#2| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#2| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-798 |#1|))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#2| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#2| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-3 (-798 |#1|) #1#) $) NIL T ELT)) (-3294 ((|#2| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-798 |#1|) $) NIL T ELT)) (-3906 (($ $ $ (-798 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-2039 (($ $ (-599 (-499))) NIL T ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#2|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#2| (-406)) ELT) (($ $ (-798 |#1|)) NIL (|has| |#2| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#2| (-848)) ELT)) (-1694 (($ $ |#2| (-196 (-4107 |#1|) (-714)) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-798 |#1|) (-821 (-333))) (|has| |#2| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-798 |#1|) (-821 (-499))) (|has| |#2| (-821 (-499)))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3207 (($ (-1111 |#2|) (-798 |#1|)) NIL T ELT) (($ (-1111 $) (-798 |#1|)) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#2| (-196 (-4107 |#1|) (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-798 |#1|)) NIL T ELT)) (-2941 (((-196 (-4107 |#1|) (-714)) $) NIL T ELT) (((-714) $ (-798 |#1|)) NIL T ELT) (((-599 (-714)) $ (-599 (-798 |#1|))) NIL T ELT)) (-1695 (($ (-1 (-196 (-4107 |#1|) (-714)) (-196 (-4107 |#1|) (-714))) $) NIL T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3205 (((-3 (-798 |#1|) #1#) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#2| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) NIL (|has| |#2| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-798 |#1|)) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#2| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#2| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) NIL (|has| |#2| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#2| (-848)) ELT)) (-3606 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-798 |#1|) |#2|) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 |#2|)) NIL T ELT) (($ $ (-798 |#1|) $) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 $)) NIL T ELT)) (-3907 (($ $ (-798 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3908 (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|)) NIL T ELT)) (-4098 (((-196 (-4107 |#1|) (-714)) $) NIL T ELT) (((-714) $ (-798 |#1|)) NIL T ELT) (((-599 (-714)) $ (-599 (-798 |#1|))) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-798 |#1|) (-569 (-825 (-333)))) (|has| |#2| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-798 |#1|) (-569 (-825 (-499)))) (|has| |#2| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-798 |#1|) (-569 (-488))) (|has| |#2| (-569 (-488)))) ELT)) (-2938 ((|#2| $) NIL (|has| |#2| (-406)) ELT) (($ $ (-798 |#1|)) NIL (|has| |#2| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-798 |#1|)) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#2| (-510)) ELT)) (-3967 (((-599 |#2|) $) NIL T ELT)) (-3827 ((|#2| $ (-196 (-4107 |#1|) (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#2| (-848))) (|has| |#2| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#2| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#2| (-510)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-205 |#1| |#2|) (-13 (-888 |#2| (-196 (-4107 |#1|) (-714)) (-798 |#1|)) (-10 -8 (-15 -2039 ($ $ (-599 (-499)))))) (-599 (-1117)) (-989)) (T -205)) -((-2039 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-205 *3 *4)) (-14 *3 (-599 (-1117))) (-4 *4 (-989))))) -((-2687 (((-85) $ $) NIL T ELT)) (-1512 (((-1213) $) 17 T ELT)) (-1514 (((-158 (-207)) $) 11 T ELT)) (-1513 (($ (-158 (-207))) 12 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1515 (((-207) $) 7 T ELT)) (-4096 (((-797) $) 9 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 15 T ELT))) -(((-206) (-13 (-1041) (-10 -8 (-15 -1515 ((-207) $)) (-15 -1514 ((-158 (-207)) $)) (-15 -1513 ($ (-158 (-207)))) (-15 -1512 ((-1213) $))))) (T -206)) -((-1515 (*1 *2 *1) (-12 (-5 *2 (-207)) (-5 *1 (-206)))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-158 (-207))) (-5 *1 (-206)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-158 (-207))) (-5 *1 (-206)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-206))))) -((-2687 (((-85) $ $) NIL T ELT)) (-1457 (((-599 (-799)) $) NIL T ELT)) (-3690 (((-460) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1459 (((-161) $) NIL T ELT)) (-2752 (((-85) $ (-460)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1516 (((-287) $) 7 T ELT)) (-1458 (((-599 (-85)) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (((-157) $) 8 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2639 (((-55) $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-207) (-13 (-160) (-568 (-157)) (-10 -8 (-15 -1516 ((-287) $))))) (T -207)) -((-1516 (*1 *2 *1) (-12 (-5 *2 (-287)) (-5 *1 (-207))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3950 (((-1122) $ (-714)) 13 T ELT)) (-4096 (((-797) $) 20 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 16 T ELT)) (-4107 (((-714) $) 9 T ELT))) -(((-208) (-13 (-1041) (-240 (-714) (-1122)) (-10 -8 (-15 -4107 ((-714) $))))) (T -208)) -((-4107 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-208))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3857 (($ (-857)) NIL (|has| |#4| (-989)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-2600 (($ $ $) NIL (|has| |#4| (-738)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| |#4| (-323)) ELT)) (-3938 ((|#4| $ (-499) |#4|) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1041)) ELT) (((-3 (-499) #1#) $) NIL (-12 (|has| |#4| (-978 (-499))) (|has| |#4| (-1041))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-12 (|has| |#4| (-978 (-361 (-499)))) (|has| |#4| (-1041))) ELT)) (-3294 ((|#4| $) NIL (|has| |#4| (-1041)) ELT) (((-499) $) NIL (-12 (|has| |#4| (-978 (-499))) (|has| |#4| (-1041))) ELT) (((-361 (-499)) $) NIL (-12 (|has| |#4| (-978 (-361 (-499)))) (|has| |#4| (-1041))) ELT)) (-2380 (((-2 (|:| -1673 (-647 |#4|)) (|:| |vec| (-1207 |#4|))) (-647 $) (-1207 $)) NIL (|has| |#4| (-989)) ELT) (((-647 |#4|) (-647 $)) NIL (|has| |#4| (-989)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| |#4| (-596 (-499))) (|has| |#4| (-989))) ELT) (((-647 (-499)) (-647 $)) NIL (-12 (|has| |#4| (-596 (-499))) (|has| |#4| (-989))) ELT)) (-3607 (((-3 $ #1#) $) NIL (|has| |#4| (-989)) ELT)) (-3115 (($) NIL (|has| |#4| (-323)) ELT)) (-1609 ((|#4| $ (-499) |#4|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#4| $ (-499)) NIL T ELT)) (-3324 (((-85) $) NIL (|has| |#4| (-738)) ELT)) (-3010 (((-599 |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) NIL (|has| |#4| (-989)) ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#4| (-781)) ELT)) (-2727 (((-599 |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#4| (-781)) ELT)) (-2051 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| |#4| (-323)) ELT)) (-2381 (((-2 (|:| -1673 (-647 |#4|)) (|:| |vec| (-1207 |#4|))) (-1207 $) $) NIL (|has| |#4| (-989)) ELT) (((-647 |#4|) (-1207 $)) NIL (|has| |#4| (-989)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| |#4| (-596 (-499))) (|has| |#4| (-989))) ELT) (((-647 (-499)) (-1207 $)) NIL (-12 (|has| |#4| (-596 (-499))) (|has| |#4| (-989))) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-2518 (($ (-857)) NIL (|has| |#4| (-323)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 ((|#4| $) NIL (|has| (-499) (-781)) ELT)) (-2300 (($ $ |#4|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#4|))) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 |#4|) (-599 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-2306 (((-599 |#4|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#4| $ (-499) |#4|) NIL T ELT) ((|#4| $ (-499)) 12 T ELT)) (-3986 ((|#4| $ $) NIL (|has| |#4| (-989)) ELT)) (-1501 (($ (-1207 |#4|)) NIL T ELT)) (-4061 (((-107)) NIL (|has| |#4| (-318)) ELT)) (-3908 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-989)) ELT) (($ $ (-1 |#4| |#4|) (-714)) NIL (|has| |#4| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989)))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989)))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| |#4| (-190)) (|has| |#4| (-989))) (-12 (|has| |#4| (-189)) (|has| |#4| (-989)))) ELT) (($ $) NIL (-3677 (-12 (|has| |#4| (-190)) (|has| |#4| (-989))) (-12 (|has| |#4| (-189)) (|has| |#4| (-989)))) ELT)) (-2048 (((-714) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-1207 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1041)) ELT) (((-797) $) NIL T ELT) (($ (-499)) NIL (-3677 (-12 (|has| |#4| (-978 (-499))) (|has| |#4| (-1041))) (|has| |#4| (-989))) ELT) (($ (-361 (-499))) NIL (-12 (|has| |#4| (-978 (-361 (-499)))) (|has| |#4| (-1041))) ELT)) (-3248 (((-714)) NIL (|has| |#4| (-989)) CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL (|has| |#4| (-989)) CONST)) (-2790 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-989)) ELT) (($ $ (-1 |#4| |#4|) (-714)) NIL (|has| |#4| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989)))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989)))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| |#4| (-190)) (|has| |#4| (-989))) (-12 (|has| |#4| (-189)) (|has| |#4| (-989)))) ELT) (($ $) NIL (-3677 (-12 (|has| |#4| (-190)) (|has| |#4| (-989))) (-12 (|has| |#4| (-189)) (|has| |#4| (-989)))) ELT)) (-2685 (((-85) $ $) NIL (|has| |#4| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#4| (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| |#4| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#4| (-781)) ELT)) (-4099 (($ $ |#4|) NIL (|has| |#4| (-318)) ELT)) (-3987 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-714)) NIL (|has| |#4| (-989)) ELT) (($ $ (-857)) NIL (|has| |#4| (-989)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-499) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-857) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-684)) ELT) (($ |#4| $) NIL (|has| |#4| (-684)) ELT) (($ $ $) NIL (|has| |#4| (-989)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-209 |#1| |#2| |#3| |#4|) (-13 (-195 |#1| |#4|) (-606 |#2|) (-606 |#3|)) (-857) (-989) (-1063 |#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) (-606 |#2|)) (T -209)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3857 (($ (-857)) NIL (|has| |#3| (-989)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-2600 (($ $ $) NIL (|has| |#3| (-738)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| |#3| (-323)) ELT)) (-3938 ((|#3| $ (-499) |#3|) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1041)) ELT) (((-3 (-499) #1#) $) NIL (-12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041))) ELT)) (-3294 ((|#3| $) NIL (|has| |#3| (-1041)) ELT) (((-499) $) NIL (-12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) ELT) (((-361 (-499)) $) NIL (-12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041))) ELT)) (-2380 (((-2 (|:| -1673 (-647 |#3|)) (|:| |vec| (-1207 |#3|))) (-647 $) (-1207 $)) NIL (|has| |#3| (-989)) ELT) (((-647 |#3|) (-647 $)) NIL (|has| |#3| (-989)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989))) ELT) (((-647 (-499)) (-647 $)) NIL (-12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989))) ELT)) (-3607 (((-3 $ #1#) $) NIL (|has| |#3| (-989)) ELT)) (-3115 (($) NIL (|has| |#3| (-323)) ELT)) (-1609 ((|#3| $ (-499) |#3|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#3| $ (-499)) NIL T ELT)) (-3324 (((-85) $) NIL (|has| |#3| (-738)) ELT)) (-3010 (((-599 |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) NIL (|has| |#3| (-989)) ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#3| (-781)) ELT)) (-2727 (((-599 |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#3| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#3| (-781)) ELT)) (-2051 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| |#3| (-323)) ELT)) (-2381 (((-2 (|:| -1673 (-647 |#3|)) (|:| |vec| (-1207 |#3|))) (-1207 $) $) NIL (|has| |#3| (-989)) ELT) (((-647 |#3|) (-1207 $)) NIL (|has| |#3| (-989)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989))) ELT) (((-647 (-499)) (-1207 $)) NIL (-12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989))) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-2518 (($ (-857)) NIL (|has| |#3| (-323)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 ((|#3| $) NIL (|has| (-499) (-781)) ELT)) (-2300 (($ $ |#3|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#3|))) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ (-247 |#3|)) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ (-599 |#3|) (-599 |#3|)) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#3| (-1041))) ELT)) (-2306 (((-599 |#3|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#3| $ (-499) |#3|) NIL T ELT) ((|#3| $ (-499)) 11 T ELT)) (-3986 ((|#3| $ $) NIL (|has| |#3| (-989)) ELT)) (-1501 (($ (-1207 |#3|)) NIL T ELT)) (-4061 (((-107)) NIL (|has| |#3| (-318)) ELT)) (-3908 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-989)) ELT) (($ $ (-1 |#3| |#3|) (-714)) NIL (|has| |#3| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989)))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989)))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| |#3| (-190)) (|has| |#3| (-989))) (-12 (|has| |#3| (-189)) (|has| |#3| (-989)))) ELT) (($ $) NIL (-3677 (-12 (|has| |#3| (-190)) (|has| |#3| (-989))) (-12 (|has| |#3| (-189)) (|has| |#3| (-989)))) ELT)) (-2048 (((-714) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#3| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#3| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-1207 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1041)) ELT) (((-797) $) NIL T ELT) (($ (-499)) NIL (-3677 (-12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) (|has| |#3| (-989))) ELT) (($ (-361 (-499))) NIL (-12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041))) ELT)) (-3248 (((-714)) NIL (|has| |#3| (-989)) CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL (|has| |#3| (-989)) CONST)) (-2790 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-989)) ELT) (($ $ (-1 |#3| |#3|) (-714)) NIL (|has| |#3| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989)))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989)))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| |#3| (-190)) (|has| |#3| (-989))) (-12 (|has| |#3| (-189)) (|has| |#3| (-989)))) ELT) (($ $) NIL (-3677 (-12 (|has| |#3| (-190)) (|has| |#3| (-989))) (-12 (|has| |#3| (-189)) (|has| |#3| (-989)))) ELT)) (-2685 (((-85) $ $) NIL (|has| |#3| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#3| (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| |#3| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#3| (-781)) ELT)) (-4099 (($ $ |#3|) NIL (|has| |#3| (-318)) ELT)) (-3987 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-714)) NIL (|has| |#3| (-989)) ELT) (($ $ (-857)) NIL (|has| |#3| (-989)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-499) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-857) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-684)) ELT) (($ |#3| $) NIL (|has| |#3| (-684)) ELT) (($ $ $) NIL (|has| |#3| (-989)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-210 |#1| |#2| |#3|) (-13 (-195 |#1| |#3|) (-606 |#2|)) (-714) (-989) (-606 |#2|)) (T -210)) -NIL -((-1521 (((-599 (-714)) $) 56 T ELT) (((-599 (-714)) $ |#3|) 59 T ELT)) (-1555 (((-714) $) 58 T ELT) (((-714) $ |#3|) 61 T ELT)) (-1517 (($ $) 76 T ELT)) (-3295 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 (-499) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3922 (((-714) $ |#3|) 43 T ELT) (((-714) $) 38 T ELT)) (-1556 (((-1 $ (-714)) |#3|) 15 T ELT) (((-1 $ (-714)) $) 88 T ELT)) (-1519 ((|#4| $) 69 T ELT)) (-1520 (((-85) $) 67 T ELT)) (-1518 (($ $) 75 T ELT)) (-3918 (($ $ (-599 (-247 $))) 111 T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-599 |#4|) (-599 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-599 |#4|) (-599 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-599 |#3|) (-599 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-599 |#3|) (-599 |#2|)) 97 T ELT)) (-3908 (($ $ (-599 |#4|) (-599 (-714))) NIL T ELT) (($ $ |#4| (-714)) NIL T ELT) (($ $ (-599 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-1522 (((-599 |#3|) $) 86 T ELT)) (-4098 ((|#5| $) NIL T ELT) (((-714) $ |#4|) NIL T ELT) (((-599 (-714)) $ (-599 |#4|)) NIL T ELT) (((-714) $ |#3|) 49 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-361 (-499))) NIL T ELT) (($ $) NIL T ELT))) -(((-211 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -4096 (|#1| |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -3918 (|#1| |#1| (-599 |#3|) (-599 |#2|))) (-15 -3918 (|#1| |#1| |#3| |#2|)) (-15 -3918 (|#1| |#1| (-599 |#3|) (-599 |#1|))) (-15 -3918 (|#1| |#1| |#3| |#1|)) (-15 -1556 ((-1 |#1| (-714)) |#1|)) (-15 -1517 (|#1| |#1|)) (-15 -1518 (|#1| |#1|)) (-15 -1519 (|#4| |#1|)) (-15 -1520 ((-85) |#1|)) (-15 -1555 ((-714) |#1| |#3|)) (-15 -1521 ((-599 (-714)) |#1| |#3|)) (-15 -1555 ((-714) |#1|)) (-15 -1521 ((-599 (-714)) |#1|)) (-15 -4098 ((-714) |#1| |#3|)) (-15 -3922 ((-714) |#1|)) (-15 -3922 ((-714) |#1| |#3|)) (-15 -1522 ((-599 |#3|) |#1|)) (-15 -1556 ((-1 |#1| (-714)) |#3|)) (-15 -4096 (|#1| |#3|)) (-15 -3295 ((-3 |#3| #1="failed") |#1|)) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|) (-714))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4098 ((-599 (-714)) |#1| (-599 |#4|))) (-15 -4098 ((-714) |#1| |#4|)) (-15 -4096 (|#1| |#4|)) (-15 -3295 ((-3 |#4| #1#) |#1|)) (-15 -3918 (|#1| |#1| (-599 |#4|) (-599 |#1|))) (-15 -3918 (|#1| |#1| |#4| |#1|)) (-15 -3918 (|#1| |#1| (-599 |#4|) (-599 |#2|))) (-15 -3918 (|#1| |#1| |#4| |#2|)) (-15 -3918 (|#1| |#1| (-599 |#1|) (-599 |#1|))) (-15 -3918 (|#1| |#1| |#1| |#1|)) (-15 -3918 (|#1| |#1| (-247 |#1|))) (-15 -3918 (|#1| |#1| (-599 (-247 |#1|)))) (-15 -4098 (|#5| |#1|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -4096 (|#1| |#2|)) (-15 -3908 (|#1| |#1| |#4|)) (-15 -3908 (|#1| |#1| (-599 |#4|))) (-15 -3908 (|#1| |#1| |#4| (-714))) (-15 -3908 (|#1| |#1| (-599 |#4|) (-599 (-714)))) (-15 -4096 (|#1| (-499))) (-15 -4096 ((-797) |#1|))) (-212 |#2| |#3| |#4| |#5|) (-989) (-781) (-227 |#3|) (-738)) (T -211)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1521 (((-599 (-714)) $) 248 T ELT) (((-599 (-714)) $ |#2|) 246 T ELT)) (-1555 (((-714) $) 247 T ELT) (((-714) $ |#2|) 245 T ELT)) (-3204 (((-599 |#3|) $) 120 T ELT)) (-3206 (((-1111 $) $ |#3|) 135 T ELT) (((-1111 |#1|) $) 134 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 97 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 98 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 100 (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) 122 T ELT) (((-714) $ (-599 |#3|)) 121 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 110 (|has| |#1| (-848)) ELT)) (-3925 (($ $) 108 (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) 107 (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1="failed") (-599 (-1111 $)) (-1111 $)) 113 (|has| |#1| (-848)) ELT)) (-1517 (($ $) 241 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-361 (-499)) #2#) $) 175 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #2#) $) 173 (|has| |#1| (-978 (-499))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 |#2| #2#) $) 255 T ELT)) (-3294 ((|#1| $) 177 T ELT) (((-361 (-499)) $) 176 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) 174 (|has| |#1| (-978 (-499))) ELT) ((|#3| $) 151 T ELT) ((|#2| $) 256 T ELT)) (-3906 (($ $ $ |#3|) 118 (|has| |#1| (-146)) ELT)) (-4109 (($ $) 168 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 146 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 145 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 144 T ELT) (((-647 |#1|) (-647 $)) 143 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3643 (($ $) 190 (|has| |#1| (-406)) ELT) (($ $ |#3|) 115 (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) 119 T ELT)) (-3873 (((-85) $) 106 (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| |#4| $) 186 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 94 (-12 (|has| |#3| (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 93 (-12 (|has| |#3| (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-3922 (((-714) $ |#2|) 251 T ELT) (((-714) $) 250 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-2536 (((-714) $) 183 T ELT)) (-3207 (($ (-1111 |#1|) |#3|) 127 T ELT) (($ (-1111 $) |#3|) 126 T ELT)) (-2942 (((-599 $) $) 136 T ELT)) (-4087 (((-85) $) 166 T ELT)) (-3014 (($ |#1| |#4|) 167 T ELT) (($ $ |#3| (-714)) 129 T ELT) (($ $ (-599 |#3|) (-599 (-714))) 128 T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ |#3|) 130 T ELT)) (-2941 ((|#4| $) 184 T ELT) (((-714) $ |#3|) 132 T ELT) (((-599 (-714)) $ (-599 |#3|)) 131 T ELT)) (-1695 (($ (-1 |#4| |#4|) $) 185 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-1556 (((-1 $ (-714)) |#2|) 253 T ELT) (((-1 $ (-714)) $) 240 (|has| |#1| (-190)) ELT)) (-3205 (((-3 |#3| #3="failed") $) 133 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 148 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 147 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 142 T ELT) (((-647 |#1|) (-1207 $)) 141 T ELT)) (-3015 (($ $) 163 T ELT)) (-3312 ((|#1| $) 162 T ELT)) (-1519 ((|#3| $) 243 T ELT)) (-1993 (($ (-599 $)) 104 (|has| |#1| (-406)) ELT) (($ $ $) 103 (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1520 (((-85) $) 244 T ELT)) (-2944 (((-3 (-599 $) #3#) $) 124 T ELT)) (-2943 (((-3 (-599 $) #3#) $) 125 T ELT)) (-2945 (((-3 (-2 (|:| |var| |#3|) (|:| -2519 (-714))) #3#) $) 123 T ELT)) (-1518 (($ $) 242 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1895 (((-85) $) 180 T ELT)) (-1894 ((|#1| $) 181 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 105 (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) 102 (|has| |#1| (-406)) ELT) (($ $ $) 101 (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 112 (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 111 (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) 109 (|has| |#1| (-848)) ELT)) (-3606 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-510)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) 159 T ELT) (($ $ (-247 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-599 $) (-599 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-599 |#3|) (-599 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-599 |#3|) (-599 $)) 152 T ELT) (($ $ |#2| $) 239 (|has| |#1| (-190)) ELT) (($ $ (-599 |#2|) (-599 $)) 238 (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) 237 (|has| |#1| (-190)) ELT) (($ $ (-599 |#2|) (-599 |#1|)) 236 (|has| |#1| (-190)) ELT)) (-3907 (($ $ |#3|) 117 (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 |#3|) (-599 (-714))) 49 T ELT) (($ $ |#3| (-714)) 48 T ELT) (($ $ (-599 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT) (($ $ (-1 |#1| |#1|)) 260 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 259 T ELT) (($ $) 235 (|has| |#1| (-189)) ELT) (($ $ (-714)) 233 (|has| |#1| (-189)) ELT) (($ $ (-1117)) 231 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 229 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 228 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 227 (|has| |#1| (-838 (-1117))) ELT)) (-1522 (((-599 |#2|) $) 252 T ELT)) (-4098 ((|#4| $) 164 T ELT) (((-714) $ |#3|) 140 T ELT) (((-599 (-714)) $ (-599 |#3|)) 139 T ELT) (((-714) $ |#2|) 249 T ELT)) (-4122 (((-825 (-333)) $) 92 (-12 (|has| |#3| (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) 91 (-12 (|has| |#3| (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) 90 (-12 (|has| |#3| (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT)) (-2938 ((|#1| $) 189 (|has| |#1| (-406)) ELT) (($ $ |#3|) 116 (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) 114 (-2681 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ |#2|) 254 T ELT) (($ (-361 (-499))) 88 (-3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ELT) (($ $) 95 (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) 182 T ELT)) (-3827 ((|#1| $ |#4|) 169 T ELT) (($ $ |#3| (-714)) 138 T ELT) (($ $ (-599 |#3|) (-599 (-714))) 137 T ELT)) (-2823 (((-649 $) $) 89 (-3677 (-2681 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) 37 T CONST)) (-1693 (($ $ $ (-714)) 187 (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 99 (|has| |#1| (-510)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-599 |#3|) (-599 (-714))) 52 T ELT) (($ $ |#3| (-714)) 51 T ELT) (($ $ (-599 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT) (($ $ (-1 |#1| |#1|)) 258 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 257 T ELT) (($ $) 234 (|has| |#1| (-189)) ELT) (($ $ (-714)) 232 (|has| |#1| (-189)) ELT) (($ $ (-1117)) 230 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 226 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 225 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 224 (|has| |#1| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 170 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 172 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) 171 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-212 |#1| |#2| |#3| |#4|) (-113) (-989) (-781) (-227 |t#2|) (-738)) (T -212)) -((-1556 (*1 *2 *3) (-12 (-4 *4 (-989)) (-4 *3 (-781)) (-4 *5 (-227 *3)) (-4 *6 (-738)) (-5 *2 (-1 *1 (-714))) (-4 *1 (-212 *4 *3 *5 *6)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-599 *4)))) (-3922 (*1 *2 *1 *3) (-12 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-989)) (-4 *3 (-781)) (-4 *5 (-227 *3)) (-4 *6 (-738)) (-5 *2 (-714)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-714)))) (-4098 (*1 *2 *1 *3) (-12 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-989)) (-4 *3 (-781)) (-4 *5 (-227 *3)) (-4 *6 (-738)) (-5 *2 (-714)))) (-1521 (*1 *2 *1) (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-599 (-714))))) (-1555 (*1 *2 *1) (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-714)))) (-1521 (*1 *2 *1 *3) (-12 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-989)) (-4 *3 (-781)) (-4 *5 (-227 *3)) (-4 *6 (-738)) (-5 *2 (-599 (-714))))) (-1555 (*1 *2 *1 *3) (-12 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-989)) (-4 *3 (-781)) (-4 *5 (-227 *3)) (-4 *6 (-738)) (-5 *2 (-714)))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-85)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-212 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *5 (-738)) (-4 *2 (-227 *4)))) (-1518 (*1 *1 *1) (-12 (-4 *1 (-212 *2 *3 *4 *5)) (-4 *2 (-989)) (-4 *3 (-781)) (-4 *4 (-227 *3)) (-4 *5 (-738)))) (-1517 (*1 *1 *1) (-12 (-4 *1 (-212 *2 *3 *4 *5)) (-4 *2 (-989)) (-4 *3 (-781)) (-4 *4 (-227 *3)) (-4 *5 (-738)))) (-1556 (*1 *2 *1) (-12 (-4 *3 (-190)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-1 *1 (-714))) (-4 *1 (-212 *3 *4 *5 *6))))) -(-13 (-888 |t#1| |t#4| |t#3|) (-184 |t#1|) (-978 |t#2|) (-10 -8 (-15 -1556 ((-1 $ (-714)) |t#2|)) (-15 -1522 ((-599 |t#2|) $)) (-15 -3922 ((-714) $ |t#2|)) (-15 -3922 ((-714) $)) (-15 -4098 ((-714) $ |t#2|)) (-15 -1521 ((-599 (-714)) $)) (-15 -1555 ((-714) $)) (-15 -1521 ((-599 (-714)) $ |t#2|)) (-15 -1555 ((-714) $ |t#2|)) (-15 -1520 ((-85) $)) (-15 -1519 (|t#3| $)) (-15 -1518 ($ $)) (-15 -1517 ($ $)) (IF (|has| |t#1| (-190)) (PROGN (-6 (-468 |t#2| |t#1|)) (-6 (-468 |t#2| $)) (-6 (-263 $)) (-15 -1556 ((-1 $ (-714)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-571 |#2|) . T) ((-571 |#3|) . T) ((-571 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-569 (-488)) -12 (|has| |#1| (-569 (-488))) (|has| |#3| (-569 (-488)))) ((-569 (-825 (-333))) -12 (|has| |#1| (-569 (-825 (-333)))) (|has| |#3| (-569 (-825 (-333))))) ((-569 (-825 (-499))) -12 (|has| |#1| (-569 (-825 (-499)))) (|has| |#3| (-569 (-825 (-499))))) ((-186 $) -3677 (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) -3677 (|has| |#1| (-189)) (|has| |#1| (-190))) ((-224 |#1|) . T) ((-244) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-263 $) . T) ((-280 |#1| |#4|) . T) ((-332 |#1|) . T) ((-366 |#1|) . T) ((-406) -3677 (|has| |#1| (-848)) (|has| |#1| (-406))) ((-468 |#2| |#1|) |has| |#1| (-190)) ((-468 |#2| $) |has| |#1| (-190)) ((-468 |#3| |#1|) . T) ((-468 |#3| $) . T) ((-468 $ $) . T) ((-510) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 (-499)) |has| |#1| (-596 (-499))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-596 (-499)) |has| |#1| (-596 (-499))) ((-596 |#1|) . T) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-684) . T) ((-831 $ (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-831 $ |#3|) . T) ((-836 (-1117)) |has| |#1| (-836 (-1117))) ((-836 |#3|) . T) ((-838 (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-838 |#3|) . T) ((-821 (-333)) -12 (|has| |#1| (-821 (-333))) (|has| |#3| (-821 (-333)))) ((-821 (-499)) -12 (|has| |#1| (-821 (-499))) (|has| |#3| (-821 (-499)))) ((-888 |#1| |#4| |#3|) . T) ((-848) |has| |#1| (-848)) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-978 |#2|) . T) ((-978 |#3|) . T) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) |has| |#1| (-848))) -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-1528 ((|#1| $) 58 T ELT)) (-3464 ((|#1| $) 48 T ELT)) (-3874 (($) 7 T CONST)) (-3123 (($ $) 64 T ELT)) (-2397 (($ $) 52 T ELT)) (-3466 ((|#1| |#1| $) 50 T ELT)) (-3465 ((|#1| $) 49 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3983 (((-714) $) 65 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 43 T ELT)) (-1526 ((|#1| |#1| $) 56 T ELT)) (-1525 ((|#1| |#1| $) 55 T ELT)) (-3757 (($ |#1| $) 44 T ELT)) (-2722 (((-714) $) 59 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3122 ((|#1| $) 66 T ELT)) (-1524 ((|#1| $) 54 T ELT)) (-1523 ((|#1| $) 53 T ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3125 ((|#1| |#1| $) 62 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3124 ((|#1| $) 63 T ELT)) (-1529 (($) 61 T ELT) (($ (-599 |#1|)) 60 T ELT)) (-3463 (((-714) $) 47 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1527 ((|#1| $) 57 T ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-3121 ((|#1| $) 67 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-213 |#1|) (-113) (-1157)) (T -213)) -((-1529 (*1 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157)))) (-1529 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-4 *1 (-213 *3)))) (-2722 (*1 *2 *1) (-12 (-4 *1 (-213 *3)) (-4 *3 (-1157)) (-5 *2 (-714)))) (-1528 (*1 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157)))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157)))) (-1526 (*1 *2 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157)))) (-1525 (*1 *2 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157)))) (-1524 (*1 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157)))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157)))) (-2397 (*1 *1 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157))))) -(-13 (-1061 |t#1|) (-935 |t#1|) (-10 -8 (-15 -1529 ($)) (-15 -1529 ($ (-599 |t#1|))) (-15 -2722 ((-714) $)) (-15 -1528 (|t#1| $)) (-15 -1527 (|t#1| $)) (-15 -1526 (|t#1| |t#1| $)) (-15 -1525 (|t#1| |t#1| $)) (-15 -1524 (|t#1| $)) (-15 -1523 (|t#1| $)) (-15 -2397 ($ $)))) -(((-34) . T) ((-78 |#1|) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-935 |#1|) . T) ((-1041) |has| |#1| (-1041)) ((-1061 |#1|) . T) ((-1157) . T)) -((-1530 (((-1073 (-179)) (-817 |#1|) (-1032 (-333)) (-1032 (-333))) 75 T ELT) (((-1073 (-179)) (-817 |#1|) (-1032 (-333)) (-1032 (-333)) (-599 (-220))) 74 T ELT) (((-1073 (-179)) |#1| (-1032 (-333)) (-1032 (-333))) 65 T ELT) (((-1073 (-179)) |#1| (-1032 (-333)) (-1032 (-333)) (-599 (-220))) 64 T ELT) (((-1073 (-179)) (-814 |#1|) (-1032 (-333))) 56 T ELT) (((-1073 (-179)) (-814 |#1|) (-1032 (-333)) (-599 (-220))) 55 T ELT)) (-1537 (((-1211) (-817 |#1|) (-1032 (-333)) (-1032 (-333))) 78 T ELT) (((-1211) (-817 |#1|) (-1032 (-333)) (-1032 (-333)) (-599 (-220))) 77 T ELT) (((-1211) |#1| (-1032 (-333)) (-1032 (-333))) 68 T ELT) (((-1211) |#1| (-1032 (-333)) (-1032 (-333)) (-599 (-220))) 67 T ELT) (((-1211) (-814 |#1|) (-1032 (-333))) 60 T ELT) (((-1211) (-814 |#1|) (-1032 (-333)) (-599 (-220))) 59 T ELT) (((-1210) (-812 |#1|) (-1032 (-333))) 47 T ELT) (((-1210) (-812 |#1|) (-1032 (-333)) (-599 (-220))) 46 T ELT) (((-1210) |#1| (-1032 (-333))) 38 T ELT) (((-1210) |#1| (-1032 (-333)) (-599 (-220))) 36 T ELT))) -(((-214 |#1|) (-10 -7 (-15 -1537 ((-1210) |#1| (-1032 (-333)) (-599 (-220)))) (-15 -1537 ((-1210) |#1| (-1032 (-333)))) (-15 -1537 ((-1210) (-812 |#1|) (-1032 (-333)) (-599 (-220)))) (-15 -1537 ((-1210) (-812 |#1|) (-1032 (-333)))) (-15 -1537 ((-1211) (-814 |#1|) (-1032 (-333)) (-599 (-220)))) (-15 -1537 ((-1211) (-814 |#1|) (-1032 (-333)))) (-15 -1530 ((-1073 (-179)) (-814 |#1|) (-1032 (-333)) (-599 (-220)))) (-15 -1530 ((-1073 (-179)) (-814 |#1|) (-1032 (-333)))) (-15 -1537 ((-1211) |#1| (-1032 (-333)) (-1032 (-333)) (-599 (-220)))) (-15 -1537 ((-1211) |#1| (-1032 (-333)) (-1032 (-333)))) (-15 -1530 ((-1073 (-179)) |#1| (-1032 (-333)) (-1032 (-333)) (-599 (-220)))) (-15 -1530 ((-1073 (-179)) |#1| (-1032 (-333)) (-1032 (-333)))) (-15 -1537 ((-1211) (-817 |#1|) (-1032 (-333)) (-1032 (-333)) (-599 (-220)))) (-15 -1537 ((-1211) (-817 |#1|) (-1032 (-333)) (-1032 (-333)))) (-15 -1530 ((-1073 (-179)) (-817 |#1|) (-1032 (-333)) (-1032 (-333)) (-599 (-220)))) (-15 -1530 ((-1073 (-179)) (-817 |#1|) (-1032 (-333)) (-1032 (-333))))) (-13 (-569 (-488)) (-1041))) (T -214)) -((-1530 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 *5)) (-5 *4 (-1032 (-333))) (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1073 (-179))) (-5 *1 (-214 *5)))) (-1530 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1073 (-179))) (-5 *1 (-214 *6)))) (-1537 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 *5)) (-5 *4 (-1032 (-333))) (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1211)) (-5 *1 (-214 *5)))) (-1537 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1211)) (-5 *1 (-214 *6)))) (-1530 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1032 (-333))) (-5 *2 (-1073 (-179))) (-5 *1 (-214 *3)) (-4 *3 (-13 (-569 (-488)) (-1041))))) (-1530 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-214 *3)) (-4 *3 (-13 (-569 (-488)) (-1041))))) (-1537 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1032 (-333))) (-5 *2 (-1211)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-569 (-488)) (-1041))))) (-1537 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-569 (-488)) (-1041))))) (-1530 (*1 *2 *3 *4) (-12 (-5 *3 (-814 *5)) (-5 *4 (-1032 (-333))) (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1073 (-179))) (-5 *1 (-214 *5)))) (-1530 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1073 (-179))) (-5 *1 (-214 *6)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-814 *5)) (-5 *4 (-1032 (-333))) (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1211)) (-5 *1 (-214 *5)))) (-1537 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1211)) (-5 *1 (-214 *6)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-812 *5)) (-5 *4 (-1032 (-333))) (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1210)) (-5 *1 (-214 *5)))) (-1537 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-812 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1210)) (-5 *1 (-214 *6)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *4 (-1032 (-333))) (-5 *2 (-1210)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-569 (-488)) (-1041))))) (-1537 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1210)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-569 (-488)) (-1041)))))) -((-1531 (((-1 (-881 (-179)) (-179) (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 158 T ELT)) (-1530 (((-1073 (-179)) (-817 (-1 (-179) (-179) (-179))) (-1029 (-333)) (-1029 (-333))) 178 T ELT) (((-1073 (-179)) (-817 (-1 (-179) (-179) (-179))) (-1029 (-333)) (-1029 (-333)) (-599 (-220))) 176 T ELT) (((-1073 (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-333)) (-1029 (-333))) 181 T ELT) (((-1073 (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-333)) (-1029 (-333)) (-599 (-220))) 177 T ELT) (((-1073 (-179)) (-1 (-179) (-179) (-179)) (-1029 (-333)) (-1029 (-333))) 169 T ELT) (((-1073 (-179)) (-1 (-179) (-179) (-179)) (-1029 (-333)) (-1029 (-333)) (-599 (-220))) 168 T ELT) (((-1073 (-179)) (-1 (-881 (-179)) (-179)) (-1029 (-333))) 150 T ELT) (((-1073 (-179)) (-1 (-881 (-179)) (-179)) (-1029 (-333)) (-599 (-220))) 148 T ELT) (((-1073 (-179)) (-814 (-1 (-179) (-179))) (-1029 (-333))) 149 T ELT) (((-1073 (-179)) (-814 (-1 (-179) (-179))) (-1029 (-333)) (-599 (-220))) 146 T ELT)) (-1537 (((-1211) (-817 (-1 (-179) (-179) (-179))) (-1029 (-333)) (-1029 (-333))) 180 T ELT) (((-1211) (-817 (-1 (-179) (-179) (-179))) (-1029 (-333)) (-1029 (-333)) (-599 (-220))) 179 T ELT) (((-1211) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-333)) (-1029 (-333))) 183 T ELT) (((-1211) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-333)) (-1029 (-333)) (-599 (-220))) 182 T ELT) (((-1211) (-1 (-179) (-179) (-179)) (-1029 (-333)) (-1029 (-333))) 171 T ELT) (((-1211) (-1 (-179) (-179) (-179)) (-1029 (-333)) (-1029 (-333)) (-599 (-220))) 170 T ELT) (((-1211) (-1 (-881 (-179)) (-179)) (-1029 (-333))) 156 T ELT) (((-1211) (-1 (-881 (-179)) (-179)) (-1029 (-333)) (-599 (-220))) 155 T ELT) (((-1211) (-814 (-1 (-179) (-179))) (-1029 (-333))) 154 T ELT) (((-1211) (-814 (-1 (-179) (-179))) (-1029 (-333)) (-599 (-220))) 153 T ELT) (((-1210) (-812 (-1 (-179) (-179))) (-1029 (-333))) 118 T ELT) (((-1210) (-812 (-1 (-179) (-179))) (-1029 (-333)) (-599 (-220))) 117 T ELT) (((-1210) (-1 (-179) (-179)) (-1029 (-333))) 112 T ELT) (((-1210) (-1 (-179) (-179)) (-1029 (-333)) (-599 (-220))) 110 T ELT))) -(((-215) (-10 -7 (-15 -1537 ((-1210) (-1 (-179) (-179)) (-1029 (-333)) (-599 (-220)))) (-15 -1537 ((-1210) (-1 (-179) (-179)) (-1029 (-333)))) (-15 -1537 ((-1210) (-812 (-1 (-179) (-179))) (-1029 (-333)) (-599 (-220)))) (-15 -1537 ((-1210) (-812 (-1 (-179) (-179))) (-1029 (-333)))) (-15 -1537 ((-1211) (-814 (-1 (-179) (-179))) (-1029 (-333)) (-599 (-220)))) (-15 -1537 ((-1211) (-814 (-1 (-179) (-179))) (-1029 (-333)))) (-15 -1537 ((-1211) (-1 (-881 (-179)) (-179)) (-1029 (-333)) (-599 (-220)))) (-15 -1537 ((-1211) (-1 (-881 (-179)) (-179)) (-1029 (-333)))) (-15 -1530 ((-1073 (-179)) (-814 (-1 (-179) (-179))) (-1029 (-333)) (-599 (-220)))) (-15 -1530 ((-1073 (-179)) (-814 (-1 (-179) (-179))) (-1029 (-333)))) (-15 -1530 ((-1073 (-179)) (-1 (-881 (-179)) (-179)) (-1029 (-333)) (-599 (-220)))) (-15 -1530 ((-1073 (-179)) (-1 (-881 (-179)) (-179)) (-1029 (-333)))) (-15 -1537 ((-1211) (-1 (-179) (-179) (-179)) (-1029 (-333)) (-1029 (-333)) (-599 (-220)))) (-15 -1537 ((-1211) (-1 (-179) (-179) (-179)) (-1029 (-333)) (-1029 (-333)))) (-15 -1530 ((-1073 (-179)) (-1 (-179) (-179) (-179)) (-1029 (-333)) (-1029 (-333)) (-599 (-220)))) (-15 -1530 ((-1073 (-179)) (-1 (-179) (-179) (-179)) (-1029 (-333)) (-1029 (-333)))) (-15 -1537 ((-1211) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-333)) (-1029 (-333)) (-599 (-220)))) (-15 -1537 ((-1211) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-333)) (-1029 (-333)))) (-15 -1530 ((-1073 (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-333)) (-1029 (-333)) (-599 (-220)))) (-15 -1530 ((-1073 (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-333)) (-1029 (-333)))) (-15 -1537 ((-1211) (-817 (-1 (-179) (-179) (-179))) (-1029 (-333)) (-1029 (-333)) (-599 (-220)))) (-15 -1537 ((-1211) (-817 (-1 (-179) (-179) (-179))) (-1029 (-333)) (-1029 (-333)))) (-15 -1530 ((-1073 (-179)) (-817 (-1 (-179) (-179) (-179))) (-1029 (-333)) (-1029 (-333)) (-599 (-220)))) (-15 -1530 ((-1073 (-179)) (-817 (-1 (-179) (-179) (-179))) (-1029 (-333)) (-1029 (-333)))) (-15 -1531 ((-1 (-881 (-179)) (-179) (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -215)) -((-1531 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-881 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 (-1 (-179) (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 (-1 (-179) (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 (-1 (-179) (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 (-1 (-179) (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-881 (-179)) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-881 (-179)) (-179))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4) (-12 (-5 *3 (-814 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-881 (-179)) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-881 (-179)) (-179))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-814 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-812 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *2 (-1210)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-812 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1210)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1210)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1210)) (-5 *1 (-215))))) -((-1537 (((-1210) (-247 |#2|) (-1117) (-1117) (-599 (-220))) 102 T ELT))) -(((-216 |#1| |#2|) (-10 -7 (-15 -1537 ((-1210) (-247 |#2|) (-1117) (-1117) (-599 (-220))))) (-13 (-510) (-781) (-978 (-499))) (-375 |#1|)) (T -216)) -((-1537 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-247 *7)) (-5 *4 (-1117)) (-5 *5 (-599 (-220))) (-4 *7 (-375 *6)) (-4 *6 (-13 (-510) (-781) (-978 (-499)))) (-5 *2 (-1210)) (-5 *1 (-216 *6 *7))))) -((-1534 (((-499) (-499)) 71 T ELT)) (-1535 (((-499) (-499)) 72 T ELT)) (-1536 (((-179) (-179)) 73 T ELT)) (-1533 (((-1211) (-1 (-142 (-179)) (-142 (-179))) (-1029 (-179)) (-1029 (-179))) 70 T ELT)) (-1532 (((-1211) (-1 (-142 (-179)) (-142 (-179))) (-1029 (-179)) (-1029 (-179)) (-85)) 68 T ELT))) -(((-217) (-10 -7 (-15 -1532 ((-1211) (-1 (-142 (-179)) (-142 (-179))) (-1029 (-179)) (-1029 (-179)) (-85))) (-15 -1533 ((-1211) (-1 (-142 (-179)) (-142 (-179))) (-1029 (-179)) (-1029 (-179)))) (-15 -1534 ((-499) (-499))) (-15 -1535 ((-499) (-499))) (-15 -1536 ((-179) (-179))))) (T -217)) -((-1536 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-217)))) (-1535 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-217)))) (-1534 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-217)))) (-1533 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1029 (-179))) (-5 *2 (-1211)) (-5 *1 (-217)))) (-1532 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1029 (-179))) (-5 *5 (-85)) (-5 *2 (-1211)) (-5 *1 (-217))))) -((-4096 (((-1032 (-333)) (-1032 (-268 |#1|))) 16 T ELT))) -(((-218 |#1|) (-10 -7 (-15 -4096 ((-1032 (-333)) (-1032 (-268 |#1|))))) (-13 (-781) (-510) (-569 (-333)))) (T -218)) -((-4096 (*1 *2 *3) (-12 (-5 *3 (-1032 (-268 *4))) (-4 *4 (-13 (-781) (-510) (-569 (-333)))) (-5 *2 (-1032 (-333))) (-5 *1 (-218 *4))))) -((-1537 (((-1211) (-599 (-179)) (-599 (-179)) (-599 (-179)) (-599 (-220))) 23 T ELT) (((-1211) (-599 (-179)) (-599 (-179)) (-599 (-179))) 24 T ELT) (((-1210) (-599 (-881 (-179))) (-599 (-220))) 16 T ELT) (((-1210) (-599 (-881 (-179)))) 17 T ELT) (((-1210) (-599 (-179)) (-599 (-179)) (-599 (-220))) 20 T ELT) (((-1210) (-599 (-179)) (-599 (-179))) 21 T ELT))) -(((-219) (-10 -7 (-15 -1537 ((-1210) (-599 (-179)) (-599 (-179)))) (-15 -1537 ((-1210) (-599 (-179)) (-599 (-179)) (-599 (-220)))) (-15 -1537 ((-1210) (-599 (-881 (-179))))) (-15 -1537 ((-1210) (-599 (-881 (-179))) (-599 (-220)))) (-15 -1537 ((-1211) (-599 (-179)) (-599 (-179)) (-599 (-179)))) (-15 -1537 ((-1211) (-599 (-179)) (-599 (-179)) (-599 (-179)) (-599 (-220)))))) (T -219)) -((-1537 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-599 (-179))) (-5 *4 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-219)))) (-1537 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-1211)) (-5 *1 (-219)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-881 (-179)))) (-5 *4 (-599 (-220))) (-5 *2 (-1210)) (-5 *1 (-219)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-599 (-881 (-179)))) (-5 *2 (-1210)) (-5 *1 (-219)))) (-1537 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-599 (-179))) (-5 *4 (-599 (-220))) (-5 *2 (-1210)) (-5 *1 (-219)))) (-1537 (*1 *2 *3 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-1210)) (-5 *1 (-219))))) -((-2687 (((-85) $ $) NIL T ELT)) (-4031 (($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 24 T ELT)) (-1550 (($ (-857)) 81 T ELT)) (-1549 (($ (-857)) 80 T ELT)) (-1870 (($ (-599 (-333))) 87 T ELT)) (-1553 (($ (-333)) 66 T ELT)) (-1552 (($ (-857)) 82 T ELT)) (-1546 (($ (-85)) 33 T ELT)) (-4033 (($ (-1099)) 28 T ELT)) (-1545 (($ (-1099)) 29 T ELT)) (-1551 (($ (-1073 (-179))) 76 T ELT)) (-2030 (($ (-599 (-1029 (-333)))) 72 T ELT)) (-1539 (($ (-599 (-1029 (-333)))) 68 T ELT) (($ (-599 (-1029 (-361 (-499))))) 71 T ELT)) (-1542 (($ (-333)) 38 T ELT) (($ (-808)) 42 T ELT)) (-1538 (((-85) (-599 $) (-1117)) 100 T ELT)) (-1554 (((-3 (-51) "failed") (-599 $) (-1117)) 102 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1541 (($ (-333)) 43 T ELT) (($ (-808)) 44 T ELT)) (-3362 (($ (-1 (-881 (-179)) (-881 (-179)))) 65 T ELT)) (-2367 (($ (-1 (-881 (-179)) (-881 (-179)))) 83 T ELT)) (-1540 (($ (-1 (-179) (-179))) 48 T ELT) (($ (-1 (-179) (-179) (-179))) 52 T ELT) (($ (-1 (-179) (-179) (-179) (-179))) 56 T ELT)) (-4096 (((-797) $) 93 T ELT)) (-1543 (($ (-85)) 34 T ELT) (($ (-599 (-1029 (-333)))) 60 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2025 (($ (-85)) 35 T ELT)) (-3174 (((-85) $ $) 97 T ELT))) -(((-220) (-13 (-1041) (-10 -8 (-15 -2025 ($ (-85))) (-15 -1543 ($ (-85))) (-15 -4031 ($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -4033 ($ (-1099))) (-15 -1545 ($ (-1099))) (-15 -1546 ($ (-85))) (-15 -1543 ($ (-599 (-1029 (-333))))) (-15 -3362 ($ (-1 (-881 (-179)) (-881 (-179))))) (-15 -1542 ($ (-333))) (-15 -1542 ($ (-808))) (-15 -1541 ($ (-333))) (-15 -1541 ($ (-808))) (-15 -1540 ($ (-1 (-179) (-179)))) (-15 -1540 ($ (-1 (-179) (-179) (-179)))) (-15 -1540 ($ (-1 (-179) (-179) (-179) (-179)))) (-15 -1553 ($ (-333))) (-15 -1539 ($ (-599 (-1029 (-333))))) (-15 -1539 ($ (-599 (-1029 (-361 (-499)))))) (-15 -2030 ($ (-599 (-1029 (-333))))) (-15 -1551 ($ (-1073 (-179)))) (-15 -1549 ($ (-857))) (-15 -1550 ($ (-857))) (-15 -1552 ($ (-857))) (-15 -2367 ($ (-1 (-881 (-179)) (-881 (-179))))) (-15 -1870 ($ (-599 (-333)))) (-15 -1554 ((-3 (-51) "failed") (-599 $) (-1117))) (-15 -1538 ((-85) (-599 $) (-1117)))))) (T -220)) -((-2025 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-220)))) (-1543 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-220)))) (-4031 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-220)))) (-4033 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-220)))) (-1545 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-220)))) (-1546 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-220)))) (-1543 (*1 *1 *2) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-220)))) (-3362 (*1 *1 *2) (-12 (-5 *2 (-1 (-881 (-179)) (-881 (-179)))) (-5 *1 (-220)))) (-1542 (*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-220)))) (-1542 (*1 *1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-220)))) (-1541 (*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-220)))) (-1541 (*1 *1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-220)))) (-1540 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-220)))) (-1540 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-220)))) (-1540 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-220)))) (-1553 (*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-220)))) (-1539 (*1 *1 *2) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-220)))) (-1539 (*1 *1 *2) (-12 (-5 *2 (-599 (-1029 (-361 (-499))))) (-5 *1 (-220)))) (-2030 (*1 *1 *2) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-220)))) (-1551 (*1 *1 *2) (-12 (-5 *2 (-1073 (-179))) (-5 *1 (-220)))) (-1549 (*1 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-220)))) (-1550 (*1 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-220)))) (-1552 (*1 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-220)))) (-2367 (*1 *1 *2) (-12 (-5 *2 (-1 (-881 (-179)) (-881 (-179)))) (-5 *1 (-220)))) (-1870 (*1 *1 *2) (-12 (-5 *2 (-599 (-333))) (-5 *1 (-220)))) (-1554 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-599 (-220))) (-5 *4 (-1117)) (-5 *2 (-51)) (-5 *1 (-220)))) (-1538 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-220))) (-5 *4 (-1117)) (-5 *2 (-85)) (-5 *1 (-220))))) -((-4031 (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-599 (-220)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 25 T ELT)) (-1550 (((-857) (-599 (-220)) (-857)) 52 T ELT)) (-1549 (((-857) (-599 (-220)) (-857)) 51 T ELT)) (-4001 (((-599 (-333)) (-599 (-220)) (-599 (-333))) 68 T ELT)) (-1553 (((-333) (-599 (-220)) (-333)) 57 T ELT)) (-1552 (((-857) (-599 (-220)) (-857)) 53 T ELT)) (-1546 (((-85) (-599 (-220)) (-85)) 27 T ELT)) (-4033 (((-1099) (-599 (-220)) (-1099)) 19 T ELT)) (-1545 (((-1099) (-599 (-220)) (-1099)) 26 T ELT)) (-1551 (((-1073 (-179)) (-599 (-220))) 46 T ELT)) (-2030 (((-599 (-1029 (-333))) (-599 (-220)) (-599 (-1029 (-333)))) 40 T ELT)) (-1547 (((-808) (-599 (-220)) (-808)) 32 T ELT)) (-1548 (((-808) (-599 (-220)) (-808)) 33 T ELT)) (-2367 (((-1 (-881 (-179)) (-881 (-179))) (-599 (-220)) (-1 (-881 (-179)) (-881 (-179)))) 63 T ELT)) (-1544 (((-85) (-599 (-220)) (-85)) 14 T ELT)) (-2025 (((-85) (-599 (-220)) (-85)) 13 T ELT))) -(((-221) (-10 -7 (-15 -2025 ((-85) (-599 (-220)) (-85))) (-15 -1544 ((-85) (-599 (-220)) (-85))) (-15 -4031 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-599 (-220)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -4033 ((-1099) (-599 (-220)) (-1099))) (-15 -1545 ((-1099) (-599 (-220)) (-1099))) (-15 -1546 ((-85) (-599 (-220)) (-85))) (-15 -1547 ((-808) (-599 (-220)) (-808))) (-15 -1548 ((-808) (-599 (-220)) (-808))) (-15 -2030 ((-599 (-1029 (-333))) (-599 (-220)) (-599 (-1029 (-333))))) (-15 -1549 ((-857) (-599 (-220)) (-857))) (-15 -1550 ((-857) (-599 (-220)) (-857))) (-15 -1551 ((-1073 (-179)) (-599 (-220)))) (-15 -1552 ((-857) (-599 (-220)) (-857))) (-15 -1553 ((-333) (-599 (-220)) (-333))) (-15 -2367 ((-1 (-881 (-179)) (-881 (-179))) (-599 (-220)) (-1 (-881 (-179)) (-881 (-179))))) (-15 -4001 ((-599 (-333)) (-599 (-220)) (-599 (-333)))))) (T -221)) -((-4001 (*1 *2 *3 *2) (-12 (-5 *2 (-599 (-333))) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-2367 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-881 (-179)) (-881 (-179)))) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-1553 (*1 *2 *3 *2) (-12 (-5 *2 (-333)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-1552 (*1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-221)))) (-1550 (*1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-1549 (*1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-2030 (*1 *2 *3 *2) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-1548 (*1 *2 *3 *2) (-12 (-5 *2 (-808)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-1547 (*1 *2 *3 *2) (-12 (-5 *2 (-808)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-1546 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-1545 (*1 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-4033 (*1 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-4031 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-1544 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-2025 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) -((-1554 (((-3 |#1| "failed") (-599 (-220)) (-1117)) 17 T ELT))) -(((-222 |#1|) (-10 -7 (-15 -1554 ((-3 |#1| "failed") (-599 (-220)) (-1117)))) (-1157)) (T -222)) -((-1554 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-599 (-220))) (-5 *4 (-1117)) (-5 *1 (-222 *2)) (-4 *2 (-1157))))) -((-3908 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-714)) 11 T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) 19 T ELT) (($ $ (-714)) NIL T ELT) (($ $) 16 T ELT)) (-2790 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-714)) 14 T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT))) -(((-223 |#1| |#2|) (-10 -7 (-15 -3908 (|#1| |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-714))) (-15 -2790 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -2790 (|#1| |#1| (-1117))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -2790 (|#1| |#1| (-599 (-1117)))) (-15 -2790 (|#1| |#1| (-1117) (-714))) (-15 -2790 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -2790 (|#1| |#1| (-1 |#2| |#2|) (-714))) (-15 -2790 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|) (-714))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|)))) (-224 |#2|) (-1157)) (T -223)) -NIL -((-3908 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 22 T ELT) (($ $ (-599 (-1117)) (-599 (-714))) 16 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 15 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 14 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117)) 12 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-714)) 10 (|has| |#1| (-189)) ELT) (($ $) 8 (|has| |#1| (-189)) ELT)) (-2790 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 20 T ELT) (($ $ (-599 (-1117)) (-599 (-714))) 19 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 18 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 17 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117)) 13 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-714)) 11 (|has| |#1| (-189)) ELT) (($ $) 9 (|has| |#1| (-189)) ELT))) -(((-224 |#1|) (-113) (-1157)) (T -224)) -((-3908 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1157)))) (-3908 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-714)) (-4 *1 (-224 *4)) (-4 *4 (-1157)))) (-2790 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1157)))) (-2790 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-714)) (-4 *1 (-224 *4)) (-4 *4 (-1157))))) -(-13 (-1157) (-10 -8 (-15 -3908 ($ $ (-1 |t#1| |t#1|))) (-15 -3908 ($ $ (-1 |t#1| |t#1|) (-714))) (-15 -2790 ($ $ (-1 |t#1| |t#1|))) (-15 -2790 ($ $ (-1 |t#1| |t#1|) (-714))) (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-838 (-1117))) (-6 (-838 (-1117))) |%noBranch|))) -(((-186 $) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-831 $ (-1117)) |has| |#1| (-838 (-1117))) ((-838 (-1117)) |has| |#1| (-838 (-1117))) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1521 (((-599 (-714)) $) NIL T ELT) (((-599 (-714)) $ |#2|) NIL T ELT)) (-1555 (((-714) $) NIL T ELT) (((-714) $ |#2|) NIL T ELT)) (-3204 (((-599 |#3|) $) NIL T ELT)) (-3206 (((-1111 $) $ |#3|) NIL T ELT) (((-1111 |#1|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 |#3|)) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-1517 (($ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1065 |#1| |#2|) #1#) $) 23 T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1065 |#1| |#2|) $) NIL T ELT)) (-3906 (($ $ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT) (($ $ |#3|) NIL (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| (-484 |#3|) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| |#1| (-821 (-333))) (|has| |#3| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| |#1| (-821 (-499))) (|has| |#3| (-821 (-499)))) ELT)) (-3922 (((-714) $ |#2|) NIL T ELT) (((-714) $) 10 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3207 (($ (-1111 |#1|) |#3|) NIL T ELT) (($ (-1111 $) |#3|) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-484 |#3|)) NIL T ELT) (($ $ |#3| (-714)) NIL T ELT) (($ $ (-599 |#3|) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ |#3|) NIL T ELT)) (-2941 (((-484 |#3|) $) NIL T ELT) (((-714) $ |#3|) NIL T ELT) (((-599 (-714)) $ (-599 |#3|)) NIL T ELT)) (-1695 (($ (-1 (-484 |#3|) (-484 |#3|)) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1556 (((-1 $ (-714)) |#2|) NIL T ELT) (((-1 $ (-714)) $) NIL (|has| |#1| (-190)) ELT)) (-3205 (((-3 |#3| #1#) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1519 ((|#3| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1520 (((-85) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| |#3|) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-1518 (($ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-848)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-599 |#3|) (-599 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-599 |#3|) (-599 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-190)) ELT) (($ $ (-599 |#2|) (-599 $)) NIL (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-599 |#2|) (-599 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3907 (($ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 |#3|) (-599 (-714))) NIL T ELT) (($ $ |#3| (-714)) NIL T ELT) (($ $ (-599 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT)) (-1522 (((-599 |#2|) $) NIL T ELT)) (-4098 (((-484 |#3|) $) NIL T ELT) (((-714) $ |#3|) NIL T ELT) (((-599 (-714)) $ (-599 |#3|)) NIL T ELT) (((-714) $ |#2|) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| |#1| (-569 (-825 (-333)))) (|has| |#3| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| |#1| (-569 (-825 (-499)))) (|has| |#3| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| |#1| (-569 (-488))) (|has| |#3| (-569 (-488)))) ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT) (($ $ |#3|) NIL (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1065 |#1| |#2|)) 32 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-484 |#3|)) NIL T ELT) (($ $ |#3| (-714)) NIL T ELT) (($ $ (-599 |#3|) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-599 |#3|) (-599 (-714))) NIL T ELT) (($ $ |#3| (-714)) NIL T ELT) (($ $ (-599 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-225 |#1| |#2| |#3|) (-13 (-212 |#1| |#2| |#3| (-484 |#3|)) (-978 (-1065 |#1| |#2|))) (-989) (-781) (-227 |#2|)) (T -225)) -NIL -((-1555 (((-714) $) 37 T ELT)) (-3295 (((-3 |#2| "failed") $) 22 T ELT)) (-3294 ((|#2| $) 33 T ELT)) (-3908 (($ $ (-714)) 18 T ELT) (($ $) 14 T ELT)) (-4096 (((-797) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3174 (((-85) $ $) 26 T ELT)) (-2806 (((-85) $ $) 36 T ELT))) -(((-226 |#1| |#2|) (-10 -7 (-15 -1555 ((-714) |#1|)) (-15 -4096 (|#1| |#2|)) (-15 -3295 ((-3 |#2| "failed") |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-714))) (-15 -2806 ((-85) |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -3174 ((-85) |#1| |#1|))) (-227 |#2|) (-781)) (T -226)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-1555 (((-714) $) 26 T ELT)) (-3981 ((|#1| $) 27 T ELT)) (-3295 (((-3 |#1| "failed") $) 31 T ELT)) (-3294 ((|#1| $) 32 T ELT)) (-3922 (((-714) $) 28 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-1556 (($ |#1| (-714)) 29 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3908 (($ $ (-714)) 35 T ELT) (($ $) 33 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2790 (($ $ (-714)) 36 T ELT) (($ $) 34 T ELT)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT))) -(((-227 |#1|) (-113) (-781)) (T -227)) -((-1556 (*1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-227 *2)) (-4 *2 (-781)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-781)) (-5 *2 (-714)))) (-3981 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-781)))) (-1555 (*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-781)) (-5 *2 (-714))))) -(-13 (-781) (-189) (-978 |t#1|) (-10 -8 (-15 -1556 ($ |t#1| (-714))) (-15 -3922 ((-714) $)) (-15 -3981 (|t#1| $)) (-15 -1555 ((-714) $)))) -(((-73) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-186 $) . T) ((-189) . T) ((-781) . T) ((-784) . T) ((-978 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1558 (((-599 (-499)) $) 28 T ELT)) (-4098 (((-714) $) 26 T ELT)) (-4096 (((-797) $) 32 T ELT) (($ (-599 (-499))) 22 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-1557 (($ (-714)) 29 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 9 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 17 T ELT))) -(((-228) (-13 (-781) (-10 -8 (-15 -4096 ($ (-599 (-499)))) (-15 -4098 ((-714) $)) (-15 -1558 ((-599 (-499)) $)) (-15 -1557 ($ (-714)))))) (T -228)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-228)))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-228)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-228)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-228))))) -((-3632 ((|#2| |#2|) 77 T ELT)) (-3789 ((|#2| |#2|) 65 T ELT)) (-1587 (((-3 |#2| "failed") |#2| (-599 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3630 ((|#2| |#2|) 75 T ELT)) (-3788 ((|#2| |#2|) 63 T ELT)) (-3634 ((|#2| |#2|) 79 T ELT)) (-3787 ((|#2| |#2|) 67 T ELT)) (-3777 ((|#2|) 46 T ELT)) (-3743 (((-86) (-86)) 97 T ELT)) (-4092 ((|#2| |#2|) 61 T ELT)) (-1588 (((-85) |#2|) 146 T ELT)) (-1577 ((|#2| |#2|) 193 T ELT)) (-1565 ((|#2| |#2|) 169 T ELT)) (-1560 ((|#2|) 59 T ELT)) (-1559 ((|#2|) 58 T ELT)) (-1575 ((|#2| |#2|) 189 T ELT)) (-1563 ((|#2| |#2|) 165 T ELT)) (-1579 ((|#2| |#2|) 197 T ELT)) (-1567 ((|#2| |#2|) 173 T ELT)) (-1562 ((|#2| |#2|) 161 T ELT)) (-1561 ((|#2| |#2|) 163 T ELT)) (-1580 ((|#2| |#2|) 199 T ELT)) (-1568 ((|#2| |#2|) 175 T ELT)) (-1578 ((|#2| |#2|) 195 T ELT)) (-1566 ((|#2| |#2|) 171 T ELT)) (-1576 ((|#2| |#2|) 191 T ELT)) (-1564 ((|#2| |#2|) 167 T ELT)) (-1583 ((|#2| |#2|) 205 T ELT)) (-1571 ((|#2| |#2|) 181 T ELT)) (-1581 ((|#2| |#2|) 201 T ELT)) (-1569 ((|#2| |#2|) 177 T ELT)) (-1585 ((|#2| |#2|) 209 T ELT)) (-1573 ((|#2| |#2|) 185 T ELT)) (-1586 ((|#2| |#2|) 211 T ELT)) (-1574 ((|#2| |#2|) 187 T ELT)) (-1584 ((|#2| |#2|) 207 T ELT)) (-1572 ((|#2| |#2|) 183 T ELT)) (-1582 ((|#2| |#2|) 203 T ELT)) (-1570 ((|#2| |#2|) 179 T ELT)) (-4093 ((|#2| |#2|) 62 T ELT)) (-3635 ((|#2| |#2|) 80 T ELT)) (-3786 ((|#2| |#2|) 68 T ELT)) (-3633 ((|#2| |#2|) 78 T ELT)) (-3785 ((|#2| |#2|) 66 T ELT)) (-3631 ((|#2| |#2|) 76 T ELT)) (-3784 ((|#2| |#2|) 64 T ELT)) (-2355 (((-85) (-86)) 95 T ELT)) (-3638 ((|#2| |#2|) 83 T ELT)) (-3626 ((|#2| |#2|) 71 T ELT)) (-3636 ((|#2| |#2|) 81 T ELT)) (-3624 ((|#2| |#2|) 69 T ELT)) (-3640 ((|#2| |#2|) 85 T ELT)) (-3628 ((|#2| |#2|) 73 T ELT)) (-3641 ((|#2| |#2|) 86 T ELT)) (-3629 ((|#2| |#2|) 74 T ELT)) (-3639 ((|#2| |#2|) 84 T ELT)) (-3627 ((|#2| |#2|) 72 T ELT)) (-3637 ((|#2| |#2|) 82 T ELT)) (-3625 ((|#2| |#2|) 70 T ELT))) -(((-229 |#1| |#2|) (-10 -7 (-15 -4093 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -3788 (|#2| |#2|)) (-15 -3784 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -3787 (|#2| |#2|)) (-15 -3786 (|#2| |#2|)) (-15 -3624 (|#2| |#2|)) (-15 -3625 (|#2| |#2|)) (-15 -3626 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -3628 (|#2| |#2|)) (-15 -3629 (|#2| |#2|)) (-15 -3630 (|#2| |#2|)) (-15 -3631 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -3633 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3777 (|#2|)) (-15 -2355 ((-85) (-86))) (-15 -3743 ((-86) (-86))) (-15 -1559 (|#2|)) (-15 -1560 (|#2|)) (-15 -1561 (|#2| |#2|)) (-15 -1562 (|#2| |#2|)) (-15 -1563 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1565 (|#2| |#2|)) (-15 -1566 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -1568 (|#2| |#2|)) (-15 -1569 (|#2| |#2|)) (-15 -1570 (|#2| |#2|)) (-15 -1571 (|#2| |#2|)) (-15 -1572 (|#2| |#2|)) (-15 -1573 (|#2| |#2|)) (-15 -1574 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -1577 (|#2| |#2|)) (-15 -1578 (|#2| |#2|)) (-15 -1579 (|#2| |#2|)) (-15 -1580 (|#2| |#2|)) (-15 -1581 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -1583 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -1585 (|#2| |#2|)) (-15 -1586 (|#2| |#2|)) (-15 -1587 ((-3 |#2| "failed") |#2| (-599 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1588 ((-85) |#2|))) (-510) (-13 (-375 |#1|) (-942))) (T -229)) -((-1588 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-229 *4 *3)) (-4 *3 (-13 (-375 *4) (-942))))) (-1587 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-599 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-375 *4) (-942))) (-4 *4 (-510)) (-5 *1 (-229 *4 *2)))) (-1586 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1585 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1583 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1582 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1581 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1580 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1579 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1578 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1577 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1574 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1573 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1572 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1571 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1570 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1569 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1568 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1567 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1566 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1565 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1563 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1562 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1561 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1560 (*1 *2) (-12 (-4 *2 (-13 (-375 *3) (-942))) (-5 *1 (-229 *3 *2)) (-4 *3 (-510)))) (-1559 (*1 *2) (-12 (-4 *2 (-13 (-375 *3) (-942))) (-5 *1 (-229 *3 *2)) (-4 *3 (-510)))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-229 *3 *4)) (-4 *4 (-13 (-375 *3) (-942))))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-229 *4 *5)) (-4 *5 (-13 (-375 *4) (-942))))) (-3777 (*1 *2) (-12 (-4 *2 (-13 (-375 *3) (-942))) (-5 *1 (-229 *3 *2)) (-4 *3 (-510)))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3629 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3628 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3626 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3625 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3624 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3786 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3787 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3784 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-4093 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) -((-1591 (((-3 |#2| "failed") (-599 (-566 |#2|)) |#2| (-1117)) 151 T ELT)) (-1593 ((|#2| (-361 (-499)) |#2|) 49 T ELT)) (-1592 ((|#2| |#2| (-566 |#2|)) 144 T ELT)) (-1589 (((-2 (|:| |func| |#2|) (|:| |kers| (-599 (-566 |#2|))) (|:| |vals| (-599 |#2|))) |#2| (-1117)) 143 T ELT)) (-1590 ((|#2| |#2| (-1117)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2559 ((|#2| |#2| (-1117)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) -(((-230 |#1| |#2|) (-10 -7 (-15 -2559 (|#2| |#2|)) (-15 -2559 (|#2| |#2| (-1117))) (-15 -1589 ((-2 (|:| |func| |#2|) (|:| |kers| (-599 (-566 |#2|))) (|:| |vals| (-599 |#2|))) |#2| (-1117))) (-15 -1590 (|#2| |#2|)) (-15 -1590 (|#2| |#2| (-1117))) (-15 -1591 ((-3 |#2| "failed") (-599 (-566 |#2|)) |#2| (-1117))) (-15 -1592 (|#2| |#2| (-566 |#2|))) (-15 -1593 (|#2| (-361 (-499)) |#2|))) (-13 (-510) (-978 (-499)) (-596 (-499))) (-13 (-27) (-1143) (-375 |#1|))) (T -230)) -((-1593 (*1 *2 *3 *2) (-12 (-5 *3 (-361 (-499))) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4))))) (-1592 (*1 *2 *2 *3) (-12 (-5 *3 (-566 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4))) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *4 *2)))) (-1591 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-599 (-566 *2))) (-5 *4 (-1117)) (-4 *2 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *5 *2)))) (-1590 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4))))) (-1590 (*1 *2 *2) (-12 (-4 *3 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *3))))) (-1589 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-599 (-566 *3))) (|:| |vals| (-599 *3)))) (-5 *1 (-230 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) (-2559 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4))))) (-2559 (*1 *2 *2) (-12 (-4 *3 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *3)))))) -((-3096 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3632 ((|#3| |#3|) 142 T ELT)) (-3084 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3789 ((|#3| |#3|) 132 T ELT)) (-3094 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3630 ((|#3| |#3|) 140 T ELT)) (-3082 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3788 ((|#3| |#3|) 130 T ELT)) (-3098 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3634 ((|#3| |#3|) 144 T ELT)) (-3086 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3787 ((|#3| |#3|) 134 T ELT)) (-3079 (((-3 |#3| #1#) |#3| (-714)) 41 T ELT)) (-3081 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-4092 ((|#3| |#3|) 129 T ELT)) (-3080 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-4093 ((|#3| |#3|) 128 T ELT)) (-3099 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3635 ((|#3| |#3|) 145 T ELT)) (-3087 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3786 ((|#3| |#3|) 135 T ELT)) (-3097 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3633 ((|#3| |#3|) 143 T ELT)) (-3085 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3785 ((|#3| |#3|) 133 T ELT)) (-3095 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3631 ((|#3| |#3|) 141 T ELT)) (-3083 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3784 ((|#3| |#3|) 131 T ELT)) (-3102 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3638 ((|#3| |#3|) 148 T ELT)) (-3090 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3626 ((|#3| |#3|) 152 T ELT)) (-3100 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3636 ((|#3| |#3|) 146 T ELT)) (-3088 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3624 ((|#3| |#3|) 136 T ELT)) (-3104 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3640 ((|#3| |#3|) 150 T ELT)) (-3092 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3628 ((|#3| |#3|) 138 T ELT)) (-3105 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3641 ((|#3| |#3|) 151 T ELT)) (-3093 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3629 ((|#3| |#3|) 139 T ELT)) (-3103 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3639 ((|#3| |#3|) 149 T ELT)) (-3091 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3627 ((|#3| |#3|) 153 T ELT)) (-3101 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3637 ((|#3| |#3|) 147 T ELT)) (-3089 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3625 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-361 (-499))) 47 (|has| |#1| (-318)) ELT))) -(((-231 |#1| |#2| |#3|) (-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-318)) (-15 ** (|#3| |#3| (-361 (-499)))) |%noBranch|) (-15 -4093 (|#3| |#3|)) (-15 -4092 (|#3| |#3|)) (-15 -3788 (|#3| |#3|)) (-15 -3784 (|#3| |#3|)) (-15 -3789 (|#3| |#3|)) (-15 -3785 (|#3| |#3|)) (-15 -3787 (|#3| |#3|)) (-15 -3786 (|#3| |#3|)) (-15 -3624 (|#3| |#3|)) (-15 -3625 (|#3| |#3|)) (-15 -3626 (|#3| |#3|)) (-15 -3627 (|#3| |#3|)) (-15 -3628 (|#3| |#3|)) (-15 -3629 (|#3| |#3|)) (-15 -3630 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -3633 (|#3| |#3|)) (-15 -3634 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3641 (|#3| |#3|)))) (-38 (-361 (-499))) (-1200 |#1|) (-1171 |#1| |#2|)) (T -231)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-361 (-499))) (-4 *4 (-318)) (-4 *4 (-38 *3)) (-4 *5 (-1200 *4)) (-5 *1 (-231 *4 *5 *2)) (-4 *2 (-1171 *4 *5)))) (-4093 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3784 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3787 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3786 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3624 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3625 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3626 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3628 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3629 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4))))) -((-3096 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3632 ((|#3| |#3|) 137 T ELT)) (-3084 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3789 ((|#3| |#3|) 125 T ELT)) (-3094 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3630 ((|#3| |#3|) 135 T ELT)) (-3082 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3788 ((|#3| |#3|) 123 T ELT)) (-3098 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3634 ((|#3| |#3|) 139 T ELT)) (-3086 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3787 ((|#3| |#3|) 127 T ELT)) (-3079 (((-3 |#3| #1#) |#3| (-714)) 38 T ELT)) (-3081 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-4092 ((|#3| |#3|) 111 T ELT)) (-3080 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-4093 ((|#3| |#3|) 122 T ELT)) (-3099 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3635 ((|#3| |#3|) 140 T ELT)) (-3087 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3786 ((|#3| |#3|) 128 T ELT)) (-3097 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3633 ((|#3| |#3|) 138 T ELT)) (-3085 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3785 ((|#3| |#3|) 126 T ELT)) (-3095 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3631 ((|#3| |#3|) 136 T ELT)) (-3083 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3784 ((|#3| |#3|) 124 T ELT)) (-3102 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3638 ((|#3| |#3|) 143 T ELT)) (-3090 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3626 ((|#3| |#3|) 131 T ELT)) (-3100 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3636 ((|#3| |#3|) 141 T ELT)) (-3088 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3624 ((|#3| |#3|) 129 T ELT)) (-3104 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3640 ((|#3| |#3|) 145 T ELT)) (-3092 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3628 ((|#3| |#3|) 133 T ELT)) (-3105 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3641 ((|#3| |#3|) 146 T ELT)) (-3093 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3629 ((|#3| |#3|) 134 T ELT)) (-3103 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3639 ((|#3| |#3|) 144 T ELT)) (-3091 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3627 ((|#3| |#3|) 132 T ELT)) (-3101 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3637 ((|#3| |#3|) 142 T ELT)) (-3089 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3625 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-361 (-499))) 44 (|has| |#1| (-318)) ELT))) -(((-232 |#1| |#2| |#3| |#4|) (-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-318)) (-15 ** (|#3| |#3| (-361 (-499)))) |%noBranch|) (-15 -4093 (|#3| |#3|)) (-15 -4092 (|#3| |#3|)) (-15 -3788 (|#3| |#3|)) (-15 -3784 (|#3| |#3|)) (-15 -3789 (|#3| |#3|)) (-15 -3785 (|#3| |#3|)) (-15 -3787 (|#3| |#3|)) (-15 -3786 (|#3| |#3|)) (-15 -3624 (|#3| |#3|)) (-15 -3625 (|#3| |#3|)) (-15 -3626 (|#3| |#3|)) (-15 -3627 (|#3| |#3|)) (-15 -3628 (|#3| |#3|)) (-15 -3629 (|#3| |#3|)) (-15 -3630 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -3633 (|#3| |#3|)) (-15 -3634 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3641 (|#3| |#3|)))) (-38 (-361 (-499))) (-1169 |#1|) (-1192 |#1| |#2|) (-923 |#2|)) (T -232)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-361 (-499))) (-4 *4 (-318)) (-4 *4 (-38 *3)) (-4 *5 (-1169 *4)) (-5 *1 (-232 *4 *5 *2 *6)) (-4 *2 (-1192 *4 *5)) (-4 *6 (-923 *5)))) (-4093 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3784 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3787 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3786 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3624 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3625 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3626 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3628 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3629 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4))))) -((-1596 (((-85) $) 20 T ELT)) (-1598 (((-1122) $) 9 T ELT)) (-3717 (((-3 (-460) #1="failed") $) 15 T ELT)) (-3716 (((-3 (-599 $) #1#) $) NIL T ELT)) (-1595 (((-3 (-460) #1#) $) 21 T ELT)) (-1597 (((-3 (-1043) #1#) $) 19 T ELT)) (-4103 (((-85) $) 17 T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1594 (((-85) $) 10 T ELT))) -(((-233) (-13 (-568 (-797)) (-10 -8 (-15 -1598 ((-1122) $)) (-15 -4103 ((-85) $)) (-15 -1597 ((-3 (-1043) #1="failed") $)) (-15 -1596 ((-85) $)) (-15 -1595 ((-3 (-460) #1#) $)) (-15 -1594 ((-85) $)) (-15 -3717 ((-3 (-460) #1#) $)) (-15 -3716 ((-3 (-599 $) #1#) $))))) (T -233)) -((-1598 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-233)))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-233)))) (-1597 (*1 *2 *1) (|partial| -12 (-5 *2 (-1043)) (-5 *1 (-233)))) (-1596 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-233)))) (-1595 (*1 *2 *1) (|partial| -12 (-5 *2 (-460)) (-5 *1 (-233)))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-233)))) (-3717 (*1 *2 *1) (|partial| -12 (-5 *2 (-460)) (-5 *1 (-233)))) (-3716 (*1 *2 *1) (|partial| -12 (-5 *2 (-599 (-233))) (-5 *1 (-233))))) -((-1600 (((-547) $) 10 T ELT)) (-1601 (((-537) $) 8 T ELT)) (-1599 (((-245) $) 12 T ELT)) (-1602 (($ (-537) (-547) (-245)) NIL T ELT)) (-4096 (((-797) $) 19 T ELT))) -(((-234) (-13 (-568 (-797)) (-10 -8 (-15 -1602 ($ (-537) (-547) (-245))) (-15 -1601 ((-537) $)) (-15 -1600 ((-547) $)) (-15 -1599 ((-245) $))))) (T -234)) -((-1602 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-537)) (-5 *3 (-547)) (-5 *4 (-245)) (-5 *1 (-234)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-234)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-234)))) (-1599 (*1 *2 *1) (-12 (-5 *2 (-245)) (-5 *1 (-234))))) -((-3860 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1386 (($ $) 38 T ELT)) (-3545 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3546 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2977 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2404 (($ |#2| $ (-499)) 20 T ELT) (($ $ $ (-499)) 22 T ELT)) (-2405 (($ $ (-499)) 11 T ELT) (($ $ (-1174 (-499))) 14 T ELT)) (-3941 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3952 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-599 $)) NIL T ELT))) -(((-235 |#1| |#2|) (-10 -7 (-15 -2977 (|#1| |#1| |#1|)) (-15 -3545 (|#1| |#2| |#1|)) (-15 -2977 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3545 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3941 (|#1| |#1| |#1|)) (-15 -3941 (|#1| |#1| |#2|)) (-15 -2404 (|#1| |#1| |#1| (-499))) (-15 -2404 (|#1| |#2| |#1| (-499))) (-15 -2405 (|#1| |#1| (-1174 (-499)))) (-15 -2405 (|#1| |#1| (-499))) (-15 -3952 (|#1| (-599 |#1|))) (-15 -3952 (|#1| |#1| |#1|)) (-15 -3952 (|#1| |#2| |#1|)) (-15 -3952 (|#1| |#1| |#2|)) (-15 -3546 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3860 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3546 (|#1| |#2| |#1|)) (-15 -1386 (|#1| |#1|))) (-236 |#2|) (-1157)) (T -235)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) 44 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ (-499) |#1|) 56 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-1603 (($ (-1 (-85) |#1|) $) 94 T ELT)) (-3860 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-2481 (($ $) 92 (|has| |#1| (-1041)) ELT)) (-1386 (($ $) 84 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ (-1 (-85) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1041)) ELT)) (-3546 (($ |#1| $) 83 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) 57 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 55 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) |#1|) 74 T ELT)) (-2301 (((-499) $) 47 (|has| (-499) (-781)) ELT)) (-2977 (($ (-1 (-85) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 48 (|has| (-499) (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3757 (($ |#1| $ (-499)) 97 T ELT) (($ $ $ (-499)) 96 T ELT)) (-2404 (($ |#1| $ (-499)) 66 T ELT) (($ $ $ (-499)) 65 T ELT)) (-2304 (((-599 (-499)) $) 50 T ELT)) (-2305 (((-85) (-499) $) 51 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 46 (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2300 (($ $ |#1|) 45 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ (-499) |#1|) 54 T ELT) ((|#1| $ (-499)) 53 T ELT) (($ $ (-1174 (-499))) 75 T ELT)) (-1604 (($ $ (-499)) 100 T ELT) (($ $ (-1174 (-499))) 99 T ELT)) (-2405 (($ $ (-499)) 68 T ELT) (($ $ (-1174 (-499))) 67 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 85 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 76 T ELT)) (-3941 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-3952 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-599 $)) 70 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-236 |#1|) (-113) (-1157)) (T -236)) -((-3941 (*1 *1 *1 *2) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)))) (-3941 (*1 *1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)))) (-1604 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) (-1604 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 (-499))) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) (-3545 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) (-3757 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-236 *2)) (-4 *2 (-1157)))) (-3757 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) (-2977 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) (-1603 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) (-3545 (*1 *1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)) (-4 *2 (-1041)))) (-2481 (*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)) (-4 *2 (-1041)))) (-2977 (*1 *1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)) (-4 *2 (-781))))) -(-13 (-609 |t#1|) (-10 -8 (-6 -4146) (-15 -3941 ($ $ |t#1|)) (-15 -3941 ($ $ $)) (-15 -1604 ($ $ (-499))) (-15 -1604 ($ $ (-1174 (-499)))) (-15 -3545 ($ (-1 (-85) |t#1|) $)) (-15 -3757 ($ |t#1| $ (-499))) (-15 -3757 ($ $ $ (-499))) (-15 -2977 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1603 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1041)) (PROGN (-15 -3545 ($ |t#1| $)) (-15 -2481 ($ $))) |%noBranch|) (IF (|has| |t#1| (-781)) (-15 -2977 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 (-499) |#1|) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-554 (-499) |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-609 |#1|) . T) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) +(2797595 . 3525500994) +((-1719 (((-83) (-1 (-83) |#2| |#2|) $) 86 T ELT) (((-83) $) NIL T ELT)) (-1717 (($ (-1 (-83) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3772 ((|#2| $ (-478) |#2|) NIL T ELT) ((|#2| $ (-1135 (-478)) |#2|) 44 T ELT)) (-2283 (($ $) 80 T ELT)) (-3826 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3403 (((-478) (-1 (-83) |#2|) $) 27 T ELT) (((-478) |#2| $) NIL T ELT) (((-478) |#2| $ (-478)) 96 T ELT)) (-2873 (((-578 |#2|) $) 13 T ELT)) (-3502 (($ (-1 (-83) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-1936 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3942 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2290 (($ |#2| $ (-478)) NIL T ELT) (($ $ $ (-478)) 67 T ELT)) (-1341 (((-3 |#2| "failed") (-1 (-83) |#2|) $) 29 T ELT)) (-1934 (((-83) (-1 (-83) |#2|) $) 23 T ELT)) (-3784 ((|#2| $ (-478) |#2|) NIL T ELT) ((|#2| $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) 66 T ELT)) (-2291 (($ $ (-478)) 76 T ELT) (($ $ (-1135 (-478))) 75 T ELT)) (-1933 (((-687) (-1 (-83) |#2|) $) 34 T ELT) (((-687) |#2| $) NIL T ELT)) (-1718 (($ $ $ (-478)) 69 T ELT)) (-3384 (($ $) 68 T ELT)) (-3514 (($ (-578 |#2|)) 73 T ELT)) (-3786 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-578 $)) 85 T ELT)) (-3930 (((-765) $) 92 T ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) 22 T ELT)) (-3037 (((-83) $ $) 95 T ELT)) (-2669 (((-83) $ $) 99 T ELT))) +(((-18 |#1| |#2|) (-10 -7 (-15 -3037 ((-83) |#1| |#1|)) (-15 -3930 ((-765) |#1|)) (-15 -2669 ((-83) |#1| |#1|)) (-15 -1717 (|#1| |#1|)) (-15 -1717 (|#1| (-1 (-83) |#2| |#2|) |#1|)) (-15 -2283 (|#1| |#1|)) (-15 -1718 (|#1| |#1| |#1| (-478))) (-15 -1719 ((-83) |#1|)) (-15 -3502 (|#1| |#1| |#1|)) (-15 -3403 ((-478) |#2| |#1| (-478))) (-15 -3403 ((-478) |#2| |#1|)) (-15 -3403 ((-478) (-1 (-83) |#2|) |#1|)) (-15 -1719 ((-83) (-1 (-83) |#2| |#2|) |#1|)) (-15 -3502 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|)) (-15 -3772 (|#2| |#1| (-1135 (-478)) |#2|)) (-15 -2290 (|#1| |#1| |#1| (-478))) (-15 -2290 (|#1| |#2| |#1| (-478))) (-15 -2291 (|#1| |#1| (-1135 (-478)))) (-15 -2291 (|#1| |#1| (-478))) (-15 -3942 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3786 (|#1| (-578 |#1|))) (-15 -3786 (|#1| |#1| |#1|)) (-15 -3786 (|#1| |#2| |#1|)) (-15 -3786 (|#1| |#1| |#2|)) (-15 -3784 (|#1| |#1| (-1135 (-478)))) (-15 -3514 (|#1| (-578 |#2|))) (-15 -1341 ((-3 |#2| "failed") (-1 (-83) |#2|) |#1|)) (-15 -3826 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3826 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3826 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3784 (|#2| |#1| (-478))) (-15 -3784 (|#2| |#1| (-478) |#2|)) (-15 -3772 (|#2| |#1| (-478) |#2|)) (-15 -1933 ((-687) |#2| |#1|)) (-15 -2873 ((-578 |#2|) |#1|)) (-15 -1933 ((-687) (-1 (-83) |#2|) |#1|)) (-15 -1934 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1935 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1936 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3942 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3384 (|#1| |#1|))) (-19 |#2|) (-1118)) (T -18)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-2184 (((-1174) $ (-478) (-478)) 44 (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) (-1 (-83) |#1| |#1|) $) 107 T ELT) (((-83) $) 101 (|has| |#1| (-749)) ELT)) (-1717 (($ (-1 (-83) |#1| |#1|) $) 98 (|has| $ (-6 -3980)) ELT) (($ $) 97 (-12 (|has| |#1| (-749)) (|has| $ (-6 -3980))) ELT)) (-2893 (($ (-1 (-83) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-749)) ELT)) (-3772 ((|#1| $ (-478) |#1|) 56 (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) 64 (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3979)) ELT)) (-3708 (($) 7 T CONST)) (-2283 (($ $) 99 (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) 109 T ELT)) (-1340 (($ $) 84 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3390 (($ |#1| $) 83 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3979)) ELT)) (-1563 ((|#1| $ (-478) |#1|) 57 (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) 55 T ELT)) (-3403 (((-478) (-1 (-83) |#1|) $) 106 T ELT) (((-478) |#1| $) 105 (|has| |#1| (-1005)) ELT) (((-478) |#1| $ (-478)) 104 (|has| |#1| (-1005)) ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-3598 (($ (-687) |#1|) 74 T ELT)) (-2186 (((-478) $) 47 (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) 91 (|has| |#1| (-749)) ELT)) (-3502 (($ (-1 (-83) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-749)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-2187 (((-478) $) 48 (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) 92 (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-2290 (($ |#1| $ (-478)) 66 T ELT) (($ $ $ (-478)) 65 T ELT)) (-2189 (((-578 (-478)) $) 50 T ELT)) (-2190 (((-83) (-478) $) 51 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-3785 ((|#1| $) 46 (|has| (-478) (-749)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2185 (($ $ |#1|) 45 (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-2188 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) 52 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#1| $ (-478) |#1|) 54 T ELT) ((|#1| $ (-478)) 53 T ELT) (($ $ (-1135 (-478))) 75 T ELT)) (-2291 (($ $ (-478)) 68 T ELT) (($ $ (-1135 (-478))) 67 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1718 (($ $ $ (-478)) 100 (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 85 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 76 T ELT)) (-3786 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-578 $)) 70 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) 93 (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) 95 (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2668 (((-83) $ $) 94 (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) 96 (|has| |#1| (-749)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-19 |#1|) (-111) (-1118)) (T -19)) +NIL +(-13 (-317 |t#1|) (-10 -7 (-6 -3980))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-749)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-749)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 (-478) |#1|) . T) ((-238 (-1135 (-478)) $) . T) ((-240 (-478) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-317 |#1|) . T) ((-422 |#1|) . T) ((-533 (-478) |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-588 |#1|) . T) ((-749) |has| |#1| (-749)) ((-752) |has| |#1| (-749)) ((-1005) OR (|has| |#1| (-1005)) (|has| |#1| (-749))) ((-1118) . T)) +((-1299 (((-3 $ "failed") $ $) 12 T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) 16 T ELT) (($ (-478) $) 25 T ELT))) +(((-20 |#1|) (-10 -7 (-15 -3821 (|#1| |#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 -1299 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 * (|#1| (-823) |#1|))) (-21)) (T -20)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT))) +(((-21) (-111)) (T -21)) +((-3821 (*1 *1 *1) (-4 *1 (-21))) (-3821 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-102) (-583 (-478)) (-10 -8 (-15 -3821 ($ $)) (-15 -3821 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-1005) . T) ((-1118) . T)) +((-3171 (((-83) $) 10 T ELT)) (-3708 (($) 15 T ELT)) (* (($ (-823) $) 14 T ELT) (($ (-687) $) 19 T ELT))) +(((-22 |#1|) (-10 -7 (-15 * (|#1| (-687) |#1|)) (-15 -3171 ((-83) |#1|)) (-15 -3708 (|#1|)) (-15 * (|#1| (-823) |#1|))) (-23)) (T -22)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3708 (($) 22 T CONST)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT))) +(((-23) (-111)) (T -23)) +((-2644 (*1 *1) (-4 *1 (-23))) (-3708 (*1 *1) (-4 *1 (-23))) (-3171 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-83)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-687))))) +(-13 (-25) (-10 -8 (-15 (-2644) ($) -3936) (-15 -3708 ($) -3936) (-15 -3171 ((-83) $)) (-15 * ($ (-687) $)))) +(((-25) . T) ((-72) . T) ((-547 (-765)) . T) ((-1005) . T) ((-1118) . T)) +((* (($ (-823) $) 10 T ELT))) +(((-24 |#1|) (-10 -7 (-15 * (|#1| (-823) |#1|))) (-25)) (T -24)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT))) +(((-25) (-111)) (T -25)) +((-3823 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-823))))) +(-13 (-1005) (-10 -8 (-15 -3823 ($ $ $)) (-15 * ($ (-823) $)))) +(((-72) . T) ((-547 (-765)) . T) ((-1005) . T) ((-1118) . T)) +((-1203 (((-578 $) (-850 $)) 32 T ELT) (((-578 $) (-1074 $)) 16 T ELT) (((-578 $) (-1074 $) (-1079)) 20 T ELT)) (-1204 (($ (-850 $)) 30 T ELT) (($ (-1074 $)) 11 T ELT) (($ (-1074 $) (-1079)) 60 T ELT)) (-1205 (((-578 $) (-850 $)) 33 T ELT) (((-578 $) (-1074 $)) 18 T ELT) (((-578 $) (-1074 $) (-1079)) 19 T ELT)) (-3166 (($ (-850 $)) 31 T ELT) (($ (-1074 $)) 13 T ELT) (($ (-1074 $) (-1079)) NIL T ELT))) +(((-26 |#1|) (-10 -7 (-15 -1203 ((-578 |#1|) (-1074 |#1|) (-1079))) (-15 -1203 ((-578 |#1|) (-1074 |#1|))) (-15 -1203 ((-578 |#1|) (-850 |#1|))) (-15 -1204 (|#1| (-1074 |#1|) (-1079))) (-15 -1204 (|#1| (-1074 |#1|))) (-15 -1204 (|#1| (-850 |#1|))) (-15 -1205 ((-578 |#1|) (-1074 |#1|) (-1079))) (-15 -1205 ((-578 |#1|) (-1074 |#1|))) (-15 -1205 ((-578 |#1|) (-850 |#1|))) (-15 -3166 (|#1| (-1074 |#1|) (-1079))) (-15 -3166 (|#1| (-1074 |#1|))) (-15 -3166 (|#1| (-850 |#1|)))) (-27)) (T -26)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-1203 (((-578 $) (-850 $)) 95 T ELT) (((-578 $) (-1074 $)) 94 T ELT) (((-578 $) (-1074 $) (-1079)) 93 T ELT)) (-1204 (($ (-850 $)) 98 T ELT) (($ (-1074 $)) 97 T ELT) (($ (-1074 $) (-1079)) 96 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3759 (($ $) 88 T ELT)) (-3955 (((-341 $) $) 87 T ELT)) (-3021 (($ $) 107 T ELT)) (-1595 (((-83) $ $) 72 T ELT)) (-3708 (($) 22 T CONST)) (-1205 (((-578 $) (-850 $)) 101 T ELT) (((-578 $) (-1074 $)) 100 T ELT) (((-578 $) (-1074 $) (-1079)) 99 T ELT)) (-3166 (($ (-850 $)) 104 T ELT) (($ (-1074 $)) 103 T ELT) (($ (-1074 $) (-1079)) 102 T ELT)) (-2548 (($ $ $) 68 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2547 (($ $ $) 69 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 63 T ELT)) (-3707 (((-83) $) 86 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-2995 (($ $ (-478)) 106 T ELT)) (-1592 (((-3 (-578 $) #1="failed") (-578 $) $) 65 T ELT)) (-1878 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 85 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 55 T ELT)) (-3127 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3716 (((-341 $) $) 89 T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-1594 (((-687) $) 71 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 70 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ $) 80 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT) (($ $ (-343 (-478))) 105 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT))) +(((-27) (-111)) (T -27)) +((-3166 (*1 *1 *2) (-12 (-5 *2 (-850 *1)) (-4 *1 (-27)))) (-3166 (*1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-27)))) (-3166 (*1 *1 *2 *3) (-12 (-5 *2 (-1074 *1)) (-5 *3 (-1079)) (-4 *1 (-27)))) (-1205 (*1 *2 *3) (-12 (-5 *3 (-850 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-1205 (*1 *2 *3) (-12 (-5 *3 (-1074 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-1205 (*1 *2 *3 *4) (-12 (-5 *3 (-1074 *1)) (-5 *4 (-1079)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-1204 (*1 *1 *2) (-12 (-5 *2 (-850 *1)) (-4 *1 (-27)))) (-1204 (*1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-27)))) (-1204 (*1 *1 *2 *3) (-12 (-5 *2 (-1074 *1)) (-5 *3 (-1079)) (-4 *1 (-27)))) (-1203 (*1 *2 *3) (-12 (-5 *3 (-850 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-1203 (*1 *2 *3) (-12 (-5 *3 (-1074 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-1203 (*1 *2 *3 *4) (-12 (-5 *3 (-1074 *1)) (-5 *4 (-1079)) (-4 *1 (-27)) (-5 *2 (-578 *1))))) +(-13 (-308) (-908) (-10 -8 (-15 -3166 ($ (-850 $))) (-15 -3166 ($ (-1074 $))) (-15 -3166 ($ (-1074 $) (-1079))) (-15 -1205 ((-578 $) (-850 $))) (-15 -1205 ((-578 $) (-1074 $))) (-15 -1205 ((-578 $) (-1074 $) (-1079))) (-15 -1204 ($ (-850 $))) (-15 -1204 ($ (-1074 $))) (-15 -1204 ($ (-1074 $) (-1079))) (-15 -1203 ((-578 $) (-850 $))) (-15 -1203 ((-578 $) (-1074 $))) (-15 -1203 ((-578 $) (-1074 $) (-1079))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-385) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 $) . T) ((-649 (-343 (-478))) . T) ((-649 $) . T) ((-658) . T) ((-825) . T) ((-908) . T) ((-956 (-343 (-478))) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T) ((-1123) . T)) +((-1203 (((-578 $) (-850 $)) NIL T ELT) (((-578 $) (-1074 $)) NIL T ELT) (((-578 $) (-1074 $) (-1079)) 54 T ELT) (((-578 $) $) 22 T ELT) (((-578 $) $ (-1079)) 45 T ELT)) (-1204 (($ (-850 $)) NIL T ELT) (($ (-1074 $)) NIL T ELT) (($ (-1074 $) (-1079)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1079)) 39 T ELT)) (-1205 (((-578 $) (-850 $)) NIL T ELT) (((-578 $) (-1074 $)) NIL T ELT) (((-578 $) (-1074 $) (-1079)) 52 T ELT) (((-578 $) $) 18 T ELT) (((-578 $) $ (-1079)) 47 T ELT)) (-3166 (($ (-850 $)) NIL T ELT) (($ (-1074 $)) NIL T ELT) (($ (-1074 $) (-1079)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1079)) 41 T ELT))) +(((-28 |#1| |#2|) (-10 -7 (-15 -1203 ((-578 |#1|) |#1| (-1079))) (-15 -1204 (|#1| |#1| (-1079))) (-15 -1203 ((-578 |#1|) |#1|)) (-15 -1204 (|#1| |#1|)) (-15 -1205 ((-578 |#1|) |#1| (-1079))) (-15 -3166 (|#1| |#1| (-1079))) (-15 -1205 ((-578 |#1|) |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -1203 ((-578 |#1|) (-1074 |#1|) (-1079))) (-15 -1203 ((-578 |#1|) (-1074 |#1|))) (-15 -1203 ((-578 |#1|) (-850 |#1|))) (-15 -1204 (|#1| (-1074 |#1|) (-1079))) (-15 -1204 (|#1| (-1074 |#1|))) (-15 -1204 (|#1| (-850 |#1|))) (-15 -1205 ((-578 |#1|) (-1074 |#1|) (-1079))) (-15 -1205 ((-578 |#1|) (-1074 |#1|))) (-15 -1205 ((-578 |#1|) (-850 |#1|))) (-15 -3166 (|#1| (-1074 |#1|) (-1079))) (-15 -3166 (|#1| (-1074 |#1|))) (-15 -3166 (|#1| (-850 |#1|)))) (-29 |#2|) (-489)) (T -28)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-1203 (((-578 $) (-850 $)) 95 T ELT) (((-578 $) (-1074 $)) 94 T ELT) (((-578 $) (-1074 $) (-1079)) 93 T ELT) (((-578 $) $) 145 T ELT) (((-578 $) $ (-1079)) 143 T ELT)) (-1204 (($ (-850 $)) 98 T ELT) (($ (-1074 $)) 97 T ELT) (($ (-1074 $) (-1079)) 96 T ELT) (($ $) 146 T ELT) (($ $ (-1079)) 144 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3065 (((-578 (-1079)) $) 214 T ELT)) (-3067 (((-343 (-1074 $)) $ (-545 $)) 246 (|has| |#1| (-489)) ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-1587 (((-578 (-545 $)) $) 177 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-1591 (($ $ (-578 (-545 $)) (-578 $)) 167 T ELT) (($ $ (-578 (-245 $))) 166 T ELT) (($ $ (-245 $)) 165 T ELT)) (-3759 (($ $) 88 T ELT)) (-3955 (((-341 $) $) 87 T ELT)) (-3021 (($ $) 107 T ELT)) (-1595 (((-83) $ $) 72 T ELT)) (-3708 (($) 22 T CONST)) (-1205 (((-578 $) (-850 $)) 101 T ELT) (((-578 $) (-1074 $)) 100 T ELT) (((-578 $) (-1074 $) (-1079)) 99 T ELT) (((-578 $) $) 149 T ELT) (((-578 $) $ (-1079)) 147 T ELT)) (-3166 (($ (-850 $)) 104 T ELT) (($ (-1074 $)) 103 T ELT) (($ (-1074 $) (-1079)) 102 T ELT) (($ $) 150 T ELT) (($ $ (-1079)) 148 T ELT)) (-3140 (((-3 (-850 |#1|) #1="failed") $) 265 (|has| |#1| (-954)) ELT) (((-3 (-343 (-850 |#1|)) #1#) $) 248 (|has| |#1| (-489)) ELT) (((-3 |#1| #1#) $) 210 T ELT) (((-3 (-478) #1#) $) 207 (|has| |#1| (-943 (-478))) ELT) (((-3 (-1079) #1#) $) 201 T ELT) (((-3 (-545 $) #1#) $) 152 T ELT) (((-3 (-343 (-478)) #1#) $) 140 (OR (-12 (|has| |#1| (-943 (-478))) (|has| |#1| (-489))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-3139 (((-850 |#1|) $) 264 (|has| |#1| (-954)) ELT) (((-343 (-850 |#1|)) $) 247 (|has| |#1| (-489)) ELT) ((|#1| $) 209 T ELT) (((-478) $) 208 (|has| |#1| (-943 (-478))) ELT) (((-1079) $) 200 T ELT) (((-545 $) $) 151 T ELT) (((-343 (-478)) $) 141 (OR (-12 (|has| |#1| (-943 (-478))) (|has| |#1| (-489))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-2548 (($ $ $) 68 T ELT)) (-2265 (((-625 |#1|) (-625 $)) 253 (|has| |#1| (-954)) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) 252 (|has| |#1| (-954)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 139 (OR (-2546 (|has| |#1| (-954)) (|has| |#1| (-575 (-478)))) (-2546 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT) (((-625 (-478)) (-625 $)) 138 (OR (-2546 (|has| |#1| (-954)) (|has| |#1| (-575 (-478)))) (-2546 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2547 (($ $ $) 69 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 63 T ELT)) (-3707 (((-83) $) 86 T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 206 (|has| |#1| (-789 (-323))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 205 (|has| |#1| (-789 (-478))) ELT)) (-2557 (($ (-578 $)) 171 T ELT) (($ $) 170 T ELT)) (-1586 (((-578 (-84)) $) 178 T ELT)) (-3579 (((-84) (-84)) 179 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-2657 (((-83) $) 199 (|has| $ (-943 (-478))) ELT)) (-2980 (($ $) 231 (|has| |#1| (-954)) ELT)) (-2982 (((-1028 |#1| (-545 $)) $) 230 (|has| |#1| (-954)) ELT)) (-2995 (($ $ (-478)) 106 T ELT)) (-1592 (((-3 (-578 $) #2="failed") (-578 $) $) 65 T ELT)) (-1584 (((-1074 $) (-545 $)) 196 (|has| $ (-954)) ELT)) (-3942 (($ (-1 $ $) (-545 $)) 185 T ELT)) (-1589 (((-3 (-545 $) "failed") $) 175 T ELT)) (-2266 (((-625 |#1|) (-1168 $)) 255 (|has| |#1| (-954)) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) 254 (|has| |#1| (-954)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) 137 (OR (-2546 (|has| |#1| (-954)) (|has| |#1| (-575 (-478)))) (-2546 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT) (((-625 (-478)) (-1168 $)) 136 (OR (-2546 (|has| |#1| (-954)) (|has| |#1| (-575 (-478)))) (-2546 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT)) (-1878 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-1588 (((-578 (-545 $)) $) 176 T ELT)) (-2221 (($ (-84) (-578 $)) 184 T ELT) (($ (-84) $) 183 T ELT)) (-2807 (((-3 (-578 $) #3="failed") $) 225 (|has| |#1| (-1015)) ELT)) (-2809 (((-3 (-2 (|:| |val| $) (|:| -2387 (-478))) #3#) $) 234 (|has| |#1| (-954)) ELT)) (-2806 (((-3 (-578 $) #3#) $) 227 (|has| |#1| (-25)) ELT)) (-1781 (((-3 (-2 (|:| -3938 (-478)) (|:| |var| (-545 $))) #3#) $) 228 (|has| |#1| (-25)) ELT)) (-2808 (((-3 (-2 (|:| |var| (-545 $)) (|:| -2387 (-478))) #3#) $ (-1079)) 233 (|has| |#1| (-954)) ELT) (((-3 (-2 (|:| |var| (-545 $)) (|:| -2387 (-478))) #3#) $ (-84)) 232 (|has| |#1| (-954)) ELT) (((-3 (-2 (|:| |var| (-545 $)) (|:| -2387 (-478))) #3#) $) 226 (|has| |#1| (-1015)) ELT)) (-2617 (((-83) $ (-1079)) 182 T ELT) (((-83) $ (-84)) 181 T ELT)) (-2468 (($ $) 85 T ELT)) (-2587 (((-687) $) 174 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-1784 (((-83) $) 212 T ELT)) (-1783 ((|#1| $) 213 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 55 T ELT)) (-3127 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-1585 (((-83) $ (-1079)) 187 T ELT) (((-83) $ $) 186 T ELT)) (-3716 (((-341 $) $) 89 T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-2658 (((-83) $) 198 (|has| $ (-943 (-478))) ELT)) (-3752 (($ $ (-1079) (-687) (-1 $ $)) 238 (|has| |#1| (-954)) ELT) (($ $ (-1079) (-687) (-1 $ (-578 $))) 237 (|has| |#1| (-954)) ELT) (($ $ (-578 (-1079)) (-578 (-687)) (-578 (-1 $ (-578 $)))) 236 (|has| |#1| (-954)) ELT) (($ $ (-578 (-1079)) (-578 (-687)) (-578 (-1 $ $))) 235 (|has| |#1| (-954)) ELT) (($ $ (-578 (-84)) (-578 $) (-1079)) 224 (|has| |#1| (-548 (-467))) ELT) (($ $ (-84) $ (-1079)) 223 (|has| |#1| (-548 (-467))) ELT) (($ $) 222 (|has| |#1| (-548 (-467))) ELT) (($ $ (-578 (-1079))) 221 (|has| |#1| (-548 (-467))) ELT) (($ $ (-1079)) 220 (|has| |#1| (-548 (-467))) ELT) (($ $ (-84) (-1 $ $)) 195 T ELT) (($ $ (-84) (-1 $ (-578 $))) 194 T ELT) (($ $ (-578 (-84)) (-578 (-1 $ (-578 $)))) 193 T ELT) (($ $ (-578 (-84)) (-578 (-1 $ $))) 192 T ELT) (($ $ (-1079) (-1 $ $)) 191 T ELT) (($ $ (-1079) (-1 $ (-578 $))) 190 T ELT) (($ $ (-578 (-1079)) (-578 (-1 $ (-578 $)))) 189 T ELT) (($ $ (-578 (-1079)) (-578 (-1 $ $))) 188 T ELT) (($ $ (-578 $) (-578 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-245 $)) 157 T ELT) (($ $ (-578 (-245 $))) 156 T ELT) (($ $ (-578 (-545 $)) (-578 $)) 155 T ELT) (($ $ (-545 $) $) 154 T ELT)) (-1594 (((-687) $) 71 T ELT)) (-3784 (($ (-84) (-578 $)) 164 T ELT) (($ (-84) $ $ $ $) 163 T ELT) (($ (-84) $ $ $) 162 T ELT) (($ (-84) $ $) 161 T ELT) (($ (-84) $) 160 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 70 T ELT)) (-1590 (($ $ $) 173 T ELT) (($ $) 172 T ELT)) (-3742 (($ $ (-578 (-1079)) (-578 (-687))) 260 (|has| |#1| (-954)) ELT) (($ $ (-1079) (-687)) 259 (|has| |#1| (-954)) ELT) (($ $ (-578 (-1079))) 258 (|has| |#1| (-954)) ELT) (($ $ (-1079)) 256 (|has| |#1| (-954)) ELT)) (-2979 (($ $) 241 (|has| |#1| (-489)) ELT)) (-2981 (((-1028 |#1| (-545 $)) $) 240 (|has| |#1| (-489)) ELT)) (-3168 (($ $) 197 (|has| $ (-954)) ELT)) (-3956 (((-467) $) 269 (|has| |#1| (-548 (-467))) ELT) (($ (-341 $)) 239 (|has| |#1| (-489)) ELT) (((-793 (-323)) $) 204 (|has| |#1| (-548 (-793 (-323)))) ELT) (((-793 (-478)) $) 203 (|has| |#1| (-548 (-793 (-478)))) ELT)) (-2993 (($ $ $) 268 (|has| |#1| (-406)) ELT)) (-2419 (($ $ $) 267 (|has| |#1| (-406)) ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT) (($ (-850 |#1|)) 266 (|has| |#1| (-954)) ELT) (($ (-343 (-850 |#1|))) 249 (|has| |#1| (-489)) ELT) (($ (-343 (-850 (-343 |#1|)))) 245 (|has| |#1| (-489)) ELT) (($ (-850 (-343 |#1|))) 244 (|has| |#1| (-489)) ELT) (($ (-343 |#1|)) 243 (|has| |#1| (-489)) ELT) (($ (-1028 |#1| (-545 $))) 229 (|has| |#1| (-954)) ELT) (($ |#1|) 211 T ELT) (($ (-1079)) 202 T ELT) (($ (-545 $)) 153 T ELT)) (-2686 (((-627 $) $) 251 (|has| |#1| (-116)) ELT)) (-3109 (((-687)) 37 T CONST)) (-2574 (($ (-578 $)) 169 T ELT) (($ $) 168 T ELT)) (-2240 (((-83) (-84)) 180 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-1782 (($ (-1079) (-578 $)) 219 T ELT) (($ (-1079) $ $ $ $) 218 T ELT) (($ (-1079) $ $ $) 217 T ELT) (($ (-1079) $ $) 216 T ELT) (($ (-1079) $) 215 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-578 (-1079)) (-578 (-687))) 263 (|has| |#1| (-954)) ELT) (($ $ (-1079) (-687)) 262 (|has| |#1| (-954)) ELT) (($ $ (-578 (-1079))) 261 (|has| |#1| (-954)) ELT) (($ $ (-1079)) 257 (|has| |#1| (-954)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ $) 80 T ELT) (($ (-1028 |#1| (-545 $)) (-1028 |#1| (-545 $))) 242 (|has| |#1| (-489)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT) (($ $ (-343 (-478))) 105 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT) (($ $ |#1|) 250 (|has| |#1| (-144)) ELT) (($ |#1| $) 142 (|has| |#1| (-954)) ELT))) +(((-29 |#1|) (-111) (-489)) (T -29)) +((-3166 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-489)))) (-1205 (*1 *2 *1) (-12 (-4 *3 (-489)) (-5 *2 (-578 *1)) (-4 *1 (-29 *3)))) (-3166 (*1 *1 *1 *2) (-12 (-5 *2 (-1079)) (-4 *1 (-29 *3)) (-4 *3 (-489)))) (-1205 (*1 *2 *1 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-489)) (-5 *2 (-578 *1)) (-4 *1 (-29 *4)))) (-1204 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-489)))) (-1203 (*1 *2 *1) (-12 (-4 *3 (-489)) (-5 *2 (-578 *1)) (-4 *1 (-29 *3)))) (-1204 (*1 *1 *1 *2) (-12 (-5 *2 (-1079)) (-4 *1 (-29 *3)) (-4 *3 (-489)))) (-1203 (*1 *2 *1 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-489)) (-5 *2 (-578 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-357 |t#1|) (-10 -8 (-15 -3166 ($ $)) (-15 -1205 ((-578 $) $)) (-15 -3166 ($ $ (-1079))) (-15 -1205 ((-578 $) $ (-1079))) (-15 -1204 ($ $)) (-15 -1203 ((-578 $) $)) (-15 -1204 ($ $ (-1079))) (-15 -1203 ((-578 $) $ (-1079))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 |#1| |#1|) |has| |#1| (-144)) ((-80 $ $) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) . T) ((-550 (-343 (-850 |#1|))) |has| |#1| (-489)) ((-550 (-478)) . T) ((-550 (-545 $)) . T) ((-550 (-850 |#1|)) |has| |#1| (-954)) ((-550 (-1079)) . T) ((-550 |#1|) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-548 (-793 (-323))) |has| |#1| (-548 (-793 (-323)))) ((-548 (-793 (-478))) |has| |#1| (-548 (-793 (-478)))) ((-198) . T) ((-242) . T) ((-254) . T) ((-256 $) . T) ((-250) . T) ((-308) . T) ((-322 |#1|) |has| |#1| (-954)) ((-336 |#1|) . T) ((-348 |#1|) . T) ((-357 |#1|) . T) ((-385) . T) ((-406) |has| |#1| (-406)) ((-447 (-545 $) $) . T) ((-447 $ $) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 |#1|) OR (|has| |#1| (-954)) (|has| |#1| (-144))) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 (-478)) -12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ((-585 |#1|) OR (|has| |#1| (-954)) (|has| |#1| (-144))) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) . T) ((-575 (-478)) -12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ((-575 |#1|) |has| |#1| (-954)) ((-649 (-343 (-478))) . T) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) . T) ((-658) . T) ((-799 $ (-1079)) |has| |#1| (-954)) ((-802 (-1079)) |has| |#1| (-954)) ((-804 (-1079)) |has| |#1| (-954)) ((-789 (-323)) |has| |#1| (-789 (-323))) ((-789 (-478)) |has| |#1| (-789 (-478))) ((-787 |#1|) . T) ((-825) . T) ((-908) . T) ((-943 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (-12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478))))) ((-943 (-343 (-850 |#1|))) |has| |#1| (-489)) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 (-545 $)) . T) ((-943 (-850 |#1|)) |has| |#1| (-954)) ((-943 (-1079)) . T) ((-943 |#1|) . T) ((-956 (-343 (-478))) . T) ((-956 |#1|) |has| |#1| (-144)) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 |#1|) |has| |#1| (-144)) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T) ((-1123) . T)) +((-2880 (((-993 (-177)) $) NIL T ELT)) (-2881 (((-993 (-177)) $) NIL T ELT)) (-3117 (($ $ (-177)) 164 T ELT)) (-1206 (($ (-850 (-478)) (-1079) (-1079) (-993 (-343 (-478))) (-993 (-343 (-478)))) 103 T ELT)) (-2882 (((-578 (-578 (-847 (-177)))) $) 181 T ELT)) (-3930 (((-765) $) 195 T ELT))) +(((-30) (-13 (-859) (-10 -8 (-15 -1206 ($ (-850 (-478)) (-1079) (-1079) (-993 (-343 (-478))) (-993 (-343 (-478))))) (-15 -3117 ($ $ (-177)))))) (T -30)) +((-1206 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-850 (-478))) (-5 *3 (-1079)) (-5 *4 (-993 (-343 (-478)))) (-5 *1 (-30)))) (-3117 (*1 *1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-30))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 17 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-3216 (((-1038) $) 11 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2678 (((-1038) $) 9 T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-31) (-13 (-987) (-10 -8 (-15 -2678 ((-1038) $)) (-15 -3216 ((-1038) $))))) (T -31)) +((-2678 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-31)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-31))))) +((-3166 ((|#2| (-1074 |#2|) (-1079)) 39 T ELT)) (-3579 (((-84) (-84)) 53 T ELT)) (-1584 (((-1074 |#2|) (-545 |#2|)) 150 (|has| |#1| (-943 (-478))) ELT)) (-1209 ((|#2| |#1| (-478)) 138 (|has| |#1| (-943 (-478))) ELT)) (-1207 ((|#2| (-1074 |#2|) |#2|) 29 T ELT)) (-1208 (((-765) (-578 |#2|)) 87 T ELT)) (-3168 ((|#2| |#2|) 145 (|has| |#1| (-943 (-478))) ELT)) (-2240 (((-83) (-84)) 17 T ELT)) (** ((|#2| |#2| (-343 (-478))) 104 (|has| |#1| (-943 (-478))) ELT))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3166 (|#2| (-1074 |#2|) (-1079))) (-15 -3579 ((-84) (-84))) (-15 -2240 ((-83) (-84))) (-15 -1207 (|#2| (-1074 |#2|) |#2|)) (-15 -1208 ((-765) (-578 |#2|))) (IF (|has| |#1| (-943 (-478))) (PROGN (-15 ** (|#2| |#2| (-343 (-478)))) (-15 -1584 ((-1074 |#2|) (-545 |#2|))) (-15 -3168 (|#2| |#2|)) (-15 -1209 (|#2| |#1| (-478)))) |%noBranch|)) (-489) (-357 |#1|)) (T -32)) +((-1209 (*1 *2 *3 *4) (-12 (-5 *4 (-478)) (-4 *2 (-357 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-943 *4)) (-4 *3 (-489)))) (-3168 (*1 *2 *2) (-12 (-4 *3 (-943 (-478))) (-4 *3 (-489)) (-5 *1 (-32 *3 *2)) (-4 *2 (-357 *3)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-545 *5)) (-4 *5 (-357 *4)) (-4 *4 (-943 (-478))) (-4 *4 (-489)) (-5 *2 (-1074 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-343 (-478))) (-4 *4 (-943 (-478))) (-4 *4 (-489)) (-5 *1 (-32 *4 *2)) (-4 *2 (-357 *4)))) (-1208 (*1 *2 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-357 *4)) (-4 *4 (-489)) (-5 *2 (-765)) (-5 *1 (-32 *4 *5)))) (-1207 (*1 *2 *3 *2) (-12 (-5 *3 (-1074 *2)) (-4 *2 (-357 *4)) (-4 *4 (-489)) (-5 *1 (-32 *4 *2)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-32 *4 *5)) (-4 *5 (-357 *4)))) (-3579 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-32 *3 *4)) (-4 *4 (-357 *3)))) (-3166 (*1 *2 *3 *4) (-12 (-5 *3 (-1074 *2)) (-5 *4 (-1079)) (-4 *2 (-357 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-489))))) +((-3708 (($) 10 T ELT)) (-1210 (((-83) $ $) 8 T ELT)) (-3387 (((-83) $) 15 T ELT))) +(((-33 |#1|) (-10 -7 (-15 -3708 (|#1|)) (-15 -3387 ((-83) |#1|)) (-15 -1210 ((-83) |#1| |#1|))) (-34)) (T -33)) +NIL +((-3708 (($) 7 T CONST)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3384 (($ $) 10 T ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-34) (-111)) (T -34)) +((-1210 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-83)))) (-3384 (*1 *1 *1) (-4 *1 (-34))) (-3549 (*1 *1) (-4 *1 (-34))) (-3387 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-83)))) (-3708 (*1 *1) (-4 *1 (-34))) (-3941 (*1 *2 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-34)) (-5 *2 (-687))))) +(-13 (-1118) (-10 -8 (-15 -1210 ((-83) $ $)) (-15 -3384 ($ $)) (-15 -3549 ($)) (-15 -3387 ((-83) $)) (-15 -3708 ($) -3936) (IF (|has| $ (-6 -3979)) (-15 -3941 ((-687) $)) |%noBranch|))) +(((-1118) . T)) +((-3482 (($ $) 11 T ELT)) (-3480 (($ $) 10 T ELT)) (-3484 (($ $) 9 T ELT)) (-3485 (($ $) 8 T ELT)) (-3483 (($ $) 7 T ELT)) (-3481 (($ $) 6 T ELT))) +(((-35) (-111)) (T -35)) +((-3482 (*1 *1 *1) (-4 *1 (-35))) (-3480 (*1 *1 *1) (-4 *1 (-35))) (-3484 (*1 *1 *1) (-4 *1 (-35))) (-3485 (*1 *1 *1) (-4 *1 (-35))) (-3483 (*1 *1 *1) (-4 *1 (-35))) (-3481 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3481 ($ $)) (-15 -3483 ($ $)) (-15 -3485 ($ $)) (-15 -3484 ($ $)) (-15 -3480 ($ $)) (-15 -3482 ($ $)))) +((-2552 (((-83) $ $) 19 (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3386 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 133 T ELT)) (-3779 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 156 T ELT)) (-3781 (($ $) 154 T ELT)) (-3583 (($) 77 T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2184 (((-1174) $ |#1| |#1|) 104 (|has| $ (-6 -3980)) ELT) (((-1174) $ (-478) (-478)) 186 (|has| $ (-6 -3980)) ELT)) (-3769 (($ $ (-478)) 167 (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 220 T ELT) (((-83) $) 214 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-1717 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 211 (|has| $ (-6 -3980)) ELT) (($ $) 210 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) (|has| $ (-6 -3980))) ELT)) (-2893 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 221 T ELT) (($ $) 215 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-3426 (((-83) $ (-687)) 203 T ELT)) (-3009 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 142 (|has| $ (-6 -3980)) ELT)) (-3771 (($ $ $) 163 (|has| $ (-6 -3980)) ELT)) (-3770 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 165 (|has| $ (-6 -3980)) ELT)) (-3773 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 161 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#2| $ |#1| |#2|) 78 T ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-478) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 197 (|has| $ (-6 -3980)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-1135 (-478)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 168 (|has| $ (-6 -3980)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 166 (|has| $ (-6 -3980)) ELT) (($ $ #2="rest" $) 164 (|has| $ (-6 -3980)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 162 (|has| $ (-6 -3980)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 141 (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) 140 (|has| $ (-6 -3980)) ELT)) (-1557 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 227 T ELT)) (-3694 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 183 (|has| $ (-6 -3979)) ELT)) (-3780 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 155 T ELT)) (-2217 (((-3 |#2| #5="failed") |#1| $) 65 T ELT)) (-3708 (($) 7 T CONST)) (-2283 (($ $) 212 (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) 222 T ELT)) (-3783 (($ $ (-687)) 150 T ELT) (($ $) 148 T ELT)) (-2354 (($ $) 225 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) ELT)) (-1340 (($ $) 62 (OR (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979)))) ELT)) (-3389 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3979)) ELT) (((-3 |#2| #5#) |#1| $) 66 T ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 231 T ELT) (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 226 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) ELT)) (-3390 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3979)) ELT) (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 185 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 182 (|has| $ (-6 -3979)) ELT)) (-3826 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 184 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 181 (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 180 (|has| $ (-6 -3979)) ELT)) (-1563 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3980)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-478) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 198 (|has| $ (-6 -3980)) ELT)) (-3096 ((|#2| $ |#1|) 93 T ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-478)) 196 T ELT)) (-3427 (((-83) $) 200 T ELT)) (-3403 (((-478) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 219 T ELT) (((-478) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 218 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) ELT) (((-478) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-478)) 217 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) ELT)) (-2873 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3979)) ELT) (((-578 |#2|) $) 84 (|has| $ (-6 -3979)) ELT) (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 122 (|has| $ (-6 -3979)) ELT)) (-3015 (((-578 $) $) 131 T ELT)) (-3011 (((-83) $ $) 139 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) ELT)) (-3598 (($ (-687) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 176 T ELT)) (-3703 (((-83) $ (-687)) 202 T ELT)) (-2186 ((|#1| $) 101 (|has| |#1| (-749)) ELT) (((-478) $) 188 (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) 204 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-2840 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ $) 228 T ELT) (($ $ $) 224 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-3502 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ $) 223 T ELT) (($ $ $) 216 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-2592 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3979)) ELT) (((-578 |#2|) $) 85 (|has| $ (-6 -3979)) ELT) (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 123 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) ELT) (((-83) |#2| $) 87 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -3979))) ELT) (((-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 125 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) ELT)) (-2187 ((|#1| $) 100 (|has| |#1| (-749)) ELT) (((-478) $) 189 (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) 205 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-1936 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3980)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3980)) ELT) (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 118 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT) (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ $) 173 T ELT) (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 117 T ELT)) (-3518 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 236 T ELT)) (-3700 (((-83) $ (-687)) 201 T ELT)) (-3014 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 136 T ELT)) (-3511 (((-83) $) 132 T ELT)) (-3225 (((-1062) $) 22 (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| |#2| (-1005)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT)) (-3782 (($ $ (-687)) 153 T ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 151 T ELT)) (-2218 (((-578 |#1|) $) 67 T ELT)) (-2219 (((-83) |#1| $) 68 T ELT)) (-1262 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3593 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 44 T ELT) (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-478)) 230 T ELT) (($ $ $ (-478)) 229 T ELT)) (-2290 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-478)) 170 T ELT) (($ $ $ (-478)) 169 T ELT)) (-2189 (((-578 |#1|) $) 98 T ELT) (((-578 (-478)) $) 191 T ELT)) (-2190 (((-83) |#1| $) 97 T ELT) (((-83) (-478) $) 192 T ELT)) (-3226 (((-1023) $) 21 (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| |#2| (-1005)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT)) (-3785 ((|#2| $) 102 (|has| |#1| (-749)) ELT) (($ $ (-687)) 147 T ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 145 T ELT)) (-1341 (((-3 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 179 T ELT)) (-2185 (($ $ |#2|) 103 (|has| $ (-6 -3980)) ELT) (($ $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 187 (|has| $ (-6 -3980)) ELT)) (-1263 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-3428 (((-83) $) 199 T ELT)) (-1934 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#2|) $) 82 (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 120 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) 91 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-245 |#2|)) 89 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 (-245 |#2|))) 88 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 129 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 128 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 127 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) 126 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-2188 (((-83) |#2| $) 99 (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT) (((-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 190 (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT)) (-2191 (((-578 |#2|) $) 96 T ELT) (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 193 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-478) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 195 T ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-478)) 194 T ELT) (($ $ (-1135 (-478))) 177 T ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ #1#) 152 T ELT) (($ $ #2#) 149 T ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ #3#) 146 T ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ #4#) 134 T ELT)) (-3013 (((-478) $ $) 137 T ELT)) (-1453 (($) 53 T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1558 (($ $ (-478)) 233 T ELT) (($ $ (-1135 (-478))) 232 T ELT)) (-2291 (($ $ (-478)) 172 T ELT) (($ $ (-1135 (-478))) 171 T ELT)) (-3617 (((-83) $) 135 T ELT)) (-3776 (($ $) 159 T ELT)) (-3774 (($ $) 160 (|has| $ (-6 -3980)) ELT)) (-3777 (((-687) $) 158 T ELT)) (-3778 (($ $) 157 T ELT)) (-1933 (((-687) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) ELT) (((-687) |#2| $) 86 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -3979))) ELT) (((-687) (-1 (-83) |#2|) $) 83 (|has| $ (-6 -3979)) ELT) (((-687) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 124 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) ELT) (((-687) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 121 (|has| $ (-6 -3979)) ELT)) (-1718 (($ $ $ (-478)) 213 (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 63 (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-548 (-467))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-548 (-467)))) ELT)) (-3514 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 54 T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 178 T ELT)) (-3775 (($ $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 235 T ELT) (($ $ $) 234 T ELT)) (-3786 (($ $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 175 T ELT) (($ (-578 $)) 174 T ELT) (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 144 T ELT) (($ $ $) 143 T ELT)) (-3930 (((-765) $) 17 (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-547 (-765))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-547 (-765)))) ELT)) (-3506 (((-578 $) $) 130 T ELT)) (-3012 (((-83) $ $) 138 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) ELT)) (-1253 (((-83) $ $) 20 (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1264 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1211 (((-3 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) "failed") |#1| $) 116 T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#2|) $) 81 (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 119 (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) 206 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-2551 (((-83) $ $) 208 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-3037 (((-83) $ $) 18 (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2668 (((-83) $ $) 207 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-2669 (((-83) $ $) 209 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-36 |#1| |#2|) (-111) (-1005) (-1005)) (T -36)) +((-1211 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-5 *2 (-2 (|:| -3844 *3) (|:| |entry| *4)))))) +(-13 (-1096 |t#1| |t#2|) (-603 (-2 (|:| -3844 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1211 ((-3 (-2 (|:| -3844 |t#1|) (|:| |entry| |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-76 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1005)) (|has| |#2| (-72))) ((-547 (-765)) OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-1005)) (|has| |#2| (-547 (-765)))) ((-122 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-548 (-467)) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ((-181 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-190 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-238 (-478) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-238 (-1135 (-478)) $) . T) ((-238 |#1| |#2|) . T) ((-240 (-478) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-240 |#1| |#2|) . T) ((-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ((-256 |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ((-234 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-317 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-422 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-422 |#2|) . T) ((-533 (-478) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-533 |#1| |#2|) . T) ((-447 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ((-447 |#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ((-544 |#1| |#2|) . T) ((-588 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-603 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-749) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ((-752) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ((-916 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-1005) OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) (|has| |#2| (-1005))) ((-1053 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-1096 |#1| |#2|) . T) ((-1118) . T) ((-1157 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T)) +((-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-37 |#1| |#2|) (-10 -7 (-15 -3930 (|#1| |#2|)) (-15 -3930 (|#1| (-478))) (-15 -3930 ((-765) |#1|))) (-38 |#2|) (-144)) (T -37)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +(((-38 |#1|) (-111) (-144)) (T -38)) +NIL +(-13 (-954) (-649 |t#1|) (-550 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 |#1|) . T) ((-649 |#1|) . T) ((-658) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-3402 (((-341 |#1|) |#1|) 41 T ELT)) (-3716 (((-341 |#1|) |#1|) 30 T ELT) (((-341 |#1|) |#1| (-578 (-48))) 33 T ELT)) (-1212 (((-83) |#1|) 59 T ELT))) +(((-39 |#1|) (-10 -7 (-15 -3716 ((-341 |#1|) |#1| (-578 (-48)))) (-15 -3716 ((-341 |#1|) |#1|)) (-15 -3402 ((-341 |#1|) |#1|)) (-15 -1212 ((-83) |#1|))) (-1144 (-48))) (T -39)) +((-1212 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-39 *3)) (-4 *3 (-1144 (-48))))) (-3402 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1144 (-48))))) (-3716 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1144 (-48))))) (-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-48))) (-5 *2 (-341 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1144 (-48)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1634 (((-2 (|:| |num| (-1168 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2049 (($ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2047 (((-83) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1769 (((-625 (-343 |#2|)) (-1168 $)) NIL T ELT) (((-625 (-343 |#2|))) NIL T ELT)) (-3314 (((-343 |#2|) $) NIL T ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3955 (((-341 $) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1595 (((-83) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3119 (((-687)) NIL (|has| (-343 |#2|) (-313)) ELT)) (-1648 (((-83)) NIL T ELT)) (-1647 (((-83) |#1|) NIL T ELT) (((-83) |#2|) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL (|has| (-343 |#2|) (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| (-343 |#2|) (-943 (-343 (-478)))) ELT) (((-3 (-343 |#2|) #1#) $) NIL T ELT)) (-3139 (((-478) $) NIL (|has| (-343 |#2|) (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| (-343 |#2|) (-943 (-343 (-478)))) ELT) (((-343 |#2|) $) NIL T ELT)) (-1779 (($ (-1168 (-343 |#2|)) (-1168 $)) NIL T ELT) (($ (-1168 (-343 |#2|))) 61 T ELT) (($ (-1168 |#2|) |#2|) 131 T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-343 |#2|) (-295)) ELT)) (-2548 (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1768 (((-625 (-343 |#2|)) $ (-1168 $)) NIL T ELT) (((-625 (-343 |#2|)) $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-343 |#2|))) (|:| |vec| (-1168 (-343 |#2|)))) (-625 $) (-1168 $)) NIL T ELT) (((-625 (-343 |#2|)) (-625 $)) NIL T ELT)) (-1639 (((-1168 $) (-1168 $)) NIL T ELT)) (-3826 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-343 |#3|)) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-1626 (((-578 (-578 |#1|))) NIL (|has| |#1| (-313)) ELT)) (-1651 (((-83) |#1| |#1|) NIL T ELT)) (-3092 (((-823)) NIL T ELT)) (-2978 (($) NIL (|has| (-343 |#2|) (-313)) ELT)) (-1646 (((-83)) NIL T ELT)) (-1645 (((-83) |#1|) NIL T ELT) (((-83) |#2|) NIL T ELT)) (-2547 (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3487 (($ $) NIL T ELT)) (-2817 (($) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1667 (((-83) $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1751 (($ $ (-687)) NIL (|has| (-343 |#2|) (-295)) ELT) (($ $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-3707 (((-83) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3756 (((-823) $) NIL (|has| (-343 |#2|) (-295)) ELT) (((-736 (-823)) $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-2396 (((-83) $) NIL T ELT)) (-3361 (((-687)) NIL T ELT)) (-1640 (((-1168 $) (-1168 $)) 106 T ELT)) (-3115 (((-343 |#2|) $) NIL T ELT)) (-1627 (((-578 (-850 |#1|)) (-1079)) NIL (|has| |#1| (-308)) ELT)) (-3429 (((-627 $) $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2000 ((|#3| $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1996 (((-823) $) NIL (|has| (-343 |#2|) (-313)) ELT)) (-3063 ((|#3| $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-343 |#2|))) (|:| |vec| (-1168 (-343 |#2|)))) (-1168 $) $) NIL T ELT) (((-625 (-343 |#2|)) (-1168 $)) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1213 (((-1174) (-687)) 84 T ELT)) (-1635 (((-625 (-343 |#2|))) 56 T ELT)) (-1637 (((-625 (-343 |#2|))) 49 T ELT)) (-2468 (($ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1632 (($ (-1168 |#2|) |#2|) 132 T ELT)) (-1636 (((-625 (-343 |#2|))) 50 T ELT)) (-1638 (((-625 (-343 |#2|))) 48 T ELT)) (-1631 (((-2 (|:| |num| (-625 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130 T ELT)) (-1633 (((-2 (|:| |num| (-1168 |#2|)) (|:| |den| |#2|)) $) 68 T ELT)) (-1644 (((-1168 $)) 47 T ELT)) (-3902 (((-1168 $)) 46 T ELT)) (-1643 (((-83) $) NIL T ELT)) (-1642 (((-83) $) NIL T ELT) (((-83) $ |#1|) NIL T ELT) (((-83) $ |#2|) NIL T ELT)) (-3430 (($) NIL (|has| (-343 |#2|) (-295)) CONST)) (-2386 (($ (-823)) NIL (|has| (-343 |#2|) (-313)) ELT)) (-1629 (((-3 |#2| #1#)) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1653 (((-687)) NIL T ELT)) (-2395 (($) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3127 (($ (-578 $)) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) NIL (|has| (-343 |#2|) (-295)) ELT)) (-3716 (((-341 $) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-343 |#2|) (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3450 (((-3 $ #1#) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1594 (((-687) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3784 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1630 (((-3 |#2| #1#)) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3741 (((-343 |#2|) (-1168 $)) NIL T ELT) (((-343 |#2|)) 44 T ELT)) (-1752 (((-687) $) NIL (|has| (-343 |#2|) (-295)) ELT) (((-3 (-687) #1#) $ $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-3742 (($ $ (-1 (-343 |#2|) (-343 |#2|))) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-1 (-343 |#2|) (-343 |#2|)) (-687)) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-1 |#2| |#2|)) 126 T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079))))) ELT) (($ $ (-1079) (-687)) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079))))) ELT) (($ $ (-578 (-1079))) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079))))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079))))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT) (($ $) NIL (OR (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT)) (-2394 (((-625 (-343 |#2|)) (-1168 $) (-1 (-343 |#2|) (-343 |#2|))) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3168 ((|#3|) 55 T ELT)) (-1661 (($) NIL (|has| (-343 |#2|) (-295)) ELT)) (-3207 (((-1168 (-343 |#2|)) $ (-1168 $)) NIL T ELT) (((-625 (-343 |#2|)) (-1168 $) (-1168 $)) NIL T ELT) (((-1168 (-343 |#2|)) $) 62 T ELT) (((-625 (-343 |#2|)) (-1168 $)) 107 T ELT)) (-3956 (((-1168 (-343 |#2|)) $) NIL T ELT) (($ (-1168 (-343 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1641 (((-1168 $) (-1168 $)) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-343 |#2|)) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2686 (($ $) NIL (|has| (-343 |#2|) (-295)) ELT) (((-627 $) $) NIL (|has| (-343 |#2|) (-116)) ELT)) (-2433 ((|#3| $) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1650 (((-83)) 42 T ELT)) (-1649 (((-83) |#1|) 54 T ELT) (((-83) |#2|) 138 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $)) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1628 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1652 (((-83)) NIL T ELT)) (-2644 (($) 17 T CONST)) (-2650 (($) 27 T CONST)) (-2653 (($ $ (-1 (-343 |#2|) (-343 |#2|))) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-1 (-343 |#2|) (-343 |#2|)) (-687)) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079))))) ELT) (($ $ (-1079) (-687)) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079))))) ELT) (($ $ (-578 (-1079))) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079))))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079))))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT) (($ $) NIL (OR (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| (-343 |#2|) (-308)) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 |#2|)) NIL T ELT) (($ (-343 |#2|) $) NIL T ELT) (($ (-343 (-478)) $) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-343 (-478))) NIL (|has| (-343 |#2|) (-308)) ELT))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-287 |#1| |#2| |#3|) (-10 -7 (-15 -1213 ((-1174) (-687))))) (-308) (-1144 |#1|) (-1144 (-343 |#2|)) |#3|) (T -40)) +((-1213 (*1 *2 *3) (-12 (-5 *3 (-687)) (-4 *4 (-308)) (-4 *5 (-1144 *4)) (-5 *2 (-1174)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1144 (-343 *5))) (-14 *7 *6)))) +((-1214 ((|#2| |#2|) 47 T ELT)) (-1219 ((|#2| |#2|) 138 (-12 (|has| |#2| (-357 |#1|)) (|has| |#1| (-13 (-385) (-943 (-478))))) ELT)) (-1218 ((|#2| |#2|) 100 (-12 (|has| |#2| (-357 |#1|)) (|has| |#1| (-13 (-385) (-943 (-478))))) ELT)) (-1217 ((|#2| |#2|) 101 (-12 (|has| |#2| (-357 |#1|)) (|has| |#1| (-13 (-385) (-943 (-478))))) ELT)) (-1220 ((|#2| (-84) |#2| (-687)) 134 (-12 (|has| |#2| (-357 |#1|)) (|has| |#1| (-13 (-385) (-943 (-478))))) ELT)) (-1216 (((-1074 |#2|) |#2|) 44 T ELT)) (-1215 ((|#2| |#2| (-578 (-545 |#2|))) 18 T ELT) ((|#2| |#2| (-578 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1214 (|#2| |#2|)) (-15 -1215 (|#2| |#2|)) (-15 -1215 (|#2| |#2| |#2|)) (-15 -1215 (|#2| |#2| (-578 |#2|))) (-15 -1215 (|#2| |#2| (-578 (-545 |#2|)))) (-15 -1216 ((-1074 |#2|) |#2|)) (IF (|has| |#1| (-13 (-385) (-943 (-478)))) (IF (|has| |#2| (-357 |#1|)) (PROGN (-15 -1217 (|#2| |#2|)) (-15 -1218 (|#2| |#2|)) (-15 -1219 (|#2| |#2|)) (-15 -1220 (|#2| (-84) |#2| (-687)))) |%noBranch|) |%noBranch|)) (-489) (-13 (-308) (-250) (-10 -8 (-15 -2982 ((-1028 |#1| (-545 $)) $)) (-15 -2981 ((-1028 |#1| (-545 $)) $)) (-15 -3930 ($ (-1028 |#1| (-545 $))))))) (T -41)) +((-1220 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-84)) (-5 *4 (-687)) (-4 *5 (-13 (-385) (-943 (-478)))) (-4 *5 (-489)) (-5 *1 (-41 *5 *2)) (-4 *2 (-357 *5)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2982 ((-1028 *5 (-545 $)) $)) (-15 -2981 ((-1028 *5 (-545 $)) $)) (-15 -3930 ($ (-1028 *5 (-545 $))))))))) (-1219 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)))) (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) (-4 *2 (-357 *3)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2982 ((-1028 *3 (-545 $)) $)) (-15 -2981 ((-1028 *3 (-545 $)) $)) (-15 -3930 ($ (-1028 *3 (-545 $))))))))) (-1218 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)))) (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) (-4 *2 (-357 *3)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2982 ((-1028 *3 (-545 $)) $)) (-15 -2981 ((-1028 *3 (-545 $)) $)) (-15 -3930 ($ (-1028 *3 (-545 $))))))))) (-1217 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)))) (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) (-4 *2 (-357 *3)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2982 ((-1028 *3 (-545 $)) $)) (-15 -2981 ((-1028 *3 (-545 $)) $)) (-15 -3930 ($ (-1028 *3 (-545 $))))))))) (-1216 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-1074 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-308) (-250) (-10 -8 (-15 -2982 ((-1028 *4 (-545 $)) $)) (-15 -2981 ((-1028 *4 (-545 $)) $)) (-15 -3930 ($ (-1028 *4 (-545 $))))))))) (-1215 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-545 *2))) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2982 ((-1028 *4 (-545 $)) $)) (-15 -2981 ((-1028 *4 (-545 $)) $)) (-15 -3930 ($ (-1028 *4 (-545 $))))))) (-4 *4 (-489)) (-5 *1 (-41 *4 *2)))) (-1215 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2982 ((-1028 *4 (-545 $)) $)) (-15 -2981 ((-1028 *4 (-545 $)) $)) (-15 -3930 ($ (-1028 *4 (-545 $))))))) (-4 *4 (-489)) (-5 *1 (-41 *4 *2)))) (-1215 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2982 ((-1028 *3 (-545 $)) $)) (-15 -2981 ((-1028 *3 (-545 $)) $)) (-15 -3930 ($ (-1028 *3 (-545 $))))))))) (-1215 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2982 ((-1028 *3 (-545 $)) $)) (-15 -2981 ((-1028 *3 (-545 $)) $)) (-15 -3930 ($ (-1028 *3 (-545 $))))))))) (-1214 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2982 ((-1028 *3 (-545 $)) $)) (-15 -2981 ((-1028 *3 (-545 $)) $)) (-15 -3930 ($ (-1028 *3 (-545 $)))))))))) +((-3716 (((-341 (-1074 |#3|)) (-1074 |#3|) (-578 (-48))) 23 T ELT) (((-341 |#3|) |#3| (-578 (-48))) 19 T ELT))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3716 ((-341 |#3|) |#3| (-578 (-48)))) (-15 -3716 ((-341 (-1074 |#3|)) (-1074 |#3|) (-578 (-48))))) (-749) (-710) (-854 (-48) |#2| |#1|)) (T -42)) +((-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-48))) (-4 *5 (-749)) (-4 *6 (-710)) (-4 *7 (-854 (-48) *6 *5)) (-5 *2 (-341 (-1074 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1074 *7)))) (-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-48))) (-4 *5 (-749)) (-4 *6 (-710)) (-5 *2 (-341 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-854 (-48) *6 *5))))) +((-1224 (((-687) |#2|) 70 T ELT)) (-1222 (((-687) |#2|) 74 T ELT)) (-1237 (((-578 |#2|)) 37 T ELT)) (-1221 (((-687) |#2|) 73 T ELT)) (-1223 (((-687) |#2|) 69 T ELT)) (-1225 (((-687) |#2|) 72 T ELT)) (-1235 (((-578 (-625 |#1|))) 65 T ELT)) (-1230 (((-578 |#2|)) 60 T ELT)) (-1228 (((-578 |#2|) |#2|) 48 T ELT)) (-1232 (((-578 |#2|)) 62 T ELT)) (-1231 (((-578 |#2|)) 61 T ELT)) (-1234 (((-578 (-625 |#1|))) 53 T ELT)) (-1229 (((-578 |#2|)) 59 T ELT)) (-1227 (((-578 |#2|) |#2|) 47 T ELT)) (-1226 (((-578 |#2|)) 55 T ELT)) (-1236 (((-578 (-625 |#1|))) 66 T ELT)) (-1233 (((-578 |#2|)) 64 T ELT)) (-1998 (((-1168 |#2|) (-1168 |#2|)) 99 (|has| |#1| (-254)) ELT))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1221 ((-687) |#2|)) (-15 -1222 ((-687) |#2|)) (-15 -1223 ((-687) |#2|)) (-15 -1224 ((-687) |#2|)) (-15 -1225 ((-687) |#2|)) (-15 -1226 ((-578 |#2|))) (-15 -1227 ((-578 |#2|) |#2|)) (-15 -1228 ((-578 |#2|) |#2|)) (-15 -1229 ((-578 |#2|))) (-15 -1230 ((-578 |#2|))) (-15 -1231 ((-578 |#2|))) (-15 -1232 ((-578 |#2|))) (-15 -1233 ((-578 |#2|))) (-15 -1234 ((-578 (-625 |#1|)))) (-15 -1235 ((-578 (-625 |#1|)))) (-15 -1236 ((-578 (-625 |#1|)))) (-15 -1237 ((-578 |#2|))) (IF (|has| |#1| (-254)) (-15 -1998 ((-1168 |#2|) (-1168 |#2|))) |%noBranch|)) (-489) (-354 |#1|)) (T -43)) +((-1998 (*1 *2 *2) (-12 (-5 *2 (-1168 *4)) (-4 *4 (-354 *3)) (-4 *3 (-254)) (-4 *3 (-489)) (-5 *1 (-43 *3 *4)))) (-1237 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1236 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 (-625 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1235 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 (-625 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1234 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 (-625 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1233 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1232 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1231 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1230 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1229 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1228 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-578 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4)))) (-1227 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-578 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4)))) (-1226 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1225 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4)))) (-1224 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4)))) (-1223 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4)))) (-1222 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4)))) (-1221 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1759 (((-3 $ #1="failed")) NIL (|has| |#1| (-489)) ELT)) (-1299 (((-3 $ #1#) $ $) NIL T ELT)) (-3206 (((-1168 (-625 |#1|)) (-1168 $)) NIL T ELT) (((-1168 (-625 |#1|))) 24 T ELT)) (-1716 (((-1168 $)) 52 T ELT)) (-3708 (($) NIL T CONST)) (-1893 (((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) #1#)) NIL (|has| |#1| (-489)) ELT)) (-1690 (((-3 $ #1#)) NIL (|has| |#1| (-489)) ELT)) (-1775 (((-625 |#1|) (-1168 $)) NIL T ELT) (((-625 |#1|)) NIL T ELT)) (-1714 ((|#1| $) NIL T ELT)) (-1773 (((-625 |#1|) $ (-1168 $)) NIL T ELT) (((-625 |#1|) $) NIL T ELT)) (-2390 (((-3 $ #1#) $) NIL (|has| |#1| (-489)) ELT)) (-1887 (((-1074 (-850 |#1|))) NIL (|has| |#1| (-308)) ELT)) (-2393 (($ $ (-823)) NIL T ELT)) (-1712 ((|#1| $) NIL T ELT)) (-1692 (((-1074 |#1|) $) NIL (|has| |#1| (-489)) ELT)) (-1777 ((|#1| (-1168 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1710 (((-1074 |#1|) $) NIL T ELT)) (-1704 (((-83)) 99 T ELT)) (-1779 (($ (-1168 |#1|) (-1168 $)) NIL T ELT) (($ (-1168 |#1|)) NIL T ELT)) (-3451 (((-3 $ #1#) $) 14 (|has| |#1| (-489)) ELT)) (-3092 (((-823)) 53 T ELT)) (-1701 (((-83)) NIL T ELT)) (-2417 (($ $ (-823)) NIL T ELT)) (-1697 (((-83)) NIL T ELT)) (-1695 (((-83)) NIL T ELT)) (-1699 (((-83)) 101 T ELT)) (-1894 (((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) #1#)) NIL (|has| |#1| (-489)) ELT)) (-1691 (((-3 $ #1#)) NIL (|has| |#1| (-489)) ELT)) (-1776 (((-625 |#1|) (-1168 $)) NIL T ELT) (((-625 |#1|)) NIL T ELT)) (-1715 ((|#1| $) NIL T ELT)) (-1774 (((-625 |#1|) $ (-1168 $)) NIL T ELT) (((-625 |#1|) $) NIL T ELT)) (-2391 (((-3 $ #1#) $) NIL (|has| |#1| (-489)) ELT)) (-1891 (((-1074 (-850 |#1|))) NIL (|has| |#1| (-308)) ELT)) (-2392 (($ $ (-823)) NIL T ELT)) (-1713 ((|#1| $) NIL T ELT)) (-1693 (((-1074 |#1|) $) NIL (|has| |#1| (-489)) ELT)) (-1778 ((|#1| (-1168 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1711 (((-1074 |#1|) $) NIL T ELT)) (-1705 (((-83)) 98 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1696 (((-83)) 106 T ELT)) (-1698 (((-83)) 105 T ELT)) (-1700 (((-83)) 107 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1703 (((-83)) 100 T ELT)) (-3784 ((|#1| $ (-478)) 55 T ELT)) (-3207 (((-1168 |#1|) $ (-1168 $)) 48 T ELT) (((-625 |#1|) (-1168 $) (-1168 $)) NIL T ELT) (((-1168 |#1|) $) 28 T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-3956 (((-1168 |#1|) $) NIL T ELT) (($ (-1168 |#1|)) NIL T ELT)) (-1879 (((-578 (-850 |#1|)) (-1168 $)) NIL T ELT) (((-578 (-850 |#1|))) NIL T ELT)) (-2419 (($ $ $) NIL T ELT)) (-1709 (((-83)) 95 T ELT)) (-3930 (((-765) $) 71 T ELT) (($ (-1168 |#1|)) 22 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $)) 51 T ELT)) (-1694 (((-578 (-1168 |#1|))) NIL (|has| |#1| (-489)) ELT)) (-2420 (($ $ $ $) NIL T ELT)) (-1707 (((-83)) 91 T ELT)) (-2529 (($ (-625 |#1|) $) 18 T ELT)) (-2418 (($ $ $) NIL T ELT)) (-1708 (((-83)) 97 T ELT)) (-1706 (((-83)) 92 T ELT)) (-1702 (((-83)) 90 T ELT)) (-2644 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1045 |#2| |#1|) $) 19 T ELT))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-354 |#1|) (-585 (-1045 |#2| |#1|)) (-10 -8 (-15 -3930 ($ (-1168 |#1|))))) (-308) (-823) (-578 (-1079)) (-1168 (-625 |#1|))) (T -44)) +((-3930 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-308)) (-14 *6 (-1168 (-625 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-823)) (-14 *5 (-578 (-1079)))))) +((-2552 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3386 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3779 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3583 (($) NIL T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2184 (((-1174) $ |#1| |#1|) NIL (|has| $ (-6 -3980)) ELT) (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-3769 (($ $ (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-83) $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-1717 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3980)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3980)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749))) ELT)) (-2893 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-3426 (((-83) $ (-687)) NIL T ELT)) (-3009 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3980)) ELT)) (-3771 (($ $ $) 33 (|has| $ (-6 -3980)) ELT)) (-3770 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3980)) ELT)) (-3773 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 35 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#2| $ |#1| |#2|) 53 T ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-478) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3980)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-1135 (-478)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3980)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3980)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -3980)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3980)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) NIL (|has| $ (-6 -3980)) ELT)) (-1557 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3694 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3780 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2217 (((-3 |#2| #5="failed") |#1| $) 43 T ELT)) (-3708 (($) NIL T CONST)) (-2283 (($ $) NIL (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) NIL T ELT)) (-3783 (($ $ (-687)) NIL T ELT) (($ $) 29 T ELT)) (-2354 (($ $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT)) (-3389 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-3 |#2| #5#) |#1| $) 56 T ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) ELT)) (-3390 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3980)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-478) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-478)) NIL T ELT)) (-3427 (((-83) $) NIL T ELT)) (-3403 (((-478) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-478) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) ELT) (((-478) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-478)) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) ELT)) (-2873 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 20 (|has| $ (-6 -3979)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 20 (|has| $ (-6 -3979)) ELT)) (-3015 (((-578 $) $) NIL T ELT)) (-3011 (((-83) $ $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) ELT)) (-3598 (($ (-687) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3703 (((-83) $ (-687)) NIL T ELT)) (-2186 ((|#1| $) NIL (|has| |#1| (-749)) ELT) (((-478) $) 38 (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-2840 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-3502 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-2592 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT) (((-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT)) (-2187 ((|#1| $) NIL (|has| |#1| (-749)) ELT) (((-478) $) 40 (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-1936 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3980)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3980)) ELT) (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3518 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3700 (((-83) $ (-687)) NIL T ELT)) (-3014 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3511 (((-83) $) NIL T ELT)) (-3225 (((-1062) $) 49 (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| |#2| (-1005))) ELT)) (-3782 (($ $ (-687)) NIL T ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2218 (((-578 |#1|) $) 22 T ELT)) (-2219 (((-83) |#1| $) NIL T ELT)) (-1262 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3593 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2290 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2189 (((-578 |#1|) $) NIL T ELT) (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) |#1| $) NIL T ELT) (((-83) (-478) $) NIL T ELT)) (-3226 (((-1023) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| |#2| (-1005))) ELT)) (-3785 ((|#2| $) NIL (|has| |#1| (-749)) ELT) (($ $ (-687)) NIL T ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 27 T ELT)) (-1341 (((-3 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2185 (($ $ |#2|) NIL (|has| $ (-6 -3980)) ELT) (($ $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3980)) ELT)) (-1263 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3428 (((-83) $) NIL T ELT)) (-1934 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT) (((-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT)) (-2191 (((-578 |#2|) $) NIL T ELT) (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 19 T ELT)) (-3387 (((-83) $) 18 T ELT)) (-3549 (($) 14 T ELT)) (-3784 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-478) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3013 (((-478) $ $) NIL T ELT)) (-1453 (($) 13 T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1558 (($ $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-2291 (($ $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-3617 (((-83) $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3774 (($ $) NIL (|has| $ (-6 -3980)) ELT)) (-3777 (((-687) $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-1933 (((-687) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT) (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-687) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-1718 (($ $ $ (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ELT)) (-3514 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3775 (($ $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3786 (($ $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-578 $)) NIL T ELT) (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 31 T ELT) (($ $ $) NIL T ELT)) (-3930 (((-765) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-547 (-765)))) ELT)) (-3506 (((-578 $) $) NIL T ELT)) (-3012 (((-83) $ $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) ELT)) (-1253 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1264 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1211 (((-3 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) #5#) |#1| $) 51 T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-3037 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2668 (((-83) $ $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-3941 (((-687) $) 25 (|has| $ (-6 -3979)) ELT))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1005) (-1005)) (T -45)) +NIL +((-3921 (((-83) $) 12 T ELT)) (-3942 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-343 (-478)) $) 25 T ELT) (($ $ (-343 (-478))) NIL T ELT))) +(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-343 (-478)))) (-15 * (|#1| (-343 (-478)) |#1|)) (-15 -3921 ((-83) |#1|)) (-15 -3942 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 * (|#1| (-823) |#1|))) (-47 |#2| |#3|) (-954) (-709)) (T -46)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 68 (|has| |#1| (-489)) ELT)) (-2049 (($ $) 69 (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) 71 (|has| |#1| (-489)) ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3943 (($ $) 77 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3921 (((-83) $) 79 T ELT)) (-2877 (($ |#1| |#2|) 78 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-2878 (($ $) 82 T ELT)) (-3157 ((|#1| $) 83 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3450 (((-3 $ "failed") $ $) 67 (|has| |#1| (-489)) ELT)) (-3932 ((|#2| $) 81 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 (-478))) 74 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) 66 (|has| |#1| (-489)) ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT)) (-3661 ((|#1| $ |#2|) 76 T ELT)) (-2686 (((-627 $) $) 65 (|has| |#1| (-116)) ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 70 (|has| |#1| (-489)) ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-343 (-478)) $) 73 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 72 (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-47 |#1| |#2|) (-111) (-954) (-709)) (T -47)) +((-3157 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954)))) (-2878 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) (-3942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-83)))) (-2877 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)))) (-3943 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)))) (-3661 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954)))) (-3933 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)) (-4 *2 (-308))))) +(-13 (-954) (-80 |t#1| |t#1|) (-10 -8 (-15 -3157 (|t#1| $)) (-15 -2878 ($ $)) (-15 -3932 (|t#2| $)) (-15 -3942 ($ (-1 |t#1| |t#1|) $)) (-15 -3921 ((-83) $)) (-15 -2877 ($ |t#1| |t#2|)) (-15 -3943 ($ $)) (-15 -3661 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-308)) (-15 -3933 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-144)) (PROGN (-6 (-144)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-489)) (-6 (-489)) |%noBranch|) (IF (|has| |t#1| (-38 (-343 (-478)))) (-6 (-38 (-343 (-478)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-489)) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-550 (-478)) . T) ((-550 |#1|) |has| |#1| (-144)) ((-550 $) |has| |#1| (-489)) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-242) |has| |#1| (-489)) ((-489) |has| |#1| (-489)) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) |has| |#1| (-489)) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) |has| |#1| (-489)) ((-658) . T) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-1203 (((-578 $) (-1074 $) (-1079)) NIL T ELT) (((-578 $) (-1074 $)) NIL T ELT) (((-578 $) (-850 $)) NIL T ELT)) (-1204 (($ (-1074 $) (-1079)) NIL T ELT) (($ (-1074 $)) NIL T ELT) (($ (-850 $)) NIL T ELT)) (-3171 (((-83) $) 9 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1587 (((-578 (-545 $)) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1591 (($ $ (-245 $)) NIL T ELT) (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-578 (-545 $)) (-578 $)) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-3021 (($ $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-1205 (((-578 $) (-1074 $) (-1079)) NIL T ELT) (((-578 $) (-1074 $)) NIL T ELT) (((-578 $) (-850 $)) NIL T ELT)) (-3166 (($ (-1074 $) (-1079)) NIL T ELT) (($ (-1074 $)) NIL T ELT) (($ (-850 $)) NIL T ELT)) (-3140 (((-3 (-545 $) #1#) $) NIL T ELT) (((-3 (-478) #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT)) (-3139 (((-545 $) $) NIL T ELT) (((-478) $) NIL T ELT) (((-343 (-478)) $) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2265 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL T ELT) (((-625 (-478)) (-625 $)) NIL T ELT) (((-2 (|:| |mat| (-625 (-343 (-478)))) (|:| |vec| (-1168 (-343 (-478))))) (-625 $) (-1168 $)) NIL T ELT) (((-625 (-343 (-478))) (-625 $)) NIL T ELT)) (-3826 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-2557 (($ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1586 (((-578 (-84)) $) NIL T ELT)) (-3579 (((-84) (-84)) NIL T ELT)) (-2396 (((-83) $) 11 T ELT)) (-2657 (((-83) $) NIL (|has| $ (-943 (-478))) ELT)) (-2982 (((-1028 (-478) (-545 $)) $) NIL T ELT)) (-2995 (($ $ (-478)) NIL T ELT)) (-3115 (((-1074 $) (-1074 $) (-545 $)) NIL T ELT) (((-1074 $) (-1074 $) (-578 (-545 $))) NIL T ELT) (($ $ (-545 $)) NIL T ELT) (($ $ (-578 (-545 $))) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1584 (((-1074 $) (-545 $)) NIL (|has| $ (-954)) ELT)) (-3942 (($ (-1 $ $) (-545 $)) NIL T ELT)) (-1589 (((-3 (-545 $) #1#) $) NIL T ELT)) (-2266 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL T ELT) (((-625 (-478)) (-1168 $)) NIL T ELT) (((-2 (|:| |mat| (-625 (-343 (-478)))) (|:| |vec| (-1168 (-343 (-478))))) (-1168 $) $) NIL T ELT) (((-625 (-343 (-478))) (-1168 $)) NIL T ELT)) (-1878 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1588 (((-578 (-545 $)) $) NIL T ELT)) (-2221 (($ (-84) $) NIL T ELT) (($ (-84) (-578 $)) NIL T ELT)) (-2617 (((-83) $ (-84)) NIL T ELT) (((-83) $ (-1079)) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-2587 (((-687) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1585 (((-83) $ $) NIL T ELT) (((-83) $ (-1079)) NIL T ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-2658 (((-83) $) NIL (|has| $ (-943 (-478))) ELT)) (-3752 (($ $ (-545 $) $) NIL T ELT) (($ $ (-578 (-545 $)) (-578 $)) NIL T ELT) (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-1 $ $))) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-1 $ (-578 $)))) NIL T ELT) (($ $ (-1079) (-1 $ (-578 $))) NIL T ELT) (($ $ (-1079) (-1 $ $)) NIL T ELT) (($ $ (-578 (-84)) (-578 (-1 $ $))) NIL T ELT) (($ $ (-578 (-84)) (-578 (-1 $ (-578 $)))) NIL T ELT) (($ $ (-84) (-1 $ (-578 $))) NIL T ELT) (($ $ (-84) (-1 $ $)) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-3784 (($ (-84) $) NIL T ELT) (($ (-84) $ $) NIL T ELT) (($ (-84) $ $ $) NIL T ELT) (($ (-84) $ $ $ $) NIL T ELT) (($ (-84) (-578 $)) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-1590 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3742 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2981 (((-1028 (-478) (-545 $)) $) NIL T ELT)) (-3168 (($ $) NIL (|has| $ (-954)) ELT)) (-3956 (((-323) $) NIL T ELT) (((-177) $) NIL T ELT) (((-140 (-323)) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-545 $)) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-1028 (-478) (-545 $))) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-2574 (($ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-2240 (((-83) (-84)) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-2644 (($) 6 T CONST)) (-2650 (($) 10 T CONST)) (-2653 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3037 (((-83) $ $) 13 T ELT)) (-3933 (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-343 (-478))) NIL T ELT) (($ $ (-478)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-823)) NIL T ELT)) (* (($ (-343 (-478)) $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-823) $) NIL T ELT))) +(((-48) (-13 (-250) (-27) (-943 (-478)) (-943 (-343 (-478))) (-575 (-478)) (-926) (-575 (-343 (-478))) (-118) (-548 (-140 (-323))) (-188) (-550 (-1028 (-478) (-545 $))) (-10 -8 (-15 -2982 ((-1028 (-478) (-545 $)) $)) (-15 -2981 ((-1028 (-478) (-545 $)) $)) (-15 -3826 ($ $)) (-15 -3115 ((-1074 $) (-1074 $) (-545 $))) (-15 -3115 ((-1074 $) (-1074 $) (-578 (-545 $)))) (-15 -3115 ($ $ (-545 $))) (-15 -3115 ($ $ (-578 (-545 $))))))) (T -48)) +((-2982 (*1 *2 *1) (-12 (-5 *2 (-1028 (-478) (-545 (-48)))) (-5 *1 (-48)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-1028 (-478) (-545 (-48)))) (-5 *1 (-48)))) (-3826 (*1 *1 *1) (-5 *1 (-48))) (-3115 (*1 *2 *2 *3) (-12 (-5 *2 (-1074 (-48))) (-5 *3 (-545 (-48))) (-5 *1 (-48)))) (-3115 (*1 *2 *2 *3) (-12 (-5 *2 (-1074 (-48))) (-5 *3 (-578 (-545 (-48)))) (-5 *1 (-48)))) (-3115 (*1 *1 *1 *2) (-12 (-5 *2 (-545 (-48))) (-5 *1 (-48)))) (-3115 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-545 (-48)))) (-5 *1 (-48))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1925 (((-578 (-439)) $) 17 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 7 T ELT)) (-3216 (((-1084) $) 18 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-49) (-13 (-1005) (-10 -8 (-15 -1925 ((-578 (-439)) $)) (-15 -3216 ((-1084) $))))) (T -49)) +((-1925 (*1 *2 *1) (-12 (-5 *2 (-578 (-439))) (-5 *1 (-49)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-49))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 85 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2648 (((-83) $) 30 T ELT)) (-3140 (((-3 |#1| #1#) $) 33 T ELT)) (-3139 ((|#1| $) 34 T ELT)) (-3943 (($ $) 40 T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3157 ((|#1| $) 31 T ELT)) (-1442 (($ $) 74 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1441 (((-83) $) 43 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2395 (($ (-687)) 72 T ELT)) (-3927 (($ (-578 (-478))) 73 T ELT)) (-3932 (((-687) $) 44 T ELT)) (-3930 (((-765) $) 91 T ELT) (($ (-478)) 69 T ELT) (($ |#1|) 67 T ELT)) (-3661 ((|#1| $ $) 28 T ELT)) (-3109 (((-687)) 71 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 45 T CONST)) (-2650 (($) 17 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 64 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 65 T ELT) (($ |#1| $) 58 T ELT))) +(((-50 |#1| |#2|) (-13 (-555 |#1|) (-943 |#1|) (-10 -8 (-15 -3157 (|#1| $)) (-15 -1442 ($ $)) (-15 -3943 ($ $)) (-15 -3661 (|#1| $ $)) (-15 -2395 ($ (-687))) (-15 -3927 ($ (-578 (-478)))) (-15 -1441 ((-83) $)) (-15 -2648 ((-83) $)) (-15 -3932 ((-687) $)) (-15 -3942 ($ (-1 |#1| |#1|) $)))) (-954) (-578 (-1079))) (T -50)) +((-3157 (*1 *2 *1) (-12 (-4 *2 (-954)) (-5 *1 (-50 *2 *3)) (-14 *3 (-578 (-1079))))) (-1442 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-954)) (-14 *3 (-578 (-1079))))) (-3943 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-954)) (-14 *3 (-578 (-1079))))) (-3661 (*1 *2 *1 *1) (-12 (-4 *2 (-954)) (-5 *1 (-50 *2 *3)) (-14 *3 (-578 (-1079))))) (-2395 (*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) (-14 *4 (-578 (-1079))))) (-3927 (*1 *1 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) (-14 *4 (-578 (-1079))))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) (-14 *4 (-578 (-1079))))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) (-14 *4 (-578 (-1079))))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) (-14 *4 (-578 (-1079))))) (-3942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-50 *3 *4)) (-14 *4 (-578 (-1079)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1238 (((-689) $) 8 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1239 (((-1007) $) 10 T ELT)) (-3930 (((-765) $) 15 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1240 (($ (-1007) (-689)) 16 T ELT)) (-3037 (((-83) $ $) 12 T ELT))) +(((-51) (-13 (-1005) (-10 -8 (-15 -1240 ($ (-1007) (-689))) (-15 -1239 ((-1007) $)) (-15 -1238 ((-689) $))))) (T -51)) +((-1240 (*1 *1 *2 *3) (-12 (-5 *2 (-1007)) (-5 *3 (-689)) (-5 *1 (-51)))) (-1239 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-51)))) (-1238 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-51))))) +((-2648 (((-83) (-51)) 18 T ELT)) (-3140 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3139 ((|#1| (-51)) 21 T ELT)) (-3930 (((-51) |#1|) 14 T ELT))) +(((-52 |#1|) (-10 -7 (-15 -3930 ((-51) |#1|)) (-15 -3140 ((-3 |#1| "failed") (-51))) (-15 -2648 ((-83) (-51))) (-15 -3139 (|#1| (-51)))) (-1118)) (T -52)) +((-3139 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1118)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-83)) (-5 *1 (-52 *4)) (-4 *4 (-1118)))) (-3140 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1118)))) (-3930 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1118))))) +((-2529 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2529 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-954) (-585 |#1|) (-754 |#1|)) (T -53)) +((-2529 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-954)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-754 *5))))) +((-1242 ((|#3| |#3| (-578 (-1079))) 44 T ELT)) (-1241 ((|#3| (-578 (-979 |#1| |#2| |#3|)) |#3| (-823)) 32 T ELT) ((|#3| (-578 (-979 |#1| |#2| |#3|)) |#3|) 31 T ELT))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1241 (|#3| (-578 (-979 |#1| |#2| |#3|)) |#3|)) (-15 -1241 (|#3| (-578 (-979 |#1| |#2| |#3|)) |#3| (-823))) (-15 -1242 (|#3| |#3| (-578 (-1079))))) (-1005) (-13 (-954) (-789 |#1|) (-548 (-793 |#1|))) (-13 (-357 |#2|) (-789 |#1|) (-548 (-793 |#1|)))) (T -54)) +((-1242 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-1079))) (-4 *4 (-1005)) (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))))) (-1241 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-578 (-979 *5 *6 *2))) (-5 *4 (-823)) (-4 *5 (-1005)) (-4 *6 (-13 (-954) (-789 *5) (-548 (-793 *5)))) (-4 *2 (-13 (-357 *6) (-789 *5) (-548 (-793 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1241 (*1 *2 *3 *2) (-12 (-5 *3 (-578 (-979 *4 *5 *2))) (-4 *4 (-1005)) (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-54 *4 *5 *2))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 14 T ELT)) (-3140 (((-3 (-687) "failed") $) 32 T ELT)) (-3139 (((-687) $) NIL T ELT)) (-2396 (((-83) $) 16 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) 18 T ELT)) (-3930 (((-765) $) 23 T ELT) (($ (-687)) 29 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1243 (($) 11 T CONST)) (-3037 (((-83) $ $) 20 T ELT))) +(((-55) (-13 (-1005) (-943 (-687)) (-10 -8 (-15 -1243 ($) -3936) (-15 -3171 ((-83) $)) (-15 -2396 ((-83) $))))) (T -55)) +((-1243 (*1 *1) (-5 *1 (-55))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-55)))) (-2396 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-55))))) +((-1245 (($ $ (-478) |#3|) 60 T ELT)) (-1244 (($ $ (-478) |#4|) 64 T ELT)) (-3095 ((|#3| $ (-478)) 73 T ELT)) (-2873 (((-578 |#2|) $) 41 T ELT)) (-3228 (((-83) |#2| $) 68 T ELT)) (-1936 (($ (-1 |#2| |#2|) $) 49 T ELT)) (-3942 (($ (-1 |#2| |#2|) $) 48 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 52 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 56 T ELT)) (-2185 (($ $ |#2|) 46 T ELT)) (-1934 (((-83) (-1 (-83) |#2|) $) 21 T ELT)) (-3784 ((|#2| $ (-478) (-478)) NIL T ELT) ((|#2| $ (-478) (-478) |#2|) 29 T ELT)) (-1933 (((-687) (-1 (-83) |#2|) $) 35 T ELT) (((-687) |#2| $) 70 T ELT)) (-3384 (($ $) 45 T ELT)) (-3094 ((|#4| $ (-478)) 76 T ELT)) (-3930 (((-765) $) 82 T ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) 20 T ELT)) (-3037 (((-83) $ $) 67 T ELT)) (-3941 (((-687) $) 26 T ELT))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3037 ((-83) |#1| |#1|)) (-15 -3930 ((-765) |#1|)) (-15 -3942 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3942 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1936 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1244 (|#1| |#1| (-478) |#4|)) (-15 -1245 (|#1| |#1| (-478) |#3|)) (-15 -2873 ((-578 |#2|) |#1|)) (-15 -3094 (|#4| |#1| (-478))) (-15 -3095 (|#3| |#1| (-478))) (-15 -3784 (|#2| |#1| (-478) (-478) |#2|)) (-15 -3784 (|#2| |#1| (-478) (-478))) (-15 -2185 (|#1| |#1| |#2|)) (-15 -3228 ((-83) |#2| |#1|)) (-15 -1933 ((-687) |#2| |#1|)) (-15 -1933 ((-687) (-1 (-83) |#2|) |#1|)) (-15 -1934 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1935 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -3942 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3941 ((-687) |#1|)) (-15 -3384 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1118) (-317 |#2|) (-317 |#2|)) (T -56)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3772 ((|#1| $ (-478) (-478) |#1|) 48 T ELT)) (-1245 (($ $ (-478) |#2|) 46 T ELT)) (-1244 (($ $ (-478) |#3|) 45 T ELT)) (-3708 (($) 7 T CONST)) (-3095 ((|#2| $ (-478)) 50 T ELT)) (-1563 ((|#1| $ (-478) (-478) |#1|) 47 T ELT)) (-3096 ((|#1| $ (-478) (-478)) 52 T ELT)) (-2873 (((-578 |#1|) $) 30 T ELT)) (-3098 (((-687) $) 55 T ELT)) (-3598 (($ (-687) (-687) |#1|) 61 T ELT)) (-3097 (((-687) $) 54 T ELT)) (-3102 (((-478) $) 59 T ELT)) (-3100 (((-478) $) 57 T ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3101 (((-478) $) 58 T ELT)) (-3099 (((-478) $) 56 T ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-2185 (($ $ |#1|) 60 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#1| $ (-478) (-478)) 53 T ELT) ((|#1| $ (-478) (-478) |#1|) 51 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3094 ((|#3| $ (-478)) 49 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-57 |#1| |#2| |#3|) (-111) (-1118) (-317 |t#1|) (-317 |t#1|)) (T -57)) +((-3942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3598 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-687)) (-4 *3 (-1118)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-2185 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-478)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-478)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-478)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-478)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-687)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-687)))) (-3784 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-317 *2)) (-4 *5 (-317 *2)) (-4 *2 (-1118)))) (-3096 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-317 *2)) (-4 *5 (-317 *2)) (-4 *2 (-1118)))) (-3784 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1118)) (-4 *4 (-317 *2)) (-4 *5 (-317 *2)))) (-3095 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1118)) (-4 *5 (-317 *4)) (-4 *2 (-317 *4)))) (-3094 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1118)) (-4 *5 (-317 *4)) (-4 *2 (-317 *4)))) (-2873 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-578 *3)))) (-3772 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1118)) (-4 *4 (-317 *2)) (-4 *5 (-317 *2)))) (-1563 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1118)) (-4 *4 (-317 *2)) (-4 *5 (-317 *2)))) (-1245 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-478)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1118)) (-4 *3 (-317 *4)) (-4 *5 (-317 *4)))) (-1244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-478)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1118)) (-4 *5 (-317 *4)) (-4 *3 (-317 *4)))) (-1936 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3942 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3942 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3))))) +(-13 (-422 |t#1|) (-10 -8 (-6 -3980) (-6 -3979) (-15 -3598 ($ (-687) (-687) |t#1|)) (-15 -2185 ($ $ |t#1|)) (-15 -3102 ((-478) $)) (-15 -3101 ((-478) $)) (-15 -3100 ((-478) $)) (-15 -3099 ((-478) $)) (-15 -3098 ((-687) $)) (-15 -3097 ((-687) $)) (-15 -3784 (|t#1| $ (-478) (-478))) (-15 -3096 (|t#1| $ (-478) (-478))) (-15 -3784 (|t#1| $ (-478) (-478) |t#1|)) (-15 -3095 (|t#2| $ (-478))) (-15 -3094 (|t#3| $ (-478))) (-15 -2873 ((-578 |t#1|) $)) (-15 -3772 (|t#1| $ (-478) (-478) |t#1|)) (-15 -1563 (|t#1| $ (-478) (-478) |t#1|)) (-15 -1245 ($ $ (-478) |t#2|)) (-15 -1244 ($ $ (-478) |t#3|)) (-15 -3942 ($ (-1 |t#1| |t#1|) $)) (-15 -1936 ($ (-1 |t#1| |t#1|) $)) (-15 -3942 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3942 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1118) . T)) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-1717 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3980)) (|has| |#1| (-749))) ELT)) (-2893 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-749)) ELT)) (-3772 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3708 (($) NIL T CONST)) (-2283 (($ $) NIL (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) NIL T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3390 (($ |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) NIL T ELT)) (-3403 (((-478) (-1 (-83) |#1|) $) NIL T ELT) (((-478) |#1| $) NIL (|has| |#1| (-1005)) ELT) (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1005)) ELT)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-1246 (($ (-578 |#1|)) 11 T ELT) (($ (-687) |#1|) 14 T ELT)) (-3598 (($ (-687) |#1|) 13 T ELT)) (-2186 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3502 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2187 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-2290 (($ |#1| $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-3785 ((|#1| $) NIL (|has| (-478) (-749)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2185 (($ $ |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#1| $ (-478) |#1|) NIL T ELT) ((|#1| $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-2291 (($ $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1718 (($ $ $ (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 10 T ELT)) (-3786 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3930 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1246 ($ (-578 |#1|))) (-15 -1246 ($ (-687) |#1|)))) (-1118)) (T -58)) +((-1246 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1118)) (-5 *1 (-58 *3)))) (-1246 (*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-5 *1 (-58 *3)) (-4 *3 (-1118))))) +((-3825 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3826 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3942 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) +(((-59 |#1| |#2|) (-10 -7 (-15 -3825 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3826 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3942 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1118) (-1118)) (T -59)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3826 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1118)) (-4 *2 (-1118)) (-5 *1 (-59 *5 *2)))) (-3825 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1118)) (-4 *5 (-1118)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3772 ((|#1| $ (-478) (-478) |#1|) NIL T ELT)) (-1245 (($ $ (-478) (-58 |#1|)) NIL T ELT)) (-1244 (($ $ (-478) (-58 |#1|)) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3095 (((-58 |#1|) $ (-478)) NIL T ELT)) (-1563 ((|#1| $ (-478) (-478) |#1|) NIL T ELT)) (-3096 ((|#1| $ (-478) (-478)) NIL T ELT)) (-2873 (((-578 |#1|) $) NIL T ELT)) (-3098 (((-687) $) NIL T ELT)) (-3598 (($ (-687) (-687) |#1|) NIL T ELT)) (-3097 (((-687) $) NIL T ELT)) (-3102 (((-478) $) NIL T ELT)) (-3100 (((-478) $) NIL T ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3101 (((-478) $) NIL T ELT)) (-3099 (((-478) $) NIL T ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-2185 (($ $ |#1|) NIL T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#1| $ (-478) (-478)) NIL T ELT) ((|#1| $ (-478) (-478) |#1|) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3094 (((-58 |#1|) $ (-478)) NIL T ELT)) (-3930 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -3980))) (-1118)) (T -60)) +NIL +((-1248 (((-1168 (-625 |#1|)) (-625 |#1|)) 61 T ELT)) (-1247 (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 (-578 (-823))))) |#2| (-823)) 49 T ELT)) (-1249 (((-2 (|:| |minor| (-578 (-823))) (|:| -3249 |#2|) (|:| |minors| (-578 (-578 (-823)))) (|:| |ops| (-578 |#2|))) |#2| (-823)) 72 (|has| |#1| (-308)) ELT))) +(((-61 |#1| |#2|) (-10 -7 (-15 -1247 ((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 (-578 (-823))))) |#2| (-823))) (-15 -1248 ((-1168 (-625 |#1|)) (-625 |#1|))) (IF (|has| |#1| (-308)) (-15 -1249 ((-2 (|:| |minor| (-578 (-823))) (|:| -3249 |#2|) (|:| |minors| (-578 (-578 (-823)))) (|:| |ops| (-578 |#2|))) |#2| (-823))) |%noBranch|)) (-489) (-595 |#1|)) (T -61)) +((-1249 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *5 (-489)) (-5 *2 (-2 (|:| |minor| (-578 (-823))) (|:| -3249 *3) (|:| |minors| (-578 (-578 (-823)))) (|:| |ops| (-578 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-823)) (-4 *3 (-595 *5)))) (-1248 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-1168 (-625 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-625 *4)) (-4 *5 (-595 *4)))) (-1247 (*1 *2 *3 *4) (-12 (-4 *5 (-489)) (-5 *2 (-2 (|:| |mat| (-625 *5)) (|:| |vec| (-1168 (-578 (-823)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-823)) (-4 *3 (-595 *5))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3308 ((|#1| $) 40 T ELT)) (-3708 (($) NIL T CONST)) (-3310 ((|#1| |#1| $) 35 T ELT)) (-3309 ((|#1| $) 33 T ELT)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-1262 ((|#1| $) NIL T ELT)) (-3593 (($ |#1| $) 36 T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-1263 ((|#1| $) 34 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) 18 T ELT)) (-3549 (($) 45 T ELT)) (-3307 (((-687) $) 31 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) 17 T ELT)) (-3930 (((-765) $) 30 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1264 (($ (-578 |#1|)) NIL T ELT)) (-1250 (($ (-578 |#1|)) 42 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 15 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 12 (|has| $ (-6 -3979)) ELT))) +(((-62 |#1|) (-13 (-1024 |#1|) (-10 -8 (-15 -1250 ($ (-578 |#1|))))) (-1005)) (T -62)) +((-1250 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-5 *1 (-62 *3))))) +((-3930 (((-765) $) 13 T ELT) (($ (-1084)) 9 T ELT) (((-1084) $) 8 T ELT))) +(((-63 |#1|) (-10 -7 (-15 -3930 ((-1084) |#1|)) (-15 -3930 (|#1| (-1084))) (-15 -3930 ((-765) |#1|))) (-64)) (T -63)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-1084)) 20 T ELT) (((-1084) $) 19 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(((-64) (-111)) (T -64)) +NIL +(-13 (-1005) (-423 (-1084))) +(((-72) . T) ((-550 (-1084)) . T) ((-547 (-765)) . T) ((-547 (-1084)) . T) ((-423 (-1084)) . T) ((-1005) . T) ((-1118) . T)) +((-3472 (($ $) 10 T ELT)) (-3473 (($ $) 12 T ELT))) +(((-65 |#1|) (-10 -7 (-15 -3473 (|#1| |#1|)) (-15 -3472 (|#1| |#1|))) (-66)) (T -65)) +NIL +((-3470 (($ $) 11 T ELT)) (-3468 (($ $) 10 T ELT)) (-3472 (($ $) 9 T ELT)) (-3473 (($ $) 8 T ELT)) (-3471 (($ $) 7 T ELT)) (-3469 (($ $) 6 T ELT))) +(((-66) (-111)) (T -66)) +((-3470 (*1 *1 *1) (-4 *1 (-66))) (-3468 (*1 *1 *1) (-4 *1 (-66))) (-3472 (*1 *1 *1) (-4 *1 (-66))) (-3473 (*1 *1 *1) (-4 *1 (-66))) (-3471 (*1 *1 *1) (-4 *1 (-66))) (-3469 (*1 *1 *1) (-4 *1 (-66)))) +(-13 (-10 -8 (-15 -3469 ($ $)) (-15 -3471 ($ $)) (-15 -3473 ($ $)) (-15 -3472 ($ $)) (-15 -3468 ($ $)) (-15 -3470 ($ $)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3526 (((-1038) $) 9 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 15 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-67) (-13 (-987) (-10 -8 (-15 -3526 ((-1038) $))))) (T -67)) +((-3526 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-67))))) +NIL +(((-68) (-111)) (T -68)) +NIL +(-13 (-10 -7 (-6 -3979) (-6 (-3981 "*")) (-6 -3980) (-6 -3976) (-6 -3974) (-6 -3973) (-6 -3972) (-6 -3977) (-6 -3971) (-6 -3970) (-6 -3969) (-6 -3968) (-6 -3967) (-6 -3975) (-6 -3978) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3966))) +((-2552 (((-83) $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-1251 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-478))) 24 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) 16 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3784 ((|#1| $ |#1|) 13 T ELT)) (-2993 (($ $ $) NIL T ELT)) (-2419 (($ $ $) NIL T ELT)) (-3930 (((-765) $) 22 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2650 (($) 8 T CONST)) (-3037 (((-83) $ $) 10 T ELT)) (-3933 (($ $ $) NIL T ELT)) (** (($ $ (-823)) 30 T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 18 T ELT)) (* (($ $ $) 31 T ELT))) +(((-69 |#1|) (-13 (-406) (-238 |#1| |#1|) (-10 -8 (-15 -1251 ($ (-1 |#1| |#1|))) (-15 -1251 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1251 ($ (-1 |#1| |#1| (-478)))))) (-954)) (T -69)) +((-1251 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-69 *3)))) (-1251 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-69 *3)))) (-1251 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-478))) (-4 *3 (-954)) (-5 *1 (-69 *3))))) +((-1252 (((-341 |#2|) |#2| (-578 |#2|)) 10 T ELT) (((-341 |#2|) |#2| |#2|) 11 T ELT))) +(((-70 |#1| |#2|) (-10 -7 (-15 -1252 ((-341 |#2|) |#2| |#2|)) (-15 -1252 ((-341 |#2|) |#2| (-578 |#2|)))) (-13 (-385) (-118)) (-1144 |#1|)) (T -70)) +((-1252 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-13 (-385) (-118))) (-5 *2 (-341 *3)) (-5 *1 (-70 *5 *3)))) (-1252 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-385) (-118))) (-5 *2 (-341 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1144 *4))))) +((-2552 (((-83) $ $) 13 T ELT)) (-1253 (((-83) $ $) 14 T ELT)) (-3037 (((-83) $ $) 11 T ELT))) +(((-71 |#1|) (-10 -7 (-15 -1253 ((-83) |#1| |#1|)) (-15 -2552 ((-83) |#1| |#1|)) (-15 -3037 ((-83) |#1| |#1|))) (-72)) (T -71)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(((-72) (-111)) (T -72)) +((-3037 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83)))) (-2552 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83)))) (-1253 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83))))) +(-13 (-1118) (-10 -8 (-15 -3037 ((-83) $ $)) (-15 -2552 ((-83) $ $)) (-15 -1253 ((-83) $ $)))) +(((-1118) . T)) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3386 ((|#1| $) NIL T ELT)) (-3009 ((|#1| $ |#1|) 24 (|has| $ (-6 -3980)) ELT)) (-1280 (($ $ $) NIL (|has| $ (-6 -3980)) ELT)) (-1281 (($ $ $) NIL (|has| $ (-6 -3980)) ELT)) (-1256 (($ $ (-578 |#1|)) 30 T ELT)) (-3772 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3980)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3980)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) NIL (|has| $ (-6 -3980)) ELT)) (-3708 (($) NIL T CONST)) (-3120 (($ $) 12 T ELT)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3015 (((-578 $) $) NIL T ELT)) (-3011 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-1289 (($ $ |#1| $) 32 T ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1255 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1254 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-578 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3121 (($ $) 11 T ELT)) (-3014 (((-578 |#1|) $) NIL T ELT)) (-3511 (((-83) $) 13 T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) 9 T ELT)) (-3549 (($) 31 T ELT)) (-3784 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3013 (((-478) $ $) NIL T ELT)) (-3617 (((-83) $) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3930 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-3506 (((-578 $) $) NIL T ELT)) (-3012 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1257 (($ (-687) |#1|) 33 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-73 |#1|) (-13 (-96 |#1|) (-10 -8 (-6 -3979) (-6 -3980) (-15 -1257 ($ (-687) |#1|)) (-15 -1256 ($ $ (-578 |#1|))) (-15 -1255 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1255 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1254 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1254 ($ $ |#1| (-1 (-578 |#1|) |#1| |#1| |#1|))))) (-1005)) (T -73)) +((-1257 (*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-5 *1 (-73 *3)) (-4 *3 (-1005)))) (-1256 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-5 *1 (-73 *3)))) (-1255 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1005)))) (-1255 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1005)) (-5 *1 (-73 *3)))) (-1254 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1005)) (-5 *1 (-73 *2)))) (-1254 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-578 *2) *2 *2 *2)) (-4 *2 (-1005)) (-5 *1 (-73 *2))))) +((-1258 ((|#3| |#2| |#2|) 34 T ELT)) (-1260 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-3981 #1="*"))) ELT)) (-1259 ((|#3| |#2| |#2|) 36 T ELT)) (-1261 ((|#1| |#2|) 54 (|has| |#1| (-6 (-3981 #1#))) ELT))) +(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1258 (|#3| |#2| |#2|)) (-15 -1259 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3981 "*"))) (PROGN (-15 -1260 (|#1| |#2| |#2|)) (-15 -1261 (|#1| |#2|))) |%noBranch|)) (-954) (-1144 |#1|) (-622 |#1| |#4| |#5|) (-317 |#1|) (-317 |#1|)) (T -74)) +((-1261 (*1 *2 *3) (-12 (|has| *2 (-6 (-3981 #1="*"))) (-4 *5 (-317 *2)) (-4 *6 (-317 *2)) (-4 *2 (-954)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1144 *2)) (-4 *4 (-622 *2 *5 *6)))) (-1260 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-3981 #1#))) (-4 *5 (-317 *2)) (-4 *6 (-317 *2)) (-4 *2 (-954)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1144 *2)) (-4 *4 (-622 *2 *5 *6)))) (-1259 (*1 *2 *3 *3) (-12 (-4 *4 (-954)) (-4 *2 (-622 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1144 *4)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)))) (-1258 (*1 *2 *3 *3) (-12 (-4 *4 (-954)) (-4 *2 (-622 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1144 *4)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4))))) +((-1264 (($ (-578 |#2|)) 11 T ELT))) +(((-75 |#1| |#2|) (-10 -7 (-15 -1264 (|#1| (-578 |#2|)))) (-76 |#2|) (-1118)) (T -75)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3708 (($) 7 T CONST)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-1262 ((|#1| $) 43 T ELT)) (-3593 (($ |#1| $) 44 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-1263 ((|#1| $) 45 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1264 (($ (-578 |#1|)) 46 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-76 |#1|) (-111) (-1118)) (T -76)) +((-1264 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1118)) (-4 *1 (-76 *3)))) (-1263 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1118)))) (-3593 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1118)))) (-1262 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1118))))) +(-13 (-422 |t#1|) (-10 -8 (-6 -3980) (-15 -1264 ($ (-578 |t#1|))) (-15 -1263 (|t#1| $)) (-15 -3593 ($ |t#1| $)) (-15 -1262 (|t#1| $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3112 (((-478) $) NIL (|has| (-478) (-254)) ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-478) (-814)) ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| (-478) (-814)) ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3607 (((-478) $) NIL (|has| (-478) (-733)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL T ELT) (((-3 (-1079) #1#) $) NIL (|has| (-478) (-943 (-1079))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| (-478) (-943 (-478))) ELT) (((-3 (-478) #1#) $) NIL (|has| (-478) (-943 (-478))) ELT)) (-3139 (((-478) $) NIL T ELT) (((-1079) $) NIL (|has| (-478) (-943 (-1079))) ELT) (((-343 (-478)) $) NIL (|has| (-478) (-943 (-478))) ELT) (((-478) $) NIL (|has| (-478) (-943 (-478))) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL T ELT) (((-625 (-478)) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($) NIL (|has| (-478) (-477)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-3169 (((-83) $) NIL (|has| (-478) (-733)) ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| (-478) (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| (-478) (-789 (-323))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2980 (($ $) NIL T ELT)) (-2982 (((-478) $) NIL T ELT)) (-3429 (((-627 $) $) NIL (|has| (-478) (-1055)) ELT)) (-3170 (((-83) $) NIL (|has| (-478) (-733)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2515 (($ $ $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| (-478) (-749)) ELT)) (-3942 (($ (-1 (-478) (-478)) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL T ELT) (((-625 (-478)) (-1168 $)) NIL T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3430 (($) NIL (|has| (-478) (-1055)) CONST)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3111 (($ $) NIL (|has| (-478) (-254)) ELT) (((-343 (-478)) $) NIL T ELT)) (-3113 (((-478) $) NIL (|has| (-478) (-477)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-478) (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-478) (-814)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-3752 (($ $ (-578 (-478)) (-578 (-478))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-478) (-478)) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-245 (-478))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-578 (-245 (-478)))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-578 (-1079)) (-578 (-478))) NIL (|has| (-478) (-447 (-1079) (-478))) ELT) (($ $ (-1079) (-478)) NIL (|has| (-478) (-447 (-1079) (-478))) ELT)) (-1594 (((-687) $) NIL T ELT)) (-3784 (($ $ (-478)) NIL (|has| (-478) (-238 (-478) (-478))) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-3742 (($ $ (-1 (-478) (-478))) NIL T ELT) (($ $ (-1 (-478) (-478)) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $) NIL (|has| (-478) (-187)) ELT) (($ $ (-687)) NIL (|has| (-478) (-187)) ELT)) (-2979 (($ $) NIL T ELT)) (-2981 (((-478) $) NIL T ELT)) (-3956 (((-793 (-478)) $) NIL (|has| (-478) (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| (-478) (-548 (-793 (-323)))) ELT) (((-467) $) NIL (|has| (-478) (-548 (-467))) ELT) (((-323) $) NIL (|has| (-478) (-926)) ELT) (((-177) $) NIL (|has| (-478) (-926)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| (-478) (-814))) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) 8 T ELT) (($ (-478)) NIL T ELT) (($ (-1079)) NIL (|has| (-478) (-943 (-1079))) ELT) (((-343 (-478)) $) NIL T ELT) (((-910 2) $) 10 T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-478) (-814))) (|has| (-478) (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-3114 (((-478) $) NIL (|has| (-478) (-477)) ELT)) (-2015 (($ (-343 (-478))) 9 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3367 (($ $) NIL (|has| (-478) (-733)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $ (-1 (-478) (-478))) NIL T ELT) (($ $ (-1 (-478) (-478)) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $) NIL (|has| (-478) (-187)) ELT) (($ $ (-687)) NIL (|has| (-478) (-187)) ELT)) (-2550 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-3933 (($ $ $) NIL T ELT) (($ (-478) (-478)) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ (-478)) NIL T ELT))) +(((-77) (-13 (-897 (-478)) (-547 (-343 (-478))) (-547 (-910 2)) (-10 -8 (-15 -3111 ((-343 (-478)) $)) (-15 -2015 ($ (-343 (-478))))))) (T -77)) +((-3111 (*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-77)))) (-2015 (*1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-77))))) +((-1275 (((-578 (-869)) $) 13 T ELT)) (-3526 (((-439) $) 9 T ELT)) (-3930 (((-765) $) 20 T ELT)) (-1265 (($ (-439) (-578 (-869))) 15 T ELT))) +(((-78) (-13 (-547 (-765)) (-10 -8 (-15 -3526 ((-439) $)) (-15 -1275 ((-578 (-869)) $)) (-15 -1265 ($ (-439) (-578 (-869))))))) (T -78)) +((-3526 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-78)))) (-1275 (*1 *2 *1) (-12 (-5 *2 (-578 (-869))) (-5 *1 (-78)))) (-1265 (*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-578 (-869))) (-5 *1 (-78))))) +((-2552 (((-83) $ $) NIL T ELT)) (-2299 (($ $) NIL T ELT)) (-3306 (($ $ $) NIL T ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) $) NIL (|has| (-83) (-749)) ELT) (((-83) (-1 (-83) (-83) (-83)) $) NIL T ELT)) (-1717 (($ $) NIL (-12 (|has| $ (-6 -3980)) (|has| (-83) (-749))) ELT) (($ (-1 (-83) (-83) (-83)) $) NIL (|has| $ (-6 -3980)) ELT)) (-2893 (($ $) NIL (|has| (-83) (-749)) ELT) (($ (-1 (-83) (-83) (-83)) $) NIL T ELT)) (-3772 (((-83) $ (-1135 (-478)) (-83)) NIL (|has| $ (-6 -3980)) ELT) (((-83) $ (-478) (-83)) NIL (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3708 (($) NIL T CONST)) (-2283 (($ $) NIL (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) NIL T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-83) (-1005))) ELT)) (-3390 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-83) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-83) (-1005))) ELT)) (-3826 (((-83) (-1 (-83) (-83) (-83)) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83)) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83) (-83)) NIL (-12 (|has| $ (-6 -3979)) (|has| (-83) (-1005))) ELT)) (-1563 (((-83) $ (-478) (-83)) NIL (|has| $ (-6 -3980)) ELT)) (-3096 (((-83) $ (-478)) NIL T ELT)) (-3403 (((-478) (-83) $ (-478)) NIL (|has| (-83) (-1005)) ELT) (((-478) (-83) $) NIL (|has| (-83) (-1005)) ELT) (((-478) (-1 (-83) (-83)) $) NIL T ELT)) (-2873 (((-578 (-83)) $) NIL (|has| $ (-6 -3979)) ELT)) (-2545 (($ $ $) NIL T ELT)) (-2544 (($ $) NIL T ELT)) (-1287 (($ $ $) NIL T ELT)) (-3598 (($ (-687) (-83)) 10 T ELT)) (-1288 (($ $ $) NIL T ELT)) (-2186 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL T ELT)) (-3502 (($ $ $) NIL (|has| (-83) (-749)) ELT) (($ (-1 (-83) (-83) (-83)) $ $) NIL T ELT)) (-2592 (((-578 (-83)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-83) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-83) (-1005))) ELT)) (-2187 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL T ELT)) (-1936 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-83) (-83) (-83)) $ $) NIL T ELT) (($ (-1 (-83) (-83)) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2290 (($ $ $ (-478)) NIL T ELT) (($ (-83) $ (-478)) NIL T ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3785 (((-83) $) NIL (|has| (-478) (-749)) ELT)) (-1341 (((-3 (-83) "failed") (-1 (-83) (-83)) $) NIL T ELT)) (-2185 (($ $ (-83)) NIL (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-83)) (-578 (-83))) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1005))) ELT) (($ $ (-83) (-83)) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1005))) ELT) (($ $ (-245 (-83))) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1005))) ELT) (($ $ (-578 (-245 (-83)))) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) (-83) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-83) (-1005))) ELT)) (-2191 (((-578 (-83)) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 (($ $ (-1135 (-478))) NIL T ELT) (((-83) $ (-478)) NIL T ELT) (((-83) $ (-478) (-83)) NIL T ELT)) (-2291 (($ $ (-1135 (-478))) NIL T ELT) (($ $ (-478)) NIL T ELT)) (-1933 (((-687) (-83) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-83) (-1005))) ELT) (((-687) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3979)) ELT)) (-1718 (($ $ $ (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| (-83) (-548 (-467))) ELT)) (-3514 (($ (-578 (-83))) NIL T ELT)) (-3786 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-83) $) NIL T ELT) (($ $ (-83)) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1756 (($ (-687) (-83)) 11 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3979)) ELT)) (-2546 (($ $ $) NIL T ELT)) (-2297 (($ $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) NIL T ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-79) (-13 (-94) (-10 -8 (-15 -1756 ($ (-687) (-83)))))) (T -79)) +((-1756 (*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-5 *3 (-83)) (-5 *1 (-79))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) +(((-80 |#1| |#2|) (-111) (-954) (-954)) (T -80)) +NIL +(-13 (-585 |t#1|) (-961 |t#2|) (-10 -7 (-6 -3974) (-6 -3973))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-956 |#2|) . T) ((-961 |#2|) . T) ((-1005) . T) ((-1118) . T)) +((-2299 (($ $) 8 T ELT))) +(((-81 |#1|) (-10 -7 (-15 -2299 (|#1| |#1|))) (-82)) (T -81)) +NIL +((-2299 (($ $) 8 T ELT)) (-2545 (($ $ $) 9 T ELT)) (-2544 (($ $) 11 T ELT)) (-2546 (($ $ $) 10 T ELT)) (-2297 (($ $ $) 6 T ELT)) (-2298 (($ $ $) 7 T ELT))) +(((-82) (-111)) (T -82)) +((-2544 (*1 *1 *1) (-4 *1 (-82))) (-2546 (*1 *1 *1 *1) (-4 *1 (-82))) (-2545 (*1 *1 *1 *1) (-4 *1 (-82)))) +(-13 (-599) (-10 -8 (-15 -2544 ($ $)) (-15 -2546 ($ $ $)) (-15 -2545 ($ $ $)))) +(((-599) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-2299 (($ $) 9 T ELT)) (-3306 (($ $ $) 14 T ELT)) (-2839 (($) 6 T CONST)) (-3119 (((-687)) 23 T ELT)) (-2978 (($) 31 T ELT)) (-2545 (($ $ $) 12 T ELT)) (-2544 (($ $) 8 T ELT)) (-1287 (($ $ $) 15 T ELT)) (-1288 (($ $ $) 16 T ELT)) (-2515 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2841 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1996 (((-823) $) 29 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2386 (($ (-823)) 27 T ELT)) (-2837 (($ $ $) 19 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2838 (($) 7 T CONST)) (-2836 (($ $ $) 20 T ELT)) (-3956 (((-467) $) 33 T ELT)) (-3930 (((-765) $) 35 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2546 (($ $ $) 10 T ELT)) (-2297 (($ $ $) 13 T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 18 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 21 T ELT)) (-2298 (($ $ $) 11 T ELT))) +(((-83) (-13 (-745) (-873) (-548 (-467)) (-10 -8 (-15 -3306 ($ $ $)) (-15 -1288 ($ $ $)) (-15 -1287 ($ $ $))))) (T -83)) +((-3306 (*1 *1 *1 *1) (-5 *1 (-83))) (-1288 (*1 *1 *1 *1) (-5 *1 (-83))) (-1287 (*1 *1 *1 *1) (-5 *1 (-83)))) +((-2552 (((-83) $ $) NIL T ELT)) (-1509 (((-687) $) 92 T ELT) (($ $ (-687)) 38 T ELT)) (-1273 (((-83) $) 42 T ELT)) (-1267 (($ $ (-1062) (-689)) 59 T ELT) (($ $ (-439) (-689)) 34 T ELT)) (-1266 (($ $ (-45 (-1062) (-689))) 16 T ELT)) (-2825 (((-3 (-689) "failed") $ (-1062)) 27 T ELT) (((-627 (-689)) $ (-439)) 33 T ELT)) (-1275 (((-45 (-1062) (-689)) $) 15 T ELT)) (-3579 (($ (-1079)) 20 T ELT) (($ (-1079) (-687)) 23 T ELT) (($ (-1079) (-55)) 24 T ELT)) (-1274 (((-83) $) 40 T ELT)) (-1272 (((-83) $) 44 T ELT)) (-3526 (((-1079) $) 8 T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2617 (((-83) $ (-1079)) 11 T ELT)) (-2114 (($ $ (-1 (-467) (-578 (-467)))) 65 T ELT) (((-627 (-1 (-467) (-578 (-467)))) $) 69 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1269 (((-83) $ (-439)) 37 T ELT)) (-1271 (($ $ (-1 (-83) $ $)) 46 T ELT)) (-3601 (((-627 (-1 (-765) (-578 (-765)))) $) 67 T ELT) (($ $ (-1 (-765) (-578 (-765)))) 52 T ELT) (($ $ (-1 (-765) (-765))) 54 T ELT)) (-1268 (($ $ (-1062)) 56 T ELT) (($ $ (-439)) 57 T ELT)) (-3384 (($ $) 75 T ELT)) (-1270 (($ $ (-1 (-83) $ $)) 47 T ELT)) (-3930 (((-765) $) 61 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2776 (($ $ (-439)) 35 T ELT)) (-2505 (((-55) $) 70 T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 88 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 104 T ELT))) +(((-84) (-13 (-749) (-740 (-1079)) (-10 -8 (-15 -1275 ((-45 (-1062) (-689)) $)) (-15 -3384 ($ $)) (-15 -3579 ($ (-1079))) (-15 -3579 ($ (-1079) (-687))) (-15 -3579 ($ (-1079) (-55))) (-15 -1274 ((-83) $)) (-15 -1273 ((-83) $)) (-15 -1272 ((-83) $)) (-15 -1509 ((-687) $)) (-15 -1509 ($ $ (-687))) (-15 -1271 ($ $ (-1 (-83) $ $))) (-15 -1270 ($ $ (-1 (-83) $ $))) (-15 -3601 ((-627 (-1 (-765) (-578 (-765)))) $)) (-15 -3601 ($ $ (-1 (-765) (-578 (-765))))) (-15 -3601 ($ $ (-1 (-765) (-765)))) (-15 -2114 ($ $ (-1 (-467) (-578 (-467))))) (-15 -2114 ((-627 (-1 (-467) (-578 (-467)))) $)) (-15 -1269 ((-83) $ (-439))) (-15 -2776 ($ $ (-439))) (-15 -1268 ($ $ (-1062))) (-15 -1268 ($ $ (-439))) (-15 -2825 ((-3 (-689) "failed") $ (-1062))) (-15 -2825 ((-627 (-689)) $ (-439))) (-15 -1267 ($ $ (-1062) (-689))) (-15 -1267 ($ $ (-439) (-689))) (-15 -1266 ($ $ (-45 (-1062) (-689))))))) (T -84)) +((-1275 (*1 *2 *1) (-12 (-5 *2 (-45 (-1062) (-689))) (-5 *1 (-84)))) (-3384 (*1 *1 *1) (-5 *1 (-84))) (-3579 (*1 *1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-84)))) (-3579 (*1 *1 *2 *3) (-12 (-5 *2 (-1079)) (-5 *3 (-687)) (-5 *1 (-84)))) (-3579 (*1 *1 *2 *3) (-12 (-5 *2 (-1079)) (-5 *3 (-55)) (-5 *1 (-84)))) (-1274 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84)))) (-1273 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84)))) (-1272 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-84)))) (-1509 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-84)))) (-1271 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-83) (-84) (-84))) (-5 *1 (-84)))) (-1270 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-83) (-84) (-84))) (-5 *1 (-84)))) (-3601 (*1 *2 *1) (-12 (-5 *2 (-627 (-1 (-765) (-578 (-765))))) (-5 *1 (-84)))) (-3601 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-765) (-578 (-765)))) (-5 *1 (-84)))) (-3601 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-765) (-765))) (-5 *1 (-84)))) (-2114 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-467) (-578 (-467)))) (-5 *1 (-84)))) (-2114 (*1 *2 *1) (-12 (-5 *2 (-627 (-1 (-467) (-578 (-467))))) (-5 *1 (-84)))) (-1269 (*1 *2 *1 *3) (-12 (-5 *3 (-439)) (-5 *2 (-83)) (-5 *1 (-84)))) (-2776 (*1 *1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-84)))) (-1268 (*1 *1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-84)))) (-1268 (*1 *1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-84)))) (-2825 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1062)) (-5 *2 (-689)) (-5 *1 (-84)))) (-2825 (*1 *2 *1 *3) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-689))) (-5 *1 (-84)))) (-1267 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1062)) (-5 *3 (-689)) (-5 *1 (-84)))) (-1267 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-689)) (-5 *1 (-84)))) (-1266 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1062) (-689))) (-5 *1 (-84))))) +((-2502 (((-3 (-1 |#1| (-578 |#1|)) #1="failed") (-84)) 23 T ELT) (((-84) (-84) (-1 |#1| |#1|)) 13 T ELT) (((-84) (-84) (-1 |#1| (-578 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-84) (-578 |#1|)) 25 T ELT)) (-1276 (((-3 (-578 (-1 |#1| (-578 |#1|))) #1#) (-84)) 29 T ELT) (((-84) (-84) (-1 |#1| |#1|)) 33 T ELT) (((-84) (-84) (-578 (-1 |#1| (-578 |#1|)))) 30 T ELT)) (-1277 (((-84) |#1|) 63 T ELT)) (-1278 (((-3 |#1| #1#) (-84)) 58 T ELT))) +(((-85 |#1|) (-10 -7 (-15 -2502 ((-3 |#1| #1="failed") (-84) (-578 |#1|))) (-15 -2502 ((-84) (-84) (-1 |#1| (-578 |#1|)))) (-15 -2502 ((-84) (-84) (-1 |#1| |#1|))) (-15 -2502 ((-3 (-1 |#1| (-578 |#1|)) #1#) (-84))) (-15 -1276 ((-84) (-84) (-578 (-1 |#1| (-578 |#1|))))) (-15 -1276 ((-84) (-84) (-1 |#1| |#1|))) (-15 -1276 ((-3 (-578 (-1 |#1| (-578 |#1|))) #1#) (-84))) (-15 -1277 ((-84) |#1|)) (-15 -1278 ((-3 |#1| #1#) (-84)))) (-1005)) (T -85)) +((-1278 (*1 *2 *3) (|partial| -12 (-5 *3 (-84)) (-5 *1 (-85 *2)) (-4 *2 (-1005)))) (-1277 (*1 *2 *3) (-12 (-5 *2 (-84)) (-5 *1 (-85 *3)) (-4 *3 (-1005)))) (-1276 (*1 *2 *3) (|partial| -12 (-5 *3 (-84)) (-5 *2 (-578 (-1 *4 (-578 *4)))) (-5 *1 (-85 *4)) (-4 *4 (-1005)))) (-1276 (*1 *2 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1005)) (-5 *1 (-85 *4)))) (-1276 (*1 *2 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-578 (-1 *4 (-578 *4)))) (-4 *4 (-1005)) (-5 *1 (-85 *4)))) (-2502 (*1 *2 *3) (|partial| -12 (-5 *3 (-84)) (-5 *2 (-1 *4 (-578 *4))) (-5 *1 (-85 *4)) (-4 *4 (-1005)))) (-2502 (*1 *2 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1005)) (-5 *1 (-85 *4)))) (-2502 (*1 *2 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 (-578 *4))) (-4 *4 (-1005)) (-5 *1 (-85 *4)))) (-2502 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-84)) (-5 *4 (-578 *2)) (-5 *1 (-85 *2)) (-4 *2 (-1005))))) +((-1279 (((-478) |#2|) 41 T ELT))) +(((-86 |#1| |#2|) (-10 -7 (-15 -1279 ((-478) |#2|))) (-13 (-308) (-943 (-343 (-478)))) (-1144 |#1|)) (T -86)) +((-1279 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-943 (-343 *2)))) (-5 *2 (-478)) (-5 *1 (-86 *4 *3)) (-4 *3 (-1144 *4))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3021 (($ $ (-478)) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2595 (($ (-1074 (-478)) (-478)) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2596 (($ $) NIL T ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3756 (((-687) $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2598 (((-478)) NIL T ELT)) (-2597 (((-478) $) NIL T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3753 (($ $ (-478)) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-2599 (((-1058 (-478)) $) NIL T ELT)) (-2875 (($ $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3754 (((-478) $ (-478)) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-87 |#1|) (-772 |#1|) (-478)) (T -87)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3112 (((-87 |#1|) $) NIL (|has| (-87 |#1|) (-254)) ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-87 |#1|) (-814)) ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| (-87 |#1|) (-814)) ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3607 (((-478) $) NIL (|has| (-87 |#1|) (-733)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-87 |#1|) #1#) $) NIL T ELT) (((-3 (-1079) #1#) $) NIL (|has| (-87 |#1|) (-943 (-1079))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| (-87 |#1|) (-943 (-478))) ELT) (((-3 (-478) #1#) $) NIL (|has| (-87 |#1|) (-943 (-478))) ELT)) (-3139 (((-87 |#1|) $) NIL T ELT) (((-1079) $) NIL (|has| (-87 |#1|) (-943 (-1079))) ELT) (((-343 (-478)) $) NIL (|has| (-87 |#1|) (-943 (-478))) ELT) (((-478) $) NIL (|has| (-87 |#1|) (-943 (-478))) ELT)) (-3714 (($ $) NIL T ELT) (($ (-478) $) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| (-87 |#1|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| (-87 |#1|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-87 |#1|))) (|:| |vec| (-1168 (-87 |#1|)))) (-625 $) (-1168 $)) NIL T ELT) (((-625 (-87 |#1|)) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($) NIL (|has| (-87 |#1|) (-477)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-3169 (((-83) $) NIL (|has| (-87 |#1|) (-733)) ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| (-87 |#1|) (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| (-87 |#1|) (-789 (-323))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2980 (($ $) NIL T ELT)) (-2982 (((-87 |#1|) $) NIL T ELT)) (-3429 (((-627 $) $) NIL (|has| (-87 |#1|) (-1055)) ELT)) (-3170 (((-83) $) NIL (|has| (-87 |#1|) (-733)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2515 (($ $ $) NIL (|has| (-87 |#1|) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| (-87 |#1|) (-749)) ELT)) (-3942 (($ (-1 (-87 |#1|) (-87 |#1|)) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| (-87 |#1|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| (-87 |#1|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-87 |#1|))) (|:| |vec| (-1168 (-87 |#1|)))) (-1168 $) $) NIL T ELT) (((-625 (-87 |#1|)) (-1168 $)) NIL T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3430 (($) NIL (|has| (-87 |#1|) (-1055)) CONST)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3111 (($ $) NIL (|has| (-87 |#1|) (-254)) ELT)) (-3113 (((-87 |#1|) $) NIL (|has| (-87 |#1|) (-477)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-87 |#1|) (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-87 |#1|) (-814)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-3752 (($ $ (-578 (-87 |#1|)) (-578 (-87 |#1|))) NIL (|has| (-87 |#1|) (-256 (-87 |#1|))) ELT) (($ $ (-87 |#1|) (-87 |#1|)) NIL (|has| (-87 |#1|) (-256 (-87 |#1|))) ELT) (($ $ (-245 (-87 |#1|))) NIL (|has| (-87 |#1|) (-256 (-87 |#1|))) ELT) (($ $ (-578 (-245 (-87 |#1|)))) NIL (|has| (-87 |#1|) (-256 (-87 |#1|))) ELT) (($ $ (-578 (-1079)) (-578 (-87 |#1|))) NIL (|has| (-87 |#1|) (-447 (-1079) (-87 |#1|))) ELT) (($ $ (-1079) (-87 |#1|)) NIL (|has| (-87 |#1|) (-447 (-1079) (-87 |#1|))) ELT)) (-1594 (((-687) $) NIL T ELT)) (-3784 (($ $ (-87 |#1|)) NIL (|has| (-87 |#1|) (-238 (-87 |#1|) (-87 |#1|))) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-3742 (($ $ (-1 (-87 |#1|) (-87 |#1|))) NIL T ELT) (($ $ (-1 (-87 |#1|) (-87 |#1|)) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| (-87 |#1|) (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| (-87 |#1|) (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| (-87 |#1|) (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| (-87 |#1|) (-804 (-1079))) ELT) (($ $) NIL (|has| (-87 |#1|) (-187)) ELT) (($ $ (-687)) NIL (|has| (-87 |#1|) (-187)) ELT)) (-2979 (($ $) NIL T ELT)) (-2981 (((-87 |#1|) $) NIL T ELT)) (-3956 (((-793 (-478)) $) NIL (|has| (-87 |#1|) (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| (-87 |#1|) (-548 (-793 (-323)))) ELT) (((-467) $) NIL (|has| (-87 |#1|) (-548 (-467))) ELT) (((-323) $) NIL (|has| (-87 |#1|) (-926)) ELT) (((-177) $) NIL (|has| (-87 |#1|) (-926)) ELT)) (-2600 (((-146 (-343 (-478))) $) NIL T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| (-87 |#1|) (-814))) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-87 |#1|)) NIL T ELT) (($ (-1079)) NIL (|has| (-87 |#1|) (-943 (-1079))) ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-87 |#1|) (-814))) (|has| (-87 |#1|) (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-3114 (((-87 |#1|) $) NIL (|has| (-87 |#1|) (-477)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3754 (((-343 (-478)) $ (-478)) NIL T ELT)) (-3367 (($ $) NIL (|has| (-87 |#1|) (-733)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $ (-1 (-87 |#1|) (-87 |#1|))) NIL T ELT) (($ $ (-1 (-87 |#1|) (-87 |#1|)) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| (-87 |#1|) (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| (-87 |#1|) (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| (-87 |#1|) (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| (-87 |#1|) (-804 (-1079))) ELT) (($ $) NIL (|has| (-87 |#1|) (-187)) ELT) (($ $ (-687)) NIL (|has| (-87 |#1|) (-187)) ELT)) (-2550 (((-83) $ $) NIL (|has| (-87 |#1|) (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-87 |#1|) (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL (|has| (-87 |#1|) (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| (-87 |#1|) (-749)) ELT)) (-3933 (($ $ $) NIL T ELT) (($ (-87 |#1|) (-87 |#1|)) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ (-87 |#1|) $) NIL T ELT) (($ $ (-87 |#1|)) NIL T ELT))) +(((-88 |#1|) (-13 (-897 (-87 |#1|)) (-10 -8 (-15 -3754 ((-343 (-478)) $ (-478))) (-15 -2600 ((-146 (-343 (-478))) $)) (-15 -3714 ($ $)) (-15 -3714 ($ (-478) $)))) (-478)) (T -88)) +((-3754 (*1 *2 *1 *3) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-88 *4)) (-14 *4 *3) (-5 *3 (-478)))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-146 (-343 (-478)))) (-5 *1 (-88 *3)) (-14 *3 (-478)))) (-3714 (*1 *1 *1) (-12 (-5 *1 (-88 *2)) (-14 *2 (-478)))) (-3714 (*1 *1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-88 *3)) (-14 *3 *2)))) +((-3772 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3015 (((-578 $) $) 31 T ELT)) (-3011 (((-83) $ $) 36 T ELT)) (-3228 (((-83) |#2| $) 40 T ELT)) (-3014 (((-578 |#2|) $) 25 T ELT)) (-3511 (((-83) $) 18 T ELT)) (-3784 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3617 (((-83) $) 57 T ELT)) (-3930 (((-765) $) 47 T ELT)) (-3506 (((-578 $) $) 32 T ELT)) (-3037 (((-83) $ $) 38 T ELT)) (-3941 (((-687) $) 50 T ELT))) +(((-89 |#1| |#2|) (-10 -7 (-15 -3037 ((-83) |#1| |#1|)) (-15 -3930 ((-765) |#1|)) (-15 -3772 (|#1| |#1| #1="right" |#1|)) (-15 -3772 (|#1| |#1| #2="left" |#1|)) (-15 -3784 (|#1| |#1| #1#)) (-15 -3784 (|#1| |#1| #2#)) (-15 -3772 (|#2| |#1| #3="value" |#2|)) (-15 -3011 ((-83) |#1| |#1|)) (-15 -3014 ((-578 |#2|) |#1|)) (-15 -3617 ((-83) |#1|)) (-15 -3784 (|#2| |#1| #3#)) (-15 -3511 ((-83) |#1|)) (-15 -3015 ((-578 |#1|) |#1|)) (-15 -3506 ((-578 |#1|) |#1|)) (-15 -3228 ((-83) |#2| |#1|)) (-15 -3941 ((-687) |#1|))) (-90 |#2|) (-1118)) (T -89)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3386 ((|#1| $) 52 T ELT)) (-3009 ((|#1| $ |#1|) 43 (|has| $ (-6 -3980)) ELT)) (-1280 (($ $ $) 58 (|has| $ (-6 -3980)) ELT)) (-1281 (($ $ $) 60 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3980)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -3980)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) 45 (|has| $ (-6 -3980)) ELT)) (-3708 (($) 7 T CONST)) (-3120 (($ $) 63 T ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-3015 (((-578 $) $) 54 T ELT)) (-3011 (((-83) $ $) 46 (|has| |#1| (-1005)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3121 (($ $) 65 T ELT)) (-3014 (((-578 |#1|) $) 49 T ELT)) (-3511 (((-83) $) 53 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3013 (((-478) $ $) 48 T ELT)) (-3617 (((-83) $) 50 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-3506 (((-578 $) $) 55 T ELT)) (-3012 (((-83) $ $) 47 (|has| |#1| (-1005)) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-90 |#1|) (-111) (-1118)) (T -90)) +((-3121 (*1 *1 *1) (-12 (-4 *1 (-90 *2)) (-4 *2 (-1118)))) (-3784 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-90 *3)) (-4 *3 (-1118)))) (-3120 (*1 *1 *1) (-12 (-4 *1 (-90 *2)) (-4 *2 (-1118)))) (-3784 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-90 *3)) (-4 *3 (-1118)))) (-3772 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -3980)) (-4 *1 (-90 *3)) (-4 *3 (-1118)))) (-1281 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-90 *2)) (-4 *2 (-1118)))) (-3772 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -3980)) (-4 *1 (-90 *3)) (-4 *3 (-1118)))) (-1280 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-90 *2)) (-4 *2 (-1118))))) +(-13 (-916 |t#1|) (-10 -8 (-15 -3121 ($ $)) (-15 -3784 ($ $ "left")) (-15 -3120 ($ $)) (-15 -3784 ($ $ "right")) (IF (|has| $ (-6 -3980)) (PROGN (-15 -3772 ($ $ "left" $)) (-15 -1281 ($ $ $)) (-15 -3772 ($ $ "right" $)) (-15 -1280 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-916 |#1|) . T) ((-1005) |has| |#1| (-1005)) ((-1118) . T)) +((-1284 (((-83) |#1|) 29 T ELT)) (-1283 (((-687) (-687)) 28 T ELT) (((-687)) 27 T ELT)) (-1282 (((-83) |#1| (-83)) 30 T ELT) (((-83) |#1|) 31 T ELT))) +(((-91 |#1|) (-10 -7 (-15 -1282 ((-83) |#1|)) (-15 -1282 ((-83) |#1| (-83))) (-15 -1283 ((-687))) (-15 -1283 ((-687) (-687))) (-15 -1284 ((-83) |#1|))) (-1144 (-478))) (T -91)) +((-1284 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1144 (-478))))) (-1283 (*1 *2 *2) (-12 (-5 *2 (-687)) (-5 *1 (-91 *3)) (-4 *3 (-1144 (-478))))) (-1283 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-91 *3)) (-4 *3 (-1144 (-478))))) (-1282 (*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1144 (-478))))) (-1282 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1144 (-478)))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3386 ((|#1| $) 18 T ELT)) (-3402 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3009 ((|#1| $ |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-1280 (($ $ $) 21 (|has| $ (-6 -3980)) ELT)) (-1281 (($ $ $) 23 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3980)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3980)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) NIL (|has| $ (-6 -3980)) ELT)) (-3708 (($) NIL T CONST)) (-3120 (($ $) 20 T ELT)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3015 (((-578 $) $) NIL T ELT)) (-3011 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-1289 (($ $ |#1| $) 27 T ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3121 (($ $) 22 T ELT)) (-3014 (((-578 |#1|) $) NIL T ELT)) (-3511 (((-83) $) NIL T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-1285 (($ |#1| $) 28 T ELT)) (-3593 (($ |#1| $) 15 T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) 17 T ELT)) (-3549 (($) 11 T ELT)) (-3784 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3013 (((-478) $ $) NIL T ELT)) (-3617 (((-83) $) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3930 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-3506 (((-578 $) $) NIL T ELT)) (-3012 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-1286 (($ (-578 |#1|)) 16 T ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-92 |#1|) (-13 (-96 |#1|) (-10 -8 (-6 -3980) (-6 -3979) (-15 -1286 ($ (-578 |#1|))) (-15 -3593 ($ |#1| $)) (-15 -1285 ($ |#1| $)) (-15 -3402 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-749)) (T -92)) +((-1286 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-92 *3)))) (-3593 (*1 *1 *2 *1) (-12 (-5 *1 (-92 *2)) (-4 *2 (-749)))) (-1285 (*1 *1 *2 *1) (-12 (-5 *1 (-92 *2)) (-4 *2 (-749)))) (-3402 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-92 *3)) (|:| |greater| (-92 *3)))) (-5 *1 (-92 *3)) (-4 *3 (-749))))) +((-2299 (($ $) 13 T ELT)) (-2544 (($ $) 11 T ELT)) (-1287 (($ $ $) 23 T ELT)) (-1288 (($ $ $) 21 T ELT)) (-2297 (($ $ $) 19 T ELT)) (-2298 (($ $ $) 17 T ELT))) +(((-93 |#1|) (-10 -7 (-15 -1287 (|#1| |#1| |#1|)) (-15 -1288 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -2298 (|#1| |#1| |#1|)) (-15 -2297 (|#1| |#1| |#1|)) (-15 -2544 (|#1| |#1|))) (-94)) (T -93)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-2299 (($ $) 103 T ELT)) (-3306 (($ $ $) 31 T ELT)) (-2184 (((-1174) $ (-478) (-478)) 66 (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) $) 98 (|has| (-83) (-749)) ELT) (((-83) (-1 (-83) (-83) (-83)) $) 92 T ELT)) (-1717 (($ $) 102 (-12 (|has| (-83) (-749)) (|has| $ (-6 -3980))) ELT) (($ (-1 (-83) (-83) (-83)) $) 101 (|has| $ (-6 -3980)) ELT)) (-2893 (($ $) 97 (|has| (-83) (-749)) ELT) (($ (-1 (-83) (-83) (-83)) $) 91 T ELT)) (-3772 (((-83) $ (-1135 (-478)) (-83)) 88 (|has| $ (-6 -3980)) ELT) (((-83) $ (-478) (-83)) 54 (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) (-83)) $) 71 (|has| $ (-6 -3979)) ELT)) (-3708 (($) 38 T CONST)) (-2283 (($ $) 100 (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) 90 T ELT)) (-1340 (($ $) 68 (-12 (|has| (-83) (-1005)) (|has| $ (-6 -3979))) ELT)) (-3390 (($ (-1 (-83) (-83)) $) 72 (|has| $ (-6 -3979)) ELT) (($ (-83) $) 69 (-12 (|has| (-83) (-1005)) (|has| $ (-6 -3979))) ELT)) (-3826 (((-83) (-1 (-83) (-83) (-83)) $) 74 (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83)) 73 (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83) (-83)) 70 (-12 (|has| (-83) (-1005)) (|has| $ (-6 -3979))) ELT)) (-1563 (((-83) $ (-478) (-83)) 53 (|has| $ (-6 -3980)) ELT)) (-3096 (((-83) $ (-478)) 55 T ELT)) (-3403 (((-478) (-83) $ (-478)) 95 (|has| (-83) (-1005)) ELT) (((-478) (-83) $) 94 (|has| (-83) (-1005)) ELT) (((-478) (-1 (-83) (-83)) $) 93 T ELT)) (-2873 (((-578 (-83)) $) 45 (|has| $ (-6 -3979)) ELT)) (-2545 (($ $ $) 108 T ELT)) (-2544 (($ $) 106 T ELT)) (-1287 (($ $ $) 32 T ELT)) (-3598 (($ (-687) (-83)) 78 T ELT)) (-1288 (($ $ $) 33 T ELT)) (-2186 (((-478) $) 63 (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) 23 T ELT)) (-3502 (($ $ $) 96 (|has| (-83) (-749)) ELT) (($ (-1 (-83) (-83) (-83)) $ $) 89 T ELT)) (-2592 (((-578 (-83)) $) 46 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-83) $) 48 (-12 (|has| (-83) (-1005)) (|has| $ (-6 -3979))) ELT)) (-2187 (((-478) $) 62 (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) 22 T ELT)) (-1936 (($ (-1 (-83) (-83)) $) 41 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-83) (-83) (-83)) $ $) 83 T ELT) (($ (-1 (-83) (-83)) $) 40 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2290 (($ $ $ (-478)) 87 T ELT) (($ (-83) $ (-478)) 86 T ELT)) (-2189 (((-578 (-478)) $) 60 T ELT)) (-2190 (((-83) (-478) $) 59 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3785 (((-83) $) 64 (|has| (-478) (-749)) ELT)) (-1341 (((-3 (-83) "failed") (-1 (-83) (-83)) $) 75 T ELT)) (-2185 (($ $ (-83)) 65 (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) (-83)) $) 43 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-83)) (-578 (-83))) 52 (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1005))) ELT) (($ $ (-83) (-83)) 51 (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1005))) ELT) (($ $ (-245 (-83))) 50 (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1005))) ELT) (($ $ (-578 (-245 (-83)))) 49 (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1005))) ELT)) (-1210 (((-83) $ $) 34 T ELT)) (-2188 (((-83) (-83) $) 61 (-12 (|has| $ (-6 -3979)) (|has| (-83) (-1005))) ELT)) (-2191 (((-578 (-83)) $) 58 T ELT)) (-3387 (((-83) $) 37 T ELT)) (-3549 (($) 36 T ELT)) (-3784 (($ $ (-1135 (-478))) 77 T ELT) (((-83) $ (-478)) 57 T ELT) (((-83) $ (-478) (-83)) 56 T ELT)) (-2291 (($ $ (-1135 (-478))) 85 T ELT) (($ $ (-478)) 84 T ELT)) (-1933 (((-687) (-83) $) 47 (-12 (|has| (-83) (-1005)) (|has| $ (-6 -3979))) ELT) (((-687) (-1 (-83) (-83)) $) 44 (|has| $ (-6 -3979)) ELT)) (-1718 (($ $ $ (-478)) 99 (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) 35 T ELT)) (-3956 (((-467) $) 67 (|has| (-83) (-548 (-467))) ELT)) (-3514 (($ (-578 (-83))) 76 T ELT)) (-3786 (($ (-578 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-83) $) 80 T ELT) (($ $ (-83)) 79 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-1935 (((-83) (-1 (-83) (-83)) $) 42 (|has| $ (-6 -3979)) ELT)) (-2546 (($ $ $) 107 T ELT)) (-2297 (($ $ $) 105 T ELT)) (-2550 (((-83) $ $) 21 T ELT)) (-2551 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 20 T ELT)) (-2669 (((-83) $ $) 18 T ELT)) (-2298 (($ $ $) 104 T ELT)) (-3941 (((-687) $) 39 (|has| $ (-6 -3979)) ELT))) +(((-94) (-111)) (T -94)) +((-1288 (*1 *1 *1 *1) (-4 *1 (-94))) (-1287 (*1 *1 *1 *1) (-4 *1 (-94))) (-3306 (*1 *1 *1 *1) (-4 *1 (-94)))) +(-13 (-749) (-82) (-599) (-19 (-83)) (-10 -8 (-15 -1288 ($ $ $)) (-15 -1287 ($ $ $)) (-15 -3306 ($ $ $)))) +(((-34) . T) ((-72) . T) ((-82) . T) ((-547 (-765)) . T) ((-122 (-83)) . T) ((-548 (-467)) |has| (-83) (-548 (-467))) ((-238 (-478) (-83)) . T) ((-238 (-1135 (-478)) $) . T) ((-240 (-478) (-83)) . T) ((-256 (-83)) -12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1005))) ((-317 (-83)) . T) ((-422 (-83)) . T) ((-533 (-478) (-83)) . T) ((-447 (-83) (-83)) -12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1005))) ((-588 (-83)) . T) ((-599) . T) ((-19 (-83)) . T) ((-749) . T) ((-752) . T) ((-1005) . T) ((-1118) . T)) +((-1936 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3384 (($ $) 16 T ELT)) (-3941 (((-687) $) 25 T ELT))) +(((-95 |#1| |#2|) (-10 -7 (-15 -1936 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3941 ((-687) |#1|)) (-15 -3384 (|#1| |#1|))) (-96 |#2|) (-1005)) (T -95)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3386 ((|#1| $) 52 T ELT)) (-3009 ((|#1| $ |#1|) 43 (|has| $ (-6 -3980)) ELT)) (-1280 (($ $ $) 58 (|has| $ (-6 -3980)) ELT)) (-1281 (($ $ $) 60 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3980)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -3980)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) 45 (|has| $ (-6 -3980)) ELT)) (-3708 (($) 7 T CONST)) (-3120 (($ $) 63 T ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-3015 (((-578 $) $) 54 T ELT)) (-3011 (((-83) $ $) 46 (|has| |#1| (-1005)) ELT)) (-1289 (($ $ |#1| $) 66 T ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3121 (($ $) 65 T ELT)) (-3014 (((-578 |#1|) $) 49 T ELT)) (-3511 (((-83) $) 53 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3013 (((-478) $ $) 48 T ELT)) (-3617 (((-83) $) 50 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-3506 (((-578 $) $) 55 T ELT)) (-3012 (((-83) $ $) 47 (|has| |#1| (-1005)) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-96 |#1|) (-111) (-1005)) (T -96)) +((-1289 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-96 *2)) (-4 *2 (-1005))))) +(-13 (-90 |t#1|) (-10 -8 (-6 -3980) (-6 -3979) (-15 -1289 ($ $ |t#1| $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-90 |#1|) . T) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-916 |#1|) . T) ((-1005) |has| |#1| (-1005)) ((-1118) . T)) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3386 ((|#1| $) 18 T ELT)) (-3009 ((|#1| $ |#1|) 22 (|has| $ (-6 -3980)) ELT)) (-1280 (($ $ $) 23 (|has| $ (-6 -3980)) ELT)) (-1281 (($ $ $) 21 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3980)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3980)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) NIL (|has| $ (-6 -3980)) ELT)) (-3708 (($) NIL T CONST)) (-3120 (($ $) 24 T ELT)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3015 (((-578 $) $) NIL T ELT)) (-3011 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-1289 (($ $ |#1| $) NIL T ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3121 (($ $) NIL T ELT)) (-3014 (((-578 |#1|) $) NIL T ELT)) (-3511 (((-83) $) NIL T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3593 (($ |#1| $) 15 T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) 17 T ELT)) (-3549 (($) 11 T ELT)) (-3784 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3013 (((-478) $ $) NIL T ELT)) (-3617 (((-83) $) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) 20 T ELT)) (-3930 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-3506 (((-578 $) $) NIL T ELT)) (-3012 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-1290 (($ (-578 |#1|)) 16 T ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-97 |#1|) (-13 (-96 |#1|) (-10 -8 (-6 -3980) (-15 -1290 ($ (-578 |#1|))) (-15 -3593 ($ |#1| $)))) (-749)) (T -97)) +((-1290 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-97 *3)))) (-3593 (*1 *1 *2 *1) (-12 (-5 *1 (-97 *2)) (-4 *2 (-749))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3386 ((|#1| $) 30 T ELT)) (-3009 ((|#1| $ |#1|) 32 (|has| $ (-6 -3980)) ELT)) (-1280 (($ $ $) 36 (|has| $ (-6 -3980)) ELT)) (-1281 (($ $ $) 34 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3980)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3980)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) NIL (|has| $ (-6 -3980)) ELT)) (-3708 (($) NIL T CONST)) (-3120 (($ $) 23 T ELT)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3015 (((-578 $) $) NIL T ELT)) (-3011 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-1289 (($ $ |#1| $) 16 T ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3121 (($ $) 22 T ELT)) (-3014 (((-578 |#1|) $) NIL T ELT)) (-3511 (((-83) $) 25 T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) 20 T ELT)) (-3549 (($) 11 T ELT)) (-3784 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3013 (((-478) $ $) NIL T ELT)) (-3617 (((-83) $) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3930 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-3506 (((-578 $) $) NIL T ELT)) (-3012 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-1291 (($ |#1|) 18 T ELT) (($ $ |#1| $) 17 T ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 10 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-98 |#1|) (-13 (-96 |#1|) (-10 -8 (-15 -1291 ($ |#1|)) (-15 -1291 ($ $ |#1| $)))) (-1005)) (T -98)) +((-1291 (*1 *1 *2) (-12 (-5 *1 (-98 *2)) (-4 *2 (-1005)))) (-1291 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-98 *2)) (-4 *2 (-1005))))) +((-2552 (((-83) $ $) NIL T ELT)) (-2299 (($ $) 34 T ELT)) (-3119 (((-687)) 20 T ELT)) (-3708 (($) 12 T CONST)) (-2978 (($) 29 T ELT)) (-2515 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2841 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-1996 (((-823) $) 27 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2386 (($ (-823)) 25 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1292 (($ (-687)) 8 T ELT)) (-3709 (($ $ $) 31 T ELT)) (-3710 (($ $ $) 30 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2297 (($ $ $) 33 T ELT)) (-2550 (((-83) $ $) 17 T ELT)) (-2551 (((-83) $ $) 15 T ELT)) (-3037 (((-83) $ $) 13 T ELT)) (-2668 (((-83) $ $) 16 T ELT)) (-2669 (((-83) $ $) 14 T ELT)) (-2298 (($ $ $) 32 T ELT))) +(((-99) (-13 (-745) (-599) (-10 -8 (-15 -1292 ($ (-687))) (-15 -3710 ($ $ $)) (-15 -3709 ($ $ $)) (-15 -3708 ($) -3936)))) (T -99)) +((-1292 (*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-99)))) (-3710 (*1 *1 *1 *1) (-5 *1 (-99))) (-3709 (*1 *1 *1 *1) (-5 *1 (-99))) (-3708 (*1 *1) (-5 *1 (-99)))) +((-687) (|%ilt| |#1| 256)) +((-2552 (((-83) $ $) NIL (|has| (-99) (-72)) ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) (-1 (-83) (-99) (-99)) $) NIL T ELT) (((-83) $) NIL (|has| (-99) (-749)) ELT)) (-1717 (($ (-1 (-83) (-99) (-99)) $) NIL (|has| $ (-6 -3980)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3980)) (|has| (-99) (-749))) ELT)) (-2893 (($ (-1 (-83) (-99) (-99)) $) NIL T ELT) (($ $) NIL (|has| (-99) (-749)) ELT)) (-3772 (((-99) $ (-478) (-99)) 26 (|has| $ (-6 -3980)) ELT) (((-99) $ (-1135 (-478)) (-99)) NIL (|has| $ (-6 -3980)) ELT)) (-1293 (((-687) $ (-687)) 34 T ELT)) (-3694 (($ (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3708 (($) NIL T CONST)) (-2283 (($ $) NIL (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) NIL T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-99) (-1005))) ELT)) (-3390 (($ (-99) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-99) (-1005))) ELT) (($ (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 (((-99) (-1 (-99) (-99) (-99)) $ (-99) (-99)) NIL (-12 (|has| $ (-6 -3979)) (|has| (-99) (-1005))) ELT) (((-99) (-1 (-99) (-99) (-99)) $ (-99)) NIL (|has| $ (-6 -3979)) ELT) (((-99) (-1 (-99) (-99) (-99)) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 (((-99) $ (-478) (-99)) 25 (|has| $ (-6 -3980)) ELT)) (-3096 (((-99) $ (-478)) 20 T ELT)) (-3403 (((-478) (-1 (-83) (-99)) $) NIL T ELT) (((-478) (-99) $) NIL (|has| (-99) (-1005)) ELT) (((-478) (-99) $ (-478)) NIL (|has| (-99) (-1005)) ELT)) (-2873 (((-578 (-99)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3598 (($ (-687) (-99)) 14 T ELT)) (-2186 (((-478) $) 27 (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| (-99) (-749)) ELT)) (-3502 (($ (-1 (-83) (-99) (-99)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-99) (-749)) ELT)) (-2592 (((-578 (-99)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-99) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-99) (-1005))) ELT)) (-2187 (((-478) $) 30 (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| (-99) (-749)) ELT)) (-1936 (($ (-1 (-99) (-99)) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-99) (-99)) $) NIL T ELT) (($ (-1 (-99) (-99) (-99)) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL (|has| (-99) (-1005)) ELT)) (-2290 (($ (-99) $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-3226 (((-1023) $) NIL (|has| (-99) (-1005)) ELT)) (-3785 (((-99) $) NIL (|has| (-478) (-749)) ELT)) (-1341 (((-3 (-99) "failed") (-1 (-83) (-99)) $) NIL T ELT)) (-2185 (($ $ (-99)) NIL (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 (-99)))) NIL (-12 (|has| (-99) (-256 (-99))) (|has| (-99) (-1005))) ELT) (($ $ (-245 (-99))) NIL (-12 (|has| (-99) (-256 (-99))) (|has| (-99) (-1005))) ELT) (($ $ (-99) (-99)) NIL (-12 (|has| (-99) (-256 (-99))) (|has| (-99) (-1005))) ELT) (($ $ (-578 (-99)) (-578 (-99))) NIL (-12 (|has| (-99) (-256 (-99))) (|has| (-99) (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) (-99) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-99) (-1005))) ELT)) (-2191 (((-578 (-99)) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) 12 T ELT)) (-3784 (((-99) $ (-478) (-99)) NIL T ELT) (((-99) $ (-478)) 23 T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-2291 (($ $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-1933 (((-687) (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) (-99) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-99) (-1005))) ELT)) (-1718 (($ $ $ (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| (-99) (-548 (-467))) ELT)) (-3514 (($ (-578 (-99))) 40 T ELT)) (-3786 (($ $ (-99)) NIL T ELT) (($ (-99) $) NIL T ELT) (($ $ $) 44 T ELT) (($ (-578 $)) NIL T ELT)) (-3930 (((-862 (-99)) $) 35 T ELT) (((-1062) $) 37 T ELT) (((-765) $) NIL (|has| (-99) (-547 (-765))) ELT)) (-1294 (((-687) $) 18 T ELT)) (-1295 (($ (-687)) 8 T ELT)) (-1253 (((-83) $ $) NIL (|has| (-99) (-72)) ELT)) (-1935 (((-83) (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) NIL (|has| (-99) (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-99) (-749)) ELT)) (-3037 (((-83) $ $) 32 (|has| (-99) (-72)) ELT)) (-2668 (((-83) $ $) NIL (|has| (-99) (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| (-99) (-749)) ELT)) (-3941 (((-687) $) 15 (|has| $ (-6 -3979)) ELT))) +(((-100) (-13 (-19 (-99)) (-547 (-862 (-99))) (-547 (-1062)) (-10 -8 (-15 -1295 ($ (-687))) (-15 -1294 ((-687) $)) (-15 -1293 ((-687) $ (-687))) (-6 -3979)))) (T -100)) +((-1295 (*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-100)))) (-1294 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-100)))) (-1293 (*1 *2 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-100))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1296 (($) 6 T CONST)) (-1298 (($) 7 T CONST)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 14 T ELT)) (-1297 (($) 8 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 10 T ELT))) +(((-101) (-13 (-1005) (-10 -8 (-15 -1298 ($) -3936) (-15 -1297 ($) -3936) (-15 -1296 ($) -3936)))) (T -101)) +((-1298 (*1 *1) (-5 *1 (-101))) (-1297 (*1 *1) (-5 *1 (-101))) (-1296 (*1 *1) (-5 *1 (-101)))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT))) +(((-102) (-111)) (T -102)) +((-1299 (*1 *1 *1 *1) (|partial| -4 *1 (-102)))) +(-13 (-23) (-10 -8 (-15 -1299 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-547 (-765)) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) 7 T ELT)) (-1300 (((-1174) $ (-687)) 17 T ELT)) (-3403 (((-687) $) 18 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(((-103) (-111)) (T -103)) +((-3403 (*1 *2 *1) (-12 (-4 *1 (-103)) (-5 *2 (-687)))) (-1300 (*1 *2 *1 *3) (-12 (-4 *1 (-103)) (-5 *3 (-687)) (-5 *2 (-1174))))) +(-13 (-1005) (-10 -8 (-15 -3403 ((-687) $)) (-15 -1300 ((-1174) $ (-687))))) +(((-72) . T) ((-547 (-765)) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 16 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-3216 (((-578 (-1038)) $) 10 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-104) (-13 (-987) (-10 -8 (-15 -3216 ((-578 (-1038)) $))))) (T -104)) +((-3216 (*1 *2 *1) (-12 (-5 *2 (-578 (-1038))) (-5 *1 (-104))))) +((-2552 (((-83) $ $) 49 T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-687) #1="failed") $) 60 T ELT)) (-3139 (((-687) $) 58 T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) 37 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1302 (((-83)) 61 T ELT)) (-1301 (((-83) (-83)) 63 T ELT)) (-2509 (((-83) $) 30 T ELT)) (-1303 (((-83) $) 57 T ELT)) (-3930 (((-765) $) 28 T ELT) (($ (-687)) 20 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 18 T CONST)) (-2650 (($) 19 T CONST)) (-1304 (($ (-687)) 21 T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) 40 T ELT)) (-3037 (((-83) $ $) 32 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 35 T ELT)) (-3821 (((-3 $ #1#) $ $) 42 T ELT)) (-3823 (($ $ $) 38 T ELT)) (** (($ $ (-687)) NIL T ELT) (($ $ (-823)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-687) $) 48 T ELT) (($ (-823) $) NIL T ELT) (($ $ $) 45 T ELT))) +(((-105) (-13 (-749) (-23) (-658) (-943 (-687)) (-10 -8 (-6 (-3981 "*")) (-15 -3821 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1304 ($ (-687))) (-15 -2509 ((-83) $)) (-15 -1303 ((-83) $)) (-15 -1302 ((-83))) (-15 -1301 ((-83) (-83)))))) (T -105)) +((-3821 (*1 *1 *1 *1) (|partial| -5 *1 (-105))) (** (*1 *1 *1 *1) (-5 *1 (-105))) (-1304 (*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-105)))) (-2509 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-105)))) (-1303 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-105)))) (-1302 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-105)))) (-1301 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-105))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1305 (($ (-578 |#3|)) 62 T ELT)) (-3398 (($ $) 125 T ELT) (($ $ (-478) (-478)) 124 T ELT)) (-3708 (($) 20 T ELT)) (-3140 (((-3 |#3| "failed") $) 85 T ELT)) (-3139 ((|#3| $) NIL T ELT)) (-1309 (($ $ (-578 (-478))) 126 T ELT)) (-1306 (((-578 |#3|) $) 57 T ELT)) (-3092 (((-687) $) 67 T ELT)) (-3928 (($ $ $) 119 T ELT)) (-1307 (($) 66 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1308 (($) 19 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3784 ((|#3| $ (-478)) 71 T ELT) ((|#3| $) 70 T ELT) ((|#3| $ (-478) (-478)) 72 T ELT) ((|#3| $ (-478) (-478) (-478)) 73 T ELT) ((|#3| $ (-478) (-478) (-478) (-478)) 74 T ELT) ((|#3| $ (-578 (-478))) 75 T ELT)) (-3932 (((-687) $) 68 T ELT)) (-1969 (($ $ (-478) $ (-478)) 120 T ELT) (($ $ (-478) (-478)) 122 T ELT)) (-3930 (((-765) $) 93 T ELT) (($ |#3|) 94 T ELT) (($ (-194 |#2| |#3|)) 101 T ELT) (($ (-1045 |#2| |#3|)) 104 T ELT) (($ (-578 |#3|)) 76 T ELT) (($ (-578 $)) 82 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 95 T CONST)) (-2650 (($) 96 T CONST)) (-3037 (((-83) $ $) 106 T ELT)) (-3821 (($ $) 112 T ELT) (($ $ $) 110 T ELT)) (-3823 (($ $ $) 108 T ELT)) (* (($ |#3| $) 117 T ELT) (($ $ |#3|) 118 T ELT) (($ $ (-478)) 115 T ELT) (($ (-478) $) 114 T ELT) (($ $ $) 121 T ELT))) +(((-106 |#1| |#2| |#3|) (-13 (-398 |#3| (-687)) (-403 (-478) (-687)) (-238 (-478) |#3|) (-550 (-194 |#2| |#3|)) (-550 (-1045 |#2| |#3|)) (-550 (-578 |#3|)) (-550 (-578 $)) (-10 -8 (-15 -3092 ((-687) $)) (-15 -3784 (|#3| $)) (-15 -3784 (|#3| $ (-478) (-478))) (-15 -3784 (|#3| $ (-478) (-478) (-478))) (-15 -3784 (|#3| $ (-478) (-478) (-478) (-478))) (-15 -3784 (|#3| $ (-578 (-478)))) (-15 -3928 ($ $ $)) (-15 * ($ $ $)) (-15 -1969 ($ $ (-478) $ (-478))) (-15 -1969 ($ $ (-478) (-478))) (-15 -3398 ($ $)) (-15 -3398 ($ $ (-478) (-478))) (-15 -1309 ($ $ (-578 (-478)))) (-15 -1308 ($)) (-15 -1307 ($)) (-15 -1306 ((-578 |#3|) $)) (-15 -1305 ($ (-578 |#3|))) (-15 -3708 ($)))) (-478) (-687) (-144)) (T -106)) +((-3928 (*1 *1 *1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144)))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-478)) (-14 *4 *2) (-4 *5 (-144)))) (-3784 (*1 *2 *1) (-12 (-4 *2 (-144)) (-5 *1 (-106 *3 *4 *2)) (-14 *3 (-478)) (-14 *4 (-687)))) (-3784 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-478)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-687)))) (-3784 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-478)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-687)))) (-3784 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-478)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-687)))) (-3784 (*1 *2 *1 *3) (-12 (-5 *3 (-578 (-478))) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 (-478)) (-14 *5 (-687)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144)))) (-1969 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-687)) (-4 *5 (-144)))) (-1969 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-687)) (-4 *5 (-144)))) (-3398 (*1 *1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144)))) (-3398 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-687)) (-4 *5 (-144)))) (-1309 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-478)) (-14 *4 (-687)) (-4 *5 (-144)))) (-1308 (*1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144)))) (-1307 (*1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144)))) (-1306 (*1 *2 *1) (-12 (-5 *2 (-578 *5)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-478)) (-14 *4 (-687)) (-4 *5 (-144)))) (-1305 (*1 *1 *2) (-12 (-5 *2 (-578 *5)) (-4 *5 (-144)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-478)) (-14 *4 (-687)))) (-3708 (*1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144))))) +((-2399 (((-106 |#1| |#2| |#4|) (-578 |#4|) (-106 |#1| |#2| |#3|)) 14 T ELT)) (-3942 (((-106 |#1| |#2| |#4|) (-1 |#4| |#3|) (-106 |#1| |#2| |#3|)) 18 T ELT))) +(((-107 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2399 ((-106 |#1| |#2| |#4|) (-578 |#4|) (-106 |#1| |#2| |#3|))) (-15 -3942 ((-106 |#1| |#2| |#4|) (-1 |#4| |#3|) (-106 |#1| |#2| |#3|)))) (-478) (-687) (-144) (-144)) (T -107)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-106 *5 *6 *7)) (-14 *5 (-478)) (-14 *6 (-687)) (-4 *7 (-144)) (-4 *8 (-144)) (-5 *2 (-106 *5 *6 *8)) (-5 *1 (-107 *5 *6 *7 *8)))) (-2399 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-106 *5 *6 *7)) (-14 *5 (-478)) (-14 *6 (-687)) (-4 *7 (-144)) (-4 *8 (-144)) (-5 *2 (-106 *5 *6 *8)) (-5 *1 (-107 *5 *6 *7 *8))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3512 (((-1038) $) 11 T ELT)) (-3513 (((-1038) $) 9 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 17 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-108) (-13 (-987) (-10 -8 (-15 -3513 ((-1038) $)) (-15 -3512 ((-1038) $))))) (T -108)) +((-3513 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-108)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-108))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1413 (((-159) $) 10 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 20 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-3216 (((-578 (-1038)) $) 13 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-109) (-13 (-987) (-10 -8 (-15 -1413 ((-159) $)) (-15 -3216 ((-578 (-1038)) $))))) (T -109)) +((-1413 (*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-109)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-578 (-1038))) (-5 *1 (-109))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1411 (((-578 (-767)) $) NIL T ELT)) (-3526 (((-439) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1413 (((-159) $) NIL T ELT)) (-2617 (((-83) $ (-439)) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1412 (((-578 (-83)) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (((-155) $) 6 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2505 (((-55) $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-110) (-13 (-158) (-547 (-155)))) (T -110)) +NIL +((-1311 (((-578 (-156 (-110))) $) 13 T ELT)) (-1310 (((-578 (-156 (-110))) $) 14 T ELT)) (-1312 (((-578 (-742)) $) 10 T ELT)) (-1469 (((-110) $) 7 T ELT)) (-3930 (((-765) $) 16 T ELT))) +(((-111) (-13 (-547 (-765)) (-10 -8 (-15 -1469 ((-110) $)) (-15 -1312 ((-578 (-742)) $)) (-15 -1311 ((-578 (-156 (-110))) $)) (-15 -1310 ((-578 (-156 (-110))) $))))) (T -111)) +((-1469 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-111)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-578 (-742))) (-5 *1 (-111)))) (-1311 (*1 *2 *1) (-12 (-5 *2 (-578 (-156 (-110)))) (-5 *1 (-111)))) (-1310 (*1 *2 *1) (-12 (-5 *2 (-578 (-156 (-110)))) (-5 *1 (-111))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3411 (($) 17 T CONST)) (-1789 (($) NIL (|has| (-115) (-313)) ELT)) (-3217 (($ $ $) 19 T ELT) (($ $ (-115)) NIL T ELT) (($ (-115) $) NIL T ELT)) (-3219 (($ $ $) NIL T ELT)) (-3218 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) NIL (|has| (-115) (-313)) ELT)) (-3222 (($) NIL T ELT) (($ (-578 (-115))) NIL T ELT)) (-1557 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3708 (($) NIL T CONST)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-115) (-1005))) ELT)) (-3389 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-115) $) 55 (|has| $ (-6 -3979)) ELT)) (-3390 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-115) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-115) (-1005))) ELT)) (-3826 (((-115) (-1 (-115) (-115) (-115)) $) NIL (|has| $ (-6 -3979)) ELT) (((-115) (-1 (-115) (-115) (-115)) $ (-115)) NIL (|has| $ (-6 -3979)) ELT) (((-115) (-1 (-115) (-115) (-115)) $ (-115) (-115)) NIL (-12 (|has| $ (-6 -3979)) (|has| (-115) (-1005))) ELT)) (-2978 (($) NIL (|has| (-115) (-313)) ELT)) (-2873 (((-578 (-115)) $) 64 (|has| $ (-6 -3979)) ELT)) (-3224 (((-83) $ $) NIL T ELT)) (-2515 (((-115) $) NIL (|has| (-115) (-749)) ELT)) (-2592 (((-578 (-115)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-115) $) 27 (-12 (|has| $ (-6 -3979)) (|has| (-115) (-1005))) ELT)) (-2841 (((-115) $) NIL (|has| (-115) (-749)) ELT)) (-1936 (($ (-1 (-115) (-115)) $) 63 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-115) (-115)) $) 59 T ELT)) (-3413 (($) 18 T CONST)) (-1996 (((-823) $) NIL (|has| (-115) (-313)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3221 (($ $ $) 30 T ELT)) (-1262 (((-115) $) 56 T ELT)) (-3593 (($ (-115) $) 54 T ELT)) (-2386 (($ (-823)) NIL (|has| (-115) (-313)) ELT)) (-1315 (($) 16 T CONST)) (-3226 (((-1023) $) NIL T ELT)) (-1341 (((-3 (-115) "failed") (-1 (-83) (-115)) $) NIL T ELT)) (-1263 (((-115) $) 57 T ELT)) (-1934 (((-83) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-115)) (-578 (-115))) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1005))) ELT) (($ $ (-115) (-115)) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1005))) ELT) (($ $ (-245 (-115))) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1005))) ELT) (($ $ (-578 (-245 (-115)))) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) 52 T ELT)) (-1316 (($) 15 T CONST)) (-3220 (($ $ $) 32 T ELT) (($ $ (-115)) NIL T ELT)) (-1453 (($ (-578 (-115))) NIL T ELT) (($) NIL T ELT)) (-1933 (((-687) (-115) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-115) (-1005))) ELT) (((-687) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-1062) $) 37 T ELT) (((-467) $) NIL (|has| (-115) (-548 (-467))) ELT) (((-578 (-115)) $) 35 T ELT)) (-3514 (($ (-578 (-115))) NIL T ELT)) (-1790 (($ $) 33 (|has| (-115) (-313)) ELT)) (-3930 (((-765) $) 49 T ELT)) (-1317 (($ (-1062)) 14 T ELT) (($ (-578 (-115))) 46 T ELT)) (-1791 (((-687) $) NIL T ELT)) (-3223 (($) 53 T ELT) (($ (-578 (-115))) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1264 (($ (-578 (-115))) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3979)) ELT)) (-1313 (($) 21 T CONST)) (-1314 (($) 20 T CONST)) (-3037 (((-83) $ $) 24 T ELT)) (-3941 (((-687) $) 51 (|has| $ (-6 -3979)) ELT))) +(((-112) (-13 (-1005) (-548 (-1062)) (-362 (-115)) (-548 (-578 (-115))) (-10 -8 (-15 -1317 ($ (-1062))) (-15 -1317 ($ (-578 (-115)))) (-15 -1316 ($) -3936) (-15 -1315 ($) -3936) (-15 -3411 ($) -3936) (-15 -3413 ($) -3936) (-15 -1314 ($) -3936) (-15 -1313 ($) -3936)))) (T -112)) +((-1317 (*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-112)))) (-1317 (*1 *1 *2) (-12 (-5 *2 (-578 (-115))) (-5 *1 (-112)))) (-1316 (*1 *1) (-5 *1 (-112))) (-1315 (*1 *1) (-5 *1 (-112))) (-3411 (*1 *1) (-5 *1 (-112))) (-3413 (*1 *1) (-5 *1 (-112))) (-1314 (*1 *1) (-5 *1 (-112))) (-1313 (*1 *1) (-5 *1 (-112)))) +((-3725 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3723 ((|#1| |#3|) 9 T ELT)) (-3724 ((|#3| |#3|) 15 T ELT))) +(((-113 |#1| |#2| |#3|) (-10 -7 (-15 -3723 (|#1| |#3|)) (-15 -3724 (|#3| |#3|)) (-15 -3725 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-489) (-897 |#1|) (-317 |#2|)) (T -113)) +((-3725 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-897 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-113 *4 *5 *3)) (-4 *3 (-317 *5)))) (-3724 (*1 *2 *2) (-12 (-4 *3 (-489)) (-4 *4 (-897 *3)) (-5 *1 (-113 *3 *4 *2)) (-4 *2 (-317 *4)))) (-3723 (*1 *2 *3) (-12 (-4 *4 (-897 *2)) (-4 *2 (-489)) (-5 *1 (-113 *2 *4 *3)) (-4 *3 (-317 *4))))) +((-1356 (($ $ $) 8 T ELT)) (-1354 (($ $) 7 T ELT)) (-3085 (($ $ $) 6 T ELT))) +(((-114) (-111)) (T -114)) +((-1356 (*1 *1 *1 *1) (-4 *1 (-114))) (-1354 (*1 *1 *1) (-4 *1 (-114))) (-3085 (*1 *1 *1 *1) (-4 *1 (-114)))) +(-13 (-10 -8 (-15 -3085 ($ $ $)) (-15 -1354 ($ $)) (-15 -1356 ($ $ $)))) +((-2552 (((-83) $ $) NIL T ELT)) (-1325 (($) 30 T CONST)) (-1320 (((-83) $) 42 T ELT)) (-3411 (($ $) 52 T ELT)) (-1332 (($) 23 T CONST)) (-1505 (($) 21 T CONST)) (-3119 (((-687)) 13 T ELT)) (-2978 (($) 20 T ELT)) (-2563 (($) 22 T CONST)) (-1334 (((-687) $) 17 T ELT)) (-1331 (($) 24 T CONST)) (-2515 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2841 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1319 (((-83) $) 44 T ELT)) (-3413 (($ $) 53 T ELT)) (-1996 (((-823) $) 18 T ELT)) (-1329 (($) 26 T CONST)) (-3225 (((-1062) $) 50 T ELT)) (-2386 (($ (-823)) 16 T ELT)) (-1326 (($) 29 T CONST)) (-1322 (((-83) $) 40 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1328 (($) 27 T CONST)) (-1324 (($) 31 T CONST)) (-1323 (((-83) $) 38 T ELT)) (-3930 (((-765) $) 33 T ELT)) (-1333 (($ (-687)) 14 T ELT) (($ (-1062)) 51 T ELT)) (-1330 (($) 25 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-1327 (($) 28 T CONST)) (-1318 (((-83) $) 48 T ELT)) (-1321 (((-83) $) 46 T ELT)) (-2550 (((-83) $ $) 11 T ELT)) (-2551 (((-83) $ $) 9 T ELT)) (-3037 (((-83) $ $) 7 T ELT)) (-2668 (((-83) $ $) 10 T ELT)) (-2669 (((-83) $ $) 8 T ELT))) +(((-115) (-13 (-745) (-10 -8 (-15 -1334 ((-687) $)) (-15 -1333 ($ (-687))) (-15 -1333 ($ (-1062))) (-15 -1505 ($) -3936) (-15 -2563 ($) -3936) (-15 -1332 ($) -3936) (-15 -1331 ($) -3936) (-15 -1330 ($) -3936) (-15 -1329 ($) -3936) (-15 -1328 ($) -3936) (-15 -1327 ($) -3936) (-15 -1326 ($) -3936) (-15 -1325 ($) -3936) (-15 -1324 ($) -3936) (-15 -3411 ($ $)) (-15 -3413 ($ $)) (-15 -1323 ((-83) $)) (-15 -1322 ((-83) $)) (-15 -1321 ((-83) $)) (-15 -1320 ((-83) $)) (-15 -1319 ((-83) $)) (-15 -1318 ((-83) $))))) (T -115)) +((-1334 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-115)))) (-1333 (*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-115)))) (-1333 (*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-115)))) (-1505 (*1 *1) (-5 *1 (-115))) (-2563 (*1 *1) (-5 *1 (-115))) (-1332 (*1 *1) (-5 *1 (-115))) (-1331 (*1 *1) (-5 *1 (-115))) (-1330 (*1 *1) (-5 *1 (-115))) (-1329 (*1 *1) (-5 *1 (-115))) (-1328 (*1 *1) (-5 *1 (-115))) (-1327 (*1 *1) (-5 *1 (-115))) (-1326 (*1 *1) (-5 *1 (-115))) (-1325 (*1 *1) (-5 *1 (-115))) (-1324 (*1 *1) (-5 *1 (-115))) (-3411 (*1 *1 *1) (-5 *1 (-115))) (-3413 (*1 *1 *1) (-5 *1 (-115))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1320 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT)) (-2686 (((-627 $) $) 44 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-116) (-111)) (T -116)) +((-2686 (*1 *2 *1) (-12 (-5 *2 (-627 *1)) (-4 *1 (-116))))) +(-13 (-954) (-10 -8 (-15 -2686 ((-627 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-658) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2433 ((|#1| (-625 |#1|) |#1|) 19 T ELT))) +(((-117 |#1|) (-10 -7 (-15 -2433 (|#1| (-625 |#1|) |#1|))) (-144)) (T -117)) +((-2433 (*1 *2 *3 *2) (-12 (-5 *3 (-625 *2)) (-4 *2 (-144)) (-5 *1 (-117 *2))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-118) (-111)) (T -118)) +NIL +(-13 (-954)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-658) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-1337 (((-2 (|:| -2387 (-687)) (|:| -3938 (-343 |#2|)) (|:| |radicand| |#2|)) (-343 |#2|) (-687)) 76 T ELT)) (-1336 (((-3 (-2 (|:| |radicand| (-343 |#2|)) (|:| |deg| (-687))) "failed") |#3|) 56 T ELT)) (-1335 (((-2 (|:| -3938 (-343 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1338 ((|#1| |#3| |#3|) 44 T ELT)) (-3752 ((|#3| |#3| (-343 |#2|) (-343 |#2|)) 20 T ELT)) (-1339 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-343 |#2|)) (|:| |c2| (-343 |#2|)) (|:| |deg| (-687))) |#3| |#3|) 53 T ELT))) +(((-119 |#1| |#2| |#3|) (-10 -7 (-15 -1335 ((-2 (|:| -3938 (-343 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1336 ((-3 (-2 (|:| |radicand| (-343 |#2|)) (|:| |deg| (-687))) "failed") |#3|)) (-15 -1337 ((-2 (|:| -2387 (-687)) (|:| -3938 (-343 |#2|)) (|:| |radicand| |#2|)) (-343 |#2|) (-687))) (-15 -1338 (|#1| |#3| |#3|)) (-15 -3752 (|#3| |#3| (-343 |#2|) (-343 |#2|))) (-15 -1339 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-343 |#2|)) (|:| |c2| (-343 |#2|)) (|:| |deg| (-687))) |#3| |#3|))) (-1123) (-1144 |#1|) (-1144 (-343 |#2|))) (T -119)) +((-1339 (*1 *2 *3 *3) (-12 (-4 *4 (-1123)) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-343 *5)) (|:| |c2| (-343 *5)) (|:| |deg| (-687)))) (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1144 (-343 *5))))) (-3752 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-343 *5)) (-4 *4 (-1123)) (-4 *5 (-1144 *4)) (-5 *1 (-119 *4 *5 *2)) (-4 *2 (-1144 *3)))) (-1338 (*1 *2 *3 *3) (-12 (-4 *4 (-1144 *2)) (-4 *2 (-1123)) (-5 *1 (-119 *2 *4 *3)) (-4 *3 (-1144 (-343 *4))))) (-1337 (*1 *2 *3 *4) (-12 (-5 *3 (-343 *6)) (-4 *5 (-1123)) (-4 *6 (-1144 *5)) (-5 *2 (-2 (|:| -2387 (-687)) (|:| -3938 *3) (|:| |radicand| *6))) (-5 *1 (-119 *5 *6 *7)) (-5 *4 (-687)) (-4 *7 (-1144 *3)))) (-1336 (*1 *2 *3) (|partial| -12 (-4 *4 (-1123)) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| |radicand| (-343 *5)) (|:| |deg| (-687)))) (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1144 (-343 *5))))) (-1335 (*1 *2 *3) (-12 (-4 *4 (-1123)) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| -3938 (-343 *5)) (|:| |poly| *3))) (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1144 (-343 *5)))))) +((-2688 (((-3 (-578 (-1074 |#2|)) "failed") (-578 (-1074 |#2|)) (-1074 |#2|)) 35 T ELT))) +(((-120 |#1| |#2|) (-10 -7 (-15 -2688 ((-3 (-578 (-1074 |#2|)) "failed") (-578 (-1074 |#2|)) (-1074 |#2|)))) (-477) (-137 |#1|)) (T -120)) +((-2688 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1074 *5))) (-5 *3 (-1074 *5)) (-4 *5 (-137 *4)) (-4 *4 (-477)) (-5 *1 (-120 *4 *5))))) +((-3694 (($ (-1 (-83) |#2|) $) 37 T ELT)) (-1340 (($ $) 44 T ELT)) (-3390 (($ (-1 (-83) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-3826 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1341 (((-3 |#2| "failed") (-1 (-83) |#2|) $) 27 T ELT)) (-1934 (((-83) (-1 (-83) |#2|) $) 24 T ELT)) (-1933 (((-687) (-1 (-83) |#2|) $) 18 T ELT) (((-687) |#2| $) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) 21 T ELT)) (-3941 (((-687) $) 12 T ELT))) +(((-121 |#1| |#2|) (-10 -7 (-15 -1340 (|#1| |#1|)) (-15 -3390 (|#1| |#2| |#1|)) (-15 -3826 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3694 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3390 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3826 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3826 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1341 ((-3 |#2| "failed") (-1 (-83) |#2|) |#1|)) (-15 -1933 ((-687) |#2| |#1|)) (-15 -1933 ((-687) (-1 (-83) |#2|) |#1|)) (-15 -1934 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1935 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -3941 ((-687) |#1|))) (-122 |#2|) (-1118)) (T -121)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) 48 (|has| $ (-6 -3979)) ELT)) (-3708 (($) 7 T CONST)) (-1340 (($ $) 45 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3390 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3979)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 52 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 44 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 53 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-122 |#1|) (-111) (-1118)) (T -122)) +((-3514 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1118)) (-4 *1 (-122 *3)))) (-1341 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-83) *2)) (-4 *1 (-122 *2)) (-4 *2 (-1118)))) (-3826 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3979)) (-4 *1 (-122 *2)) (-4 *2 (-1118)))) (-3826 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3979)) (-4 *1 (-122 *2)) (-4 *2 (-1118)))) (-3390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3979)) (-4 *1 (-122 *3)) (-4 *3 (-1118)))) (-3694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3979)) (-4 *1 (-122 *3)) (-4 *3 (-1118)))) (-3826 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1005)) (|has| *1 (-6 -3979)) (-4 *1 (-122 *2)) (-4 *2 (-1118)))) (-3390 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-122 *2)) (-4 *2 (-1118)) (-4 *2 (-1005)))) (-1340 (*1 *1 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-122 *2)) (-4 *2 (-1118)) (-4 *2 (-1005))))) +(-13 (-422 |t#1|) (-10 -8 (-15 -3514 ($ (-578 |t#1|))) (-15 -1341 ((-3 |t#1| "failed") (-1 (-83) |t#1|) $)) (IF (|has| $ (-6 -3979)) (PROGN (-15 -3826 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3826 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3390 ($ (-1 (-83) |t#1|) $)) (-15 -3694 ($ (-1 (-83) |t#1|) $)) (IF (|has| |t#1| (-1005)) (PROGN (-15 -3826 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3390 ($ |t#1| $)) (-15 -1340 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3451 (((-3 $ #1#) $) 112 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2877 (($ |#2| (-578 (-823))) 71 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1342 (($ (-823)) 57 T ELT)) (-3895 (((-105)) 23 T ELT)) (-3930 (((-765) $) 87 T ELT) (($ (-478)) 53 T ELT) (($ |#2|) 54 T ELT)) (-3661 ((|#2| $ (-578 (-823))) 74 T ELT)) (-3109 (((-687)) 20 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 47 T CONST)) (-2650 (($) 51 T CONST)) (-3037 (((-83) $ $) 33 T ELT)) (-3933 (($ $ |#2|) NIL T ELT)) (-3821 (($ $) 42 T ELT) (($ $ $) 40 T ELT)) (-3823 (($ $ $) 38 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 44 T ELT) (($ $ $) 63 T ELT) (($ |#2| $) 46 T ELT) (($ $ |#2|) NIL T ELT))) +(((-123 |#1| |#2| |#3|) (-13 (-954) (-38 |#2|) (-1176 |#2|) (-10 -8 (-15 -1342 ($ (-823))) (-15 -2877 ($ |#2| (-578 (-823)))) (-15 -3661 (|#2| $ (-578 (-823)))) (-15 -3451 ((-3 $ "failed") $)))) (-823) (-308) (-899 |#1| |#2|)) (T -123)) +((-3451 (*1 *1 *1) (|partial| -12 (-5 *1 (-123 *2 *3 *4)) (-14 *2 (-823)) (-4 *3 (-308)) (-14 *4 (-899 *2 *3)))) (-1342 (*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-123 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-308)) (-14 *5 (-899 *3 *4)))) (-2877 (*1 *1 *2 *3) (-12 (-5 *3 (-578 (-823))) (-5 *1 (-123 *4 *2 *5)) (-14 *4 (-823)) (-4 *2 (-308)) (-14 *5 (-899 *4 *2)))) (-3661 (*1 *2 *1 *3) (-12 (-5 *3 (-578 (-823))) (-4 *2 (-308)) (-5 *1 (-123 *4 *2 *5)) (-14 *4 (-823)) (-14 *5 (-899 *4 *2))))) +((-1344 (((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177)))) (-578 (-578 (-847 (-177)))) (-177) (-177) (-177) (-177)) 59 T ELT)) (-1343 (((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177)))) (-829) (-343 (-478)) (-343 (-478))) 95 T ELT) (((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177)))) (-829)) 96 T ELT)) (-1497 (((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177)))) (-578 (-578 (-847 (-177))))) 99 T ELT) (((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177)))) (-578 (-847 (-177)))) 98 T ELT) (((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177)))) (-829) (-343 (-478)) (-343 (-478))) 89 T ELT) (((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177)))) (-829)) 90 T ELT))) +(((-124) (-10 -7 (-15 -1497 ((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177)))) (-829))) (-15 -1497 ((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177)))) (-829) (-343 (-478)) (-343 (-478)))) (-15 -1343 ((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177)))) (-829))) (-15 -1343 ((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177)))) (-829) (-343 (-478)) (-343 (-478)))) (-15 -1344 ((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177)))) (-578 (-578 (-847 (-177)))) (-177) (-177) (-177) (-177))) (-15 -1497 ((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177)))) (-578 (-847 (-177))))) (-15 -1497 ((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177)))) (-578 (-578 (-847 (-177)))))))) (T -124)) +((-1497 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177))))) (-5 *1 (-124)) (-5 *3 (-578 (-578 (-847 (-177))))))) (-1497 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177))))) (-5 *1 (-124)) (-5 *3 (-578 (-847 (-177)))))) (-1344 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-177)) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-847 *4)))) (|:| |xValues| (-993 *4)) (|:| |yValues| (-993 *4)))) (-5 *1 (-124)) (-5 *3 (-578 (-578 (-847 *4)))))) (-1343 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-829)) (-5 *4 (-343 (-478))) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177))))) (-5 *1 (-124)))) (-1343 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177))))) (-5 *1 (-124)))) (-1497 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-829)) (-5 *4 (-343 (-478))) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177))))) (-5 *1 (-124)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) (|:| |yValues| (-993 (-177))))) (-5 *1 (-124))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3164 (((-578 (-1038)) $) 20 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 27 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-3216 (((-1038) $) 9 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-125) (-13 (-987) (-10 -8 (-15 -3164 ((-578 (-1038)) $)) (-15 -3216 ((-1038) $))))) (T -125)) +((-3164 (*1 *2 *1) (-12 (-5 *2 (-578 (-1038))) (-5 *1 (-125)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-125))))) +((-1397 (((-578 (-140 |#2|)) |#1| |#2|) 50 T ELT))) +(((-126 |#1| |#2|) (-10 -7 (-15 -1397 ((-578 (-140 |#2|)) |#1| |#2|))) (-1144 (-140 (-478))) (-13 (-308) (-748))) (T -126)) +((-1397 (*1 *2 *3 *4) (-12 (-5 *2 (-578 (-140 *4))) (-5 *1 (-126 *3 *4)) (-4 *3 (-1144 (-140 (-478)))) (-4 *4 (-13 (-308) (-748)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3512 (((-1119) $) 12 T ELT)) (-3513 (((-1038) $) 9 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 19 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-127) (-13 (-987) (-10 -8 (-15 -3513 ((-1038) $)) (-15 -3512 ((-1119) $))))) (T -127)) +((-3513 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-127)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-127))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1346 (($) 38 T ELT)) (-3082 (($) 37 T ELT)) (-1345 (((-823)) 43 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2940 (((-478) $) 41 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3081 (($) 39 T ELT)) (-2939 (($ (-478)) 44 T ELT)) (-3930 (((-765) $) 50 T ELT)) (-3080 (($) 40 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 35 T ELT)) (-3823 (($ $ $) 32 T ELT)) (* (($ (-823) $) 42 T ELT) (($ (-177) $) 11 T ELT))) +(((-128) (-13 (-25) (-10 -8 (-15 * ($ (-823) $)) (-15 * ($ (-177) $)) (-15 -3823 ($ $ $)) (-15 -3082 ($)) (-15 -1346 ($)) (-15 -3081 ($)) (-15 -3080 ($)) (-15 -2940 ((-478) $)) (-15 -1345 ((-823))) (-15 -2939 ($ (-478)))))) (T -128)) +((-3823 (*1 *1 *1 *1) (-5 *1 (-128))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-128)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-128)))) (-3082 (*1 *1) (-5 *1 (-128))) (-1346 (*1 *1) (-5 *1 (-128))) (-3081 (*1 *1) (-5 *1 (-128))) (-3080 (*1 *1) (-5 *1 (-128))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-128)))) (-1345 (*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-128)))) (-2939 (*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-128))))) +((-1359 ((|#2| |#2| (-996 |#2|)) 98 T ELT) ((|#2| |#2| (-1079)) 75 T ELT)) (-3928 ((|#2| |#2| (-996 |#2|)) 97 T ELT) ((|#2| |#2| (-1079)) 74 T ELT)) (-1356 ((|#2| |#2| |#2|) 25 T ELT)) (-3579 (((-84) (-84)) 111 T ELT)) (-1353 ((|#2| (-578 |#2|)) 130 T ELT)) (-1350 ((|#2| (-578 |#2|)) 150 T ELT)) (-1349 ((|#2| (-578 |#2|)) 138 T ELT)) (-1347 ((|#2| |#2|) 136 T ELT)) (-1351 ((|#2| (-578 |#2|)) 124 T ELT)) (-1352 ((|#2| (-578 |#2|)) 125 T ELT)) (-1348 ((|#2| (-578 |#2|)) 148 T ELT)) (-1360 ((|#2| |#2| (-1079)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1354 ((|#2| |#2|) 21 T ELT)) (-3085 ((|#2| |#2| |#2|) 24 T ELT)) (-2240 (((-83) (-84)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) +(((-129 |#1| |#2|) (-10 -7 (-15 -2240 ((-83) (-84))) (-15 -3579 ((-84) (-84))) (-15 ** (|#2| |#2| |#2|)) (-15 -3085 (|#2| |#2| |#2|)) (-15 -1356 (|#2| |#2| |#2|)) (-15 -1354 (|#2| |#2|)) (-15 -1360 (|#2| |#2|)) (-15 -1360 (|#2| |#2| (-1079))) (-15 -1359 (|#2| |#2| (-1079))) (-15 -1359 (|#2| |#2| (-996 |#2|))) (-15 -3928 (|#2| |#2| (-1079))) (-15 -3928 (|#2| |#2| (-996 |#2|))) (-15 -1347 (|#2| |#2|)) (-15 -1348 (|#2| (-578 |#2|))) (-15 -1349 (|#2| (-578 |#2|))) (-15 -1350 (|#2| (-578 |#2|))) (-15 -1351 (|#2| (-578 |#2|))) (-15 -1352 (|#2| (-578 |#2|))) (-15 -1353 (|#2| (-578 |#2|)))) (-489) (-357 |#1|)) (T -129)) +((-1353 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-489)))) (-1352 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-489)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-489)))) (-1350 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-489)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-489)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-489)))) (-1347 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) (-3928 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-357 *4)) (-4 *4 (-489)) (-5 *1 (-129 *4 *2)))) (-3928 (*1 *2 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-489)) (-5 *1 (-129 *4 *2)) (-4 *2 (-357 *4)))) (-1359 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-357 *4)) (-4 *4 (-489)) (-5 *1 (-129 *4 *2)))) (-1359 (*1 *2 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-489)) (-5 *1 (-129 *4 *2)) (-4 *2 (-357 *4)))) (-1360 (*1 *2 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-489)) (-5 *1 (-129 *4 *2)) (-4 *2 (-357 *4)))) (-1360 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) (-1354 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) (-1356 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) (-3085 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) (-3579 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-129 *3 *4)) (-4 *4 (-357 *3)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-129 *4 *5)) (-4 *5 (-357 *4))))) +((-1358 ((|#1| |#1| |#1|) 66 T ELT)) (-1357 ((|#1| |#1| |#1|) 63 T ELT)) (-1356 ((|#1| |#1| |#1|) 57 T ELT)) (-2874 ((|#1| |#1|) 43 T ELT)) (-1355 ((|#1| |#1| (-578 |#1|)) 55 T ELT)) (-1354 ((|#1| |#1|) 47 T ELT)) (-3085 ((|#1| |#1| |#1|) 51 T ELT))) +(((-130 |#1|) (-10 -7 (-15 -3085 (|#1| |#1| |#1|)) (-15 -1354 (|#1| |#1|)) (-15 -1355 (|#1| |#1| (-578 |#1|))) (-15 -2874 (|#1| |#1|)) (-15 -1356 (|#1| |#1| |#1|)) (-15 -1357 (|#1| |#1| |#1|)) (-15 -1358 (|#1| |#1| |#1|))) (-477)) (T -130)) +((-1358 (*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477)))) (-1357 (*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477)))) (-1356 (*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477)))) (-2874 (*1 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477)))) (-1355 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-477)) (-5 *1 (-130 *2)))) (-1354 (*1 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477)))) (-3085 (*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477))))) +((-1359 (($ $ (-1079)) 12 T ELT) (($ $ (-996 $)) 11 T ELT)) (-3928 (($ $ (-1079)) 10 T ELT) (($ $ (-996 $)) 9 T ELT)) (-1356 (($ $ $) 8 T ELT)) (-1360 (($ $) 14 T ELT) (($ $ (-1079)) 13 T ELT)) (-1354 (($ $) 7 T ELT)) (-3085 (($ $ $) 6 T ELT))) +(((-131) (-111)) (T -131)) +((-1360 (*1 *1 *1) (-4 *1 (-131))) (-1360 (*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1079)))) (-1359 (*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1079)))) (-1359 (*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-131)))) (-3928 (*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1079)))) (-3928 (*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-131))))) +(-13 (-114) (-10 -8 (-15 -1360 ($ $)) (-15 -1360 ($ $ (-1079))) (-15 -1359 ($ $ (-1079))) (-15 -1359 ($ $ (-996 $))) (-15 -3928 ($ $ (-1079))) (-15 -3928 ($ $ (-996 $))))) +(((-114) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-1361 (($ (-478)) 15 T ELT) (($ $ $) 16 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 19 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 11 T ELT))) +(((-132) (-13 (-1005) (-10 -8 (-15 -1361 ($ (-478))) (-15 -1361 ($ $ $))))) (T -132)) +((-1361 (*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-132)))) (-1361 (*1 *1 *1 *1) (-5 *1 (-132)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 16 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-3216 (((-578 (-1038)) $) 10 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-133) (-13 (-987) (-10 -8 (-15 -3216 ((-578 (-1038)) $))))) (T -133)) +((-3216 (*1 *2 *1) (-12 (-5 *2 (-578 (-1038))) (-5 *1 (-133))))) +((-3579 (((-84) (-1079)) 103 T ELT))) +(((-134) (-10 -7 (-15 -3579 ((-84) (-1079))))) (T -134)) +((-3579 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-84)) (-5 *1 (-134))))) +((-1582 ((|#3| |#3|) 19 T ELT))) +(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -1582 (|#3| |#3|))) (-954) (-1144 |#1|) (-1144 |#2|)) (T -135)) +((-1582 (*1 *2 *2) (-12 (-4 *3 (-954)) (-4 *4 (-1144 *3)) (-5 *1 (-135 *3 *4 *2)) (-4 *2 (-1144 *4))))) +((-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 222 T ELT)) (-3314 ((|#2| $) 102 T ELT)) (-3476 (($ $) 255 T ELT)) (-3623 (($ $) 249 T ELT)) (-2688 (((-3 (-578 (-1074 $)) #1="failed") (-578 (-1074 $)) (-1074 $)) 47 T ELT)) (-3474 (($ $) 253 T ELT)) (-3622 (($ $) 247 T ELT)) (-3140 (((-3 (-478) #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3139 (((-478) $) NIL T ELT) (((-343 (-478)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2548 (($ $ $) 228 T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL T ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL T ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) 160 T ELT) (((-625 |#2|) (-625 $)) 154 T ELT)) (-3826 (($ (-1074 |#2|)) 125 T ELT) (((-3 $ #1#) (-343 (-1074 |#2|))) NIL T ELT)) (-3451 (((-3 $ #1#) $) 213 T ELT)) (-3008 (((-3 (-343 (-478)) #1#) $) 203 T ELT)) (-3007 (((-83) $) 198 T ELT)) (-3006 (((-343 (-478)) $) 201 T ELT)) (-3092 (((-823)) 96 T ELT)) (-2547 (($ $ $) 230 T ELT)) (-1362 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3611 (($) 244 T ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 192 T ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 197 T ELT)) (-3115 ((|#2| $) 100 T ELT)) (-2000 (((-1074 |#2|) $) 127 T ELT)) (-3942 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3926 (($ $) 246 T ELT)) (-3063 (((-1074 |#2|) $) 126 T ELT)) (-2468 (($ $) 206 T ELT)) (-1364 (($) 103 T ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) 95 T ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) 64 T ELT)) (-3450 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3927 (($ $) 245 T ELT)) (-1594 (((-687) $) 225 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 234 T ELT)) (-3741 ((|#2| (-1168 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3742 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079))) NIL T ELT) (($ $ (-1079)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $) NIL T ELT)) (-3168 (((-1074 |#2|)) 120 T ELT)) (-3475 (($ $) 254 T ELT)) (-3618 (($ $) 248 T ELT)) (-3207 (((-1168 |#2|) $ (-1168 $)) 136 T ELT) (((-625 |#2|) (-1168 $) (-1168 $)) NIL T ELT) (((-1168 |#2|) $) 116 T ELT) (((-625 |#2|) (-1168 $)) NIL T ELT)) (-3956 (((-1168 |#2|) $) NIL T ELT) (($ (-1168 |#2|)) NIL T ELT) (((-1074 |#2|) $) NIL T ELT) (($ (-1074 |#2|)) NIL T ELT) (((-793 (-478)) $) 183 T ELT) (((-793 (-323)) $) 187 T ELT) (((-140 (-323)) $) 172 T ELT) (((-140 (-177)) $) 167 T ELT) (((-467) $) 179 T ELT)) (-2993 (($ $) 104 T ELT)) (-3930 (((-765) $) 143 T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ $) NIL T ELT)) (-2433 (((-1074 |#2|) $) 32 T ELT)) (-3109 (((-687)) 106 T ELT)) (-1253 (((-83) $ $) 13 T ELT)) (-3482 (($ $) 258 T ELT)) (-3470 (($ $) 252 T ELT)) (-3480 (($ $) 256 T ELT)) (-3468 (($ $) 250 T ELT)) (-2222 ((|#2| $) 241 T ELT)) (-3481 (($ $) 257 T ELT)) (-3469 (($ $) 251 T ELT)) (-3367 (($ $) 162 T ELT)) (-3037 (((-83) $ $) 110 T ELT)) (-3821 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 111 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-343 (-478))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT))) +(((-136 |#1| |#2|) (-10 -7 (-15 -3742 (|#1| |#1|)) (-15 -3742 (|#1| |#1| (-687))) (-15 -3742 (|#1| |#1| (-1079))) (-15 -3742 (|#1| |#1| (-578 (-1079)))) (-15 -3742 (|#1| |#1| (-1079) (-687))) (-15 -3742 (|#1| |#1| (-578 (-1079)) (-578 (-687)))) (-15 -3930 (|#1| |#1|)) (-15 -3450 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2050 ((-2 (|:| -1759 |#1|) (|:| -3966 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1594 ((-687) |#1|)) (-15 -2863 ((-2 (|:| -1960 |#1|) (|:| -2886 |#1|)) |#1| |#1|)) (-15 -2547 (|#1| |#1| |#1|)) (-15 -2548 (|#1| |#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 ** (|#1| |#1| (-478))) (-15 * (|#1| |#1| (-343 (-478)))) (-15 * (|#1| (-343 (-478)) |#1|)) (-15 -3930 (|#1| (-343 (-478)))) (-15 -3956 ((-467) |#1|)) (-15 -3956 ((-140 (-177)) |#1|)) (-15 -3956 ((-140 (-323)) |#1|)) (-15 -3623 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -3618 (|#1| |#1|)) (-15 -3469 (|#1| |#1|)) (-15 -3468 (|#1| |#1|)) (-15 -3470 (|#1| |#1|)) (-15 -3475 (|#1| |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -3481 (|#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3927 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3611 (|#1|)) (-15 ** (|#1| |#1| (-343 (-478)))) (-15 -2690 ((-341 (-1074 |#1|)) (-1074 |#1|))) (-15 -2689 ((-341 (-1074 |#1|)) (-1074 |#1|))) (-15 -2688 ((-3 (-578 (-1074 |#1|)) #1#) (-578 (-1074 |#1|)) (-1074 |#1|))) (-15 -3008 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3006 ((-343 (-478)) |#1|)) (-15 -3007 ((-83) |#1|)) (-15 -1362 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2222 (|#2| |#1|)) (-15 -3367 (|#1| |#1|)) (-15 -3450 ((-3 |#1| #1#) |#1| |#2|)) (-15 -2993 (|#1| |#1|)) (-15 -1364 (|#1|)) (-15 -3956 ((-793 (-323)) |#1|)) (-15 -3956 ((-793 (-478)) |#1|)) (-15 -2780 ((-791 (-323) |#1|) |#1| (-793 (-323)) (-791 (-323) |#1|))) (-15 -2780 ((-791 (-478) |#1|) |#1| (-793 (-478)) (-791 (-478) |#1|))) (-15 -3942 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3742 (|#1| |#1| (-1 |#2| |#2|) (-687))) (-15 -3742 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3826 ((-3 |#1| #1#) (-343 (-1074 |#2|)))) (-15 -3063 ((-1074 |#2|) |#1|)) (-15 -3956 (|#1| (-1074 |#2|))) (-15 -3826 (|#1| (-1074 |#2|))) (-15 -3168 ((-1074 |#2|))) (-15 -2265 ((-625 |#2|) (-625 |#1|))) (-15 -2265 ((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 |#1|) (-1168 |#1|))) (-15 -2265 ((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 |#1|) (-1168 |#1|))) (-15 -2265 ((-625 (-478)) (-625 |#1|))) (-15 -3140 ((-3 |#2| #1#) |#1|)) (-15 -3139 (|#2| |#1|)) (-15 -3139 ((-343 (-478)) |#1|)) (-15 -3140 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3139 ((-478) |#1|)) (-15 -3140 ((-3 (-478) #1#) |#1|)) (-15 -3956 ((-1074 |#2|) |#1|)) (-15 -3741 (|#2|)) (-15 -3956 (|#1| (-1168 |#2|))) (-15 -3956 ((-1168 |#2|) |#1|)) (-15 -3207 ((-625 |#2|) (-1168 |#1|))) (-15 -3207 ((-1168 |#2|) |#1|)) (-15 -2000 ((-1074 |#2|) |#1|)) (-15 -2433 ((-1074 |#2|) |#1|)) (-15 -3741 (|#2| (-1168 |#1|))) (-15 -3207 ((-625 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -3207 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -3115 (|#2| |#1|)) (-15 -3314 (|#2| |#1|)) (-15 -3092 ((-823))) (-15 -3930 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3109 ((-687))) (-15 -3930 (|#1| (-478))) (-15 ** (|#1| |#1| (-687))) (-15 -3451 ((-3 |#1| #1#) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-823))) (-15 -3821 (|#1| |#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 * (|#1| (-823) |#1|)) (-15 -3823 (|#1| |#1| |#1|)) (-15 -3930 ((-765) |#1|)) (-15 -1253 ((-83) |#1| |#1|)) (-15 -3037 ((-83) |#1| |#1|))) (-137 |#2|) (-144)) (T -136)) +((-3109 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-687)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4)))) (-3092 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-823)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4)))) (-3741 (*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-136 *3 *2)) (-4 *3 (-137 *2)))) (-3168 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-1074 *4)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 111 (OR (|has| |#1| (-489)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT)) (-2049 (($ $) 112 (OR (|has| |#1| (-489)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT)) (-2047 (((-83) $) 114 (OR (|has| |#1| (-489)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT)) (-1769 (((-625 |#1|) (-1168 $)) 58 T ELT) (((-625 |#1|)) 74 T ELT)) (-3314 ((|#1| $) 64 T ELT)) (-3476 (($ $) 247 (|has| |#1| (-1104)) ELT)) (-3623 (($ $) 230 (|has| |#1| (-1104)) ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) 164 (|has| |#1| (-295)) ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) 261 (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) ELT)) (-3759 (($ $) 131 (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-308))) ELT)) (-3955 (((-341 $) $) 132 (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-308))) ELT)) (-3021 (($ $) 260 (-12 (|has| |#1| (-908)) (|has| |#1| (-1104))) ELT)) (-2688 (((-3 (-578 (-1074 $)) "failed") (-578 (-1074 $)) (-1074 $)) 264 (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) ELT)) (-1595 (((-83) $ $) 122 (|has| |#1| (-254)) ELT)) (-3119 (((-687)) 105 (|has| |#1| (-313)) ELT)) (-3474 (($ $) 246 (|has| |#1| (-1104)) ELT)) (-3622 (($ $) 231 (|has| |#1| (-1104)) ELT)) (-3478 (($ $) 245 (|has| |#1| (-1104)) ELT)) (-3621 (($ $) 232 (|has| |#1| (-1104)) ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 (-478) #1="failed") $) 191 (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) 189 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3139 (((-478) $) 190 (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) 188 (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 187 T ELT)) (-1779 (($ (-1168 |#1|) (-1168 $)) 60 T ELT) (($ (-1168 |#1|)) 77 T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-295)) ELT)) (-2548 (($ $ $) 126 (|has| |#1| (-254)) ELT)) (-1768 (((-625 |#1|) $ (-1168 $)) 65 T ELT) (((-625 |#1|) $) 72 T ELT)) (-2265 (((-625 (-478)) (-625 $)) 183 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 182 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) 181 T ELT) (((-625 |#1|) (-625 $)) 180 T ELT)) (-3826 (($ (-1074 |#1|)) 175 T ELT) (((-3 $ "failed") (-343 (-1074 |#1|))) 172 (|has| |#1| (-308)) ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3627 ((|#1| $) 272 T ELT)) (-3008 (((-3 (-343 (-478)) "failed") $) 265 (|has| |#1| (-477)) ELT)) (-3007 (((-83) $) 267 (|has| |#1| (-477)) ELT)) (-3006 (((-343 (-478)) $) 266 (|has| |#1| (-477)) ELT)) (-3092 (((-823)) 66 T ELT)) (-2978 (($) 108 (|has| |#1| (-313)) ELT)) (-2547 (($ $ $) 125 (|has| |#1| (-254)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 120 (|has| |#1| (-254)) ELT)) (-2817 (($) 166 (|has| |#1| (-295)) ELT)) (-1667 (((-83) $) 167 (|has| |#1| (-295)) ELT)) (-1751 (($ $ (-687)) 158 (|has| |#1| (-295)) ELT) (($ $) 157 (|has| |#1| (-295)) ELT)) (-3707 (((-83) $) 133 (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-308))) ELT)) (-1362 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 268 (-12 (|has| |#1| (-965)) (|has| |#1| (-1104))) ELT)) (-3611 (($) 257 (|has| |#1| (-1104)) ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 280 (|has| |#1| (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 279 (|has| |#1| (-789 (-323))) ELT)) (-3756 (((-823) $) 169 (|has| |#1| (-295)) ELT) (((-736 (-823)) $) 155 (|has| |#1| (-295)) ELT)) (-2396 (((-83) $) 40 T ELT)) (-2995 (($ $ (-478)) 259 (-12 (|has| |#1| (-908)) (|has| |#1| (-1104))) ELT)) (-3115 ((|#1| $) 63 T ELT)) (-3429 (((-627 $) $) 159 (|has| |#1| (-295)) ELT)) (-1592 (((-3 (-578 $) #2="failed") (-578 $) $) 129 (|has| |#1| (-254)) ELT)) (-2000 (((-1074 |#1|) $) 56 (|has| |#1| (-308)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 281 T ELT)) (-1996 (((-823) $) 107 (|has| |#1| (-313)) ELT)) (-3926 (($ $) 254 (|has| |#1| (-1104)) ELT)) (-3063 (((-1074 |#1|) $) 173 T ELT)) (-2266 (((-625 (-478)) (-1168 $)) 185 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) 184 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) 179 T ELT) (((-625 |#1|) (-1168 $)) 178 T ELT)) (-1878 (($ (-578 $)) 118 (OR (|has| |#1| (-254)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT) (($ $ $) 117 (OR (|has| |#1| (-254)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 134 (|has| |#1| (-308)) ELT)) (-3430 (($) 160 (|has| |#1| (-295)) CONST)) (-2386 (($ (-823)) 106 (|has| |#1| (-313)) ELT)) (-1364 (($) 276 T ELT)) (-3628 ((|#1| $) 273 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2395 (($) 177 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 119 (OR (|has| |#1| (-254)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT)) (-3127 (($ (-578 $)) 116 (OR (|has| |#1| (-254)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT) (($ $ $) 115 (OR (|has| |#1| (-254)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) 163 (|has| |#1| (-295)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) 263 (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) 262 (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) ELT)) (-3716 (((-341 $) $) 130 (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-308))) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-254)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 127 (|has| |#1| (-254)) ELT)) (-3450 (((-3 $ "failed") $ |#1|) 271 (|has| |#1| (-489)) ELT) (((-3 $ "failed") $ $) 110 (OR (|has| |#1| (-489)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 121 (|has| |#1| (-254)) ELT)) (-3927 (($ $) 255 (|has| |#1| (-1104)) ELT)) (-3752 (($ $ (-578 |#1|) (-578 |#1|)) 287 (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) 286 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) 285 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-245 |#1|))) 284 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-1079)) (-578 |#1|)) 283 (|has| |#1| (-447 (-1079) |#1|)) ELT) (($ $ (-1079) |#1|) 282 (|has| |#1| (-447 (-1079) |#1|)) ELT)) (-1594 (((-687) $) 123 (|has| |#1| (-254)) ELT)) (-3784 (($ $ |#1|) 288 (|has| |#1| (-238 |#1| |#1|)) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 124 (|has| |#1| (-254)) ELT)) (-3741 ((|#1| (-1168 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1752 (((-687) $) 168 (|has| |#1| (-295)) ELT) (((-3 (-687) "failed") $ $) 156 (|has| |#1| (-295)) ELT)) (-3742 (($ $ (-1 |#1| |#1|)) 142 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 141 T ELT) (($ $ (-578 (-1079)) (-578 (-687))) 147 (OR (-2546 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))) (-2546 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-1079) (-687)) 146 (OR (-2546 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))) (-2546 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-578 (-1079))) 145 (OR (-2546 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))) (-2546 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-1079)) 143 (OR (-2546 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))) (-2546 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-687)) 153 (OR (-2546 (|has| |#1| (-308)) (|has| |#1| (-187))) (-2546 (|has| |#1| (-308)) (|has| |#1| (-188))) (|has| |#1| (-187)) (-2546 (|has| |#1| (-187)) (|has| |#1| (-308)))) ELT) (($ $) 151 (OR (-2546 (|has| |#1| (-308)) (|has| |#1| (-187))) (-2546 (|has| |#1| (-308)) (|has| |#1| (-188))) (|has| |#1| (-187)) (-2546 (|has| |#1| (-187)) (|has| |#1| (-308)))) ELT)) (-2394 (((-625 |#1|) (-1168 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-308)) ELT)) (-3168 (((-1074 |#1|)) 176 T ELT)) (-3479 (($ $) 244 (|has| |#1| (-1104)) ELT)) (-3620 (($ $) 233 (|has| |#1| (-1104)) ELT)) (-1661 (($) 165 (|has| |#1| (-295)) ELT)) (-3477 (($ $) 243 (|has| |#1| (-1104)) ELT)) (-3619 (($ $) 234 (|has| |#1| (-1104)) ELT)) (-3475 (($ $) 242 (|has| |#1| (-1104)) ELT)) (-3618 (($ $) 235 (|has| |#1| (-1104)) ELT)) (-3207 (((-1168 |#1|) $ (-1168 $)) 62 T ELT) (((-625 |#1|) (-1168 $) (-1168 $)) 61 T ELT) (((-1168 |#1|) $) 79 T ELT) (((-625 |#1|) (-1168 $)) 78 T ELT)) (-3956 (((-1168 |#1|) $) 76 T ELT) (($ (-1168 |#1|)) 75 T ELT) (((-1074 |#1|) $) 192 T ELT) (($ (-1074 |#1|)) 174 T ELT) (((-793 (-478)) $) 278 (|has| |#1| (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) 277 (|has| |#1| (-548 (-793 (-323)))) ELT) (((-140 (-323)) $) 229 (|has| |#1| (-926)) ELT) (((-140 (-177)) $) 228 (|has| |#1| (-926)) ELT) (((-467) $) 227 (|has| |#1| (-548 (-467))) ELT)) (-2993 (($ $) 275 T ELT)) (-2687 (((-3 (-1168 $) "failed") (-625 $)) 162 (OR (-2546 (|has| $ (-116)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) (|has| |#1| (-295))) ELT)) (-1363 (($ |#1| |#1|) 274 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-343 (-478))) 104 (OR (|has| |#1| (-308)) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) 109 (OR (|has| |#1| (-489)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT)) (-2686 (($ $) 161 (|has| |#1| (-295)) ELT) (((-627 $) $) 55 (OR (-2546 (|has| $ (-116)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) (|has| |#1| (-116))) ELT)) (-2433 (((-1074 |#1|) $) 57 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-1998 (((-1168 $)) 80 T ELT)) (-3482 (($ $) 253 (|has| |#1| (-1104)) ELT)) (-3470 (($ $) 241 (|has| |#1| (-1104)) ELT)) (-2048 (((-83) $ $) 113 (OR (|has| |#1| (-489)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT)) (-3480 (($ $) 252 (|has| |#1| (-1104)) ELT)) (-3468 (($ $) 240 (|has| |#1| (-1104)) ELT)) (-3484 (($ $) 251 (|has| |#1| (-1104)) ELT)) (-3472 (($ $) 239 (|has| |#1| (-1104)) ELT)) (-2222 ((|#1| $) 269 (|has| |#1| (-1104)) ELT)) (-3485 (($ $) 250 (|has| |#1| (-1104)) ELT)) (-3473 (($ $) 238 (|has| |#1| (-1104)) ELT)) (-3483 (($ $) 249 (|has| |#1| (-1104)) ELT)) (-3471 (($ $) 237 (|has| |#1| (-1104)) ELT)) (-3481 (($ $) 248 (|has| |#1| (-1104)) ELT)) (-3469 (($ $) 236 (|has| |#1| (-1104)) ELT)) (-3367 (($ $) 270 (|has| |#1| (-965)) ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-1 |#1| |#1|)) 140 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 139 T ELT) (($ $ (-578 (-1079)) (-578 (-687))) 150 (OR (-2546 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))) (-2546 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-1079) (-687)) 149 (OR (-2546 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))) (-2546 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-578 (-1079))) 148 (OR (-2546 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))) (-2546 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-1079)) 144 (OR (-2546 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))) (-2546 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-687)) 154 (OR (-2546 (|has| |#1| (-308)) (|has| |#1| (-187))) (-2546 (|has| |#1| (-308)) (|has| |#1| (-188))) (|has| |#1| (-187)) (-2546 (|has| |#1| (-187)) (|has| |#1| (-308)))) ELT) (($ $) 152 (OR (-2546 (|has| |#1| (-308)) (|has| |#1| (-187))) (-2546 (|has| |#1| (-308)) (|has| |#1| (-188))) (|has| |#1| (-187)) (-2546 (|has| |#1| (-187)) (|has| |#1| (-308)))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ $) 138 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-343 (-478))) 258 (-12 (|has| |#1| (-908)) (|has| |#1| (-1104))) ELT) (($ $ $) 256 (|has| |#1| (-1104)) ELT) (($ $ (-478)) 135 (|has| |#1| (-308)) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-343 (-478)) $) 137 (|has| |#1| (-308)) ELT) (($ $ (-343 (-478))) 136 (|has| |#1| (-308)) ELT))) +(((-137 |#1|) (-111) (-144)) (T -137)) +((-3115 (*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-1364 (*1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-2993 (*1 *1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-1363 (*1 *1 *2 *2) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-3628 (*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-3627 (*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-3450 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-489)))) (-3367 (*1 *1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-965)))) (-2222 (*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-1104)))) (-1362 (*1 *2 *1) (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-965)) (-4 *3 (-1104)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-83)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-343 (-478))))) (-3008 (*1 *2 *1) (|partial| -12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-343 (-478)))))) +(-13 (-656 |t#1| (-1074 |t#1|)) (-348 |t#1|) (-182 |t#1|) (-284 |t#1|) (-336 |t#1|) (-787 |t#1|) (-322 |t#1|) (-144) (-10 -8 (-6 -1363) (-15 -1364 ($)) (-15 -2993 ($ $)) (-15 -1363 ($ |t#1| |t#1|)) (-15 -3628 (|t#1| $)) (-15 -3627 (|t#1| $)) (-15 -3115 (|t#1| $)) (IF (|has| |t#1| (-489)) (PROGN (-6 (-489)) (-15 -3450 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-254)) (-6 (-254)) |%noBranch|) (IF (|has| |t#1| (-6 -3978)) (-6 -3978) |%noBranch|) (IF (|has| |t#1| (-6 -3975)) (-6 -3975) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|) (IF (|has| |t#1| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-926)) (PROGN (-6 (-548 (-140 (-177)))) (-6 (-548 (-140 (-323))))) |%noBranch|) (IF (|has| |t#1| (-965)) (-15 -3367 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1104)) (PROGN (-6 (-1104)) (-15 -2222 (|t#1| $)) (IF (|has| |t#1| (-908)) (-6 (-908)) |%noBranch|) (IF (|has| |t#1| (-965)) (-15 -1362 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-477)) (PROGN (-15 -3007 ((-83) $)) (-15 -3006 ((-343 (-478)) $)) (-15 -3008 ((-3 (-343 (-478)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-814)) (IF (|has| |t#1| (-254)) (-6 (-814)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-489)) (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-35) |has| |#1| (-1104)) ((-66) |has| |#1| (-1104)) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| |#1| (-295)) (|has| |#1| (-116))) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-295)) (|has| |#1| (-308))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-550 $) OR (|has| |#1| (-489)) (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-547 (-765)) . T) ((-144) . T) ((-548 (-140 (-177))) |has| |#1| (-926)) ((-548 (-140 (-323))) |has| |#1| (-926)) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-548 (-793 (-323))) |has| |#1| (-548 (-793 (-323)))) ((-548 (-793 (-478))) |has| |#1| (-548 (-793 (-478)))) ((-548 (-1074 |#1|)) . T) ((-184 $) OR (|has| |#1| (-295)) (|has| |#1| (-187)) (|has| |#1| (-188))) ((-182 |#1|) . T) ((-188) OR (|has| |#1| (-295)) (|has| |#1| (-188))) ((-187) OR (|has| |#1| (-295)) (|has| |#1| (-187)) (|has| |#1| (-188))) ((-222 |#1|) . T) ((-198) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-236) |has| |#1| (-1104)) ((-238 |#1| $) |has| |#1| (-238 |#1| |#1|)) ((-242) OR (|has| |#1| (-489)) (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-254) OR (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-256 |#1|) |has| |#1| (-256 |#1|)) ((-308) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-338) |has| |#1| (-295)) ((-313) OR (|has| |#1| (-295)) (|has| |#1| (-313))) ((-295) |has| |#1| (-295)) ((-315 |#1| (-1074 |#1|)) . T) ((-346 |#1| (-1074 |#1|)) . T) ((-284 |#1|) . T) ((-322 |#1|) . T) ((-336 |#1|) . T) ((-348 |#1|) . T) ((-385) OR (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-426) |has| |#1| (-1104)) ((-447 (-1079) |#1|) |has| |#1| (-447 (-1079) |#1|)) ((-447 |#1| |#1|) |has| |#1| (-256 |#1|)) ((-489) OR (|has| |#1| (-489)) (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-583 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-585 (-478)) |has| |#1| (-575 (-478))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-577 |#1|) . T) ((-577 $) OR (|has| |#1| (-489)) (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-575 (-478)) |has| |#1| (-575 (-478))) ((-575 |#1|) . T) ((-649 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-649 |#1|) . T) ((-649 $) OR (|has| |#1| (-489)) (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-656 |#1| (-1074 |#1|)) . T) ((-658) . T) ((-799 $ (-1079)) OR (|has| |#1| (-804 (-1079))) (|has| |#1| (-802 (-1079)))) ((-802 (-1079)) |has| |#1| (-802 (-1079))) ((-804 (-1079)) OR (|has| |#1| (-804 (-1079))) (|has| |#1| (-802 (-1079)))) ((-789 (-323)) |has| |#1| (-789 (-323))) ((-789 (-478)) |has| |#1| (-789 (-478))) ((-787 |#1|) . T) ((-814) -12 (|has| |#1| (-254)) (|has| |#1| (-814))) ((-825) OR (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-908) -12 (|has| |#1| (-908)) (|has| |#1| (-1104))) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-956 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-956 |#1|) . T) ((-956 $) . T) ((-961 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-961 |#1|) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1055) |has| |#1| (-295)) ((-1104) |has| |#1| (-1104)) ((-1107) |has| |#1| (-1104)) ((-1118) . T) ((-1123) OR (|has| |#1| (-295)) (|has| |#1| (-308)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814))))) +((-3716 (((-341 |#2|) |#2|) 67 T ELT))) +(((-138 |#1| |#2|) (-10 -7 (-15 -3716 ((-341 |#2|) |#2|))) (-254) (-1144 (-140 |#1|))) (T -138)) +((-3716 (*1 *2 *3) (-12 (-4 *4 (-254)) (-5 *2 (-341 *3)) (-5 *1 (-138 *4 *3)) (-4 *3 (-1144 (-140 *4)))))) +((-1367 (((-1038) (-1038) (-243)) 8 T ELT)) (-1365 (((-578 (-627 (-232))) (-1062)) 81 T ELT)) (-1366 (((-627 (-232)) (-1038)) 76 T ELT))) +(((-139) (-13 (-1118) (-10 -7 (-15 -1367 ((-1038) (-1038) (-243))) (-15 -1366 ((-627 (-232)) (-1038))) (-15 -1365 ((-578 (-627 (-232))) (-1062)))))) (T -139)) +((-1367 (*1 *2 *2 *3) (-12 (-5 *2 (-1038)) (-5 *3 (-243)) (-5 *1 (-139)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-1038)) (-5 *2 (-627 (-232))) (-5 *1 (-139)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-578 (-627 (-232)))) (-5 *1 (-139))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 15 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-489))) ELT)) (-2049 (($ $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-489))) ELT)) (-2047 (((-83) $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-489))) ELT)) (-1769 (((-625 |#1|) (-1168 $)) NIL T ELT) (((-625 |#1|)) NIL T ELT)) (-3314 ((|#1| $) NIL T ELT)) (-3476 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3623 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) NIL (|has| |#1| (-295)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) ELT)) (-3759 (($ $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-308))) ELT)) (-3955 (((-341 $) $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-308))) ELT)) (-3021 (($ $) NIL (-12 (|has| |#1| (-908)) (|has| |#1| (-1104))) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) ELT)) (-1595 (((-83) $ $) NIL (|has| |#1| (-254)) ELT)) (-3119 (((-687)) NIL (|has| |#1| (-313)) ELT)) (-3474 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3622 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3478 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3621 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3139 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT)) (-1779 (($ (-1168 |#1|) (-1168 $)) NIL T ELT) (($ (-1168 |#1|)) NIL T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-295)) ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-254)) ELT)) (-1768 (((-625 |#1|) $ (-1168 $)) NIL T ELT) (((-625 |#1|) $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3826 (($ (-1074 |#1|)) NIL T ELT) (((-3 $ #1#) (-343 (-1074 |#1|))) NIL (|has| |#1| (-308)) ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3627 ((|#1| $) 20 T ELT)) (-3008 (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-477)) ELT)) (-3007 (((-83) $) NIL (|has| |#1| (-477)) ELT)) (-3006 (((-343 (-478)) $) NIL (|has| |#1| (-477)) ELT)) (-3092 (((-823)) NIL T ELT)) (-2978 (($) NIL (|has| |#1| (-313)) ELT)) (-2547 (($ $ $) NIL (|has| |#1| (-254)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| |#1| (-254)) ELT)) (-2817 (($) NIL (|has| |#1| (-295)) ELT)) (-1667 (((-83) $) NIL (|has| |#1| (-295)) ELT)) (-1751 (($ $ (-687)) NIL (|has| |#1| (-295)) ELT) (($ $) NIL (|has| |#1| (-295)) ELT)) (-3707 (((-83) $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-308))) ELT)) (-1362 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-965)) (|has| |#1| (-1104))) ELT)) (-3611 (($) NIL (|has| |#1| (-1104)) ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| |#1| (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| |#1| (-789 (-323))) ELT)) (-3756 (((-823) $) NIL (|has| |#1| (-295)) ELT) (((-736 (-823)) $) NIL (|has| |#1| (-295)) ELT)) (-2396 (((-83) $) 17 T ELT)) (-2995 (($ $ (-478)) NIL (-12 (|has| |#1| (-908)) (|has| |#1| (-1104))) ELT)) (-3115 ((|#1| $) 30 T ELT)) (-3429 (((-627 $) $) NIL (|has| |#1| (-295)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-254)) ELT)) (-2000 (((-1074 |#1|) $) NIL (|has| |#1| (-308)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1996 (((-823) $) NIL (|has| |#1| (-313)) ELT)) (-3926 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3063 (((-1074 |#1|) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) NIL T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-254)) ELT) (($ $ $) NIL (|has| |#1| (-254)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3430 (($) NIL (|has| |#1| (-295)) CONST)) (-2386 (($ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1364 (($) NIL T ELT)) (-3628 ((|#1| $) 21 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2395 (($) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-254)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-254)) ELT) (($ $ $) NIL (|has| |#1| (-254)) ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) NIL (|has| |#1| (-295)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) ELT)) (-3716 (((-341 $) $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-308))) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-254)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-254)) ELT)) (-3450 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-489))) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-254)) ELT)) (-3927 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3752 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-245 |#1|))) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-1079)) (-578 |#1|)) NIL (|has| |#1| (-447 (-1079) |#1|)) ELT) (($ $ (-1079) |#1|) NIL (|has| |#1| (-447 (-1079) |#1|)) ELT)) (-1594 (((-687) $) NIL (|has| |#1| (-254)) ELT)) (-3784 (($ $ |#1|) NIL (|has| |#1| (-238 |#1| |#1|)) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-254)) ELT)) (-3741 ((|#1| (-1168 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1752 (((-687) $) NIL (|has| |#1| (-295)) ELT) (((-3 (-687) #1#) $ $) NIL (|has| |#1| (-295)) ELT)) (-3742 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-1079) (-687)) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-578 (-1079))) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| |#1| (-188)) (|has| |#1| (-308))) (|has| |#1| (-187))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-188)) (|has| |#1| (-308))) (|has| |#1| (-187))) ELT)) (-2394 (((-625 |#1|) (-1168 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-308)) ELT)) (-3168 (((-1074 |#1|)) NIL T ELT)) (-3479 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3620 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-1661 (($) NIL (|has| |#1| (-295)) ELT)) (-3477 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3619 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3475 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3618 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3207 (((-1168 |#1|) $ (-1168 $)) NIL T ELT) (((-625 |#1|) (-1168 $) (-1168 $)) NIL T ELT) (((-1168 |#1|) $) NIL T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-3956 (((-1168 |#1|) $) NIL T ELT) (($ (-1168 |#1|)) NIL T ELT) (((-1074 |#1|) $) NIL T ELT) (($ (-1074 |#1|)) NIL T ELT) (((-793 (-478)) $) NIL (|has| |#1| (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| |#1| (-548 (-793 (-323)))) ELT) (((-140 (-323)) $) NIL (|has| |#1| (-926)) ELT) (((-140 (-177)) $) NIL (|has| |#1| (-926)) ELT) (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-2993 (($ $) 29 T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-295))) ELT)) (-1363 (($ |#1| |#1|) 19 T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-308)) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-489))) ELT)) (-2686 (($ $) NIL (|has| |#1| (-295)) ELT) (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-2433 (((-1074 |#1|) $) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $)) NIL T ELT)) (-3482 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3470 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-2048 (((-83) $ $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-489))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3468 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3472 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-2222 ((|#1| $) NIL (|has| |#1| (-1104)) ELT)) (-3485 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3473 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3483 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3471 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3481 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3469 (($ $) NIL (|has| |#1| (-1104)) ELT)) (-3367 (($ $) NIL (|has| |#1| (-965)) ELT)) (-2644 (($) 8 T CONST)) (-2650 (($) 10 T CONST)) (-2653 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-1079) (-687)) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-578 (-1079))) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| |#1| (-188)) (|has| |#1| (-308))) (|has| |#1| (-187))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-188)) (|has| |#1| (-308))) (|has| |#1| (-187))) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 23 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-343 (-478))) NIL (-12 (|has| |#1| (-908)) (|has| |#1| (-1104))) ELT) (($ $ $) NIL (|has| |#1| (-1104)) ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-308)) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-308)) ELT))) +(((-140 |#1|) (-137 |#1|) (-144)) (T -140)) +NIL +((-3942 (((-140 |#2|) (-1 |#2| |#1|) (-140 |#1|)) 14 T ELT))) +(((-141 |#1| |#2|) (-10 -7 (-15 -3942 ((-140 |#2|) (-1 |#2| |#1|) (-140 |#1|)))) (-144) (-144)) (T -141)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-140 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-5 *2 (-140 *6)) (-5 *1 (-141 *5 *6))))) +((-3956 (((-793 |#1|) |#3|) 22 T ELT))) +(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -3956 ((-793 |#1|) |#3|))) (-1005) (-13 (-548 (-793 |#1|)) (-144)) (-137 |#2|)) (T -142)) +((-3956 (*1 *2 *3) (-12 (-4 *5 (-13 (-548 *2) (-144))) (-5 *2 (-793 *4)) (-5 *1 (-142 *4 *5 *3)) (-4 *4 (-1005)) (-4 *3 (-137 *5))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1369 (((-83) $) 9 T ELT)) (-1368 (((-83) $ (-83)) 11 T ELT)) (-3598 (($) 13 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3384 (($ $) 14 T ELT)) (-3930 (((-765) $) 18 T ELT)) (-3686 (((-83) $) 8 T ELT)) (-3845 (((-83) $ (-83)) 10 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-143) (-13 (-1005) (-10 -8 (-15 -3598 ($)) (-15 -3686 ((-83) $)) (-15 -1369 ((-83) $)) (-15 -3845 ((-83) $ (-83))) (-15 -1368 ((-83) $ (-83))) (-15 -3384 ($ $))))) (T -143)) +((-3598 (*1 *1) (-5 *1 (-143))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) (-3845 (*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) (-1368 (*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) (-3384 (*1 *1 *1) (-5 *1 (-143)))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-144) (-111)) (T -144)) +NIL +(-13 (-954) (-80 $ $) (-10 -7 (-6 (-3981 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-658) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-1687 (($ $) 6 T ELT))) +(((-145) (-111)) (T -145)) +((-1687 (*1 *1 *1) (-4 *1 (-145)))) +(-13 (-10 -8 (-15 -1687 ($ $)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3112 ((|#1| $) 79 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2548 (($ $ $) NIL T ELT)) (-1374 (($ $) 21 T ELT)) (-1378 (($ |#1| (-1058 |#1|)) 48 T ELT)) (-3451 (((-3 $ #1#) $) 123 T ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-1375 (((-1058 |#1|) $) 86 T ELT)) (-1377 (((-1058 |#1|) $) 83 T ELT)) (-1376 (((-1058 |#1|) $) 84 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-1371 (((-1058 |#1|) $) 93 T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1878 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT)) (-3753 (($ $ (-478)) 96 T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-1370 (((-1058 |#1|) $) 94 T ELT)) (-1372 (((-1058 (-343 |#1|)) $) 14 T ELT)) (-2600 (($ (-343 |#1|)) 17 T ELT) (($ |#1| (-1058 |#1|) (-1058 |#1|)) 38 T ELT)) (-2875 (($ $) 98 T ELT)) (-3930 (((-765) $) 139 T ELT) (($ (-478)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-343 |#1|)) 36 T ELT) (($ (-343 (-478))) NIL T ELT) (($ $) NIL T ELT)) (-3109 (((-687)) 67 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-1373 (((-1058 (-343 |#1|)) $) 20 T ELT)) (-2644 (($) 103 T CONST)) (-2650 (($) 28 T CONST)) (-3037 (((-83) $ $) 35 T ELT)) (-3933 (($ $ $) 121 T ELT)) (-3821 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3823 (($ $ $) 107 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-343 |#1|) $) 117 T ELT) (($ $ (-343 |#1|)) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT))) +(((-146 |#1|) (-13 (-38 |#1|) (-38 (-343 |#1|)) (-308) (-10 -8 (-15 -2600 ($ (-343 |#1|))) (-15 -2600 ($ |#1| (-1058 |#1|) (-1058 |#1|))) (-15 -1378 ($ |#1| (-1058 |#1|))) (-15 -1377 ((-1058 |#1|) $)) (-15 -1376 ((-1058 |#1|) $)) (-15 -1375 ((-1058 |#1|) $)) (-15 -3112 (|#1| $)) (-15 -1374 ($ $)) (-15 -1373 ((-1058 (-343 |#1|)) $)) (-15 -1372 ((-1058 (-343 |#1|)) $)) (-15 -1371 ((-1058 |#1|) $)) (-15 -1370 ((-1058 |#1|) $)) (-15 -3753 ($ $ (-478))) (-15 -2875 ($ $)))) (-254)) (T -146)) +((-2600 (*1 *1 *2) (-12 (-5 *2 (-343 *3)) (-4 *3 (-254)) (-5 *1 (-146 *3)))) (-2600 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-254)) (-5 *1 (-146 *2)))) (-1378 (*1 *1 *2 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-254)) (-5 *1 (-146 *2)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-1375 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-3112 (*1 *2 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-254)))) (-1374 (*1 *1 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-254)))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-1058 (-343 *3))) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-1058 (-343 *3))) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-1371 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-3753 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-2875 (*1 *1 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-254))))) +((-1379 (($ (-78) $) 15 T ELT)) (-3204 (((-627 (-78)) (-439) $) 14 T ELT)) (-3930 (((-765) $) 18 T ELT)) (-1380 (((-578 (-78)) $) 8 T ELT))) +(((-147) (-13 (-547 (-765)) (-10 -8 (-15 -1380 ((-578 (-78)) $)) (-15 -1379 ($ (-78) $)) (-15 -3204 ((-627 (-78)) (-439) $))))) (T -147)) +((-1380 (*1 *2 *1) (-12 (-5 *2 (-578 (-78))) (-5 *1 (-147)))) (-1379 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-147)))) (-3204 (*1 *2 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-78))) (-5 *1 (-147))))) +((-1393 (((-1 (-847 |#1|) (-847 |#1|)) |#1|) 38 T ELT)) (-1384 (((-847 |#1|) (-847 |#1|)) 22 T ELT)) (-1389 (((-1 (-847 |#1|) (-847 |#1|)) |#1|) 34 T ELT)) (-1382 (((-847 |#1|) (-847 |#1|)) 20 T ELT)) (-1387 (((-847 |#1|) (-847 |#1|)) 28 T ELT)) (-1386 (((-847 |#1|) (-847 |#1|)) 27 T ELT)) (-1385 (((-847 |#1|) (-847 |#1|)) 26 T ELT)) (-1390 (((-1 (-847 |#1|) (-847 |#1|)) |#1|) 35 T ELT)) (-1388 (((-1 (-847 |#1|) (-847 |#1|)) |#1|) 33 T ELT)) (-1630 (((-1 (-847 |#1|) (-847 |#1|)) |#1|) 32 T ELT)) (-1383 (((-847 |#1|) (-847 |#1|)) 21 T ELT)) (-1394 (((-1 (-847 |#1|) (-847 |#1|)) |#1| |#1|) 41 T ELT)) (-1381 (((-847 |#1|) (-847 |#1|)) 8 T ELT)) (-1392 (((-1 (-847 |#1|) (-847 |#1|)) |#1|) 37 T ELT)) (-1391 (((-1 (-847 |#1|) (-847 |#1|)) |#1|) 36 T ELT))) +(((-148 |#1|) (-10 -7 (-15 -1381 ((-847 |#1|) (-847 |#1|))) (-15 -1382 ((-847 |#1|) (-847 |#1|))) (-15 -1383 ((-847 |#1|) (-847 |#1|))) (-15 -1384 ((-847 |#1|) (-847 |#1|))) (-15 -1385 ((-847 |#1|) (-847 |#1|))) (-15 -1386 ((-847 |#1|) (-847 |#1|))) (-15 -1387 ((-847 |#1|) (-847 |#1|))) (-15 -1630 ((-1 (-847 |#1|) (-847 |#1|)) |#1|)) (-15 -1388 ((-1 (-847 |#1|) (-847 |#1|)) |#1|)) (-15 -1389 ((-1 (-847 |#1|) (-847 |#1|)) |#1|)) (-15 -1390 ((-1 (-847 |#1|) (-847 |#1|)) |#1|)) (-15 -1391 ((-1 (-847 |#1|) (-847 |#1|)) |#1|)) (-15 -1392 ((-1 (-847 |#1|) (-847 |#1|)) |#1|)) (-15 -1393 ((-1 (-847 |#1|) (-847 |#1|)) |#1|)) (-15 -1394 ((-1 (-847 |#1|) (-847 |#1|)) |#1| |#1|))) (-13 (-308) (-1104) (-908))) (T -148)) +((-1394 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1104) (-908))))) (-1393 (*1 *2 *3) (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1104) (-908))))) (-1392 (*1 *2 *3) (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1104) (-908))))) (-1391 (*1 *2 *3) (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1104) (-908))))) (-1390 (*1 *2 *3) (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1104) (-908))))) (-1389 (*1 *2 *3) (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1104) (-908))))) (-1388 (*1 *2 *3) (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1104) (-908))))) (-1630 (*1 *2 *3) (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1104) (-908))))) (-1387 (*1 *2 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1104) (-908))) (-5 *1 (-148 *3)))) (-1386 (*1 *2 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1104) (-908))) (-5 *1 (-148 *3)))) (-1385 (*1 *2 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1104) (-908))) (-5 *1 (-148 *3)))) (-1384 (*1 *2 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1104) (-908))) (-5 *1 (-148 *3)))) (-1383 (*1 *2 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1104) (-908))) (-5 *1 (-148 *3)))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1104) (-908))) (-5 *1 (-148 *3)))) (-1381 (*1 *2 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1104) (-908))) (-5 *1 (-148 *3))))) +((-2433 ((|#2| |#3|) 28 T ELT))) +(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -2433 (|#2| |#3|))) (-144) (-1144 |#1|) (-656 |#1| |#2|)) (T -149)) +((-2433 (*1 *2 *3) (-12 (-4 *4 (-144)) (-4 *2 (-1144 *4)) (-5 *1 (-149 *4 *2 *3)) (-4 *3 (-656 *4 *2))))) +((-2780 (((-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|)) 44 (|has| (-850 |#2|) (-789 |#1|)) ELT))) +(((-150 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-850 |#2|) (-789 |#1|)) (-15 -2780 ((-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|))) |%noBranch|)) (-1005) (-13 (-789 |#1|) (-144)) (-137 |#2|)) (T -150)) +((-2780 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-791 *5 *3)) (-5 *4 (-793 *5)) (-4 *5 (-1005)) (-4 *3 (-137 *6)) (-4 (-850 *6) (-789 *5)) (-4 *6 (-13 (-789 *5) (-144))) (-5 *1 (-150 *5 *6 *3))))) +((-1396 (((-578 |#1|) (-578 |#1|) |#1|) 41 T ELT)) (-1395 (((-578 |#1|) |#1| (-578 |#1|)) 20 T ELT)) (-2063 (((-578 |#1|) (-578 (-578 |#1|)) (-578 |#1|)) 36 T ELT) ((|#1| (-578 |#1|) (-578 |#1|)) 32 T ELT))) +(((-151 |#1|) (-10 -7 (-15 -1395 ((-578 |#1|) |#1| (-578 |#1|))) (-15 -2063 (|#1| (-578 |#1|) (-578 |#1|))) (-15 -2063 ((-578 |#1|) (-578 (-578 |#1|)) (-578 |#1|))) (-15 -1396 ((-578 |#1|) (-578 |#1|) |#1|))) (-254)) (T -151)) +((-1396 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-254)) (-5 *1 (-151 *3)))) (-2063 (*1 *2 *3 *2) (-12 (-5 *3 (-578 (-578 *4))) (-5 *2 (-578 *4)) (-4 *4 (-254)) (-5 *1 (-151 *4)))) (-2063 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-151 *2)) (-4 *2 (-254)))) (-1395 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-254)) (-5 *1 (-151 *3))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3300 (((-1119) $) 13 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3189 (((-1038) $) 10 T ELT)) (-3930 (((-765) $) 20 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-152) (-13 (-987) (-10 -8 (-15 -3189 ((-1038) $)) (-15 -3300 ((-1119) $))))) (T -152)) +((-3189 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-152)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-152))))) +((-1405 (((-2 (|:| |start| |#2|) (|:| -1766 (-341 |#2|))) |#2|) 66 T ELT)) (-1404 ((|#1| |#1|) 58 T ELT)) (-1403 (((-140 |#1|) |#2|) 93 T ELT)) (-1402 ((|#1| |#2|) 136 T ELT) ((|#1| |#2| |#1|) 89 T ELT)) (-1401 ((|#2| |#2|) 90 T ELT)) (-1400 (((-341 |#2|) |#2| |#1|) 118 T ELT) (((-341 |#2|) |#2| |#1| (-83)) 87 T ELT)) (-3115 ((|#1| |#2|) 117 T ELT)) (-1399 ((|#2| |#2|) 130 T ELT)) (-3716 (((-341 |#2|) |#2|) 153 T ELT) (((-341 |#2|) |#2| |#1|) 33 T ELT) (((-341 |#2|) |#2| |#1| (-83)) 152 T ELT)) (-1398 (((-578 (-2 (|:| -1766 (-578 |#2|)) (|:| -1583 |#1|))) |#2| |#2|) 151 T ELT) (((-578 (-2 (|:| -1766 (-578 |#2|)) (|:| -1583 |#1|))) |#2| |#2| (-83)) 81 T ELT)) (-1397 (((-578 (-140 |#1|)) |#2| |#1|) 42 T ELT) (((-578 (-140 |#1|)) |#2|) 43 T ELT))) +(((-153 |#1| |#2|) (-10 -7 (-15 -1397 ((-578 (-140 |#1|)) |#2|)) (-15 -1397 ((-578 (-140 |#1|)) |#2| |#1|)) (-15 -1398 ((-578 (-2 (|:| -1766 (-578 |#2|)) (|:| -1583 |#1|))) |#2| |#2| (-83))) (-15 -1398 ((-578 (-2 (|:| -1766 (-578 |#2|)) (|:| -1583 |#1|))) |#2| |#2|)) (-15 -3716 ((-341 |#2|) |#2| |#1| (-83))) (-15 -3716 ((-341 |#2|) |#2| |#1|)) (-15 -3716 ((-341 |#2|) |#2|)) (-15 -1399 (|#2| |#2|)) (-15 -3115 (|#1| |#2|)) (-15 -1400 ((-341 |#2|) |#2| |#1| (-83))) (-15 -1400 ((-341 |#2|) |#2| |#1|)) (-15 -1401 (|#2| |#2|)) (-15 -1402 (|#1| |#2| |#1|)) (-15 -1402 (|#1| |#2|)) (-15 -1403 ((-140 |#1|) |#2|)) (-15 -1404 (|#1| |#1|)) (-15 -1405 ((-2 (|:| |start| |#2|) (|:| -1766 (-341 |#2|))) |#2|))) (-13 (-308) (-748)) (-1144 (-140 |#1|))) (T -153)) +((-1405 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-2 (|:| |start| *3) (|:| -1766 (-341 *3)))) (-5 *1 (-153 *4 *3)) (-4 *3 (-1144 (-140 *4))))) (-1404 (*1 *2 *2) (-12 (-4 *2 (-13 (-308) (-748))) (-5 *1 (-153 *2 *3)) (-4 *3 (-1144 (-140 *2))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-140 *4)) (-5 *1 (-153 *4 *3)) (-4 *4 (-13 (-308) (-748))) (-4 *3 (-1144 *2)))) (-1402 (*1 *2 *3) (-12 (-4 *2 (-13 (-308) (-748))) (-5 *1 (-153 *2 *3)) (-4 *3 (-1144 (-140 *2))))) (-1402 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-308) (-748))) (-5 *1 (-153 *2 *3)) (-4 *3 (-1144 (-140 *2))))) (-1401 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-748))) (-5 *1 (-153 *3 *2)) (-4 *2 (-1144 (-140 *3))))) (-1400 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1144 (-140 *4))))) (-1400 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-83)) (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1144 (-140 *4))))) (-3115 (*1 *2 *3) (-12 (-4 *2 (-13 (-308) (-748))) (-5 *1 (-153 *2 *3)) (-4 *3 (-1144 (-140 *2))))) (-1399 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-748))) (-5 *1 (-153 *3 *2)) (-4 *2 (-1144 (-140 *3))))) (-3716 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1144 (-140 *4))))) (-3716 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1144 (-140 *4))))) (-3716 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-83)) (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1144 (-140 *4))))) (-1398 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-578 (-2 (|:| -1766 (-578 *3)) (|:| -1583 *4)))) (-5 *1 (-153 *4 *3)) (-4 *3 (-1144 (-140 *4))))) (-1398 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-308) (-748))) (-5 *2 (-578 (-2 (|:| -1766 (-578 *3)) (|:| -1583 *5)))) (-5 *1 (-153 *5 *3)) (-4 *3 (-1144 (-140 *5))))) (-1397 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-578 (-140 *4))) (-5 *1 (-153 *4 *3)) (-4 *3 (-1144 (-140 *4))))) (-1397 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-578 (-140 *4))) (-5 *1 (-153 *4 *3)) (-4 *3 (-1144 (-140 *4)))))) +((-1406 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1407 (((-687) |#2|) 18 T ELT)) (-1408 ((|#2| |#2| |#2|) 20 T ELT))) +(((-154 |#1| |#2|) (-10 -7 (-15 -1406 ((-3 |#2| "failed") |#2|)) (-15 -1407 ((-687) |#2|)) (-15 -1408 (|#2| |#2| |#2|))) (-1118) (-611 |#1|)) (T -154)) +((-1408 (*1 *2 *2 *2) (-12 (-4 *3 (-1118)) (-5 *1 (-154 *3 *2)) (-4 *2 (-611 *3)))) (-1407 (*1 *2 *3) (-12 (-4 *4 (-1118)) (-5 *2 (-687)) (-5 *1 (-154 *4 *3)) (-4 *3 (-611 *4)))) (-1406 (*1 *2 *2) (|partial| -12 (-4 *3 (-1118)) (-5 *1 (-154 *3 *2)) (-4 *2 (-611 *3))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1411 (((-578 (-767)) $) NIL T ELT)) (-3526 (((-439) $) 8 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1413 (((-159) $) 10 T ELT)) (-2617 (((-83) $ (-439)) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1409 (((-627 $) (-439)) 17 T ELT)) (-1412 (((-578 (-83)) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2505 (((-55) $) 12 T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-155) (-13 (-158) (-10 -8 (-15 -1409 ((-627 $) (-439)))))) (T -155)) +((-1409 (*1 *2 *3) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-155))) (-5 *1 (-155))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1469 ((|#1| $) 7 T ELT)) (-3930 (((-765) $) 14 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1410 (((-578 (-1084)) $) 10 T ELT)) (-3037 (((-83) $ $) 12 T ELT))) +(((-156 |#1|) (-13 (-1005) (-10 -8 (-15 -1469 (|#1| $)) (-15 -1410 ((-578 (-1084)) $)))) (-158)) (T -156)) +((-1469 (*1 *2 *1) (-12 (-5 *1 (-156 *2)) (-4 *2 (-158)))) (-1410 (*1 *2 *1) (-12 (-5 *2 (-578 (-1084))) (-5 *1 (-156 *3)) (-4 *3 (-158))))) +((-1411 (((-578 (-767)) $) 16 T ELT)) (-1413 (((-159) $) 8 T ELT)) (-1412 (((-578 (-83)) $) 13 T ELT)) (-2505 (((-55) $) 10 T ELT))) +(((-157 |#1|) (-10 -7 (-15 -1411 ((-578 (-767)) |#1|)) (-15 -1412 ((-578 (-83)) |#1|)) (-15 -1413 ((-159) |#1|)) (-15 -2505 ((-55) |#1|))) (-158)) (T -157)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-1411 (((-578 (-767)) $) 22 T ELT)) (-3526 (((-439) $) 19 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-1413 (((-159) $) 24 T ELT)) (-2617 (((-83) $ (-439)) 17 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-1412 (((-578 (-83)) $) 23 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2505 (((-55) $) 18 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(((-158) (-111)) (T -158)) +((-1413 (*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-159)))) (-1412 (*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-578 (-83))))) (-1411 (*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-578 (-767)))))) +(-13 (-740 (-439)) (-10 -8 (-15 -1413 ((-159) $)) (-15 -1412 ((-578 (-83)) $)) (-15 -1411 ((-578 (-767)) $)))) +(((-72) . T) ((-547 (-765)) . T) ((-740 (-439)) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3930 (((-765) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 10 T ELT))) +(((-159) (-13 (-1005) (-10 -8 (-15 -9 ($) -3936) (-15 -8 ($) -3936) (-15 -7 ($) -3936)))) (T -159)) +((-9 (*1 *1) (-5 *1 (-159))) (-8 (*1 *1) (-5 *1 (-159))) (-7 (*1 *1) (-5 *1 (-159)))) +((-3626 ((|#2| |#2|) 28 T ELT)) (-3629 (((-83) |#2|) 19 T ELT)) (-3627 (((-261 |#1|) |#2|) 12 T ELT)) (-3628 (((-261 |#1|) |#2|) 14 T ELT)) (-3624 ((|#2| |#2| (-1079)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3630 (((-140 (-261 |#1|)) |#2|) 10 T ELT)) (-3625 ((|#2| |#2| (-1079)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) +(((-160 |#1| |#2|) (-10 -7 (-15 -3624 (|#2| |#2|)) (-15 -3624 (|#2| |#2| (-1079))) (-15 -3625 (|#2| |#2|)) (-15 -3625 (|#2| |#2| (-1079))) (-15 -3627 ((-261 |#1|) |#2|)) (-15 -3628 ((-261 |#1|) |#2|)) (-15 -3629 ((-83) |#2|)) (-15 -3626 (|#2| |#2|)) (-15 -3630 ((-140 (-261 |#1|)) |#2|))) (-13 (-489) (-943 (-478))) (-13 (-27) (-1104) (-357 (-140 |#1|)))) (T -160)) +((-3630 (*1 *2 *3) (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-140 (-261 *4))) (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 (-140 *4)))))) (-3626 (*1 *2 *2) (-12 (-4 *3 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-357 (-140 *3)))))) (-3629 (*1 *2 *3) (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-83)) (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 (-140 *4)))))) (-3628 (*1 *2 *3) (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-261 *4)) (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 (-140 *4)))))) (-3627 (*1 *2 *3) (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-261 *4)) (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 (-140 *4)))))) (-3625 (*1 *2 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-357 (-140 *4)))))) (-3625 (*1 *2 *2) (-12 (-4 *3 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-357 (-140 *3)))))) (-3624 (*1 *2 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-357 (-140 *4)))))) (-3624 (*1 *2 *2) (-12 (-4 *3 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-357 (-140 *3))))))) +((-1417 (((-1168 (-625 (-850 |#1|))) (-1168 (-625 |#1|))) 26 T ELT)) (-3930 (((-1168 (-625 (-343 (-850 |#1|)))) (-1168 (-625 |#1|))) 37 T ELT))) +(((-161 |#1|) (-10 -7 (-15 -1417 ((-1168 (-625 (-850 |#1|))) (-1168 (-625 |#1|)))) (-15 -3930 ((-1168 (-625 (-343 (-850 |#1|)))) (-1168 (-625 |#1|))))) (-144)) (T -161)) +((-3930 (*1 *2 *3) (-12 (-5 *3 (-1168 (-625 *4))) (-4 *4 (-144)) (-5 *2 (-1168 (-625 (-343 (-850 *4))))) (-5 *1 (-161 *4)))) (-1417 (*1 *2 *3) (-12 (-5 *3 (-1168 (-625 *4))) (-4 *4 (-144)) (-5 *2 (-1168 (-625 (-850 *4)))) (-5 *1 (-161 *4))))) +((-1425 (((-1081 (-343 (-478))) (-1081 (-343 (-478))) (-1081 (-343 (-478)))) 93 T ELT)) (-1427 (((-1081 (-343 (-478))) (-578 (-478)) (-578 (-478))) 106 T ELT)) (-1418 (((-1081 (-343 (-478))) (-823)) 54 T ELT)) (-3838 (((-1081 (-343 (-478))) (-823)) 79 T ELT)) (-3752 (((-343 (-478)) (-1081 (-343 (-478)))) 89 T ELT)) (-1419 (((-1081 (-343 (-478))) (-823)) 37 T ELT)) (-1422 (((-1081 (-343 (-478))) (-823)) 66 T ELT)) (-1421 (((-1081 (-343 (-478))) (-823)) 61 T ELT)) (-1424 (((-1081 (-343 (-478))) (-1081 (-343 (-478))) (-1081 (-343 (-478)))) 87 T ELT)) (-2875 (((-1081 (-343 (-478))) (-823)) 29 T ELT)) (-1423 (((-343 (-478)) (-1081 (-343 (-478))) (-1081 (-343 (-478)))) 91 T ELT)) (-1420 (((-1081 (-343 (-478))) (-823)) 35 T ELT)) (-1426 (((-1081 (-343 (-478))) (-578 (-823))) 100 T ELT))) +(((-162) (-10 -7 (-15 -2875 ((-1081 (-343 (-478))) (-823))) (-15 -1418 ((-1081 (-343 (-478))) (-823))) (-15 -1419 ((-1081 (-343 (-478))) (-823))) (-15 -1420 ((-1081 (-343 (-478))) (-823))) (-15 -1421 ((-1081 (-343 (-478))) (-823))) (-15 -1422 ((-1081 (-343 (-478))) (-823))) (-15 -3838 ((-1081 (-343 (-478))) (-823))) (-15 -1423 ((-343 (-478)) (-1081 (-343 (-478))) (-1081 (-343 (-478))))) (-15 -1424 ((-1081 (-343 (-478))) (-1081 (-343 (-478))) (-1081 (-343 (-478))))) (-15 -3752 ((-343 (-478)) (-1081 (-343 (-478))))) (-15 -1425 ((-1081 (-343 (-478))) (-1081 (-343 (-478))) (-1081 (-343 (-478))))) (-15 -1426 ((-1081 (-343 (-478))) (-578 (-823)))) (-15 -1427 ((-1081 (-343 (-478))) (-578 (-478)) (-578 (-478)))))) (T -162)) +((-1427 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162)))) (-1426 (*1 *2 *3) (-12 (-5 *3 (-578 (-823))) (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162)))) (-1425 (*1 *2 *2 *2) (-12 (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162)))) (-3752 (*1 *2 *3) (-12 (-5 *3 (-1081 (-343 (-478)))) (-5 *2 (-343 (-478))) (-5 *1 (-162)))) (-1424 (*1 *2 *2 *2) (-12 (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162)))) (-1423 (*1 *2 *3 *3) (-12 (-5 *3 (-1081 (-343 (-478)))) (-5 *2 (-343 (-478))) (-5 *1 (-162)))) (-3838 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162)))) (-1421 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162)))) (-1420 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162)))) (-1419 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162)))) (-1418 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162)))) (-2875 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162))))) +((-1429 (((-341 (-1074 (-478))) (-478)) 38 T ELT)) (-1428 (((-578 (-1074 (-478))) (-478)) 33 T ELT)) (-2785 (((-1074 (-478)) (-478)) 28 T ELT))) +(((-163) (-10 -7 (-15 -1428 ((-578 (-1074 (-478))) (-478))) (-15 -2785 ((-1074 (-478)) (-478))) (-15 -1429 ((-341 (-1074 (-478))) (-478))))) (T -163)) +((-1429 (*1 *2 *3) (-12 (-5 *2 (-341 (-1074 (-478)))) (-5 *1 (-163)) (-5 *3 (-478)))) (-2785 (*1 *2 *3) (-12 (-5 *2 (-1074 (-478))) (-5 *1 (-163)) (-5 *3 (-478)))) (-1428 (*1 *2 *3) (-12 (-5 *2 (-578 (-1074 (-478)))) (-5 *1 (-163)) (-5 *3 (-478))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1430 ((|#2| $ (-687) |#2|) 11 T ELT)) (-3096 ((|#2| $ (-687)) 10 T ELT)) (-3598 (($) 8 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 23 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 13 T ELT))) +(((-164 |#1| |#2|) (-13 (-1005) (-10 -8 (-15 -3598 ($)) (-15 -3096 (|#2| $ (-687))) (-15 -1430 (|#2| $ (-687) |#2|)))) (-823) (-1005)) (T -164)) +((-3598 (*1 *1) (-12 (-5 *1 (-164 *2 *3)) (-14 *2 (-823)) (-4 *3 (-1005)))) (-3096 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *2 (-1005)) (-5 *1 (-164 *4 *2)) (-14 *4 (-823)))) (-1430 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-164 *4 *2)) (-14 *4 (-823)) (-4 *2 (-1005))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1951 (((-1174) $) 37 T ELT) (((-1174) $ (-823) (-823)) 41 T ELT)) (-3784 (($ $ (-895)) 19 T ELT) (((-200 (-1062)) $ (-1079)) 15 T ELT)) (-3601 (((-1174) $) 35 T ELT)) (-3930 (((-765) $) 32 T ELT) (($ (-578 |#1|)) 8 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $ $) 27 T ELT)) (-3823 (($ $ $) 22 T ELT))) +(((-165 |#1|) (-13 (-1005) (-550 (-578 |#1|)) (-10 -8 (-15 -3784 ($ $ (-895))) (-15 -3784 ((-200 (-1062)) $ (-1079))) (-15 -3823 ($ $ $)) (-15 -3821 ($ $ $)) (-15 -3601 ((-1174) $)) (-15 -1951 ((-1174) $)) (-15 -1951 ((-1174) $ (-823) (-823))))) (-13 (-749) (-10 -8 (-15 -3784 ((-1062) $ (-1079))) (-15 -3601 ((-1174) $)) (-15 -1951 ((-1174) $))))) (T -165)) +((-3784 (*1 *1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-165 *3)) (-4 *3 (-13 (-749) (-10 -8 (-15 -3784 ((-1062) $ (-1079))) (-15 -3601 ((-1174) $)) (-15 -1951 ((-1174) $))))))) (-3784 (*1 *2 *1 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-200 (-1062))) (-5 *1 (-165 *4)) (-4 *4 (-13 (-749) (-10 -8 (-15 -3784 ((-1062) $ *3)) (-15 -3601 ((-1174) $)) (-15 -1951 ((-1174) $))))))) (-3823 (*1 *1 *1 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-13 (-749) (-10 -8 (-15 -3784 ((-1062) $ (-1079))) (-15 -3601 ((-1174) $)) (-15 -1951 ((-1174) $))))))) (-3821 (*1 *1 *1 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-13 (-749) (-10 -8 (-15 -3784 ((-1062) $ (-1079))) (-15 -3601 ((-1174) $)) (-15 -1951 ((-1174) $))))))) (-3601 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-165 *3)) (-4 *3 (-13 (-749) (-10 -8 (-15 -3784 ((-1062) $ (-1079))) (-15 -3601 (*2 $)) (-15 -1951 (*2 $))))))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-165 *3)) (-4 *3 (-13 (-749) (-10 -8 (-15 -3784 ((-1062) $ (-1079))) (-15 -3601 (*2 $)) (-15 -1951 (*2 $))))))) (-1951 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1174)) (-5 *1 (-165 *4)) (-4 *4 (-13 (-749) (-10 -8 (-15 -3784 ((-1062) $ (-1079))) (-15 -3601 (*2 $)) (-15 -1951 (*2 $)))))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) NIL T ELT)) (-2978 (($) NIL T ELT)) (-2515 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2841 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1996 (((-823) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2386 (($ (-823)) 10 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2835 (($ (-572 |#1|)) 11 T ELT)) (-3930 (((-765) $) 18 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT))) +(((-166 |#1|) (-13 (-745) (-10 -8 (-15 -2835 ($ (-572 |#1|))))) (-578 (-1079))) (T -166)) +((-2835 (*1 *1 *2) (-12 (-5 *2 (-572 *3)) (-14 *3 (-578 (-1079))) (-5 *1 (-166 *3))))) +((-1431 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) +(((-167 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1431 (|#2| |#4| (-1 |#2| |#2|)))) (-308) (-1144 |#1|) (-1144 (-343 |#2|)) (-287 |#1| |#2| |#3|)) (T -167)) +((-1431 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-308)) (-4 *6 (-1144 (-343 *2))) (-4 *2 (-1144 *5)) (-5 *1 (-167 *5 *2 *6 *3)) (-4 *3 (-287 *5 *2 *6))))) +((-1435 ((|#2| |#2| (-687) |#2|) 55 T ELT)) (-1434 ((|#2| |#2| (-687) |#2|) 51 T ELT)) (-2357 (((-578 |#2|) (-578 (-2 (|:| |deg| (-687)) (|:| -2559 |#2|)))) 79 T ELT)) (-1433 (((-578 (-2 (|:| |deg| (-687)) (|:| -2559 |#2|))) |#2|) 72 T ELT)) (-1436 (((-83) |#2|) 70 T ELT)) (-3717 (((-341 |#2|) |#2|) 92 T ELT)) (-3716 (((-341 |#2|) |#2|) 91 T ELT)) (-2358 ((|#2| |#2| (-687) |#2|) 49 T ELT)) (-1432 (((-2 (|:| |cont| |#1|) (|:| -1766 (-578 (-2 (|:| |irr| |#2|) (|:| -2381 (-478)))))) |#2| (-83)) 86 T ELT))) +(((-168 |#1| |#2|) (-10 -7 (-15 -3716 ((-341 |#2|) |#2|)) (-15 -3717 ((-341 |#2|) |#2|)) (-15 -1432 ((-2 (|:| |cont| |#1|) (|:| -1766 (-578 (-2 (|:| |irr| |#2|) (|:| -2381 (-478)))))) |#2| (-83))) (-15 -1433 ((-578 (-2 (|:| |deg| (-687)) (|:| -2559 |#2|))) |#2|)) (-15 -2357 ((-578 |#2|) (-578 (-2 (|:| |deg| (-687)) (|:| -2559 |#2|))))) (-15 -2358 (|#2| |#2| (-687) |#2|)) (-15 -1434 (|#2| |#2| (-687) |#2|)) (-15 -1435 (|#2| |#2| (-687) |#2|)) (-15 -1436 ((-83) |#2|))) (-295) (-1144 |#1|)) (T -168)) +((-1436 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1144 *4)))) (-1435 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-687)) (-4 *4 (-295)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1144 *4)))) (-1434 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-687)) (-4 *4 (-295)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1144 *4)))) (-2358 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-687)) (-4 *4 (-295)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1144 *4)))) (-2357 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |deg| (-687)) (|:| -2559 *5)))) (-4 *5 (-1144 *4)) (-4 *4 (-295)) (-5 *2 (-578 *5)) (-5 *1 (-168 *4 *5)))) (-1433 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-578 (-2 (|:| |deg| (-687)) (|:| -2559 *3)))) (-5 *1 (-168 *4 *3)) (-4 *3 (-1144 *4)))) (-1432 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-295)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1766 (-578 (-2 (|:| |irr| *3) (|:| -2381 (-478))))))) (-5 *1 (-168 *5 *3)) (-4 *3 (-1144 *5)))) (-3717 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-341 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1144 *4)))) (-3716 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-341 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1144 *4))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3112 (((-478) $) NIL (|has| (-478) (-254)) ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-478) (-814)) ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| (-478) (-814)) ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3607 (((-478) $) NIL (|has| (-478) (-733)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL T ELT) (((-3 (-1079) #1#) $) NIL (|has| (-478) (-943 (-1079))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| (-478) (-943 (-478))) ELT) (((-3 (-478) #1#) $) NIL (|has| (-478) (-943 (-478))) ELT)) (-3139 (((-478) $) NIL T ELT) (((-1079) $) NIL (|has| (-478) (-943 (-1079))) ELT) (((-343 (-478)) $) NIL (|has| (-478) (-943 (-478))) ELT) (((-478) $) NIL (|has| (-478) (-943 (-478))) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL T ELT) (((-625 (-478)) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($) NIL (|has| (-478) (-477)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-3169 (((-83) $) NIL (|has| (-478) (-733)) ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| (-478) (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| (-478) (-789 (-323))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2980 (($ $) NIL T ELT)) (-2982 (((-478) $) NIL T ELT)) (-3429 (((-627 $) $) NIL (|has| (-478) (-1055)) ELT)) (-3170 (((-83) $) NIL (|has| (-478) (-733)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2515 (($ $ $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| (-478) (-749)) ELT)) (-3942 (($ (-1 (-478) (-478)) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL T ELT) (((-625 (-478)) (-1168 $)) NIL T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3430 (($) NIL (|has| (-478) (-1055)) CONST)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3111 (($ $) NIL (|has| (-478) (-254)) ELT) (((-343 (-478)) $) NIL T ELT)) (-3113 (((-478) $) NIL (|has| (-478) (-477)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-478) (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-478) (-814)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-3752 (($ $ (-578 (-478)) (-578 (-478))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-478) (-478)) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-245 (-478))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-578 (-245 (-478)))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-578 (-1079)) (-578 (-478))) NIL (|has| (-478) (-447 (-1079) (-478))) ELT) (($ $ (-1079) (-478)) NIL (|has| (-478) (-447 (-1079) (-478))) ELT)) (-1594 (((-687) $) NIL T ELT)) (-3784 (($ $ (-478)) NIL (|has| (-478) (-238 (-478) (-478))) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-3742 (($ $ (-1 (-478) (-478))) NIL T ELT) (($ $ (-1 (-478) (-478)) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $) NIL (|has| (-478) (-187)) ELT) (($ $ (-687)) NIL (|has| (-478) (-187)) ELT)) (-2979 (($ $) NIL T ELT)) (-2981 (((-478) $) NIL T ELT)) (-1437 (($ (-343 (-478))) 9 T ELT)) (-3956 (((-793 (-478)) $) NIL (|has| (-478) (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| (-478) (-548 (-793 (-323)))) ELT) (((-467) $) NIL (|has| (-478) (-548 (-467))) ELT) (((-323) $) NIL (|has| (-478) (-926)) ELT) (((-177) $) NIL (|has| (-478) (-926)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| (-478) (-814))) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) 8 T ELT) (($ (-478)) NIL T ELT) (($ (-1079)) NIL (|has| (-478) (-943 (-1079))) ELT) (((-343 (-478)) $) NIL T ELT) (((-910 10) $) 10 T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-478) (-814))) (|has| (-478) (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-3114 (((-478) $) NIL (|has| (-478) (-477)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3367 (($ $) NIL (|has| (-478) (-733)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $ (-1 (-478) (-478))) NIL T ELT) (($ $ (-1 (-478) (-478)) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $) NIL (|has| (-478) (-187)) ELT) (($ $ (-687)) NIL (|has| (-478) (-187)) ELT)) (-2550 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-3933 (($ $ $) NIL T ELT) (($ (-478) (-478)) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ (-478)) NIL T ELT))) +(((-169) (-13 (-897 (-478)) (-547 (-343 (-478))) (-547 (-910 10)) (-10 -8 (-15 -3111 ((-343 (-478)) $)) (-15 -1437 ($ (-343 (-478))))))) (T -169)) +((-3111 (*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-169)))) (-1437 (*1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-169))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3301 (((-1018) $) 13 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3161 (((-416) $) 10 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 23 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-3216 (((-1038) $) 15 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-170) (-13 (-987) (-10 -8 (-15 -3161 ((-416) $)) (-15 -3301 ((-1018) $)) (-15 -3216 ((-1038) $))))) (T -170)) +((-3161 (*1 *2 *1) (-12 (-5 *2 (-416)) (-5 *1 (-170)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-170)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-170))))) +((-3796 (((-3 (|:| |f1| (-743 |#2|)) (|:| |f2| (-578 (-743 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-996 (-743 |#2|)) (-1062)) 29 T ELT) (((-3 (|:| |f1| (-743 |#2|)) (|:| |f2| (-578 (-743 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-996 (-743 |#2|))) 25 T ELT)) (-1438 (((-3 (|:| |f1| (-743 |#2|)) (|:| |f2| (-578 (-743 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1079) (-743 |#2|) (-743 |#2|) (-83)) 17 T ELT))) +(((-171 |#1| |#2|) (-10 -7 (-15 -3796 ((-3 (|:| |f1| (-743 |#2|)) (|:| |f2| (-578 (-743 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-996 (-743 |#2|)))) (-15 -3796 ((-3 (|:| |f1| (-743 |#2|)) (|:| |f2| (-578 (-743 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-996 (-743 |#2|)) (-1062))) (-15 -1438 ((-3 (|:| |f1| (-743 |#2|)) (|:| |f2| (-578 (-743 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1079) (-743 |#2|) (-743 |#2|) (-83)))) (-13 (-254) (-118) (-943 (-478)) (-575 (-478))) (-13 (-1104) (-864) (-29 |#1|))) (T -171)) +((-1438 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1079)) (-5 *6 (-83)) (-4 *7 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-4 *3 (-13 (-1104) (-864) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-743 *3)) (|:| |f2| (-578 (-743 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-171 *7 *3)) (-5 *5 (-743 *3)))) (-3796 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-743 *3))) (-5 *5 (-1062)) (-4 *3 (-13 (-1104) (-864) (-29 *6))) (-4 *6 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 (|:| |f1| (-743 *3)) (|:| |f2| (-578 (-743 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-171 *6 *3)))) (-3796 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-743 *3))) (-4 *3 (-13 (-1104) (-864) (-29 *5))) (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 (|:| |f1| (-743 *3)) (|:| |f2| (-578 (-743 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-171 *5 *3))))) +((-3796 (((-3 (|:| |f1| (-743 (-261 |#1|))) (|:| |f2| (-578 (-743 (-261 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-343 (-850 |#1|)) (-996 (-743 (-343 (-850 |#1|)))) (-1062)) 49 T ELT) (((-3 (|:| |f1| (-743 (-261 |#1|))) (|:| |f2| (-578 (-743 (-261 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-343 (-850 |#1|)) (-996 (-743 (-343 (-850 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-743 (-261 |#1|))) (|:| |f2| (-578 (-743 (-261 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-343 (-850 |#1|)) (-996 (-743 (-261 |#1|))) (-1062)) 50 T ELT) (((-3 (|:| |f1| (-743 (-261 |#1|))) (|:| |f2| (-578 (-743 (-261 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-343 (-850 |#1|)) (-996 (-743 (-261 |#1|)))) 22 T ELT))) +(((-172 |#1|) (-10 -7 (-15 -3796 ((-3 (|:| |f1| (-743 (-261 |#1|))) (|:| |f2| (-578 (-743 (-261 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-343 (-850 |#1|)) (-996 (-743 (-261 |#1|))))) (-15 -3796 ((-3 (|:| |f1| (-743 (-261 |#1|))) (|:| |f2| (-578 (-743 (-261 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-343 (-850 |#1|)) (-996 (-743 (-261 |#1|))) (-1062))) (-15 -3796 ((-3 (|:| |f1| (-743 (-261 |#1|))) (|:| |f2| (-578 (-743 (-261 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-343 (-850 |#1|)) (-996 (-743 (-343 (-850 |#1|)))))) (-15 -3796 ((-3 (|:| |f1| (-743 (-261 |#1|))) (|:| |f2| (-578 (-743 (-261 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-343 (-850 |#1|)) (-996 (-743 (-343 (-850 |#1|)))) (-1062)))) (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (T -172)) +((-3796 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-743 (-343 (-850 *6))))) (-5 *5 (-1062)) (-5 *3 (-343 (-850 *6))) (-4 *6 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 (|:| |f1| (-743 (-261 *6))) (|:| |f2| (-578 (-743 (-261 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-172 *6)))) (-3796 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-743 (-343 (-850 *5))))) (-5 *3 (-343 (-850 *5))) (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 (|:| |f1| (-743 (-261 *5))) (|:| |f2| (-578 (-743 (-261 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-172 *5)))) (-3796 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-343 (-850 *6))) (-5 *4 (-996 (-743 (-261 *6)))) (-5 *5 (-1062)) (-4 *6 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 (|:| |f1| (-743 (-261 *6))) (|:| |f2| (-578 (-743 (-261 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-172 *6)))) (-3796 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-996 (-743 (-261 *5)))) (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 (|:| |f1| (-743 (-261 *5))) (|:| |f2| (-578 (-743 (-261 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-172 *5))))) +((-3826 (((-2 (|:| -1990 (-1074 |#1|)) (|:| |deg| (-823))) (-1074 |#1|)) 26 T ELT)) (-3947 (((-578 (-261 |#2|)) (-261 |#2|) (-823)) 51 T ELT))) +(((-173 |#1| |#2|) (-10 -7 (-15 -3826 ((-2 (|:| -1990 (-1074 |#1|)) (|:| |deg| (-823))) (-1074 |#1|))) (-15 -3947 ((-578 (-261 |#2|)) (-261 |#2|) (-823)))) (-954) (-489)) (T -173)) +((-3947 (*1 *2 *3 *4) (-12 (-5 *4 (-823)) (-4 *6 (-489)) (-5 *2 (-578 (-261 *6))) (-5 *1 (-173 *5 *6)) (-5 *3 (-261 *6)) (-4 *5 (-954)))) (-3826 (*1 *2 *3) (-12 (-4 *4 (-954)) (-5 *2 (-2 (|:| -1990 (-1074 *4)) (|:| |deg| (-823)))) (-5 *1 (-173 *4 *5)) (-5 *3 (-1074 *4)) (-4 *5 (-489))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1482 ((|#1| $) NIL T ELT)) (-3308 ((|#1| $) 30 T ELT)) (-3708 (($) NIL T CONST)) (-2986 (($ $) NIL T ELT)) (-2283 (($ $) 39 T ELT)) (-3310 ((|#1| |#1| $) NIL T ELT)) (-3309 ((|#1| $) NIL T ELT)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3817 (((-687) $) NIL T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-1262 ((|#1| $) NIL T ELT)) (-1480 ((|#1| |#1| $) 35 T ELT)) (-1479 ((|#1| |#1| $) 37 T ELT)) (-3593 (($ |#1| $) NIL T ELT)) (-2587 (((-687) $) 33 T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-2985 ((|#1| $) NIL T ELT)) (-1478 ((|#1| $) 31 T ELT)) (-1477 ((|#1| $) 29 T ELT)) (-1263 ((|#1| $) NIL T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2988 ((|#1| |#1| $) NIL T ELT)) (-3387 (((-83) $) 9 T ELT)) (-3549 (($) NIL T ELT)) (-2987 ((|#1| $) NIL T ELT)) (-1483 (($) NIL T ELT) (($ (-578 |#1|)) 16 T ELT)) (-3307 (((-687) $) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3930 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1481 ((|#1| $) 13 T ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1264 (($ (-578 |#1|)) NIL T ELT)) (-2984 ((|#1| $) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-174 |#1|) (-13 (-211 |#1|) (-10 -8 (-15 -1483 ($ (-578 |#1|))))) (-1005)) (T -174)) +((-1483 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-5 *1 (-174 *3))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1440 (($ (-261 |#1|)) 24 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2648 (((-83) $) NIL T ELT)) (-3140 (((-3 (-261 |#1|) #1#) $) NIL T ELT)) (-3139 (((-261 |#1|) $) NIL T ELT)) (-3943 (($ $) 32 T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-3942 (($ (-1 (-261 |#1|) (-261 |#1|)) $) NIL T ELT)) (-3157 (((-261 |#1|) $) NIL T ELT)) (-1442 (($ $) 31 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1441 (((-83) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2395 (($ (-687)) NIL T ELT)) (-1439 (($ $) 33 T ELT)) (-3932 (((-478) $) NIL T ELT)) (-3930 (((-765) $) 65 T ELT) (($ (-478)) NIL T ELT) (($ (-261 |#1|)) NIL T ELT)) (-3661 (((-261 |#1|) $ $) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 26 T CONST)) (-2650 (($) NIL T CONST)) (-3037 (((-83) $ $) 29 T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 20 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-261 |#1|) $) 19 T ELT))) +(((-175 |#1| |#2|) (-13 (-555 (-261 |#1|)) (-943 (-261 |#1|)) (-10 -8 (-15 -3157 ((-261 |#1|) $)) (-15 -1442 ($ $)) (-15 -3943 ($ $)) (-15 -3661 ((-261 |#1|) $ $)) (-15 -2395 ($ (-687))) (-15 -1441 ((-83) $)) (-15 -2648 ((-83) $)) (-15 -3932 ((-478) $)) (-15 -3942 ($ (-1 (-261 |#1|) (-261 |#1|)) $)) (-15 -1440 ($ (-261 |#1|))) (-15 -1439 ($ $)))) (-13 (-954) (-749)) (-578 (-1079))) (T -175)) +((-3157 (*1 *2 *1) (-12 (-5 *2 (-261 *3)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) (-14 *4 (-578 (-1079))))) (-1442 (*1 *1 *1) (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-954) (-749))) (-14 *3 (-578 (-1079))))) (-3943 (*1 *1 *1) (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-954) (-749))) (-14 *3 (-578 (-1079))))) (-3661 (*1 *2 *1 *1) (-12 (-5 *2 (-261 *3)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) (-14 *4 (-578 (-1079))))) (-2395 (*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) (-14 *4 (-578 (-1079))))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) (-14 *4 (-578 (-1079))))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) (-14 *4 (-578 (-1079))))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) (-14 *4 (-578 (-1079))))) (-3942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-261 *3) (-261 *3))) (-4 *3 (-13 (-954) (-749))) (-5 *1 (-175 *3 *4)) (-14 *4 (-578 (-1079))))) (-1440 (*1 *1 *2) (-12 (-5 *2 (-261 *3)) (-4 *3 (-13 (-954) (-749))) (-5 *1 (-175 *3 *4)) (-14 *4 (-578 (-1079))))) (-1439 (*1 *1 *1) (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-954) (-749))) (-14 *3 (-578 (-1079)))))) +((-1443 (((-83) (-1062)) 26 T ELT)) (-1444 (((-3 (-743 |#2|) #1="failed") (-545 |#2|) |#2| (-743 |#2|) (-743 |#2|) (-83)) 35 T ELT)) (-1445 (((-3 (-83) #1#) (-1074 |#2|) (-743 |#2|) (-743 |#2|) (-83)) 83 T ELT) (((-3 (-83) #1#) (-850 |#1|) (-1079) (-743 |#2|) (-743 |#2|) (-83)) 84 T ELT))) +(((-176 |#1| |#2|) (-10 -7 (-15 -1443 ((-83) (-1062))) (-15 -1444 ((-3 (-743 |#2|) #1="failed") (-545 |#2|) |#2| (-743 |#2|) (-743 |#2|) (-83))) (-15 -1445 ((-3 (-83) #1#) (-850 |#1|) (-1079) (-743 |#2|) (-743 |#2|) (-83))) (-15 -1445 ((-3 (-83) #1#) (-1074 |#2|) (-743 |#2|) (-743 |#2|) (-83)))) (-13 (-385) (-943 (-478)) (-575 (-478))) (-13 (-1104) (-29 |#1|))) (T -176)) +((-1445 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-83)) (-5 *3 (-1074 *6)) (-5 *4 (-743 *6)) (-4 *6 (-13 (-1104) (-29 *5))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-176 *5 *6)))) (-1445 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-83)) (-5 *3 (-850 *6)) (-5 *4 (-1079)) (-5 *5 (-743 *7)) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-4 *7 (-13 (-1104) (-29 *6))) (-5 *1 (-176 *6 *7)))) (-1444 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-743 *4)) (-5 *3 (-545 *4)) (-5 *5 (-83)) (-4 *4 (-13 (-1104) (-29 *6))) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-176 *6 *4)))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-83)) (-5 *1 (-176 *4 *5)) (-4 *5 (-13 (-1104) (-29 *4)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 83 T ELT)) (-3112 (((-478) $) 17 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-3755 (($ $) NIL T ELT)) (-3476 (($ $) 72 T ELT)) (-3623 (($ $) 60 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-3021 (($ $) 51 T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3474 (($ $) 70 T ELT)) (-3622 (($ $) 58 T ELT)) (-3607 (((-478) $) 114 T ELT)) (-3478 (($ $) 75 T ELT)) (-3621 (($ $) 62 T ELT)) (-3708 (($) NIL T CONST)) (-3110 (($ $) NIL T ELT)) (-3140 (((-3 (-478) #1#) $) 113 T ELT) (((-3 (-343 (-478)) #1#) $) 110 T ELT)) (-3139 (((-478) $) 111 T ELT) (((-343 (-478)) $) 108 T ELT)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) 88 T ELT)) (-1731 (((-343 (-478)) $ (-687)) 103 T ELT) (((-343 (-478)) $ (-687) (-687)) 102 T ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-1755 (((-823)) 11 T ELT) (((-823) (-823)) NIL (|has| $ (-6 -3970)) ELT)) (-3169 (((-83) $) 104 T ELT)) (-3611 (($) 30 T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL T ELT)) (-3756 (((-478) $) 24 T ELT)) (-2396 (((-83) $) 84 T ELT)) (-2995 (($ $ (-478)) NIL T ELT)) (-3115 (($ $) NIL T ELT)) (-3170 (((-83) $) 82 T ELT)) (-1446 (((-83) $) 140 T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2515 (($ $ $) 48 T ELT) (($) 20 (-12 (-2544 (|has| $ (-6 -3962))) (-2544 (|has| $ (-6 -3970)))) ELT)) (-2841 (($ $ $) 47 T ELT) (($) 19 (-12 (-2544 (|has| $ (-6 -3962))) (-2544 (|has| $ (-6 -3970)))) ELT)) (-1757 (((-478) $) 9 T ELT)) (-1730 (($ $) 15 T ELT)) (-1729 (($ $) 52 T ELT)) (-3926 (($ $) 57 T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-1754 (((-823) (-478)) NIL (|has| $ (-6 -3970)) ELT)) (-3226 (((-1023) $) 86 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3111 (($ $) NIL T ELT)) (-3113 (($ $) NIL T ELT)) (-3237 (($ (-478) (-478)) NIL T ELT) (($ (-478) (-478) (-823)) 95 T ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-2387 (((-478) $) 10 T ELT)) (-1728 (($) 29 T ELT)) (-3927 (($ $) 56 T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-2599 (((-823)) NIL T ELT) (((-823) (-823)) NIL (|has| $ (-6 -3970)) ELT)) (-3742 (($ $) 89 T ELT) (($ $ (-687)) NIL T ELT)) (-1753 (((-823) (-478)) NIL (|has| $ (-6 -3970)) ELT)) (-3479 (($ $) 73 T ELT)) (-3620 (($ $) 63 T ELT)) (-3477 (($ $) 74 T ELT)) (-3619 (($ $) 61 T ELT)) (-3475 (($ $) 71 T ELT)) (-3618 (($ $) 59 T ELT)) (-3956 (((-323) $) 99 T ELT) (((-177) $) 96 T ELT) (((-793 (-323)) $) NIL T ELT) (((-467) $) 37 T ELT)) (-3930 (((-765) $) 34 T ELT) (($ (-478)) 139 T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-478)) 139 T ELT) (($ (-343 (-478))) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-3114 (($ $) NIL T ELT)) (-1756 (((-823)) 18 T ELT) (((-823) (-823)) NIL (|has| $ (-6 -3970)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2678 (((-823)) 7 T ELT)) (-3482 (($ $) 78 T ELT)) (-3470 (($ $) 66 T ELT) (($ $ $) 106 T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3480 (($ $) 76 T ELT)) (-3468 (($ $) 64 T ELT)) (-3484 (($ $) 81 T ELT)) (-3472 (($ $) 69 T ELT)) (-3485 (($ $) 79 T ELT)) (-3473 (($ $) 67 T ELT)) (-3483 (($ $) 80 T ELT)) (-3471 (($ $) 68 T ELT)) (-3481 (($ $) 77 T ELT)) (-3469 (($ $) 65 T ELT)) (-3367 (($ $) 105 T ELT)) (-2644 (($) 26 T CONST)) (-2650 (($) 27 T CONST)) (-3371 (($ $) 92 T ELT)) (-2653 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3368 (($ $ $) 94 T ELT)) (-2550 (((-83) $ $) 41 T ELT)) (-2551 (((-83) $ $) 39 T ELT)) (-3037 (((-83) $ $) 49 T ELT)) (-2668 (((-83) $ $) 40 T ELT)) (-2669 (((-83) $ $) 38 T ELT)) (-3933 (($ $ $) 28 T ELT) (($ $ (-478)) 50 T ELT)) (-3821 (($ $) 42 T ELT) (($ $ $) 44 T ELT)) (-3823 (($ $ $) 43 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 53 T ELT) (($ $ (-343 (-478))) 138 T ELT) (($ $ $) 54 T ELT)) (* (($ (-823) $) 16 T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 46 T ELT) (($ $ $) 45 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT))) +(((-177) (-13 (-340) (-188) (-1104) (-548 (-467)) (-10 -8 (-15 -3933 ($ $ (-478))) (-15 ** ($ $ $)) (-15 -1728 ($)) (-15 -1730 ($ $)) (-15 -1729 ($ $)) (-15 -3470 ($ $ $)) (-15 -3371 ($ $)) (-15 -3368 ($ $ $)) (-15 -1731 ((-343 (-478)) $ (-687))) (-15 -1731 ((-343 (-478)) $ (-687) (-687))) (-15 -1446 ((-83) $))))) (T -177)) +((** (*1 *1 *1 *1) (-5 *1 (-177))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-177)))) (-1728 (*1 *1) (-5 *1 (-177))) (-1730 (*1 *1 *1) (-5 *1 (-177))) (-1729 (*1 *1 *1) (-5 *1 (-177))) (-3470 (*1 *1 *1 *1) (-5 *1 (-177))) (-3371 (*1 *1 *1) (-5 *1 (-177))) (-3368 (*1 *1 *1 *1) (-5 *1 (-177))) (-1731 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *2 (-343 (-478))) (-5 *1 (-177)))) (-1731 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-343 (-478))) (-5 *1 (-177)))) (-1446 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-177))))) +((-3370 (((-140 (-177)) (-687) (-140 (-177))) 11 T ELT) (((-177) (-687) (-177)) 12 T ELT)) (-1447 (((-140 (-177)) (-140 (-177))) 13 T ELT) (((-177) (-177)) 14 T ELT)) (-1448 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 19 T ELT) (((-177) (-177) (-177)) 22 T ELT)) (-3369 (((-140 (-177)) (-140 (-177))) 27 T ELT) (((-177) (-177)) 26 T ELT)) (-3373 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 57 T ELT) (((-177) (-177) (-177)) 49 T ELT)) (-3375 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 62 T ELT) (((-177) (-177) (-177)) 60 T ELT)) (-3372 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 15 T ELT) (((-177) (-177) (-177)) 16 T ELT)) (-3374 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 17 T ELT) (((-177) (-177) (-177)) 18 T ELT)) (-3377 (((-140 (-177)) (-140 (-177))) 74 T ELT) (((-177) (-177)) 73 T ELT)) (-3376 (((-177) (-177)) 68 T ELT) (((-140 (-177)) (-140 (-177))) 72 T ELT)) (-3371 (((-140 (-177)) (-140 (-177))) 8 T ELT) (((-177) (-177)) 9 T ELT)) (-3368 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 35 T ELT) (((-177) (-177) (-177)) 31 T ELT))) +(((-178) (-10 -7 (-15 -3371 ((-177) (-177))) (-15 -3371 ((-140 (-177)) (-140 (-177)))) (-15 -3368 ((-177) (-177) (-177))) (-15 -3368 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -1447 ((-177) (-177))) (-15 -1447 ((-140 (-177)) (-140 (-177)))) (-15 -3369 ((-177) (-177))) (-15 -3369 ((-140 (-177)) (-140 (-177)))) (-15 -3370 ((-177) (-687) (-177))) (-15 -3370 ((-140 (-177)) (-687) (-140 (-177)))) (-15 -3372 ((-177) (-177) (-177))) (-15 -3372 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -3373 ((-177) (-177) (-177))) (-15 -3373 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -3374 ((-177) (-177) (-177))) (-15 -3374 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -3375 ((-177) (-177) (-177))) (-15 -3375 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -3376 ((-140 (-177)) (-140 (-177)))) (-15 -3376 ((-177) (-177))) (-15 -3377 ((-177) (-177))) (-15 -3377 ((-140 (-177)) (-140 (-177)))) (-15 -1448 ((-177) (-177) (-177))) (-15 -1448 ((-140 (-177)) (-140 (-177)) (-140 (-177)))))) (T -178)) +((-1448 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-1448 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3377 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3377 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3376 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3376 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3375 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3375 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3374 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3374 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3373 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3373 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3372 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3372 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3370 (*1 *2 *3 *2) (-12 (-5 *2 (-140 (-177))) (-5 *3 (-687)) (-5 *1 (-178)))) (-3370 (*1 *2 *3 *2) (-12 (-5 *2 (-177)) (-5 *3 (-687)) (-5 *1 (-178)))) (-3369 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3369 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-1447 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-1447 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3368 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3368 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3371 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3371 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3822 (($ (-687) (-687)) NIL T ELT)) (-2336 (($ $ $) NIL T ELT)) (-3398 (($ (-1168 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3857 (($ |#1| |#1| |#1|) 33 T ELT)) (-3104 (((-83) $) NIL T ELT)) (-2335 (($ $ (-478) (-478)) NIL T ELT)) (-2334 (($ $ (-478) (-478)) NIL T ELT)) (-2333 (($ $ (-478) (-478) (-478) (-478)) NIL T ELT)) (-2338 (($ $) NIL T ELT)) (-3106 (((-83) $) NIL T ELT)) (-2332 (($ $ (-478) (-478) $) NIL T ELT)) (-3772 ((|#1| $ (-478) (-478) |#1|) NIL T ELT) (($ $ (-578 (-478)) (-578 (-478)) $) NIL T ELT)) (-1245 (($ $ (-478) (-1168 |#1|)) NIL T ELT)) (-1244 (($ $ (-478) (-1168 |#1|)) NIL T ELT)) (-3831 (($ |#1| |#1| |#1|) 32 T ELT)) (-3317 (($ (-687) |#1|) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3093 (($ $) NIL (|has| |#1| (-254)) ELT)) (-3095 (((-1168 |#1|) $ (-478)) NIL T ELT)) (-1449 (($ |#1|) 31 T ELT)) (-1450 (($ |#1|) 30 T ELT)) (-1451 (($ |#1|) 29 T ELT)) (-3092 (((-687) $) NIL (|has| |#1| (-489)) ELT)) (-1563 ((|#1| $ (-478) (-478) |#1|) NIL T ELT)) (-3096 ((|#1| $ (-478) (-478)) NIL T ELT)) (-2873 (((-578 |#1|) $) NIL T ELT)) (-3091 (((-687) $) NIL (|has| |#1| (-489)) ELT)) (-3090 (((-578 (-1168 |#1|)) $) NIL (|has| |#1| (-489)) ELT)) (-3098 (((-687) $) NIL T ELT)) (-3598 (($ (-687) (-687) |#1|) NIL T ELT)) (-3097 (((-687) $) NIL T ELT)) (-3311 ((|#1| $) NIL (|has| |#1| (-6 (-3981 #1="*"))) ELT)) (-3102 (((-478) $) NIL T ELT)) (-3100 (((-478) $) NIL T ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3101 (((-478) $) NIL T ELT)) (-3099 (((-478) $) NIL T ELT)) (-3107 (($ (-578 (-578 |#1|))) 11 T ELT) (($ (-687) (-687) (-1 |#1| (-478) (-478))) NIL T ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3578 (((-578 (-578 |#1|)) $) NIL T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3574 (((-3 $ #2="failed") $) NIL (|has| |#1| (-308)) ELT)) (-1452 (($) 12 T ELT)) (-2337 (($ $ $) NIL T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-2185 (($ $ |#1|) NIL T ELT)) (-3450 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-489)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#1| $ (-478) (-478)) NIL T ELT) ((|#1| $ (-478) (-478) |#1|) NIL T ELT) (($ $ (-578 (-478)) (-578 (-478))) NIL T ELT)) (-3316 (($ (-578 |#1|)) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3105 (((-83) $) NIL T ELT)) (-3312 ((|#1| $) NIL (|has| |#1| (-6 (-3981 #1#))) ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3094 (((-1168 |#1|) $ (-478)) NIL T ELT)) (-3930 (($ (-1168 |#1|)) NIL T ELT) (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3103 (((-83) $) NIL T ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-478) $) NIL T ELT) (((-1168 |#1|) $ (-1168 |#1|)) 15 T ELT) (((-1168 |#1|) (-1168 |#1|) $) NIL T ELT) (((-847 |#1|) $ (-847 |#1|)) 21 T ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-179 |#1|) (-13 (-622 |#1| (-1168 |#1|) (-1168 |#1|)) (-10 -8 (-15 * ((-847 |#1|) $ (-847 |#1|))) (-15 -1452 ($)) (-15 -1451 ($ |#1|)) (-15 -1450 ($ |#1|)) (-15 -1449 ($ |#1|)) (-15 -3831 ($ |#1| |#1| |#1|)) (-15 -3857 ($ |#1| |#1| |#1|)))) (-13 (-308) (-1104))) (T -179)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1104))) (-5 *1 (-179 *3)))) (-1452 (*1 *1) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1104))))) (-1451 (*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1104))))) (-1450 (*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1104))))) (-1449 (*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1104))))) (-3831 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1104))))) (-3857 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1104)))))) +((-1557 (($ (-1 (-83) |#2|) $) 16 T ELT)) (-3389 (($ |#2| $) NIL T ELT) (($ (-1 (-83) |#2|) $) 28 T ELT)) (-1453 (($) NIL T ELT) (($ (-578 |#2|)) 11 T ELT)) (-3037 (((-83) $ $) 26 T ELT))) +(((-180 |#1| |#2|) (-10 -7 (-15 -3037 ((-83) |#1| |#1|)) (-15 -1557 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3389 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3389 (|#1| |#2| |#1|)) (-15 -1453 (|#1| (-578 |#2|))) (-15 -1453 (|#1|))) (-181 |#2|) (-1005)) (T -180)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-1557 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3979)) ELT)) (-3708 (($) 7 T CONST)) (-1340 (($ $) 62 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3389 (($ |#1| $) 51 (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3979)) ELT)) (-3390 (($ |#1| $) 61 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3979)) ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-1262 ((|#1| $) 43 T ELT)) (-3593 (($ |#1| $) 44 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1263 ((|#1| $) 45 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-1453 (($) 53 T ELT) (($ (-578 |#1|)) 52 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 63 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 54 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1264 (($ (-578 |#1|)) 46 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-181 |#1|) (-111) (-1005)) (T -181)) +NIL +(-13 (-190 |t#1|)) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-190 |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1118) . T)) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3742 (($ $ (-1 |#1| |#1|) (-687)) 62 T ELT) (($ $ (-1 |#1| |#1|)) 61 T ELT) (($ $ (-1079)) 60 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) 58 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) 57 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 56 (|has| |#1| (-804 (-1079))) ELT) (($ $) 52 (|has| |#1| (-187)) ELT) (($ $ (-687)) 50 (|has| |#1| (-187)) ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-1 |#1| |#1|) (-687)) 64 T ELT) (($ $ (-1 |#1| |#1|)) 63 T ELT) (($ $ (-1079)) 59 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) 55 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) 54 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 53 (|has| |#1| (-804 (-1079))) ELT) (($ $) 51 (|has| |#1| (-187)) ELT) (($ $ (-687)) 49 (|has| |#1| (-187)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-182 |#1|) (-111) (-954)) (T -182)) +NIL +(-13 (-954) (-222 |t#1|) (-10 -7 (IF (|has| |t#1| (-188)) (-6 (-188)) |%noBranch|) (IF (|has| |t#1| (-802 (-1079))) (-6 (-802 (-1079))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-184 $) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-188) |has| |#1| (-188)) ((-187) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-222 |#1|) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-658) . T) ((-799 $ (-1079)) OR (|has| |#1| (-804 (-1079))) (|has| |#1| (-802 (-1079)))) ((-802 (-1079)) |has| |#1| (-802 (-1079))) ((-804 (-1079)) OR (|has| |#1| (-804 (-1079))) (|has| |#1| (-802 (-1079)))) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2653 ((|#2| $) 9 T ELT))) +(((-183 |#1| |#2|) (-10 -7 (-15 -2653 (|#2| |#1|))) (-184 |#2|) (-1118)) (T -183)) +NIL +((-3742 ((|#1| $) 7 T ELT)) (-2653 ((|#1| $) 6 T ELT))) +(((-184 |#1|) (-111) (-1118)) (T -184)) +((-3742 (*1 *2 *1) (-12 (-4 *1 (-184 *2)) (-4 *2 (-1118)))) (-2653 (*1 *2 *1) (-12 (-4 *1 (-184 *2)) (-4 *2 (-1118))))) +(-13 (-1118) (-10 -8 (-15 -3742 (|t#1| $)) (-15 -2653 (|t#1| $)))) +(((-1118) . T)) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3742 (($ $ (-687)) 42 T ELT) (($ $) 40 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2653 (($ $ (-687)) 43 T ELT) (($ $) 41 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-185 |#1|) (-111) (-954)) (T -185)) +NIL +(-13 (-80 |t#1| |t#1|) (-187) (-10 -7 (IF (|has| |t#1| (-144)) (-6 (-649 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-547 (-765)) . T) ((-184 $) . T) ((-187) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) |has| |#1| (-144)) ((-649 |#1|) |has| |#1| (-144)) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-3742 (($ $) NIL T ELT) (($ $ (-687)) 9 T ELT)) (-2653 (($ $) NIL T ELT) (($ $ (-687)) 11 T ELT))) +(((-186 |#1|) (-10 -7 (-15 -2653 (|#1| |#1| (-687))) (-15 -3742 (|#1| |#1| (-687))) (-15 -2653 (|#1| |#1|)) (-15 -3742 (|#1| |#1|))) (-187)) (T -186)) +NIL +((-3742 (($ $) 7 T ELT) (($ $ (-687)) 10 T ELT)) (-2653 (($ $) 6 T ELT) (($ $ (-687)) 9 T ELT))) +(((-187) (-111)) (T -187)) +((-3742 (*1 *1 *1 *2) (-12 (-4 *1 (-187)) (-5 *2 (-687)))) (-2653 (*1 *1 *1 *2) (-12 (-4 *1 (-187)) (-5 *2 (-687))))) +(-13 (-184 $) (-10 -8 (-15 -3742 ($ $ (-687))) (-15 -2653 ($ $ (-687))))) +(((-184 $) . T) ((-1118) . T)) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3742 (($ $ (-687)) 47 T ELT) (($ $) 45 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-687)) 48 T ELT) (($ $) 46 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-188) (-111)) (T -188)) +NIL +(-13 (-954) (-187)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-184 $) . T) ((-187) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-658) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-1453 (($) 12 T ELT) (($ (-578 |#2|)) NIL T ELT)) (-3384 (($ $) 14 T ELT)) (-3514 (($ (-578 |#2|)) 10 T ELT)) (-3930 (((-765) $) 21 T ELT))) +(((-189 |#1| |#2|) (-10 -7 (-15 -3930 ((-765) |#1|)) (-15 -1453 (|#1| (-578 |#2|))) (-15 -1453 (|#1|)) (-15 -3514 (|#1| (-578 |#2|))) (-15 -3384 (|#1| |#1|))) (-190 |#2|) (-1005)) (T -189)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-1557 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3979)) ELT)) (-3708 (($) 7 T CONST)) (-1340 (($ $) 62 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3389 (($ |#1| $) 51 (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3979)) ELT)) (-3390 (($ |#1| $) 61 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3979)) ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-1262 ((|#1| $) 43 T ELT)) (-3593 (($ |#1| $) 44 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1263 ((|#1| $) 45 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-1453 (($) 53 T ELT) (($ (-578 |#1|)) 52 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 63 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 54 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1264 (($ (-578 |#1|)) 46 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-190 |#1|) (-111) (-1005)) (T -190)) +((-1453 (*1 *1) (-12 (-4 *1 (-190 *2)) (-4 *2 (-1005)))) (-1453 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-4 *1 (-190 *3)))) (-3389 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-190 *2)) (-4 *2 (-1005)))) (-3389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3979)) (-4 *1 (-190 *3)) (-4 *3 (-1005)))) (-1557 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3979)) (-4 *1 (-190 *3)) (-4 *3 (-1005))))) +(-13 (-76 |t#1|) (-122 |t#1|) (-10 -8 (-15 -1453 ($)) (-15 -1453 ($ (-578 |t#1|))) (IF (|has| $ (-6 -3979)) (PROGN (-15 -3389 ($ |t#1| $)) (-15 -3389 ($ (-1 (-83) |t#1|) $)) (-15 -1557 ($ (-1 (-83) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1118) . T)) +((-1454 (((-2 (|:| |varOrder| (-578 (-1079))) (|:| |inhom| (-3 (-578 (-1168 (-687))) "failed")) (|:| |hom| (-578 (-1168 (-687))))) (-245 (-850 (-478)))) 42 T ELT))) +(((-191) (-10 -7 (-15 -1454 ((-2 (|:| |varOrder| (-578 (-1079))) (|:| |inhom| (-3 (-578 (-1168 (-687))) "failed")) (|:| |hom| (-578 (-1168 (-687))))) (-245 (-850 (-478))))))) (T -191)) +((-1454 (*1 *2 *3) (-12 (-5 *3 (-245 (-850 (-478)))) (-5 *2 (-2 (|:| |varOrder| (-578 (-1079))) (|:| |inhom| (-3 (-578 (-1168 (-687))) "failed")) (|:| |hom| (-578 (-1168 (-687)))))) (-5 *1 (-191))))) +((-3119 (((-687)) 56 T ELT)) (-2265 (((-2 (|:| |mat| (-625 |#3|)) (|:| |vec| (-1168 |#3|))) (-625 $) (-1168 $)) 53 T ELT) (((-625 |#3|) (-625 $)) 44 T ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL T ELT) (((-625 (-478)) (-625 $)) NIL T ELT)) (-3895 (((-105)) 62 T ELT)) (-3742 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-687)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079))) NIL T ELT) (($ $ (-1079)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $) NIL T ELT)) (-3930 (((-1168 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-765) $) NIL T ELT) (($ (-478)) 12 T ELT) (($ (-343 (-478))) NIL T ELT)) (-3109 (((-687)) 15 T ELT)) (-3933 (($ $ |#3|) 59 T ELT))) +(((-192 |#1| |#2| |#3|) (-10 -7 (-15 -3930 (|#1| (-343 (-478)))) (-15 -3930 (|#1| (-478))) (-15 -3742 (|#1| |#1|)) (-15 -3742 (|#1| |#1| (-687))) (-15 -3742 (|#1| |#1| (-1079))) (-15 -3742 (|#1| |#1| (-578 (-1079)))) (-15 -3742 (|#1| |#1| (-1079) (-687))) (-15 -3742 (|#1| |#1| (-578 (-1079)) (-578 (-687)))) (-15 -3930 ((-765) |#1|)) (-15 -3109 ((-687))) (-15 -2265 ((-625 (-478)) (-625 |#1|))) (-15 -2265 ((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 |#1|) (-1168 |#1|))) (-15 -3930 (|#1| |#3|)) (-15 -3742 (|#1| |#1| (-1 |#3| |#3|) (-687))) (-15 -3742 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2265 ((-625 |#3|) (-625 |#1|))) (-15 -2265 ((-2 (|:| |mat| (-625 |#3|)) (|:| |vec| (-1168 |#3|))) (-625 |#1|) (-1168 |#1|))) (-15 -3119 ((-687))) (-15 -3933 (|#1| |#1| |#3|)) (-15 -3895 ((-105))) (-15 -3930 ((-1168 |#3|) |#1|))) (-193 |#2| |#3|) (-687) (-1118)) (T -192)) +((-3895 (*1 *2) (-12 (-14 *4 (-687)) (-4 *5 (-1118)) (-5 *2 (-105)) (-5 *1 (-192 *3 *4 *5)) (-4 *3 (-193 *4 *5)))) (-3119 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1118)) (-5 *2 (-687)) (-5 *1 (-192 *3 *4 *5)) (-4 *3 (-193 *4 *5)))) (-3109 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1118)) (-5 *2 (-687)) (-5 *1 (-192 *3 *4 *5)) (-4 *3 (-193 *4 *5))))) +((-2552 (((-83) $ $) 19 (|has| |#2| (-72)) ELT)) (-3171 (((-83) $) 80 (|has| |#2| (-23)) ELT)) (-3691 (($ (-823)) 134 (|has| |#2| (-954)) ELT)) (-2184 (((-1174) $ (-478) (-478)) 44 (|has| $ (-6 -3980)) ELT)) (-2467 (($ $ $) 130 (|has| |#2| (-710)) ELT)) (-1299 (((-3 $ "failed") $ $) 82 (|has| |#2| (-102)) ELT)) (-3119 (((-687)) 119 (|has| |#2| (-313)) ELT)) (-3772 ((|#2| $ (-478) |#2|) 56 (|has| $ (-6 -3980)) ELT)) (-3708 (($) 7 T CONST)) (-3140 (((-3 (-478) #1="failed") $) 75 (-2546 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) ELT) (((-3 (-343 (-478)) #1#) $) 72 (-2546 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005))) ELT) (((-3 |#2| #1#) $) 69 (|has| |#2| (-1005)) ELT)) (-3139 (((-478) $) 74 (-2546 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) ELT) (((-343 (-478)) $) 71 (-2546 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005))) ELT) ((|#2| $) 70 (|has| |#2| (-1005)) ELT)) (-2265 (((-625 (-478)) (-625 $)) 116 (-2546 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 115 (-2546 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) 114 (|has| |#2| (-954)) ELT) (((-625 |#2|) (-625 $)) 113 (|has| |#2| (-954)) ELT)) (-3451 (((-3 $ "failed") $) 90 (|has| |#2| (-954)) ELT)) (-2978 (($) 122 (|has| |#2| (-313)) ELT)) (-1563 ((|#2| $ (-478) |#2|) 57 (|has| $ (-6 -3980)) ELT)) (-3096 ((|#2| $ (-478)) 55 T ELT)) (-3169 (((-83) $) 129 (|has| |#2| (-710)) ELT)) (-2873 (((-578 |#2|) $) 30 (|has| $ (-6 -3979)) ELT)) (-2396 (((-83) $) 92 (|has| |#2| (-954)) ELT)) (-2186 (((-478) $) 47 (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) 123 (|has| |#2| (-749)) ELT)) (-2592 (((-578 |#2|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#2| $) 27 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -3979))) ELT)) (-2187 (((-478) $) 48 (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) 124 (|has| |#2| (-749)) ELT)) (-1936 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-1996 (((-823) $) 121 (|has| |#2| (-313)) ELT)) (-2266 (((-625 (-478)) (-1168 $)) 118 (-2546 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) 117 (-2546 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-1168 $) $) 112 (|has| |#2| (-954)) ELT) (((-625 |#2|) (-1168 $)) 111 (|has| |#2| (-954)) ELT)) (-3225 (((-1062) $) 22 (|has| |#2| (-1005)) ELT)) (-2189 (((-578 (-478)) $) 50 T ELT)) (-2190 (((-83) (-478) $) 51 T ELT)) (-2386 (($ (-823)) 120 (|has| |#2| (-313)) ELT)) (-3226 (((-1023) $) 21 (|has| |#2| (-1005)) ELT)) (-3785 ((|#2| $) 46 (|has| (-478) (-749)) ELT)) (-2185 (($ $ |#2|) 45 (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#2|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#2|))) 26 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-245 |#2|)) 25 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) 23 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-2188 (((-83) |#2| $) 49 (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2191 (((-578 |#2|) $) 52 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#2| $ (-478) |#2|) 54 T ELT) ((|#2| $ (-478)) 53 T ELT)) (-3820 ((|#2| $ $) 133 (|has| |#2| (-954)) ELT)) (-1455 (($ (-1168 |#2|)) 135 T ELT)) (-3895 (((-105)) 132 (|has| |#2| (-308)) ELT)) (-3742 (($ $ (-687)) 109 (-2546 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $) 107 (-2546 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 103 (-2546 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1079) (-687)) 102 (-2546 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1079))) 101 (-2546 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1079)) 99 (-2546 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1 |#2| |#2|)) 98 (|has| |#2| (-954)) ELT) (($ $ (-1 |#2| |#2|) (-687)) 97 (|has| |#2| (-954)) ELT)) (-1933 (((-687) (-1 (-83) |#2|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#2| $) 28 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3930 (((-1168 |#2|) $) 136 T ELT) (($ (-478)) 76 (OR (-2546 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) (|has| |#2| (-954))) ELT) (($ (-343 (-478))) 73 (-2546 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005))) ELT) (($ |#2|) 68 (|has| |#2| (-1005)) ELT) (((-765) $) 17 (|has| |#2| (-547 (-765))) ELT)) (-3109 (((-687)) 94 (|has| |#2| (-954)) CONST)) (-1253 (((-83) $ $) 20 (|has| |#2| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) 33 (|has| $ (-6 -3979)) ELT)) (-2644 (($) 79 (|has| |#2| (-23)) CONST)) (-2650 (($) 93 (|has| |#2| (-954)) CONST)) (-2653 (($ $ (-687)) 110 (-2546 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $) 108 (-2546 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 106 (-2546 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1079) (-687)) 105 (-2546 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1079))) 104 (-2546 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1079)) 100 (-2546 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1 |#2| |#2|)) 96 (|has| |#2| (-954)) ELT) (($ $ (-1 |#2| |#2|) (-687)) 95 (|has| |#2| (-954)) ELT)) (-2550 (((-83) $ $) 125 (|has| |#2| (-749)) ELT)) (-2551 (((-83) $ $) 127 (|has| |#2| (-749)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#2| (-72)) ELT)) (-2668 (((-83) $ $) 126 (|has| |#2| (-749)) ELT)) (-2669 (((-83) $ $) 128 (|has| |#2| (-749)) ELT)) (-3933 (($ $ |#2|) 131 (|has| |#2| (-308)) ELT)) (-3821 (($ $ $) 85 (|has| |#2| (-21)) ELT) (($ $) 84 (|has| |#2| (-21)) ELT)) (-3823 (($ $ $) 77 (|has| |#2| (-25)) ELT)) (** (($ $ (-687)) 91 (|has| |#2| (-954)) ELT) (($ $ (-823)) 88 (|has| |#2| (-954)) ELT)) (* (($ $ $) 89 (|has| |#2| (-954)) ELT) (($ $ |#2|) 87 (|has| |#2| (-658)) ELT) (($ |#2| $) 86 (|has| |#2| (-658)) ELT) (($ (-478) $) 83 (|has| |#2| (-21)) ELT) (($ (-687) $) 81 (|has| |#2| (-23)) ELT) (($ (-823) $) 78 (|has| |#2| (-25)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-193 |#1| |#2|) (-111) (-687) (-1118)) (T -193)) +((-1455 (*1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-4 *4 (-1118)) (-4 *1 (-193 *3 *4)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-823)) (-4 *1 (-193 *3 *4)) (-4 *4 (-954)) (-4 *4 (-1118)))) (-3820 (*1 *2 *1 *1) (-12 (-4 *1 (-193 *3 *2)) (-4 *2 (-1118)) (-4 *2 (-954))))) +(-13 (-533 (-478) |t#2|) (-547 (-1168 |t#2|)) (-10 -8 (-6 -3979) (-15 -1455 ($ (-1168 |t#2|))) (IF (|has| |t#2| (-1005)) (-6 (-348 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-954)) (PROGN (-6 (-80 |t#2| |t#2|)) (-6 (-182 |t#2|)) (-6 (-322 |t#2|)) (-15 -3691 ($ (-823))) (-15 -3820 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-658)) (-6 (-577 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-313)) (-6 (-313)) |%noBranch|) (IF (|has| |t#2| (-144)) (-6 (-649 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3976)) (-6 -3976) |%noBranch|) (IF (|has| |t#2| (-749)) (-6 (-749)) |%noBranch|) (IF (|has| |t#2| (-710)) (-6 (-710)) |%noBranch|) (IF (|has| |t#2| (-308)) (-6 (-1176 |t#2|)) |%noBranch|))) +(((-21) OR (|has| |#2| (-954)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-954)) (|has| |#2| (-710)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-954)) (|has| |#2| (-710)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1005)) (|has| |#2| (-954)) (|has| |#2| (-749)) (|has| |#2| (-710)) (|has| |#2| (-658)) (|has| |#2| (-313)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-80 |#2| |#2|) OR (|has| |#2| (-954)) (|has| |#2| (-308)) (|has| |#2| (-144))) ((-102) OR (|has| |#2| (-954)) (|has| |#2| (-710)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-21))) ((-550 (-343 (-478))) -12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005))) ((-550 (-478)) OR (|has| |#2| (-954)) (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005)))) ((-550 |#2|) |has| |#2| (-1005)) ((-547 (-765)) OR (|has| |#2| (-1005)) (|has| |#2| (-954)) (|has| |#2| (-749)) (|has| |#2| (-710)) (|has| |#2| (-658)) (|has| |#2| (-313)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-547 (-765))) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-547 (-1168 |#2|)) . T) ((-184 $) OR (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) (-12 (|has| |#2| (-188)) (|has| |#2| (-954)))) ((-182 |#2|) |has| |#2| (-954)) ((-188) -12 (|has| |#2| (-188)) (|has| |#2| (-954))) ((-187) OR (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) (-12 (|has| |#2| (-188)) (|has| |#2| (-954)))) ((-222 |#2|) |has| |#2| (-954)) ((-238 (-478) |#2|) . T) ((-240 (-478) |#2|) . T) ((-256 |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ((-313) |has| |#2| (-313)) ((-322 |#2|) |has| |#2| (-954)) ((-348 |#2|) |has| |#2| (-1005)) ((-422 |#2|) . T) ((-533 (-478) |#2|) . T) ((-447 |#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ((-583 (-478)) OR (|has| |#2| (-954)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-21))) ((-583 |#2|) OR (|has| |#2| (-954)) (|has| |#2| (-658)) (|has| |#2| (-308)) (|has| |#2| (-144))) ((-583 $) |has| |#2| (-954)) ((-585 (-478)) -12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ((-585 |#2|) OR (|has| |#2| (-954)) (|has| |#2| (-308)) (|has| |#2| (-144))) ((-585 $) |has| |#2| (-954)) ((-577 |#2|) OR (|has| |#2| (-658)) (|has| |#2| (-308)) (|has| |#2| (-144))) ((-575 (-478)) -12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ((-575 |#2|) |has| |#2| (-954)) ((-649 |#2|) OR (|has| |#2| (-308)) (|has| |#2| (-144))) ((-658) |has| |#2| (-954)) ((-709) |has| |#2| (-710)) ((-710) |has| |#2| (-710)) ((-711) |has| |#2| (-710)) ((-714) |has| |#2| (-710)) ((-749) OR (|has| |#2| (-749)) (|has| |#2| (-710))) ((-752) OR (|has| |#2| (-749)) (|has| |#2| (-710))) ((-799 $ (-1079)) OR (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) (-12 (|has| |#2| (-802 (-1079))) (|has| |#2| (-954)))) ((-802 (-1079)) -12 (|has| |#2| (-802 (-1079))) (|has| |#2| (-954))) ((-804 (-1079)) OR (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) (-12 (|has| |#2| (-802 (-1079))) (|has| |#2| (-954)))) ((-943 (-343 (-478))) -12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005))) ((-943 (-478)) -12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) ((-943 |#2|) |has| |#2| (-1005)) ((-956 |#2|) OR (|has| |#2| (-954)) (|has| |#2| (-658)) (|has| |#2| (-308)) (|has| |#2| (-144))) ((-961 |#2|) OR (|has| |#2| (-954)) (|has| |#2| (-308)) (|has| |#2| (-144))) ((-954) |has| |#2| (-954)) ((-962) |has| |#2| (-954)) ((-1015) |has| |#2| (-954)) ((-1005) OR (|has| |#2| (-1005)) (|has| |#2| (-954)) (|has| |#2| (-749)) (|has| |#2| (-710)) (|has| |#2| (-658)) (|has| |#2| (-313)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1118) . T) ((-1176 |#2|) |has| |#2| (-308))) +((-2552 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-3171 (((-83) $) NIL (|has| |#2| (-23)) ELT)) (-3691 (($ (-823)) 63 (|has| |#2| (-954)) ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-2467 (($ $ $) 69 (|has| |#2| (-710)) ELT)) (-1299 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-102)) ELT)) (-3119 (((-687)) NIL (|has| |#2| (-313)) ELT)) (-3772 ((|#2| $ (-478) |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (-12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1005)) ELT)) (-3139 (((-478) $) NIL (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) ELT) (((-343 (-478)) $) NIL (-12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005))) ELT) ((|#2| $) 29 (|has| |#2| (-1005)) ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) NIL (|has| |#2| (-954)) ELT) (((-625 |#2|) (-625 $)) NIL (|has| |#2| (-954)) ELT)) (-3451 (((-3 $ #1#) $) 59 (|has| |#2| (-954)) ELT)) (-2978 (($) NIL (|has| |#2| (-313)) ELT)) (-1563 ((|#2| $ (-478) |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#2| $ (-478)) 57 T ELT)) (-3169 (((-83) $) NIL (|has| |#2| (-710)) ELT)) (-2873 (((-578 |#2|) $) 14 (|has| $ (-6 -3979)) ELT)) (-2396 (((-83) $) NIL (|has| |#2| (-954)) ELT)) (-2186 (((-478) $) 20 (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| |#2| (-749)) ELT)) (-2592 (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2187 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#2| (-749)) ELT)) (-1936 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1996 (((-823) $) NIL (|has| |#2| (-313)) ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-1168 $) $) NIL (|has| |#2| (-954)) ELT) (((-625 |#2|) (-1168 $)) NIL (|has| |#2| (-954)) ELT)) (-3225 (((-1062) $) NIL (|has| |#2| (-1005)) ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-2386 (($ (-823)) NIL (|has| |#2| (-313)) ELT)) (-3226 (((-1023) $) NIL (|has| |#2| (-1005)) ELT)) (-3785 ((|#2| $) NIL (|has| (-478) (-749)) ELT)) (-2185 (($ $ |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#2|) $) 24 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2191 (((-578 |#2|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#2| $ (-478) |#2|) NIL T ELT) ((|#2| $ (-478)) 21 T ELT)) (-3820 ((|#2| $ $) NIL (|has| |#2| (-954)) ELT)) (-1455 (($ (-1168 |#2|)) 18 T ELT)) (-3895 (((-105)) NIL (|has| |#2| (-308)) ELT)) (-3742 (($ $ (-687)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1079)) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-954)) ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL (|has| |#2| (-954)) ELT)) (-1933 (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3930 (((-1168 |#2|) $) 9 T ELT) (($ (-478)) NIL (OR (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) (|has| |#2| (-954))) ELT) (($ (-343 (-478))) NIL (-12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005))) ELT) (($ |#2|) 12 (|has| |#2| (-1005)) ELT) (((-765) $) NIL (|has| |#2| (-547 (-765))) ELT)) (-3109 (((-687)) NIL (|has| |#2| (-954)) CONST)) (-1253 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2644 (($) 37 (|has| |#2| (-23)) CONST)) (-2650 (($) 41 (|has| |#2| (-954)) CONST)) (-2653 (($ $ (-687)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1079)) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-954)) ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL (|has| |#2| (-954)) ELT)) (-2550 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-3037 (((-83) $ $) 28 (|has| |#2| (-72)) ELT)) (-2668 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-2669 (((-83) $ $) 67 (|has| |#2| (-749)) ELT)) (-3933 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3821 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3823 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-687)) NIL (|has| |#2| (-954)) ELT) (($ $ (-823)) NIL (|has| |#2| (-954)) ELT)) (* (($ $ $) 47 (|has| |#2| (-954)) ELT) (($ $ |#2|) 45 (|has| |#2| (-658)) ELT) (($ |#2| $) 46 (|has| |#2| (-658)) ELT) (($ (-478) $) NIL (|has| |#2| (-21)) ELT) (($ (-687) $) NIL (|has| |#2| (-23)) ELT) (($ (-823) $) NIL (|has| |#2| (-25)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-194 |#1| |#2|) (-193 |#1| |#2|) (-687) (-1118)) (T -194)) +NIL +((-3825 (((-194 |#1| |#3|) (-1 |#3| |#2| |#3|) (-194 |#1| |#2|) |#3|) 21 T ELT)) (-3826 ((|#3| (-1 |#3| |#2| |#3|) (-194 |#1| |#2|) |#3|) 23 T ELT)) (-3942 (((-194 |#1| |#3|) (-1 |#3| |#2|) (-194 |#1| |#2|)) 18 T ELT))) +(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3825 ((-194 |#1| |#3|) (-1 |#3| |#2| |#3|) (-194 |#1| |#2|) |#3|)) (-15 -3826 (|#3| (-1 |#3| |#2| |#3|) (-194 |#1| |#2|) |#3|)) (-15 -3942 ((-194 |#1| |#3|) (-1 |#3| |#2|) (-194 |#1| |#2|)))) (-687) (-1118) (-1118)) (T -195)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-194 *5 *6)) (-14 *5 (-687)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-194 *5 *7)) (-5 *1 (-195 *5 *6 *7)))) (-3826 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-194 *5 *6)) (-14 *5 (-687)) (-4 *6 (-1118)) (-4 *2 (-1118)) (-5 *1 (-195 *5 *6 *2)))) (-3825 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-194 *6 *7)) (-14 *6 (-687)) (-4 *7 (-1118)) (-4 *5 (-1118)) (-5 *2 (-194 *6 *5)) (-5 *1 (-195 *6 *7 *5))))) +((-1459 (((-478) (-578 (-1062))) 36 T ELT) (((-478) (-1062)) 29 T ELT)) (-1458 (((-1174) (-578 (-1062))) 40 T ELT) (((-1174) (-1062)) 39 T ELT)) (-1456 (((-1062)) 16 T ELT)) (-1457 (((-1062) (-478) (-1062)) 23 T ELT)) (-3757 (((-578 (-1062)) (-578 (-1062)) (-478) (-1062)) 37 T ELT) (((-1062) (-1062) (-478) (-1062)) 35 T ELT)) (-2604 (((-578 (-1062)) (-578 (-1062))) 15 T ELT) (((-578 (-1062)) (-1062)) 11 T ELT))) +(((-196) (-10 -7 (-15 -2604 ((-578 (-1062)) (-1062))) (-15 -2604 ((-578 (-1062)) (-578 (-1062)))) (-15 -1456 ((-1062))) (-15 -1457 ((-1062) (-478) (-1062))) (-15 -3757 ((-1062) (-1062) (-478) (-1062))) (-15 -3757 ((-578 (-1062)) (-578 (-1062)) (-478) (-1062))) (-15 -1458 ((-1174) (-1062))) (-15 -1458 ((-1174) (-578 (-1062)))) (-15 -1459 ((-478) (-1062))) (-15 -1459 ((-478) (-578 (-1062)))))) (T -196)) +((-1459 (*1 *2 *3) (-12 (-5 *3 (-578 (-1062))) (-5 *2 (-478)) (-5 *1 (-196)))) (-1459 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-478)) (-5 *1 (-196)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-578 (-1062))) (-5 *2 (-1174)) (-5 *1 (-196)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-196)))) (-3757 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-578 (-1062))) (-5 *3 (-478)) (-5 *4 (-1062)) (-5 *1 (-196)))) (-3757 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1062)) (-5 *3 (-478)) (-5 *1 (-196)))) (-1457 (*1 *2 *3 *2) (-12 (-5 *2 (-1062)) (-5 *3 (-478)) (-5 *1 (-196)))) (-1456 (*1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-196)))) (-2604 (*1 *2 *2) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-196)))) (-2604 (*1 *2 *3) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-196)) (-5 *3 (-1062))))) +((** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 18 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-343 (-478)) $) 25 T ELT) (($ $ (-343 (-478))) NIL T ELT))) +(((-197 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-478))) (-15 * (|#1| |#1| (-343 (-478)))) (-15 * (|#1| (-343 (-478)) |#1|)) (-15 ** (|#1| |#1| (-687))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-823))) (-15 * (|#1| (-478) |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 * (|#1| (-823) |#1|))) (-198)) (T -197)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 52 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 (-478))) 56 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 53 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-343 (-478)) $) 55 T ELT) (($ $ (-343 (-478))) 54 T ELT))) +(((-198) (-111)) (T -198)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-198)) (-5 *2 (-478)))) (-2468 (*1 *1 *1) (-4 *1 (-198)))) +(-13 (-242) (-38 (-343 (-478))) (-10 -8 (-15 ** ($ $ (-478))) (-15 -2468 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-242) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-649 (-343 (-478))) . T) ((-658) . T) ((-956 (-343 (-478))) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3386 ((|#1| $) 52 T ELT)) (-3781 (($ $) 63 T ELT)) (-3009 ((|#1| $ |#1|) 43 (|has| $ (-6 -3980)) ELT)) (-1461 (($ $ $) 59 (|has| $ (-6 -3980)) ELT)) (-1460 (($ $ $) 58 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) 45 (|has| $ (-6 -3980)) ELT)) (-3708 (($) 7 T CONST)) (-1463 (($ $) 62 T ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-3015 (((-578 $) $) 54 T ELT)) (-3011 (((-83) $ $) 46 (|has| |#1| (-1005)) ELT)) (-1462 (($ $) 61 T ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3014 (((-578 |#1|) $) 49 T ELT)) (-3511 (((-83) $) 53 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-3782 ((|#1| $) 65 T ELT)) (-3161 (($ $) 64 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#1| $ #1#) 51 T ELT)) (-3013 (((-478) $ $) 48 T ELT)) (-3617 (((-83) $) 50 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3775 (($ $ $) 60 (|has| $ (-6 -3980)) ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-3506 (((-578 $) $) 55 T ELT)) (-3012 (((-83) $ $) 47 (|has| |#1| (-1005)) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-199 |#1|) (-111) (-1118)) (T -199)) +((-3782 (*1 *2 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1118)))) (-3161 (*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1118)))) (-3781 (*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1118)))) (-1463 (*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1118)))) (-1462 (*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1118)))) (-3775 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-199 *2)) (-4 *2 (-1118)))) (-1461 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-199 *2)) (-4 *2 (-1118)))) (-1460 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-199 *2)) (-4 *2 (-1118))))) +(-13 (-916 |t#1|) (-10 -8 (-15 -3782 (|t#1| $)) (-15 -3161 ($ $)) (-15 -3781 ($ $)) (-15 -1463 ($ $)) (-15 -1462 ($ $)) (IF (|has| $ (-6 -3980)) (PROGN (-15 -3775 ($ $ $)) (-15 -1461 ($ $ $)) (-15 -1460 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-916 |#1|) . T) ((-1005) |has| |#1| (-1005)) ((-1118) . T)) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3386 ((|#1| $) NIL T ELT)) (-3779 ((|#1| $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-3769 (($ $ (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) $) NIL (|has| |#1| (-749)) ELT) (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT)) (-1717 (($ $) NIL (-12 (|has| $ (-6 -3980)) (|has| |#1| (-749))) ELT) (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-2893 (($ $) 10 (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $) NIL T ELT)) (-3426 (((-83) $ (-687)) NIL T ELT)) (-3009 ((|#1| $ |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3771 (($ $ $) NIL (|has| $ (-6 -3980)) ELT)) (-3770 ((|#1| $ |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3773 ((|#1| $ |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3980)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -3980)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -3980)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) NIL (|has| $ (-6 -3980)) ELT) ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) NIL (|has| $ (-6 -3980)) ELT)) (-1557 (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3694 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3780 ((|#1| $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2283 (($ $) NIL (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) NIL T ELT)) (-3783 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2354 (($ $) NIL (|has| |#1| (-1005)) ELT)) (-1340 (($ $) 7 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3389 (($ |#1| $) NIL (|has| |#1| (-1005)) ELT) (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3390 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1563 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) NIL T ELT)) (-3427 (((-83) $) NIL T ELT)) (-3403 (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1005)) ELT) (((-478) |#1| $) NIL (|has| |#1| (-1005)) ELT) (((-478) (-1 (-83) |#1|) $) NIL T ELT)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3015 (((-578 $) $) NIL T ELT)) (-3011 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-3598 (($ (-687) |#1|) NIL T ELT)) (-3703 (((-83) $ (-687)) NIL T ELT)) (-2186 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2840 (($ $ $) NIL (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT)) (-3502 (($ $ $) NIL (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2187 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3518 (($ |#1|) NIL T ELT)) (-3700 (((-83) $ (-687)) NIL T ELT)) (-3014 (((-578 |#1|) $) NIL T ELT)) (-3511 (((-83) $) NIL T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3782 ((|#1| $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3593 (($ $ $ (-478)) NIL T ELT) (($ |#1| $ (-478)) NIL T ELT)) (-2290 (($ $ $ (-478)) NIL T ELT) (($ |#1| $ (-478)) NIL T ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-3785 ((|#1| $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2185 (($ $ |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3428 (((-83) $) NIL T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT) ((|#1| $ (-478)) NIL T ELT) ((|#1| $ (-478) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-687) $ "count") 16 T ELT)) (-3013 (((-478) $ $) NIL T ELT)) (-1558 (($ $ (-1135 (-478))) NIL T ELT) (($ $ (-478)) NIL T ELT)) (-2291 (($ $ (-1135 (-478))) NIL T ELT) (($ $ (-478)) NIL T ELT)) (-1464 (($ (-578 |#1|)) 22 T ELT)) (-3617 (((-83) $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3774 (($ $) NIL (|has| $ (-6 -3980)) ELT)) (-3777 (((-687) $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1718 (($ $ $ (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) NIL T ELT)) (-3775 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3786 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-578 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3930 (($ (-578 |#1|)) 17 T ELT) (((-578 |#1|) $) 18 T ELT) (((-765) $) 21 (|has| |#1| (-547 (-765))) ELT)) (-3506 (((-578 $) $) NIL T ELT)) (-3012 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3941 (((-687) $) 14 (|has| $ (-6 -3979)) ELT))) +(((-200 |#1|) (-13 (-603 |#1|) (-423 (-578 |#1|)) (-10 -8 (-15 -1464 ($ (-578 |#1|))) (-15 -3784 ($ $ "unique")) (-15 -3784 ($ $ "sort")) (-15 -3784 ((-687) $ "count")))) (-749)) (T -200)) +((-1464 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-200 *3)))) (-3784 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-200 *3)) (-4 *3 (-749)))) (-3784 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-200 *3)) (-4 *3 (-749)))) (-3784 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-687)) (-5 *1 (-200 *4)) (-4 *4 (-749))))) +((-1465 (((-3 (-687) "failed") |#1| |#1| (-687)) 40 T ELT))) +(((-201 |#1|) (-10 -7 (-15 -1465 ((-3 (-687) "failed") |#1| |#1| (-687)))) (-13 (-658) (-313) (-10 -7 (-15 ** (|#1| |#1| (-478)))))) (T -201)) +((-1465 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-687)) (-4 *3 (-13 (-658) (-313) (-10 -7 (-15 ** (*3 *3 (-478)))))) (-5 *1 (-201 *3))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3742 (($ $) 59 (|has| |#1| (-187)) ELT) (($ $ (-687)) 57 (|has| |#1| (-187)) ELT) (($ $ (-1079)) 55 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) 53 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) 52 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 51 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1 |#1| |#1|) (-687)) 45 T ELT) (($ $ (-1 |#1| |#1|)) 44 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2653 (($ $) 58 (|has| |#1| (-187)) ELT) (($ $ (-687)) 56 (|has| |#1| (-187)) ELT) (($ $ (-1079)) 54 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) 50 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) 49 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 48 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1 |#1| |#1|) (-687)) 47 T ELT) (($ $ (-1 |#1| |#1|)) 46 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-202 |#1|) (-111) (-954)) (T -202)) +NIL +(-13 (-80 |t#1| |t#1|) (-222 |t#1|) (-10 -7 (IF (|has| |t#1| (-187)) (-6 (-185 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-804 (-1079))) (-6 (-801 |t#1| (-1079))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-547 (-765)) . T) ((-184 $) |has| |#1| (-187)) ((-185 |#1|) |has| |#1| (-187)) ((-187) |has| |#1| (-187)) ((-222 |#1|) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) OR (-12 (|has| |#1| (-144)) (|has| |#1| (-804 (-1079)))) (-12 (|has| |#1| (-144)) (|has| |#1| (-187)))) ((-649 |#1|) OR (-12 (|has| |#1| (-144)) (|has| |#1| (-804 (-1079)))) (-12 (|has| |#1| (-144)) (|has| |#1| (-187)))) ((-799 $ (-1079)) |has| |#1| (-804 (-1079))) ((-801 |#1| (-1079)) |has| |#1| (-804 (-1079))) ((-804 (-1079)) |has| |#1| (-804 (-1079))) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3065 (((-578 (-766 |#1|)) $) NIL T ELT)) (-3067 (((-1074 $) $ (-766 |#1|)) NIL T ELT) (((-1074 |#2|) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#2| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#2| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#2| (-489)) ELT)) (-2803 (((-687) $) NIL T ELT) (((-687) $ (-578 (-766 |#1|))) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-3759 (($ $) NIL (|has| |#2| (-385)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#2| (-385)) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-3 (-766 |#1|) #1#) $) NIL T ELT)) (-3139 ((|#2| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-766 |#1|) $) NIL T ELT)) (-3740 (($ $ $ (-766 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-1924 (($ $ (-578 (-478))) NIL T ELT)) (-3943 (($ $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#2|) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3487 (($ $) NIL (|has| |#2| (-385)) ELT) (($ $ (-766 |#1|)) NIL (|has| |#2| (-385)) ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3707 (((-83) $) NIL (|has| |#2| (-814)) ELT)) (-1611 (($ $ |#2| (-194 (-3941 |#1|) (-687)) $) NIL T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-766 |#1|) (-789 (-323))) (|has| |#2| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-766 |#1|) (-789 (-478))) (|has| |#2| (-789 (-478)))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2404 (((-687) $) NIL T ELT)) (-3068 (($ (-1074 |#2|) (-766 |#1|)) NIL T ELT) (($ (-1074 $) (-766 |#1|)) NIL T ELT)) (-2805 (((-578 $) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#2| (-194 (-3941 |#1|) (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ (-766 |#1|)) NIL T ELT)) (-2804 (((-194 (-3941 |#1|) (-687)) $) NIL T ELT) (((-687) $ (-766 |#1|)) NIL T ELT) (((-578 (-687)) $ (-578 (-766 |#1|))) NIL T ELT)) (-1612 (($ (-1 (-194 (-3941 |#1|) (-687)) (-194 (-3941 |#1|) (-687))) $) NIL T ELT)) (-3942 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3066 (((-3 (-766 |#1|) #1#) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-1168 $) $) NIL T ELT) (((-625 |#2|) (-1168 $)) NIL T ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) NIL (|has| |#2| (-385)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2807 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2806 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-2 (|:| |var| (-766 |#1|)) (|:| -2387 (-687))) #1#) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1784 (((-83) $) NIL T ELT)) (-1783 ((|#2| $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#2| (-385)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) NIL (|has| |#2| (-385)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#2| (-814)) ELT)) (-3450 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-489)) ELT)) (-3752 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-766 |#1|) |#2|) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 |#2|)) NIL T ELT) (($ $ (-766 |#1|) $) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 $)) NIL T ELT)) (-3741 (($ $ (-766 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3742 (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|)) NIL T ELT)) (-3932 (((-194 (-3941 |#1|) (-687)) $) NIL T ELT) (((-687) $ (-766 |#1|)) NIL T ELT) (((-578 (-687)) $ (-578 (-766 |#1|))) NIL T ELT)) (-3956 (((-793 (-323)) $) NIL (-12 (|has| (-766 |#1|) (-548 (-793 (-323)))) (|has| |#2| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-766 |#1|) (-548 (-793 (-478)))) (|has| |#2| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-766 |#1|) (-548 (-467))) (|has| |#2| (-548 (-467)))) ELT)) (-2801 ((|#2| $) NIL (|has| |#2| (-385)) ELT) (($ $ (-766 |#1|)) NIL (|has| |#2| (-385)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-814))) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-766 |#1|)) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#2| (-489)) ELT)) (-3801 (((-578 |#2|) $) NIL T ELT)) (-3661 ((|#2| $ (-194 (-3941 |#1|) (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-814))) (|has| |#2| (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1610 (($ $ $ (-687)) NIL (|has| |#2| (-144)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| |#2| (-489)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-203 |#1| |#2|) (-13 (-854 |#2| (-194 (-3941 |#1|) (-687)) (-766 |#1|)) (-10 -8 (-15 -1924 ($ $ (-578 (-478)))))) (-578 (-1079)) (-954)) (T -203)) +((-1924 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-203 *3 *4)) (-14 *3 (-578 (-1079))) (-4 *4 (-954))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1466 (((-1174) $) 17 T ELT)) (-1468 (((-156 (-205)) $) 11 T ELT)) (-1467 (($ (-156 (-205))) 12 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1469 (((-205) $) 7 T ELT)) (-3930 (((-765) $) 9 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 15 T ELT))) +(((-204) (-13 (-1005) (-10 -8 (-15 -1469 ((-205) $)) (-15 -1468 ((-156 (-205)) $)) (-15 -1467 ($ (-156 (-205)))) (-15 -1466 ((-1174) $))))) (T -204)) +((-1469 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-204)))) (-1468 (*1 *2 *1) (-12 (-5 *2 (-156 (-205))) (-5 *1 (-204)))) (-1467 (*1 *1 *2) (-12 (-5 *2 (-156 (-205))) (-5 *1 (-204)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-204))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1411 (((-578 (-767)) $) NIL T ELT)) (-3526 (((-439) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1413 (((-159) $) NIL T ELT)) (-2617 (((-83) $ (-439)) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1470 (((-278) $) 7 T ELT)) (-1412 (((-578 (-83)) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (((-155) $) 8 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2505 (((-55) $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-205) (-13 (-158) (-547 (-155)) (-10 -8 (-15 -1470 ((-278) $))))) (T -205)) +((-1470 (*1 *2 *1) (-12 (-5 *2 (-278)) (-5 *1 (-205))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3784 (((-1084) $ (-687)) 13 T ELT)) (-3930 (((-765) $) 20 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 16 T ELT)) (-3941 (((-687) $) 9 T ELT))) +(((-206) (-13 (-1005) (-238 (-687) (-1084)) (-10 -8 (-15 -3941 ((-687) $))))) (T -206)) +((-3941 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-206))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3691 (($ (-823)) NIL (|has| |#4| (-954)) ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-2467 (($ $ $) NIL (|has| |#4| (-710)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3119 (((-687)) NIL (|has| |#4| (-313)) ELT)) (-3772 ((|#4| $ (-478) |#4|) NIL (|has| $ (-6 -3980)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1005)) ELT) (((-3 (-478) #1#) $) NIL (-12 (|has| |#4| (-943 (-478))) (|has| |#4| (-1005))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (-12 (|has| |#4| (-943 (-343 (-478)))) (|has| |#4| (-1005))) ELT)) (-3139 ((|#4| $) NIL (|has| |#4| (-1005)) ELT) (((-478) $) NIL (-12 (|has| |#4| (-943 (-478))) (|has| |#4| (-1005))) ELT) (((-343 (-478)) $) NIL (-12 (|has| |#4| (-943 (-343 (-478)))) (|has| |#4| (-1005))) ELT)) (-2265 (((-2 (|:| |mat| (-625 |#4|)) (|:| |vec| (-1168 |#4|))) (-625 $) (-1168 $)) NIL (|has| |#4| (-954)) ELT) (((-625 |#4|) (-625 $)) NIL (|has| |#4| (-954)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (-12 (|has| |#4| (-575 (-478))) (|has| |#4| (-954))) ELT) (((-625 (-478)) (-625 $)) NIL (-12 (|has| |#4| (-575 (-478))) (|has| |#4| (-954))) ELT)) (-3451 (((-3 $ #1#) $) NIL (|has| |#4| (-954)) ELT)) (-2978 (($) NIL (|has| |#4| (-313)) ELT)) (-1563 ((|#4| $ (-478) |#4|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#4| $ (-478)) NIL T ELT)) (-3169 (((-83) $) NIL (|has| |#4| (-710)) ELT)) (-2873 (((-578 |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2396 (((-83) $) NIL (|has| |#4| (-954)) ELT)) (-2186 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| |#4| (-749)) ELT)) (-2592 (((-578 |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#4| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT)) (-2187 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#4| (-749)) ELT)) (-1936 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-1996 (((-823) $) NIL (|has| |#4| (-313)) ELT)) (-2266 (((-2 (|:| |mat| (-625 |#4|)) (|:| |vec| (-1168 |#4|))) (-1168 $) $) NIL (|has| |#4| (-954)) ELT) (((-625 |#4|) (-1168 $)) NIL (|has| |#4| (-954)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (-12 (|has| |#4| (-575 (-478))) (|has| |#4| (-954))) ELT) (((-625 (-478)) (-1168 $)) NIL (-12 (|has| |#4| (-575 (-478))) (|has| |#4| (-954))) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-2386 (($ (-823)) NIL (|has| |#4| (-313)) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3785 ((|#4| $) NIL (|has| (-478) (-749)) ELT)) (-2185 (($ $ |#4|) NIL (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#4|))) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-245 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#4| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT)) (-2191 (((-578 |#4|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#4| $ (-478) |#4|) NIL T ELT) ((|#4| $ (-478)) 12 T ELT)) (-3820 ((|#4| $ $) NIL (|has| |#4| (-954)) ELT)) (-1455 (($ (-1168 |#4|)) NIL T ELT)) (-3895 (((-105)) NIL (|has| |#4| (-308)) ELT)) (-3742 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-954)) ELT) (($ $ (-1 |#4| |#4|) (-687)) NIL (|has| |#4| (-954)) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (OR (-12 (|has| |#4| (-802 (-1079))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1079))) (|has| |#4| (-954)))) ELT) (($ $ (-1079) (-687)) NIL (OR (-12 (|has| |#4| (-802 (-1079))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1079))) (|has| |#4| (-954)))) ELT) (($ $ (-578 (-1079))) NIL (OR (-12 (|has| |#4| (-802 (-1079))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1079))) (|has| |#4| (-954)))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| |#4| (-802 (-1079))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1079))) (|has| |#4| (-954)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| |#4| (-188)) (|has| |#4| (-954))) (-12 (|has| |#4| (-187)) (|has| |#4| (-954)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-188)) (|has| |#4| (-954))) (-12 (|has| |#4| (-187)) (|has| |#4| (-954)))) ELT)) (-1933 (((-687) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#4| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3930 (((-1168 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1005)) ELT) (((-765) $) NIL T ELT) (($ (-478)) NIL (OR (-12 (|has| |#4| (-943 (-478))) (|has| |#4| (-1005))) (|has| |#4| (-954))) ELT) (($ (-343 (-478))) NIL (-12 (|has| |#4| (-943 (-343 (-478)))) (|has| |#4| (-1005))) ELT)) (-3109 (((-687)) NIL (|has| |#4| (-954)) CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL (|has| |#4| (-954)) CONST)) (-2653 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-954)) ELT) (($ $ (-1 |#4| |#4|) (-687)) NIL (|has| |#4| (-954)) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (OR (-12 (|has| |#4| (-802 (-1079))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1079))) (|has| |#4| (-954)))) ELT) (($ $ (-1079) (-687)) NIL (OR (-12 (|has| |#4| (-802 (-1079))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1079))) (|has| |#4| (-954)))) ELT) (($ $ (-578 (-1079))) NIL (OR (-12 (|has| |#4| (-802 (-1079))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1079))) (|has| |#4| (-954)))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| |#4| (-802 (-1079))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1079))) (|has| |#4| (-954)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| |#4| (-188)) (|has| |#4| (-954))) (-12 (|has| |#4| (-187)) (|has| |#4| (-954)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-188)) (|has| |#4| (-954))) (-12 (|has| |#4| (-187)) (|has| |#4| (-954)))) ELT)) (-2550 (((-83) $ $) NIL (|has| |#4| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#4| (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL (|has| |#4| (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#4| (-749)) ELT)) (-3933 (($ $ |#4|) NIL (|has| |#4| (-308)) ELT)) (-3821 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-687)) NIL (|has| |#4| (-954)) ELT) (($ $ (-823)) NIL (|has| |#4| (-954)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-478) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-823) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-658)) ELT) (($ |#4| $) NIL (|has| |#4| (-658)) ELT) (($ $ $) NIL (|has| |#4| (-954)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-207 |#1| |#2| |#3| |#4|) (-13 (-193 |#1| |#4|) (-585 |#2|) (-585 |#3|)) (-823) (-954) (-1026 |#1| |#2| (-194 |#1| |#2|) (-194 |#1| |#2|)) (-585 |#2|)) (T -207)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3691 (($ (-823)) NIL (|has| |#3| (-954)) ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-2467 (($ $ $) NIL (|has| |#3| (-710)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3119 (((-687)) NIL (|has| |#3| (-313)) ELT)) (-3772 ((|#3| $ (-478) |#3|) NIL (|has| $ (-6 -3980)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1005)) ELT) (((-3 (-478) #1#) $) NIL (-12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1005))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (-12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1005))) ELT)) (-3139 ((|#3| $) NIL (|has| |#3| (-1005)) ELT) (((-478) $) NIL (-12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1005))) ELT) (((-343 (-478)) $) NIL (-12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1005))) ELT)) (-2265 (((-2 (|:| |mat| (-625 |#3|)) (|:| |vec| (-1168 |#3|))) (-625 $) (-1168 $)) NIL (|has| |#3| (-954)) ELT) (((-625 |#3|) (-625 $)) NIL (|has| |#3| (-954)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (-12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954))) ELT) (((-625 (-478)) (-625 $)) NIL (-12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954))) ELT)) (-3451 (((-3 $ #1#) $) NIL (|has| |#3| (-954)) ELT)) (-2978 (($) NIL (|has| |#3| (-313)) ELT)) (-1563 ((|#3| $ (-478) |#3|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#3| $ (-478)) NIL T ELT)) (-3169 (((-83) $) NIL (|has| |#3| (-710)) ELT)) (-2873 (((-578 |#3|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2396 (((-83) $) NIL (|has| |#3| (-954)) ELT)) (-2186 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| |#3| (-749)) ELT)) (-2592 (((-578 |#3|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#3| (-1005))) ELT)) (-2187 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#3| (-749)) ELT)) (-1936 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-1996 (((-823) $) NIL (|has| |#3| (-313)) ELT)) (-2266 (((-2 (|:| |mat| (-625 |#3|)) (|:| |vec| (-1168 |#3|))) (-1168 $) $) NIL (|has| |#3| (-954)) ELT) (((-625 |#3|) (-1168 $)) NIL (|has| |#3| (-954)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (-12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954))) ELT) (((-625 (-478)) (-1168 $)) NIL (-12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954))) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-2386 (($ (-823)) NIL (|has| |#3| (-313)) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3785 ((|#3| $) NIL (|has| (-478) (-749)) ELT)) (-2185 (($ $ |#3|) NIL (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#3|))) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005))) ELT) (($ $ (-245 |#3|)) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005))) ELT) (($ $ (-578 |#3|) (-578 |#3|)) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#3| (-1005))) ELT)) (-2191 (((-578 |#3|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#3| $ (-478) |#3|) NIL T ELT) ((|#3| $ (-478)) 11 T ELT)) (-3820 ((|#3| $ $) NIL (|has| |#3| (-954)) ELT)) (-1455 (($ (-1168 |#3|)) NIL T ELT)) (-3895 (((-105)) NIL (|has| |#3| (-308)) ELT)) (-3742 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-954)) ELT) (($ $ (-1 |#3| |#3|) (-687)) NIL (|has| |#3| (-954)) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (OR (-12 (|has| |#3| (-802 (-1079))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954)))) ELT) (($ $ (-1079) (-687)) NIL (OR (-12 (|has| |#3| (-802 (-1079))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954)))) ELT) (($ $ (-578 (-1079))) NIL (OR (-12 (|has| |#3| (-802 (-1079))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954)))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| |#3| (-802 (-1079))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| |#3| (-188)) (|has| |#3| (-954))) (-12 (|has| |#3| (-187)) (|has| |#3| (-954)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-188)) (|has| |#3| (-954))) (-12 (|has| |#3| (-187)) (|has| |#3| (-954)))) ELT)) (-1933 (((-687) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#3| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#3| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3930 (((-1168 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1005)) ELT) (((-765) $) NIL T ELT) (($ (-478)) NIL (OR (-12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1005))) (|has| |#3| (-954))) ELT) (($ (-343 (-478))) NIL (-12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1005))) ELT)) (-3109 (((-687)) NIL (|has| |#3| (-954)) CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL (|has| |#3| (-954)) CONST)) (-2653 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-954)) ELT) (($ $ (-1 |#3| |#3|) (-687)) NIL (|has| |#3| (-954)) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (OR (-12 (|has| |#3| (-802 (-1079))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954)))) ELT) (($ $ (-1079) (-687)) NIL (OR (-12 (|has| |#3| (-802 (-1079))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954)))) ELT) (($ $ (-578 (-1079))) NIL (OR (-12 (|has| |#3| (-802 (-1079))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954)))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| |#3| (-802 (-1079))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| |#3| (-188)) (|has| |#3| (-954))) (-12 (|has| |#3| (-187)) (|has| |#3| (-954)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-188)) (|has| |#3| (-954))) (-12 (|has| |#3| (-187)) (|has| |#3| (-954)))) ELT)) (-2550 (((-83) $ $) NIL (|has| |#3| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#3| (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL (|has| |#3| (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#3| (-749)) ELT)) (-3933 (($ $ |#3|) NIL (|has| |#3| (-308)) ELT)) (-3821 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-687)) NIL (|has| |#3| (-954)) ELT) (($ $ (-823)) NIL (|has| |#3| (-954)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-478) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-823) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-658)) ELT) (($ |#3| $) NIL (|has| |#3| (-658)) ELT) (($ $ $) NIL (|has| |#3| (-954)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-208 |#1| |#2| |#3|) (-13 (-193 |#1| |#3|) (-585 |#2|)) (-687) (-954) (-585 |#2|)) (T -208)) +NIL +((-1475 (((-578 (-687)) $) 56 T ELT) (((-578 (-687)) $ |#3|) 59 T ELT)) (-1509 (((-687) $) 58 T ELT) (((-687) $ |#3|) 61 T ELT)) (-1471 (($ $) 76 T ELT)) (-3140 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 (-478) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3756 (((-687) $ |#3|) 43 T ELT) (((-687) $) 38 T ELT)) (-1510 (((-1 $ (-687)) |#3|) 15 T ELT) (((-1 $ (-687)) $) 88 T ELT)) (-1473 ((|#4| $) 69 T ELT)) (-1474 (((-83) $) 67 T ELT)) (-1472 (($ $) 75 T ELT)) (-3752 (($ $ (-578 (-245 $))) 111 T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-578 |#4|) (-578 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-578 |#4|) (-578 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-578 |#3|) (-578 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-578 |#3|) (-578 |#2|)) 97 T ELT)) (-3742 (($ $ (-578 |#4|) (-578 (-687))) NIL T ELT) (($ $ |#4| (-687)) NIL T ELT) (($ $ (-578 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1079)) NIL T ELT) (($ $ (-578 (-1079))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-1476 (((-578 |#3|) $) 86 T ELT)) (-3932 ((|#5| $) NIL T ELT) (((-687) $ |#4|) NIL T ELT) (((-578 (-687)) $ (-578 |#4|)) NIL T ELT) (((-687) $ |#3|) 49 T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-343 (-478))) NIL T ELT) (($ $) NIL T ELT))) +(((-209 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3742 (|#1| |#1| (-687))) (-15 -3742 (|#1| |#1|)) (-15 -3742 (|#1| |#1| (-578 (-1079)) (-578 (-687)))) (-15 -3742 (|#1| |#1| (-1079) (-687))) (-15 -3742 (|#1| |#1| (-578 (-1079)))) (-15 -3742 (|#1| |#1| (-1079))) (-15 -3930 (|#1| |#1|)) (-15 -3930 (|#1| (-343 (-478)))) (-15 -3752 (|#1| |#1| (-578 |#3|) (-578 |#2|))) (-15 -3752 (|#1| |#1| |#3| |#2|)) (-15 -3752 (|#1| |#1| (-578 |#3|) (-578 |#1|))) (-15 -3752 (|#1| |#1| |#3| |#1|)) (-15 -1510 ((-1 |#1| (-687)) |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -1472 (|#1| |#1|)) (-15 -1473 (|#4| |#1|)) (-15 -1474 ((-83) |#1|)) (-15 -1509 ((-687) |#1| |#3|)) (-15 -1475 ((-578 (-687)) |#1| |#3|)) (-15 -1509 ((-687) |#1|)) (-15 -1475 ((-578 (-687)) |#1|)) (-15 -3932 ((-687) |#1| |#3|)) (-15 -3756 ((-687) |#1|)) (-15 -3756 ((-687) |#1| |#3|)) (-15 -1476 ((-578 |#3|) |#1|)) (-15 -1510 ((-1 |#1| (-687)) |#3|)) (-15 -3930 (|#1| |#3|)) (-15 -3140 ((-3 |#3| #1="failed") |#1|)) (-15 -3742 (|#1| |#1| (-1 |#2| |#2|) (-687))) (-15 -3742 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3932 ((-578 (-687)) |#1| (-578 |#4|))) (-15 -3932 ((-687) |#1| |#4|)) (-15 -3930 (|#1| |#4|)) (-15 -3140 ((-3 |#4| #1#) |#1|)) (-15 -3752 (|#1| |#1| (-578 |#4|) (-578 |#1|))) (-15 -3752 (|#1| |#1| |#4| |#1|)) (-15 -3752 (|#1| |#1| (-578 |#4|) (-578 |#2|))) (-15 -3752 (|#1| |#1| |#4| |#2|)) (-15 -3752 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3752 (|#1| |#1| |#1| |#1|)) (-15 -3752 (|#1| |#1| (-245 |#1|))) (-15 -3752 (|#1| |#1| (-578 (-245 |#1|)))) (-15 -3932 (|#5| |#1|)) (-15 -3140 ((-3 (-478) #1#) |#1|)) (-15 -3140 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3140 ((-3 |#2| #1#) |#1|)) (-15 -3930 (|#1| |#2|)) (-15 -3742 (|#1| |#1| |#4|)) (-15 -3742 (|#1| |#1| (-578 |#4|))) (-15 -3742 (|#1| |#1| |#4| (-687))) (-15 -3742 (|#1| |#1| (-578 |#4|) (-578 (-687)))) (-15 -3930 (|#1| (-478))) (-15 -3930 ((-765) |#1|))) (-210 |#2| |#3| |#4| |#5|) (-954) (-749) (-225 |#3|) (-710)) (T -209)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1475 (((-578 (-687)) $) 248 T ELT) (((-578 (-687)) $ |#2|) 246 T ELT)) (-1509 (((-687) $) 247 T ELT) (((-687) $ |#2|) 245 T ELT)) (-3065 (((-578 |#3|) $) 120 T ELT)) (-3067 (((-1074 $) $ |#3|) 135 T ELT) (((-1074 |#1|) $) 134 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 97 (|has| |#1| (-489)) ELT)) (-2049 (($ $) 98 (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) 100 (|has| |#1| (-489)) ELT)) (-2803 (((-687) $) 122 T ELT) (((-687) $ (-578 |#3|)) 121 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) 110 (|has| |#1| (-814)) ELT)) (-3759 (($ $) 108 (|has| |#1| (-385)) ELT)) (-3955 (((-341 $) $) 107 (|has| |#1| (-385)) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1="failed") (-578 (-1074 $)) (-1074 $)) 113 (|has| |#1| (-814)) ELT)) (-1471 (($ $) 241 T ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-343 (-478)) #2#) $) 175 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #2#) $) 173 (|has| |#1| (-943 (-478))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 |#2| #2#) $) 255 T ELT)) (-3139 ((|#1| $) 177 T ELT) (((-343 (-478)) $) 176 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) 174 (|has| |#1| (-943 (-478))) ELT) ((|#3| $) 151 T ELT) ((|#2| $) 256 T ELT)) (-3740 (($ $ $ |#3|) 118 (|has| |#1| (-144)) ELT)) (-3943 (($ $) 168 T ELT)) (-2265 (((-625 (-478)) (-625 $)) 146 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 145 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) 144 T ELT) (((-625 |#1|) (-625 $)) 143 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3487 (($ $) 190 (|has| |#1| (-385)) ELT) (($ $ |#3|) 115 (|has| |#1| (-385)) ELT)) (-2802 (((-578 $) $) 119 T ELT)) (-3707 (((-83) $) 106 (|has| |#1| (-814)) ELT)) (-1611 (($ $ |#1| |#4| $) 186 T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 94 (-12 (|has| |#3| (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 93 (-12 (|has| |#3| (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-3756 (((-687) $ |#2|) 251 T ELT) (((-687) $) 250 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-2404 (((-687) $) 183 T ELT)) (-3068 (($ (-1074 |#1|) |#3|) 127 T ELT) (($ (-1074 $) |#3|) 126 T ELT)) (-2805 (((-578 $) $) 136 T ELT)) (-3921 (((-83) $) 166 T ELT)) (-2877 (($ |#1| |#4|) 167 T ELT) (($ $ |#3| (-687)) 129 T ELT) (($ $ (-578 |#3|) (-578 (-687))) 128 T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ |#3|) 130 T ELT)) (-2804 ((|#4| $) 184 T ELT) (((-687) $ |#3|) 132 T ELT) (((-578 (-687)) $ (-578 |#3|)) 131 T ELT)) (-1612 (($ (-1 |#4| |#4|) $) 185 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-1510 (((-1 $ (-687)) |#2|) 253 T ELT) (((-1 $ (-687)) $) 240 (|has| |#1| (-188)) ELT)) (-3066 (((-3 |#3| #3="failed") $) 133 T ELT)) (-2266 (((-625 (-478)) (-1168 $)) 148 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) 147 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) 142 T ELT) (((-625 |#1|) (-1168 $)) 141 T ELT)) (-2878 (($ $) 163 T ELT)) (-3157 ((|#1| $) 162 T ELT)) (-1473 ((|#3| $) 243 T ELT)) (-1878 (($ (-578 $)) 104 (|has| |#1| (-385)) ELT) (($ $ $) 103 (|has| |#1| (-385)) ELT)) (-3225 (((-1062) $) 11 T ELT)) (-1474 (((-83) $) 244 T ELT)) (-2807 (((-3 (-578 $) #3#) $) 124 T ELT)) (-2806 (((-3 (-578 $) #3#) $) 125 T ELT)) (-2808 (((-3 (-2 (|:| |var| |#3|) (|:| -2387 (-687))) #3#) $) 123 T ELT)) (-1472 (($ $) 242 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-1784 (((-83) $) 180 T ELT)) (-1783 ((|#1| $) 181 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 105 (|has| |#1| (-385)) ELT)) (-3127 (($ (-578 $)) 102 (|has| |#1| (-385)) ELT) (($ $ $) 101 (|has| |#1| (-385)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) 112 (|has| |#1| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) 111 (|has| |#1| (-814)) ELT)) (-3716 (((-341 $) $) 109 (|has| |#1| (-814)) ELT)) (-3450 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-489)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-489)) ELT)) (-3752 (($ $ (-578 (-245 $))) 159 T ELT) (($ $ (-245 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-578 $) (-578 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-578 |#3|) (-578 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-578 |#3|) (-578 $)) 152 T ELT) (($ $ |#2| $) 239 (|has| |#1| (-188)) ELT) (($ $ (-578 |#2|) (-578 $)) 238 (|has| |#1| (-188)) ELT) (($ $ |#2| |#1|) 237 (|has| |#1| (-188)) ELT) (($ $ (-578 |#2|) (-578 |#1|)) 236 (|has| |#1| (-188)) ELT)) (-3741 (($ $ |#3|) 117 (|has| |#1| (-144)) ELT)) (-3742 (($ $ (-578 |#3|) (-578 (-687))) 49 T ELT) (($ $ |#3| (-687)) 48 T ELT) (($ $ (-578 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT) (($ $ (-1 |#1| |#1|)) 260 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 259 T ELT) (($ $) 235 (|has| |#1| (-187)) ELT) (($ $ (-687)) 233 (|has| |#1| (-187)) ELT) (($ $ (-1079)) 231 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) 229 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) 228 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 227 (|has| |#1| (-804 (-1079))) ELT)) (-1476 (((-578 |#2|) $) 252 T ELT)) (-3932 ((|#4| $) 164 T ELT) (((-687) $ |#3|) 140 T ELT) (((-578 (-687)) $ (-578 |#3|)) 139 T ELT) (((-687) $ |#2|) 249 T ELT)) (-3956 (((-793 (-323)) $) 92 (-12 (|has| |#3| (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) 91 (-12 (|has| |#3| (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) 90 (-12 (|has| |#3| (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT)) (-2801 ((|#1| $) 189 (|has| |#1| (-385)) ELT) (($ $ |#3|) 116 (|has| |#1| (-385)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) 114 (-2546 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ |#2|) 254 T ELT) (($ (-343 (-478))) 88 (OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ELT) (($ $) 95 (|has| |#1| (-489)) ELT)) (-3801 (((-578 |#1|) $) 182 T ELT)) (-3661 ((|#1| $ |#4|) 169 T ELT) (($ $ |#3| (-687)) 138 T ELT) (($ $ (-578 |#3|) (-578 (-687))) 137 T ELT)) (-2686 (((-627 $) $) 89 (OR (-2546 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3109 (((-687)) 37 T CONST)) (-1610 (($ $ $ (-687)) 187 (|has| |#1| (-144)) ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 99 (|has| |#1| (-489)) ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-578 |#3|) (-578 (-687))) 52 T ELT) (($ $ |#3| (-687)) 51 T ELT) (($ $ (-578 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT) (($ $ (-1 |#1| |#1|)) 258 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 257 T ELT) (($ $) 234 (|has| |#1| (-187)) ELT) (($ $ (-687)) 232 (|has| |#1| (-187)) ELT) (($ $ (-1079)) 230 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) 226 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) 225 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 224 (|has| |#1| (-804 (-1079))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ |#1|) 170 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 172 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) 171 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-210 |#1| |#2| |#3| |#4|) (-111) (-954) (-749) (-225 |t#2|) (-710)) (T -210)) +((-1510 (*1 *2 *3) (-12 (-4 *4 (-954)) (-4 *3 (-749)) (-4 *5 (-225 *3)) (-4 *6 (-710)) (-5 *2 (-1 *1 (-687))) (-4 *1 (-210 *4 *3 *5 *6)))) (-1476 (*1 *2 *1) (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-578 *4)))) (-3756 (*1 *2 *1 *3) (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-954)) (-4 *3 (-749)) (-4 *5 (-225 *3)) (-4 *6 (-710)) (-5 *2 (-687)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-687)))) (-3932 (*1 *2 *1 *3) (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-954)) (-4 *3 (-749)) (-4 *5 (-225 *3)) (-4 *6 (-710)) (-5 *2 (-687)))) (-1475 (*1 *2 *1) (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-578 (-687))))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-687)))) (-1475 (*1 *2 *1 *3) (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-954)) (-4 *3 (-749)) (-4 *5 (-225 *3)) (-4 *6 (-710)) (-5 *2 (-578 (-687))))) (-1509 (*1 *2 *1 *3) (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-954)) (-4 *3 (-749)) (-4 *5 (-225 *3)) (-4 *6 (-710)) (-5 *2 (-687)))) (-1474 (*1 *2 *1) (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-83)))) (-1473 (*1 *2 *1) (-12 (-4 *1 (-210 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *5 (-710)) (-4 *2 (-225 *4)))) (-1472 (*1 *1 *1) (-12 (-4 *1 (-210 *2 *3 *4 *5)) (-4 *2 (-954)) (-4 *3 (-749)) (-4 *4 (-225 *3)) (-4 *5 (-710)))) (-1471 (*1 *1 *1) (-12 (-4 *1 (-210 *2 *3 *4 *5)) (-4 *2 (-954)) (-4 *3 (-749)) (-4 *4 (-225 *3)) (-4 *5 (-710)))) (-1510 (*1 *2 *1) (-12 (-4 *3 (-188)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-1 *1 (-687))) (-4 *1 (-210 *3 *4 *5 *6))))) +(-13 (-854 |t#1| |t#4| |t#3|) (-182 |t#1|) (-943 |t#2|) (-10 -8 (-15 -1510 ((-1 $ (-687)) |t#2|)) (-15 -1476 ((-578 |t#2|) $)) (-15 -3756 ((-687) $ |t#2|)) (-15 -3756 ((-687) $)) (-15 -3932 ((-687) $ |t#2|)) (-15 -1475 ((-578 (-687)) $)) (-15 -1509 ((-687) $)) (-15 -1475 ((-578 (-687)) $ |t#2|)) (-15 -1509 ((-687) $ |t#2|)) (-15 -1474 ((-83) $)) (-15 -1473 (|t#3| $)) (-15 -1472 ($ $)) (-15 -1471 ($ $)) (IF (|has| |t#1| (-188)) (PROGN (-6 (-447 |t#2| |t#1|)) (-6 (-447 |t#2| $)) (-6 (-256 $)) (-15 -1510 ((-1 $ (-687)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-550 |#2|) . T) ((-550 |#3|) . T) ((-550 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-548 (-467)) -12 (|has| |#1| (-548 (-467))) (|has| |#3| (-548 (-467)))) ((-548 (-793 (-323))) -12 (|has| |#1| (-548 (-793 (-323)))) (|has| |#3| (-548 (-793 (-323))))) ((-548 (-793 (-478))) -12 (|has| |#1| (-548 (-793 (-478)))) (|has| |#3| (-548 (-793 (-478))))) ((-184 $) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-182 |#1|) . T) ((-188) |has| |#1| (-188)) ((-187) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-222 |#1|) . T) ((-242) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-256 $) . T) ((-273 |#1| |#4|) . T) ((-322 |#1|) . T) ((-348 |#1|) . T) ((-385) OR (|has| |#1| (-814)) (|has| |#1| (-385))) ((-447 |#2| |#1|) |has| |#1| (-188)) ((-447 |#2| $) |has| |#1| (-188)) ((-447 |#3| |#1|) . T) ((-447 |#3| $) . T) ((-447 $ $) . T) ((-489) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 (-478)) |has| |#1| (-575 (-478))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-575 (-478)) |has| |#1| (-575 (-478))) ((-575 |#1|) . T) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-658) . T) ((-799 $ (-1079)) OR (|has| |#1| (-804 (-1079))) (|has| |#1| (-802 (-1079)))) ((-799 $ |#3|) . T) ((-802 (-1079)) |has| |#1| (-802 (-1079))) ((-802 |#3|) . T) ((-804 (-1079)) OR (|has| |#1| (-804 (-1079))) (|has| |#1| (-802 (-1079)))) ((-804 |#3|) . T) ((-789 (-323)) -12 (|has| |#1| (-789 (-323))) (|has| |#3| (-789 (-323)))) ((-789 (-478)) -12 (|has| |#1| (-789 (-478))) (|has| |#3| (-789 (-478)))) ((-854 |#1| |#4| |#3|) . T) ((-814) |has| |#1| (-814)) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-943 |#2|) . T) ((-943 |#3|) . T) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T) ((-1123) |has| |#1| (-814))) +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-1482 ((|#1| $) 58 T ELT)) (-3308 ((|#1| $) 48 T ELT)) (-3708 (($) 7 T CONST)) (-2986 (($ $) 64 T ELT)) (-2283 (($ $) 52 T ELT)) (-3310 ((|#1| |#1| $) 50 T ELT)) (-3309 ((|#1| $) 49 T ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3817 (((-687) $) 65 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-1262 ((|#1| $) 43 T ELT)) (-1480 ((|#1| |#1| $) 56 T ELT)) (-1479 ((|#1| |#1| $) 55 T ELT)) (-3593 (($ |#1| $) 44 T ELT)) (-2587 (((-687) $) 59 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-2985 ((|#1| $) 66 T ELT)) (-1478 ((|#1| $) 54 T ELT)) (-1477 ((|#1| $) 53 T ELT)) (-1263 ((|#1| $) 45 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-2988 ((|#1| |#1| $) 62 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-2987 ((|#1| $) 63 T ELT)) (-1483 (($) 61 T ELT) (($ (-578 |#1|)) 60 T ELT)) (-3307 (((-687) $) 47 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1481 ((|#1| $) 57 T ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1264 (($ (-578 |#1|)) 46 T ELT)) (-2984 ((|#1| $) 67 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-211 |#1|) (-111) (-1118)) (T -211)) +((-1483 (*1 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1118)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1118)) (-4 *1 (-211 *3)))) (-2587 (*1 *2 *1) (-12 (-4 *1 (-211 *3)) (-4 *3 (-1118)) (-5 *2 (-687)))) (-1482 (*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1118)))) (-1481 (*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1118)))) (-1480 (*1 *2 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1118)))) (-1479 (*1 *2 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1118)))) (-1478 (*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1118)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1118)))) (-2283 (*1 *1 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1118))))) +(-13 (-1024 |t#1|) (-901 |t#1|) (-10 -8 (-15 -1483 ($)) (-15 -1483 ($ (-578 |t#1|))) (-15 -2587 ((-687) $)) (-15 -1482 (|t#1| $)) (-15 -1481 (|t#1| $)) (-15 -1480 (|t#1| |t#1| $)) (-15 -1479 (|t#1| |t#1| $)) (-15 -1478 (|t#1| $)) (-15 -1477 (|t#1| $)) (-15 -2283 ($ $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-901 |#1|) . T) ((-1005) |has| |#1| (-1005)) ((-1024 |#1|) . T) ((-1118) . T)) +((-1484 (((-1036 (-177)) (-785 |#1|) (-996 (-323)) (-996 (-323))) 75 T ELT) (((-1036 (-177)) (-785 |#1|) (-996 (-323)) (-996 (-323)) (-578 (-218))) 74 T ELT) (((-1036 (-177)) |#1| (-996 (-323)) (-996 (-323))) 65 T ELT) (((-1036 (-177)) |#1| (-996 (-323)) (-996 (-323)) (-578 (-218))) 64 T ELT) (((-1036 (-177)) (-782 |#1|) (-996 (-323))) 56 T ELT) (((-1036 (-177)) (-782 |#1|) (-996 (-323)) (-578 (-218))) 55 T ELT)) (-1491 (((-1172) (-785 |#1|) (-996 (-323)) (-996 (-323))) 78 T ELT) (((-1172) (-785 |#1|) (-996 (-323)) (-996 (-323)) (-578 (-218))) 77 T ELT) (((-1172) |#1| (-996 (-323)) (-996 (-323))) 68 T ELT) (((-1172) |#1| (-996 (-323)) (-996 (-323)) (-578 (-218))) 67 T ELT) (((-1172) (-782 |#1|) (-996 (-323))) 60 T ELT) (((-1172) (-782 |#1|) (-996 (-323)) (-578 (-218))) 59 T ELT) (((-1171) (-780 |#1|) (-996 (-323))) 47 T ELT) (((-1171) (-780 |#1|) (-996 (-323)) (-578 (-218))) 46 T ELT) (((-1171) |#1| (-996 (-323))) 38 T ELT) (((-1171) |#1| (-996 (-323)) (-578 (-218))) 36 T ELT))) +(((-212 |#1|) (-10 -7 (-15 -1491 ((-1171) |#1| (-996 (-323)) (-578 (-218)))) (-15 -1491 ((-1171) |#1| (-996 (-323)))) (-15 -1491 ((-1171) (-780 |#1|) (-996 (-323)) (-578 (-218)))) (-15 -1491 ((-1171) (-780 |#1|) (-996 (-323)))) (-15 -1491 ((-1172) (-782 |#1|) (-996 (-323)) (-578 (-218)))) (-15 -1491 ((-1172) (-782 |#1|) (-996 (-323)))) (-15 -1484 ((-1036 (-177)) (-782 |#1|) (-996 (-323)) (-578 (-218)))) (-15 -1484 ((-1036 (-177)) (-782 |#1|) (-996 (-323)))) (-15 -1491 ((-1172) |#1| (-996 (-323)) (-996 (-323)) (-578 (-218)))) (-15 -1491 ((-1172) |#1| (-996 (-323)) (-996 (-323)))) (-15 -1484 ((-1036 (-177)) |#1| (-996 (-323)) (-996 (-323)) (-578 (-218)))) (-15 -1484 ((-1036 (-177)) |#1| (-996 (-323)) (-996 (-323)))) (-15 -1491 ((-1172) (-785 |#1|) (-996 (-323)) (-996 (-323)) (-578 (-218)))) (-15 -1491 ((-1172) (-785 |#1|) (-996 (-323)) (-996 (-323)))) (-15 -1484 ((-1036 (-177)) (-785 |#1|) (-996 (-323)) (-996 (-323)) (-578 (-218)))) (-15 -1484 ((-1036 (-177)) (-785 |#1|) (-996 (-323)) (-996 (-323))))) (-13 (-548 (-467)) (-1005))) (T -212)) +((-1484 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-785 *5)) (-5 *4 (-996 (-323))) (-4 *5 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1036 (-177))) (-5 *1 (-212 *5)))) (-1484 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-785 *6)) (-5 *4 (-996 (-323))) (-5 *5 (-578 (-218))) (-4 *6 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1036 (-177))) (-5 *1 (-212 *6)))) (-1491 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-785 *5)) (-5 *4 (-996 (-323))) (-4 *5 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1172)) (-5 *1 (-212 *5)))) (-1491 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-785 *6)) (-5 *4 (-996 (-323))) (-5 *5 (-578 (-218))) (-4 *6 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1172)) (-5 *1 (-212 *6)))) (-1484 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-323))) (-5 *2 (-1036 (-177))) (-5 *1 (-212 *3)) (-4 *3 (-13 (-548 (-467)) (-1005))))) (-1484 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-212 *3)) (-4 *3 (-13 (-548 (-467)) (-1005))))) (-1491 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-323))) (-5 *2 (-1172)) (-5 *1 (-212 *3)) (-4 *3 (-13 (-548 (-467)) (-1005))))) (-1491 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1172)) (-5 *1 (-212 *3)) (-4 *3 (-13 (-548 (-467)) (-1005))))) (-1484 (*1 *2 *3 *4) (-12 (-5 *3 (-782 *5)) (-5 *4 (-996 (-323))) (-4 *5 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1036 (-177))) (-5 *1 (-212 *5)))) (-1484 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-782 *6)) (-5 *4 (-996 (-323))) (-5 *5 (-578 (-218))) (-4 *6 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1036 (-177))) (-5 *1 (-212 *6)))) (-1491 (*1 *2 *3 *4) (-12 (-5 *3 (-782 *5)) (-5 *4 (-996 (-323))) (-4 *5 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1172)) (-5 *1 (-212 *5)))) (-1491 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-782 *6)) (-5 *4 (-996 (-323))) (-5 *5 (-578 (-218))) (-4 *6 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1172)) (-5 *1 (-212 *6)))) (-1491 (*1 *2 *3 *4) (-12 (-5 *3 (-780 *5)) (-5 *4 (-996 (-323))) (-4 *5 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1171)) (-5 *1 (-212 *5)))) (-1491 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-780 *6)) (-5 *4 (-996 (-323))) (-5 *5 (-578 (-218))) (-4 *6 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1171)) (-5 *1 (-212 *6)))) (-1491 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-323))) (-5 *2 (-1171)) (-5 *1 (-212 *3)) (-4 *3 (-13 (-548 (-467)) (-1005))))) (-1491 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1171)) (-5 *1 (-212 *3)) (-4 *3 (-13 (-548 (-467)) (-1005)))))) +((-1485 (((-1 (-847 (-177)) (-177) (-177)) (-1 (-847 (-177)) (-177) (-177)) (-1 (-177) (-177) (-177) (-177))) 158 T ELT)) (-1484 (((-1036 (-177)) (-785 (-1 (-177) (-177) (-177))) (-993 (-323)) (-993 (-323))) 178 T ELT) (((-1036 (-177)) (-785 (-1 (-177) (-177) (-177))) (-993 (-323)) (-993 (-323)) (-578 (-218))) 176 T ELT) (((-1036 (-177)) (-1 (-847 (-177)) (-177) (-177)) (-993 (-323)) (-993 (-323))) 181 T ELT) (((-1036 (-177)) (-1 (-847 (-177)) (-177) (-177)) (-993 (-323)) (-993 (-323)) (-578 (-218))) 177 T ELT) (((-1036 (-177)) (-1 (-177) (-177) (-177)) (-993 (-323)) (-993 (-323))) 169 T ELT) (((-1036 (-177)) (-1 (-177) (-177) (-177)) (-993 (-323)) (-993 (-323)) (-578 (-218))) 168 T ELT) (((-1036 (-177)) (-1 (-847 (-177)) (-177)) (-993 (-323))) 150 T ELT) (((-1036 (-177)) (-1 (-847 (-177)) (-177)) (-993 (-323)) (-578 (-218))) 148 T ELT) (((-1036 (-177)) (-782 (-1 (-177) (-177))) (-993 (-323))) 149 T ELT) (((-1036 (-177)) (-782 (-1 (-177) (-177))) (-993 (-323)) (-578 (-218))) 146 T ELT)) (-1491 (((-1172) (-785 (-1 (-177) (-177) (-177))) (-993 (-323)) (-993 (-323))) 180 T ELT) (((-1172) (-785 (-1 (-177) (-177) (-177))) (-993 (-323)) (-993 (-323)) (-578 (-218))) 179 T ELT) (((-1172) (-1 (-847 (-177)) (-177) (-177)) (-993 (-323)) (-993 (-323))) 183 T ELT) (((-1172) (-1 (-847 (-177)) (-177) (-177)) (-993 (-323)) (-993 (-323)) (-578 (-218))) 182 T ELT) (((-1172) (-1 (-177) (-177) (-177)) (-993 (-323)) (-993 (-323))) 171 T ELT) (((-1172) (-1 (-177) (-177) (-177)) (-993 (-323)) (-993 (-323)) (-578 (-218))) 170 T ELT) (((-1172) (-1 (-847 (-177)) (-177)) (-993 (-323))) 156 T ELT) (((-1172) (-1 (-847 (-177)) (-177)) (-993 (-323)) (-578 (-218))) 155 T ELT) (((-1172) (-782 (-1 (-177) (-177))) (-993 (-323))) 154 T ELT) (((-1172) (-782 (-1 (-177) (-177))) (-993 (-323)) (-578 (-218))) 153 T ELT) (((-1171) (-780 (-1 (-177) (-177))) (-993 (-323))) 118 T ELT) (((-1171) (-780 (-1 (-177) (-177))) (-993 (-323)) (-578 (-218))) 117 T ELT) (((-1171) (-1 (-177) (-177)) (-993 (-323))) 112 T ELT) (((-1171) (-1 (-177) (-177)) (-993 (-323)) (-578 (-218))) 110 T ELT))) +(((-213) (-10 -7 (-15 -1491 ((-1171) (-1 (-177) (-177)) (-993 (-323)) (-578 (-218)))) (-15 -1491 ((-1171) (-1 (-177) (-177)) (-993 (-323)))) (-15 -1491 ((-1171) (-780 (-1 (-177) (-177))) (-993 (-323)) (-578 (-218)))) (-15 -1491 ((-1171) (-780 (-1 (-177) (-177))) (-993 (-323)))) (-15 -1491 ((-1172) (-782 (-1 (-177) (-177))) (-993 (-323)) (-578 (-218)))) (-15 -1491 ((-1172) (-782 (-1 (-177) (-177))) (-993 (-323)))) (-15 -1491 ((-1172) (-1 (-847 (-177)) (-177)) (-993 (-323)) (-578 (-218)))) (-15 -1491 ((-1172) (-1 (-847 (-177)) (-177)) (-993 (-323)))) (-15 -1484 ((-1036 (-177)) (-782 (-1 (-177) (-177))) (-993 (-323)) (-578 (-218)))) (-15 -1484 ((-1036 (-177)) (-782 (-1 (-177) (-177))) (-993 (-323)))) (-15 -1484 ((-1036 (-177)) (-1 (-847 (-177)) (-177)) (-993 (-323)) (-578 (-218)))) (-15 -1484 ((-1036 (-177)) (-1 (-847 (-177)) (-177)) (-993 (-323)))) (-15 -1491 ((-1172) (-1 (-177) (-177) (-177)) (-993 (-323)) (-993 (-323)) (-578 (-218)))) (-15 -1491 ((-1172) (-1 (-177) (-177) (-177)) (-993 (-323)) (-993 (-323)))) (-15 -1484 ((-1036 (-177)) (-1 (-177) (-177) (-177)) (-993 (-323)) (-993 (-323)) (-578 (-218)))) (-15 -1484 ((-1036 (-177)) (-1 (-177) (-177) (-177)) (-993 (-323)) (-993 (-323)))) (-15 -1491 ((-1172) (-1 (-847 (-177)) (-177) (-177)) (-993 (-323)) (-993 (-323)) (-578 (-218)))) (-15 -1491 ((-1172) (-1 (-847 (-177)) (-177) (-177)) (-993 (-323)) (-993 (-323)))) (-15 -1484 ((-1036 (-177)) (-1 (-847 (-177)) (-177) (-177)) (-993 (-323)) (-993 (-323)) (-578 (-218)))) (-15 -1484 ((-1036 (-177)) (-1 (-847 (-177)) (-177) (-177)) (-993 (-323)) (-993 (-323)))) (-15 -1491 ((-1172) (-785 (-1 (-177) (-177) (-177))) (-993 (-323)) (-993 (-323)) (-578 (-218)))) (-15 -1491 ((-1172) (-785 (-1 (-177) (-177) (-177))) (-993 (-323)) (-993 (-323)))) (-15 -1484 ((-1036 (-177)) (-785 (-1 (-177) (-177) (-177))) (-993 (-323)) (-993 (-323)) (-578 (-218)))) (-15 -1484 ((-1036 (-177)) (-785 (-1 (-177) (-177) (-177))) (-993 (-323)) (-993 (-323)))) (-15 -1485 ((-1 (-847 (-177)) (-177) (-177)) (-1 (-847 (-177)) (-177) (-177)) (-1 (-177) (-177) (-177) (-177)))))) (T -213)) +((-1485 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-847 (-177)) (-177) (-177))) (-5 *3 (-1 (-177) (-177) (-177) (-177))) (-5 *1 (-213)))) (-1484 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-785 (-1 (-177) (-177) (-177)))) (-5 *4 (-993 (-323))) (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) (-1484 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-785 (-1 (-177) (-177) (-177)))) (-5 *4 (-993 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) (-1491 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-785 (-1 (-177) (-177) (-177)))) (-5 *4 (-993 (-323))) (-5 *2 (-1172)) (-5 *1 (-213)))) (-1491 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-785 (-1 (-177) (-177) (-177)))) (-5 *4 (-993 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1172)) (-5 *1 (-213)))) (-1484 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-993 (-323))) (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) (-1484 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-993 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) (-1491 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-993 (-323))) (-5 *2 (-1172)) (-5 *1 (-213)))) (-1491 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-993 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1172)) (-5 *1 (-213)))) (-1484 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-993 (-323))) (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) (-1484 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-993 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) (-1491 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-993 (-323))) (-5 *2 (-1172)) (-5 *1 (-213)))) (-1491 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-993 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1172)) (-5 *1 (-213)))) (-1484 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-847 (-177)) (-177))) (-5 *4 (-993 (-323))) (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) (-1484 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-847 (-177)) (-177))) (-5 *4 (-993 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) (-1484 (*1 *2 *3 *4) (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-993 (-323))) (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) (-1484 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-993 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) (-1491 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-847 (-177)) (-177))) (-5 *4 (-993 (-323))) (-5 *2 (-1172)) (-5 *1 (-213)))) (-1491 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-847 (-177)) (-177))) (-5 *4 (-993 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1172)) (-5 *1 (-213)))) (-1491 (*1 *2 *3 *4) (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-993 (-323))) (-5 *2 (-1172)) (-5 *1 (-213)))) (-1491 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-993 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1172)) (-5 *1 (-213)))) (-1491 (*1 *2 *3 *4) (-12 (-5 *3 (-780 (-1 (-177) (-177)))) (-5 *4 (-993 (-323))) (-5 *2 (-1171)) (-5 *1 (-213)))) (-1491 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-780 (-1 (-177) (-177)))) (-5 *4 (-993 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1171)) (-5 *1 (-213)))) (-1491 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-177) (-177))) (-5 *4 (-993 (-323))) (-5 *2 (-1171)) (-5 *1 (-213)))) (-1491 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-177) (-177))) (-5 *4 (-993 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1171)) (-5 *1 (-213))))) +((-1491 (((-1171) (-245 |#2|) (-1079) (-1079) (-578 (-218))) 102 T ELT))) +(((-214 |#1| |#2|) (-10 -7 (-15 -1491 ((-1171) (-245 |#2|) (-1079) (-1079) (-578 (-218))))) (-13 (-489) (-749) (-943 (-478))) (-357 |#1|)) (T -214)) +((-1491 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-245 *7)) (-5 *4 (-1079)) (-5 *5 (-578 (-218))) (-4 *7 (-357 *6)) (-4 *6 (-13 (-489) (-749) (-943 (-478)))) (-5 *2 (-1171)) (-5 *1 (-214 *6 *7))))) +((-1488 (((-478) (-478)) 71 T ELT)) (-1489 (((-478) (-478)) 72 T ELT)) (-1490 (((-177) (-177)) 73 T ELT)) (-1487 (((-1172) (-1 (-140 (-177)) (-140 (-177))) (-993 (-177)) (-993 (-177))) 70 T ELT)) (-1486 (((-1172) (-1 (-140 (-177)) (-140 (-177))) (-993 (-177)) (-993 (-177)) (-83)) 68 T ELT))) +(((-215) (-10 -7 (-15 -1486 ((-1172) (-1 (-140 (-177)) (-140 (-177))) (-993 (-177)) (-993 (-177)) (-83))) (-15 -1487 ((-1172) (-1 (-140 (-177)) (-140 (-177))) (-993 (-177)) (-993 (-177)))) (-15 -1488 ((-478) (-478))) (-15 -1489 ((-478) (-478))) (-15 -1490 ((-177) (-177))))) (T -215)) +((-1490 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-215)))) (-1489 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-215)))) (-1488 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-215)))) (-1487 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-140 (-177)) (-140 (-177)))) (-5 *4 (-993 (-177))) (-5 *2 (-1172)) (-5 *1 (-215)))) (-1486 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-140 (-177)) (-140 (-177)))) (-5 *4 (-993 (-177))) (-5 *5 (-83)) (-5 *2 (-1172)) (-5 *1 (-215))))) +((-3930 (((-996 (-323)) (-996 (-261 |#1|))) 16 T ELT))) +(((-216 |#1|) (-10 -7 (-15 -3930 ((-996 (-323)) (-996 (-261 |#1|))))) (-13 (-749) (-489) (-548 (-323)))) (T -216)) +((-3930 (*1 *2 *3) (-12 (-5 *3 (-996 (-261 *4))) (-4 *4 (-13 (-749) (-489) (-548 (-323)))) (-5 *2 (-996 (-323))) (-5 *1 (-216 *4))))) +((-1491 (((-1172) (-578 (-177)) (-578 (-177)) (-578 (-177)) (-578 (-218))) 23 T ELT) (((-1172) (-578 (-177)) (-578 (-177)) (-578 (-177))) 24 T ELT) (((-1171) (-578 (-847 (-177))) (-578 (-218))) 16 T ELT) (((-1171) (-578 (-847 (-177)))) 17 T ELT) (((-1171) (-578 (-177)) (-578 (-177)) (-578 (-218))) 20 T ELT) (((-1171) (-578 (-177)) (-578 (-177))) 21 T ELT))) +(((-217) (-10 -7 (-15 -1491 ((-1171) (-578 (-177)) (-578 (-177)))) (-15 -1491 ((-1171) (-578 (-177)) (-578 (-177)) (-578 (-218)))) (-15 -1491 ((-1171) (-578 (-847 (-177))))) (-15 -1491 ((-1171) (-578 (-847 (-177))) (-578 (-218)))) (-15 -1491 ((-1172) (-578 (-177)) (-578 (-177)) (-578 (-177)))) (-15 -1491 ((-1172) (-578 (-177)) (-578 (-177)) (-578 (-177)) (-578 (-218)))))) (T -217)) +((-1491 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-578 (-177))) (-5 *4 (-578 (-218))) (-5 *2 (-1172)) (-5 *1 (-217)))) (-1491 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-578 (-177))) (-5 *2 (-1172)) (-5 *1 (-217)))) (-1491 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-847 (-177)))) (-5 *4 (-578 (-218))) (-5 *2 (-1171)) (-5 *1 (-217)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-578 (-847 (-177)))) (-5 *2 (-1171)) (-5 *1 (-217)))) (-1491 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-578 (-177))) (-5 *4 (-578 (-218))) (-5 *2 (-1171)) (-5 *1 (-217)))) (-1491 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-177))) (-5 *2 (-1171)) (-5 *1 (-217))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3865 (($ (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3831 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) 24 T ELT)) (-1504 (($ (-823)) 81 T ELT)) (-1503 (($ (-823)) 80 T ELT)) (-1759 (($ (-578 (-323))) 87 T ELT)) (-1507 (($ (-323)) 66 T ELT)) (-1506 (($ (-823)) 82 T ELT)) (-1500 (($ (-83)) 33 T ELT)) (-3867 (($ (-1062)) 28 T ELT)) (-1499 (($ (-1062)) 29 T ELT)) (-1505 (($ (-1036 (-177))) 76 T ELT)) (-1915 (($ (-578 (-993 (-323)))) 72 T ELT)) (-1493 (($ (-578 (-993 (-323)))) 68 T ELT) (($ (-578 (-993 (-343 (-478))))) 71 T ELT)) (-1496 (($ (-323)) 38 T ELT) (($ (-776)) 42 T ELT)) (-1492 (((-83) (-578 $) (-1079)) 100 T ELT)) (-1508 (((-3 (-51) "failed") (-578 $) (-1079)) 102 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1495 (($ (-323)) 43 T ELT) (($ (-776)) 44 T ELT)) (-3207 (($ (-1 (-847 (-177)) (-847 (-177)))) 65 T ELT)) (-2252 (($ (-1 (-847 (-177)) (-847 (-177)))) 83 T ELT)) (-1494 (($ (-1 (-177) (-177))) 48 T ELT) (($ (-1 (-177) (-177) (-177))) 52 T ELT) (($ (-1 (-177) (-177) (-177) (-177))) 56 T ELT)) (-3930 (((-765) $) 93 T ELT)) (-1497 (($ (-83)) 34 T ELT) (($ (-578 (-993 (-323)))) 60 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1910 (($ (-83)) 35 T ELT)) (-3037 (((-83) $ $) 97 T ELT))) +(((-218) (-13 (-1005) (-10 -8 (-15 -1910 ($ (-83))) (-15 -1497 ($ (-83))) (-15 -3865 ($ (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3831 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))))) (-15 -3867 ($ (-1062))) (-15 -1499 ($ (-1062))) (-15 -1500 ($ (-83))) (-15 -1497 ($ (-578 (-993 (-323))))) (-15 -3207 ($ (-1 (-847 (-177)) (-847 (-177))))) (-15 -1496 ($ (-323))) (-15 -1496 ($ (-776))) (-15 -1495 ($ (-323))) (-15 -1495 ($ (-776))) (-15 -1494 ($ (-1 (-177) (-177)))) (-15 -1494 ($ (-1 (-177) (-177) (-177)))) (-15 -1494 ($ (-1 (-177) (-177) (-177) (-177)))) (-15 -1507 ($ (-323))) (-15 -1493 ($ (-578 (-993 (-323))))) (-15 -1493 ($ (-578 (-993 (-343 (-478)))))) (-15 -1915 ($ (-578 (-993 (-323))))) (-15 -1505 ($ (-1036 (-177)))) (-15 -1503 ($ (-823))) (-15 -1504 ($ (-823))) (-15 -1506 ($ (-823))) (-15 -2252 ($ (-1 (-847 (-177)) (-847 (-177))))) (-15 -1759 ($ (-578 (-323)))) (-15 -1508 ((-3 (-51) "failed") (-578 $) (-1079))) (-15 -1492 ((-83) (-578 $) (-1079)))))) (T -218)) +((-1910 (*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-218)))) (-1497 (*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-218)))) (-3865 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3831 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) (-5 *1 (-218)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-218)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-218)))) (-1500 (*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-218)))) (-1497 (*1 *1 *2) (-12 (-5 *2 (-578 (-993 (-323)))) (-5 *1 (-218)))) (-3207 (*1 *1 *2) (-12 (-5 *2 (-1 (-847 (-177)) (-847 (-177)))) (-5 *1 (-218)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-218)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-218)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-218)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-218)))) (-1494 (*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-218)))) (-1494 (*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177) (-177))) (-5 *1 (-218)))) (-1494 (*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177) (-177) (-177))) (-5 *1 (-218)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-218)))) (-1493 (*1 *1 *2) (-12 (-5 *2 (-578 (-993 (-323)))) (-5 *1 (-218)))) (-1493 (*1 *1 *2) (-12 (-5 *2 (-578 (-993 (-343 (-478))))) (-5 *1 (-218)))) (-1915 (*1 *1 *2) (-12 (-5 *2 (-578 (-993 (-323)))) (-5 *1 (-218)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1036 (-177))) (-5 *1 (-218)))) (-1503 (*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-218)))) (-1504 (*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-218)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-218)))) (-2252 (*1 *1 *2) (-12 (-5 *2 (-1 (-847 (-177)) (-847 (-177)))) (-5 *1 (-218)))) (-1759 (*1 *1 *2) (-12 (-5 *2 (-578 (-323))) (-5 *1 (-218)))) (-1508 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-578 (-218))) (-5 *4 (-1079)) (-5 *2 (-51)) (-5 *1 (-218)))) (-1492 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-218))) (-5 *4 (-1079)) (-5 *2 (-83)) (-5 *1 (-218))))) +((-3865 (((-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3831 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))) (-578 (-218)) (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3831 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) 25 T ELT)) (-1504 (((-823) (-578 (-218)) (-823)) 52 T ELT)) (-1503 (((-823) (-578 (-218)) (-823)) 51 T ELT)) (-3835 (((-578 (-323)) (-578 (-218)) (-578 (-323))) 68 T ELT)) (-1507 (((-323) (-578 (-218)) (-323)) 57 T ELT)) (-1506 (((-823) (-578 (-218)) (-823)) 53 T ELT)) (-1500 (((-83) (-578 (-218)) (-83)) 27 T ELT)) (-3867 (((-1062) (-578 (-218)) (-1062)) 19 T ELT)) (-1499 (((-1062) (-578 (-218)) (-1062)) 26 T ELT)) (-1505 (((-1036 (-177)) (-578 (-218))) 46 T ELT)) (-1915 (((-578 (-993 (-323))) (-578 (-218)) (-578 (-993 (-323)))) 40 T ELT)) (-1501 (((-776) (-578 (-218)) (-776)) 32 T ELT)) (-1502 (((-776) (-578 (-218)) (-776)) 33 T ELT)) (-2252 (((-1 (-847 (-177)) (-847 (-177))) (-578 (-218)) (-1 (-847 (-177)) (-847 (-177)))) 63 T ELT)) (-1498 (((-83) (-578 (-218)) (-83)) 14 T ELT)) (-1910 (((-83) (-578 (-218)) (-83)) 13 T ELT))) +(((-219) (-10 -7 (-15 -1910 ((-83) (-578 (-218)) (-83))) (-15 -1498 ((-83) (-578 (-218)) (-83))) (-15 -3865 ((-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3831 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))) (-578 (-218)) (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3831 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))))) (-15 -3867 ((-1062) (-578 (-218)) (-1062))) (-15 -1499 ((-1062) (-578 (-218)) (-1062))) (-15 -1500 ((-83) (-578 (-218)) (-83))) (-15 -1501 ((-776) (-578 (-218)) (-776))) (-15 -1502 ((-776) (-578 (-218)) (-776))) (-15 -1915 ((-578 (-993 (-323))) (-578 (-218)) (-578 (-993 (-323))))) (-15 -1503 ((-823) (-578 (-218)) (-823))) (-15 -1504 ((-823) (-578 (-218)) (-823))) (-15 -1505 ((-1036 (-177)) (-578 (-218)))) (-15 -1506 ((-823) (-578 (-218)) (-823))) (-15 -1507 ((-323) (-578 (-218)) (-323))) (-15 -2252 ((-1 (-847 (-177)) (-847 (-177))) (-578 (-218)) (-1 (-847 (-177)) (-847 (-177))))) (-15 -3835 ((-578 (-323)) (-578 (-218)) (-578 (-323)))))) (T -219)) +((-3835 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-323))) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-2252 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-847 (-177)) (-847 (-177)))) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1507 (*1 *2 *3 *2) (-12 (-5 *2 (-323)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1506 (*1 *2 *3 *2) (-12 (-5 *2 (-823)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-219)))) (-1504 (*1 *2 *3 *2) (-12 (-5 *2 (-823)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1503 (*1 *2 *3 *2) (-12 (-5 *2 (-823)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1915 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-993 (-323)))) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1502 (*1 *2 *3 *2) (-12 (-5 *2 (-776)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1501 (*1 *2 *3 *2) (-12 (-5 *2 (-776)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1500 (*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1499 (*1 *2 *3 *2) (-12 (-5 *2 (-1062)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-3867 (*1 *2 *3 *2) (-12 (-5 *2 (-1062)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-3865 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3831 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1498 (*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1910 (*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) +((-1508 (((-3 |#1| "failed") (-578 (-218)) (-1079)) 17 T ELT))) +(((-220 |#1|) (-10 -7 (-15 -1508 ((-3 |#1| "failed") (-578 (-218)) (-1079)))) (-1118)) (T -220)) +((-1508 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-578 (-218))) (-5 *4 (-1079)) (-5 *1 (-220 *2)) (-4 *2 (-1118))))) +((-3742 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-687)) 11 T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079))) NIL T ELT) (($ $ (-1079)) 19 T ELT) (($ $ (-687)) NIL T ELT) (($ $) 16 T ELT)) (-2653 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-687)) 14 T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079))) NIL T ELT) (($ $ (-1079)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $) NIL T ELT))) +(((-221 |#1| |#2|) (-10 -7 (-15 -3742 (|#1| |#1|)) (-15 -2653 (|#1| |#1|)) (-15 -3742 (|#1| |#1| (-687))) (-15 -2653 (|#1| |#1| (-687))) (-15 -3742 (|#1| |#1| (-1079))) (-15 -2653 (|#1| |#1| (-1079))) (-15 -3742 (|#1| |#1| (-578 (-1079)))) (-15 -3742 (|#1| |#1| (-1079) (-687))) (-15 -3742 (|#1| |#1| (-578 (-1079)) (-578 (-687)))) (-15 -2653 (|#1| |#1| (-578 (-1079)))) (-15 -2653 (|#1| |#1| (-1079) (-687))) (-15 -2653 (|#1| |#1| (-578 (-1079)) (-578 (-687)))) (-15 -2653 (|#1| |#1| (-1 |#2| |#2|) (-687))) (-15 -2653 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3742 (|#1| |#1| (-1 |#2| |#2|) (-687))) (-15 -3742 (|#1| |#1| (-1 |#2| |#2|)))) (-222 |#2|) (-1118)) (T -221)) +NIL +((-3742 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 22 T ELT) (($ $ (-578 (-1079)) (-578 (-687))) 16 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) 15 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) 14 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079)) 12 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-687)) 10 (|has| |#1| (-187)) ELT) (($ $) 8 (|has| |#1| (-187)) ELT)) (-2653 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 20 T ELT) (($ $ (-578 (-1079)) (-578 (-687))) 19 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) 18 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) 17 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079)) 13 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-687)) 11 (|has| |#1| (-187)) ELT) (($ $) 9 (|has| |#1| (-187)) ELT))) +(((-222 |#1|) (-111) (-1118)) (T -222)) +((-3742 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-222 *3)) (-4 *3 (-1118)))) (-3742 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-687)) (-4 *1 (-222 *4)) (-4 *4 (-1118)))) (-2653 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-222 *3)) (-4 *3 (-1118)))) (-2653 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-687)) (-4 *1 (-222 *4)) (-4 *4 (-1118))))) +(-13 (-1118) (-10 -8 (-15 -3742 ($ $ (-1 |t#1| |t#1|))) (-15 -3742 ($ $ (-1 |t#1| |t#1|) (-687))) (-15 -2653 ($ $ (-1 |t#1| |t#1|))) (-15 -2653 ($ $ (-1 |t#1| |t#1|) (-687))) (IF (|has| |t#1| (-187)) (-6 (-187)) |%noBranch|) (IF (|has| |t#1| (-804 (-1079))) (-6 (-804 (-1079))) |%noBranch|))) +(((-184 $) |has| |#1| (-187)) ((-187) |has| |#1| (-187)) ((-799 $ (-1079)) |has| |#1| (-804 (-1079))) ((-804 (-1079)) |has| |#1| (-804 (-1079))) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1475 (((-578 (-687)) $) NIL T ELT) (((-578 (-687)) $ |#2|) NIL T ELT)) (-1509 (((-687) $) NIL T ELT) (((-687) $ |#2|) NIL T ELT)) (-3065 (((-578 |#3|) $) NIL T ELT)) (-3067 (((-1074 $) $ |#3|) NIL T ELT) (((-1074 |#1|) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2803 (((-687) $) NIL T ELT) (((-687) $ (-578 |#3|)) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3759 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-385)) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-1471 (($ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1028 |#1| |#2|) #1#) $) 23 T ELT)) (-3139 ((|#1| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1028 |#1| |#2|) $) NIL T ELT)) (-3740 (($ $ $ |#3|) NIL (|has| |#1| (-144)) ELT)) (-3943 (($ $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3487 (($ $) NIL (|has| |#1| (-385)) ELT) (($ $ |#3|) NIL (|has| |#1| (-385)) ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-814)) ELT)) (-1611 (($ $ |#1| (-463 |#3|) $) NIL T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| |#1| (-789 (-323))) (|has| |#3| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| |#1| (-789 (-478))) (|has| |#3| (-789 (-478)))) ELT)) (-3756 (((-687) $ |#2|) NIL T ELT) (((-687) $) 10 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2404 (((-687) $) NIL T ELT)) (-3068 (($ (-1074 |#1|) |#3|) NIL T ELT) (($ (-1074 $) |#3|) NIL T ELT)) (-2805 (((-578 $) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-463 |#3|)) NIL T ELT) (($ $ |#3| (-687)) NIL T ELT) (($ $ (-578 |#3|) (-578 (-687))) NIL T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ |#3|) NIL T ELT)) (-2804 (((-463 |#3|) $) NIL T ELT) (((-687) $ |#3|) NIL T ELT) (((-578 (-687)) $ (-578 |#3|)) NIL T ELT)) (-1612 (($ (-1 (-463 |#3|) (-463 |#3|)) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1510 (((-1 $ (-687)) |#2|) NIL T ELT) (((-1 $ (-687)) $) NIL (|has| |#1| (-188)) ELT)) (-3066 (((-3 |#3| #1#) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) NIL T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1473 ((|#3| $) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1474 (((-83) $) NIL T ELT)) (-2807 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2806 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-2 (|:| |var| |#3|) (|:| -2387 (-687))) #1#) $) NIL T ELT)) (-1472 (($ $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1784 (((-83) $) NIL T ELT)) (-1783 ((|#1| $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-385)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-814)) ELT)) (-3450 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-3752 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-578 |#3|) (-578 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-578 |#3|) (-578 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-188)) ELT) (($ $ (-578 |#2|) (-578 $)) NIL (|has| |#1| (-188)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-188)) ELT) (($ $ (-578 |#2|) (-578 |#1|)) NIL (|has| |#1| (-188)) ELT)) (-3741 (($ $ |#3|) NIL (|has| |#1| (-144)) ELT)) (-3742 (($ $ (-578 |#3|) (-578 (-687))) NIL T ELT) (($ $ |#3| (-687)) NIL T ELT) (($ $ (-578 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT)) (-1476 (((-578 |#2|) $) NIL T ELT)) (-3932 (((-463 |#3|) $) NIL T ELT) (((-687) $ |#3|) NIL T ELT) (((-578 (-687)) $ (-578 |#3|)) NIL T ELT) (((-687) $ |#2|) NIL T ELT)) (-3956 (((-793 (-323)) $) NIL (-12 (|has| |#1| (-548 (-793 (-323)))) (|has| |#3| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| |#1| (-548 (-793 (-478)))) (|has| |#3| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| |#1| (-548 (-467))) (|has| |#3| (-548 (-467)))) ELT)) (-2801 ((|#1| $) NIL (|has| |#1| (-385)) ELT) (($ $ |#3|) NIL (|has| |#1| (-385)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1028 |#1| |#2|)) 32 T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3801 (((-578 |#1|) $) NIL T ELT)) (-3661 ((|#1| $ (-463 |#3|)) NIL T ELT) (($ $ |#3| (-687)) NIL T ELT) (($ $ (-578 |#3|) (-578 (-687))) NIL T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1610 (($ $ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $ (-578 |#3|) (-578 (-687))) NIL T ELT) (($ $ |#3| (-687)) NIL T ELT) (($ $ (-578 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-223 |#1| |#2| |#3|) (-13 (-210 |#1| |#2| |#3| (-463 |#3|)) (-943 (-1028 |#1| |#2|))) (-954) (-749) (-225 |#2|)) (T -223)) +NIL +((-1509 (((-687) $) 37 T ELT)) (-3140 (((-3 |#2| "failed") $) 22 T ELT)) (-3139 ((|#2| $) 33 T ELT)) (-3742 (($ $ (-687)) 18 T ELT) (($ $) 14 T ELT)) (-3930 (((-765) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3037 (((-83) $ $) 26 T ELT)) (-2669 (((-83) $ $) 36 T ELT))) +(((-224 |#1| |#2|) (-10 -7 (-15 -1509 ((-687) |#1|)) (-15 -3930 (|#1| |#2|)) (-15 -3140 ((-3 |#2| "failed") |#1|)) (-15 -3139 (|#2| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -3742 (|#1| |#1| (-687))) (-15 -2669 ((-83) |#1| |#1|)) (-15 -3930 ((-765) |#1|)) (-15 -3037 ((-83) |#1| |#1|))) (-225 |#2|) (-749)) (T -224)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-1509 (((-687) $) 26 T ELT)) (-3815 ((|#1| $) 27 T ELT)) (-3140 (((-3 |#1| "failed") $) 31 T ELT)) (-3139 ((|#1| $) 32 T ELT)) (-3756 (((-687) $) 28 T ELT)) (-2515 (($ $ $) 23 T ELT)) (-2841 (($ $ $) 22 T ELT)) (-1510 (($ |#1| (-687)) 29 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3742 (($ $ (-687)) 35 T ELT) (($ $) 33 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2653 (($ $ (-687)) 36 T ELT) (($ $) 34 T ELT)) (-2550 (((-83) $ $) 21 T ELT)) (-2551 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 20 T ELT)) (-2669 (((-83) $ $) 18 T ELT))) +(((-225 |#1|) (-111) (-749)) (T -225)) +((-1510 (*1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-225 *2)) (-4 *2 (-749)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-225 *3)) (-4 *3 (-749)) (-5 *2 (-687)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-749)))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-225 *3)) (-4 *3 (-749)) (-5 *2 (-687))))) +(-13 (-749) (-187) (-943 |t#1|) (-10 -8 (-15 -1510 ($ |t#1| (-687))) (-15 -3756 ((-687) $)) (-15 -3815 (|t#1| $)) (-15 -1509 ((-687) $)))) +(((-72) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-184 $) . T) ((-187) . T) ((-749) . T) ((-752) . T) ((-943 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1512 (((-578 (-478)) $) 28 T ELT)) (-3932 (((-687) $) 26 T ELT)) (-3930 (((-765) $) 32 T ELT) (($ (-578 (-478))) 22 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1511 (($ (-687)) 29 T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 9 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 17 T ELT))) +(((-226) (-13 (-749) (-10 -8 (-15 -3930 ($ (-578 (-478)))) (-15 -3932 ((-687) $)) (-15 -1512 ((-578 (-478)) $)) (-15 -1511 ($ (-687)))))) (T -226)) +((-3930 (*1 *1 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-226)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-226)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-226)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-226))))) +((-3476 ((|#2| |#2|) 77 T ELT)) (-3623 ((|#2| |#2|) 65 T ELT)) (-1541 (((-3 |#2| "failed") |#2| (-578 (-2 (|:| |func| |#2|) (|:| |pole| (-83))))) 123 T ELT)) (-3474 ((|#2| |#2|) 75 T ELT)) (-3622 ((|#2| |#2|) 63 T ELT)) (-3478 ((|#2| |#2|) 79 T ELT)) (-3621 ((|#2| |#2|) 67 T ELT)) (-3611 ((|#2|) 46 T ELT)) (-3579 (((-84) (-84)) 97 T ELT)) (-3926 ((|#2| |#2|) 61 T ELT)) (-1542 (((-83) |#2|) 146 T ELT)) (-1531 ((|#2| |#2|) 193 T ELT)) (-1519 ((|#2| |#2|) 169 T ELT)) (-1514 ((|#2|) 59 T ELT)) (-1513 ((|#2|) 58 T ELT)) (-1529 ((|#2| |#2|) 189 T ELT)) (-1517 ((|#2| |#2|) 165 T ELT)) (-1533 ((|#2| |#2|) 197 T ELT)) (-1521 ((|#2| |#2|) 173 T ELT)) (-1516 ((|#2| |#2|) 161 T ELT)) (-1515 ((|#2| |#2|) 163 T ELT)) (-1534 ((|#2| |#2|) 199 T ELT)) (-1522 ((|#2| |#2|) 175 T ELT)) (-1532 ((|#2| |#2|) 195 T ELT)) (-1520 ((|#2| |#2|) 171 T ELT)) (-1530 ((|#2| |#2|) 191 T ELT)) (-1518 ((|#2| |#2|) 167 T ELT)) (-1537 ((|#2| |#2|) 205 T ELT)) (-1525 ((|#2| |#2|) 181 T ELT)) (-1535 ((|#2| |#2|) 201 T ELT)) (-1523 ((|#2| |#2|) 177 T ELT)) (-1539 ((|#2| |#2|) 209 T ELT)) (-1527 ((|#2| |#2|) 185 T ELT)) (-1540 ((|#2| |#2|) 211 T ELT)) (-1528 ((|#2| |#2|) 187 T ELT)) (-1538 ((|#2| |#2|) 207 T ELT)) (-1526 ((|#2| |#2|) 183 T ELT)) (-1536 ((|#2| |#2|) 203 T ELT)) (-1524 ((|#2| |#2|) 179 T ELT)) (-3927 ((|#2| |#2|) 62 T ELT)) (-3479 ((|#2| |#2|) 80 T ELT)) (-3620 ((|#2| |#2|) 68 T ELT)) (-3477 ((|#2| |#2|) 78 T ELT)) (-3619 ((|#2| |#2|) 66 T ELT)) (-3475 ((|#2| |#2|) 76 T ELT)) (-3618 ((|#2| |#2|) 64 T ELT)) (-2240 (((-83) (-84)) 95 T ELT)) (-3482 ((|#2| |#2|) 83 T ELT)) (-3470 ((|#2| |#2|) 71 T ELT)) (-3480 ((|#2| |#2|) 81 T ELT)) (-3468 ((|#2| |#2|) 69 T ELT)) (-3484 ((|#2| |#2|) 85 T ELT)) (-3472 ((|#2| |#2|) 73 T ELT)) (-3485 ((|#2| |#2|) 86 T ELT)) (-3473 ((|#2| |#2|) 74 T ELT)) (-3483 ((|#2| |#2|) 84 T ELT)) (-3471 ((|#2| |#2|) 72 T ELT)) (-3481 ((|#2| |#2|) 82 T ELT)) (-3469 ((|#2| |#2|) 70 T ELT))) +(((-227 |#1| |#2|) (-10 -7 (-15 -3927 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -3622 (|#2| |#2|)) (-15 -3618 (|#2| |#2|)) (-15 -3623 (|#2| |#2|)) (-15 -3619 (|#2| |#2|)) (-15 -3621 (|#2| |#2|)) (-15 -3620 (|#2| |#2|)) (-15 -3468 (|#2| |#2|)) (-15 -3469 (|#2| |#2|)) (-15 -3470 (|#2| |#2|)) (-15 -3471 (|#2| |#2|)) (-15 -3472 (|#2| |#2|)) (-15 -3473 (|#2| |#2|)) (-15 -3474 (|#2| |#2|)) (-15 -3475 (|#2| |#2|)) (-15 -3476 (|#2| |#2|)) (-15 -3477 (|#2| |#2|)) (-15 -3478 (|#2| |#2|)) (-15 -3479 (|#2| |#2|)) (-15 -3480 (|#2| |#2|)) (-15 -3481 (|#2| |#2|)) (-15 -3482 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3484 (|#2| |#2|)) (-15 -3485 (|#2| |#2|)) (-15 -3611 (|#2|)) (-15 -2240 ((-83) (-84))) (-15 -3579 ((-84) (-84))) (-15 -1513 (|#2|)) (-15 -1514 (|#2|)) (-15 -1515 (|#2| |#2|)) (-15 -1516 (|#2| |#2|)) (-15 -1517 (|#2| |#2|)) (-15 -1518 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -1520 (|#2| |#2|)) (-15 -1521 (|#2| |#2|)) (-15 -1522 (|#2| |#2|)) (-15 -1523 (|#2| |#2|)) (-15 -1524 (|#2| |#2|)) (-15 -1525 (|#2| |#2|)) (-15 -1526 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -1528 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 ((-3 |#2| "failed") |#2| (-578 (-2 (|:| |func| |#2|) (|:| |pole| (-83)))))) (-15 -1542 ((-83) |#2|))) (-489) (-13 (-357 |#1|) (-908))) (T -227)) +((-1542 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-227 *4 *3)) (-4 *3 (-13 (-357 *4) (-908))))) (-1541 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-578 (-2 (|:| |func| *2) (|:| |pole| (-83))))) (-4 *2 (-13 (-357 *4) (-908))) (-4 *4 (-489)) (-5 *1 (-227 *4 *2)))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1525 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1524 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1523 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1522 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1520 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1519 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1518 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1517 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1516 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1515 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1514 (*1 *2) (-12 (-4 *2 (-13 (-357 *3) (-908))) (-5 *1 (-227 *3 *2)) (-4 *3 (-489)))) (-1513 (*1 *2) (-12 (-4 *2 (-13 (-357 *3) (-908))) (-5 *1 (-227 *3 *2)) (-4 *3 (-489)))) (-3579 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-227 *3 *4)) (-4 *4 (-13 (-357 *3) (-908))))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-227 *4 *5)) (-4 *5 (-13 (-357 *4) (-908))))) (-3611 (*1 *2) (-12 (-4 *2 (-13 (-357 *3) (-908))) (-5 *1 (-227 *3 *2)) (-4 *3 (-489)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3479 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3476 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3475 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3472 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3471 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3470 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3468 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3620 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3619 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3623 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3618 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3927 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) +((-1545 (((-3 |#2| "failed") (-578 (-545 |#2|)) |#2| (-1079)) 151 T ELT)) (-1547 ((|#2| (-343 (-478)) |#2|) 49 T ELT)) (-1546 ((|#2| |#2| (-545 |#2|)) 144 T ELT)) (-1543 (((-2 (|:| |func| |#2|) (|:| |kers| (-578 (-545 |#2|))) (|:| |vals| (-578 |#2|))) |#2| (-1079)) 143 T ELT)) (-1544 ((|#2| |#2| (-1079)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2427 ((|#2| |#2| (-1079)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) +(((-228 |#1| |#2|) (-10 -7 (-15 -2427 (|#2| |#2|)) (-15 -2427 (|#2| |#2| (-1079))) (-15 -1543 ((-2 (|:| |func| |#2|) (|:| |kers| (-578 (-545 |#2|))) (|:| |vals| (-578 |#2|))) |#2| (-1079))) (-15 -1544 (|#2| |#2|)) (-15 -1544 (|#2| |#2| (-1079))) (-15 -1545 ((-3 |#2| "failed") (-578 (-545 |#2|)) |#2| (-1079))) (-15 -1546 (|#2| |#2| (-545 |#2|))) (-15 -1547 (|#2| (-343 (-478)) |#2|))) (-13 (-489) (-943 (-478)) (-575 (-478))) (-13 (-27) (-1104) (-357 |#1|))) (T -228)) +((-1547 (*1 *2 *3 *2) (-12 (-5 *3 (-343 (-478))) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *4))))) (-1546 (*1 *2 *2 *3) (-12 (-5 *3 (-545 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *4))) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *4 *2)))) (-1545 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-578 (-545 *2))) (-5 *4 (-1079)) (-4 *2 (-13 (-27) (-1104) (-357 *5))) (-4 *5 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *5 *2)))) (-1544 (*1 *2 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *4))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *3))))) (-1543 (*1 *2 *3 *4) (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-578 (-545 *3))) (|:| |vals| (-578 *3)))) (-5 *1 (-228 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))))) (-2427 (*1 *2 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *4))))) (-2427 (*1 *2 *2) (-12 (-4 *3 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *3)))))) +((-2959 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3476 ((|#3| |#3|) 142 T ELT)) (-2947 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3623 ((|#3| |#3|) 132 T ELT)) (-2957 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3474 ((|#3| |#3|) 140 T ELT)) (-2945 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3622 ((|#3| |#3|) 130 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3478 ((|#3| |#3|) 144 T ELT)) (-2949 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3621 ((|#3| |#3|) 134 T ELT)) (-2942 (((-3 |#3| #1#) |#3| (-687)) 41 T ELT)) (-2944 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3926 ((|#3| |#3|) 129 T ELT)) (-2943 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3927 ((|#3| |#3|) 128 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3479 ((|#3| |#3|) 145 T ELT)) (-2950 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3620 ((|#3| |#3|) 135 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3477 ((|#3| |#3|) 143 T ELT)) (-2948 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3619 ((|#3| |#3|) 133 T ELT)) (-2958 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3475 ((|#3| |#3|) 141 T ELT)) (-2946 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3618 ((|#3| |#3|) 131 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3482 ((|#3| |#3|) 148 T ELT)) (-2953 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3470 ((|#3| |#3|) 152 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3480 ((|#3| |#3|) 146 T ELT)) (-2951 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3468 ((|#3| |#3|) 136 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3484 ((|#3| |#3|) 150 T ELT)) (-2955 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3472 ((|#3| |#3|) 138 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3485 ((|#3| |#3|) 151 T ELT)) (-2956 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3473 ((|#3| |#3|) 139 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3483 ((|#3| |#3|) 149 T ELT)) (-2954 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3471 ((|#3| |#3|) 153 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3481 ((|#3| |#3|) 147 T ELT)) (-2952 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3469 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-343 (-478))) 47 (|has| |#1| (-308)) ELT))) +(((-229 |#1| |#2| |#3|) (-13 (-889 |#3|) (-10 -7 (IF (|has| |#1| (-308)) (-15 ** (|#3| |#3| (-343 (-478)))) |%noBranch|) (-15 -3927 (|#3| |#3|)) (-15 -3926 (|#3| |#3|)) (-15 -3622 (|#3| |#3|)) (-15 -3618 (|#3| |#3|)) (-15 -3623 (|#3| |#3|)) (-15 -3619 (|#3| |#3|)) (-15 -3621 (|#3| |#3|)) (-15 -3620 (|#3| |#3|)) (-15 -3468 (|#3| |#3|)) (-15 -3469 (|#3| |#3|)) (-15 -3470 (|#3| |#3|)) (-15 -3471 (|#3| |#3|)) (-15 -3472 (|#3| |#3|)) (-15 -3473 (|#3| |#3|)) (-15 -3474 (|#3| |#3|)) (-15 -3475 (|#3| |#3|)) (-15 -3476 (|#3| |#3|)) (-15 -3477 (|#3| |#3|)) (-15 -3478 (|#3| |#3|)) (-15 -3479 (|#3| |#3|)) (-15 -3480 (|#3| |#3|)) (-15 -3481 (|#3| |#3|)) (-15 -3482 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)))) (-38 (-343 (-478))) (-1161 |#1|) (-1132 |#1| |#2|)) (T -229)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-343 (-478))) (-4 *4 (-308)) (-4 *4 (-38 *3)) (-4 *5 (-1161 *4)) (-5 *1 (-229 *4 *5 *2)) (-4 *2 (-1132 *4 *5)))) (-3927 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3618 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3623 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3619 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3620 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3468 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3470 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3471 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3472 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3475 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3476 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3479 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1132 *3 *4))))) +((-2959 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3476 ((|#3| |#3|) 137 T ELT)) (-2947 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3623 ((|#3| |#3|) 125 T ELT)) (-2957 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3474 ((|#3| |#3|) 135 T ELT)) (-2945 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3622 ((|#3| |#3|) 123 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3478 ((|#3| |#3|) 139 T ELT)) (-2949 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3621 ((|#3| |#3|) 127 T ELT)) (-2942 (((-3 |#3| #1#) |#3| (-687)) 38 T ELT)) (-2944 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3926 ((|#3| |#3|) 111 T ELT)) (-2943 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3927 ((|#3| |#3|) 122 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3479 ((|#3| |#3|) 140 T ELT)) (-2950 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3620 ((|#3| |#3|) 128 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3477 ((|#3| |#3|) 138 T ELT)) (-2948 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3619 ((|#3| |#3|) 126 T ELT)) (-2958 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3475 ((|#3| |#3|) 136 T ELT)) (-2946 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3618 ((|#3| |#3|) 124 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3482 ((|#3| |#3|) 143 T ELT)) (-2953 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3470 ((|#3| |#3|) 131 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3480 ((|#3| |#3|) 141 T ELT)) (-2951 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3468 ((|#3| |#3|) 129 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3484 ((|#3| |#3|) 145 T ELT)) (-2955 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3472 ((|#3| |#3|) 133 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3485 ((|#3| |#3|) 146 T ELT)) (-2956 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3473 ((|#3| |#3|) 134 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3483 ((|#3| |#3|) 144 T ELT)) (-2954 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3471 ((|#3| |#3|) 132 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3481 ((|#3| |#3|) 142 T ELT)) (-2952 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3469 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-343 (-478))) 44 (|has| |#1| (-308)) ELT))) +(((-230 |#1| |#2| |#3| |#4|) (-13 (-889 |#3|) (-10 -7 (IF (|has| |#1| (-308)) (-15 ** (|#3| |#3| (-343 (-478)))) |%noBranch|) (-15 -3927 (|#3| |#3|)) (-15 -3926 (|#3| |#3|)) (-15 -3622 (|#3| |#3|)) (-15 -3618 (|#3| |#3|)) (-15 -3623 (|#3| |#3|)) (-15 -3619 (|#3| |#3|)) (-15 -3621 (|#3| |#3|)) (-15 -3620 (|#3| |#3|)) (-15 -3468 (|#3| |#3|)) (-15 -3469 (|#3| |#3|)) (-15 -3470 (|#3| |#3|)) (-15 -3471 (|#3| |#3|)) (-15 -3472 (|#3| |#3|)) (-15 -3473 (|#3| |#3|)) (-15 -3474 (|#3| |#3|)) (-15 -3475 (|#3| |#3|)) (-15 -3476 (|#3| |#3|)) (-15 -3477 (|#3| |#3|)) (-15 -3478 (|#3| |#3|)) (-15 -3479 (|#3| |#3|)) (-15 -3480 (|#3| |#3|)) (-15 -3481 (|#3| |#3|)) (-15 -3482 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)))) (-38 (-343 (-478))) (-1130 |#1|) (-1153 |#1| |#2|) (-889 |#2|)) (T -230)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-343 (-478))) (-4 *4 (-308)) (-4 *4 (-38 *3)) (-4 *5 (-1130 *4)) (-5 *1 (-230 *4 *5 *2 *6)) (-4 *2 (-1153 *4 *5)) (-4 *6 (-889 *5)))) (-3927 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3618 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3623 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3619 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3620 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3468 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3470 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3471 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3472 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3475 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3476 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3479 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4))))) +((-1550 (((-83) $) 20 T ELT)) (-1552 (((-1084) $) 9 T ELT)) (-3553 (((-3 (-439) #1="failed") $) 15 T ELT)) (-3552 (((-3 (-578 $) #1#) $) NIL T ELT)) (-1549 (((-3 (-439) #1#) $) 21 T ELT)) (-1551 (((-3 (-1007) #1#) $) 19 T ELT)) (-3937 (((-83) $) 17 T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1548 (((-83) $) 10 T ELT))) +(((-231) (-13 (-547 (-765)) (-10 -8 (-15 -1552 ((-1084) $)) (-15 -3937 ((-83) $)) (-15 -1551 ((-3 (-1007) #1="failed") $)) (-15 -1550 ((-83) $)) (-15 -1549 ((-3 (-439) #1#) $)) (-15 -1548 ((-83) $)) (-15 -3553 ((-3 (-439) #1#) $)) (-15 -3552 ((-3 (-578 $) #1#) $))))) (T -231)) +((-1552 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-231)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-231)))) (-1551 (*1 *2 *1) (|partial| -12 (-5 *2 (-1007)) (-5 *1 (-231)))) (-1550 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-231)))) (-1549 (*1 *2 *1) (|partial| -12 (-5 *2 (-439)) (-5 *1 (-231)))) (-1548 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-231)))) (-3553 (*1 *2 *1) (|partial| -12 (-5 *2 (-439)) (-5 *1 (-231)))) (-3552 (*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-231))) (-5 *1 (-231))))) +((-1554 (((-526) $) 10 T ELT)) (-1555 (((-516) $) 8 T ELT)) (-1553 (((-243) $) 12 T ELT)) (-1556 (($ (-516) (-526) (-243)) NIL T ELT)) (-3930 (((-765) $) 19 T ELT))) +(((-232) (-13 (-547 (-765)) (-10 -8 (-15 -1556 ($ (-516) (-526) (-243))) (-15 -1555 ((-516) $)) (-15 -1554 ((-526) $)) (-15 -1553 ((-243) $))))) (T -232)) +((-1556 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-516)) (-5 *3 (-526)) (-5 *4 (-243)) (-5 *1 (-232)))) (-1555 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-232)))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-232)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-243)) (-5 *1 (-232))))) +((-3694 (($ (-1 (-83) |#2|) $) 24 T ELT)) (-1340 (($ $) 38 T ELT)) (-3389 (($ (-1 (-83) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3390 (($ |#2| $) 34 T ELT) (($ (-1 (-83) |#2|) $) 18 T ELT)) (-2840 (($ (-1 (-83) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2290 (($ |#2| $ (-478)) 20 T ELT) (($ $ $ (-478)) 22 T ELT)) (-2291 (($ $ (-478)) 11 T ELT) (($ $ (-1135 (-478))) 14 T ELT)) (-3775 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3786 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-578 $)) NIL T ELT))) +(((-233 |#1| |#2|) (-10 -7 (-15 -2840 (|#1| |#1| |#1|)) (-15 -3389 (|#1| |#2| |#1|)) (-15 -2840 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|)) (-15 -3389 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3775 (|#1| |#1| |#1|)) (-15 -3775 (|#1| |#1| |#2|)) (-15 -2290 (|#1| |#1| |#1| (-478))) (-15 -2290 (|#1| |#2| |#1| (-478))) (-15 -2291 (|#1| |#1| (-1135 (-478)))) (-15 -2291 (|#1| |#1| (-478))) (-15 -3786 (|#1| (-578 |#1|))) (-15 -3786 (|#1| |#1| |#1|)) (-15 -3786 (|#1| |#2| |#1|)) (-15 -3786 (|#1| |#1| |#2|)) (-15 -3390 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3694 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3390 (|#1| |#2| |#1|)) (-15 -1340 (|#1| |#1|))) (-234 |#2|) (-1118)) (T -233)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-2184 (((-1174) $ (-478) (-478)) 44 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ (-478) |#1|) 56 (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) 64 (|has| $ (-6 -3980)) ELT)) (-1557 (($ (-1 (-83) |#1|) $) 94 T ELT)) (-3694 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3979)) ELT)) (-3708 (($) 7 T CONST)) (-2354 (($ $) 92 (|has| |#1| (-1005)) ELT)) (-1340 (($ $) 84 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3389 (($ (-1 (-83) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1005)) ELT)) (-3390 (($ |#1| $) 83 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3979)) ELT)) (-1563 ((|#1| $ (-478) |#1|) 57 (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) 55 T ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-3598 (($ (-687) |#1|) 74 T ELT)) (-2186 (((-478) $) 47 (|has| (-478) (-749)) ELT)) (-2840 (($ (-1 (-83) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-749)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-2187 (((-478) $) 48 (|has| (-478) (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-3593 (($ |#1| $ (-478)) 97 T ELT) (($ $ $ (-478)) 96 T ELT)) (-2290 (($ |#1| $ (-478)) 66 T ELT) (($ $ $ (-478)) 65 T ELT)) (-2189 (((-578 (-478)) $) 50 T ELT)) (-2190 (((-83) (-478) $) 51 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-3785 ((|#1| $) 46 (|has| (-478) (-749)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2185 (($ $ |#1|) 45 (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-2188 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) 52 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#1| $ (-478) |#1|) 54 T ELT) ((|#1| $ (-478)) 53 T ELT) (($ $ (-1135 (-478))) 75 T ELT)) (-1558 (($ $ (-478)) 100 T ELT) (($ $ (-1135 (-478))) 99 T ELT)) (-2291 (($ $ (-478)) 68 T ELT) (($ $ (-1135 (-478))) 67 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 85 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 76 T ELT)) (-3775 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-3786 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-578 $)) 70 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-234 |#1|) (-111) (-1118)) (T -234)) +((-3775 (*1 *1 *1 *2) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1118)))) (-3775 (*1 *1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1118)))) (-1558 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-234 *3)) (-4 *3 (-1118)))) (-1558 (*1 *1 *1 *2) (-12 (-5 *2 (-1135 (-478))) (-4 *1 (-234 *3)) (-4 *3 (-1118)))) (-3389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-234 *3)) (-4 *3 (-1118)))) (-3593 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-234 *2)) (-4 *2 (-1118)))) (-3593 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-234 *3)) (-4 *3 (-1118)))) (-2840 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-234 *3)) (-4 *3 (-1118)))) (-1557 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-234 *3)) (-4 *3 (-1118)))) (-3389 (*1 *1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1118)) (-4 *2 (-1005)))) (-2354 (*1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1118)) (-4 *2 (-1005)))) (-2840 (*1 *1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1118)) (-4 *2 (-749))))) +(-13 (-588 |t#1|) (-10 -8 (-6 -3980) (-15 -3775 ($ $ |t#1|)) (-15 -3775 ($ $ $)) (-15 -1558 ($ $ (-478))) (-15 -1558 ($ $ (-1135 (-478)))) (-15 -3389 ($ (-1 (-83) |t#1|) $)) (-15 -3593 ($ |t#1| $ (-478))) (-15 -3593 ($ $ $ (-478))) (-15 -2840 ($ (-1 (-83) |t#1| |t#1|) $ $)) (-15 -1557 ($ (-1 (-83) |t#1|) $)) (IF (|has| |t#1| (-1005)) (PROGN (-15 -3389 ($ |t#1| $)) (-15 -2354 ($ $))) |%noBranch|) (IF (|has| |t#1| (-749)) (-15 -2840 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 (-478) |#1|) . T) ((-238 (-1135 (-478)) $) . T) ((-240 (-478) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-533 (-478) |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-588 |#1|) . T) ((-1005) |has| |#1| (-1005)) ((-1118) . T)) ((** (($ $ $) 10 T ELT))) -(((-237 |#1|) (-10 -7 (-15 ** (|#1| |#1| |#1|))) (-238)) (T -237)) -NIL -((-4092 (($ $) 6 T ELT)) (-4093 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) -(((-238) (-113)) (T -238)) -((** (*1 *1 *1 *1) (-4 *1 (-238))) (-4093 (*1 *1 *1) (-4 *1 (-238))) (-4092 (*1 *1 *1) (-4 *1 (-238)))) -(-13 (-10 -8 (-15 -4092 ($ $)) (-15 -4093 ($ $)) (-15 ** ($ $ $)))) -((-1608 (((-599 (-1095 |#1|)) (-1095 |#1|) |#1|) 35 T ELT)) (-1605 ((|#2| |#2| |#1|) 39 T ELT)) (-1607 ((|#2| |#2| |#1|) 41 T ELT)) (-1606 ((|#2| |#2| |#1|) 40 T ELT))) -(((-239 |#1| |#2|) (-10 -7 (-15 -1605 (|#2| |#2| |#1|)) (-15 -1606 (|#2| |#2| |#1|)) (-15 -1607 (|#2| |#2| |#1|)) (-15 -1608 ((-599 (-1095 |#1|)) (-1095 |#1|) |#1|))) (-318) (-1200 |#1|)) (T -239)) -((-1608 (*1 *2 *3 *4) (-12 (-4 *4 (-318)) (-5 *2 (-599 (-1095 *4))) (-5 *1 (-239 *4 *5)) (-5 *3 (-1095 *4)) (-4 *5 (-1200 *4)))) (-1607 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-239 *3 *2)) (-4 *2 (-1200 *3)))) (-1606 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-239 *3 *2)) (-4 *2 (-1200 *3)))) (-1605 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-239 *3 *2)) (-4 *2 (-1200 *3))))) -((-3950 ((|#2| $ |#1|) 6 T ELT))) -(((-240 |#1| |#2|) (-113) (-1157) (-1157)) (T -240)) -((-3950 (*1 *2 *1 *3) (-12 (-4 *1 (-240 *3 *2)) (-4 *3 (-1157)) (-4 *2 (-1157))))) -(-13 (-1157) (-10 -8 (-15 -3950 (|t#2| $ |t#1|)))) -(((-1157) . T)) -((-1609 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3235 ((|#3| $ |#2|) 10 T ELT))) -(((-241 |#1| |#2| |#3|) (-10 -7 (-15 -1609 (|#3| |#1| |#2| |#3|)) (-15 -3235 (|#3| |#1| |#2|))) (-242 |#2| |#3|) (-1041) (-1157)) (T -241)) -NIL -((-3938 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4146)) ELT)) (-1609 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) 11 T ELT)) (-3950 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) -(((-242 |#1| |#2|) (-113) (-1041) (-1157)) (T -242)) -((-3950 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-242 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1157)))) (-3235 (*1 *2 *1 *3) (-12 (-4 *1 (-242 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1157)))) (-3938 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-242 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1157)))) (-1609 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-242 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1157))))) -(-13 (-240 |t#1| |t#2|) (-10 -8 (-15 -3950 (|t#2| $ |t#1| |t#2|)) (-15 -3235 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4146)) (PROGN (-15 -3938 (|t#2| $ |t#1| |t#2|)) (-15 -1609 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-240 |#1| |#2|) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 37 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 44 T ELT)) (-2164 (($ $) 41 T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2683 (($ $ $) 35 T ELT)) (-3992 (($ |#2| |#3|) 18 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2733 ((|#3| $) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 19 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2520 (((-3 $ #1#) $ $) NIL T ELT)) (-1677 (((-714) $) 36 T ELT)) (-3950 ((|#2| $ |#2|) 46 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 23 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2779 (($) 31 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 40 T ELT))) -(((-243 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-261) (-240 |#2| |#2|) (-10 -8 (-15 -2733 (|#3| $)) (-15 -4096 (|#2| $)) (-15 -3992 ($ |#2| |#3|)) (-15 -2520 ((-3 $ #1="failed") $ $)) (-15 -3607 ((-3 $ #1#) $)) (-15 -2601 ($ $)))) (-146) (-1183 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -243)) -((-3607 (*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-243 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1183 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2733 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-243 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1183 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4096 (*1 *2 *1) (-12 (-4 *2 (-1183 *3)) (-5 *1 (-243 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3992 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-243 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1183 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2520 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-243 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1183 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2601 (*1 *1 *1) (-12 (-4 *2 (-146)) (-5 *1 (-243 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1183 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-244) (-113)) (T -244)) -NIL -(-13 (-989) (-82 $ $) (-10 -7 (-6 -4138))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-684) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-1617 (((-599 (-1025)) $) 10 T ELT)) (-1615 (($ (-460) (-460) (-1043) $) 19 T ELT)) (-1613 (($ (-460) (-599 (-903)) $) 23 T ELT)) (-1611 (($) 25 T ELT)) (-1616 (((-649 (-1043)) (-460) (-460) $) 18 T ELT)) (-1614 (((-599 (-903)) (-460) $) 22 T ELT)) (-3713 (($) 7 T ELT)) (-1612 (($) 24 T ELT)) (-4096 (((-797) $) 29 T ELT)) (-1610 (($) 26 T ELT))) -(((-245) (-13 (-568 (-797)) (-10 -8 (-15 -3713 ($)) (-15 -1617 ((-599 (-1025)) $)) (-15 -1616 ((-649 (-1043)) (-460) (-460) $)) (-15 -1615 ($ (-460) (-460) (-1043) $)) (-15 -1614 ((-599 (-903)) (-460) $)) (-15 -1613 ($ (-460) (-599 (-903)) $)) (-15 -1612 ($)) (-15 -1611 ($)) (-15 -1610 ($))))) (T -245)) -((-3713 (*1 *1) (-5 *1 (-245))) (-1617 (*1 *2 *1) (-12 (-5 *2 (-599 (-1025))) (-5 *1 (-245)))) (-1616 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-1043))) (-5 *1 (-245)))) (-1615 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-460)) (-5 *3 (-1043)) (-5 *1 (-245)))) (-1614 (*1 *2 *3 *1) (-12 (-5 *3 (-460)) (-5 *2 (-599 (-903))) (-5 *1 (-245)))) (-1613 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-460)) (-5 *3 (-599 (-903))) (-5 *1 (-245)))) (-1612 (*1 *1) (-5 *1 (-245))) (-1611 (*1 *1) (-5 *1 (-245))) (-1610 (*1 *1) (-5 *1 (-245)))) -((-1621 (((-599 (-2 (|:| |eigval| (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|)))) (|:| |geneigvec| (-599 (-647 (-361 (-884 |#1|))))))) (-647 (-361 (-884 |#1|)))) 103 T ELT)) (-1620 (((-599 (-647 (-361 (-884 |#1|)))) (-2 (|:| |eigval| (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|)))) (|:| |eigmult| (-714)) (|:| |eigvec| (-599 (-647 (-361 (-884 |#1|)))))) (-647 (-361 (-884 |#1|)))) 98 T ELT) (((-599 (-647 (-361 (-884 |#1|)))) (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|))) (-647 (-361 (-884 |#1|))) (-714) (-714)) 42 T ELT)) (-1622 (((-599 (-2 (|:| |eigval| (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|)))) (|:| |eigmult| (-714)) (|:| |eigvec| (-599 (-647 (-361 (-884 |#1|))))))) (-647 (-361 (-884 |#1|)))) 100 T ELT)) (-1619 (((-599 (-647 (-361 (-884 |#1|)))) (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|))) (-647 (-361 (-884 |#1|)))) 76 T ELT)) (-1618 (((-599 (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|)))) (-647 (-361 (-884 |#1|)))) 75 T ELT)) (-2565 (((-884 |#1|) (-647 (-361 (-884 |#1|)))) 56 T ELT) (((-884 |#1|) (-647 (-361 (-884 |#1|))) (-1117)) 57 T ELT))) -(((-246 |#1|) (-10 -7 (-15 -2565 ((-884 |#1|) (-647 (-361 (-884 |#1|))) (-1117))) (-15 -2565 ((-884 |#1|) (-647 (-361 (-884 |#1|))))) (-15 -1618 ((-599 (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|)))) (-647 (-361 (-884 |#1|))))) (-15 -1619 ((-599 (-647 (-361 (-884 |#1|)))) (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|))) (-647 (-361 (-884 |#1|))))) (-15 -1620 ((-599 (-647 (-361 (-884 |#1|)))) (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|))) (-647 (-361 (-884 |#1|))) (-714) (-714))) (-15 -1620 ((-599 (-647 (-361 (-884 |#1|)))) (-2 (|:| |eigval| (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|)))) (|:| |eigmult| (-714)) (|:| |eigvec| (-599 (-647 (-361 (-884 |#1|)))))) (-647 (-361 (-884 |#1|))))) (-15 -1621 ((-599 (-2 (|:| |eigval| (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|)))) (|:| |geneigvec| (-599 (-647 (-361 (-884 |#1|))))))) (-647 (-361 (-884 |#1|))))) (-15 -1622 ((-599 (-2 (|:| |eigval| (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|)))) (|:| |eigmult| (-714)) (|:| |eigvec| (-599 (-647 (-361 (-884 |#1|))))))) (-647 (-361 (-884 |#1|)))))) (-406)) (T -246)) -((-1622 (*1 *2 *3) (-12 (-4 *4 (-406)) (-5 *2 (-599 (-2 (|:| |eigval| (-3 (-361 (-884 *4)) (-1106 (-1117) (-884 *4)))) (|:| |eigmult| (-714)) (|:| |eigvec| (-599 (-647 (-361 (-884 *4)))))))) (-5 *1 (-246 *4)) (-5 *3 (-647 (-361 (-884 *4)))))) (-1621 (*1 *2 *3) (-12 (-4 *4 (-406)) (-5 *2 (-599 (-2 (|:| |eigval| (-3 (-361 (-884 *4)) (-1106 (-1117) (-884 *4)))) (|:| |geneigvec| (-599 (-647 (-361 (-884 *4)))))))) (-5 *1 (-246 *4)) (-5 *3 (-647 (-361 (-884 *4)))))) (-1620 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-361 (-884 *5)) (-1106 (-1117) (-884 *5)))) (|:| |eigmult| (-714)) (|:| |eigvec| (-599 *4)))) (-4 *5 (-406)) (-5 *2 (-599 (-647 (-361 (-884 *5))))) (-5 *1 (-246 *5)) (-5 *4 (-647 (-361 (-884 *5)))))) (-1620 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-361 (-884 *6)) (-1106 (-1117) (-884 *6)))) (-5 *5 (-714)) (-4 *6 (-406)) (-5 *2 (-599 (-647 (-361 (-884 *6))))) (-5 *1 (-246 *6)) (-5 *4 (-647 (-361 (-884 *6)))))) (-1619 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-361 (-884 *5)) (-1106 (-1117) (-884 *5)))) (-4 *5 (-406)) (-5 *2 (-599 (-647 (-361 (-884 *5))))) (-5 *1 (-246 *5)) (-5 *4 (-647 (-361 (-884 *5)))))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-647 (-361 (-884 *4)))) (-4 *4 (-406)) (-5 *2 (-599 (-3 (-361 (-884 *4)) (-1106 (-1117) (-884 *4))))) (-5 *1 (-246 *4)))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-647 (-361 (-884 *4)))) (-5 *2 (-884 *4)) (-5 *1 (-246 *4)) (-4 *4 (-406)))) (-2565 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-361 (-884 *5)))) (-5 *4 (-1117)) (-5 *2 (-884 *5)) (-5 *1 (-246 *5)) (-4 *5 (-406))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3326 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1628 (($ $) 12 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1637 (($ $ $) 95 (|has| |#1| (-252)) ELT)) (-3874 (($) NIL (-3677 (|has| |#1| (-21)) (|has| |#1| (-684))) CONST)) (-1626 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1624 (((-3 $ #1#) $) 62 (|has| |#1| (-684)) ELT)) (-3668 ((|#1| $) 11 T ELT)) (-3607 (((-3 $ #1#) $) 60 (|has| |#1| (-684)) ELT)) (-2528 (((-85) $) NIL (|has| |#1| (-684)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3669 ((|#1| $) 10 T ELT)) (-1627 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1625 (((-3 $ #1#) $) 61 (|has| |#1| (-684)) ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-2601 (($ $) 64 (-3677 (|has| |#1| (-318)) (|has| |#1| (-427))) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-1623 (((-599 $) $) 85 (|has| |#1| (-510)) ELT)) (-3918 (($ $ $) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 $)) 28 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-1117) |#1|) 17 (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) 21 (|has| |#1| (-468 (-1117) |#1|)) ELT)) (-3364 (($ |#1| |#1|) 9 T ELT)) (-4061 (((-107)) 90 (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1117)) 87 (|has| |#1| (-836 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-836 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-836 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-836 (-1117))) ELT)) (-3130 (($ $ $) NIL (|has| |#1| (-427)) ELT)) (-2551 (($ $ $) NIL (|has| |#1| (-427)) ELT)) (-4096 (($ (-499)) NIL (|has| |#1| (-989)) ELT) (((-85) $) 37 (|has| |#1| (-1041)) ELT) (((-797) $) 36 (|has| |#1| (-1041)) ELT)) (-3248 (((-714)) 67 (|has| |#1| (-989)) CONST)) (-1297 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-2779 (($) 47 (|has| |#1| (-21)) CONST)) (-2785 (($) 57 (|has| |#1| (-684)) CONST)) (-2790 (($ $ (-1117)) NIL (|has| |#1| (-836 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-836 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-836 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-836 (-1117))) ELT)) (-3174 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1041)) ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT) (($ $ $) 92 (-3677 (|has| |#1| (-318)) (|has| |#1| (-427))) ELT)) (-3987 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3989 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-499)) NIL (|has| |#1| (-427)) ELT) (($ $ (-714)) NIL (|has| |#1| (-684)) ELT) (($ $ (-857)) NIL (|has| |#1| (-1052)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1052)) ELT) (($ |#1| $) 54 (|has| |#1| (-1052)) ELT) (($ $ $) 53 (|has| |#1| (-1052)) ELT) (($ (-499) $) 70 (|has| |#1| (-21)) ELT) (($ (-714) $) NIL (|has| |#1| (-21)) ELT) (($ (-857) $) NIL (|has| |#1| (-25)) ELT))) -(((-247 |#1|) (-13 (-1157) (-10 -8 (-15 -3174 ($ |#1| |#1|)) (-15 -3364 ($ |#1| |#1|)) (-15 -1628 ($ $)) (-15 -3669 (|#1| $)) (-15 -3668 (|#1| $)) (-15 -4108 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-468 (-1117) |#1|)) (-6 (-468 (-1117) |#1|)) |%noBranch|) (IF (|has| |#1| (-1041)) (PROGN (-6 (-1041)) (-6 (-568 (-85))) (IF (|has| |#1| (-263 |#1|)) (PROGN (-15 -3918 ($ $ $)) (-15 -3918 ($ $ (-599 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3989 ($ |#1| $)) (-15 -3989 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1627 ($ $)) (-15 -1626 ($ $)) (-15 -3987 ($ |#1| $)) (-15 -3987 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1052)) (PROGN (-6 (-1052)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-684)) (PROGN (-6 (-684)) (-15 -1625 ((-3 $ #1="failed") $)) (-15 -1624 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-427)) (PROGN (-6 (-427)) (-15 -1625 ((-3 $ #1#) $)) (-15 -1624 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-989)) (PROGN (-6 (-989)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-675 |#1|)) |%noBranch|) (IF (|has| |#1| (-510)) (-15 -1623 ((-599 $) $)) |%noBranch|) (IF (|has| |#1| (-836 (-1117))) (-6 (-836 (-1117))) |%noBranch|) (IF (|has| |#1| (-318)) (PROGN (-6 (-1215 |#1|)) (-15 -4099 ($ $ $)) (-15 -2601 ($ $))) |%noBranch|) (IF (|has| |#1| (-252)) (-15 -1637 ($ $ $)) |%noBranch|))) (-1157)) (T -247)) -((-3174 (*1 *1 *2 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157)))) (-3364 (*1 *1 *2 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157)))) (-1628 (*1 *1 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157)))) (-3669 (*1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157)))) (-3668 (*1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157)))) (-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1157)) (-5 *1 (-247 *3)))) (-3918 (*1 *1 *1 *1) (-12 (-4 *2 (-263 *2)) (-4 *2 (-1041)) (-4 *2 (-1157)) (-5 *1 (-247 *2)))) (-3918 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-247 *3))) (-4 *3 (-263 *3)) (-4 *3 (-1041)) (-4 *3 (-1157)) (-5 *1 (-247 *3)))) (-3989 (*1 *1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-25)) (-4 *2 (-1157)))) (-3989 (*1 *1 *1 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-25)) (-4 *2 (-1157)))) (-1627 (*1 *1 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-21)) (-4 *2 (-1157)))) (-1626 (*1 *1 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-21)) (-4 *2 (-1157)))) (-3987 (*1 *1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-21)) (-4 *2 (-1157)))) (-3987 (*1 *1 *1 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-21)) (-4 *2 (-1157)))) (-1625 (*1 *1 *1) (|partial| -12 (-5 *1 (-247 *2)) (-4 *2 (-684)) (-4 *2 (-1157)))) (-1624 (*1 *1 *1) (|partial| -12 (-5 *1 (-247 *2)) (-4 *2 (-684)) (-4 *2 (-1157)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-599 (-247 *3))) (-5 *1 (-247 *3)) (-4 *3 (-510)) (-4 *3 (-1157)))) (-1637 (*1 *1 *1 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-252)) (-4 *2 (-1157)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1052)) (-4 *2 (-1157)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1052)) (-4 *2 (-1157)))) (-4099 (*1 *1 *1 *1) (-3677 (-12 (-5 *1 (-247 *2)) (-4 *2 (-318)) (-4 *2 (-1157))) (-12 (-5 *1 (-247 *2)) (-4 *2 (-427)) (-4 *2 (-1157))))) (-2601 (*1 *1 *1) (-3677 (-12 (-5 *1 (-247 *2)) (-4 *2 (-318)) (-4 *2 (-1157))) (-12 (-5 *1 (-247 *2)) (-4 *2 (-427)) (-4 *2 (-1157)))))) -((-4108 (((-247 |#2|) (-1 |#2| |#1|) (-247 |#1|)) 14 T ELT))) -(((-248 |#1| |#2|) (-10 -7 (-15 -4108 ((-247 |#2|) (-1 |#2| |#1|) (-247 |#1|)))) (-1157) (-1157)) (T -248)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-247 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-247 *6)) (-5 *1 (-248 *5 *6))))) -((-2687 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2299 (((-1213) $ |#1| |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2301 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2302 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-2333 (((-599 |#1|) $) NIL T ELT)) (-2334 (((-85) |#1| $) NIL T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2304 (((-599 |#1|) $) NIL T ELT)) (-2305 (((-85) |#1| $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-3951 ((|#2| $) NIL (|has| |#1| (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-568 (-797)))) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-249 |#1| |#2|) (-13 (-1134 |#1| |#2|) (-10 -7 (-6 -4145))) (-1041) (-1041)) (T -249)) -NIL -((-1629 (((-265) (-1099) (-599 (-1099))) 17 T ELT) (((-265) (-1099) (-1099)) 16 T ELT) (((-265) (-599 (-1099))) 15 T ELT) (((-265) (-1099)) 14 T ELT))) -(((-250) (-10 -7 (-15 -1629 ((-265) (-1099))) (-15 -1629 ((-265) (-599 (-1099)))) (-15 -1629 ((-265) (-1099) (-1099))) (-15 -1629 ((-265) (-1099) (-599 (-1099)))))) (T -250)) -((-1629 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-1099))) (-5 *3 (-1099)) (-5 *2 (-265)) (-5 *1 (-250)))) (-1629 (*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-265)) (-5 *1 (-250)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-265)) (-5 *1 (-250)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-265)) (-5 *1 (-250))))) -((-1633 (((-599 (-566 $)) $) 27 T ELT)) (-1637 (($ $ (-247 $)) 78 T ELT) (($ $ (-599 (-247 $))) 139 T ELT) (($ $ (-599 (-566 $)) (-599 $)) NIL T ELT)) (-3295 (((-3 (-566 $) #1="failed") $) 127 T ELT)) (-3294 (((-566 $) $) 126 T ELT)) (-2692 (($ $) 17 T ELT) (($ (-599 $)) 54 T ELT)) (-1632 (((-599 (-86)) $) 35 T ELT)) (-3743 (((-86) (-86)) 88 T ELT)) (-2794 (((-85) $) 150 T ELT)) (-4108 (($ (-1 $ $) (-566 $)) 86 T ELT)) (-1635 (((-3 (-566 $) #1#) $) 94 T ELT)) (-2336 (($ (-86) $) 59 T ELT) (($ (-86) (-599 $)) 110 T ELT)) (-2752 (((-85) $ (-86)) 132 T ELT) (((-85) $ (-1117)) 131 T ELT)) (-2722 (((-714) $) 44 T ELT)) (-1631 (((-85) $ $) 57 T ELT) (((-85) $ (-1117)) 49 T ELT)) (-2795 (((-85) $) 148 T ELT)) (-3918 (($ $ (-566 $) $) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) NIL T ELT) (($ $ (-599 (-247 $))) 137 T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ $))) 81 T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-1117) (-1 $ (-599 $))) 67 T ELT) (($ $ (-1117) (-1 $ $)) 72 T ELT) (($ $ (-599 (-86)) (-599 (-1 $ $))) 80 T ELT) (($ $ (-599 (-86)) (-599 (-1 $ (-599 $)))) 82 T ELT) (($ $ (-86) (-1 $ (-599 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3950 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-599 $)) 123 T ELT)) (-1636 (($ $) 51 T ELT) (($ $ $) 135 T ELT)) (-2709 (($ $) 15 T ELT) (($ (-599 $)) 53 T ELT)) (-2355 (((-85) (-86)) 21 T ELT))) -(((-251 |#1|) (-10 -7 (-15 -2794 ((-85) |#1|)) (-15 -2795 ((-85) |#1|)) (-15 -3918 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3918 (|#1| |#1| (-86) (-1 |#1| (-599 |#1|)))) (-15 -3918 (|#1| |#1| (-599 (-86)) (-599 (-1 |#1| (-599 |#1|))))) (-15 -3918 (|#1| |#1| (-599 (-86)) (-599 (-1 |#1| |#1|)))) (-15 -3918 (|#1| |#1| (-1117) (-1 |#1| |#1|))) (-15 -3918 (|#1| |#1| (-1117) (-1 |#1| (-599 |#1|)))) (-15 -3918 (|#1| |#1| (-599 (-1117)) (-599 (-1 |#1| (-599 |#1|))))) (-15 -3918 (|#1| |#1| (-599 (-1117)) (-599 (-1 |#1| |#1|)))) (-15 -1631 ((-85) |#1| (-1117))) (-15 -1631 ((-85) |#1| |#1|)) (-15 -4108 (|#1| (-1 |#1| |#1|) (-566 |#1|))) (-15 -2336 (|#1| (-86) (-599 |#1|))) (-15 -2336 (|#1| (-86) |#1|)) (-15 -2752 ((-85) |#1| (-1117))) (-15 -2752 ((-85) |#1| (-86))) (-15 -2355 ((-85) (-86))) (-15 -3743 ((-86) (-86))) (-15 -1632 ((-599 (-86)) |#1|)) (-15 -1633 ((-599 (-566 |#1|)) |#1|)) (-15 -1635 ((-3 (-566 |#1|) #1="failed") |#1|)) (-15 -2722 ((-714) |#1|)) (-15 -1636 (|#1| |#1| |#1|)) (-15 -1636 (|#1| |#1|)) (-15 -2692 (|#1| (-599 |#1|))) (-15 -2692 (|#1| |#1|)) (-15 -2709 (|#1| (-599 |#1|))) (-15 -2709 (|#1| |#1|)) (-15 -1637 (|#1| |#1| (-599 (-566 |#1|)) (-599 |#1|))) (-15 -1637 (|#1| |#1| (-599 (-247 |#1|)))) (-15 -1637 (|#1| |#1| (-247 |#1|))) (-15 -3950 (|#1| (-86) (-599 |#1|))) (-15 -3950 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3950 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3950 (|#1| (-86) |#1| |#1|)) (-15 -3950 (|#1| (-86) |#1|)) (-15 -3918 (|#1| |#1| (-599 |#1|) (-599 |#1|))) (-15 -3918 (|#1| |#1| |#1| |#1|)) (-15 -3918 (|#1| |#1| (-247 |#1|))) (-15 -3918 (|#1| |#1| (-599 (-247 |#1|)))) (-15 -3918 (|#1| |#1| (-599 (-566 |#1|)) (-599 |#1|))) (-15 -3918 (|#1| |#1| (-566 |#1|) |#1|)) (-15 -3295 ((-3 (-566 |#1|) #1#) |#1|)) (-15 -3294 ((-566 |#1|) |#1|))) (-252)) (T -251)) -((-3743 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-251 *3)) (-4 *3 (-252)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-251 *4)) (-4 *4 (-252))))) -((-2687 (((-85) $ $) 7 T ELT)) (-1633 (((-599 (-566 $)) $) 42 T ELT)) (-1637 (($ $ (-247 $)) 54 T ELT) (($ $ (-599 (-247 $))) 53 T ELT) (($ $ (-599 (-566 $)) (-599 $)) 52 T ELT)) (-3295 (((-3 (-566 $) "failed") $) 67 T ELT)) (-3294 (((-566 $) $) 68 T ELT)) (-2692 (($ $) 49 T ELT) (($ (-599 $)) 48 T ELT)) (-1632 (((-599 (-86)) $) 41 T ELT)) (-3743 (((-86) (-86)) 40 T ELT)) (-2794 (((-85) $) 20 (|has| $ (-978 (-499))) ELT)) (-1630 (((-1111 $) (-566 $)) 23 (|has| $ (-989)) ELT)) (-4108 (($ (-1 $ $) (-566 $)) 34 T ELT)) (-1635 (((-3 (-566 $) "failed") $) 44 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1634 (((-599 (-566 $)) $) 43 T ELT)) (-2336 (($ (-86) $) 36 T ELT) (($ (-86) (-599 $)) 35 T ELT)) (-2752 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1117)) 37 T ELT)) (-2722 (((-714) $) 45 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1631 (((-85) $ $) 33 T ELT) (((-85) $ (-1117)) 32 T ELT)) (-2795 (((-85) $) 21 (|has| $ (-978 (-499))) ELT)) (-3918 (($ $ (-566 $) $) 65 T ELT) (($ $ (-599 (-566 $)) (-599 $)) 64 T ELT) (($ $ (-599 (-247 $))) 63 T ELT) (($ $ (-247 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-599 $) (-599 $)) 60 T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ $))) 31 T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ (-599 $)))) 30 T ELT) (($ $ (-1117) (-1 $ (-599 $))) 29 T ELT) (($ $ (-1117) (-1 $ $)) 28 T ELT) (($ $ (-599 (-86)) (-599 (-1 $ $))) 27 T ELT) (($ $ (-599 (-86)) (-599 (-1 $ (-599 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-599 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3950 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-599 $)) 55 T ELT)) (-1636 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3323 (($ $) 22 (|has| $ (-989)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-566 $)) 66 T ELT)) (-2709 (($ $) 51 T ELT) (($ (-599 $)) 50 T ELT)) (-2355 (((-85) (-86)) 39 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-252) (-113)) (T -252)) -((-3950 (*1 *1 *2 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) (-3950 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) (-3950 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) (-3950 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) (-3950 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-599 *1)) (-4 *1 (-252)))) (-1637 (*1 *1 *1 *2) (-12 (-5 *2 (-247 *1)) (-4 *1 (-252)))) (-1637 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-247 *1))) (-4 *1 (-252)))) (-1637 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-566 *1))) (-5 *3 (-599 *1)) (-4 *1 (-252)))) (-2709 (*1 *1 *1) (-4 *1 (-252))) (-2709 (*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-252)))) (-2692 (*1 *1 *1) (-4 *1 (-252))) (-2692 (*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-252)))) (-1636 (*1 *1 *1) (-4 *1 (-252))) (-1636 (*1 *1 *1 *1) (-4 *1 (-252))) (-2722 (*1 *2 *1) (-12 (-4 *1 (-252)) (-5 *2 (-714)))) (-1635 (*1 *2 *1) (|partial| -12 (-5 *2 (-566 *1)) (-4 *1 (-252)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-599 (-566 *1))) (-4 *1 (-252)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-599 (-566 *1))) (-4 *1 (-252)))) (-1632 (*1 *2 *1) (-12 (-4 *1 (-252)) (-5 *2 (-599 (-86))))) (-3743 (*1 *2 *2) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) (-2355 (*1 *2 *3) (-12 (-4 *1 (-252)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2752 (*1 *2 *1 *3) (-12 (-4 *1 (-252)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2752 (*1 *2 *1 *3) (-12 (-4 *1 (-252)) (-5 *3 (-1117)) (-5 *2 (-85)))) (-2336 (*1 *1 *2 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) (-2336 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-599 *1)) (-4 *1 (-252)))) (-4108 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-566 *1)) (-4 *1 (-252)))) (-1631 (*1 *2 *1 *1) (-12 (-4 *1 (-252)) (-5 *2 (-85)))) (-1631 (*1 *2 *1 *3) (-12 (-4 *1 (-252)) (-5 *3 (-1117)) (-5 *2 (-85)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-599 (-1 *1 *1))) (-4 *1 (-252)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-599 (-1 *1 (-599 *1)))) (-4 *1 (-252)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1 *1 (-599 *1))) (-4 *1 (-252)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1 *1 *1)) (-4 *1 (-252)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-86))) (-5 *3 (-599 (-1 *1 *1))) (-4 *1 (-252)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-86))) (-5 *3 (-599 (-1 *1 (-599 *1)))) (-4 *1 (-252)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-599 *1))) (-4 *1 (-252)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-252)))) (-1630 (*1 *2 *3) (-12 (-5 *3 (-566 *1)) (-4 *1 (-989)) (-4 *1 (-252)) (-5 *2 (-1111 *1)))) (-3323 (*1 *1 *1) (-12 (-4 *1 (-989)) (-4 *1 (-252)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-978 (-499))) (-4 *1 (-252)) (-5 *2 (-85)))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-978 (-499))) (-4 *1 (-252)) (-5 *2 (-85))))) -(-13 (-1041) (-978 (-566 $)) (-468 (-566 $) $) (-263 $) (-10 -8 (-15 -3950 ($ (-86) $)) (-15 -3950 ($ (-86) $ $)) (-15 -3950 ($ (-86) $ $ $)) (-15 -3950 ($ (-86) $ $ $ $)) (-15 -3950 ($ (-86) (-599 $))) (-15 -1637 ($ $ (-247 $))) (-15 -1637 ($ $ (-599 (-247 $)))) (-15 -1637 ($ $ (-599 (-566 $)) (-599 $))) (-15 -2709 ($ $)) (-15 -2709 ($ (-599 $))) (-15 -2692 ($ $)) (-15 -2692 ($ (-599 $))) (-15 -1636 ($ $)) (-15 -1636 ($ $ $)) (-15 -2722 ((-714) $)) (-15 -1635 ((-3 (-566 $) "failed") $)) (-15 -1634 ((-599 (-566 $)) $)) (-15 -1633 ((-599 (-566 $)) $)) (-15 -1632 ((-599 (-86)) $)) (-15 -3743 ((-86) (-86))) (-15 -2355 ((-85) (-86))) (-15 -2752 ((-85) $ (-86))) (-15 -2752 ((-85) $ (-1117))) (-15 -2336 ($ (-86) $)) (-15 -2336 ($ (-86) (-599 $))) (-15 -4108 ($ (-1 $ $) (-566 $))) (-15 -1631 ((-85) $ $)) (-15 -1631 ((-85) $ (-1117))) (-15 -3918 ($ $ (-599 (-1117)) (-599 (-1 $ $)))) (-15 -3918 ($ $ (-599 (-1117)) (-599 (-1 $ (-599 $))))) (-15 -3918 ($ $ (-1117) (-1 $ (-599 $)))) (-15 -3918 ($ $ (-1117) (-1 $ $))) (-15 -3918 ($ $ (-599 (-86)) (-599 (-1 $ $)))) (-15 -3918 ($ $ (-599 (-86)) (-599 (-1 $ (-599 $))))) (-15 -3918 ($ $ (-86) (-1 $ (-599 $)))) (-15 -3918 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-989)) (PROGN (-15 -1630 ((-1111 $) (-566 $))) (-15 -3323 ($ $))) |%noBranch|) (IF (|has| $ (-978 (-499))) (PROGN (-15 -2795 ((-85) $)) (-15 -2794 ((-85) $))) |%noBranch|))) -(((-73) . T) ((-571 (-566 $)) . T) ((-568 (-797)) . T) ((-263 $) . T) ((-468 (-566 $) $) . T) ((-468 $ $) . T) ((-978 (-566 $)) . T) ((-1041) . T) ((-1157) . T)) -((-4108 ((|#2| (-1 |#2| |#1|) (-1099) (-566 |#1|)) 18 T ELT))) -(((-253 |#1| |#2|) (-10 -7 (-15 -4108 (|#2| (-1 |#2| |#1|) (-1099) (-566 |#1|)))) (-252) (-1157)) (T -253)) -((-4108 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1099)) (-5 *5 (-566 *6)) (-4 *6 (-252)) (-4 *2 (-1157)) (-5 *1 (-253 *6 *2))))) -((-4108 ((|#2| (-1 |#2| |#1|) (-566 |#1|)) 17 T ELT))) -(((-254 |#1| |#2|) (-10 -7 (-15 -4108 (|#2| (-1 |#2| |#1|) (-566 |#1|)))) (-252) (-252)) (T -254)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-566 *5)) (-4 *5 (-252)) (-4 *2 (-252)) (-5 *1 (-254 *5 *2))))) -((-1640 (((-1095 (-179)) (-268 (-179)) (-599 (-1117)) (-1029 (-775 (-179)))) 117 T ELT)) (-1641 (((-1095 (-179)) (-1207 (-268 (-179))) (-599 (-1117)) (-1029 (-775 (-179)))) 134 T ELT) (((-1095 (-179)) (-268 (-179)) (-599 (-1117)) (-1029 (-775 (-179)))) 71 T ELT)) (-1662 (((-599 (-1099)) (-1095 (-179))) NIL T ELT)) (-1639 (((-599 (-179)) (-268 (-179)) (-1117) (-1029 (-775 (-179)))) 68 T ELT)) (-1642 (((-599 (-179)) (-884 (-361 (-499))) (-1117) (-1029 (-775 (-179)))) 58 T ELT)) (-1661 (((-599 (-1099)) (-599 (-179))) NIL T ELT)) (-1663 (((-179) (-1029 (-775 (-179)))) 29 T ELT)) (-1664 (((-179) (-1029 (-775 (-179)))) 30 T ELT)) (-1638 (((-85) (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) 63 T ELT)) (-1659 (((-1099) (-179)) NIL T ELT))) -(((-255) (-10 -7 (-15 -1663 ((-179) (-1029 (-775 (-179))))) (-15 -1664 ((-179) (-1029 (-775 (-179))))) (-15 -1638 ((-85) (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))) (-15 -1639 ((-599 (-179)) (-268 (-179)) (-1117) (-1029 (-775 (-179))))) (-15 -1640 ((-1095 (-179)) (-268 (-179)) (-599 (-1117)) (-1029 (-775 (-179))))) (-15 -1641 ((-1095 (-179)) (-268 (-179)) (-599 (-1117)) (-1029 (-775 (-179))))) (-15 -1641 ((-1095 (-179)) (-1207 (-268 (-179))) (-599 (-1117)) (-1029 (-775 (-179))))) (-15 -1642 ((-599 (-179)) (-884 (-361 (-499))) (-1117) (-1029 (-775 (-179))))) (-15 -1659 ((-1099) (-179))) (-15 -1661 ((-599 (-1099)) (-599 (-179)))) (-15 -1662 ((-599 (-1099)) (-1095 (-179)))))) (T -255)) -((-1662 (*1 *2 *3) (-12 (-5 *3 (-1095 (-179))) (-5 *2 (-599 (-1099))) (-5 *1 (-255)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-599 (-1099))) (-5 *1 (-255)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-1099)) (-5 *1 (-255)))) (-1642 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-884 (-361 (-499)))) (-5 *4 (-1117)) (-5 *5 (-1029 (-775 (-179)))) (-5 *2 (-599 (-179))) (-5 *1 (-255)))) (-1641 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1207 (-268 (-179)))) (-5 *4 (-599 (-1117))) (-5 *5 (-1029 (-775 (-179)))) (-5 *2 (-1095 (-179))) (-5 *1 (-255)))) (-1641 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-268 (-179))) (-5 *4 (-599 (-1117))) (-5 *5 (-1029 (-775 (-179)))) (-5 *2 (-1095 (-179))) (-5 *1 (-255)))) (-1640 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-268 (-179))) (-5 *4 (-599 (-1117))) (-5 *5 (-1029 (-775 (-179)))) (-5 *2 (-1095 (-179))) (-5 *1 (-255)))) (-1639 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-268 (-179))) (-5 *4 (-1117)) (-5 *5 (-1029 (-775 (-179)))) (-5 *2 (-599 (-179))) (-5 *1 (-255)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *2 (-85)) (-5 *1 (-255)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-1029 (-775 (-179)))) (-5 *2 (-179)) (-5 *1 (-255)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-1029 (-775 (-179)))) (-5 *2 (-179)) (-5 *1 (-255))))) -((-2078 (((-85) (-179)) 12 T ELT))) -(((-256 |#1| |#2|) (-10 -7 (-15 -2078 ((-85) (-179)))) (-179) (-179)) (T -256)) -((-2078 (*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-85)) (-5 *1 (-256 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -((-1658 (((-1207 (-268 (-333))) (-1207 (-268 (-179)))) 110 T ELT)) (-1646 (((-1029 (-775 (-179))) (-1029 (-775 (-333)))) 43 T ELT)) (-1662 (((-599 (-1099)) (-1095 (-179))) 92 T ELT)) (-1669 (((-268 (-333)) (-884 (-179))) 53 T ELT)) (-1670 (((-179) (-884 (-179))) 49 T ELT)) (-1665 (((-1099) (-333)) 193 T ELT)) (-1645 (((-775 (-179)) (-775 (-333))) 37 T ELT)) (-1651 (((-2 (|:| |additions| (-499)) (|:| |multiplications| (-499)) (|:| |exponentiations| (-499)) (|:| |functionCalls| (-499))) (-1207 (-268 (-179)))) 164 T ELT)) (-1666 (((-975) (-2 (|:| -2787 (-333)) (|:| -3690 (-1099)) (|:| |explanations| (-599 (-1099))) (|:| |extra| (-975)))) 205 T ELT) (((-975) (-2 (|:| -2787 (-333)) (|:| -3690 (-1099)) (|:| |explanations| (-599 (-1099))))) 203 T ELT)) (-1673 (((-647 (-179)) (-599 (-179)) (-714)) 19 T ELT)) (-1656 (((-1207 (-657)) (-599 (-179))) 99 T ELT)) (-1661 (((-599 (-1099)) (-599 (-179))) 79 T ELT)) (-2777 (((-3 (-268 (-179)) "failed") (-268 (-179))) 128 T ELT)) (-2078 (((-85) (-179) (-1029 (-775 (-179)))) 117 T ELT)) (-1668 (((-975) (-2 (|:| |stiffness| (-333)) (|:| |stability| (-333)) (|:| |expense| (-333)) (|:| |accuracy| (-333)) (|:| |intermediateResults| (-333)))) 222 T ELT)) (-1663 (((-179) (-1029 (-775 (-179)))) 112 T ELT)) (-1664 (((-179) (-1029 (-775 (-179)))) 113 T ELT)) (-1672 (((-179) (-361 (-499))) 31 T ELT)) (-1660 (((-1099) (-333)) 77 T ELT)) (-1643 (((-179) (-333)) 22 T ELT)) (-1650 (((-333) (-1207 (-268 (-179)))) 175 T ELT)) (-1644 (((-268 (-179)) (-268 (-333))) 28 T ELT)) (-1648 (((-361 (-499)) (-268 (-179))) 56 T ELT)) (-1652 (((-268 (-361 (-499))) (-268 (-179))) 73 T ELT)) (-1657 (((-268 (-333)) (-268 (-179))) 103 T ELT)) (-1649 (((-179) (-268 (-179))) 57 T ELT)) (-1654 (((-599 (-179)) (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) 68 T ELT)) (-1653 (((-1029 (-775 (-179))) (-1029 (-775 (-179)))) 65 T ELT)) (-1659 (((-1099) (-179)) 76 T ELT)) (-1655 (((-657) (-179)) 95 T ELT)) (-1647 (((-361 (-499)) (-179)) 58 T ELT)) (-1671 (((-268 (-333)) (-179)) 52 T ELT)) (-4122 (((-599 (-1029 (-775 (-179)))) (-599 (-1029 (-775 (-333))))) 46 T ELT)) (-3952 (((-975) (-599 (-975))) 189 T ELT) (((-975) (-975) (-975)) 183 T ELT)) (-1667 (((-975) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1095 (-179))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1539 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 219 T ELT))) -(((-257) (-10 -7 (-15 -1643 ((-179) (-333))) (-15 -1644 ((-268 (-179)) (-268 (-333)))) (-15 -1645 ((-775 (-179)) (-775 (-333)))) (-15 -1646 ((-1029 (-775 (-179))) (-1029 (-775 (-333))))) (-15 -4122 ((-599 (-1029 (-775 (-179)))) (-599 (-1029 (-775 (-333)))))) (-15 -1647 ((-361 (-499)) (-179))) (-15 -1648 ((-361 (-499)) (-268 (-179)))) (-15 -1649 ((-179) (-268 (-179)))) (-15 -2777 ((-3 (-268 (-179)) "failed") (-268 (-179)))) (-15 -1650 ((-333) (-1207 (-268 (-179))))) (-15 -1651 ((-2 (|:| |additions| (-499)) (|:| |multiplications| (-499)) (|:| |exponentiations| (-499)) (|:| |functionCalls| (-499))) (-1207 (-268 (-179))))) (-15 -1652 ((-268 (-361 (-499))) (-268 (-179)))) (-15 -1653 ((-1029 (-775 (-179))) (-1029 (-775 (-179))))) (-15 -1654 ((-599 (-179)) (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))))) (-15 -1655 ((-657) (-179))) (-15 -1656 ((-1207 (-657)) (-599 (-179)))) (-15 -1657 ((-268 (-333)) (-268 (-179)))) (-15 -1658 ((-1207 (-268 (-333))) (-1207 (-268 (-179))))) (-15 -2078 ((-85) (-179) (-1029 (-775 (-179))))) (-15 -1659 ((-1099) (-179))) (-15 -1660 ((-1099) (-333))) (-15 -1661 ((-599 (-1099)) (-599 (-179)))) (-15 -1662 ((-599 (-1099)) (-1095 (-179)))) (-15 -1663 ((-179) (-1029 (-775 (-179))))) (-15 -1664 ((-179) (-1029 (-775 (-179))))) (-15 -3952 ((-975) (-975) (-975))) (-15 -3952 ((-975) (-599 (-975)))) (-15 -1665 ((-1099) (-333))) (-15 -1666 ((-975) (-2 (|:| -2787 (-333)) (|:| -3690 (-1099)) (|:| |explanations| (-599 (-1099)))))) (-15 -1666 ((-975) (-2 (|:| -2787 (-333)) (|:| -3690 (-1099)) (|:| |explanations| (-599 (-1099))) (|:| |extra| (-975))))) (-15 -1667 ((-975) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1095 (-179))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1539 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1668 ((-975) (-2 (|:| |stiffness| (-333)) (|:| |stability| (-333)) (|:| |expense| (-333)) (|:| |accuracy| (-333)) (|:| |intermediateResults| (-333))))) (-15 -1669 ((-268 (-333)) (-884 (-179)))) (-15 -1670 ((-179) (-884 (-179)))) (-15 -1671 ((-268 (-333)) (-179))) (-15 -1672 ((-179) (-361 (-499)))) (-15 -1673 ((-647 (-179)) (-599 (-179)) (-714))))) (T -257)) -((-1673 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-179))) (-5 *4 (-714)) (-5 *2 (-647 (-179))) (-5 *1 (-257)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-361 (-499))) (-5 *2 (-179)) (-5 *1 (-257)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-268 (-333))) (-5 *1 (-257)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-884 (-179))) (-5 *2 (-179)) (-5 *1 (-257)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-884 (-179))) (-5 *2 (-268 (-333))) (-5 *1 (-257)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-333)) (|:| |stability| (-333)) (|:| |expense| (-333)) (|:| |accuracy| (-333)) (|:| |intermediateResults| (-333)))) (-5 *2 (-975)) (-5 *1 (-257)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1095 (-179))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1539 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-975)) (-5 *1 (-257)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2787 (-333)) (|:| -3690 (-1099)) (|:| |explanations| (-599 (-1099))) (|:| |extra| (-975)))) (-5 *2 (-975)) (-5 *1 (-257)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2787 (-333)) (|:| -3690 (-1099)) (|:| |explanations| (-599 (-1099))))) (-5 *2 (-975)) (-5 *1 (-257)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1099)) (-5 *1 (-257)))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-599 (-975))) (-5 *2 (-975)) (-5 *1 (-257)))) (-3952 (*1 *2 *2 *2) (-12 (-5 *2 (-975)) (-5 *1 (-257)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-1029 (-775 (-179)))) (-5 *2 (-179)) (-5 *1 (-257)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-1029 (-775 (-179)))) (-5 *2 (-179)) (-5 *1 (-257)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-1095 (-179))) (-5 *2 (-599 (-1099))) (-5 *1 (-257)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-599 (-1099))) (-5 *1 (-257)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1099)) (-5 *1 (-257)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-1099)) (-5 *1 (-257)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *4 (-1029 (-775 (-179)))) (-5 *3 (-179)) (-5 *2 (-85)) (-5 *1 (-257)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-1207 (-268 (-179)))) (-5 *2 (-1207 (-268 (-333)))) (-5 *1 (-257)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-268 (-179))) (-5 *2 (-268 (-333))) (-5 *1 (-257)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-1207 (-657))) (-5 *1 (-257)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-657)) (-5 *1 (-257)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-5 *2 (-599 (-179))) (-5 *1 (-257)))) (-1653 (*1 *2 *2) (-12 (-5 *2 (-1029 (-775 (-179)))) (-5 *1 (-257)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-268 (-179))) (-5 *2 (-268 (-361 (-499)))) (-5 *1 (-257)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-1207 (-268 (-179)))) (-5 *2 (-2 (|:| |additions| (-499)) (|:| |multiplications| (-499)) (|:| |exponentiations| (-499)) (|:| |functionCalls| (-499)))) (-5 *1 (-257)))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-1207 (-268 (-179)))) (-5 *2 (-333)) (-5 *1 (-257)))) (-2777 (*1 *2 *2) (|partial| -12 (-5 *2 (-268 (-179))) (-5 *1 (-257)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-268 (-179))) (-5 *2 (-179)) (-5 *1 (-257)))) (-1648 (*1 *2 *3) (-12 (-5 *3 (-268 (-179))) (-5 *2 (-361 (-499))) (-5 *1 (-257)))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-361 (-499))) (-5 *1 (-257)))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-599 (-1029 (-775 (-333))))) (-5 *2 (-599 (-1029 (-775 (-179))))) (-5 *1 (-257)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-1029 (-775 (-333)))) (-5 *2 (-1029 (-775 (-179)))) (-5 *1 (-257)))) (-1645 (*1 *2 *3) (-12 (-5 *3 (-775 (-333))) (-5 *2 (-775 (-179))) (-5 *1 (-257)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-268 (-333))) (-5 *2 (-268 (-179))) (-5 *1 (-257)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-333)) (-5 *2 (-179)) (-5 *1 (-257))))) -((-1674 (((-599 |#1|) (-599 |#1|)) 10 T ELT))) -(((-258 |#1|) (-10 -7 (-15 -1674 ((-599 |#1|) (-599 |#1|)))) (-780)) (T -258)) -((-1674 (*1 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-780)) (-5 *1 (-258 *3))))) -((-4108 (((-647 |#2|) (-1 |#2| |#1|) (-647 |#1|)) 17 T ELT))) -(((-259 |#1| |#2|) (-10 -7 (-15 -4108 ((-647 |#2|) (-1 |#2| |#1|) (-647 |#1|)))) (-989) (-989)) (T -259)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-647 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-5 *2 (-647 *6)) (-5 *1 (-259 *5 *6))))) -((-1678 (((-85) $ $) 14 T ELT)) (-2683 (($ $ $) 18 T ELT)) (-2682 (($ $ $) 17 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 50 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 67 T ELT)) (-3282 (($ $ $) 25 T ELT) (($ (-599 $)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3606 (((-3 $ #1#) $ $) 21 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 55 T ELT))) -(((-260 |#1|) (-10 -7 (-15 -1675 ((-3 (-599 |#1|) #1="failed") (-599 |#1|) |#1|)) (-15 -1676 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1676 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2527 |#1|)) |#1| |#1|)) (-15 -2683 (|#1| |#1| |#1|)) (-15 -2682 (|#1| |#1| |#1|)) (-15 -1678 ((-85) |#1| |#1|)) (-15 -2861 ((-649 (-599 |#1|)) (-599 |#1|) |#1|)) (-15 -2862 ((-2 (|:| -4104 (-599 |#1|)) (|:| -2527 |#1|)) (-599 |#1|))) (-15 -3282 (|#1| (-599 |#1|))) (-15 -3282 (|#1| |#1| |#1|)) (-15 -3606 ((-3 |#1| #1#) |#1| |#1|))) (-261)) (T -260)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3874 (($) 22 T CONST)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-1675 (((-3 (-599 $) "failed") (-599 $) $) 65 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-261) (-113)) (T -261)) -((-1678 (*1 *2 *1 *1) (-12 (-4 *1 (-261)) (-5 *2 (-85)))) (-1677 (*1 *2 *1) (-12 (-4 *1 (-261)) (-5 *2 (-714)))) (-3000 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-261)))) (-2682 (*1 *1 *1 *1) (-4 *1 (-261))) (-2683 (*1 *1 *1 *1) (-4 *1 (-261))) (-1676 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2527 *1))) (-4 *1 (-261)))) (-1676 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-261)))) (-1675 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-599 *1)) (-4 *1 (-261))))) -(-13 (-859) (-10 -8 (-15 -1678 ((-85) $ $)) (-15 -1677 ((-714) $)) (-15 -3000 ((-2 (|:| -2075 $) (|:| -3023 $)) $ $)) (-15 -2682 ($ $ $)) (-15 -2683 ($ $ $)) (-15 -1676 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $)) (-15 -1676 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1675 ((-3 (-599 $) "failed") (-599 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-244) . T) ((-406) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-859) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-3918 (($ $ (-599 |#2|) (-599 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-247 |#2|)) 11 T ELT) (($ $ (-599 (-247 |#2|))) NIL T ELT))) -(((-262 |#1| |#2|) (-10 -7 (-15 -3918 (|#1| |#1| (-599 (-247 |#2|)))) (-15 -3918 (|#1| |#1| (-247 |#2|))) (-15 -3918 (|#1| |#1| |#2| |#2|)) (-15 -3918 (|#1| |#1| (-599 |#2|) (-599 |#2|)))) (-263 |#2|) (-1041)) (T -262)) -NIL -((-3918 (($ $ (-599 |#1|) (-599 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-247 |#1|)) 13 T ELT) (($ $ (-599 (-247 |#1|))) 12 T ELT))) -(((-263 |#1|) (-113) (-1041)) (T -263)) -((-3918 (*1 *1 *1 *2) (-12 (-5 *2 (-247 *3)) (-4 *1 (-263 *3)) (-4 *3 (-1041)))) (-3918 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-247 *3))) (-4 *1 (-263 *3)) (-4 *3 (-1041))))) -(-13 (-468 |t#1| |t#1|) (-10 -8 (-15 -3918 ($ $ (-247 |t#1|))) (-15 -3918 ($ $ (-599 (-247 |t#1|)))))) -(((-468 |#1| |#1|) . T)) -((-3918 ((|#1| (-1 |#1| (-499)) (-1119 (-361 (-499)))) 26 T ELT))) -(((-264 |#1|) (-10 -7 (-15 -3918 (|#1| (-1 |#1| (-499)) (-1119 (-361 (-499)))))) (-38 (-361 (-499)))) (T -264)) -((-3918 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-499))) (-5 *4 (-1119 (-361 (-499)))) (-5 *1 (-264 *2)) (-4 *2 (-38 (-361 (-499))))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 7 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 9 T ELT))) -(((-265) (-1041)) (T -265)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3646 (((-499) $) 12 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3344 (((-1075) $) 9 T ELT)) (-4096 (((-797) $) 19 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-266) (-13 (-1023) (-10 -8 (-15 -3344 ((-1075) $)) (-15 -3646 ((-499) $))))) (T -266)) -((-3344 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-266)))) (-3646 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-266))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 60 T ELT)) (-3251 (((-1194 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-848)) ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-848)) ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-763)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-1194 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-978 (-1117))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-978 (-499))) ELT) (((-3 (-499) #1#) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-978 (-499))) ELT) (((-3 (-1188 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3294 (((-1194 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1117) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-978 (-499))) ELT) (((-499) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-978 (-499))) ELT) (((-1188 |#2| |#3| |#4|) $) NIL T ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-1194 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1207 (-1194 |#1| |#2| |#3| |#4|)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-1194 |#1| |#2| |#3| |#4|)) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-498)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3324 (((-85) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-821 (-333))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL T ELT)) (-3119 (((-1194 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3585 (((-649 $) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-1092)) ELT)) (-3325 (((-85) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-763)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-781)) ELT)) (-4108 (($ (-1 (-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3934 (((-3 (-775 |#2|) #1#) $) 80 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-1194 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1207 (-1194 |#1| |#2| |#3| |#4|)))) (-1207 $) $) NIL T ELT) (((-647 (-1194 |#1| |#2| |#3| |#4|)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-261)) ELT)) (-3252 (((-1194 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-848)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-3918 (($ $ (-599 (-1194 |#1| |#2| |#3| |#4|)) (-599 (-1194 |#1| |#2| |#3| |#4|))) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-263 (-1194 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-263 (-1194 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-247 (-1194 |#1| |#2| |#3| |#4|))) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-263 (-1194 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-599 (-247 (-1194 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-263 (-1194 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-599 (-1117)) (-599 (-1194 |#1| |#2| |#3| |#4|))) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-468 (-1117) (-1194 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1117) (-1194 |#1| |#2| |#3| |#4|)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-468 (-1117) (-1194 |#1| |#2| |#3| |#4|))) ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ $ (-1194 |#1| |#2| |#3| |#4|)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-240 (-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-1 (-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-838 (-1117))) ELT) (($ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-714)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-3116 (($ $) NIL T ELT)) (-3118 (((-1194 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-4122 (((-825 (-499)) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-569 (-825 (-333)))) ELT) (((-488) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-569 (-488))) ELT) (((-333) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-960)) ELT) (((-179) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-960)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| (-1194 |#1| |#2| |#3| |#4|) (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-1194 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1117)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-978 (-1117))) ELT) (($ (-1188 |#2| |#3| |#4|)) 37 T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| (-1194 |#1| |#2| |#3| |#4|) (-848))) (|has| (-1194 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-3253 (((-1194 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-498)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3523 (($ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-763)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1 (-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-838 (-1117))) ELT) (($ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-714)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-781)) ELT)) (-4099 (($ $ $) 35 T ELT) (($ (-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ (-1194 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1194 |#1| |#2| |#3| |#4|)) NIL T ELT))) -(((-267 |#1| |#2| |#3| |#4|) (-13 (-931 (-1194 |#1| |#2| |#3| |#4|)) (-978 (-1188 |#2| |#3| |#4|)) (-10 -8 (-15 -3934 ((-3 (-775 |#2|) "failed") $)) (-15 -4096 ($ (-1188 |#2| |#3| |#4|))))) (-13 (-978 (-499)) (-596 (-499)) (-406)) (-13 (-27) (-1143) (-375 |#1|)) (-1117) |#2|) (T -267)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-1188 *4 *5 *6)) (-4 *4 (-13 (-27) (-1143) (-375 *3))) (-14 *5 (-1117)) (-14 *6 *4) (-4 *3 (-13 (-978 (-499)) (-596 (-499)) (-406))) (-5 *1 (-267 *3 *4 *5 *6)))) (-3934 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-978 (-499)) (-596 (-499)) (-406))) (-5 *2 (-775 *4)) (-5 *1 (-267 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1143) (-375 *3))) (-14 *5 (-1117)) (-14 *6 *4)))) -((-2687 (((-85) $ $) NIL T ELT)) (-1640 (((-599 $) $ (-1117)) NIL (|has| |#1| (-510)) ELT) (((-599 $) $) NIL (|has| |#1| (-510)) ELT) (((-599 $) (-1111 $) (-1117)) NIL (|has| |#1| (-510)) ELT) (((-599 $) (-1111 $)) NIL (|has| |#1| (-510)) ELT) (((-599 $) (-884 $)) NIL (|has| |#1| (-510)) ELT)) (-1242 (($ $ (-1117)) NIL (|has| |#1| (-510)) ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ (-1111 $) (-1117)) NIL (|has| |#1| (-510)) ELT) (($ (-1111 $)) NIL (|has| |#1| (-510)) ELT) (($ (-884 $)) NIL (|has| |#1| (-510)) ELT)) (-3326 (((-85) $) 27 (-3677 (|has| |#1| (-25)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT)) (-3204 (((-599 (-1117)) $) 368 T ELT)) (-3206 (((-361 (-1111 $)) $ (-566 $)) NIL (|has| |#1| (-510)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-1633 (((-599 (-566 $)) $) NIL T ELT)) (-3632 (($ $) 171 (|has| |#1| (-510)) ELT)) (-3789 (($ $) 147 (|has| |#1| (-510)) ELT)) (-1405 (($ $ (-1032 $)) 232 (|has| |#1| (-510)) ELT) (($ $ (-1117)) 228 (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL (-3677 (|has| |#1| (-21)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT)) (-1637 (($ $ (-247 $)) NIL T ELT) (($ $ (-599 (-247 $))) 386 T ELT) (($ $ (-599 (-566 $)) (-599 $)) 430 T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 308 (-12 (|has| |#1| (-406)) (|has| |#1| (-510))) ELT)) (-3925 (($ $) NIL (|has| |#1| (-510)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-510)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-510)) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3630 (($ $) 167 (|has| |#1| (-510)) ELT)) (-3788 (($ $) 143 (|has| |#1| (-510)) ELT)) (-1679 (($ $ (-499)) 73 (|has| |#1| (-510)) ELT)) (-3634 (($ $) 175 (|has| |#1| (-510)) ELT)) (-3787 (($ $) 151 (|has| |#1| (-510)) ELT)) (-3874 (($) NIL (-3677 (|has| |#1| (-25)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) (|has| |#1| (-1052))) CONST)) (-1243 (((-599 $) $ (-1117)) NIL (|has| |#1| (-510)) ELT) (((-599 $) $) NIL (|has| |#1| (-510)) ELT) (((-599 $) (-1111 $) (-1117)) NIL (|has| |#1| (-510)) ELT) (((-599 $) (-1111 $)) NIL (|has| |#1| (-510)) ELT) (((-599 $) (-884 $)) NIL (|has| |#1| (-510)) ELT)) (-3321 (($ $ (-1117)) NIL (|has| |#1| (-510)) ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ (-1111 $) (-1117)) 134 (|has| |#1| (-510)) ELT) (($ (-1111 $)) NIL (|has| |#1| (-510)) ELT) (($ (-884 $)) NIL (|has| |#1| (-510)) ELT)) (-3295 (((-3 (-566 $) #1#) $) 18 T ELT) (((-3 (-1117) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 441 T ELT) (((-3 (-48) #1#) $) 336 (-12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-884 |#1|)) #1#) $) NIL (|has| |#1| (-510)) ELT) (((-3 (-884 |#1|) #1#) $) NIL (|has| |#1| (-989)) ELT) (((-3 (-361 (-499)) #1#) $) 46 (-3677 (-12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-3294 (((-566 $) $) 12 T ELT) (((-1117) $) NIL T ELT) ((|#1| $) 421 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-884 |#1|)) $) NIL (|has| |#1| (-510)) ELT) (((-884 |#1|) $) NIL (|has| |#1| (-989)) ELT) (((-361 (-499)) $) 319 (-3677 (-12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-510)) ELT)) (-2380 (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 125 (|has| |#1| (-989)) ELT) (((-647 |#1|) (-647 $)) 115 (|has| |#1| (-989)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ELT) (((-647 (-499)) (-647 $)) NIL (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ELT)) (-3992 (($ $) 96 (|has| |#1| (-510)) ELT)) (-3607 (((-3 $ #1#) $) NIL (|has| |#1| (-1052)) ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-510)) ELT)) (-4094 (($ $ (-1032 $)) 236 (|has| |#1| (-510)) ELT) (($ $ (-1117)) 234 (|has| |#1| (-510)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-510)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3526 (($ $ $) 202 (|has| |#1| (-510)) ELT)) (-3777 (($) 137 (|has| |#1| (-510)) ELT)) (-1402 (($ $ $) 222 (|has| |#1| (-510)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 392 (|has| |#1| (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 399 (|has| |#1| (-821 (-333))) ELT)) (-2692 (($ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1632 (((-599 (-86)) $) NIL T ELT)) (-3743 (((-86) (-86)) 276 T ELT)) (-2528 (((-85) $) 25 (|has| |#1| (-1052)) ELT)) (-2794 (((-85) $) NIL (|has| $ (-978 (-499))) ELT)) (-3117 (($ $) 72 (|has| |#1| (-989)) ELT)) (-3119 (((-1065 |#1| (-566 $)) $) 91 (|has| |#1| (-989)) ELT)) (-1680 (((-85) $) 62 (|has| |#1| (-510)) ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-510)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-510)) ELT)) (-1630 (((-1111 $) (-566 $)) 277 (|has| $ (-989)) ELT)) (-4108 (($ (-1 $ $) (-566 $)) 426 T ELT)) (-1635 (((-3 (-566 $) #1#) $) NIL T ELT)) (-4092 (($ $) 141 (|has| |#1| (-510)) ELT)) (-2358 (($ $) 247 (|has| |#1| (-510)) ELT)) (-2381 (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL (|has| |#1| (-989)) ELT) (((-647 |#1|) (-1207 $)) NIL (|has| |#1| (-989)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ELT) (((-647 (-499)) (-1207 $)) NIL (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-510)) ELT) (($ $ $) NIL (|has| |#1| (-510)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1634 (((-599 (-566 $)) $) 49 T ELT)) (-2336 (($ (-86) $) NIL T ELT) (($ (-86) (-599 $)) 431 T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL (|has| |#1| (-1052)) ELT)) (-2946 (((-3 (-2 (|:| |val| $) (|:| -2519 (-499))) #1#) $) NIL (|has| |#1| (-989)) ELT)) (-2943 (((-3 (-599 $) #1#) $) 436 (|has| |#1| (-25)) ELT)) (-1892 (((-3 (-2 (|:| -4104 (-499)) (|:| |var| (-566 $))) #1#) $) 440 (|has| |#1| (-25)) ELT)) (-2945 (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) #1#) $) NIL (|has| |#1| (-1052)) ELT) (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) #1#) $ (-86)) NIL (|has| |#1| (-989)) ELT) (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) #1#) $ (-1117)) NIL (|has| |#1| (-989)) ELT)) (-2752 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1117)) 51 T ELT)) (-2601 (($ $) NIL (-3677 (|has| |#1| (-427)) (|has| |#1| (-510))) ELT)) (-2953 (($ $ (-1117)) 251 (|has| |#1| (-510)) ELT) (($ $ (-1032 $)) 253 (|has| |#1| (-510)) ELT)) (-2722 (((-714) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) 43 T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 301 (|has| |#1| (-510)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-510)) ELT) (($ $ $) NIL (|has| |#1| (-510)) ELT)) (-1631 (((-85) $ $) NIL T ELT) (((-85) $ (-1117)) NIL T ELT)) (-1406 (($ $ (-1117)) 226 (|has| |#1| (-510)) ELT) (($ $) 224 (|has| |#1| (-510)) ELT)) (-1400 (($ $) 218 (|has| |#1| (-510)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 306 (-12 (|has| |#1| (-406)) (|has| |#1| (-510))) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-510)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-510)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-510)) ELT)) (-4093 (($ $) 139 (|has| |#1| (-510)) ELT)) (-2795 (((-85) $) NIL (|has| $ (-978 (-499))) ELT)) (-3918 (($ $ (-566 $) $) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) 425 T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ $))) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-1117) (-1 $ (-599 $))) NIL T ELT) (($ $ (-1117) (-1 $ $)) NIL T ELT) (($ $ (-599 (-86)) (-599 (-1 $ $))) 379 T ELT) (($ $ (-599 (-86)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-599 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-569 (-488))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-569 (-488))) ELT) (($ $) NIL (|has| |#1| (-569 (-488))) ELT) (($ $ (-86) $ (-1117)) 366 (|has| |#1| (-569 (-488))) ELT) (($ $ (-599 (-86)) (-599 $) (-1117)) 365 (|has| |#1| (-569 (-488))) ELT) (($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ $))) NIL (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ (-599 $)))) NIL (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714) (-1 $ (-599 $))) NIL (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714) (-1 $ $)) NIL (|has| |#1| (-989)) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-510)) ELT)) (-2356 (($ $) 239 (|has| |#1| (-510)) ELT)) (-3950 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-599 $)) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-1636 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2357 (($ $) 249 (|has| |#1| (-510)) ELT)) (-3525 (($ $) 200 (|has| |#1| (-510)) ELT)) (-3908 (($ $ (-1117)) NIL (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-989)) ELT)) (-3116 (($ $) 74 (|has| |#1| (-510)) ELT)) (-3118 (((-1065 |#1| (-566 $)) $) 93 (|has| |#1| (-510)) ELT)) (-3323 (($ $) 317 (|has| $ (-989)) ELT)) (-3635 (($ $) 177 (|has| |#1| (-510)) ELT)) (-3786 (($ $) 153 (|has| |#1| (-510)) ELT)) (-3633 (($ $) 173 (|has| |#1| (-510)) ELT)) (-3785 (($ $) 149 (|has| |#1| (-510)) ELT)) (-3631 (($ $) 169 (|has| |#1| (-510)) ELT)) (-3784 (($ $) 145 (|has| |#1| (-510)) ELT)) (-4122 (((-825 (-499)) $) NIL (|has| |#1| (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| |#1| (-569 (-825 (-333)))) ELT) (($ (-359 $)) NIL (|has| |#1| (-510)) ELT) (((-488) $) 363 (|has| |#1| (-569 (-488))) ELT)) (-3130 (($ $ $) NIL (|has| |#1| (-427)) ELT)) (-2551 (($ $ $) NIL (|has| |#1| (-427)) ELT)) (-4096 (((-797) $) 424 T ELT) (($ (-566 $)) 415 T ELT) (($ (-1117)) 381 T ELT) (($ |#1|) 337 T ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ (-48)) 312 (-12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499)))) ELT) (($ (-1065 |#1| (-566 $))) 95 (|has| |#1| (-989)) ELT) (($ (-361 |#1|)) NIL (|has| |#1| (-510)) ELT) (($ (-884 (-361 |#1|))) NIL (|has| |#1| (-510)) ELT) (($ (-361 (-884 (-361 |#1|)))) NIL (|has| |#1| (-510)) ELT) (($ (-361 (-884 |#1|))) NIL (|has| |#1| (-510)) ELT) (($ (-884 |#1|)) NIL (|has| |#1| (-989)) ELT) (($ (-499)) 34 (-3677 (|has| |#1| (-978 (-499))) (|has| |#1| (-989))) ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-510)) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL (|has| |#1| (-989)) CONST)) (-2709 (($ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3224 (($ $ $) 220 (|has| |#1| (-510)) ELT)) (-3529 (($ $ $) 206 (|has| |#1| (-510)) ELT)) (-3531 (($ $ $) 210 (|has| |#1| (-510)) ELT)) (-3528 (($ $ $) 204 (|has| |#1| (-510)) ELT)) (-3530 (($ $ $) 208 (|has| |#1| (-510)) ELT)) (-2355 (((-85) (-86)) 10 T ELT)) (-1297 (((-85) $ $) 86 T ELT)) (-3638 (($ $) 183 (|has| |#1| (-510)) ELT)) (-3626 (($ $) 159 (|has| |#1| (-510)) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) 179 (|has| |#1| (-510)) ELT)) (-3624 (($ $) 155 (|has| |#1| (-510)) ELT)) (-3640 (($ $) 187 (|has| |#1| (-510)) ELT)) (-3628 (($ $) 163 (|has| |#1| (-510)) ELT)) (-1893 (($ (-1117) $) NIL T ELT) (($ (-1117) $ $) NIL T ELT) (($ (-1117) $ $ $) NIL T ELT) (($ (-1117) $ $ $ $) NIL T ELT) (($ (-1117) (-599 $)) NIL T ELT)) (-3533 (($ $) 214 (|has| |#1| (-510)) ELT)) (-3532 (($ $) 212 (|has| |#1| (-510)) ELT)) (-3641 (($ $) 189 (|has| |#1| (-510)) ELT)) (-3629 (($ $) 165 (|has| |#1| (-510)) ELT)) (-3639 (($ $) 185 (|has| |#1| (-510)) ELT)) (-3627 (($ $) 161 (|has| |#1| (-510)) ELT)) (-3637 (($ $) 181 (|has| |#1| (-510)) ELT)) (-3625 (($ $) 157 (|has| |#1| (-510)) ELT)) (-3523 (($ $) 192 (|has| |#1| (-510)) ELT)) (-2779 (($) 21 (-3677 (|has| |#1| (-25)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) CONST)) (-2360 (($ $) 243 (|has| |#1| (-510)) ELT)) (-2785 (($) 23 (|has| |#1| (-1052)) CONST)) (-3527 (($ $) 194 (|has| |#1| (-510)) ELT) (($ $ $) 196 (|has| |#1| (-510)) ELT)) (-2361 (($ $) 241 (|has| |#1| (-510)) ELT)) (-2790 (($ $ (-1117)) NIL (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-989)) ELT)) (-2359 (($ $) 245 (|has| |#1| (-510)) ELT)) (-3524 (($ $ $) 198 (|has| |#1| (-510)) ELT)) (-3174 (((-85) $ $) 88 T ELT)) (-4099 (($ (-1065 |#1| (-566 $)) (-1065 |#1| (-566 $))) 106 (|has| |#1| (-510)) ELT) (($ $ $) 42 (-3677 (|has| |#1| (-427)) (|has| |#1| (-510))) ELT)) (-3987 (($ $ $) 40 (-3677 (|has| |#1| (-21)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT) (($ $) 29 (-3677 (|has| |#1| (-21)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT)) (-3989 (($ $ $) 38 (-3677 (|has| |#1| (-25)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT)) (** (($ $ $) 64 (|has| |#1| (-510)) ELT) (($ $ (-361 (-499))) 314 (|has| |#1| (-510)) ELT) (($ $ (-499)) 80 (-3677 (|has| |#1| (-427)) (|has| |#1| (-510))) ELT) (($ $ (-714)) 75 (|has| |#1| (-1052)) ELT) (($ $ (-857)) 84 (|has| |#1| (-1052)) ELT)) (* (($ (-361 (-499)) $) NIL (|has| |#1| (-510)) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-510)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT) (($ |#1| $) NIL (|has| |#1| (-989)) ELT) (($ $ $) 36 (|has| |#1| (-1052)) ELT) (($ (-499) $) 32 (-3677 (|has| |#1| (-21)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT) (($ (-714) $) NIL (-3677 (|has| |#1| (-25)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT) (($ (-857) $) NIL (-3677 (|has| |#1| (-25)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT))) -(((-268 |#1|) (-13 (-375 |#1|) (-10 -8 (IF (|has| |#1| (-510)) (PROGN (-6 (-29 |#1|)) (-6 (-1143)) (-6 (-133)) (-6 (-585)) (-6 (-1079)) (-15 -3992 ($ $)) (-15 -1680 ((-85) $)) (-15 -1679 ($ $ (-499))) (IF (|has| |#1| (-406)) (PROGN (-15 -2827 ((-359 (-1111 $)) (-1111 $))) (-15 -2828 ((-359 (-1111 $)) (-1111 $)))) |%noBranch|) (IF (|has| |#1| (-978 (-499))) (-6 (-978 (-48))) |%noBranch|)) |%noBranch|))) (-1041)) (T -268)) -((-3992 (*1 *1 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-510)) (-4 *2 (-1041)))) (-1680 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-268 *3)) (-4 *3 (-510)) (-4 *3 (-1041)))) (-1679 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-268 *3)) (-4 *3 (-510)) (-4 *3 (-1041)))) (-2827 (*1 *2 *3) (-12 (-5 *2 (-359 (-1111 *1))) (-5 *1 (-268 *4)) (-5 *3 (-1111 *1)) (-4 *4 (-406)) (-4 *4 (-510)) (-4 *4 (-1041)))) (-2828 (*1 *2 *3) (-12 (-5 *2 (-359 (-1111 *1))) (-5 *1 (-268 *4)) (-5 *3 (-1111 *1)) (-4 *4 (-406)) (-4 *4 (-510)) (-4 *4 (-1041))))) -((-4108 (((-268 |#2|) (-1 |#2| |#1|) (-268 |#1|)) 13 T ELT))) -(((-269 |#1| |#2|) (-10 -7 (-15 -4108 ((-268 |#2|) (-1 |#2| |#1|) (-268 |#1|)))) (-1041) (-1041)) (T -269)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-268 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *2 (-268 *6)) (-5 *1 (-269 *5 *6))))) -((-3879 (((-51) |#2| (-247 |#2|) (-714)) 40 T ELT) (((-51) |#2| (-247 |#2|)) 32 T ELT) (((-51) |#2| (-714)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1117)) 26 T ELT)) (-3968 (((-51) |#2| (-247 |#2|) (-361 (-499))) 59 T ELT) (((-51) |#2| (-247 |#2|)) 56 T ELT) (((-51) |#2| (-361 (-499))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1117)) 55 T ELT)) (-3932 (((-51) |#2| (-247 |#2|) (-361 (-499))) 54 T ELT) (((-51) |#2| (-247 |#2|)) 51 T ELT) (((-51) |#2| (-361 (-499))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1117)) 50 T ELT)) (-3929 (((-51) |#2| (-247 |#2|) (-499)) 47 T ELT) (((-51) |#2| (-247 |#2|)) 44 T ELT) (((-51) |#2| (-499)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1117)) 43 T ELT))) -(((-270 |#1| |#2|) (-10 -7 (-15 -3879 ((-51) (-1117))) (-15 -3879 ((-51) |#2|)) (-15 -3879 ((-51) |#2| (-714))) (-15 -3879 ((-51) |#2| (-247 |#2|))) (-15 -3879 ((-51) |#2| (-247 |#2|) (-714))) (-15 -3929 ((-51) (-1117))) (-15 -3929 ((-51) |#2|)) (-15 -3929 ((-51) |#2| (-499))) (-15 -3929 ((-51) |#2| (-247 |#2|))) (-15 -3929 ((-51) |#2| (-247 |#2|) (-499))) (-15 -3932 ((-51) (-1117))) (-15 -3932 ((-51) |#2|)) (-15 -3932 ((-51) |#2| (-361 (-499)))) (-15 -3932 ((-51) |#2| (-247 |#2|))) (-15 -3932 ((-51) |#2| (-247 |#2|) (-361 (-499)))) (-15 -3968 ((-51) (-1117))) (-15 -3968 ((-51) |#2|)) (-15 -3968 ((-51) |#2| (-361 (-499)))) (-15 -3968 ((-51) |#2| (-247 |#2|))) (-15 -3968 ((-51) |#2| (-247 |#2|) (-361 (-499))))) (-13 (-406) (-978 (-499)) (-596 (-499))) (-13 (-27) (-1143) (-375 |#1|))) (T -270)) -((-3968 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-247 *3)) (-5 *5 (-361 (-499))) (-4 *3 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *6 *3)))) (-3968 (*1 *2 *3 *4) (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *5 *3)))) (-3968 (*1 *2 *3 *4) (-12 (-5 *4 (-361 (-499))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) (-3968 (*1 *2 *3) (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-27) (-1143) (-375 *4))))) (-3932 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-247 *3)) (-5 *5 (-361 (-499))) (-4 *3 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *6 *3)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *5 *3)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *4 (-361 (-499))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) (-3932 (*1 *2 *3) (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) (-3932 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-27) (-1143) (-375 *4))))) (-3929 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-406) (-978 *5) (-596 *5))) (-5 *5 (-499)) (-5 *2 (-51)) (-5 *1 (-270 *6 *3)))) (-3929 (*1 *2 *3 *4) (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *5 *3)))) (-3929 (*1 *2 *3 *4) (-12 (-5 *4 (-499)) (-4 *5 (-13 (-406) (-978 *4) (-596 *4))) (-5 *2 (-51)) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) (-3929 (*1 *2 *3) (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) (-3929 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-27) (-1143) (-375 *4))))) (-3879 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-247 *3)) (-5 *5 (-714)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *6 *3)))) (-3879 (*1 *2 *3 *4) (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *5 *3)))) (-3879 (*1 *2 *3 *4) (-12 (-5 *4 (-714)) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) (-3879 (*1 *2 *3) (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-27) (-1143) (-375 *4)))))) -((-1681 (((-51) |#2| (-86) (-247 |#2|) (-599 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-247 |#2|) (-247 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-247 |#2|) |#2|) 87 T ELT) (((-51) (-247 |#2|) (-86) (-247 |#2|) |#2|) 88 T ELT) (((-51) (-599 |#2|) (-599 (-86)) (-247 |#2|) (-599 (-247 |#2|))) 81 T ELT) (((-51) (-599 |#2|) (-599 (-86)) (-247 |#2|) (-599 |#2|)) 83 T ELT) (((-51) (-599 (-247 |#2|)) (-599 (-86)) (-247 |#2|) (-599 |#2|)) 84 T ELT) (((-51) (-599 (-247 |#2|)) (-599 (-86)) (-247 |#2|) (-599 (-247 |#2|))) 82 T ELT) (((-51) (-247 |#2|) (-86) (-247 |#2|) (-599 |#2|)) 90 T ELT) (((-51) (-247 |#2|) (-86) (-247 |#2|) (-247 |#2|)) 86 T ELT))) -(((-271 |#1| |#2|) (-10 -7 (-15 -1681 ((-51) (-247 |#2|) (-86) (-247 |#2|) (-247 |#2|))) (-15 -1681 ((-51) (-247 |#2|) (-86) (-247 |#2|) (-599 |#2|))) (-15 -1681 ((-51) (-599 (-247 |#2|)) (-599 (-86)) (-247 |#2|) (-599 (-247 |#2|)))) (-15 -1681 ((-51) (-599 (-247 |#2|)) (-599 (-86)) (-247 |#2|) (-599 |#2|))) (-15 -1681 ((-51) (-599 |#2|) (-599 (-86)) (-247 |#2|) (-599 |#2|))) (-15 -1681 ((-51) (-599 |#2|) (-599 (-86)) (-247 |#2|) (-599 (-247 |#2|)))) (-15 -1681 ((-51) (-247 |#2|) (-86) (-247 |#2|) |#2|)) (-15 -1681 ((-51) |#2| (-86) (-247 |#2|) |#2|)) (-15 -1681 ((-51) |#2| (-86) (-247 |#2|) (-247 |#2|))) (-15 -1681 ((-51) |#2| (-86) (-247 |#2|) (-599 |#2|)))) (-13 (-510) (-569 (-488))) (-375 |#1|)) (T -271)) -((-1681 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-247 *3)) (-5 *6 (-599 *3)) (-4 *3 (-375 *7)) (-4 *7 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *7 *3)))) (-1681 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-247 *3)) (-4 *3 (-375 *6)) (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *3)))) (-1681 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-247 *3)) (-4 *3 (-375 *6)) (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *3)))) (-1681 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-247 *5)) (-5 *4 (-86)) (-4 *5 (-375 *6)) (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *5)))) (-1681 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 (-86))) (-5 *6 (-599 (-247 *8))) (-4 *8 (-375 *7)) (-5 *5 (-247 *8)) (-4 *7 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *7 *8)))) (-1681 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-599 *7)) (-5 *4 (-599 (-86))) (-5 *5 (-247 *7)) (-4 *7 (-375 *6)) (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *7)))) (-1681 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-599 (-247 *8))) (-5 *4 (-599 (-86))) (-5 *5 (-247 *8)) (-5 *6 (-599 *8)) (-4 *8 (-375 *7)) (-4 *7 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *7 *8)))) (-1681 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-599 (-247 *7))) (-5 *4 (-599 (-86))) (-5 *5 (-247 *7)) (-4 *7 (-375 *6)) (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *7)))) (-1681 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-247 *7)) (-5 *4 (-86)) (-5 *5 (-599 *7)) (-4 *7 (-375 *6)) (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *7)))) (-1681 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-247 *6)) (-5 *4 (-86)) (-4 *6 (-375 *5)) (-4 *5 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *5 *6))))) -((-1683 (((-1153 (-865)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-179) (-499) (-1099)) 67 T ELT) (((-1153 (-865)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-179) (-499)) 68 T ELT) (((-1153 (-865)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-1 (-179) (-179)) (-499) (-1099)) 64 T ELT) (((-1153 (-865)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-1 (-179) (-179)) (-499)) 65 T ELT)) (-1682 (((-1 (-179) (-179)) (-179)) 66 T ELT))) -(((-272) (-10 -7 (-15 -1682 ((-1 (-179) (-179)) (-179))) (-15 -1683 ((-1153 (-865)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-1 (-179) (-179)) (-499))) (-15 -1683 ((-1153 (-865)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-1 (-179) (-179)) (-499) (-1099))) (-15 -1683 ((-1153 (-865)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-179) (-499))) (-15 -1683 ((-1153 (-865)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-179) (-499) (-1099))))) (T -272)) -((-1683 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) (-5 *6 (-179)) (-5 *7 (-499)) (-5 *8 (-1099)) (-5 *2 (-1153 (-865))) (-5 *1 (-272)))) (-1683 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) (-5 *6 (-179)) (-5 *7 (-499)) (-5 *2 (-1153 (-865))) (-5 *1 (-272)))) (-1683 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) (-5 *6 (-499)) (-5 *7 (-1099)) (-5 *2 (-1153 (-865))) (-5 *1 (-272)))) (-1683 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) (-5 *6 (-499)) (-5 *2 (-1153 (-865))) (-5 *1 (-272)))) (-1682 (*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-272)) (-5 *3 (-179))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 26 T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-361 (-499))) NIL T ELT) (($ $ (-361 (-499)) (-361 (-499))) NIL T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|))) $) 20 T ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-714) (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|)))) NIL T ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) 36 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3324 (((-85) $) NIL T ELT)) (-3013 (((-85) $) NIL T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-361 (-499)) $) NIL T ELT) (((-361 (-499)) $ (-361 (-499))) 16 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-361 (-499))) NIL T ELT) (($ $ (-1022) (-361 (-499))) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-361 (-499)))) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4092 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3962 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-361 (-499))) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-1684 (((-361 (-499)) $) 17 T ELT)) (-3213 (($ (-1188 |#1| |#2| |#3|)) 11 T ELT)) (-2519 (((-1188 |#1| |#2| |#3|) $) 12 T ELT)) (-4093 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-361 (-499))) NIL T ELT) (($ $ $) NIL (|has| (-361 (-499)) (-1052)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT)) (-4098 (((-361 (-499)) $) NIL T ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) 10 T ELT)) (-4096 (((-797) $) 42 T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-361 (-499))) 34 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-3923 ((|#1| $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-361 (-499))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 28 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 37 T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-273 |#1| |#2| |#3|) (-13 (-1190 |#1|) (-737) (-10 -8 (-15 -3213 ($ (-1188 |#1| |#2| |#3|))) (-15 -2519 ((-1188 |#1| |#2| |#3|) $)) (-15 -1684 ((-361 (-499)) $)))) (-318) (-1117) |#1|) (T -273)) -((-3213 (*1 *1 *2) (-12 (-5 *2 (-1188 *3 *4 *5)) (-4 *3 (-318)) (-14 *4 (-1117)) (-14 *5 *3) (-5 *1 (-273 *3 *4 *5)))) (-2519 (*1 *2 *1) (-12 (-5 *2 (-1188 *3 *4 *5)) (-5 *1 (-273 *3 *4 *5)) (-4 *3 (-318)) (-14 *4 (-1117)) (-14 *5 *3))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-273 *3 *4 *5)) (-4 *3 (-318)) (-14 *4 (-1117)) (-14 *5 *3)))) -((-3132 (((-2 (|:| -2519 (-714)) (|:| -4104 |#1|) (|:| |radicand| (-599 |#1|))) (-359 |#1|) (-714)) 35 T ELT)) (-4092 (((-599 (-2 (|:| -4104 (-714)) (|:| |logand| |#1|))) (-359 |#1|)) 40 T ELT))) -(((-274 |#1|) (-10 -7 (-15 -3132 ((-2 (|:| -2519 (-714)) (|:| -4104 |#1|) (|:| |radicand| (-599 |#1|))) (-359 |#1|) (-714))) (-15 -4092 ((-599 (-2 (|:| -4104 (-714)) (|:| |logand| |#1|))) (-359 |#1|)))) (-510)) (T -274)) -((-4092 (*1 *2 *3) (-12 (-5 *3 (-359 *4)) (-4 *4 (-510)) (-5 *2 (-599 (-2 (|:| -4104 (-714)) (|:| |logand| *4)))) (-5 *1 (-274 *4)))) (-3132 (*1 *2 *3 *4) (-12 (-5 *3 (-359 *5)) (-4 *5 (-510)) (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *5) (|:| |radicand| (-599 *5)))) (-5 *1 (-274 *5)) (-5 *4 (-714))))) -((-3204 (((-599 |#2|) (-1111 |#4|)) 44 T ELT)) (-1689 ((|#3| (-499)) 47 T ELT)) (-1687 (((-1111 |#4|) (-1111 |#3|)) 30 T ELT)) (-1688 (((-1111 |#4|) (-1111 |#4|) (-499)) 66 T ELT)) (-1686 (((-1111 |#3|) (-1111 |#4|)) 21 T ELT)) (-4098 (((-599 (-714)) (-1111 |#4|) (-599 |#2|)) 41 T ELT)) (-1685 (((-1111 |#3|) (-1111 |#4|) (-599 |#2|) (-599 |#3|)) 35 T ELT))) -(((-275 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1685 ((-1111 |#3|) (-1111 |#4|) (-599 |#2|) (-599 |#3|))) (-15 -4098 ((-599 (-714)) (-1111 |#4|) (-599 |#2|))) (-15 -3204 ((-599 |#2|) (-1111 |#4|))) (-15 -1686 ((-1111 |#3|) (-1111 |#4|))) (-15 -1687 ((-1111 |#4|) (-1111 |#3|))) (-15 -1688 ((-1111 |#4|) (-1111 |#4|) (-499))) (-15 -1689 (|#3| (-499)))) (-738) (-781) (-989) (-888 |#3| |#1| |#2|)) (T -275)) -((-1689 (*1 *2 *3) (-12 (-5 *3 (-499)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-989)) (-5 *1 (-275 *4 *5 *2 *6)) (-4 *6 (-888 *2 *4 *5)))) (-1688 (*1 *2 *2 *3) (-12 (-5 *2 (-1111 *7)) (-5 *3 (-499)) (-4 *7 (-888 *6 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) (-5 *1 (-275 *4 *5 *6 *7)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-1111 *6)) (-4 *6 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-1111 *7)) (-5 *1 (-275 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-1111 *7)) (-4 *7 (-888 *6 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) (-5 *2 (-1111 *6)) (-5 *1 (-275 *4 *5 *6 *7)))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-1111 *7)) (-4 *7 (-888 *6 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) (-5 *2 (-599 *5)) (-5 *1 (-275 *4 *5 *6 *7)))) (-4098 (*1 *2 *3 *4) (-12 (-5 *3 (-1111 *8)) (-5 *4 (-599 *6)) (-4 *6 (-781)) (-4 *8 (-888 *7 *5 *6)) (-4 *5 (-738)) (-4 *7 (-989)) (-5 *2 (-599 (-714))) (-5 *1 (-275 *5 *6 *7 *8)))) (-1685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1111 *9)) (-5 *4 (-599 *7)) (-5 *5 (-599 *8)) (-4 *7 (-781)) (-4 *8 (-989)) (-4 *9 (-888 *8 *6 *7)) (-4 *6 (-738)) (-5 *2 (-1111 *8)) (-5 *1 (-275 *6 *7 *8 *9))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 19 T ELT)) (-3924 (((-599 (-2 (|:| |gen| |#1|) (|:| -4093 (-499)))) $) 21 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3258 (((-714) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-2399 ((|#1| $ (-499)) NIL T ELT)) (-1692 (((-499) $ (-499)) NIL T ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2391 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1691 (($ (-1 (-499) (-499)) $) 11 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1690 (($ $ $) NIL (|has| (-499) (-737)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3827 (((-499) |#1| $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 30 (|has| |#1| (-781)) ELT)) (-3987 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3989 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ (-499)) NIL T ELT) (($ (-499) |#1|) 28 T ELT))) -(((-276 |#1|) (-13 (-21) (-675 (-499)) (-277 |#1| (-499)) (-10 -7 (IF (|has| |#1| (-781)) (-6 (-781)) |%noBranch|))) (-1041)) (T -276)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3924 (((-599 (-2 (|:| |gen| |#1|) (|:| -4093 |#2|))) $) 33 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3258 (((-714) $) 34 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#1| "failed") $) 38 T ELT)) (-3294 ((|#1| $) 39 T ELT)) (-2399 ((|#1| $ (-499)) 31 T ELT)) (-1692 ((|#2| $ (-499)) 32 T ELT)) (-2391 (($ (-1 |#1| |#1|) $) 28 T ELT)) (-1691 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1690 (($ $ $) 27 (|has| |#2| (-737)) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ |#1|) 37 T ELT)) (-3827 ((|#2| |#1| $) 30 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3989 (($ $ $) 18 T ELT) (($ |#1| $) 36 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ |#2| |#1|) 35 T ELT))) -(((-277 |#1| |#2|) (-113) (-1041) (-104)) (T -277)) -((-3989 (*1 *1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-104)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-104)) (-5 *2 (-714)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-104)) (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 *4)))))) (-1692 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-277 *4 *2)) (-4 *4 (-1041)) (-4 *2 (-104)))) (-2399 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-277 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1041)))) (-3827 (*1 *2 *3 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-104)))) (-1691 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-104)))) (-2391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-277 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-104)))) (-1690 (*1 *1 *1 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-104)) (-4 *3 (-737))))) -(-13 (-104) (-978 |t#1|) (-10 -8 (-15 -3989 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3258 ((-714) $)) (-15 -3924 ((-599 (-2 (|:| |gen| |t#1|) (|:| -4093 |t#2|))) $)) (-15 -1692 (|t#2| $ (-499))) (-15 -2399 (|t#1| $ (-499))) (-15 -3827 (|t#2| |t#1| $)) (-15 -1691 ($ (-1 |t#2| |t#2|) $)) (-15 -2391 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-737)) (-15 -1690 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-978 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3924 (((-599 (-2 (|:| |gen| |#1|) (|:| -4093 (-714)))) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3258 (((-714) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-2399 ((|#1| $ (-499)) NIL T ELT)) (-1692 (((-714) $ (-499)) NIL T ELT)) (-2391 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1691 (($ (-1 (-714) (-714)) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1690 (($ $ $) NIL (|has| (-714) (-737)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3827 (((-714) |#1| $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-714) |#1|) NIL T ELT))) -(((-278 |#1|) (-277 |#1| (-714)) (-1041)) (T -278)) -NIL -((-3643 (($ $) 72 T ELT)) (-1694 (($ $ |#2| |#3| $) 14 T ELT)) (-1695 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1895 (((-85) $) 42 T ELT)) (-1894 ((|#2| $) 44 T ELT)) (-3606 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2938 ((|#2| $) 68 T ELT)) (-3967 (((-599 |#2|) $) 56 T ELT)) (-1693 (($ $ $ (-714)) 37 T ELT)) (-4099 (($ $ |#2|) 60 T ELT))) -(((-279 |#1| |#2| |#3|) (-10 -7 (-15 -3643 (|#1| |#1|)) (-15 -2938 (|#2| |#1|)) (-15 -3606 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1693 (|#1| |#1| |#1| (-714))) (-15 -1694 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1695 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3967 ((-599 |#2|) |#1|)) (-15 -1894 (|#2| |#1|)) (-15 -1895 ((-85) |#1|)) (-15 -3606 ((-3 |#1| #1#) |#1| |#1|)) (-15 -4099 (|#1| |#1| |#2|))) (-280 |#2| |#3|) (-989) (-737)) (T -279)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 68 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 69 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 71 (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 (-499) #1="failed") $) 106 (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) 104 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 101 T ELT)) (-3294 (((-499) $) 105 (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) 103 (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 102 T ELT)) (-4109 (($ $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3643 (($ $) 90 (|has| |#1| (-406)) ELT)) (-1694 (($ $ |#1| |#2| $) 94 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-2536 (((-714) $) 97 T ELT)) (-4087 (((-85) $) 79 T ELT)) (-3014 (($ |#1| |#2|) 78 T ELT)) (-2941 ((|#2| $) 96 T ELT)) (-1695 (($ (-1 |#2| |#2|) $) 95 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3015 (($ $) 82 T ELT)) (-3312 ((|#1| $) 83 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1895 (((-85) $) 100 T ELT)) (-1894 ((|#1| $) 99 T ELT)) (-3606 (((-3 $ "failed") $ $) 67 (|has| |#1| (-510)) ELT) (((-3 $ "failed") $ |#1|) 92 (|has| |#1| (-510)) ELT)) (-4098 ((|#2| $) 81 T ELT)) (-2938 ((|#1| $) 91 (|has| |#1| (-406)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 66 (|has| |#1| (-510)) ELT) (($ |#1|) 64 T ELT) (($ (-361 (-499))) 74 (-3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ELT)) (-3967 (((-599 |#1|) $) 98 T ELT)) (-3827 ((|#1| $ |#2|) 76 T ELT)) (-2823 (((-649 $) $) 65 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-1693 (($ $ $ (-714)) 93 (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 70 (|has| |#1| (-510)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 75 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-361 (-499)) $) 73 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 72 (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-280 |#1| |#2|) (-113) (-989) (-737)) (T -280)) -((-1895 (*1 *2 *1) (-12 (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-85)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-280 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989)))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-599 *3)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-714)))) (-2941 (*1 *2 *1) (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) (-1695 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)))) (-1694 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-280 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)))) (-1693 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-4 *3 (-146)))) (-3606 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-280 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)) (-4 *2 (-510)))) (-2938 (*1 *2 *1) (-12 (-4 *1 (-280 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989)) (-4 *2 (-406)))) (-3643 (*1 *1 *1) (-12 (-4 *1 (-280 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)) (-4 *2 (-406))))) -(-13 (-47 |t#1| |t#2|) (-366 |t#1|) (-10 -8 (-15 -1895 ((-85) $)) (-15 -1894 (|t#1| $)) (-15 -3967 ((-599 |t#1|) $)) (-15 -2536 ((-714) $)) (-15 -2941 (|t#2| $)) (-15 -1695 ($ (-1 |t#2| |t#2|) $)) (-15 -1694 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-146)) (-15 -1693 ($ $ $ (-714))) |%noBranch|) (IF (|has| |t#1| (-510)) (-15 -3606 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-406)) (PROGN (-15 -2938 (|t#1| $)) (-15 -3643 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-510)) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-571 $) |has| |#1| (-510)) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-244) |has| |#1| (-510)) ((-366 |#1|) . T) ((-510) |has| |#1| (-510)) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) |has| |#1| (-510)) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) |has| |#1| (-510)) ((-684) . T) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-781)) ELT)) (-2087 (((-85) (-85)) NIL T ELT)) (-3938 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-1603 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-2481 (($ $) NIL (|has| |#1| (-1041)) ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3545 (($ |#1| $) NIL (|has| |#1| (-1041)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) NIL T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) NIL T ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT)) (-2088 (($ $ (-499)) NIL T ELT)) (-2089 (((-714) $) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) |#1|) NIL T ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2977 (($ $ $) NIL (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3757 (($ $ $ (-499)) NIL T ELT) (($ |#1| $ (-499)) NIL T ELT)) (-2404 (($ |#1| $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2090 (($ (-599 |#1|)) NIL T ELT)) (-3951 ((|#1| $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) |#1|) NIL T ELT) ((|#1| $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-1604 (($ $ (-1174 (-499))) NIL T ELT) (($ $ (-499)) NIL T ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) NIL T ELT)) (-3941 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3952 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-281 |#1|) (-13 (-19 |#1|) (-236 |#1|) (-10 -8 (-15 -2090 ($ (-599 |#1|))) (-15 -2089 ((-714) $)) (-15 -2088 ($ $ (-499))) (-15 -2087 ((-85) (-85))))) (-1157)) (T -281)) -((-2090 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-281 *3)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-281 *3)) (-4 *3 (-1157)))) (-2088 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-281 *3)) (-4 *3 (-1157)))) (-2087 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-1157))))) -((-4082 (((-85) $) 47 T ELT)) (-4079 (((-714)) 23 T ELT)) (-3470 ((|#2| $) 51 T ELT) (($ $ (-857)) 123 T ELT)) (-3258 (((-714)) 124 T ELT)) (-1890 (($ (-1207 |#2|)) 20 T ELT)) (-2112 (((-85) $) 136 T ELT)) (-3254 ((|#2| $) 53 T ELT) (($ $ (-857)) 120 T ELT)) (-2115 (((-1111 |#2|) $) NIL T ELT) (((-1111 $) $ (-857)) 111 T ELT)) (-1697 (((-1111 |#2|) $) 95 T ELT)) (-1696 (((-1111 |#2|) $) 91 T ELT) (((-3 (-1111 |#2|) "failed") $ $) 88 T ELT)) (-1698 (($ $ (-1111 |#2|)) 58 T ELT)) (-4080 (((-766 (-857))) 30 T ELT) (((-857)) 48 T ELT)) (-4061 (((-107)) 27 T ELT)) (-4098 (((-766 (-857)) $) 32 T ELT) (((-857) $) 139 T ELT)) (-1699 (($) 130 T ELT)) (-3362 (((-1207 |#2|) $) NIL T ELT) (((-647 |#2|) (-1207 $)) 42 T ELT)) (-2823 (($ $) NIL T ELT) (((-649 $) $) 100 T ELT)) (-4083 (((-85) $) 45 T ELT))) -(((-282 |#1| |#2|) (-10 -7 (-15 -2823 ((-649 |#1|) |#1|)) (-15 -3258 ((-714))) (-15 -2823 (|#1| |#1|)) (-15 -1696 ((-3 (-1111 |#2|) "failed") |#1| |#1|)) (-15 -1696 ((-1111 |#2|) |#1|)) (-15 -1697 ((-1111 |#2|) |#1|)) (-15 -1698 (|#1| |#1| (-1111 |#2|))) (-15 -2112 ((-85) |#1|)) (-15 -1699 (|#1|)) (-15 -3470 (|#1| |#1| (-857))) (-15 -3254 (|#1| |#1| (-857))) (-15 -2115 ((-1111 |#1|) |#1| (-857))) (-15 -3470 (|#2| |#1|)) (-15 -3254 (|#2| |#1|)) (-15 -4098 ((-857) |#1|)) (-15 -4080 ((-857))) (-15 -2115 ((-1111 |#2|) |#1|)) (-15 -1890 (|#1| (-1207 |#2|))) (-15 -3362 ((-647 |#2|) (-1207 |#1|))) (-15 -3362 ((-1207 |#2|) |#1|)) (-15 -4079 ((-714))) (-15 -4080 ((-766 (-857)))) (-15 -4098 ((-766 (-857)) |#1|)) (-15 -4082 ((-85) |#1|)) (-15 -4083 ((-85) |#1|)) (-15 -4061 ((-107)))) (-283 |#2|) (-318)) (T -282)) -((-4061 (*1 *2) (-12 (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-282 *3 *4)) (-4 *3 (-283 *4)))) (-4080 (*1 *2) (-12 (-4 *4 (-318)) (-5 *2 (-766 (-857))) (-5 *1 (-282 *3 *4)) (-4 *3 (-283 *4)))) (-4079 (*1 *2) (-12 (-4 *4 (-318)) (-5 *2 (-714)) (-5 *1 (-282 *3 *4)) (-4 *3 (-283 *4)))) (-4080 (*1 *2) (-12 (-4 *4 (-318)) (-5 *2 (-857)) (-5 *1 (-282 *3 *4)) (-4 *3 (-283 *4)))) (-3258 (*1 *2) (-12 (-4 *4 (-318)) (-5 *2 (-714)) (-5 *1 (-282 *3 *4)) (-4 *3 (-283 *4))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-4082 (((-85) $) 111 T ELT)) (-4079 (((-714)) 107 T ELT)) (-3470 ((|#1| $) 159 T ELT) (($ $ (-857)) 156 (|has| |#1| (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) 141 (|has| |#1| (-323)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3258 (((-714)) 131 (|has| |#1| (-323)) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#1| "failed") $) 118 T ELT)) (-3294 ((|#1| $) 119 T ELT)) (-1890 (($ (-1207 |#1|)) 165 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) 147 (|has| |#1| (-323)) ELT)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3115 (($) 128 (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-2954 (($) 143 (|has| |#1| (-323)) ELT)) (-1773 (((-85) $) 144 (|has| |#1| (-323)) ELT)) (-1864 (($ $ (-714)) 104 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT) (($ $) 103 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3873 (((-85) $) 86 T ELT)) (-3922 (((-857) $) 146 (|has| |#1| (-323)) ELT) (((-766 (-857)) $) 101 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-2528 (((-85) $) 40 T ELT)) (-2114 (($) 154 (|has| |#1| (-323)) ELT)) (-2112 (((-85) $) 153 (|has| |#1| (-323)) ELT)) (-3254 ((|#1| $) 160 T ELT) (($ $ (-857)) 157 (|has| |#1| (-323)) ELT)) (-3585 (((-649 $) $) 132 (|has| |#1| (-323)) ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 65 T ELT)) (-2115 (((-1111 |#1|) $) 164 T ELT) (((-1111 $) $ (-857)) 158 (|has| |#1| (-323)) ELT)) (-2111 (((-857) $) 129 (|has| |#1| (-323)) ELT)) (-1697 (((-1111 |#1|) $) 150 (|has| |#1| (-323)) ELT)) (-1696 (((-1111 |#1|) $) 149 (|has| |#1| (-323)) ELT) (((-3 (-1111 |#1|) "failed") $ $) 148 (|has| |#1| (-323)) ELT)) (-1698 (($ $ (-1111 |#1|)) 151 (|has| |#1| (-323)) ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 85 T ELT)) (-3586 (($) 133 (|has| |#1| (-323)) CONST)) (-2518 (($ (-857)) 130 (|has| |#1| (-323)) ELT)) (-4081 (((-85) $) 110 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2527 (($) 152 (|has| |#1| (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) 140 (|has| |#1| (-323)) ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-4080 (((-766 (-857))) 108 T ELT) (((-857)) 162 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-1865 (((-714) $) 145 (|has| |#1| (-323)) ELT) (((-3 (-714) "failed") $ $) 102 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-4061 (((-107)) 116 T ELT)) (-3908 (($ $ (-714)) 136 (|has| |#1| (-323)) ELT) (($ $) 134 (|has| |#1| (-323)) ELT)) (-4098 (((-766 (-857)) $) 109 T ELT) (((-857) $) 161 T ELT)) (-3323 (((-1111 |#1|)) 163 T ELT)) (-1767 (($) 142 (|has| |#1| (-323)) ELT)) (-1699 (($) 155 (|has| |#1| (-323)) ELT)) (-3362 (((-1207 |#1|) $) 167 T ELT) (((-647 |#1|) (-1207 $)) 166 T ELT)) (-2824 (((-3 (-1207 $) "failed") (-647 $)) 139 (|has| |#1| (-323)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT) (($ |#1|) 117 T ELT)) (-2823 (($ $) 138 (|has| |#1| (-323)) ELT) (((-649 $) $) 100 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2113 (((-1207 $)) 169 T ELT) (((-1207 $) (-857)) 168 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-4083 (((-85) $) 112 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-4078 (($ $) 106 (|has| |#1| (-323)) ELT) (($ $ (-714)) 105 (|has| |#1| (-323)) ELT)) (-2790 (($ $ (-714)) 137 (|has| |#1| (-323)) ELT) (($ $) 135 (|has| |#1| (-323)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) -(((-283 |#1|) (-113) (-318)) (T -283)) -((-2113 (*1 *2) (-12 (-4 *3 (-318)) (-5 *2 (-1207 *1)) (-4 *1 (-283 *3)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-857)) (-4 *4 (-318)) (-5 *2 (-1207 *1)) (-4 *1 (-283 *4)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-1207 *3)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-283 *4)) (-4 *4 (-318)) (-5 *2 (-647 *4)))) (-1890 (*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-318)) (-4 *1 (-283 *3)))) (-2115 (*1 *2 *1) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-1111 *3)))) (-3323 (*1 *2) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-1111 *3)))) (-4080 (*1 *2) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-857)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-857)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-318)))) (-3470 (*1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-318)))) (-2115 (*1 *2 *1 *3) (-12 (-5 *3 (-857)) (-4 *4 (-323)) (-4 *4 (-318)) (-5 *2 (-1111 *1)) (-4 *1 (-283 *4)))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-857)) (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)))) (-3470 (*1 *1 *1 *2) (-12 (-5 *2 (-857)) (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)))) (-1699 (*1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-323)) (-4 *2 (-318)))) (-2114 (*1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-323)) (-4 *2 (-318)))) (-2112 (*1 *2 *1) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)) (-5 *2 (-85)))) (-2527 (*1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-323)) (-4 *2 (-318)))) (-1698 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 *3)) (-4 *3 (-323)) (-4 *1 (-283 *3)) (-4 *3 (-318)))) (-1697 (*1 *2 *1) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)) (-5 *2 (-1111 *3)))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)) (-5 *2 (-1111 *3)))) (-1696 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)) (-5 *2 (-1111 *3))))) -(-13 (-1226 |t#1|) (-978 |t#1|) (-10 -8 (-15 -2113 ((-1207 $))) (-15 -2113 ((-1207 $) (-857))) (-15 -3362 ((-1207 |t#1|) $)) (-15 -3362 ((-647 |t#1|) (-1207 $))) (-15 -1890 ($ (-1207 |t#1|))) (-15 -2115 ((-1111 |t#1|) $)) (-15 -3323 ((-1111 |t#1|))) (-15 -4080 ((-857))) (-15 -4098 ((-857) $)) (-15 -3254 (|t#1| $)) (-15 -3470 (|t#1| $)) (IF (|has| |t#1| (-323)) (PROGN (-6 (-305)) (-15 -2115 ((-1111 $) $ (-857))) (-15 -3254 ($ $ (-857))) (-15 -3470 ($ $ (-857))) (-15 -1699 ($)) (-15 -2114 ($)) (-15 -2112 ((-85) $)) (-15 -2527 ($)) (-15 -1698 ($ $ (-1111 |t#1|))) (-15 -1697 ((-1111 |t#1|) $)) (-15 -1696 ((-1111 |t#1|) $)) (-15 -1696 ((-3 (-1111 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) -3677 (|has| |#1| (-323)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-186 $) |has| |#1| (-323)) ((-190) |has| |#1| (-323)) ((-189) |has| |#1| (-323)) ((-200) . T) ((-244) . T) ((-261) . T) ((-1226 |#1|) . T) ((-318) . T) ((-356) -3677 (|has| |#1| (-323)) (|has| |#1| (-118))) ((-323) |has| |#1| (-323)) ((-305) |has| |#1| (-323)) ((-406) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 |#1|) . T) ((-598 $) . T) ((-675 (-361 (-499))) . T) ((-675 |#1|) . T) ((-675 $) . T) ((-684) . T) ((-859) . T) ((-978 |#1|) . T) ((-991 (-361 (-499))) . T) ((-991 |#1|) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 |#1|) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1092) |has| |#1| (-323)) ((-1157) . T) ((-1162) . T) ((-1215 |#1|) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-1717 (($ (-1116) $) 101 T ELT)) (-1708 (($) 90 T ELT)) (-1700 (((-1060) (-1060)) 9 T ELT)) (-1707 (($) 91 T ELT)) (-1711 (($) 105 T ELT) (($ (-268 (-657))) 113 T ELT) (($ (-268 (-659))) 109 T ELT) (($ (-268 (-652))) 117 T ELT) (($ (-268 (-333))) 124 T ELT) (($ (-268 (-499))) 120 T ELT) (($ (-268 (-142 (-333)))) 128 T ELT)) (-1716 (($ (-1116) $) 102 T ELT)) (-1706 (($ (-599 (-797))) 92 T ELT)) (-1702 (((-1213) $) 88 T ELT)) (-1704 (((-3 (|:| |Null| #1="null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 32 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1715 (($ (-1060)) 59 T ELT)) (-1701 (((-1043) $) 29 T ELT)) (-1718 (($ (-1032 (-884 (-499))) $) 98 T ELT) (($ (-1032 (-884 (-499))) (-884 (-499)) $) 99 T ELT)) (-1714 (($ (-1060)) 100 T ELT)) (-1710 (($ (-1116) $) 130 T ELT) (($ (-1116) $ $) 131 T ELT)) (-1705 (($ (-1117) (-599 (-1117))) 89 T ELT)) (-1713 (($ (-1099)) 95 T ELT) (($ (-599 (-1099))) 93 T ELT)) (-4096 (((-797) $) 133 T ELT)) (-1703 (((-3 (|:| |nullBranch| #1#) (|:| |assignmentBranch| (-2 (|:| |var| (-1117)) (|:| |arrayIndex| (-599 (-884 (-499)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-85)) (|:| -3391 (-797)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1117)) (|:| |rand| (-797)) (|:| |ints2Floats?| (-85)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1116)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3543 (-85)) (|:| -3542 (-2 (|:| |ints2Floats?| (-85)) (|:| -3391 (-797)))))) (|:| |blockBranch| (-599 $)) (|:| |commentBranch| (-599 (-1099))) (|:| |callBranch| (-1099)) (|:| |forBranch| (-2 (|:| -1539 (-1032 (-884 (-499)))) (|:| |span| (-884 (-499))) (|:| -3371 $))) (|:| |labelBranch| (-1060)) (|:| |loopBranch| (-2 (|:| |switch| (-1116)) (|:| -3371 $))) (|:| |commonBranch| (-2 (|:| -3690 (-1117)) (|:| |contents| (-599 (-1117))))) (|:| |printBranch| (-599 (-797)))) $) 50 T ELT)) (-1712 (($ (-1099)) 203 T ELT)) (-1709 (($ (-599 $)) 129 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2705 (($ (-1117) (-1099)) 136 T ELT) (($ (-1117) (-268 (-659))) 176 T ELT) (($ (-1117) (-268 (-657))) 177 T ELT) (($ (-1117) (-268 (-652))) 178 T ELT) (($ (-1117) (-647 (-659))) 139 T ELT) (($ (-1117) (-647 (-657))) 142 T ELT) (($ (-1117) (-647 (-652))) 145 T ELT) (($ (-1117) (-1207 (-659))) 148 T ELT) (($ (-1117) (-1207 (-657))) 151 T ELT) (($ (-1117) (-1207 (-652))) 154 T ELT) (($ (-1117) (-647 (-268 (-659)))) 157 T ELT) (($ (-1117) (-647 (-268 (-657)))) 160 T ELT) (($ (-1117) (-647 (-268 (-652)))) 163 T ELT) (($ (-1117) (-1207 (-268 (-659)))) 166 T ELT) (($ (-1117) (-1207 (-268 (-657)))) 169 T ELT) (($ (-1117) (-1207 (-268 (-652)))) 172 T ELT) (($ (-1117) (-599 (-884 (-499))) (-268 (-659))) 173 T ELT) (($ (-1117) (-599 (-884 (-499))) (-268 (-657))) 174 T ELT) (($ (-1117) (-599 (-884 (-499))) (-268 (-652))) 175 T ELT) (($ (-1117) (-268 (-499))) 200 T ELT) (($ (-1117) (-268 (-333))) 201 T ELT) (($ (-1117) (-268 (-142 (-333)))) 202 T ELT) (($ (-1117) (-647 (-268 (-499)))) 181 T ELT) (($ (-1117) (-647 (-268 (-333)))) 184 T ELT) (($ (-1117) (-647 (-268 (-142 (-333))))) 187 T ELT) (($ (-1117) (-1207 (-268 (-499)))) 190 T ELT) (($ (-1117) (-1207 (-268 (-333)))) 193 T ELT) (($ (-1117) (-1207 (-268 (-142 (-333))))) 196 T ELT) (($ (-1117) (-599 (-884 (-499))) (-268 (-499))) 197 T ELT) (($ (-1117) (-599 (-884 (-499))) (-268 (-333))) 198 T ELT) (($ (-1117) (-599 (-884 (-499))) (-268 (-142 (-333)))) 199 T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-284) (-13 (-1041) (-10 -8 (-15 -1718 ($ (-1032 (-884 (-499))) $)) (-15 -1718 ($ (-1032 (-884 (-499))) (-884 (-499)) $)) (-15 -1717 ($ (-1116) $)) (-15 -1716 ($ (-1116) $)) (-15 -1715 ($ (-1060))) (-15 -1714 ($ (-1060))) (-15 -1713 ($ (-1099))) (-15 -1713 ($ (-599 (-1099)))) (-15 -1712 ($ (-1099))) (-15 -1711 ($)) (-15 -1711 ($ (-268 (-657)))) (-15 -1711 ($ (-268 (-659)))) (-15 -1711 ($ (-268 (-652)))) (-15 -1711 ($ (-268 (-333)))) (-15 -1711 ($ (-268 (-499)))) (-15 -1711 ($ (-268 (-142 (-333))))) (-15 -1710 ($ (-1116) $)) (-15 -1710 ($ (-1116) $ $)) (-15 -2705 ($ (-1117) (-1099))) (-15 -2705 ($ (-1117) (-268 (-659)))) (-15 -2705 ($ (-1117) (-268 (-657)))) (-15 -2705 ($ (-1117) (-268 (-652)))) (-15 -2705 ($ (-1117) (-647 (-659)))) (-15 -2705 ($ (-1117) (-647 (-657)))) (-15 -2705 ($ (-1117) (-647 (-652)))) (-15 -2705 ($ (-1117) (-1207 (-659)))) (-15 -2705 ($ (-1117) (-1207 (-657)))) (-15 -2705 ($ (-1117) (-1207 (-652)))) (-15 -2705 ($ (-1117) (-647 (-268 (-659))))) (-15 -2705 ($ (-1117) (-647 (-268 (-657))))) (-15 -2705 ($ (-1117) (-647 (-268 (-652))))) (-15 -2705 ($ (-1117) (-1207 (-268 (-659))))) (-15 -2705 ($ (-1117) (-1207 (-268 (-657))))) (-15 -2705 ($ (-1117) (-1207 (-268 (-652))))) (-15 -2705 ($ (-1117) (-599 (-884 (-499))) (-268 (-659)))) (-15 -2705 ($ (-1117) (-599 (-884 (-499))) (-268 (-657)))) (-15 -2705 ($ (-1117) (-599 (-884 (-499))) (-268 (-652)))) (-15 -2705 ($ (-1117) (-268 (-499)))) (-15 -2705 ($ (-1117) (-268 (-333)))) (-15 -2705 ($ (-1117) (-268 (-142 (-333))))) (-15 -2705 ($ (-1117) (-647 (-268 (-499))))) (-15 -2705 ($ (-1117) (-647 (-268 (-333))))) (-15 -2705 ($ (-1117) (-647 (-268 (-142 (-333)))))) (-15 -2705 ($ (-1117) (-1207 (-268 (-499))))) (-15 -2705 ($ (-1117) (-1207 (-268 (-333))))) (-15 -2705 ($ (-1117) (-1207 (-268 (-142 (-333)))))) (-15 -2705 ($ (-1117) (-599 (-884 (-499))) (-268 (-499)))) (-15 -2705 ($ (-1117) (-599 (-884 (-499))) (-268 (-333)))) (-15 -2705 ($ (-1117) (-599 (-884 (-499))) (-268 (-142 (-333))))) (-15 -1709 ($ (-599 $))) (-15 -1708 ($)) (-15 -1707 ($)) (-15 -1706 ($ (-599 (-797)))) (-15 -1705 ($ (-1117) (-599 (-1117)))) (-15 -1704 ((-3 (|:| |Null| #1="null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1703 ((-3 (|:| |nullBranch| #1#) (|:| |assignmentBranch| (-2 (|:| |var| (-1117)) (|:| |arrayIndex| (-599 (-884 (-499)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-85)) (|:| -3391 (-797)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1117)) (|:| |rand| (-797)) (|:| |ints2Floats?| (-85)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1116)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3543 (-85)) (|:| -3542 (-2 (|:| |ints2Floats?| (-85)) (|:| -3391 (-797)))))) (|:| |blockBranch| (-599 $)) (|:| |commentBranch| (-599 (-1099))) (|:| |callBranch| (-1099)) (|:| |forBranch| (-2 (|:| -1539 (-1032 (-884 (-499)))) (|:| |span| (-884 (-499))) (|:| -3371 $))) (|:| |labelBranch| (-1060)) (|:| |loopBranch| (-2 (|:| |switch| (-1116)) (|:| -3371 $))) (|:| |commonBranch| (-2 (|:| -3690 (-1117)) (|:| |contents| (-599 (-1117))))) (|:| |printBranch| (-599 (-797)))) $)) (-15 -1702 ((-1213) $)) (-15 -1701 ((-1043) $)) (-15 -1700 ((-1060) (-1060)))))) (T -284)) -((-1718 (*1 *1 *2 *1) (-12 (-5 *2 (-1032 (-884 (-499)))) (-5 *1 (-284)))) (-1718 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1032 (-884 (-499)))) (-5 *3 (-884 (-499))) (-5 *1 (-284)))) (-1717 (*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-284)))) (-1716 (*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-284)))) (-1715 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-284)))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-284)))) (-1713 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-284)))) (-1713 (*1 *1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-284)))) (-1712 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-284)))) (-1711 (*1 *1) (-5 *1 (-284))) (-1711 (*1 *1 *2) (-12 (-5 *2 (-268 (-657))) (-5 *1 (-284)))) (-1711 (*1 *1 *2) (-12 (-5 *2 (-268 (-659))) (-5 *1 (-284)))) (-1711 (*1 *1 *2) (-12 (-5 *2 (-268 (-652))) (-5 *1 (-284)))) (-1711 (*1 *1 *2) (-12 (-5 *2 (-268 (-333))) (-5 *1 (-284)))) (-1711 (*1 *1 *2) (-12 (-5 *2 (-268 (-499))) (-5 *1 (-284)))) (-1711 (*1 *1 *2) (-12 (-5 *2 (-268 (-142 (-333)))) (-5 *1 (-284)))) (-1710 (*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-284)))) (-1710 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1099)) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-659))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-657))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-652))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-659))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-657))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-652))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-659))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-657))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-652))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-659)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-657)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-652)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-659)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-657)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-652)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-659))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-657))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-652))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-499))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-333))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-142 (-333)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-499)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-333)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-142 (-333))))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-499)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-333)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-142 (-333))))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-499))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-333))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-142 (-333)))) (-5 *1 (-284)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-5 *1 (-284)))) (-1708 (*1 *1) (-5 *1 (-284))) (-1707 (*1 *1) (-5 *1 (-284))) (-1706 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-284)))) (-1705 (*1 *1 *2 *3) (-12 (-5 *3 (-599 (-1117))) (-5 *2 (-1117)) (-5 *1 (-284)))) (-1704 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-284)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1117)) (|:| |arrayIndex| (-599 (-884 (-499)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-85)) (|:| -3391 (-797)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1117)) (|:| |rand| (-797)) (|:| |ints2Floats?| (-85)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1116)) (|:| |thenClause| (-284)) (|:| |elseClause| (-284)))) (|:| |returnBranch| (-2 (|:| -3543 (-85)) (|:| -3542 (-2 (|:| |ints2Floats?| (-85)) (|:| -3391 (-797)))))) (|:| |blockBranch| (-599 (-284))) (|:| |commentBranch| (-599 (-1099))) (|:| |callBranch| (-1099)) (|:| |forBranch| (-2 (|:| -1539 (-1032 (-884 (-499)))) (|:| |span| (-884 (-499))) (|:| -3371 (-284)))) (|:| |labelBranch| (-1060)) (|:| |loopBranch| (-2 (|:| |switch| (-1116)) (|:| -3371 (-284)))) (|:| |commonBranch| (-2 (|:| -3690 (-1117)) (|:| |contents| (-599 (-1117))))) (|:| |printBranch| (-599 (-797))))) (-5 *1 (-284)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-284)))) (-1701 (*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-284)))) (-1700 (*1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-284))))) -((-2687 (((-85) $ $) NIL T ELT)) (-1719 (((-85) $) 13 T ELT)) (-3788 (($ |#1|) 10 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3784 (($ |#1|) 12 T ELT)) (-4096 (((-797) $) 19 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2337 ((|#1| $) 14 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 21 T ELT))) -(((-285 |#1|) (-13 (-781) (-10 -8 (-15 -3788 ($ |#1|)) (-15 -3784 ($ |#1|)) (-15 -1719 ((-85) $)) (-15 -2337 (|#1| $)))) (-781)) (T -285)) -((-3788 (*1 *1 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-781)))) (-3784 (*1 *1 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-781)))) (-1719 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-285 *3)) (-4 *3 (-781)))) (-2337 (*1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-781))))) -((-1720 (((-284) (-1117) (-884 (-499))) 23 T ELT)) (-1721 (((-284) (-1117) (-884 (-499))) 27 T ELT)) (-2434 (((-284) (-1117) (-1032 (-884 (-499))) (-1032 (-884 (-499)))) 26 T ELT) (((-284) (-1117) (-884 (-499)) (-884 (-499))) 24 T ELT)) (-1722 (((-284) (-1117) (-884 (-499))) 31 T ELT))) -(((-286) (-10 -7 (-15 -1720 ((-284) (-1117) (-884 (-499)))) (-15 -2434 ((-284) (-1117) (-884 (-499)) (-884 (-499)))) (-15 -2434 ((-284) (-1117) (-1032 (-884 (-499))) (-1032 (-884 (-499))))) (-15 -1721 ((-284) (-1117) (-884 (-499)))) (-15 -1722 ((-284) (-1117) (-884 (-499)))))) (T -286)) -((-1722 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-884 (-499))) (-5 *2 (-284)) (-5 *1 (-286)))) (-1721 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-884 (-499))) (-5 *2 (-284)) (-5 *1 (-286)))) (-2434 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-1032 (-884 (-499)))) (-5 *2 (-284)) (-5 *1 (-286)))) (-2434 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-884 (-499))) (-5 *2 (-284)) (-5 *1 (-286)))) (-1720 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-884 (-499))) (-5 *2 (-284)) (-5 *1 (-286))))) -((-2687 (((-85) $ $) NIL T ELT)) (-1723 (((-460) $) 20 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1724 (((-896 (-714)) $) 18 T ELT)) (-1726 (((-208) $) 7 T ELT)) (-4096 (((-797) $) 26 T ELT)) (-2307 (((-896 (-158 (-112))) $) 16 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-1725 (((-599 (-807 (-1122) (-714))) $) 12 T ELT)) (-3174 (((-85) $ $) 22 T ELT))) -(((-287) (-13 (-1041) (-10 -8 (-15 -1726 ((-208) $)) (-15 -1725 ((-599 (-807 (-1122) (-714))) $)) (-15 -1724 ((-896 (-714)) $)) (-15 -2307 ((-896 (-158 (-112))) $)) (-15 -1723 ((-460) $))))) (T -287)) -((-1726 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-287)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-599 (-807 (-1122) (-714)))) (-5 *1 (-287)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-896 (-714))) (-5 *1 (-287)))) (-2307 (*1 *2 *1) (-12 (-5 *2 (-896 (-158 (-112)))) (-5 *1 (-287)))) (-1723 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-287))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3992 (($ $) 33 T ELT)) (-1729 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1727 (((-1207 |#4|) $) 132 T ELT)) (-2071 (((-367 |#2| (-361 |#2|) |#3| |#4|) $) 31 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (((-3 |#4| #1#) $) 36 T ELT)) (-1728 (((-1207 |#4|) $) 124 T ELT)) (-1730 (($ (-367 |#2| (-361 |#2|) |#3| |#4|)) 41 T ELT) (($ |#4|) 43 T ELT) (($ |#1| |#1|) 45 T ELT) (($ |#1| |#1| (-499)) 47 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 49 T ELT)) (-3575 (((-2 (|:| -2442 (-367 |#2| (-361 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39 T ELT)) (-4096 (((-797) $) 17 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 14 T CONST)) (-3174 (((-85) $ $) 20 T ELT)) (-3987 (($ $) 27 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 25 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 23 T ELT))) -(((-288 |#1| |#2| |#3| |#4|) (-13 (-291 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1728 ((-1207 |#4|) $)) (-15 -1727 ((-1207 |#4|) $)))) (-318) (-1183 |#1|) (-1183 (-361 |#2|)) (-297 |#1| |#2| |#3|)) (T -288)) -((-1728 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-1207 *6)) (-5 *1 (-288 *3 *4 *5 *6)) (-4 *6 (-297 *3 *4 *5)))) (-1727 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-1207 *6)) (-5 *1 (-288 *3 *4 *5 *6)) (-4 *6 (-297 *3 *4 *5))))) -((-4108 (((-288 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-288 |#1| |#2| |#3| |#4|)) 33 T ELT))) -(((-289 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4108 ((-288 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-288 |#1| |#2| |#3| |#4|)))) (-318) (-1183 |#1|) (-1183 (-361 |#2|)) (-297 |#1| |#2| |#3|) (-318) (-1183 |#5|) (-1183 (-361 |#6|)) (-297 |#5| |#6| |#7|)) (T -289)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-288 *5 *6 *7 *8)) (-4 *5 (-318)) (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-4 *8 (-297 *5 *6 *7)) (-4 *9 (-318)) (-4 *10 (-1183 *9)) (-4 *11 (-1183 (-361 *10))) (-5 *2 (-288 *9 *10 *11 *12)) (-5 *1 (-289 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-297 *9 *10 *11))))) -((-1729 (((-85) $) 14 T ELT))) -(((-290 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1729 ((-85) |#1|))) (-291 |#2| |#3| |#4| |#5|) (-318) (-1183 |#2|) (-1183 (-361 |#3|)) (-297 |#2| |#3| |#4|)) (T -290)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3992 (($ $) 34 T ELT)) (-1729 (((-85) $) 33 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2071 (((-367 |#2| (-361 |#2|) |#3| |#4|) $) 40 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2527 (((-3 |#4| "failed") $) 32 T ELT)) (-1730 (($ (-367 |#2| (-361 |#2|) |#3| |#4|)) 39 T ELT) (($ |#4|) 38 T ELT) (($ |#1| |#1|) 37 T ELT) (($ |#1| |#1| (-499)) 36 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 31 T ELT)) (-3575 (((-2 (|:| -2442 (-367 |#2| (-361 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 35 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT))) -(((-291 |#1| |#2| |#3| |#4|) (-113) (-318) (-1183 |t#1|) (-1183 (-361 |t#2|)) (-297 |t#1| |t#2| |t#3|)) (T -291)) -((-2071 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5 *6)) (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 *3 *4 *5)) (-5 *2 (-367 *4 (-361 *4) *5 *6)))) (-1730 (*1 *1 *2) (-12 (-5 *2 (-367 *4 (-361 *4) *5 *6)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 *3 *4 *5)) (-4 *3 (-318)) (-4 *1 (-291 *3 *4 *5 *6)))) (-1730 (*1 *1 *2) (-12 (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-4 *1 (-291 *3 *4 *5 *2)) (-4 *2 (-297 *3 *4 *5)))) (-1730 (*1 *1 *2 *2) (-12 (-4 *2 (-318)) (-4 *3 (-1183 *2)) (-4 *4 (-1183 (-361 *3))) (-4 *1 (-291 *2 *3 *4 *5)) (-4 *5 (-297 *2 *3 *4)))) (-1730 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-499)) (-4 *2 (-318)) (-4 *4 (-1183 *2)) (-4 *5 (-1183 (-361 *4))) (-4 *1 (-291 *2 *4 *5 *6)) (-4 *6 (-297 *2 *4 *5)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5 *6)) (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 *3 *4 *5)) (-5 *2 (-2 (|:| -2442 (-367 *4 (-361 *4) *5 *6)) (|:| |principalPart| *6))))) (-3992 (*1 *1 *1) (-12 (-4 *1 (-291 *2 *3 *4 *5)) (-4 *2 (-318)) (-4 *3 (-1183 *2)) (-4 *4 (-1183 (-361 *3))) (-4 *5 (-297 *2 *3 *4)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5 *6)) (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 *3 *4 *5)) (-5 *2 (-85)))) (-2527 (*1 *2 *1) (|partial| -12 (-4 *1 (-291 *3 *4 *5 *2)) (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-4 *2 (-297 *3 *4 *5)))) (-1730 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-318)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 (-361 *3))) (-4 *1 (-291 *4 *3 *5 *2)) (-4 *2 (-297 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -2071 ((-367 |t#2| (-361 |t#2|) |t#3| |t#4|) $)) (-15 -1730 ($ (-367 |t#2| (-361 |t#2|) |t#3| |t#4|))) (-15 -1730 ($ |t#4|)) (-15 -1730 ($ |t#1| |t#1|)) (-15 -1730 ($ |t#1| |t#1| (-499))) (-15 -3575 ((-2 (|:| -2442 (-367 |t#2| (-361 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3992 ($ $)) (-15 -1729 ((-85) $)) (-15 -2527 ((-3 |t#4| "failed") $)) (-15 -1730 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-1041) . T) ((-1157) . T)) -((-3918 (($ $ (-1117) |#2|) NIL T ELT) (($ $ (-599 (-1117)) (-599 |#2|)) 20 T ELT) (($ $ (-599 (-247 |#2|))) 15 T ELT) (($ $ (-247 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL T ELT)) (-3950 (($ $ |#2|) 11 T ELT))) -(((-292 |#1| |#2|) (-10 -7 (-15 -3950 (|#1| |#1| |#2|)) (-15 -3918 (|#1| |#1| (-599 |#2|) (-599 |#2|))) (-15 -3918 (|#1| |#1| |#2| |#2|)) (-15 -3918 (|#1| |#1| (-247 |#2|))) (-15 -3918 (|#1| |#1| (-599 (-247 |#2|)))) (-15 -3918 (|#1| |#1| (-599 (-1117)) (-599 |#2|))) (-15 -3918 (|#1| |#1| (-1117) |#2|))) (-293 |#2|) (-1041)) (T -292)) -NIL -((-4108 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3918 (($ $ (-1117) |#1|) 17 (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) 16 (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-599 (-247 |#1|))) 15 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) 14 (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 12 (|has| |#1| (-263 |#1|)) ELT)) (-3950 (($ $ |#1|) 11 (|has| |#1| (-240 |#1| |#1|)) ELT))) -(((-293 |#1|) (-113) (-1041)) (T -293)) -((-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3)) (-4 *3 (-1041))))) -(-13 (-10 -8 (-15 -4108 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-240 |t#1| |t#1|)) (-6 (-240 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-263 |t#1|)) (-6 (-263 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-468 (-1117) |t#1|)) (-6 (-468 (-1117) |t#1|)) |%noBranch|))) -(((-240 |#1| $) |has| |#1| (-240 |#1| |#1|)) ((-263 |#1|) |has| |#1| (-263 |#1|)) ((-468 (-1117) |#1|) |has| |#1| (-468 (-1117) |#1|)) ((-468 |#1| |#1|) |has| |#1| (-263 |#1|)) ((-1157) |has| |#1| (-240 |#1| |#1|))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-1117)) $) NIL T ELT)) (-1731 (((-85)) 96 T ELT) (((-85) (-85)) 97 T ELT)) (-1633 (((-599 (-566 $)) $) NIL T ELT)) (-3632 (($ $) NIL T ELT)) (-3789 (($ $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1637 (($ $ (-247 $)) NIL T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) NIL T ELT)) (-3158 (($ $) NIL T ELT)) (-3630 (($ $) NIL T ELT)) (-3788 (($ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-566 $) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 $ #1#) (-268 |#3|)) 76 T ELT) (((-3 $ #1#) (-1117)) 103 T ELT) (((-3 $ #1#) (-268 (-499))) 64 (|has| |#3| (-978 (-499))) ELT) (((-3 $ #1#) (-361 (-884 (-499)))) 70 (|has| |#3| (-978 (-499))) ELT) (((-3 $ #1#) (-884 (-499))) 65 (|has| |#3| (-978 (-499))) ELT) (((-3 $ #1#) (-268 (-333))) 94 (|has| |#3| (-978 (-333))) ELT) (((-3 $ #1#) (-361 (-884 (-333)))) 88 (|has| |#3| (-978 (-333))) ELT) (((-3 $ #1#) (-884 (-333))) 83 (|has| |#3| (-978 (-333))) ELT)) (-3294 (((-566 $) $) NIL T ELT) ((|#3| $) NIL T ELT) (($ (-268 |#3|)) 77 T ELT) (($ (-1117)) 104 T ELT) (($ (-268 (-499))) 66 (|has| |#3| (-978 (-499))) ELT) (($ (-361 (-884 (-499)))) 71 (|has| |#3| (-978 (-499))) ELT) (($ (-884 (-499))) 67 (|has| |#3| (-978 (-499))) ELT) (($ (-268 (-333))) 95 (|has| |#3| (-978 (-333))) ELT) (($ (-361 (-884 (-333)))) 89 (|has| |#3| (-978 (-333))) ELT) (($ (-884 (-333))) 85 (|has| |#3| (-978 (-333))) ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3777 (($) 101 T ELT)) (-2692 (($ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1632 (((-599 (-86)) $) NIL T ELT)) (-3743 (((-86) (-86)) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2794 (((-85) $) NIL (|has| $ (-978 (-499))) ELT)) (-1630 (((-1111 $) (-566 $)) NIL (|has| $ (-989)) ELT)) (-4108 (($ (-1 $ $) (-566 $)) NIL T ELT)) (-1635 (((-3 (-566 $) #1#) $) NIL T ELT)) (-1835 (($ $) 99 T ELT)) (-4092 (($ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1634 (((-599 (-566 $)) $) NIL T ELT)) (-2336 (($ (-86) $) 98 T ELT) (($ (-86) (-599 $)) NIL T ELT)) (-2752 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1117)) NIL T ELT)) (-2722 (((-714) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1631 (((-85) $ $) NIL T ELT) (((-85) $ (-1117)) NIL T ELT)) (-4093 (($ $) NIL T ELT)) (-2795 (((-85) $) NIL (|has| $ (-978 (-499))) ELT)) (-3918 (($ $ (-566 $) $) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) NIL T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ $))) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-1117) (-1 $ (-599 $))) NIL T ELT) (($ $ (-1117) (-1 $ $)) NIL T ELT) (($ $ (-599 (-86)) (-599 (-1 $ $))) NIL T ELT) (($ $ (-599 (-86)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-599 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-3950 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-599 $)) NIL T ELT)) (-1636 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3908 (($ $ (-1117)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT)) (-3323 (($ $) NIL (|has| $ (-989)) ELT)) (-3631 (($ $) NIL T ELT)) (-3784 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-566 $)) NIL T ELT) (($ |#3|) NIL T ELT) (($ (-499)) NIL T ELT) (((-268 |#3|) $) 102 T ELT)) (-3248 (((-714)) NIL T CONST)) (-2709 (($ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-2355 (((-85) (-86)) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3626 (($ $) NIL T ELT)) (-3624 (($ $) NIL T ELT)) (-3625 (($ $) NIL T ELT)) (-3523 (($ $) NIL T ELT)) (-2779 (($) 100 T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1117)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-714)) NIL T ELT) (($ $ (-857)) NIL T ELT)) (* (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-857) $) NIL T ELT))) -(((-294 |#1| |#2| |#3|) (-13 (-252) (-38 |#3|) (-978 |#3|) (-836 (-1117)) (-10 -8 (-15 -3294 ($ (-268 |#3|))) (-15 -3295 ((-3 $ #1="failed") (-268 |#3|))) (-15 -3294 ($ (-1117))) (-15 -3295 ((-3 $ #1#) (-1117))) (-15 -4096 ((-268 |#3|) $)) (IF (|has| |#3| (-978 (-499))) (PROGN (-15 -3294 ($ (-268 (-499)))) (-15 -3295 ((-3 $ #1#) (-268 (-499)))) (-15 -3294 ($ (-361 (-884 (-499))))) (-15 -3295 ((-3 $ #1#) (-361 (-884 (-499))))) (-15 -3294 ($ (-884 (-499)))) (-15 -3295 ((-3 $ #1#) (-884 (-499))))) |%noBranch|) (IF (|has| |#3| (-978 (-333))) (PROGN (-15 -3294 ($ (-268 (-333)))) (-15 -3295 ((-3 $ #1#) (-268 (-333)))) (-15 -3294 ($ (-361 (-884 (-333))))) (-15 -3295 ((-3 $ #1#) (-361 (-884 (-333))))) (-15 -3294 ($ (-884 (-333)))) (-15 -3295 ((-3 $ #1#) (-884 (-333))))) |%noBranch|) (-15 -3523 ($ $)) (-15 -3158 ($ $)) (-15 -4093 ($ $)) (-15 -4092 ($ $)) (-15 -1835 ($ $)) (-15 -3788 ($ $)) (-15 -3784 ($ $)) (-15 -3789 ($ $)) (-15 -3624 ($ $)) (-15 -3625 ($ $)) (-15 -3626 ($ $)) (-15 -3630 ($ $)) (-15 -3631 ($ $)) (-15 -3632 ($ $)) (-15 -3777 ($)) (-15 -3204 ((-599 (-1117)) $)) (-15 -1731 ((-85))) (-15 -1731 ((-85) (-85))))) (-599 (-1117)) (-599 (-1117)) (-343)) (T -294)) -((-3294 (*1 *1 *2) (-12 (-5 *2 (-268 *5)) (-4 *5 (-343)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-268 *5)) (-4 *5 (-343)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 *2)) (-14 *4 (-599 *2)) (-4 *5 (-343)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 *2)) (-14 *4 (-599 *2)) (-4 *5 (-343)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-268 *5)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-268 (-499))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-268 (-499))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-361 (-884 (-499)))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-361 (-884 (-499)))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-884 (-499))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-884 (-499))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-268 (-333))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-268 (-333))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-361 (-884 (-333)))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-361 (-884 (-333)))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-884 (-333))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-884 (-333))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3523 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3158 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-4093 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-4092 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-1835 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3788 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3784 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3789 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3624 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3625 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3626 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3630 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3631 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3632 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3777 (*1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3204 (*1 *2 *1) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-294 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-343)))) (-1731 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-1731 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 (((-844 |#1|) $) NIL T ELT) (($ $ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-844 |#1|) #1#) $) NIL T ELT)) (-3294 (((-844 |#1|) $) NIL T ELT)) (-1890 (($ (-1207 (-844 |#1|))) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1773 (((-85) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT) (($ $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2112 (((-85) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3254 (((-844 |#1|) $) NIL T ELT) (($ $ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 (-844 |#1|)) $) NIL T ELT) (((-1111 $) $ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2111 (((-857) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1697 (((-1111 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1696 (((-1111 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-3 (-1111 (-844 |#1|)) #1#) $ $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1698 (($ $ (-1111 (-844 |#1|))) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-844 |#1|) (-323)) CONST)) (-2518 (($ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-4081 (((-85) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) NIL T ELT) (((-857)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-3 (-714) #1#) $ $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| (-844 |#1|) (-323)) ELT) (($ $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-3323 (((-1111 (-844 |#1|))) NIL T ELT)) (-1767 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1699 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3362 (((-1207 (-844 |#1|)) $) NIL T ELT) (((-647 (-844 |#1|)) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-844 |#1|)) NIL T ELT)) (-2823 (($ $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT) (((-1207 $) (-857)) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-4078 (($ $) NIL (|has| (-844 |#1|) (-323)) ELT) (($ $ (-714)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| (-844 |#1|) (-323)) ELT) (($ $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT) (($ $ (-844 |#1|)) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ (-844 |#1|)) NIL T ELT) (($ (-844 |#1|) $) NIL T ELT))) -(((-295 |#1| |#2|) (-283 (-844 |#1|)) (-857) (-857)) (T -295)) -NIL -((-1740 (((-2 (|:| |num| (-1207 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1890 (($ (-1207 (-361 |#3|)) (-1207 $)) NIL T ELT) (($ (-1207 (-361 |#3|))) NIL T ELT) (($ (-1207 |#3|) |#3|) 172 T ELT)) (-1745 (((-1207 $) (-1207 $)) 156 T ELT)) (-1732 (((-599 (-599 |#2|))) 126 T ELT)) (-1757 (((-85) |#2| |#2|) 76 T ELT)) (-3643 (($ $) 148 T ELT)) (-3517 (((-714)) 171 T ELT)) (-1746 (((-1207 $) (-1207 $)) 219 T ELT)) (-1733 (((-599 (-884 |#2|)) (-1117)) 115 T ELT)) (-1749 (((-85) $) 168 T ELT)) (-1748 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1735 (((-3 |#3| #1="failed")) 52 T ELT)) (-1759 (((-714)) 183 T ELT)) (-3950 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1736 (((-3 |#3| #1#)) 71 T ELT)) (-3908 (($ $ (-1 (-361 |#3|) (-361 |#3|))) NIL T ELT) (($ $ (-1 (-361 |#3|) (-361 |#3|)) (-714)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-1747 (((-1207 $) (-1207 $)) 162 T ELT)) (-1734 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1758 (((-85)) 34 T ELT))) -(((-296 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -1732 ((-599 (-599 |#2|)))) (-15 -1733 ((-599 (-884 |#2|)) (-1117))) (-15 -1734 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1735 ((-3 |#3| #1="failed"))) (-15 -1736 ((-3 |#3| #1#))) (-15 -3950 (|#2| |#1| |#2| |#2|)) (-15 -3643 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1748 ((-85) |#1| |#3|)) (-15 -1748 ((-85) |#1| |#2|)) (-15 -1890 (|#1| (-1207 |#3|) |#3|)) (-15 -1740 ((-2 (|:| |num| (-1207 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1745 ((-1207 |#1|) (-1207 |#1|))) (-15 -1746 ((-1207 |#1|) (-1207 |#1|))) (-15 -1747 ((-1207 |#1|) (-1207 |#1|))) (-15 -1748 ((-85) |#1|)) (-15 -1749 ((-85) |#1|)) (-15 -1757 ((-85) |#2| |#2|)) (-15 -1758 ((-85))) (-15 -1759 ((-714))) (-15 -3517 ((-714))) (-15 -3908 (|#1| |#1| (-1 (-361 |#3|) (-361 |#3|)) (-714))) (-15 -3908 (|#1| |#1| (-1 (-361 |#3|) (-361 |#3|)))) (-15 -1890 (|#1| (-1207 (-361 |#3|)))) (-15 -1890 (|#1| (-1207 (-361 |#3|)) (-1207 |#1|)))) (-297 |#2| |#3| |#4|) (-1162) (-1183 |#2|) (-1183 (-361 |#3|))) (T -296)) -((-3517 (*1 *2) (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) (-5 *2 (-714)) (-5 *1 (-296 *3 *4 *5 *6)) (-4 *3 (-297 *4 *5 *6)))) (-1759 (*1 *2) (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) (-5 *2 (-714)) (-5 *1 (-296 *3 *4 *5 *6)) (-4 *3 (-297 *4 *5 *6)))) (-1758 (*1 *2) (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) (-5 *2 (-85)) (-5 *1 (-296 *3 *4 *5 *6)) (-4 *3 (-297 *4 *5 *6)))) (-1757 (*1 *2 *3 *3) (-12 (-4 *3 (-1162)) (-4 *5 (-1183 *3)) (-4 *6 (-1183 (-361 *5))) (-5 *2 (-85)) (-5 *1 (-296 *4 *3 *5 *6)) (-4 *4 (-297 *3 *5 *6)))) (-1736 (*1 *2) (|partial| -12 (-4 *4 (-1162)) (-4 *5 (-1183 (-361 *2))) (-4 *2 (-1183 *4)) (-5 *1 (-296 *3 *4 *2 *5)) (-4 *3 (-297 *4 *2 *5)))) (-1735 (*1 *2) (|partial| -12 (-4 *4 (-1162)) (-4 *5 (-1183 (-361 *2))) (-4 *2 (-1183 *4)) (-5 *1 (-296 *3 *4 *2 *5)) (-4 *3 (-297 *4 *2 *5)))) (-1733 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *5 (-1162)) (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-5 *2 (-599 (-884 *5))) (-5 *1 (-296 *4 *5 *6 *7)) (-4 *4 (-297 *5 *6 *7)))) (-1732 (*1 *2) (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) (-5 *2 (-599 (-599 *4))) (-5 *1 (-296 *3 *4 *5 *6)) (-4 *3 (-297 *4 *5 *6))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1740 (((-2 (|:| |num| (-1207 |#2|)) (|:| |den| |#2|)) $) 222 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 111 (|has| (-361 |#2|) (-318)) ELT)) (-2164 (($ $) 112 (|has| (-361 |#2|) (-318)) ELT)) (-2162 (((-85) $) 114 (|has| (-361 |#2|) (-318)) ELT)) (-1880 (((-647 (-361 |#2|)) (-1207 $)) 58 T ELT) (((-647 (-361 |#2|))) 74 T ELT)) (-3470 (((-361 |#2|) $) 64 T ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) 164 (|has| (-361 |#2|) (-305)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 131 (|has| (-361 |#2|) (-318)) ELT)) (-4121 (((-359 $) $) 132 (|has| (-361 |#2|) (-318)) ELT)) (-1678 (((-85) $ $) 122 (|has| (-361 |#2|) (-318)) ELT)) (-3258 (((-714)) 105 (|has| (-361 |#2|) (-323)) ELT)) (-1754 (((-85)) 239 T ELT)) (-1753 (((-85) |#1|) 238 T ELT) (((-85) |#2|) 237 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 (-499) #1="failed") $) 191 (|has| (-361 |#2|) (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) 189 (|has| (-361 |#2|) (-978 (-361 (-499)))) ELT) (((-3 (-361 |#2|) #1#) $) 186 T ELT)) (-3294 (((-499) $) 190 (|has| (-361 |#2|) (-978 (-499))) ELT) (((-361 (-499)) $) 188 (|has| (-361 |#2|) (-978 (-361 (-499)))) ELT) (((-361 |#2|) $) 187 T ELT)) (-1890 (($ (-1207 (-361 |#2|)) (-1207 $)) 60 T ELT) (($ (-1207 (-361 |#2|))) 77 T ELT) (($ (-1207 |#2|) |#2|) 221 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| (-361 |#2|) (-305)) ELT)) (-2683 (($ $ $) 126 (|has| (-361 |#2|) (-318)) ELT)) (-1879 (((-647 (-361 |#2|)) $ (-1207 $)) 65 T ELT) (((-647 (-361 |#2|)) $) 72 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 183 (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 182 (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-361 |#2|))) (|:| |vec| (-1207 (-361 |#2|)))) (-647 $) (-1207 $)) 181 T ELT) (((-647 (-361 |#2|)) (-647 $)) 180 T ELT)) (-1745 (((-1207 $) (-1207 $)) 227 T ELT)) (-3992 (($ |#3|) 175 T ELT) (((-3 $ "failed") (-361 |#3|)) 172 (|has| (-361 |#2|) (-318)) ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-1732 (((-599 (-599 |#1|))) 208 (|has| |#1| (-323)) ELT)) (-1757 (((-85) |#1| |#1|) 243 T ELT)) (-3231 (((-857)) 66 T ELT)) (-3115 (($) 108 (|has| (-361 |#2|) (-323)) ELT)) (-1752 (((-85)) 236 T ELT)) (-1751 (((-85) |#1|) 235 T ELT) (((-85) |#2|) 234 T ELT)) (-2682 (($ $ $) 125 (|has| (-361 |#2|) (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 120 (|has| (-361 |#2|) (-318)) ELT)) (-3643 (($ $) 214 T ELT)) (-2954 (($) 166 (|has| (-361 |#2|) (-305)) ELT)) (-1773 (((-85) $) 167 (|has| (-361 |#2|) (-305)) ELT)) (-1864 (($ $ (-714)) 158 (|has| (-361 |#2|) (-305)) ELT) (($ $) 157 (|has| (-361 |#2|) (-305)) ELT)) (-3873 (((-85) $) 133 (|has| (-361 |#2|) (-318)) ELT)) (-3922 (((-857) $) 169 (|has| (-361 |#2|) (-305)) ELT) (((-766 (-857)) $) 155 (|has| (-361 |#2|) (-305)) ELT)) (-2528 (((-85) $) 40 T ELT)) (-3517 (((-714)) 246 T ELT)) (-1746 (((-1207 $) (-1207 $)) 228 T ELT)) (-3254 (((-361 |#2|) $) 63 T ELT)) (-1733 (((-599 (-884 |#1|)) (-1117)) 209 (|has| |#1| (-318)) ELT)) (-3585 (((-649 $) $) 159 (|has| (-361 |#2|) (-305)) ELT)) (-1675 (((-3 (-599 $) #2="failed") (-599 $) $) 129 (|has| (-361 |#2|) (-318)) ELT)) (-2115 ((|#3| $) 56 (|has| (-361 |#2|) (-318)) ELT)) (-2111 (((-857) $) 107 (|has| (-361 |#2|) (-323)) ELT)) (-3200 ((|#3| $) 173 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 185 (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 184 (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-361 |#2|))) (|:| |vec| (-1207 (-361 |#2|)))) (-1207 $) $) 179 T ELT) (((-647 (-361 |#2|)) (-1207 $)) 178 T ELT)) (-1993 (($ (-599 $)) 118 (|has| (-361 |#2|) (-318)) ELT) (($ $ $) 117 (|has| (-361 |#2|) (-318)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1741 (((-647 (-361 |#2|))) 223 T ELT)) (-1743 (((-647 (-361 |#2|))) 225 T ELT)) (-2601 (($ $) 134 (|has| (-361 |#2|) (-318)) ELT)) (-1738 (($ (-1207 |#2|) |#2|) 219 T ELT)) (-1742 (((-647 (-361 |#2|))) 224 T ELT)) (-1744 (((-647 (-361 |#2|))) 226 T ELT)) (-1737 (((-2 (|:| |num| (-647 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 218 T ELT)) (-1739 (((-2 (|:| |num| (-1207 |#2|)) (|:| |den| |#2|)) $) 220 T ELT)) (-1750 (((-1207 $)) 232 T ELT)) (-4068 (((-1207 $)) 233 T ELT)) (-1749 (((-85) $) 231 T ELT)) (-1748 (((-85) $) 230 T ELT) (((-85) $ |#1|) 217 T ELT) (((-85) $ |#2|) 216 T ELT)) (-3586 (($) 160 (|has| (-361 |#2|) (-305)) CONST)) (-2518 (($ (-857)) 106 (|has| (-361 |#2|) (-323)) ELT)) (-1735 (((-3 |#2| "failed")) 211 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1759 (((-714)) 245 T ELT)) (-2527 (($) 177 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 119 (|has| (-361 |#2|) (-318)) ELT)) (-3282 (($ (-599 $)) 116 (|has| (-361 |#2|) (-318)) ELT) (($ $ $) 115 (|has| (-361 |#2|) (-318)) ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) 163 (|has| (-361 |#2|) (-305)) ELT)) (-3882 (((-359 $) $) 130 (|has| (-361 |#2|) (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| (-361 |#2|) (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 127 (|has| (-361 |#2|) (-318)) ELT)) (-3606 (((-3 $ "failed") $ $) 110 (|has| (-361 |#2|) (-318)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 121 (|has| (-361 |#2|) (-318)) ELT)) (-1677 (((-714) $) 123 (|has| (-361 |#2|) (-318)) ELT)) (-3950 ((|#1| $ |#1| |#1|) 213 T ELT)) (-1736 (((-3 |#2| "failed")) 212 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 124 (|has| (-361 |#2|) (-318)) ELT)) (-3907 (((-361 |#2|) (-1207 $)) 59 T ELT) (((-361 |#2|)) 73 T ELT)) (-1865 (((-714) $) 168 (|has| (-361 |#2|) (-305)) ELT) (((-3 (-714) "failed") $ $) 156 (|has| (-361 |#2|) (-305)) ELT)) (-3908 (($ $ (-1 (-361 |#2|) (-361 |#2|))) 142 (|has| (-361 |#2|) (-318)) ELT) (($ $ (-1 (-361 |#2|) (-361 |#2|)) (-714)) 141 (|has| (-361 |#2|) (-318)) ELT) (($ $ (-1 |#2| |#2|)) 215 T ELT) (($ $ (-599 (-1117)) (-599 (-714))) 147 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-2681 (|has| (-361 |#2|) (-838 (-1117))) (|has| (-361 |#2|) (-318)))) ELT) (($ $ (-1117) (-714)) 146 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-2681 (|has| (-361 |#2|) (-838 (-1117))) (|has| (-361 |#2|) (-318)))) ELT) (($ $ (-599 (-1117))) 145 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-2681 (|has| (-361 |#2|) (-838 (-1117))) (|has| (-361 |#2|) (-318)))) ELT) (($ $ (-1117)) 143 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-2681 (|has| (-361 |#2|) (-838 (-1117))) (|has| (-361 |#2|) (-318)))) ELT) (($ $ (-714)) 153 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-189))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-190))) (-2681 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT) (($ $) 151 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-189))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-190))) (-2681 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT)) (-2526 (((-647 (-361 |#2|)) (-1207 $) (-1 (-361 |#2|) (-361 |#2|))) 171 (|has| (-361 |#2|) (-318)) ELT)) (-3323 ((|#3|) 176 T ELT)) (-1767 (($) 165 (|has| (-361 |#2|) (-305)) ELT)) (-3362 (((-1207 (-361 |#2|)) $ (-1207 $)) 62 T ELT) (((-647 (-361 |#2|)) (-1207 $) (-1207 $)) 61 T ELT) (((-1207 (-361 |#2|)) $) 79 T ELT) (((-647 (-361 |#2|)) (-1207 $)) 78 T ELT)) (-4122 (((-1207 (-361 |#2|)) $) 76 T ELT) (($ (-1207 (-361 |#2|))) 75 T ELT) ((|#3| $) 192 T ELT) (($ |#3|) 174 T ELT)) (-2824 (((-3 (-1207 $) "failed") (-647 $)) 162 (|has| (-361 |#2|) (-305)) ELT)) (-1747 (((-1207 $) (-1207 $)) 229 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 |#2|)) 49 T ELT) (($ (-361 (-499))) 104 (-3677 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-978 (-361 (-499))))) ELT) (($ $) 109 (|has| (-361 |#2|) (-318)) ELT)) (-2823 (($ $) 161 (|has| (-361 |#2|) (-305)) ELT) (((-649 $) $) 55 (|has| (-361 |#2|) (-118)) ELT)) (-2565 ((|#3| $) 57 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1756 (((-85)) 242 T ELT)) (-1755 (((-85) |#1|) 241 T ELT) (((-85) |#2|) 240 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2113 (((-1207 $)) 80 T ELT)) (-2163 (((-85) $ $) 113 (|has| (-361 |#2|) (-318)) ELT)) (-1734 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 210 T ELT)) (-1758 (((-85)) 244 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1 (-361 |#2|) (-361 |#2|))) 140 (|has| (-361 |#2|) (-318)) ELT) (($ $ (-1 (-361 |#2|) (-361 |#2|)) (-714)) 139 (|has| (-361 |#2|) (-318)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 150 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-2681 (|has| (-361 |#2|) (-838 (-1117))) (|has| (-361 |#2|) (-318)))) ELT) (($ $ (-1117) (-714)) 149 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-2681 (|has| (-361 |#2|) (-838 (-1117))) (|has| (-361 |#2|) (-318)))) ELT) (($ $ (-599 (-1117))) 148 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-2681 (|has| (-361 |#2|) (-838 (-1117))) (|has| (-361 |#2|) (-318)))) ELT) (($ $ (-1117)) 144 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-2681 (|has| (-361 |#2|) (-838 (-1117))) (|has| (-361 |#2|) (-318)))) ELT) (($ $ (-714)) 154 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-189))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-190))) (-2681 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT) (($ $) 152 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-189))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-190))) (-2681 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 138 (|has| (-361 |#2|) (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 135 (|has| (-361 |#2|) (-318)) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 |#2|)) 51 T ELT) (($ (-361 |#2|) $) 50 T ELT) (($ (-361 (-499)) $) 137 (|has| (-361 |#2|) (-318)) ELT) (($ $ (-361 (-499))) 136 (|has| (-361 |#2|) (-318)) ELT))) -(((-297 |#1| |#2| |#3|) (-113) (-1162) (-1183 |t#1|) (-1183 (-361 |t#2|))) (T -297)) -((-3517 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-714)))) (-1759 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-714)))) (-1758 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1757 (*1 *2 *3 *3) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1756 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1755 (*1 *2 *3) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1755 (*1 *2 *3) (-12 (-4 *1 (-297 *4 *3 *5)) (-4 *4 (-1162)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 (-361 *3))) (-5 *2 (-85)))) (-1754 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1753 (*1 *2 *3) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1753 (*1 *2 *3) (-12 (-4 *1 (-297 *4 *3 *5)) (-4 *4 (-1162)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 (-361 *3))) (-5 *2 (-85)))) (-1752 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1751 (*1 *2 *3) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1751 (*1 *2 *3) (-12 (-4 *1 (-297 *4 *3 *5)) (-4 *4 (-1162)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 (-361 *3))) (-5 *2 (-85)))) (-4068 (*1 *2) (-12 (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5)))) (-1750 (*1 *2) (-12 (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1747 (*1 *2 *2) (-12 (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))))) (-1746 (*1 *2 *2) (-12 (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))))) (-1745 (*1 *2 *2) (-12 (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))))) (-1744 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-647 (-361 *4))))) (-1743 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-647 (-361 *4))))) (-1742 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-647 (-361 *4))))) (-1741 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-647 (-361 *4))))) (-1740 (*1 *2 *1) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-2 (|:| |num| (-1207 *4)) (|:| |den| *4))))) (-1890 (*1 *1 *2 *3) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-1183 *4)) (-4 *4 (-1162)) (-4 *1 (-297 *4 *3 *5)) (-4 *5 (-1183 (-361 *3))))) (-1739 (*1 *2 *1) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-2 (|:| |num| (-1207 *4)) (|:| |den| *4))))) (-1738 (*1 *1 *2 *3) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-1183 *4)) (-4 *4 (-1162)) (-4 *1 (-297 *4 *3 *5)) (-4 *5 (-1183 (-361 *3))))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-297 *4 *5 *6)) (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) (-5 *2 (-2 (|:| |num| (-647 *5)) (|:| |den| *5))))) (-1748 (*1 *2 *1 *3) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1748 (*1 *2 *1 *3) (-12 (-4 *1 (-297 *4 *3 *5)) (-4 *4 (-1162)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 (-361 *3))) (-5 *2 (-85)))) (-3908 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))))) (-3643 (*1 *1 *1) (-12 (-4 *1 (-297 *2 *3 *4)) (-4 *2 (-1162)) (-4 *3 (-1183 *2)) (-4 *4 (-1183 (-361 *3))))) (-3950 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-297 *2 *3 *4)) (-4 *2 (-1162)) (-4 *3 (-1183 *2)) (-4 *4 (-1183 (-361 *3))))) (-1736 (*1 *2) (|partial| -12 (-4 *1 (-297 *3 *2 *4)) (-4 *3 (-1162)) (-4 *4 (-1183 (-361 *2))) (-4 *2 (-1183 *3)))) (-1735 (*1 *2) (|partial| -12 (-4 *1 (-297 *3 *2 *4)) (-4 *3 (-1162)) (-4 *4 (-1183 (-361 *2))) (-4 *2 (-1183 *3)))) (-1734 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1183 *4)) (-4 *4 (-1162)) (-4 *6 (-1183 (-361 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-297 *4 *5 *6)))) (-1733 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *1 (-297 *4 *5 *6)) (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) (-4 *4 (-318)) (-5 *2 (-599 (-884 *4))))) (-1732 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-4 *3 (-323)) (-5 *2 (-599 (-599 *3)))))) -(-13 (-682 (-361 |t#2|) |t#3|) (-10 -8 (-15 -3517 ((-714))) (-15 -1759 ((-714))) (-15 -1758 ((-85))) (-15 -1757 ((-85) |t#1| |t#1|)) (-15 -1756 ((-85))) (-15 -1755 ((-85) |t#1|)) (-15 -1755 ((-85) |t#2|)) (-15 -1754 ((-85))) (-15 -1753 ((-85) |t#1|)) (-15 -1753 ((-85) |t#2|)) (-15 -1752 ((-85))) (-15 -1751 ((-85) |t#1|)) (-15 -1751 ((-85) |t#2|)) (-15 -4068 ((-1207 $))) (-15 -1750 ((-1207 $))) (-15 -1749 ((-85) $)) (-15 -1748 ((-85) $)) (-15 -1747 ((-1207 $) (-1207 $))) (-15 -1746 ((-1207 $) (-1207 $))) (-15 -1745 ((-1207 $) (-1207 $))) (-15 -1744 ((-647 (-361 |t#2|)))) (-15 -1743 ((-647 (-361 |t#2|)))) (-15 -1742 ((-647 (-361 |t#2|)))) (-15 -1741 ((-647 (-361 |t#2|)))) (-15 -1740 ((-2 (|:| |num| (-1207 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1890 ($ (-1207 |t#2|) |t#2|)) (-15 -1739 ((-2 (|:| |num| (-1207 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1738 ($ (-1207 |t#2|) |t#2|)) (-15 -1737 ((-2 (|:| |num| (-647 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1748 ((-85) $ |t#1|)) (-15 -1748 ((-85) $ |t#2|)) (-15 -3908 ($ $ (-1 |t#2| |t#2|))) (-15 -3643 ($ $)) (-15 -3950 (|t#1| $ |t#1| |t#1|)) (-15 -1736 ((-3 |t#2| "failed"))) (-15 -1735 ((-3 |t#2| "failed"))) (-15 -1734 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-318)) (-15 -1733 ((-599 (-884 |t#1|)) (-1117))) |%noBranch|) (IF (|has| |t#1| (-323)) (-15 -1732 ((-599 (-599 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-38 (-361 |#2|)) . T) ((-38 $) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-82 (-361 |#2|) (-361 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-118))) ((-120) |has| (-361 |#2|) (-120)) ((-571 (-361 (-499))) -3677 (|has| (-361 |#2|) (-978 (-361 (-499)))) (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-571 (-361 |#2|)) . T) ((-571 (-499)) . T) ((-571 $) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-568 (-797)) . T) ((-146) . T) ((-569 |#3|) . T) ((-186 $) -3677 (|has| (-361 |#2|) (-305)) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318)))) ((-184 (-361 |#2|)) |has| (-361 |#2|) (-318)) ((-190) -3677 (|has| (-361 |#2|) (-305)) (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318)))) ((-189) -3677 (|has| (-361 |#2|) (-305)) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318)))) ((-224 (-361 |#2|)) |has| (-361 |#2|) (-318)) ((-200) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-244) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-261) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-318) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-356) |has| (-361 |#2|) (-305)) ((-323) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-323))) ((-305) |has| (-361 |#2|) (-305)) ((-325 (-361 |#2|) |#3|) . T) ((-364 (-361 |#2|) |#3|) . T) ((-332 (-361 |#2|)) . T) ((-366 (-361 |#2|)) . T) ((-406) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-510) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-604 (-361 (-499))) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-604 (-361 |#2|)) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-361 (-499))) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-606 (-361 |#2|)) . T) ((-606 (-499)) |has| (-361 |#2|) (-596 (-499))) ((-606 $) . T) ((-598 (-361 (-499))) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-598 (-361 |#2|)) . T) ((-598 $) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-596 (-361 |#2|)) . T) ((-596 (-499)) |has| (-361 |#2|) (-596 (-499))) ((-675 (-361 (-499))) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-675 (-361 |#2|)) . T) ((-675 $) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-682 (-361 |#2|) |#3|) . T) ((-684) . T) ((-831 $ (-1117)) -3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117))))) ((-836 (-1117)) -12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) ((-838 (-1117)) -3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117))))) ((-859) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-978 (-361 (-499))) |has| (-361 |#2|) (-978 (-361 (-499)))) ((-978 (-361 |#2|)) . T) ((-978 (-499)) |has| (-361 |#2|) (-978 (-499))) ((-991 (-361 (-499))) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-991 (-361 |#2|)) . T) ((-991 $) . T) ((-996 (-361 (-499))) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-996 (-361 |#2|)) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1092) |has| (-361 |#2|) (-305)) ((-1157) . T) ((-1162) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318)))) -((-4108 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) -(((-298 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4108 (|#8| (-1 |#5| |#1|) |#4|))) (-1162) (-1183 |#1|) (-1183 (-361 |#2|)) (-297 |#1| |#2| |#3|) (-1162) (-1183 |#5|) (-1183 (-361 |#6|)) (-297 |#5| |#6| |#7|)) (T -298)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1162)) (-4 *8 (-1162)) (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-4 *9 (-1183 *8)) (-4 *2 (-297 *8 *9 *10)) (-5 *1 (-298 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-297 *5 *6 *7)) (-4 *10 (-1183 (-361 *9)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 (((-844 |#1|) $) NIL T ELT) (($ $ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-844 |#1|) #1#) $) NIL T ELT)) (-3294 (((-844 |#1|) $) NIL T ELT)) (-1890 (($ (-1207 (-844 |#1|))) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1773 (((-85) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT) (($ $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2112 (((-85) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3254 (((-844 |#1|) $) NIL T ELT) (($ $ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 (-844 |#1|)) $) NIL T ELT) (((-1111 $) $ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2111 (((-857) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1697 (((-1111 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1696 (((-1111 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-3 (-1111 (-844 |#1|)) #1#) $ $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1698 (($ $ (-1111 (-844 |#1|))) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-844 |#1|) (-323)) CONST)) (-2518 (($ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-4081 (((-85) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1760 (((-896 (-1060))) NIL T ELT)) (-2527 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) NIL T ELT) (((-857)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-3 (-714) #1#) $ $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| (-844 |#1|) (-323)) ELT) (($ $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-3323 (((-1111 (-844 |#1|))) NIL T ELT)) (-1767 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1699 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3362 (((-1207 (-844 |#1|)) $) NIL T ELT) (((-647 (-844 |#1|)) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-844 |#1|)) NIL T ELT)) (-2823 (($ $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT) (((-1207 $) (-857)) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-4078 (($ $) NIL (|has| (-844 |#1|) (-323)) ELT) (($ $ (-714)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| (-844 |#1|) (-323)) ELT) (($ $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT) (($ $ (-844 |#1|)) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ (-844 |#1|)) NIL T ELT) (($ (-844 |#1|) $) NIL T ELT))) -(((-299 |#1| |#2|) (-13 (-283 (-844 |#1|)) (-10 -7 (-15 -1760 ((-896 (-1060)))))) (-857) (-857)) (T -299)) -((-1760 (*1 *2) (-12 (-5 *2 (-896 (-1060))) (-5 *1 (-299 *3 *4)) (-14 *3 (-857)) (-14 *4 (-857))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 58 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 ((|#1| $) NIL T ELT) (($ $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) 56 (|has| |#1| (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| |#1| (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) 141 T ELT)) (-3294 ((|#1| $) 113 T ELT)) (-1890 (($ (-1207 |#1|)) 130 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) 124 (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) 159 (|has| |#1| (-323)) ELT)) (-1773 (((-85) $) 66 (|has| |#1| (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT) (($ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) 60 (|has| |#1| (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-2528 (((-85) $) 62 T ELT)) (-2114 (($) 161 (|has| |#1| (-323)) ELT)) (-2112 (((-85) $) NIL (|has| |#1| (-323)) ELT)) (-3254 ((|#1| $) NIL T ELT) (($ $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 |#1|) $) 117 T ELT) (((-1111 $) $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-2111 (((-857) $) 170 (|has| |#1| (-323)) ELT)) (-1697 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT)) (-1696 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-1111 |#1|) #1#) $ $) NIL (|has| |#1| (-323)) ELT)) (-1698 (($ $ (-1111 |#1|)) NIL (|has| |#1| (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 177 T ELT)) (-3586 (($) NIL (|has| |#1| (-323)) CONST)) (-2518 (($ (-857)) 96 (|has| |#1| (-323)) ELT)) (-4081 (((-85) $) 146 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1760 (((-896 (-1060))) 57 T ELT)) (-2527 (($) 157 (|has| |#1| (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) 119 (|has| |#1| (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) 90 T ELT) (((-857)) 91 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) 160 (|has| |#1| (-323)) ELT) (((-3 (-714) #1#) $ $) 153 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-3323 (((-1111 |#1|)) 122 T ELT)) (-1767 (($) 158 (|has| |#1| (-323)) ELT)) (-1699 (($) 166 (|has| |#1| (-323)) ELT)) (-3362 (((-1207 |#1|) $) 77 T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| |#1| (-323)) ELT)) (-4096 (((-797) $) 173 T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#1|) 100 T ELT)) (-2823 (($ $) NIL (|has| |#1| (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3248 (((-714)) 154 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) 143 T ELT) (((-1207 $) (-857)) 98 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) 67 T CONST)) (-2785 (($) 103 T CONST)) (-4078 (($ $) 107 (|has| |#1| (-323)) ELT) (($ $ (-714)) NIL (|has| |#1| (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-3174 (((-85) $ $) 65 T ELT)) (-4099 (($ $ $) 175 T ELT) (($ $ |#1|) 176 T ELT)) (-3987 (($ $) 156 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 86 T ELT)) (** (($ $ (-857)) 179 T ELT) (($ $ (-714)) 180 T ELT) (($ $ (-499)) 178 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 102 T ELT) (($ $ $) 101 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 174 T ELT))) -(((-300 |#1| |#2|) (-13 (-283 |#1|) (-10 -7 (-15 -1760 ((-896 (-1060)))))) (-305) (-1111 |#1|)) (T -300)) -((-1760 (*1 *2) (-12 (-5 *2 (-896 (-1060))) (-5 *1 (-300 *3 *4)) (-4 *3 (-305)) (-14 *4 (-1111 *3))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 ((|#1| $) NIL T ELT) (($ $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| |#1| (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| |#1| (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-1890 (($ (-1207 |#1|)) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) NIL (|has| |#1| (-323)) ELT)) (-1773 (((-85) $) NIL (|has| |#1| (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT) (($ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) NIL (|has| |#1| (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) NIL (|has| |#1| (-323)) ELT)) (-2112 (((-85) $) NIL (|has| |#1| (-323)) ELT)) (-3254 ((|#1| $) NIL T ELT) (($ $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 |#1|) $) NIL T ELT) (((-1111 $) $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-2111 (((-857) $) NIL (|has| |#1| (-323)) ELT)) (-1697 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT)) (-1696 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-1111 |#1|) #1#) $ $) NIL (|has| |#1| (-323)) ELT)) (-1698 (($ $ (-1111 |#1|)) NIL (|has| |#1| (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| |#1| (-323)) CONST)) (-2518 (($ (-857)) NIL (|has| |#1| (-323)) ELT)) (-4081 (((-85) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1760 (((-896 (-1060))) NIL T ELT)) (-2527 (($) NIL (|has| |#1| (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| |#1| (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) NIL T ELT) (((-857)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-714) #1#) $ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-3323 (((-1111 |#1|)) NIL T ELT)) (-1767 (($) NIL (|has| |#1| (-323)) ELT)) (-1699 (($) NIL (|has| |#1| (-323)) ELT)) (-3362 (((-1207 |#1|) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| |#1| (-323)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2823 (($ $) NIL (|has| |#1| (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT) (((-1207 $) (-857)) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-4078 (($ $) NIL (|has| |#1| (-323)) ELT) (($ $ (-714)) NIL (|has| |#1| (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-301 |#1| |#2|) (-13 (-283 |#1|) (-10 -7 (-15 -1760 ((-896 (-1060)))))) (-305) (-857)) (T -301)) -((-1760 (*1 *2) (-12 (-5 *2 (-896 (-1060))) (-5 *1 (-301 *3 *4)) (-4 *3 (-305)) (-14 *4 (-857))))) -((-1770 (((-714) (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060)))))) 61 T ELT)) (-1761 (((-896 (-1060)) (-1111 |#1|)) 112 T ELT)) (-1762 (((-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))) (-1111 |#1|)) 103 T ELT)) (-1763 (((-647 |#1|) (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060)))))) 113 T ELT)) (-1764 (((-3 (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))) "failed") (-857)) 13 T ELT)) (-1765 (((-3 (-1111 |#1|) (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060)))))) (-857)) 18 T ELT))) -(((-302 |#1|) (-10 -7 (-15 -1761 ((-896 (-1060)) (-1111 |#1|))) (-15 -1762 ((-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))) (-1111 |#1|))) (-15 -1763 ((-647 |#1|) (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))))) (-15 -1770 ((-714) (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))))) (-15 -1764 ((-3 (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))) "failed") (-857))) (-15 -1765 ((-3 (-1111 |#1|) (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060)))))) (-857)))) (-305)) (T -302)) -((-1765 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-3 (-1111 *4) (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060))))))) (-5 *1 (-302 *4)) (-4 *4 (-305)))) (-1764 (*1 *2 *3) (|partial| -12 (-5 *3 (-857)) (-5 *2 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) (-5 *1 (-302 *4)) (-4 *4 (-305)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) (-4 *4 (-305)) (-5 *2 (-714)) (-5 *1 (-302 *4)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) (-4 *4 (-305)) (-5 *2 (-647 *4)) (-5 *1 (-302 *4)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) (-5 *2 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) (-5 *1 (-302 *4)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) (-5 *2 (-896 (-1060))) (-5 *1 (-302 *4))))) -((-4096 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) -(((-303 |#1| |#2| |#3|) (-10 -7 (-15 -4096 (|#3| |#1|)) (-15 -4096 (|#1| |#3|))) (-283 |#2|) (-305) (-283 |#2|)) (T -303)) -((-4096 (*1 *2 *3) (-12 (-4 *4 (-305)) (-4 *2 (-283 *4)) (-5 *1 (-303 *2 *4 *3)) (-4 *3 (-283 *4)))) (-4096 (*1 *2 *3) (-12 (-4 *4 (-305)) (-4 *2 (-283 *4)) (-5 *1 (-303 *3 *4 *2)) (-4 *3 (-283 *4))))) -((-1773 (((-85) $) 65 T ELT)) (-3922 (((-766 (-857)) $) 26 T ELT) (((-857) $) 69 T ELT)) (-3585 (((-649 $) $) 21 T ELT)) (-3586 (($) 9 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 120 T ELT)) (-1865 (((-3 (-714) #1="failed") $ $) 98 T ELT) (((-714) $) 84 T ELT)) (-3908 (($ $) 8 T ELT) (($ $ (-714)) NIL T ELT)) (-1767 (($) 58 T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) 41 T ELT)) (-2823 (((-649 $) $) 50 T ELT) (($ $) 47 T ELT))) -(((-304 |#1|) (-10 -7 (-15 -3922 ((-857) |#1|)) (-15 -1865 ((-714) |#1|)) (-15 -1773 ((-85) |#1|)) (-15 -1767 (|#1|)) (-15 -2824 ((-3 (-1207 |#1|) #1="failed") (-647 |#1|))) (-15 -2823 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1|)) (-15 -3586 (|#1|)) (-15 -3585 ((-649 |#1|) |#1|)) (-15 -1865 ((-3 (-714) #1#) |#1| |#1|)) (-15 -3922 ((-766 (-857)) |#1|)) (-15 -2823 ((-649 |#1|) |#1|)) (-15 -2829 ((-1111 |#1|) (-1111 |#1|) (-1111 |#1|)))) (-305)) (T -304)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) 110 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3258 (((-714)) 120 T ELT)) (-3874 (($) 22 T CONST)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) 104 T ELT)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3115 (($) 123 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-2954 (($) 108 T ELT)) (-1773 (((-85) $) 107 T ELT)) (-1864 (($ $) 94 T ELT) (($ $ (-714)) 93 T ELT)) (-3873 (((-85) $) 86 T ELT)) (-3922 (((-766 (-857)) $) 96 T ELT) (((-857) $) 105 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3585 (((-649 $) $) 119 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 65 T ELT)) (-2111 (((-857) $) 122 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 85 T ELT)) (-3586 (($) 118 T CONST)) (-2518 (($ (-857)) 121 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) 111 T ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-1865 (((-3 (-714) "failed") $ $) 95 T ELT) (((-714) $) 106 T ELT)) (-3908 (($ $) 117 T ELT) (($ $ (-714)) 115 T ELT)) (-1767 (($) 109 T ELT)) (-2824 (((-3 (-1207 $) "failed") (-647 $)) 112 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT)) (-2823 (((-649 $) $) 97 T ELT) (($ $) 113 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $) 116 T ELT) (($ $ (-714)) 114 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 80 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT))) -(((-305) (-113)) (T -305)) -((-2823 (*1 *1 *1) (-4 *1 (-305))) (-2824 (*1 *2 *3) (|partial| -12 (-5 *3 (-647 *1)) (-4 *1 (-305)) (-5 *2 (-1207 *1)))) (-1769 (*1 *2) (-12 (-4 *1 (-305)) (-5 *2 (-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))))) (-1768 (*1 *2 *3) (-12 (-4 *1 (-305)) (-5 *3 (-499)) (-5 *2 (-1129 (-857) (-714))))) (-1767 (*1 *1) (-4 *1 (-305))) (-2954 (*1 *1) (-4 *1 (-305))) (-1773 (*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-85)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-714)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-857)))) (-1766 (*1 *2) (-12 (-4 *1 (-305)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-356) (-323) (-1092) (-190) (-10 -8 (-15 -2823 ($ $)) (-15 -2824 ((-3 (-1207 $) "failed") (-647 $))) (-15 -1769 ((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499)))))) (-15 -1768 ((-1129 (-857) (-714)) (-499))) (-15 -1767 ($)) (-15 -2954 ($)) (-15 -1773 ((-85) $)) (-15 -1865 ((-714) $)) (-15 -3922 ((-857) $)) (-15 -1766 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-200) . T) ((-244) . T) ((-261) . T) ((-318) . T) ((-356) . T) ((-323) . T) ((-406) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 $) . T) ((-675 (-361 (-499))) . T) ((-675 $) . T) ((-684) . T) ((-859) . T) ((-991 (-361 (-499))) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1092) . T) ((-1157) . T) ((-1162) . T)) -((-4069 (((-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|))) |#1|) 55 T ELT)) (-4068 (((-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|)))) 53 T ELT))) -(((-306 |#1| |#2| |#3|) (-10 -7 (-15 -4068 ((-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|))))) (-15 -4069 ((-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|))) |#1|))) (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $)))) (-1183 |#1|) (-364 |#1| |#2|)) (T -306)) -((-4069 (*1 *2 *3) (-12 (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *4 (-1183 *3)) (-5 *2 (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) (-5 *1 (-306 *3 *4 *5)) (-4 *5 (-364 *3 *4)))) (-4068 (*1 *2) (-12 (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *4 (-1183 *3)) (-5 *2 (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) (-5 *1 (-306 *3 *4 *5)) (-4 *5 (-364 *3 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 (((-844 |#1|) $) NIL T ELT) (($ $ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1770 (((-714)) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-844 |#1|) #1#) $) NIL T ELT)) (-3294 (((-844 |#1|) $) NIL T ELT)) (-1890 (($ (-1207 (-844 |#1|))) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1773 (((-85) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT) (($ $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2112 (((-85) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3254 (((-844 |#1|) $) NIL T ELT) (($ $ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 (-844 |#1|)) $) NIL T ELT) (((-1111 $) $ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2111 (((-857) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1697 (((-1111 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1696 (((-1111 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-3 (-1111 (-844 |#1|)) #1#) $ $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1698 (($ $ (-1111 (-844 |#1|))) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-844 |#1|) (-323)) CONST)) (-2518 (($ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-4081 (((-85) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1772 (((-1207 (-599 (-2 (|:| -3542 (-844 |#1|)) (|:| -2518 (-1060)))))) NIL T ELT)) (-1771 (((-647 (-844 |#1|))) NIL T ELT)) (-2527 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) NIL T ELT) (((-857)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-3 (-714) #1#) $ $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| (-844 |#1|) (-323)) ELT) (($ $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-3323 (((-1111 (-844 |#1|))) NIL T ELT)) (-1767 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1699 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3362 (((-1207 (-844 |#1|)) $) NIL T ELT) (((-647 (-844 |#1|)) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-844 |#1|)) NIL T ELT)) (-2823 (($ $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT) (((-1207 $) (-857)) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-4078 (($ $) NIL (|has| (-844 |#1|) (-323)) ELT) (($ $ (-714)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| (-844 |#1|) (-323)) ELT) (($ $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT) (($ $ (-844 |#1|)) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ (-844 |#1|)) NIL T ELT) (($ (-844 |#1|) $) NIL T ELT))) -(((-307 |#1| |#2|) (-13 (-283 (-844 |#1|)) (-10 -7 (-15 -1772 ((-1207 (-599 (-2 (|:| -3542 (-844 |#1|)) (|:| -2518 (-1060))))))) (-15 -1771 ((-647 (-844 |#1|)))) (-15 -1770 ((-714))))) (-857) (-857)) (T -307)) -((-1772 (*1 *2) (-12 (-5 *2 (-1207 (-599 (-2 (|:| -3542 (-844 *3)) (|:| -2518 (-1060)))))) (-5 *1 (-307 *3 *4)) (-14 *3 (-857)) (-14 *4 (-857)))) (-1771 (*1 *2) (-12 (-5 *2 (-647 (-844 *3))) (-5 *1 (-307 *3 *4)) (-14 *3 (-857)) (-14 *4 (-857)))) (-1770 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-307 *3 *4)) (-14 *3 (-857)) (-14 *4 (-857))))) -((-2687 (((-85) $ $) 73 T ELT)) (-3326 (((-85) $) 88 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 ((|#1| $) 106 T ELT) (($ $ (-857)) 104 (|has| |#1| (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) 170 (|has| |#1| (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1770 (((-714)) 103 T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) 187 (|has| |#1| (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) 127 T ELT)) (-3294 ((|#1| $) 105 T ELT)) (-1890 (($ (-1207 |#1|)) 71 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) 182 (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) 171 (|has| |#1| (-323)) ELT)) (-1773 (((-85) $) NIL (|has| |#1| (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT) (($ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) NIL (|has| |#1| (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) 113 (|has| |#1| (-323)) ELT)) (-2112 (((-85) $) 200 (|has| |#1| (-323)) ELT)) (-3254 ((|#1| $) 108 T ELT) (($ $ (-857)) 107 (|has| |#1| (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 |#1|) $) 214 T ELT) (((-1111 $) $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-2111 (((-857) $) 148 (|has| |#1| (-323)) ELT)) (-1697 (((-1111 |#1|) $) 87 (|has| |#1| (-323)) ELT)) (-1696 (((-1111 |#1|) $) 84 (|has| |#1| (-323)) ELT) (((-3 (-1111 |#1|) #1#) $ $) 96 (|has| |#1| (-323)) ELT)) (-1698 (($ $ (-1111 |#1|)) 83 (|has| |#1| (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 218 T ELT)) (-3586 (($) NIL (|has| |#1| (-323)) CONST)) (-2518 (($ (-857)) 150 (|has| |#1| (-323)) ELT)) (-4081 (((-85) $) 123 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1772 (((-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060)))))) 97 T ELT)) (-1771 (((-647 |#1|)) 101 T ELT)) (-2527 (($) 110 (|has| |#1| (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) 173 (|has| |#1| (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) NIL T ELT) (((-857)) 174 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-714) #1#) $ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) 75 T ELT)) (-3323 (((-1111 |#1|)) 175 T ELT)) (-1767 (($) 147 (|has| |#1| (-323)) ELT)) (-1699 (($) NIL (|has| |#1| (-323)) ELT)) (-3362 (((-1207 |#1|) $) 121 T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| |#1| (-323)) ELT)) (-4096 (((-797) $) 140 T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#1|) 70 T ELT)) (-2823 (($ $) NIL (|has| |#1| (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3248 (((-714)) 180 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) 197 T ELT) (((-1207 $) (-857)) 116 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) 186 T CONST)) (-2785 (($) 161 T CONST)) (-4078 (($ $) 122 (|has| |#1| (-323)) ELT) (($ $ (-714)) 114 (|has| |#1| (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-3174 (((-85) $ $) 208 T ELT)) (-4099 (($ $ $) 119 T ELT) (($ $ |#1|) 120 T ELT)) (-3987 (($ $) 202 T ELT) (($ $ $) 206 T ELT)) (-3989 (($ $ $) 204 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 153 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 211 T ELT) (($ $ $) 164 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 118 T ELT))) -(((-308 |#1| |#2|) (-13 (-283 |#1|) (-10 -7 (-15 -1772 ((-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))))) (-15 -1771 ((-647 |#1|))) (-15 -1770 ((-714))))) (-305) (-3 (-1111 |#1|) (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))))) (T -308)) -((-1772 (*1 *2) (-12 (-5 *2 (-1207 (-599 (-2 (|:| -3542 *3) (|:| -2518 (-1060)))))) (-5 *1 (-308 *3 *4)) (-4 *3 (-305)) (-14 *4 (-3 (-1111 *3) *2)))) (-1771 (*1 *2) (-12 (-5 *2 (-647 *3)) (-5 *1 (-308 *3 *4)) (-4 *3 (-305)) (-14 *4 (-3 (-1111 *3) (-1207 (-599 (-2 (|:| -3542 *3) (|:| -2518 (-1060))))))))) (-1770 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-308 *3 *4)) (-4 *3 (-305)) (-14 *4 (-3 (-1111 *3) (-1207 (-599 (-2 (|:| -3542 *3) (|:| -2518 (-1060)))))))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 ((|#1| $) NIL T ELT) (($ $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| |#1| (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1770 (((-714)) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| |#1| (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-1890 (($ (-1207 |#1|)) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) NIL (|has| |#1| (-323)) ELT)) (-1773 (((-85) $) NIL (|has| |#1| (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT) (($ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) NIL (|has| |#1| (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) NIL (|has| |#1| (-323)) ELT)) (-2112 (((-85) $) NIL (|has| |#1| (-323)) ELT)) (-3254 ((|#1| $) NIL T ELT) (($ $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 |#1|) $) NIL T ELT) (((-1111 $) $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-2111 (((-857) $) NIL (|has| |#1| (-323)) ELT)) (-1697 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT)) (-1696 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-1111 |#1|) #1#) $ $) NIL (|has| |#1| (-323)) ELT)) (-1698 (($ $ (-1111 |#1|)) NIL (|has| |#1| (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| |#1| (-323)) CONST)) (-2518 (($ (-857)) NIL (|has| |#1| (-323)) ELT)) (-4081 (((-85) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1772 (((-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060)))))) NIL T ELT)) (-1771 (((-647 |#1|)) NIL T ELT)) (-2527 (($) NIL (|has| |#1| (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| |#1| (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) NIL T ELT) (((-857)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-714) #1#) $ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-3323 (((-1111 |#1|)) NIL T ELT)) (-1767 (($) NIL (|has| |#1| (-323)) ELT)) (-1699 (($) NIL (|has| |#1| (-323)) ELT)) (-3362 (((-1207 |#1|) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| |#1| (-323)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2823 (($ $) NIL (|has| |#1| (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT) (((-1207 $) (-857)) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-4078 (($ $) NIL (|has| |#1| (-323)) ELT) (($ $ (-714)) NIL (|has| |#1| (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-309 |#1| |#2|) (-13 (-283 |#1|) (-10 -7 (-15 -1772 ((-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))))) (-15 -1771 ((-647 |#1|))) (-15 -1770 ((-714))))) (-305) (-857)) (T -309)) -((-1772 (*1 *2) (-12 (-5 *2 (-1207 (-599 (-2 (|:| -3542 *3) (|:| -2518 (-1060)))))) (-5 *1 (-309 *3 *4)) (-4 *3 (-305)) (-14 *4 (-857)))) (-1771 (*1 *2) (-12 (-5 *2 (-647 *3)) (-5 *1 (-309 *3 *4)) (-4 *3 (-305)) (-14 *4 (-857)))) (-1770 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-309 *3 *4)) (-4 *3 (-305)) (-14 *4 (-857))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 ((|#1| $) NIL T ELT) (($ $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) 129 (|has| |#1| (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) 155 (|has| |#1| (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) 103 T ELT)) (-3294 ((|#1| $) 100 T ELT)) (-1890 (($ (-1207 |#1|)) 95 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) 92 (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) 51 (|has| |#1| (-323)) ELT)) (-1773 (((-85) $) NIL (|has| |#1| (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT) (($ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) NIL (|has| |#1| (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) 130 (|has| |#1| (-323)) ELT)) (-2112 (((-85) $) 84 (|has| |#1| (-323)) ELT)) (-3254 ((|#1| $) 47 T ELT) (($ $ (-857)) 52 (|has| |#1| (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 |#1|) $) 75 T ELT) (((-1111 $) $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-2111 (((-857) $) 107 (|has| |#1| (-323)) ELT)) (-1697 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT)) (-1696 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-1111 |#1|) #1#) $ $) NIL (|has| |#1| (-323)) ELT)) (-1698 (($ $ (-1111 |#1|)) NIL (|has| |#1| (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| |#1| (-323)) CONST)) (-2518 (($ (-857)) 105 (|has| |#1| (-323)) ELT)) (-4081 (((-85) $) 157 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($) 44 (|has| |#1| (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) 124 (|has| |#1| (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) NIL T ELT) (((-857)) 154 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-714) #1#) $ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) 67 T ELT)) (-3323 (((-1111 |#1|)) 98 T ELT)) (-1767 (($) 135 (|has| |#1| (-323)) ELT)) (-1699 (($) NIL (|has| |#1| (-323)) ELT)) (-3362 (((-1207 |#1|) $) 63 T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| |#1| (-323)) ELT)) (-4096 (((-797) $) 153 T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#1|) 97 T ELT)) (-2823 (($ $) NIL (|has| |#1| (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3248 (((-714)) 159 T CONST)) (-1297 (((-85) $ $) 161 T ELT)) (-2113 (((-1207 $)) 119 T ELT) (((-1207 $) (-857)) 58 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) 121 T CONST)) (-2785 (($) 40 T CONST)) (-4078 (($ $) 78 (|has| |#1| (-323)) ELT) (($ $ (-714)) NIL (|has| |#1| (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-3174 (((-85) $ $) 117 T ELT)) (-4099 (($ $ $) 109 T ELT) (($ $ |#1|) 110 T ELT)) (-3987 (($ $) 90 T ELT) (($ $ $) 115 T ELT)) (-3989 (($ $ $) 113 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 53 T ELT) (($ $ (-499)) 138 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 88 T ELT) (($ $ $) 65 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 86 T ELT))) -(((-310 |#1| |#2|) (-283 |#1|) (-305) (-1111 |#1|)) (T -310)) -NIL -((-1788 (((-896 (-1111 |#1|)) (-1111 |#1|)) 49 T ELT)) (-3115 (((-1111 |#1|) (-857) (-857)) 159 T ELT) (((-1111 |#1|) (-857)) 155 T ELT)) (-1773 (((-85) (-1111 |#1|)) 110 T ELT)) (-1775 (((-857) (-857)) 85 T ELT)) (-1776 (((-857) (-857)) 94 T ELT)) (-1774 (((-857) (-857)) 83 T ELT)) (-2112 (((-85) (-1111 |#1|)) 114 T ELT)) (-1783 (((-3 (-1111 |#1|) #1="failed") (-1111 |#1|)) 139 T ELT)) (-1786 (((-3 (-1111 |#1|) #1#) (-1111 |#1|)) 144 T ELT)) (-1785 (((-3 (-1111 |#1|) #1#) (-1111 |#1|)) 143 T ELT)) (-1784 (((-3 (-1111 |#1|) #1#) (-1111 |#1|)) 142 T ELT)) (-1782 (((-3 (-1111 |#1|) #1#) (-1111 |#1|)) 134 T ELT)) (-1787 (((-1111 |#1|) (-1111 |#1|)) 71 T ELT)) (-1778 (((-1111 |#1|) (-857)) 149 T ELT)) (-1781 (((-1111 |#1|) (-857)) 152 T ELT)) (-1780 (((-1111 |#1|) (-857)) 151 T ELT)) (-1779 (((-1111 |#1|) (-857)) 150 T ELT)) (-1777 (((-1111 |#1|) (-857)) 147 T ELT))) -(((-311 |#1|) (-10 -7 (-15 -1773 ((-85) (-1111 |#1|))) (-15 -2112 ((-85) (-1111 |#1|))) (-15 -1774 ((-857) (-857))) (-15 -1775 ((-857) (-857))) (-15 -1776 ((-857) (-857))) (-15 -1777 ((-1111 |#1|) (-857))) (-15 -1778 ((-1111 |#1|) (-857))) (-15 -1779 ((-1111 |#1|) (-857))) (-15 -1780 ((-1111 |#1|) (-857))) (-15 -1781 ((-1111 |#1|) (-857))) (-15 -1782 ((-3 (-1111 |#1|) #1="failed") (-1111 |#1|))) (-15 -1783 ((-3 (-1111 |#1|) #1#) (-1111 |#1|))) (-15 -1784 ((-3 (-1111 |#1|) #1#) (-1111 |#1|))) (-15 -1785 ((-3 (-1111 |#1|) #1#) (-1111 |#1|))) (-15 -1786 ((-3 (-1111 |#1|) #1#) (-1111 |#1|))) (-15 -3115 ((-1111 |#1|) (-857))) (-15 -3115 ((-1111 |#1|) (-857) (-857))) (-15 -1787 ((-1111 |#1|) (-1111 |#1|))) (-15 -1788 ((-896 (-1111 |#1|)) (-1111 |#1|)))) (-305)) (T -311)) -((-1788 (*1 *2 *3) (-12 (-4 *4 (-305)) (-5 *2 (-896 (-1111 *4))) (-5 *1 (-311 *4)) (-5 *3 (-1111 *4)))) (-1787 (*1 *2 *2) (-12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3)))) (-3115 (*1 *2 *3 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305)))) (-1786 (*1 *2 *2) (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3)))) (-1785 (*1 *2 *2) (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3)))) (-1784 (*1 *2 *2) (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3)))) (-1783 (*1 *2 *2) (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3)))) (-1782 (*1 *2 *2) (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305)))) (-1776 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-311 *3)) (-4 *3 (-305)))) (-1775 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-311 *3)) (-4 *3 (-305)))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-311 *3)) (-4 *3 (-305)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) (-5 *2 (-85)) (-5 *1 (-311 *4)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) (-5 *2 (-85)) (-5 *1 (-311 *4))))) -((-1789 ((|#1| (-1111 |#2|)) 60 T ELT))) -(((-312 |#1| |#2|) (-10 -7 (-15 -1789 (|#1| (-1111 |#2|)))) (-13 (-356) (-10 -7 (-15 -4096 (|#1| |#2|)) (-15 -2111 ((-857) |#1|)) (-15 -2113 ((-1207 |#1|) (-857))) (-15 -4078 (|#1| |#1|)))) (-305)) (T -312)) -((-1789 (*1 *2 *3) (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) (-4 *2 (-13 (-356) (-10 -7 (-15 -4096 (*2 *4)) (-15 -2111 ((-857) *2)) (-15 -2113 ((-1207 *2) (-857))) (-15 -4078 (*2 *2))))) (-5 *1 (-312 *2 *4))))) -((-2825 (((-3 (-599 |#3|) "failed") (-599 |#3|) |#3|) 40 T ELT))) -(((-313 |#1| |#2| |#3|) (-10 -7 (-15 -2825 ((-3 (-599 |#3|) "failed") (-599 |#3|) |#3|))) (-305) (-1183 |#1|) (-1183 |#2|)) (T -313)) -((-2825 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-1183 *4)) (-4 *4 (-305)) (-5 *1 (-313 *4 *5 *3))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 ((|#1| $) NIL T ELT) (($ $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| |#1| (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| |#1| (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-1890 (($ (-1207 |#1|)) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) NIL (|has| |#1| (-323)) ELT)) (-1773 (((-85) $) NIL (|has| |#1| (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT) (($ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) NIL (|has| |#1| (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) NIL (|has| |#1| (-323)) ELT)) (-2112 (((-85) $) NIL (|has| |#1| (-323)) ELT)) (-3254 ((|#1| $) NIL T ELT) (($ $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 |#1|) $) NIL T ELT) (((-1111 $) $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-2111 (((-857) $) NIL (|has| |#1| (-323)) ELT)) (-1697 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT)) (-1696 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-1111 |#1|) #1#) $ $) NIL (|has| |#1| (-323)) ELT)) (-1698 (($ $ (-1111 |#1|)) NIL (|has| |#1| (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| |#1| (-323)) CONST)) (-2518 (($ (-857)) NIL (|has| |#1| (-323)) ELT)) (-4081 (((-85) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($) NIL (|has| |#1| (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| |#1| (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) NIL T ELT) (((-857)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-714) #1#) $ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-3323 (((-1111 |#1|)) NIL T ELT)) (-1767 (($) NIL (|has| |#1| (-323)) ELT)) (-1699 (($) NIL (|has| |#1| (-323)) ELT)) (-3362 (((-1207 |#1|) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| |#1| (-323)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2823 (($ $) NIL (|has| |#1| (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT) (((-1207 $) (-857)) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-4078 (($ $) NIL (|has| |#1| (-323)) ELT) (($ $ (-714)) NIL (|has| |#1| (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-314 |#1| |#2|) (-283 |#1|) (-305) (-857)) (T -314)) -NIL -((-2350 (((-85) (-599 (-884 |#1|))) 41 T ELT)) (-2352 (((-599 (-884 |#1|)) (-599 (-884 |#1|))) 53 T ELT)) (-2351 (((-3 (-599 (-884 |#1|)) "failed") (-599 (-884 |#1|))) 48 T ELT))) -(((-315 |#1| |#2|) (-10 -7 (-15 -2350 ((-85) (-599 (-884 |#1|)))) (-15 -2351 ((-3 (-599 (-884 |#1|)) "failed") (-599 (-884 |#1|)))) (-15 -2352 ((-599 (-884 |#1|)) (-599 (-884 |#1|))))) (-406) (-599 (-1117))) (T -315)) -((-2352 (*1 *2 *2) (-12 (-5 *2 (-599 (-884 *3))) (-4 *3 (-406)) (-5 *1 (-315 *3 *4)) (-14 *4 (-599 (-1117))))) (-2351 (*1 *2 *2) (|partial| -12 (-5 *2 (-599 (-884 *3))) (-4 *3 (-406)) (-5 *1 (-315 *3 *4)) (-14 *4 (-599 (-1117))))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-406)) (-5 *2 (-85)) (-5 *1 (-315 *4 *5)) (-14 *5 (-599 (-1117)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2528 (((-85) $) 17 T ELT)) (-2399 ((|#1| $ (-499)) NIL T ELT)) (-2400 (((-499) $ (-499)) NIL T ELT)) (-2391 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2392 (($ (-1 (-499) (-499)) $) 26 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 28 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1877 (((-599 (-2 (|:| |gen| |#1|) (|:| -4093 (-499)))) $) 30 T ELT)) (-3130 (($ $ $) NIL T ELT)) (-2551 (($ $ $) NIL T ELT)) (-4096 (((-797) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2785 (($) 7 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT) (($ |#1| (-499)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) -(((-316 |#1|) (-13 (-427) (-978 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-499))) (-15 -3258 ((-714) $)) (-15 -2400 ((-499) $ (-499))) (-15 -2399 (|#1| $ (-499))) (-15 -2392 ($ (-1 (-499) (-499)) $)) (-15 -2391 ($ (-1 |#1| |#1|) $)) (-15 -1877 ((-599 (-2 (|:| |gen| |#1|) (|:| -4093 (-499)))) $)))) (-1041)) (T -316)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-1041)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-316 *2)) (-4 *2 (-1041)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-316 *2)) (-4 *2 (-1041)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-316 *3)) (-4 *3 (-1041)))) (-2400 (*1 *2 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-316 *3)) (-4 *3 (-1041)))) (-2399 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *1 (-316 *2)) (-4 *2 (-1041)))) (-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-499) (-499))) (-5 *1 (-316 *3)) (-4 *3 (-1041)))) (-2391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1041)) (-5 *1 (-316 *3)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 (-499))))) (-5 *1 (-316 *3)) (-4 *3 (-1041))))) -((-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 13 T ELT)) (-2164 (($ $) 14 T ELT)) (-4121 (((-359 $) $) 31 T ELT)) (-3873 (((-85) $) 27 T ELT)) (-2601 (($ $) 19 T ELT)) (-3282 (($ $ $) 22 T ELT) (($ (-599 $)) NIL T ELT)) (-3882 (((-359 $) $) 32 T ELT)) (-3606 (((-3 $ "failed") $ $) 21 T ELT)) (-1677 (((-714) $) 25 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 36 T ELT)) (-2163 (((-85) $ $) 16 T ELT)) (-4099 (($ $ $) 34 T ELT))) -(((-317 |#1|) (-10 -7 (-15 -4099 (|#1| |#1| |#1|)) (-15 -2601 (|#1| |#1|)) (-15 -3873 ((-85) |#1|)) (-15 -4121 ((-359 |#1|) |#1|)) (-15 -3882 ((-359 |#1|) |#1|)) (-15 -3000 ((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|)) (-15 -1677 ((-714) |#1|)) (-15 -3282 (|#1| (-599 |#1|))) (-15 -3282 (|#1| |#1| |#1|)) (-15 -2163 ((-85) |#1| |#1|)) (-15 -2164 (|#1| |#1|)) (-15 -2165 ((-2 (|:| -1870 |#1|) (|:| -4132 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3606 ((-3 |#1| "failed") |#1| |#1|))) (-318)) (T -317)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3874 (($) 22 T CONST)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-3873 (((-85) $) 86 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 65 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 85 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 80 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT))) -(((-318) (-113)) (T -318)) -((-4099 (*1 *1 *1 *1) (-4 *1 (-318)))) -(-13 (-261) (-1162) (-200) (-10 -8 (-15 -4099 ($ $ $)) (-6 -4143) (-6 -4137))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-200) . T) ((-244) . T) ((-261) . T) ((-406) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 $) . T) ((-675 (-361 (-499))) . T) ((-675 $) . T) ((-684) . T) ((-859) . T) ((-991 (-361 (-499))) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-1790 ((|#1| $ |#1|) 35 T ELT)) (-1794 (($ $ (-1099)) 23 T ELT)) (-3769 (((-3 |#1| "failed") $) 34 T ELT)) (-1791 ((|#1| $) 32 T ELT)) (-1795 (($ (-344)) 22 T ELT) (($ (-344) (-1099)) 21 T ELT)) (-3690 (((-344) $) 25 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1792 (((-1099) $) 26 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 20 T ELT)) (-1793 (($ $) 24 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 19 T ELT))) -(((-319 |#1|) (-13 (-320 (-344) |#1|) (-10 -8 (-15 -3769 ((-3 |#1| "failed") $)))) (-1041)) (T -319)) -((-3769 (*1 *2 *1) (|partial| -12 (-5 *1 (-319 *2)) (-4 *2 (-1041))))) -((-2687 (((-85) $ $) 7 T ELT)) (-1790 ((|#2| $ |#2|) 17 T ELT)) (-1794 (($ $ (-1099)) 22 T ELT)) (-1791 ((|#2| $) 18 T ELT)) (-1795 (($ |#1|) 24 T ELT) (($ |#1| (-1099)) 23 T ELT)) (-3690 ((|#1| $) 20 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1792 (((-1099) $) 19 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1793 (($ $) 21 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-320 |#1| |#2|) (-113) (-1041) (-1041)) (T -320)) -((-1795 (*1 *1 *2) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) (-1795 (*1 *1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *1 (-320 *2 *4)) (-4 *2 (-1041)) (-4 *4 (-1041)))) (-1794 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) (-1793 (*1 *1 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-1041)) (-4 *2 (-1041)))) (-1792 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-5 *2 (-1099)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041)))) (-1790 (*1 *2 *1 *2) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041))))) -(-13 (-1041) (-10 -8 (-15 -1795 ($ |t#1|)) (-15 -1795 ($ |t#1| (-1099))) (-15 -1794 ($ $ (-1099))) (-15 -1793 ($ $)) (-15 -3690 (|t#1| $)) (-15 -1792 ((-1099) $)) (-15 -1791 (|t#2| $)) (-15 -1790 (|t#2| $ |t#2|)))) -(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-3361 (((-1207 (-647 |#2|)) (-1207 $)) 67 T ELT)) (-1886 (((-647 |#2|) (-1207 $)) 139 T ELT)) (-1820 ((|#2| $) 36 T ELT)) (-1884 (((-647 |#2|) $ (-1207 $)) 142 T ELT)) (-2522 (((-3 $ #1="failed") $) 89 T ELT)) (-1818 ((|#2| $) 39 T ELT)) (-1798 (((-1111 |#2|) $) 98 T ELT)) (-1888 ((|#2| (-1207 $)) 122 T ELT)) (-1816 (((-1111 |#2|) $) 32 T ELT)) (-1810 (((-85)) 116 T ELT)) (-1890 (($ (-1207 |#2|) (-1207 $)) 132 T ELT)) (-3607 (((-3 $ #1#) $) 93 T ELT)) (-1803 (((-85)) 111 T ELT)) (-1801 (((-85)) 106 T ELT)) (-1805 (((-85)) 58 T ELT)) (-1887 (((-647 |#2|) (-1207 $)) 137 T ELT)) (-1821 ((|#2| $) 35 T ELT)) (-1885 (((-647 |#2|) $ (-1207 $)) 141 T ELT)) (-2523 (((-3 $ #1#) $) 87 T ELT)) (-1819 ((|#2| $) 38 T ELT)) (-1799 (((-1111 |#2|) $) 97 T ELT)) (-1889 ((|#2| (-1207 $)) 120 T ELT)) (-1817 (((-1111 |#2|) $) 30 T ELT)) (-1811 (((-85)) 115 T ELT)) (-1802 (((-85)) 108 T ELT)) (-1804 (((-85)) 56 T ELT)) (-1806 (((-85)) 103 T ELT)) (-1809 (((-85)) 117 T ELT)) (-3362 (((-1207 |#2|) $ (-1207 $)) NIL T ELT) (((-647 |#2|) (-1207 $) (-1207 $)) 128 T ELT)) (-1815 (((-85)) 113 T ELT)) (-1800 (((-599 (-1207 |#2|))) 102 T ELT)) (-1813 (((-85)) 114 T ELT)) (-1814 (((-85)) 112 T ELT)) (-1812 (((-85)) 51 T ELT)) (-1808 (((-85)) 118 T ELT))) -(((-321 |#1| |#2|) (-10 -7 (-15 -1798 ((-1111 |#2|) |#1|)) (-15 -1799 ((-1111 |#2|) |#1|)) (-15 -1800 ((-599 (-1207 |#2|)))) (-15 -2522 ((-3 |#1| #1="failed") |#1|)) (-15 -2523 ((-3 |#1| #1#) |#1|)) (-15 -3607 ((-3 |#1| #1#) |#1|)) (-15 -1801 ((-85))) (-15 -1802 ((-85))) (-15 -1803 ((-85))) (-15 -1804 ((-85))) (-15 -1805 ((-85))) (-15 -1806 ((-85))) (-15 -1808 ((-85))) (-15 -1809 ((-85))) (-15 -1810 ((-85))) (-15 -1811 ((-85))) (-15 -1812 ((-85))) (-15 -1813 ((-85))) (-15 -1814 ((-85))) (-15 -1815 ((-85))) (-15 -1816 ((-1111 |#2|) |#1|)) (-15 -1817 ((-1111 |#2|) |#1|)) (-15 -1886 ((-647 |#2|) (-1207 |#1|))) (-15 -1887 ((-647 |#2|) (-1207 |#1|))) (-15 -1888 (|#2| (-1207 |#1|))) (-15 -1889 (|#2| (-1207 |#1|))) (-15 -1890 (|#1| (-1207 |#2|) (-1207 |#1|))) (-15 -3362 ((-647 |#2|) (-1207 |#1|) (-1207 |#1|))) (-15 -3362 ((-1207 |#2|) |#1| (-1207 |#1|))) (-15 -1818 (|#2| |#1|)) (-15 -1819 (|#2| |#1|)) (-15 -1820 (|#2| |#1|)) (-15 -1821 (|#2| |#1|)) (-15 -1884 ((-647 |#2|) |#1| (-1207 |#1|))) (-15 -1885 ((-647 |#2|) |#1| (-1207 |#1|))) (-15 -3361 ((-1207 (-647 |#2|)) (-1207 |#1|)))) (-322 |#2|) (-146)) (T -321)) -((-1815 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1814 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1813 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1812 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1811 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1810 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1809 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1808 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1806 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1805 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1804 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1803 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1802 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1801 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1800 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-599 (-1207 *4))) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1870 (((-3 $ "failed")) 47 (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3361 (((-1207 (-647 |#1|)) (-1207 $)) 88 T ELT)) (-1822 (((-1207 $)) 91 T ELT)) (-3874 (($) 22 T CONST)) (-2008 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) "failed")) 50 (|has| |#1| (-510)) ELT)) (-1796 (((-3 $ "failed")) 48 (|has| |#1| (-510)) ELT)) (-1886 (((-647 |#1|) (-1207 $)) 75 T ELT)) (-1820 ((|#1| $) 84 T ELT)) (-1884 (((-647 |#1|) $ (-1207 $)) 86 T ELT)) (-2522 (((-3 $ "failed") $) 55 (|has| |#1| (-510)) ELT)) (-2525 (($ $ (-857)) 36 T ELT)) (-1818 ((|#1| $) 82 T ELT)) (-1798 (((-1111 |#1|) $) 52 (|has| |#1| (-510)) ELT)) (-1888 ((|#1| (-1207 $)) 77 T ELT)) (-1816 (((-1111 |#1|) $) 73 T ELT)) (-1810 (((-85)) 67 T ELT)) (-1890 (($ (-1207 |#1|) (-1207 $)) 79 T ELT)) (-3607 (((-3 $ "failed") $) 57 (|has| |#1| (-510)) ELT)) (-3231 (((-857)) 90 T ELT)) (-1807 (((-85)) 64 T ELT)) (-2549 (($ $ (-857)) 43 T ELT)) (-1803 (((-85)) 60 T ELT)) (-1801 (((-85)) 58 T ELT)) (-1805 (((-85)) 62 T ELT)) (-2009 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) "failed")) 51 (|has| |#1| (-510)) ELT)) (-1797 (((-3 $ "failed")) 49 (|has| |#1| (-510)) ELT)) (-1887 (((-647 |#1|) (-1207 $)) 76 T ELT)) (-1821 ((|#1| $) 85 T ELT)) (-1885 (((-647 |#1|) $ (-1207 $)) 87 T ELT)) (-2523 (((-3 $ "failed") $) 56 (|has| |#1| (-510)) ELT)) (-2524 (($ $ (-857)) 37 T ELT)) (-1819 ((|#1| $) 83 T ELT)) (-1799 (((-1111 |#1|) $) 53 (|has| |#1| (-510)) ELT)) (-1889 ((|#1| (-1207 $)) 78 T ELT)) (-1817 (((-1111 |#1|) $) 74 T ELT)) (-1811 (((-85)) 68 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1802 (((-85)) 59 T ELT)) (-1804 (((-85)) 61 T ELT)) (-1806 (((-85)) 63 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1809 (((-85)) 66 T ELT)) (-3362 (((-1207 |#1|) $ (-1207 $)) 81 T ELT) (((-647 |#1|) (-1207 $) (-1207 $)) 80 T ELT)) (-1994 (((-599 (-884 |#1|)) (-1207 $)) 89 T ELT)) (-2551 (($ $ $) 33 T ELT)) (-1815 (((-85)) 72 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-1800 (((-599 (-1207 |#1|))) 54 (|has| |#1| (-510)) ELT)) (-2552 (($ $ $ $) 34 T ELT)) (-1813 (((-85)) 70 T ELT)) (-2550 (($ $ $) 32 T ELT)) (-1814 (((-85)) 71 T ELT)) (-1812 (((-85)) 69 T ELT)) (-1808 (((-85)) 65 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 38 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) -(((-322 |#1|) (-113) (-146)) (T -322)) -((-1822 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1207 *1)) (-4 *1 (-322 *3)))) (-3231 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-857)))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-599 (-884 *4))))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-1207 (-647 *4))))) (-1885 (*1 *2 *1 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) (-1884 (*1 *2 *1 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) (-1821 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-146)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-146)))) (-1819 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-146)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-146)))) (-3362 (*1 *2 *1 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-1207 *4)))) (-3362 (*1 *2 *3 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) (-1890 (*1 *1 *2 *3) (-12 (-5 *2 (-1207 *4)) (-5 *3 (-1207 *1)) (-4 *4 (-146)) (-4 *1 (-322 *4)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *2)) (-4 *2 (-146)))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *2)) (-4 *2 (-146)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-1111 *3)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-1111 *3)))) (-1815 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1814 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1813 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1812 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1811 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1810 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1809 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1808 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1807 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1806 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1805 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1804 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1803 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1802 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1801 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-3607 (*1 *1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-146)) (-4 *2 (-510)))) (-2523 (*1 *1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-146)) (-4 *2 (-510)))) (-2522 (*1 *1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-146)) (-4 *2 (-510)))) (-1800 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-4 *3 (-510)) (-5 *2 (-599 (-1207 *3))))) (-1799 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-4 *3 (-510)) (-5 *2 (-1111 *3)))) (-1798 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-4 *3 (-510)) (-5 *2 (-1111 *3)))) (-2009 (*1 *2) (|partial| -12 (-4 *3 (-510)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2113 (-599 *1)))) (-4 *1 (-322 *3)))) (-2008 (*1 *2) (|partial| -12 (-4 *3 (-510)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2113 (-599 *1)))) (-4 *1 (-322 *3)))) (-1797 (*1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-510)) (-4 *2 (-146)))) (-1796 (*1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-510)) (-4 *2 (-146)))) (-1870 (*1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-510)) (-4 *2 (-146))))) -(-13 (-702 |t#1|) (-10 -8 (-15 -1822 ((-1207 $))) (-15 -3231 ((-857))) (-15 -1994 ((-599 (-884 |t#1|)) (-1207 $))) (-15 -3361 ((-1207 (-647 |t#1|)) (-1207 $))) (-15 -1885 ((-647 |t#1|) $ (-1207 $))) (-15 -1884 ((-647 |t#1|) $ (-1207 $))) (-15 -1821 (|t#1| $)) (-15 -1820 (|t#1| $)) (-15 -1819 (|t#1| $)) (-15 -1818 (|t#1| $)) (-15 -3362 ((-1207 |t#1|) $ (-1207 $))) (-15 -3362 ((-647 |t#1|) (-1207 $) (-1207 $))) (-15 -1890 ($ (-1207 |t#1|) (-1207 $))) (-15 -1889 (|t#1| (-1207 $))) (-15 -1888 (|t#1| (-1207 $))) (-15 -1887 ((-647 |t#1|) (-1207 $))) (-15 -1886 ((-647 |t#1|) (-1207 $))) (-15 -1817 ((-1111 |t#1|) $)) (-15 -1816 ((-1111 |t#1|) $)) (-15 -1815 ((-85))) (-15 -1814 ((-85))) (-15 -1813 ((-85))) (-15 -1812 ((-85))) (-15 -1811 ((-85))) (-15 -1810 ((-85))) (-15 -1809 ((-85))) (-15 -1808 ((-85))) (-15 -1807 ((-85))) (-15 -1806 ((-85))) (-15 -1805 ((-85))) (-15 -1804 ((-85))) (-15 -1803 ((-85))) (-15 -1802 ((-85))) (-15 -1801 ((-85))) (IF (|has| |t#1| (-510)) (PROGN (-15 -3607 ((-3 $ "failed") $)) (-15 -2523 ((-3 $ "failed") $)) (-15 -2522 ((-3 $ "failed") $)) (-15 -1800 ((-599 (-1207 |t#1|)))) (-15 -1799 ((-1111 |t#1|) $)) (-15 -1798 ((-1111 |t#1|) $)) (-15 -2009 ((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) "failed"))) (-15 -2008 ((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) "failed"))) (-15 -1797 ((-3 $ "failed"))) (-15 -1796 ((-3 $ "failed"))) (-15 -1870 ((-3 $ "failed"))) (-6 -4142)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) . T) ((-675 |#1|) . T) ((-678) . T) ((-702 |#1|) . T) ((-704) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) 7 T ELT)) (-3258 (((-714)) 20 T ELT)) (-3115 (($) 17 T ELT)) (-2111 (((-857) $) 18 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2518 (($ (-857)) 19 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-323) (-113)) (T -323)) -((-3258 (*1 *2) (-12 (-4 *1 (-323)) (-5 *2 (-714)))) (-2518 (*1 *1 *2) (-12 (-5 *2 (-857)) (-4 *1 (-323)))) (-2111 (*1 *2 *1) (-12 (-4 *1 (-323)) (-5 *2 (-857)))) (-3115 (*1 *1) (-4 *1 (-323)))) -(-13 (-1041) (-10 -8 (-15 -3258 ((-714))) (-15 -2518 ($ (-857))) (-15 -2111 ((-857) $)) (-15 -3115 ($)))) -(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-1880 (((-647 |#2|) (-1207 $)) 45 T ELT)) (-1890 (($ (-1207 |#2|) (-1207 $)) 39 T ELT)) (-1879 (((-647 |#2|) $ (-1207 $)) 47 T ELT)) (-3907 ((|#2| (-1207 $)) 13 T ELT)) (-3362 (((-1207 |#2|) $ (-1207 $)) NIL T ELT) (((-647 |#2|) (-1207 $) (-1207 $)) 27 T ELT))) -(((-324 |#1| |#2| |#3|) (-10 -7 (-15 -1880 ((-647 |#2|) (-1207 |#1|))) (-15 -3907 (|#2| (-1207 |#1|))) (-15 -1890 (|#1| (-1207 |#2|) (-1207 |#1|))) (-15 -3362 ((-647 |#2|) (-1207 |#1|) (-1207 |#1|))) (-15 -3362 ((-1207 |#2|) |#1| (-1207 |#1|))) (-15 -1879 ((-647 |#2|) |#1| (-1207 |#1|)))) (-325 |#2| |#3|) (-146) (-1183 |#2|)) (T -324)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1880 (((-647 |#1|) (-1207 $)) 58 T ELT)) (-3470 ((|#1| $) 64 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-1890 (($ (-1207 |#1|) (-1207 $)) 60 T ELT)) (-1879 (((-647 |#1|) $ (-1207 $)) 65 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3231 (((-857)) 66 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3254 ((|#1| $) 63 T ELT)) (-2115 ((|#2| $) 56 (|has| |#1| (-318)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3907 ((|#1| (-1207 $)) 59 T ELT)) (-3362 (((-1207 |#1|) $ (-1207 $)) 62 T ELT) (((-647 |#1|) (-1207 $) (-1207 $)) 61 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 49 T ELT)) (-2823 (((-649 $) $) 55 (|has| |#1| (-118)) ELT)) (-2565 ((|#2| $) 57 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) -(((-325 |#1| |#2|) (-113) (-146) (-1183 |t#1|)) (T -325)) -((-3231 (*1 *2) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) (-5 *2 (-857)))) (-1879 (*1 *2 *1 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)))) (-3470 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-1183 *2)) (-4 *2 (-146)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-1183 *2)) (-4 *2 (-146)))) (-3362 (*1 *2 *1 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1183 *4)) (-5 *2 (-1207 *4)))) (-3362 (*1 *2 *3 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)))) (-1890 (*1 *1 *2 *3) (-12 (-5 *2 (-1207 *4)) (-5 *3 (-1207 *1)) (-4 *4 (-146)) (-4 *1 (-325 *4 *5)) (-4 *5 (-1183 *4)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *2 *4)) (-4 *4 (-1183 *2)) (-4 *2 (-146)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1183 *3)))) (-2115 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-146)) (-4 *3 (-318)) (-4 *2 (-1183 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3231 ((-857))) (-15 -1879 ((-647 |t#1|) $ (-1207 $))) (-15 -3470 (|t#1| $)) (-15 -3254 (|t#1| $)) (-15 -3362 ((-1207 |t#1|) $ (-1207 $))) (-15 -3362 ((-647 |t#1|) (-1207 $) (-1207 $))) (-15 -1890 ($ (-1207 |t#1|) (-1207 $))) (-15 -3907 (|t#1| (-1207 $))) (-15 -1880 ((-647 |t#1|) (-1207 $))) (-15 -2565 (|t#2| $)) (IF (|has| |t#1| (-318)) (-15 -2115 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 |#1|) . T) ((-675 |#1|) . T) ((-684) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-1825 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1823 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-3030 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2398 (($ $) 25 T ELT)) (-3559 (((-499) (-1 (-85) |#2|) $) NIL T ELT) (((-499) |#2| $) 11 T ELT) (((-499) |#2| $ (-499)) NIL T ELT)) (-3658 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) -(((-326 |#1| |#2|) (-10 -7 (-15 -1823 (|#1| |#1|)) (-15 -1823 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1825 ((-85) |#1|)) (-15 -3030 (|#1| |#1|)) (-15 -3658 (|#1| |#1| |#1|)) (-15 -3559 ((-499) |#2| |#1| (-499))) (-15 -3559 ((-499) |#2| |#1|)) (-15 -3559 ((-499) (-1 (-85) |#2|) |#1|)) (-15 -1825 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3030 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2398 (|#1| |#1|)) (-15 -3658 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-327 |#2|) (-1157)) (T -326)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) 44 (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -4146)) ELT) (($ $) 97 (-12 (|has| |#1| (-781)) (|has| $ (-6 -4146))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) 56 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-2397 (($ $) 99 (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) 109 T ELT)) (-1386 (($ $) 84 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#1| $) 83 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) 57 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 55 T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) 106 T ELT) (((-499) |#1| $) 105 (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) 104 (|has| |#1| (-1041)) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) |#1|) 74 T ELT)) (-2301 (((-499) $) 47 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) 91 (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 48 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) 92 (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) 66 T ELT) (($ $ $ (-499)) 65 T ELT)) (-2304 (((-599 (-499)) $) 50 T ELT)) (-2305 (((-85) (-499) $) 51 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 46 (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2300 (($ $ |#1|) 45 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ (-499) |#1|) 54 T ELT) ((|#1| $ (-499)) 53 T ELT) (($ $ (-1174 (-499))) 75 T ELT)) (-2405 (($ $ (-499)) 68 T ELT) (($ $ (-1174 (-499))) 67 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-1824 (($ $ $ (-499)) 100 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 85 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 76 T ELT)) (-3952 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-599 $)) 70 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) 93 (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) 95 (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) 94 (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 96 (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-327 |#1|) (-113) (-1157)) (T -327)) -((-3658 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-327 *3)) (-4 *3 (-1157)))) (-2398 (*1 *1 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-1157)))) (-3030 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-327 *3)) (-4 *3 (-1157)))) (-1825 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-327 *4)) (-4 *4 (-1157)) (-5 *2 (-85)))) (-3559 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-327 *4)) (-4 *4 (-1157)) (-5 *2 (-499)))) (-3559 (*1 *2 *3 *1) (-12 (-4 *1 (-327 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-499)))) (-3559 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-327 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)))) (-3658 (*1 *1 *1 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-1157)) (-4 *2 (-781)))) (-3030 (*1 *1 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-1157)) (-4 *2 (-781)))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-327 *3)) (-4 *3 (-1157)) (-4 *3 (-781)) (-5 *2 (-85)))) (-1824 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-499)) (|has| *1 (-6 -4146)) (-4 *1 (-327 *3)) (-4 *3 (-1157)))) (-2397 (*1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-327 *2)) (-4 *2 (-1157)))) (-1823 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -4146)) (-4 *1 (-327 *3)) (-4 *3 (-1157)))) (-1823 (*1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-327 *2)) (-4 *2 (-1157)) (-4 *2 (-781))))) -(-13 (-609 |t#1|) (-10 -8 (-6 -4145) (-15 -3658 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2398 ($ $)) (-15 -3030 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1825 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3559 ((-499) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1041)) (PROGN (-15 -3559 ((-499) |t#1| $)) (-15 -3559 ((-499) |t#1| $ (-499)))) |%noBranch|) (IF (|has| |t#1| (-781)) (PROGN (-6 (-781)) (-15 -3658 ($ $ $)) (-15 -3030 ($ $)) (-15 -1825 ((-85) $))) |%noBranch|) (IF (|has| $ (-6 -4146)) (PROGN (-15 -1824 ($ $ $ (-499))) (-15 -2397 ($ $)) (-15 -1823 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-781)) (-15 -1823 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 (-499) |#1|) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-554 (-499) |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-609 |#1|) . T) ((-781) |has| |#1| (-781)) ((-784) |has| |#1| (-781)) ((-1041) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781))) ((-1157) . T)) -((-3991 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3992 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-4108 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) -(((-328 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3992 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3991 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1157) (-327 |#1|) (-1157) (-327 |#3|)) (T -328)) -((-3991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1157)) (-4 *5 (-1157)) (-4 *2 (-327 *5)) (-5 *1 (-328 *6 *4 *5 *2)) (-4 *4 (-327 *6)))) (-3992 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1157)) (-4 *2 (-1157)) (-5 *1 (-328 *5 *4 *2 *6)) (-4 *4 (-327 *5)) (-4 *6 (-327 *2)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-4 *2 (-327 *6)) (-5 *1 (-328 *5 *4 *6 *2)) (-4 *4 (-327 *5))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-4084 (((-599 |#1|) $) 42 T ELT)) (-4097 (($ $ (-714)) 43 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-4089 (((-1232 |#1| |#2|) (-1232 |#1| |#2|) $) 46 T ELT)) (-4086 (($ $) 44 T ELT)) (-4090 (((-1232 |#1| |#2|) (-1232 |#1| |#2|) $) 47 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3918 (($ $ |#1| $) 41 T ELT) (($ $ (-599 |#1|) (-599 $)) 40 T ELT)) (-4098 (((-714) $) 48 T ELT)) (-3670 (($ $ $) 39 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ |#1|) 51 T ELT) (((-1223 |#1| |#2|) $) 50 T ELT) (((-1232 |#1| |#2|) $) 49 T ELT)) (-4104 ((|#2| (-1232 |#1| |#2|) $) 52 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-1826 (($ (-630 |#1|)) 45 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#2|) 38 (|has| |#2| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) -(((-329 |#1| |#2|) (-113) (-781) (-146)) (T -329)) -((-4104 (*1 *2 *3 *1) (-12 (-5 *3 (-1232 *4 *2)) (-4 *1 (-329 *4 *2)) (-4 *4 (-781)) (-4 *2 (-146)))) (-4096 (*1 *1 *2) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-781)) (-4 *3 (-146)))) (-4096 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) (-5 *2 (-1223 *3 *4)))) (-4096 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) (-5 *2 (-1232 *3 *4)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) (-5 *2 (-714)))) (-4090 (*1 *2 *2 *1) (-12 (-5 *2 (-1232 *3 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)))) (-4089 (*1 *2 *2 *1) (-12 (-5 *2 (-1232 *3 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)))) (-1826 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-781)) (-4 *1 (-329 *3 *4)) (-4 *4 (-146)))) (-4086 (*1 *1 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-781)) (-4 *3 (-146)))) (-4097 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) (-5 *2 (-599 *3)))) (-3918 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-781)) (-4 *3 (-146)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 *4)) (-5 *3 (-599 *1)) (-4 *1 (-329 *4 *5)) (-4 *4 (-781)) (-4 *5 (-146))))) -(-13 (-590 |t#2|) (-10 -8 (-15 -4104 (|t#2| (-1232 |t#1| |t#2|) $)) (-15 -4096 ($ |t#1|)) (-15 -4096 ((-1223 |t#1| |t#2|) $)) (-15 -4096 ((-1232 |t#1| |t#2|) $)) (-15 -4098 ((-714) $)) (-15 -4090 ((-1232 |t#1| |t#2|) (-1232 |t#1| |t#2|) $)) (-15 -4089 ((-1232 |t#1| |t#2|) (-1232 |t#1| |t#2|) $)) (-15 -1826 ($ (-630 |t#1|))) (-15 -4086 ($ $)) (-15 -4097 ($ $ (-714))) (-15 -4084 ((-599 |t#1|) $)) (-15 -3918 ($ $ |t#1| $)) (-15 -3918 ($ $ (-599 |t#1|) (-599 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#2|) . T) ((-606 |#2|) . T) ((-590 |#2|) . T) ((-598 |#2|) . T) ((-675 |#2|) . T) ((-991 |#2|) . T) ((-996 |#2|) . T) ((-1041) . T) ((-1157) . T)) -((-1829 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1827 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1828 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT))) -(((-330 |#1| |#2|) (-10 -7 (-15 -1827 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1828 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1829 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1157) (-13 (-327 |#1|) (-10 -7 (-6 -4146)))) (T -330)) -((-1829 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-330 *4 *2)) (-4 *2 (-13 (-327 *4) (-10 -7 (-6 -4146)))))) (-1828 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-330 *4 *2)) (-4 *2 (-13 (-327 *4) (-10 -7 (-6 -4146)))))) (-1827 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-330 *4 *2)) (-4 *2 (-13 (-327 *4) (-10 -7 (-6 -4146))))))) -((-2380 (((-647 |#2|) (-647 $)) NIL T ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 22 T ELT) (((-647 (-499)) (-647 $)) 14 T ELT))) -(((-331 |#1| |#2|) (-10 -7 (-15 -2380 ((-647 (-499)) (-647 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-647 |#2|) (-647 |#1|)))) (-332 |#2|) (-989)) (T -331)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-2380 (((-647 |#1|) (-647 $)) 35 T ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 34 T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 46 (|has| |#1| (-596 (-499))) ELT) (((-647 (-499)) (-647 $)) 45 (|has| |#1| (-596 (-499))) ELT)) (-2381 (((-647 |#1|) (-1207 $)) 37 T ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 36 T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 44 (|has| |#1| (-596 (-499))) ELT) (((-647 (-499)) (-1207 $)) 43 (|has| |#1| (-596 (-499))) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-332 |#1|) (-113) (-989)) (T -332)) -NIL -(-13 (-596 |t#1|) (-10 -7 (IF (|has| |t#1| (-596 (-499))) (-6 (-596 (-499))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 (-499)) |has| |#1| (-596 (-499))) ((-606 |#1|) . T) ((-596 (-499)) |has| |#1| (-596 (-499))) ((-596 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 16 T ELT)) (-3251 (((-499) $) 44 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-3921 (($ $) 120 T ELT)) (-3632 (($ $) 81 T ELT)) (-3789 (($ $) 72 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-3158 (($ $) 28 T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3630 (($ $) 79 T ELT)) (-3788 (($ $) 67 T ELT)) (-3773 (((-499) $) 60 T ELT)) (-2557 (($ $ (-499)) 55 T ELT)) (-3634 (($ $) NIL T ELT)) (-3787 (($ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3249 (($ $) 122 T ELT)) (-3295 (((-3 (-499) #1#) $) 217 T ELT) (((-3 (-361 (-499)) #1#) $) 213 T ELT)) (-3294 (((-499) $) 215 T ELT) (((-361 (-499)) $) 211 T ELT)) (-2683 (($ $ $) NIL T ELT)) (-1838 (((-499) $ $) 110 T ELT)) (-3607 (((-3 $ #1#) $) 125 T ELT)) (-1837 (((-361 (-499)) $ (-714)) 218 T ELT) (((-361 (-499)) $ (-714) (-714)) 210 T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2492 (((-857)) 106 T ELT) (((-857) (-857)) 107 (|has| $ (-6 -4136)) ELT)) (-3324 (((-85) $) 38 T ELT)) (-3777 (($) 22 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL T ELT)) (-1830 (((-1213) (-714)) 177 T ELT)) (-1831 (((-1213)) 182 T ELT) (((-1213) (-714)) 183 T ELT)) (-1833 (((-1213)) 184 T ELT) (((-1213) (-714)) 185 T ELT)) (-1832 (((-1213)) 180 T ELT) (((-1213) (-714)) 181 T ELT)) (-3922 (((-499) $) 50 T ELT)) (-2528 (((-85) $) 21 T ELT)) (-3132 (($ $ (-499)) NIL T ELT)) (-2559 (($ $) 32 T ELT)) (-3254 (($ $) NIL T ELT)) (-3325 (((-85) $) 18 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL (-12 (-2679 (|has| $ (-6 -4128))) (-2679 (|has| $ (-6 -4136)))) ELT)) (-2978 (($ $ $) NIL T ELT) (($) NIL (-12 (-2679 (|has| $ (-6 -4128))) (-2679 (|has| $ (-6 -4136)))) ELT)) (-2493 (((-499) $) 112 T ELT)) (-1836 (($) 90 T ELT) (($ $) 97 T ELT)) (-1835 (($) 96 T ELT) (($ $) 98 T ELT)) (-4092 (($ $) 84 T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 127 T ELT)) (-1867 (((-857) (-499)) 27 (|has| $ (-6 -4136)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) 41 T ELT)) (-3252 (($ $) 119 T ELT)) (-3392 (($ (-499) (-499)) 115 T ELT) (($ (-499) (-499) (-857)) 116 T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2519 (((-499) $) 113 T ELT)) (-1834 (($) 99 T ELT)) (-4093 (($ $) 78 T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-2734 (((-857)) 108 T ELT) (((-857) (-857)) 109 (|has| $ (-6 -4136)) ELT)) (-3908 (($ $) 126 T ELT) (($ $ (-714)) NIL T ELT)) (-1866 (((-857) (-499)) 31 (|has| $ (-6 -4136)) ELT)) (-3635 (($ $) NIL T ELT)) (-3786 (($ $) NIL T ELT)) (-3633 (($ $) NIL T ELT)) (-3785 (($ $) NIL T ELT)) (-3631 (($ $) 80 T ELT)) (-3784 (($ $) 71 T ELT)) (-4122 (((-333) $) 202 T ELT) (((-179) $) 204 T ELT) (((-825 (-333)) $) NIL T ELT) (((-1099) $) 188 T ELT) (((-488) $) 200 T ELT) (($ (-179)) 209 T ELT)) (-4096 (((-797) $) 192 T ELT) (($ (-499)) 214 T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-499)) 214 T ELT) (($ (-361 (-499))) NIL T ELT) (((-179) $) 205 T ELT)) (-3248 (((-714)) NIL T CONST)) (-3253 (($ $) 121 T ELT)) (-1868 (((-857)) 42 T ELT) (((-857) (-857)) 62 (|has| $ (-6 -4136)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2815 (((-857)) 111 T ELT)) (-3638 (($ $) 87 T ELT)) (-3626 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3636 (($ $) 85 T ELT)) (-3624 (($ $) 20 T ELT)) (-3640 (($ $) NIL T ELT)) (-3628 (($ $) NIL T ELT)) (-3641 (($ $) NIL T ELT)) (-3629 (($ $) NIL T ELT)) (-3639 (($ $) NIL T ELT)) (-3627 (($ $) NIL T ELT)) (-3637 (($ $) 86 T ELT)) (-3625 (($ $) 33 T ELT)) (-3523 (($ $) 39 T ELT)) (-2779 (($) 17 T CONST)) (-2785 (($) 24 T CONST)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-2685 (((-85) $ $) 189 T ELT)) (-2686 (((-85) $ $) 26 T ELT)) (-3174 (((-85) $ $) 37 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 43 T ELT)) (-4099 (($ $ $) 29 T ELT) (($ $ (-499)) 23 T ELT)) (-3987 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3989 (($ $ $) 54 T ELT)) (** (($ $ (-857)) 65 T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 91 T ELT) (($ $ (-361 (-499))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-857) $) 61 T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT))) -(((-333) (-13 (-358) (-190) (-569 (-1099)) (-568 (-179)) (-1143) (-569 (-488)) (-573 (-179)) (-10 -8 (-15 -4099 ($ $ (-499))) (-15 ** ($ $ $)) (-15 -2559 ($ $)) (-15 -1838 ((-499) $ $)) (-15 -2557 ($ $ (-499))) (-15 -1837 ((-361 (-499)) $ (-714))) (-15 -1837 ((-361 (-499)) $ (-714) (-714))) (-15 -1836 ($)) (-15 -1835 ($)) (-15 -1834 ($)) (-15 -3626 ($ $ $)) (-15 -1836 ($ $)) (-15 -1835 ($ $)) (-15 -1833 ((-1213))) (-15 -1833 ((-1213) (-714))) (-15 -1832 ((-1213))) (-15 -1832 ((-1213) (-714))) (-15 -1831 ((-1213))) (-15 -1831 ((-1213) (-714))) (-15 -1830 ((-1213) (-714))) (-6 -4136) (-6 -4128)))) (T -333)) -((** (*1 *1 *1 *1) (-5 *1 (-333))) (-4099 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-333)))) (-2559 (*1 *1 *1) (-5 *1 (-333))) (-1838 (*1 *2 *1 *1) (-12 (-5 *2 (-499)) (-5 *1 (-333)))) (-2557 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-333)))) (-1837 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *2 (-361 (-499))) (-5 *1 (-333)))) (-1837 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-361 (-499))) (-5 *1 (-333)))) (-1836 (*1 *1) (-5 *1 (-333))) (-1835 (*1 *1) (-5 *1 (-333))) (-1834 (*1 *1) (-5 *1 (-333))) (-3626 (*1 *1 *1 *1) (-5 *1 (-333))) (-1836 (*1 *1 *1) (-5 *1 (-333))) (-1835 (*1 *1 *1) (-5 *1 (-333))) (-1833 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-333)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-333)))) (-1832 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-333)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-333)))) (-1831 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-333)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-333)))) (-1830 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-333))))) -((-1839 (((-599 (-247 (-884 (-142 |#1|)))) (-247 (-361 (-884 (-142 (-499))))) |#1|) 51 T ELT) (((-599 (-247 (-884 (-142 |#1|)))) (-361 (-884 (-142 (-499)))) |#1|) 50 T ELT) (((-599 (-599 (-247 (-884 (-142 |#1|))))) (-599 (-247 (-361 (-884 (-142 (-499)))))) |#1|) 47 T ELT) (((-599 (-599 (-247 (-884 (-142 |#1|))))) (-599 (-361 (-884 (-142 (-499))))) |#1|) 41 T ELT)) (-1840 (((-599 (-599 (-142 |#1|))) (-599 (-361 (-884 (-142 (-499))))) (-599 (-1117)) |#1|) 30 T ELT) (((-599 (-142 |#1|)) (-361 (-884 (-142 (-499)))) |#1|) 18 T ELT))) -(((-334 |#1|) (-10 -7 (-15 -1839 ((-599 (-599 (-247 (-884 (-142 |#1|))))) (-599 (-361 (-884 (-142 (-499))))) |#1|)) (-15 -1839 ((-599 (-599 (-247 (-884 (-142 |#1|))))) (-599 (-247 (-361 (-884 (-142 (-499)))))) |#1|)) (-15 -1839 ((-599 (-247 (-884 (-142 |#1|)))) (-361 (-884 (-142 (-499)))) |#1|)) (-15 -1839 ((-599 (-247 (-884 (-142 |#1|)))) (-247 (-361 (-884 (-142 (-499))))) |#1|)) (-15 -1840 ((-599 (-142 |#1|)) (-361 (-884 (-142 (-499)))) |#1|)) (-15 -1840 ((-599 (-599 (-142 |#1|))) (-599 (-361 (-884 (-142 (-499))))) (-599 (-1117)) |#1|))) (-13 (-318) (-780))) (T -334)) -((-1840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-361 (-884 (-142 (-499)))))) (-5 *4 (-599 (-1117))) (-5 *2 (-599 (-599 (-142 *5)))) (-5 *1 (-334 *5)) (-4 *5 (-13 (-318) (-780))))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 (-142 (-499))))) (-5 *2 (-599 (-142 *4))) (-5 *1 (-334 *4)) (-4 *4 (-13 (-318) (-780))))) (-1839 (*1 *2 *3 *4) (-12 (-5 *3 (-247 (-361 (-884 (-142 (-499)))))) (-5 *2 (-599 (-247 (-884 (-142 *4))))) (-5 *1 (-334 *4)) (-4 *4 (-13 (-318) (-780))))) (-1839 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 (-142 (-499))))) (-5 *2 (-599 (-247 (-884 (-142 *4))))) (-5 *1 (-334 *4)) (-4 *4 (-13 (-318) (-780))))) (-1839 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-247 (-361 (-884 (-142 (-499))))))) (-5 *2 (-599 (-599 (-247 (-884 (-142 *4)))))) (-5 *1 (-334 *4)) (-4 *4 (-13 (-318) (-780))))) (-1839 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-361 (-884 (-142 (-499)))))) (-5 *2 (-599 (-599 (-247 (-884 (-142 *4)))))) (-5 *1 (-334 *4)) (-4 *4 (-13 (-318) (-780)))))) -((-3721 (((-599 (-247 (-884 |#1|))) (-247 (-361 (-884 (-499)))) |#1|) 46 T ELT) (((-599 (-247 (-884 |#1|))) (-361 (-884 (-499))) |#1|) 45 T ELT) (((-599 (-599 (-247 (-884 |#1|)))) (-599 (-247 (-361 (-884 (-499))))) |#1|) 42 T ELT) (((-599 (-599 (-247 (-884 |#1|)))) (-599 (-361 (-884 (-499)))) |#1|) 36 T ELT)) (-1841 (((-599 |#1|) (-361 (-884 (-499))) |#1|) 20 T ELT) (((-599 (-599 |#1|)) (-599 (-361 (-884 (-499)))) (-599 (-1117)) |#1|) 30 T ELT))) -(((-335 |#1|) (-10 -7 (-15 -3721 ((-599 (-599 (-247 (-884 |#1|)))) (-599 (-361 (-884 (-499)))) |#1|)) (-15 -3721 ((-599 (-599 (-247 (-884 |#1|)))) (-599 (-247 (-361 (-884 (-499))))) |#1|)) (-15 -3721 ((-599 (-247 (-884 |#1|))) (-361 (-884 (-499))) |#1|)) (-15 -3721 ((-599 (-247 (-884 |#1|))) (-247 (-361 (-884 (-499)))) |#1|)) (-15 -1841 ((-599 (-599 |#1|)) (-599 (-361 (-884 (-499)))) (-599 (-1117)) |#1|)) (-15 -1841 ((-599 |#1|) (-361 (-884 (-499))) |#1|))) (-13 (-780) (-318))) (T -335)) -((-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 (-499)))) (-5 *2 (-599 *4)) (-5 *1 (-335 *4)) (-4 *4 (-13 (-780) (-318))))) (-1841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-361 (-884 (-499))))) (-5 *4 (-599 (-1117))) (-5 *2 (-599 (-599 *5))) (-5 *1 (-335 *5)) (-4 *5 (-13 (-780) (-318))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-247 (-361 (-884 (-499))))) (-5 *2 (-599 (-247 (-884 *4)))) (-5 *1 (-335 *4)) (-4 *4 (-13 (-780) (-318))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 (-499)))) (-5 *2 (-599 (-247 (-884 *4)))) (-5 *1 (-335 *4)) (-4 *4 (-13 (-780) (-318))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-247 (-361 (-884 (-499)))))) (-5 *2 (-599 (-599 (-247 (-884 *4))))) (-5 *1 (-335 *4)) (-4 *4 (-13 (-780) (-318))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-361 (-884 (-499))))) (-5 *2 (-599 (-599 (-247 (-884 *4))))) (-5 *1 (-335 *4)) (-4 *4 (-13 (-780) (-318)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3924 (((-599 (-807 |#2| |#1|)) $) NIL T ELT)) (-1345 (((-3 $ "failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3014 (($ |#1| |#2|) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2086 ((|#2| $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 33 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 12 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) -(((-336 |#1| |#2|) (-13 (-82 |#1| |#1|) (-463 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-146)) (-6 (-675 |#1|)) |%noBranch|))) (-989) (-784)) (T -336)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) 29 T ELT)) (-3294 ((|#2| $) 31 T ELT)) (-4109 (($ $) NIL T ELT)) (-2536 (((-714) $) 11 T ELT)) (-2942 (((-599 $) $) 23 T ELT)) (-4087 (((-85) $) NIL T ELT)) (-4088 (($ |#2| |#1|) 21 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1842 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-3015 ((|#2| $) 18 T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3967 (((-599 |#1|) $) 20 T ELT)) (-3827 ((|#1| $ |#2|) 54 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 32 T CONST)) (-2784 (((-599 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) -(((-337 |#1| |#2|) (-13 (-339 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-989) (-781)) (T -337)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-337 *3 *2)) (-4 *3 (-989)) (-4 *2 (-781))))) -((-3520 (((-1213) $) 7 T ELT)) (-4096 (((-797) $) 8 T ELT) (($ (-647 (-657))) 14 T ELT) (($ (-599 (-284))) 13 T ELT) (($ (-284)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) 11 T ELT))) -(((-338) (-113)) (T -338)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-647 (-657))) (-4 *1 (-338)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-338)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-338)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) (-4 *1 (-338))))) -(-13 (-350) (-10 -8 (-15 -4096 ($ (-647 (-657)))) (-15 -4096 ($ (-599 (-284)))) (-15 -4096 ($ (-284))) (-15 -4096 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284)))))))) -(((-568 (-797)) . T) ((-350) . T) ((-1157) . T)) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#2| "failed") $) 54 T ELT)) (-3294 ((|#2| $) 55 T ELT)) (-4109 (($ $) 40 T ELT)) (-2536 (((-714) $) 44 T ELT)) (-2942 (((-599 $) $) 45 T ELT)) (-4087 (((-85) $) 48 T ELT)) (-4088 (($ |#2| |#1|) 49 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 50 T ELT)) (-1842 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 41 T ELT)) (-3015 ((|#2| $) 43 T ELT)) (-3312 ((|#1| $) 42 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ |#2|) 53 T ELT)) (-3967 (((-599 |#1|) $) 46 T ELT)) (-3827 ((|#1| $ |#2|) 51 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2784 (((-599 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 47 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 52 T ELT))) -(((-339 |#1| |#2|) (-113) (-989) (-1041)) (T -339)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-339 *2 *3)) (-4 *2 (-989)) (-4 *3 (-1041)))) (-3827 (*1 *2 *1 *3) (-12 (-4 *1 (-339 *2 *3)) (-4 *3 (-1041)) (-4 *2 (-989)))) (-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)))) (-4088 (*1 *1 *2 *3) (-12 (-4 *1 (-339 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1041)))) (-4087 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-85)))) (-2784 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-599 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-599 *3)))) (-2942 (*1 *2 *1) (-12 (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-599 *1)) (-4 *1 (-339 *3 *4)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-714)))) (-3015 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1041)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-339 *2 *3)) (-4 *3 (-1041)) (-4 *2 (-989)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4109 (*1 *1 *1) (-12 (-4 *1 (-339 *2 *3)) (-4 *2 (-989)) (-4 *3 (-1041))))) -(-13 (-82 |t#1| |t#1|) (-978 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3827 (|t#1| $ |t#2|)) (-15 -4108 ($ (-1 |t#1| |t#1|) $)) (-15 -4088 ($ |t#2| |t#1|)) (-15 -4087 ((-85) $)) (-15 -2784 ((-599 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3967 ((-599 |t#1|) $)) (-15 -2942 ((-599 $) $)) (-15 -2536 ((-714) $)) (-15 -3015 (|t#2| $)) (-15 -3312 (|t#1| $)) (-15 -1842 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4109 ($ $)) (IF (|has| |t#1| (-146)) (-6 (-675 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-571 |#2|) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) |has| |#1| (-146)) ((-675 |#1|) |has| |#1| (-146)) ((-978 |#2|) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-3295 (((-3 $ "failed") (-647 (-268 (-333)))) 21 T ELT) (((-3 $ "failed") (-647 (-268 (-499)))) 19 T ELT) (((-3 $ "failed") (-647 (-884 (-333)))) 17 T ELT) (((-3 $ "failed") (-647 (-884 (-499)))) 15 T ELT) (((-3 $ "failed") (-647 (-361 (-884 (-333))))) 13 T ELT) (((-3 $ "failed") (-647 (-361 (-884 (-499))))) 11 T ELT)) (-3294 (($ (-647 (-268 (-333)))) 22 T ELT) (($ (-647 (-268 (-499)))) 20 T ELT) (($ (-647 (-884 (-333)))) 18 T ELT) (($ (-647 (-884 (-499)))) 16 T ELT) (($ (-647 (-361 (-884 (-333))))) 14 T ELT) (($ (-647 (-361 (-884 (-499))))) 12 T ELT)) (-3520 (((-1213) $) 7 T ELT)) (-4096 (((-797) $) 8 T ELT) (($ (-599 (-284))) 25 T ELT) (($ (-284)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) 23 T ELT))) -(((-340) (-113)) (T -340)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-340)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-340)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) (-4 *1 (-340)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-647 (-268 (-333)))) (-4 *1 (-340)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-268 (-333)))) (-4 *1 (-340)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-647 (-268 (-499)))) (-4 *1 (-340)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-268 (-499)))) (-4 *1 (-340)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-647 (-884 (-333)))) (-4 *1 (-340)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-884 (-333)))) (-4 *1 (-340)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-647 (-884 (-499)))) (-4 *1 (-340)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-884 (-499)))) (-4 *1 (-340)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-647 (-361 (-884 (-333))))) (-4 *1 (-340)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-361 (-884 (-333))))) (-4 *1 (-340)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-647 (-361 (-884 (-499))))) (-4 *1 (-340)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-361 (-884 (-499))))) (-4 *1 (-340))))) -(-13 (-350) (-10 -8 (-15 -4096 ($ (-599 (-284)))) (-15 -4096 ($ (-284))) (-15 -4096 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284)))))) (-15 -3294 ($ (-647 (-268 (-333))))) (-15 -3295 ((-3 $ "failed") (-647 (-268 (-333))))) (-15 -3294 ($ (-647 (-268 (-499))))) (-15 -3295 ((-3 $ "failed") (-647 (-268 (-499))))) (-15 -3294 ($ (-647 (-884 (-333))))) (-15 -3295 ((-3 $ "failed") (-647 (-884 (-333))))) (-15 -3294 ($ (-647 (-884 (-499))))) (-15 -3295 ((-3 $ "failed") (-647 (-884 (-499))))) (-15 -3294 ($ (-647 (-361 (-884 (-333)))))) (-15 -3295 ((-3 $ "failed") (-647 (-361 (-884 (-333)))))) (-15 -3294 ($ (-647 (-361 (-884 (-499)))))) (-15 -3295 ((-3 $ "failed") (-647 (-361 (-884 (-499)))))))) -(((-568 (-797)) . T) ((-350) . T) ((-1157) . T)) -((-2687 (((-85) $ $) 7 T ELT)) (-3258 (((-714) $) 40 T ELT)) (-3874 (($) 23 T CONST)) (-4089 (((-3 $ "failed") $ $) 43 T ELT)) (-3295 (((-3 |#1| "failed") $) 51 T ELT)) (-3294 ((|#1| $) 52 T ELT)) (-3607 (((-3 $ "failed") $) 20 T ELT)) (-1843 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2528 (((-85) $) 22 T ELT)) (-2399 ((|#1| $ (-499)) 37 T ELT)) (-2400 (((-714) $ (-499)) 38 T ELT)) (-2650 (($ $ $) 29 (|has| |#1| (-781)) ELT)) (-2978 (($ $ $) 30 (|has| |#1| (-781)) ELT)) (-2391 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2392 (($ (-1 (-714) (-714)) $) 36 T ELT)) (-4090 (((-3 $ "failed") $ $) 44 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1844 (($ $ $) 45 T ELT)) (-1845 (($ $ $) 46 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1877 (((-599 (-2 (|:| |gen| |#1|) (|:| -4093 (-714)))) $) 39 T ELT)) (-3000 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2785 (($) 24 T CONST)) (-2685 (((-85) $ $) 31 (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) 33 (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 32 (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 34 (|has| |#1| (-781)) ELT)) (** (($ $ (-857)) 17 T ELT) (($ $ (-714)) 21 T ELT) (($ |#1| (-714)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) -(((-341 |#1|) (-113) (-1041)) (T -341)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-341 *2)) (-4 *2 (-1041)))) (-1845 (*1 *1 *1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) (-1844 (*1 *1 *1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) (-4090 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) (-4089 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) (-3000 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1041)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-341 *3)))) (-1843 (*1 *2 *1 *1) (-12 (-4 *3 (-1041)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-341 *3)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-1041)) (-5 *2 (-714)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-1041)) (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 (-714))))))) (-2400 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-341 *4)) (-4 *4 (-1041)) (-5 *2 (-714)))) (-2399 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-341 *2)) (-4 *2 (-1041)))) (-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-714) (-714))) (-4 *1 (-341 *3)) (-4 *3 (-1041)))) (-2391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-341 *3)) (-4 *3 (-1041))))) -(-13 (-684) (-978 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-714))) (-15 -1845 ($ $ $)) (-15 -1844 ($ $ $)) (-15 -4090 ((-3 $ "failed") $ $)) (-15 -4089 ((-3 $ "failed") $ $)) (-15 -3000 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1843 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3258 ((-714) $)) (-15 -1877 ((-599 (-2 (|:| |gen| |t#1|) (|:| -4093 (-714)))) $)) (-15 -2400 ((-714) $ (-499))) (-15 -2399 (|t#1| $ (-499))) (-15 -2392 ($ (-1 (-714) (-714)) $)) (-15 -2391 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-781)) (-6 (-781)) |%noBranch|))) -(((-73) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-684) . T) ((-781) |has| |#1| (-781)) ((-784) |has| |#1| (-781)) ((-978 |#1|) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714) $) 74 T ELT)) (-3874 (($) NIL T CONST)) (-4089 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3295 (((-3 |#1| #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-1843 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2528 (((-85) $) 17 T ELT)) (-2399 ((|#1| $ (-499)) NIL T ELT)) (-2400 (((-714) $ (-499)) NIL T ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2391 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2392 (($ (-1 (-714) (-714)) $) 37 T ELT)) (-4090 (((-3 $ #1#) $ $) 60 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1844 (($ $ $) 28 T ELT)) (-1845 (($ $ $) 26 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1877 (((-599 (-2 (|:| |gen| |#1|) (|:| -4093 (-714)))) $) 34 T ELT)) (-3000 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-4096 (((-797) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2785 (($) 7 T CONST)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 83 (|has| |#1| (-781)) ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ |#1| (-714)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) -(((-342 |#1|) (-341 |#1|) (-1041)) (T -342)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 (-499) "failed") $) 59 T ELT)) (-3294 (((-499) $) 60 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-2650 (($ $ $) 61 T ELT)) (-2978 (($ $ $) 62 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-499)) 58 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2685 (((-85) $ $) 63 T ELT)) (-2686 (((-85) $ $) 65 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 64 T ELT)) (-2806 (((-85) $ $) 66 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-343) (-113)) (T -343)) -NIL -(-13 (-510) (-781) (-978 (-499))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-244) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-781) . T) ((-784) . T) ((-978 (-499)) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-1846 (((-85) $) 25 T ELT)) (-1847 (((-85) $) 22 T ELT)) (-3764 (($ (-1099) (-1099) (-1099)) 26 T ELT)) (-3690 (((-1099) $) 16 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1851 (($ (-1099) (-1099) (-1099)) 14 T ELT)) (-1849 (((-1099) $) 17 T ELT)) (-1848 (((-85) $) 18 T ELT)) (-1850 (((-1099) $) 15 T ELT)) (-4096 (((-797) $) 12 T ELT) (($ (-1099)) 13 T ELT) (((-1099) $) 9 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 7 T ELT))) -(((-344) (-345)) (T -344)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-1846 (((-85) $) 20 T ELT)) (-1847 (((-85) $) 21 T ELT)) (-3764 (($ (-1099) (-1099) (-1099)) 19 T ELT)) (-3690 (((-1099) $) 24 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1851 (($ (-1099) (-1099) (-1099)) 26 T ELT)) (-1849 (((-1099) $) 23 T ELT)) (-1848 (((-85) $) 22 T ELT)) (-1850 (((-1099) $) 25 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-1099)) 28 T ELT) (((-1099) $) 27 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-345) (-113)) (T -345)) -((-1851 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-345)))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-1099)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-1099)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-1099)))) (-1848 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-85)))) (-1847 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-85)))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-85)))) (-3764 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-345))))) -(-13 (-1041) (-444 (-1099)) (-10 -8 (-15 -1851 ($ (-1099) (-1099) (-1099))) (-15 -1850 ((-1099) $)) (-15 -3690 ((-1099) $)) (-15 -1849 ((-1099) $)) (-15 -1848 ((-85) $)) (-15 -1847 ((-85) $)) (-15 -1846 ((-85) $)) (-15 -3764 ($ (-1099) (-1099) (-1099))))) -(((-73) . T) ((-571 (-1099)) . T) ((-568 (-797)) . T) ((-568 (-1099)) . T) ((-444 (-1099)) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ "failed") $ $) NIL T ELT)) (-1852 (((-797) $) 64 T ELT)) (-3874 (($) NIL T CONST)) (-2525 (($ $ (-857)) NIL T ELT)) (-2549 (($ $ (-857)) NIL T ELT)) (-2524 (($ $ (-857)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($ (-714)) 38 T ELT)) (-4061 (((-714)) 18 T ELT)) (-1853 (((-797) $) 66 T ELT)) (-2551 (($ $ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2552 (($ $ $ $) NIL T ELT)) (-2550 (($ $ $) NIL T ELT)) (-2779 (($) 24 T CONST)) (-3174 (((-85) $ $) 41 T ELT)) (-3987 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3989 (($ $ $) 51 T ELT)) (** (($ $ (-857)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) -(((-346 |#1| |#2| |#3|) (-13 (-702 |#3|) (-10 -8 (-15 -4061 ((-714))) (-15 -1853 ((-797) $)) (-15 -1852 ((-797) $)) (-15 -2527 ($ (-714))))) (-714) (-714) (-146)) (T -346)) -((-4061 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-714)) (-14 *4 (-714)) (-4 *5 (-146)))) (-1852 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-714)) (-14 *4 (-714)) (-4 *5 (-146)))) (-2527 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146))))) -((-1858 (((-1099)) 12 T ELT)) (-1855 (((-1088 (-1099))) 30 T ELT)) (-1857 (((-1213) (-1099)) 27 T ELT) (((-1213) (-344)) 26 T ELT)) (-1856 (((-1213)) 28 T ELT)) (-1854 (((-1088 (-1099))) 29 T ELT))) -(((-347) (-10 -7 (-15 -1854 ((-1088 (-1099)))) (-15 -1855 ((-1088 (-1099)))) (-15 -1856 ((-1213))) (-15 -1857 ((-1213) (-344))) (-15 -1857 ((-1213) (-1099))) (-15 -1858 ((-1099))))) (T -347)) -((-1858 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-347)))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-347)))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-344)) (-5 *2 (-1213)) (-5 *1 (-347)))) (-1856 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-347)))) (-1855 (*1 *2) (-12 (-5 *2 (-1088 (-1099))) (-5 *1 (-347)))) (-1854 (*1 *2) (-12 (-5 *2 (-1088 (-1099))) (-5 *1 (-347))))) -((-3922 (((-714) (-288 |#1| |#2| |#3| |#4|)) 16 T ELT))) -(((-348 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3922 ((-714) (-288 |#1| |#2| |#3| |#4|)))) (-13 (-323) (-318)) (-1183 |#1|) (-1183 (-361 |#2|)) (-297 |#1| |#2| |#3|)) (T -348)) -((-3922 (*1 *2 *3) (-12 (-5 *3 (-288 *4 *5 *6 *7)) (-4 *4 (-13 (-323) (-318))) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) (-4 *7 (-297 *4 *5 *6)) (-5 *2 (-714)) (-5 *1 (-348 *4 *5 *6 *7))))) -((-1860 (((-599 (-1099)) (-599 (-1099))) 9 T ELT)) (-3520 (((-1213) (-344)) 26 T ELT)) (-1859 (((-1043) (-1117) (-599 (-1117)) (-1120) (-599 (-1117))) 59 T ELT) (((-1043) (-1117) (-599 (-3 (|:| |array| (-599 (-1117))) (|:| |scalar| (-1117)))) (-599 (-599 (-3 (|:| |array| (-599 (-1117))) (|:| |scalar| (-1117))))) (-599 (-1117)) (-1117)) 34 T ELT) (((-1043) (-1117) (-599 (-3 (|:| |array| (-599 (-1117))) (|:| |scalar| (-1117)))) (-599 (-599 (-3 (|:| |array| (-599 (-1117))) (|:| |scalar| (-1117))))) (-599 (-1117))) 33 T ELT))) -(((-349) (-10 -7 (-15 -1859 ((-1043) (-1117) (-599 (-3 (|:| |array| (-599 (-1117))) (|:| |scalar| (-1117)))) (-599 (-599 (-3 (|:| |array| (-599 (-1117))) (|:| |scalar| (-1117))))) (-599 (-1117)))) (-15 -1859 ((-1043) (-1117) (-599 (-3 (|:| |array| (-599 (-1117))) (|:| |scalar| (-1117)))) (-599 (-599 (-3 (|:| |array| (-599 (-1117))) (|:| |scalar| (-1117))))) (-599 (-1117)) (-1117))) (-15 -1859 ((-1043) (-1117) (-599 (-1117)) (-1120) (-599 (-1117)))) (-15 -3520 ((-1213) (-344))) (-15 -1860 ((-599 (-1099)) (-599 (-1099)))))) (T -349)) -((-1860 (*1 *2 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-349)))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-344)) (-5 *2 (-1213)) (-5 *1 (-349)))) (-1859 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-599 (-1117))) (-5 *5 (-1120)) (-5 *3 (-1117)) (-5 *2 (-1043)) (-5 *1 (-349)))) (-1859 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-599 (-599 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-599 (-3 (|:| |array| (-599 *3)) (|:| |scalar| (-1117))))) (-5 *6 (-599 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1043)) (-5 *1 (-349)))) (-1859 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-599 (-599 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-599 (-3 (|:| |array| (-599 *3)) (|:| |scalar| (-1117))))) (-5 *6 (-599 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1043)) (-5 *1 (-349))))) -((-3520 (((-1213) $) 7 T ELT)) (-4096 (((-797) $) 8 T ELT))) -(((-350) (-113)) (T -350)) -((-3520 (*1 *2 *1) (-12 (-4 *1 (-350)) (-5 *2 (-1213))))) -(-13 (-1157) (-568 (-797)) (-10 -8 (-15 -3520 ((-1213) $)))) -(((-568 (-797)) . T) ((-1157) . T)) -((-3295 (((-3 $ "failed") (-268 (-333))) 21 T ELT) (((-3 $ "failed") (-268 (-499))) 19 T ELT) (((-3 $ "failed") (-884 (-333))) 17 T ELT) (((-3 $ "failed") (-884 (-499))) 15 T ELT) (((-3 $ "failed") (-361 (-884 (-333)))) 13 T ELT) (((-3 $ "failed") (-361 (-884 (-499)))) 11 T ELT)) (-3294 (($ (-268 (-333))) 22 T ELT) (($ (-268 (-499))) 20 T ELT) (($ (-884 (-333))) 18 T ELT) (($ (-884 (-499))) 16 T ELT) (($ (-361 (-884 (-333)))) 14 T ELT) (($ (-361 (-884 (-499)))) 12 T ELT)) (-3520 (((-1213) $) 7 T ELT)) (-4096 (((-797) $) 8 T ELT) (($ (-599 (-284))) 25 T ELT) (($ (-284)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) 23 T ELT))) -(((-351) (-113)) (T -351)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-351)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-351)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) (-4 *1 (-351)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-268 (-333))) (-4 *1 (-351)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-268 (-333))) (-4 *1 (-351)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-268 (-499))) (-4 *1 (-351)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-268 (-499))) (-4 *1 (-351)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-884 (-333))) (-4 *1 (-351)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-884 (-333))) (-4 *1 (-351)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-884 (-499))) (-4 *1 (-351)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-884 (-499))) (-4 *1 (-351)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-361 (-884 (-333)))) (-4 *1 (-351)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-361 (-884 (-333)))) (-4 *1 (-351)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-361 (-884 (-499)))) (-4 *1 (-351)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-361 (-884 (-499)))) (-4 *1 (-351))))) -(-13 (-350) (-10 -8 (-15 -4096 ($ (-599 (-284)))) (-15 -4096 ($ (-284))) (-15 -4096 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284)))))) (-15 -3294 ($ (-268 (-333)))) (-15 -3295 ((-3 $ "failed") (-268 (-333)))) (-15 -3294 ($ (-268 (-499)))) (-15 -3295 ((-3 $ "failed") (-268 (-499)))) (-15 -3294 ($ (-884 (-333)))) (-15 -3295 ((-3 $ "failed") (-884 (-333)))) (-15 -3294 ($ (-884 (-499)))) (-15 -3295 ((-3 $ "failed") (-884 (-499)))) (-15 -3294 ($ (-361 (-884 (-333))))) (-15 -3295 ((-3 $ "failed") (-361 (-884 (-333))))) (-15 -3294 ($ (-361 (-884 (-499))))) (-15 -3295 ((-3 $ "failed") (-361 (-884 (-499))))))) -(((-568 (-797)) . T) ((-350) . T) ((-1157) . T)) -((-3520 (((-1213) $) 35 T ELT)) (-4096 (((-797) $) 97 T ELT) (($ (-284)) 99 T ELT) (($ (-599 (-284))) 98 T ELT) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) 96 T ELT) (($ (-268 (-659))) 52 T ELT) (($ (-268 (-657))) 72 T ELT) (($ (-268 (-652))) 85 T ELT) (($ (-247 (-268 (-659)))) 67 T ELT) (($ (-247 (-268 (-657)))) 80 T ELT) (($ (-247 (-268 (-652)))) 93 T ELT) (($ (-268 (-499))) 104 T ELT) (($ (-268 (-333))) 117 T ELT) (($ (-268 (-142 (-333)))) 130 T ELT) (($ (-247 (-268 (-499)))) 112 T ELT) (($ (-247 (-268 (-333)))) 125 T ELT) (($ (-247 (-268 (-142 (-333))))) 138 T ELT))) -(((-352 |#1| |#2| |#3| |#4|) (-13 (-350) (-10 -8 (-15 -4096 ($ (-284))) (-15 -4096 ($ (-599 (-284)))) (-15 -4096 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284)))))) (-15 -4096 ($ (-268 (-659)))) (-15 -4096 ($ (-268 (-657)))) (-15 -4096 ($ (-268 (-652)))) (-15 -4096 ($ (-247 (-268 (-659))))) (-15 -4096 ($ (-247 (-268 (-657))))) (-15 -4096 ($ (-247 (-268 (-652))))) (-15 -4096 ($ (-268 (-499)))) (-15 -4096 ($ (-268 (-333)))) (-15 -4096 ($ (-268 (-142 (-333))))) (-15 -4096 ($ (-247 (-268 (-499))))) (-15 -4096 ($ (-247 (-268 (-333))))) (-15 -4096 ($ (-247 (-268 (-142 (-333)))))))) (-1117) (-3 (|:| |fst| (-388)) (|:| -4060 "void")) (-599 (-1117)) (-1121)) (T -352)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-284)) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1="void"))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-268 (-659))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-268 (-657))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-268 (-652))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-247 (-268 (-659)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-247 (-268 (-657)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-247 (-268 (-652)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-268 (-499))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-268 (-333))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-268 (-142 (-333)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-247 (-268 (-499)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-247 (-268 (-333)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-247 (-268 (-142 (-333))))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121))))) -((-2687 (((-85) $ $) NIL T ELT)) (-1862 ((|#2| $) 38 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1863 (($ (-361 |#2|)) 93 T ELT)) (-1861 (((-599 (-2 (|:| -2519 (-714)) (|:| -3923 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3908 (($ $ (-714)) 36 T ELT) (($ $) 34 T ELT)) (-4122 (((-361 |#2|) $) 49 T ELT)) (-3670 (($ (-599 (-2 (|:| -2519 (-714)) (|:| -3923 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-4096 (((-797) $) 131 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2790 (($ $ (-714)) 37 T ELT) (($ $) 35 T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-3989 (($ |#2| $) 41 T ELT))) -(((-353 |#1| |#2|) (-13 (-1041) (-189) (-569 (-361 |#2|)) (-10 -8 (-15 -3989 ($ |#2| $)) (-15 -1863 ($ (-361 |#2|))) (-15 -1862 (|#2| $)) (-15 -1861 ((-599 (-2 (|:| -2519 (-714)) (|:| -3923 |#2|) (|:| |num| |#2|))) $)) (-15 -3670 ($ (-599 (-2 (|:| -2519 (-714)) (|:| -3923 |#2|) (|:| |num| |#2|))))))) (-13 (-318) (-120)) (-1183 |#1|)) (T -353)) -((-3989 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-318) (-120))) (-5 *1 (-353 *3 *2)) (-4 *2 (-1183 *3)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-361 *4)) (-4 *4 (-1183 *3)) (-4 *3 (-13 (-318) (-120))) (-5 *1 (-353 *3 *4)))) (-1862 (*1 *2 *1) (-12 (-4 *2 (-1183 *3)) (-5 *1 (-353 *3 *2)) (-4 *3 (-13 (-318) (-120))))) (-1861 (*1 *2 *1) (-12 (-4 *3 (-13 (-318) (-120))) (-5 *2 (-599 (-2 (|:| -2519 (-714)) (|:| -3923 *4) (|:| |num| *4)))) (-5 *1 (-353 *3 *4)) (-4 *4 (-1183 *3)))) (-3670 (*1 *1 *2) (-12 (-5 *2 (-599 (-2 (|:| -2519 (-714)) (|:| -3923 *4) (|:| |num| *4)))) (-4 *4 (-1183 *3)) (-4 *3 (-13 (-318) (-120))) (-5 *1 (-353 *3 *4))))) -((-2687 (((-85) $ $) 10 (-3677 (|has| |#1| (-821 (-499))) (|has| |#1| (-821 (-333)))) ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 16 (|has| |#1| (-821 (-333))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 15 (|has| |#1| (-821 (-499))) ELT)) (-3380 (((-1099) $) 14 (-3677 (|has| |#1| (-821 (-499))) (|has| |#1| (-821 (-333)))) ELT)) (-3381 (((-1060) $) 13 (-3677 (|has| |#1| (-821 (-499))) (|has| |#1| (-821 (-333)))) ELT)) (-4096 (((-797) $) 12 (-3677 (|has| |#1| (-821 (-499))) (|has| |#1| (-821 (-333)))) ELT)) (-1297 (((-85) $ $) 11 (-3677 (|has| |#1| (-821 (-499))) (|has| |#1| (-821 (-333)))) ELT)) (-3174 (((-85) $ $) 9 (-3677 (|has| |#1| (-821 (-499))) (|has| |#1| (-821 (-333)))) ELT))) -(((-354 |#1|) (-113) (-1157)) (T -354)) -NIL -(-13 (-1157) (-10 -7 (IF (|has| |t#1| (-821 (-499))) (-6 (-821 (-499))) |%noBranch|) (IF (|has| |t#1| (-821 (-333))) (-6 (-821 (-333))) |%noBranch|))) -(((-73) -3677 (|has| |#1| (-821 (-499))) (|has| |#1| (-821 (-333)))) ((-568 (-797)) -3677 (|has| |#1| (-821 (-499))) (|has| |#1| (-821 (-333)))) ((-821 (-333)) |has| |#1| (-821 (-333))) ((-821 (-499)) |has| |#1| (-821 (-499))) ((-1041) -3677 (|has| |#1| (-821 (-499))) (|has| |#1| (-821 (-333)))) ((-1157) . T)) -((-1864 (($ $) 10 T ELT) (($ $ (-714)) 12 T ELT))) -(((-355 |#1|) (-10 -7 (-15 -1864 (|#1| |#1| (-714))) (-15 -1864 (|#1| |#1|))) (-356)) (T -355)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3874 (($) 22 T CONST)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-1864 (($ $) 94 T ELT) (($ $ (-714)) 93 T ELT)) (-3873 (((-85) $) 86 T ELT)) (-3922 (((-766 (-857)) $) 96 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 65 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 85 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-1865 (((-3 (-714) "failed") $ $) 95 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT)) (-2823 (((-649 $) $) 97 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 80 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT))) -(((-356) (-113)) (T -356)) -((-3922 (*1 *2 *1) (-12 (-4 *1 (-356)) (-5 *2 (-766 (-857))))) (-1865 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-356)) (-5 *2 (-714)))) (-1864 (*1 *1 *1) (-4 *1 (-356))) (-1864 (*1 *1 *1 *2) (-12 (-4 *1 (-356)) (-5 *2 (-714))))) -(-13 (-318) (-118) (-10 -8 (-15 -3922 ((-766 (-857)) $)) (-15 -1865 ((-3 (-714) "failed") $ $)) (-15 -1864 ($ $)) (-15 -1864 ($ $ (-714))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-200) . T) ((-244) . T) ((-261) . T) ((-318) . T) ((-406) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 $) . T) ((-675 (-361 (-499))) . T) ((-675 $) . T) ((-684) . T) ((-859) . T) ((-991 (-361 (-499))) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) . T)) -((-3392 (($ (-499) (-499)) 11 T ELT) (($ (-499) (-499) (-857)) NIL T ELT)) (-2734 (((-857)) 19 T ELT) (((-857) (-857)) NIL T ELT))) -(((-357 |#1|) (-10 -7 (-15 -2734 ((-857) (-857))) (-15 -2734 ((-857))) (-15 -3392 (|#1| (-499) (-499) (-857))) (-15 -3392 (|#1| (-499) (-499)))) (-358)) (T -357)) -((-2734 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-357 *3)) (-4 *3 (-358)))) (-2734 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-357 *3)) (-4 *3 (-358))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3251 (((-499) $) 105 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-3921 (($ $) 103 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-3158 (($ $) 113 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3773 (((-499) $) 130 T ELT)) (-3874 (($) 22 T CONST)) (-3249 (($ $) 102 T ELT)) (-3295 (((-3 (-499) #1="failed") $) 118 T ELT) (((-3 (-361 (-499)) #1#) $) 115 T ELT)) (-3294 (((-499) $) 119 T ELT) (((-361 (-499)) $) 116 T ELT)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-3873 (((-85) $) 86 T ELT)) (-2492 (((-857)) 146 T ELT) (((-857) (-857)) 143 (|has| $ (-6 -4136)) ELT)) (-3324 (((-85) $) 128 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 109 T ELT)) (-3922 (((-499) $) 152 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 112 T ELT)) (-3254 (($ $) 108 T ELT)) (-3325 (((-85) $) 129 T ELT)) (-1675 (((-3 (-599 $) #2="failed") (-599 $) $) 65 T ELT)) (-2650 (($ $ $) 122 T ELT) (($) 140 (-12 (-2679 (|has| $ (-6 -4136))) (-2679 (|has| $ (-6 -4128)))) ELT)) (-2978 (($ $ $) 123 T ELT) (($) 139 (-12 (-2679 (|has| $ (-6 -4136))) (-2679 (|has| $ (-6 -4128)))) ELT)) (-2493 (((-499) $) 149 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 85 T ELT)) (-1867 (((-857) (-499)) 142 (|has| $ (-6 -4136)) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3250 (($ $) 104 T ELT)) (-3252 (($ $) 106 T ELT)) (-3392 (($ (-499) (-499)) 154 T ELT) (($ (-499) (-499) (-857)) 153 T ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-2519 (((-499) $) 150 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-2734 (((-857)) 147 T ELT) (((-857) (-857)) 144 (|has| $ (-6 -4136)) ELT)) (-1866 (((-857) (-499)) 141 (|has| $ (-6 -4136)) ELT)) (-4122 (((-333) $) 121 T ELT) (((-179) $) 120 T ELT) (((-825 (-333)) $) 110 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT) (($ (-499)) 117 T ELT) (($ (-361 (-499))) 114 T ELT)) (-3248 (((-714)) 37 T CONST)) (-3253 (($ $) 107 T ELT)) (-1868 (((-857)) 148 T ELT) (((-857) (-857)) 145 (|has| $ (-6 -4136)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2815 (((-857)) 151 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-3523 (($ $) 131 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2685 (((-85) $ $) 124 T ELT)) (-2686 (((-85) $ $) 126 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 125 T ELT)) (-2806 (((-85) $ $) 127 T ELT)) (-4099 (($ $ $) 80 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT) (($ $ (-361 (-499))) 111 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT))) -(((-358) (-113)) (T -358)) -((-3392 (*1 *1 *2 *2) (-12 (-5 *2 (-499)) (-4 *1 (-358)))) (-3392 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-857)) (-4 *1 (-358)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-499)))) (-2815 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-857)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-499)))) (-2493 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-499)))) (-1868 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-857)))) (-2734 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-857)))) (-2492 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-857)))) (-1868 (*1 *2 *2) (-12 (-5 *2 (-857)) (|has| *1 (-6 -4136)) (-4 *1 (-358)))) (-2734 (*1 *2 *2) (-12 (-5 *2 (-857)) (|has| *1 (-6 -4136)) (-4 *1 (-358)))) (-2492 (*1 *2 *2) (-12 (-5 *2 (-857)) (|has| *1 (-6 -4136)) (-4 *1 (-358)))) (-1867 (*1 *2 *3) (-12 (-5 *3 (-499)) (|has| *1 (-6 -4136)) (-4 *1 (-358)) (-5 *2 (-857)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-499)) (|has| *1 (-6 -4136)) (-4 *1 (-358)) (-5 *2 (-857)))) (-2650 (*1 *1) (-12 (-4 *1 (-358)) (-2679 (|has| *1 (-6 -4136))) (-2679 (|has| *1 (-6 -4128))))) (-2978 (*1 *1) (-12 (-4 *1 (-358)) (-2679 (|has| *1 (-6 -4136))) (-2679 (|has| *1 (-6 -4128)))))) -(-13 (-1000) (-10 -8 (-6 -3920) (-15 -3392 ($ (-499) (-499))) (-15 -3392 ($ (-499) (-499) (-857))) (-15 -3922 ((-499) $)) (-15 -2815 ((-857))) (-15 -2519 ((-499) $)) (-15 -2493 ((-499) $)) (-15 -1868 ((-857))) (-15 -2734 ((-857))) (-15 -2492 ((-857))) (IF (|has| $ (-6 -4136)) (PROGN (-15 -1868 ((-857) (-857))) (-15 -2734 ((-857) (-857))) (-15 -2492 ((-857) (-857))) (-15 -1867 ((-857) (-499))) (-15 -1866 ((-857) (-499)))) |%noBranch|) (IF (|has| $ (-6 -4128)) |%noBranch| (IF (|has| $ (-6 -4136)) |%noBranch| (PROGN (-15 -2650 ($)) (-15 -2978 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-569 (-179)) . T) ((-569 (-333)) . T) ((-569 (-825 (-333))) . T) ((-200) . T) ((-244) . T) ((-261) . T) ((-318) . T) ((-406) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 $) . T) ((-675 (-361 (-499))) . T) ((-675 $) . T) ((-684) . T) ((-735) . T) ((-737) . T) ((-739) . T) ((-742) . T) ((-780) . T) ((-781) . T) ((-784) . T) ((-821 (-333)) . T) ((-859) . T) ((-942) . T) ((-960) . T) ((-1000) . T) ((-978 (-361 (-499))) . T) ((-978 (-499)) . T) ((-991 (-361 (-499))) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 59 T ELT)) (-1869 (($ $) 77 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 190 T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) 48 T ELT)) (-1870 ((|#1| $) 16 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#1| (-1162)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-1162)) ELT)) (-1872 (($ |#1| (-499)) 42 T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 148 T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 73 T ELT)) (-3607 (((-3 $ #1#) $) 164 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) 84 (|has| |#1| (-498)) ELT)) (-3144 (((-85) $) 80 (|has| |#1| (-498)) ELT)) (-3143 (((-361 (-499)) $) 91 (|has| |#1| (-498)) ELT)) (-1873 (($ |#1| (-499)) 44 T ELT)) (-3873 (((-85) $) 210 (|has| |#1| (-1162)) ELT)) (-2528 (((-85) $) 61 T ELT)) (-1936 (((-714) $) 51 T ELT)) (-1874 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-499)) 175 T ELT)) (-2399 ((|#1| $ (-499)) 174 T ELT)) (-1875 (((-499) $ (-499)) 173 T ELT)) (-1878 (($ |#1| (-499)) 41 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 183 T ELT)) (-1933 (($ |#1| (-599 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-499))))) 78 T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1876 (($ |#1| (-499)) 43 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) 191 (|has| |#1| (-406)) ELT)) (-1871 (($ |#1| (-499) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1877 (((-599 (-2 (|:| -3882 |#1|) (|:| -2519 (-499)))) $) 72 T ELT)) (-2054 (((-599 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-499)))) $) 12 T ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-1162)) ELT)) (-3606 (((-3 $ #1#) $ $) 176 T ELT)) (-2519 (((-499) $) 167 T ELT)) (-4113 ((|#1| $) 74 T ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-247 |#1|))) 100 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) 106 (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) |#1|) NIL (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) $) NIL (|has| |#1| (-468 (-1117) $)) ELT) (($ $ (-599 (-1117)) (-599 $)) 107 (|has| |#1| (-468 (-1117) $)) ELT) (($ $ (-599 (-247 $))) 103 (|has| |#1| (-263 $)) ELT) (($ $ (-247 $)) NIL (|has| |#1| (-263 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-263 $)) ELT) (($ $ (-599 $) (-599 $)) NIL (|has| |#1| (-263 $)) ELT)) (-3950 (($ $ |#1|) 92 (|has| |#1| (-240 |#1| |#1|)) ELT) (($ $ $) 93 (|has| |#1| (-240 $ $)) ELT)) (-3908 (($ $ (-1 |#1| |#1|)) 182 T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-4122 (((-488) $) 39 (|has| |#1| (-569 (-488))) ELT) (((-333) $) 113 (|has| |#1| (-960)) ELT) (((-179) $) 119 (|has| |#1| (-960)) ELT)) (-4096 (((-797) $) 146 T ELT) (($ (-499)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-978 (-361 (-499)))) ELT)) (-3248 (((-714)) 66 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2779 (($) 53 T CONST)) (-2785 (($) 52 T CONST)) (-2790 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) 159 T ELT)) (-3987 (($ $) 161 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 180 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 125 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) -(((-359 |#1|) (-13 (-510) (-184 |#1|) (-38 |#1|) (-293 |#1|) (-366 |#1|) (-10 -8 (-15 -4113 (|#1| $)) (-15 -2519 ((-499) $)) (-15 -1933 ($ |#1| (-599 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-499)))))) (-15 -2054 ((-599 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-499)))) $)) (-15 -1878 ($ |#1| (-499))) (-15 -1877 ((-599 (-2 (|:| -3882 |#1|) (|:| -2519 (-499)))) $)) (-15 -1876 ($ |#1| (-499))) (-15 -1875 ((-499) $ (-499))) (-15 -2399 (|#1| $ (-499))) (-15 -1874 ((-3 #1# #2# #3# #4#) $ (-499))) (-15 -1936 ((-714) $)) (-15 -1873 ($ |#1| (-499))) (-15 -1872 ($ |#1| (-499))) (-15 -1871 ($ |#1| (-499) (-3 #1# #2# #3# #4#))) (-15 -1870 (|#1| $)) (-15 -1869 ($ $)) (-15 -4108 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-406)) (-6 (-406)) |%noBranch|) (IF (|has| |#1| (-960)) (-6 (-960)) |%noBranch|) (IF (|has| |#1| (-1162)) (-6 (-1162)) |%noBranch|) (IF (|has| |#1| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|) (IF (|has| |#1| (-498)) (PROGN (-15 -3144 ((-85) $)) (-15 -3143 ((-361 (-499)) $)) (-15 -3145 ((-3 (-361 (-499)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-240 $ $)) (-6 (-240 $ $)) |%noBranch|) (IF (|has| |#1| (-263 $)) (-6 (-263 $)) |%noBranch|) (IF (|has| |#1| (-468 (-1117) $)) (-6 (-468 (-1117) $)) |%noBranch|))) (-510)) (T -359)) -((-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-510)) (-5 *1 (-359 *3)))) (-4113 (*1 *2 *1) (-12 (-5 *1 (-359 *2)) (-4 *2 (-510)))) (-2519 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-359 *3)) (-4 *3 (-510)))) (-1933 (*1 *1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-499))))) (-4 *2 (-510)) (-5 *1 (-359 *2)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-499))))) (-5 *1 (-359 *3)) (-4 *3 (-510)))) (-1878 (*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| -3882 *3) (|:| -2519 (-499))))) (-5 *1 (-359 *3)) (-4 *3 (-510)))) (-1876 (*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510)))) (-1875 (*1 *2 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-359 *3)) (-4 *3 (-510)))) (-2399 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510)))) (-1874 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-359 *4)) (-4 *4 (-510)))) (-1936 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-359 *3)) (-4 *3 (-510)))) (-1873 (*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510)))) (-1872 (*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510)))) (-1871 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-499)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-359 *2)) (-4 *2 (-510)))) (-1870 (*1 *2 *1) (-12 (-5 *1 (-359 *2)) (-4 *2 (-510)))) (-1869 (*1 *1 *1) (-12 (-5 *1 (-359 *2)) (-4 *2 (-510)))) (-3144 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-359 *3)) (-4 *3 (-498)) (-4 *3 (-510)))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-359 *3)) (-4 *3 (-498)) (-4 *3 (-510)))) (-3145 (*1 *2 *1) (|partial| -12 (-5 *2 (-361 (-499))) (-5 *1 (-359 *3)) (-4 *3 (-498)) (-4 *3 (-510))))) -((-4108 (((-359 |#2|) (-1 |#2| |#1|) (-359 |#1|)) 20 T ELT))) -(((-360 |#1| |#2|) (-10 -7 (-15 -4108 ((-359 |#2|) (-1 |#2| |#1|) (-359 |#1|)))) (-510) (-510)) (T -360)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-359 *5)) (-4 *5 (-510)) (-4 *6 (-510)) (-5 *2 (-359 *6)) (-5 *1 (-360 *5 *6))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 13 T ELT)) (-3251 ((|#1| $) 21 (|has| |#1| (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| |#1| (-763)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1117) #1#) $) NIL (|has| |#1| (-978 (-1117))) ELT) (((-3 (-361 (-499)) #1#) $) 54 (|has| |#1| (-978 (-499))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT)) (-3294 ((|#1| $) 15 T ELT) (((-1117) $) NIL (|has| |#1| (-978 (-1117))) ELT) (((-361 (-499)) $) 51 (|has| |#1| (-978 (-499))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) 32 T ELT)) (-3115 (($) NIL (|has| |#1| (-498)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3324 (((-85) $) NIL (|has| |#1| (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| |#1| (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| |#1| (-821 (-333))) ELT)) (-2528 (((-85) $) 38 T ELT)) (-3117 (($ $) NIL T ELT)) (-3119 ((|#1| $) 55 T ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-1092)) ELT)) (-3325 (((-85) $) 22 (|has| |#1| (-763)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| |#1| (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 82 T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL (|has| |#1| (-261)) ELT)) (-3252 ((|#1| $) 26 (|has| |#1| (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 135 (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 128 (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-247 |#1|))) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) NIL (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) |#1|) NIL (|has| |#1| (-468 (-1117) |#1|)) ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-240 |#1| |#1|)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT)) (-3116 (($ $) NIL T ELT)) (-3118 ((|#1| $) 57 T ELT)) (-4122 (((-825 (-499)) $) NIL (|has| |#1| (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| |#1| (-569 (-825 (-333)))) ELT) (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT) (((-333) $) NIL (|has| |#1| (-960)) ELT) (((-179) $) NIL (|has| |#1| (-960)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1117)) NIL (|has| |#1| (-978 (-1117))) ELT)) (-2823 (((-649 $) $) 92 (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) 93 T CONST)) (-3253 ((|#1| $) 24 (|has| |#1| (-498)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3523 (($ $) NIL (|has| |#1| (-763)) ELT)) (-2779 (($) 28 T CONST)) (-2785 (($) 8 T CONST)) (-2790 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 48 T ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-4099 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3987 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3989 (($ $ $) 35 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 122 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) -(((-361 |#1|) (-13 (-931 |#1|) (-10 -7 (IF (|has| |#1| (-6 -4132)) (IF (|has| |#1| (-406)) (IF (|has| |#1| (-6 -4143)) (-6 -4132) |%noBranch|) |%noBranch|) |%noBranch|))) (-510)) (T -361)) -NIL -((-4108 (((-361 |#2|) (-1 |#2| |#1|) (-361 |#1|)) 13 T ELT))) -(((-362 |#1| |#2|) (-10 -7 (-15 -4108 ((-361 |#2|) (-1 |#2| |#1|) (-361 |#1|)))) (-510) (-510)) (T -362)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-361 *5)) (-4 *5 (-510)) (-4 *6 (-510)) (-5 *2 (-361 *6)) (-5 *1 (-362 *5 *6))))) -((-1880 (((-647 |#2|) (-1207 $)) NIL T ELT) (((-647 |#2|)) 18 T ELT)) (-1890 (($ (-1207 |#2|) (-1207 $)) NIL T ELT) (($ (-1207 |#2|)) 24 T ELT)) (-1879 (((-647 |#2|) $ (-1207 $)) NIL T ELT) (((-647 |#2|) $) 40 T ELT)) (-2115 ((|#3| $) 69 T ELT)) (-3907 ((|#2| (-1207 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3362 (((-1207 |#2|) $ (-1207 $)) NIL T ELT) (((-647 |#2|) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 |#2|) $) 22 T ELT) (((-647 |#2|) (-1207 $)) 38 T ELT)) (-4122 (((-1207 |#2|) $) 11 T ELT) (($ (-1207 |#2|)) 13 T ELT)) (-2565 ((|#3| $) 55 T ELT))) -(((-363 |#1| |#2| |#3|) (-10 -7 (-15 -1879 ((-647 |#2|) |#1|)) (-15 -3907 (|#2|)) (-15 -1880 ((-647 |#2|))) (-15 -4122 (|#1| (-1207 |#2|))) (-15 -4122 ((-1207 |#2|) |#1|)) (-15 -1890 (|#1| (-1207 |#2|))) (-15 -3362 ((-647 |#2|) (-1207 |#1|))) (-15 -3362 ((-1207 |#2|) |#1|)) (-15 -2115 (|#3| |#1|)) (-15 -2565 (|#3| |#1|)) (-15 -1880 ((-647 |#2|) (-1207 |#1|))) (-15 -3907 (|#2| (-1207 |#1|))) (-15 -1890 (|#1| (-1207 |#2|) (-1207 |#1|))) (-15 -3362 ((-647 |#2|) (-1207 |#1|) (-1207 |#1|))) (-15 -3362 ((-1207 |#2|) |#1| (-1207 |#1|))) (-15 -1879 ((-647 |#2|) |#1| (-1207 |#1|)))) (-364 |#2| |#3|) (-146) (-1183 |#2|)) (T -363)) -((-1880 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)) (-5 *1 (-363 *3 *4 *5)) (-4 *3 (-364 *4 *5)))) (-3907 (*1 *2) (-12 (-4 *4 (-1183 *2)) (-4 *2 (-146)) (-5 *1 (-363 *3 *2 *4)) (-4 *3 (-364 *2 *4))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1880 (((-647 |#1|) (-1207 $)) 58 T ELT) (((-647 |#1|)) 74 T ELT)) (-3470 ((|#1| $) 64 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-1890 (($ (-1207 |#1|) (-1207 $)) 60 T ELT) (($ (-1207 |#1|)) 77 T ELT)) (-1879 (((-647 |#1|) $ (-1207 $)) 65 T ELT) (((-647 |#1|) $) 72 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3231 (((-857)) 66 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3254 ((|#1| $) 63 T ELT)) (-2115 ((|#2| $) 56 (|has| |#1| (-318)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3907 ((|#1| (-1207 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-3362 (((-1207 |#1|) $ (-1207 $)) 62 T ELT) (((-647 |#1|) (-1207 $) (-1207 $)) 61 T ELT) (((-1207 |#1|) $) 79 T ELT) (((-647 |#1|) (-1207 $)) 78 T ELT)) (-4122 (((-1207 |#1|) $) 76 T ELT) (($ (-1207 |#1|)) 75 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 49 T ELT)) (-2823 (((-649 $) $) 55 (|has| |#1| (-118)) ELT)) (-2565 ((|#2| $) 57 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2113 (((-1207 $)) 80 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) -(((-364 |#1| |#2|) (-113) (-146) (-1183 |t#1|)) (T -364)) -((-2113 (*1 *2) (-12 (-4 *3 (-146)) (-4 *4 (-1183 *3)) (-5 *2 (-1207 *1)) (-4 *1 (-364 *3 *4)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) (-5 *2 (-1207 *3)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)))) (-1890 (*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-146)) (-4 *1 (-364 *3 *4)) (-4 *4 (-1183 *3)))) (-4122 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) (-5 *2 (-1207 *3)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-146)) (-4 *1 (-364 *3 *4)) (-4 *4 (-1183 *3)))) (-1880 (*1 *2) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) (-5 *2 (-647 *3)))) (-3907 (*1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1183 *2)) (-4 *2 (-146)))) (-1879 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) (-5 *2 (-647 *3))))) -(-13 (-325 |t#1| |t#2|) (-10 -8 (-15 -2113 ((-1207 $))) (-15 -3362 ((-1207 |t#1|) $)) (-15 -3362 ((-647 |t#1|) (-1207 $))) (-15 -1890 ($ (-1207 |t#1|))) (-15 -4122 ((-1207 |t#1|) $)) (-15 -4122 ($ (-1207 |t#1|))) (-15 -1880 ((-647 |t#1|))) (-15 -3907 (|t#1|)) (-15 -1879 ((-647 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-325 |#1| |#2|) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 |#1|) . T) ((-675 |#1|) . T) ((-684) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-3295 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) 27 T ELT) (((-3 (-499) #1#) $) 19 T ELT)) (-3294 ((|#2| $) NIL T ELT) (((-361 (-499)) $) 24 T ELT) (((-499) $) 14 T ELT)) (-4096 (($ |#2|) NIL T ELT) (($ (-361 (-499))) 22 T ELT) (($ (-499)) 11 T ELT))) -(((-365 |#1| |#2|) (-10 -7 (-15 -4096 (|#1| (-499))) (-15 -3295 ((-3 (-499) #1="failed") |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -4096 (|#1| |#2|))) (-366 |#2|) (-1157)) (T -365)) -NIL -((-3295 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-361 (-499)) #1#) $) 16 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) 13 (|has| |#1| (-978 (-499))) ELT)) (-3294 ((|#1| $) 8 T ELT) (((-361 (-499)) $) 17 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) 14 (|has| |#1| (-978 (-499))) ELT)) (-4096 (($ |#1|) 6 T ELT) (($ (-361 (-499))) 15 (|has| |#1| (-978 (-361 (-499)))) ELT) (($ (-499)) 12 (|has| |#1| (-978 (-499))) ELT))) -(((-366 |#1|) (-113) (-1157)) (T -366)) -NIL -(-13 (-978 |t#1|) (-10 -7 (IF (|has| |t#1| (-978 (-499))) (-6 (-978 (-499))) |%noBranch|) (IF (|has| |t#1| (-978 (-361 (-499)))) (-6 (-978 (-361 (-499)))) |%noBranch|))) -(((-571 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-571 (-499)) |has| |#1| (-978 (-499))) ((-571 |#1|) . T) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ "failed") $) NIL T ELT)) (-1881 ((|#4| (-714) (-1207 |#4|)) 55 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3119 (((-1207 |#4|) $) 15 T ELT)) (-3254 ((|#2| $) 53 T ELT)) (-1882 (($ $) 156 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 103 T ELT)) (-2071 (($ (-1207 |#4|)) 102 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3118 ((|#1| $) 16 T ELT)) (-3130 (($ $ $) NIL T ELT)) (-2551 (($ $ $) NIL T ELT)) (-4096 (((-797) $) 147 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 |#4|) $) 140 T ELT)) (-2785 (($) 11 T CONST)) (-3174 (((-85) $ $) 39 T ELT)) (-4099 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 133 T ELT)) (* (($ $ $) 130 T ELT))) -(((-367 |#1| |#2| |#3| |#4|) (-13 (-427) (-10 -8 (-15 -2071 ($ (-1207 |#4|))) (-15 -2113 ((-1207 |#4|) $)) (-15 -3254 (|#2| $)) (-15 -3119 ((-1207 |#4|) $)) (-15 -3118 (|#1| $)) (-15 -1882 ($ $)) (-15 -1881 (|#4| (-714) (-1207 |#4|))))) (-261) (-931 |#1|) (-1183 |#2|) (-13 (-364 |#2| |#3|) (-978 |#2|))) (T -367)) -((-2071 (*1 *1 *2) (-12 (-5 *2 (-1207 *6)) (-4 *6 (-13 (-364 *4 *5) (-978 *4))) (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-4 *3 (-261)) (-5 *1 (-367 *3 *4 *5 *6)))) (-2113 (*1 *2 *1) (-12 (-4 *3 (-261)) (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-5 *2 (-1207 *6)) (-5 *1 (-367 *3 *4 *5 *6)) (-4 *6 (-13 (-364 *4 *5) (-978 *4))))) (-3254 (*1 *2 *1) (-12 (-4 *4 (-1183 *2)) (-4 *2 (-931 *3)) (-5 *1 (-367 *3 *2 *4 *5)) (-4 *3 (-261)) (-4 *5 (-13 (-364 *2 *4) (-978 *2))))) (-3119 (*1 *2 *1) (-12 (-4 *3 (-261)) (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-5 *2 (-1207 *6)) (-5 *1 (-367 *3 *4 *5 *6)) (-4 *6 (-13 (-364 *4 *5) (-978 *4))))) (-3118 (*1 *2 *1) (-12 (-4 *3 (-931 *2)) (-4 *4 (-1183 *3)) (-4 *2 (-261)) (-5 *1 (-367 *2 *3 *4 *5)) (-4 *5 (-13 (-364 *3 *4) (-978 *3))))) (-1882 (*1 *1 *1) (-12 (-4 *2 (-261)) (-4 *3 (-931 *2)) (-4 *4 (-1183 *3)) (-5 *1 (-367 *2 *3 *4 *5)) (-4 *5 (-13 (-364 *3 *4) (-978 *3))))) (-1881 (*1 *2 *3 *4) (-12 (-5 *3 (-714)) (-5 *4 (-1207 *2)) (-4 *5 (-261)) (-4 *6 (-931 *5)) (-4 *2 (-13 (-364 *6 *7) (-978 *6))) (-5 *1 (-367 *5 *6 *7 *2)) (-4 *7 (-1183 *6))))) -((-4108 (((-367 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-367 |#1| |#2| |#3| |#4|)) 35 T ELT))) -(((-368 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4108 ((-367 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-367 |#1| |#2| |#3| |#4|)))) (-261) (-931 |#1|) (-1183 |#2|) (-13 (-364 |#2| |#3|) (-978 |#2|)) (-261) (-931 |#5|) (-1183 |#6|) (-13 (-364 |#6| |#7|) (-978 |#6|))) (T -368)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-367 *5 *6 *7 *8)) (-4 *5 (-261)) (-4 *6 (-931 *5)) (-4 *7 (-1183 *6)) (-4 *8 (-13 (-364 *6 *7) (-978 *6))) (-4 *9 (-261)) (-4 *10 (-931 *9)) (-4 *11 (-1183 *10)) (-5 *2 (-367 *9 *10 *11 *12)) (-5 *1 (-368 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-364 *10 *11) (-978 *10)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ "failed") $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3254 ((|#2| $) 71 T ELT)) (-1883 (($ (-1207 |#4|)) 27 T ELT) (($ (-367 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-978 |#2|)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 37 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 |#4|) $) 28 T ELT)) (-2785 (($) 25 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ $ $) 82 T ELT))) -(((-369 |#1| |#2| |#3| |#4| |#5|) (-13 (-684) (-10 -8 (-15 -2113 ((-1207 |#4|) $)) (-15 -3254 (|#2| $)) (-15 -1883 ($ (-1207 |#4|))) (IF (|has| |#4| (-978 |#2|)) (-15 -1883 ($ (-367 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-261) (-931 |#1|) (-1183 |#2|) (-364 |#2| |#3|) (-1207 |#4|)) (T -369)) -((-2113 (*1 *2 *1) (-12 (-4 *3 (-261)) (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-5 *2 (-1207 *6)) (-5 *1 (-369 *3 *4 *5 *6 *7)) (-4 *6 (-364 *4 *5)) (-14 *7 *2))) (-3254 (*1 *2 *1) (-12 (-4 *4 (-1183 *2)) (-4 *2 (-931 *3)) (-5 *1 (-369 *3 *2 *4 *5 *6)) (-4 *3 (-261)) (-4 *5 (-364 *2 *4)) (-14 *6 (-1207 *5)))) (-1883 (*1 *1 *2) (-12 (-5 *2 (-1207 *6)) (-4 *6 (-364 *4 *5)) (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-4 *3 (-261)) (-5 *1 (-369 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1883 (*1 *1 *2) (-12 (-5 *2 (-367 *3 *4 *5 *6)) (-4 *6 (-978 *4)) (-4 *3 (-261)) (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-4 *6 (-364 *4 *5)) (-14 *7 (-1207 *6)) (-5 *1 (-369 *3 *4 *5 *6 *7))))) -((-4108 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) -(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 (|#3| (-1 |#4| |#2|) |#1|))) (-372 |#2|) (-146) (-372 |#4|) (-146)) (T -370)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-372 *6)) (-5 *1 (-370 *4 *5 *2 *6)) (-4 *4 (-372 *5))))) -((-1870 (((-3 $ #1="failed")) 99 T ELT)) (-3361 (((-1207 (-647 |#2|)) (-1207 $)) NIL T ELT) (((-1207 (-647 |#2|))) 104 T ELT)) (-2008 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) 97 T ELT)) (-1796 (((-3 $ #1#)) 96 T ELT)) (-1886 (((-647 |#2|) (-1207 $)) NIL T ELT) (((-647 |#2|)) 115 T ELT)) (-1884 (((-647 |#2|) $ (-1207 $)) NIL T ELT) (((-647 |#2|) $) 123 T ELT)) (-2002 (((-1111 (-884 |#2|))) 64 T ELT)) (-1888 ((|#2| (-1207 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1890 (($ (-1207 |#2|) (-1207 $)) NIL T ELT) (($ (-1207 |#2|)) 125 T ELT)) (-2009 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) 95 T ELT)) (-1797 (((-3 $ #1#)) 87 T ELT)) (-1887 (((-647 |#2|) (-1207 $)) NIL T ELT) (((-647 |#2|)) 113 T ELT)) (-1885 (((-647 |#2|) $ (-1207 $)) NIL T ELT) (((-647 |#2|) $) 121 T ELT)) (-2006 (((-1111 (-884 |#2|))) 63 T ELT)) (-1889 ((|#2| (-1207 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3362 (((-1207 |#2|) $ (-1207 $)) NIL T ELT) (((-647 |#2|) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 |#2|) $) 124 T ELT) (((-647 |#2|) (-1207 $)) 133 T ELT)) (-4122 (((-1207 |#2|) $) 109 T ELT) (($ (-1207 |#2|)) 111 T ELT)) (-1994 (((-599 (-884 |#2|)) (-1207 $)) NIL T ELT) (((-599 (-884 |#2|))) 107 T ELT)) (-2664 (($ (-647 |#2|) $) 103 T ELT))) -(((-371 |#1| |#2|) (-10 -7 (-15 -2664 (|#1| (-647 |#2|) |#1|)) (-15 -2002 ((-1111 (-884 |#2|)))) (-15 -2006 ((-1111 (-884 |#2|)))) (-15 -1884 ((-647 |#2|) |#1|)) (-15 -1885 ((-647 |#2|) |#1|)) (-15 -1886 ((-647 |#2|))) (-15 -1887 ((-647 |#2|))) (-15 -1888 (|#2|)) (-15 -1889 (|#2|)) (-15 -4122 (|#1| (-1207 |#2|))) (-15 -4122 ((-1207 |#2|) |#1|)) (-15 -1890 (|#1| (-1207 |#2|))) (-15 -1994 ((-599 (-884 |#2|)))) (-15 -3361 ((-1207 (-647 |#2|)))) (-15 -3362 ((-647 |#2|) (-1207 |#1|))) (-15 -3362 ((-1207 |#2|) |#1|)) (-15 -1870 ((-3 |#1| #1="failed"))) (-15 -1796 ((-3 |#1| #1#))) (-15 -1797 ((-3 |#1| #1#))) (-15 -2008 ((-3 (-2 (|:| |particular| |#1|) (|:| -2113 (-599 |#1|))) #1#))) (-15 -2009 ((-3 (-2 (|:| |particular| |#1|) (|:| -2113 (-599 |#1|))) #1#))) (-15 -1886 ((-647 |#2|) (-1207 |#1|))) (-15 -1887 ((-647 |#2|) (-1207 |#1|))) (-15 -1888 (|#2| (-1207 |#1|))) (-15 -1889 (|#2| (-1207 |#1|))) (-15 -1890 (|#1| (-1207 |#2|) (-1207 |#1|))) (-15 -3362 ((-647 |#2|) (-1207 |#1|) (-1207 |#1|))) (-15 -3362 ((-1207 |#2|) |#1| (-1207 |#1|))) (-15 -1884 ((-647 |#2|) |#1| (-1207 |#1|))) (-15 -1885 ((-647 |#2|) |#1| (-1207 |#1|))) (-15 -3361 ((-1207 (-647 |#2|)) (-1207 |#1|))) (-15 -1994 ((-599 (-884 |#2|)) (-1207 |#1|)))) (-372 |#2|) (-146)) (T -371)) -((-3361 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1207 (-647 *4))) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-1994 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-599 (-884 *4))) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-1889 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-371 *3 *2)) (-4 *3 (-372 *2)))) (-1888 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-371 *3 *2)) (-4 *3 (-372 *2)))) (-1887 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-647 *4)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-1886 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-647 *4)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-2006 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1111 (-884 *4))) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-2002 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1111 (-884 *4))) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1870 (((-3 $ #1="failed")) 47 (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3361 (((-1207 (-647 |#1|)) (-1207 $)) 88 T ELT) (((-1207 (-647 |#1|))) 114 T ELT)) (-1822 (((-1207 $)) 91 T ELT)) (-3874 (($) 22 T CONST)) (-2008 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) 50 (|has| |#1| (-510)) ELT)) (-1796 (((-3 $ #1#)) 48 (|has| |#1| (-510)) ELT)) (-1886 (((-647 |#1|) (-1207 $)) 75 T ELT) (((-647 |#1|)) 106 T ELT)) (-1820 ((|#1| $) 84 T ELT)) (-1884 (((-647 |#1|) $ (-1207 $)) 86 T ELT) (((-647 |#1|) $) 104 T ELT)) (-2522 (((-3 $ #1#) $) 55 (|has| |#1| (-510)) ELT)) (-2002 (((-1111 (-884 |#1|))) 102 (|has| |#1| (-318)) ELT)) (-2525 (($ $ (-857)) 36 T ELT)) (-1818 ((|#1| $) 82 T ELT)) (-1798 (((-1111 |#1|) $) 52 (|has| |#1| (-510)) ELT)) (-1888 ((|#1| (-1207 $)) 77 T ELT) ((|#1|) 108 T ELT)) (-1816 (((-1111 |#1|) $) 73 T ELT)) (-1810 (((-85)) 67 T ELT)) (-1890 (($ (-1207 |#1|) (-1207 $)) 79 T ELT) (($ (-1207 |#1|)) 112 T ELT)) (-3607 (((-3 $ #1#) $) 57 (|has| |#1| (-510)) ELT)) (-3231 (((-857)) 90 T ELT)) (-1807 (((-85)) 64 T ELT)) (-2549 (($ $ (-857)) 43 T ELT)) (-1803 (((-85)) 60 T ELT)) (-1801 (((-85)) 58 T ELT)) (-1805 (((-85)) 62 T ELT)) (-2009 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) 51 (|has| |#1| (-510)) ELT)) (-1797 (((-3 $ #1#)) 49 (|has| |#1| (-510)) ELT)) (-1887 (((-647 |#1|) (-1207 $)) 76 T ELT) (((-647 |#1|)) 107 T ELT)) (-1821 ((|#1| $) 85 T ELT)) (-1885 (((-647 |#1|) $ (-1207 $)) 87 T ELT) (((-647 |#1|) $) 105 T ELT)) (-2523 (((-3 $ #1#) $) 56 (|has| |#1| (-510)) ELT)) (-2006 (((-1111 (-884 |#1|))) 103 (|has| |#1| (-318)) ELT)) (-2524 (($ $ (-857)) 37 T ELT)) (-1819 ((|#1| $) 83 T ELT)) (-1799 (((-1111 |#1|) $) 53 (|has| |#1| (-510)) ELT)) (-1889 ((|#1| (-1207 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1817 (((-1111 |#1|) $) 74 T ELT)) (-1811 (((-85)) 68 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1802 (((-85)) 59 T ELT)) (-1804 (((-85)) 61 T ELT)) (-1806 (((-85)) 63 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1809 (((-85)) 66 T ELT)) (-3950 ((|#1| $ (-499)) 118 T ELT)) (-3362 (((-1207 |#1|) $ (-1207 $)) 81 T ELT) (((-647 |#1|) (-1207 $) (-1207 $)) 80 T ELT) (((-1207 |#1|) $) 116 T ELT) (((-647 |#1|) (-1207 $)) 115 T ELT)) (-4122 (((-1207 |#1|) $) 111 T ELT) (($ (-1207 |#1|)) 110 T ELT)) (-1994 (((-599 (-884 |#1|)) (-1207 $)) 89 T ELT) (((-599 (-884 |#1|))) 113 T ELT)) (-2551 (($ $ $) 33 T ELT)) (-1815 (((-85)) 72 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2113 (((-1207 $)) 117 T ELT)) (-1800 (((-599 (-1207 |#1|))) 54 (|has| |#1| (-510)) ELT)) (-2552 (($ $ $ $) 34 T ELT)) (-1813 (((-85)) 70 T ELT)) (-2664 (($ (-647 |#1|) $) 101 T ELT)) (-2550 (($ $ $) 32 T ELT)) (-1814 (((-85)) 71 T ELT)) (-1812 (((-85)) 69 T ELT)) (-1808 (((-85)) 65 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 38 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) -(((-372 |#1|) (-113) (-146)) (T -372)) -((-2113 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1207 *1)) (-4 *1 (-372 *3)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-1207 *3)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-372 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) (-3361 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-1207 (-647 *3))))) (-1994 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-599 (-884 *3))))) (-1890 (*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-146)) (-4 *1 (-372 *3)))) (-4122 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-1207 *3)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-146)) (-4 *1 (-372 *3)))) (-1889 (*1 *2) (-12 (-4 *1 (-372 *2)) (-4 *2 (-146)))) (-1888 (*1 *2) (-12 (-4 *1 (-372 *2)) (-4 *2 (-146)))) (-1887 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-647 *3)))) (-1886 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-647 *3)))) (-1885 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-647 *3)))) (-1884 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-647 *3)))) (-2006 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-4 *3 (-318)) (-5 *2 (-1111 (-884 *3))))) (-2002 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-4 *3 (-318)) (-5 *2 (-1111 (-884 *3))))) (-2664 (*1 *1 *2 *1) (-12 (-5 *2 (-647 *3)) (-4 *1 (-372 *3)) (-4 *3 (-146))))) -(-13 (-322 |t#1|) (-240 (-499) |t#1|) (-10 -8 (-15 -2113 ((-1207 $))) (-15 -3362 ((-1207 |t#1|) $)) (-15 -3362 ((-647 |t#1|) (-1207 $))) (-15 -3361 ((-1207 (-647 |t#1|)))) (-15 -1994 ((-599 (-884 |t#1|)))) (-15 -1890 ($ (-1207 |t#1|))) (-15 -4122 ((-1207 |t#1|) $)) (-15 -4122 ($ (-1207 |t#1|))) (-15 -1889 (|t#1|)) (-15 -1888 (|t#1|)) (-15 -1887 ((-647 |t#1|))) (-15 -1886 ((-647 |t#1|))) (-15 -1885 ((-647 |t#1|) $)) (-15 -1884 ((-647 |t#1|) $)) (IF (|has| |t#1| (-318)) (PROGN (-15 -2006 ((-1111 (-884 |t#1|)))) (-15 -2002 ((-1111 (-884 |t#1|))))) |%noBranch|) (-15 -2664 ($ (-647 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-568 (-797)) . T) ((-240 (-499) |#1|) . T) ((-322 |#1|) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) . T) ((-675 |#1|) . T) ((-678) . T) ((-702 |#1|) . T) ((-704) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-3256 (((-359 |#1|) (-359 |#1|) (-1 (-359 |#1|) |#1|)) 28 T ELT)) (-1891 (((-359 |#1|) (-359 |#1|) (-359 |#1|)) 17 T ELT))) -(((-373 |#1|) (-10 -7 (-15 -3256 ((-359 |#1|) (-359 |#1|) (-1 (-359 |#1|) |#1|))) (-15 -1891 ((-359 |#1|) (-359 |#1|) (-359 |#1|)))) (-510)) (T -373)) -((-1891 (*1 *2 *2 *2) (-12 (-5 *2 (-359 *3)) (-4 *3 (-510)) (-5 *1 (-373 *3)))) (-3256 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-359 *4) *4)) (-4 *4 (-510)) (-5 *2 (-359 *4)) (-5 *1 (-373 *4))))) -((-3204 (((-599 (-1117)) $) 81 T ELT)) (-3206 (((-361 (-1111 $)) $ (-566 $)) 313 T ELT)) (-1637 (($ $ (-247 $)) NIL T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) 277 T ELT)) (-3295 (((-3 (-566 $) #1="failed") $) NIL T ELT) (((-3 (-1117) #1#) $) 84 T ELT) (((-3 (-499) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-361 (-884 |#2|)) #1#) $) 363 T ELT) (((-3 (-884 |#2|) #1#) $) 275 T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT)) (-3294 (((-566 $) $) NIL T ELT) (((-1117) $) 28 T ELT) (((-499) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-361 (-884 |#2|)) $) 345 T ELT) (((-884 |#2|) $) 272 T ELT) (((-361 (-499)) $) NIL T ELT)) (-3743 (((-86) (-86)) 47 T ELT)) (-3117 (($ $) 99 T ELT)) (-1635 (((-3 (-566 $) #1#) $) 268 T ELT)) (-1634 (((-599 (-566 $)) $) 269 T ELT)) (-2944 (((-3 (-599 $) #1#) $) 287 T ELT)) (-2946 (((-3 (-2 (|:| |val| $) (|:| -2519 (-499))) #1#) $) 294 T ELT)) (-2943 (((-3 (-599 $) #1#) $) 285 T ELT)) (-1892 (((-3 (-2 (|:| -4104 (-499)) (|:| |var| (-566 $))) #1#) $) 304 T ELT)) (-2945 (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) #1#) $ (-1117)) 257 T ELT)) (-1895 (((-85) $) 17 T ELT)) (-1894 ((|#2| $) 19 T ELT)) (-3918 (($ $ (-566 $) $) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) 276 T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ $))) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ (-599 $)))) 109 T ELT) (($ $ (-1117) (-1 $ (-599 $))) NIL T ELT) (($ $ (-1117) (-1 $ $)) NIL T ELT) (($ $ (-599 (-86)) (-599 (-1 $ $))) NIL T ELT) (($ $ (-599 (-86)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-599 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1117)) 62 T ELT) (($ $ (-599 (-1117))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1117)) 65 T ELT) (($ $ (-599 (-86)) (-599 $) (-1117)) 72 T ELT) (($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ $))) 120 T ELT) (($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ (-599 $)))) 282 T ELT) (($ $ (-1117) (-714) (-1 $ (-599 $))) 105 T ELT) (($ $ (-1117) (-714) (-1 $ $)) 104 T ELT)) (-3950 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-599 $)) 119 T ELT)) (-3908 (($ $ (-1117)) 278 T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT)) (-3116 (($ $) 324 T ELT)) (-4122 (((-825 (-499)) $) 297 T ELT) (((-825 (-333)) $) 301 T ELT) (($ (-359 $)) 359 T ELT) (((-488) $) NIL T ELT)) (-4096 (((-797) $) 279 T ELT) (($ (-566 $)) 93 T ELT) (($ (-1117)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1065 |#2| (-566 $))) NIL T ELT) (($ (-361 |#2|)) 329 T ELT) (($ (-884 (-361 |#2|))) 368 T ELT) (($ (-361 (-884 (-361 |#2|)))) 341 T ELT) (($ (-361 (-884 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-884 |#2|)) 216 T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) 373 T ELT)) (-3248 (((-714)) 88 T ELT)) (-2355 (((-85) (-86)) 42 T ELT)) (-1893 (($ (-1117) $) 31 T ELT) (($ (-1117) $ $) 32 T ELT) (($ (-1117) $ $ $) 33 T ELT) (($ (-1117) $ $ $ $) 34 T ELT) (($ (-1117) (-599 $)) 39 T ELT)) (* (($ (-361 (-499)) $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-857) $) NIL T ELT))) -(((-374 |#1| |#2|) (-10 -7 (-15 * (|#1| (-857) |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -3295 ((-3 (-361 (-499)) #1="failed") |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4096 (|#1| (-499))) (-15 -3248 ((-714))) (-15 * (|#1| |#2| |#1|)) (-15 -4122 ((-488) |#1|)) (-15 -4096 (|#1| (-884 |#2|))) (-15 -3295 ((-3 (-884 |#2|) #1#) |#1|)) (-15 -3294 ((-884 |#2|) |#1|)) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117))) (-15 * (|#1| |#1| |#2|)) (-15 -4096 (|#1| |#1|)) (-15 * (|#1| |#1| (-361 (-499)))) (-15 * (|#1| (-361 (-499)) |#1|)) (-15 -4096 (|#1| (-361 (-884 |#2|)))) (-15 -3295 ((-3 (-361 (-884 |#2|)) #1#) |#1|)) (-15 -3294 ((-361 (-884 |#2|)) |#1|)) (-15 -3206 ((-361 (-1111 |#1|)) |#1| (-566 |#1|))) (-15 -4096 (|#1| (-361 (-884 (-361 |#2|))))) (-15 -4096 (|#1| (-884 (-361 |#2|)))) (-15 -4096 (|#1| (-361 |#2|))) (-15 -3116 (|#1| |#1|)) (-15 -4122 (|#1| (-359 |#1|))) (-15 -3918 (|#1| |#1| (-1117) (-714) (-1 |#1| |#1|))) (-15 -3918 (|#1| |#1| (-1117) (-714) (-1 |#1| (-599 |#1|)))) (-15 -3918 (|#1| |#1| (-599 (-1117)) (-599 (-714)) (-599 (-1 |#1| (-599 |#1|))))) (-15 -3918 (|#1| |#1| (-599 (-1117)) (-599 (-714)) (-599 (-1 |#1| |#1|)))) (-15 -2946 ((-3 (-2 (|:| |val| |#1|) (|:| -2519 (-499))) #1#) |#1|)) (-15 -2945 ((-3 (-2 (|:| |var| (-566 |#1|)) (|:| -2519 (-499))) #1#) |#1| (-1117))) (-15 -2945 ((-3 (-2 (|:| |var| (-566 |#1|)) (|:| -2519 (-499))) #1#) |#1| (-86))) (-15 -3117 (|#1| |#1|)) (-15 -4096 (|#1| (-1065 |#2| (-566 |#1|)))) (-15 -1892 ((-3 (-2 (|:| -4104 (-499)) (|:| |var| (-566 |#1|))) #1#) |#1|)) (-15 -2943 ((-3 (-599 |#1|) #1#) |#1|)) (-15 -2945 ((-3 (-2 (|:| |var| (-566 |#1|)) (|:| -2519 (-499))) #1#) |#1|)) (-15 -2944 ((-3 (-599 |#1|) #1#) |#1|)) (-15 -3918 (|#1| |#1| (-599 (-86)) (-599 |#1|) (-1117))) (-15 -3918 (|#1| |#1| (-86) |#1| (-1117))) (-15 -3918 (|#1| |#1|)) (-15 -3918 (|#1| |#1| (-599 (-1117)))) (-15 -3918 (|#1| |#1| (-1117))) (-15 -1893 (|#1| (-1117) (-599 |#1|))) (-15 -1893 (|#1| (-1117) |#1| |#1| |#1| |#1|)) (-15 -1893 (|#1| (-1117) |#1| |#1| |#1|)) (-15 -1893 (|#1| (-1117) |#1| |#1|)) (-15 -1893 (|#1| (-1117) |#1|)) (-15 -3204 ((-599 (-1117)) |#1|)) (-15 -1894 (|#2| |#1|)) (-15 -1895 ((-85) |#1|)) (-15 -4096 (|#1| |#2|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -4122 ((-825 (-333)) |#1|)) (-15 -4122 ((-825 (-499)) |#1|)) (-15 -4096 (|#1| (-1117))) (-15 -3295 ((-3 (-1117) #1#) |#1|)) (-15 -3294 ((-1117) |#1|)) (-15 -3918 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3918 (|#1| |#1| (-86) (-1 |#1| (-599 |#1|)))) (-15 -3918 (|#1| |#1| (-599 (-86)) (-599 (-1 |#1| (-599 |#1|))))) (-15 -3918 (|#1| |#1| (-599 (-86)) (-599 (-1 |#1| |#1|)))) (-15 -3918 (|#1| |#1| (-1117) (-1 |#1| |#1|))) (-15 -3918 (|#1| |#1| (-1117) (-1 |#1| (-599 |#1|)))) (-15 -3918 (|#1| |#1| (-599 (-1117)) (-599 (-1 |#1| (-599 |#1|))))) (-15 -3918 (|#1| |#1| (-599 (-1117)) (-599 (-1 |#1| |#1|)))) (-15 -2355 ((-85) (-86))) (-15 -3743 ((-86) (-86))) (-15 -1634 ((-599 (-566 |#1|)) |#1|)) (-15 -1635 ((-3 (-566 |#1|) #1#) |#1|)) (-15 -1637 (|#1| |#1| (-599 (-566 |#1|)) (-599 |#1|))) (-15 -1637 (|#1| |#1| (-599 (-247 |#1|)))) (-15 -1637 (|#1| |#1| (-247 |#1|))) (-15 -3950 (|#1| (-86) (-599 |#1|))) (-15 -3950 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3950 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3950 (|#1| (-86) |#1| |#1|)) (-15 -3950 (|#1| (-86) |#1|)) (-15 -3918 (|#1| |#1| (-599 |#1|) (-599 |#1|))) (-15 -3918 (|#1| |#1| |#1| |#1|)) (-15 -3918 (|#1| |#1| (-247 |#1|))) (-15 -3918 (|#1| |#1| (-599 (-247 |#1|)))) (-15 -3918 (|#1| |#1| (-599 (-566 |#1|)) (-599 |#1|))) (-15 -3918 (|#1| |#1| (-566 |#1|) |#1|)) (-15 -4096 (|#1| (-566 |#1|))) (-15 -3295 ((-3 (-566 |#1|) #1#) |#1|)) (-15 -3294 ((-566 |#1|) |#1|)) (-15 -4096 ((-797) |#1|))) (-375 |#2|) (-1041)) (T -374)) -((-3743 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1041)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1041)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5)) (-4 *4 (-375 *5)))) (-3248 (*1 *2) (-12 (-4 *4 (-1041)) (-5 *2 (-714)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3204 (((-599 (-1117)) $) 220 T ELT)) (-3206 (((-361 (-1111 $)) $ (-566 $)) 188 (|has| |#1| (-510)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 160 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 161 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 163 (|has| |#1| (-510)) ELT)) (-1633 (((-599 (-566 $)) $) 42 T ELT)) (-1345 (((-3 $ "failed") $ $) 131 (|has| |#1| (-21)) ELT)) (-1637 (($ $ (-247 $)) 54 T ELT) (($ $ (-599 (-247 $))) 53 T ELT) (($ $ (-599 (-566 $)) (-599 $)) 52 T ELT)) (-3925 (($ $) 180 (|has| |#1| (-510)) ELT)) (-4121 (((-359 $) $) 181 (|has| |#1| (-510)) ELT)) (-1678 (((-85) $ $) 171 (|has| |#1| (-510)) ELT)) (-3874 (($) 117 (-3677 (|has| |#1| (-1052)) (|has| |#1| (-25))) CONST)) (-3295 (((-3 (-566 $) #1="failed") $) 67 T ELT) (((-3 (-1117) #1#) $) 233 T ELT) (((-3 (-499) #1#) $) 227 (|has| |#1| (-978 (-499))) ELT) (((-3 |#1| #1#) $) 224 T ELT) (((-3 (-361 (-884 |#1|)) #1#) $) 186 (|has| |#1| (-510)) ELT) (((-3 (-884 |#1|) #1#) $) 136 (|has| |#1| (-989)) ELT) (((-3 (-361 (-499)) #1#) $) 111 (-3677 (-12 (|has| |#1| (-978 (-499))) (|has| |#1| (-510))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-3294 (((-566 $) $) 68 T ELT) (((-1117) $) 234 T ELT) (((-499) $) 226 (|has| |#1| (-978 (-499))) ELT) ((|#1| $) 225 T ELT) (((-361 (-884 |#1|)) $) 187 (|has| |#1| (-510)) ELT) (((-884 |#1|) $) 137 (|has| |#1| (-989)) ELT) (((-361 (-499)) $) 112 (-3677 (-12 (|has| |#1| (-978 (-499))) (|has| |#1| (-510))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-2683 (($ $ $) 175 (|has| |#1| (-510)) ELT)) (-2380 (((-647 (-499)) (-647 $)) 153 (-2681 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 152 (-2681 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 151 (|has| |#1| (-989)) ELT) (((-647 |#1|) (-647 $)) 150 (|has| |#1| (-989)) ELT)) (-3607 (((-3 $ "failed") $) 119 (|has| |#1| (-1052)) ELT)) (-2682 (($ $ $) 174 (|has| |#1| (-510)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 169 (|has| |#1| (-510)) ELT)) (-3873 (((-85) $) 182 (|has| |#1| (-510)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 229 (|has| |#1| (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 228 (|has| |#1| (-821 (-333))) ELT)) (-2692 (($ $) 49 T ELT) (($ (-599 $)) 48 T ELT)) (-1632 (((-599 (-86)) $) 41 T ELT)) (-3743 (((-86) (-86)) 40 T ELT)) (-2528 (((-85) $) 118 (|has| |#1| (-1052)) ELT)) (-2794 (((-85) $) 20 (|has| $ (-978 (-499))) ELT)) (-3117 (($ $) 203 (|has| |#1| (-989)) ELT)) (-3119 (((-1065 |#1| (-566 $)) $) 204 (|has| |#1| (-989)) ELT)) (-1675 (((-3 (-599 $) #2="failed") (-599 $) $) 178 (|has| |#1| (-510)) ELT)) (-1630 (((-1111 $) (-566 $)) 23 (|has| $ (-989)) ELT)) (-4108 (($ (-1 $ $) (-566 $)) 34 T ELT)) (-1635 (((-3 (-566 $) "failed") $) 44 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 155 (-2681 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 154 (-2681 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 149 (|has| |#1| (-989)) ELT) (((-647 |#1|) (-1207 $)) 148 (|has| |#1| (-989)) ELT)) (-1993 (($ (-599 $)) 167 (|has| |#1| (-510)) ELT) (($ $ $) 166 (|has| |#1| (-510)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1634 (((-599 (-566 $)) $) 43 T ELT)) (-2336 (($ (-86) $) 36 T ELT) (($ (-86) (-599 $)) 35 T ELT)) (-2944 (((-3 (-599 $) "failed") $) 209 (|has| |#1| (-1052)) ELT)) (-2946 (((-3 (-2 (|:| |val| $) (|:| -2519 (-499))) "failed") $) 200 (|has| |#1| (-989)) ELT)) (-2943 (((-3 (-599 $) "failed") $) 207 (|has| |#1| (-25)) ELT)) (-1892 (((-3 (-2 (|:| -4104 (-499)) (|:| |var| (-566 $))) "failed") $) 206 (|has| |#1| (-25)) ELT)) (-2945 (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) "failed") $) 208 (|has| |#1| (-1052)) ELT) (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) "failed") $ (-86)) 202 (|has| |#1| (-989)) ELT) (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) "failed") $ (-1117)) 201 (|has| |#1| (-989)) ELT)) (-2752 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1117)) 37 T ELT)) (-2601 (($ $) 121 (-3677 (|has| |#1| (-427)) (|has| |#1| (-510))) ELT)) (-2722 (((-714) $) 45 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1895 (((-85) $) 222 T ELT)) (-1894 ((|#1| $) 221 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 168 (|has| |#1| (-510)) ELT)) (-3282 (($ (-599 $)) 165 (|has| |#1| (-510)) ELT) (($ $ $) 164 (|has| |#1| (-510)) ELT)) (-1631 (((-85) $ $) 33 T ELT) (((-85) $ (-1117)) 32 T ELT)) (-3882 (((-359 $) $) 179 (|has| |#1| (-510)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 177 (|has| |#1| (-510)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 176 (|has| |#1| (-510)) ELT)) (-3606 (((-3 $ "failed") $ $) 159 (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 170 (|has| |#1| (-510)) ELT)) (-2795 (((-85) $) 21 (|has| $ (-978 (-499))) ELT)) (-3918 (($ $ (-566 $) $) 65 T ELT) (($ $ (-599 (-566 $)) (-599 $)) 64 T ELT) (($ $ (-599 (-247 $))) 63 T ELT) (($ $ (-247 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-599 $) (-599 $)) 60 T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ $))) 31 T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ (-599 $)))) 30 T ELT) (($ $ (-1117) (-1 $ (-599 $))) 29 T ELT) (($ $ (-1117) (-1 $ $)) 28 T ELT) (($ $ (-599 (-86)) (-599 (-1 $ $))) 27 T ELT) (($ $ (-599 (-86)) (-599 (-1 $ (-599 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-599 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1117)) 214 (|has| |#1| (-569 (-488))) ELT) (($ $ (-599 (-1117))) 213 (|has| |#1| (-569 (-488))) ELT) (($ $) 212 (|has| |#1| (-569 (-488))) ELT) (($ $ (-86) $ (-1117)) 211 (|has| |#1| (-569 (-488))) ELT) (($ $ (-599 (-86)) (-599 $) (-1117)) 210 (|has| |#1| (-569 (-488))) ELT) (($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ $))) 199 (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ (-599 $)))) 198 (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714) (-1 $ (-599 $))) 197 (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714) (-1 $ $)) 196 (|has| |#1| (-989)) ELT)) (-1677 (((-714) $) 172 (|has| |#1| (-510)) ELT)) (-3950 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-599 $)) 55 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 173 (|has| |#1| (-510)) ELT)) (-1636 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3908 (($ $ (-1117)) 146 (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117))) 144 (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714)) 143 (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 142 (|has| |#1| (-989)) ELT)) (-3116 (($ $) 193 (|has| |#1| (-510)) ELT)) (-3118 (((-1065 |#1| (-566 $)) $) 194 (|has| |#1| (-510)) ELT)) (-3323 (($ $) 22 (|has| $ (-989)) ELT)) (-4122 (((-825 (-499)) $) 231 (|has| |#1| (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) 230 (|has| |#1| (-569 (-825 (-333)))) ELT) (($ (-359 $)) 195 (|has| |#1| (-510)) ELT) (((-488) $) 113 (|has| |#1| (-569 (-488))) ELT)) (-3130 (($ $ $) 124 (|has| |#1| (-427)) ELT)) (-2551 (($ $ $) 125 (|has| |#1| (-427)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-566 $)) 66 T ELT) (($ (-1117)) 232 T ELT) (($ |#1|) 223 T ELT) (($ (-1065 |#1| (-566 $))) 205 (|has| |#1| (-989)) ELT) (($ (-361 |#1|)) 191 (|has| |#1| (-510)) ELT) (($ (-884 (-361 |#1|))) 190 (|has| |#1| (-510)) ELT) (($ (-361 (-884 (-361 |#1|)))) 189 (|has| |#1| (-510)) ELT) (($ (-361 (-884 |#1|))) 185 (|has| |#1| (-510)) ELT) (($ $) 158 (|has| |#1| (-510)) ELT) (($ (-884 |#1|)) 135 (|has| |#1| (-989)) ELT) (($ (-361 (-499))) 110 (-3677 (|has| |#1| (-510)) (-12 (|has| |#1| (-978 (-499))) (|has| |#1| (-510))) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ (-499)) 109 (-3677 (|has| |#1| (-989)) (|has| |#1| (-978 (-499)))) ELT)) (-2823 (((-649 $) $) 156 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 138 (|has| |#1| (-989)) CONST)) (-2709 (($ $) 51 T ELT) (($ (-599 $)) 50 T ELT)) (-2355 (((-85) (-86)) 39 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 162 (|has| |#1| (-510)) ELT)) (-1893 (($ (-1117) $) 219 T ELT) (($ (-1117) $ $) 218 T ELT) (($ (-1117) $ $ $) 217 T ELT) (($ (-1117) $ $ $ $) 216 T ELT) (($ (-1117) (-599 $)) 215 T ELT)) (-2779 (($) 128 (|has| |#1| (-25)) CONST)) (-2785 (($) 116 (|has| |#1| (-1052)) CONST)) (-2790 (($ $ (-1117)) 145 (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117))) 141 (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714)) 140 (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 139 (|has| |#1| (-989)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ (-1065 |#1| (-566 $)) (-1065 |#1| (-566 $))) 192 (|has| |#1| (-510)) ELT) (($ $ $) 122 (-3677 (|has| |#1| (-427)) (|has| |#1| (-510))) ELT)) (-3987 (($ $ $) 134 (|has| |#1| (-21)) ELT) (($ $) 133 (|has| |#1| (-21)) ELT)) (-3989 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-499)) 123 (-3677 (|has| |#1| (-427)) (|has| |#1| (-510))) ELT) (($ $ (-714)) 120 (|has| |#1| (-1052)) ELT) (($ $ (-857)) 115 (|has| |#1| (-1052)) ELT)) (* (($ (-361 (-499)) $) 184 (|has| |#1| (-510)) ELT) (($ $ (-361 (-499))) 183 (|has| |#1| (-510)) ELT) (($ $ |#1|) 157 (|has| |#1| (-146)) ELT) (($ |#1| $) 147 (|has| |#1| (-989)) ELT) (($ (-499) $) 132 (|has| |#1| (-21)) ELT) (($ (-714) $) 130 (|has| |#1| (-25)) ELT) (($ (-857) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1052)) ELT))) -(((-375 |#1|) (-113) (-1041)) (T -375)) -((-1895 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1041)) (-5 *2 (-85)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1041)))) (-3204 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1041)) (-5 *2 (-599 (-1117))))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041)))) (-1893 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041)))) (-1893 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041)))) (-1893 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041)))) (-1893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-599 *1)) (-4 *1 (-375 *4)) (-4 *4 (-1041)))) (-3918 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041)) (-4 *3 (-569 (-488))))) (-3918 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-1117))) (-4 *1 (-375 *3)) (-4 *3 (-1041)) (-4 *3 (-569 (-488))))) (-3918 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1041)) (-4 *2 (-569 (-488))))) (-3918 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1117)) (-4 *1 (-375 *4)) (-4 *4 (-1041)) (-4 *4 (-569 (-488))))) (-3918 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-599 (-86))) (-5 *3 (-599 *1)) (-5 *4 (-1117)) (-4 *1 (-375 *5)) (-4 *5 (-1041)) (-4 *5 (-569 (-488))))) (-2944 (*1 *2 *1) (|partial| -12 (-4 *3 (-1052)) (-4 *3 (-1041)) (-5 *2 (-599 *1)) (-4 *1 (-375 *3)))) (-2945 (*1 *2 *1) (|partial| -12 (-4 *3 (-1052)) (-4 *3 (-1041)) (-5 *2 (-2 (|:| |var| (-566 *1)) (|:| -2519 (-499)))) (-4 *1 (-375 *3)))) (-2943 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1041)) (-5 *2 (-599 *1)) (-4 *1 (-375 *3)))) (-1892 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1041)) (-5 *2 (-2 (|:| -4104 (-499)) (|:| |var| (-566 *1)))) (-4 *1 (-375 *3)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1065 *3 (-566 *1))) (-4 *3 (-989)) (-4 *3 (-1041)) (-4 *1 (-375 *3)))) (-3119 (*1 *2 *1) (-12 (-4 *3 (-989)) (-4 *3 (-1041)) (-5 *2 (-1065 *3 (-566 *1))) (-4 *1 (-375 *3)))) (-3117 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1041)) (-4 *2 (-989)))) (-2945 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-989)) (-4 *4 (-1041)) (-5 *2 (-2 (|:| |var| (-566 *1)) (|:| -2519 (-499)))) (-4 *1 (-375 *4)))) (-2945 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1117)) (-4 *4 (-989)) (-4 *4 (-1041)) (-5 *2 (-2 (|:| |var| (-566 *1)) (|:| -2519 (-499)))) (-4 *1 (-375 *4)))) (-2946 (*1 *2 *1) (|partial| -12 (-4 *3 (-989)) (-4 *3 (-1041)) (-5 *2 (-2 (|:| |val| *1) (|:| -2519 (-499)))) (-4 *1 (-375 *3)))) (-3918 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-599 (-714))) (-5 *4 (-599 (-1 *1 *1))) (-4 *1 (-375 *5)) (-4 *5 (-1041)) (-4 *5 (-989)))) (-3918 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-599 (-714))) (-5 *4 (-599 (-1 *1 (-599 *1)))) (-4 *1 (-375 *5)) (-4 *5 (-1041)) (-4 *5 (-989)))) (-3918 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-714)) (-5 *4 (-1 *1 (-599 *1))) (-4 *1 (-375 *5)) (-4 *5 (-1041)) (-4 *5 (-989)))) (-3918 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-714)) (-5 *4 (-1 *1 *1)) (-4 *1 (-375 *5)) (-4 *5 (-1041)) (-4 *5 (-989)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-359 *1)) (-4 *1 (-375 *3)) (-4 *3 (-510)) (-4 *3 (-1041)))) (-3118 (*1 *2 *1) (-12 (-4 *3 (-510)) (-4 *3 (-1041)) (-5 *2 (-1065 *3 (-566 *1))) (-4 *1 (-375 *3)))) (-3116 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1041)) (-4 *2 (-510)))) (-4099 (*1 *1 *2 *2) (-12 (-5 *2 (-1065 *3 (-566 *1))) (-4 *3 (-510)) (-4 *3 (-1041)) (-4 *1 (-375 *3)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-361 *3)) (-4 *3 (-510)) (-4 *3 (-1041)) (-4 *1 (-375 *3)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-884 (-361 *3))) (-4 *3 (-510)) (-4 *3 (-1041)) (-4 *1 (-375 *3)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-361 (-884 (-361 *3)))) (-4 *3 (-510)) (-4 *3 (-1041)) (-4 *1 (-375 *3)))) (-3206 (*1 *2 *1 *3) (-12 (-5 *3 (-566 *1)) (-4 *1 (-375 *4)) (-4 *4 (-1041)) (-4 *4 (-510)) (-5 *2 (-361 (-1111 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-375 *3)) (-4 *3 (-1041)) (-4 *3 (-1052))))) -(-13 (-252) (-978 (-1117)) (-819 |t#1|) (-354 |t#1|) (-366 |t#1|) (-10 -8 (-15 -1895 ((-85) $)) (-15 -1894 (|t#1| $)) (-15 -3204 ((-599 (-1117)) $)) (-15 -1893 ($ (-1117) $)) (-15 -1893 ($ (-1117) $ $)) (-15 -1893 ($ (-1117) $ $ $)) (-15 -1893 ($ (-1117) $ $ $ $)) (-15 -1893 ($ (-1117) (-599 $))) (IF (|has| |t#1| (-569 (-488))) (PROGN (-6 (-569 (-488))) (-15 -3918 ($ $ (-1117))) (-15 -3918 ($ $ (-599 (-1117)))) (-15 -3918 ($ $)) (-15 -3918 ($ $ (-86) $ (-1117))) (-15 -3918 ($ $ (-599 (-86)) (-599 $) (-1117)))) |%noBranch|) (IF (|has| |t#1| (-1052)) (PROGN (-6 (-684)) (-15 ** ($ $ (-714))) (-15 -2944 ((-3 (-599 $) "failed") $)) (-15 -2945 ((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-427)) (-6 (-427)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2943 ((-3 (-599 $) "failed") $)) (-15 -1892 ((-3 (-2 (|:| -4104 (-499)) (|:| |var| (-566 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-989)) (PROGN (-6 (-989)) (-6 (-978 (-884 |t#1|))) (-6 (-836 (-1117))) (-6 (-332 |t#1|)) (-15 -4096 ($ (-1065 |t#1| (-566 $)))) (-15 -3119 ((-1065 |t#1| (-566 $)) $)) (-15 -3117 ($ $)) (-15 -2945 ((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) "failed") $ (-86))) (-15 -2945 ((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) "failed") $ (-1117))) (-15 -2946 ((-3 (-2 (|:| |val| $) (|:| -2519 (-499))) "failed") $)) (-15 -3918 ($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ $)))) (-15 -3918 ($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ (-599 $))))) (-15 -3918 ($ $ (-1117) (-714) (-1 $ (-599 $)))) (-15 -3918 ($ $ (-1117) (-714) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-6 (-318)) (-6 (-978 (-361 (-884 |t#1|)))) (-15 -4122 ($ (-359 $))) (-15 -3118 ((-1065 |t#1| (-566 $)) $)) (-15 -3116 ($ $)) (-15 -4099 ($ (-1065 |t#1| (-566 $)) (-1065 |t#1| (-566 $)))) (-15 -4096 ($ (-361 |t#1|))) (-15 -4096 ($ (-884 (-361 |t#1|)))) (-15 -4096 ($ (-361 (-884 (-361 |t#1|))))) (-15 -3206 ((-361 (-1111 $)) $ (-566 $))) (IF (|has| |t#1| (-978 (-499))) (-6 (-978 (-361 (-499)))) |%noBranch|)) |%noBranch|))) -(((-21) -3677 (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) -3677 (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3677 (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-361 (-499))) |has| |#1| (-510)) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-510)) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-510)) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) |has| |#1| (-510)) ((-104) -3677 (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-510))) ((-571 (-361 (-884 |#1|))) |has| |#1| (-510)) ((-571 (-499)) -3677 (|has| |#1| (-989)) (|has| |#1| (-978 (-499))) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-571 (-566 $)) . T) ((-571 (-884 |#1|)) |has| |#1| (-989)) ((-571 (-1117)) . T) ((-571 |#1|) . T) ((-571 $) |has| |#1| (-510)) ((-568 (-797)) . T) ((-146) |has| |#1| (-510)) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-569 (-825 (-333))) |has| |#1| (-569 (-825 (-333)))) ((-569 (-825 (-499))) |has| |#1| (-569 (-825 (-499)))) ((-200) |has| |#1| (-510)) ((-244) |has| |#1| (-510)) ((-261) |has| |#1| (-510)) ((-263 $) . T) ((-252) . T) ((-318) |has| |#1| (-510)) ((-332 |#1|) |has| |#1| (-989)) ((-354 |#1|) . T) ((-366 |#1|) . T) ((-406) |has| |#1| (-510)) ((-427) |has| |#1| (-427)) ((-468 (-566 $) $) . T) ((-468 $ $) . T) ((-510) |has| |#1| (-510)) ((-604 (-361 (-499))) |has| |#1| (-510)) ((-604 (-499)) -3677 (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-604 |#1|) -3677 (|has| |#1| (-989)) (|has| |#1| (-146))) ((-604 $) -3677 (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-606 (-361 (-499))) |has| |#1| (-510)) ((-606 (-499)) -12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ((-606 |#1|) -3677 (|has| |#1| (-989)) (|has| |#1| (-146))) ((-606 $) -3677 (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-598 (-361 (-499))) |has| |#1| (-510)) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) |has| |#1| (-510)) ((-596 (-499)) -12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ((-596 |#1|) |has| |#1| (-989)) ((-675 (-361 (-499))) |has| |#1| (-510)) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) |has| |#1| (-510)) ((-684) -3677 (|has| |#1| (-1052)) (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-427)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-831 $ (-1117)) |has| |#1| (-989)) ((-836 (-1117)) |has| |#1| (-989)) ((-838 (-1117)) |has| |#1| (-989)) ((-821 (-333)) |has| |#1| (-821 (-333))) ((-821 (-499)) |has| |#1| (-821 (-499))) ((-819 |#1|) . T) ((-859) |has| |#1| (-510)) ((-978 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (-12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499))))) ((-978 (-361 (-884 |#1|))) |has| |#1| (-510)) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 (-566 $)) . T) ((-978 (-884 |#1|)) |has| |#1| (-989)) ((-978 (-1117)) . T) ((-978 |#1|) . T) ((-991 (-361 (-499))) |has| |#1| (-510)) ((-991 |#1|) |has| |#1| (-146)) ((-991 $) |has| |#1| (-510)) ((-996 (-361 (-499))) |has| |#1| (-510)) ((-996 |#1|) |has| |#1| (-146)) ((-996 $) |has| |#1| (-510)) ((-989) -3677 (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-997) -3677 (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1052) -3677 (|has| |#1| (-1052)) (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-427)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1041) . T) ((-1157) . T) ((-1162) |has| |#1| (-510))) -((-4108 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) -(((-376 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 (|#4| (-1 |#3| |#1|) |#2|))) (-989) (-375 |#1|) (-989) (-375 |#3|)) (T -376)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-4 *2 (-375 *6)) (-5 *1 (-376 *5 *4 *6 *2)) (-4 *4 (-375 *5))))) -((-1899 ((|#2| |#2|) 182 T ELT)) (-1896 (((-3 (|:| |%expansion| (-267 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099))))) |#2| (-85)) 60 T ELT))) -(((-377 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1896 ((-3 (|:| |%expansion| (-267 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099))))) |#2| (-85))) (-15 -1899 (|#2| |#2|))) (-13 (-406) (-978 (-499)) (-596 (-499))) (-13 (-27) (-1143) (-375 |#1|)) (-1117) |#2|) (T -377)) -((-1899 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-377 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1143) (-375 *3))) (-14 *4 (-1117)) (-14 *5 *2))) (-1896 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 (|:| |%expansion| (-267 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099)))))) (-5 *1 (-377 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) (-14 *6 (-1117)) (-14 *7 *3)))) -((-1899 ((|#2| |#2|) 105 T ELT)) (-1897 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099))))) |#2| (-85) (-1099)) 52 T ELT)) (-1898 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099))))) |#2| (-85) (-1099)) 169 T ELT))) -(((-378 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1897 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099))))) |#2| (-85) (-1099))) (-15 -1898 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099))))) |#2| (-85) (-1099))) (-15 -1899 (|#2| |#2|))) (-13 (-406) (-978 (-499)) (-596 (-499))) (-13 (-27) (-1143) (-375 |#1|) (-10 -8 (-15 -4096 ($ |#3|)))) (-780) (-13 (-1186 |#2| |#3|) (-318) (-1143) (-10 -8 (-15 -3908 ($ $)) (-15 -3962 ($ $)))) (-923 |#4|) (-1117)) (T -378)) -((-1899 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-4 *2 (-13 (-27) (-1143) (-375 *3) (-10 -8 (-15 -4096 ($ *4))))) (-4 *4 (-780)) (-4 *5 (-13 (-1186 *2 *4) (-318) (-1143) (-10 -8 (-15 -3908 ($ $)) (-15 -3962 ($ $))))) (-5 *1 (-378 *3 *2 *4 *5 *6 *7)) (-4 *6 (-923 *5)) (-14 *7 (-1117)))) (-1898 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-4 *3 (-13 (-27) (-1143) (-375 *6) (-10 -8 (-15 -4096 ($ *7))))) (-4 *7 (-780)) (-4 *8 (-13 (-1186 *3 *7) (-318) (-1143) (-10 -8 (-15 -3908 ($ $)) (-15 -3962 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099)))))) (-5 *1 (-378 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1099)) (-4 *9 (-923 *8)) (-14 *10 (-1117)))) (-1897 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-4 *3 (-13 (-27) (-1143) (-375 *6) (-10 -8 (-15 -4096 ($ *7))))) (-4 *7 (-780)) (-4 *8 (-13 (-1186 *3 *7) (-318) (-1143) (-10 -8 (-15 -3908 ($ $)) (-15 -3962 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099)))))) (-5 *1 (-378 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1099)) (-4 *9 (-923 *8)) (-14 *10 (-1117))))) -((-1900 (($) 51 T ELT)) (-3372 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3374 (($ $ $) 46 T ELT)) (-3373 (((-85) $ $) 35 T ELT)) (-3258 (((-714)) 55 T ELT)) (-3377 (($ (-599 |#2|)) 23 T ELT) (($) NIL T ELT)) (-3115 (($) 66 T ELT)) (-3379 (((-85) $ $) 15 T ELT)) (-2650 ((|#2| $) 77 T ELT)) (-2978 ((|#2| $) 75 T ELT)) (-2111 (((-857) $) 70 T ELT)) (-3376 (($ $ $) 42 T ELT)) (-2518 (($ (-857)) 60 T ELT)) (-3375 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) NIL T ELT) (((-714) |#2| $) 31 T ELT)) (-3670 (($ (-599 |#2|)) 27 T ELT)) (-1901 (($ $) 53 T ELT)) (-4096 (((-797) $) 40 T ELT)) (-1902 (((-714) $) 24 T ELT)) (-3378 (($ (-599 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3174 (((-85) $ $) 19 T ELT))) -(((-379 |#1| |#2|) (-10 -7 (-15 -3258 ((-714))) (-15 -2518 (|#1| (-857))) (-15 -2111 ((-857) |#1|)) (-15 -3115 (|#1|)) (-15 -2650 (|#2| |#1|)) (-15 -2978 (|#2| |#1|)) (-15 -1900 (|#1|)) (-15 -1901 (|#1| |#1|)) (-15 -1902 ((-714) |#1|)) (-15 -3174 ((-85) |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -3379 ((-85) |#1| |#1|)) (-15 -3378 (|#1|)) (-15 -3378 (|#1| (-599 |#2|))) (-15 -3377 (|#1|)) (-15 -3377 (|#1| (-599 |#2|))) (-15 -3376 (|#1| |#1| |#1|)) (-15 -3375 (|#1| |#1| |#1|)) (-15 -3375 (|#1| |#1| |#2|)) (-15 -3374 (|#1| |#1| |#1|)) (-15 -3373 ((-85) |#1| |#1|)) (-15 -3372 (|#1| |#1| |#1|)) (-15 -3372 (|#1| |#1| |#2|)) (-15 -3372 (|#1| |#2| |#1|)) (-15 -3670 (|#1| (-599 |#2|))) (-15 -2048 ((-714) |#2| |#1|)) (-15 -2048 ((-714) (-1 (-85) |#2|) |#1|))) (-380 |#2|) (-1041)) (T -379)) -((-3258 (*1 *2) (-12 (-4 *4 (-1041)) (-5 *2 (-714)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4))))) -((-2687 (((-85) $ $) 19 T ELT)) (-1900 (($) 71 (|has| |#1| (-323)) ELT)) (-3372 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3374 (($ $ $) 82 T ELT)) (-3373 (((-85) $ $) 83 T ELT)) (-3258 (((-714)) 65 (|has| |#1| (-323)) ELT)) (-3377 (($ (-599 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1603 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-1386 (($ $) 62 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ |#1| $) 51 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3546 (($ |#1| $) 61 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4145)) ELT)) (-3115 (($) 68 (|has| |#1| (-323)) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3379 (((-85) $ $) 74 T ELT)) (-2650 ((|#1| $) 69 (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2978 ((|#1| $) 70 (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2111 (((-857) $) 67 (|has| |#1| (-323)) ELT)) (-3380 (((-1099) $) 22 T ELT)) (-3376 (($ $ $) 79 T ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT)) (-2518 (($ (-857)) 66 (|has| |#1| (-323)) ELT)) (-3381 (((-1060) $) 21 T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3375 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1499 (($) 53 T ELT) (($ (-599 |#1|)) 52 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 63 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 54 T ELT)) (-1901 (($ $) 72 (|has| |#1| (-323)) ELT)) (-4096 (((-797) $) 17 T ELT)) (-1902 (((-714) $) 73 T ELT)) (-3378 (($ (-599 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1297 (((-85) $ $) 20 T ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 T ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-380 |#1|) (-113) (-1041)) (T -380)) -((-1902 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-1041)) (-5 *2 (-714)))) (-1901 (*1 *1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1041)) (-4 *2 (-323)))) (-1900 (*1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-323)) (-4 *2 (-1041)))) (-2978 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1041)) (-4 *2 (-781)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1041)) (-4 *2 (-781))))) -(-13 (-183 |t#1|) (-1039 |t#1|) (-10 -8 (-6 -4145) (-15 -1902 ((-714) $)) (IF (|has| |t#1| (-323)) (PROGN (-6 (-323)) (-15 -1901 ($ $)) (-15 -1900 ($))) |%noBranch|) (IF (|has| |t#1| (-781)) (PROGN (-15 -2978 (|t#1| $)) (-15 -2650 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-78 |#1|) . T) ((-73) . T) ((-568 (-797)) . T) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-183 |#1|) . T) ((-192 |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-323) |has| |#1| (-323)) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1039 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-3991 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3992 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-4108 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) -(((-381 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3992 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3991 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1041) (-380 |#1|) (-1041) (-380 |#3|)) (T -381)) -((-3991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1041)) (-4 *5 (-1041)) (-4 *2 (-380 *5)) (-5 *1 (-381 *6 *4 *5 *2)) (-4 *4 (-380 *6)))) (-3992 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1041)) (-4 *2 (-1041)) (-5 *1 (-381 *5 *4 *2 *6)) (-4 *4 (-380 *5)) (-4 *6 (-380 *2)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-380 *6)) (-5 *1 (-381 *5 *4 *6 *2)) (-4 *4 (-380 *5))))) -((-1903 (((-534 |#2|) |#2| (-1117)) 36 T ELT)) (-2201 (((-534 |#2|) |#2| (-1117)) 21 T ELT)) (-2250 ((|#2| |#2| (-1117)) 26 T ELT))) -(((-382 |#1| |#2|) (-10 -7 (-15 -2201 ((-534 |#2|) |#2| (-1117))) (-15 -1903 ((-534 |#2|) |#2| (-1117))) (-15 -2250 (|#2| |#2| (-1117)))) (-13 (-261) (-120) (-978 (-499)) (-596 (-499))) (-13 (-1143) (-29 |#1|))) (T -382)) -((-2250 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *1 (-382 *4 *2)) (-4 *2 (-13 (-1143) (-29 *4))))) (-1903 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-534 *3)) (-5 *1 (-382 *5 *3)) (-4 *3 (-13 (-1143) (-29 *5))))) (-2201 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-534 *3)) (-5 *1 (-382 *5 *3)) (-4 *3 (-13 (-1143) (-29 *5)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1905 (($ |#2| |#1|) 37 T ELT)) (-1904 (($ |#2| |#1|) 35 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-285 |#2|)) 25 T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 10 T CONST)) (-2785 (($) 16 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 36 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-383 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4132)) (IF (|has| |#1| (-6 -4132)) (-6 -4132) |%noBranch|) |%noBranch|) (-15 -4096 ($ |#1|)) (-15 -4096 ($ (-285 |#2|))) (-15 -1905 ($ |#2| |#1|)) (-15 -1904 ($ |#2| |#1|)))) (-13 (-146) (-38 (-361 (-499)))) (-13 (-781) (-21))) (T -383)) -((-4096 (*1 *1 *2) (-12 (-5 *1 (-383 *2 *3)) (-4 *2 (-13 (-146) (-38 (-361 (-499))))) (-4 *3 (-13 (-781) (-21))))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-285 *4)) (-4 *4 (-13 (-781) (-21))) (-5 *1 (-383 *3 *4)) (-4 *3 (-13 (-146) (-38 (-361 (-499))))))) (-1905 (*1 *1 *2 *3) (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-13 (-146) (-38 (-361 (-499))))) (-4 *2 (-13 (-781) (-21))))) (-1904 (*1 *1 *2 *3) (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-13 (-146) (-38 (-361 (-499))))) (-4 *2 (-13 (-781) (-21)))))) -((-3962 (((-3 |#2| (-599 |#2|)) |#2| (-1117)) 115 T ELT))) -(((-384 |#1| |#2|) (-10 -7 (-15 -3962 ((-3 |#2| (-599 |#2|)) |#2| (-1117)))) (-13 (-261) (-120) (-978 (-499)) (-596 (-499))) (-13 (-1143) (-898) (-29 |#1|))) (T -384)) -((-3962 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 *3 (-599 *3))) (-5 *1 (-384 *5 *3)) (-4 *3 (-13 (-1143) (-898) (-29 *5)))))) -((-3526 ((|#2| |#2| |#2|) 31 T ELT)) (-3743 (((-86) (-86)) 43 T ELT)) (-1907 ((|#2| |#2|) 63 T ELT)) (-1906 ((|#2| |#2|) 66 T ELT)) (-3525 ((|#2| |#2|) 30 T ELT)) (-3529 ((|#2| |#2| |#2|) 33 T ELT)) (-3531 ((|#2| |#2| |#2|) 35 T ELT)) (-3528 ((|#2| |#2| |#2|) 32 T ELT)) (-3530 ((|#2| |#2| |#2|) 34 T ELT)) (-2355 (((-85) (-86)) 41 T ELT)) (-3533 ((|#2| |#2|) 37 T ELT)) (-3532 ((|#2| |#2|) 36 T ELT)) (-3523 ((|#2| |#2|) 25 T ELT)) (-3527 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3524 ((|#2| |#2| |#2|) 29 T ELT))) -(((-385 |#1| |#2|) (-10 -7 (-15 -2355 ((-85) (-86))) (-15 -3743 ((-86) (-86))) (-15 -3523 (|#2| |#2|)) (-15 -3527 (|#2| |#2|)) (-15 -3527 (|#2| |#2| |#2|)) (-15 -3524 (|#2| |#2| |#2|)) (-15 -3525 (|#2| |#2|)) (-15 -3526 (|#2| |#2| |#2|)) (-15 -3528 (|#2| |#2| |#2|)) (-15 -3529 (|#2| |#2| |#2|)) (-15 -3530 (|#2| |#2| |#2|)) (-15 -3531 (|#2| |#2| |#2|)) (-15 -3532 (|#2| |#2|)) (-15 -3533 (|#2| |#2|)) (-15 -1906 (|#2| |#2|)) (-15 -1907 (|#2| |#2|))) (-510) (-375 |#1|)) (T -385)) -((-1907 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-1906 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3533 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3532 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3531 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3530 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3529 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3528 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3526 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3525 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3524 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3527 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3527 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3523 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-385 *3 *4)) (-4 *4 (-375 *3)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-385 *4 *5)) (-4 *5 (-375 *4))))) -((-2954 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1111 |#2|)) (|:| |pol2| (-1111 |#2|)) (|:| |prim| (-1111 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-599 (-1111 |#2|))) (|:| |prim| (-1111 |#2|))) (-599 |#2|)) 65 T ELT))) -(((-386 |#1| |#2|) (-10 -7 (-15 -2954 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-599 (-1111 |#2|))) (|:| |prim| (-1111 |#2|))) (-599 |#2|))) (IF (|has| |#2| (-27)) (-15 -2954 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1111 |#2|)) (|:| |pol2| (-1111 |#2|)) (|:| |prim| (-1111 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-510) (-120)) (-375 |#1|)) (T -386)) -((-2954 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-510) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1111 *3)) (|:| |pol2| (-1111 *3)) (|:| |prim| (-1111 *3)))) (-5 *1 (-386 *4 *3)) (-4 *3 (-27)) (-4 *3 (-375 *4)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-599 *5)) (-4 *5 (-375 *4)) (-4 *4 (-13 (-510) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-599 (-1111 *5))) (|:| |prim| (-1111 *5)))) (-5 *1 (-386 *4 *5))))) -((-1909 (((-1213)) 18 T ELT)) (-1908 (((-1111 (-361 (-499))) |#2| (-566 |#2|)) 40 T ELT) (((-361 (-499)) |#2|) 24 T ELT))) -(((-387 |#1| |#2|) (-10 -7 (-15 -1908 ((-361 (-499)) |#2|)) (-15 -1908 ((-1111 (-361 (-499))) |#2| (-566 |#2|))) (-15 -1909 ((-1213)))) (-13 (-510) (-978 (-499))) (-375 |#1|)) (T -387)) -((-1909 (*1 *2) (-12 (-4 *3 (-13 (-510) (-978 (-499)))) (-5 *2 (-1213)) (-5 *1 (-387 *3 *4)) (-4 *4 (-375 *3)))) (-1908 (*1 *2 *3 *4) (-12 (-5 *4 (-566 *3)) (-4 *3 (-375 *5)) (-4 *5 (-13 (-510) (-978 (-499)))) (-5 *2 (-1111 (-361 (-499)))) (-5 *1 (-387 *5 *3)))) (-1908 (*1 *2 *3) (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-361 (-499))) (-5 *1 (-387 *4 *3)) (-4 *3 (-375 *4))))) -((-3795 (((-85) $) 33 T ELT)) (-1910 (((-85) $) 35 T ELT)) (-3397 (((-85) $) 36 T ELT)) (-1912 (((-85) $) 39 T ELT)) (-1914 (((-85) $) 34 T ELT)) (-1913 (((-85) $) 38 T ELT)) (-4096 (((-797) $) 20 T ELT) (($ (-1099)) 32 T ELT) (($ (-1117)) 30 T ELT) (((-1117) $) 24 T ELT) (((-1043) $) 23 T ELT)) (-1911 (((-85) $) 37 T ELT)) (-3174 (((-85) $ $) 17 T ELT))) -(((-388) (-13 (-568 (-797)) (-10 -8 (-15 -4096 ($ (-1099))) (-15 -4096 ($ (-1117))) (-15 -4096 ((-1117) $)) (-15 -4096 ((-1043) $)) (-15 -3795 ((-85) $)) (-15 -1914 ((-85) $)) (-15 -3397 ((-85) $)) (-15 -1913 ((-85) $)) (-15 -1912 ((-85) $)) (-15 -1911 ((-85) $)) (-15 -1910 ((-85) $)) (-15 -3174 ((-85) $ $))))) (T -388)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-388)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-388)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-388)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-388)))) (-3795 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) (-1914 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) (-3397 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) (-1913 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) (-1912 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) (-1911 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) (-3174 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388))))) -((-1916 (((-3 (-359 (-1111 (-361 (-499)))) #1="failed") |#3|) 72 T ELT)) (-1915 (((-359 |#3|) |#3|) 34 T ELT)) (-1918 (((-3 (-359 (-1111 (-48))) #1#) |#3|) 46 (|has| |#2| (-978 (-48))) ELT)) (-1917 (((-3 (|:| |overq| (-1111 (-361 (-499)))) (|:| |overan| (-1111 (-48))) (|:| -2758 (-85))) |#3|) 37 T ELT))) -(((-389 |#1| |#2| |#3|) (-10 -7 (-15 -1915 ((-359 |#3|) |#3|)) (-15 -1916 ((-3 (-359 (-1111 (-361 (-499)))) #1="failed") |#3|)) (-15 -1917 ((-3 (|:| |overq| (-1111 (-361 (-499)))) (|:| |overan| (-1111 (-48))) (|:| -2758 (-85))) |#3|)) (IF (|has| |#2| (-978 (-48))) (-15 -1918 ((-3 (-359 (-1111 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-510) (-978 (-499))) (-375 |#1|) (-1183 |#2|)) (T -389)) -((-1918 (*1 *2 *3) (|partial| -12 (-4 *5 (-978 (-48))) (-4 *4 (-13 (-510) (-978 (-499)))) (-4 *5 (-375 *4)) (-5 *2 (-359 (-1111 (-48)))) (-5 *1 (-389 *4 *5 *3)) (-4 *3 (-1183 *5)))) (-1917 (*1 *2 *3) (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-4 *5 (-375 *4)) (-5 *2 (-3 (|:| |overq| (-1111 (-361 (-499)))) (|:| |overan| (-1111 (-48))) (|:| -2758 (-85)))) (-5 *1 (-389 *4 *5 *3)) (-4 *3 (-1183 *5)))) (-1916 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-510) (-978 (-499)))) (-4 *5 (-375 *4)) (-5 *2 (-359 (-1111 (-361 (-499))))) (-5 *1 (-389 *4 *5 *3)) (-4 *3 (-1183 *5)))) (-1915 (*1 *2 *3) (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-4 *5 (-375 *4)) (-5 *2 (-359 *3)) (-5 *1 (-389 *4 *5 *3)) (-4 *3 (-1183 *5))))) -((-2687 (((-85) $ $) NIL T ELT)) (-1928 (((-3 (|:| |fst| (-388)) (|:| -4060 #1="void")) $) 11 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1925 (($) 35 T ELT)) (-1922 (($) 41 T ELT)) (-1923 (($) 37 T ELT)) (-1920 (($) 39 T ELT)) (-1924 (($) 36 T ELT)) (-1921 (($) 38 T ELT)) (-1919 (($) 40 T ELT)) (-1926 (((-85) $) 8 T ELT)) (-1927 (((-599 (-884 (-499))) $) 19 T ELT)) (-3670 (($ (-3 (|:| |fst| (-388)) (|:| -4060 #1#)) (-599 (-1117)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-388)) (|:| -4060 #1#)) (-599 (-884 (-499))) (-85)) 30 T ELT)) (-4096 (((-797) $) 24 T ELT) (($ (-388)) 32 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-390) (-13 (-1041) (-10 -8 (-15 -4096 ($ (-388))) (-15 -1928 ((-3 (|:| |fst| (-388)) (|:| -4060 #1="void")) $)) (-15 -1927 ((-599 (-884 (-499))) $)) (-15 -1926 ((-85) $)) (-15 -3670 ($ (-3 (|:| |fst| (-388)) (|:| -4060 #1#)) (-599 (-1117)) (-85))) (-15 -3670 ($ (-3 (|:| |fst| (-388)) (|:| -4060 #1#)) (-599 (-884 (-499))) (-85))) (-15 -1925 ($)) (-15 -1924 ($)) (-15 -1923 ($)) (-15 -1922 ($)) (-15 -1921 ($)) (-15 -1920 ($)) (-15 -1919 ($))))) (T -390)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-390)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-388)) (|:| -4060 #1="void"))) (-5 *1 (-390)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-599 (-884 (-499)))) (-5 *1 (-390)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-390)))) (-3670 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-5 *3 (-599 (-1117))) (-5 *4 (-85)) (-5 *1 (-390)))) (-3670 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-85)) (-5 *1 (-390)))) (-1925 (*1 *1) (-5 *1 (-390))) (-1924 (*1 *1) (-5 *1 (-390))) (-1923 (*1 *1) (-5 *1 (-390))) (-1922 (*1 *1) (-5 *1 (-390))) (-1921 (*1 *1) (-5 *1 (-390))) (-1920 (*1 *1) (-5 *1 (-390))) (-1919 (*1 *1) (-5 *1 (-390)))) -((-2687 (((-85) $ $) NIL T ELT)) (-1790 (((-1099) $ (-1099)) NIL T ELT)) (-1794 (($ $ (-1099)) NIL T ELT)) (-1791 (((-1099) $) NIL T ELT)) (-1932 (((-344) (-344) (-344)) 17 T ELT) (((-344) (-344)) 15 T ELT)) (-1795 (($ (-344)) NIL T ELT) (($ (-344) (-1099)) NIL T ELT)) (-3690 (((-344) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1792 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1931 (((-1213) (-1099)) 9 T ELT)) (-1930 (((-1213) (-1099)) 10 T ELT)) (-1929 (((-1213)) 11 T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1793 (($ $) 39 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-391) (-13 (-320 (-344) (-1099)) (-10 -7 (-15 -1932 ((-344) (-344) (-344))) (-15 -1932 ((-344) (-344))) (-15 -1931 ((-1213) (-1099))) (-15 -1930 ((-1213) (-1099))) (-15 -1929 ((-1213)))))) (T -391)) -((-1932 (*1 *2 *2 *2) (-12 (-5 *2 (-344)) (-5 *1 (-391)))) (-1932 (*1 *2 *2) (-12 (-5 *2 (-344)) (-5 *1 (-391)))) (-1931 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-391)))) (-1930 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-391)))) (-1929 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-391))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3690 (((-1117) $) 8 T ELT)) (-3380 (((-1099) $) 17 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 11 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 14 T ELT))) -(((-392 |#1|) (-13 (-1041) (-10 -8 (-15 -3690 ((-1117) $)))) (-1117)) (T -392)) -((-3690 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-392 *3)) (-14 *3 *2)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3457 (((-1055) $) 7 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 9 T ELT))) -(((-393) (-13 (-1041) (-10 -8 (-15 -3457 ((-1055) $))))) (T -393)) -((-3457 (*1 *2 *1) (-12 (-5 *2 (-1055)) (-5 *1 (-393))))) -((-3520 (((-1213) $) 7 T ELT)) (-4096 (((-797) $) 8 T ELT) (($ (-1207 (-657))) 14 T ELT) (($ (-599 (-284))) 13 T ELT) (($ (-284)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) 11 T ELT))) -(((-394) (-113)) (T -394)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-1207 (-657))) (-4 *1 (-394)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-394)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-394)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) (-4 *1 (-394))))) -(-13 (-350) (-10 -8 (-15 -4096 ($ (-1207 (-657)))) (-15 -4096 ($ (-599 (-284)))) (-15 -4096 ($ (-284))) (-15 -4096 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284)))))))) -(((-568 (-797)) . T) ((-350) . T) ((-1157) . T)) -((-3295 (((-3 $ "failed") (-1207 (-268 (-333)))) 21 T ELT) (((-3 $ "failed") (-1207 (-268 (-499)))) 19 T ELT) (((-3 $ "failed") (-1207 (-884 (-333)))) 17 T ELT) (((-3 $ "failed") (-1207 (-884 (-499)))) 15 T ELT) (((-3 $ "failed") (-1207 (-361 (-884 (-333))))) 13 T ELT) (((-3 $ "failed") (-1207 (-361 (-884 (-499))))) 11 T ELT)) (-3294 (($ (-1207 (-268 (-333)))) 22 T ELT) (($ (-1207 (-268 (-499)))) 20 T ELT) (($ (-1207 (-884 (-333)))) 18 T ELT) (($ (-1207 (-884 (-499)))) 16 T ELT) (($ (-1207 (-361 (-884 (-333))))) 14 T ELT) (($ (-1207 (-361 (-884 (-499))))) 12 T ELT)) (-3520 (((-1213) $) 7 T ELT)) (-4096 (((-797) $) 8 T ELT) (($ (-599 (-284))) 25 T ELT) (($ (-284)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) 23 T ELT))) -(((-395) (-113)) (T -395)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-395)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-395)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) (-4 *1 (-395)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-1207 (-268 (-333)))) (-4 *1 (-395)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-268 (-333)))) (-4 *1 (-395)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-1207 (-268 (-499)))) (-4 *1 (-395)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-268 (-499)))) (-4 *1 (-395)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-1207 (-884 (-333)))) (-4 *1 (-395)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-884 (-333)))) (-4 *1 (-395)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-1207 (-884 (-499)))) (-4 *1 (-395)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-884 (-499)))) (-4 *1 (-395)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-1207 (-361 (-884 (-333))))) (-4 *1 (-395)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-361 (-884 (-333))))) (-4 *1 (-395)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-1207 (-361 (-884 (-499))))) (-4 *1 (-395)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-361 (-884 (-499))))) (-4 *1 (-395))))) -(-13 (-350) (-10 -8 (-15 -4096 ($ (-599 (-284)))) (-15 -4096 ($ (-284))) (-15 -4096 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284)))))) (-15 -3294 ($ (-1207 (-268 (-333))))) (-15 -3295 ((-3 $ "failed") (-1207 (-268 (-333))))) (-15 -3294 ($ (-1207 (-268 (-499))))) (-15 -3295 ((-3 $ "failed") (-1207 (-268 (-499))))) (-15 -3294 ($ (-1207 (-884 (-333))))) (-15 -3295 ((-3 $ "failed") (-1207 (-884 (-333))))) (-15 -3294 ($ (-1207 (-884 (-499))))) (-15 -3295 ((-3 $ "failed") (-1207 (-884 (-499))))) (-15 -3294 ($ (-1207 (-361 (-884 (-333)))))) (-15 -3295 ((-3 $ "failed") (-1207 (-361 (-884 (-333)))))) (-15 -3294 ($ (-1207 (-361 (-884 (-499)))))) (-15 -3295 ((-3 $ "failed") (-1207 (-361 (-884 (-499)))))))) -(((-568 (-797)) . T) ((-350) . T) ((-1157) . T)) -((-1938 (((-85)) 18 T ELT)) (-1939 (((-85) (-85)) 19 T ELT)) (-1940 (((-85)) 14 T ELT)) (-1941 (((-85) (-85)) 15 T ELT)) (-1943 (((-85)) 16 T ELT)) (-1944 (((-85) (-85)) 17 T ELT)) (-1935 (((-857) (-857)) 22 T ELT) (((-857)) 21 T ELT)) (-1936 (((-714) (-599 (-2 (|:| -3882 |#1|) (|:| -4098 (-499))))) 52 T ELT)) (-1934 (((-857) (-857)) 24 T ELT) (((-857)) 23 T ELT)) (-1937 (((-2 (|:| -2697 (-499)) (|:| -1877 (-599 |#1|))) |#1|) 94 T ELT)) (-1933 (((-359 |#1|) (-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| |#1|) (|:| -2513 (-499))))))) 176 T ELT)) (-3884 (((-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| |#1|) (|:| -2513 (-499)))))) |#1| (-85)) 209 T ELT)) (-3883 (((-359 |#1|) |#1| (-714) (-714)) 224 T ELT) (((-359 |#1|) |#1| (-599 (-714)) (-714)) 221 T ELT) (((-359 |#1|) |#1| (-599 (-714))) 223 T ELT) (((-359 |#1|) |#1| (-714)) 222 T ELT) (((-359 |#1|) |#1|) 220 T ELT)) (-1955 (((-3 |#1| #1="failed") (-857) |#1| (-599 (-714)) (-714) (-85)) 226 T ELT) (((-3 |#1| #1#) (-857) |#1| (-599 (-714)) (-714)) 227 T ELT) (((-3 |#1| #1#) (-857) |#1| (-599 (-714))) 229 T ELT) (((-3 |#1| #1#) (-857) |#1| (-714)) 228 T ELT) (((-3 |#1| #1#) (-857) |#1|) 230 T ELT)) (-3882 (((-359 |#1|) |#1| (-714) (-714)) 219 T ELT) (((-359 |#1|) |#1| (-599 (-714)) (-714)) 215 T ELT) (((-359 |#1|) |#1| (-599 (-714))) 217 T ELT) (((-359 |#1|) |#1| (-714)) 216 T ELT) (((-359 |#1|) |#1|) 214 T ELT)) (-1942 (((-85) |#1|) 43 T ELT)) (-1954 (((-694 (-714)) (-599 (-2 (|:| -3882 |#1|) (|:| -4098 (-499))))) 99 T ELT)) (-1945 (((-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| |#1|) (|:| -2513 (-499)))))) |#1| (-85) (-1037 (-714)) (-714)) 213 T ELT))) -(((-396 |#1|) (-10 -7 (-15 -1933 ((-359 |#1|) (-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| |#1|) (|:| -2513 (-499)))))))) (-15 -1954 ((-694 (-714)) (-599 (-2 (|:| -3882 |#1|) (|:| -4098 (-499)))))) (-15 -1934 ((-857))) (-15 -1934 ((-857) (-857))) (-15 -1935 ((-857))) (-15 -1935 ((-857) (-857))) (-15 -1936 ((-714) (-599 (-2 (|:| -3882 |#1|) (|:| -4098 (-499)))))) (-15 -1937 ((-2 (|:| -2697 (-499)) (|:| -1877 (-599 |#1|))) |#1|)) (-15 -1938 ((-85))) (-15 -1939 ((-85) (-85))) (-15 -1940 ((-85))) (-15 -1941 ((-85) (-85))) (-15 -1942 ((-85) |#1|)) (-15 -1943 ((-85))) (-15 -1944 ((-85) (-85))) (-15 -3882 ((-359 |#1|) |#1|)) (-15 -3882 ((-359 |#1|) |#1| (-714))) (-15 -3882 ((-359 |#1|) |#1| (-599 (-714)))) (-15 -3882 ((-359 |#1|) |#1| (-599 (-714)) (-714))) (-15 -3882 ((-359 |#1|) |#1| (-714) (-714))) (-15 -3883 ((-359 |#1|) |#1|)) (-15 -3883 ((-359 |#1|) |#1| (-714))) (-15 -3883 ((-359 |#1|) |#1| (-599 (-714)))) (-15 -3883 ((-359 |#1|) |#1| (-599 (-714)) (-714))) (-15 -3883 ((-359 |#1|) |#1| (-714) (-714))) (-15 -1955 ((-3 |#1| #1="failed") (-857) |#1|)) (-15 -1955 ((-3 |#1| #1#) (-857) |#1| (-714))) (-15 -1955 ((-3 |#1| #1#) (-857) |#1| (-599 (-714)))) (-15 -1955 ((-3 |#1| #1#) (-857) |#1| (-599 (-714)) (-714))) (-15 -1955 ((-3 |#1| #1#) (-857) |#1| (-599 (-714)) (-714) (-85))) (-15 -3884 ((-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| |#1|) (|:| -2513 (-499)))))) |#1| (-85))) (-15 -1945 ((-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| |#1|) (|:| -2513 (-499)))))) |#1| (-85) (-1037 (-714)) (-714)))) (-1183 (-499))) (T -396)) -((-1945 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1037 (-714))) (-5 *6 (-714)) (-5 *2 (-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| *3) (|:| -2513 (-499))))))) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3884 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| *3) (|:| -2513 (-499))))))) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1955 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-857)) (-5 *4 (-599 (-714))) (-5 *5 (-714)) (-5 *6 (-85)) (-5 *1 (-396 *2)) (-4 *2 (-1183 (-499))))) (-1955 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-857)) (-5 *4 (-599 (-714))) (-5 *5 (-714)) (-5 *1 (-396 *2)) (-4 *2 (-1183 (-499))))) (-1955 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-857)) (-5 *4 (-599 (-714))) (-5 *1 (-396 *2)) (-4 *2 (-1183 (-499))))) (-1955 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-857)) (-5 *4 (-714)) (-5 *1 (-396 *2)) (-4 *2 (-1183 (-499))))) (-1955 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-857)) (-5 *1 (-396 *2)) (-4 *2 (-1183 (-499))))) (-3883 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3883 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-599 (-714))) (-5 *5 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3883 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-714))) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3883 (*1 *2 *3 *4) (-12 (-5 *4 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3883 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3882 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3882 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-599 (-714))) (-5 *5 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-714))) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3882 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1944 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1943 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1942 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1941 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1940 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1939 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1938 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1937 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2697 (-499)) (|:| -1877 (-599 *3)))) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1936 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| -3882 *4) (|:| -4098 (-499))))) (-4 *4 (-1183 (-499))) (-5 *2 (-714)) (-5 *1 (-396 *4)))) (-1935 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1935 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1934 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1934 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1954 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| -3882 *4) (|:| -4098 (-499))))) (-4 *4 (-1183 (-499))) (-5 *2 (-694 (-714))) (-5 *1 (-396 *4)))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| *4) (|:| -2513 (-499))))))) (-4 *4 (-1183 (-499))) (-5 *2 (-359 *4)) (-5 *1 (-396 *4))))) -((-1949 (((-499) |#2|) 52 T ELT) (((-499) |#2| (-714)) 51 T ELT)) (-1948 (((-499) |#2|) 64 T ELT)) (-1950 ((|#3| |#2|) 26 T ELT)) (-3254 ((|#3| |#2| (-857)) 15 T ELT)) (-3983 ((|#3| |#2|) 16 T ELT)) (-1951 ((|#3| |#2|) 9 T ELT)) (-2722 ((|#3| |#2|) 10 T ELT)) (-1947 ((|#3| |#2| (-857)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1946 (((-499) |#2|) 66 T ELT))) -(((-397 |#1| |#2| |#3|) (-10 -7 (-15 -1946 ((-499) |#2|)) (-15 -1947 (|#3| |#2|)) (-15 -1947 (|#3| |#2| (-857))) (-15 -1948 ((-499) |#2|)) (-15 -1949 ((-499) |#2| (-714))) (-15 -1949 ((-499) |#2|)) (-15 -3254 (|#3| |#2| (-857))) (-15 -1950 (|#3| |#2|)) (-15 -1951 (|#3| |#2|)) (-15 -2722 (|#3| |#2|)) (-15 -3983 (|#3| |#2|))) (-989) (-1183 |#1|) (-13 (-358) (-978 |#1|) (-318) (-1143) (-238))) (T -397)) -((-3983 (*1 *2 *3) (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4)))) (-2722 (*1 *2 *3) (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4)))) (-1951 (*1 *2 *3) (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4)))) (-1950 (*1 *2 *3) (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4)))) (-3254 (*1 *2 *3 *4) (-12 (-5 *4 (-857)) (-4 *5 (-989)) (-4 *2 (-13 (-358) (-978 *5) (-318) (-1143) (-238))) (-5 *1 (-397 *5 *3 *2)) (-4 *3 (-1183 *5)))) (-1949 (*1 *2 *3) (-12 (-4 *4 (-989)) (-5 *2 (-499)) (-5 *1 (-397 *4 *3 *5)) (-4 *3 (-1183 *4)) (-4 *5 (-13 (-358) (-978 *4) (-318) (-1143) (-238))))) (-1949 (*1 *2 *3 *4) (-12 (-5 *4 (-714)) (-4 *5 (-989)) (-5 *2 (-499)) (-5 *1 (-397 *5 *3 *6)) (-4 *3 (-1183 *5)) (-4 *6 (-13 (-358) (-978 *5) (-318) (-1143) (-238))))) (-1948 (*1 *2 *3) (-12 (-4 *4 (-989)) (-5 *2 (-499)) (-5 *1 (-397 *4 *3 *5)) (-4 *3 (-1183 *4)) (-4 *5 (-13 (-358) (-978 *4) (-318) (-1143) (-238))))) (-1947 (*1 *2 *3 *4) (-12 (-5 *4 (-857)) (-4 *5 (-989)) (-4 *2 (-13 (-358) (-978 *5) (-318) (-1143) (-238))) (-5 *1 (-397 *5 *3 *2)) (-4 *3 (-1183 *5)))) (-1947 (*1 *2 *3) (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4)))) (-1946 (*1 *2 *3) (-12 (-4 *4 (-989)) (-5 *2 (-499)) (-5 *1 (-397 *4 *3 *5)) (-4 *3 (-1183 *4)) (-4 *5 (-13 (-358) (-978 *4) (-318) (-1143) (-238)))))) -((-3494 ((|#2| (-1207 |#1|)) 42 T ELT)) (-1953 ((|#2| |#2| |#1|) 58 T ELT)) (-1952 ((|#2| |#2| |#1|) 49 T ELT)) (-2398 ((|#2| |#2|) 44 T ELT)) (-3311 (((-85) |#2|) 32 T ELT)) (-1956 (((-599 |#2|) (-857) (-359 |#2|)) 21 T ELT)) (-1955 ((|#2| (-857) (-359 |#2|)) 25 T ELT)) (-1954 (((-694 (-714)) (-359 |#2|)) 29 T ELT))) -(((-398 |#1| |#2|) (-10 -7 (-15 -3311 ((-85) |#2|)) (-15 -3494 (|#2| (-1207 |#1|))) (-15 -2398 (|#2| |#2|)) (-15 -1952 (|#2| |#2| |#1|)) (-15 -1953 (|#2| |#2| |#1|)) (-15 -1954 ((-694 (-714)) (-359 |#2|))) (-15 -1955 (|#2| (-857) (-359 |#2|))) (-15 -1956 ((-599 |#2|) (-857) (-359 |#2|)))) (-989) (-1183 |#1|)) (T -398)) -((-1956 (*1 *2 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-359 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-989)) (-5 *2 (-599 *6)) (-5 *1 (-398 *5 *6)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-359 *2)) (-4 *2 (-1183 *5)) (-5 *1 (-398 *5 *2)) (-4 *5 (-989)))) (-1954 (*1 *2 *3) (-12 (-5 *3 (-359 *5)) (-4 *5 (-1183 *4)) (-4 *4 (-989)) (-5 *2 (-694 (-714))) (-5 *1 (-398 *4 *5)))) (-1953 (*1 *2 *2 *3) (-12 (-4 *3 (-989)) (-5 *1 (-398 *3 *2)) (-4 *2 (-1183 *3)))) (-1952 (*1 *2 *2 *3) (-12 (-4 *3 (-989)) (-5 *1 (-398 *3 *2)) (-4 *2 (-1183 *3)))) (-2398 (*1 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-398 *3 *2)) (-4 *2 (-1183 *3)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-1207 *4)) (-4 *4 (-989)) (-4 *2 (-1183 *4)) (-5 *1 (-398 *4 *2)))) (-3311 (*1 *2 *3) (-12 (-4 *4 (-989)) (-5 *2 (-85)) (-5 *1 (-398 *4 *3)) (-4 *3 (-1183 *4))))) -((-1959 (((-714)) 59 T ELT)) (-1963 (((-714)) 29 (|has| |#1| (-358)) ELT) (((-714) (-714)) 28 (|has| |#1| (-358)) ELT)) (-1962 (((-499) |#1|) 25 (|has| |#1| (-358)) ELT)) (-1961 (((-499) |#1|) 27 (|has| |#1| (-358)) ELT)) (-1958 (((-714)) 58 T ELT) (((-714) (-714)) 57 T ELT)) (-1957 ((|#1| (-714) (-499)) 37 T ELT)) (-1960 (((-1213)) 61 T ELT))) -(((-399 |#1|) (-10 -7 (-15 -1957 (|#1| (-714) (-499))) (-15 -1958 ((-714) (-714))) (-15 -1958 ((-714))) (-15 -1959 ((-714))) (-15 -1960 ((-1213))) (IF (|has| |#1| (-358)) (PROGN (-15 -1961 ((-499) |#1|)) (-15 -1962 ((-499) |#1|)) (-15 -1963 ((-714) (-714))) (-15 -1963 ((-714)))) |%noBranch|)) (-989)) (T -399)) -((-1963 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-358)) (-4 *3 (-989)))) (-1963 (*1 *2 *2) (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-358)) (-4 *3 (-989)))) (-1962 (*1 *2 *3) (-12 (-5 *2 (-499)) (-5 *1 (-399 *3)) (-4 *3 (-358)) (-4 *3 (-989)))) (-1961 (*1 *2 *3) (-12 (-5 *2 (-499)) (-5 *1 (-399 *3)) (-4 *3 (-358)) (-4 *3 (-989)))) (-1960 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-399 *3)) (-4 *3 (-989)))) (-1959 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-989)))) (-1958 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-989)))) (-1958 (*1 *2 *2) (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-989)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-714)) (-5 *4 (-499)) (-5 *1 (-399 *2)) (-4 *2 (-989))))) -((-1964 (((-599 (-499)) (-499)) 76 T ELT)) (-3873 (((-85) (-142 (-499))) 84 T ELT)) (-3882 (((-359 (-142 (-499))) (-142 (-499))) 75 T ELT))) -(((-400) (-10 -7 (-15 -3882 ((-359 (-142 (-499))) (-142 (-499)))) (-15 -1964 ((-599 (-499)) (-499))) (-15 -3873 ((-85) (-142 (-499)))))) (T -400)) -((-3873 (*1 *2 *3) (-12 (-5 *3 (-142 (-499))) (-5 *2 (-85)) (-5 *1 (-400)))) (-1964 (*1 *2 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-400)) (-5 *3 (-499)))) (-3882 (*1 *2 *3) (-12 (-5 *2 (-359 (-142 (-499)))) (-5 *1 (-400)) (-5 *3 (-142 (-499)))))) -((-3067 ((|#4| |#4| (-599 |#4|)) 20 (|has| |#1| (-318)) ELT)) (-2352 (((-599 |#4|) (-599 |#4|) (-1099) (-1099)) 46 T ELT) (((-599 |#4|) (-599 |#4|) (-1099)) 45 T ELT) (((-599 |#4|) (-599 |#4|)) 34 T ELT))) -(((-401 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2352 ((-599 |#4|) (-599 |#4|))) (-15 -2352 ((-599 |#4|) (-599 |#4|) (-1099))) (-15 -2352 ((-599 |#4|) (-599 |#4|) (-1099) (-1099))) (IF (|has| |#1| (-318)) (-15 -3067 (|#4| |#4| (-599 |#4|))) |%noBranch|)) (-406) (-738) (-781) (-888 |#1| |#2| |#3|)) (T -401)) -((-3067 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-318)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-401 *4 *5 *6 *2)))) (-2352 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-599 *7)) (-5 *3 (-1099)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-401 *4 *5 *6 *7)))) (-2352 (*1 *2 *2 *3) (-12 (-5 *2 (-599 *7)) (-5 *3 (-1099)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-401 *4 *5 *6 *7)))) (-2352 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-401 *3 *4 *5 *6))))) -((-1965 ((|#4| |#4| (-599 |#4|)) 82 T ELT)) (-1966 (((-599 |#4|) (-599 |#4|) (-1099) (-1099)) 22 T ELT) (((-599 |#4|) (-599 |#4|) (-1099)) 21 T ELT) (((-599 |#4|) (-599 |#4|)) 13 T ELT))) -(((-402 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1965 (|#4| |#4| (-599 |#4|))) (-15 -1966 ((-599 |#4|) (-599 |#4|))) (-15 -1966 ((-599 |#4|) (-599 |#4|) (-1099))) (-15 -1966 ((-599 |#4|) (-599 |#4|) (-1099) (-1099)))) (-261) (-738) (-781) (-888 |#1| |#2| |#3|)) (T -402)) -((-1966 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-599 *7)) (-5 *3 (-1099)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-261)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-402 *4 *5 *6 *7)))) (-1966 (*1 *2 *2 *3) (-12 (-5 *2 (-599 *7)) (-5 *3 (-1099)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-261)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-402 *4 *5 *6 *7)))) (-1966 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-261)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-402 *3 *4 *5 *6)))) (-1965 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-261)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-402 *4 *5 *6 *2))))) -((-1968 (((-599 (-599 |#4|)) (-599 |#4|) (-85)) 90 T ELT) (((-599 (-599 |#4|)) (-599 |#4|)) 89 T ELT) (((-599 (-599 |#4|)) (-599 |#4|) (-599 |#4|) (-85)) 83 T ELT) (((-599 (-599 |#4|)) (-599 |#4|) (-599 |#4|)) 84 T ELT)) (-1967 (((-599 (-599 |#4|)) (-599 |#4|) (-85)) 56 T ELT) (((-599 (-599 |#4|)) (-599 |#4|)) 78 T ELT))) -(((-403 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1967 ((-599 (-599 |#4|)) (-599 |#4|))) (-15 -1967 ((-599 (-599 |#4|)) (-599 |#4|) (-85))) (-15 -1968 ((-599 (-599 |#4|)) (-599 |#4|) (-599 |#4|))) (-15 -1968 ((-599 (-599 |#4|)) (-599 |#4|) (-599 |#4|) (-85))) (-15 -1968 ((-599 (-599 |#4|)) (-599 |#4|))) (-15 -1968 ((-599 (-599 |#4|)) (-599 |#4|) (-85)))) (-13 (-261) (-120)) (-738) (-781) (-888 |#1| |#2| |#3|)) (T -403)) -((-1968 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-599 (-599 *8))) (-5 *1 (-403 *5 *6 *7 *8)) (-5 *3 (-599 *8)))) (-1968 (*1 *2 *3) (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-599 (-599 *7))) (-5 *1 (-403 *4 *5 *6 *7)) (-5 *3 (-599 *7)))) (-1968 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-599 (-599 *8))) (-5 *1 (-403 *5 *6 *7 *8)) (-5 *3 (-599 *8)))) (-1968 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-599 (-599 *7))) (-5 *1 (-403 *4 *5 *6 *7)) (-5 *3 (-599 *7)))) (-1967 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-599 (-599 *8))) (-5 *1 (-403 *5 *6 *7 *8)) (-5 *3 (-599 *8)))) (-1967 (*1 *2 *3) (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-599 (-599 *7))) (-5 *1 (-403 *4 *5 *6 *7)) (-5 *3 (-599 *7))))) -((-1992 (((-714) |#4|) 12 T ELT)) (-1980 (((-599 (-2 (|:| |totdeg| (-714)) (|:| -2105 |#4|))) |#4| (-714) (-599 (-2 (|:| |totdeg| (-714)) (|:| -2105 |#4|)))) 39 T ELT)) (-1982 (((-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1981 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1970 ((|#4| |#4| (-599 |#4|)) 54 T ELT)) (-1978 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-599 |#4|)) 96 T ELT)) (-1985 (((-1213) |#4|) 59 T ELT)) (-1988 (((-1213) (-599 |#4|)) 69 T ELT)) (-1986 (((-499) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-499) (-499) (-499)) 66 T ELT)) (-1989 (((-1213) (-499)) 110 T ELT)) (-1983 (((-599 |#4|) (-599 |#4|)) 104 T ELT)) (-1991 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-714)) (|:| -2105 |#4|)) |#4| (-714)) 31 T ELT)) (-1984 (((-499) |#4|) 109 T ELT)) (-1979 ((|#4| |#4|) 37 T ELT)) (-1971 (((-599 |#4|) (-599 |#4|) (-499) (-499)) 74 T ELT)) (-1987 (((-499) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-499) (-499) (-499) (-499)) 123 T ELT)) (-1990 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1972 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1977 (((-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1976 (((-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1973 (((-85) |#2| |#2|) 75 T ELT)) (-1975 (((-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1974 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1969 ((|#4| |#4| (-599 |#4|)) 97 T ELT))) -(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1969 (|#4| |#4| (-599 |#4|))) (-15 -1970 (|#4| |#4| (-599 |#4|))) (-15 -1971 ((-599 |#4|) (-599 |#4|) (-499) (-499))) (-15 -1972 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1973 ((-85) |#2| |#2|)) (-15 -1974 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1975 ((-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1976 ((-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1977 ((-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1978 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-599 |#4|))) (-15 -1979 (|#4| |#4|)) (-15 -1980 ((-599 (-2 (|:| |totdeg| (-714)) (|:| -2105 |#4|))) |#4| (-714) (-599 (-2 (|:| |totdeg| (-714)) (|:| -2105 |#4|))))) (-15 -1981 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1982 ((-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1983 ((-599 |#4|) (-599 |#4|))) (-15 -1984 ((-499) |#4|)) (-15 -1985 ((-1213) |#4|)) (-15 -1986 ((-499) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-499) (-499) (-499))) (-15 -1987 ((-499) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-499) (-499) (-499) (-499))) (-15 -1988 ((-1213) (-599 |#4|))) (-15 -1989 ((-1213) (-499))) (-15 -1990 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1991 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-714)) (|:| -2105 |#4|)) |#4| (-714))) (-15 -1992 ((-714) |#4|))) (-406) (-738) (-781) (-888 |#1| |#2| |#3|)) (T -404)) -((-1992 (*1 *2 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-714)) (-5 *1 (-404 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))) (-1991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-714)) (|:| -2105 *4))) (-5 *5 (-714)) (-4 *4 (-888 *6 *7 *8)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-404 *6 *7 *8 *4)))) (-1990 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-714)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-738)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-404 *4 *5 *6 *7)))) (-1989 (*1 *2 *3) (-12 (-5 *3 (-499)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-1213)) (-5 *1 (-404 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6)))) (-1988 (*1 *2 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-1213)) (-5 *1 (-404 *4 *5 *6 *7)))) (-1987 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-714)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-738)) (-4 *4 (-888 *5 *6 *7)) (-4 *5 (-406)) (-4 *7 (-781)) (-5 *1 (-404 *5 *6 *7 *4)))) (-1986 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-714)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-738)) (-4 *4 (-888 *5 *6 *7)) (-4 *5 (-406)) (-4 *7 (-781)) (-5 *1 (-404 *5 *6 *7 *4)))) (-1985 (*1 *2 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-1213)) (-5 *1 (-404 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))) (-1984 (*1 *2 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-499)) (-5 *1 (-404 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))) (-1983 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-404 *3 *4 *5 *6)))) (-1982 (*1 *2 *2 *2) (-12 (-5 *2 (-599 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-714)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-738)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-406)) (-4 *5 (-781)) (-5 *1 (-404 *3 *4 *5 *6)))) (-1981 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-714)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-738)) (-4 *2 (-888 *4 *5 *6)) (-5 *1 (-404 *4 *5 *6 *2)) (-4 *4 (-406)) (-4 *6 (-781)))) (-1980 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-599 (-2 (|:| |totdeg| (-714)) (|:| -2105 *3)))) (-5 *4 (-714)) (-4 *3 (-888 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-404 *5 *6 *7 *3)))) (-1979 (*1 *2 *2) (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-404 *3 *4 *5 *2)) (-4 *2 (-888 *3 *4 *5)))) (-1978 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-888 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-404 *5 *6 *7 *3)))) (-1977 (*1 *2 *3 *2) (-12 (-5 *2 (-599 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-714)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-738)) (-4 *6 (-888 *4 *3 *5)) (-4 *4 (-406)) (-4 *5 (-781)) (-5 *1 (-404 *4 *3 *5 *6)))) (-1976 (*1 *2 *2) (-12 (-5 *2 (-599 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-714)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-738)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-406)) (-4 *5 (-781)) (-5 *1 (-404 *3 *4 *5 *6)))) (-1975 (*1 *2 *3 *2) (-12 (-5 *2 (-599 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-714)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-738)) (-4 *3 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *6 (-781)) (-5 *1 (-404 *4 *5 *6 *3)))) (-1974 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-406)) (-4 *3 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) (-5 *1 (-404 *4 *3 *5 *6)) (-4 *6 (-888 *4 *3 *5)))) (-1973 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *3 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) (-5 *1 (-404 *4 *3 *5 *6)) (-4 *6 (-888 *4 *3 *5)))) (-1972 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-714)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-738)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-404 *4 *5 *6 *7)))) (-1971 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-599 *7)) (-5 *3 (-499)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-404 *4 *5 *6 *7)))) (-1970 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-404 *4 *5 *6 *2)))) (-1969 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-404 *4 *5 *6 *2))))) -((-1993 (($ $ $) 14 T ELT) (($ (-599 $)) 21 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 45 T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) 22 T ELT))) -(((-405 |#1|) (-10 -7 (-15 -2829 ((-1111 |#1|) (-1111 |#1|) (-1111 |#1|))) (-15 -1993 (|#1| (-599 |#1|))) (-15 -1993 (|#1| |#1| |#1|)) (-15 -3282 (|#1| (-599 |#1|))) (-15 -3282 (|#1| |#1| |#1|))) (-406)) (T -405)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-406) (-113)) (T -406)) -((-3282 (*1 *1 *1 *1) (-4 *1 (-406))) (-3282 (*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-406)))) (-1993 (*1 *1 *1 *1) (-4 *1 (-406))) (-1993 (*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-406)))) (-2829 (*1 *2 *2 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-406))))) -(-13 (-510) (-10 -8 (-15 -3282 ($ $ $)) (-15 -3282 ($ (-599 $))) (-15 -1993 ($ $ $)) (-15 -1993 ($ (-599 $))) (-15 -2829 ((-1111 $) (-1111 $) (-1111 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-244) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1870 (((-3 $ #1="failed")) NIL (|has| (-361 (-884 |#1|)) (-510)) ELT)) (-1345 (((-3 $ #1#) $ $) NIL T ELT)) (-3361 (((-1207 (-647 (-361 (-884 |#1|)))) (-1207 $)) NIL T ELT) (((-1207 (-647 (-361 (-884 |#1|))))) NIL T ELT)) (-1822 (((-1207 $)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2008 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL T ELT)) (-1796 (((-3 $ #1#)) NIL (|has| (-361 (-884 |#1|)) (-510)) ELT)) (-1886 (((-647 (-361 (-884 |#1|))) (-1207 $)) NIL T ELT) (((-647 (-361 (-884 |#1|)))) NIL T ELT)) (-1820 (((-361 (-884 |#1|)) $) NIL T ELT)) (-1884 (((-647 (-361 (-884 |#1|))) $ (-1207 $)) NIL T ELT) (((-647 (-361 (-884 |#1|))) $) NIL T ELT)) (-2522 (((-3 $ #1#) $) NIL (|has| (-361 (-884 |#1|)) (-510)) ELT)) (-2002 (((-1111 (-884 (-361 (-884 |#1|))))) NIL (|has| (-361 (-884 |#1|)) (-318)) ELT) (((-1111 (-361 (-884 |#1|)))) 91 (|has| |#1| (-510)) ELT)) (-2525 (($ $ (-857)) NIL T ELT)) (-1818 (((-361 (-884 |#1|)) $) NIL T ELT)) (-1798 (((-1111 (-361 (-884 |#1|))) $) 89 (|has| (-361 (-884 |#1|)) (-510)) ELT)) (-1888 (((-361 (-884 |#1|)) (-1207 $)) NIL T ELT) (((-361 (-884 |#1|))) NIL T ELT)) (-1816 (((-1111 (-361 (-884 |#1|))) $) NIL T ELT)) (-1810 (((-85)) NIL T ELT)) (-1890 (($ (-1207 (-361 (-884 |#1|))) (-1207 $)) 115 T ELT) (($ (-1207 (-361 (-884 |#1|)))) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL (|has| (-361 (-884 |#1|)) (-510)) ELT)) (-3231 (((-857)) NIL T ELT)) (-1807 (((-85)) NIL T ELT)) (-2549 (($ $ (-857)) NIL T ELT)) (-1803 (((-85)) NIL T ELT)) (-1801 (((-85)) NIL T ELT)) (-1805 (((-85)) NIL T ELT)) (-2009 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL T ELT)) (-1797 (((-3 $ #1#)) NIL (|has| (-361 (-884 |#1|)) (-510)) ELT)) (-1887 (((-647 (-361 (-884 |#1|))) (-1207 $)) NIL T ELT) (((-647 (-361 (-884 |#1|)))) NIL T ELT)) (-1821 (((-361 (-884 |#1|)) $) NIL T ELT)) (-1885 (((-647 (-361 (-884 |#1|))) $ (-1207 $)) NIL T ELT) (((-647 (-361 (-884 |#1|))) $) NIL T ELT)) (-2523 (((-3 $ #1#) $) NIL (|has| (-361 (-884 |#1|)) (-510)) ELT)) (-2006 (((-1111 (-884 (-361 (-884 |#1|))))) NIL (|has| (-361 (-884 |#1|)) (-318)) ELT) (((-1111 (-361 (-884 |#1|)))) 90 (|has| |#1| (-510)) ELT)) (-2524 (($ $ (-857)) NIL T ELT)) (-1819 (((-361 (-884 |#1|)) $) NIL T ELT)) (-1799 (((-1111 (-361 (-884 |#1|))) $) 86 (|has| (-361 (-884 |#1|)) (-510)) ELT)) (-1889 (((-361 (-884 |#1|)) (-1207 $)) NIL T ELT) (((-361 (-884 |#1|))) NIL T ELT)) (-1817 (((-1111 (-361 (-884 |#1|))) $) NIL T ELT)) (-1811 (((-85)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1802 (((-85)) NIL T ELT)) (-1804 (((-85)) NIL T ELT)) (-1806 (((-85)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1996 (((-361 (-884 |#1|)) $ $) 77 (|has| |#1| (-510)) ELT)) (-2000 (((-361 (-884 |#1|)) $) 101 (|has| |#1| (-510)) ELT)) (-1999 (((-361 (-884 |#1|)) $) 105 (|has| |#1| (-510)) ELT)) (-2001 (((-1111 (-361 (-884 |#1|))) $) 95 (|has| |#1| (-510)) ELT)) (-1995 (((-361 (-884 |#1|))) 78 (|has| |#1| (-510)) ELT)) (-1998 (((-361 (-884 |#1|)) $ $) 70 (|has| |#1| (-510)) ELT)) (-2004 (((-361 (-884 |#1|)) $) 100 (|has| |#1| (-510)) ELT)) (-2003 (((-361 (-884 |#1|)) $) 104 (|has| |#1| (-510)) ELT)) (-2005 (((-1111 (-361 (-884 |#1|))) $) 94 (|has| |#1| (-510)) ELT)) (-1997 (((-361 (-884 |#1|))) 74 (|has| |#1| (-510)) ELT)) (-2007 (($) 111 T ELT) (($ (-1117)) 119 T ELT) (($ (-1207 (-1117))) 118 T ELT) (($ (-1207 $)) 106 T ELT) (($ (-1117) (-1207 $)) 117 T ELT) (($ (-1207 (-1117)) (-1207 $)) 116 T ELT)) (-1809 (((-85)) NIL T ELT)) (-3950 (((-361 (-884 |#1|)) $ (-499)) NIL T ELT)) (-3362 (((-1207 (-361 (-884 |#1|))) $ (-1207 $)) 108 T ELT) (((-647 (-361 (-884 |#1|))) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 (-361 (-884 |#1|))) $) 44 T ELT) (((-647 (-361 (-884 |#1|))) (-1207 $)) NIL T ELT)) (-4122 (((-1207 (-361 (-884 |#1|))) $) NIL T ELT) (($ (-1207 (-361 (-884 |#1|)))) 41 T ELT)) (-1994 (((-599 (-884 (-361 (-884 |#1|)))) (-1207 $)) NIL T ELT) (((-599 (-884 (-361 (-884 |#1|))))) NIL T ELT) (((-599 (-884 |#1|)) (-1207 $)) 109 (|has| |#1| (-510)) ELT) (((-599 (-884 |#1|))) 110 (|has| |#1| (-510)) ELT)) (-2551 (($ $ $) NIL T ELT)) (-1815 (((-85)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-1207 (-361 (-884 |#1|)))) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) 66 T ELT)) (-1800 (((-599 (-1207 (-361 (-884 |#1|))))) NIL (|has| (-361 (-884 |#1|)) (-510)) ELT)) (-2552 (($ $ $ $) NIL T ELT)) (-1813 (((-85)) NIL T ELT)) (-2664 (($ (-647 (-361 (-884 |#1|))) $) NIL T ELT)) (-2550 (($ $ $) NIL T ELT)) (-1814 (((-85)) NIL T ELT)) (-1812 (((-85)) NIL T ELT)) (-1808 (((-85)) NIL T ELT)) (-2779 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) 107 T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-361 (-884 |#1|))) NIL T ELT) (($ (-361 (-884 |#1|)) $) NIL T ELT) (($ (-1082 |#2| (-361 (-884 |#1|))) $) NIL T ELT))) -(((-407 |#1| |#2| |#3| |#4|) (-13 (-372 (-361 (-884 |#1|))) (-606 (-1082 |#2| (-361 (-884 |#1|)))) (-10 -8 (-15 -4096 ($ (-1207 (-361 (-884 |#1|))))) (-15 -2009 ((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1="failed"))) (-15 -2008 ((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#))) (-15 -2007 ($)) (-15 -2007 ($ (-1117))) (-15 -2007 ($ (-1207 (-1117)))) (-15 -2007 ($ (-1207 $))) (-15 -2007 ($ (-1117) (-1207 $))) (-15 -2007 ($ (-1207 (-1117)) (-1207 $))) (IF (|has| |#1| (-510)) (PROGN (-15 -2006 ((-1111 (-361 (-884 |#1|))))) (-15 -2005 ((-1111 (-361 (-884 |#1|))) $)) (-15 -2004 ((-361 (-884 |#1|)) $)) (-15 -2003 ((-361 (-884 |#1|)) $)) (-15 -2002 ((-1111 (-361 (-884 |#1|))))) (-15 -2001 ((-1111 (-361 (-884 |#1|))) $)) (-15 -2000 ((-361 (-884 |#1|)) $)) (-15 -1999 ((-361 (-884 |#1|)) $)) (-15 -1998 ((-361 (-884 |#1|)) $ $)) (-15 -1997 ((-361 (-884 |#1|)))) (-15 -1996 ((-361 (-884 |#1|)) $ $)) (-15 -1995 ((-361 (-884 |#1|)))) (-15 -1994 ((-599 (-884 |#1|)) (-1207 $))) (-15 -1994 ((-599 (-884 |#1|))))) |%noBranch|))) (-146) (-857) (-599 (-1117)) (-1207 (-647 |#1|))) (T -407)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-1207 (-361 (-884 *3)))) (-4 *3 (-146)) (-14 *6 (-1207 (-647 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))))) (-2009 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-407 *3 *4 *5 *6)) (|:| -2113 (-599 (-407 *3 *4 *5 *6))))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2008 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-407 *3 *4 *5 *6)) (|:| -2113 (-599 (-407 *3 *4 *5 *6))))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2007 (*1 *1) (-12 (-5 *1 (-407 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-857)) (-14 *4 (-599 (-1117))) (-14 *5 (-1207 (-647 *2))))) (-2007 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 *2)) (-14 *6 (-1207 (-647 *3))))) (-2007 (*1 *1 *2) (-12 (-5 *2 (-1207 (-1117))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2007 (*1 *1 *2) (-12 (-5 *2 (-1207 (-407 *3 *4 *5 *6))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2007 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-407 *4 *5 *6 *7))) (-5 *1 (-407 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-857)) (-14 *6 (-599 *2)) (-14 *7 (-1207 (-647 *4))))) (-2007 (*1 *1 *2 *3) (-12 (-5 *2 (-1207 (-1117))) (-5 *3 (-1207 (-407 *4 *5 *6 *7))) (-5 *1 (-407 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-857)) (-14 *6 (-599 (-1117))) (-14 *7 (-1207 (-647 *4))))) (-2006 (*1 *2) (-12 (-5 *2 (-1111 (-361 (-884 *3)))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-1111 (-361 (-884 *3)))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2004 (*1 *2 *1) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2002 (*1 *2) (-12 (-5 *2 (-1111 (-361 (-884 *3)))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-1111 (-361 (-884 *3)))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2000 (*1 *2 *1) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-1999 (*1 *2 *1) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-1998 (*1 *2 *1 *1) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-1997 (*1 *2) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-1996 (*1 *2 *1 *1) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-1995 (*1 *2) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-1207 (-407 *4 *5 *6 *7))) (-5 *2 (-599 (-884 *4))) (-5 *1 (-407 *4 *5 *6 *7)) (-4 *4 (-510)) (-4 *4 (-146)) (-14 *5 (-857)) (-14 *6 (-599 (-1117))) (-14 *7 (-1207 (-647 *4))))) (-1994 (*1 *2) (-12 (-5 *2 (-599 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 18 T ELT)) (-3204 (((-599 (-798 |#1|)) $) 87 T ELT)) (-3206 (((-1111 $) $ (-798 |#1|)) 52 T ELT) (((-1111 |#2|) $) 139 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#2| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#2| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#2| (-510)) ELT)) (-2940 (((-714) $) 27 T ELT) (((-714) $ (-599 (-798 |#1|))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#2| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#2| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) 50 T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-3 (-798 |#1|) #1#) $) NIL T ELT)) (-3294 ((|#2| $) 48 T ELT) (((-361 (-499)) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-798 |#1|) $) NIL T ELT)) (-3906 (($ $ $ (-798 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-2039 (($ $ (-599 (-499))) 94 T ELT)) (-4109 (($ $) 80 T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#2|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#2| (-406)) ELT) (($ $ (-798 |#1|)) NIL (|has| |#2| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#2| (-848)) ELT)) (-1694 (($ $ |#2| |#3| $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-798 |#1|) (-821 (-333))) (|has| |#2| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-798 |#1|) (-821 (-499))) (|has| |#2| (-821 (-499)))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) 65 T ELT)) (-3207 (($ (-1111 |#2|) (-798 |#1|)) 144 T ELT) (($ (-1111 $) (-798 |#1|)) 58 T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) 68 T ELT)) (-3014 (($ |#2| |#3|) 35 T ELT) (($ $ (-798 |#1|) (-714)) 37 T ELT) (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-798 |#1|)) NIL T ELT)) (-2941 ((|#3| $) NIL T ELT) (((-714) $ (-798 |#1|)) 56 T ELT) (((-599 (-714)) $ (-599 (-798 |#1|))) 63 T ELT)) (-1695 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3205 (((-3 (-798 |#1|) #1#) $) 45 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#2| $) 47 T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) NIL (|has| |#2| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-798 |#1|)) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) 46 T ELT)) (-1894 ((|#2| $) 137 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#2| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) 150 (|has| |#2| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#2| (-848)) ELT)) (-3606 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-798 |#1|) |#2|) 101 T ELT) (($ $ (-599 (-798 |#1|)) (-599 |#2|)) 107 T ELT) (($ $ (-798 |#1|) $) 99 T ELT) (($ $ (-599 (-798 |#1|)) (-599 $)) 125 T ELT)) (-3907 (($ $ (-798 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3908 (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|)) 59 T ELT)) (-4098 ((|#3| $) 79 T ELT) (((-714) $ (-798 |#1|)) 42 T ELT) (((-599 (-714)) $ (-599 (-798 |#1|))) 62 T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-798 |#1|) (-569 (-825 (-333)))) (|has| |#2| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-798 |#1|) (-569 (-825 (-499)))) (|has| |#2| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-798 |#1|) (-569 (-488))) (|has| |#2| (-569 (-488)))) ELT)) (-2938 ((|#2| $) 146 (|has| |#2| (-406)) ELT) (($ $ (-798 |#1|)) NIL (|has| |#2| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-848))) ELT)) (-4096 (((-797) $) 174 T ELT) (($ (-499)) NIL T ELT) (($ |#2|) 100 T ELT) (($ (-798 |#1|)) 39 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#2| (-510)) ELT)) (-3967 (((-599 |#2|) $) NIL T ELT)) (-3827 ((|#2| $ |#3|) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#2| (-848))) (|has| |#2| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#2| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#2| (-510)) ELT)) (-2779 (($) 22 T CONST)) (-2785 (($) 31 T CONST)) (-2790 (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#2|) 76 (|has| |#2| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 132 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 130 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 36 T ELT) (($ $ (-361 (-499))) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ |#2| $) 75 T ELT) (($ $ |#2|) NIL T ELT))) -(((-408 |#1| |#2| |#3|) (-13 (-888 |#2| |#3| (-798 |#1|)) (-10 -8 (-15 -2039 ($ $ (-599 (-499)))))) (-599 (-1117)) (-989) (-195 (-4107 |#1|) (-714))) (T -408)) -((-2039 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-499))) (-14 *3 (-599 (-1117))) (-5 *1 (-408 *3 *4 *5)) (-4 *4 (-989)) (-4 *5 (-195 (-4107 *3) (-714)))))) -((-2013 (((-85) |#1| (-599 |#2|)) 90 T ELT)) (-2011 (((-3 (-1207 (-599 |#2|)) #1="failed") (-714) |#1| (-599 |#2|)) 99 T ELT)) (-2012 (((-3 (-599 |#2|) #1#) |#2| |#1| (-1207 (-599 |#2|))) 101 T ELT)) (-2138 ((|#2| |#2| |#1|) 35 T ELT)) (-2010 (((-714) |#2| (-599 |#2|)) 26 T ELT))) -(((-409 |#1| |#2|) (-10 -7 (-15 -2138 (|#2| |#2| |#1|)) (-15 -2010 ((-714) |#2| (-599 |#2|))) (-15 -2011 ((-3 (-1207 (-599 |#2|)) #1="failed") (-714) |#1| (-599 |#2|))) (-15 -2012 ((-3 (-599 |#2|) #1#) |#2| |#1| (-1207 (-599 |#2|)))) (-15 -2013 ((-85) |#1| (-599 |#2|)))) (-261) (-1183 |#1|)) (T -409)) -((-2013 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *5)) (-4 *5 (-1183 *3)) (-4 *3 (-261)) (-5 *2 (-85)) (-5 *1 (-409 *3 *5)))) (-2012 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1207 (-599 *3))) (-4 *4 (-261)) (-5 *2 (-599 *3)) (-5 *1 (-409 *4 *3)) (-4 *3 (-1183 *4)))) (-2011 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-714)) (-4 *4 (-261)) (-4 *6 (-1183 *4)) (-5 *2 (-1207 (-599 *6))) (-5 *1 (-409 *4 *6)) (-5 *5 (-599 *6)))) (-2010 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-261)) (-5 *2 (-714)) (-5 *1 (-409 *5 *3)))) (-2138 (*1 *2 *2 *3) (-12 (-4 *3 (-261)) (-5 *1 (-409 *3 *2)) (-4 *2 (-1183 *3))))) -((-3882 (((-359 |#5|) |#5|) 24 T ELT))) -(((-410 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3882 ((-359 |#5|) |#5|))) (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ "failed") (-1117))))) (-738) (-510) (-510) (-888 |#4| |#2| |#1|)) (T -410)) -((-3882 (*1 *2 *3) (-12 (-4 *4 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ "failed") (-1117)))))) (-4 *5 (-738)) (-4 *7 (-510)) (-5 *2 (-359 *3)) (-5 *1 (-410 *4 *5 *6 *7 *3)) (-4 *6 (-510)) (-4 *3 (-888 *7 *5 *4))))) -((-2821 ((|#3|) 43 T ELT)) (-2829 (((-1111 |#4|) (-1111 |#4|) (-1111 |#4|)) 34 T ELT))) -(((-411 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2829 ((-1111 |#4|) (-1111 |#4|) (-1111 |#4|))) (-15 -2821 (|#3|))) (-738) (-781) (-848) (-888 |#3| |#1| |#2|)) (T -411)) -((-2821 (*1 *2) (-12 (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-848)) (-5 *1 (-411 *3 *4 *2 *5)) (-4 *5 (-888 *2 *3 *4)))) (-2829 (*1 *2 *2 *2) (-12 (-5 *2 (-1111 *6)) (-4 *6 (-888 *5 *3 *4)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *5 (-848)) (-5 *1 (-411 *3 *4 *5 *6))))) -((-3882 (((-359 (-1111 |#1|)) (-1111 |#1|)) 43 T ELT))) -(((-412 |#1|) (-10 -7 (-15 -3882 ((-359 (-1111 |#1|)) (-1111 |#1|)))) (-261)) (T -412)) -((-3882 (*1 *2 *3) (-12 (-4 *4 (-261)) (-5 *2 (-359 (-1111 *4))) (-5 *1 (-412 *4)) (-5 *3 (-1111 *4))))) -((-3879 (((-51) |#2| (-1117) (-247 |#2|) (-1174 (-714))) 44 T ELT) (((-51) (-1 |#2| (-499)) (-247 |#2|) (-1174 (-714))) 43 T ELT) (((-51) |#2| (-1117) (-247 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-499)) (-247 |#2|)) 29 T ELT)) (-3968 (((-51) |#2| (-1117) (-247 |#2|) (-1174 (-361 (-499))) (-361 (-499))) 88 T ELT) (((-51) (-1 |#2| (-361 (-499))) (-247 |#2|) (-1174 (-361 (-499))) (-361 (-499))) 87 T ELT) (((-51) |#2| (-1117) (-247 |#2|) (-1174 (-499))) 86 T ELT) (((-51) (-1 |#2| (-499)) (-247 |#2|) (-1174 (-499))) 85 T ELT) (((-51) |#2| (-1117) (-247 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-499)) (-247 |#2|)) 79 T ELT)) (-3932 (((-51) |#2| (-1117) (-247 |#2|) (-1174 (-361 (-499))) (-361 (-499))) 74 T ELT) (((-51) (-1 |#2| (-361 (-499))) (-247 |#2|) (-1174 (-361 (-499))) (-361 (-499))) 72 T ELT)) (-3929 (((-51) |#2| (-1117) (-247 |#2|) (-1174 (-499))) 51 T ELT) (((-51) (-1 |#2| (-499)) (-247 |#2|) (-1174 (-499))) 50 T ELT))) -(((-413 |#1| |#2|) (-10 -7 (-15 -3879 ((-51) (-1 |#2| (-499)) (-247 |#2|))) (-15 -3879 ((-51) |#2| (-1117) (-247 |#2|))) (-15 -3879 ((-51) (-1 |#2| (-499)) (-247 |#2|) (-1174 (-714)))) (-15 -3879 ((-51) |#2| (-1117) (-247 |#2|) (-1174 (-714)))) (-15 -3929 ((-51) (-1 |#2| (-499)) (-247 |#2|) (-1174 (-499)))) (-15 -3929 ((-51) |#2| (-1117) (-247 |#2|) (-1174 (-499)))) (-15 -3932 ((-51) (-1 |#2| (-361 (-499))) (-247 |#2|) (-1174 (-361 (-499))) (-361 (-499)))) (-15 -3932 ((-51) |#2| (-1117) (-247 |#2|) (-1174 (-361 (-499))) (-361 (-499)))) (-15 -3968 ((-51) (-1 |#2| (-499)) (-247 |#2|))) (-15 -3968 ((-51) |#2| (-1117) (-247 |#2|))) (-15 -3968 ((-51) (-1 |#2| (-499)) (-247 |#2|) (-1174 (-499)))) (-15 -3968 ((-51) |#2| (-1117) (-247 |#2|) (-1174 (-499)))) (-15 -3968 ((-51) (-1 |#2| (-361 (-499))) (-247 |#2|) (-1174 (-361 (-499))) (-361 (-499)))) (-15 -3968 ((-51) |#2| (-1117) (-247 |#2|) (-1174 (-361 (-499))) (-361 (-499))))) (-13 (-510) (-978 (-499)) (-596 (-499))) (-13 (-27) (-1143) (-375 |#1|))) (T -413)) -((-3968 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-361 (-499)))) (-5 *7 (-361 (-499))) (-4 *3 (-13 (-27) (-1143) (-375 *8))) (-4 *8 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *8 *3)))) (-3968 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-361 (-499)))) (-5 *4 (-247 *8)) (-5 *5 (-1174 (-361 (-499)))) (-5 *6 (-361 (-499))) (-4 *8 (-13 (-27) (-1143) (-375 *7))) (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *7 *8)))) (-3968 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-499))) (-4 *3 (-13 (-27) (-1143) (-375 *7))) (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *7 *3)))) (-3968 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-499))) (-5 *4 (-247 *7)) (-5 *5 (-1174 (-499))) (-4 *7 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *6 *7)))) (-3968 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *6 *3)))) (-3968 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-499))) (-5 *4 (-247 *6)) (-4 *6 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *5 *6)))) (-3932 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-361 (-499)))) (-5 *7 (-361 (-499))) (-4 *3 (-13 (-27) (-1143) (-375 *8))) (-4 *8 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *8 *3)))) (-3932 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-361 (-499)))) (-5 *4 (-247 *8)) (-5 *5 (-1174 (-361 (-499)))) (-5 *6 (-361 (-499))) (-4 *8 (-13 (-27) (-1143) (-375 *7))) (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *7 *8)))) (-3929 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-499))) (-4 *3 (-13 (-27) (-1143) (-375 *7))) (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *7 *3)))) (-3929 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-499))) (-5 *4 (-247 *7)) (-5 *5 (-1174 (-499))) (-4 *7 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *6 *7)))) (-3879 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-714))) (-4 *3 (-13 (-27) (-1143) (-375 *7))) (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *7 *3)))) (-3879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-499))) (-5 *4 (-247 *7)) (-5 *5 (-1174 (-714))) (-4 *7 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *6 *7)))) (-3879 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *6 *3)))) (-3879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-499))) (-5 *4 (-247 *6)) (-4 *6 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *5 *6))))) -((-2138 ((|#2| |#2| |#1|) 15 T ELT)) (-2015 (((-599 |#2|) |#2| (-599 |#2|) |#1| (-857)) 82 T ELT)) (-2014 (((-2 (|:| |plist| (-599 |#2|)) (|:| |modulo| |#1|)) |#2| (-599 |#2|) |#1| (-857)) 71 T ELT))) -(((-414 |#1| |#2|) (-10 -7 (-15 -2014 ((-2 (|:| |plist| (-599 |#2|)) (|:| |modulo| |#1|)) |#2| (-599 |#2|) |#1| (-857))) (-15 -2015 ((-599 |#2|) |#2| (-599 |#2|) |#1| (-857))) (-15 -2138 (|#2| |#2| |#1|))) (-261) (-1183 |#1|)) (T -414)) -((-2138 (*1 *2 *2 *3) (-12 (-4 *3 (-261)) (-5 *1 (-414 *3 *2)) (-4 *2 (-1183 *3)))) (-2015 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-599 *3)) (-5 *5 (-857)) (-4 *3 (-1183 *4)) (-4 *4 (-261)) (-5 *1 (-414 *4 *3)))) (-2014 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-857)) (-4 *5 (-261)) (-4 *3 (-1183 *5)) (-5 *2 (-2 (|:| |plist| (-599 *3)) (|:| |modulo| *5))) (-5 *1 (-414 *5 *3)) (-5 *4 (-599 *3))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 28 T ELT)) (-3857 (($ |#3|) 25 T ELT)) (-1345 (((-3 $ "failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) 32 T ELT)) (-2016 (($ |#2| |#4| $) 33 T ELT)) (-3014 (($ |#2| (-671 |#3| |#4| |#5|)) 24 T ELT)) (-3015 (((-671 |#3| |#4| |#5|) $) 15 T ELT)) (-2018 ((|#3| $) 19 T ELT)) (-2019 ((|#4| $) 17 T ELT)) (-3312 ((|#2| $) 29 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-2017 (($ |#2| |#3| |#4|) 26 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 36 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 34 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-415 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-675 |#6|) (-675 |#2|) (-10 -8 (-15 -3312 (|#2| $)) (-15 -3015 ((-671 |#3| |#4| |#5|) $)) (-15 -2019 (|#4| $)) (-15 -2018 (|#3| $)) (-15 -4109 ($ $)) (-15 -3014 ($ |#2| (-671 |#3| |#4| |#5|))) (-15 -3857 ($ |#3|)) (-15 -2017 ($ |#2| |#3| |#4|)) (-15 -2016 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-599 (-1117)) (-146) (-781) (-195 (-4107 |#1|) (-714)) (-1 (-85) (-2 (|:| -2518 |#3|) (|:| -2519 |#4|)) (-2 (|:| -2518 |#3|) (|:| -2519 |#4|))) (-888 |#2| |#4| (-798 |#1|))) (T -415)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-4 *6 (-195 (-4107 *3) (-714))) (-14 *7 (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *6)) (-2 (|:| -2518 *5) (|:| -2519 *6)))) (-5 *1 (-415 *3 *4 *5 *6 *7 *2)) (-4 *5 (-781)) (-4 *2 (-888 *4 *6 (-798 *3))))) (-3312 (*1 *2 *1) (-12 (-14 *3 (-599 (-1117))) (-4 *5 (-195 (-4107 *3) (-714))) (-14 *6 (-1 (-85) (-2 (|:| -2518 *4) (|:| -2519 *5)) (-2 (|:| -2518 *4) (|:| -2519 *5)))) (-4 *2 (-146)) (-5 *1 (-415 *3 *2 *4 *5 *6 *7)) (-4 *4 (-781)) (-4 *7 (-888 *2 *5 (-798 *3))))) (-3015 (*1 *2 *1) (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-4 *6 (-195 (-4107 *3) (-714))) (-14 *7 (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *6)) (-2 (|:| -2518 *5) (|:| -2519 *6)))) (-5 *2 (-671 *5 *6 *7)) (-5 *1 (-415 *3 *4 *5 *6 *7 *8)) (-4 *5 (-781)) (-4 *8 (-888 *4 *6 (-798 *3))))) (-2019 (*1 *2 *1) (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-14 *6 (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *2)) (-2 (|:| -2518 *5) (|:| -2519 *2)))) (-4 *2 (-195 (-4107 *3) (-714))) (-5 *1 (-415 *3 *4 *5 *2 *6 *7)) (-4 *5 (-781)) (-4 *7 (-888 *4 *2 (-798 *3))))) (-2018 (*1 *2 *1) (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-4 *5 (-195 (-4107 *3) (-714))) (-14 *6 (-1 (-85) (-2 (|:| -2518 *2) (|:| -2519 *5)) (-2 (|:| -2518 *2) (|:| -2519 *5)))) (-4 *2 (-781)) (-5 *1 (-415 *3 *4 *2 *5 *6 *7)) (-4 *7 (-888 *4 *5 (-798 *3))))) (-4109 (*1 *1 *1) (-12 (-14 *2 (-599 (-1117))) (-4 *3 (-146)) (-4 *5 (-195 (-4107 *2) (-714))) (-14 *6 (-1 (-85) (-2 (|:| -2518 *4) (|:| -2519 *5)) (-2 (|:| -2518 *4) (|:| -2519 *5)))) (-5 *1 (-415 *2 *3 *4 *5 *6 *7)) (-4 *4 (-781)) (-4 *7 (-888 *3 *5 (-798 *2))))) (-3014 (*1 *1 *2 *3) (-12 (-5 *3 (-671 *5 *6 *7)) (-4 *5 (-781)) (-4 *6 (-195 (-4107 *4) (-714))) (-14 *7 (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *6)) (-2 (|:| -2518 *5) (|:| -2519 *6)))) (-14 *4 (-599 (-1117))) (-4 *2 (-146)) (-5 *1 (-415 *4 *2 *5 *6 *7 *8)) (-4 *8 (-888 *2 *6 (-798 *4))))) (-3857 (*1 *1 *2) (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-4 *5 (-195 (-4107 *3) (-714))) (-14 *6 (-1 (-85) (-2 (|:| -2518 *2) (|:| -2519 *5)) (-2 (|:| -2518 *2) (|:| -2519 *5)))) (-5 *1 (-415 *3 *4 *2 *5 *6 *7)) (-4 *2 (-781)) (-4 *7 (-888 *4 *5 (-798 *3))))) (-2017 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-599 (-1117))) (-4 *2 (-146)) (-4 *4 (-195 (-4107 *5) (-714))) (-14 *6 (-1 (-85) (-2 (|:| -2518 *3) (|:| -2519 *4)) (-2 (|:| -2518 *3) (|:| -2519 *4)))) (-5 *1 (-415 *5 *2 *3 *4 *6 *7)) (-4 *3 (-781)) (-4 *7 (-888 *2 *4 (-798 *5))))) (-2016 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-599 (-1117))) (-4 *2 (-146)) (-4 *3 (-195 (-4107 *4) (-714))) (-14 *6 (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *3)) (-2 (|:| -2518 *5) (|:| -2519 *3)))) (-5 *1 (-415 *4 *2 *5 *3 *6 *7)) (-4 *5 (-781)) (-4 *7 (-888 *2 *3 (-798 *4)))))) -((-2020 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) -(((-416 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2020 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-738) (-781) (-510) (-888 |#3| |#1| |#2|) (-13 (-978 (-361 (-499))) (-318) (-10 -8 (-15 -4096 ($ |#4|)) (-15 -3119 (|#4| $)) (-15 -3118 (|#4| $))))) (T -416)) -((-2020 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-781)) (-4 *5 (-738)) (-4 *6 (-510)) (-4 *7 (-888 *6 *5 *3)) (-5 *1 (-416 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-978 (-361 (-499))) (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $)))))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3204 (((-599 |#3|) $) 41 T ELT)) (-3029 (((-85) $) NIL T ELT)) (-3020 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3860 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-3025 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) NIL (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) NIL (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ #1="failed") (-599 |#4|)) 49 T ELT)) (-3294 (($ (-599 |#4|)) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-3546 (($ |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-510)) ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#4|) $) 18 (|has| $ (-6 -4145)) ELT)) (-3318 ((|#3| $) 47 T ELT)) (-2727 (((-599 |#4|) $) 14 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 26 (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-3035 (((-599 |#3|) $) NIL T ELT)) (-3034 (((-85) |#3| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-510)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1387 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 39 T ELT)) (-3713 (($) 17 T ELT)) (-2048 (((-714) |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (((-714) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 16 T ELT)) (-4122 (((-488) $) NIL (|has| |#4| (-569 (-488))) ELT) (($ (-599 |#4|)) 51 T ELT)) (-3670 (($ (-599 |#4|)) 13 T ELT)) (-3031 (($ $ |#3|) NIL T ELT)) (-3033 (($ $ |#3|) NIL T ELT)) (-3032 (($ $ |#3|) NIL T ELT)) (-4096 (((-797) $) 38 T ELT) (((-599 |#4|) $) 50 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 30 T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-417 |#1| |#2| |#3| |#4|) (-13 (-916 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4122 ($ (-599 |#4|))) (-6 -4145) (-6 -4146))) (-989) (-738) (-781) (-1005 |#1| |#2| |#3|)) (T -417)) -((-4122 (*1 *1 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-417 *3 *4 *5 *6))))) -((-2779 (($) 11 T ELT)) (-2785 (($) 13 T ELT)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) -(((-418 |#1| |#2| |#3|) (-10 -7 (-15 -2785 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2779 (|#1|))) (-419 |#2| |#3|) (-146) (-23)) (T -418)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3295 (((-3 |#1| "failed") $) 30 T ELT)) (-3294 ((|#1| $) 31 T ELT)) (-4094 (($ $ $) 27 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4098 ((|#2| $) 23 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 22 T CONST)) (-2785 (($) 28 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) -(((-419 |#1| |#2|) (-113) (-146) (-23)) (T -419)) -((-2785 (*1 *1) (-12 (-4 *1 (-419 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-4094 (*1 *1 *1 *1) (-12 (-4 *1 (-419 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) -(-13 (-424 |t#1| |t#2|) (-978 |t#1|) (-10 -8 (-15 (-2785) ($) -4102) (-15 -4094 ($ $ $)))) -(((-73) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-424 |#1| |#2|) . T) ((-978 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-2021 (((-1207 (-1207 (-499))) (-1207 (-1207 (-499))) (-857)) 26 T ELT)) (-2022 (((-1207 (-1207 (-499))) (-857)) 21 T ELT))) -(((-420) (-10 -7 (-15 -2021 ((-1207 (-1207 (-499))) (-1207 (-1207 (-499))) (-857))) (-15 -2022 ((-1207 (-1207 (-499))) (-857))))) (T -420)) -((-2022 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1207 (-1207 (-499)))) (-5 *1 (-420)))) (-2021 (*1 *2 *2 *3) (-12 (-5 *2 (-1207 (-1207 (-499)))) (-5 *3 (-857)) (-5 *1 (-420))))) -((-2891 (((-499) (-499)) 32 T ELT) (((-499)) 24 T ELT)) (-2895 (((-499) (-499)) 28 T ELT) (((-499)) 20 T ELT)) (-2893 (((-499) (-499)) 30 T ELT) (((-499)) 22 T ELT)) (-2024 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-2023 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-2025 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT))) -(((-421) (-10 -7 (-15 -2023 ((-85))) (-15 -2024 ((-85))) (-15 -2023 ((-85) (-85))) (-15 -2024 ((-85) (-85))) (-15 -2025 ((-85))) (-15 -2893 ((-499))) (-15 -2895 ((-499))) (-15 -2891 ((-499))) (-15 -2025 ((-85) (-85))) (-15 -2893 ((-499) (-499))) (-15 -2895 ((-499) (-499))) (-15 -2891 ((-499) (-499))))) (T -421)) -((-2891 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) (-2895 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) (-2893 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) (-2025 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421)))) (-2891 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) (-2895 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) (-2893 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) (-2025 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421)))) (-2024 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421)))) (-2023 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421)))) (-2024 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421)))) (-2023 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421))))) -((-2687 (((-85) $ $) NIL T ELT)) (-4001 (((-599 (-333)) $) 34 T ELT) (((-599 (-333)) $ (-599 (-333))) 145 T ELT)) (-2030 (((-599 (-1029 (-333))) $) 16 T ELT) (((-599 (-1029 (-333))) $ (-599 (-1029 (-333)))) 142 T ELT)) (-2027 (((-599 (-599 (-881 (-179)))) (-599 (-599 (-881 (-179)))) (-599 (-808))) 58 T ELT)) (-2031 (((-599 (-599 (-881 (-179)))) $) 137 T ELT)) (-3856 (((-1213) $ (-881 (-179)) (-808)) 162 T ELT)) (-2032 (($ $) 136 T ELT) (($ (-599 (-599 (-881 (-179))))) 148 T ELT) (($ (-599 (-599 (-881 (-179)))) (-599 (-808)) (-599 (-808)) (-599 (-857))) 147 T ELT) (($ (-599 (-599 (-881 (-179)))) (-599 (-808)) (-599 (-808)) (-599 (-857)) (-599 (-220))) 149 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-4010 (((-499) $) 110 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2033 (($) 146 T ELT)) (-2026 (((-599 (-179)) (-599 (-599 (-881 (-179))))) 89 T ELT)) (-2029 (((-1213) $ (-599 (-881 (-179))) (-808) (-808) (-857)) 154 T ELT) (((-1213) $ (-881 (-179))) 156 T ELT) (((-1213) $ (-881 (-179)) (-808) (-808) (-857)) 155 T ELT)) (-4096 (((-797) $) 168 T ELT) (($ (-599 (-599 (-881 (-179))))) 163 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2028 (((-1213) $ (-881 (-179))) 161 T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-422) (-13 (-1041) (-10 -8 (-15 -2033 ($)) (-15 -2032 ($ $)) (-15 -2032 ($ (-599 (-599 (-881 (-179)))))) (-15 -2032 ($ (-599 (-599 (-881 (-179)))) (-599 (-808)) (-599 (-808)) (-599 (-857)))) (-15 -2032 ($ (-599 (-599 (-881 (-179)))) (-599 (-808)) (-599 (-808)) (-599 (-857)) (-599 (-220)))) (-15 -2031 ((-599 (-599 (-881 (-179)))) $)) (-15 -4010 ((-499) $)) (-15 -2030 ((-599 (-1029 (-333))) $)) (-15 -2030 ((-599 (-1029 (-333))) $ (-599 (-1029 (-333))))) (-15 -4001 ((-599 (-333)) $)) (-15 -4001 ((-599 (-333)) $ (-599 (-333)))) (-15 -2029 ((-1213) $ (-599 (-881 (-179))) (-808) (-808) (-857))) (-15 -2029 ((-1213) $ (-881 (-179)))) (-15 -2029 ((-1213) $ (-881 (-179)) (-808) (-808) (-857))) (-15 -2028 ((-1213) $ (-881 (-179)))) (-15 -3856 ((-1213) $ (-881 (-179)) (-808))) (-15 -4096 ($ (-599 (-599 (-881 (-179)))))) (-15 -4096 ((-797) $)) (-15 -2027 ((-599 (-599 (-881 (-179)))) (-599 (-599 (-881 (-179)))) (-599 (-808)))) (-15 -2026 ((-599 (-179)) (-599 (-599 (-881 (-179))))))))) (T -422)) -((-4096 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-422)))) (-2033 (*1 *1) (-5 *1 (-422))) (-2032 (*1 *1 *1) (-5 *1 (-422))) (-2032 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *1 (-422)))) (-2032 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *3 (-599 (-808))) (-5 *4 (-599 (-857))) (-5 *1 (-422)))) (-2032 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *3 (-599 (-808))) (-5 *4 (-599 (-857))) (-5 *5 (-599 (-220))) (-5 *1 (-422)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *1 (-422)))) (-4010 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-422)))) (-2030 (*1 *2 *1) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-422)))) (-2030 (*1 *2 *1 *2) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-422)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-599 (-333))) (-5 *1 (-422)))) (-4001 (*1 *2 *1 *2) (-12 (-5 *2 (-599 (-333))) (-5 *1 (-422)))) (-2029 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-599 (-881 (-179)))) (-5 *4 (-808)) (-5 *5 (-857)) (-5 *2 (-1213)) (-5 *1 (-422)))) (-2029 (*1 *2 *1 *3) (-12 (-5 *3 (-881 (-179))) (-5 *2 (-1213)) (-5 *1 (-422)))) (-2029 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-881 (-179))) (-5 *4 (-808)) (-5 *5 (-857)) (-5 *2 (-1213)) (-5 *1 (-422)))) (-2028 (*1 *2 *1 *3) (-12 (-5 *3 (-881 (-179))) (-5 *2 (-1213)) (-5 *1 (-422)))) (-3856 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-881 (-179))) (-5 *4 (-808)) (-5 *2 (-1213)) (-5 *1 (-422)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *1 (-422)))) (-2027 (*1 *2 *2 *3) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *3 (-599 (-808))) (-5 *1 (-422)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *2 (-599 (-179))) (-5 *1 (-422))))) -((-3987 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) -(((-423 |#1| |#2| |#3|) (-10 -7 (-15 -3987 (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1|))) (-424 |#2| |#3|) (-146) (-23)) (T -423)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4098 ((|#2| $) 23 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 22 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) -(((-424 |#1| |#2|) (-113) (-146) (-23)) (T -424)) -((-4098 (*1 *2 *1) (-12 (-4 *1 (-424 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) (-2779 (*1 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3987 (*1 *1 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3989 (*1 *1 *1 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3987 (*1 *1 *1 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) -(-13 (-1041) (-10 -8 (-15 -4098 (|t#2| $)) (-15 (-2779) ($) -4102) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3987 ($ $)) (-15 -3989 ($ $ $)) (-15 -3987 ($ $ $)))) -(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-2035 (((-3 (-599 (-435 |#1| |#2|)) "failed") (-599 (-435 |#1| |#2|)) (-599 (-798 |#1|))) 135 T ELT)) (-2034 (((-599 (-599 (-205 |#1| |#2|))) (-599 (-205 |#1| |#2|)) (-599 (-798 |#1|))) 132 T ELT)) (-2036 (((-2 (|:| |dpolys| (-599 (-205 |#1| |#2|))) (|:| |coords| (-599 (-499)))) (-599 (-205 |#1| |#2|)) (-599 (-798 |#1|))) 87 T ELT))) -(((-425 |#1| |#2| |#3|) (-10 -7 (-15 -2034 ((-599 (-599 (-205 |#1| |#2|))) (-599 (-205 |#1| |#2|)) (-599 (-798 |#1|)))) (-15 -2035 ((-3 (-599 (-435 |#1| |#2|)) "failed") (-599 (-435 |#1| |#2|)) (-599 (-798 |#1|)))) (-15 -2036 ((-2 (|:| |dpolys| (-599 (-205 |#1| |#2|))) (|:| |coords| (-599 (-499)))) (-599 (-205 |#1| |#2|)) (-599 (-798 |#1|))))) (-599 (-1117)) (-406) (-406)) (T -425)) -((-2036 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-798 *5))) (-14 *5 (-599 (-1117))) (-4 *6 (-406)) (-5 *2 (-2 (|:| |dpolys| (-599 (-205 *5 *6))) (|:| |coords| (-599 (-499))))) (-5 *1 (-425 *5 *6 *7)) (-5 *3 (-599 (-205 *5 *6))) (-4 *7 (-406)))) (-2035 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 (-435 *4 *5))) (-5 *3 (-599 (-798 *4))) (-14 *4 (-599 (-1117))) (-4 *5 (-406)) (-5 *1 (-425 *4 *5 *6)) (-4 *6 (-406)))) (-2034 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-798 *5))) (-14 *5 (-599 (-1117))) (-4 *6 (-406)) (-5 *2 (-599 (-599 (-205 *5 *6)))) (-5 *1 (-425 *5 *6 *7)) (-5 *3 (-599 (-205 *5 *6))) (-4 *7 (-406))))) -((-3607 (((-3 $ "failed") $) 11 T ELT)) (-3130 (($ $ $) 22 T ELT)) (-2551 (($ $ $) 23 T ELT)) (-4099 (($ $ $) 9 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 21 T ELT))) -(((-426 |#1|) (-10 -7 (-15 -2551 (|#1| |#1| |#1|)) (-15 -3130 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-499))) (-15 -4099 (|#1| |#1| |#1|)) (-15 -3607 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-714))) (-15 ** (|#1| |#1| (-857)))) (-427)) (T -426)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3874 (($) 23 T CONST)) (-3607 (((-3 $ "failed") $) 20 T ELT)) (-2528 (((-85) $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 30 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3130 (($ $ $) 27 T ELT)) (-2551 (($ $ $) 26 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2785 (($) 24 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 29 T ELT)) (** (($ $ (-857)) 17 T ELT) (($ $ (-714)) 21 T ELT) (($ $ (-499)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-427) (-113)) (T -427)) -((-2601 (*1 *1 *1) (-4 *1 (-427))) (-4099 (*1 *1 *1 *1) (-4 *1 (-427))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-427)) (-5 *2 (-499)))) (-3130 (*1 *1 *1 *1) (-4 *1 (-427))) (-2551 (*1 *1 *1 *1) (-4 *1 (-427)))) -(-13 (-684) (-10 -8 (-15 -2601 ($ $)) (-15 -4099 ($ $ $)) (-15 ** ($ $ (-499))) (-6 -4142) (-15 -3130 ($ $ $)) (-15 -2551 ($ $ $)))) -(((-73) . T) ((-568 (-797)) . T) ((-684) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) 18 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-361 (-499))) NIL T ELT) (($ $ (-361 (-499)) (-361 (-499))) NIL T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|))) $) NIL T ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-714) (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|)))) NIL T ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3013 (((-85) $) NIL T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-361 (-499)) $) NIL T ELT) (((-361 (-499)) $ (-361 (-499))) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-361 (-499))) NIL T ELT) (($ $ (-1022) (-361 (-499))) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-361 (-499)))) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-4092 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3962 (($ $) 29 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) 35 (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT) (($ $ (-1204 |#2|)) 30 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-361 (-499))) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4093 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-361 (-499))) NIL T ELT) (($ $ $) NIL (|has| (-361 (-499)) (-1052)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1117)) 28 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-1204 |#2|)) 16 T ELT)) (-4098 (((-361 (-499)) $) NIL T ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1204 |#2|)) NIL T ELT) (($ (-1188 |#1| |#2| |#3|)) 9 T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-361 (-499))) NIL T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-3923 ((|#1| $) 21 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-361 (-499))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-1204 |#2|)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-428 |#1| |#2| |#3|) (-13 (-1190 |#1|) (-831 $ (-1204 |#2|)) (-10 -8 (-15 -4096 ($ (-1204 |#2|))) (-15 -4096 ($ (-1188 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-361 (-499)))) (-15 -3962 ($ $ (-1204 |#2|))) |%noBranch|))) (-989) (-1117) |#1|) (T -428)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-428 *3 *4 *5)) (-4 *3 (-989)) (-14 *5 *3))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1188 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3) (-5 *1 (-428 *3 *4 *5)))) (-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-428 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3)))) -((-2687 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2299 (((-1213) $ |#1| |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2301 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2302 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-2333 (((-599 |#1|) $) NIL T ELT)) (-2334 (((-85) |#1| $) NIL T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2304 (((-599 |#1|) $) NIL T ELT)) (-2305 (((-85) |#1| $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-3951 ((|#2| $) NIL (|has| |#1| (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-568 (-797)))) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-429 |#1| |#2| |#3| |#4|) (-1134 |#1| |#2|) (-1041) (-1041) (-1134 |#1| |#2|) |#2|) (T -429)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |#4|)))) (-599 |#4|)) NIL T ELT)) (-3832 (((-599 $) (-599 |#4|)) NIL T ELT)) (-3204 (((-599 |#3|) $) NIL T ELT)) (-3029 (((-85) $) NIL T ELT)) (-3020 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3843 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3838 ((|#4| |#4| $) NIL T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3860 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3025 (((-85) $) 29 (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3839 (((-599 |#4|) (-599 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) NIL (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) NIL (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ #1#) (-599 |#4|)) NIL T ELT)) (-3294 (($ (-599 |#4|)) NIL T ELT)) (-3949 (((-3 $ #1#) $) 45 T ELT)) (-3835 ((|#4| |#4| $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-3546 (($ |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-510)) ELT)) (-3844 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3833 ((|#4| |#4| $) NIL T ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4145)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#4|)) (|:| -1795 (-599 |#4|))) $) NIL T ELT)) (-3010 (((-599 |#4|) $) 18 (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3318 ((|#3| $) 38 T ELT)) (-2727 (((-599 |#4|) $) 19 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3035 (((-599 |#3|) $) NIL T ELT)) (-3034 (((-85) |#3| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3948 (((-3 |#4| #1#) $) 42 T ELT)) (-3847 (((-599 |#4|) $) NIL T ELT)) (-3841 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3836 ((|#4| |#4| $) NIL T ELT)) (-3849 (((-85) $ $) NIL T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-510)) ELT)) (-3842 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3837 ((|#4| |#4| $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 (((-3 |#4| #1#) $) 40 T ELT)) (-1387 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3829 (((-3 $ #1#) $ |#4|) 58 T ELT)) (-3919 (($ $ |#4|) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 17 T ELT)) (-3713 (($) 14 T ELT)) (-4098 (((-714) $) NIL T ELT)) (-2048 (((-714) |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (((-714) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 13 T ELT)) (-4122 (((-488) $) NIL (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) 22 T ELT)) (-3031 (($ $ |#3|) 52 T ELT)) (-3033 (($ $ |#3|) 54 T ELT)) (-3834 (($ $) NIL T ELT)) (-3032 (($ $ |#3|) NIL T ELT)) (-4096 (((-797) $) 35 T ELT) (((-599 |#4|) $) 46 T ELT)) (-3828 (((-714) $) NIL (|has| |#3| (-323)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3840 (((-85) $ (-1 (-85) |#4| (-599 |#4|))) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 |#3|) $) NIL T ELT)) (-4083 (((-85) |#3| $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-430 |#1| |#2| |#3| |#4|) (-1152 |#1| |#2| |#3| |#4|) (-510) (-738) (-781) (-1005 |#1| |#2| |#3|)) (T -430)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL T ELT) (((-361 (-499)) $) NIL T ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3777 (($) 17 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-4122 (((-333) $) 21 T ELT) (((-179) $) 24 T ELT) (((-361 (-1111 (-499))) $) 18 T ELT) (((-488) $) 53 T ELT)) (-4096 (((-797) $) 51 T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (((-179) $) 23 T ELT) (((-333) $) 20 T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2779 (($) 37 T CONST)) (-2785 (($) 8 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT))) -(((-431) (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))) (-960) (-568 (-179)) (-568 (-333)) (-569 (-361 (-1111 (-499)))) (-569 (-488)) (-10 -8 (-15 -3777 ($))))) (T -431)) -((-3777 (*1 *1) (-5 *1 (-431)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3668 (((-1075) $) 11 T ELT)) (-3669 (((-1075) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 17 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-432) (-13 (-1023) (-10 -8 (-15 -3669 ((-1075) $)) (-15 -3668 ((-1075) $))))) (T -432)) -((-3669 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-432)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-432))))) -((-2687 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2299 (((-1213) $ |#1| |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2301 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2302 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-2333 (((-599 |#1|) $) 13 T ELT)) (-2334 (((-85) |#1| $) NIL T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2304 (((-599 |#1|) $) NIL T ELT)) (-2305 (((-85) |#1| $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-3951 ((|#2| $) NIL (|has| |#1| (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) 19 T ELT)) (-3950 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-568 (-797)))) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 11 (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-4107 (((-714) $) 15 (|has| $ (-6 -4145)) ELT))) -(((-433 |#1| |#2| |#3|) (-13 (-1134 |#1| |#2|) (-10 -7 (-6 -4145))) (-1041) (-1041) (-1099)) (T -433)) -NIL -((-2037 (((-499) (-499) (-499)) 19 T ELT)) (-2038 (((-85) (-499) (-499) (-499) (-499)) 28 T ELT)) (-3597 (((-1207 (-599 (-499))) (-714) (-714)) 42 T ELT))) -(((-434) (-10 -7 (-15 -2037 ((-499) (-499) (-499))) (-15 -2038 ((-85) (-499) (-499) (-499) (-499))) (-15 -3597 ((-1207 (-599 (-499))) (-714) (-714))))) (T -434)) -((-3597 (*1 *2 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1207 (-599 (-499)))) (-5 *1 (-434)))) (-2038 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-499)) (-5 *2 (-85)) (-5 *1 (-434)))) (-2037 (*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-434))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-798 |#1|)) $) NIL T ELT)) (-3206 (((-1111 $) $ (-798 |#1|)) NIL T ELT) (((-1111 |#2|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#2| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#2| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#2| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-798 |#1|))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#2| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#2| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-3 (-798 |#1|) #1#) $) NIL T ELT)) (-3294 ((|#2| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-798 |#1|) $) NIL T ELT)) (-3906 (($ $ $ (-798 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-2039 (($ $ (-599 (-499))) NIL T ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#2|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#2| (-406)) ELT) (($ $ (-798 |#1|)) NIL (|has| |#2| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#2| (-848)) ELT)) (-1694 (($ $ |#2| (-436 (-4107 |#1|) (-714)) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-798 |#1|) (-821 (-333))) (|has| |#2| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-798 |#1|) (-821 (-499))) (|has| |#2| (-821 (-499)))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3207 (($ (-1111 |#2|) (-798 |#1|)) NIL T ELT) (($ (-1111 $) (-798 |#1|)) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#2| (-436 (-4107 |#1|) (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-798 |#1|)) NIL T ELT)) (-2941 (((-436 (-4107 |#1|) (-714)) $) NIL T ELT) (((-714) $ (-798 |#1|)) NIL T ELT) (((-599 (-714)) $ (-599 (-798 |#1|))) NIL T ELT)) (-1695 (($ (-1 (-436 (-4107 |#1|) (-714)) (-436 (-4107 |#1|) (-714))) $) NIL T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3205 (((-3 (-798 |#1|) #1#) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#2| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) NIL (|has| |#2| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-798 |#1|)) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#2| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#2| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) NIL (|has| |#2| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#2| (-848)) ELT)) (-3606 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-798 |#1|) |#2|) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 |#2|)) NIL T ELT) (($ $ (-798 |#1|) $) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 $)) NIL T ELT)) (-3907 (($ $ (-798 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3908 (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|)) NIL T ELT)) (-4098 (((-436 (-4107 |#1|) (-714)) $) NIL T ELT) (((-714) $ (-798 |#1|)) NIL T ELT) (((-599 (-714)) $ (-599 (-798 |#1|))) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-798 |#1|) (-569 (-825 (-333)))) (|has| |#2| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-798 |#1|) (-569 (-825 (-499)))) (|has| |#2| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-798 |#1|) (-569 (-488))) (|has| |#2| (-569 (-488)))) ELT)) (-2938 ((|#2| $) NIL (|has| |#2| (-406)) ELT) (($ $ (-798 |#1|)) NIL (|has| |#2| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-798 |#1|)) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#2| (-510)) ELT)) (-3967 (((-599 |#2|) $) NIL T ELT)) (-3827 ((|#2| $ (-436 (-4107 |#1|) (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#2| (-848))) (|has| |#2| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#2| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#2| (-510)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-435 |#1| |#2|) (-13 (-888 |#2| (-436 (-4107 |#1|) (-714)) (-798 |#1|)) (-10 -8 (-15 -2039 ($ $ (-599 (-499)))))) (-599 (-1117)) (-989)) (T -435)) -((-2039 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-435 *3 *4)) (-14 *3 (-599 (-1117))) (-4 *4 (-989))))) -((-2687 (((-85) $ $) NIL (|has| |#2| (-73)) ELT)) (-3326 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3857 (($ (-857)) NIL (|has| |#2| (-989)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-2600 (($ $ $) NIL (|has| |#2| (-738)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3258 (((-714)) NIL (|has| |#2| (-323)) ELT)) (-3938 ((|#2| $ (-499) |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1041)) ELT)) (-3294 (((-499) $) NIL (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) ELT) (((-361 (-499)) $) NIL (-12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) ((|#2| $) NIL (|has| |#2| (-1041)) ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL (|has| |#2| (-989)) ELT) (((-647 |#2|) (-647 $)) NIL (|has| |#2| (-989)) ELT)) (-3607 (((-3 $ #1#) $) NIL (|has| |#2| (-989)) ELT)) (-3115 (($) NIL (|has| |#2| (-323)) ELT)) (-1609 ((|#2| $ (-499) |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ (-499)) 11 T ELT)) (-3324 (((-85) $) NIL (|has| |#2| (-738)) ELT)) (-3010 (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) NIL (|has| |#2| (-989)) ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#2| (-781)) ELT)) (-2727 (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#2| (-781)) ELT)) (-2051 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| |#2| (-323)) ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL (|has| |#2| (-989)) ELT) (((-647 |#2|) (-1207 $)) NIL (|has| |#2| (-989)) ELT)) (-3380 (((-1099) $) NIL (|has| |#2| (-1041)) ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-2518 (($ (-857)) NIL (|has| |#2| (-323)) ELT)) (-3381 (((-1060) $) NIL (|has| |#2| (-1041)) ELT)) (-3951 ((|#2| $) NIL (|has| (-499) (-781)) ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ (-499) |#2|) NIL T ELT) ((|#2| $ (-499)) NIL T ELT)) (-3986 ((|#2| $ $) NIL (|has| |#2| (-989)) ELT)) (-1501 (($ (-1207 |#2|)) NIL T ELT)) (-4061 (((-107)) NIL (|has| |#2| (-318)) ELT)) (-3908 (($ $ (-714)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-989)) ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL (|has| |#2| (-989)) ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-1207 |#2|) $) NIL T ELT) (($ (-499)) NIL (-3677 (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (|has| |#2| (-989))) ELT) (($ (-361 (-499))) NIL (-12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) (($ |#2|) NIL (|has| |#2| (-1041)) ELT) (((-797) $) NIL (|has| |#2| (-568 (-797))) ELT)) (-3248 (((-714)) NIL (|has| |#2| (-989)) CONST)) (-1297 (((-85) $ $) NIL (|has| |#2| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2779 (($) NIL (|has| |#2| (-23)) CONST)) (-2785 (($) NIL (|has| |#2| (-989)) CONST)) (-2790 (($ $ (-714)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-989)) ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL (|has| |#2| (-989)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#2| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-2806 (((-85) $ $) 17 (|has| |#2| (-781)) ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3989 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-714)) NIL (|has| |#2| (-989)) ELT) (($ $ (-857)) NIL (|has| |#2| (-989)) ELT)) (* (($ $ $) NIL (|has| |#2| (-989)) ELT) (($ $ |#2|) NIL (|has| |#2| (-684)) ELT) (($ |#2| $) NIL (|has| |#2| (-684)) ELT) (($ (-499) $) NIL (|has| |#2| (-21)) ELT) (($ (-714) $) NIL (|has| |#2| (-23)) ELT) (($ (-857) $) NIL (|has| |#2| (-25)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-436 |#1| |#2|) (-195 |#1| |#2|) (-714) (-738)) (T -436)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-2040 (((-599 (-810)) $) 15 T ELT)) (-3690 (((-460) $) 13 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2041 (($ (-460) (-599 (-810))) 11 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 22 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-437) (-13 (-1023) (-10 -8 (-15 -2041 ($ (-460) (-599 (-810)))) (-15 -3690 ((-460) $)) (-15 -2040 ((-599 (-810)) $))))) (T -437)) -((-2041 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-599 (-810))) (-5 *1 (-437)))) (-3690 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-437)))) (-2040 (*1 *2 *1) (-12 (-5 *2 (-599 (-810))) (-5 *1 (-437))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3874 (($) NIL T CONST)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2977 (($ $ $) 48 T ELT)) (-3658 (($ $ $) 47 T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2978 ((|#1| $) 40 T ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 41 T ELT)) (-3757 (($ |#1| $) 18 T ELT)) (-2042 (($ (-599 |#1|)) 19 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-1309 ((|#1| $) 34 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) 11 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 45 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 29 (|has| $ (-6 -4145)) ELT))) -(((-438 |#1|) (-13 (-908 |#1|) (-10 -8 (-15 -2042 ($ (-599 |#1|))))) (-781)) (T -438)) -((-2042 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-438 *3))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3992 (($ $) 71 T ELT)) (-1729 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2071 (((-367 |#2| (-361 |#2|) |#3| |#4|) $) 45 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (((-3 |#4| #1#) $) 117 T ELT)) (-1730 (($ (-367 |#2| (-361 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-499)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3575 (((-2 (|:| -2442 (-367 |#2| (-361 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-4096 (((-797) $) 110 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 32 T CONST)) (-3174 (((-85) $ $) 121 T ELT)) (-3987 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 72 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 77 T ELT))) -(((-439 |#1| |#2| |#3| |#4|) (-291 |#1| |#2| |#3| |#4|) (-318) (-1183 |#1|) (-1183 (-361 |#2|)) (-297 |#1| |#2| |#3|)) (T -439)) -NIL -((-2046 (((-499) (-599 (-499))) 53 T ELT)) (-2043 ((|#1| (-599 |#1|)) 94 T ELT)) (-2045 (((-599 |#1|) (-599 |#1|)) 95 T ELT)) (-2044 (((-599 |#1|) (-599 |#1|)) 97 T ELT)) (-3282 ((|#1| (-599 |#1|)) 96 T ELT)) (-2938 (((-599 (-499)) (-599 |#1|)) 56 T ELT))) -(((-440 |#1|) (-10 -7 (-15 -3282 (|#1| (-599 |#1|))) (-15 -2043 (|#1| (-599 |#1|))) (-15 -2044 ((-599 |#1|) (-599 |#1|))) (-15 -2045 ((-599 |#1|) (-599 |#1|))) (-15 -2938 ((-599 (-499)) (-599 |#1|))) (-15 -2046 ((-499) (-599 (-499))))) (-1183 (-499))) (T -440)) -((-2046 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-499)) (-5 *1 (-440 *4)) (-4 *4 (-1183 *2)))) (-2938 (*1 *2 *3) (-12 (-5 *3 (-599 *4)) (-4 *4 (-1183 (-499))) (-5 *2 (-599 (-499))) (-5 *1 (-440 *4)))) (-2045 (*1 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1183 (-499))) (-5 *1 (-440 *3)))) (-2044 (*1 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1183 (-499))) (-5 *1 (-440 *3)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-5 *1 (-440 *2)) (-4 *2 (-1183 (-499))))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-5 *1 (-440 *2)) (-4 *2 (-1183 (-499)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 (((-499) $) NIL (|has| (-499) (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| (-499) (-763)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL (|has| (-499) (-978 (-1117))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-499) (-978 (-499))) ELT) (((-3 (-499) #1#) $) NIL (|has| (-499) (-978 (-499))) ELT)) (-3294 (((-499) $) NIL T ELT) (((-1117) $) NIL (|has| (-499) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL (|has| (-499) (-978 (-499))) ELT) (((-499) $) NIL (|has| (-499) (-978 (-499))) ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-499)) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-499) (-498)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3324 (((-85) $) NIL (|has| (-499) (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| (-499) (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| (-499) (-821 (-333))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL T ELT)) (-3119 (((-499) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| (-499) (-1092)) ELT)) (-3325 (((-85) $) NIL (|has| (-499) (-763)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-499) (-781)) ELT)) (-4108 (($ (-1 (-499) (-499)) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT) (((-647 (-499)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-499) (-1092)) CONST)) (-2047 (($ (-361 (-499))) 9 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL (|has| (-499) (-261)) ELT) (((-361 (-499)) $) NIL T ELT)) (-3252 (((-499) $) NIL (|has| (-499) (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-3918 (($ $ (-599 (-499)) (-599 (-499))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-499) (-499)) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-247 (-499))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-599 (-247 (-499)))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-599 (-1117)) (-599 (-499))) NIL (|has| (-499) (-468 (-1117) (-499))) ELT) (($ $ (-1117) (-499)) NIL (|has| (-499) (-468 (-1117) (-499))) ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ $ (-499)) NIL (|has| (-499) (-240 (-499) (-499))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-1 (-499) (-499))) NIL T ELT) (($ $ (-1 (-499) (-499)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $) NIL (|has| (-499) (-189)) ELT) (($ $ (-714)) NIL (|has| (-499) (-189)) ELT)) (-3116 (($ $) NIL T ELT)) (-3118 (((-499) $) NIL T ELT)) (-4122 (((-825 (-499)) $) NIL (|has| (-499) (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| (-499) (-569 (-825 (-333)))) ELT) (((-488) $) NIL (|has| (-499) (-569 (-488))) ELT) (((-333) $) NIL (|has| (-499) (-960)) ELT) (((-179) $) NIL (|has| (-499) (-960)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| (-499) (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) 8 T ELT) (($ (-499)) NIL T ELT) (($ (-1117)) NIL (|has| (-499) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL T ELT) (((-944 16) $) 10 T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| (-499) (-848))) (|has| (-499) (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-3253 (((-499) $) NIL (|has| (-499) (-498)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3523 (($ $) NIL (|has| (-499) (-763)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1 (-499) (-499))) NIL T ELT) (($ $ (-1 (-499) (-499)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $) NIL (|has| (-499) (-189)) ELT) (($ $ (-714)) NIL (|has| (-499) (-189)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-4099 (($ $ $) NIL T ELT) (($ (-499) (-499)) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ (-499)) NIL T ELT))) -(((-441) (-13 (-931 (-499)) (-568 (-361 (-499))) (-568 (-944 16)) (-10 -8 (-15 -3250 ((-361 (-499)) $)) (-15 -2047 ($ (-361 (-499))))))) (T -441)) -((-3250 (*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-441)))) (-2047 (*1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-441))))) -((-2727 (((-599 |#2|) $) 31 T ELT)) (-3383 (((-85) |#2| $) 39 T ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) 26 T ELT)) (-3918 (($ $ (-599 (-247 |#2|))) 13 T ELT) (($ $ (-247 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) 30 T ELT) (((-714) |#2| $) 37 T ELT)) (-4096 (((-797) $) 45 T ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3174 (((-85) $ $) 35 T ELT)) (-4107 (((-714) $) 18 T ELT))) -(((-442 |#1| |#2|) (-10 -7 (-15 -3174 ((-85) |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -3918 (|#1| |#1| (-599 |#2|) (-599 |#2|))) (-15 -3918 (|#1| |#1| |#2| |#2|)) (-15 -3918 (|#1| |#1| (-247 |#2|))) (-15 -3918 (|#1| |#1| (-599 (-247 |#2|)))) (-15 -3383 ((-85) |#2| |#1|)) (-15 -2048 ((-714) |#2| |#1|)) (-15 -2727 ((-599 |#2|) |#1|)) (-15 -2048 ((-714) (-1 (-85) |#2|) |#1|)) (-15 -2049 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -2050 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -4107 ((-714) |#1|))) (-443 |#2|) (-1157)) (T -442)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3874 (($) 7 T CONST)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-443 |#1|) (-113) (-1157)) (T -443)) -((-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-443 *3)) (-4 *3 (-1157)))) (-2051 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4146)) (-4 *1 (-443 *3)) (-4 *3 (-1157)))) (-2050 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -4145)) (-4 *1 (-443 *4)) (-4 *4 (-1157)) (-5 *2 (-85)))) (-2049 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -4145)) (-4 *1 (-443 *4)) (-4 *4 (-1157)) (-5 *2 (-85)))) (-2048 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -4145)) (-4 *1 (-443 *4)) (-4 *4 (-1157)) (-5 *2 (-714)))) (-3010 (*1 *2 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-443 *3)) (-4 *3 (-1157)) (-5 *2 (-599 *3)))) (-2727 (*1 *2 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-443 *3)) (-4 *3 (-1157)) (-5 *2 (-599 *3)))) (-2048 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-443 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-714)))) (-3383 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-443 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-85))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-568 (-797))) (-6 (-568 (-797))) |%noBranch|) (IF (|has| |t#1| (-73)) (-6 (-73)) |%noBranch|) (IF (|has| |t#1| (-1041)) (-6 (-1041)) |%noBranch|) (IF (|has| |t#1| (-1041)) (IF (|has| |t#1| (-263 |t#1|)) (-6 (-263 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4108 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4146)) (-15 -2051 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4145)) (PROGN (-15 -2050 ((-85) (-1 (-85) |t#1|) $)) (-15 -2049 ((-85) (-1 (-85) |t#1|) $)) (-15 -2048 ((-714) (-1 (-85) |t#1|) $)) (-15 -3010 ((-599 |t#1|) $)) (-15 -2727 ((-599 |t#1|) $)) (IF (|has| |t#1| (-1041)) (PROGN (-15 -2048 ((-714) |t#1| $)) (-15 -3383 ((-85) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) -((-4096 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) -(((-444 |#1|) (-113) (-1157)) (T -444)) -NIL -(-13 (-568 |t#1|) (-571 |t#1|)) -(((-571 |#1|) . T) ((-568 |#1|) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2052 (($ (-1099)) 8 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 15 T ELT) (((-1099) $) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 11 T ELT))) -(((-445) (-13 (-1041) (-568 (-1099)) (-10 -8 (-15 -2052 ($ (-1099)))))) (T -445)) -((-2052 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-445))))) -((-3632 (($ $) 15 T ELT)) (-3630 (($ $) 24 T ELT)) (-3634 (($ $) 12 T ELT)) (-3635 (($ $) 10 T ELT)) (-3633 (($ $) 17 T ELT)) (-3631 (($ $) 22 T ELT))) -(((-446 |#1|) (-10 -7 (-15 -3631 (|#1| |#1|)) (-15 -3633 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -3632 (|#1| |#1|))) (-447)) (T -446)) -NIL -((-3632 (($ $) 11 T ELT)) (-3630 (($ $) 10 T ELT)) (-3634 (($ $) 9 T ELT)) (-3635 (($ $) 8 T ELT)) (-3633 (($ $) 7 T ELT)) (-3631 (($ $) 6 T ELT))) -(((-447) (-113)) (T -447)) -((-3632 (*1 *1 *1) (-4 *1 (-447))) (-3630 (*1 *1 *1) (-4 *1 (-447))) (-3634 (*1 *1 *1) (-4 *1 (-447))) (-3635 (*1 *1 *1) (-4 *1 (-447))) (-3633 (*1 *1 *1) (-4 *1 (-447))) (-3631 (*1 *1 *1) (-4 *1 (-447)))) -(-13 (-10 -8 (-15 -3631 ($ $)) (-15 -3633 ($ $)) (-15 -3635 ($ $)) (-15 -3634 ($ $)) (-15 -3630 ($ $)) (-15 -3632 ($ $)))) -((-3882 (((-359 |#4|) |#4| (-1 (-359 |#2|) |#2|)) 54 T ELT))) -(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-359 |#4|) |#4| (-1 (-359 |#2|) |#2|)))) (-318) (-1183 |#1|) (-13 (-318) (-120) (-682 |#1| |#2|)) (-1183 |#3|)) (T -448)) -((-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) (-4 *7 (-13 (-318) (-120) (-682 *5 *6))) (-5 *2 (-359 *3)) (-5 *1 (-448 *5 *6 *7 *3)) (-4 *3 (-1183 *7))))) -((-2687 (((-85) $ $) NIL T ELT)) (-1640 (((-599 $) (-1111 $) (-1117)) NIL T ELT) (((-599 $) (-1111 $)) NIL T ELT) (((-599 $) (-884 $)) NIL T ELT)) (-1242 (($ (-1111 $) (-1117)) NIL T ELT) (($ (-1111 $)) NIL T ELT) (($ (-884 $)) NIL T ELT)) (-3326 (((-85) $) 39 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-2053 (((-85) $ $) 72 T ELT)) (-1633 (((-599 (-566 $)) $) 49 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1637 (($ $ (-247 $)) NIL T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-3158 (($ $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-1243 (((-599 $) (-1111 $) (-1117)) NIL T ELT) (((-599 $) (-1111 $)) NIL T ELT) (((-599 $) (-884 $)) NIL T ELT)) (-3321 (($ (-1111 $) (-1117)) NIL T ELT) (($ (-1111 $)) NIL T ELT) (($ (-884 $)) NIL T ELT)) (-3295 (((-3 (-566 $) #1#) $) NIL T ELT) (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT)) (-3294 (((-566 $) $) NIL T ELT) (((-499) $) NIL T ELT) (((-361 (-499)) $) 54 T ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-499)) (-647 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-361 (-499)))) (|:| |vec| (-1207 (-361 (-499))))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-361 (-499))) (-647 $)) NIL T ELT)) (-3992 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2692 (($ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1632 (((-599 (-86)) $) NIL T ELT)) (-3743 (((-86) (-86)) NIL T ELT)) (-2528 (((-85) $) 42 T ELT)) (-2794 (((-85) $) NIL (|has| $ (-978 (-499))) ELT)) (-3119 (((-1065 (-499) (-566 $)) $) 37 T ELT)) (-3132 (($ $ (-499)) NIL T ELT)) (-3254 (((-1111 $) (-1111 $) (-566 $)) 86 T ELT) (((-1111 $) (-1111 $) (-599 (-566 $))) 61 T ELT) (($ $ (-566 $)) 75 T ELT) (($ $ (-599 (-566 $))) 76 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-1630 (((-1111 $) (-566 $)) 73 (|has| $ (-989)) ELT)) (-4108 (($ (-1 $ $) (-566 $)) NIL T ELT)) (-1635 (((-3 (-566 $) #1#) $) NIL T ELT)) (-2381 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT) (((-647 (-499)) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-361 (-499)))) (|:| |vec| (-1207 (-361 (-499))))) (-1207 $) $) NIL T ELT) (((-647 (-361 (-499))) (-1207 $)) NIL T ELT)) (-1993 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1634 (((-599 (-566 $)) $) NIL T ELT)) (-2336 (($ (-86) $) NIL T ELT) (($ (-86) (-599 $)) NIL T ELT)) (-2752 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1117)) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-2722 (((-714) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1631 (((-85) $ $) NIL T ELT) (((-85) $ (-1117)) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2795 (((-85) $) NIL (|has| $ (-978 (-499))) ELT)) (-3918 (($ $ (-566 $) $) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) NIL T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ $))) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-1117) (-1 $ (-599 $))) NIL T ELT) (($ $ (-1117) (-1 $ $)) NIL T ELT) (($ $ (-599 (-86)) (-599 (-1 $ $))) NIL T ELT) (($ $ (-599 (-86)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-599 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-599 $)) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1636 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3908 (($ $) 36 T ELT) (($ $ (-714)) NIL T ELT)) (-3118 (((-1065 (-499) (-566 $)) $) 20 T ELT)) (-3323 (($ $) NIL (|has| $ (-989)) ELT)) (-4122 (((-333) $) 100 T ELT) (((-179) $) 108 T ELT) (((-142 (-333)) $) 116 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-566 $)) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-1065 (-499) (-566 $))) 21 T ELT)) (-3248 (((-714)) NIL T CONST)) (-2709 (($ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-2355 (((-85) (-86)) 92 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2779 (($) 10 T CONST)) (-2785 (($) 22 T CONST)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3174 (((-85) $ $) 24 T ELT)) (-4099 (($ $ $) 44 T ELT)) (-3987 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-361 (-499))) NIL T ELT) (($ $ (-499)) 47 T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-857)) NIL T ELT)) (* (($ (-361 (-499)) $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-499) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-857) $) NIL T ELT))) -(((-449) (-13 (-252) (-27) (-978 (-499)) (-978 (-361 (-499))) (-596 (-499)) (-960) (-596 (-361 (-499))) (-120) (-569 (-142 (-333))) (-190) (-571 (-1065 (-499) (-566 $))) (-10 -8 (-15 -3119 ((-1065 (-499) (-566 $)) $)) (-15 -3118 ((-1065 (-499) (-566 $)) $)) (-15 -3992 ($ $)) (-15 -2053 ((-85) $ $)) (-15 -3254 ((-1111 $) (-1111 $) (-566 $))) (-15 -3254 ((-1111 $) (-1111 $) (-599 (-566 $)))) (-15 -3254 ($ $ (-566 $))) (-15 -3254 ($ $ (-599 (-566 $))))))) (T -449)) -((-3119 (*1 *2 *1) (-12 (-5 *2 (-1065 (-499) (-566 (-449)))) (-5 *1 (-449)))) (-3118 (*1 *2 *1) (-12 (-5 *2 (-1065 (-499) (-566 (-449)))) (-5 *1 (-449)))) (-3992 (*1 *1 *1) (-5 *1 (-449))) (-2053 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-449)))) (-3254 (*1 *2 *2 *3) (-12 (-5 *2 (-1111 (-449))) (-5 *3 (-566 (-449))) (-5 *1 (-449)))) (-3254 (*1 *2 *2 *3) (-12 (-5 *2 (-1111 (-449))) (-5 *3 (-599 (-566 (-449)))) (-5 *1 (-449)))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-566 (-449))) (-5 *1 (-449)))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-566 (-449)))) (-5 *1 (-449))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) 42 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) 38 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 37 T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) NIL T ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) |#1|) 21 T ELT)) (-2301 (((-499) $) 17 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) 39 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 28 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 31 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 34 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) 15 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) 19 T ELT)) (-3950 ((|#1| $ (-499) |#1|) NIL T ELT) ((|#1| $ (-499)) 41 T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 13 T ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 24 T ELT)) (-3952 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) 11 (|has| $ (-6 -4145)) ELT))) -(((-450 |#1| |#2|) (-19 |#1|) (-1157) (-499)) (T -450)) -NIL -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3938 ((|#1| $ (-499) (-499) |#1|) NIL T ELT)) (-1283 (($ $ (-499) (-450 |#1| |#3|)) NIL T ELT)) (-1282 (($ $ (-499) (-450 |#1| |#2|)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3234 (((-450 |#1| |#3|) $ (-499)) NIL T ELT)) (-1609 ((|#1| $ (-499) (-499) |#1|) NIL T ELT)) (-3235 ((|#1| $ (-499) (-499)) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL T ELT)) (-3237 (((-714) $) NIL T ELT)) (-3764 (($ (-714) (-714) |#1|) NIL T ELT)) (-3236 (((-714) $) NIL T ELT)) (-3241 (((-499) $) NIL T ELT)) (-3239 (((-499) $) NIL T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3240 (((-499) $) NIL T ELT)) (-3238 (((-499) $) NIL T ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2300 (($ $ |#1|) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) (-499)) NIL T ELT) ((|#1| $ (-499) (-499) |#1|) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-3233 (((-450 |#1| |#2|) $ (-499)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-451 |#1| |#2| |#3|) (-57 |#1| (-450 |#1| |#3|) (-450 |#1| |#2|)) (-1157) (-499) (-499)) (T -451)) -NIL -((-2055 (((-599 (-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|)))) (-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))) (-714) (-714)) 32 T ELT)) (-2054 (((-599 (-1111 |#1|)) |#1| (-714) (-714) (-714)) 43 T ELT)) (-2178 (((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))) (-599 |#3|) (-599 (-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|)))) (-714)) 107 T ELT))) -(((-452 |#1| |#2| |#3|) (-10 -7 (-15 -2054 ((-599 (-1111 |#1|)) |#1| (-714) (-714) (-714))) (-15 -2055 ((-599 (-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|)))) (-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))) (-714) (-714))) (-15 -2178 ((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))) (-599 |#3|) (-599 (-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|)))) (-714)))) (-305) (-1183 |#1|) (-1183 |#2|)) (T -452)) -((-2178 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 (-2 (|:| -2113 (-647 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-647 *7))))) (-5 *5 (-714)) (-4 *8 (-1183 *7)) (-4 *7 (-1183 *6)) (-4 *6 (-305)) (-5 *2 (-2 (|:| -2113 (-647 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-647 *7)))) (-5 *1 (-452 *6 *7 *8)))) (-2055 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-714)) (-4 *5 (-305)) (-4 *6 (-1183 *5)) (-5 *2 (-599 (-2 (|:| -2113 (-647 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-647 *6))))) (-5 *1 (-452 *5 *6 *7)) (-5 *3 (-2 (|:| -2113 (-647 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-647 *6)))) (-4 *7 (-1183 *6)))) (-2054 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-714)) (-4 *3 (-305)) (-4 *5 (-1183 *3)) (-5 *2 (-599 (-1111 *3))) (-5 *1 (-452 *3 *5 *6)) (-4 *6 (-1183 *5))))) -((-2061 (((-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|))) (-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|))) (-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|)))) 70 T ELT)) (-2056 ((|#1| (-647 |#1|) |#1| (-714)) 24 T ELT)) (-2058 (((-714) (-714) (-714)) 34 T ELT)) (-2060 (((-647 |#1|) (-647 |#1|) (-647 |#1|)) 50 T ELT)) (-2059 (((-647 |#1|) (-647 |#1|) (-647 |#1|) |#1|) 58 T ELT) (((-647 |#1|) (-647 |#1|) (-647 |#1|)) 55 T ELT)) (-2057 ((|#1| (-647 |#1|) (-647 |#1|) |#1| (-499)) 28 T ELT)) (-3469 ((|#1| (-647 |#1|)) 18 T ELT))) -(((-453 |#1| |#2| |#3|) (-10 -7 (-15 -3469 (|#1| (-647 |#1|))) (-15 -2056 (|#1| (-647 |#1|) |#1| (-714))) (-15 -2057 (|#1| (-647 |#1|) (-647 |#1|) |#1| (-499))) (-15 -2058 ((-714) (-714) (-714))) (-15 -2059 ((-647 |#1|) (-647 |#1|) (-647 |#1|))) (-15 -2059 ((-647 |#1|) (-647 |#1|) (-647 |#1|) |#1|)) (-15 -2060 ((-647 |#1|) (-647 |#1|) (-647 |#1|))) (-15 -2061 ((-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|))) (-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|))) (-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|)))))) (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $)))) (-1183 |#1|) (-364 |#1| |#2|)) (T -453)) -((-2061 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *4 (-1183 *3)) (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4)))) (-2060 (*1 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *4 (-1183 *3)) (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4)))) (-2059 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-647 *3)) (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *4 (-1183 *3)) (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4)))) (-2059 (*1 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *4 (-1183 *3)) (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4)))) (-2058 (*1 *2 *2 *2) (-12 (-5 *2 (-714)) (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *4 (-1183 *3)) (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4)))) (-2057 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-647 *2)) (-5 *4 (-499)) (-4 *2 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *5 (-1183 *2)) (-5 *1 (-453 *2 *5 *6)) (-4 *6 (-364 *2 *5)))) (-2056 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-647 *2)) (-5 *4 (-714)) (-4 *2 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *5 (-1183 *2)) (-5 *1 (-453 *2 *5 *6)) (-4 *6 (-364 *2 *5)))) (-3469 (*1 *2 *3) (-12 (-5 *3 (-647 *2)) (-4 *4 (-1183 *2)) (-4 *2 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-5 *1 (-453 *2 *4 *5)) (-4 *5 (-364 *2 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-3462 (($ $ $) 41 T ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) $) NIL (|has| (-85) (-781)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1823 (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| (-85) (-781))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -4146)) ELT)) (-3030 (($ $) NIL (|has| (-85) (-781)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3938 (((-85) $ (-1174 (-499)) (-85)) NIL (|has| $ (-6 -4146)) ELT) (((-85) $ (-499) (-85)) 43 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-3546 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-3992 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-1609 (((-85) $ (-499) (-85)) NIL (|has| $ (-6 -4146)) ELT)) (-3235 (((-85) $ (-499)) NIL T ELT)) (-3559 (((-499) (-85) $ (-499)) NIL (|has| (-85) (-1041)) ELT) (((-499) (-85) $) NIL (|has| (-85) (-1041)) ELT) (((-499) (-1 (-85) (-85)) $) NIL T ELT)) (-3010 (((-599 (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-2680 (($ $ $) 39 T ELT)) (-2679 (($ $) NIL T ELT)) (-1333 (($ $ $) NIL T ELT)) (-3764 (($ (-714) (-85)) 27 T ELT)) (-1334 (($ $ $) NIL T ELT)) (-2301 (((-499) $) 8 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL T ELT)) (-3658 (($ $ $) NIL (|has| (-85) (-781)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2727 (((-599 (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL T ELT)) (-2051 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-85) (-85) (-85)) $ $) 36 T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2404 (($ $ $ (-499)) NIL T ELT) (($ (-85) $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 (((-85) $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2300 (($ $ (-85)) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-85)) (-599 (-85))) NIL (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT) (($ $ (-247 (-85))) NIL (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT) (($ $ (-599 (-247 (-85)))) NIL (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-2306 (((-599 (-85)) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) 29 T ELT)) (-3950 (($ $ (-1174 (-499))) NIL T ELT) (((-85) $ (-499)) 22 T ELT) (((-85) $ (-499) (-85)) NIL T ELT)) (-2405 (($ $ (-1174 (-499))) NIL T ELT) (($ $ (-499)) NIL T ELT)) (-2048 (((-714) (-85) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT) (((-714) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 30 T ELT)) (-4122 (((-488) $) NIL (|has| (-85) (-569 (-488))) ELT)) (-3670 (($ (-599 (-85))) NIL T ELT)) (-3952 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-4096 (((-797) $) 26 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-2681 (($ $ $) 37 T ELT)) (-2411 (($ $ $) NIL T ELT)) (-3459 (($ $ $) 46 T ELT)) (-3461 (($ $) 44 T ELT)) (-3460 (($ $ $) 45 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 31 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 32 T ELT)) (-2412 (($ $ $) NIL T ELT)) (-4107 (((-714) $) 13 (|has| $ (-6 -4145)) ELT))) -(((-454 |#1|) (-13 (-96) (-10 -8 (-15 -3461 ($ $)) (-15 -3459 ($ $ $)) (-15 -3460 ($ $ $)))) (-499)) (T -454)) -((-3461 (*1 *1 *1) (-12 (-5 *1 (-454 *2)) (-14 *2 (-499)))) (-3459 (*1 *1 *1 *1) (-12 (-5 *1 (-454 *2)) (-14 *2 (-499)))) (-3460 (*1 *1 *1 *1) (-12 (-5 *1 (-454 *2)) (-14 *2 (-499))))) -((-2063 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1111 |#4|)) 35 T ELT)) (-2062 (((-1111 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1111 |#4|)) 22 T ELT)) (-2064 (((-3 (-647 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-647 (-1111 |#4|))) 46 T ELT)) (-2065 (((-1111 (-1111 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) -(((-455 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2062 (|#2| (-1 |#1| |#4|) (-1111 |#4|))) (-15 -2062 ((-1111 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2063 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1111 |#4|))) (-15 -2064 ((-3 (-647 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-647 (-1111 |#4|)))) (-15 -2065 ((-1111 (-1111 |#4|)) (-1 |#4| |#1|) |#3|))) (-989) (-1183 |#1|) (-1183 |#2|) (-989)) (T -455)) -((-2065 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-989)) (-4 *7 (-989)) (-4 *6 (-1183 *5)) (-5 *2 (-1111 (-1111 *7))) (-5 *1 (-455 *5 *6 *4 *7)) (-4 *4 (-1183 *6)))) (-2064 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-647 (-1111 *8))) (-4 *5 (-989)) (-4 *8 (-989)) (-4 *6 (-1183 *5)) (-5 *2 (-647 *6)) (-5 *1 (-455 *5 *6 *7 *8)) (-4 *7 (-1183 *6)))) (-2063 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1111 *7)) (-4 *5 (-989)) (-4 *7 (-989)) (-4 *2 (-1183 *5)) (-5 *1 (-455 *5 *2 *6 *7)) (-4 *6 (-1183 *2)))) (-2062 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-989)) (-4 *7 (-989)) (-4 *4 (-1183 *5)) (-5 *2 (-1111 *7)) (-5 *1 (-455 *5 *4 *6 *7)) (-4 *6 (-1183 *4)))) (-2062 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1111 *7)) (-4 *5 (-989)) (-4 *7 (-989)) (-4 *2 (-1183 *5)) (-5 *1 (-455 *5 *2 *6 *7)) (-4 *6 (-1183 *2))))) -((-2687 (((-85) $ $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2066 (((-1213) $) 25 T ELT)) (-3950 (((-1099) $ (-1117)) 30 T ELT)) (-3767 (((-1213) $) 19 T ELT)) (-4096 (((-797) $) 27 T ELT) (($ (-1099)) 26 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 11 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 9 T ELT))) -(((-456) (-13 (-781) (-571 (-1099)) (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 ((-1213) $)) (-15 -2066 ((-1213) $))))) (T -456)) -((-3950 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1099)) (-5 *1 (-456)))) (-3767 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-456)))) (-2066 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-456))))) -((-3891 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3889 ((|#1| |#4|) 10 T ELT)) (-3890 ((|#3| |#4|) 17 T ELT))) -(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3889 (|#1| |#4|)) (-15 -3890 (|#3| |#4|)) (-15 -3891 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-510) (-931 |#1|) (-327 |#1|) (-327 |#2|)) (T -457)) -((-3891 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-931 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-457 *4 *5 *6 *3)) (-4 *6 (-327 *4)) (-4 *3 (-327 *5)))) (-3890 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-931 *4)) (-4 *2 (-327 *4)) (-5 *1 (-457 *4 *5 *2 *3)) (-4 *3 (-327 *5)))) (-3889 (*1 *2 *3) (-12 (-4 *4 (-931 *2)) (-4 *2 (-510)) (-5 *1 (-457 *2 *4 *5 *3)) (-4 *5 (-327 *2)) (-4 *3 (-327 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-2076 (((-85) $ (-599 |#3|)) 126 T ELT) (((-85) $) 127 T ELT)) (-3326 (((-85) $) 177 T ELT)) (-2068 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-599 |#3|)) 121 T ELT)) (-2067 (((-1106 (-599 (-884 |#1|)) (-599 (-247 (-884 |#1|)))) (-599 |#4|)) 170 (|has| |#3| (-569 (-1117))) ELT)) (-2075 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2528 (((-85) $) 176 T ELT)) (-2072 (($ $) 131 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3376 (($ $ $) 99 T ELT) (($ (-599 $)) 101 T ELT)) (-2077 (((-85) |#4| $) 129 T ELT)) (-2078 (((-85) $ $) 82 T ELT)) (-2071 (($ (-599 |#4|)) 106 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2070 (($ (-599 |#4|)) 174 T ELT)) (-2069 (((-85) $) 175 T ELT)) (-2352 (($ $) 85 T ELT)) (-2816 (((-599 |#4|) $) 73 T ELT)) (-2074 (((-2 (|:| |mval| (-647 |#1|)) (|:| |invmval| (-647 |#1|)) (|:| |genIdeal| $)) $ (-599 |#3|)) NIL T ELT)) (-2079 (((-85) |#4| $) 89 T ELT)) (-4061 (((-499) $ (-599 |#3|)) 133 T ELT) (((-499) $) 134 T ELT)) (-4096 (((-797) $) 173 T ELT) (($ (-599 |#4|)) 102 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2073 (($ (-2 (|:| |mval| (-647 |#1|)) (|:| |invmval| (-647 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3174 (((-85) $ $) 84 T ELT)) (-3989 (($ $ $) 109 T ELT)) (** (($ $ (-714)) 115 T ELT)) (* (($ $ $) 113 T ELT))) -(((-458 |#1| |#2| |#3| |#4|) (-13 (-1041) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-714))) (-15 -3989 ($ $ $)) (-15 -2528 ((-85) $)) (-15 -3326 ((-85) $)) (-15 -2079 ((-85) |#4| $)) (-15 -2078 ((-85) $ $)) (-15 -2077 ((-85) |#4| $)) (-15 -2076 ((-85) $ (-599 |#3|))) (-15 -2076 ((-85) $)) (-15 -3376 ($ $ $)) (-15 -3376 ($ (-599 $))) (-15 -2075 ($ $ $)) (-15 -2075 ($ $ |#4|)) (-15 -2352 ($ $)) (-15 -2074 ((-2 (|:| |mval| (-647 |#1|)) (|:| |invmval| (-647 |#1|)) (|:| |genIdeal| $)) $ (-599 |#3|))) (-15 -2073 ($ (-2 (|:| |mval| (-647 |#1|)) (|:| |invmval| (-647 |#1|)) (|:| |genIdeal| $)))) (-15 -4061 ((-499) $ (-599 |#3|))) (-15 -4061 ((-499) $)) (-15 -2072 ($ $)) (-15 -2071 ($ (-599 |#4|))) (-15 -2070 ($ (-599 |#4|))) (-15 -2069 ((-85) $)) (-15 -2816 ((-599 |#4|) $)) (-15 -4096 ($ (-599 |#4|))) (-15 -2068 ($ $ |#4|)) (-15 -2068 ($ $ |#4| (-599 |#3|))) (IF (|has| |#3| (-569 (-1117))) (-15 -2067 ((-1106 (-599 (-884 |#1|)) (-599 (-247 (-884 |#1|)))) (-599 |#4|))) |%noBranch|))) (-318) (-738) (-781) (-888 |#1| |#2| |#3|)) (T -458)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-3989 (*1 *1 *1 *1) (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (-2528 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-3326 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-2079 (*1 *2 *3 *1) (-12 (-4 *4 (-318)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))) (-2078 (*1 *2 *1 *1) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-2077 (*1 *2 *3 *1) (-12 (-4 *4 (-318)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))) (-2076 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *6)) (-4 *6 (-781)) (-4 *4 (-318)) (-4 *5 (-738)) (-5 *2 (-85)) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6)))) (-2076 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-3376 (*1 *1 *1 *1) (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (-3376 (*1 *1 *2) (-12 (-5 *2 (-599 (-458 *3 *4 *5 *6))) (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-2075 (*1 *1 *1 *1) (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (-2075 (*1 *1 *1 *2) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-888 *3 *4 *5)))) (-2352 (*1 *1 *1) (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (-2074 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *6)) (-4 *6 (-781)) (-4 *4 (-318)) (-4 *5 (-738)) (-5 *2 (-2 (|:| |mval| (-647 *4)) (|:| |invmval| (-647 *4)) (|:| |genIdeal| (-458 *4 *5 *6 *7)))) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6)))) (-2073 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-647 *3)) (|:| |invmval| (-647 *3)) (|:| |genIdeal| (-458 *3 *4 *5 *6)))) (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-4061 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *6)) (-4 *6 (-781)) (-4 *4 (-318)) (-4 *5 (-738)) (-5 *2 (-499)) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6)))) (-4061 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-499)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-2072 (*1 *1 *1) (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (-2071 (*1 *1 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6)))) (-2070 (*1 *1 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6)))) (-2069 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-2816 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *6)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6)))) (-2068 (*1 *1 *1 *2) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-888 *3 *4 *5)))) (-2068 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-599 *6)) (-4 *6 (-781)) (-4 *4 (-318)) (-4 *5 (-738)) (-5 *1 (-458 *4 *5 *6 *2)) (-4 *2 (-888 *4 *5 *6)))) (-2067 (*1 *2 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *5 *6)) (-4 *6 (-569 (-1117))) (-4 *4 (-318)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-1106 (-599 (-884 *4)) (-599 (-247 (-884 *4))))) (-5 *1 (-458 *4 *5 *6 *7))))) -((-2080 (((-85) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499))))) 177 T ELT)) (-2081 (((-85) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499))))) 178 T ELT)) (-2082 (((-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499))))) 128 T ELT)) (-3873 (((-85) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499))))) NIL T ELT)) (-2083 (((-599 (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499))))) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499))))) 180 T ELT)) (-2084 (((-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))) (-599 (-798 |#1|))) 196 T ELT))) -(((-459 |#1| |#2|) (-10 -7 (-15 -2080 ((-85) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))))) (-15 -2081 ((-85) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))))) (-15 -3873 ((-85) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))))) (-15 -2082 ((-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))))) (-15 -2083 ((-599 (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499))))) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))))) (-15 -2084 ((-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))) (-599 (-798 |#1|))))) (-599 (-1117)) (-714)) (T -459)) -((-2084 (*1 *2 *2 *3) (-12 (-5 *2 (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499))))) (-5 *3 (-599 (-798 *4))) (-14 *4 (-599 (-1117))) (-14 *5 (-714)) (-5 *1 (-459 *4 *5)))) (-2083 (*1 *2 *3) (-12 (-14 *4 (-599 (-1117))) (-14 *5 (-714)) (-5 *2 (-599 (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499)))))) (-5 *1 (-459 *4 *5)) (-5 *3 (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499))))))) (-2082 (*1 *2 *2) (-12 (-5 *2 (-458 (-361 (-499)) (-196 *4 (-714)) (-798 *3) (-205 *3 (-361 (-499))))) (-14 *3 (-599 (-1117))) (-14 *4 (-714)) (-5 *1 (-459 *3 *4)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499))))) (-14 *4 (-599 (-1117))) (-14 *5 (-714)) (-5 *2 (-85)) (-5 *1 (-459 *4 *5)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499))))) (-14 *4 (-599 (-1117))) (-14 *5 (-714)) (-5 *2 (-85)) (-5 *1 (-459 *4 *5)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499))))) (-14 *4 (-599 (-1117))) (-14 *5 (-714)) (-5 *2 (-85)) (-5 *1 (-459 *4 *5))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2085 (($) 6 T ELT)) (-4096 (((-797) $) 10 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-460) (-13 (-1041) (-10 -8 (-15 -2085 ($))))) (T -460)) -((-2085 (*1 *1) (-5 *1 (-460)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3924 (((-599 (-807 |#2| |#1|)) $) 12 T ELT)) (-1345 (((-3 $ "failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3014 (($ |#1| |#2|) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2086 ((|#2| $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 16 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-3989 (($ $ $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 26 T ELT))) -(((-461 |#1| |#2|) (-13 (-21) (-463 |#1| |#2|)) (-21) (-784)) (T -461)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 17 T ELT)) (-3924 (((-599 (-807 |#2| |#1|)) $) 14 T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) 44 T ELT)) (-3014 (($ |#1| |#2|) 41 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-2086 ((|#2| $) NIL T ELT)) (-3312 ((|#1| $) 45 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 13 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3989 (($ $ $) 31 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) 40 T ELT))) -(((-462 |#1| |#2|) (-13 (-23) (-463 |#1| |#2|)) (-23) (-784)) (T -462)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3924 (((-599 (-807 |#2| |#1|)) $) 15 T ELT)) (-4109 (($ $) 16 T ELT)) (-3014 (($ |#1| |#2|) 19 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 20 T ELT)) (-2086 ((|#2| $) 17 T ELT)) (-3312 ((|#1| $) 18 T ELT)) (-3380 (((-1099) $) 14 (-12 (|has| |#2| (-1041)) (|has| |#1| (-1041))) ELT)) (-3381 (((-1060) $) 13 (-12 (|has| |#2| (-1041)) (|has| |#1| (-1041))) ELT)) (-4096 (((-797) $) 12 (-12 (|has| |#2| (-1041)) (|has| |#1| (-1041))) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-463 |#1| |#2|) (-113) (-73) (-784)) (T -463)) -((-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-463 *3 *4)) (-4 *3 (-73)) (-4 *4 (-784)))) (-3014 (*1 *1 *2 *3) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-73)) (-4 *3 (-784)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *3 (-784)) (-4 *2 (-73)))) (-2086 (*1 *2 *1) (-12 (-4 *1 (-463 *3 *2)) (-4 *3 (-73)) (-4 *2 (-784)))) (-4109 (*1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-73)) (-4 *3 (-784)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-463 *3 *4)) (-4 *3 (-73)) (-4 *4 (-784)) (-5 *2 (-599 (-807 *4 *3)))))) -(-13 (-73) (-10 -8 (IF (|has| |t#1| (-1041)) (IF (|has| |t#2| (-1041)) (-6 (-1041)) |%noBranch|) |%noBranch|) (-15 -4108 ($ (-1 |t#1| |t#1|) $)) (-15 -3014 ($ |t#1| |t#2|)) (-15 -3312 (|t#1| $)) (-15 -2086 (|t#2| $)) (-15 -4109 ($ $)) (-15 -3924 ((-599 (-807 |t#2| |t#1|)) $)))) -(((-73) . T) ((-568 (-797)) -12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ((-1041) -12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3924 (((-599 (-807 |#2| |#1|)) $) 39 T ELT)) (-4109 (($ $) 34 T ELT)) (-3014 (($ |#1| |#2|) 30 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-2086 ((|#2| $) 38 T ELT)) (-3312 ((|#1| $) 37 T ELT)) (-3380 (((-1099) $) NIL (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ELT)) (-3381 (((-1060) $) NIL (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ELT)) (-4096 (((-797) $) 28 (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 21 T ELT))) -(((-464 |#1| |#2|) (-463 |#1| |#2|) (-73) (-784)) (T -464)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3924 (((-599 (-807 |#2| |#1|)) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3324 (((-85) $) NIL T ELT)) (-3014 (($ |#1| |#2|) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2086 ((|#2| $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 22 T ELT)) (-3989 (($ $ $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT))) -(((-465 |#1| |#2|) (-13 (-737) (-463 |#1| |#2|)) (-737) (-784)) (T -465)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3924 (((-599 (-807 |#2| |#1|)) $) NIL T ELT)) (-2600 (($ $ $) 23 T ELT)) (-1345 (((-3 $ "failed") $ $) 19 T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3324 (((-85) $) NIL T ELT)) (-3014 (($ |#1| |#2|) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2086 ((|#2| $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT))) -(((-466 |#1| |#2|) (-13 (-738) (-463 |#1| |#2|)) (-738) (-781)) (T -466)) -NIL -((-3918 (($ $ (-599 |#2|) (-599 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) -(((-467 |#1| |#2| |#3|) (-10 -7 (-15 -3918 (|#1| |#1| |#2| |#3|)) (-15 -3918 (|#1| |#1| (-599 |#2|) (-599 |#3|)))) (-468 |#2| |#3|) (-1041) (-1157)) (T -467)) -NIL -((-3918 (($ $ (-599 |#1|) (-599 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) -(((-468 |#1| |#2|) (-113) (-1041) (-1157)) (T -468)) -((-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 *4)) (-5 *3 (-599 *5)) (-4 *1 (-468 *4 *5)) (-4 *4 (-1041)) (-4 *5 (-1157)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1157))))) -(-13 (-10 -8 (-15 -3918 ($ $ |t#1| |t#2|)) (-15 -3918 ($ $ (-599 |t#1|) (-599 |t#2|))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 17 T ELT)) (-3924 (((-599 (-2 (|:| |gen| |#1|) (|:| -4093 |#2|))) $) 19 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3258 (((-714) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-2399 ((|#1| $ (-499)) 24 T ELT)) (-1692 ((|#2| $ (-499)) 22 T ELT)) (-2391 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1691 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1690 (($ $ $) 55 (|has| |#2| (-737)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3827 ((|#2| |#1| $) 51 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 11 T CONST)) (-3174 (((-85) $ $) 30 T ELT)) (-3989 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) -(((-469 |#1| |#2| |#3|) (-277 |#1| |#2|) (-1041) (-104) |#2|) (T -469)) -NIL -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-781)) ELT)) (-2087 (((-85) (-85)) 32 T ELT)) (-3938 ((|#1| $ (-499) |#1|) 42 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-1603 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-2481 (($ $) 83 (|has| |#1| (-1041)) ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3545 (($ |#1| $) NIL (|has| |#1| (-1041)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) NIL T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) NIL T ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT)) (-2088 (($ $ (-499)) 19 T ELT)) (-2089 (((-714) $) 13 T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) |#1|) 31 T ELT)) (-2301 (((-499) $) 29 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2977 (($ $ $) NIL (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) 28 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3757 (($ $ $ (-499)) 75 T ELT) (($ |#1| $ (-499)) 59 T ELT)) (-2404 (($ |#1| $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2090 (($ (-599 |#1|)) 43 T ELT)) (-3951 ((|#1| $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) 24 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 62 T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) 21 T ELT)) (-3950 ((|#1| $ (-499) |#1|) NIL T ELT) ((|#1| $ (-499)) 55 T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-1604 (($ $ (-1174 (-499))) 73 T ELT) (($ $ (-499)) 67 T ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) 63 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 53 T ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) NIL T ELT)) (-3941 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3952 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) 22 (|has| $ (-6 -4145)) ELT))) -(((-470 |#1| |#2|) (-13 (-19 |#1|) (-236 |#1|) (-10 -8 (-15 -2090 ($ (-599 |#1|))) (-15 -2089 ((-714) $)) (-15 -2088 ($ $ (-499))) (-15 -2087 ((-85) (-85))))) (-1157) (-499)) (T -470)) -((-2090 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-470 *3 *4)) (-14 *4 (-499)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-470 *3 *4)) (-4 *3 (-1157)) (-14 *4 (-499)))) (-2088 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-470 *3 *4)) (-4 *3 (-1157)) (-14 *4 *2))) (-2087 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-470 *3 *4)) (-4 *3 (-1157)) (-14 *4 (-499))))) -((-2687 (((-85) $ $) NIL T ELT)) (-2092 (((-1075) $) 11 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2091 (((-1075) $) 13 T ELT)) (-4072 (((-1075) $) 9 T ELT)) (-4096 (((-797) $) 19 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-471) (-13 (-1023) (-10 -8 (-15 -4072 ((-1075) $)) (-15 -2092 ((-1075) $)) (-15 -2091 ((-1075) $))))) (T -471)) -((-4072 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-471)))) (-2092 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-471)))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-471))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 (((-532 |#1|) $) NIL T ELT) (($ $ (-857)) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| (-532 |#1|) (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-532 |#1|) #1#) $) NIL T ELT)) (-3294 (((-532 |#1|) $) NIL T ELT)) (-1890 (($ (-1207 (-532 |#1|))) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-532 |#1|) (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-532 |#1|) (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1773 (((-85) $) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| (-532 |#1|) (-118)) (|has| (-532 |#1|) (-323))) ELT) (($ $) NIL (-3677 (|has| (-532 |#1|) (-118)) (|has| (-532 |#1|) (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) NIL (|has| (-532 |#1|) (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| (-532 |#1|) (-118)) (|has| (-532 |#1|) (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) NIL (|has| (-532 |#1|) (-323)) ELT)) (-2112 (((-85) $) NIL (|has| (-532 |#1|) (-323)) ELT)) (-3254 (((-532 |#1|) $) NIL T ELT) (($ $ (-857)) NIL (|has| (-532 |#1|) (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 (-532 |#1|)) $) NIL T ELT) (((-1111 $) $ (-857)) NIL (|has| (-532 |#1|) (-323)) ELT)) (-2111 (((-857) $) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1697 (((-1111 (-532 |#1|)) $) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1696 (((-1111 (-532 |#1|)) $) NIL (|has| (-532 |#1|) (-323)) ELT) (((-3 (-1111 (-532 |#1|)) #1#) $ $) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1698 (($ $ (-1111 (-532 |#1|))) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-532 |#1|) (-323)) CONST)) (-2518 (($ (-857)) NIL (|has| (-532 |#1|) (-323)) ELT)) (-4081 (((-85) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($) NIL (|has| (-532 |#1|) (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| (-532 |#1|) (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) NIL T ELT) (((-857)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) NIL (|has| (-532 |#1|) (-323)) ELT) (((-3 (-714) #1#) $ $) NIL (-3677 (|has| (-532 |#1|) (-118)) (|has| (-532 |#1|) (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| (-532 |#1|) (-323)) ELT) (($ $) NIL (|has| (-532 |#1|) (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-3323 (((-1111 (-532 |#1|))) NIL T ELT)) (-1767 (($) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1699 (($) NIL (|has| (-532 |#1|) (-323)) ELT)) (-3362 (((-1207 (-532 |#1|)) $) NIL T ELT) (((-647 (-532 |#1|)) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| (-532 |#1|) (-323)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-532 |#1|)) NIL T ELT)) (-2823 (($ $) NIL (|has| (-532 |#1|) (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| (-532 |#1|) (-118)) (|has| (-532 |#1|) (-323))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT) (((-1207 $) (-857)) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-4078 (($ $) NIL (|has| (-532 |#1|) (-323)) ELT) (($ $ (-714)) NIL (|has| (-532 |#1|) (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| (-532 |#1|) (-323)) ELT) (($ $) NIL (|has| (-532 |#1|) (-323)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT) (($ $ (-532 |#1|)) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ (-532 |#1|)) NIL T ELT) (($ (-532 |#1|) $) NIL T ELT))) -(((-472 |#1| |#2|) (-283 (-532 |#1|)) (-857) (-857)) (T -472)) -NIL -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3938 ((|#1| $ (-499) (-499) |#1|) 51 T ELT)) (-1283 (($ $ (-499) |#4|) NIL T ELT)) (-1282 (($ $ (-499) |#5|) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3234 ((|#4| $ (-499)) NIL T ELT)) (-1609 ((|#1| $ (-499) (-499) |#1|) 50 T ELT)) (-3235 ((|#1| $ (-499) (-499)) 45 T ELT)) (-3010 (((-599 |#1|) $) NIL T ELT)) (-3237 (((-714) $) 33 T ELT)) (-3764 (($ (-714) (-714) |#1|) 30 T ELT)) (-3236 (((-714) $) 38 T ELT)) (-3241 (((-499) $) 31 T ELT)) (-3239 (((-499) $) 32 T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3240 (((-499) $) 37 T ELT)) (-3238 (((-499) $) 39 T ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3380 (((-1099) $) 55 (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2300 (($ $ |#1|) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 14 T ELT)) (-3713 (($) 16 T ELT)) (-3950 ((|#1| $ (-499) (-499)) 48 T ELT) ((|#1| $ (-499) (-499) |#1|) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-3233 ((|#5| $ (-499)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-473 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1157) (-499) (-499) (-327 |#1|) (-327 |#1|)) (T -473)) -NIL -((-3232 ((|#4| |#4|) 38 T ELT)) (-3231 (((-714) |#4|) 45 T ELT)) (-3230 (((-714) |#4|) 46 T ELT)) (-3229 (((-599 |#3|) |#4|) 57 (|has| |#3| (-6 -4146)) ELT)) (-3738 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-2093 ((|#4| |#4|) 61 T ELT)) (-3468 ((|#1| |#4|) 60 T ELT))) -(((-474 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3232 (|#4| |#4|)) (-15 -3231 ((-714) |#4|)) (-15 -3230 ((-714) |#4|)) (IF (|has| |#3| (-6 -4146)) (-15 -3229 ((-599 |#3|) |#4|)) |%noBranch|) (-15 -3468 (|#1| |#4|)) (-15 -2093 (|#4| |#4|)) (-15 -3738 ((-3 |#4| "failed") |#4|))) (-318) (-327 |#1|) (-327 |#1|) (-644 |#1| |#2| |#3|)) (T -474)) -((-3738 (*1 *2 *2) (|partial| -12 (-4 *3 (-318)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) (-2093 (*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) (-3468 (*1 *2 *3) (-12 (-4 *4 (-327 *2)) (-4 *5 (-327 *2)) (-4 *2 (-318)) (-5 *1 (-474 *2 *4 *5 *3)) (-4 *3 (-644 *2 *4 *5)))) (-3229 (*1 *2 *3) (-12 (|has| *6 (-6 -4146)) (-4 *4 (-318)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-599 *6)) (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) (-3230 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-714)) (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) (-3231 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-714)) (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) (-3232 (*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) -((-3232 ((|#8| |#4|) 20 T ELT)) (-3229 (((-599 |#3|) |#4|) 29 (|has| |#7| (-6 -4146)) ELT)) (-3738 (((-3 |#8| "failed") |#4|) 23 T ELT))) -(((-475 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3232 (|#8| |#4|)) (-15 -3738 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4146)) (-15 -3229 ((-599 |#3|) |#4|)) |%noBranch|)) (-510) (-327 |#1|) (-327 |#1|) (-644 |#1| |#2| |#3|) (-931 |#1|) (-327 |#5|) (-327 |#5|) (-644 |#5| |#6| |#7|)) (T -475)) -((-3229 (*1 *2 *3) (-12 (|has| *9 (-6 -4146)) (-4 *4 (-510)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-4 *7 (-931 *4)) (-4 *8 (-327 *7)) (-4 *9 (-327 *7)) (-5 *2 (-599 *6)) (-5 *1 (-475 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-644 *4 *5 *6)) (-4 *10 (-644 *7 *8 *9)))) (-3738 (*1 *2 *3) (|partial| -12 (-4 *4 (-510)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-4 *7 (-931 *4)) (-4 *2 (-644 *7 *8 *9)) (-5 *1 (-475 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-644 *4 *5 *6)) (-4 *8 (-327 *7)) (-4 *9 (-327 *7)))) (-3232 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-4 *7 (-931 *4)) (-4 *2 (-644 *7 *8 *9)) (-5 *1 (-475 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-644 *4 *5 *6)) (-4 *8 (-327 *7)) (-4 *9 (-327 *7))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3988 (($ (-714) (-714)) NIL T ELT)) (-2456 (($ $ $) NIL T ELT)) (-3554 (($ (-552 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3243 (((-85) $) NIL T ELT)) (-2455 (($ $ (-499) (-499)) 21 T ELT)) (-2454 (($ $ (-499) (-499)) NIL T ELT)) (-2453 (($ $ (-499) (-499) (-499) (-499)) NIL T ELT)) (-2458 (($ $) NIL T ELT)) (-3245 (((-85) $) NIL T ELT)) (-2452 (($ $ (-499) (-499) $) NIL T ELT)) (-3938 ((|#1| $ (-499) (-499) |#1|) NIL T ELT) (($ $ (-599 (-499)) (-599 (-499)) $) NIL T ELT)) (-1283 (($ $ (-499) (-552 |#1| |#3|)) NIL T ELT)) (-1282 (($ $ (-499) (-552 |#1| |#2|)) NIL T ELT)) (-3473 (($ (-714) |#1|) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3232 (($ $) 30 (|has| |#1| (-261)) ELT)) (-3234 (((-552 |#1| |#3|) $ (-499)) NIL T ELT)) (-3231 (((-714) $) 33 (|has| |#1| (-510)) ELT)) (-1609 ((|#1| $ (-499) (-499) |#1|) NIL T ELT)) (-3235 ((|#1| $ (-499) (-499)) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL T ELT)) (-3230 (((-714) $) 35 (|has| |#1| (-510)) ELT)) (-3229 (((-599 (-552 |#1| |#2|)) $) 38 (|has| |#1| (-510)) ELT)) (-3237 (((-714) $) NIL T ELT)) (-3764 (($ (-714) (-714) |#1|) NIL T ELT)) (-3236 (((-714) $) NIL T ELT)) (-3467 ((|#1| $) 28 (|has| |#1| (-6 (-4147 #1="*"))) ELT)) (-3241 (((-499) $) 10 T ELT)) (-3239 (((-499) $) NIL T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3240 (((-499) $) 13 T ELT)) (-3238 (((-499) $) NIL T ELT)) (-3246 (($ (-599 (-599 |#1|))) NIL T ELT) (($ (-714) (-714) (-1 |#1| (-499) (-499))) NIL T ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3742 (((-599 (-599 |#1|)) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3738 (((-3 $ #2="failed") $) 42 (|has| |#1| (-318)) ELT)) (-2457 (($ $ $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2300 (($ $ |#1|) NIL T ELT)) (-3606 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-510)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) (-499)) NIL T ELT) ((|#1| $ (-499) (-499) |#1|) NIL T ELT) (($ $ (-599 (-499)) (-599 (-499))) NIL T ELT)) (-3472 (($ (-599 |#1|)) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3244 (((-85) $) NIL T ELT)) (-3468 ((|#1| $) 26 (|has| |#1| (-6 (-4147 #1#))) ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-3233 (((-552 |#1| |#2|) $ (-499)) NIL T ELT)) (-4096 (($ (-552 |#1| |#2|)) NIL T ELT) (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3242 (((-85) $) NIL T ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-499) $) NIL T ELT) (((-552 |#1| |#2|) $ (-552 |#1| |#2|)) NIL T ELT) (((-552 |#1| |#3|) (-552 |#1| |#3|) $) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-476 |#1| |#2| |#3|) (-644 |#1| (-552 |#1| |#3|) (-552 |#1| |#2|)) (-989) (-499) (-499)) (T -476)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2094 (((-599 (-1158)) $) 13 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 19 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT) (($ (-599 (-1158))) 11 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-477) (-13 (-1023) (-10 -8 (-15 -4096 ($ (-599 (-1158)))) (-15 -2094 ((-599 (-1158)) $))))) (T -477)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-477)))) (-2094 (*1 *2 *1) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-477))))) -((-2687 (((-85) $ $) NIL T ELT)) (-2095 (((-1075) $) 14 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3590 (((-460) $) 11 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 21 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-478) (-13 (-1023) (-10 -8 (-15 -3590 ((-460) $)) (-15 -2095 ((-1075) $))))) (T -478)) -((-3590 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-478)))) (-2095 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-478))))) -((-2101 (((-649 (-1166)) $) 15 T ELT)) (-2097 (((-649 (-1164)) $) 38 T ELT)) (-2099 (((-649 (-1163)) $) 29 T ELT)) (-2102 (((-649 (-503)) $) 12 T ELT)) (-2098 (((-649 (-501)) $) 42 T ELT)) (-2100 (((-649 (-500)) $) 33 T ELT)) (-2096 (((-714) $ (-102)) 54 T ELT))) -(((-479 |#1|) (-10 -7 (-15 -2096 ((-714) |#1| (-102))) (-15 -2097 ((-649 (-1164)) |#1|)) (-15 -2098 ((-649 (-501)) |#1|)) (-15 -2099 ((-649 (-1163)) |#1|)) (-15 -2100 ((-649 (-500)) |#1|)) (-15 -2101 ((-649 (-1166)) |#1|)) (-15 -2102 ((-649 (-503)) |#1|))) (-480)) (T -479)) -NIL -((-2101 (((-649 (-1166)) $) 12 T ELT)) (-2097 (((-649 (-1164)) $) 8 T ELT)) (-2099 (((-649 (-1163)) $) 10 T ELT)) (-2102 (((-649 (-503)) $) 13 T ELT)) (-2098 (((-649 (-501)) $) 9 T ELT)) (-2100 (((-649 (-500)) $) 11 T ELT)) (-2096 (((-714) $ (-102)) 7 T ELT)) (-2103 (((-649 (-101)) $) 14 T ELT)) (-1793 (($ $) 6 T ELT))) -(((-480) (-113)) (T -480)) -((-2103 (*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-101))))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-503))))) (-2101 (*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-1166))))) (-2100 (*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-500))))) (-2099 (*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-1163))))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-501))))) (-2097 (*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-1164))))) (-2096 (*1 *2 *1 *3) (-12 (-4 *1 (-480)) (-5 *3 (-102)) (-5 *2 (-714))))) -(-13 (-147) (-10 -8 (-15 -2103 ((-649 (-101)) $)) (-15 -2102 ((-649 (-503)) $)) (-15 -2101 ((-649 (-1166)) $)) (-15 -2100 ((-649 (-500)) $)) (-15 -2099 ((-649 (-1163)) $)) (-15 -2098 ((-649 (-501)) $)) (-15 -2097 ((-649 (-1164)) $)) (-15 -2096 ((-714) $ (-102))))) -(((-147) . T)) -((-2106 (((-1111 |#1|) (-714)) 114 T ELT)) (-3470 (((-1207 |#1|) (-1207 |#1|) (-857)) 107 T ELT)) (-2104 (((-1213) (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))) |#1|) 122 T ELT)) (-2108 (((-1207 |#1|) (-1207 |#1|) (-714)) 53 T ELT)) (-3115 (((-1207 |#1|) (-857)) 109 T ELT)) (-2110 (((-1207 |#1|) (-1207 |#1|) (-499)) 30 T ELT)) (-2105 (((-1111 |#1|) (-1207 |#1|)) 115 T ELT)) (-2114 (((-1207 |#1|) (-857)) 136 T ELT)) (-2112 (((-85) (-1207 |#1|)) 119 T ELT)) (-3254 (((-1207 |#1|) (-1207 |#1|) (-857)) 99 T ELT)) (-2115 (((-1111 |#1|) (-1207 |#1|)) 130 T ELT)) (-2111 (((-857) (-1207 |#1|)) 95 T ELT)) (-2601 (((-1207 |#1|) (-1207 |#1|)) 38 T ELT)) (-2518 (((-1207 |#1|) (-857) (-857)) 139 T ELT)) (-2109 (((-1207 |#1|) (-1207 |#1|) (-1060) (-1060)) 29 T ELT)) (-2107 (((-1207 |#1|) (-1207 |#1|) (-714) (-1060)) 54 T ELT)) (-2113 (((-1207 (-1207 |#1|)) (-857)) 135 T ELT)) (-4099 (((-1207 |#1|) (-1207 |#1|) (-1207 |#1|)) 120 T ELT)) (** (((-1207 |#1|) (-1207 |#1|) (-499)) 67 T ELT)) (* (((-1207 |#1|) (-1207 |#1|) (-1207 |#1|)) 31 T ELT))) -(((-481 |#1|) (-10 -7 (-15 -2104 ((-1213) (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))) |#1|)) (-15 -3115 ((-1207 |#1|) (-857))) (-15 -2518 ((-1207 |#1|) (-857) (-857))) (-15 -2105 ((-1111 |#1|) (-1207 |#1|))) (-15 -2106 ((-1111 |#1|) (-714))) (-15 -2107 ((-1207 |#1|) (-1207 |#1|) (-714) (-1060))) (-15 -2108 ((-1207 |#1|) (-1207 |#1|) (-714))) (-15 -2109 ((-1207 |#1|) (-1207 |#1|) (-1060) (-1060))) (-15 -2110 ((-1207 |#1|) (-1207 |#1|) (-499))) (-15 ** ((-1207 |#1|) (-1207 |#1|) (-499))) (-15 * ((-1207 |#1|) (-1207 |#1|) (-1207 |#1|))) (-15 -4099 ((-1207 |#1|) (-1207 |#1|) (-1207 |#1|))) (-15 -3254 ((-1207 |#1|) (-1207 |#1|) (-857))) (-15 -3470 ((-1207 |#1|) (-1207 |#1|) (-857))) (-15 -2601 ((-1207 |#1|) (-1207 |#1|))) (-15 -2111 ((-857) (-1207 |#1|))) (-15 -2112 ((-85) (-1207 |#1|))) (-15 -2113 ((-1207 (-1207 |#1|)) (-857))) (-15 -2114 ((-1207 |#1|) (-857))) (-15 -2115 ((-1111 |#1|) (-1207 |#1|)))) (-305)) (T -481)) -((-2115 (*1 *2 *3) (-12 (-5 *3 (-1207 *4)) (-4 *4 (-305)) (-5 *2 (-1111 *4)) (-5 *1 (-481 *4)))) (-2114 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1207 *4)) (-5 *1 (-481 *4)) (-4 *4 (-305)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1207 (-1207 *4))) (-5 *1 (-481 *4)) (-4 *4 (-305)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-1207 *4)) (-4 *4 (-305)) (-5 *2 (-85)) (-5 *1 (-481 *4)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-1207 *4)) (-4 *4 (-305)) (-5 *2 (-857)) (-5 *1 (-481 *4)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-305)) (-5 *1 (-481 *3)))) (-3470 (*1 *2 *2 *3) (-12 (-5 *2 (-1207 *4)) (-5 *3 (-857)) (-4 *4 (-305)) (-5 *1 (-481 *4)))) (-3254 (*1 *2 *2 *3) (-12 (-5 *2 (-1207 *4)) (-5 *3 (-857)) (-4 *4 (-305)) (-5 *1 (-481 *4)))) (-4099 (*1 *2 *2 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-305)) (-5 *1 (-481 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-305)) (-5 *1 (-481 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1207 *4)) (-5 *3 (-499)) (-4 *4 (-305)) (-5 *1 (-481 *4)))) (-2110 (*1 *2 *2 *3) (-12 (-5 *2 (-1207 *4)) (-5 *3 (-499)) (-4 *4 (-305)) (-5 *1 (-481 *4)))) (-2109 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1207 *4)) (-5 *3 (-1060)) (-4 *4 (-305)) (-5 *1 (-481 *4)))) (-2108 (*1 *2 *2 *3) (-12 (-5 *2 (-1207 *4)) (-5 *3 (-714)) (-4 *4 (-305)) (-5 *1 (-481 *4)))) (-2107 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1207 *5)) (-5 *3 (-714)) (-5 *4 (-1060)) (-4 *5 (-305)) (-5 *1 (-481 *5)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1111 *4)) (-5 *1 (-481 *4)) (-4 *4 (-305)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-1207 *4)) (-4 *4 (-305)) (-5 *2 (-1111 *4)) (-5 *1 (-481 *4)))) (-2518 (*1 *2 *3 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1207 *4)) (-5 *1 (-481 *4)) (-4 *4 (-305)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1207 *4)) (-5 *1 (-481 *4)) (-4 *4 (-305)))) (-2104 (*1 *2 *3 *4) (-12 (-5 *3 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) (-4 *4 (-305)) (-5 *2 (-1213)) (-5 *1 (-481 *4))))) -((-2101 (((-649 (-1166)) $) NIL T ELT)) (-2097 (((-649 (-1164)) $) NIL T ELT)) (-2099 (((-649 (-1163)) $) NIL T ELT)) (-2102 (((-649 (-503)) $) NIL T ELT)) (-2098 (((-649 (-501)) $) NIL T ELT)) (-2100 (((-649 (-500)) $) NIL T ELT)) (-2096 (((-714) $ (-102)) NIL T ELT)) (-2103 (((-649 (-101)) $) 26 T ELT)) (-2116 (((-1060) $ (-1060)) 31 T ELT)) (-3559 (((-1060) $) 30 T ELT)) (-2677 (((-85) $) 20 T ELT)) (-2118 (($ (-344)) 14 T ELT) (($ (-1099)) 16 T ELT)) (-2117 (((-85) $) 27 T ELT)) (-4096 (((-797) $) 34 T ELT)) (-1793 (($ $) 28 T ELT))) -(((-482) (-13 (-480) (-568 (-797)) (-10 -8 (-15 -2118 ($ (-344))) (-15 -2118 ($ (-1099))) (-15 -2117 ((-85) $)) (-15 -2677 ((-85) $)) (-15 -3559 ((-1060) $)) (-15 -2116 ((-1060) $ (-1060)))))) (T -482)) -((-2118 (*1 *1 *2) (-12 (-5 *2 (-344)) (-5 *1 (-482)))) (-2118 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-482)))) (-2117 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-482)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-482)))) (-3559 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-482)))) (-2116 (*1 *2 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-482))))) -((-2120 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2119 (((-1 |#1| |#1|)) 10 T ELT))) -(((-483 |#1|) (-10 -7 (-15 -2119 ((-1 |#1| |#1|))) (-15 -2120 ((-1 |#1| |#1|) |#1|))) (-13 (-684) (-25))) (T -483)) -((-2120 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-483 *3)) (-4 *3 (-13 (-684) (-25))))) (-2119 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-483 *3)) (-4 *3 (-13 (-684) (-25)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3924 (((-599 (-807 |#1| (-714))) $) NIL T ELT)) (-2600 (($ $ $) NIL T ELT)) (-1345 (((-3 $ "failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3324 (((-85) $) NIL T ELT)) (-3014 (($ (-714) |#1|) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-4108 (($ (-1 (-714) (-714)) $) NIL T ELT)) (-2086 ((|#1| $) NIL T ELT)) (-3312 (((-714) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 27 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT))) -(((-484 |#1|) (-13 (-738) (-463 (-714) |#1|)) (-781)) (T -484)) -NIL -((-2122 (((-599 |#2|) (-1111 |#1|) |#3|) 98 T ELT)) (-2123 (((-599 (-2 (|:| |outval| |#2|) (|:| |outmult| (-499)) (|:| |outvect| (-599 (-647 |#2|))))) (-647 |#1|) |#3| (-1 (-359 (-1111 |#1|)) (-1111 |#1|))) 114 T ELT)) (-2121 (((-1111 |#1|) (-647 |#1|)) 110 T ELT))) -(((-485 |#1| |#2| |#3|) (-10 -7 (-15 -2121 ((-1111 |#1|) (-647 |#1|))) (-15 -2122 ((-599 |#2|) (-1111 |#1|) |#3|)) (-15 -2123 ((-599 (-2 (|:| |outval| |#2|) (|:| |outmult| (-499)) (|:| |outvect| (-599 (-647 |#2|))))) (-647 |#1|) |#3| (-1 (-359 (-1111 |#1|)) (-1111 |#1|))))) (-318) (-318) (-13 (-318) (-780))) (T -485)) -((-2123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-647 *6)) (-5 *5 (-1 (-359 (-1111 *6)) (-1111 *6))) (-4 *6 (-318)) (-5 *2 (-599 (-2 (|:| |outval| *7) (|:| |outmult| (-499)) (|:| |outvect| (-599 (-647 *7)))))) (-5 *1 (-485 *6 *7 *4)) (-4 *7 (-318)) (-4 *4 (-13 (-318) (-780))))) (-2122 (*1 *2 *3 *4) (-12 (-5 *3 (-1111 *5)) (-4 *5 (-318)) (-5 *2 (-599 *6)) (-5 *1 (-485 *5 *6 *4)) (-4 *6 (-318)) (-4 *4 (-13 (-318) (-780))))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-647 *4)) (-4 *4 (-318)) (-5 *2 (-1111 *4)) (-5 *1 (-485 *4 *5 *6)) (-4 *5 (-318)) (-4 *6 (-13 (-318) (-780)))))) -((-2674 (((-649 (-1166)) $ (-1166)) NIL T ELT)) (-2675 (((-649 (-503)) $ (-503)) NIL T ELT)) (-2673 (((-714) $ (-102)) 39 T ELT)) (-2676 (((-649 (-101)) $ (-101)) 40 T ELT)) (-2101 (((-649 (-1166)) $) NIL T ELT)) (-2097 (((-649 (-1164)) $) NIL T ELT)) (-2099 (((-649 (-1163)) $) NIL T ELT)) (-2102 (((-649 (-503)) $) NIL T ELT)) (-2098 (((-649 (-501)) $) NIL T ELT)) (-2100 (((-649 (-500)) $) NIL T ELT)) (-2096 (((-714) $ (-102)) 35 T ELT)) (-2103 (((-649 (-101)) $) 37 T ELT)) (-2555 (((-85) $) 27 T ELT)) (-2556 (((-649 $) (-530) (-892)) 18 T ELT) (((-649 $) (-445) (-892)) 24 T ELT)) (-4096 (((-797) $) 48 T ELT)) (-1793 (($ $) 42 T ELT))) -(((-486) (-13 (-710 (-530)) (-568 (-797)) (-10 -8 (-15 -2556 ((-649 $) (-445) (-892)))))) (T -486)) -((-2556 (*1 *2 *3 *4) (-12 (-5 *3 (-445)) (-5 *4 (-892)) (-5 *2 (-649 (-486))) (-5 *1 (-486))))) -((-2646 (((-775 (-499))) 12 T ELT)) (-2645 (((-775 (-499))) 14 T ELT)) (-2632 (((-766 (-499))) 9 T ELT))) -(((-487) (-10 -7 (-15 -2632 ((-766 (-499)))) (-15 -2646 ((-775 (-499)))) (-15 -2645 ((-775 (-499)))))) (T -487)) -((-2645 (*1 *2) (-12 (-5 *2 (-775 (-499))) (-5 *1 (-487)))) (-2646 (*1 *2) (-12 (-5 *2 (-775 (-499))) (-5 *1 (-487)))) (-2632 (*1 *2) (-12 (-5 *2 (-766 (-499))) (-5 *1 (-487))))) -((-2687 (((-85) $ $) NIL T ELT)) (-2127 (((-1099) $) 55 T ELT)) (-3398 (((-85) $) 51 T ELT)) (-3394 (((-1117) $) 52 T ELT)) (-3399 (((-85) $) 49 T ELT)) (-3683 (((-1099) $) 50 T ELT)) (-2126 (($ (-1099)) 56 T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2129 (($ $ (-599 (-1117))) 21 T ELT)) (-2132 (((-51) $) 23 T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3393 (((-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2501 (($ $ (-599 (-1117)) (-1117)) 73 T ELT)) (-3396 (((-85) $) NIL T ELT)) (-3392 (((-179) $) NIL T ELT)) (-2128 (($ $) 44 T ELT)) (-3391 (((-797) $) NIL T ELT)) (-3404 (((-85) $ $) NIL T ELT)) (-3950 (($ $ (-499)) NIL T ELT) (($ $ (-599 (-499))) NIL T ELT)) (-3395 (((-599 $) $) 30 T ELT)) (-2125 (((-1117) (-599 $)) 57 T ELT)) (-4122 (($ (-1099)) NIL T ELT) (($ (-1117)) 19 T ELT) (($ (-499)) 8 T ELT) (($ (-179)) 28 T ELT) (($ (-797)) NIL T ELT) (($ (-599 $)) 65 T ELT) (((-1043) $) 12 T ELT) (($ (-1043)) 13 T ELT)) (-2124 (((-1117) (-1117) (-599 $)) 60 T ELT)) (-4096 (((-797) $) 54 T ELT)) (-3389 (($ $) 59 T ELT)) (-3390 (($ $) 58 T ELT)) (-2130 (($ $ (-599 $)) 66 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 29 T ELT)) (-2779 (($) 9 T CONST)) (-2785 (($) 11 T CONST)) (-3174 (((-85) $ $) 74 T ELT)) (-4099 (($ $ $) 82 T ELT)) (-3989 (($ $ $) 75 T ELT)) (** (($ $ (-714)) 81 T ELT) (($ $ (-499)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-4107 (((-499) $) NIL T ELT))) -(((-488) (-13 (-1044 (-1099) (-1117) (-499) (-179) (-797)) (-569 (-1043)) (-10 -8 (-15 -2132 ((-51) $)) (-15 -4122 ($ (-1043))) (-15 -2130 ($ $ (-599 $))) (-15 -2501 ($ $ (-599 (-1117)) (-1117))) (-15 -2129 ($ $ (-599 (-1117)))) (-15 -3989 ($ $ $)) (-15 * ($ $ $)) (-15 -4099 ($ $ $)) (-15 ** ($ $ (-714))) (-15 ** ($ $ (-499))) (-15 0 ($) -4102) (-15 1 ($) -4102) (-15 -2128 ($ $)) (-15 -2127 ((-1099) $)) (-15 -2126 ($ (-1099))) (-15 -2125 ((-1117) (-599 $))) (-15 -2124 ((-1117) (-1117) (-599 $)))))) (T -488)) -((-2132 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-488)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-1043)) (-5 *1 (-488)))) (-2130 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-488))) (-5 *1 (-488)))) (-2501 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-1117)) (-5 *1 (-488)))) (-2129 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-488)))) (-3989 (*1 *1 *1 *1) (-5 *1 (-488))) (* (*1 *1 *1 *1) (-5 *1 (-488))) (-4099 (*1 *1 *1 *1) (-5 *1 (-488))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-488)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-488)))) (-2779 (*1 *1) (-5 *1 (-488))) (-2785 (*1 *1) (-5 *1 (-488))) (-2128 (*1 *1 *1) (-5 *1 (-488))) (-2127 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-488)))) (-2126 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-488)))) (-2125 (*1 *2 *3) (-12 (-5 *3 (-599 (-488))) (-5 *2 (-1117)) (-5 *1 (-488)))) (-2124 (*1 *2 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-488))) (-5 *1 (-488))))) -((-2131 (((-488) (-1117)) 15 T ELT)) (-2132 ((|#1| (-488)) 20 T ELT))) -(((-489 |#1|) (-10 -7 (-15 -2131 ((-488) (-1117))) (-15 -2132 (|#1| (-488)))) (-1157)) (T -489)) -((-2132 (*1 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-489 *2)) (-4 *2 (-1157)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-488)) (-5 *1 (-489 *4)) (-4 *4 (-1157))))) -((-3593 ((|#2| |#2|) 17 T ELT)) (-3591 ((|#2| |#2|) 13 T ELT)) (-3594 ((|#2| |#2| (-499) (-499)) 20 T ELT)) (-3592 ((|#2| |#2|) 15 T ELT))) -(((-490 |#1| |#2|) (-10 -7 (-15 -3591 (|#2| |#2|)) (-15 -3592 (|#2| |#2|)) (-15 -3593 (|#2| |#2|)) (-15 -3594 (|#2| |#2| (-499) (-499)))) (-13 (-510) (-120)) (-1200 |#1|)) (T -490)) -((-3594 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-499)) (-4 *4 (-13 (-510) (-120))) (-5 *1 (-490 *4 *2)) (-4 *2 (-1200 *4)))) (-3593 (*1 *2 *2) (-12 (-4 *3 (-13 (-510) (-120))) (-5 *1 (-490 *3 *2)) (-4 *2 (-1200 *3)))) (-3592 (*1 *2 *2) (-12 (-4 *3 (-13 (-510) (-120))) (-5 *1 (-490 *3 *2)) (-4 *2 (-1200 *3)))) (-3591 (*1 *2 *2) (-12 (-4 *3 (-13 (-510) (-120))) (-5 *1 (-490 *3 *2)) (-4 *2 (-1200 *3))))) -((-2135 (((-599 (-247 (-884 |#2|))) (-599 |#2|) (-599 (-1117))) 32 T ELT)) (-2133 (((-599 |#2|) (-884 |#1|) |#3|) 54 T ELT) (((-599 |#2|) (-1111 |#1|) |#3|) 53 T ELT)) (-2134 (((-599 (-599 |#2|)) (-599 (-884 |#1|)) (-599 (-884 |#1|)) (-599 (-1117)) |#3|) 106 T ELT))) -(((-491 |#1| |#2| |#3|) (-10 -7 (-15 -2133 ((-599 |#2|) (-1111 |#1|) |#3|)) (-15 -2133 ((-599 |#2|) (-884 |#1|) |#3|)) (-15 -2134 ((-599 (-599 |#2|)) (-599 (-884 |#1|)) (-599 (-884 |#1|)) (-599 (-1117)) |#3|)) (-15 -2135 ((-599 (-247 (-884 |#2|))) (-599 |#2|) (-599 (-1117))))) (-406) (-318) (-13 (-318) (-780))) (T -491)) -((-2135 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6)) (-5 *4 (-599 (-1117))) (-4 *6 (-318)) (-5 *2 (-599 (-247 (-884 *6)))) (-5 *1 (-491 *5 *6 *7)) (-4 *5 (-406)) (-4 *7 (-13 (-318) (-780))))) (-2134 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-599 (-884 *6))) (-5 *4 (-599 (-1117))) (-4 *6 (-406)) (-5 *2 (-599 (-599 *7))) (-5 *1 (-491 *6 *7 *5)) (-4 *7 (-318)) (-4 *5 (-13 (-318) (-780))))) (-2133 (*1 *2 *3 *4) (-12 (-5 *3 (-884 *5)) (-4 *5 (-406)) (-5 *2 (-599 *6)) (-5 *1 (-491 *5 *6 *4)) (-4 *6 (-318)) (-4 *4 (-13 (-318) (-780))))) (-2133 (*1 *2 *3 *4) (-12 (-5 *3 (-1111 *5)) (-4 *5 (-406)) (-5 *2 (-599 *6)) (-5 *1 (-491 *5 *6 *4)) (-4 *6 (-318)) (-4 *4 (-13 (-318) (-780)))))) -((-2138 ((|#2| |#2| |#1|) 17 T ELT)) (-2136 ((|#2| (-599 |#2|)) 30 T ELT)) (-2137 ((|#2| (-599 |#2|)) 51 T ELT))) -(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2136 (|#2| (-599 |#2|))) (-15 -2137 (|#2| (-599 |#2|))) (-15 -2138 (|#2| |#2| |#1|))) (-261) (-1183 |#1|) |#1| (-1 |#1| |#1| (-714))) (T -492)) -((-2138 (*1 *2 *2 *3) (-12 (-4 *3 (-261)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-714))) (-5 *1 (-492 *3 *2 *4 *5)) (-4 *2 (-1183 *3)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-1183 *4)) (-5 *1 (-492 *4 *2 *5 *6)) (-4 *4 (-261)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-714))))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-1183 *4)) (-5 *1 (-492 *4 *2 *5 *6)) (-4 *4 (-261)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-714)))))) -((-3882 (((-359 (-1111 |#4|)) (-1111 |#4|) (-1 (-359 (-1111 |#3|)) (-1111 |#3|))) 89 T ELT) (((-359 |#4|) |#4| (-1 (-359 (-1111 |#3|)) (-1111 |#3|))) 212 T ELT))) -(((-493 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-359 |#4|) |#4| (-1 (-359 (-1111 |#3|)) (-1111 |#3|)))) (-15 -3882 ((-359 (-1111 |#4|)) (-1111 |#4|) (-1 (-359 (-1111 |#3|)) (-1111 |#3|))))) (-781) (-738) (-13 (-261) (-120)) (-888 |#3| |#2| |#1|)) (T -493)) -((-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-359 (-1111 *7)) (-1111 *7))) (-4 *7 (-13 (-261) (-120))) (-4 *5 (-781)) (-4 *6 (-738)) (-4 *8 (-888 *7 *6 *5)) (-5 *2 (-359 (-1111 *8))) (-5 *1 (-493 *5 *6 *7 *8)) (-5 *3 (-1111 *8)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-359 (-1111 *7)) (-1111 *7))) (-4 *7 (-13 (-261) (-120))) (-4 *5 (-781)) (-4 *6 (-738)) (-5 *2 (-359 *3)) (-5 *1 (-493 *5 *6 *7 *3)) (-4 *3 (-888 *7 *6 *5))))) -((-3593 ((|#4| |#4|) 74 T ELT)) (-3591 ((|#4| |#4|) 70 T ELT)) (-3594 ((|#4| |#4| (-499) (-499)) 76 T ELT)) (-3592 ((|#4| |#4|) 72 T ELT))) -(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3591 (|#4| |#4|)) (-15 -3592 (|#4| |#4|)) (-15 -3593 (|#4| |#4|)) (-15 -3594 (|#4| |#4| (-499) (-499)))) (-13 (-318) (-323) (-569 (-499))) (-1183 |#1|) (-682 |#1| |#2|) (-1200 |#3|)) (T -494)) -((-3594 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-499)) (-4 *4 (-13 (-318) (-323) (-569 *3))) (-4 *5 (-1183 *4)) (-4 *6 (-682 *4 *5)) (-5 *1 (-494 *4 *5 *6 *2)) (-4 *2 (-1200 *6)))) (-3593 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-4 *4 (-1183 *3)) (-4 *5 (-682 *3 *4)) (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-1200 *5)))) (-3592 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-4 *4 (-1183 *3)) (-4 *5 (-682 *3 *4)) (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-1200 *5)))) (-3591 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-4 *4 (-1183 *3)) (-4 *5 (-682 *3 *4)) (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-1200 *5))))) -((-3593 ((|#2| |#2|) 27 T ELT)) (-3591 ((|#2| |#2|) 23 T ELT)) (-3594 ((|#2| |#2| (-499) (-499)) 29 T ELT)) (-3592 ((|#2| |#2|) 25 T ELT))) -(((-495 |#1| |#2|) (-10 -7 (-15 -3591 (|#2| |#2|)) (-15 -3592 (|#2| |#2|)) (-15 -3593 (|#2| |#2|)) (-15 -3594 (|#2| |#2| (-499) (-499)))) (-13 (-318) (-323) (-569 (-499))) (-1200 |#1|)) (T -495)) -((-3594 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-499)) (-4 *4 (-13 (-318) (-323) (-569 *3))) (-5 *1 (-495 *4 *2)) (-4 *2 (-1200 *4)))) (-3593 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-5 *1 (-495 *3 *2)) (-4 *2 (-1200 *3)))) (-3592 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-5 *1 (-495 *3 *2)) (-4 *2 (-1200 *3)))) (-3591 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-5 *1 (-495 *3 *2)) (-4 *2 (-1200 *3))))) -((-2139 (((-3 (-499) #1="failed") |#2| |#1| (-1 (-3 (-499) #1#) |#1|)) 18 T ELT) (((-3 (-499) #1#) |#2| |#1| (-499) (-1 (-3 (-499) #1#) |#1|)) 14 T ELT) (((-3 (-499) #1#) |#2| (-499) (-1 (-3 (-499) #1#) |#1|)) 30 T ELT))) -(((-496 |#1| |#2|) (-10 -7 (-15 -2139 ((-3 (-499) #1="failed") |#2| (-499) (-1 (-3 (-499) #1#) |#1|))) (-15 -2139 ((-3 (-499) #1#) |#2| |#1| (-499) (-1 (-3 (-499) #1#) |#1|))) (-15 -2139 ((-3 (-499) #1#) |#2| |#1| (-1 (-3 (-499) #1#) |#1|)))) (-989) (-1183 |#1|)) (T -496)) -((-2139 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-499) #1="failed") *4)) (-4 *4 (-989)) (-5 *2 (-499)) (-5 *1 (-496 *4 *3)) (-4 *3 (-1183 *4)))) (-2139 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-499) #1#) *4)) (-4 *4 (-989)) (-5 *2 (-499)) (-5 *1 (-496 *4 *3)) (-4 *3 (-1183 *4)))) (-2139 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-499) #1#) *5)) (-4 *5 (-989)) (-5 *2 (-499)) (-5 *1 (-496 *5 *3)) (-4 *3 (-1183 *5))))) -((-2148 (($ $ $) 87 T ELT)) (-4121 (((-359 $) $) 50 T ELT)) (-3295 (((-3 (-499) #1="failed") $) 62 T ELT)) (-3294 (((-499) $) 40 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) 80 T ELT)) (-3144 (((-85) $) 24 T ELT)) (-3143 (((-361 (-499)) $) 78 T ELT)) (-3873 (((-85) $) 53 T ELT)) (-2141 (($ $ $ $) 94 T ELT)) (-1402 (($ $ $) 60 T ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 75 T ELT)) (-3585 (((-649 $) $) 70 T ELT)) (-2145 (($ $) 22 T ELT)) (-2140 (($ $ $) 92 T ELT)) (-3586 (($) 63 T ELT)) (-1400 (($ $) 56 T ELT)) (-3882 (((-359 $) $) 48 T ELT)) (-2795 (((-85) $) 15 T ELT)) (-1677 (((-714) $) 30 T ELT)) (-3908 (($ $) 11 T ELT) (($ $ (-714)) NIL T ELT)) (-3540 (($ $) 16 T ELT)) (-4122 (((-499) $) NIL T ELT) (((-488) $) 39 T ELT) (((-825 (-499)) $) 43 T ELT) (((-333) $) 33 T ELT) (((-179) $) 36 T ELT)) (-3248 (((-714)) 9 T ELT)) (-2150 (((-85) $ $) 19 T ELT)) (-3224 (($ $ $) 58 T ELT))) -(((-497 |#1|) (-10 -7 (-15 -2140 (|#1| |#1| |#1|)) (-15 -2141 (|#1| |#1| |#1| |#1|)) (-15 -2145 (|#1| |#1|)) (-15 -3540 (|#1| |#1|)) (-15 -3145 ((-3 (-361 (-499)) #1="failed") |#1|)) (-15 -3143 ((-361 (-499)) |#1|)) (-15 -3144 ((-85) |#1|)) (-15 -2148 (|#1| |#1| |#1|)) (-15 -2150 ((-85) |#1| |#1|)) (-15 -2795 ((-85) |#1|)) (-15 -3586 (|#1|)) (-15 -3585 ((-649 |#1|) |#1|)) (-15 -4122 ((-179) |#1|)) (-15 -4122 ((-333) |#1|)) (-15 -1402 (|#1| |#1| |#1|)) (-15 -1400 (|#1| |#1|)) (-15 -3224 (|#1| |#1| |#1|)) (-15 -2917 ((-823 (-499) |#1|) |#1| (-825 (-499)) (-823 (-499) |#1|))) (-15 -4122 ((-825 (-499)) |#1|)) (-15 -4122 ((-488) |#1|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -4122 ((-499) |#1|)) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1|)) (-15 -1677 ((-714) |#1|)) (-15 -3882 ((-359 |#1|) |#1|)) (-15 -4121 ((-359 |#1|) |#1|)) (-15 -3873 ((-85) |#1|)) (-15 -3248 ((-714)))) (-498)) (T -497)) -((-3248 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-497 *3)) (-4 *3 (-498))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-2148 (($ $ $) 99 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-2143 (($ $ $ $) 88 T ELT)) (-3925 (($ $) 63 T ELT)) (-4121 (((-359 $) $) 64 T ELT)) (-1678 (((-85) $ $) 142 T ELT)) (-3773 (((-499) $) 131 T ELT)) (-2557 (($ $ $) 102 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 (-499) "failed") $) 123 T ELT)) (-3294 (((-499) $) 124 T ELT)) (-2683 (($ $ $) 146 T ELT)) (-2380 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 121 T ELT) (((-647 (-499)) (-647 $)) 120 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3145 (((-3 (-361 (-499)) "failed") $) 96 T ELT)) (-3144 (((-85) $) 98 T ELT)) (-3143 (((-361 (-499)) $) 97 T ELT)) (-3115 (($) 95 T ELT) (($ $) 94 T ELT)) (-2682 (($ $ $) 145 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 140 T ELT)) (-3873 (((-85) $) 65 T ELT)) (-2141 (($ $ $ $) 86 T ELT)) (-2149 (($ $ $) 100 T ELT)) (-3324 (((-85) $) 133 T ELT)) (-1402 (($ $ $) 111 T ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 114 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-2794 (((-85) $) 106 T ELT)) (-3585 (((-649 $) $) 108 T ELT)) (-3325 (((-85) $) 132 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 149 T ELT)) (-2142 (($ $ $ $) 87 T ELT)) (-2650 (($ $ $) 139 T ELT)) (-2978 (($ $ $) 138 T ELT)) (-2145 (($ $) 90 T ELT)) (-3983 (($ $) 103 T ELT)) (-2381 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 119 T ELT) (((-647 (-499)) (-1207 $)) 118 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2140 (($ $ $) 85 T ELT)) (-3586 (($) 107 T CONST)) (-2147 (($ $) 92 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-1400 (($ $) 112 T ELT)) (-3882 (((-359 $) $) 62 T ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 148 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 147 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 141 T ELT)) (-2795 (((-85) $) 105 T ELT)) (-1677 (((-714) $) 143 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 144 T ELT)) (-3908 (($ $) 129 T ELT) (($ $ (-714)) 127 T ELT)) (-2146 (($ $) 91 T ELT)) (-3540 (($ $) 93 T ELT)) (-4122 (((-499) $) 125 T ELT) (((-488) $) 116 T ELT) (((-825 (-499)) $) 115 T ELT) (((-333) $) 110 T ELT) (((-179) $) 109 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-499)) 122 T ELT)) (-3248 (((-714)) 37 T CONST)) (-2150 (((-85) $ $) 101 T ELT)) (-3224 (($ $ $) 113 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2815 (($) 104 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2144 (($ $ $ $) 89 T ELT)) (-3523 (($ $) 130 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $) 128 T ELT) (($ $ (-714)) 126 T ELT)) (-2685 (((-85) $ $) 137 T ELT)) (-2686 (((-85) $ $) 135 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 136 T ELT)) (-2806 (((-85) $ $) 134 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-499) $) 117 T ELT))) -(((-498) (-113)) (T -498)) -((-2794 (*1 *2 *1) (-12 (-4 *1 (-498)) (-5 *2 (-85)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-498)) (-5 *2 (-85)))) (-2815 (*1 *1) (-4 *1 (-498))) (-3983 (*1 *1 *1) (-4 *1 (-498))) (-2557 (*1 *1 *1 *1) (-4 *1 (-498))) (-2150 (*1 *2 *1 *1) (-12 (-4 *1 (-498)) (-5 *2 (-85)))) (-2149 (*1 *1 *1 *1) (-4 *1 (-498))) (-2148 (*1 *1 *1 *1) (-4 *1 (-498))) (-3144 (*1 *2 *1) (-12 (-4 *1 (-498)) (-5 *2 (-85)))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-498)) (-5 *2 (-361 (-499))))) (-3145 (*1 *2 *1) (|partial| -12 (-4 *1 (-498)) (-5 *2 (-361 (-499))))) (-3115 (*1 *1) (-4 *1 (-498))) (-3115 (*1 *1 *1) (-4 *1 (-498))) (-3540 (*1 *1 *1) (-4 *1 (-498))) (-2147 (*1 *1 *1) (-4 *1 (-498))) (-2146 (*1 *1 *1) (-4 *1 (-498))) (-2145 (*1 *1 *1) (-4 *1 (-498))) (-2144 (*1 *1 *1 *1 *1) (-4 *1 (-498))) (-2143 (*1 *1 *1 *1 *1) (-4 *1 (-498))) (-2142 (*1 *1 *1 *1 *1) (-4 *1 (-498))) (-2141 (*1 *1 *1 *1 *1) (-4 *1 (-498))) (-2140 (*1 *1 *1 *1) (-4 *1 (-498)))) -(-13 (-1162) (-261) (-763) (-190) (-569 (-499)) (-978 (-499)) (-596 (-499)) (-569 (-488)) (-569 (-825 (-499))) (-821 (-499)) (-116) (-960) (-120) (-1092) (-10 -8 (-15 -2794 ((-85) $)) (-15 -2795 ((-85) $)) (-6 -4144) (-15 -2815 ($)) (-15 -3983 ($ $)) (-15 -2557 ($ $ $)) (-15 -2150 ((-85) $ $)) (-15 -2149 ($ $ $)) (-15 -2148 ($ $ $)) (-15 -3144 ((-85) $)) (-15 -3143 ((-361 (-499)) $)) (-15 -3145 ((-3 (-361 (-499)) "failed") $)) (-15 -3115 ($)) (-15 -3115 ($ $)) (-15 -3540 ($ $)) (-15 -2147 ($ $)) (-15 -2146 ($ $)) (-15 -2145 ($ $)) (-15 -2144 ($ $ $ $)) (-15 -2143 ($ $ $ $)) (-15 -2142 ($ $ $ $)) (-15 -2141 ($ $ $ $)) (-15 -2140 ($ $ $)) (-6 -4143))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-116) . T) ((-146) . T) ((-569 (-179)) . T) ((-569 (-333)) . T) ((-569 (-488)) . T) ((-569 (-499)) . T) ((-569 (-825 (-499))) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-244) . T) ((-261) . T) ((-406) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-499)) . T) ((-606 $) . T) ((-598 $) . T) ((-596 (-499)) . T) ((-675 $) . T) ((-684) . T) ((-735) . T) ((-737) . T) ((-739) . T) ((-742) . T) ((-763) . T) ((-780) . T) ((-781) . T) ((-784) . T) ((-821 (-499)) . T) ((-859) . T) ((-960) . T) ((-978 (-499)) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1092) . T) ((-1157) . T) ((-1162) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 8 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 84 T ELT)) (-2164 (($ $) 85 T ELT)) (-2162 (((-85) $) NIL T ELT)) (-2148 (($ $ $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2143 (($ $ $ $) 32 T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL T ELT)) (-2557 (($ $ $) 76 T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL T ELT)) (-2683 (($ $ $) 48 T ELT)) (-2380 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 59 T ELT) (((-647 (-499)) (-647 $)) 55 T ELT)) (-3607 (((-3 $ #1#) $) 81 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) NIL T ELT)) (-3144 (((-85) $) NIL T ELT)) (-3143 (((-361 (-499)) $) NIL T ELT)) (-3115 (($) 61 T ELT) (($ $) 62 T ELT)) (-2682 (($ $ $) 75 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2141 (($ $ $ $) NIL T ELT)) (-2149 (($ $ $) 52 T ELT)) (-3324 (((-85) $) 22 T ELT)) (-1402 (($ $ $) NIL T ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL T ELT)) (-2528 (((-85) $) 9 T ELT)) (-2794 (((-85) $) 69 T ELT)) (-3585 (((-649 $) $) NIL T ELT)) (-3325 (((-85) $) 21 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2142 (($ $ $ $) 34 T ELT)) (-2650 (($ $ $) 72 T ELT)) (-2978 (($ $ $) 71 T ELT)) (-2145 (($ $) NIL T ELT)) (-3983 (($ $) 29 T ELT)) (-2381 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT) (((-647 (-499)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) 47 T ELT)) (-2140 (($ $ $) NIL T ELT)) (-3586 (($) NIL T CONST)) (-2147 (($ $) 15 T ELT)) (-3381 (((-1060) $) 19 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 117 T ELT)) (-3282 (($ $ $) 82 T ELT) (($ (-599 $)) NIL T ELT)) (-1400 (($ $) NIL T ELT)) (-3882 (((-359 $) $) 103 T ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2795 (((-85) $) 70 T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 74 T ELT)) (-3908 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-2146 (($ $) 17 T ELT)) (-3540 (($ $) 13 T ELT)) (-4122 (((-499) $) 28 T ELT) (((-488) $) 43 T ELT) (((-825 (-499)) $) NIL T ELT) (((-333) $) 37 T ELT) (((-179) $) 40 T ELT)) (-4096 (((-797) $) 26 T ELT) (($ (-499)) 27 T ELT) (($ $) NIL T ELT) (($ (-499)) 27 T ELT)) (-3248 (((-714)) NIL T CONST)) (-2150 (((-85) $ $) NIL T ELT)) (-3224 (($ $ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2815 (($) 12 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2144 (($ $ $ $) 31 T ELT)) (-3523 (($ $) 60 T ELT)) (-2779 (($) 10 T CONST)) (-2785 (($) 11 T CONST)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-2685 (((-85) $ $) 30 T ELT)) (-2686 (((-85) $ $) 63 T ELT)) (-3174 (((-85) $ $) 7 T ELT)) (-2805 (((-85) $ $) 64 T ELT)) (-2806 (((-85) $ $) 20 T ELT)) (-3987 (($ $) 44 T ELT) (($ $ $) 16 T ELT)) (-3989 (($ $ $) 14 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 68 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 66 T ELT) (($ $ $) 65 T ELT) (($ (-499) $) 66 T ELT))) -(((-499) (-13 (-498) (-10 -7 (-6 -4132) (-6 -4137) (-6 -4133)))) (T -499)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT))) -(((-500) (-13 (-777) (-10 -8 (-15 -3874 ($) -4102)))) (T -500)) -((-3874 (*1 *1) (-5 *1 (-500)))) -((-499) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT))) -(((-501) (-13 (-777) (-10 -8 (-15 -3874 ($) -4102)))) (T -501)) -((-3874 (*1 *1) (-5 *1 (-501)))) -((-499) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT))) -(((-502) (-13 (-777) (-10 -8 (-15 -3874 ($) -4102)))) (T -502)) -((-3874 (*1 *1) (-5 *1 (-502)))) -((-499) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT))) -(((-503) (-13 (-777) (-10 -8 (-15 -3874 ($) -4102)))) (T -503)) -((-3874 (*1 *1) (-5 *1 (-503)))) -((-499) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2687 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2299 (((-1213) $ |#1| |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2301 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2302 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-2333 (((-599 |#1|) $) NIL T ELT)) (-2334 (((-85) |#1| $) NIL T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2304 (((-599 |#1|) $) NIL T ELT)) (-2305 (((-85) |#1| $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-3951 ((|#2| $) NIL (|has| |#1| (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-568 (-797)))) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-504 |#1| |#2| |#3|) (-13 (-1134 |#1| |#2|) (-10 -7 (-6 -4145))) (-1041) (-1041) (-13 (-1134 |#1| |#2|) (-10 -7 (-6 -4145)))) (T -504)) -NIL -((-2151 (((-534 |#2|) |#2| (-566 |#2|) (-566 |#2|) (-1 (-1111 |#2|) (-1111 |#2|))) 50 T ELT))) -(((-505 |#1| |#2|) (-10 -7 (-15 -2151 ((-534 |#2|) |#2| (-566 |#2|) (-566 |#2|) (-1 (-1111 |#2|) (-1111 |#2|))))) (-510) (-13 (-27) (-375 |#1|))) (T -505)) -((-2151 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-566 *3)) (-5 *5 (-1 (-1111 *3) (-1111 *3))) (-4 *3 (-13 (-27) (-375 *6))) (-4 *6 (-510)) (-5 *2 (-534 *3)) (-5 *1 (-505 *6 *3))))) -((-2153 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2154 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2152 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) -(((-506 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2152 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2153 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2154 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-510) (-978 (-499))) (-13 (-27) (-375 |#1|)) (-1183 |#2|) (-1183 (-361 |#3|)) (-297 |#2| |#3| |#4|)) (T -506)) -((-2154 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-27) (-375 *4))) (-4 *4 (-13 (-510) (-978 (-499)))) (-4 *7 (-1183 (-361 *6))) (-5 *1 (-506 *4 *5 *6 *7 *2)) (-4 *2 (-297 *5 *6 *7)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1183 *6)) (-4 *6 (-13 (-27) (-375 *5))) (-4 *5 (-13 (-510) (-978 (-499)))) (-4 *8 (-1183 (-361 *7))) (-5 *2 (-534 *3)) (-5 *1 (-506 *5 *6 *7 *8 *3)) (-4 *3 (-297 *6 *7 *8)))) (-2152 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1183 *6)) (-4 *6 (-13 (-27) (-375 *5))) (-4 *5 (-13 (-510) (-978 (-499)))) (-4 *8 (-1183 (-361 *7))) (-5 *2 (-534 *3)) (-5 *1 (-506 *5 *6 *7 *8 *3)) (-4 *3 (-297 *6 *7 *8))))) -((-2157 (((-85) (-499) (-499)) 12 T ELT)) (-2155 (((-499) (-499)) 7 T ELT)) (-2156 (((-499) (-499) (-499)) 10 T ELT))) -(((-507) (-10 -7 (-15 -2155 ((-499) (-499))) (-15 -2156 ((-499) (-499) (-499))) (-15 -2157 ((-85) (-499) (-499))))) (T -507)) -((-2157 (*1 *2 *3 *3) (-12 (-5 *3 (-499)) (-5 *2 (-85)) (-5 *1 (-507)))) (-2156 (*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-507)))) (-2155 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-507))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2723 ((|#1| $) 74 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-3632 (($ $) 104 T ELT)) (-3789 (($ $) 87 T ELT)) (-2600 ((|#1| $) 75 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3158 (($ $) 86 T ELT)) (-3630 (($ $) 103 T ELT)) (-3788 (($ $) 88 T ELT)) (-3634 (($ $) 102 T ELT)) (-3787 (($ $) 89 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 (-499) "failed") $) 82 T ELT)) (-3294 (((-499) $) 83 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2160 (($ |#1| |#1|) 79 T ELT)) (-3324 (((-85) $) 73 T ELT)) (-3777 (($) 114 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 85 T ELT)) (-3325 (((-85) $) 72 T ELT)) (-2650 (($ $ $) 115 T ELT)) (-2978 (($ $ $) 116 T ELT)) (-4092 (($ $) 111 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2161 (($ |#1| |#1|) 80 T ELT) (($ |#1|) 78 T ELT) (($ (-361 (-499))) 77 T ELT)) (-2159 ((|#1| $) 76 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-4093 (($ $) 112 T ELT)) (-3635 (($ $) 101 T ELT)) (-3786 (($ $) 90 T ELT)) (-3633 (($ $) 100 T ELT)) (-3785 (($ $) 91 T ELT)) (-3631 (($ $) 99 T ELT)) (-3784 (($ $) 92 T ELT)) (-2158 (((-85) $ |#1|) 71 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-499)) 81 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-3638 (($ $) 110 T ELT)) (-3626 (($ $) 98 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-3636 (($ $) 109 T ELT)) (-3624 (($ $) 97 T ELT)) (-3640 (($ $) 108 T ELT)) (-3628 (($ $) 96 T ELT)) (-3641 (($ $) 107 T ELT)) (-3629 (($ $) 95 T ELT)) (-3639 (($ $) 106 T ELT)) (-3627 (($ $) 94 T ELT)) (-3637 (($ $) 105 T ELT)) (-3625 (($ $) 93 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2685 (((-85) $ $) 117 T ELT)) (-2686 (((-85) $ $) 119 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 118 T ELT)) (-2806 (((-85) $ $) 120 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ $) 113 T ELT) (($ $ (-361 (-499))) 84 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-508 |#1|) (-113) (-13 (-358) (-1143))) (T -508)) -((-2161 (*1 *1 *2 *2) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143))))) (-2160 (*1 *1 *2 *2) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143))))) (-2161 (*1 *1 *2) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143))))) (-2161 (*1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-4 *1 (-508 *3)) (-4 *3 (-13 (-358) (-1143))))) (-2159 (*1 *2 *1) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143))))) (-2600 (*1 *2 *1) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143))))) (-2723 (*1 *2 *1) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143))))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-508 *3)) (-4 *3 (-13 (-358) (-1143))) (-5 *2 (-85)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-508 *3)) (-4 *3 (-13 (-358) (-1143))) (-5 *2 (-85)))) (-2158 (*1 *2 *1 *3) (-12 (-4 *1 (-508 *3)) (-4 *3 (-13 (-358) (-1143))) (-5 *2 (-85))))) -(-13 (-406) (-781) (-1143) (-942) (-978 (-499)) (-10 -8 (-6 -3920) (-15 -2161 ($ |t#1| |t#1|)) (-15 -2160 ($ |t#1| |t#1|)) (-15 -2161 ($ |t#1|)) (-15 -2161 ($ (-361 (-499)))) (-15 -2159 (|t#1| $)) (-15 -2600 (|t#1| $)) (-15 -2723 (|t#1| $)) (-15 -3324 ((-85) $)) (-15 -3325 ((-85) $)) (-15 -2158 ((-85) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-238) . T) ((-244) . T) ((-406) . T) ((-447) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-781) . T) ((-784) . T) ((-942) . T) ((-978 (-499)) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1143) . T) ((-1146) . T) ((-1157) . T)) -((-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 9 T ELT)) (-2164 (($ $) 11 T ELT)) (-2162 (((-85) $) 20 T ELT)) (-3607 (((-3 $ "failed") $) 16 T ELT)) (-2163 (((-85) $ $) 22 T ELT))) -(((-509 |#1|) (-10 -7 (-15 -2162 ((-85) |#1|)) (-15 -2163 ((-85) |#1| |#1|)) (-15 -2164 (|#1| |#1|)) (-15 -2165 ((-2 (|:| -1870 |#1|) (|:| -4132 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3607 ((-3 |#1| "failed") |#1|))) (-510)) (T -509)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-510) (-113)) (T -510)) -((-3606 (*1 *1 *1 *1) (|partial| -4 *1 (-510))) (-2165 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1870 *1) (|:| -4132 *1) (|:| |associate| *1))) (-4 *1 (-510)))) (-2164 (*1 *1 *1) (-4 *1 (-510))) (-2163 (*1 *2 *1 *1) (-12 (-4 *1 (-510)) (-5 *2 (-85)))) (-2162 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-85))))) -(-13 (-146) (-38 $) (-244) (-10 -8 (-15 -3606 ((-3 $ "failed") $ $)) (-15 -2165 ((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $)) (-15 -2164 ($ $)) (-15 -2163 ((-85) $ $)) (-15 -2162 ((-85) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-244) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2167 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1117) (-599 |#2|)) 38 T ELT)) (-2169 (((-534 |#2|) |#2| (-1117)) 63 T ELT)) (-2168 (((-3 |#2| #1#) |#2| (-1117)) 156 T ELT)) (-2170 (((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1117) (-566 |#2|) (-599 (-566 |#2|))) 159 T ELT)) (-2166 (((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1117) |#2|) 41 T ELT))) -(((-511 |#1| |#2|) (-10 -7 (-15 -2166 ((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1117) |#2|)) (-15 -2167 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1117) (-599 |#2|))) (-15 -2168 ((-3 |#2| #1#) |#2| (-1117))) (-15 -2169 ((-534 |#2|) |#2| (-1117))) (-15 -2170 ((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1117) (-566 |#2|) (-599 (-566 |#2|))))) (-13 (-406) (-120) (-978 (-499)) (-596 (-499))) (-13 (-27) (-1143) (-375 |#1|))) (T -511)) -((-2170 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1117)) (-5 *6 (-599 (-566 *3))) (-5 *5 (-566 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *7))) (-4 *7 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-511 *7 *3)))) (-2169 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-534 *3)) (-5 *1 (-511 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) (-2168 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) (-5 *1 (-511 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4))))) (-2167 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-599 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-511 *6 *3)))) (-2166 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-511 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5)))))) -((-4121 (((-359 |#1|) |#1|) 17 T ELT)) (-3882 (((-359 |#1|) |#1|) 32 T ELT)) (-2172 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2171 (((-359 |#1|) |#1|) 59 T ELT))) -(((-512 |#1|) (-10 -7 (-15 -3882 ((-359 |#1|) |#1|)) (-15 -4121 ((-359 |#1|) |#1|)) (-15 -2171 ((-359 |#1|) |#1|)) (-15 -2172 ((-3 |#1| "failed") |#1|))) (-498)) (T -512)) -((-2172 (*1 *2 *2) (|partial| -12 (-5 *1 (-512 *2)) (-4 *2 (-498)))) (-2171 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-512 *3)) (-4 *3 (-498)))) (-4121 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-512 *3)) (-4 *3 (-498)))) (-3882 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-512 *3)) (-4 *3 (-498))))) -((-3206 (((-1111 (-361 (-1111 |#2|))) |#2| (-566 |#2|) (-566 |#2|) (-1111 |#2|)) 35 T ELT)) (-2175 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-566 |#2|) (-566 |#2|) (-599 |#2|) (-566 |#2|) |#2| (-361 (-1111 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-566 |#2|) (-566 |#2|) (-599 |#2|) |#2| (-1111 |#2|)) 115 T ELT)) (-2173 (((-534 |#2|) |#2| (-566 |#2|) (-566 |#2|) (-566 |#2|) |#2| (-361 (-1111 |#2|))) 85 T ELT) (((-534 |#2|) |#2| (-566 |#2|) (-566 |#2|) |#2| (-1111 |#2|)) 55 T ELT)) (-2174 (((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-566 |#2|) (-566 |#2|) |#2| (-566 |#2|) |#2| (-361 (-1111 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-566 |#2|) (-566 |#2|) |#2| |#2| (-1111 |#2|)) 114 T ELT)) (-2176 (((-3 |#2| #1#) |#2| |#2| (-566 |#2|) (-566 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1117)) (-566 |#2|) |#2| (-361 (-1111 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-566 |#2|) (-566 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1117)) |#2| (-1111 |#2|)) 116 T ELT)) (-2177 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2113 (-599 |#2|))) |#3| |#2| (-566 |#2|) (-566 |#2|) (-566 |#2|) |#2| (-361 (-1111 |#2|))) 133 (|has| |#3| (-616 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2113 (-599 |#2|))) |#3| |#2| (-566 |#2|) (-566 |#2|) |#2| (-1111 |#2|)) 132 (|has| |#3| (-616 |#2|)) ELT)) (-3207 ((|#2| (-1111 (-361 (-1111 |#2|))) (-566 |#2|) |#2|) 53 T ELT)) (-3200 (((-1111 (-361 (-1111 |#2|))) (-1111 |#2|) (-566 |#2|)) 34 T ELT))) -(((-513 |#1| |#2| |#3|) (-10 -7 (-15 -2173 ((-534 |#2|) |#2| (-566 |#2|) (-566 |#2|) |#2| (-1111 |#2|))) (-15 -2173 ((-534 |#2|) |#2| (-566 |#2|) (-566 |#2|) (-566 |#2|) |#2| (-361 (-1111 |#2|)))) (-15 -2174 ((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-566 |#2|) (-566 |#2|) |#2| |#2| (-1111 |#2|))) (-15 -2174 ((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-566 |#2|) (-566 |#2|) |#2| (-566 |#2|) |#2| (-361 (-1111 |#2|)))) (-15 -2175 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-566 |#2|) (-566 |#2|) (-599 |#2|) |#2| (-1111 |#2|))) (-15 -2175 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-566 |#2|) (-566 |#2|) (-599 |#2|) (-566 |#2|) |#2| (-361 (-1111 |#2|)))) (-15 -2176 ((-3 |#2| #1#) |#2| |#2| (-566 |#2|) (-566 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1117)) |#2| (-1111 |#2|))) (-15 -2176 ((-3 |#2| #1#) |#2| |#2| (-566 |#2|) (-566 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1117)) (-566 |#2|) |#2| (-361 (-1111 |#2|)))) (-15 -3206 ((-1111 (-361 (-1111 |#2|))) |#2| (-566 |#2|) (-566 |#2|) (-1111 |#2|))) (-15 -3207 (|#2| (-1111 (-361 (-1111 |#2|))) (-566 |#2|) |#2|)) (-15 -3200 ((-1111 (-361 (-1111 |#2|))) (-1111 |#2|) (-566 |#2|))) (IF (|has| |#3| (-616 |#2|)) (PROGN (-15 -2177 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2113 (-599 |#2|))) |#3| |#2| (-566 |#2|) (-566 |#2|) |#2| (-1111 |#2|))) (-15 -2177 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2113 (-599 |#2|))) |#3| |#2| (-566 |#2|) (-566 |#2|) (-566 |#2|) |#2| (-361 (-1111 |#2|))))) |%noBranch|)) (-13 (-406) (-978 (-499)) (-120) (-596 (-499))) (-13 (-375 |#1|) (-27) (-1143)) (-1041)) (T -513)) -((-2177 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-566 *4)) (-5 *6 (-361 (-1111 *4))) (-4 *4 (-13 (-375 *7) (-27) (-1143))) (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2113 (-599 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-616 *4)) (-4 *3 (-1041)))) (-2177 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-566 *4)) (-5 *6 (-1111 *4)) (-4 *4 (-13 (-375 *7) (-27) (-1143))) (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2113 (-599 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-616 *4)) (-4 *3 (-1041)))) (-3200 (*1 *2 *3 *4) (-12 (-5 *4 (-566 *6)) (-4 *6 (-13 (-375 *5) (-27) (-1143))) (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-1111 (-361 (-1111 *6)))) (-5 *1 (-513 *5 *6 *7)) (-5 *3 (-1111 *6)) (-4 *7 (-1041)))) (-3207 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1111 (-361 (-1111 *2)))) (-5 *4 (-566 *2)) (-4 *2 (-13 (-375 *5) (-27) (-1143))) (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1041)))) (-3206 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-566 *3)) (-4 *3 (-13 (-375 *6) (-27) (-1143))) (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-1111 (-361 (-1111 *3)))) (-5 *1 (-513 *6 *3 *7)) (-5 *5 (-1111 *3)) (-4 *7 (-1041)))) (-2176 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-566 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1117))) (-5 *5 (-361 (-1111 *2))) (-4 *2 (-13 (-375 *6) (-27) (-1143))) (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1041)))) (-2176 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-566 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1117))) (-5 *5 (-1111 *2)) (-4 *2 (-13 (-375 *6) (-27) (-1143))) (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1041)))) (-2175 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-599 *3)) (-5 *6 (-361 (-1111 *3))) (-4 *3 (-13 (-375 *7) (-27) (-1143))) (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1041)))) (-2175 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-599 *3)) (-5 *6 (-1111 *3)) (-4 *3 (-13 (-375 *7) (-27) (-1143))) (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1041)))) (-2174 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-361 (-1111 *3))) (-4 *3 (-13 (-375 *6) (-27) (-1143))) (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1041)))) (-2174 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-1111 *3)) (-4 *3 (-13 (-375 *6) (-27) (-1143))) (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1041)))) (-2173 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-566 *3)) (-5 *5 (-361 (-1111 *3))) (-4 *3 (-13 (-375 *6) (-27) (-1143))) (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1041)))) (-2173 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-566 *3)) (-5 *5 (-1111 *3)) (-4 *3 (-13 (-375 *6) (-27) (-1143))) (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1041))))) -((-2187 (((-499) (-499) (-714)) 87 T ELT)) (-2186 (((-499) (-499)) 85 T ELT)) (-2185 (((-499) (-499)) 82 T ELT)) (-2184 (((-499) (-499)) 89 T ELT)) (-2926 (((-499) (-499) (-499)) 67 T ELT)) (-2183 (((-499) (-499) (-499)) 64 T ELT)) (-2182 (((-361 (-499)) (-499)) 29 T ELT)) (-2181 (((-499) (-499)) 34 T ELT)) (-2180 (((-499) (-499)) 76 T ELT)) (-2923 (((-499) (-499)) 47 T ELT)) (-2179 (((-599 (-499)) (-499)) 81 T ELT)) (-2178 (((-499) (-499) (-499) (-499) (-499)) 60 T ELT)) (-2919 (((-361 (-499)) (-499)) 56 T ELT))) -(((-514) (-10 -7 (-15 -2919 ((-361 (-499)) (-499))) (-15 -2178 ((-499) (-499) (-499) (-499) (-499))) (-15 -2179 ((-599 (-499)) (-499))) (-15 -2923 ((-499) (-499))) (-15 -2180 ((-499) (-499))) (-15 -2181 ((-499) (-499))) (-15 -2182 ((-361 (-499)) (-499))) (-15 -2183 ((-499) (-499) (-499))) (-15 -2926 ((-499) (-499) (-499))) (-15 -2184 ((-499) (-499))) (-15 -2185 ((-499) (-499))) (-15 -2186 ((-499) (-499))) (-15 -2187 ((-499) (-499) (-714))))) (T -514)) -((-2187 (*1 *2 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-714)) (-5 *1 (-514)))) (-2186 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) (-2185 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) (-2184 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) (-2926 (*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) (-2183 (*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) (-2182 (*1 *2 *3) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-514)) (-5 *3 (-499)))) (-2181 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) (-2180 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) (-2923 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) (-2179 (*1 *2 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-514)) (-5 *3 (-499)))) (-2178 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) (-2919 (*1 *2 *3) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-514)) (-5 *3 (-499))))) -((-2188 (((-2 (|:| |answer| |#4|) (|:| -2236 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) -(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2188 ((-2 (|:| |answer| |#4|) (|:| -2236 |#4|)) |#4| (-1 |#2| |#2|)))) (-318) (-1183 |#1|) (-1183 (-361 |#2|)) (-297 |#1| |#2| |#3|)) (T -515)) -((-2188 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) (-4 *7 (-1183 (-361 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2236 *3))) (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-297 *5 *6 *7))))) -((-2188 (((-2 (|:| |answer| (-361 |#2|)) (|:| -2236 (-361 |#2|)) (|:| |specpart| (-361 |#2|)) (|:| |polypart| |#2|)) (-361 |#2|) (-1 |#2| |#2|)) 18 T ELT))) -(((-516 |#1| |#2|) (-10 -7 (-15 -2188 ((-2 (|:| |answer| (-361 |#2|)) (|:| -2236 (-361 |#2|)) (|:| |specpart| (-361 |#2|)) (|:| |polypart| |#2|)) (-361 |#2|) (-1 |#2| |#2|)))) (-318) (-1183 |#1|)) (T -516)) -((-2188 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) (-5 *2 (-2 (|:| |answer| (-361 *6)) (|:| -2236 (-361 *6)) (|:| |specpart| (-361 *6)) (|:| |polypart| *6))) (-5 *1 (-516 *5 *6)) (-5 *3 (-361 *6))))) -((-2191 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-566 |#2|) (-566 |#2|) (-599 |#2|)) 195 T ELT)) (-2189 (((-534 |#2|) |#2| (-566 |#2|) (-566 |#2|)) 97 T ELT)) (-2190 (((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-566 |#2|) (-566 |#2|) |#2|) 191 T ELT)) (-2192 (((-3 |#2| #1#) |#2| |#2| |#2| (-566 |#2|) (-566 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1117))) 200 T ELT)) (-2193 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2113 (-599 |#2|))) |#3| |#2| (-566 |#2|) (-566 |#2|) (-1117)) 209 (|has| |#3| (-616 |#2|)) ELT))) -(((-517 |#1| |#2| |#3|) (-10 -7 (-15 -2189 ((-534 |#2|) |#2| (-566 |#2|) (-566 |#2|))) (-15 -2190 ((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-566 |#2|) (-566 |#2|) |#2|)) (-15 -2191 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-566 |#2|) (-566 |#2|) (-599 |#2|))) (-15 -2192 ((-3 |#2| #1#) |#2| |#2| |#2| (-566 |#2|) (-566 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1117)))) (IF (|has| |#3| (-616 |#2|)) (-15 -2193 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2113 (-599 |#2|))) |#3| |#2| (-566 |#2|) (-566 |#2|) (-1117))) |%noBranch|)) (-13 (-406) (-978 (-499)) (-120) (-596 (-499))) (-13 (-375 |#1|) (-27) (-1143)) (-1041)) (T -517)) -((-2193 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-566 *4)) (-5 *6 (-1117)) (-4 *4 (-13 (-375 *7) (-27) (-1143))) (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2113 (-599 *4)))) (-5 *1 (-517 *7 *4 *3)) (-4 *3 (-616 *4)) (-4 *3 (-1041)))) (-2192 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-566 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1117))) (-4 *2 (-13 (-375 *5) (-27) (-1143))) (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *1 (-517 *5 *2 *6)) (-4 *6 (-1041)))) (-2191 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-599 *3)) (-4 *3 (-13 (-375 *6) (-27) (-1143))) (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1041)))) (-2190 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-566 *3)) (-4 *3 (-13 (-375 *5) (-27) (-1143))) (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-517 *5 *3 *6)) (-4 *6 (-1041)))) (-2189 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-566 *3)) (-4 *3 (-13 (-375 *5) (-27) (-1143))) (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-534 *3)) (-5 *1 (-517 *5 *3 *6)) (-4 *6 (-1041))))) -((-2194 (((-2 (|:| -2444 |#2|) (|:| |nconst| |#2|)) |#2| (-1117)) 64 T ELT)) (-2196 (((-3 |#2| #1="failed") |#2| (-1117) (-775 |#2|) (-775 |#2|)) 175 (-12 (|has| |#2| (-1079)) (|has| |#1| (-569 (-825 (-499)))) (|has| |#1| (-821 (-499)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1117)) 155 (-12 (|has| |#2| (-585)) (|has| |#1| (-569 (-825 (-499)))) (|has| |#1| (-821 (-499)))) ELT)) (-2195 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1117)) 157 (-12 (|has| |#2| (-585)) (|has| |#1| (-569 (-825 (-499)))) (|has| |#1| (-821 (-499)))) ELT))) -(((-518 |#1| |#2|) (-10 -7 (-15 -2194 ((-2 (|:| -2444 |#2|) (|:| |nconst| |#2|)) |#2| (-1117))) (IF (|has| |#1| (-569 (-825 (-499)))) (IF (|has| |#1| (-821 (-499))) (PROGN (IF (|has| |#2| (-585)) (PROGN (-15 -2195 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1117))) (-15 -2196 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1117)))) |%noBranch|) (IF (|has| |#2| (-1079)) (-15 -2196 ((-3 |#2| #1#) |#2| (-1117) (-775 |#2|) (-775 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-978 (-499)) (-406) (-596 (-499))) (-13 (-27) (-1143) (-375 |#1|))) (T -518)) -((-2196 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1117)) (-5 *4 (-775 *2)) (-4 *2 (-1079)) (-4 *2 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-569 (-825 (-499)))) (-4 *5 (-821 (-499))) (-4 *5 (-13 (-978 (-499)) (-406) (-596 (-499)))) (-5 *1 (-518 *5 *2)))) (-2196 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-569 (-825 (-499)))) (-4 *5 (-821 (-499))) (-4 *5 (-13 (-978 (-499)) (-406) (-596 (-499)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-585)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) (-2195 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-569 (-825 (-499)))) (-4 *5 (-821 (-499))) (-4 *5 (-13 (-978 (-499)) (-406) (-596 (-499)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-585)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) (-2194 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-978 (-499)) (-406) (-596 (-499)))) (-5 *2 (-2 (|:| -2444 *3) (|:| |nconst| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5)))))) -((-2199 (((-3 (-2 (|:| |mainpart| (-361 |#2|)) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 |#2|)) (|:| |logand| (-361 |#2|)))))) #1="failed") (-361 |#2|) (-599 (-361 |#2|))) 41 T ELT)) (-3962 (((-534 (-361 |#2|)) (-361 |#2|)) 28 T ELT)) (-2197 (((-3 (-361 |#2|) #1#) (-361 |#2|)) 17 T ELT)) (-2198 (((-3 (-2 (|:| -2237 (-361 |#2|)) (|:| |coeff| (-361 |#2|))) #1#) (-361 |#2|) (-361 |#2|)) 48 T ELT))) -(((-519 |#1| |#2|) (-10 -7 (-15 -3962 ((-534 (-361 |#2|)) (-361 |#2|))) (-15 -2197 ((-3 (-361 |#2|) #1="failed") (-361 |#2|))) (-15 -2198 ((-3 (-2 (|:| -2237 (-361 |#2|)) (|:| |coeff| (-361 |#2|))) #1#) (-361 |#2|) (-361 |#2|))) (-15 -2199 ((-3 (-2 (|:| |mainpart| (-361 |#2|)) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 |#2|)) (|:| |logand| (-361 |#2|)))))) #1#) (-361 |#2|) (-599 (-361 |#2|))))) (-13 (-318) (-120) (-978 (-499))) (-1183 |#1|)) (T -519)) -((-2199 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-599 (-361 *6))) (-5 *3 (-361 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-318) (-120) (-978 (-499)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *5 *6)))) (-2198 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-318) (-120) (-978 (-499)))) (-4 *5 (-1183 *4)) (-5 *2 (-2 (|:| -2237 (-361 *5)) (|:| |coeff| (-361 *5)))) (-5 *1 (-519 *4 *5)) (-5 *3 (-361 *5)))) (-2197 (*1 *2 *2) (|partial| -12 (-5 *2 (-361 *4)) (-4 *4 (-1183 *3)) (-4 *3 (-13 (-318) (-120) (-978 (-499)))) (-5 *1 (-519 *3 *4)))) (-3962 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-120) (-978 (-499)))) (-4 *5 (-1183 *4)) (-5 *2 (-534 (-361 *5))) (-5 *1 (-519 *4 *5)) (-5 *3 (-361 *5))))) -((-2200 (((-3 (-499) "failed") |#1|) 14 T ELT)) (-3397 (((-85) |#1|) 13 T ELT)) (-3393 (((-499) |#1|) 9 T ELT))) -(((-520 |#1|) (-10 -7 (-15 -3393 ((-499) |#1|)) (-15 -3397 ((-85) |#1|)) (-15 -2200 ((-3 (-499) "failed") |#1|))) (-978 (-499))) (T -520)) -((-2200 (*1 *2 *3) (|partial| -12 (-5 *2 (-499)) (-5 *1 (-520 *3)) (-4 *3 (-978 *2)))) (-3397 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-520 *3)) (-4 *3 (-978 (-499))))) (-3393 (*1 *2 *3) (-12 (-5 *2 (-499)) (-5 *1 (-520 *3)) (-4 *3 (-978 *2))))) -((-2203 (((-3 (-2 (|:| |mainpart| (-361 (-884 |#1|))) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 (-884 |#1|))) (|:| |logand| (-361 (-884 |#1|))))))) #1="failed") (-361 (-884 |#1|)) (-1117) (-599 (-361 (-884 |#1|)))) 48 T ELT)) (-2201 (((-534 (-361 (-884 |#1|))) (-361 (-884 |#1|)) (-1117)) 28 T ELT)) (-2202 (((-3 (-361 (-884 |#1|)) #1#) (-361 (-884 |#1|)) (-1117)) 23 T ELT)) (-2204 (((-3 (-2 (|:| -2237 (-361 (-884 |#1|))) (|:| |coeff| (-361 (-884 |#1|)))) #1#) (-361 (-884 |#1|)) (-1117) (-361 (-884 |#1|))) 35 T ELT))) -(((-521 |#1|) (-10 -7 (-15 -2201 ((-534 (-361 (-884 |#1|))) (-361 (-884 |#1|)) (-1117))) (-15 -2202 ((-3 (-361 (-884 |#1|)) #1="failed") (-361 (-884 |#1|)) (-1117))) (-15 -2203 ((-3 (-2 (|:| |mainpart| (-361 (-884 |#1|))) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 (-884 |#1|))) (|:| |logand| (-361 (-884 |#1|))))))) #1#) (-361 (-884 |#1|)) (-1117) (-599 (-361 (-884 |#1|))))) (-15 -2204 ((-3 (-2 (|:| -2237 (-361 (-884 |#1|))) (|:| |coeff| (-361 (-884 |#1|)))) #1#) (-361 (-884 |#1|)) (-1117) (-361 (-884 |#1|))))) (-13 (-510) (-978 (-499)) (-120))) (T -521)) -((-2204 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)) (-120))) (-5 *2 (-2 (|:| -2237 (-361 (-884 *5))) (|:| |coeff| (-361 (-884 *5))))) (-5 *1 (-521 *5)) (-5 *3 (-361 (-884 *5))))) (-2203 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-599 (-361 (-884 *6)))) (-5 *3 (-361 (-884 *6))) (-4 *6 (-13 (-510) (-978 (-499)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *6)))) (-2202 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-361 (-884 *4))) (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)) (-120))) (-5 *1 (-521 *4)))) (-2201 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)) (-120))) (-5 *2 (-534 (-361 (-884 *5)))) (-5 *1 (-521 *5)) (-5 *3 (-361 (-884 *5)))))) -((-2687 (((-85) $ $) 77 T ELT)) (-3326 (((-85) $) 49 T ELT)) (-2723 ((|#1| $) 39 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) 81 T ELT)) (-3632 (($ $) 142 T ELT)) (-3789 (($ $) 120 T ELT)) (-2600 ((|#1| $) 37 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3158 (($ $) NIL T ELT)) (-3630 (($ $) 144 T ELT)) (-3788 (($ $) 116 T ELT)) (-3634 (($ $) 146 T ELT)) (-3787 (($ $) 124 T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) 95 T ELT)) (-3294 (((-499) $) 97 T ELT)) (-3607 (((-3 $ #1#) $) 80 T ELT)) (-2160 (($ |#1| |#1|) 35 T ELT)) (-3324 (((-85) $) 44 T ELT)) (-3777 (($) 106 T ELT)) (-2528 (((-85) $) 56 T ELT)) (-3132 (($ $ (-499)) NIL T ELT)) (-3325 (((-85) $) 46 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-4092 (($ $) 108 T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2161 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-361 (-499))) 94 T ELT)) (-2159 ((|#1| $) 36 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) 83 T ELT) (($ (-599 $)) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) 82 T ELT)) (-4093 (($ $) 110 T ELT)) (-3635 (($ $) 150 T ELT)) (-3786 (($ $) 122 T ELT)) (-3633 (($ $) 152 T ELT)) (-3785 (($ $) 126 T ELT)) (-3631 (($ $) 148 T ELT)) (-3784 (($ $) 118 T ELT)) (-2158 (((-85) $ |#1|) 42 T ELT)) (-4096 (((-797) $) 102 T ELT) (($ (-499)) 85 T ELT) (($ $) NIL T ELT) (($ (-499)) 85 T ELT)) (-3248 (((-714)) 104 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) 164 T ELT)) (-3626 (($ $) 132 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3636 (($ $) 162 T ELT)) (-3624 (($ $) 128 T ELT)) (-3640 (($ $) 160 T ELT)) (-3628 (($ $) 140 T ELT)) (-3641 (($ $) 158 T ELT)) (-3629 (($ $) 138 T ELT)) (-3639 (($ $) 156 T ELT)) (-3627 (($ $) 134 T ELT)) (-3637 (($ $) 154 T ELT)) (-3625 (($ $) 130 T ELT)) (-2779 (($) 30 T CONST)) (-2785 (($) 10 T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 50 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 48 T ELT)) (-3987 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3989 (($ $ $) 53 T ELT)) (** (($ $ (-857)) 73 T ELT) (($ $ (-714)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-361 (-499))) 166 T ELT)) (* (($ (-857) $) 67 T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 66 T ELT) (($ $ $) 62 T ELT))) -(((-522 |#1|) (-508 |#1|) (-13 (-358) (-1143))) (T -522)) -NIL -((-2825 (((-3 (-599 (-1111 (-499))) "failed") (-599 (-1111 (-499))) (-1111 (-499))) 27 T ELT))) -(((-523) (-10 -7 (-15 -2825 ((-3 (-599 (-1111 (-499))) "failed") (-599 (-1111 (-499))) (-1111 (-499)))))) (T -523)) -((-2825 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 (-1111 (-499)))) (-5 *3 (-1111 (-499))) (-5 *1 (-523))))) -((-2205 (((-599 (-566 |#2|)) (-599 (-566 |#2|)) (-1117)) 19 T ELT)) (-2208 (((-599 (-566 |#2|)) (-599 |#2|) (-1117)) 23 T ELT)) (-3372 (((-599 (-566 |#2|)) (-599 (-566 |#2|)) (-599 (-566 |#2|))) 11 T ELT)) (-2209 ((|#2| |#2| (-1117)) 59 (|has| |#1| (-510)) ELT)) (-2210 ((|#2| |#2| (-1117)) 87 (-12 (|has| |#2| (-238)) (|has| |#1| (-406))) ELT)) (-2207 (((-566 |#2|) (-566 |#2|) (-599 (-566 |#2|)) (-1117)) 25 T ELT)) (-2206 (((-566 |#2|) (-599 (-566 |#2|))) 24 T ELT)) (-2211 (((-534 |#2|) |#2| (-1117) (-1 (-534 |#2|) |#2| (-1117)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117))) 115 (-12 (|has| |#2| (-238)) (|has| |#2| (-585)) (|has| |#2| (-978 (-1117))) (|has| |#1| (-569 (-825 (-499)))) (|has| |#1| (-406)) (|has| |#1| (-821 (-499)))) ELT))) -(((-524 |#1| |#2|) (-10 -7 (-15 -2205 ((-599 (-566 |#2|)) (-599 (-566 |#2|)) (-1117))) (-15 -2206 ((-566 |#2|) (-599 (-566 |#2|)))) (-15 -2207 ((-566 |#2|) (-566 |#2|) (-599 (-566 |#2|)) (-1117))) (-15 -3372 ((-599 (-566 |#2|)) (-599 (-566 |#2|)) (-599 (-566 |#2|)))) (-15 -2208 ((-599 (-566 |#2|)) (-599 |#2|) (-1117))) (IF (|has| |#1| (-510)) (-15 -2209 (|#2| |#2| (-1117))) |%noBranch|) (IF (|has| |#1| (-406)) (IF (|has| |#2| (-238)) (PROGN (-15 -2210 (|#2| |#2| (-1117))) (IF (|has| |#1| (-569 (-825 (-499)))) (IF (|has| |#1| (-821 (-499))) (IF (|has| |#2| (-585)) (IF (|has| |#2| (-978 (-1117))) (-15 -2211 ((-534 |#2|) |#2| (-1117) (-1 (-534 |#2|) |#2| (-1117)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1041) (-375 |#1|)) (T -524)) -((-2211 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-534 *3) *3 (-1117))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1117))) (-4 *3 (-238)) (-4 *3 (-585)) (-4 *3 (-978 *4)) (-4 *3 (-375 *7)) (-5 *4 (-1117)) (-4 *7 (-569 (-825 (-499)))) (-4 *7 (-406)) (-4 *7 (-821 (-499))) (-4 *7 (-1041)) (-5 *2 (-534 *3)) (-5 *1 (-524 *7 *3)))) (-2210 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-406)) (-4 *4 (-1041)) (-5 *1 (-524 *4 *2)) (-4 *2 (-238)) (-4 *2 (-375 *4)))) (-2209 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-4 *4 (-1041)) (-5 *1 (-524 *4 *2)) (-4 *2 (-375 *4)))) (-2208 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6)) (-5 *4 (-1117)) (-4 *6 (-375 *5)) (-4 *5 (-1041)) (-5 *2 (-599 (-566 *6))) (-5 *1 (-524 *5 *6)))) (-3372 (*1 *2 *2 *2) (-12 (-5 *2 (-599 (-566 *4))) (-4 *4 (-375 *3)) (-4 *3 (-1041)) (-5 *1 (-524 *3 *4)))) (-2207 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-599 (-566 *6))) (-5 *4 (-1117)) (-5 *2 (-566 *6)) (-4 *6 (-375 *5)) (-4 *5 (-1041)) (-5 *1 (-524 *5 *6)))) (-2206 (*1 *2 *3) (-12 (-5 *3 (-599 (-566 *5))) (-4 *4 (-1041)) (-5 *2 (-566 *5)) (-5 *1 (-524 *4 *5)) (-4 *5 (-375 *4)))) (-2205 (*1 *2 *2 *3) (-12 (-5 *2 (-599 (-566 *5))) (-5 *3 (-1117)) (-4 *5 (-375 *4)) (-4 *4 (-1041)) (-5 *1 (-524 *4 *5))))) -((-2214 (((-2 (|:| |answer| (-534 (-361 |#2|))) (|:| |a0| |#1|)) (-361 |#2|) (-1 |#2| |#2|) (-1 (-3 (-599 |#1|) #1="failed") (-499) |#1| |#1|)) 199 T ELT)) (-2217 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-361 |#2|)) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 |#2|)) (|:| |logand| (-361 |#2|))))))) (|:| |a0| |#1|)) #1#) (-361 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-599 (-361 |#2|))) 174 T ELT)) (-2220 (((-3 (-2 (|:| |mainpart| (-361 |#2|)) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 |#2|)) (|:| |logand| (-361 |#2|)))))) #1#) (-361 |#2|) (-1 |#2| |#2|) (-599 (-361 |#2|))) 171 T ELT)) (-2221 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2212 (((-2 (|:| |answer| (-534 (-361 |#2|))) (|:| |a0| |#1|)) (-361 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2219 (((-3 (-2 (|:| -2237 (-361 |#2|)) (|:| |coeff| (-361 |#2|))) #1#) (-361 |#2|) (-1 |#2| |#2|) (-361 |#2|)) 202 T ELT)) (-2215 (((-3 (-2 (|:| |answer| (-361 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2237 (-361 |#2|)) (|:| |coeff| (-361 |#2|))) #1#) (-361 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-361 |#2|)) 205 T ELT)) (-2223 (((-2 (|:| |ir| (-534 (-361 |#2|))) (|:| |specpart| (-361 |#2|)) (|:| |polypart| |#2|)) (-361 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2224 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2218 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-361 |#2|)) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 |#2|)) (|:| |logand| (-361 |#2|))))))) (|:| |a0| |#1|)) #1#) (-361 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3259 |#1|) (|:| |sol?| (-85))) (-499) |#1|) (-599 (-361 |#2|))) 178 T ELT)) (-2222 (((-3 (-578 |#1| |#2|) #1#) (-578 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3259 |#1|) (|:| |sol?| (-85))) (-499) |#1|)) 166 T ELT)) (-2213 (((-2 (|:| |answer| (-534 (-361 |#2|))) (|:| |a0| |#1|)) (-361 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3259 |#1|) (|:| |sol?| (-85))) (-499) |#1|)) 189 T ELT)) (-2216 (((-3 (-2 (|:| |answer| (-361 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2237 (-361 |#2|)) (|:| |coeff| (-361 |#2|))) #1#) (-361 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3259 |#1|) (|:| |sol?| (-85))) (-499) |#1|) (-361 |#2|)) 210 T ELT))) -(((-525 |#1| |#2|) (-10 -7 (-15 -2212 ((-2 (|:| |answer| (-534 (-361 |#2|))) (|:| |a0| |#1|)) (-361 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2213 ((-2 (|:| |answer| (-534 (-361 |#2|))) (|:| |a0| |#1|)) (-361 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3259 |#1|) (|:| |sol?| (-85))) (-499) |#1|))) (-15 -2214 ((-2 (|:| |answer| (-534 (-361 |#2|))) (|:| |a0| |#1|)) (-361 |#2|) (-1 |#2| |#2|) (-1 (-3 (-599 |#1|) #1#) (-499) |#1| |#1|))) (-15 -2215 ((-3 (-2 (|:| |answer| (-361 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2237 (-361 |#2|)) (|:| |coeff| (-361 |#2|))) #1#) (-361 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-361 |#2|))) (-15 -2216 ((-3 (-2 (|:| |answer| (-361 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2237 (-361 |#2|)) (|:| |coeff| (-361 |#2|))) #1#) (-361 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3259 |#1|) (|:| |sol?| (-85))) (-499) |#1|) (-361 |#2|))) (-15 -2217 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-361 |#2|)) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 |#2|)) (|:| |logand| (-361 |#2|))))))) (|:| |a0| |#1|)) #1#) (-361 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-599 (-361 |#2|)))) (-15 -2218 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-361 |#2|)) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 |#2|)) (|:| |logand| (-361 |#2|))))))) (|:| |a0| |#1|)) #1#) (-361 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3259 |#1|) (|:| |sol?| (-85))) (-499) |#1|) (-599 (-361 |#2|)))) (-15 -2219 ((-3 (-2 (|:| -2237 (-361 |#2|)) (|:| |coeff| (-361 |#2|))) #1#) (-361 |#2|) (-1 |#2| |#2|) (-361 |#2|))) (-15 -2220 ((-3 (-2 (|:| |mainpart| (-361 |#2|)) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 |#2|)) (|:| |logand| (-361 |#2|)))))) #1#) (-361 |#2|) (-1 |#2| |#2|) (-599 (-361 |#2|)))) (-15 -2221 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2222 ((-3 (-578 |#1| |#2|) #1#) (-578 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3259 |#1|) (|:| |sol?| (-85))) (-499) |#1|))) (-15 -2223 ((-2 (|:| |ir| (-534 (-361 |#2|))) (|:| |specpart| (-361 |#2|)) (|:| |polypart| |#2|)) (-361 |#2|) (-1 |#2| |#2|))) (-15 -2224 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-318) (-1183 |#1|)) (T -525)) -((-2224 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-318)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-525 *5 *3)))) (-2223 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) (-5 *2 (-2 (|:| |ir| (-534 (-361 *6))) (|:| |specpart| (-361 *6)) (|:| |polypart| *6))) (-5 *1 (-525 *5 *6)) (-5 *3 (-361 *6)))) (-2222 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3259 *4) (|:| |sol?| (-85))) (-499) *4)) (-4 *4 (-318)) (-4 *5 (-1183 *4)) (-5 *1 (-525 *4 *5)))) (-2221 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2237 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-318)) (-5 *1 (-525 *4 *2)) (-4 *2 (-1183 *4)))) (-2220 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-599 (-361 *7))) (-4 *7 (-1183 *6)) (-5 *3 (-361 *7)) (-4 *6 (-318)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-525 *6 *7)))) (-2219 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) (-5 *2 (-2 (|:| -2237 (-361 *6)) (|:| |coeff| (-361 *6)))) (-5 *1 (-525 *5 *6)) (-5 *3 (-361 *6)))) (-2218 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3259 *7) (|:| |sol?| (-85))) (-499) *7)) (-5 *6 (-599 (-361 *8))) (-4 *7 (-318)) (-4 *8 (-1183 *7)) (-5 *3 (-361 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-525 *7 *8)))) (-2217 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2237 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-599 (-361 *8))) (-4 *7 (-318)) (-4 *8 (-1183 *7)) (-5 *3 (-361 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-525 *7 *8)))) (-2216 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3259 *6) (|:| |sol?| (-85))) (-499) *6)) (-4 *6 (-318)) (-4 *7 (-1183 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-361 *7)) (|:| |a0| *6)) (-2 (|:| -2237 (-361 *7)) (|:| |coeff| (-361 *7))) "failed")) (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7)))) (-2215 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2237 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-318)) (-4 *7 (-1183 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-361 *7)) (|:| |a0| *6)) (-2 (|:| -2237 (-361 *7)) (|:| |coeff| (-361 *7))) "failed")) (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7)))) (-2214 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-599 *6) "failed") (-499) *6 *6)) (-4 *6 (-318)) (-4 *7 (-1183 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-361 *7))) (|:| |a0| *6))) (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7)))) (-2213 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3259 *6) (|:| |sol?| (-85))) (-499) *6)) (-4 *6 (-318)) (-4 *7 (-1183 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-361 *7))) (|:| |a0| *6))) (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7)))) (-2212 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2237 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-318)) (-4 *7 (-1183 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-361 *7))) (|:| |a0| *6))) (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7))))) -((-2225 (((-3 |#2| "failed") |#2| (-1117) (-1117)) 10 T ELT))) -(((-526 |#1| |#2|) (-10 -7 (-15 -2225 ((-3 |#2| "failed") |#2| (-1117) (-1117)))) (-13 (-261) (-120) (-978 (-499)) (-596 (-499))) (-13 (-1143) (-898) (-1079) (-29 |#1|))) (T -526)) -((-2225 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *1 (-526 *4 *2)) (-4 *2 (-13 (-1143) (-898) (-1079) (-29 *4)))))) -((-2674 (((-649 (-1166)) $ (-1166)) 27 T ELT)) (-2675 (((-649 (-503)) $ (-503)) 26 T ELT)) (-2673 (((-714) $ (-102)) 28 T ELT)) (-2676 (((-649 (-101)) $ (-101)) 25 T ELT)) (-2101 (((-649 (-1166)) $) 12 T ELT)) (-2097 (((-649 (-1164)) $) 8 T ELT)) (-2099 (((-649 (-1163)) $) 10 T ELT)) (-2102 (((-649 (-503)) $) 13 T ELT)) (-2098 (((-649 (-501)) $) 9 T ELT)) (-2100 (((-649 (-500)) $) 11 T ELT)) (-2096 (((-714) $ (-102)) 7 T ELT)) (-2103 (((-649 (-101)) $) 14 T ELT)) (-1793 (($ $) 6 T ELT))) -(((-527) (-113)) (T -527)) -NIL -(-13 (-480) (-795)) -(((-147) . T) ((-480) . T) ((-795) . T)) -((-2674 (((-649 (-1166)) $ (-1166)) NIL T ELT)) (-2675 (((-649 (-503)) $ (-503)) NIL T ELT)) (-2673 (((-714) $ (-102)) NIL T ELT)) (-2676 (((-649 (-101)) $ (-101)) NIL T ELT)) (-2101 (((-649 (-1166)) $) NIL T ELT)) (-2097 (((-649 (-1164)) $) NIL T ELT)) (-2099 (((-649 (-1163)) $) NIL T ELT)) (-2102 (((-649 (-503)) $) NIL T ELT)) (-2098 (((-649 (-501)) $) NIL T ELT)) (-2100 (((-649 (-500)) $) NIL T ELT)) (-2096 (((-714) $ (-102)) NIL T ELT)) (-2103 (((-649 (-101)) $) NIL T ELT)) (-2677 (((-85) $) NIL T ELT)) (-2226 (($ (-344)) 14 T ELT) (($ (-1099)) 16 T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1793 (($ $) NIL T ELT))) -(((-528) (-13 (-527) (-568 (-797)) (-10 -8 (-15 -2226 ($ (-344))) (-15 -2226 ($ (-1099))) (-15 -2677 ((-85) $))))) (T -528)) -((-2226 (*1 *1 *2) (-12 (-5 *2 (-344)) (-5 *1 (-528)))) (-2226 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-528)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-528))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3600 (($) 7 T CONST)) (-3380 (((-1099) $) NIL T ELT)) (-2229 (($) 6 T CONST)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 15 T ELT)) (-2227 (($) 9 T CONST)) (-2228 (($) 8 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 11 T ELT))) -(((-529) (-13 (-1041) (-10 -8 (-15 -2229 ($) -4102) (-15 -3600 ($) -4102) (-15 -2228 ($) -4102) (-15 -2227 ($) -4102)))) (T -529)) -((-2229 (*1 *1) (-5 *1 (-529))) (-3600 (*1 *1) (-5 *1 (-529))) (-2228 (*1 *1) (-5 *1 (-529))) (-2227 (*1 *1) (-5 *1 (-529)))) -((-2687 (((-85) $ $) NIL T ELT)) (-2230 (((-649 $) (-445)) 21 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2232 (($ (-1099)) 14 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 33 T ELT)) (-2231 (((-166 4 (-101)) $) 24 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 26 T ELT))) -(((-530) (-13 (-1041) (-10 -8 (-15 -2232 ($ (-1099))) (-15 -2231 ((-166 4 (-101)) $)) (-15 -2230 ((-649 $) (-445)))))) (T -530)) -((-2232 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-530)))) (-2231 (*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-530)))) (-2230 (*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-649 (-530))) (-5 *1 (-530))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3158 (($ $ (-499)) 76 T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2730 (($ (-1111 (-499)) (-499)) 82 T ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) 66 T ELT)) (-2731 (($ $) 43 T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3922 (((-714) $) 16 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2733 (((-499)) 37 T ELT)) (-2732 (((-499) $) 41 T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3919 (($ $ (-499)) 24 T ELT)) (-3606 (((-3 $ #1#) $ $) 72 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) 17 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 73 T ELT)) (-2734 (((-1095 (-499)) $) 19 T ELT)) (-3012 (($ $) 26 T ELT)) (-4096 (((-797) $) 103 T ELT) (($ (-499)) 61 T ELT) (($ $) NIL T ELT)) (-3248 (((-714)) 15 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3920 (((-499) $ (-499)) 46 T ELT)) (-2779 (($) 44 T CONST)) (-2785 (($) 21 T CONST)) (-3174 (((-85) $ $) 52 T ELT)) (-3987 (($ $) 60 T ELT) (($ $ $) 48 T ELT)) (-3989 (($ $ $) 59 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 62 T ELT) (($ $ $) 63 T ELT))) -(((-531 |#1| |#2|) (-804 |#1|) (-499) (-85)) (T -531)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 30 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 (($ $ (-857)) NIL (|has| $ (-323)) ELT) (($ $) NIL T ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) 59 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 $ #1#) $) 95 T ELT)) (-3294 (($ $) 94 T ELT)) (-1890 (($ (-1207 $)) 93 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) 47 T ELT)) (-3115 (($) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) 61 T ELT)) (-1773 (((-85) $) NIL T ELT)) (-1864 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) 49 (|has| $ (-323)) ELT)) (-2112 (((-85) $) NIL (|has| $ (-323)) ELT)) (-3254 (($ $ (-857)) NIL (|has| $ (-323)) ELT) (($ $) NIL T ELT)) (-3585 (((-649 $) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 $) $ (-857)) NIL (|has| $ (-323)) ELT) (((-1111 $) $) 104 T ELT)) (-2111 (((-857) $) 67 T ELT)) (-1697 (((-1111 $) $) NIL (|has| $ (-323)) ELT)) (-1696 (((-3 (-1111 $) #1#) $ $) NIL (|has| $ (-323)) ELT) (((-1111 $) $) NIL (|has| $ (-323)) ELT)) (-1698 (($ $ (-1111 $)) NIL (|has| $ (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL T CONST)) (-2518 (($ (-857)) 60 T ELT)) (-4081 (((-85) $) 87 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($) 28 (|has| $ (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) 54 T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-857)) 86 T ELT) (((-766 (-857))) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-3 (-714) #1#) $ $) NIL T ELT) (((-714) $) NIL T ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-4098 (((-857) $) 85 T ELT) (((-766 (-857)) $) NIL T ELT)) (-3323 (((-1111 $)) 102 T ELT)) (-1767 (($) 66 T ELT)) (-1699 (($) 50 (|has| $ (-323)) ELT)) (-3362 (((-647 $) (-1207 $)) NIL T ELT) (((-1207 $) $) 91 T ELT)) (-4122 (((-499) $) 42 T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) 45 T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT)) (-2823 (((-649 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3248 (((-714)) 51 T CONST)) (-1297 (((-85) $ $) 107 T ELT)) (-2113 (((-1207 $) (-857)) 97 T ELT) (((-1207 $)) 96 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) 31 T CONST)) (-2785 (($) 27 T CONST)) (-4078 (($ $ (-714)) NIL (|has| $ (-323)) ELT) (($ $) NIL (|has| $ (-323)) ELT)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 34 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT))) -(((-532 |#1|) (-13 (-305) (-283 $) (-569 (-499))) (-857)) (T -532)) -NIL -((-2233 (((-1213) (-1099)) 10 T ELT))) -(((-533) (-10 -7 (-15 -2233 ((-1213) (-1099))))) (T -533)) -((-2233 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-533))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) 77 T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-2237 ((|#1| $) 30 T ELT)) (-2235 (((-599 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2238 (($ |#1| (-599 (-2 (|:| |scalar| (-361 (-499))) (|:| |coeff| (-1111 |#1|)) (|:| |logand| (-1111 |#1|)))) (-599 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2236 (((-599 (-2 (|:| |scalar| (-361 (-499))) (|:| |coeff| (-1111 |#1|)) (|:| |logand| (-1111 |#1|)))) $) 31 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2953 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1117)) 49 (|has| |#1| (-978 (-1117))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2234 (((-85) $) 35 T ELT)) (-3908 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1117)) 90 (|has| |#1| (-836 (-1117))) ELT)) (-4096 (((-797) $) 110 T ELT) (($ |#1|) 29 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 18 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 86 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 16 T ELT) (($ (-361 (-499)) $) 41 T ELT) (($ $ (-361 (-499))) NIL T ELT))) -(((-534 |#1|) (-13 (-675 (-361 (-499))) (-978 |#1|) (-10 -8 (-15 -2238 ($ |#1| (-599 (-2 (|:| |scalar| (-361 (-499))) (|:| |coeff| (-1111 |#1|)) (|:| |logand| (-1111 |#1|)))) (-599 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2237 (|#1| $)) (-15 -2236 ((-599 (-2 (|:| |scalar| (-361 (-499))) (|:| |coeff| (-1111 |#1|)) (|:| |logand| (-1111 |#1|)))) $)) (-15 -2235 ((-599 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2234 ((-85) $)) (-15 -2953 ($ |#1| |#1|)) (-15 -3908 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-836 (-1117))) (-15 -3908 (|#1| $ (-1117))) |%noBranch|) (IF (|has| |#1| (-978 (-1117))) (-15 -2953 ($ |#1| (-1117))) |%noBranch|))) (-318)) (T -534)) -((-2238 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-599 (-2 (|:| |scalar| (-361 (-499))) (|:| |coeff| (-1111 *2)) (|:| |logand| (-1111 *2))))) (-5 *4 (-599 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-318)) (-5 *1 (-534 *2)))) (-2237 (*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-318)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |scalar| (-361 (-499))) (|:| |coeff| (-1111 *3)) (|:| |logand| (-1111 *3))))) (-5 *1 (-534 *3)) (-4 *3 (-318)))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-534 *3)) (-4 *3 (-318)))) (-2234 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-534 *3)) (-4 *3 (-318)))) (-2953 (*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-318)))) (-3908 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-318)))) (-3908 (*1 *2 *1 *3) (-12 (-4 *2 (-318)) (-4 *2 (-836 *3)) (-5 *1 (-534 *2)) (-5 *3 (-1117)))) (-2953 (*1 *1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *1 (-534 *2)) (-4 *2 (-978 *3)) (-4 *2 (-318))))) -((-4108 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|)) 30 T ELT))) -(((-535 |#1| |#2|) (-10 -7 (-15 -4108 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -4108 ((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -4108 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -4108 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-318) (-318)) (T -535)) -((-4108 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-318)) (-4 *6 (-318)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-535 *5 *6)))) (-4108 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-318)) (-4 *2 (-318)) (-5 *1 (-535 *5 *2)))) (-4108 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2237 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-318)) (-4 *6 (-318)) (-5 *2 (-2 (|:| -2237 *6) (|:| |coeff| *6))) (-5 *1 (-535 *5 *6)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-318)) (-4 *6 (-318)) (-5 *2 (-534 *6)) (-5 *1 (-535 *5 *6))))) -((-3558 (((-534 |#2|) (-534 |#2|)) 42 T ELT)) (-4113 (((-599 |#2|) (-534 |#2|)) 44 T ELT)) (-2249 ((|#2| (-534 |#2|)) 50 T ELT))) -(((-536 |#1| |#2|) (-10 -7 (-15 -3558 ((-534 |#2|) (-534 |#2|))) (-15 -4113 ((-599 |#2|) (-534 |#2|))) (-15 -2249 (|#2| (-534 |#2|)))) (-13 (-406) (-978 (-499)) (-596 (-499))) (-13 (-29 |#1|) (-1143))) (T -536)) -((-2249 (*1 *2 *3) (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1143))) (-5 *1 (-536 *4 *2)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))))) (-4113 (*1 *2 *3) (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1143))) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-599 *5)) (-5 *1 (-536 *4 *5)))) (-3558 (*1 *2 *2) (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1143))) (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-536 *3 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2241 (($ (-460) (-547)) 14 T ELT)) (-2239 (($ (-460) (-547) $) 16 T ELT)) (-2240 (($ (-460) (-547)) 15 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-1122)) 7 T ELT) (((-1122) $) 6 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-537) (-13 (-1041) (-444 (-1122)) (-10 -8 (-15 -2241 ($ (-460) (-547))) (-15 -2240 ($ (-460) (-547))) (-15 -2239 ($ (-460) (-547) $))))) (T -537)) -((-2241 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-547)) (-5 *1 (-537)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-547)) (-5 *1 (-537)))) (-2239 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-460)) (-5 *3 (-547)) (-5 *1 (-537))))) -((-2245 (((-85) |#1|) 16 T ELT)) (-2246 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2243 (((-2 (|:| -2815 |#1|) (|:| -2519 (-714))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-714)) 18 T ELT)) (-2242 (((-85) |#1| (-714)) 19 T ELT)) (-2247 ((|#1| |#1|) 41 T ELT)) (-2244 ((|#1| |#1| (-714)) 44 T ELT))) -(((-538 |#1|) (-10 -7 (-15 -2242 ((-85) |#1| (-714))) (-15 -2243 ((-3 |#1| #1="failed") |#1| (-714))) (-15 -2243 ((-2 (|:| -2815 |#1|) (|:| -2519 (-714))) |#1|)) (-15 -2244 (|#1| |#1| (-714))) (-15 -2245 ((-85) |#1|)) (-15 -2246 ((-3 |#1| #1#) |#1|)) (-15 -2247 (|#1| |#1|))) (-498)) (T -538)) -((-2247 (*1 *2 *2) (-12 (-5 *1 (-538 *2)) (-4 *2 (-498)))) (-2246 (*1 *2 *2) (|partial| -12 (-5 *1 (-538 *2)) (-4 *2 (-498)))) (-2245 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-538 *3)) (-4 *3 (-498)))) (-2244 (*1 *2 *2 *3) (-12 (-5 *3 (-714)) (-5 *1 (-538 *2)) (-4 *2 (-498)))) (-2243 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2815 *3) (|:| -2519 (-714)))) (-5 *1 (-538 *3)) (-4 *3 (-498)))) (-2243 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-714)) (-5 *1 (-538 *2)) (-4 *2 (-498)))) (-2242 (*1 *2 *3 *4) (-12 (-5 *4 (-714)) (-5 *2 (-85)) (-5 *1 (-538 *3)) (-4 *3 (-498))))) -((-2248 (((-1111 |#1|) (-857)) 44 T ELT))) -(((-539 |#1|) (-10 -7 (-15 -2248 ((-1111 |#1|) (-857)))) (-305)) (T -539)) -((-2248 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-539 *4)) (-4 *4 (-305))))) -((-3558 (((-534 (-361 (-884 |#1|))) (-534 (-361 (-884 |#1|)))) 27 T ELT)) (-3962 (((-3 (-268 |#1|) (-599 (-268 |#1|))) (-361 (-884 |#1|)) (-1117)) 34 (|has| |#1| (-120)) ELT)) (-4113 (((-599 (-268 |#1|)) (-534 (-361 (-884 |#1|)))) 19 T ELT)) (-2250 (((-268 |#1|) (-361 (-884 |#1|)) (-1117)) 32 (|has| |#1| (-120)) ELT)) (-2249 (((-268 |#1|) (-534 (-361 (-884 |#1|)))) 21 T ELT))) -(((-540 |#1|) (-10 -7 (-15 -3558 ((-534 (-361 (-884 |#1|))) (-534 (-361 (-884 |#1|))))) (-15 -4113 ((-599 (-268 |#1|)) (-534 (-361 (-884 |#1|))))) (-15 -2249 ((-268 |#1|) (-534 (-361 (-884 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3962 ((-3 (-268 |#1|) (-599 (-268 |#1|))) (-361 (-884 |#1|)) (-1117))) (-15 -2250 ((-268 |#1|) (-361 (-884 |#1|)) (-1117)))) |%noBranch|)) (-13 (-406) (-978 (-499)) (-596 (-499)))) (T -540)) -((-2250 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-120)) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-268 *5)) (-5 *1 (-540 *5)))) (-3962 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-120)) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 (-268 *5) (-599 (-268 *5)))) (-5 *1 (-540 *5)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-534 (-361 (-884 *4)))) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-268 *4)) (-5 *1 (-540 *4)))) (-4113 (*1 *2 *3) (-12 (-5 *3 (-534 (-361 (-884 *4)))) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-599 (-268 *4))) (-5 *1 (-540 *4)))) (-3558 (*1 *2 *2) (-12 (-5 *2 (-534 (-361 (-884 *3)))) (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-540 *3))))) -((-2252 (((-599 (-647 (-499))) (-599 (-857)) (-599 (-840 (-499)))) 80 T ELT) (((-599 (-647 (-499))) (-599 (-857))) 81 T ELT) (((-647 (-499)) (-599 (-857)) (-840 (-499))) 74 T ELT)) (-2251 (((-714) (-599 (-857))) 71 T ELT))) -(((-541) (-10 -7 (-15 -2251 ((-714) (-599 (-857)))) (-15 -2252 ((-647 (-499)) (-599 (-857)) (-840 (-499)))) (-15 -2252 ((-599 (-647 (-499))) (-599 (-857)))) (-15 -2252 ((-599 (-647 (-499))) (-599 (-857)) (-599 (-840 (-499))))))) (T -541)) -((-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-857))) (-5 *4 (-599 (-840 (-499)))) (-5 *2 (-599 (-647 (-499)))) (-5 *1 (-541)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-599 (-857))) (-5 *2 (-599 (-647 (-499)))) (-5 *1 (-541)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-857))) (-5 *4 (-840 (-499))) (-5 *2 (-647 (-499))) (-5 *1 (-541)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-599 (-857))) (-5 *2 (-714)) (-5 *1 (-541))))) -((-3351 (((-599 |#5|) |#5| (-85)) 97 T ELT)) (-2253 (((-85) |#5| (-599 |#5|)) 34 T ELT))) -(((-542 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3351 ((-599 |#5|) |#5| (-85))) (-15 -2253 ((-85) |#5| (-599 |#5|)))) (-13 (-261) (-120)) (-738) (-781) (-1005 |#1| |#2| |#3|) (-1049 |#1| |#2| |#3| |#4|)) (T -542)) -((-2253 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-1049 *5 *6 *7 *8)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-542 *5 *6 *7 *8 *3)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-599 *3)) (-5 *1 (-542 *5 *6 *7 *8 *3)) (-4 *3 (-1049 *5 *6 *7 *8))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3668 (((-1075) $) 11 T ELT)) (-3669 (((-1075) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 17 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-543) (-13 (-1023) (-10 -8 (-15 -3669 ((-1075) $)) (-15 -3668 ((-1075) $))))) (T -543)) -((-3669 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-543)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-543))))) -((-3672 (((-2 (|:| |num| |#4|) (|:| |den| (-499))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-499))) |#4| |#2| (-1029 |#4|)) 32 T ELT))) -(((-544 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3672 ((-2 (|:| |num| |#4|) (|:| |den| (-499))) |#4| |#2| (-1029 |#4|))) (-15 -3672 ((-2 (|:| |num| |#4|) (|:| |den| (-499))) |#4| |#2|))) (-738) (-781) (-510) (-888 |#3| |#1| |#2|)) (T -544)) -((-3672 (*1 *2 *3 *4) (-12 (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-510)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-499)))) (-5 *1 (-544 *5 *4 *6 *3)) (-4 *3 (-888 *6 *5 *4)))) (-3672 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1029 *3)) (-4 *3 (-888 *7 *6 *4)) (-4 *6 (-738)) (-4 *4 (-781)) (-4 *7 (-510)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-499)))) (-5 *1 (-544 *6 *4 *7 *3))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 71 T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-499)) 58 T ELT) (($ $ (-499) (-499)) 59 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) $) 65 T ELT)) (-2284 (($ $) 109 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2282 (((-797) (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) (-966 (-775 (-499))) (-1117) |#1| (-361 (-499))) 241 T ELT)) (-3968 (($ (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|)))) 36 T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3013 (((-85) $) NIL T ELT)) (-3922 (((-499) $) 63 T ELT) (((-499) $ (-499)) 64 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3927 (($ $ (-857)) 83 T ELT)) (-3965 (($ (-1 |#1| (-499)) $) 80 T ELT)) (-4087 (((-85) $) 26 T ELT)) (-3014 (($ |#1| (-499)) 22 T ELT) (($ $ (-1022) (-499)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-499))) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2288 (($ (-966 (-775 (-499))) (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|)))) 13 T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3962 (($ $) 161 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2285 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2283 (($ $ $) 116 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2286 (((-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) $) 15 T ELT)) (-2287 (((-966 (-775 (-499))) $) 14 T ELT)) (-3919 (($ $ (-499)) 47 T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-3918 (((-1095 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-499)))) ELT)) (-3950 ((|#1| $ (-499)) 62 T ELT) (($ $ $) NIL (|has| (-499) (-1052)) ELT)) (-3908 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-499) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-499) |#1|))) ELT)) (-4098 (((-499) $) NIL T ELT)) (-3012 (($ $) 48 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) 29 T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ |#1|) 28 (|has| |#1| (-146)) ELT)) (-3827 ((|#1| $ (-499)) 61 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 39 T CONST)) (-3923 ((|#1| $) NIL T ELT)) (-2263 (($ $) 198 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2275 (($ $) 169 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2265 (($ $) 202 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2277 (($ $) 174 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2261 (($ $) 201 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2273 (($ $) 173 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2280 (($ $ (-361 (-499))) 177 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2281 (($ $ |#1|) 157 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2278 (($ $) 204 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2279 (($ $) 160 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2260 (($ $) 203 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2272 (($ $) 175 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2262 (($ $) 199 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2274 (($ $) 171 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2264 (($ $) 200 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2276 (($ $) 172 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2257 (($ $) 209 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2269 (($ $) 185 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2259 (($ $) 206 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2271 (($ $) 181 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2255 (($ $) 213 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2267 (($ $) 189 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2254 (($ $) 215 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2266 (($ $) 191 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2256 (($ $) 211 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2268 (($ $) 187 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2258 (($ $) 208 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2270 (($ $) 183 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3920 ((|#1| $ (-499)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-499)))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-2779 (($) 30 T CONST)) (-2785 (($) 40 T CONST)) (-2790 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-499) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-499) |#1|))) ELT)) (-3174 (((-85) $ $) 73 T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3989 (($ $ $) 88 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 111 T ELT)) (* (($ (-857) $) 98 T ELT) (($ (-714) $) 96 T ELT) (($ (-499) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-545 |#1|) (-13 (-1186 |#1| (-499)) (-10 -8 (-15 -2288 ($ (-966 (-775 (-499))) (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))))) (-15 -2287 ((-966 (-775 (-499))) $)) (-15 -2286 ((-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) $)) (-15 -3968 ($ (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))))) (-15 -4087 ((-85) $)) (-15 -3965 ($ (-1 |#1| (-499)) $)) (-15 -2285 ((-3 $ "failed") $ $ (-85))) (-15 -2284 ($ $)) (-15 -2283 ($ $ $)) (-15 -2282 ((-797) (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) (-966 (-775 (-499))) (-1117) |#1| (-361 (-499)))) (IF (|has| |#1| (-38 (-361 (-499)))) (PROGN (-15 -3962 ($ $)) (-15 -2281 ($ $ |#1|)) (-15 -2280 ($ $ (-361 (-499)))) (-15 -2279 ($ $)) (-15 -2278 ($ $)) (-15 -2277 ($ $)) (-15 -2276 ($ $)) (-15 -2275 ($ $)) (-15 -2274 ($ $)) (-15 -2273 ($ $)) (-15 -2272 ($ $)) (-15 -2271 ($ $)) (-15 -2270 ($ $)) (-15 -2269 ($ $)) (-15 -2268 ($ $)) (-15 -2267 ($ $)) (-15 -2266 ($ $)) (-15 -2265 ($ $)) (-15 -2264 ($ $)) (-15 -2263 ($ $)) (-15 -2262 ($ $)) (-15 -2261 ($ $)) (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $)) (-15 -2255 ($ $)) (-15 -2254 ($ $))) |%noBranch|))) (-989)) (T -545)) -((-4087 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-545 *3)) (-4 *3 (-989)))) (-2288 (*1 *1 *2 *3) (-12 (-5 *2 (-966 (-775 (-499)))) (-5 *3 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *4)))) (-4 *4 (-989)) (-5 *1 (-545 *4)))) (-2287 (*1 *2 *1) (-12 (-5 *2 (-966 (-775 (-499)))) (-5 *1 (-545 *3)) (-4 *3 (-989)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *3)))) (-5 *1 (-545 *3)) (-4 *3 (-989)))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *3)))) (-4 *3 (-989)) (-5 *1 (-545 *3)))) (-3965 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-499))) (-4 *3 (-989)) (-5 *1 (-545 *3)))) (-2285 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-545 *3)) (-4 *3 (-989)))) (-2284 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-989)))) (-2283 (*1 *1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-989)))) (-2282 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *6)))) (-5 *4 (-966 (-775 (-499)))) (-5 *5 (-1117)) (-5 *7 (-361 (-499))) (-4 *6 (-989)) (-5 *2 (-797)) (-5 *1 (-545 *6)))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2281 (*1 *1 *1 *2) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2280 (*1 *1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-545 *3)) (-4 *3 (-38 *2)) (-4 *3 (-989)))) (-2279 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2278 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2277 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2276 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2275 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2274 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2273 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2272 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2271 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2270 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2269 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2268 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2267 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2266 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2265 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2264 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2263 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2262 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2261 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2260 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2259 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2258 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2257 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2256 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2255 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2254 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 63 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3968 (($ (-1095 |#1|)) 9 T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ #1#) $) 44 T ELT)) (-3013 (((-85) $) 56 T ELT)) (-3922 (((-714) $) 61 T ELT) (((-714) $ (-714)) 60 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) 46 (|has| |#1| (-510)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3967 (((-1095 |#1|) $) 25 T ELT)) (-3248 (((-714)) 55 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) 10 T CONST)) (-2785 (($) 14 T CONST)) (-3174 (((-85) $ $) 24 T ELT)) (-3987 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3989 (($ $ $) 27 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 53 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-499)) 38 T ELT))) -(((-546 |#1|) (-13 (-989) (-82 |#1| |#1|) (-10 -8 (-15 -3967 ((-1095 |#1|) $)) (-15 -3968 ($ (-1095 |#1|))) (-15 -3013 ((-85) $)) (-15 -3922 ((-714) $)) (-15 -3922 ((-714) $ (-714))) (-15 * ($ $ (-499))) (IF (|has| |#1| (-510)) (-6 (-510)) |%noBranch|))) (-989)) (T -546)) -((-3967 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-546 *3)) (-4 *3 (-989)))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-546 *3)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-546 *3)) (-4 *3 (-989)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-546 *3)) (-4 *3 (-989)))) (-3922 (*1 *2 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-546 *3)) (-4 *3 (-989)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-546 *3)) (-4 *3 (-989))))) -((-2687 (((-85) $ $) NIL T ELT)) (-2291 (($) 8 T CONST)) (-2292 (($) 7 T CONST)) (-2289 (($ $ (-599 $)) 16 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2293 (($) 6 T CONST)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-1122)) 15 T ELT) (((-1122) $) 10 T ELT)) (-2290 (($) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-547) (-13 (-1041) (-444 (-1122)) (-10 -8 (-15 -2293 ($) -4102) (-15 -2292 ($) -4102) (-15 -2291 ($) -4102) (-15 -2290 ($) -4102) (-15 -2289 ($ $ (-599 $)))))) (T -547)) -((-2293 (*1 *1) (-5 *1 (-547))) (-2292 (*1 *1) (-5 *1 (-547))) (-2291 (*1 *1) (-5 *1 (-547))) (-2290 (*1 *1) (-5 *1 (-547))) (-2289 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-547))) (-5 *1 (-547))))) -((-4108 (((-551 |#2|) (-1 |#2| |#1|) (-551 |#1|)) 15 T ELT))) -(((-548 |#1| |#2|) (-13 (-1157) (-10 -7 (-15 -4108 ((-551 |#2|) (-1 |#2| |#1|) (-551 |#1|))))) (-1157) (-1157)) (T -548)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-551 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-551 *6)) (-5 *1 (-548 *5 *6))))) -((-4108 (((-1095 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-1095 |#2|)) 20 T ELT) (((-1095 |#3|) (-1 |#3| |#1| |#2|) (-1095 |#1|) (-551 |#2|)) 19 T ELT) (((-551 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-551 |#2|)) 18 T ELT))) -(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -4108 ((-551 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-551 |#2|))) (-15 -4108 ((-1095 |#3|) (-1 |#3| |#1| |#2|) (-1095 |#1|) (-551 |#2|))) (-15 -4108 ((-1095 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-1095 |#2|)))) (-1157) (-1157) (-1157)) (T -549)) -((-4108 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-551 *6)) (-5 *5 (-1095 *7)) (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-1095 *8)) (-5 *1 (-549 *6 *7 *8)))) (-4108 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1095 *6)) (-5 *5 (-551 *7)) (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-1095 *8)) (-5 *1 (-549 *6 *7 *8)))) (-4108 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-551 *6)) (-5 *5 (-551 *7)) (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-551 *8)) (-5 *1 (-549 *6 *7 *8))))) -((-2298 ((|#3| |#3| (-599 (-566 |#3|)) (-599 (-1117))) 57 T ELT)) (-2297 (((-142 |#2|) |#3|) 122 T ELT)) (-2294 ((|#3| (-142 |#2|)) 46 T ELT)) (-2295 ((|#2| |#3|) 21 T ELT)) (-2296 ((|#3| |#2|) 35 T ELT))) -(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -2294 (|#3| (-142 |#2|))) (-15 -2295 (|#2| |#3|)) (-15 -2296 (|#3| |#2|)) (-15 -2297 ((-142 |#2|) |#3|)) (-15 -2298 (|#3| |#3| (-599 (-566 |#3|)) (-599 (-1117))))) (-510) (-13 (-375 |#1|) (-942) (-1143)) (-13 (-375 (-142 |#1|)) (-942) (-1143))) (T -550)) -((-2298 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-599 (-566 *2))) (-5 *4 (-599 (-1117))) (-4 *2 (-13 (-375 (-142 *5)) (-942) (-1143))) (-4 *5 (-510)) (-5 *1 (-550 *5 *6 *2)) (-4 *6 (-13 (-375 *5) (-942) (-1143))))) (-2297 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-142 *5)) (-5 *1 (-550 *4 *5 *3)) (-4 *5 (-13 (-375 *4) (-942) (-1143))) (-4 *3 (-13 (-375 (-142 *4)) (-942) (-1143))))) (-2296 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *2 (-13 (-375 (-142 *4)) (-942) (-1143))) (-5 *1 (-550 *4 *3 *2)) (-4 *3 (-13 (-375 *4) (-942) (-1143))))) (-2295 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *2 (-13 (-375 *4) (-942) (-1143))) (-5 *1 (-550 *4 *2 *3)) (-4 *3 (-13 (-375 (-142 *4)) (-942) (-1143))))) (-2294 (*1 *2 *3) (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-375 *4) (-942) (-1143))) (-4 *4 (-510)) (-4 *2 (-13 (-375 (-142 *4)) (-942) (-1143))) (-5 *1 (-550 *4 *5 *2))))) -((-3860 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3597 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3596 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3595 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3670 (((-1095 |#1|) $) 20 T ELT)) (-4096 (((-797) $) 25 T ELT))) -(((-551 |#1|) (-13 (-568 (-797)) (-10 -8 (-15 -4108 ($ (-1 |#1| |#1|) $)) (-15 -3596 ($ (-1 (-85) |#1|) $)) (-15 -3595 ($ (-1 (-85) |#1|) $)) (-15 -3860 ($ (-1 (-85) |#1|) $)) (-15 -3597 ($ (-1 |#1| |#1|) |#1|)) (-15 -3670 ((-1095 |#1|) $)))) (-1157)) (T -551)) -((-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) (-3596 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) (-3595 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) (-3860 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) (-3597 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) (-3670 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1157))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3988 (($ (-714)) NIL (|has| |#1| (-23)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) NIL T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) NIL T ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3985 (((-647 |#1|) $ $) NIL (|has| |#1| (-989)) ELT)) (-3764 (($ (-714) |#1|) NIL T ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3982 ((|#1| $) NIL (-12 (|has| |#1| (-942)) (|has| |#1| (-989))) ELT)) (-3983 ((|#1| $) NIL (-12 (|has| |#1| (-942)) (|has| |#1| (-989))) ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) |#1|) NIL T ELT) ((|#1| $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-3986 ((|#1| $ $) NIL (|has| |#1| (-989)) ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-3984 (($ $ $) NIL (|has| |#1| (-989)) ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) NIL T ELT)) (-3952 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3987 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3989 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-499) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-684)) ELT) (($ $ |#1|) NIL (|has| |#1| (-684)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-552 |#1| |#2|) (-1206 |#1|) (-1157) (-499)) (T -552)) -NIL -((-2299 (((-1213) $ |#2| |#2|) 35 T ELT)) (-2301 ((|#2| $) 23 T ELT)) (-2302 ((|#2| $) 21 T ELT)) (-2051 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-4108 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3951 ((|#3| $) 26 T ELT)) (-2300 (($ $ |#3|) 33 T ELT)) (-2303 (((-85) |#3| $) 17 T ELT)) (-2306 (((-599 |#3|) $) 15 T ELT)) (-3950 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) -(((-553 |#1| |#2| |#3|) (-10 -7 (-15 -2299 ((-1213) |#1| |#2| |#2|)) (-15 -2300 (|#1| |#1| |#3|)) (-15 -3951 (|#3| |#1|)) (-15 -2301 (|#2| |#1|)) (-15 -2302 (|#2| |#1|)) (-15 -2303 ((-85) |#3| |#1|)) (-15 -2306 ((-599 |#3|) |#1|)) (-15 -3950 (|#3| |#1| |#2|)) (-15 -3950 (|#3| |#1| |#2| |#3|)) (-15 -2051 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4108 (|#1| (-1 |#3| |#3|) |#1|))) (-554 |#2| |#3|) (-1041) (-1157)) (T -553)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#2| (-73)) ELT)) (-2299 (((-1213) $ |#1| |#1|) 44 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -4146)) ELT)) (-3874 (($) 7 T CONST)) (-1609 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) 55 T ELT)) (-3010 (((-599 |#2|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2301 ((|#1| $) 47 (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#2|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 ((|#1| $) 48 (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| |#2| (-1041)) ELT)) (-2304 (((-599 |#1|) $) 50 T ELT)) (-2305 (((-85) |#1| $) 51 T ELT)) (-3381 (((-1060) $) 21 (|has| |#2| (-1041)) ELT)) (-3951 ((|#2| $) 46 (|has| |#1| (-781)) ELT)) (-2300 (($ $ |#2|) 45 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#2|))) 26 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) 25 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) 23 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#2| $) 28 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#2| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#2| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#2| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-554 |#1| |#2|) (-113) (-1041) (-1157)) (T -554)) -((-2306 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1157)) (-5 *2 (-599 *4)))) (-2305 (*1 *2 *3 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1157)) (-5 *2 (-85)))) (-2304 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1157)) (-5 *2 (-599 *3)))) (-2303 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-554 *4 *3)) (-4 *4 (-1041)) (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-85)))) (-2302 (*1 *2 *1) (-12 (-4 *1 (-554 *2 *3)) (-4 *3 (-1157)) (-4 *2 (-1041)) (-4 *2 (-781)))) (-2301 (*1 *2 *1) (-12 (-4 *1 (-554 *2 *3)) (-4 *3 (-1157)) (-4 *2 (-1041)) (-4 *2 (-781)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1041)) (-4 *3 (-781)) (-4 *2 (-1157)))) (-2300 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-554 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1157)))) (-2299 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-554 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1157)) (-5 *2 (-1213))))) -(-13 (-443 |t#2|) (-242 |t#1| |t#2|) (-10 -8 (-15 -2306 ((-599 |t#2|) $)) (-15 -2305 ((-85) |t#1| $)) (-15 -2304 ((-599 |t#1|) $)) (IF (|has| |t#2| (-1041)) (IF (|has| $ (-6 -4145)) (-15 -2303 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-781)) (PROGN (-15 -2302 (|t#1| $)) (-15 -2301 (|t#1| $)) (-15 -3951 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4146)) (PROGN (-15 -2300 ($ $ |t#2|)) (-15 -2299 ((-1213) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-73) -3677 (|has| |#2| (-1041)) (|has| |#2| (-73))) ((-568 (-797)) -3677 (|has| |#2| (-1041)) (|has| |#2| (-568 (-797)))) ((-240 |#1| |#2|) . T) ((-242 |#1| |#2|) . T) ((-263 |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-443 |#2|) . T) ((-468 |#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-1041) |has| |#2| (-1041)) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT) (((-1158) $) 14 T ELT) (($ (-599 (-1158))) 13 T ELT)) (-2307 (((-599 (-1158)) $) 10 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-555) (-13 (-1023) (-568 (-1158)) (-10 -8 (-15 -4096 ($ (-599 (-1158)))) (-15 -2307 ((-599 (-1158)) $))))) (T -555)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-555)))) (-2307 (*1 *2 *1) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-555))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1870 (((-3 $ #1="failed")) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1345 (((-3 $ #1#) $ $) NIL T ELT)) (-3361 (((-1207 (-647 |#1|))) NIL (|has| |#2| (-372 |#1|)) ELT) (((-1207 (-647 |#1|)) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1822 (((-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3874 (($) NIL T CONST)) (-2008 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1796 (((-3 $ #1#)) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1886 (((-647 |#1|)) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1820 ((|#1| $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1884 (((-647 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) $ (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2522 (((-3 $ #1#) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-2002 (((-1111 (-884 |#1|))) NIL (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-318))) ELT)) (-2525 (($ $ (-857)) NIL T ELT)) (-1818 ((|#1| $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1798 (((-1111 |#1|) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1888 ((|#1|) NIL (|has| |#2| (-372 |#1|)) ELT) ((|#1| (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1816 (((-1111 |#1|) $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1810 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1890 (($ (-1207 |#1|)) NIL (|has| |#2| (-372 |#1|)) ELT) (($ (-1207 |#1|) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3607 (((-3 $ #1#) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-3231 (((-857)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1807 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2549 (($ $ (-857)) NIL T ELT)) (-1803 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1801 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1805 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2009 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1797 (((-3 $ #1#)) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1887 (((-647 |#1|)) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1821 ((|#1| $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1885 (((-647 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) $ (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2523 (((-3 $ #1#) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-2006 (((-1111 (-884 |#1|))) NIL (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-318))) ELT)) (-2524 (($ $ (-857)) NIL T ELT)) (-1819 ((|#1| $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1799 (((-1111 |#1|) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1889 ((|#1|) NIL (|has| |#2| (-372 |#1|)) ELT) ((|#1| (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1817 (((-1111 |#1|) $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1811 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1802 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1804 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1806 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1809 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3950 ((|#1| $ (-499)) NIL (|has| |#2| (-372 |#1|)) ELT)) (-3362 (((-647 |#1|) (-1207 $)) NIL (|has| |#2| (-372 |#1|)) ELT) (((-1207 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) (-1207 $) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT) (((-1207 |#1|) $ (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-4122 (($ (-1207 |#1|)) NIL (|has| |#2| (-372 |#1|)) ELT) (((-1207 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT)) (-1994 (((-599 (-884 |#1|))) NIL (|has| |#2| (-372 |#1|)) ELT) (((-599 (-884 |#1|)) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2551 (($ $ $) NIL T ELT)) (-1815 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-4096 (((-797) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL (|has| |#2| (-372 |#1|)) ELT)) (-1800 (((-599 (-1207 |#1|))) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-2552 (($ $ $ $) NIL T ELT)) (-1813 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2664 (($ (-647 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT)) (-2550 (($ $ $) NIL T ELT)) (-1814 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1812 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1808 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2779 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) 24 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-556 |#1| |#2|) (-13 (-702 |#1|) (-568 |#2|) (-10 -8 (-15 -4096 ($ |#2|)) (IF (|has| |#2| (-372 |#1|)) (-6 (-372 |#1|)) |%noBranch|) (IF (|has| |#2| (-322 |#1|)) (-6 (-322 |#1|)) |%noBranch|))) (-146) (-702 |#1|)) (T -556)) -((-4096 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-556 *3 *2)) (-4 *2 (-702 *3))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-557) (-13 (-1041) (-444 (-101)))) (T -557)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2309 (($) 12 T CONST)) (-2331 (($) 10 T CONST)) (-2308 (($) 13 T CONST)) (-2327 (($) 11 T CONST)) (-2324 (($) 14 T CONST)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2411 (($ $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) NIL T ELT))) -(((-558) (-13 (-1041) (-620) (-10 -8 (-15 -2331 ($) -4102) (-15 -2327 ($) -4102) (-15 -2309 ($) -4102) (-15 -2308 ($) -4102) (-15 -2324 ($) -4102)))) (T -558)) -((-2331 (*1 *1) (-5 *1 (-558))) (-2327 (*1 *1) (-5 *1 (-558))) (-2309 (*1 *1) (-5 *1 (-558))) (-2308 (*1 *1) (-5 *1 (-558))) (-2324 (*1 *1) (-5 *1 (-558)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2320 (($) 11 T CONST)) (-2314 (($) 17 T CONST)) (-2310 (($) 21 T CONST)) (-2312 (($) 19 T CONST)) (-2317 (($) 14 T CONST)) (-2311 (($) 20 T CONST)) (-2319 (($) 12 T CONST)) (-2318 (($) 13 T CONST)) (-2313 (($) 18 T CONST)) (-2316 (($) 15 T CONST)) (-2315 (($) 16 T CONST)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-559) (-13 (-1041) (-568 (-101)) (-10 -8 (-15 -2320 ($) -4102) (-15 -2319 ($) -4102) (-15 -2318 ($) -4102) (-15 -2317 ($) -4102) (-15 -2316 ($) -4102) (-15 -2315 ($) -4102) (-15 -2314 ($) -4102) (-15 -2313 ($) -4102) (-15 -2312 ($) -4102) (-15 -2311 ($) -4102) (-15 -2310 ($) -4102)))) (T -559)) -((-2320 (*1 *1) (-5 *1 (-559))) (-2319 (*1 *1) (-5 *1 (-559))) (-2318 (*1 *1) (-5 *1 (-559))) (-2317 (*1 *1) (-5 *1 (-559))) (-2316 (*1 *1) (-5 *1 (-559))) (-2315 (*1 *1) (-5 *1 (-559))) (-2314 (*1 *1) (-5 *1 (-559))) (-2313 (*1 *1) (-5 *1 (-559))) (-2312 (*1 *1) (-5 *1 (-559))) (-2311 (*1 *1) (-5 *1 (-559))) (-2310 (*1 *1) (-5 *1 (-559)))) -((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2322 (($) 15 T CONST)) (-2321 (($) 16 T CONST)) (-2328 (($) 13 T CONST)) (-2331 (($) 10 T CONST)) (-2329 (($) 12 T CONST)) (-2330 (($) 11 T CONST)) (-2327 (($) 14 T CONST)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2411 (($ $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) NIL T ELT))) -(((-560) (-13 (-1041) (-620) (-10 -8 (-15 -2331 ($) -4102) (-15 -2330 ($) -4102) (-15 -2329 ($) -4102) (-15 -2328 ($) -4102) (-15 -2327 ($) -4102) (-15 -2322 ($) -4102) (-15 -2321 ($) -4102)))) (T -560)) -((-2331 (*1 *1) (-5 *1 (-560))) (-2330 (*1 *1) (-5 *1 (-560))) (-2329 (*1 *1) (-5 *1 (-560))) (-2328 (*1 *1) (-5 *1 (-560))) (-2327 (*1 *1) (-5 *1 (-560))) (-2322 (*1 *1) (-5 *1 (-560))) (-2321 (*1 *1) (-5 *1 (-560)))) -((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2326 (($) 15 T CONST)) (-2323 (($) 18 T CONST)) (-2328 (($) 13 T CONST)) (-2331 (($) 10 T CONST)) (-2329 (($) 12 T CONST)) (-2330 (($) 11 T CONST)) (-2325 (($) 16 T CONST)) (-2327 (($) 14 T CONST)) (-2324 (($) 17 T CONST)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2411 (($ $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) NIL T ELT))) -(((-561) (-13 (-1041) (-620) (-10 -8 (-15 -2331 ($) -4102) (-15 -2330 ($) -4102) (-15 -2329 ($) -4102) (-15 -2328 ($) -4102) (-15 -2327 ($) -4102) (-15 -2326 ($) -4102) (-15 -2325 ($) -4102) (-15 -2324 ($) -4102) (-15 -2323 ($) -4102)))) (T -561)) -((-2331 (*1 *1) (-5 *1 (-561))) (-2330 (*1 *1) (-5 *1 (-561))) (-2329 (*1 *1) (-5 *1 (-561))) (-2328 (*1 *1) (-5 *1 (-561))) (-2327 (*1 *1) (-5 *1 (-561))) (-2326 (*1 *1) (-5 *1 (-561))) (-2325 (*1 *1) (-5 *1 (-561))) (-2324 (*1 *1) (-5 *1 (-561))) (-2323 (*1 *1) (-5 *1 (-561)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 19 T ELT) (($ (-557)) 12 T ELT) (((-557) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-562) (-13 (-1041) (-444 (-557)) (-444 (-101)))) (T -562)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-1790 (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) 40 T ELT)) (-3747 (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2299 (((-1213) $ (-1099) (-1099)) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ (-1099) |#1|) 50 T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#1| #1="failed") (-1099) $) 53 T ELT)) (-3874 (($) NIL T CONST)) (-1794 (($ $ (-1099)) 25 T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT)) (-3545 (((-3 |#1| #1#) (-1099) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3546 (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT)) (-3992 (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT)) (-1791 (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1609 ((|#1| $ (-1099) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-1099)) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2372 (($ $) 55 T ELT)) (-1795 (($ (-344)) 23 T ELT) (($ (-344) (-1099)) 22 T ELT)) (-3690 (((-344) $) 41 T ELT)) (-2301 (((-1099) $) NIL (|has| (-1099) (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (((-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT)) (-2302 (((-1099) $) NIL (|has| (-1099) (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2333 (((-599 (-1099)) $) 46 T ELT)) (-2334 (((-85) (-1099) $) NIL T ELT)) (-1792 (((-1099) $) 42 T ELT)) (-1308 (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2304 (((-599 (-1099)) $) NIL T ELT)) (-2305 (((-85) (-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 ((|#1| $) NIL (|has| (-1099) (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2300 (($ $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (($ $ (-599 (-247 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) 44 T ELT)) (-3950 ((|#1| $ (-1099) |#1|) NIL T ELT) ((|#1| $ (-1099)) 49 T ELT)) (-1499 (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (((-714) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (((-714) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL T ELT)) (-4096 (((-797) $) 21 T ELT)) (-1793 (($ $) 26 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-1310 (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 20 T ELT)) (-4107 (((-714) $) 48 (|has| $ (-6 -4145)) ELT))) -(((-563 |#1|) (-13 (-320 (-344) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) (-1134 (-1099) |#1|) (-10 -8 (-6 -4145) (-15 -2372 ($ $)))) (-1041)) (T -563)) -((-2372 (*1 *1 *1) (-12 (-5 *1 (-563 *2)) (-4 *2 (-1041))))) -((-3383 (((-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2333 (((-599 |#2|) $) 20 T ELT)) (-2334 (((-85) |#2| $) 12 T ELT))) -(((-564 |#1| |#2| |#3|) (-10 -7 (-15 -2333 ((-599 |#2|) |#1|)) (-15 -2334 ((-85) |#2| |#1|)) (-15 -3383 ((-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) |#1|))) (-565 |#2| |#3|) (-1041) (-1041)) (T -564)) -NIL -((-2687 (((-85) $ $) 19 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#2| "failed") |#1| $) 65 T ELT)) (-3874 (($) 7 T CONST)) (-1386 (($ $) 62 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -4145)) ELT) (((-3 |#2| "failed") |#1| $) 66 T ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-2333 (((-599 |#1|) $) 67 T ELT)) (-2334 (((-85) |#1| $) 68 T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-3381 (((-1060) $) 21 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-1499 (($) 53 T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 63 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-4096 (((-797) $) 17 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-565 |#1| |#2|) (-113) (-1041) (-1041)) (T -565)) -((-2334 (*1 *2 *3 *1) (-12 (-4 *1 (-565 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-5 *2 (-85)))) (-2333 (*1 *2 *1) (-12 (-4 *1 (-565 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-5 *2 (-599 *3)))) (-3545 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-565 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041)))) (-2332 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-565 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041))))) -(-13 (-183 (-2 (|:| -4010 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -2334 ((-85) |t#1| $)) (-15 -2333 ((-599 |t#1|) $)) (-15 -3545 ((-3 |t#2| "failed") |t#1| $)) (-15 -2332 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-78 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-73) -3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73))) ((-568 (-797)) -3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797)))) ((-124 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-569 (-488)) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ((-183 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-192 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ((-443 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-468 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ((-1041) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-2335 (((-3 (-1117) "failed") $) 46 T ELT)) (-1346 (((-1213) $ (-714)) 22 T ELT)) (-3559 (((-714) $) 20 T ELT)) (-3743 (((-86) $) 9 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2336 (($ (-86) (-599 |#1|) (-714)) 32 T ELT) (($ (-1117)) 33 T ELT)) (-2752 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1117)) 13 T ELT)) (-2722 (((-714) $) 17 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4122 (((-825 (-499)) $) 99 (|has| |#1| (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) 106 (|has| |#1| (-569 (-825 (-333)))) ELT) (((-488) $) 92 (|has| |#1| (-569 (-488))) ELT)) (-4096 (((-797) $) 74 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2337 (((-599 |#1|) $) 19 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 51 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 53 T ELT))) -(((-566 |#1|) (-13 (-105) (-781) (-819 |#1|) (-10 -8 (-15 -3743 ((-86) $)) (-15 -2337 ((-599 |#1|) $)) (-15 -2722 ((-714) $)) (-15 -2336 ($ (-86) (-599 |#1|) (-714))) (-15 -2336 ($ (-1117))) (-15 -2335 ((-3 (-1117) "failed") $)) (-15 -2752 ((-85) $ (-86))) (-15 -2752 ((-85) $ (-1117))) (IF (|has| |#1| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|))) (-1041)) (T -566)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-566 *3)) (-4 *3 (-1041)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-566 *3)) (-4 *3 (-1041)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-566 *3)) (-4 *3 (-1041)))) (-2336 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-599 *5)) (-5 *4 (-714)) (-4 *5 (-1041)) (-5 *1 (-566 *5)))) (-2336 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-566 *3)) (-4 *3 (-1041)))) (-2335 (*1 *2 *1) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-566 *3)) (-4 *3 (-1041)))) (-2752 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-566 *4)) (-4 *4 (-1041)))) (-2752 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-85)) (-5 *1 (-566 *4)) (-4 *4 (-1041))))) -((-2338 (((-566 |#2|) |#1|) 17 T ELT)) (-2339 (((-3 |#1| "failed") (-566 |#2|)) 21 T ELT))) -(((-567 |#1| |#2|) (-10 -7 (-15 -2338 ((-566 |#2|) |#1|)) (-15 -2339 ((-3 |#1| "failed") (-566 |#2|)))) (-1041) (-1041)) (T -567)) -((-2339 (*1 *2 *3) (|partial| -12 (-5 *3 (-566 *4)) (-4 *4 (-1041)) (-4 *2 (-1041)) (-5 *1 (-567 *2 *4)))) (-2338 (*1 *2 *3) (-12 (-5 *2 (-566 *4)) (-5 *1 (-567 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) -((-4096 ((|#1| $) 6 T ELT))) -(((-568 |#1|) (-113) (-1157)) (T -568)) -((-4096 (*1 *2 *1) (-12 (-4 *1 (-568 *2)) (-4 *2 (-1157))))) -(-13 (-10 -8 (-15 -4096 (|t#1| $)))) -((-4122 ((|#1| $) 6 T ELT))) -(((-569 |#1|) (-113) (-1157)) (T -569)) -((-4122 (*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-1157))))) -(-13 (-10 -8 (-15 -4122 (|t#1| $)))) -((-2340 (((-3 (-1111 (-361 |#2|)) #1="failed") (-361 |#2|) (-361 |#2|) (-361 |#2|) (-1 (-359 |#2|) |#2|)) 15 T ELT) (((-3 (-1111 (-361 |#2|)) #1#) (-361 |#2|) (-361 |#2|) (-361 |#2|)) 16 T ELT))) -(((-570 |#1| |#2|) (-10 -7 (-15 -2340 ((-3 (-1111 (-361 |#2|)) #1="failed") (-361 |#2|) (-361 |#2|) (-361 |#2|))) (-15 -2340 ((-3 (-1111 (-361 |#2|)) #1#) (-361 |#2|) (-361 |#2|) (-361 |#2|) (-1 (-359 |#2|) |#2|)))) (-13 (-120) (-27) (-978 (-499)) (-978 (-361 (-499)))) (-1183 |#1|)) (T -570)) -((-2340 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-120) (-27) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-1111 (-361 *6))) (-5 *1 (-570 *5 *6)) (-5 *3 (-361 *6)))) (-2340 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-978 (-499)) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) (-5 *2 (-1111 (-361 *5))) (-5 *1 (-570 *4 *5)) (-5 *3 (-361 *5))))) -((-4096 (($ |#1|) 6 T ELT))) -(((-571 |#1|) (-113) (-1157)) (T -571)) -((-4096 (*1 *1 *2) (-12 (-4 *1 (-571 *2)) (-4 *2 (-1157))))) -(-13 (-10 -8 (-15 -4096 ($ |t#1|)))) -((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-2341 (($) 14 T CONST)) (-2976 (($) 15 T CONST)) (-2680 (($ $ $) 29 T ELT)) (-2679 (($ $) 27 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2974 (($ $ $) 30 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2975 (($) 11 T CONST)) (-2973 (($ $ $) 31 T ELT)) (-4096 (((-797) $) 35 T ELT)) (-3714 (((-85) $ (|[\|\|]| -2975)) 24 T ELT) (((-85) $ (|[\|\|]| -2341)) 26 T ELT) (((-85) $ (|[\|\|]| -2976)) 21 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2681 (($ $ $) 28 T ELT)) (-2411 (($ $ $) NIL T ELT)) (-3174 (((-85) $ $) 18 T ELT)) (-2412 (($ $ $) NIL T ELT))) -(((-572) (-13 (-907) (-10 -8 (-15 -2341 ($) -4102) (-15 -3714 ((-85) $ (|[\|\|]| -2975))) (-15 -3714 ((-85) $ (|[\|\|]| -2341))) (-15 -3714 ((-85) $ (|[\|\|]| -2976)))))) (T -572)) -((-2341 (*1 *1) (-5 *1 (-572))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2975)) (-5 *2 (-85)) (-5 *1 (-572)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2341)) (-5 *2 (-85)) (-5 *1 (-572)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2976)) (-5 *2 (-85)) (-5 *1 (-572))))) -((-4122 (($ |#1|) 6 T ELT))) -(((-573 |#1|) (-113) (-1157)) (T -573)) -((-4122 (*1 *1 *2) (-12 (-4 *1 (-573 *2)) (-4 *2 (-1157))))) -(-13 (-10 -8 (-15 -4122 ($ |t#1|)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| |#1| (-780)) ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3324 (((-85) $) NIL (|has| |#1| (-780)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3119 ((|#1| $) 13 T ELT)) (-3325 (((-85) $) NIL (|has| |#1| (-780)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-780)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-780)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3118 ((|#3| $) 15 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3248 (((-714)) 20 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3523 (($ $) NIL (|has| |#1| (-780)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) 12 T CONST)) (-2685 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-4099 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-574 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-780)) (-6 (-780)) |%noBranch|) (-15 -4099 ($ $ |#3|)) (-15 -4099 ($ |#1| |#3|)) (-15 -3119 (|#1| $)) (-15 -3118 (|#3| $)))) (-38 |#2|) (-146) (|SubsetCategory| (-684) |#2|)) (T -574)) -((-4099 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-574 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-684) *4)))) (-4099 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-574 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-684) *4)))) (-3119 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-574 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-684) *3)))) (-3118 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-684) *4)) (-5 *1 (-574 *3 *4 *2)) (-4 *3 (-38 *4))))) -((-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-575 |#1| |#2|) (-10 -7 (-15 -4096 (|#1| |#2|)) (-15 -4096 (|#1| (-499))) (-15 -4096 ((-797) |#1|))) (-576 |#2|) (-989)) (T -575)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 46 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 47 T ELT))) -(((-576 |#1|) (-113) (-989)) (T -576)) -((-4096 (*1 *1 *2) (-12 (-4 *1 (-576 *2)) (-4 *2 (-989))))) -(-13 (-989) (-606 |t#1|) (-10 -8 (-15 -4096 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-684) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2342 ((|#2| |#2| (-1117) (-1117)) 16 T ELT))) -(((-577 |#1| |#2|) (-10 -7 (-15 -2342 (|#2| |#2| (-1117) (-1117)))) (-13 (-261) (-120) (-978 (-499)) (-596 (-499))) (-13 (-1143) (-898) (-29 |#1|))) (T -577)) -((-2342 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *1 (-577 *4 *2)) (-4 *2 (-13 (-1143) (-898) (-29 *4)))))) -((-2687 (((-85) $ $) 64 T ELT)) (-3326 (((-85) $) 58 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-2343 ((|#1| $) 55 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3901 (((-2 (|:| -1862 $) (|:| -1861 (-361 |#2|))) (-361 |#2|)) 111 (|has| |#1| (-318)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) 27 T ELT)) (-3607 (((-3 $ #1#) $) 88 T ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3922 (((-499) $) 22 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) 40 T ELT)) (-3014 (($ |#1| (-499)) 24 T ELT)) (-3312 ((|#1| $) 57 T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) 101 (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3606 (((-3 $ #1#) $ $) 93 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-1677 (((-714) $) 115 (|has| |#1| (-318)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 114 (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-714)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT)) (-4098 (((-499) $) 38 T ELT)) (-4122 (((-361 |#2|) $) 47 T ELT)) (-4096 (((-797) $) 69 T ELT) (($ (-499)) 35 T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3827 ((|#1| $ (-499)) 72 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 32 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2779 (($) 9 T CONST)) (-2785 (($) 14 T CONST)) (-2790 (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-714)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) 21 T ELT)) (-3987 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 90 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 49 T ELT))) -(((-578 |#1| |#2|) (-13 (-184 |#2|) (-510) (-569 (-361 |#2|)) (-366 |#1|) (-978 |#2|) (-10 -8 (-15 -4087 ((-85) $)) (-15 -4098 ((-499) $)) (-15 -3922 ((-499) $)) (-15 -4109 ($ $)) (-15 -3312 (|#1| $)) (-15 -2343 (|#1| $)) (-15 -3827 (|#1| $ (-499))) (-15 -3014 ($ |#1| (-499))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-318)) (PROGN (-6 (-261)) (-15 -3901 ((-2 (|:| -1862 $) (|:| -1861 (-361 |#2|))) (-361 |#2|)))) |%noBranch|))) (-510) (-1183 |#1|)) (T -578)) -((-4087 (*1 *2 *1) (-12 (-4 *3 (-510)) (-5 *2 (-85)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1183 *3)))) (-4098 (*1 *2 *1) (-12 (-4 *3 (-510)) (-5 *2 (-499)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1183 *3)))) (-3922 (*1 *2 *1) (-12 (-4 *3 (-510)) (-5 *2 (-499)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1183 *3)))) (-4109 (*1 *1 *1) (-12 (-4 *2 (-510)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1183 *2)))) (-3312 (*1 *2 *1) (-12 (-4 *2 (-510)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1183 *2)))) (-2343 (*1 *2 *1) (-12 (-4 *2 (-510)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1183 *2)))) (-3827 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *2 (-510)) (-5 *1 (-578 *2 *4)) (-4 *4 (-1183 *2)))) (-3014 (*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-4 *2 (-510)) (-5 *1 (-578 *2 *4)) (-4 *4 (-1183 *2)))) (-3901 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *4 (-510)) (-4 *5 (-1183 *4)) (-5 *2 (-2 (|:| -1862 (-578 *4 *5)) (|:| -1861 (-361 *5)))) (-5 *1 (-578 *4 *5)) (-5 *3 (-361 *5))))) -((-3832 (((-599 |#6|) (-599 |#4|) (-85)) 54 T ELT)) (-2344 ((|#6| |#6|) 48 T ELT))) -(((-579 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2344 (|#6| |#6|)) (-15 -3832 ((-599 |#6|) (-599 |#4|) (-85)))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|) (-1011 |#1| |#2| |#3| |#4|) (-1049 |#1| |#2| |#3| |#4|)) (T -579)) -((-3832 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 *10)) (-5 *1 (-579 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *10 (-1049 *5 *6 *7 *8)))) (-2344 (*1 *2 *2) (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *1 (-579 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *2 (-1049 *3 *4 *5 *6))))) -((-2345 (((-85) |#3| (-714) (-599 |#3|)) 30 T ELT)) (-2346 (((-3 (-2 (|:| |polfac| (-599 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-599 (-1111 |#3|)))) "failed") |#3| (-599 (-1111 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1877 (-599 (-2 (|:| |irr| |#4|) (|:| -2513 (-499)))))) (-599 |#3|) (-599 |#1|) (-599 |#3|)) 68 T ELT))) -(((-580 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2345 ((-85) |#3| (-714) (-599 |#3|))) (-15 -2346 ((-3 (-2 (|:| |polfac| (-599 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-599 (-1111 |#3|)))) "failed") |#3| (-599 (-1111 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1877 (-599 (-2 (|:| |irr| |#4|) (|:| -2513 (-499)))))) (-599 |#3|) (-599 |#1|) (-599 |#3|)))) (-781) (-738) (-261) (-888 |#3| |#2| |#1|)) (T -580)) -((-2346 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1877 (-599 (-2 (|:| |irr| *10) (|:| -2513 (-499))))))) (-5 *6 (-599 *3)) (-5 *7 (-599 *8)) (-4 *8 (-781)) (-4 *3 (-261)) (-4 *10 (-888 *3 *9 *8)) (-4 *9 (-738)) (-5 *2 (-2 (|:| |polfac| (-599 *10)) (|:| |correct| *3) (|:| |corrfact| (-599 (-1111 *3))))) (-5 *1 (-580 *8 *9 *3 *10)) (-5 *4 (-599 (-1111 *3))))) (-2345 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-714)) (-5 *5 (-599 *3)) (-4 *3 (-261)) (-4 *6 (-781)) (-4 *7 (-738)) (-5 *2 (-85)) (-5 *1 (-580 *6 *7 *3 *8)) (-4 *8 (-888 *3 *7 *6))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3668 (((-1075) $) 11 T ELT)) (-3669 (((-1075) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 17 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-581) (-13 (-1023) (-10 -8 (-15 -3669 ((-1075) $)) (-15 -3668 ((-1075) $))))) (T -581)) -((-3669 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-581)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-581))))) -((-2687 (((-85) $ $) NIL T ELT)) (-4084 (((-599 |#1|) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ "failed") $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-4086 (($ $) 77 T ELT)) (-4092 (((-622 |#1| |#2|) $) 60 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 81 T ELT)) (-2347 (((-599 (-247 |#2|)) $ $) 42 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4093 (($ (-622 |#1| |#2|)) 56 T ELT)) (-3130 (($ $ $) NIL T ELT)) (-2551 (($ $ $) NIL T ELT)) (-4096 (((-797) $) 66 T ELT) (((-1223 |#1| |#2|) $) NIL T ELT) (((-1228 |#1| |#2|) $) 74 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2785 (($) 61 T CONST)) (-2348 (((-599 (-2 (|:| |k| (-630 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2349 (((-599 (-622 |#1| |#2|)) (-599 |#1|)) 73 T ELT)) (-2784 (((-599 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3174 (((-85) $ $) 62 T ELT)) (-4099 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ $ $) 52 T ELT))) -(((-582 |#1| |#2| |#3|) (-13 (-427) (-10 -8 (-15 -4093 ($ (-622 |#1| |#2|))) (-15 -4092 ((-622 |#1| |#2|) $)) (-15 -2784 ((-599 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $)) (-15 -4096 ((-1223 |#1| |#2|) $)) (-15 -4096 ((-1228 |#1| |#2|) $)) (-15 -4086 ($ $)) (-15 -4084 ((-599 |#1|) $)) (-15 -2349 ((-599 (-622 |#1| |#2|)) (-599 |#1|))) (-15 -2348 ((-599 (-2 (|:| |k| (-630 |#1|)) (|:| |c| |#2|))) $)) (-15 -2347 ((-599 (-247 |#2|)) $ $)))) (-781) (-13 (-146) (-675 (-361 (-499)))) (-857)) (T -582)) -((-4093 (*1 *1 *2) (-12 (-5 *2 (-622 *3 *4)) (-4 *3 (-781)) (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-5 *1 (-582 *3 *4 *5)) (-14 *5 (-857)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-622 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |k| (-828 *3)) (|:| |c| *4)))) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-1223 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-1228 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) (-4086 (*1 *1 *1) (-12 (-5 *1 (-582 *2 *3 *4)) (-4 *2 (-781)) (-4 *3 (-13 (-146) (-675 (-361 (-499))))) (-14 *4 (-857)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) (-2349 (*1 *2 *3) (-12 (-5 *3 (-599 *4)) (-4 *4 (-781)) (-5 *2 (-599 (-622 *4 *5))) (-5 *1 (-582 *4 *5 *6)) (-4 *5 (-13 (-146) (-675 (-361 (-499))))) (-14 *6 (-857)))) (-2348 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |k| (-630 *3)) (|:| |c| *4)))) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) (-2347 (*1 *2 *1 *1) (-12 (-5 *2 (-599 (-247 *4))) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857))))) -((-3832 (((-599 (-1086 |#1| (-484 (-798 |#2|)) (-798 |#2|) (-723 |#1| (-798 |#2|)))) (-599 (-723 |#1| (-798 |#2|))) (-85)) 103 T ELT) (((-599 (-986 |#1| |#2|)) (-599 (-723 |#1| (-798 |#2|))) (-85)) 77 T ELT)) (-2350 (((-85) (-599 (-723 |#1| (-798 |#2|)))) 26 T ELT)) (-2354 (((-599 (-1086 |#1| (-484 (-798 |#2|)) (-798 |#2|) (-723 |#1| (-798 |#2|)))) (-599 (-723 |#1| (-798 |#2|))) (-85)) 102 T ELT)) (-2353 (((-599 (-986 |#1| |#2|)) (-599 (-723 |#1| (-798 |#2|))) (-85)) 76 T ELT)) (-2352 (((-599 (-723 |#1| (-798 |#2|))) (-599 (-723 |#1| (-798 |#2|)))) 30 T ELT)) (-2351 (((-3 (-599 (-723 |#1| (-798 |#2|))) "failed") (-599 (-723 |#1| (-798 |#2|)))) 29 T ELT))) -(((-583 |#1| |#2|) (-10 -7 (-15 -2350 ((-85) (-599 (-723 |#1| (-798 |#2|))))) (-15 -2351 ((-3 (-599 (-723 |#1| (-798 |#2|))) "failed") (-599 (-723 |#1| (-798 |#2|))))) (-15 -2352 ((-599 (-723 |#1| (-798 |#2|))) (-599 (-723 |#1| (-798 |#2|))))) (-15 -2353 ((-599 (-986 |#1| |#2|)) (-599 (-723 |#1| (-798 |#2|))) (-85))) (-15 -2354 ((-599 (-1086 |#1| (-484 (-798 |#2|)) (-798 |#2|) (-723 |#1| (-798 |#2|)))) (-599 (-723 |#1| (-798 |#2|))) (-85))) (-15 -3832 ((-599 (-986 |#1| |#2|)) (-599 (-723 |#1| (-798 |#2|))) (-85))) (-15 -3832 ((-599 (-1086 |#1| (-484 (-798 |#2|)) (-798 |#2|) (-723 |#1| (-798 |#2|)))) (-599 (-723 |#1| (-798 |#2|))) (-85)))) (-406) (-599 (-1117))) (T -583)) -((-3832 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) (-14 *6 (-599 (-1117))) (-5 *2 (-599 (-1086 *5 (-484 (-798 *6)) (-798 *6) (-723 *5 (-798 *6))))) (-5 *1 (-583 *5 *6)))) (-3832 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) (-14 *6 (-599 (-1117))) (-5 *2 (-599 (-986 *5 *6))) (-5 *1 (-583 *5 *6)))) (-2354 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) (-14 *6 (-599 (-1117))) (-5 *2 (-599 (-1086 *5 (-484 (-798 *6)) (-798 *6) (-723 *5 (-798 *6))))) (-5 *1 (-583 *5 *6)))) (-2353 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) (-14 *6 (-599 (-1117))) (-5 *2 (-599 (-986 *5 *6))) (-5 *1 (-583 *5 *6)))) (-2352 (*1 *2 *2) (-12 (-5 *2 (-599 (-723 *3 (-798 *4)))) (-4 *3 (-406)) (-14 *4 (-599 (-1117))) (-5 *1 (-583 *3 *4)))) (-2351 (*1 *2 *2) (|partial| -12 (-5 *2 (-599 (-723 *3 (-798 *4)))) (-4 *3 (-406)) (-14 *4 (-599 (-1117))) (-5 *1 (-583 *3 *4)))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-599 (-723 *4 (-798 *5)))) (-4 *4 (-406)) (-14 *5 (-599 (-1117))) (-5 *2 (-85)) (-5 *1 (-583 *4 *5))))) -((-3743 (((-86) (-86)) 88 T ELT)) (-2358 ((|#2| |#2|) 28 T ELT)) (-2953 ((|#2| |#2| (-1032 |#2|)) 84 T ELT) ((|#2| |#2| (-1117)) 50 T ELT)) (-2356 ((|#2| |#2|) 27 T ELT)) (-2357 ((|#2| |#2|) 29 T ELT)) (-2355 (((-85) (-86)) 33 T ELT)) (-2360 ((|#2| |#2|) 24 T ELT)) (-2361 ((|#2| |#2|) 26 T ELT)) (-2359 ((|#2| |#2|) 25 T ELT))) -(((-584 |#1| |#2|) (-10 -7 (-15 -2355 ((-85) (-86))) (-15 -3743 ((-86) (-86))) (-15 -2361 (|#2| |#2|)) (-15 -2360 (|#2| |#2|)) (-15 -2359 (|#2| |#2|)) (-15 -2358 (|#2| |#2|)) (-15 -2356 (|#2| |#2|)) (-15 -2357 (|#2| |#2|)) (-15 -2953 (|#2| |#2| (-1117))) (-15 -2953 (|#2| |#2| (-1032 |#2|)))) (-510) (-13 (-375 |#1|) (-942) (-1143))) (T -584)) -((-2953 (*1 *2 *2 *3) (-12 (-5 *3 (-1032 *2)) (-4 *2 (-13 (-375 *4) (-942) (-1143))) (-4 *4 (-510)) (-5 *1 (-584 *4 *2)))) (-2953 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *1 (-584 *4 *2)) (-4 *2 (-13 (-375 *4) (-942) (-1143))))) (-2357 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-375 *3) (-942) (-1143))))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-375 *3) (-942) (-1143))))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-375 *3) (-942) (-1143))))) (-2359 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-375 *3) (-942) (-1143))))) (-2360 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-375 *3) (-942) (-1143))))) (-2361 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-375 *3) (-942) (-1143))))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-584 *3 *4)) (-4 *4 (-13 (-375 *3) (-942) (-1143))))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-584 *4 *5)) (-4 *5 (-13 (-375 *4) (-942) (-1143)))))) -((-3632 (($ $) 38 T ELT)) (-3789 (($ $) 21 T ELT)) (-3630 (($ $) 37 T ELT)) (-3788 (($ $) 22 T ELT)) (-3634 (($ $) 36 T ELT)) (-3787 (($ $) 23 T ELT)) (-3777 (($) 48 T ELT)) (-4092 (($ $) 45 T ELT)) (-2358 (($ $) 17 T ELT)) (-2953 (($ $ (-1032 $)) 7 T ELT) (($ $ (-1117)) 6 T ELT)) (-4093 (($ $) 46 T ELT)) (-2356 (($ $) 15 T ELT)) (-2357 (($ $) 16 T ELT)) (-3635 (($ $) 35 T ELT)) (-3786 (($ $) 24 T ELT)) (-3633 (($ $) 34 T ELT)) (-3785 (($ $) 25 T ELT)) (-3631 (($ $) 33 T ELT)) (-3784 (($ $) 26 T ELT)) (-3638 (($ $) 44 T ELT)) (-3626 (($ $) 32 T ELT)) (-3636 (($ $) 43 T ELT)) (-3624 (($ $) 31 T ELT)) (-3640 (($ $) 42 T ELT)) (-3628 (($ $) 30 T ELT)) (-3641 (($ $) 41 T ELT)) (-3629 (($ $) 29 T ELT)) (-3639 (($ $) 40 T ELT)) (-3627 (($ $) 28 T ELT)) (-3637 (($ $) 39 T ELT)) (-3625 (($ $) 27 T ELT)) (-2360 (($ $) 19 T ELT)) (-2361 (($ $) 20 T ELT)) (-2359 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) -(((-585) (-113)) (T -585)) -((-2361 (*1 *1 *1) (-4 *1 (-585))) (-2360 (*1 *1 *1) (-4 *1 (-585))) (-2359 (*1 *1 *1) (-4 *1 (-585))) (-2358 (*1 *1 *1) (-4 *1 (-585))) (-2357 (*1 *1 *1) (-4 *1 (-585))) (-2356 (*1 *1 *1) (-4 *1 (-585)))) -(-13 (-898) (-1143) (-10 -8 (-15 -2361 ($ $)) (-15 -2360 ($ $)) (-15 -2359 ($ $)) (-15 -2358 ($ $)) (-15 -2357 ($ $)) (-15 -2356 ($ $)))) -(((-35) . T) ((-66) . T) ((-238) . T) ((-447) . T) ((-898) . T) ((-1143) . T) ((-1146) . T)) -((-2371 (((-435 |#1| |#2|) (-205 |#1| |#2|)) 65 T ELT)) (-2364 (((-599 (-205 |#1| |#2|)) (-599 (-435 |#1| |#2|))) 90 T ELT)) (-2365 (((-435 |#1| |#2|) (-599 (-435 |#1| |#2|)) (-798 |#1|)) 92 T ELT) (((-435 |#1| |#2|) (-599 (-435 |#1| |#2|)) (-599 (-435 |#1| |#2|)) (-798 |#1|)) 91 T ELT)) (-2362 (((-2 (|:| |gblist| (-599 (-205 |#1| |#2|))) (|:| |gvlist| (-599 (-499)))) (-599 (-435 |#1| |#2|))) 136 T ELT)) (-2369 (((-599 (-435 |#1| |#2|)) (-798 |#1|) (-599 (-435 |#1| |#2|)) (-599 (-435 |#1| |#2|))) 105 T ELT)) (-2363 (((-2 (|:| |glbase| (-599 (-205 |#1| |#2|))) (|:| |glval| (-599 (-499)))) (-599 (-205 |#1| |#2|))) 147 T ELT)) (-2367 (((-1207 |#2|) (-435 |#1| |#2|) (-599 (-435 |#1| |#2|))) 70 T ELT)) (-2366 (((-599 (-435 |#1| |#2|)) (-599 (-435 |#1| |#2|))) 47 T ELT)) (-2370 (((-205 |#1| |#2|) (-205 |#1| |#2|) (-599 (-205 |#1| |#2|))) 61 T ELT)) (-2368 (((-205 |#1| |#2|) (-599 |#2|) (-205 |#1| |#2|) (-599 (-205 |#1| |#2|))) 113 T ELT))) -(((-586 |#1| |#2|) (-10 -7 (-15 -2362 ((-2 (|:| |gblist| (-599 (-205 |#1| |#2|))) (|:| |gvlist| (-599 (-499)))) (-599 (-435 |#1| |#2|)))) (-15 -2363 ((-2 (|:| |glbase| (-599 (-205 |#1| |#2|))) (|:| |glval| (-599 (-499)))) (-599 (-205 |#1| |#2|)))) (-15 -2364 ((-599 (-205 |#1| |#2|)) (-599 (-435 |#1| |#2|)))) (-15 -2365 ((-435 |#1| |#2|) (-599 (-435 |#1| |#2|)) (-599 (-435 |#1| |#2|)) (-798 |#1|))) (-15 -2365 ((-435 |#1| |#2|) (-599 (-435 |#1| |#2|)) (-798 |#1|))) (-15 -2366 ((-599 (-435 |#1| |#2|)) (-599 (-435 |#1| |#2|)))) (-15 -2367 ((-1207 |#2|) (-435 |#1| |#2|) (-599 (-435 |#1| |#2|)))) (-15 -2368 ((-205 |#1| |#2|) (-599 |#2|) (-205 |#1| |#2|) (-599 (-205 |#1| |#2|)))) (-15 -2369 ((-599 (-435 |#1| |#2|)) (-798 |#1|) (-599 (-435 |#1| |#2|)) (-599 (-435 |#1| |#2|)))) (-15 -2370 ((-205 |#1| |#2|) (-205 |#1| |#2|) (-599 (-205 |#1| |#2|)))) (-15 -2371 ((-435 |#1| |#2|) (-205 |#1| |#2|)))) (-599 (-1117)) (-406)) (T -586)) -((-2371 (*1 *2 *3) (-12 (-5 *3 (-205 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-406)) (-5 *2 (-435 *4 *5)) (-5 *1 (-586 *4 *5)))) (-2370 (*1 *2 *2 *3) (-12 (-5 *3 (-599 (-205 *4 *5))) (-5 *2 (-205 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-406)) (-5 *1 (-586 *4 *5)))) (-2369 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-599 (-435 *4 *5))) (-5 *3 (-798 *4)) (-14 *4 (-599 (-1117))) (-4 *5 (-406)) (-5 *1 (-586 *4 *5)))) (-2368 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-599 *6)) (-5 *4 (-599 (-205 *5 *6))) (-4 *6 (-406)) (-5 *2 (-205 *5 *6)) (-14 *5 (-599 (-1117))) (-5 *1 (-586 *5 *6)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-435 *5 *6))) (-5 *3 (-435 *5 *6)) (-14 *5 (-599 (-1117))) (-4 *6 (-406)) (-5 *2 (-1207 *6)) (-5 *1 (-586 *5 *6)))) (-2366 (*1 *2 *2) (-12 (-5 *2 (-599 (-435 *3 *4))) (-14 *3 (-599 (-1117))) (-4 *4 (-406)) (-5 *1 (-586 *3 *4)))) (-2365 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-435 *5 *6))) (-5 *4 (-798 *5)) (-14 *5 (-599 (-1117))) (-5 *2 (-435 *5 *6)) (-5 *1 (-586 *5 *6)) (-4 *6 (-406)))) (-2365 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-599 (-435 *5 *6))) (-5 *4 (-798 *5)) (-14 *5 (-599 (-1117))) (-5 *2 (-435 *5 *6)) (-5 *1 (-586 *5 *6)) (-4 *6 (-406)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-599 (-435 *4 *5))) (-14 *4 (-599 (-1117))) (-4 *5 (-406)) (-5 *2 (-599 (-205 *4 *5))) (-5 *1 (-586 *4 *5)))) (-2363 (*1 *2 *3) (-12 (-14 *4 (-599 (-1117))) (-4 *5 (-406)) (-5 *2 (-2 (|:| |glbase| (-599 (-205 *4 *5))) (|:| |glval| (-599 (-499))))) (-5 *1 (-586 *4 *5)) (-5 *3 (-599 (-205 *4 *5))))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-599 (-435 *4 *5))) (-14 *4 (-599 (-1117))) (-4 *5 (-406)) (-5 *2 (-2 (|:| |gblist| (-599 (-205 *4 *5))) (|:| |gvlist| (-599 (-499))))) (-5 *1 (-586 *4 *5))))) -((-2687 (((-85) $ $) NIL (-3677 (|has| (-51) (-73)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) NIL T ELT)) (-2299 (((-1213) $ (-1099) (-1099)) NIL (|has| $ (-6 -4146)) ELT)) (-3938 (((-51) $ (-1099) (-51)) NIL T ELT) (((-51) $ (-1117) (-51)) 16 T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 (-51) #1="failed") (-1099) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 (-51) #1#) (-1099) $) NIL T ELT)) (-3546 (($ (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $ (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT) (((-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $ (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 (((-51) $ (-1099) (-51)) NIL (|has| $ (-6 -4146)) ELT)) (-3235 (((-51) $ (-1099)) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-2372 (($ $) NIL T ELT)) (-2301 (((-1099) $) NIL (|has| (-1099) (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT) (((-85) (-51) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-51) (-1041))) ELT)) (-2302 (((-1099) $) NIL (|has| (-1099) (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2373 (($ (-344)) 8 T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-51) (-1041)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT)) (-2333 (((-599 (-1099)) $) NIL T ELT)) (-2334 (((-85) (-1099) $) NIL T ELT)) (-1308 (((-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) $) NIL T ELT)) (-2304 (((-599 (-1099)) $) NIL T ELT)) (-2305 (((-85) (-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-51) (-1041)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT)) (-3951 (((-51) $) NIL (|has| (-1099) (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2300 (($ $ (-51)) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-599 (-51)) (-599 (-51))) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT) (($ $ (-247 (-51))) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT) (($ $ (-599 (-247 (-51)))) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) (-51) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-51) (-1041))) ELT)) (-2306 (((-599 (-51)) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 (((-51) $ (-1099)) NIL T ELT) (((-51) $ (-1099) (-51)) NIL T ELT) (((-51) $ (-1117)) 14 T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT) (((-714) (-51) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-51) (-1041))) ELT) (((-714) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) NIL T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-568 (-797))) (|has| (-51) (-568 (-797)))) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-51) (-73)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-51) (-73)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-73))) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-587) (-13 (-1134 (-1099) (-51)) (-240 (-1117) (-51)) (-10 -8 (-15 -2373 ($ (-344))) (-15 -2372 ($ $)) (-15 -3938 ((-51) $ (-1117) (-51)))))) (T -587)) -((-2373 (*1 *1 *2) (-12 (-5 *2 (-344)) (-5 *1 (-587)))) (-2372 (*1 *1 *1) (-5 *1 (-587))) (-3938 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1117)) (-5 *1 (-587))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1870 (((-3 $ #1="failed")) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1345 (((-3 $ #1#) $ $) NIL T ELT)) (-3361 (((-1207 (-647 |#1|))) NIL (|has| |#2| (-372 |#1|)) ELT) (((-1207 (-647 |#1|)) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1822 (((-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3874 (($) NIL T CONST)) (-2008 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1796 (((-3 $ #1#)) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1886 (((-647 |#1|)) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1820 ((|#1| $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1884 (((-647 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) $ (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2522 (((-3 $ #1#) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-2002 (((-1111 (-884 |#1|))) NIL (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-318))) ELT)) (-2525 (($ $ (-857)) NIL T ELT)) (-1818 ((|#1| $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1798 (((-1111 |#1|) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1888 ((|#1|) NIL (|has| |#2| (-372 |#1|)) ELT) ((|#1| (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1816 (((-1111 |#1|) $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1810 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1890 (($ (-1207 |#1|)) NIL (|has| |#2| (-372 |#1|)) ELT) (($ (-1207 |#1|) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3607 (((-3 $ #1#) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-3231 (((-857)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1807 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2549 (($ $ (-857)) NIL T ELT)) (-1803 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1801 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1805 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2009 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1797 (((-3 $ #1#)) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1887 (((-647 |#1|)) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1821 ((|#1| $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1885 (((-647 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) $ (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2523 (((-3 $ #1#) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-2006 (((-1111 (-884 |#1|))) NIL (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-318))) ELT)) (-2524 (($ $ (-857)) NIL T ELT)) (-1819 ((|#1| $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1799 (((-1111 |#1|) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1889 ((|#1|) NIL (|has| |#2| (-372 |#1|)) ELT) ((|#1| (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1817 (((-1111 |#1|) $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1811 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1802 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1804 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1806 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1809 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3950 ((|#1| $ (-499)) NIL (|has| |#2| (-372 |#1|)) ELT)) (-3362 (((-647 |#1|) (-1207 $)) NIL (|has| |#2| (-372 |#1|)) ELT) (((-1207 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) (-1207 $) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT) (((-1207 |#1|) $ (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-4122 (($ (-1207 |#1|)) NIL (|has| |#2| (-372 |#1|)) ELT) (((-1207 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT)) (-1994 (((-599 (-884 |#1|))) NIL (|has| |#2| (-372 |#1|)) ELT) (((-599 (-884 |#1|)) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2551 (($ $ $) NIL T ELT)) (-1815 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-4096 (((-797) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL (|has| |#2| (-372 |#1|)) ELT)) (-1800 (((-599 (-1207 |#1|))) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-2552 (($ $ $ $) NIL T ELT)) (-1813 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2664 (($ (-647 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT)) (-2550 (($ $ $) NIL T ELT)) (-1814 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1812 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1808 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2779 (($) 18 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) 19 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-588 |#1| |#2|) (-13 (-702 |#1|) (-568 |#2|) (-10 -8 (-15 -4096 ($ |#2|)) (IF (|has| |#2| (-372 |#1|)) (-6 (-372 |#1|)) |%noBranch|) (IF (|has| |#2| (-322 |#1|)) (-6 (-322 |#1|)) |%noBranch|))) (-146) (-702 |#1|)) (T -588)) -((-4096 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-588 *3 *2)) (-4 *2 (-702 *3))))) -((-4099 (($ $ |#2|) 10 T ELT))) -(((-589 |#1| |#2|) (-10 -7 (-15 -4099 (|#1| |#1| |#2|))) (-590 |#2|) (-146)) (T -589)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3670 (($ $ $) 39 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 38 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-590 |#1|) (-113) (-146)) (T -590)) -((-3670 (*1 *1 *1 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-146)))) (-4099 (*1 *1 *1 *2) (-12 (-4 *1 (-590 *2)) (-4 *2 (-146)) (-4 *2 (-318))))) -(-13 (-675 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3670 ($ $ $)) (IF (|has| |t#1| (-318)) (-15 -4099 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) . T) ((-675 |#1|) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-2375 (((-3 (-775 |#2|) #1="failed") |#2| (-247 |#2|) (-1099)) 105 T ELT) (((-3 (-775 |#2|) (-2 (|:| |leftHandLimit| (-3 (-775 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-775 |#2|) #1#))) #1#) |#2| (-247 (-775 |#2|))) 130 T ELT)) (-2374 (((-3 (-766 |#2|) #1#) |#2| (-247 (-766 |#2|))) 135 T ELT))) -(((-591 |#1| |#2|) (-10 -7 (-15 -2375 ((-3 (-775 |#2|) (-2 (|:| |leftHandLimit| (-3 (-775 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-775 |#2|) #1#))) #1#) |#2| (-247 (-775 |#2|)))) (-15 -2374 ((-3 (-766 |#2|) #1#) |#2| (-247 (-766 |#2|)))) (-15 -2375 ((-3 (-775 |#2|) #1#) |#2| (-247 |#2|) (-1099)))) (-13 (-406) (-978 (-499)) (-596 (-499))) (-13 (-27) (-1143) (-375 |#1|))) (T -591)) -((-2375 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-247 *3)) (-5 *5 (-1099)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-775 *3)) (-5 *1 (-591 *6 *3)))) (-2374 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-247 (-766 *3))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-766 *3)) (-5 *1 (-591 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) (-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-247 (-775 *3))) (-4 *3 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 (-775 *3) (-2 (|:| |leftHandLimit| (-3 (-775 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-775 *3) #1#))) "failed")) (-5 *1 (-591 *5 *3))))) -((-2375 (((-3 (-775 (-361 (-884 |#1|))) #1="failed") (-361 (-884 |#1|)) (-247 (-361 (-884 |#1|))) (-1099)) 86 T ELT) (((-3 (-775 (-361 (-884 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-775 (-361 (-884 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-775 (-361 (-884 |#1|))) #1#))) #1#) (-361 (-884 |#1|)) (-247 (-361 (-884 |#1|)))) 20 T ELT) (((-3 (-775 (-361 (-884 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-775 (-361 (-884 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-775 (-361 (-884 |#1|))) #1#))) #1#) (-361 (-884 |#1|)) (-247 (-775 (-884 |#1|)))) 35 T ELT)) (-2374 (((-766 (-361 (-884 |#1|))) (-361 (-884 |#1|)) (-247 (-361 (-884 |#1|)))) 23 T ELT) (((-766 (-361 (-884 |#1|))) (-361 (-884 |#1|)) (-247 (-766 (-884 |#1|)))) 43 T ELT))) -(((-592 |#1|) (-10 -7 (-15 -2375 ((-3 (-775 (-361 (-884 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-775 (-361 (-884 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-775 (-361 (-884 |#1|))) #1#))) #1#) (-361 (-884 |#1|)) (-247 (-775 (-884 |#1|))))) (-15 -2375 ((-3 (-775 (-361 (-884 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-775 (-361 (-884 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-775 (-361 (-884 |#1|))) #1#))) #1#) (-361 (-884 |#1|)) (-247 (-361 (-884 |#1|))))) (-15 -2374 ((-766 (-361 (-884 |#1|))) (-361 (-884 |#1|)) (-247 (-766 (-884 |#1|))))) (-15 -2374 ((-766 (-361 (-884 |#1|))) (-361 (-884 |#1|)) (-247 (-361 (-884 |#1|))))) (-15 -2375 ((-3 (-775 (-361 (-884 |#1|))) #1#) (-361 (-884 |#1|)) (-247 (-361 (-884 |#1|))) (-1099)))) (-406)) (T -592)) -((-2375 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-247 (-361 (-884 *6)))) (-5 *5 (-1099)) (-5 *3 (-361 (-884 *6))) (-4 *6 (-406)) (-5 *2 (-775 *3)) (-5 *1 (-592 *6)))) (-2374 (*1 *2 *3 *4) (-12 (-5 *4 (-247 (-361 (-884 *5)))) (-5 *3 (-361 (-884 *5))) (-4 *5 (-406)) (-5 *2 (-766 *3)) (-5 *1 (-592 *5)))) (-2374 (*1 *2 *3 *4) (-12 (-5 *4 (-247 (-766 (-884 *5)))) (-4 *5 (-406)) (-5 *2 (-766 (-361 (-884 *5)))) (-5 *1 (-592 *5)) (-5 *3 (-361 (-884 *5))))) (-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-247 (-361 (-884 *5)))) (-5 *3 (-361 (-884 *5))) (-4 *5 (-406)) (-5 *2 (-3 (-775 *3) (-2 (|:| |leftHandLimit| (-3 (-775 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-775 *3) #1#))) #2="failed")) (-5 *1 (-592 *5)))) (-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-247 (-775 (-884 *5)))) (-4 *5 (-406)) (-5 *2 (-3 (-775 (-361 (-884 *5))) (-2 (|:| |leftHandLimit| (-3 (-775 (-361 (-884 *5))) #1#)) (|:| |rightHandLimit| (-3 (-775 (-361 (-884 *5))) #1#))) #2#)) (-5 *1 (-592 *5)) (-5 *3 (-361 (-884 *5)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) 11 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2972 (($ (-168 |#1|)) 12 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-798 |#1|)) 7 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT))) -(((-593 |#1|) (-13 (-777) (-571 (-798 |#1|)) (-10 -8 (-15 -2972 ($ (-168 |#1|))))) (-599 (-1117))) (T -593)) -((-2972 (*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-599 (-1117))) (-5 *1 (-593 *3))))) -((-2378 (((-3 (-1207 (-361 |#1|)) #1="failed") (-1207 |#2|) |#2|) 64 (-2679 (|has| |#1| (-318))) ELT) (((-3 (-1207 |#1|) #1#) (-1207 |#2|) |#2|) 49 (|has| |#1| (-318)) ELT)) (-2376 (((-85) (-1207 |#2|)) 33 T ELT)) (-2377 (((-3 (-1207 |#1|) #1#) (-1207 |#2|)) 40 T ELT))) -(((-594 |#1| |#2|) (-10 -7 (-15 -2376 ((-85) (-1207 |#2|))) (-15 -2377 ((-3 (-1207 |#1|) #1="failed") (-1207 |#2|))) (IF (|has| |#1| (-318)) (-15 -2378 ((-3 (-1207 |#1|) #1#) (-1207 |#2|) |#2|)) (-15 -2378 ((-3 (-1207 (-361 |#1|)) #1#) (-1207 |#2|) |#2|)))) (-510) (-13 (-989) (-596 |#1|))) (T -594)) -((-2378 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 *5))) (-2679 (-4 *5 (-318))) (-4 *5 (-510)) (-5 *2 (-1207 (-361 *5))) (-5 *1 (-594 *5 *4)))) (-2378 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 *5))) (-4 *5 (-318)) (-4 *5 (-510)) (-5 *2 (-1207 *5)) (-5 *1 (-594 *5 *4)))) (-2377 (*1 *2 *3) (|partial| -12 (-5 *3 (-1207 *5)) (-4 *5 (-13 (-989) (-596 *4))) (-4 *4 (-510)) (-5 *2 (-1207 *4)) (-5 *1 (-594 *4 *5)))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-1207 *5)) (-4 *5 (-13 (-989) (-596 *4))) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-594 *4 *5))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3924 (((-599 (-807 (-593 |#2|) |#1|)) $) NIL T ELT)) (-1345 (((-3 $ "failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3014 (($ |#1| (-593 |#2|)) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2379 (($ (-599 |#1|)) 25 T ELT)) (-2086 (((-593 |#2|) $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4061 (((-107)) 16 T ELT)) (-3362 (((-1207 |#1|) $) 44 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-593 |#2|)) 11 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 20 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 17 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-595 |#1| |#2|) (-13 (-1215 |#1|) (-571 (-593 |#2|)) (-463 |#1| (-593 |#2|)) (-10 -8 (-15 -2379 ($ (-599 |#1|))) (-15 -3362 ((-1207 |#1|) $)))) (-318) (-599 (-1117))) (T -595)) -((-2379 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-318)) (-5 *1 (-595 *3 *4)) (-14 *4 (-599 (-1117))))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-1207 *3)) (-5 *1 (-595 *3 *4)) (-4 *3 (-318)) (-14 *4 (-599 (-1117)))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-2380 (((-647 |#1|) (-647 $)) 35 T ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 34 T ELT)) (-2381 (((-647 |#1|) (-1207 $)) 37 T ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 36 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-596 |#1|) (-113) (-989)) (T -596)) -((-2381 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-596 *4)) (-4 *4 (-989)) (-5 *2 (-647 *4)))) (-2381 (*1 *2 *3 *1) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-596 *4)) (-4 *4 (-989)) (-5 *2 (-2 (|:| -1673 (-647 *4)) (|:| |vec| (-1207 *4)))))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-647 *1)) (-4 *1 (-596 *4)) (-4 *4 (-989)) (-5 *2 (-647 *4)))) (-2380 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *1)) (-5 *4 (-1207 *1)) (-4 *1 (-596 *5)) (-4 *5 (-989)) (-5 *2 (-2 (|:| -1673 (-647 *5)) (|:| |vec| (-1207 *5))))))) -(-13 (-606 |t#1|) (-10 -8 (-15 -2381 ((-647 |t#1|) (-1207 $))) (-15 -2381 ((-2 (|:| -1673 (-647 |t#1|)) (|:| |vec| (-1207 |t#1|))) (-1207 $) $)) (-15 -2380 ((-647 |t#1|) (-647 $))) (-15 -2380 ((-2 (|:| -1673 (-647 |t#1|)) (|:| |vec| (-1207 |t#1|))) (-647 $) (-1207 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ "failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2382 (($ (-599 |#1|)) 23 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3950 ((|#1| $ (-595 |#1| |#2|)) 46 T ELT)) (-4061 (((-107)) 13 T ELT)) (-3362 (((-1207 |#1|) $) 42 T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 18 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 14 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-597 |#1| |#2|) (-13 (-1215 |#1|) (-240 (-595 |#1| |#2|) |#1|) (-10 -8 (-15 -2382 ($ (-599 |#1|))) (-15 -3362 ((-1207 |#1|) $)))) (-318) (-599 (-1117))) (T -597)) -((-2382 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-318)) (-5 *1 (-597 *3 *4)) (-14 *4 (-599 (-1117))))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-1207 *3)) (-5 *1 (-597 *3 *4)) (-4 *3 (-318)) (-14 *4 (-599 (-1117)))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) -(((-598 |#1|) (-113) (-1052)) (T -598)) -NIL -(-13 (-604 |t#1|) (-991 |t#1|)) -(((-73) . T) ((-568 (-797)) . T) ((-604 |#1|) . T) ((-991 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) NIL T ELT)) (-3945 ((|#1| $) NIL T ELT)) (-3947 (($ $) NIL T ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3935 (($ $ (-499)) 71 (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) $) NIL (|has| |#1| (-781)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1823 (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT) (($ (-1 (-85) |#1| |#1|) $) 68 (|has| $ (-6 -4146)) ELT)) (-3030 (($ $) NIL (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3582 (((-85) $ (-714)) NIL T ELT)) (-3146 ((|#1| $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3937 (($ $ $) 26 (|has| $ (-6 -4146)) ELT)) (-3936 ((|#1| $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3939 ((|#1| $ |#1|) 24 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-6 -4146)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-6 -4146)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) NIL (|has| $ (-6 -4146)) ELT)) (-2385 (($ $ $) 77 (|has| |#1| (-1041)) ELT)) (-2384 (($ $ $) 78 (|has| |#1| (-1041)) ELT)) (-2383 (($ $ $) 81 (|has| |#1| (-1041)) ELT)) (-1603 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3946 ((|#1| $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) 31 (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) 32 T ELT)) (-3949 (($ $) 21 T ELT) (($ $ (-714)) 36 T ELT)) (-2481 (($ $) 66 (|has| |#1| (-1041)) ELT)) (-1386 (($ $) 76 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3545 (($ |#1| $) NIL (|has| |#1| (-1041)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3546 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1609 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) NIL T ELT)) (-3583 (((-85) $) NIL T ELT)) (-3559 (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) (-1 (-85) |#1|) $) NIL T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2387 (((-85) $) 9 T ELT)) (-3152 (((-599 $) $) NIL T ELT)) (-3148 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-2388 (($) 7 T CONST)) (-3764 (($ (-714) |#1|) NIL T ELT)) (-3869 (((-85) $ (-714)) NIL T ELT)) (-2301 (((-499) $) 35 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2977 (($ $ $) NIL (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 69 T ELT)) (-3658 (($ $ $) NIL (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 64 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3682 (($ |#1|) NIL T ELT)) (-3866 (((-85) $ (-714)) NIL T ELT)) (-3151 (((-599 |#1|) $) NIL T ELT)) (-3667 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) 62 (|has| |#1| (-1041)) ELT)) (-3948 ((|#1| $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3757 (($ $ $ (-499)) NIL T ELT) (($ |#1| $ (-499)) NIL T ELT)) (-2404 (($ $ $ (-499)) NIL T ELT) (($ |#1| $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 16 T ELT) (($ $ (-714)) NIL T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3584 (((-85) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 15 T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) 20 T ELT)) (-3713 (($) 19 T ELT)) (-3950 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT) ((|#1| $ (-499)) 80 T ELT) ((|#1| $ (-499) |#1|) NIL T ELT)) (-3150 (((-499) $ $) NIL T ELT)) (-1604 (($ $ (-1174 (-499))) NIL T ELT) (($ $ (-499)) NIL T ELT)) (-2405 (($ $ (-1174 (-499))) NIL T ELT) (($ $ (-499)) NIL T ELT)) (-3783 (((-85) $) 39 T ELT)) (-3942 (($ $) NIL T ELT)) (-3940 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-3943 (((-714) $) NIL T ELT)) (-3944 (($ $) 44 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 40 T ELT)) (-4122 (((-488) $) 89 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 29 T ELT)) (-3601 (($ |#1| $) 10 T ELT)) (-3941 (($ $ $) 65 T ELT) (($ $ |#1|) NIL T ELT)) (-3952 (($ $ $) 75 T ELT) (($ |#1| $) 14 T ELT) (($ (-599 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4096 (((-797) $) 54 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) NIL T ELT)) (-3149 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2386 (($ $ $) 11 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 58 (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) 13 (|has| $ (-6 -4145)) ELT))) -(((-599 |#1|) (-13 (-624 |#1|) (-10 -8 (-15 -2388 ($) -4102) (-15 -2387 ((-85) $)) (-15 -3601 ($ |#1| $)) (-15 -2386 ($ $ $)) (IF (|has| |#1| (-1041)) (PROGN (-15 -2385 ($ $ $)) (-15 -2384 ($ $ $)) (-15 -2383 ($ $ $))) |%noBranch|))) (-1157)) (T -599)) -((-2388 (*1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1157)))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-599 *3)) (-4 *3 (-1157)))) (-3601 (*1 *1 *2 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1157)))) (-2386 (*1 *1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1157)))) (-2385 (*1 *1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1041)) (-4 *2 (-1157)))) (-2384 (*1 *1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1041)) (-4 *2 (-1157)))) (-2383 (*1 *1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1041)) (-4 *2 (-1157))))) -((-3991 (((-599 |#2|) (-1 |#2| |#1| |#2|) (-599 |#1|) |#2|) 16 T ELT)) (-3992 ((|#2| (-1 |#2| |#1| |#2|) (-599 |#1|) |#2|) 18 T ELT)) (-4108 (((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)) 13 T ELT))) -(((-600 |#1| |#2|) (-10 -7 (-15 -3991 ((-599 |#2|) (-1 |#2| |#1| |#2|) (-599 |#1|) |#2|)) (-15 -3992 (|#2| (-1 |#2| |#1| |#2|) (-599 |#1|) |#2|)) (-15 -4108 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)))) (-1157) (-1157)) (T -600)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-599 *6)) (-5 *1 (-600 *5 *6)))) (-3992 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-599 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) (-5 *1 (-600 *5 *2)))) (-3991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-599 *6)) (-4 *6 (-1157)) (-4 *5 (-1157)) (-5 *2 (-599 *5)) (-5 *1 (-600 *6 *5))))) -((-3562 ((|#2| (-599 |#1|) (-599 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-599 |#1|) (-599 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-599 |#1|) (-599 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-599 |#1|) (-599 |#2|) |#2|) 17 T ELT) ((|#2| (-599 |#1|) (-599 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-599 |#1|) (-599 |#2|)) 12 T ELT))) -(((-601 |#1| |#2|) (-10 -7 (-15 -3562 ((-1 |#2| |#1|) (-599 |#1|) (-599 |#2|))) (-15 -3562 (|#2| (-599 |#1|) (-599 |#2|) |#1|)) (-15 -3562 ((-1 |#2| |#1|) (-599 |#1|) (-599 |#2|) |#2|)) (-15 -3562 (|#2| (-599 |#1|) (-599 |#2|) |#1| |#2|)) (-15 -3562 ((-1 |#2| |#1|) (-599 |#1|) (-599 |#2|) (-1 |#2| |#1|))) (-15 -3562 (|#2| (-599 |#1|) (-599 |#2|) |#1| (-1 |#2| |#1|)))) (-1041) (-1157)) (T -601)) -((-3562 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1041)) (-4 *2 (-1157)) (-5 *1 (-601 *5 *2)))) (-3562 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-599 *5)) (-5 *4 (-599 *6)) (-4 *5 (-1041)) (-4 *6 (-1157)) (-5 *1 (-601 *5 *6)))) (-3562 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 *2)) (-4 *5 (-1041)) (-4 *2 (-1157)) (-5 *1 (-601 *5 *2)))) (-3562 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 *6)) (-5 *4 (-599 *5)) (-4 *6 (-1041)) (-4 *5 (-1157)) (-5 *2 (-1 *5 *6)) (-5 *1 (-601 *6 *5)))) (-3562 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 *2)) (-4 *5 (-1041)) (-4 *2 (-1157)) (-5 *1 (-601 *5 *2)))) (-3562 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 *6)) (-4 *5 (-1041)) (-4 *6 (-1157)) (-5 *2 (-1 *6 *5)) (-5 *1 (-601 *5 *6))))) -((-4108 (((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|)) 21 T ELT))) -(((-602 |#1| |#2| |#3|) (-10 -7 (-15 -4108 ((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|)))) (-1157) (-1157) (-1157)) (T -602)) -((-4108 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-599 *7)) (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-599 *8)) (-5 *1 (-602 *6 *7 *8))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 11 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-603 |#1|) (-13 (-1023) (-568 |#1|)) (-1041)) (T -603)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) -(((-604 |#1|) (-113) (-1052)) (T -604)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1052))))) -(-13 (-1041) (-10 -8 (-15 * ($ |t#1| $)))) -(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2389 (($ |#1| |#1| $) 44 T ELT)) (-1603 (($ (-1 (-85) |#1|) $) 60 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2481 (($ $) 46 T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3545 (($ |#1| $) 57 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -4145)) ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#1|) $) 9 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 48 T ELT)) (-3757 (($ |#1| $) 29 T ELT) (($ |#1| $ (-714)) 43 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1309 ((|#1| $) 51 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 23 T ELT)) (-3713 (($) 28 T ELT)) (-2390 (((-85) $) 55 T ELT)) (-2480 (((-599 (-2 (|:| |entry| |#1|) (|:| -2048 (-714)))) $) 68 T ELT)) (-1499 (($) 26 T ELT) (($ (-599 |#1|)) 19 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 64 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) 20 T ELT)) (-4122 (((-488) $) 35 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) NIL T ELT)) (-4096 (((-797) $) 14 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 24 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 70 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 17 (|has| $ (-6 -4145)) ELT))) -(((-605 |#1|) (-13 (-653 |#1|) (-10 -8 (-6 -4145) (-15 -2390 ((-85) $)) (-15 -2389 ($ |#1| |#1| $)))) (-1041)) (T -605)) -((-2390 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-605 *3)) (-4 *3 (-1041)))) (-2389 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1041))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-606 |#1|) (-113) (-997)) (T -606)) -NIL -(-13 (-21) (-604 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714) $) 17 T ELT)) (-2395 (($ $ |#1|) 69 T ELT)) (-2397 (($ $) 39 T ELT)) (-2398 (($ $) 37 T ELT)) (-3295 (((-3 |#1| "failed") $) 61 T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-2432 (($ |#1| |#2| $) 79 T ELT) (($ $ $) 81 T ELT)) (-3673 (((-797) $ (-1 (-797) (-797) (-797)) (-1 (-797) (-797) (-797)) (-499)) 56 T ELT)) (-2399 ((|#1| $ (-499)) 35 T ELT)) (-2400 ((|#2| $ (-499)) 34 T ELT)) (-2391 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2392 (($ (-1 |#2| |#2|) $) 47 T ELT)) (-2396 (($) 11 T ELT)) (-2402 (($ |#1| |#2|) 24 T ELT)) (-2401 (($ (-599 (-2 (|:| |gen| |#1|) (|:| -4093 |#2|)))) 25 T ELT)) (-2403 (((-599 (-2 (|:| |gen| |#1|) (|:| -4093 |#2|))) $) 14 T ELT)) (-2394 (($ |#1| $) 71 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2393 (((-85) $ $) 76 T ELT)) (-4096 (((-797) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 27 T ELT))) -(((-607 |#1| |#2| |#3|) (-13 (-1041) (-978 |#1|) (-10 -8 (-15 -3673 ((-797) $ (-1 (-797) (-797) (-797)) (-1 (-797) (-797) (-797)) (-499))) (-15 -2403 ((-599 (-2 (|:| |gen| |#1|) (|:| -4093 |#2|))) $)) (-15 -2402 ($ |#1| |#2|)) (-15 -2401 ($ (-599 (-2 (|:| |gen| |#1|) (|:| -4093 |#2|))))) (-15 -2400 (|#2| $ (-499))) (-15 -2399 (|#1| $ (-499))) (-15 -2398 ($ $)) (-15 -2397 ($ $)) (-15 -3258 ((-714) $)) (-15 -2396 ($)) (-15 -2395 ($ $ |#1|)) (-15 -2394 ($ |#1| $)) (-15 -2432 ($ |#1| |#2| $)) (-15 -2432 ($ $ $)) (-15 -2393 ((-85) $ $)) (-15 -2392 ($ (-1 |#2| |#2|) $)) (-15 -2391 ($ (-1 |#1| |#1|) $)))) (-1041) (-23) |#2|) (T -607)) -((-3673 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-797) (-797) (-797))) (-5 *4 (-499)) (-5 *2 (-797)) (-5 *1 (-607 *5 *6 *7)) (-4 *5 (-1041)) (-4 *6 (-23)) (-14 *7 *6))) (-2403 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 *4)))) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-1041)) (-4 *4 (-23)) (-14 *5 *4))) (-2402 (*1 *1 *2 *3) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) (-2401 (*1 *1 *2) (-12 (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 *4)))) (-4 *3 (-1041)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-607 *3 *4 *5)))) (-2400 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *2 (-23)) (-5 *1 (-607 *4 *2 *5)) (-4 *4 (-1041)) (-14 *5 *2))) (-2399 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *2 (-1041)) (-5 *1 (-607 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2398 (*1 *1 *1) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) (-2397 (*1 *1 *1) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-1041)) (-4 *4 (-23)) (-14 *5 *4))) (-2396 (*1 *1) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) (-2395 (*1 *1 *1 *2) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) (-2394 (*1 *1 *2 *1) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) (-2432 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) (-2432 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) (-2393 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-1041)) (-4 *4 (-23)) (-14 *5 *4))) (-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-1041)))) (-2391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1041)) (-5 *1 (-607 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -((-2302 (((-499) $) 30 T ELT)) (-2404 (($ |#2| $ (-499)) 26 T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) 12 T ELT)) (-2305 (((-85) (-499) $) 17 T ELT)) (-3952 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT))) -(((-608 |#1| |#2|) (-10 -7 (-15 -2404 (|#1| |#1| |#1| (-499))) (-15 -2404 (|#1| |#2| |#1| (-499))) (-15 -3952 (|#1| (-599 |#1|))) (-15 -3952 (|#1| |#1| |#1|)) (-15 -3952 (|#1| |#2| |#1|)) (-15 -3952 (|#1| |#1| |#2|)) (-15 -2302 ((-499) |#1|)) (-15 -2304 ((-599 (-499)) |#1|)) (-15 -2305 ((-85) (-499) |#1|))) (-609 |#2|) (-1157)) (T -608)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) 44 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ (-499) |#1|) 56 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-1386 (($ $) 84 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#1| $) 83 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) 57 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 55 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) |#1|) 74 T ELT)) (-2301 (((-499) $) 47 (|has| (-499) (-781)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 48 (|has| (-499) (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) 66 T ELT) (($ $ $ (-499)) 65 T ELT)) (-2304 (((-599 (-499)) $) 50 T ELT)) (-2305 (((-85) (-499) $) 51 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 46 (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2300 (($ $ |#1|) 45 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ (-499) |#1|) 54 T ELT) ((|#1| $ (-499)) 53 T ELT) (($ $ (-1174 (-499))) 75 T ELT)) (-2405 (($ $ (-499)) 68 T ELT) (($ $ (-1174 (-499))) 67 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 85 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 76 T ELT)) (-3952 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-599 $)) 70 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-609 |#1|) (-113) (-1157)) (T -609)) -((-3764 (*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) (-3952 (*1 *1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1157)))) (-3952 (*1 *1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1157)))) (-3952 (*1 *1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1157)))) (-3952 (*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) (-4108 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) (-2405 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) (-2405 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 (-499))) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) (-2404 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-609 *2)) (-4 *2 (-1157)))) (-2404 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) (-3938 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1174 (-499))) (|has| *1 (-6 -4146)) (-4 *1 (-609 *2)) (-4 *2 (-1157))))) -(-13 (-554 (-499) |t#1|) (-124 |t#1|) (-240 (-1174 (-499)) $) (-10 -8 (-15 -3764 ($ (-714) |t#1|)) (-15 -3952 ($ $ |t#1|)) (-15 -3952 ($ |t#1| $)) (-15 -3952 ($ $ $)) (-15 -3952 ($ (-599 $))) (-15 -4108 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2405 ($ $ (-499))) (-15 -2405 ($ $ (-1174 (-499)))) (-15 -2404 ($ |t#1| $ (-499))) (-15 -2404 ($ $ $ (-499))) (IF (|has| $ (-6 -4146)) (-15 -3938 (|t#1| $ (-1174 (-499)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 (-499) |#1|) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-554 (-499) |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 15 T ELT)) (-1345 (((-3 $ "failed") $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| |#1| (-735)) ELT)) (-3874 (($) NIL T CONST)) (-3324 (((-85) $) NIL (|has| |#1| (-735)) ELT)) (-3119 ((|#1| $) 23 T ELT)) (-3325 (((-85) $) NIL (|has| |#1| (-735)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-735)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-735)) ELT)) (-3380 (((-1099) $) 48 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3118 ((|#3| $) 24 T ELT)) (-4096 (((-797) $) 43 T ELT)) (-1297 (((-85) $ $) 22 T ELT)) (-3523 (($ $) NIL (|has| |#1| (-735)) ELT)) (-2779 (($) 10 T CONST)) (-2685 (((-85) $ $) NIL (|has| |#1| (-735)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-735)) ELT)) (-3174 (((-85) $ $) 20 T ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-735)) ELT)) (-2806 (((-85) $ $) 26 (|has| |#1| (-735)) ELT)) (-4099 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3987 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 29 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) -(((-610 |#1| |#2| |#3|) (-13 (-675 |#2|) (-10 -8 (IF (|has| |#1| (-735)) (-6 (-735)) |%noBranch|) (-15 -4099 ($ $ |#3|)) (-15 -4099 ($ |#1| |#3|)) (-15 -3119 (|#1| $)) (-15 -3118 (|#3| $)))) (-675 |#2|) (-146) (|SubsetCategory| (-684) |#2|)) (T -610)) -((-4099 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-610 *3 *4 *2)) (-4 *3 (-675 *4)) (-4 *2 (|SubsetCategory| (-684) *4)))) (-4099 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-610 *2 *4 *3)) (-4 *2 (-675 *4)) (-4 *3 (|SubsetCategory| (-684) *4)))) (-3119 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-675 *3)) (-5 *1 (-610 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-684) *3)))) (-3118 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-684) *4)) (-5 *1 (-610 *3 *4 *2)) (-4 *3 (-675 *4))))) -((-3721 (((-3 |#2| #1="failed") |#3| |#2| (-1117) |#2| (-599 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2113 (-599 |#2|))) #1#) |#3| |#2| (-1117)) 44 T ELT))) -(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -3721 ((-3 (-2 (|:| |particular| |#2|) (|:| -2113 (-599 |#2|))) #1="failed") |#3| |#2| (-1117))) (-15 -3721 ((-3 |#2| #1#) |#3| |#2| (-1117) |#2| (-599 |#2|)))) (-13 (-261) (-978 (-499)) (-596 (-499)) (-120)) (-13 (-29 |#1|) (-1143) (-898)) (-616 |#2|)) (T -611)) -((-3721 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-599 *2)) (-4 *2 (-13 (-29 *6) (-1143) (-898))) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *1 (-611 *6 *2 *3)) (-4 *3 (-616 *2)))) (-3721 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1117)) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-4 *4 (-13 (-29 *6) (-1143) (-898))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2113 (-599 *4)))) (-5 *1 (-611 *6 *4 *3)) (-4 *3 (-616 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2406 (($ $) NIL (|has| |#1| (-318)) ELT)) (-2408 (($ $ $) 28 (|has| |#1| (-318)) ELT)) (-2409 (($ $ (-714)) 31 (|has| |#1| (-318)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2655 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2656 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2657 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2653 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2652 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-2654 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-2668 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-714)) NIL T ELT)) (-2666 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-2665 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-2941 (((-714) $) NIL T ELT)) (-2661 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2662 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2651 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2659 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-2660 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-2667 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT)) (-3950 ((|#1| $ |#1|) 24 T ELT)) (-2410 (($ $ $) 33 (|has| |#1| (-318)) ELT)) (-4098 (((-714) $) NIL T ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT)) (-4096 (((-797) $) 20 T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (($ |#1|) NIL T ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-714)) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2664 ((|#1| $ |#1| |#1|) 23 T ELT)) (-2638 (($ $) NIL T ELT)) (-2779 (($) 21 T CONST)) (-2785 (($) 8 T CONST)) (-2790 (($) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-612 |#1| |#2|) (-616 |#1|) (-989) (-1 |#1| |#1|)) (T -612)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2406 (($ $) NIL (|has| |#1| (-318)) ELT)) (-2408 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2409 (($ $ (-714)) NIL (|has| |#1| (-318)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2655 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2656 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2657 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2653 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2652 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-2654 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-2668 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-714)) NIL T ELT)) (-2666 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-2665 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-2941 (((-714) $) NIL T ELT)) (-2661 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2662 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2651 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2659 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-2660 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-2667 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT)) (-3950 ((|#1| $ |#1|) NIL T ELT)) (-2410 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4098 (((-714) $) NIL T ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (($ |#1|) NIL T ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-714)) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2664 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2638 (($ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-613 |#1|) (-616 |#1|) (-190)) (T -613)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2406 (($ $) NIL (|has| |#1| (-318)) ELT)) (-2408 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2409 (($ $ (-714)) NIL (|has| |#1| (-318)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2655 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2656 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2657 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2653 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2652 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-2654 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-2668 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-714)) NIL T ELT)) (-2666 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-2665 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-2941 (((-714) $) NIL T ELT)) (-2661 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2662 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2651 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2659 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-2660 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-2667 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT)) (-3950 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2410 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4098 (((-714) $) NIL T ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (($ |#1|) NIL T ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-714)) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2664 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2638 (($ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-614 |#1| |#2|) (-13 (-616 |#1|) (-240 |#2| |#2|)) (-190) (-13 (-606 |#1|) (-10 -8 (-15 -3908 ($ $))))) (T -614)) -NIL -((-2406 (($ $) 29 T ELT)) (-2638 (($ $) 27 T ELT)) (-2790 (($) 13 T ELT))) -(((-615 |#1| |#2|) (-10 -7 (-15 -2406 (|#1| |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -2790 (|#1|))) (-616 |#2|) (-989)) (T -615)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2406 (($ $) 93 (|has| |#1| (-318)) ELT)) (-2408 (($ $ $) 95 (|has| |#1| (-318)) ELT)) (-2409 (($ $ (-714)) 94 (|has| |#1| (-318)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-2655 (($ $ $) 55 (|has| |#1| (-318)) ELT)) (-2656 (($ $ $) 56 (|has| |#1| (-318)) ELT)) (-2657 (($ $ $) 58 (|has| |#1| (-318)) ELT)) (-2653 (($ $ $) 53 (|has| |#1| (-318)) ELT)) (-2652 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 52 (|has| |#1| (-318)) ELT)) (-2654 (((-3 $ #1="failed") $ $) 54 (|has| |#1| (-318)) ELT)) (-2668 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 57 (|has| |#1| (-318)) ELT)) (-3295 (((-3 (-499) #2="failed") $) 85 (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #2#) $) 82 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #2#) $) 79 T ELT)) (-3294 (((-499) $) 84 (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) 81 (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 80 T ELT)) (-4109 (($ $) 74 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3643 (($ $) 65 (|has| |#1| (-406)) ELT)) (-2528 (((-85) $) 40 T ELT)) (-3014 (($ |#1| (-714)) 72 T ELT)) (-2666 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 67 (|has| |#1| (-510)) ELT)) (-2665 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 68 (|has| |#1| (-510)) ELT)) (-2941 (((-714) $) 76 T ELT)) (-2661 (($ $ $) 62 (|has| |#1| (-318)) ELT)) (-2662 (($ $ $) 63 (|has| |#1| (-318)) ELT)) (-2651 (($ $ $) 51 (|has| |#1| (-318)) ELT)) (-2659 (($ $ $) 60 (|has| |#1| (-318)) ELT)) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 59 (|has| |#1| (-318)) ELT)) (-2660 (((-3 $ #1#) $ $) 61 (|has| |#1| (-318)) ELT)) (-2667 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 64 (|has| |#1| (-318)) ELT)) (-3312 ((|#1| $) 75 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3606 (((-3 $ #1#) $ |#1|) 69 (|has| |#1| (-510)) ELT)) (-3950 ((|#1| $ |#1|) 98 T ELT)) (-2410 (($ $ $) 92 (|has| |#1| (-318)) ELT)) (-4098 (((-714) $) 77 T ELT)) (-2938 ((|#1| $) 66 (|has| |#1| (-406)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 (-499))) 83 (|has| |#1| (-978 (-361 (-499)))) ELT) (($ |#1|) 78 T ELT)) (-3967 (((-599 |#1|) $) 71 T ELT)) (-3827 ((|#1| $ (-714)) 73 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2664 ((|#1| $ |#1| |#1|) 70 T ELT)) (-2638 (($ $) 96 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($) 97 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) -(((-616 |#1|) (-113) (-989)) (T -616)) -((-2790 (*1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)))) (-2638 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)))) (-2408 (*1 *1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2409 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-616 *3)) (-4 *3 (-989)) (-4 *3 (-318)))) (-2406 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2410 (*1 *1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) -(-13 (-786 |t#1|) (-240 |t#1| |t#1|) (-10 -8 (-15 -2790 ($)) (-15 -2638 ($ $)) (IF (|has| |t#1| (-318)) (PROGN (-15 -2408 ($ $ $)) (-15 -2409 ($ $ (-714))) (-15 -2406 ($ $)) (-15 -2410 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-571 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-240 |#1| |#1|) . T) ((-366 |#1|) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 |#1|) |has| |#1| (-146)) ((-675 |#1|) |has| |#1| (-146)) ((-684) . T) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-786 |#1|) . T)) -((-2407 (((-599 (-613 (-361 |#2|))) (-613 (-361 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3882 (((-599 (-613 (-361 |#2|))) (-613 (-361 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-599 (-613 (-361 |#2|))) (-613 (-361 |#2|)) (-1 (-599 |#1|) |#2|)) 19 T ELT))) -(((-617 |#1| |#2|) (-10 -7 (-15 -3882 ((-599 (-613 (-361 |#2|))) (-613 (-361 |#2|)) (-1 (-599 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3882 ((-599 (-613 (-361 |#2|))) (-613 (-361 |#2|)))) (-15 -2407 ((-599 (-613 (-361 |#2|))) (-613 (-361 |#2|))))) |%noBranch|)) (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499)))) (-1183 |#1|)) (T -617)) -((-2407 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) (-5 *2 (-599 (-613 (-361 *5)))) (-5 *1 (-617 *4 *5)) (-5 *3 (-613 (-361 *5))))) (-3882 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) (-5 *2 (-599 (-613 (-361 *5)))) (-5 *1 (-617 *4 *5)) (-5 *3 (-613 (-361 *5))))) (-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-599 *5) *6)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) (-5 *2 (-599 (-613 (-361 *6)))) (-5 *1 (-617 *5 *6)) (-5 *3 (-613 (-361 *6)))))) -((-2408 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2409 ((|#2| |#2| (-714) (-1 |#1| |#1|)) 45 T ELT)) (-2410 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) -(((-618 |#1| |#2|) (-10 -7 (-15 -2408 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2409 (|#2| |#2| (-714) (-1 |#1| |#1|))) (-15 -2410 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-318) (-616 |#1|)) (T -618)) -((-2410 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-318)) (-5 *1 (-618 *4 *2)) (-4 *2 (-616 *4)))) (-2409 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-714)) (-5 *4 (-1 *5 *5)) (-4 *5 (-318)) (-5 *1 (-618 *5 *2)) (-4 *2 (-616 *5)))) (-2408 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-318)) (-5 *1 (-618 *4 *2)) (-4 *2 (-616 *4))))) -((-2411 (($ $ $) 9 T ELT))) -(((-619 |#1|) (-10 -7 (-15 -2411 (|#1| |#1| |#1|))) (-620)) (T -619)) -NIL -((-2413 (($ $) 8 T ELT)) (-2411 (($ $ $) 6 T ELT)) (-2412 (($ $ $) 7 T ELT))) -(((-620) (-113)) (T -620)) -((-2413 (*1 *1 *1) (-4 *1 (-620))) (-2412 (*1 *1 *1 *1) (-4 *1 (-620))) (-2411 (*1 *1 *1 *1) (-4 *1 (-620)))) -(-13 (-1157) (-10 -8 (-15 -2413 ($ $)) (-15 -2412 ($ $ $)) (-15 -2411 ($ $ $)))) -(((-1157) . T)) -((-2414 (((-3 (-599 (-1111 |#1|)) "failed") (-599 (-1111 |#1|)) (-1111 |#1|)) 33 T ELT))) -(((-621 |#1|) (-10 -7 (-15 -2414 ((-3 (-599 (-1111 |#1|)) "failed") (-599 (-1111 |#1|)) (-1111 |#1|)))) (-848)) (T -621)) -((-2414 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 (-1111 *4))) (-5 *3 (-1111 *4)) (-4 *4 (-848)) (-5 *1 (-621 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-4084 (((-599 |#1|) $) 84 T ELT)) (-4097 (($ $ (-714)) 94 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-4089 (((-1232 |#1| |#2|) (-1232 |#1| |#2|) $) 50 T ELT)) (-3295 (((-3 (-630 |#1|) #1#) $) NIL T ELT)) (-3294 (((-630 |#1|) $) NIL T ELT)) (-4109 (($ $) 93 T ELT)) (-2536 (((-714) $) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-4088 (($ (-630 |#1|) |#2|) 70 T ELT)) (-4086 (($ $) 89 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4090 (((-1232 |#1| |#2|) (-1232 |#1| |#2|) $) 49 T ELT)) (-1842 (((-2 (|:| |k| (-630 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3015 (((-630 |#1|) $) NIL T ELT)) (-3312 ((|#2| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3918 (($ $ |#1| $) 32 T ELT) (($ $ (-599 |#1|) (-599 $)) 34 T ELT)) (-4098 (((-714) $) 91 T ELT)) (-3670 (($ $ $) 20 T ELT) (($ (-630 |#1|) (-630 |#1|)) 79 T ELT) (($ (-630 |#1|) $) 77 T ELT) (($ $ (-630 |#1|)) 78 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1223 |#1| |#2|) $) 60 T ELT) (((-1232 |#1| |#2|) $) 43 T ELT) (($ (-630 |#1|)) 27 T ELT)) (-3967 (((-599 |#2|) $) NIL T ELT)) (-3827 ((|#2| $ (-630 |#1|)) NIL T ELT)) (-4104 ((|#2| (-1232 |#1| |#2|) $) 45 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 23 T CONST)) (-2784 (((-599 (-2 (|:| |k| (-630 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-4095 (((-3 $ #1#) (-1223 |#1| |#2|)) 62 T ELT)) (-1826 (($ (-630 |#1|)) 14 T ELT)) (-3174 (((-85) $ $) 46 T ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 31 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-630 |#1|)) NIL T ELT))) -(((-622 |#1| |#2|) (-13 (-329 |#1| |#2|) (-339 |#2| (-630 |#1|)) (-10 -8 (-15 -4095 ((-3 $ "failed") (-1223 |#1| |#2|))) (-15 -3670 ($ (-630 |#1|) (-630 |#1|))) (-15 -3670 ($ (-630 |#1|) $)) (-15 -3670 ($ $ (-630 |#1|))))) (-781) (-146)) (T -622)) -((-4095 (*1 *1 *2) (|partial| -12 (-5 *2 (-1223 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) (-5 *1 (-622 *3 *4)))) (-3670 (*1 *1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-781)) (-5 *1 (-622 *3 *4)) (-4 *4 (-146)))) (-3670 (*1 *1 *2 *1) (-12 (-5 *2 (-630 *3)) (-4 *3 (-781)) (-5 *1 (-622 *3 *4)) (-4 *4 (-146)))) (-3670 (*1 *1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-781)) (-5 *1 (-622 *3 *4)) (-4 *4 (-146))))) -((-1825 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1823 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1603 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2397 (($ $) 65 T ELT)) (-2481 (($ $) 74 T ELT)) (-3545 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3992 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3559 (((-499) |#2| $ (-499)) 71 T ELT) (((-499) |#2| $) NIL T ELT) (((-499) (-1 (-85) |#2|) $) 54 T ELT)) (-3764 (($ (-714) |#2|) 63 T ELT)) (-2977 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3658 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3682 (($ |#2|) 15 T ELT)) (-3757 (($ $ $ (-499)) 42 T ELT) (($ |#2| $ (-499)) 40 T ELT)) (-1387 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1604 (($ $ (-1174 (-499))) 51 T ELT) (($ $ (-499)) 44 T ELT)) (-1824 (($ $ $ (-499)) 70 T ELT)) (-3540 (($ $) 68 T ELT)) (-2806 (((-85) $ $) 76 T ELT))) -(((-623 |#1| |#2|) (-10 -7 (-15 -3682 (|#1| |#2|)) (-15 -1604 (|#1| |#1| (-499))) (-15 -1604 (|#1| |#1| (-1174 (-499)))) (-15 -3545 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3757 (|#1| |#2| |#1| (-499))) (-15 -3757 (|#1| |#1| |#1| (-499))) (-15 -2977 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1603 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3545 (|#1| |#2| |#1|)) (-15 -2481 (|#1| |#1|)) (-15 -2977 (|#1| |#1| |#1|)) (-15 -3658 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1825 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3559 ((-499) (-1 (-85) |#2|) |#1|)) (-15 -3559 ((-499) |#2| |#1|)) (-15 -3559 ((-499) |#2| |#1| (-499))) (-15 -3658 (|#1| |#1| |#1|)) (-15 -1825 ((-85) |#1|)) (-15 -1824 (|#1| |#1| |#1| (-499))) (-15 -2397 (|#1| |#1|)) (-15 -1823 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -2806 ((-85) |#1| |#1|)) (-15 -3992 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3992 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3992 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1387 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3764 (|#1| (-714) |#2|)) (-15 -4108 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4108 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3540 (|#1| |#1|))) (-624 |#2|) (-1157)) (T -623)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 52 T ELT)) (-3945 ((|#1| $) 71 T ELT)) (-3947 (($ $) 73 T ELT)) (-2299 (((-1213) $ (-499) (-499)) 107 (|has| $ (-6 -4146)) ELT)) (-3935 (($ $ (-499)) 58 (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) $) 153 (|has| |#1| (-781)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 147 T ELT)) (-1823 (($ $) 157 (-12 (|has| |#1| (-781)) (|has| $ (-6 -4146))) ELT) (($ (-1 (-85) |#1| |#1|) $) 156 (|has| $ (-6 -4146)) ELT)) (-3030 (($ $) 152 (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $) 146 T ELT)) (-3582 (((-85) $ (-714)) 90 T ELT)) (-3146 ((|#1| $ |#1|) 43 (|has| $ (-6 -4146)) ELT)) (-3937 (($ $ $) 62 (|has| $ (-6 -4146)) ELT)) (-3936 ((|#1| $ |#1|) 60 (|has| $ (-6 -4146)) ELT)) (-3939 ((|#1| $ |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4146)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4146)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4146)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 127 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-499) |#1|) 96 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 45 (|has| $ (-6 -4146)) ELT)) (-1603 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-3860 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -4145)) ELT)) (-3946 ((|#1| $) 72 T ELT)) (-3874 (($) 7 T CONST)) (-2397 (($ $) 155 (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) 145 T ELT)) (-3949 (($ $) 79 T ELT) (($ $ (-714)) 77 T ELT)) (-2481 (($ $) 142 (|has| |#1| (-1041)) ELT)) (-1386 (($ $) 109 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ |#1| $) 141 (|has| |#1| (-1041)) ELT) (($ (-1 (-85) |#1|) $) 136 T ELT)) (-3546 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -4145)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-1609 ((|#1| $ (-499) |#1|) 95 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 97 T ELT)) (-3583 (((-85) $) 93 T ELT)) (-3559 (((-499) |#1| $ (-499)) 150 (|has| |#1| (-1041)) ELT) (((-499) |#1| $) 149 (|has| |#1| (-1041)) ELT) (((-499) (-1 (-85) |#1|) $) 148 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 54 T ELT)) (-3148 (((-85) $ $) 46 (|has| |#1| (-1041)) ELT)) (-3764 (($ (-714) |#1|) 119 T ELT)) (-3869 (((-85) $ (-714)) 91 T ELT)) (-2301 (((-499) $) 105 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) 163 (|has| |#1| (-781)) ELT)) (-2977 (($ $ $) 143 (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 139 T ELT)) (-3658 (($ $ $) 151 (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 144 T ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 104 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) 162 (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3682 (($ |#1|) 133 T ELT)) (-3866 (((-85) $ (-714)) 92 T ELT)) (-3151 (((-599 |#1|) $) 49 T ELT)) (-3667 (((-85) $) 53 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3948 ((|#1| $) 76 T ELT) (($ $ (-714)) 74 T ELT)) (-3757 (($ $ $ (-499)) 138 T ELT) (($ |#1| $ (-499)) 137 T ELT)) (-2404 (($ $ $ (-499)) 126 T ELT) (($ |#1| $ (-499)) 125 T ELT)) (-2304 (((-599 (-499)) $) 102 T ELT)) (-2305 (((-85) (-499) $) 101 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 82 T ELT) (($ $ (-714)) 80 T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2300 (($ $ |#1|) 106 (|has| $ (-6 -4146)) ELT)) (-3584 (((-85) $) 94 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) 100 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1174 (-499))) 118 T ELT) ((|#1| $ (-499)) 99 T ELT) ((|#1| $ (-499) |#1|) 98 T ELT)) (-3150 (((-499) $ $) 48 T ELT)) (-1604 (($ $ (-1174 (-499))) 135 T ELT) (($ $ (-499)) 134 T ELT)) (-2405 (($ $ (-1174 (-499))) 124 T ELT) (($ $ (-499)) 123 T ELT)) (-3783 (((-85) $) 50 T ELT)) (-3942 (($ $) 68 T ELT)) (-3940 (($ $) 65 (|has| $ (-6 -4146)) ELT)) (-3943 (((-714) $) 69 T ELT)) (-3944 (($ $) 70 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-1824 (($ $ $ (-499)) 154 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 108 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 117 T ELT)) (-3941 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-3952 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-599 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) 55 T ELT)) (-3149 (((-85) $ $) 47 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) 161 (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) 159 (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) 160 (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 158 (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-624 |#1|) (-113) (-1157)) (T -624)) -((-3682 (*1 *1 *2) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1157))))) -(-13 (-1090 |t#1|) (-327 |t#1|) (-236 |t#1|) (-10 -8 (-15 -3682 ($ |t#1|)))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 (-499) |#1|) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-236 |#1|) . T) ((-327 |#1|) . T) ((-443 |#1|) . T) ((-554 (-499) |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-609 |#1|) . T) ((-781) |has| |#1| (-781)) ((-784) |has| |#1| (-781)) ((-950 |#1|) . T) ((-1041) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781))) ((-1090 |#1|) . T) ((-1157) . T) ((-1196 |#1|) . T)) -((-3721 (((-599 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2113 (-599 |#3|)))) |#4| (-599 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2113 (-599 |#3|))) |#4| |#3|) 60 T ELT)) (-3231 (((-714) |#4| |#3|) 18 T ELT)) (-3480 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2415 (((-85) |#4| |#3|) 14 T ELT))) -(((-625 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3721 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2113 (-599 |#3|))) |#4| |#3|)) (-15 -3721 ((-599 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2113 (-599 |#3|)))) |#4| (-599 |#3|))) (-15 -3480 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2415 ((-85) |#4| |#3|)) (-15 -3231 ((-714) |#4| |#3|))) (-318) (-13 (-327 |#1|) (-10 -7 (-6 -4146))) (-13 (-327 |#1|) (-10 -7 (-6 -4146))) (-644 |#1| |#2| |#3|)) (T -625)) -((-3231 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-4 *6 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-5 *2 (-714)) (-5 *1 (-625 *5 *6 *4 *3)) (-4 *3 (-644 *5 *6 *4)))) (-2415 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-4 *6 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-5 *2 (-85)) (-5 *1 (-625 *5 *6 *4 *3)) (-4 *3 (-644 *5 *6 *4)))) (-3480 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-318)) (-4 *5 (-13 (-327 *4) (-10 -7 (-6 -4146)))) (-4 *2 (-13 (-327 *4) (-10 -7 (-6 -4146)))) (-5 *1 (-625 *4 *5 *2 *3)) (-4 *3 (-644 *4 *5 *2)))) (-3721 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-4 *6 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-4 *7 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-5 *2 (-599 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2113 (-599 *7))))) (-5 *1 (-625 *5 *6 *7 *3)) (-5 *4 (-599 *7)) (-4 *3 (-644 *5 *6 *7)))) (-3721 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-4 *6 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2113 (-599 *4)))) (-5 *1 (-625 *5 *6 *4 *3)) (-4 *3 (-644 *5 *6 *4))))) -((-3721 (((-599 (-2 (|:| |particular| (-3 (-1207 |#1|) #1="failed")) (|:| -2113 (-599 (-1207 |#1|))))) (-599 (-599 |#1|)) (-599 (-1207 |#1|))) 22 T ELT) (((-599 (-2 (|:| |particular| (-3 (-1207 |#1|) #1#)) (|:| -2113 (-599 (-1207 |#1|))))) (-647 |#1|) (-599 (-1207 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1207 |#1|) #1#)) (|:| -2113 (-599 (-1207 |#1|)))) (-599 (-599 |#1|)) (-1207 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1207 |#1|) #1#)) (|:| -2113 (-599 (-1207 |#1|)))) (-647 |#1|) (-1207 |#1|)) 14 T ELT)) (-3231 (((-714) (-647 |#1|) (-1207 |#1|)) 30 T ELT)) (-3480 (((-3 (-1207 |#1|) #1#) (-647 |#1|) (-1207 |#1|)) 24 T ELT)) (-2415 (((-85) (-647 |#1|) (-1207 |#1|)) 27 T ELT))) -(((-626 |#1|) (-10 -7 (-15 -3721 ((-2 (|:| |particular| (-3 (-1207 |#1|) #1="failed")) (|:| -2113 (-599 (-1207 |#1|)))) (-647 |#1|) (-1207 |#1|))) (-15 -3721 ((-2 (|:| |particular| (-3 (-1207 |#1|) #1#)) (|:| -2113 (-599 (-1207 |#1|)))) (-599 (-599 |#1|)) (-1207 |#1|))) (-15 -3721 ((-599 (-2 (|:| |particular| (-3 (-1207 |#1|) #1#)) (|:| -2113 (-599 (-1207 |#1|))))) (-647 |#1|) (-599 (-1207 |#1|)))) (-15 -3721 ((-599 (-2 (|:| |particular| (-3 (-1207 |#1|) #1#)) (|:| -2113 (-599 (-1207 |#1|))))) (-599 (-599 |#1|)) (-599 (-1207 |#1|)))) (-15 -3480 ((-3 (-1207 |#1|) #1#) (-647 |#1|) (-1207 |#1|))) (-15 -2415 ((-85) (-647 |#1|) (-1207 |#1|))) (-15 -3231 ((-714) (-647 |#1|) (-1207 |#1|)))) (-318)) (T -626)) -((-3231 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *5)) (-5 *4 (-1207 *5)) (-4 *5 (-318)) (-5 *2 (-714)) (-5 *1 (-626 *5)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *5)) (-5 *4 (-1207 *5)) (-4 *5 (-318)) (-5 *2 (-85)) (-5 *1 (-626 *5)))) (-3480 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1207 *4)) (-5 *3 (-647 *4)) (-4 *4 (-318)) (-5 *1 (-626 *4)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-599 *5))) (-4 *5 (-318)) (-5 *2 (-599 (-2 (|:| |particular| (-3 (-1207 *5) #1="failed")) (|:| -2113 (-599 (-1207 *5)))))) (-5 *1 (-626 *5)) (-5 *4 (-599 (-1207 *5))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *5)) (-4 *5 (-318)) (-5 *2 (-599 (-2 (|:| |particular| (-3 (-1207 *5) #1#)) (|:| -2113 (-599 (-1207 *5)))))) (-5 *1 (-626 *5)) (-5 *4 (-599 (-1207 *5))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-599 *5))) (-4 *5 (-318)) (-5 *2 (-2 (|:| |particular| (-3 (-1207 *5) #1#)) (|:| -2113 (-599 (-1207 *5))))) (-5 *1 (-626 *5)) (-5 *4 (-1207 *5)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *5)) (-4 *5 (-318)) (-5 *2 (-2 (|:| |particular| (-3 (-1207 *5) #1#)) (|:| -2113 (-599 (-1207 *5))))) (-5 *1 (-626 *5)) (-5 *4 (-1207 *5))))) -((-2416 (((-2 (|:| |particular| (-3 (-1207 (-361 |#4|)) "failed")) (|:| -2113 (-599 (-1207 (-361 |#4|))))) (-599 |#4|) (-599 |#3|)) 51 T ELT))) -(((-627 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2416 ((-2 (|:| |particular| (-3 (-1207 (-361 |#4|)) "failed")) (|:| -2113 (-599 (-1207 (-361 |#4|))))) (-599 |#4|) (-599 |#3|)))) (-510) (-738) (-781) (-888 |#1| |#2| |#3|)) (T -627)) -((-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *7)) (-4 *7 (-781)) (-4 *8 (-888 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-5 *2 (-2 (|:| |particular| (-3 (-1207 (-361 *8)) "failed")) (|:| -2113 (-599 (-1207 (-361 *8)))))) (-5 *1 (-627 *5 *6 *7 *8))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1870 (((-3 $ #1="failed")) NIL (|has| |#2| (-510)) ELT)) (-3470 ((|#2| $) NIL T ELT)) (-3243 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1#) $ $) NIL T ELT)) (-3361 (((-1207 (-647 |#2|))) NIL T ELT) (((-1207 (-647 |#2|)) (-1207 $)) NIL T ELT)) (-3245 (((-85) $) NIL T ELT)) (-1822 (((-1207 $)) 41 T ELT)) (-3473 (($ |#2|) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3232 (($ $) NIL (|has| |#2| (-261)) ELT)) (-3234 (((-196 |#1| |#2|) $ (-499)) NIL T ELT)) (-2008 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL (|has| |#2| (-510)) ELT)) (-1796 (((-3 $ #1#)) NIL (|has| |#2| (-510)) ELT)) (-1886 (((-647 |#2|)) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-1820 ((|#2| $) NIL T ELT)) (-1884 (((-647 |#2|) $) NIL T ELT) (((-647 |#2|) $ (-1207 $)) NIL T ELT)) (-2522 (((-3 $ #1#) $) NIL (|has| |#2| (-510)) ELT)) (-2002 (((-1111 (-884 |#2|))) NIL (|has| |#2| (-318)) ELT)) (-2525 (($ $ (-857)) NIL T ELT)) (-1818 ((|#2| $) NIL T ELT)) (-1798 (((-1111 |#2|) $) NIL (|has| |#2| (-510)) ELT)) (-1888 ((|#2|) NIL T ELT) ((|#2| (-1207 $)) NIL T ELT)) (-1816 (((-1111 |#2|) $) NIL T ELT)) (-1810 (((-85)) NIL T ELT)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) ((|#2| $) NIL T ELT)) (-1890 (($ (-1207 |#2|)) NIL T ELT) (($ (-1207 |#2|) (-1207 $)) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#2|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3231 (((-714) $) NIL (|has| |#2| (-510)) ELT) (((-857)) 42 T ELT)) (-3235 ((|#2| $ (-499) (-499)) NIL T ELT)) (-1807 (((-85)) NIL T ELT)) (-2549 (($ $ (-857)) NIL T ELT)) (-3010 (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3230 (((-714) $) NIL (|has| |#2| (-510)) ELT)) (-3229 (((-599 (-196 |#1| |#2|)) $) NIL (|has| |#2| (-510)) ELT)) (-3237 (((-714) $) NIL T ELT)) (-1803 (((-85)) NIL T ELT)) (-3236 (((-714) $) NIL T ELT)) (-3467 ((|#2| $) NIL (|has| |#2| (-6 (-4147 #2="*"))) ELT)) (-3241 (((-499) $) NIL T ELT)) (-3239 (((-499) $) NIL T ELT)) (-2727 (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-3240 (((-499) $) NIL T ELT)) (-3238 (((-499) $) NIL T ELT)) (-3246 (($ (-599 (-599 |#2|))) NIL T ELT)) (-2051 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3742 (((-599 (-599 |#2|)) $) NIL T ELT)) (-1801 (((-85)) NIL T ELT)) (-1805 (((-85)) NIL T ELT)) (-2009 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL (|has| |#2| (-510)) ELT)) (-1797 (((-3 $ #1#)) NIL (|has| |#2| (-510)) ELT)) (-1887 (((-647 |#2|)) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-1821 ((|#2| $) NIL T ELT)) (-1885 (((-647 |#2|) $) NIL T ELT) (((-647 |#2|) $ (-1207 $)) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-2523 (((-3 $ #1#) $) NIL (|has| |#2| (-510)) ELT)) (-2006 (((-1111 (-884 |#2|))) NIL (|has| |#2| (-318)) ELT)) (-2524 (($ $ (-857)) NIL T ELT)) (-1819 ((|#2| $) NIL T ELT)) (-1799 (((-1111 |#2|) $) NIL (|has| |#2| (-510)) ELT)) (-1889 ((|#2|) NIL T ELT) ((|#2| (-1207 $)) NIL T ELT)) (-1817 (((-1111 |#2|) $) NIL T ELT)) (-1811 (((-85)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1802 (((-85)) NIL T ELT)) (-1804 (((-85)) NIL T ELT)) (-1806 (((-85)) NIL T ELT)) (-3738 (((-3 $ #1#) $) NIL (|has| |#2| (-318)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1809 (((-85)) NIL T ELT)) (-3606 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-510)) ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ (-499) (-499) |#2|) NIL T ELT) ((|#2| $ (-499) (-499)) 27 T ELT) ((|#2| $ (-499)) NIL T ELT)) (-3908 (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-714)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT)) (-3469 ((|#2| $) NIL T ELT)) (-3472 (($ (-599 |#2|)) NIL T ELT)) (-3244 (((-85) $) NIL T ELT)) (-3471 (((-196 |#1| |#2|) $) NIL T ELT)) (-3468 ((|#2| $) NIL (|has| |#2| (-6 (-4147 #2#))) ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-3362 (((-647 |#2|) (-1207 $)) NIL T ELT) (((-1207 |#2|) $) NIL T ELT) (((-647 |#2|) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 |#2|) $ (-1207 $)) 30 T ELT)) (-4122 (($ (-1207 |#2|)) NIL T ELT) (((-1207 |#2|) $) NIL T ELT)) (-1994 (((-599 (-884 |#2|))) NIL T ELT) (((-599 (-884 |#2|)) (-1207 $)) NIL T ELT)) (-2551 (($ $ $) NIL T ELT)) (-1815 (((-85)) NIL T ELT)) (-3233 (((-196 |#1| |#2|) $ (-499)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (($ |#2|) NIL T ELT) (((-647 |#2|) $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) 40 T ELT)) (-1800 (((-599 (-1207 |#2|))) NIL (|has| |#2| (-510)) ELT)) (-2552 (($ $ $ $) NIL T ELT)) (-1813 (((-85)) NIL T ELT)) (-2664 (($ (-647 |#2|) $) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3242 (((-85) $) NIL T ELT)) (-2550 (($ $ $) NIL T ELT)) (-1814 (((-85)) NIL T ELT)) (-1812 (((-85)) NIL T ELT)) (-1808 (((-85)) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-714)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#2| (-318)) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-196 |#1| |#2|) $ (-196 |#1| |#2|)) NIL T ELT) (((-196 |#1| |#2|) (-196 |#1| |#2|) $) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-628 |#1| |#2|) (-13 (-1063 |#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) (-568 (-647 |#2|)) (-372 |#2|)) (-857) (-146)) (T -628)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3386 (((-599 (-1075)) $) 10 T ELT)) (-4096 (((-797) $) 16 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-629) (-13 (-1023) (-10 -8 (-15 -3386 ((-599 (-1075)) $))))) (T -629)) -((-3386 (*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-629))))) -((-2687 (((-85) $ $) NIL T ELT)) (-4084 (((-599 |#1|) $) NIL T ELT)) (-3259 (($ $) 62 T ELT)) (-2783 (((-85) $) NIL T ELT)) (-3295 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-2419 (((-3 $ #1#) (-762 |#1|)) 28 T ELT)) (-2421 (((-85) (-762 |#1|)) 18 T ELT)) (-2420 (($ (-762 |#1|)) 29 T ELT)) (-2629 (((-85) $ $) 36 T ELT)) (-3983 (((-857) $) 43 T ELT)) (-3260 (($ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3882 (((-599 $) (-762 |#1|)) 20 T ELT)) (-4096 (((-797) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-762 |#1|) $) 47 T ELT) (((-635 |#1|) $) 52 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2418 (((-58 (-599 $)) (-599 |#1|) (-857)) 67 T ELT)) (-2417 (((-599 $) (-599 |#1|) (-857)) 70 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 63 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 46 T ELT))) -(((-630 |#1|) (-13 (-781) (-978 |#1|) (-10 -8 (-15 -2783 ((-85) $)) (-15 -3260 ($ $)) (-15 -3259 ($ $)) (-15 -3983 ((-857) $)) (-15 -2629 ((-85) $ $)) (-15 -4096 ((-762 |#1|) $)) (-15 -4096 ((-635 |#1|) $)) (-15 -3882 ((-599 $) (-762 |#1|))) (-15 -2421 ((-85) (-762 |#1|))) (-15 -2420 ($ (-762 |#1|))) (-15 -2419 ((-3 $ "failed") (-762 |#1|))) (-15 -4084 ((-599 |#1|) $)) (-15 -2418 ((-58 (-599 $)) (-599 |#1|) (-857))) (-15 -2417 ((-599 $) (-599 |#1|) (-857))))) (-781)) (T -630)) -((-2783 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) (-3260 (*1 *1 *1) (-12 (-5 *1 (-630 *2)) (-4 *2 (-781)))) (-3259 (*1 *1 *1) (-12 (-5 *1 (-630 *2)) (-4 *2 (-781)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) (-2629 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-762 *3)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) (-3882 (*1 *2 *3) (-12 (-5 *3 (-762 *4)) (-4 *4 (-781)) (-5 *2 (-599 (-630 *4))) (-5 *1 (-630 *4)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-762 *4)) (-4 *4 (-781)) (-5 *2 (-85)) (-5 *1 (-630 *4)))) (-2420 (*1 *1 *2) (-12 (-5 *2 (-762 *3)) (-4 *3 (-781)) (-5 *1 (-630 *3)))) (-2419 (*1 *1 *2) (|partial| -12 (-5 *2 (-762 *3)) (-4 *3 (-781)) (-5 *1 (-630 *3)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) (-2418 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *5)) (-5 *4 (-857)) (-4 *5 (-781)) (-5 *2 (-58 (-599 (-630 *5)))) (-5 *1 (-630 *5)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *5)) (-5 *4 (-857)) (-4 *5 (-781)) (-5 *2 (-599 (-630 *5))) (-5 *1 (-630 *5))))) -((-3542 ((|#2| $) 100 T ELT)) (-3947 (($ $) 121 T ELT)) (-3582 (((-85) $ (-714)) 35 T ELT)) (-3949 (($ $) 109 T ELT) (($ $ (-714)) 112 T ELT)) (-3583 (((-85) $) 122 T ELT)) (-3152 (((-599 $) $) 96 T ELT)) (-3148 (((-85) $ $) 92 T ELT)) (-3869 (((-85) $ (-714)) 33 T ELT)) (-2301 (((-499) $) 66 T ELT)) (-2302 (((-499) $) 65 T ELT)) (-3866 (((-85) $ (-714)) 31 T ELT)) (-3667 (((-85) $) 98 T ELT)) (-3948 ((|#2| $) 113 T ELT) (($ $ (-714)) 117 T ELT)) (-2404 (($ $ $ (-499)) 83 T ELT) (($ |#2| $ (-499)) 82 T ELT)) (-2304 (((-599 (-499)) $) 64 T ELT)) (-2305 (((-85) (-499) $) 59 T ELT)) (-3951 ((|#2| $) NIL T ELT) (($ $ (-714)) 108 T ELT)) (-3919 (($ $ (-499)) 125 T ELT)) (-3584 (((-85) $) 124 T ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) 42 T ELT)) (-2306 (((-599 |#2|) $) 46 T ELT)) (-3950 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1174 (-499))) 79 T ELT) ((|#2| $ (-499)) 57 T ELT) ((|#2| $ (-499) |#2|) 58 T ELT)) (-3150 (((-499) $ $) 91 T ELT)) (-2405 (($ $ (-1174 (-499))) 78 T ELT) (($ $ (-499)) 72 T ELT)) (-3783 (((-85) $) 87 T ELT)) (-3942 (($ $) 105 T ELT)) (-3943 (((-714) $) 104 T ELT)) (-3944 (($ $) 103 T ELT)) (-3670 (($ (-599 |#2|)) 53 T ELT)) (-3012 (($ $) 126 T ELT)) (-3662 (((-599 $) $) 90 T ELT)) (-3149 (((-85) $ $) 89 T ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) 41 T ELT)) (-3174 (((-85) $ $) 20 T ELT)) (-4107 (((-714) $) 39 T ELT))) -(((-631 |#1| |#2|) (-10 -7 (-15 -3174 ((-85) |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -3919 (|#1| |#1| (-499))) (-15 -3582 ((-85) |#1| (-714))) (-15 -3869 ((-85) |#1| (-714))) (-15 -3866 ((-85) |#1| (-714))) (-15 -3583 ((-85) |#1|)) (-15 -3584 ((-85) |#1|)) (-15 -3950 (|#2| |#1| (-499) |#2|)) (-15 -3950 (|#2| |#1| (-499))) (-15 -2306 ((-599 |#2|) |#1|)) (-15 -2305 ((-85) (-499) |#1|)) (-15 -2304 ((-599 (-499)) |#1|)) (-15 -2302 ((-499) |#1|)) (-15 -2301 ((-499) |#1|)) (-15 -3670 (|#1| (-599 |#2|))) (-15 -3950 (|#1| |#1| (-1174 (-499)))) (-15 -2405 (|#1| |#1| (-499))) (-15 -2405 (|#1| |#1| (-1174 (-499)))) (-15 -2404 (|#1| |#2| |#1| (-499))) (-15 -2404 (|#1| |#1| |#1| (-499))) (-15 -3942 (|#1| |#1|)) (-15 -3943 ((-714) |#1|)) (-15 -3944 (|#1| |#1|)) (-15 -3947 (|#1| |#1|)) (-15 -3948 (|#1| |#1| (-714))) (-15 -3950 (|#2| |#1| "last")) (-15 -3948 (|#2| |#1|)) (-15 -3949 (|#1| |#1| (-714))) (-15 -3950 (|#1| |#1| "rest")) (-15 -3949 (|#1| |#1|)) (-15 -3951 (|#1| |#1| (-714))) (-15 -3950 (|#2| |#1| "first")) (-15 -3951 (|#2| |#1|)) (-15 -3148 ((-85) |#1| |#1|)) (-15 -3149 ((-85) |#1| |#1|)) (-15 -3150 ((-499) |#1| |#1|)) (-15 -3783 ((-85) |#1|)) (-15 -3950 (|#2| |#1| "value")) (-15 -3542 (|#2| |#1|)) (-15 -3667 ((-85) |#1|)) (-15 -3152 ((-599 |#1|) |#1|)) (-15 -3662 ((-599 |#1|) |#1|)) (-15 -2049 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -2050 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -4107 ((-714) |#1|))) (-632 |#2|) (-1157)) (T -631)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 52 T ELT)) (-3945 ((|#1| $) 71 T ELT)) (-3947 (($ $) 73 T ELT)) (-2299 (((-1213) $ (-499) (-499)) 107 (|has| $ (-6 -4146)) ELT)) (-3935 (($ $ (-499)) 58 (|has| $ (-6 -4146)) ELT)) (-3582 (((-85) $ (-714)) 90 T ELT)) (-3146 ((|#1| $ |#1|) 43 (|has| $ (-6 -4146)) ELT)) (-3937 (($ $ $) 62 (|has| $ (-6 -4146)) ELT)) (-3936 ((|#1| $ |#1|) 60 (|has| $ (-6 -4146)) ELT)) (-3939 ((|#1| $ |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4146)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4146)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4146)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 127 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-499) |#1|) 96 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 45 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 112 T ELT)) (-3946 ((|#1| $) 72 T ELT)) (-3874 (($) 7 T CONST)) (-2423 (($ $) 135 T ELT)) (-3949 (($ $) 79 T ELT) (($ $ (-714)) 77 T ELT)) (-1386 (($ $) 109 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#1| $) 110 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 113 T ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-1609 ((|#1| $ (-499) |#1|) 95 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 97 T ELT)) (-3583 (((-85) $) 93 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2422 (((-714) $) 134 T ELT)) (-3152 (((-599 $) $) 54 T ELT)) (-3148 (((-85) $ $) 46 (|has| |#1| (-1041)) ELT)) (-3764 (($ (-714) |#1|) 119 T ELT)) (-3869 (((-85) $ (-714)) 91 T ELT)) (-2301 (((-499) $) 105 (|has| (-499) (-781)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 104 (|has| (-499) (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3866 (((-85) $ (-714)) 92 T ELT)) (-3151 (((-599 |#1|) $) 49 T ELT)) (-3667 (((-85) $) 53 T ELT)) (-2425 (($ $) 137 T ELT)) (-2426 (((-85) $) 138 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3948 ((|#1| $) 76 T ELT) (($ $ (-714)) 74 T ELT)) (-2404 (($ $ $ (-499)) 126 T ELT) (($ |#1| $ (-499)) 125 T ELT)) (-2304 (((-599 (-499)) $) 102 T ELT)) (-2305 (((-85) (-499) $) 101 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-2424 ((|#1| $) 136 T ELT)) (-3951 ((|#1| $) 82 T ELT) (($ $ (-714)) 80 T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2300 (($ $ |#1|) 106 (|has| $ (-6 -4146)) ELT)) (-3919 (($ $ (-499)) 133 T ELT)) (-3584 (((-85) $) 94 T ELT)) (-2427 (((-85) $) 139 T ELT)) (-2428 (((-85) $) 140 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) 100 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1174 (-499))) 118 T ELT) ((|#1| $ (-499)) 99 T ELT) ((|#1| $ (-499) |#1|) 98 T ELT)) (-3150 (((-499) $ $) 48 T ELT)) (-2405 (($ $ (-1174 (-499))) 124 T ELT) (($ $ (-499)) 123 T ELT)) (-3783 (((-85) $) 50 T ELT)) (-3942 (($ $) 68 T ELT)) (-3940 (($ $) 65 (|has| $ (-6 -4146)) ELT)) (-3943 (((-714) $) 69 T ELT)) (-3944 (($ $) 70 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 108 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 117 T ELT)) (-3941 (($ $ $) 67 (|has| $ (-6 -4146)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4146)) ELT)) (-3952 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-599 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3012 (($ $) 132 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) 55 T ELT)) (-3149 (((-85) $ $) 47 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-632 |#1|) (-113) (-1157)) (T -632)) -((-3546 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-632 *3)) (-4 *3 (-1157)))) (-3860 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-632 *3)) (-4 *3 (-1157)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-632 *3)) (-4 *3 (-1157)) (-5 *2 (-85)))) (-2427 (*1 *2 *1) (-12 (-4 *1 (-632 *3)) (-4 *3 (-1157)) (-5 *2 (-85)))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-632 *3)) (-4 *3 (-1157)) (-5 *2 (-85)))) (-2425 (*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1157)))) (-2424 (*1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1157)))) (-2423 (*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1157)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-632 *3)) (-4 *3 (-1157)) (-5 *2 (-714)))) (-3919 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-632 *3)) (-4 *3 (-1157)))) (-3012 (*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1157))))) -(-13 (-1090 |t#1|) (-10 -8 (-15 -3546 ($ (-1 (-85) |t#1|) $)) (-15 -3860 ($ (-1 (-85) |t#1|) $)) (-15 -2428 ((-85) $)) (-15 -2427 ((-85) $)) (-15 -2426 ((-85) $)) (-15 -2425 ($ $)) (-15 -2424 (|t#1| $)) (-15 -2423 ($ $)) (-15 -2422 ((-714) $)) (-15 -3919 ($ $ (-499))) (-15 -3012 ($ $)))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 (-499) |#1|) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-554 (-499) |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-609 |#1|) . T) ((-950 |#1|) . T) ((-1041) |has| |#1| (-1041)) ((-1090 |#1|) . T) ((-1157) . T) ((-1196 |#1|) . T)) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2434 (($ (-714) (-714) (-714)) 53 (|has| |#1| (-989)) ELT)) (-2431 ((|#1| $ (-714) (-714) (-714) |#1|) 47 T ELT)) (-3874 (($) NIL T CONST)) (-2432 (($ $ $) 57 (|has| |#1| (-989)) ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2429 (((-1207 (-714)) $) 12 T ELT)) (-2430 (($ (-1117) $ $) 34 T ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-2433 (($ (-714)) 55 (|has| |#1| (-989)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-714) (-714) (-714)) 44 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-3670 (($ (-599 (-599 (-599 |#1|)))) 67 T ELT)) (-4096 (($ (-896 (-896 (-896 |#1|)))) 23 T ELT) (((-896 (-896 (-896 |#1|))) $) 19 T ELT) (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-633 |#1|) (-13 (-443 |#1|) (-10 -8 (IF (|has| |#1| (-989)) (PROGN (-15 -2434 ($ (-714) (-714) (-714))) (-15 -2433 ($ (-714))) (-15 -2432 ($ $ $))) |%noBranch|) (-15 -3670 ($ (-599 (-599 (-599 |#1|))))) (-15 -3950 (|#1| $ (-714) (-714) (-714))) (-15 -2431 (|#1| $ (-714) (-714) (-714) |#1|)) (-15 -4096 ($ (-896 (-896 (-896 |#1|))))) (-15 -4096 ((-896 (-896 (-896 |#1|))) $)) (-15 -2430 ($ (-1117) $ $)) (-15 -2429 ((-1207 (-714)) $)))) (-1041)) (T -633)) -((-2434 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-714)) (-5 *1 (-633 *3)) (-4 *3 (-989)) (-4 *3 (-1041)))) (-2433 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-633 *3)) (-4 *3 (-989)) (-4 *3 (-1041)))) (-2432 (*1 *1 *1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-989)) (-4 *2 (-1041)))) (-3670 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 (-599 *3)))) (-4 *3 (-1041)) (-5 *1 (-633 *3)))) (-3950 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-714)) (-5 *1 (-633 *2)) (-4 *2 (-1041)))) (-2431 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-633 *2)) (-4 *2 (-1041)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-896 (-896 (-896 *3)))) (-4 *3 (-1041)) (-5 *1 (-633 *3)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-896 (-896 (-896 *3)))) (-5 *1 (-633 *3)) (-4 *3 (-1041)))) (-2430 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-633 *3)) (-4 *3 (-1041)))) (-2429 (*1 *2 *1) (-12 (-5 *2 (-1207 (-714))) (-5 *1 (-633 *3)) (-4 *3 (-1041))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3316 (((-437) $) 10 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 19 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-1075) $) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-634) (-13 (-1023) (-10 -8 (-15 -3316 ((-437) $)) (-15 -3371 ((-1075) $))))) (T -634)) -((-3316 (*1 *2 *1) (-12 (-5 *2 (-437)) (-5 *1 (-634)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-634))))) -((-2687 (((-85) $ $) NIL T ELT)) (-4084 (((-599 |#1|) $) 15 T ELT)) (-3259 (($ $) 19 T ELT)) (-2783 (((-85) $) 20 T ELT)) (-3295 (((-3 |#1| "failed") $) 23 T ELT)) (-3294 ((|#1| $) 21 T ELT)) (-3949 (($ $) 37 T ELT)) (-4086 (($ $) 25 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-2629 (((-85) $ $) 46 T ELT)) (-3983 (((-857) $) 40 T ELT)) (-3260 (($ $) 18 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 ((|#1| $) 36 T ELT)) (-4096 (((-797) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-762 |#1|) $) 28 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 13 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) -(((-635 |#1|) (-13 (-781) (-978 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4096 ((-762 |#1|) $)) (-15 -3951 (|#1| $)) (-15 -3260 ($ $)) (-15 -3983 ((-857) $)) (-15 -2629 ((-85) $ $)) (-15 -4086 ($ $)) (-15 -3949 ($ $)) (-15 -2783 ((-85) $)) (-15 -3259 ($ $)) (-15 -4084 ((-599 |#1|) $)))) (-781)) (T -635)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-762 *3)) (-5 *1 (-635 *3)) (-4 *3 (-781)))) (-3951 (*1 *2 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) (-3260 (*1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-635 *3)) (-4 *3 (-781)))) (-2629 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-635 *3)) (-4 *3 (-781)))) (-4086 (*1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) (-3949 (*1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-635 *3)) (-4 *3 (-781)))) (-3259 (*1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-635 *3)) (-4 *3 (-781))))) -((-2443 ((|#1| (-1 |#1| (-714) |#1|) (-714) |#1|) 11 T ELT)) (-2435 ((|#1| (-1 |#1| |#1|) (-714) |#1|) 9 T ELT))) -(((-636 |#1|) (-10 -7 (-15 -2435 (|#1| (-1 |#1| |#1|) (-714) |#1|)) (-15 -2443 (|#1| (-1 |#1| (-714) |#1|) (-714) |#1|))) (-1041)) (T -636)) -((-2443 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-714) *2)) (-5 *4 (-714)) (-4 *2 (-1041)) (-5 *1 (-636 *2)))) (-2435 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-714)) (-4 *2 (-1041)) (-5 *1 (-636 *2))))) -((-2437 ((|#2| |#1| |#2|) 9 T ELT)) (-2436 ((|#1| |#1| |#2|) 8 T ELT))) -(((-637 |#1| |#2|) (-10 -7 (-15 -2436 (|#1| |#1| |#2|)) (-15 -2437 (|#2| |#1| |#2|))) (-1041) (-1041)) (T -637)) -((-2437 (*1 *2 *3 *2) (-12 (-5 *1 (-637 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041)))) (-2436 (*1 *2 *2 *3) (-12 (-5 *1 (-637 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041))))) -((-2438 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) -(((-638 |#1| |#2| |#3|) (-10 -7 (-15 -2438 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1041) (-1041) (-1041)) (T -638)) -((-2438 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041)) (-5 *1 (-638 *5 *6 *2))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3456 (((-1158) $) 21 T ELT)) (-3455 (((-599 (-1158)) $) 19 T ELT)) (-2439 (($ (-599 (-1158)) (-1158)) 14 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 29 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT) (((-1158) $) 22 T ELT) (($ (-1055)) 10 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-639) (-13 (-1023) (-568 (-1158)) (-10 -8 (-15 -4096 ($ (-1055))) (-15 -2439 ($ (-599 (-1158)) (-1158))) (-15 -3455 ((-599 (-1158)) $)) (-15 -3456 ((-1158) $))))) (T -639)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-1055)) (-5 *1 (-639)))) (-2439 (*1 *1 *2 *3) (-12 (-5 *2 (-599 (-1158))) (-5 *3 (-1158)) (-5 *1 (-639)))) (-3455 (*1 *2 *1) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-639)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-639))))) -((-2443 (((-1 |#1| (-714) |#1|) (-1 |#1| (-714) |#1|)) 26 T ELT)) (-2440 (((-1 |#1|) |#1|) 8 T ELT)) (-2442 ((|#1| |#1|) 19 T ELT)) (-2441 (((-599 |#1|) (-1 (-599 |#1|) (-599 |#1|)) (-499)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-4096 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-714)) 23 T ELT))) -(((-640 |#1|) (-10 -7 (-15 -2440 ((-1 |#1|) |#1|)) (-15 -4096 ((-1 |#1|) |#1|)) (-15 -2441 (|#1| (-1 |#1| |#1|))) (-15 -2441 ((-599 |#1|) (-1 (-599 |#1|) (-599 |#1|)) (-499))) (-15 -2442 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-714))) (-15 -2443 ((-1 |#1| (-714) |#1|) (-1 |#1| (-714) |#1|)))) (-1041)) (T -640)) -((-2443 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-714) *3)) (-4 *3 (-1041)) (-5 *1 (-640 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-714)) (-4 *4 (-1041)) (-5 *1 (-640 *4)))) (-2442 (*1 *2 *2) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1041)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-599 *5) (-599 *5))) (-5 *4 (-499)) (-5 *2 (-599 *5)) (-5 *1 (-640 *5)) (-4 *5 (-1041)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-640 *2)) (-4 *2 (-1041)))) (-4096 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-640 *3)) (-4 *3 (-1041)))) (-2440 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-640 *3)) (-4 *3 (-1041))))) -((-2446 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2445 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-4102 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2444 (((-1 |#2| |#1|) |#2|) 11 T ELT))) -(((-641 |#1| |#2|) (-10 -7 (-15 -2444 ((-1 |#2| |#1|) |#2|)) (-15 -2445 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4102 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2446 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1041) (-1041)) (T -641)) -((-2446 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-5 *2 (-1 *5 *4)) (-5 *1 (-641 *4 *5)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1041)) (-5 *2 (-1 *5 *4)) (-5 *1 (-641 *4 *5)) (-4 *4 (-1041)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-5 *2 (-1 *5)) (-5 *1 (-641 *4 *5)))) (-2444 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-641 *4 *3)) (-4 *4 (-1041)) (-4 *3 (-1041))))) -((-2451 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2447 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2448 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2449 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2450 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) -(((-642 |#1| |#2| |#3|) (-10 -7 (-15 -2447 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2448 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2449 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2450 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2451 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1041) (-1041) (-1041)) (T -642)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-1 *7 *5)) (-5 *1 (-642 *5 *6 *7)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-642 *4 *5 *6)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-642 *4 *5 *6)) (-4 *4 (-1041)))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1041)) (-4 *6 (-1041)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-642 *4 *5 *6)) (-4 *5 (-1041)))) (-2448 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *4 *5 *6)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1041)) (-4 *4 (-1041)) (-4 *6 (-1041)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *5 *4 *6))))) -((-3988 (($ (-714) (-714)) 42 T ELT)) (-2456 (($ $ $) 73 T ELT)) (-3554 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3243 (((-85) $) 36 T ELT)) (-2455 (($ $ (-499) (-499)) 84 T ELT)) (-2454 (($ $ (-499) (-499)) 85 T ELT)) (-2453 (($ $ (-499) (-499) (-499) (-499)) 90 T ELT)) (-2458 (($ $) 71 T ELT)) (-3245 (((-85) $) 15 T ELT)) (-2452 (($ $ (-499) (-499) $) 91 T ELT)) (-3938 ((|#2| $ (-499) (-499) |#2|) NIL T ELT) (($ $ (-599 (-499)) (-599 (-499)) $) 89 T ELT)) (-3473 (($ (-714) |#2|) 55 T ELT)) (-3246 (($ (-599 (-599 |#2|))) 51 T ELT) (($ (-714) (-714) (-1 |#2| (-499) (-499))) 53 T ELT)) (-3742 (((-599 (-599 |#2|)) $) 80 T ELT)) (-2457 (($ $ $) 72 T ELT)) (-3606 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3950 ((|#2| $ (-499) (-499)) NIL T ELT) ((|#2| $ (-499) (-499) |#2|) NIL T ELT) (($ $ (-599 (-499)) (-599 (-499))) 88 T ELT)) (-3472 (($ (-599 |#2|)) 56 T ELT) (($ (-599 $)) 58 T ELT)) (-3244 (((-85) $) 28 T ELT)) (-4096 (($ |#4|) 63 T ELT) (((-797) $) NIL T ELT)) (-3242 (((-85) $) 38 T ELT)) (-4099 (($ $ |#2|) 124 T ELT)) (-3987 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3989 (($ $ $) 93 T ELT)) (** (($ $ (-714)) 111 T ELT) (($ $ (-499)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-499) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) -(((-643 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4096 ((-797) |#1|)) (-15 ** (|#1| |#1| (-499))) (-15 -4099 (|#1| |#1| |#2|)) (-15 -3606 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-714))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-499) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -3989 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#1| (-499) (-499) |#1|)) (-15 -2453 (|#1| |#1| (-499) (-499) (-499) (-499))) (-15 -2454 (|#1| |#1| (-499) (-499))) (-15 -2455 (|#1| |#1| (-499) (-499))) (-15 -3938 (|#1| |#1| (-599 (-499)) (-599 (-499)) |#1|)) (-15 -3950 (|#1| |#1| (-599 (-499)) (-599 (-499)))) (-15 -3742 ((-599 (-599 |#2|)) |#1|)) (-15 -2456 (|#1| |#1| |#1|)) (-15 -2457 (|#1| |#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -3554 (|#1| |#1|)) (-15 -3554 (|#1| |#3|)) (-15 -4096 (|#1| |#4|)) (-15 -3472 (|#1| (-599 |#1|))) (-15 -3472 (|#1| (-599 |#2|))) (-15 -3473 (|#1| (-714) |#2|)) (-15 -3246 (|#1| (-714) (-714) (-1 |#2| (-499) (-499)))) (-15 -3246 (|#1| (-599 (-599 |#2|)))) (-15 -3988 (|#1| (-714) (-714))) (-15 -3242 ((-85) |#1|)) (-15 -3243 ((-85) |#1|)) (-15 -3244 ((-85) |#1|)) (-15 -3245 ((-85) |#1|)) (-15 -3938 (|#2| |#1| (-499) (-499) |#2|)) (-15 -3950 (|#2| |#1| (-499) (-499) |#2|)) (-15 -3950 (|#2| |#1| (-499) (-499)))) (-644 |#2| |#3| |#4|) (-989) (-327 |#2|) (-327 |#2|)) (T -643)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3988 (($ (-714) (-714)) 103 T ELT)) (-2456 (($ $ $) 92 T ELT)) (-3554 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3243 (((-85) $) 105 T ELT)) (-2455 (($ $ (-499) (-499)) 88 T ELT)) (-2454 (($ $ (-499) (-499)) 87 T ELT)) (-2453 (($ $ (-499) (-499) (-499) (-499)) 86 T ELT)) (-2458 (($ $) 94 T ELT)) (-3245 (((-85) $) 107 T ELT)) (-2452 (($ $ (-499) (-499) $) 85 T ELT)) (-3938 ((|#1| $ (-499) (-499) |#1|) 48 T ELT) (($ $ (-599 (-499)) (-599 (-499)) $) 89 T ELT)) (-1283 (($ $ (-499) |#2|) 46 T ELT)) (-1282 (($ $ (-499) |#3|) 45 T ELT)) (-3473 (($ (-714) |#1|) 100 T ELT)) (-3874 (($) 7 T CONST)) (-3232 (($ $) 72 (|has| |#1| (-261)) ELT)) (-3234 ((|#2| $ (-499)) 50 T ELT)) (-3231 (((-714) $) 71 (|has| |#1| (-510)) ELT)) (-1609 ((|#1| $ (-499) (-499) |#1|) 47 T ELT)) (-3235 ((|#1| $ (-499) (-499)) 52 T ELT)) (-3010 (((-599 |#1|) $) 30 T ELT)) (-3230 (((-714) $) 70 (|has| |#1| (-510)) ELT)) (-3229 (((-599 |#3|) $) 69 (|has| |#1| (-510)) ELT)) (-3237 (((-714) $) 55 T ELT)) (-3764 (($ (-714) (-714) |#1|) 61 T ELT)) (-3236 (((-714) $) 54 T ELT)) (-3467 ((|#1| $) 67 (|has| |#1| (-6 (-4147 #1="*"))) ELT)) (-3241 (((-499) $) 59 T ELT)) (-3239 (((-499) $) 57 T ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3240 (((-499) $) 58 T ELT)) (-3238 (((-499) $) 56 T ELT)) (-3246 (($ (-599 (-599 |#1|))) 102 T ELT) (($ (-714) (-714) (-1 |#1| (-499) (-499))) 101 T ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3742 (((-599 (-599 |#1|)) $) 91 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3738 (((-3 $ "failed") $) 66 (|has| |#1| (-318)) ELT)) (-2457 (($ $ $) 93 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-2300 (($ $ |#1|) 60 T ELT)) (-3606 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-510)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ (-499) (-499)) 53 T ELT) ((|#1| $ (-499) (-499) |#1|) 51 T ELT) (($ $ (-599 (-499)) (-599 (-499))) 90 T ELT)) (-3472 (($ (-599 |#1|)) 99 T ELT) (($ (-599 $)) 98 T ELT)) (-3244 (((-85) $) 106 T ELT)) (-3468 ((|#1| $) 68 (|has| |#1| (-6 (-4147 #1#))) ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-3233 ((|#3| $ (-499)) 49 T ELT)) (-4096 (($ |#3|) 97 T ELT) (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3242 (((-85) $) 104 T ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4099 (($ $ |#1|) 73 (|has| |#1| (-318)) ELT)) (-3987 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-3989 (($ $ $) 84 T ELT)) (** (($ $ (-714)) 75 T ELT) (($ $ (-499)) 65 (|has| |#1| (-318)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-499) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-644 |#1| |#2| |#3|) (-113) (-989) (-327 |t#1|) (-327 |t#1|)) (T -644)) -((-3245 (*1 *2 *1) (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-85)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-85)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-85)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-85)))) (-3988 (*1 *1 *2 *2) (-12 (-5 *2 (-714)) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-3246 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-3246 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-714)) (-5 *3 (-1 *4 (-499) (-499))) (-4 *4 (-989)) (-4 *1 (-644 *4 *5 *6)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)))) (-3473 (*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-3472 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-3472 (*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-4096 (*1 *1 *2) (-12 (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *2)) (-4 *4 (-327 *3)) (-4 *2 (-327 *3)))) (-3554 (*1 *1 *2) (-12 (-4 *3 (-989)) (-4 *1 (-644 *3 *2 *4)) (-4 *2 (-327 *3)) (-4 *4 (-327 *3)))) (-3554 (*1 *1 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (-2458 (*1 *1 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (-2457 (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (-2456 (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-599 (-599 *3))))) (-3950 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-599 (-499))) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-3938 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-599 (-499))) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-2455 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-2454 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-2453 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-2452 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-3989 (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (-3987 (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (-3987 (*1 *1 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-644 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *2 (-327 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-644 *3 *2 *4)) (-4 *3 (-989)) (-4 *2 (-327 *3)) (-4 *4 (-327 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-3606 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)) (-4 *2 (-510)))) (-4099 (*1 *1 *1 *2) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)) (-4 *2 (-318)))) (-3232 (*1 *1 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)) (-4 *2 (-261)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-4 *3 (-510)) (-5 *2 (-714)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-4 *3 (-510)) (-5 *2 (-714)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-4 *3 (-510)) (-5 *2 (-599 *5)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)) (|has| *2 (-6 (-4147 #1="*"))) (-4 *2 (-989)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)) (|has| *2 (-6 (-4147 #1#))) (-4 *2 (-989)))) (-3738 (*1 *1 *1) (|partial| -12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)) (-4 *2 (-318)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-4 *3 (-318))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4146) (-6 -4145) (-15 -3245 ((-85) $)) (-15 -3244 ((-85) $)) (-15 -3243 ((-85) $)) (-15 -3242 ((-85) $)) (-15 -3988 ($ (-714) (-714))) (-15 -3246 ($ (-599 (-599 |t#1|)))) (-15 -3246 ($ (-714) (-714) (-1 |t#1| (-499) (-499)))) (-15 -3473 ($ (-714) |t#1|)) (-15 -3472 ($ (-599 |t#1|))) (-15 -3472 ($ (-599 $))) (-15 -4096 ($ |t#3|)) (-15 -3554 ($ |t#2|)) (-15 -3554 ($ $)) (-15 -2458 ($ $)) (-15 -2457 ($ $ $)) (-15 -2456 ($ $ $)) (-15 -3742 ((-599 (-599 |t#1|)) $)) (-15 -3950 ($ $ (-599 (-499)) (-599 (-499)))) (-15 -3938 ($ $ (-599 (-499)) (-599 (-499)) $)) (-15 -2455 ($ $ (-499) (-499))) (-15 -2454 ($ $ (-499) (-499))) (-15 -2453 ($ $ (-499) (-499) (-499) (-499))) (-15 -2452 ($ $ (-499) (-499) $)) (-15 -3989 ($ $ $)) (-15 -3987 ($ $ $)) (-15 -3987 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-499) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-714))) (IF (|has| |t#1| (-510)) (-15 -3606 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-318)) (-15 -4099 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-261)) (-15 -3232 ($ $)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -3231 ((-714) $)) (-15 -3230 ((-714) $)) (-15 -3229 ((-599 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4147 "*"))) (PROGN (-15 -3468 (|t#1| $)) (-15 -3467 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-318)) (PROGN (-15 -3738 ((-3 $ "failed") $)) (-15 ** ($ $ (-499)))) |%noBranch|))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-57 |#1| |#2| |#3|) . T) ((-1157) . T)) -((-3992 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-4108 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) -(((-645 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4108 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4108 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3992 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-989) (-327 |#1|) (-327 |#1|) (-644 |#1| |#2| |#3|) (-989) (-327 |#5|) (-327 |#5|) (-644 |#5| |#6| |#7|)) (T -645)) -((-3992 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-989)) (-4 *2 (-989)) (-4 *6 (-327 *5)) (-4 *7 (-327 *5)) (-4 *8 (-327 *2)) (-4 *9 (-327 *2)) (-5 *1 (-645 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-644 *5 *6 *7)) (-4 *10 (-644 *2 *8 *9)))) (-4108 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-989)) (-4 *8 (-989)) (-4 *6 (-327 *5)) (-4 *7 (-327 *5)) (-4 *2 (-644 *8 *9 *10)) (-5 *1 (-645 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-644 *5 *6 *7)) (-4 *9 (-327 *8)) (-4 *10 (-327 *8)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-989)) (-4 *8 (-989)) (-4 *6 (-327 *5)) (-4 *7 (-327 *5)) (-4 *2 (-644 *8 *9 *10)) (-5 *1 (-645 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-644 *5 *6 *7)) (-4 *9 (-327 *8)) (-4 *10 (-327 *8))))) -((-3232 ((|#4| |#4|) 92 (|has| |#1| (-261)) ELT)) (-3231 (((-714) |#4|) 121 (|has| |#1| (-510)) ELT)) (-3230 (((-714) |#4|) 96 (|has| |#1| (-510)) ELT)) (-3229 (((-599 |#3|) |#4|) 103 (|has| |#1| (-510)) ELT)) (-2497 (((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|) 137 (|has| |#1| (-261)) ELT)) (-3467 ((|#1| |#4|) 52 T ELT)) (-2463 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-510)) ELT)) (-3738 (((-3 |#4| #1#) |#4|) 100 (|has| |#1| (-318)) ELT)) (-2462 ((|#4| |#4|) 88 (|has| |#1| (-510)) ELT)) (-2460 ((|#4| |#4| |#1| (-499) (-499)) 60 T ELT)) (-2459 ((|#4| |#4| (-499) (-499)) 55 T ELT)) (-2461 ((|#4| |#4| |#1| (-499) (-499)) 65 T ELT)) (-3468 ((|#1| |#4|) 98 T ELT)) (-2638 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-510)) ELT))) -(((-646 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3468 (|#1| |#4|)) (-15 -3467 (|#1| |#4|)) (-15 -2459 (|#4| |#4| (-499) (-499))) (-15 -2460 (|#4| |#4| |#1| (-499) (-499))) (-15 -2461 (|#4| |#4| |#1| (-499) (-499))) (IF (|has| |#1| (-510)) (PROGN (-15 -3231 ((-714) |#4|)) (-15 -3230 ((-714) |#4|)) (-15 -3229 ((-599 |#3|) |#4|)) (-15 -2462 (|#4| |#4|)) (-15 -2463 ((-3 |#4| #1="failed") |#4|)) (-15 -2638 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-261)) (PROGN (-15 -3232 (|#4| |#4|)) (-15 -2497 ((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-318)) (-15 -3738 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-146) (-327 |#1|) (-327 |#1|) (-644 |#1| |#2| |#3|)) (T -646)) -((-3738 (*1 *2 *2) (|partial| -12 (-4 *3 (-318)) (-4 *3 (-146)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-646 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) (-2497 (*1 *2 *3 *3) (-12 (-4 *3 (-261)) (-4 *3 (-146)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-646 *3 *4 *5 *6)) (-4 *6 (-644 *3 *4 *5)))) (-3232 (*1 *2 *2) (-12 (-4 *3 (-261)) (-4 *3 (-146)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-646 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) (-2638 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) (-2463 (*1 *2 *2) (|partial| -12 (-4 *3 (-510)) (-4 *3 (-146)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-646 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) (-2462 (*1 *2 *2) (-12 (-4 *3 (-510)) (-4 *3 (-146)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-646 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) (-3229 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-599 *6)) (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) (-3230 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-714)) (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) (-3231 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-714)) (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) (-2461 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-499)) (-4 *3 (-146)) (-4 *5 (-327 *3)) (-4 *6 (-327 *3)) (-5 *1 (-646 *3 *5 *6 *2)) (-4 *2 (-644 *3 *5 *6)))) (-2460 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-499)) (-4 *3 (-146)) (-4 *5 (-327 *3)) (-4 *6 (-327 *3)) (-5 *1 (-646 *3 *5 *6 *2)) (-4 *2 (-644 *3 *5 *6)))) (-2459 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-499)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *1 (-646 *4 *5 *6 *2)) (-4 *2 (-644 *4 *5 *6)))) (-3467 (*1 *2 *3) (-12 (-4 *4 (-327 *2)) (-4 *5 (-327 *2)) (-4 *2 (-146)) (-5 *1 (-646 *2 *4 *5 *3)) (-4 *3 (-644 *2 *4 *5)))) (-3468 (*1 *2 *3) (-12 (-4 *4 (-327 *2)) (-4 *5 (-327 *2)) (-4 *2 (-146)) (-5 *1 (-646 *2 *4 *5 *3)) (-4 *3 (-644 *2 *4 *5))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3988 (($ (-714) (-714)) 64 T ELT)) (-2456 (($ $ $) NIL T ELT)) (-3554 (($ (-1207 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3243 (((-85) $) NIL T ELT)) (-2455 (($ $ (-499) (-499)) 22 T ELT)) (-2454 (($ $ (-499) (-499)) NIL T ELT)) (-2453 (($ $ (-499) (-499) (-499) (-499)) NIL T ELT)) (-2458 (($ $) NIL T ELT)) (-3245 (((-85) $) NIL T ELT)) (-2452 (($ $ (-499) (-499) $) NIL T ELT)) (-3938 ((|#1| $ (-499) (-499) |#1|) NIL T ELT) (($ $ (-599 (-499)) (-599 (-499)) $) NIL T ELT)) (-1283 (($ $ (-499) (-1207 |#1|)) NIL T ELT)) (-1282 (($ $ (-499) (-1207 |#1|)) NIL T ELT)) (-3473 (($ (-714) |#1|) 37 T ELT)) (-3874 (($) NIL T CONST)) (-3232 (($ $) 46 (|has| |#1| (-261)) ELT)) (-3234 (((-1207 |#1|) $ (-499)) NIL T ELT)) (-3231 (((-714) $) 48 (|has| |#1| (-510)) ELT)) (-1609 ((|#1| $ (-499) (-499) |#1|) 69 T ELT)) (-3235 ((|#1| $ (-499) (-499)) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL T ELT)) (-3230 (((-714) $) 50 (|has| |#1| (-510)) ELT)) (-3229 (((-599 (-1207 |#1|)) $) 53 (|has| |#1| (-510)) ELT)) (-3237 (((-714) $) 32 T ELT)) (-3764 (($ (-714) (-714) |#1|) NIL T ELT)) (-3236 (((-714) $) 33 T ELT)) (-3467 ((|#1| $) 44 (|has| |#1| (-6 (-4147 #1="*"))) ELT)) (-3241 (((-499) $) 10 T ELT)) (-3239 (((-499) $) 11 T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3240 (((-499) $) 14 T ELT)) (-3238 (((-499) $) 65 T ELT)) (-3246 (($ (-599 (-599 |#1|))) NIL T ELT) (($ (-714) (-714) (-1 |#1| (-499) (-499))) NIL T ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3742 (((-599 (-599 |#1|)) $) 76 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3738 (((-3 $ #2="failed") $) 60 (|has| |#1| (-318)) ELT)) (-2457 (($ $ $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2300 (($ $ |#1|) NIL T ELT)) (-3606 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-510)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) (-499)) NIL T ELT) ((|#1| $ (-499) (-499) |#1|) NIL T ELT) (($ $ (-599 (-499)) (-599 (-499))) NIL T ELT)) (-3472 (($ (-599 |#1|)) NIL T ELT) (($ (-599 $)) NIL T ELT) (($ (-1207 |#1|)) 70 T ELT)) (-3244 (((-85) $) NIL T ELT)) (-3468 ((|#1| $) 42 (|has| |#1| (-6 (-4147 #1#))) ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) 80 (|has| |#1| (-569 (-488))) ELT)) (-3233 (((-1207 |#1|) $ (-499)) NIL T ELT)) (-4096 (($ (-1207 |#1|)) NIL T ELT) (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3242 (((-85) $) NIL T ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-714)) 38 T ELT) (($ $ (-499)) 62 (|has| |#1| (-318)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-499) $) NIL T ELT) (((-1207 |#1|) $ (-1207 |#1|)) NIL T ELT) (((-1207 |#1|) (-1207 |#1|) $) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-647 |#1|) (-13 (-644 |#1| (-1207 |#1|) (-1207 |#1|)) (-10 -8 (-15 -3472 ($ (-1207 |#1|))) (IF (|has| |#1| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|) (IF (|has| |#1| (-318)) (-15 -3738 ((-3 $ "failed") $)) |%noBranch|))) (-989)) (T -647)) -((-3738 (*1 *1 *1) (|partial| -12 (-5 *1 (-647 *2)) (-4 *2 (-318)) (-4 *2 (-989)))) (-3472 (*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-989)) (-5 *1 (-647 *3))))) -((-2469 (((-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|)) 37 T ELT)) (-2468 (((-647 |#1|) (-647 |#1|) (-647 |#1|) |#1|) 32 T ELT)) (-2470 (((-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|) (-714)) 43 T ELT)) (-2465 (((-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|)) 25 T ELT)) (-2466 (((-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|)) 29 T ELT) (((-647 |#1|) (-647 |#1|) (-647 |#1|)) 27 T ELT)) (-2467 (((-647 |#1|) (-647 |#1|) |#1| (-647 |#1|)) 31 T ELT)) (-2464 (((-647 |#1|) (-647 |#1|) (-647 |#1|)) 23 T ELT)) (** (((-647 |#1|) (-647 |#1|) (-714)) 46 T ELT))) -(((-648 |#1|) (-10 -7 (-15 -2464 ((-647 |#1|) (-647 |#1|) (-647 |#1|))) (-15 -2465 ((-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|))) (-15 -2466 ((-647 |#1|) (-647 |#1|) (-647 |#1|))) (-15 -2466 ((-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|))) (-15 -2467 ((-647 |#1|) (-647 |#1|) |#1| (-647 |#1|))) (-15 -2468 ((-647 |#1|) (-647 |#1|) (-647 |#1|) |#1|)) (-15 -2469 ((-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|))) (-15 -2470 ((-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|) (-714))) (-15 ** ((-647 |#1|) (-647 |#1|) (-714)))) (-989)) (T -648)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-647 *4)) (-5 *3 (-714)) (-4 *4 (-989)) (-5 *1 (-648 *4)))) (-2470 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-647 *4)) (-5 *3 (-714)) (-4 *4 (-989)) (-5 *1 (-648 *4)))) (-2469 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3)))) (-2468 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3)))) (-2467 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3)))) (-2466 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3)))) (-2466 (*1 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3)))) (-2465 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3)))) (-2464 (*1 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3))))) -((-3295 (((-3 |#1| "failed") $) 18 T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-2471 (($) 7 T CONST)) (-2472 (($ |#1|) 8 T ELT)) (-4096 (($ |#1|) 16 T ELT) (((-797) $) 23 T ELT)) (-3714 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2471)) 11 T ELT)) (-3720 ((|#1| $) 15 T ELT))) -(((-649 |#1|) (-13 (-1203) (-978 |#1|) (-568 (-797)) (-10 -8 (-15 -2472 ($ |#1|)) (-15 -3714 ((-85) $ (|[\|\|]| |#1|))) (-15 -3714 ((-85) $ (|[\|\|]| -2471))) (-15 -3720 (|#1| $)) (-15 -2471 ($) -4102))) (-568 (-797))) (T -649)) -((-2472 (*1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-568 (-797))))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-568 (-797))) (-5 *2 (-85)) (-5 *1 (-649 *4)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2471)) (-5 *2 (-85)) (-5 *1 (-649 *4)) (-4 *4 (-568 (-797))))) (-3720 (*1 *2 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-568 (-797))))) (-2471 (*1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-568 (-797)))))) -((-2475 ((|#2| |#2| |#4|) 29 T ELT)) (-2478 (((-647 |#2|) |#3| |#4|) 35 T ELT)) (-2476 (((-647 |#2|) |#2| |#4|) 34 T ELT)) (-2473 (((-1207 |#2|) |#2| |#4|) 16 T ELT)) (-2474 ((|#2| |#3| |#4|) 28 T ELT)) (-2479 (((-647 |#2|) |#3| |#4| (-714) (-714)) 48 T ELT)) (-2477 (((-647 |#2|) |#2| |#4| (-714)) 47 T ELT))) -(((-650 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2473 ((-1207 |#2|) |#2| |#4|)) (-15 -2474 (|#2| |#3| |#4|)) (-15 -2475 (|#2| |#2| |#4|)) (-15 -2476 ((-647 |#2|) |#2| |#4|)) (-15 -2477 ((-647 |#2|) |#2| |#4| (-714))) (-15 -2478 ((-647 |#2|) |#3| |#4|)) (-15 -2479 ((-647 |#2|) |#3| |#4| (-714) (-714)))) (-1041) (-836 |#1|) (-327 |#2|) (-13 (-327 |#1|) (-10 -7 (-6 -4145)))) (T -650)) -((-2479 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-714)) (-4 *6 (-1041)) (-4 *7 (-836 *6)) (-5 *2 (-647 *7)) (-5 *1 (-650 *6 *7 *3 *4)) (-4 *3 (-327 *7)) (-4 *4 (-13 (-327 *6) (-10 -7 (-6 -4145)))))) (-2478 (*1 *2 *3 *4) (-12 (-4 *5 (-1041)) (-4 *6 (-836 *5)) (-5 *2 (-647 *6)) (-5 *1 (-650 *5 *6 *3 *4)) (-4 *3 (-327 *6)) (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4145)))))) (-2477 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-714)) (-4 *6 (-1041)) (-4 *3 (-836 *6)) (-5 *2 (-647 *3)) (-5 *1 (-650 *6 *3 *7 *4)) (-4 *7 (-327 *3)) (-4 *4 (-13 (-327 *6) (-10 -7 (-6 -4145)))))) (-2476 (*1 *2 *3 *4) (-12 (-4 *5 (-1041)) (-4 *3 (-836 *5)) (-5 *2 (-647 *3)) (-5 *1 (-650 *5 *3 *6 *4)) (-4 *6 (-327 *3)) (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4145)))))) (-2475 (*1 *2 *2 *3) (-12 (-4 *4 (-1041)) (-4 *2 (-836 *4)) (-5 *1 (-650 *4 *2 *5 *3)) (-4 *5 (-327 *2)) (-4 *3 (-13 (-327 *4) (-10 -7 (-6 -4145)))))) (-2474 (*1 *2 *3 *4) (-12 (-4 *5 (-1041)) (-4 *2 (-836 *5)) (-5 *1 (-650 *5 *2 *3 *4)) (-4 *3 (-327 *2)) (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4145)))))) (-2473 (*1 *2 *3 *4) (-12 (-4 *5 (-1041)) (-4 *3 (-836 *5)) (-5 *2 (-1207 *3)) (-5 *1 (-650 *5 *3 *6 *4)) (-4 *6 (-327 *3)) (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4145))))))) -((-3891 (((-2 (|:| |num| (-647 |#1|)) (|:| |den| |#1|)) (-647 |#2|)) 20 T ELT)) (-3889 ((|#1| (-647 |#2|)) 9 T ELT)) (-3890 (((-647 |#1|) (-647 |#2|)) 18 T ELT))) -(((-651 |#1| |#2|) (-10 -7 (-15 -3889 (|#1| (-647 |#2|))) (-15 -3890 ((-647 |#1|) (-647 |#2|))) (-15 -3891 ((-2 (|:| |num| (-647 |#1|)) (|:| |den| |#1|)) (-647 |#2|)))) (-510) (-931 |#1|)) (T -651)) -((-3891 (*1 *2 *3) (-12 (-5 *3 (-647 *5)) (-4 *5 (-931 *4)) (-4 *4 (-510)) (-5 *2 (-2 (|:| |num| (-647 *4)) (|:| |den| *4))) (-5 *1 (-651 *4 *5)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-647 *5)) (-4 *5 (-931 *4)) (-4 *4 (-510)) (-5 *2 (-647 *4)) (-5 *1 (-651 *4 *5)))) (-3889 (*1 *2 *3) (-12 (-5 *3 (-647 *4)) (-4 *4 (-931 *2)) (-4 *2 (-510)) (-5 *1 (-651 *2 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1880 (((-647 (-657))) NIL T ELT) (((-647 (-657)) (-1207 $)) NIL T ELT)) (-3470 (((-657) $) NIL T ELT)) (-3632 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3789 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| (-657) (-305)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-657) (-261)) (|has| (-657) (-848))) ELT)) (-3925 (($ $) NIL (-3677 (-12 (|has| (-657) (-261)) (|has| (-657) (-848))) (|has| (-657) (-318))) ELT)) (-4121 (((-359 $) $) NIL (-3677 (-12 (|has| (-657) (-261)) (|has| (-657) (-848))) (|has| (-657) (-318))) ELT)) (-3158 (($ $) NIL (-12 (|has| (-657) (-942)) (|has| (-657) (-1143))) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-657) (-261)) (|has| (-657) (-848))) ELT)) (-1678 (((-85) $ $) NIL (|has| (-657) (-261)) ELT)) (-3258 (((-714)) NIL (|has| (-657) (-323)) ELT)) (-3630 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3788 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3634 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3787 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-657) #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-657) (-978 (-361 (-499)))) ELT)) (-3294 (((-499) $) NIL T ELT) (((-657) $) NIL T ELT) (((-361 (-499)) $) NIL (|has| (-657) (-978 (-361 (-499)))) ELT)) (-1890 (($ (-1207 (-657))) NIL T ELT) (($ (-1207 (-657)) (-1207 $)) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-657) (-305)) ELT)) (-2683 (($ $ $) NIL (|has| (-657) (-261)) ELT)) (-1879 (((-647 (-657)) $) NIL T ELT) (((-647 (-657)) $ (-1207 $)) NIL T ELT)) (-2380 (((-647 (-657)) (-647 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-657))) (|:| |vec| (-1207 (-657)))) (-647 $) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-657) (-596 (-499))) ELT) (((-647 (-499)) (-647 $)) NIL (|has| (-657) (-596 (-499))) ELT)) (-3992 (((-3 $ #1#) (-361 (-1111 (-657)))) NIL (|has| (-657) (-318)) ELT) (($ (-1111 (-657))) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3793 (((-657) $) 29 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) NIL (|has| (-657) (-498)) ELT)) (-3144 (((-85) $) NIL (|has| (-657) (-498)) ELT)) (-3143 (((-361 (-499)) $) NIL (|has| (-657) (-498)) ELT)) (-3231 (((-857)) NIL T ELT)) (-3115 (($) NIL (|has| (-657) (-323)) ELT)) (-2682 (($ $ $) NIL (|has| (-657) (-261)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| (-657) (-261)) ELT)) (-2954 (($) NIL (|has| (-657) (-305)) ELT)) (-1773 (((-85) $) NIL (|has| (-657) (-305)) ELT)) (-1864 (($ $) NIL (|has| (-657) (-305)) ELT) (($ $ (-714)) NIL (|has| (-657) (-305)) ELT)) (-3873 (((-85) $) NIL (-3677 (-12 (|has| (-657) (-261)) (|has| (-657) (-848))) (|has| (-657) (-318))) ELT)) (-1408 (((-2 (|:| |r| (-657)) (|:| |phi| (-657))) $) NIL (-12 (|has| (-657) (-1000)) (|has| (-657) (-1143))) ELT)) (-3777 (($) NIL (|has| (-657) (-1143)) ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| (-657) (-821 (-333))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| (-657) (-821 (-499))) ELT)) (-3922 (((-766 (-857)) $) NIL (|has| (-657) (-305)) ELT) (((-857) $) NIL (|has| (-657) (-305)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL (-12 (|has| (-657) (-942)) (|has| (-657) (-1143))) ELT)) (-3254 (((-657) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| (-657) (-305)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| (-657) (-261)) ELT)) (-2115 (((-1111 (-657)) $) NIL (|has| (-657) (-318)) ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-4108 (($ (-1 (-657) (-657)) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| (-657) (-323)) ELT)) (-4092 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3200 (((-1111 (-657)) $) NIL T ELT)) (-2381 (((-647 (-657)) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-657))) (|:| |vec| (-1207 (-657)))) (-1207 $) $) NIL T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-657) (-596 (-499))) ELT) (((-647 (-499)) (-1207 $)) NIL (|has| (-657) (-596 (-499))) ELT)) (-1993 (($ (-599 $)) NIL (|has| (-657) (-261)) ELT) (($ $ $) NIL (|has| (-657) (-261)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| (-657) (-318)) ELT)) (-3586 (($) NIL (|has| (-657) (-305)) CONST)) (-2518 (($ (-857)) NIL (|has| (-657) (-323)) ELT)) (-1410 (($) NIL T ELT)) (-3794 (((-657) $) 31 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| (-657) (-261)) ELT)) (-3282 (($ (-599 $)) NIL (|has| (-657) (-261)) ELT) (($ $ $) NIL (|has| (-657) (-261)) ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| (-657) (-305)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-657) (-261)) (|has| (-657) (-848))) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-657) (-261)) (|has| (-657) (-848))) ELT)) (-3882 (((-359 $) $) NIL (-3677 (-12 (|has| (-657) (-261)) (|has| (-657) (-848))) (|has| (-657) (-318))) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-657) (-261)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| (-657) (-261)) ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ (-657)) NIL (|has| (-657) (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| (-657) (-261)) ELT)) (-4093 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3918 (($ $ (-1117) (-657)) NIL (|has| (-657) (-468 (-1117) (-657))) ELT) (($ $ (-599 (-1117)) (-599 (-657))) NIL (|has| (-657) (-468 (-1117) (-657))) ELT) (($ $ (-599 (-247 (-657)))) NIL (|has| (-657) (-263 (-657))) ELT) (($ $ (-247 (-657))) NIL (|has| (-657) (-263 (-657))) ELT) (($ $ (-657) (-657)) NIL (|has| (-657) (-263 (-657))) ELT) (($ $ (-599 (-657)) (-599 (-657))) NIL (|has| (-657) (-263 (-657))) ELT)) (-1677 (((-714) $) NIL (|has| (-657) (-261)) ELT)) (-3950 (($ $ (-657)) NIL (|has| (-657) (-240 (-657) (-657))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| (-657) (-261)) ELT)) (-3907 (((-657)) NIL T ELT) (((-657) (-1207 $)) NIL T ELT)) (-1865 (((-3 (-714) #1#) $ $) NIL (|has| (-657) (-305)) ELT) (((-714) $) NIL (|has| (-657) (-305)) ELT)) (-3908 (($ $ (-1 (-657) (-657)) (-714)) NIL T ELT) (($ $ (-1 (-657) (-657))) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-657) (-318)) (|has| (-657) (-836 (-1117)))) (|has| (-657) (-838 (-1117)))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-657) (-318)) (|has| (-657) (-836 (-1117)))) (|has| (-657) (-838 (-1117)))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-657) (-318)) (|has| (-657) (-836 (-1117)))) (|has| (-657) (-838 (-1117)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-657) (-318)) (|has| (-657) (-836 (-1117)))) (|has| (-657) (-838 (-1117)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-657) (-190)) (|has| (-657) (-318))) (|has| (-657) (-189))) ELT) (($ $) NIL (-3677 (-12 (|has| (-657) (-190)) (|has| (-657) (-318))) (|has| (-657) (-189))) ELT)) (-2526 (((-647 (-657)) (-1207 $) (-1 (-657) (-657))) NIL (|has| (-657) (-318)) ELT)) (-3323 (((-1111 (-657))) NIL T ELT)) (-3635 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3786 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-1767 (($) NIL (|has| (-657) (-305)) ELT)) (-3633 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3785 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3631 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3784 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3362 (((-647 (-657)) (-1207 $)) NIL T ELT) (((-1207 (-657)) $) NIL T ELT) (((-647 (-657)) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 (-657)) $ (-1207 $)) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-657) (-569 (-488))) ELT) (((-142 (-179)) $) NIL (|has| (-657) (-960)) ELT) (((-142 (-333)) $) NIL (|has| (-657) (-960)) ELT) (((-825 (-333)) $) NIL (|has| (-657) (-569 (-825 (-333)))) ELT) (((-825 (-499)) $) NIL (|has| (-657) (-569 (-825 (-499)))) ELT) (($ (-1111 (-657))) NIL T ELT) (((-1111 (-657)) $) NIL T ELT) (($ (-1207 (-657))) NIL T ELT) (((-1207 (-657)) $) NIL T ELT)) (-3130 (($ $) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-3677 (-12 (|has| (-657) (-261)) (|has| $ (-118)) (|has| (-657) (-848))) (|has| (-657) (-305))) ELT)) (-1409 (($ (-657) (-657)) 12 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-657)) NIL T ELT) (($ (-142 (-333))) 13 T ELT) (($ (-142 (-499))) 19 T ELT) (($ (-142 (-657))) 28 T ELT) (($ (-142 (-659))) 25 T ELT) (((-142 (-333)) $) 33 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| (-657) (-318)) (|has| (-657) (-978 (-361 (-499))))) ELT)) (-2823 (($ $) NIL (|has| (-657) (-305)) ELT) (((-649 $) $) NIL (-3677 (-12 (|has| (-657) (-261)) (|has| $ (-118)) (|has| (-657) (-848))) (|has| (-657) (-118))) ELT)) (-2565 (((-1111 (-657)) $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT)) (-3638 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3626 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3636 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3624 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3640 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3628 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-2337 (((-657) $) NIL (|has| (-657) (-1143)) ELT)) (-3641 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3629 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3639 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3627 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3637 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3625 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3523 (($ $) NIL (|has| (-657) (-1000)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1 (-657) (-657)) (-714)) NIL T ELT) (($ $ (-1 (-657) (-657))) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-657) (-318)) (|has| (-657) (-836 (-1117)))) (|has| (-657) (-838 (-1117)))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-657) (-318)) (|has| (-657) (-836 (-1117)))) (|has| (-657) (-838 (-1117)))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-657) (-318)) (|has| (-657) (-836 (-1117)))) (|has| (-657) (-838 (-1117)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-657) (-318)) (|has| (-657) (-836 (-1117)))) (|has| (-657) (-838 (-1117)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-657) (-190)) (|has| (-657) (-318))) (|has| (-657) (-189))) ELT) (($ $) NIL (-3677 (-12 (|has| (-657) (-190)) (|has| (-657) (-318))) (|has| (-657) (-189))) ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL (|has| (-657) (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ $) NIL (|has| (-657) (-1143)) ELT) (($ $ (-361 (-499))) NIL (-12 (|has| (-657) (-942)) (|has| (-657) (-1143))) ELT) (($ $ (-499)) NIL (|has| (-657) (-318)) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-657) $) NIL T ELT) (($ $ (-657)) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| (-657) (-318)) ELT) (($ $ (-361 (-499))) NIL (|has| (-657) (-318)) ELT))) -(((-652) (-13 (-343) (-139 (-657)) (-10 -8 (-15 -4096 ($ (-142 (-333)))) (-15 -4096 ($ (-142 (-499)))) (-15 -4096 ($ (-142 (-657)))) (-15 -4096 ($ (-142 (-659)))) (-15 -4096 ((-142 (-333)) $))))) (T -652)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-142 (-333))) (-5 *1 (-652)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-142 (-499))) (-5 *1 (-652)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-142 (-657))) (-5 *1 (-652)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-142 (-659))) (-5 *1 (-652)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-142 (-333))) (-5 *1 (-652))))) -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-1603 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-2481 (($ $) 66 T ELT)) (-1386 (($ $) 62 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ |#1| $) 51 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3546 (($ |#1| $) 61 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT) (($ |#1| $ (-714)) 67 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-2480 (((-599 (-2 (|:| |entry| |#1|) (|:| -2048 (-714)))) $) 65 T ELT)) (-1499 (($) 53 T ELT) (($ (-599 |#1|)) 52 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 63 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 54 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-653 |#1|) (-113) (-1041)) (T -653)) -((-3757 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-653 *2)) (-4 *2 (-1041)))) (-2481 (*1 *1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1041)))) (-2480 (*1 *2 *1) (-12 (-4 *1 (-653 *3)) (-4 *3 (-1041)) (-5 *2 (-599 (-2 (|:| |entry| *3) (|:| -2048 (-714)))))))) -(-13 (-192 |t#1|) (-10 -8 (-15 -3757 ($ |t#1| $ (-714))) (-15 -2481 ($ $)) (-15 -2480 ((-599 (-2 (|:| |entry| |t#1|) (|:| -2048 (-714)))) $)))) -(((-34) . T) ((-78 |#1|) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-192 |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) -((-2484 (((-599 |#1|) (-599 (-2 (|:| -3882 |#1|) (|:| -4098 (-499)))) (-499)) 66 T ELT)) (-2482 ((|#1| |#1| (-499)) 63 T ELT)) (-3282 ((|#1| |#1| |#1| (-499)) 46 T ELT)) (-3882 (((-599 |#1|) |#1| (-499)) 49 T ELT)) (-2485 ((|#1| |#1| (-499) |#1| (-499)) 40 T ELT)) (-2483 (((-599 (-2 (|:| -3882 |#1|) (|:| -4098 (-499)))) |#1| (-499)) 62 T ELT))) -(((-654 |#1|) (-10 -7 (-15 -3282 (|#1| |#1| |#1| (-499))) (-15 -2482 (|#1| |#1| (-499))) (-15 -3882 ((-599 |#1|) |#1| (-499))) (-15 -2483 ((-599 (-2 (|:| -3882 |#1|) (|:| -4098 (-499)))) |#1| (-499))) (-15 -2484 ((-599 |#1|) (-599 (-2 (|:| -3882 |#1|) (|:| -4098 (-499)))) (-499))) (-15 -2485 (|#1| |#1| (-499) |#1| (-499)))) (-1183 (-499))) (T -654)) -((-2485 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-654 *2)) (-4 *2 (-1183 *3)))) (-2484 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-2 (|:| -3882 *5) (|:| -4098 (-499))))) (-5 *4 (-499)) (-4 *5 (-1183 *4)) (-5 *2 (-599 *5)) (-5 *1 (-654 *5)))) (-2483 (*1 *2 *3 *4) (-12 (-5 *4 (-499)) (-5 *2 (-599 (-2 (|:| -3882 *3) (|:| -4098 *4)))) (-5 *1 (-654 *3)) (-4 *3 (-1183 *4)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-499)) (-5 *2 (-599 *3)) (-5 *1 (-654 *3)) (-4 *3 (-1183 *4)))) (-2482 (*1 *2 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-654 *2)) (-4 *2 (-1183 *3)))) (-3282 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-654 *2)) (-4 *2 (-1183 *3))))) -((-2489 (((-1 (-881 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 17 T ELT)) (-2486 (((-1073 (-179)) (-1073 (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-179)) (-1029 (-179)) (-599 (-220))) 53 T ELT) (((-1073 (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-179)) (-1029 (-179)) (-599 (-220))) 55 T ELT) (((-1073 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1029 (-179)) (-1029 (-179)) (-599 (-220))) 57 T ELT)) (-2488 (((-1073 (-179)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-599 (-220))) NIL T ELT)) (-2487 (((-1073 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1029 (-179)) (-1029 (-179)) (-599 (-220))) 58 T ELT))) -(((-655) (-10 -7 (-15 -2486 ((-1073 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1029 (-179)) (-1029 (-179)) (-599 (-220)))) (-15 -2486 ((-1073 (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-179)) (-1029 (-179)) (-599 (-220)))) (-15 -2486 ((-1073 (-179)) (-1073 (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-179)) (-1029 (-179)) (-599 (-220)))) (-15 -2487 ((-1073 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1029 (-179)) (-1029 (-179)) (-599 (-220)))) (-15 -2488 ((-1073 (-179)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-599 (-220)))) (-15 -2489 ((-1 (-881 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -655)) -((-2489 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) (-5 *2 (-1 (-881 (-179)) (-179) (-179))) (-5 *1 (-655)))) (-2488 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) (-5 *6 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-655)))) (-2487 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined")) (-5 *5 (-1029 (-179))) (-5 *6 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-655)))) (-2486 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1073 (-179))) (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-179))) (-5 *5 (-599 (-220))) (-5 *1 (-655)))) (-2486 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-179))) (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-655)))) (-2486 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1#)) (-5 *5 (-1029 (-179))) (-5 *6 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-655))))) -((-3882 (((-359 (-1111 |#4|)) (-1111 |#4|)) 86 T ELT) (((-359 |#4|) |#4|) 269 T ELT))) -(((-656 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-359 |#4|) |#4|)) (-15 -3882 ((-359 (-1111 |#4|)) (-1111 |#4|)))) (-781) (-738) (-305) (-888 |#3| |#2| |#1|)) (T -656)) -((-3882 (*1 *2 *3) (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-305)) (-4 *7 (-888 *6 *5 *4)) (-5 *2 (-359 (-1111 *7))) (-5 *1 (-656 *4 *5 *6 *7)) (-5 *3 (-1111 *7)))) (-3882 (*1 *2 *3) (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-305)) (-5 *2 (-359 *3)) (-5 *1 (-656 *4 *5 *6 *3)) (-4 *3 (-888 *6 *5 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 97 T ELT)) (-3251 (((-499) $) 34 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-3921 (($ $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-3158 (($ $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3249 (($ $) NIL T ELT)) (-3295 (((-3 (-499) #1#) $) 85 T ELT) (((-3 (-361 (-499)) #1#) $) 28 T ELT) (((-3 (-333) #1#) $) 82 T ELT)) (-3294 (((-499) $) 87 T ELT) (((-361 (-499)) $) 79 T ELT) (((-333) $) 80 T ELT)) (-2683 (($ $ $) 109 T ELT)) (-3607 (((-3 $ #1#) $) 100 T ELT)) (-2682 (($ $ $) 108 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2492 (((-857)) 89 T ELT) (((-857) (-857)) 88 T ELT)) (-3324 (((-85) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL T ELT)) (-3922 (((-499) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL T ELT)) (-3254 (($ $) NIL T ELT)) (-3325 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2490 (((-499) (-499)) 94 T ELT) (((-499)) 95 T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL (-12 (-2679 (|has| $ (-6 -4128))) (-2679 (|has| $ (-6 -4136)))) ELT)) (-2491 (((-499) (-499)) 92 T ELT) (((-499)) 93 T ELT)) (-2978 (($ $ $) NIL T ELT) (($) NIL (-12 (-2679 (|has| $ (-6 -4128))) (-2679 (|has| $ (-6 -4136)))) ELT)) (-2493 (((-499) $) 17 T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 104 T ELT)) (-1867 (((-857) (-499)) NIL (|has| $ (-6 -4136)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL T ELT)) (-3252 (($ $) NIL T ELT)) (-3392 (($ (-499) (-499)) NIL T ELT) (($ (-499) (-499) (-857)) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) 105 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2519 (((-499) $) 24 T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 107 T ELT)) (-2734 (((-857)) NIL T ELT) (((-857) (-857)) NIL (|has| $ (-6 -4136)) ELT)) (-1866 (((-857) (-499)) NIL (|has| $ (-6 -4136)) ELT)) (-4122 (((-333) $) NIL T ELT) (((-179) $) NIL T ELT) (((-825 (-333)) $) NIL T ELT)) (-4096 (((-797) $) 63 T ELT) (($ (-499)) 75 T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) 78 T ELT) (($ (-499)) 75 T ELT) (($ (-361 (-499))) 78 T ELT) (($ (-333)) 72 T ELT) (((-333) $) 61 T ELT) (($ (-659)) 66 T ELT)) (-3248 (((-714)) 119 T CONST)) (-3068 (($ (-499) (-499) (-857)) 54 T ELT)) (-3253 (($ $) NIL T ELT)) (-1868 (((-857)) NIL T ELT) (((-857) (-857)) NIL (|has| $ (-6 -4136)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2815 (((-857)) 91 T ELT) (((-857) (-857)) 90 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3523 (($ $) NIL T ELT)) (-2779 (($) 37 T CONST)) (-2785 (($) 18 T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 96 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 118 T ELT)) (-4099 (($ $ $) 77 T ELT)) (-3987 (($ $) 115 T ELT) (($ $ $) 116 T ELT)) (-3989 (($ $ $) 114 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT) (($ $ (-361 (-499))) 103 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 110 T ELT) (($ $ $) 101 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT))) -(((-657) (-13 (-358) (-343) (-318) (-978 (-333)) (-978 (-361 (-499))) (-120) (-10 -8 (-15 -2492 ((-857) (-857))) (-15 -2492 ((-857))) (-15 -2815 ((-857) (-857))) (-15 -2491 ((-499) (-499))) (-15 -2491 ((-499))) (-15 -2490 ((-499) (-499))) (-15 -2490 ((-499))) (-15 -4096 ((-333) $)) (-15 -4096 ($ (-659))) (-15 -2493 ((-499) $)) (-15 -2519 ((-499) $)) (-15 -3068 ($ (-499) (-499) (-857)))))) (T -657)) -((-2519 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-657)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-657)))) (-2492 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-657)))) (-2492 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-657)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-657)))) (-2491 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-657)))) (-2491 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-657)))) (-2490 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-657)))) (-2490 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-657)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-333)) (-5 *1 (-657)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-659)) (-5 *1 (-657)))) (-3068 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-857)) (-5 *1 (-657))))) -((-2496 (((-647 |#1|) (-647 |#1|) |#1| |#1|) 85 T ELT)) (-3232 (((-647 |#1|) (-647 |#1|) |#1|) 66 T ELT)) (-2495 (((-647 |#1|) (-647 |#1|) |#1|) 86 T ELT)) (-2494 (((-647 |#1|) (-647 |#1|)) 67 T ELT)) (-2497 (((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|) 84 T ELT))) -(((-658 |#1|) (-10 -7 (-15 -2494 ((-647 |#1|) (-647 |#1|))) (-15 -3232 ((-647 |#1|) (-647 |#1|) |#1|)) (-15 -2495 ((-647 |#1|) (-647 |#1|) |#1|)) (-15 -2496 ((-647 |#1|) (-647 |#1|) |#1| |#1|)) (-15 -2497 ((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|))) (-261)) (T -658)) -((-2497 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-658 *3)) (-4 *3 (-261)))) (-2496 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-647 *3)) (-4 *3 (-261)) (-5 *1 (-658 *3)))) (-2495 (*1 *2 *2 *3) (-12 (-5 *2 (-647 *3)) (-4 *3 (-261)) (-5 *1 (-658 *3)))) (-3232 (*1 *2 *2 *3) (-12 (-5 *2 (-647 *3)) (-4 *3 (-261)) (-5 *1 (-658 *3)))) (-2494 (*1 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-261)) (-5 *1 (-658 *3))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-2148 (($ $ $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2143 (($ $ $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL T ELT)) (-2557 (($ $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) 31 T ELT)) (-3294 (((-499) $) 29 T ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) NIL T ELT)) (-3144 (((-85) $) NIL T ELT)) (-3143 (((-361 (-499)) $) NIL T ELT)) (-3115 (($ $) NIL T ELT) (($) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2141 (($ $ $ $) NIL T ELT)) (-2149 (($ $ $) NIL T ELT)) (-3324 (((-85) $) NIL T ELT)) (-1402 (($ $ $) NIL T ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2794 (((-85) $) NIL T ELT)) (-3585 (((-649 $) $) NIL T ELT)) (-3325 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2142 (($ $ $ $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2498 (((-857) (-857)) 10 T ELT) (((-857)) 9 T ELT)) (-2978 (($ $ $) NIL T ELT)) (-2145 (($ $) NIL T ELT)) (-3983 (($ $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT)) (-1993 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2140 (($ $ $) NIL T ELT)) (-3586 (($) NIL T CONST)) (-2147 (($ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1400 (($ $) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2795 (((-85) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-2146 (($ $) NIL T ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-179) $) NIL T ELT) (((-333) $) NIL T ELT) (((-825 (-499)) $) NIL T ELT) (((-488) $) NIL T ELT) (((-499) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) 28 T ELT) (($ $) NIL T ELT) (($ (-499)) 28 T ELT) (((-268 $) (-268 (-499))) 18 T ELT)) (-3248 (((-714)) NIL T CONST)) (-2150 (((-85) $ $) NIL T ELT)) (-3224 (($ $ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2815 (($) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2144 (($ $ $ $) NIL T ELT)) (-3523 (($ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-659) (-13 (-343) (-498) (-10 -8 (-15 -2498 ((-857) (-857))) (-15 -2498 ((-857))) (-15 -4096 ((-268 $) (-268 (-499))))))) (T -659)) -((-2498 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-659)))) (-2498 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-659)))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-268 (-499))) (-5 *2 (-268 (-659))) (-5 *1 (-659))))) -((-2504 (((-1 |#4| |#2| |#3|) |#1| (-1117) (-1117)) 19 T ELT)) (-2499 (((-1 |#4| |#2| |#3|) (-1117)) 12 T ELT))) -(((-660 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2499 ((-1 |#4| |#2| |#3|) (-1117))) (-15 -2504 ((-1 |#4| |#2| |#3|) |#1| (-1117) (-1117)))) (-569 (-488)) (-1157) (-1157) (-1157)) (T -660)) -((-2504 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-660 *3 *5 *6 *7)) (-4 *3 (-569 (-488))) (-4 *5 (-1157)) (-4 *6 (-1157)) (-4 *7 (-1157)))) (-2499 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-660 *4 *5 *6 *7)) (-4 *4 (-569 (-488))) (-4 *5 (-1157)) (-4 *6 (-1157)) (-4 *7 (-1157))))) -((-2500 (((-1 (-179) (-179) (-179)) |#1| (-1117) (-1117)) 43 T ELT) (((-1 (-179) (-179)) |#1| (-1117)) 48 T ELT))) -(((-661 |#1|) (-10 -7 (-15 -2500 ((-1 (-179) (-179)) |#1| (-1117))) (-15 -2500 ((-1 (-179) (-179) (-179)) |#1| (-1117) (-1117)))) (-569 (-488))) (T -661)) -((-2500 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-661 *3)) (-4 *3 (-569 (-488))))) (-2500 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-661 *3)) (-4 *3 (-569 (-488)))))) -((-2501 (((-1117) |#1| (-1117) (-599 (-1117))) 10 T ELT) (((-1117) |#1| (-1117) (-1117) (-1117)) 13 T ELT) (((-1117) |#1| (-1117) (-1117)) 12 T ELT) (((-1117) |#1| (-1117)) 11 T ELT))) -(((-662 |#1|) (-10 -7 (-15 -2501 ((-1117) |#1| (-1117))) (-15 -2501 ((-1117) |#1| (-1117) (-1117))) (-15 -2501 ((-1117) |#1| (-1117) (-1117) (-1117))) (-15 -2501 ((-1117) |#1| (-1117) (-599 (-1117))))) (-569 (-488))) (T -662)) -((-2501 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-599 (-1117))) (-5 *2 (-1117)) (-5 *1 (-662 *3)) (-4 *3 (-569 (-488))))) (-2501 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-662 *3)) (-4 *3 (-569 (-488))))) (-2501 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-662 *3)) (-4 *3 (-569 (-488))))) (-2501 (*1 *2 *3 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-662 *3)) (-4 *3 (-569 (-488)))))) -((-2502 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) -(((-663 |#1| |#2|) (-10 -7 (-15 -2502 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1157) (-1157)) (T -663)) -((-2502 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-663 *3 *4)) (-4 *3 (-1157)) (-4 *4 (-1157))))) -((-2503 (((-1 |#3| |#2|) (-1117)) 11 T ELT)) (-2504 (((-1 |#3| |#2|) |#1| (-1117)) 21 T ELT))) -(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -2503 ((-1 |#3| |#2|) (-1117))) (-15 -2504 ((-1 |#3| |#2|) |#1| (-1117)))) (-569 (-488)) (-1157) (-1157)) (T -664)) -((-2504 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *3 *5 *6)) (-4 *3 (-569 (-488))) (-4 *5 (-1157)) (-4 *6 (-1157)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *4 *5 *6)) (-4 *4 (-569 (-488))) (-4 *5 (-1157)) (-4 *6 (-1157))))) -((-2507 (((-3 (-599 (-1111 |#4|)) #1="failed") (-1111 |#4|) (-599 |#2|) (-599 (-1111 |#4|)) (-599 |#3|) (-599 |#4|) (-599 (-599 (-2 (|:| -3199 (-714)) (|:| |pcoef| |#4|)))) (-599 (-714)) (-1207 (-599 (-1111 |#3|))) |#3|) 92 T ELT)) (-2506 (((-3 (-599 (-1111 |#4|)) #1#) (-1111 |#4|) (-599 |#2|) (-599 (-1111 |#3|)) (-599 |#3|) (-599 |#4|) (-599 (-714)) |#3|) 110 T ELT)) (-2505 (((-3 (-599 (-1111 |#4|)) #1#) (-1111 |#4|) (-599 |#2|) (-599 |#3|) (-599 (-714)) (-599 (-1111 |#4|)) (-1207 (-599 (-1111 |#3|))) |#3|) 48 T ELT))) -(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2505 ((-3 (-599 (-1111 |#4|)) #1="failed") (-1111 |#4|) (-599 |#2|) (-599 |#3|) (-599 (-714)) (-599 (-1111 |#4|)) (-1207 (-599 (-1111 |#3|))) |#3|)) (-15 -2506 ((-3 (-599 (-1111 |#4|)) #1#) (-1111 |#4|) (-599 |#2|) (-599 (-1111 |#3|)) (-599 |#3|) (-599 |#4|) (-599 (-714)) |#3|)) (-15 -2507 ((-3 (-599 (-1111 |#4|)) #1#) (-1111 |#4|) (-599 |#2|) (-599 (-1111 |#4|)) (-599 |#3|) (-599 |#4|) (-599 (-599 (-2 (|:| -3199 (-714)) (|:| |pcoef| |#4|)))) (-599 (-714)) (-1207 (-599 (-1111 |#3|))) |#3|))) (-738) (-781) (-261) (-888 |#3| |#1| |#2|)) (T -665)) -((-2507 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-599 (-1111 *13))) (-5 *3 (-1111 *13)) (-5 *4 (-599 *12)) (-5 *5 (-599 *10)) (-5 *6 (-599 *13)) (-5 *7 (-599 (-599 (-2 (|:| -3199 (-714)) (|:| |pcoef| *13))))) (-5 *8 (-599 (-714))) (-5 *9 (-1207 (-599 (-1111 *10)))) (-4 *12 (-781)) (-4 *10 (-261)) (-4 *13 (-888 *10 *11 *12)) (-4 *11 (-738)) (-5 *1 (-665 *11 *12 *10 *13)))) (-2506 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-599 *11)) (-5 *5 (-599 (-1111 *9))) (-5 *6 (-599 *9)) (-5 *7 (-599 *12)) (-5 *8 (-599 (-714))) (-4 *11 (-781)) (-4 *9 (-261)) (-4 *12 (-888 *9 *10 *11)) (-4 *10 (-738)) (-5 *2 (-599 (-1111 *12))) (-5 *1 (-665 *10 *11 *9 *12)) (-5 *3 (-1111 *12)))) (-2505 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-599 (-1111 *11))) (-5 *3 (-1111 *11)) (-5 *4 (-599 *10)) (-5 *5 (-599 *8)) (-5 *6 (-599 (-714))) (-5 *7 (-1207 (-599 (-1111 *8)))) (-4 *10 (-781)) (-4 *8 (-261)) (-4 *11 (-888 *8 *9 *10)) (-4 *9 (-738)) (-5 *1 (-665 *9 *10 *8 *11))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-4109 (($ $) 53 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3014 (($ |#1| (-714)) 51 T ELT)) (-2941 (((-714) $) 55 T ELT)) (-3312 ((|#1| $) 54 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4098 (((-714) $) 56 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 50 (|has| |#1| (-146)) ELT)) (-3827 ((|#1| $ (-714)) 52 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 58 T ELT) (($ |#1| $) 57 T ELT))) -(((-666 |#1|) (-113) (-989)) (T -666)) -((-4098 (*1 *2 *1) (-12 (-4 *1 (-666 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) (-2941 (*1 *2 *1) (-12 (-4 *1 (-666 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-989)))) (-4109 (*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-989)))) (-3827 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-666 *2)) (-4 *2 (-989)))) (-3014 (*1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-666 *2)) (-4 *2 (-989))))) -(-13 (-989) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4098 ((-714) $)) (-15 -2941 ((-714) $)) (-15 -3312 (|t#1| $)) (-15 -4109 ($ $)) (-15 -3827 (|t#1| $ (-714))) (-15 -3014 ($ |t#1| (-714))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 |#1|) |has| |#1| (-146)) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 |#1|) |has| |#1| (-146)) ((-675 |#1|) |has| |#1| (-146)) ((-684) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-4108 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) -(((-667 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4108 (|#6| (-1 |#4| |#1|) |#3|))) (-510) (-1183 |#1|) (-1183 (-361 |#2|)) (-510) (-1183 |#4|) (-1183 (-361 |#5|))) (T -667)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-510)) (-4 *7 (-510)) (-4 *6 (-1183 *5)) (-4 *2 (-1183 (-361 *8))) (-5 *1 (-667 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1183 (-361 *6))) (-4 *8 (-1183 *7))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2508 (((-1099) (-797)) 38 T ELT)) (-3767 (((-1213) (-1099)) 31 T ELT)) (-2510 (((-1099) (-797)) 28 T ELT)) (-2509 (((-1099) (-797)) 29 T ELT)) (-4096 (((-797) $) NIL T ELT) (((-1099) (-797)) 27 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-668) (-13 (-1041) (-10 -7 (-15 -4096 ((-1099) (-797))) (-15 -2510 ((-1099) (-797))) (-15 -2509 ((-1099) (-797))) (-15 -2508 ((-1099) (-797))) (-15 -3767 ((-1213) (-1099)))))) (T -668)) -((-4096 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1099)) (-5 *1 (-668)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1099)) (-5 *1 (-668)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1099)) (-5 *1 (-668)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1099)) (-5 *1 (-668)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-668))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2683 (($ $ $) NIL T ELT)) (-3992 (($ |#1| |#2|) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2733 ((|#2| $) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2520 (((-3 $ #1#) $ $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT))) -(((-669 |#1| |#2| |#3| |#4| |#5|) (-13 (-318) (-10 -8 (-15 -2733 (|#2| $)) (-15 -4096 (|#1| $)) (-15 -3992 ($ |#1| |#2|)) (-15 -2520 ((-3 $ #1="failed") $ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -669)) -((-2733 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-669 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4096 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-669 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3992 (*1 *1 *2 *3) (-12 (-5 *1 (-669 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2520 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-669 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 36 T ELT)) (-3917 (((-1207 |#1|) $ (-714)) NIL T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3915 (($ (-1111 |#1|)) NIL T ELT)) (-3206 (((-1111 $) $ (-1022)) NIL T ELT) (((-1111 |#1|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-1022))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3905 (($ $ $) NIL (|has| |#1| (-510)) ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3258 (((-714)) 54 (|has| |#1| (-323)) ELT)) (-3911 (($ $ (-714)) NIL T ELT)) (-3910 (($ $ (-714)) NIL T ELT)) (-2517 ((|#2| |#2|) 50 T ELT)) (-3901 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-406)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-1022) #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-1022) $) NIL T ELT)) (-3906 (($ $ $ (-1022)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) NIL (|has| |#1| (-146)) ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) 40 T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3992 (($ |#2|) 48 T ELT)) (-3607 (((-3 $ #1#) $) 97 T ELT)) (-3115 (($) 58 (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3909 (($ $ $) NIL T ELT)) (-3903 (($ $ $) NIL (|has| |#1| (-510)) ELT)) (-3902 (((-2 (|:| -4104 |#1|) (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT) (($ $ (-1022)) NIL (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-848)) ELT)) (-2513 (((-896 $)) 88 T ELT)) (-1694 (($ $ |#1| (-714) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-1022) (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-1022) (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-3922 (((-714) $ $) NIL (|has| |#1| (-510)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-1092)) ELT)) (-3207 (($ (-1111 |#1|) (-1022)) NIL T ELT) (($ (-1111 $) (-1022)) NIL T ELT)) (-3927 (($ $ (-714)) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-714)) 85 T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-1022)) NIL T ELT) (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-2733 ((|#2|) 51 T ELT)) (-2941 (((-714) $) NIL T ELT) (((-714) $ (-1022)) NIL T ELT) (((-599 (-714)) $ (-599 (-1022))) NIL T ELT)) (-1695 (($ (-1 (-714) (-714)) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3916 (((-1111 |#1|) $) NIL T ELT)) (-3205 (((-3 (-1022) #1#) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| |#1| (-323)) ELT)) (-3200 ((|#2| $) 47 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) 34 T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3912 (((-2 (|:| -2075 $) (|:| -3023 $)) $ (-714)) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-1022)) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3962 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3586 (($) NIL (|has| |#1| (-1092)) CONST)) (-2518 (($ (-857)) NIL (|has| |#1| (-323)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-2511 (($ $) 87 (|has| |#1| (-305)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-848)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) 96 (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-1022) |#1|) NIL T ELT) (($ $ (-599 (-1022)) (-599 |#1|)) NIL T ELT) (($ $ (-1022) $) NIL T ELT) (($ $ (-599 (-1022)) (-599 $)) NIL T ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-361 $) (-361 $) (-361 $)) NIL (|has| |#1| (-510)) ELT) ((|#1| (-361 $) |#1|) NIL (|has| |#1| (-318)) ELT) (((-361 $) $ (-361 $)) NIL (|has| |#1| (-510)) ELT)) (-3914 (((-3 $ #1#) $ (-714)) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 98 (|has| |#1| (-318)) ELT)) (-3907 (($ $ (-1022)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022))) NIL T ELT) (($ $ (-1022)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-4098 (((-714) $) 38 T ELT) (((-714) $ (-1022)) NIL T ELT) (((-599 (-714)) $ (-599 (-1022))) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-1022) (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-1022) (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-1022) (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT) (($ $ (-1022)) NIL (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-2512 (((-896 $)) 42 T ELT)) (-3904 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT) (((-3 (-361 $) #1#) (-361 $) $) NIL (|has| |#1| (-510)) ELT)) (-4096 (((-797) $) 68 T ELT) (($ (-499)) NIL T ELT) (($ |#1|) 65 T ELT) (($ (-1022)) NIL T ELT) (($ |#2|) 75 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-714)) 70 T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) 25 T CONST)) (-2516 (((-1207 |#1|) $) 83 T ELT)) (-2515 (($ (-1207 |#1|)) 57 T ELT)) (-2785 (($) 8 T CONST)) (-2790 (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022))) NIL T ELT) (($ $ (-1022)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-2514 (((-1207 |#1|) $) NIL T ELT)) (-3174 (((-85) $ $) 76 T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) 79 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 39 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 92 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 64 T ELT) (($ $ $) 82 T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) NIL T ELT))) -(((-670 |#1| |#2|) (-13 (-1183 |#1|) (-571 |#2|) (-10 -8 (-15 -2517 (|#2| |#2|)) (-15 -2733 (|#2|)) (-15 -3992 ($ |#2|)) (-15 -3200 (|#2| $)) (-15 -2516 ((-1207 |#1|) $)) (-15 -2515 ($ (-1207 |#1|))) (-15 -2514 ((-1207 |#1|) $)) (-15 -2513 ((-896 $))) (-15 -2512 ((-896 $))) (IF (|has| |#1| (-305)) (-15 -2511 ($ $)) |%noBranch|) (IF (|has| |#1| (-323)) (-6 (-323)) |%noBranch|))) (-989) (-1183 |#1|)) (T -670)) -((-2517 (*1 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-670 *3 *2)) (-4 *2 (-1183 *3)))) (-2733 (*1 *2) (-12 (-4 *2 (-1183 *3)) (-5 *1 (-670 *3 *2)) (-4 *3 (-989)))) (-3992 (*1 *1 *2) (-12 (-4 *3 (-989)) (-5 *1 (-670 *3 *2)) (-4 *2 (-1183 *3)))) (-3200 (*1 *2 *1) (-12 (-4 *2 (-1183 *3)) (-5 *1 (-670 *3 *2)) (-4 *3 (-989)))) (-2516 (*1 *2 *1) (-12 (-4 *3 (-989)) (-5 *2 (-1207 *3)) (-5 *1 (-670 *3 *4)) (-4 *4 (-1183 *3)))) (-2515 (*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-989)) (-5 *1 (-670 *3 *4)) (-4 *4 (-1183 *3)))) (-2514 (*1 *2 *1) (-12 (-4 *3 (-989)) (-5 *2 (-1207 *3)) (-5 *1 (-670 *3 *4)) (-4 *4 (-1183 *3)))) (-2513 (*1 *2) (-12 (-4 *3 (-989)) (-5 *2 (-896 (-670 *3 *4))) (-5 *1 (-670 *3 *4)) (-4 *4 (-1183 *3)))) (-2512 (*1 *2) (-12 (-4 *3 (-989)) (-5 *2 (-896 (-670 *3 *4))) (-5 *1 (-670 *3 *4)) (-4 *4 (-1183 *3)))) (-2511 (*1 *1 *1) (-12 (-4 *2 (-305)) (-4 *2 (-989)) (-5 *1 (-670 *2 *3)) (-4 *3 (-1183 *2))))) -((-2687 (((-85) $ $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 ((|#1| $) 13 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2519 ((|#2| $) 12 T ELT)) (-3670 (($ |#1| |#2|) 16 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-2 (|:| -2518 |#1|) (|:| -2519 |#2|))) 15 T ELT) (((-2 (|:| -2518 |#1|) (|:| -2519 |#2|)) $) 14 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 11 T ELT))) -(((-671 |#1| |#2| |#3|) (-13 (-781) (-444 (-2 (|:| -2518 |#1|) (|:| -2519 |#2|))) (-10 -8 (-15 -2519 (|#2| $)) (-15 -2518 (|#1| $)) (-15 -3670 ($ |#1| |#2|)))) (-781) (-1041) (-1 (-85) (-2 (|:| -2518 |#1|) (|:| -2519 |#2|)) (-2 (|:| -2518 |#1|) (|:| -2519 |#2|)))) (T -671)) -((-2519 (*1 *2 *1) (-12 (-4 *2 (-1041)) (-5 *1 (-671 *3 *2 *4)) (-4 *3 (-781)) (-14 *4 (-1 (-85) (-2 (|:| -2518 *3) (|:| -2519 *2)) (-2 (|:| -2518 *3) (|:| -2519 *2)))))) (-2518 (*1 *2 *1) (-12 (-4 *2 (-781)) (-5 *1 (-671 *2 *3 *4)) (-4 *3 (-1041)) (-14 *4 (-1 (-85) (-2 (|:| -2518 *2) (|:| -2519 *3)) (-2 (|:| -2518 *2) (|:| -2519 *3)))))) (-3670 (*1 *1 *2 *3) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-781)) (-4 *3 (-1041)) (-14 *4 (-1 (-85) (-2 (|:| -2518 *2) (|:| -2519 *3)) (-2 (|:| -2518 *2) (|:| -2519 *3))))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 66 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3607 (((-3 $ #1#) $) 102 T ELT)) (-2634 ((|#2| (-86) |#2|) 93 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2633 (($ |#1| (-316 (-86))) 14 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2635 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2636 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3950 ((|#2| $ |#2|) 33 T ELT)) (-2637 ((|#1| |#1|) 117 (|has| |#1| (-146)) ELT)) (-4096 (((-797) $) 73 T ELT) (($ (-499)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2638 (($ $) 111 (|has| |#1| (-146)) ELT) (($ $ $) 115 (|has| |#1| (-146)) ELT)) (-2779 (($) 21 T CONST)) (-2785 (($) 9 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 83 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ (-86) (-499)) NIL T ELT) (($ $ (-499)) 64 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-146)) ELT) (($ $ |#1|) 109 (|has| |#1| (-146)) ELT))) -(((-672 |#1| |#2|) (-13 (-989) (-978 |#1|) (-978 (-86)) (-240 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2638 ($ $)) (-15 -2638 ($ $ $)) (-15 -2637 (|#1| |#1|))) |%noBranch|) (-15 -2636 ($ $ (-1 |#2| |#2|))) (-15 -2635 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-499))) (-15 ** ($ $ (-499))) (-15 -2634 (|#2| (-86) |#2|)) (-15 -2633 ($ |#1| (-316 (-86)))))) (-989) (-606 |#1|)) (T -672)) -((-2638 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-989)) (-5 *1 (-672 *2 *3)) (-4 *3 (-606 *2)))) (-2638 (*1 *1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-989)) (-5 *1 (-672 *2 *3)) (-4 *3 (-606 *2)))) (-2637 (*1 *2 *2) (-12 (-4 *2 (-146)) (-4 *2 (-989)) (-5 *1 (-672 *2 *3)) (-4 *3 (-606 *2)))) (-2636 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-606 *3)) (-4 *3 (-989)) (-5 *1 (-672 *3 *4)))) (-2635 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-606 *3)) (-4 *3 (-989)) (-5 *1 (-672 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-499)) (-4 *4 (-989)) (-5 *1 (-672 *4 *5)) (-4 *5 (-606 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *3 (-989)) (-5 *1 (-672 *3 *4)) (-4 *4 (-606 *3)))) (-2634 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-989)) (-5 *1 (-672 *4 *2)) (-4 *2 (-606 *4)))) (-2633 (*1 *1 *2 *3) (-12 (-5 *3 (-316 (-86))) (-4 *2 (-989)) (-5 *1 (-672 *2 *4)) (-4 *4 (-606 *2))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 33 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3992 (($ |#1| |#2|) 25 T ELT)) (-3607 (((-3 $ #1#) $) 51 T ELT)) (-2528 (((-85) $) 35 T ELT)) (-2733 ((|#2| $) 12 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 52 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2520 (((-3 $ #1#) $ $) 50 T ELT)) (-4096 (((-797) $) 24 T ELT) (($ (-499)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3248 (((-714)) 28 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 16 T CONST)) (-2785 (($) 30 T CONST)) (-3174 (((-85) $ $) 41 T ELT)) (-3987 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3989 (($ $ $) 43 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 21 T ELT) (($ $ $) 20 T ELT))) -(((-673 |#1| |#2| |#3| |#4| |#5|) (-13 (-989) (-10 -8 (-15 -2733 (|#2| $)) (-15 -4096 (|#1| $)) (-15 -3992 ($ |#1| |#2|)) (-15 -2520 ((-3 $ #1="failed") $ $)) (-15 -3607 ((-3 $ #1#) $)) (-15 -2601 ($ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -673)) -((-3607 (*1 *1 *1) (|partial| -12 (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2733 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-673 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4096 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3992 (*1 *1 *2 *3) (-12 (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2520 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2601 (*1 *1 *1) (-12 (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -((* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) -(((-674 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 * (|#1| (-857) |#1|))) (-675 |#2|) (-146)) (T -674)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-675 |#1|) (-113) (-146)) (T -675)) -NIL -(-13 (-82 |t#1| |t#1|) (-598 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-2557 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3997 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2521 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 16 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3918 ((|#1| $ |#1|) 24 T ELT) (((-766 |#1|) $ (-766 |#1|)) 32 T ELT)) (-3130 (($ $ $) NIL T ELT)) (-2551 (($ $ $) NIL T ELT)) (-4096 (((-797) $) 39 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2785 (($) 9 T CONST)) (-3174 (((-85) $ $) 48 T ELT)) (-4099 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ $ $) 14 T ELT))) -(((-676 |#1|) (-13 (-427) (-10 -8 (-15 -2521 ($ |#1| |#1| |#1| |#1|)) (-15 -2557 ($ |#1|)) (-15 -3997 ($ |#1|)) (-15 -3607 ($)) (-15 -2557 ($ $ |#1|)) (-15 -3997 ($ $ |#1|)) (-15 -3607 ($ $)) (-15 -3918 (|#1| $ |#1|)) (-15 -3918 ((-766 |#1|) $ (-766 |#1|))))) (-318)) (T -676)) -((-2521 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) (-2557 (*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) (-3997 (*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) (-3607 (*1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) (-2557 (*1 *1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) (-3997 (*1 *1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) (-3607 (*1 *1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) (-3918 (*1 *2 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) (-3918 (*1 *2 *1 *2) (-12 (-5 *2 (-766 *3)) (-4 *3 (-318)) (-5 *1 (-676 *3))))) -((-2525 (($ $ (-857)) 19 T ELT)) (-2524 (($ $ (-857)) 20 T ELT)) (** (($ $ (-857)) 10 T ELT))) -(((-677 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-857))) (-15 -2524 (|#1| |#1| (-857))) (-15 -2525 (|#1| |#1| (-857)))) (-678)) (T -677)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-2525 (($ $ (-857)) 19 T ELT)) (-2524 (($ $ (-857)) 18 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (** (($ $ (-857)) 17 T ELT)) (* (($ $ $) 20 T ELT))) -(((-678) (-113)) (T -678)) -((* (*1 *1 *1 *1) (-4 *1 (-678))) (-2525 (*1 *1 *1 *2) (-12 (-4 *1 (-678)) (-5 *2 (-857)))) (-2524 (*1 *1 *1 *2) (-12 (-4 *1 (-678)) (-5 *2 (-857)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-678)) (-5 *2 (-857))))) -(-13 (-1041) (-10 -8 (-15 * ($ $ $)) (-15 -2525 ($ $ (-857))) (-15 -2524 ($ $ (-857))) (-15 ** ($ $ (-857))))) -(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-2525 (($ $ (-857)) NIL T ELT) (($ $ (-714)) 18 T ELT)) (-2528 (((-85) $) 10 T ELT)) (-2524 (($ $ (-857)) NIL T ELT) (($ $ (-714)) 19 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 16 T ELT))) -(((-679 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-714))) (-15 -2524 (|#1| |#1| (-714))) (-15 -2525 (|#1| |#1| (-714))) (-15 -2528 ((-85) |#1|)) (-15 ** (|#1| |#1| (-857))) (-15 -2524 (|#1| |#1| (-857))) (-15 -2525 (|#1| |#1| (-857)))) (-680)) (T -679)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-2522 (((-3 $ "failed") $) 22 T ELT)) (-2525 (($ $ (-857)) 19 T ELT) (($ $ (-714)) 27 T ELT)) (-3607 (((-3 $ "failed") $) 24 T ELT)) (-2528 (((-85) $) 28 T ELT)) (-2523 (((-3 $ "failed") $) 23 T ELT)) (-2524 (($ $ (-857)) 18 T ELT) (($ $ (-714)) 26 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2785 (($) 29 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (** (($ $ (-857)) 17 T ELT) (($ $ (-714)) 25 T ELT)) (* (($ $ $) 20 T ELT))) -(((-680) (-113)) (T -680)) -((-2785 (*1 *1) (-4 *1 (-680))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-680)) (-5 *2 (-85)))) (-2525 (*1 *1 *1 *2) (-12 (-4 *1 (-680)) (-5 *2 (-714)))) (-2524 (*1 *1 *1 *2) (-12 (-4 *1 (-680)) (-5 *2 (-714)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-680)) (-5 *2 (-714)))) (-3607 (*1 *1 *1) (|partial| -4 *1 (-680))) (-2523 (*1 *1 *1) (|partial| -4 *1 (-680))) (-2522 (*1 *1 *1) (|partial| -4 *1 (-680)))) -(-13 (-678) (-10 -8 (-15 (-2785) ($) -4102) (-15 -2528 ((-85) $)) (-15 -2525 ($ $ (-714))) (-15 -2524 ($ $ (-714))) (-15 ** ($ $ (-714))) (-15 -3607 ((-3 $ "failed") $)) (-15 -2523 ((-3 $ "failed") $)) (-15 -2522 ((-3 $ "failed") $)))) -(((-73) . T) ((-568 (-797)) . T) ((-678) . T) ((-1041) . T) ((-1157) . T)) -((-3258 (((-714)) 39 T ELT)) (-3295 (((-3 (-499) #1="failed") $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3294 (((-499) $) NIL T ELT) (((-361 (-499)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3992 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-361 |#3|)) 49 T ELT)) (-3607 (((-3 $ #1#) $) 69 T ELT)) (-3115 (($) 43 T ELT)) (-3254 ((|#2| $) 21 T ELT)) (-2527 (($) 18 T ELT)) (-3908 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-2526 (((-647 |#2|) (-1207 $) (-1 |#2| |#2|)) 64 T ELT)) (-4122 (((-1207 |#2|) $) NIL T ELT) (($ (-1207 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2565 ((|#3| $) 36 T ELT)) (-2113 (((-1207 $)) 33 T ELT))) -(((-681 |#1| |#2| |#3|) (-10 -7 (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -3115 (|#1|)) (-15 -3258 ((-714))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|) (-714))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2526 ((-647 |#2|) (-1207 |#1|) (-1 |#2| |#2|))) (-15 -3992 ((-3 |#1| #1="failed") (-361 |#3|))) (-15 -4122 (|#1| |#3|)) (-15 -3992 (|#1| |#3|)) (-15 -2527 (|#1|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -4122 (|#3| |#1|)) (-15 -4122 (|#1| (-1207 |#2|))) (-15 -4122 ((-1207 |#2|) |#1|)) (-15 -2113 ((-1207 |#1|))) (-15 -2565 (|#3| |#1|)) (-15 -3254 (|#2| |#1|)) (-15 -3607 ((-3 |#1| #1#) |#1|))) (-682 |#2| |#3|) (-146) (-1183 |#2|)) (T -681)) -((-3258 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1183 *4)) (-5 *2 (-714)) (-5 *1 (-681 *3 *4 *5)) (-4 *3 (-682 *4 *5))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 111 (|has| |#1| (-318)) ELT)) (-2164 (($ $) 112 (|has| |#1| (-318)) ELT)) (-2162 (((-85) $) 114 (|has| |#1| (-318)) ELT)) (-1880 (((-647 |#1|) (-1207 $)) 58 T ELT) (((-647 |#1|)) 74 T ELT)) (-3470 ((|#1| $) 64 T ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) 164 (|has| |#1| (-305)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 131 (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) 132 (|has| |#1| (-318)) ELT)) (-1678 (((-85) $ $) 122 (|has| |#1| (-318)) ELT)) (-3258 (((-714)) 105 (|has| |#1| (-323)) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 (-499) #1="failed") $) 191 (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) 189 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3294 (((-499) $) 190 (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) 188 (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 187 T ELT)) (-1890 (($ (-1207 |#1|) (-1207 $)) 60 T ELT) (($ (-1207 |#1|)) 77 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-305)) ELT)) (-2683 (($ $ $) 126 (|has| |#1| (-318)) ELT)) (-1879 (((-647 |#1|) $ (-1207 $)) 65 T ELT) (((-647 |#1|) $) 72 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 183 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 182 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 181 T ELT) (((-647 |#1|) (-647 $)) 180 T ELT)) (-3992 (($ |#2|) 175 T ELT) (((-3 $ "failed") (-361 |#2|)) 172 (|has| |#1| (-318)) ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3231 (((-857)) 66 T ELT)) (-3115 (($) 108 (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) 125 (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 120 (|has| |#1| (-318)) ELT)) (-2954 (($) 166 (|has| |#1| (-305)) ELT)) (-1773 (((-85) $) 167 (|has| |#1| (-305)) ELT)) (-1864 (($ $ (-714)) 158 (|has| |#1| (-305)) ELT) (($ $) 157 (|has| |#1| (-305)) ELT)) (-3873 (((-85) $) 133 (|has| |#1| (-318)) ELT)) (-3922 (((-857) $) 169 (|has| |#1| (-305)) ELT) (((-766 (-857)) $) 155 (|has| |#1| (-305)) ELT)) (-2528 (((-85) $) 40 T ELT)) (-3254 ((|#1| $) 63 T ELT)) (-3585 (((-649 $) $) 159 (|has| |#1| (-305)) ELT)) (-1675 (((-3 (-599 $) #2="failed") (-599 $) $) 129 (|has| |#1| (-318)) ELT)) (-2115 ((|#2| $) 56 (|has| |#1| (-318)) ELT)) (-2111 (((-857) $) 107 (|has| |#1| (-323)) ELT)) (-3200 ((|#2| $) 173 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 185 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 184 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 179 T ELT) (((-647 |#1|) (-1207 $)) 178 T ELT)) (-1993 (($ (-599 $)) 118 (|has| |#1| (-318)) ELT) (($ $ $) 117 (|has| |#1| (-318)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 134 (|has| |#1| (-318)) ELT)) (-3586 (($) 160 (|has| |#1| (-305)) CONST)) (-2518 (($ (-857)) 106 (|has| |#1| (-323)) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2527 (($) 177 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 119 (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) 116 (|has| |#1| (-318)) ELT) (($ $ $) 115 (|has| |#1| (-318)) ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) 163 (|has| |#1| (-305)) ELT)) (-3882 (((-359 $) $) 130 (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 127 (|has| |#1| (-318)) ELT)) (-3606 (((-3 $ "failed") $ $) 110 (|has| |#1| (-318)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 121 (|has| |#1| (-318)) ELT)) (-1677 (((-714) $) 123 (|has| |#1| (-318)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 124 (|has| |#1| (-318)) ELT)) (-3907 ((|#1| (-1207 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1865 (((-714) $) 168 (|has| |#1| (-305)) ELT) (((-3 (-714) "failed") $ $) 156 (|has| |#1| (-305)) ELT)) (-3908 (($ $ (-714)) 153 (-3677 (-2681 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305))) ELT) (($ $) 151 (-3677 (-2681 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 147 (-2681 (|has| |#1| (-838 (-1117))) (|has| |#1| (-318))) ELT) (($ $ (-1117) (-714)) 146 (-2681 (|has| |#1| (-838 (-1117))) (|has| |#1| (-318))) ELT) (($ $ (-599 (-1117))) 145 (-2681 (|has| |#1| (-838 (-1117))) (|has| |#1| (-318))) ELT) (($ $ (-1117)) 143 (-2681 (|has| |#1| (-838 (-1117))) (|has| |#1| (-318))) ELT) (($ $ (-1 |#1| |#1|)) 142 (|has| |#1| (-318)) ELT) (($ $ (-1 |#1| |#1|) (-714)) 141 (|has| |#1| (-318)) ELT)) (-2526 (((-647 |#1|) (-1207 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-318)) ELT)) (-3323 ((|#2|) 176 T ELT)) (-1767 (($) 165 (|has| |#1| (-305)) ELT)) (-3362 (((-1207 |#1|) $ (-1207 $)) 62 T ELT) (((-647 |#1|) (-1207 $) (-1207 $)) 61 T ELT) (((-1207 |#1|) $) 79 T ELT) (((-647 |#1|) (-1207 $)) 78 T ELT)) (-4122 (((-1207 |#1|) $) 76 T ELT) (($ (-1207 |#1|)) 75 T ELT) ((|#2| $) 192 T ELT) (($ |#2|) 174 T ELT)) (-2824 (((-3 (-1207 $) "failed") (-647 $)) 162 (|has| |#1| (-305)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 49 T ELT) (($ $) 109 (|has| |#1| (-318)) ELT) (($ (-361 (-499))) 104 (-3677 (|has| |#1| (-318)) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-2823 (($ $) 161 (|has| |#1| (-305)) ELT) (((-649 $) $) 55 (|has| |#1| (-118)) ELT)) (-2565 ((|#2| $) 57 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2113 (((-1207 $)) 80 T ELT)) (-2163 (((-85) $ $) 113 (|has| |#1| (-318)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-714)) 154 (-3677 (-2681 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305))) ELT) (($ $) 152 (-3677 (-2681 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 150 (-2681 (|has| |#1| (-838 (-1117))) (|has| |#1| (-318))) ELT) (($ $ (-1117) (-714)) 149 (-2681 (|has| |#1| (-838 (-1117))) (|has| |#1| (-318))) ELT) (($ $ (-599 (-1117))) 148 (-2681 (|has| |#1| (-838 (-1117))) (|has| |#1| (-318))) ELT) (($ $ (-1117)) 144 (-2681 (|has| |#1| (-838 (-1117))) (|has| |#1| (-318))) ELT) (($ $ (-1 |#1| |#1|)) 140 (|has| |#1| (-318)) ELT) (($ $ (-1 |#1| |#1|) (-714)) 139 (|has| |#1| (-318)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 138 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 135 (|has| |#1| (-318)) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-361 (-499)) $) 137 (|has| |#1| (-318)) ELT) (($ $ (-361 (-499))) 136 (|has| |#1| (-318)) ELT))) -(((-682 |#1| |#2|) (-113) (-146) (-1183 |t#1|)) (T -682)) -((-2527 (*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-682 *2 *3)) (-4 *3 (-1183 *2)))) (-3323 (*1 *2) (-12 (-4 *1 (-682 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1183 *3)))) (-3992 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-682 *3 *2)) (-4 *2 (-1183 *3)))) (-4122 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-682 *3 *2)) (-4 *2 (-1183 *3)))) (-3200 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1183 *3)))) (-3992 (*1 *1 *2) (|partial| -12 (-5 *2 (-361 *4)) (-4 *4 (-1183 *3)) (-4 *3 (-318)) (-4 *3 (-146)) (-4 *1 (-682 *3 *4)))) (-2526 (*1 *2 *3 *4) (-12 (-5 *3 (-1207 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-318)) (-4 *1 (-682 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1183 *5)) (-5 *2 (-647 *5))))) -(-13 (-364 |t#1| |t#2|) (-146) (-569 |t#2|) (-366 |t#1|) (-332 |t#1|) (-10 -8 (-15 -2527 ($)) (-15 -3323 (|t#2|)) (-15 -3992 ($ |t#2|)) (-15 -4122 ($ |t#2|)) (-15 -3200 (|t#2| $)) (IF (|has| |t#1| (-323)) (-6 (-323)) |%noBranch|) (IF (|has| |t#1| (-318)) (PROGN (-6 (-318)) (-6 (-184 |t#1|)) (-15 -3992 ((-3 $ "failed") (-361 |t#2|))) (-15 -2526 ((-647 |t#1|) (-1207 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-305)) (-6 (-305)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-38 |#1|) . T) ((-38 $) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) -3677 (|has| |#1| (-305)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-305)) (|has| |#1| (-318))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-571 $) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-568 (-797)) . T) ((-146) . T) ((-569 |#2|) . T) ((-186 $) -3677 (|has| |#1| (-305)) (-12 (|has| |#1| (-189)) (|has| |#1| (-318))) (-12 (|has| |#1| (-190)) (|has| |#1| (-318)))) ((-184 |#1|) |has| |#1| (-318)) ((-190) -3677 (|has| |#1| (-305)) (-12 (|has| |#1| (-190)) (|has| |#1| (-318)))) ((-189) -3677 (|has| |#1| (-305)) (-12 (|has| |#1| (-189)) (|has| |#1| (-318))) (-12 (|has| |#1| (-190)) (|has| |#1| (-318)))) ((-224 |#1|) |has| |#1| (-318)) ((-200) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-244) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-261) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-318) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-356) |has| |#1| (-305)) ((-323) -3677 (|has| |#1| (-305)) (|has| |#1| (-323))) ((-305) |has| |#1| (-305)) ((-325 |#1| |#2|) . T) ((-364 |#1| |#2|) . T) ((-332 |#1|) . T) ((-366 |#1|) . T) ((-406) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-510) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-604 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-606 (-499)) |has| |#1| (-596 (-499))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-598 |#1|) . T) ((-598 $) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-596 (-499)) |has| |#1| (-596 (-499))) ((-596 |#1|) . T) ((-675 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-675 |#1|) . T) ((-675 $) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-684) . T) ((-831 $ (-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117))))) ((-836 (-1117)) -12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) ((-838 (-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117))))) ((-859) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-991 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-991 |#1|) . T) ((-991 $) . T) ((-996 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-996 |#1|) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1092) |has| |#1| (-305)) ((-1157) . T) ((-1162) -3677 (|has| |#1| (-305)) (|has| |#1| (-318)))) -((-3874 (($) 11 T ELT)) (-3607 (((-3 $ "failed") $) 14 T ELT)) (-2528 (((-85) $) 10 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 20 T ELT))) -(((-683 |#1|) (-10 -7 (-15 -3607 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-714))) (-15 -2528 ((-85) |#1|)) (-15 -3874 (|#1|)) (-15 ** (|#1| |#1| (-857)))) (-684)) (T -683)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3874 (($) 23 T CONST)) (-3607 (((-3 $ "failed") $) 20 T ELT)) (-2528 (((-85) $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2785 (($) 24 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (** (($ $ (-857)) 17 T ELT) (($ $ (-714)) 21 T ELT)) (* (($ $ $) 18 T ELT))) -(((-684) (-113)) (T -684)) -((-2785 (*1 *1) (-4 *1 (-684))) (-3874 (*1 *1) (-4 *1 (-684))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-684)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-684)) (-5 *2 (-714)))) (-3607 (*1 *1 *1) (|partial| -4 *1 (-684)))) -(-13 (-1052) (-10 -8 (-15 (-2785) ($) -4102) (-15 -3874 ($) -4102) (-15 -2528 ((-85) $)) (-15 ** ($ $ (-714))) (-15 -3607 ((-3 $ "failed") $)))) -(((-73) . T) ((-568 (-797)) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2529 (((-2 (|:| -3212 (-359 |#2|)) (|:| |special| (-359 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3558 (((-2 (|:| -3212 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2530 ((|#2| (-361 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3575 (((-2 (|:| |poly| |#2|) (|:| -3212 (-361 |#2|)) (|:| |special| (-361 |#2|))) (-361 |#2|) (-1 |#2| |#2|)) 48 T ELT))) -(((-685 |#1| |#2|) (-10 -7 (-15 -3558 ((-2 (|:| -3212 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2529 ((-2 (|:| -3212 (-359 |#2|)) (|:| |special| (-359 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2530 (|#2| (-361 |#2|) (-1 |#2| |#2|))) (-15 -3575 ((-2 (|:| |poly| |#2|) (|:| -3212 (-361 |#2|)) (|:| |special| (-361 |#2|))) (-361 |#2|) (-1 |#2| |#2|)))) (-318) (-1183 |#1|)) (T -685)) -((-3575 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3212 (-361 *6)) (|:| |special| (-361 *6)))) (-5 *1 (-685 *5 *6)) (-5 *3 (-361 *6)))) (-2530 (*1 *2 *3 *4) (-12 (-5 *3 (-361 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1183 *5)) (-5 *1 (-685 *5 *2)) (-4 *5 (-318)))) (-2529 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-318)) (-5 *2 (-2 (|:| -3212 (-359 *3)) (|:| |special| (-359 *3)))) (-5 *1 (-685 *5 *3)))) (-3558 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-318)) (-5 *2 (-2 (|:| -3212 *3) (|:| |special| *3))) (-5 *1 (-685 *5 *3))))) -((-2531 ((|#7| (-599 |#5|) |#6|) NIL T ELT)) (-4108 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) -(((-686 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4108 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2531 (|#7| (-599 |#5|) |#6|))) (-781) (-738) (-738) (-989) (-989) (-888 |#4| |#2| |#1|) (-888 |#5| |#3| |#1|)) (T -686)) -((-2531 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *9)) (-4 *9 (-989)) (-4 *5 (-781)) (-4 *6 (-738)) (-4 *8 (-989)) (-4 *2 (-888 *9 *7 *5)) (-5 *1 (-686 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-738)) (-4 *4 (-888 *8 *6 *5)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-989)) (-4 *9 (-989)) (-4 *5 (-781)) (-4 *6 (-738)) (-4 *2 (-888 *9 *7 *5)) (-5 *1 (-686 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-738)) (-4 *4 (-888 *8 *6 *5))))) -((-4108 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) -(((-687 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4108 (|#7| (-1 |#2| |#1|) |#6|))) (-781) (-781) (-738) (-738) (-989) (-888 |#5| |#3| |#1|) (-888 |#5| |#4| |#2|)) (T -687)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-781)) (-4 *6 (-781)) (-4 *7 (-738)) (-4 *9 (-989)) (-4 *2 (-888 *9 *8 *6)) (-5 *1 (-687 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-738)) (-4 *4 (-888 *9 *7 *5))))) -((-3882 (((-359 |#4|) |#4|) 42 T ELT))) -(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-359 |#4|) |#4|))) (-738) (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ "failed") (-1117))))) (-261) (-888 (-884 |#3|) |#1| |#2|)) (T -688)) -((-3882 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ "failed") (-1117)))))) (-4 *6 (-261)) (-5 *2 (-359 *3)) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-888 (-884 *6) *4 *5))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-798 |#1|)) $) NIL T ELT)) (-3206 (((-1111 $) $ (-798 |#1|)) NIL T ELT) (((-1111 |#2|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#2| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#2| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#2| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-798 |#1|))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#2| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#2| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-3 (-798 |#1|) #1#) $) NIL T ELT)) (-3294 ((|#2| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-798 |#1|) $) NIL T ELT)) (-3906 (($ $ $ (-798 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#2|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#2| (-406)) ELT) (($ $ (-798 |#1|)) NIL (|has| |#2| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#2| (-848)) ELT)) (-1694 (($ $ |#2| (-484 (-798 |#1|)) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-798 |#1|) (-821 (-333))) (|has| |#2| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-798 |#1|) (-821 (-499))) (|has| |#2| (-821 (-499)))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3207 (($ (-1111 |#2|) (-798 |#1|)) NIL T ELT) (($ (-1111 $) (-798 |#1|)) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#2| (-484 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-798 |#1|)) NIL T ELT)) (-2941 (((-484 (-798 |#1|)) $) NIL T ELT) (((-714) $ (-798 |#1|)) NIL T ELT) (((-599 (-714)) $ (-599 (-798 |#1|))) NIL T ELT)) (-1695 (($ (-1 (-484 (-798 |#1|)) (-484 (-798 |#1|))) $) NIL T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3205 (((-3 (-798 |#1|) #1#) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#2| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) NIL (|has| |#2| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-798 |#1|)) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#2| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#2| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) NIL (|has| |#2| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#2| (-848)) ELT)) (-3606 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-798 |#1|) |#2|) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 |#2|)) NIL T ELT) (($ $ (-798 |#1|) $) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 $)) NIL T ELT)) (-3907 (($ $ (-798 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3908 (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|)) NIL T ELT)) (-4098 (((-484 (-798 |#1|)) $) NIL T ELT) (((-714) $ (-798 |#1|)) NIL T ELT) (((-599 (-714)) $ (-599 (-798 |#1|))) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-798 |#1|) (-569 (-825 (-333)))) (|has| |#2| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-798 |#1|) (-569 (-825 (-499)))) (|has| |#2| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-798 |#1|) (-569 (-488))) (|has| |#2| (-569 (-488)))) ELT)) (-2938 ((|#2| $) NIL (|has| |#2| (-406)) ELT) (($ $ (-798 |#1|)) NIL (|has| |#2| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-798 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-510)) ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499))))) ELT)) (-3967 (((-599 |#2|) $) NIL T ELT)) (-3827 ((|#2| $ (-484 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#2| (-848))) (|has| |#2| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#2| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#2| (-510)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-689 |#1| |#2|) (-888 |#2| (-484 (-798 |#1|)) (-798 |#1|)) (-599 (-1117)) (-989)) (T -689)) -NIL -((-2532 (((-2 (|:| -2600 (-884 |#3|)) (|:| -2159 (-884 |#3|))) |#4|) 14 T ELT)) (-3107 ((|#4| |#4| |#2|) 33 T ELT)) (-2535 ((|#4| (-361 (-884 |#3|)) |#2|) 62 T ELT)) (-2534 ((|#4| (-1111 (-884 |#3|)) |#2|) 74 T ELT)) (-2533 ((|#4| (-1111 |#4|) |#2|) 49 T ELT)) (-3106 ((|#4| |#4| |#2|) 52 T ELT)) (-3882 (((-359 |#4|) |#4|) 40 T ELT))) -(((-690 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2532 ((-2 (|:| -2600 (-884 |#3|)) (|:| -2159 (-884 |#3|))) |#4|)) (-15 -3106 (|#4| |#4| |#2|)) (-15 -2533 (|#4| (-1111 |#4|) |#2|)) (-15 -3107 (|#4| |#4| |#2|)) (-15 -2534 (|#4| (-1111 (-884 |#3|)) |#2|)) (-15 -2535 (|#4| (-361 (-884 |#3|)) |#2|)) (-15 -3882 ((-359 |#4|) |#4|))) (-738) (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)))) (-510) (-888 (-361 (-884 |#3|)) |#1| |#2|)) (T -690)) -((-3882 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) (-4 *6 (-510)) (-5 *2 (-359 *3)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-888 (-361 (-884 *6)) *4 *5)))) (-2535 (*1 *2 *3 *4) (-12 (-4 *6 (-510)) (-4 *2 (-888 *3 *5 *4)) (-5 *1 (-690 *5 *4 *6 *2)) (-5 *3 (-361 (-884 *6))) (-4 *5 (-738)) (-4 *4 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))))) (-2534 (*1 *2 *3 *4) (-12 (-5 *3 (-1111 (-884 *6))) (-4 *6 (-510)) (-4 *2 (-888 (-361 (-884 *6)) *5 *4)) (-5 *1 (-690 *5 *4 *6 *2)) (-4 *5 (-738)) (-4 *4 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))))) (-3107 (*1 *2 *2 *3) (-12 (-4 *4 (-738)) (-4 *3 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) (-4 *5 (-510)) (-5 *1 (-690 *4 *3 *5 *2)) (-4 *2 (-888 (-361 (-884 *5)) *4 *3)))) (-2533 (*1 *2 *3 *4) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-888 (-361 (-884 *6)) *5 *4)) (-5 *1 (-690 *5 *4 *6 *2)) (-4 *5 (-738)) (-4 *4 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) (-4 *6 (-510)))) (-3106 (*1 *2 *2 *3) (-12 (-4 *4 (-738)) (-4 *3 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) (-4 *5 (-510)) (-5 *1 (-690 *4 *3 *5 *2)) (-4 *2 (-888 (-361 (-884 *5)) *4 *3)))) (-2532 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) (-4 *6 (-510)) (-5 *2 (-2 (|:| -2600 (-884 *6)) (|:| -2159 (-884 *6)))) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-888 (-361 (-884 *6)) *4 *5))))) -((-3882 (((-359 |#4|) |#4|) 54 T ELT))) -(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-359 |#4|) |#4|))) (-738) (-781) (-13 (-261) (-120)) (-888 (-361 |#3|) |#1| |#2|)) (T -691)) -((-3882 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-13 (-261) (-120))) (-5 *2 (-359 *3)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-888 (-361 *6) *4 *5))))) -((-4108 (((-693 |#2| |#3|) (-1 |#2| |#1|) (-693 |#1| |#3|)) 18 T ELT))) -(((-692 |#1| |#2| |#3|) (-10 -7 (-15 -4108 ((-693 |#2| |#3|) (-1 |#2| |#1|) (-693 |#1| |#3|)))) (-989) (-989) (-684)) (T -692)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-693 *5 *7)) (-4 *5 (-989)) (-4 *6 (-989)) (-4 *7 (-684)) (-5 *2 (-693 *6 *7)) (-5 *1 (-692 *5 *6 *7))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 36 T ELT)) (-3924 (((-599 (-2 (|:| -4104 |#1|) (|:| -4088 |#2|))) $) 37 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3258 (((-714)) 22 (-12 (|has| |#2| (-323)) (|has| |#1| (-323))) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3294 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-4109 (($ $) 99 (|has| |#2| (-781)) ELT)) (-3607 (((-3 $ #1#) $) 83 T ELT)) (-3115 (($) 48 (-12 (|has| |#2| (-323)) (|has| |#1| (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) 70 T ELT)) (-2942 (((-599 $) $) 52 T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| |#2|) 17 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2111 (((-857) $) 43 (-12 (|has| |#2| (-323)) (|has| |#1| (-323))) ELT)) (-3015 ((|#2| $) 98 (|has| |#2| (-781)) ELT)) (-3312 ((|#1| $) 97 (|has| |#2| (-781)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) 35 (-12 (|has| |#2| (-323)) (|has| |#1| (-323))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 96 T ELT) (($ (-499)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-599 (-2 (|:| -4104 |#1|) (|:| -4088 |#2|)))) 11 T ELT)) (-3967 (((-599 |#1|) $) 54 T ELT)) (-3827 ((|#1| $ |#2|) 114 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 12 T CONST)) (-2785 (($) 44 T CONST)) (-3174 (((-85) $ $) 104 T ELT)) (-3987 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 33 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-693 |#1| |#2|) (-13 (-989) (-978 |#2|) (-978 |#1|) (-10 -8 (-15 -3014 ($ |#1| |#2|)) (-15 -3827 (|#1| $ |#2|)) (-15 -4096 ($ (-599 (-2 (|:| -4104 |#1|) (|:| -4088 |#2|))))) (-15 -3924 ((-599 (-2 (|:| -4104 |#1|) (|:| -4088 |#2|))) $)) (-15 -4108 ($ (-1 |#1| |#1|) $)) (-15 -4087 ((-85) $)) (-15 -3967 ((-599 |#1|) $)) (-15 -2942 ((-599 $) $)) (-15 -2536 ((-714) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-323)) (IF (|has| |#2| (-323)) (-6 (-323)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-781)) (PROGN (-15 -3015 (|#2| $)) (-15 -3312 (|#1| $)) (-15 -4109 ($ $))) |%noBranch|))) (-989) (-684)) (T -693)) -((-3014 (*1 *1 *2 *3) (-12 (-5 *1 (-693 *2 *3)) (-4 *2 (-989)) (-4 *3 (-684)))) (-3827 (*1 *2 *1 *3) (-12 (-4 *2 (-989)) (-5 *1 (-693 *2 *3)) (-4 *3 (-684)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-2 (|:| -4104 *3) (|:| -4088 *4)))) (-4 *3 (-989)) (-4 *4 (-684)) (-5 *1 (-693 *3 *4)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| -4104 *3) (|:| -4088 *4)))) (-5 *1 (-693 *3 *4)) (-4 *3 (-989)) (-4 *4 (-684)))) (-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-693 *3 *4)) (-4 *4 (-684)))) (-4087 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-693 *3 *4)) (-4 *3 (-989)) (-4 *4 (-684)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-693 *3 *4)) (-4 *3 (-989)) (-4 *4 (-684)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-599 (-693 *3 *4))) (-5 *1 (-693 *3 *4)) (-4 *3 (-989)) (-4 *4 (-684)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-693 *3 *4)) (-4 *3 (-989)) (-4 *4 (-684)))) (-3015 (*1 *2 *1) (-12 (-4 *2 (-684)) (-4 *2 (-781)) (-5 *1 (-693 *3 *2)) (-4 *3 (-989)))) (-3312 (*1 *2 *1) (-12 (-4 *2 (-989)) (-5 *1 (-693 *2 *3)) (-4 *3 (-781)) (-4 *3 (-684)))) (-4109 (*1 *1 *1) (-12 (-5 *1 (-693 *2 *3)) (-4 *3 (-781)) (-4 *2 (-989)) (-4 *3 (-684))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3372 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3374 (($ $ $) 99 T ELT)) (-3373 (((-85) $ $) 107 T ELT)) (-3377 (($ (-599 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1603 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2481 (($ $) 88 T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3545 (($ |#1| $) 71 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -4145)) ELT) (($ |#1| $ (-499)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-499)) 81 T ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (($ |#1| $ (-499)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-499)) 84 T ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3379 (((-85) $ $) 106 T ELT)) (-2537 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-599 |#1|)) 23 T ELT)) (-2727 (((-599 |#1|) $) 38 T ELT)) (-3383 (((-85) |#1| $) 66 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3376 (($ $ $) 97 T ELT)) (-1308 ((|#1| $) 63 T ELT)) (-3757 (($ |#1| $) 64 T ELT) (($ |#1| $ (-714)) 89 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1309 ((|#1| $) 62 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 57 T ELT)) (-3713 (($) 14 T ELT)) (-2480 (((-599 (-2 (|:| |entry| |#1|) (|:| -2048 (-714)))) $) 56 T ELT)) (-3375 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1499 (($) 16 T ELT) (($ (-599 |#1|)) 25 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 69 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) 82 T ELT)) (-4122 (((-488) $) 36 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 22 T ELT)) (-4096 (((-797) $) 50 T ELT)) (-3378 (($ (-599 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-1310 (($ (-599 |#1|)) 24 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 103 T ELT)) (-4107 (((-714) $) 68 (|has| $ (-6 -4145)) ELT))) -(((-694 |#1|) (-13 (-695 |#1|) (-10 -8 (-6 -4145) (-6 -4146) (-15 -2537 ($)) (-15 -2537 ($ |#1|)) (-15 -2537 ($ (-599 |#1|))) (-15 -2727 ((-599 |#1|) $)) (-15 -3546 ($ |#1| $ (-499))) (-15 -3546 ($ (-1 (-85) |#1|) $ (-499))) (-15 -3545 ($ |#1| $ (-499))) (-15 -3545 ($ (-1 (-85) |#1|) $ (-499))))) (-1041)) (T -694)) -((-2537 (*1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1041)))) (-2537 (*1 *1 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1041)))) (-2537 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-694 *3)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1041)))) (-3546 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *1 (-694 *2)) (-4 *2 (-1041)))) (-3546 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-499)) (-4 *4 (-1041)) (-5 *1 (-694 *4)))) (-3545 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *1 (-694 *2)) (-4 *2 (-1041)))) (-3545 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-499)) (-4 *4 (-1041)) (-5 *1 (-694 *4))))) -((-2687 (((-85) $ $) 19 T ELT)) (-3372 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3374 (($ $ $) 77 T ELT)) (-3373 (((-85) $ $) 78 T ELT)) (-3377 (($ (-599 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1603 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-2481 (($ $) 66 T ELT)) (-1386 (($ $) 62 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ |#1| $) 51 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3546 (($ |#1| $) 61 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3379 (((-85) $ $) 69 T ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 T ELT)) (-3376 (($ $ $) 74 T ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT) (($ |#1| $ (-714)) 67 T ELT)) (-3381 (((-1060) $) 21 T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-2480 (((-599 (-2 (|:| |entry| |#1|) (|:| -2048 (-714)))) $) 65 T ELT)) (-3375 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1499 (($) 53 T ELT) (($ (-599 |#1|)) 52 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 63 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 54 T ELT)) (-4096 (((-797) $) 17 T ELT)) (-3378 (($ (-599 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1297 (((-85) $ $) 20 T ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 T ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-695 |#1|) (-113) (-1041)) (T -695)) -NIL -(-13 (-653 |t#1|) (-1039 |t#1|)) -(((-34) . T) ((-78 |#1|) . T) ((-73) . T) ((-568 (-797)) . T) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-192 |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-653 |#1|) . T) ((-1039 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-2538 (((-1213) (-1099)) 8 T ELT))) -(((-696) (-10 -7 (-15 -2538 ((-1213) (-1099))))) (T -696)) -((-2538 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-696))))) -((-2539 (((-599 |#1|) (-599 |#1|) (-599 |#1|)) 15 T ELT))) -(((-697 |#1|) (-10 -7 (-15 -2539 ((-599 |#1|) (-599 |#1|) (-599 |#1|)))) (-781)) (T -697)) -((-2539 (*1 *2 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-697 *3))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 |#2|) $) 156 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 149 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 148 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 146 (|has| |#1| (-510)) ELT)) (-3632 (($ $) 105 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 88 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3158 (($ $) 87 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3630 (($ $) 104 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 89 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3634 (($ $) 103 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 90 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) 22 T CONST)) (-4109 (($ $) 140 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3964 (((-884 |#1|) $ (-714)) 118 T ELT) (((-884 |#1|) $ (-714) (-714)) 117 T ELT)) (-3013 (((-85) $) 157 T ELT)) (-3777 (($) 115 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-714) $ |#2|) 120 T ELT) (((-714) $ |#2| (-714)) 119 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 86 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-4087 (((-85) $) 138 T ELT)) (-3014 (($ $ (-599 |#2|) (-599 (-484 |#2|))) 155 T ELT) (($ $ |#2| (-484 |#2|)) 154 T ELT) (($ |#1| (-484 |#2|)) 139 T ELT) (($ $ |#2| (-714)) 122 T ELT) (($ $ (-599 |#2|) (-599 (-714))) 121 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 137 T ELT)) (-4092 (($ $) 112 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) 135 T ELT)) (-3312 ((|#1| $) 134 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3962 (($ $ |#2|) 116 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3919 (($ $ (-714)) 123 T ELT)) (-3606 (((-3 $ "failed") $ $) 150 (|has| |#1| (-510)) ELT)) (-4093 (($ $) 113 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (($ $ |#2| $) 131 T ELT) (($ $ (-599 |#2|) (-599 $)) 130 T ELT) (($ $ (-599 (-247 $))) 129 T ELT) (($ $ (-247 $)) 128 T ELT) (($ $ $ $) 127 T ELT) (($ $ (-599 $) (-599 $)) 126 T ELT)) (-3908 (($ $ (-599 |#2|) (-599 (-714))) 49 T ELT) (($ $ |#2| (-714)) 48 T ELT) (($ $ (-599 |#2|)) 47 T ELT) (($ $ |#2|) 45 T ELT)) (-4098 (((-484 |#2|) $) 136 T ELT)) (-3635 (($ $) 102 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 91 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 101 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 92 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 100 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 93 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) 158 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 153 (|has| |#1| (-146)) ELT) (($ $) 151 (|has| |#1| (-510)) ELT) (($ (-361 (-499))) 143 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3827 ((|#1| $ (-484 |#2|)) 141 T ELT) (($ $ |#2| (-714)) 125 T ELT) (($ $ (-599 |#2|) (-599 (-714))) 124 T ELT)) (-2823 (((-649 $) $) 152 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-3638 (($ $) 111 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 99 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) 147 (|has| |#1| (-510)) ELT)) (-3636 (($ $) 110 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 98 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 109 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 97 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3641 (($ $) 108 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 96 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 107 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 95 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 106 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 94 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-599 |#2|) (-599 (-714))) 52 T ELT) (($ $ |#2| (-714)) 51 T ELT) (($ $ (-599 |#2|)) 50 T ELT) (($ $ |#2|) 46 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 142 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ $) 114 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 85 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 145 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) 144 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 133 T ELT) (($ $ |#1|) 132 T ELT))) -(((-698 |#1| |#2|) (-113) (-989) (-781)) (T -698)) -((-3827 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-698 *4 *2)) (-4 *4 (-989)) (-4 *2 (-781)))) (-3827 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 *5)) (-5 *3 (-599 (-714))) (-4 *1 (-698 *4 *5)) (-4 *4 (-989)) (-4 *5 (-781)))) (-3919 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-698 *3 *4)) (-4 *3 (-989)) (-4 *4 (-781)))) (-3014 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-698 *4 *2)) (-4 *4 (-989)) (-4 *2 (-781)))) (-3014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 *5)) (-5 *3 (-599 (-714))) (-4 *1 (-698 *4 *5)) (-4 *4 (-989)) (-4 *5 (-781)))) (-3922 (*1 *2 *1 *3) (-12 (-4 *1 (-698 *4 *3)) (-4 *4 (-989)) (-4 *3 (-781)) (-5 *2 (-714)))) (-3922 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-714)) (-4 *1 (-698 *4 *3)) (-4 *4 (-989)) (-4 *3 (-781)))) (-3964 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-698 *4 *5)) (-4 *4 (-989)) (-4 *5 (-781)) (-5 *2 (-884 *4)))) (-3964 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-4 *1 (-698 *4 *5)) (-4 *4 (-989)) (-4 *5 (-781)) (-5 *2 (-884 *4)))) (-3962 (*1 *1 *1 *2) (-12 (-4 *1 (-698 *3 *2)) (-4 *3 (-989)) (-4 *2 (-781)) (-4 *3 (-38 (-361 (-499))))))) -(-13 (-836 |t#2|) (-913 |t#1| (-484 |t#2|) |t#2|) (-468 |t#2| $) (-263 $) (-10 -8 (-15 -3827 ($ $ |t#2| (-714))) (-15 -3827 ($ $ (-599 |t#2|) (-599 (-714)))) (-15 -3919 ($ $ (-714))) (-15 -3014 ($ $ |t#2| (-714))) (-15 -3014 ($ $ (-599 |t#2|) (-599 (-714)))) (-15 -3922 ((-714) $ |t#2|)) (-15 -3922 ((-714) $ |t#2| (-714))) (-15 -3964 ((-884 |t#1|) $ (-714))) (-15 -3964 ((-884 |t#1|) $ (-714) (-714))) (IF (|has| |t#1| (-38 (-361 (-499)))) (PROGN (-15 -3962 ($ $ |t#2|)) (-6 (-942)) (-6 (-1143))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-484 |#2|)) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-510)) ((-35) |has| |#1| (-38 (-361 (-499)))) ((-66) |has| |#1| (-38 (-361 (-499)))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-571 (-499)) . T) ((-571 |#1|) |has| |#1| (-146)) ((-571 $) |has| |#1| (-510)) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-238) |has| |#1| (-38 (-361 (-499)))) ((-244) |has| |#1| (-510)) ((-263 $) . T) ((-447) |has| |#1| (-38 (-361 (-499)))) ((-468 |#2| $) . T) ((-468 $ $) . T) ((-510) |has| |#1| (-510)) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) |has| |#1| (-510)) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) |has| |#1| (-510)) ((-684) . T) ((-831 $ |#2|) . T) ((-836 |#2|) . T) ((-838 |#2|) . T) ((-913 |#1| (-484 |#2|) |#2|) . T) ((-942) |has| |#1| (-38 (-361 (-499)))) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1143) |has| |#1| (-38 (-361 (-499)))) ((-1146) |has| |#1| (-38 (-361 (-499)))) ((-1157) . T)) -((-3882 (((-359 (-1111 |#4|)) (-1111 |#4|)) 30 T ELT) (((-359 |#4|) |#4|) 26 T ELT))) -(((-699 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-359 |#4|) |#4|)) (-15 -3882 ((-359 (-1111 |#4|)) (-1111 |#4|)))) (-781) (-738) (-13 (-261) (-120)) (-888 |#3| |#2| |#1|)) (T -699)) -((-3882 (*1 *2 *3) (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-13 (-261) (-120))) (-4 *7 (-888 *6 *5 *4)) (-5 *2 (-359 (-1111 *7))) (-5 *1 (-699 *4 *5 *6 *7)) (-5 *3 (-1111 *7)))) (-3882 (*1 *2 *3) (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-13 (-261) (-120))) (-5 *2 (-359 *3)) (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-888 *6 *5 *4))))) -((-2542 (((-359 |#4|) |#4| |#2|) 141 T ELT)) (-2540 (((-359 |#4|) |#4|) NIL T ELT)) (-4121 (((-359 (-1111 |#4|)) (-1111 |#4|)) 128 T ELT) (((-359 |#4|) |#4|) 52 T ELT)) (-2544 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-599 (-2 (|:| -3882 (-1111 |#4|)) (|:| -2519 (-499)))))) (-1111 |#4|) (-599 |#2|) (-599 (-599 |#3|))) 81 T ELT)) (-2548 (((-1111 |#3|) (-1111 |#3|) (-499)) 168 T ELT)) (-2547 (((-599 (-714)) (-1111 |#4|) (-599 |#2|) (-714)) 75 T ELT)) (-3200 (((-3 (-599 (-1111 |#4|)) "failed") (-1111 |#4|) (-1111 |#3|) (-1111 |#3|) |#4| (-599 |#2|) (-599 (-714)) (-599 |#3|)) 79 T ELT)) (-2545 (((-2 (|:| |upol| (-1111 |#3|)) (|:| |Lval| (-599 |#3|)) (|:| |Lfact| (-599 (-2 (|:| -3882 (-1111 |#3|)) (|:| -2519 (-499))))) (|:| |ctpol| |#3|)) (-1111 |#4|) (-599 |#2|) (-599 (-599 |#3|))) 27 T ELT)) (-2543 (((-2 (|:| -2105 (-1111 |#4|)) (|:| |polval| (-1111 |#3|))) (-1111 |#4|) (-1111 |#3|) (-499)) 72 T ELT)) (-2541 (((-499) (-599 (-2 (|:| -3882 (-1111 |#3|)) (|:| -2519 (-499))))) 164 T ELT)) (-2546 ((|#4| (-499) (-359 |#4|)) 73 T ELT)) (-3497 (((-85) (-599 (-2 (|:| -3882 (-1111 |#3|)) (|:| -2519 (-499)))) (-599 (-2 (|:| -3882 (-1111 |#3|)) (|:| -2519 (-499))))) NIL T ELT))) -(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4121 ((-359 |#4|) |#4|)) (-15 -4121 ((-359 (-1111 |#4|)) (-1111 |#4|))) (-15 -2540 ((-359 |#4|) |#4|)) (-15 -2541 ((-499) (-599 (-2 (|:| -3882 (-1111 |#3|)) (|:| -2519 (-499)))))) (-15 -2542 ((-359 |#4|) |#4| |#2|)) (-15 -2543 ((-2 (|:| -2105 (-1111 |#4|)) (|:| |polval| (-1111 |#3|))) (-1111 |#4|) (-1111 |#3|) (-499))) (-15 -2544 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-599 (-2 (|:| -3882 (-1111 |#4|)) (|:| -2519 (-499)))))) (-1111 |#4|) (-599 |#2|) (-599 (-599 |#3|)))) (-15 -2545 ((-2 (|:| |upol| (-1111 |#3|)) (|:| |Lval| (-599 |#3|)) (|:| |Lfact| (-599 (-2 (|:| -3882 (-1111 |#3|)) (|:| -2519 (-499))))) (|:| |ctpol| |#3|)) (-1111 |#4|) (-599 |#2|) (-599 (-599 |#3|)))) (-15 -2546 (|#4| (-499) (-359 |#4|))) (-15 -3497 ((-85) (-599 (-2 (|:| -3882 (-1111 |#3|)) (|:| -2519 (-499)))) (-599 (-2 (|:| -3882 (-1111 |#3|)) (|:| -2519 (-499)))))) (-15 -3200 ((-3 (-599 (-1111 |#4|)) "failed") (-1111 |#4|) (-1111 |#3|) (-1111 |#3|) |#4| (-599 |#2|) (-599 (-714)) (-599 |#3|))) (-15 -2547 ((-599 (-714)) (-1111 |#4|) (-599 |#2|) (-714))) (-15 -2548 ((-1111 |#3|) (-1111 |#3|) (-499)))) (-738) (-781) (-261) (-888 |#3| |#1| |#2|)) (T -700)) -((-2548 (*1 *2 *2 *3) (-12 (-5 *2 (-1111 *6)) (-5 *3 (-499)) (-4 *6 (-261)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-700 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) (-2547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1111 *9)) (-5 *4 (-599 *7)) (-4 *7 (-781)) (-4 *9 (-888 *8 *6 *7)) (-4 *6 (-738)) (-4 *8 (-261)) (-5 *2 (-599 (-714))) (-5 *1 (-700 *6 *7 *8 *9)) (-5 *5 (-714)))) (-3200 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1111 *11)) (-5 *6 (-599 *10)) (-5 *7 (-599 (-714))) (-5 *8 (-599 *11)) (-4 *10 (-781)) (-4 *11 (-261)) (-4 *9 (-738)) (-4 *5 (-888 *11 *9 *10)) (-5 *2 (-599 (-1111 *5))) (-5 *1 (-700 *9 *10 *11 *5)) (-5 *3 (-1111 *5)))) (-3497 (*1 *2 *3 *3) (-12 (-5 *3 (-599 (-2 (|:| -3882 (-1111 *6)) (|:| -2519 (-499))))) (-4 *6 (-261)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) (-5 *1 (-700 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-499)) (-5 *4 (-359 *2)) (-4 *2 (-888 *7 *5 *6)) (-5 *1 (-700 *5 *6 *7 *2)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-261)))) (-2545 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1111 *9)) (-5 *4 (-599 *7)) (-5 *5 (-599 (-599 *8))) (-4 *7 (-781)) (-4 *8 (-261)) (-4 *9 (-888 *8 *6 *7)) (-4 *6 (-738)) (-5 *2 (-2 (|:| |upol| (-1111 *8)) (|:| |Lval| (-599 *8)) (|:| |Lfact| (-599 (-2 (|:| -3882 (-1111 *8)) (|:| -2519 (-499))))) (|:| |ctpol| *8))) (-5 *1 (-700 *6 *7 *8 *9)))) (-2544 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-599 *7)) (-5 *5 (-599 (-599 *8))) (-4 *7 (-781)) (-4 *8 (-261)) (-4 *6 (-738)) (-4 *9 (-888 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-599 (-2 (|:| -3882 (-1111 *9)) (|:| -2519 (-499))))))) (-5 *1 (-700 *6 *7 *8 *9)) (-5 *3 (-1111 *9)))) (-2543 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-499)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-261)) (-4 *9 (-888 *8 *6 *7)) (-5 *2 (-2 (|:| -2105 (-1111 *9)) (|:| |polval| (-1111 *8)))) (-5 *1 (-700 *6 *7 *8 *9)) (-5 *3 (-1111 *9)) (-5 *4 (-1111 *8)))) (-2542 (*1 *2 *3 *4) (-12 (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-261)) (-5 *2 (-359 *3)) (-5 *1 (-700 *5 *4 *6 *3)) (-4 *3 (-888 *6 *5 *4)))) (-2541 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| -3882 (-1111 *6)) (|:| -2519 (-499))))) (-4 *6 (-261)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-499)) (-5 *1 (-700 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) (-2540 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) (-5 *2 (-359 *3)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-888 *6 *4 *5)))) (-4121 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-359 (-1111 *7))) (-5 *1 (-700 *4 *5 *6 *7)) (-5 *3 (-1111 *7)))) (-4121 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) (-5 *2 (-359 *3)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-888 *6 *4 *5))))) -((-2549 (($ $ (-857)) 17 T ELT))) -(((-701 |#1| |#2|) (-10 -7 (-15 -2549 (|#1| |#1| (-857)))) (-702 |#2|) (-146)) (T -701)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-2525 (($ $ (-857)) 36 T ELT)) (-2549 (($ $ (-857)) 43 T ELT)) (-2524 (($ $ (-857)) 37 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2551 (($ $ $) 33 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2552 (($ $ $ $) 34 T ELT)) (-2550 (($ $ $) 32 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 38 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) -(((-702 |#1|) (-113) (-146)) (T -702)) -((-2549 (*1 *1 *1 *2) (-12 (-5 *2 (-857)) (-4 *1 (-702 *3)) (-4 *3 (-146))))) -(-13 (-704) (-675 |t#1|) (-10 -8 (-15 -2549 ($ $ (-857))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) . T) ((-675 |#1|) . T) ((-678) . T) ((-704) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-2551 (($ $ $) 10 T ELT)) (-2552 (($ $ $ $) 9 T ELT)) (-2550 (($ $ $) 12 T ELT))) -(((-703 |#1|) (-10 -7 (-15 -2550 (|#1| |#1| |#1|)) (-15 -2551 (|#1| |#1| |#1|)) (-15 -2552 (|#1| |#1| |#1| |#1|))) (-704)) (T -703)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-2525 (($ $ (-857)) 36 T ELT)) (-2524 (($ $ (-857)) 37 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2551 (($ $ $) 33 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2552 (($ $ $ $) 34 T ELT)) (-2550 (($ $ $) 32 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 38 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 35 T ELT))) -(((-704) (-113)) (T -704)) -((-2552 (*1 *1 *1 *1 *1) (-4 *1 (-704))) (-2551 (*1 *1 *1 *1) (-4 *1 (-704))) (-2550 (*1 *1 *1 *1) (-4 *1 (-704)))) -(-13 (-21) (-678) (-10 -8 (-15 -2552 ($ $ $ $)) (-15 -2551 ($ $ $)) (-15 -2550 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-678) . T) ((-1041) . T) ((-1157) . T)) -((-4096 (((-797) $) NIL T ELT) (($ (-499)) 10 T ELT))) -(((-705 |#1|) (-10 -7 (-15 -4096 (|#1| (-499))) (-15 -4096 ((-797) |#1|))) (-706)) (T -705)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-2522 (((-3 $ #1="failed") $) 48 T ELT)) (-2525 (($ $ (-857)) 36 T ELT) (($ $ (-714)) 43 T ELT)) (-3607 (((-3 $ #1#) $) 46 T ELT)) (-2528 (((-85) $) 42 T ELT)) (-2523 (((-3 $ #1#) $) 47 T ELT)) (-2524 (($ $ (-857)) 37 T ELT) (($ $ (-714)) 44 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2551 (($ $ $) 33 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 39 T ELT)) (-3248 (((-714)) 40 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2552 (($ $ $ $) 34 T ELT)) (-2550 (($ $ $) 32 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 41 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 38 T ELT) (($ $ (-714)) 45 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 35 T ELT))) -(((-706) (-113)) (T -706)) -((-3248 (*1 *2) (-12 (-4 *1 (-706)) (-5 *2 (-714)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-706))))) -(-13 (-704) (-680) (-10 -8 (-15 -3248 ((-714)) -4102) (-15 -4096 ($ (-499))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-678) . T) ((-680) . T) ((-704) . T) ((-1041) . T) ((-1157) . T)) -((-2554 (((-599 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-499)) (|:| |outvect| (-599 (-647 (-142 |#1|)))))) (-647 (-142 (-361 (-499)))) |#1|) 33 T ELT)) (-2553 (((-599 (-142 |#1|)) (-647 (-142 (-361 (-499)))) |#1|) 23 T ELT)) (-2565 (((-884 (-142 (-361 (-499)))) (-647 (-142 (-361 (-499)))) (-1117)) 20 T ELT) (((-884 (-142 (-361 (-499)))) (-647 (-142 (-361 (-499))))) 19 T ELT))) -(((-707 |#1|) (-10 -7 (-15 -2565 ((-884 (-142 (-361 (-499)))) (-647 (-142 (-361 (-499)))))) (-15 -2565 ((-884 (-142 (-361 (-499)))) (-647 (-142 (-361 (-499)))) (-1117))) (-15 -2553 ((-599 (-142 |#1|)) (-647 (-142 (-361 (-499)))) |#1|)) (-15 -2554 ((-599 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-499)) (|:| |outvect| (-599 (-647 (-142 |#1|)))))) (-647 (-142 (-361 (-499)))) |#1|))) (-13 (-318) (-780))) (T -707)) -((-2554 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-142 (-361 (-499))))) (-5 *2 (-599 (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-499)) (|:| |outvect| (-599 (-647 (-142 *4))))))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-318) (-780))))) (-2553 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-142 (-361 (-499))))) (-5 *2 (-599 (-142 *4))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-318) (-780))))) (-2565 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-142 (-361 (-499))))) (-5 *4 (-1117)) (-5 *2 (-884 (-142 (-361 (-499))))) (-5 *1 (-707 *5)) (-4 *5 (-13 (-318) (-780))))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-647 (-142 (-361 (-499))))) (-5 *2 (-884 (-142 (-361 (-499))))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-318) (-780)))))) -((-2735 (((-148 (-499)) |#1|) 27 T ELT))) -(((-708 |#1|) (-10 -7 (-15 -2735 ((-148 (-499)) |#1|))) (-358)) (T -708)) -((-2735 (*1 *2 *3) (-12 (-5 *2 (-148 (-499))) (-5 *1 (-708 *3)) (-4 *3 (-358))))) -((-2661 ((|#1| |#1| |#1|) 28 T ELT)) (-2662 ((|#1| |#1| |#1|) 27 T ELT)) (-2651 ((|#1| |#1| |#1|) 38 T ELT)) (-2659 ((|#1| |#1| |#1|) 33 T ELT)) (-2660 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2667 (((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|) 26 T ELT))) -(((-709 |#1| |#2|) (-10 -7 (-15 -2667 ((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|)) (-15 -2662 (|#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| |#1|)) (-15 -2660 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2659 (|#1| |#1| |#1|)) (-15 -2651 (|#1| |#1| |#1|))) (-666 |#2|) (-318)) (T -709)) -((-2651 (*1 *2 *2 *2) (-12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) (-2659 (*1 *2 *2 *2) (-12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) (-2660 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) (-2661 (*1 *2 *2 *2) (-12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) (-2662 (*1 *2 *2 *2) (-12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) (-2667 (*1 *2 *3 *3) (-12 (-4 *4 (-318)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-709 *3 *4)) (-4 *3 (-666 *4))))) -((-2674 (((-649 (-1166)) $ (-1166)) 27 T ELT)) (-2675 (((-649 (-503)) $ (-503)) 26 T ELT)) (-2673 (((-714) $ (-102)) 28 T ELT)) (-2676 (((-649 (-101)) $ (-101)) 25 T ELT)) (-2101 (((-649 (-1166)) $) 12 T ELT)) (-2097 (((-649 (-1164)) $) 8 T ELT)) (-2099 (((-649 (-1163)) $) 10 T ELT)) (-2102 (((-649 (-503)) $) 13 T ELT)) (-2098 (((-649 (-501)) $) 9 T ELT)) (-2100 (((-649 (-500)) $) 11 T ELT)) (-2096 (((-714) $ (-102)) 7 T ELT)) (-2103 (((-649 (-101)) $) 14 T ELT)) (-2555 (((-85) $) 32 T ELT)) (-2556 (((-649 $) |#1| (-892)) 33 T ELT)) (-1793 (($ $) 6 T ELT))) -(((-710 |#1|) (-113) (-1041)) (T -710)) -((-2556 (*1 *2 *3 *4) (-12 (-5 *4 (-892)) (-4 *3 (-1041)) (-5 *2 (-649 *1)) (-4 *1 (-710 *3)))) (-2555 (*1 *2 *1) (-12 (-4 *1 (-710 *3)) (-4 *3 (-1041)) (-5 *2 (-85))))) -(-13 (-527) (-10 -8 (-15 -2556 ((-649 $) |t#1| (-892))) (-15 -2555 ((-85) $)))) -(((-147) . T) ((-480) . T) ((-527) . T) ((-795) . T)) -((-4069 (((-2 (|:| -2113 (-647 (-499))) (|:| |basisDen| (-499)) (|:| |basisInv| (-647 (-499)))) (-499)) 72 T ELT)) (-4068 (((-2 (|:| -2113 (-647 (-499))) (|:| |basisDen| (-499)) (|:| |basisInv| (-647 (-499))))) 70 T ELT)) (-3907 (((-499)) 86 T ELT))) -(((-711 |#1| |#2|) (-10 -7 (-15 -3907 ((-499))) (-15 -4068 ((-2 (|:| -2113 (-647 (-499))) (|:| |basisDen| (-499)) (|:| |basisInv| (-647 (-499)))))) (-15 -4069 ((-2 (|:| -2113 (-647 (-499))) (|:| |basisDen| (-499)) (|:| |basisInv| (-647 (-499)))) (-499)))) (-1183 (-499)) (-364 (-499) |#1|)) (T -711)) -((-4069 (*1 *2 *3) (-12 (-5 *3 (-499)) (-4 *4 (-1183 *3)) (-5 *2 (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) (-5 *1 (-711 *4 *5)) (-4 *5 (-364 *3 *4)))) (-4068 (*1 *2) (-12 (-4 *3 (-1183 (-499))) (-5 *2 (-2 (|:| -2113 (-647 (-499))) (|:| |basisDen| (-499)) (|:| |basisInv| (-647 (-499))))) (-5 *1 (-711 *3 *4)) (-4 *4 (-364 (-499) *3)))) (-3907 (*1 *2) (-12 (-4 *3 (-1183 *2)) (-5 *2 (-499)) (-5 *1 (-711 *3 *4)) (-4 *4 (-364 *2 *3))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3294 (((-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (|:| |mdnia| (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))) $) 21 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 20 T ELT) (($ (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) 13 T ELT) (($ (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) 16 T ELT) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (|:| |mdnia| (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))))) 18 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-712) (-13 (-1041) (-10 -8 (-15 -4096 ($ (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))) (-15 -4096 ($ (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))) (-15 -4096 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (|:| |mdnia| (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))))) (-15 -3294 ((-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (|:| |mdnia| (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))) $))))) (T -712)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *1 (-712)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *1 (-712)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (|:| |mdnia| (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))))) (-5 *1 (-712)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (|:| |mdnia| (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))))) (-5 *1 (-712))))) -((-2626 (((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-884 |#1|))) 18 T ELT) (((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-884 |#1|)) (-599 (-1117))) 17 T ELT)) (-3721 (((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-884 |#1|))) 20 T ELT) (((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-884 |#1|)) (-599 (-1117))) 19 T ELT))) -(((-713 |#1|) (-10 -7 (-15 -2626 ((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-884 |#1|)) (-599 (-1117)))) (-15 -2626 ((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-884 |#1|)))) (-15 -3721 ((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-884 |#1|)) (-599 (-1117)))) (-15 -3721 ((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-884 |#1|))))) (-510)) (T -713)) -((-3721 (*1 *2 *3) (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *4)))))) (-5 *1 (-713 *4)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-599 (-1117))) (-4 *5 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *5)))))) (-5 *1 (-713 *5)))) (-2626 (*1 *2 *3) (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *4)))))) (-5 *1 (-713 *4)))) (-2626 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-599 (-1117))) (-4 *5 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *5)))))) (-5 *1 (-713 *5))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2600 (($ $ $) 10 T ELT)) (-1345 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2557 (($ $ (-499)) 11 T ELT)) (-3874 (($) NIL T CONST)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($ $) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-3324 (((-85) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3282 (($ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 6 T CONST)) (-2785 (($) NIL T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-714)) NIL T ELT) (($ $ (-857)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-714) (-13 (-738) (-684) (-10 -8 (-15 -2682 ($ $ $)) (-15 -2683 ($ $ $)) (-15 -3282 ($ $ $)) (-15 -3000 ((-2 (|:| -2075 $) (|:| -3023 $)) $ $)) (-15 -3606 ((-3 $ "failed") $ $)) (-15 -2557 ($ $ (-499))) (-15 -3115 ($ $)) (-6 (-4147 "*"))))) (T -714)) -((-2682 (*1 *1 *1 *1) (-5 *1 (-714))) (-2683 (*1 *1 *1 *1) (-5 *1 (-714))) (-3282 (*1 *1 *1 *1) (-5 *1 (-714))) (-3000 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2075 (-714)) (|:| -3023 (-714)))) (-5 *1 (-714)))) (-3606 (*1 *1 *1 *1) (|partial| -5 *1 (-714))) (-2557 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-714)))) (-3115 (*1 *1 *1) (-5 *1 (-714)))) -((-499) (|%not| (|%ilt| |#1| 0))) -((-3721 (((-3 |#2| "failed") |#2| |#2| (-86) (-1117)) 37 T ELT))) -(((-715 |#1| |#2|) (-10 -7 (-15 -3721 ((-3 |#2| "failed") |#2| |#2| (-86) (-1117)))) (-13 (-261) (-978 (-499)) (-596 (-499)) (-120)) (-13 (-29 |#1|) (-1143) (-898))) (T -715)) -((-3721 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *1 (-715 *5 *2)) (-4 *2 (-13 (-29 *5) (-1143) (-898)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 7 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 9 T ELT))) -(((-716) (-1041)) (T -716)) -NIL -((-4096 (((-716) |#1|) 8 T ELT))) -(((-717 |#1|) (-10 -7 (-15 -4096 ((-716) |#1|))) (-1157)) (T -717)) -((-4096 (*1 *2 *3) (-12 (-5 *2 (-716)) (-5 *1 (-717 *3)) (-4 *3 (-1157))))) -((-3254 ((|#2| |#4|) 35 T ELT))) -(((-718 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3254 (|#2| |#4|))) (-406) (-1183 |#1|) (-682 |#1| |#2|) (-1183 |#3|)) (T -718)) -((-3254 (*1 *2 *3) (-12 (-4 *4 (-406)) (-4 *5 (-682 *4 *2)) (-4 *2 (-1183 *4)) (-5 *1 (-718 *4 *2 *5 *3)) (-4 *3 (-1183 *5))))) -((-3607 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2560 (((-1213) (-1099) (-1099) |#4| |#5|) 33 T ELT)) (-2558 ((|#4| |#4| |#5|) 74 T ELT)) (-2559 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#5|) 79 T ELT)) (-2561 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|) 16 T ELT))) -(((-719 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3607 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2558 (|#4| |#4| |#5|)) (-15 -2559 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#5|)) (-15 -2560 ((-1213) (-1099) (-1099) |#4| |#5|)) (-15 -2561 ((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|) (-1011 |#1| |#2| |#3| |#4|)) (T -719)) -((-2561 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) (-5 *1 (-719 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-2560 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1099)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *4 (-1005 *6 *7 *8)) (-5 *2 (-1213)) (-5 *1 (-719 *6 *7 *8 *4 *5)) (-4 *5 (-1011 *6 *7 *8 *4)))) (-2559 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-719 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-2558 (*1 *2 *2 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *2 (-1005 *4 *5 *6)) (-5 *1 (-719 *4 *5 *6 *2 *3)) (-4 *3 (-1011 *4 *5 *6 *2)))) (-3607 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-719 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) -((-3295 (((-3 (-1111 (-1111 |#1|)) "failed") |#4|) 53 T ELT)) (-2562 (((-599 |#4|) |#4|) 22 T ELT)) (-4078 ((|#4| |#4|) 17 T ELT))) -(((-720 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2562 ((-599 |#4|) |#4|)) (-15 -3295 ((-3 (-1111 (-1111 |#1|)) "failed") |#4|)) (-15 -4078 (|#4| |#4|))) (-305) (-283 |#1|) (-1183 |#2|) (-1183 |#3|) (-857)) (T -720)) -((-4078 (*1 *2 *2) (-12 (-4 *3 (-305)) (-4 *4 (-283 *3)) (-4 *5 (-1183 *4)) (-5 *1 (-720 *3 *4 *5 *2 *6)) (-4 *2 (-1183 *5)) (-14 *6 (-857)))) (-3295 (*1 *2 *3) (|partial| -12 (-4 *4 (-305)) (-4 *5 (-283 *4)) (-4 *6 (-1183 *5)) (-5 *2 (-1111 (-1111 *4))) (-5 *1 (-720 *4 *5 *6 *3 *7)) (-4 *3 (-1183 *6)) (-14 *7 (-857)))) (-2562 (*1 *2 *3) (-12 (-4 *4 (-305)) (-4 *5 (-283 *4)) (-4 *6 (-1183 *5)) (-5 *2 (-599 *3)) (-5 *1 (-720 *4 *5 *6 *3 *7)) (-4 *3 (-1183 *6)) (-14 *7 (-857))))) -((-2563 (((-2 (|:| |deter| (-599 (-1111 |#5|))) (|:| |dterm| (-599 (-599 (-2 (|:| -3199 (-714)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-599 |#1|)) (|:| |nlead| (-599 |#5|))) (-1111 |#5|) (-599 |#1|) (-599 |#5|)) 72 T ELT)) (-2564 (((-599 (-714)) |#1|) 20 T ELT))) -(((-721 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2563 ((-2 (|:| |deter| (-599 (-1111 |#5|))) (|:| |dterm| (-599 (-599 (-2 (|:| -3199 (-714)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-599 |#1|)) (|:| |nlead| (-599 |#5|))) (-1111 |#5|) (-599 |#1|) (-599 |#5|))) (-15 -2564 ((-599 (-714)) |#1|))) (-1183 |#4|) (-738) (-781) (-261) (-888 |#4| |#2| |#3|)) (T -721)) -((-2564 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) (-5 *2 (-599 (-714))) (-5 *1 (-721 *3 *4 *5 *6 *7)) (-4 *3 (-1183 *6)) (-4 *7 (-888 *6 *4 *5)))) (-2563 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1183 *9)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *9 (-261)) (-4 *10 (-888 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-599 (-1111 *10))) (|:| |dterm| (-599 (-599 (-2 (|:| -3199 (-714)) (|:| |pcoef| *10))))) (|:| |nfacts| (-599 *6)) (|:| |nlead| (-599 *10)))) (-5 *1 (-721 *6 *7 *8 *9 *10)) (-5 *3 (-1111 *10)) (-5 *4 (-599 *6)) (-5 *5 (-599 *10))))) -((-2567 (((-599 (-2 (|:| |outval| |#1|) (|:| |outmult| (-499)) (|:| |outvect| (-599 (-647 |#1|))))) (-647 (-361 (-499))) |#1|) 31 T ELT)) (-2566 (((-599 |#1|) (-647 (-361 (-499))) |#1|) 21 T ELT)) (-2565 (((-884 (-361 (-499))) (-647 (-361 (-499))) (-1117)) 18 T ELT) (((-884 (-361 (-499))) (-647 (-361 (-499)))) 17 T ELT))) -(((-722 |#1|) (-10 -7 (-15 -2565 ((-884 (-361 (-499))) (-647 (-361 (-499))))) (-15 -2565 ((-884 (-361 (-499))) (-647 (-361 (-499))) (-1117))) (-15 -2566 ((-599 |#1|) (-647 (-361 (-499))) |#1|)) (-15 -2567 ((-599 (-2 (|:| |outval| |#1|) (|:| |outmult| (-499)) (|:| |outvect| (-599 (-647 |#1|))))) (-647 (-361 (-499))) |#1|))) (-13 (-318) (-780))) (T -722)) -((-2567 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-361 (-499)))) (-5 *2 (-599 (-2 (|:| |outval| *4) (|:| |outmult| (-499)) (|:| |outvect| (-599 (-647 *4)))))) (-5 *1 (-722 *4)) (-4 *4 (-13 (-318) (-780))))) (-2566 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-361 (-499)))) (-5 *2 (-599 *4)) (-5 *1 (-722 *4)) (-4 *4 (-13 (-318) (-780))))) (-2565 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-361 (-499)))) (-5 *4 (-1117)) (-5 *2 (-884 (-361 (-499)))) (-5 *1 (-722 *5)) (-4 *5 (-13 (-318) (-780))))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-647 (-361 (-499)))) (-5 *2 (-884 (-361 (-499)))) (-5 *1 (-722 *4)) (-4 *4 (-13 (-318) (-780)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 36 T ELT)) (-3204 (((-599 |#2|) $) NIL T ELT)) (-3206 (((-1111 $) $ |#2|) NIL T ELT) (((-1111 |#1|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 |#2|)) NIL T ELT)) (-3947 (($ $) 30 T ELT)) (-3304 (((-85) $ $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3905 (($ $ $) 110 (|has| |#1| (-510)) ELT)) (-3286 (((-599 $) $ $) 123 (|has| |#1| (-510)) ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-884 (-361 (-499)))) NIL (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#2| (-569 (-1117)))) ELT) (((-3 $ #1#) (-884 (-499))) NIL (-3677 (-12 (|has| |#1| (-38 (-499))) (|has| |#2| (-569 (-1117))) (-2679 (|has| |#1| (-38 (-361 (-499)))))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#2| (-569 (-1117))))) ELT) (((-3 $ #1#) (-884 |#1|)) NIL (-3677 (-12 (|has| |#2| (-569 (-1117))) (-2679 (|has| |#1| (-38 (-361 (-499))))) (-2679 (|has| |#1| (-38 (-499))))) (-12 (|has| |#1| (-38 (-499))) (|has| |#2| (-569 (-1117))) (-2679 (|has| |#1| (-38 (-361 (-499))))) (-2679 (|has| |#1| (-498)))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#2| (-569 (-1117))) (-2679 (|has| |#1| (-931 (-499)))))) ELT) (((-3 (-1065 |#1| |#2|) #1#) $) 21 T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) ((|#2| $) NIL T ELT) (($ (-884 (-361 (-499)))) NIL (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#2| (-569 (-1117)))) ELT) (($ (-884 (-499))) NIL (-3677 (-12 (|has| |#1| (-38 (-499))) (|has| |#2| (-569 (-1117))) (-2679 (|has| |#1| (-38 (-361 (-499)))))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#2| (-569 (-1117))))) ELT) (($ (-884 |#1|)) NIL (-3677 (-12 (|has| |#2| (-569 (-1117))) (-2679 (|has| |#1| (-38 (-361 (-499))))) (-2679 (|has| |#1| (-38 (-499))))) (-12 (|has| |#1| (-38 (-499))) (|has| |#2| (-569 (-1117))) (-2679 (|has| |#1| (-38 (-361 (-499))))) (-2679 (|has| |#1| (-498)))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#2| (-569 (-1117))) (-2679 (|has| |#1| (-931 (-499)))))) ELT) (((-1065 |#1| |#2|) $) NIL T ELT)) (-3906 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT) (($ $ $) 121 (|has| |#1| (-510)) ELT)) (-4109 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3844 (((-85) $ $) NIL T ELT) (((-85) $ (-599 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3310 (((-85) $) NIL T ELT)) (-3902 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 81 T ELT)) (-3281 (($ $) 136 (|has| |#1| (-406)) ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT) (($ $ |#2|) NIL (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-848)) ELT)) (-3292 (($ $) NIL (|has| |#1| (-510)) ELT)) (-3293 (($ $) NIL (|has| |#1| (-510)) ELT)) (-3303 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3302 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1694 (($ $ |#1| (-484 |#2|) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| |#1| (-821 (-333))) (|has| |#2| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| |#1| (-821 (-499))) (|has| |#2| (-821 (-499)))) ELT)) (-2528 (((-85) $) 57 T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3845 (((-85) $ $) NIL T ELT) (((-85) $ (-599 $)) NIL T ELT)) (-3283 (($ $ $ $ $) 107 (|has| |#1| (-510)) ELT)) (-3318 ((|#2| $) 22 T ELT)) (-3207 (($ (-1111 |#1|) |#2|) NIL T ELT) (($ (-1111 $) |#2|) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-484 |#2|)) NIL T ELT) (($ $ |#2| (-714)) 38 T ELT) (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT)) (-3297 (($ $ $) 63 T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ |#2|) NIL T ELT)) (-3311 (((-85) $) NIL T ELT)) (-2941 (((-484 |#2|) $) NIL T ELT) (((-714) $ |#2|) NIL T ELT) (((-599 (-714)) $ (-599 |#2|)) NIL T ELT)) (-3317 (((-714) $) 23 T ELT)) (-1695 (($ (-1 (-484 |#2|) (-484 |#2|)) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3205 (((-3 |#2| #1#) $) NIL T ELT)) (-3278 (($ $) NIL (|has| |#1| (-406)) ELT)) (-3279 (($ $) NIL (|has| |#1| (-406)) ELT)) (-3306 (((-599 $) $) NIL T ELT)) (-3309 (($ $) 39 T ELT)) (-3280 (($ $) NIL (|has| |#1| (-406)) ELT)) (-3307 (((-599 $) $) 43 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3308 (($ $) 41 T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3296 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3621 (-714))) $ $) 96 T ELT)) (-3298 (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $) 78 T ELT) (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $ |#2|) NIL T ELT)) (-3299 (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -3023 $)) $ $) NIL T ELT) (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -3023 $)) $ $ |#2|) NIL T ELT)) (-3301 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3300 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3328 (($ $ $) 125 (|has| |#1| (-510)) ELT)) (-3314 (((-599 $) $) 32 T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| |#2|) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3841 (((-85) $ $) NIL T ELT) (((-85) $ (-599 $)) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (-3586 (($ $) 24 T ELT)) (-3849 (((-85) $ $) NIL T ELT)) (-3842 (((-85) $ $) NIL T ELT) (((-85) $ (-599 $)) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (-3316 (($ $) 26 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3287 (((-2 (|:| -3282 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-510)) ELT)) (-3288 (((-2 (|:| -3282 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-510)) ELT)) (-1895 (((-85) $) 56 T ELT)) (-1894 ((|#1| $) 58 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-406)) ELT)) (-3282 ((|#1| |#1| $) 133 (|has| |#1| (-406)) ELT) (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-848)) ELT)) (-3289 (((-2 (|:| -3282 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-510)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-510)) ELT)) (-3290 (($ $ |#1|) 129 (|has| |#1| (-510)) ELT) (($ $ $) NIL (|has| |#1| (-510)) ELT)) (-3291 (($ $ |#1|) 128 (|has| |#1| (-510)) ELT) (($ $ $) NIL (|has| |#1| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-599 |#2|) (-599 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-599 |#2|) (-599 $)) NIL T ELT)) (-3907 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT) (($ $ |#2| (-714)) NIL T ELT) (($ $ (-599 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-4098 (((-484 |#2|) $) NIL T ELT) (((-714) $ |#2|) 45 T ELT) (((-599 (-714)) $ (-599 |#2|)) NIL T ELT)) (-3315 (($ $) NIL T ELT)) (-3313 (($ $) 35 T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| |#1| (-569 (-825 (-333)))) (|has| |#2| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| |#1| (-569 (-825 (-499)))) (|has| |#2| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| |#1| (-569 (-488))) (|has| |#2| (-569 (-488)))) ELT) (($ (-884 (-361 (-499)))) NIL (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#2| (-569 (-1117)))) ELT) (($ (-884 (-499))) NIL (-3677 (-12 (|has| |#1| (-38 (-499))) (|has| |#2| (-569 (-1117))) (-2679 (|has| |#1| (-38 (-361 (-499)))))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#2| (-569 (-1117))))) ELT) (($ (-884 |#1|)) NIL (|has| |#2| (-569 (-1117))) ELT) (((-1099) $) NIL (-12 (|has| |#1| (-978 (-499))) (|has| |#2| (-569 (-1117)))) ELT) (((-884 |#1|) $) NIL (|has| |#2| (-569 (-1117))) ELT)) (-2938 ((|#1| $) 132 (|has| |#1| (-406)) ELT) (($ $ |#2|) NIL (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-884 |#1|) $) NIL (|has| |#2| (-569 (-1117))) ELT) (((-1065 |#1| |#2|) $) 18 T ELT) (($ (-1065 |#1| |#2|)) 19 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-484 |#2|)) NIL T ELT) (($ $ |#2| (-714)) 47 T ELT) (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) 13 T CONST)) (-3305 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2785 (($) 37 T CONST)) (-3284 (($ $ $ $ (-714)) 105 (|has| |#1| (-510)) ELT)) (-3285 (($ $ $ (-714)) 104 (|has| |#1| (-510)) ELT)) (-2790 (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT) (($ $ |#2| (-714)) NIL T ELT) (($ $ (-599 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3989 (($ $ $) 85 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 70 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) -(((-723 |#1| |#2|) (-13 (-1005 |#1| (-484 |#2|) |#2|) (-568 (-1065 |#1| |#2|)) (-978 (-1065 |#1| |#2|))) (-989) (-781)) (T -723)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 12 T ELT)) (-3917 (((-1207 |#1|) $ (-714)) NIL T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3915 (($ (-1111 |#1|)) NIL T ELT)) (-3206 (((-1111 $) $ (-1022)) NIL T ELT) (((-1111 |#1|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-1022))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2571 (((-599 $) $ $) 54 (|has| |#1| (-510)) ELT)) (-3905 (($ $ $) 50 (|has| |#1| (-510)) ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3911 (($ $ (-714)) NIL T ELT)) (-3910 (($ $ (-714)) NIL T ELT)) (-3901 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-406)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-1022) #1#) $) NIL T ELT) (((-3 (-1111 |#1|) #1#) $) 10 T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-1022) $) NIL T ELT) (((-1111 |#1|) $) NIL T ELT)) (-3906 (($ $ $ (-1022)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 58 (|has| |#1| (-146)) ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3909 (($ $ $) NIL T ELT)) (-3903 (($ $ $) 87 (|has| |#1| (-510)) ELT)) (-3902 (((-2 (|:| -4104 |#1|) (|:| -2075 $) (|:| -3023 $)) $ $) 86 (|has| |#1| (-510)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT) (($ $ (-1022)) NIL (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| (-714) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-1022) (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-1022) (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-3922 (((-714) $ $) NIL (|has| |#1| (-510)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-1092)) ELT)) (-3207 (($ (-1111 |#1|) (-1022)) NIL T ELT) (($ (-1111 $) (-1022)) NIL T ELT)) (-3927 (($ $ (-714)) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-714)) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-3297 (($ $ $) 27 T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-1022)) NIL T ELT) (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-2941 (((-714) $) NIL T ELT) (((-714) $ (-1022)) NIL T ELT) (((-599 (-714)) $ (-599 (-1022))) NIL T ELT)) (-1695 (($ (-1 (-714) (-714)) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3916 (((-1111 |#1|) $) NIL T ELT)) (-3205 (((-3 (-1022) #1#) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3296 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3621 (-714))) $ $) 37 T ELT)) (-2573 (($ $ $) 41 T ELT)) (-2572 (($ $ $) 47 T ELT)) (-3298 (((-2 (|:| -4104 |#1|) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $) 46 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3328 (($ $ $) 56 (|has| |#1| (-510)) ELT)) (-3912 (((-2 (|:| -2075 $) (|:| -3023 $)) $ (-714)) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-1022)) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3962 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3586 (($) NIL (|has| |#1| (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-3287 (((-2 (|:| -3282 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-510)) ELT)) (-3288 (((-2 (|:| -3282 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-510)) ELT)) (-2568 (((-2 (|:| -3906 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-510)) ELT)) (-2569 (((-2 (|:| -3906 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-510)) ELT)) (-1895 (((-85) $) 13 T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3888 (($ $ (-714) |#1| $) 26 T ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-848)) ELT)) (-3289 (((-2 (|:| -3282 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-510)) ELT)) (-2570 (((-2 (|:| -3906 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-510)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-1022) |#1|) NIL T ELT) (($ $ (-599 (-1022)) (-599 |#1|)) NIL T ELT) (($ $ (-1022) $) NIL T ELT) (($ $ (-599 (-1022)) (-599 $)) NIL T ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-361 $) (-361 $) (-361 $)) NIL (|has| |#1| (-510)) ELT) ((|#1| (-361 $) |#1|) NIL (|has| |#1| (-318)) ELT) (((-361 $) $ (-361 $)) NIL (|has| |#1| (-510)) ELT)) (-3914 (((-3 $ #1#) $ (-714)) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3907 (($ $ (-1022)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022))) NIL T ELT) (($ $ (-1022)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-4098 (((-714) $) NIL T ELT) (((-714) $ (-1022)) NIL T ELT) (((-599 (-714)) $ (-599 (-1022))) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-1022) (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-1022) (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-1022) (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT) (($ $ (-1022)) NIL (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-3904 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT) (((-3 (-361 $) #1#) (-361 $) $) NIL (|has| |#1| (-510)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1022)) NIL T ELT) (((-1111 |#1|) $) 7 T ELT) (($ (-1111 |#1|)) 8 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-714)) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) 28 T CONST)) (-2785 (($) 32 T CONST)) (-2790 (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022))) NIL T ELT) (($ $ (-1022)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) -(((-724 |#1|) (-13 (-1183 |#1|) (-568 (-1111 |#1|)) (-978 (-1111 |#1|)) (-10 -8 (-15 -3888 ($ $ (-714) |#1| $)) (-15 -3297 ($ $ $)) (-15 -3296 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3621 (-714))) $ $)) (-15 -2573 ($ $ $)) (-15 -3298 ((-2 (|:| -4104 |#1|) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $)) (-15 -2572 ($ $ $)) (IF (|has| |#1| (-510)) (PROGN (-15 -2571 ((-599 $) $ $)) (-15 -3328 ($ $ $)) (-15 -3289 ((-2 (|:| -3282 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3288 ((-2 (|:| -3282 $) (|:| |coef1| $)) $ $)) (-15 -3287 ((-2 (|:| -3282 $) (|:| |coef2| $)) $ $)) (-15 -2570 ((-2 (|:| -3906 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2569 ((-2 (|:| -3906 |#1|) (|:| |coef1| $)) $ $)) (-15 -2568 ((-2 (|:| -3906 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-989)) (T -724)) -((-3888 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-714)) (-5 *1 (-724 *3)) (-4 *3 (-989)))) (-3297 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-989)))) (-3296 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-724 *3)) (|:| |polden| *3) (|:| -3621 (-714)))) (-5 *1 (-724 *3)) (-4 *3 (-989)))) (-2573 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-989)))) (-3298 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4104 *3) (|:| |gap| (-714)) (|:| -2075 (-724 *3)) (|:| -3023 (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-989)))) (-2572 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-989)))) (-2571 (*1 *2 *1 *1) (-12 (-5 *2 (-599 (-724 *3))) (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989)))) (-3328 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-510)) (-4 *2 (-989)))) (-3289 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3282 (-724 *3)) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989)))) (-3288 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3282 (-724 *3)) (|:| |coef1| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989)))) (-3287 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3282 (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989)))) (-2570 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3906 *3) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989)))) (-2569 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3906 *3) (|:| |coef1| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989)))) (-2568 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3906 *3) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989))))) -((-4108 (((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|)) 13 T ELT))) -(((-725 |#1| |#2|) (-10 -7 (-15 -4108 ((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|)))) (-989) (-989)) (T -725)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-724 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-5 *2 (-724 *6)) (-5 *1 (-725 *5 *6))))) -((-2575 ((|#1| (-714) |#1|) 33 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2922 ((|#1| (-714) |#1|) 23 T ELT)) (-2574 ((|#1| (-714) |#1|) 35 (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-726 |#1|) (-10 -7 (-15 -2922 (|#1| (-714) |#1|)) (IF (|has| |#1| (-38 (-361 (-499)))) (PROGN (-15 -2574 (|#1| (-714) |#1|)) (-15 -2575 (|#1| (-714) |#1|))) |%noBranch|)) (-146)) (T -726)) -((-2575 (*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-726 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-146)))) (-2574 (*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-726 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-146)))) (-2922 (*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-726 *2)) (-4 *2 (-146))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |#4|)))) (-599 |#4|)) 90 T ELT)) (-3832 (((-599 $) (-599 |#4|)) 91 T ELT) (((-599 $) (-599 |#4|) (-85)) 118 T ELT)) (-3204 (((-599 |#3|) $) 37 T ELT)) (-3029 (((-85) $) 30 T ELT)) (-3020 (((-85) $) 21 (|has| |#1| (-510)) ELT)) (-3843 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3838 ((|#4| |#4| $) 97 T ELT)) (-3925 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| $) 133 T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3860 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -4145)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3874 (($) 46 T CONST)) (-3025 (((-85) $) 26 (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) 28 (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) 27 (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) 29 (|has| |#1| (-510)) ELT)) (-3839 (((-599 |#4|) (-599 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) 22 (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) 23 (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ "failed") (-599 |#4|)) 40 T ELT)) (-3294 (($ (-599 |#4|)) 39 T ELT)) (-3949 (((-3 $ #1#) $) 87 T ELT)) (-3835 ((|#4| |#4| $) 94 T ELT)) (-1386 (($ $) 69 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#4| $) 68 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-510)) ELT)) (-3844 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3833 ((|#4| |#4| $) 92 T ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4145)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#4|)) (|:| -1795 (-599 |#4|))) $) 110 T ELT)) (-3335 (((-85) |#4| $) 143 T ELT)) (-3333 (((-85) |#4| $) 140 T ELT)) (-3336 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-3010 (((-599 |#4|) $) 53 (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3318 ((|#3| $) 38 T ELT)) (-2727 (((-599 |#4|) $) 54 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3035 (((-599 |#3|) $) 36 T ELT)) (-3034 (((-85) |#3| $) 35 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3329 (((-3 |#4| (-599 $)) |#4| |#4| $) 135 T ELT)) (-3328 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| |#4| $) 134 T ELT)) (-3948 (((-3 |#4| #1#) $) 88 T ELT)) (-3330 (((-599 $) |#4| $) 136 T ELT)) (-3332 (((-3 (-85) (-599 $)) |#4| $) 139 T ELT)) (-3331 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3376 (((-599 $) |#4| $) 132 T ELT) (((-599 $) (-599 |#4|) $) 131 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 130 T ELT) (((-599 $) |#4| (-599 $)) 129 T ELT)) (-3580 (($ |#4| $) 124 T ELT) (($ (-599 |#4|) $) 123 T ELT)) (-3847 (((-599 |#4|) $) 112 T ELT)) (-3841 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3836 ((|#4| |#4| $) 95 T ELT)) (-3849 (((-85) $ $) 115 T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-510)) ELT)) (-3842 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3837 ((|#4| |#4| $) 96 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3951 (((-3 |#4| #1#) $) 89 T ELT)) (-1387 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3829 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3919 (($ $ |#4|) 82 T ELT) (((-599 $) |#4| $) 122 T ELT) (((-599 $) |#4| (-599 $)) 121 T ELT) (((-599 $) (-599 |#4|) $) 120 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 119 T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) 60 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) 58 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) 57 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) 42 T ELT)) (-3543 (((-85) $) 45 T ELT)) (-3713 (($) 44 T ELT)) (-4098 (((-714) $) 111 T ELT)) (-2048 (((-714) |#4| $) 55 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 43 T ELT)) (-4122 (((-488) $) 70 (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) 61 T ELT)) (-3031 (($ $ |#3|) 32 T ELT)) (-3033 (($ $ |#3|) 34 T ELT)) (-3834 (($ $) 93 T ELT)) (-3032 (($ $ |#3|) 33 T ELT)) (-4096 (((-797) $) 13 T ELT) (((-599 |#4|) $) 41 T ELT)) (-3828 (((-714) $) 81 (|has| |#3| (-323)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3840 (((-85) $ (-1 (-85) |#4| (-599 |#4|))) 103 T ELT)) (-3327 (((-599 $) |#4| $) 128 T ELT) (((-599 $) |#4| (-599 $)) 127 T ELT) (((-599 $) (-599 |#4|) $) 126 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 125 T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 |#3|) $) 86 T ELT)) (-3334 (((-85) |#4| $) 142 T ELT)) (-4083 (((-85) |#3| $) 85 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4107 (((-714) $) 47 (|has| $ (-6 -4145)) ELT))) -(((-727 |#1| |#2| |#3| |#4|) (-113) (-406) (-738) (-781) (-1005 |t#1| |t#2| |t#3|)) (T -727)) -NIL -(-13 (-1011 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-73) . T) ((-568 (-599 |#4|)) . T) ((-568 (-797)) . T) ((-124 |#4|) . T) ((-569 (-488)) |has| |#4| (-569 (-488))) ((-263 |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-443 |#4|) . T) ((-468 |#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1011 |#1| |#2| |#3| |#4|) . T) ((-1041) . T) ((-1152 |#1| |#2| |#3| |#4|) . T) ((-1157) . T)) -((-2578 (((-3 (-333) #1="failed") (-268 |#1|) (-857)) 62 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-3 (-333) #1#) (-268 |#1|)) 54 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-3 (-333) #1#) (-361 (-884 |#1|)) (-857)) 41 (|has| |#1| (-510)) ELT) (((-3 (-333) #1#) (-361 (-884 |#1|))) 40 (|has| |#1| (-510)) ELT) (((-3 (-333) #1#) (-884 |#1|) (-857)) 31 (|has| |#1| (-989)) ELT) (((-3 (-333) #1#) (-884 |#1|)) 30 (|has| |#1| (-989)) ELT)) (-2576 (((-333) (-268 |#1|) (-857)) 99 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-333) (-268 |#1|)) 94 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-333) (-361 (-884 |#1|)) (-857)) 91 (|has| |#1| (-510)) ELT) (((-333) (-361 (-884 |#1|))) 90 (|has| |#1| (-510)) ELT) (((-333) (-884 |#1|) (-857)) 86 (|has| |#1| (-989)) ELT) (((-333) (-884 |#1|)) 85 (|has| |#1| (-989)) ELT) (((-333) |#1| (-857)) 76 T ELT) (((-333) |#1|) 22 T ELT)) (-2579 (((-3 (-142 (-333)) #1#) (-268 (-142 |#1|)) (-857)) 71 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-3 (-142 (-333)) #1#) (-268 (-142 |#1|))) 70 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-3 (-142 (-333)) #1#) (-268 |#1|) (-857)) 63 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-3 (-142 (-333)) #1#) (-268 |#1|)) 61 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-3 (-142 (-333)) #1#) (-361 (-884 (-142 |#1|))) (-857)) 46 (|has| |#1| (-510)) ELT) (((-3 (-142 (-333)) #1#) (-361 (-884 (-142 |#1|)))) 45 (|has| |#1| (-510)) ELT) (((-3 (-142 (-333)) #1#) (-361 (-884 |#1|)) (-857)) 39 (|has| |#1| (-510)) ELT) (((-3 (-142 (-333)) #1#) (-361 (-884 |#1|))) 38 (|has| |#1| (-510)) ELT) (((-3 (-142 (-333)) #1#) (-884 |#1|) (-857)) 28 (|has| |#1| (-989)) ELT) (((-3 (-142 (-333)) #1#) (-884 |#1|)) 26 (|has| |#1| (-989)) ELT) (((-3 (-142 (-333)) #1#) (-884 (-142 |#1|)) (-857)) 18 (|has| |#1| (-146)) ELT) (((-3 (-142 (-333)) #1#) (-884 (-142 |#1|))) 15 (|has| |#1| (-146)) ELT)) (-2577 (((-142 (-333)) (-268 (-142 |#1|)) (-857)) 102 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-142 (-333)) (-268 (-142 |#1|))) 101 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-142 (-333)) (-268 |#1|) (-857)) 100 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-142 (-333)) (-268 |#1|)) 98 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-142 (-333)) (-361 (-884 (-142 |#1|))) (-857)) 93 (|has| |#1| (-510)) ELT) (((-142 (-333)) (-361 (-884 (-142 |#1|)))) 92 (|has| |#1| (-510)) ELT) (((-142 (-333)) (-361 (-884 |#1|)) (-857)) 89 (|has| |#1| (-510)) ELT) (((-142 (-333)) (-361 (-884 |#1|))) 88 (|has| |#1| (-510)) ELT) (((-142 (-333)) (-884 |#1|) (-857)) 84 (|has| |#1| (-989)) ELT) (((-142 (-333)) (-884 |#1|)) 83 (|has| |#1| (-989)) ELT) (((-142 (-333)) (-884 (-142 |#1|)) (-857)) 78 (|has| |#1| (-146)) ELT) (((-142 (-333)) (-884 (-142 |#1|))) 77 (|has| |#1| (-146)) ELT) (((-142 (-333)) (-142 |#1|) (-857)) 80 (|has| |#1| (-146)) ELT) (((-142 (-333)) (-142 |#1|)) 79 (|has| |#1| (-146)) ELT) (((-142 (-333)) |#1| (-857)) 27 T ELT) (((-142 (-333)) |#1|) 25 T ELT))) -(((-728 |#1|) (-10 -7 (-15 -2576 ((-333) |#1|)) (-15 -2576 ((-333) |#1| (-857))) (-15 -2577 ((-142 (-333)) |#1|)) (-15 -2577 ((-142 (-333)) |#1| (-857))) (IF (|has| |#1| (-146)) (PROGN (-15 -2577 ((-142 (-333)) (-142 |#1|))) (-15 -2577 ((-142 (-333)) (-142 |#1|) (-857))) (-15 -2577 ((-142 (-333)) (-884 (-142 |#1|)))) (-15 -2577 ((-142 (-333)) (-884 (-142 |#1|)) (-857)))) |%noBranch|) (IF (|has| |#1| (-989)) (PROGN (-15 -2576 ((-333) (-884 |#1|))) (-15 -2576 ((-333) (-884 |#1|) (-857))) (-15 -2577 ((-142 (-333)) (-884 |#1|))) (-15 -2577 ((-142 (-333)) (-884 |#1|) (-857)))) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -2576 ((-333) (-361 (-884 |#1|)))) (-15 -2576 ((-333) (-361 (-884 |#1|)) (-857))) (-15 -2577 ((-142 (-333)) (-361 (-884 |#1|)))) (-15 -2577 ((-142 (-333)) (-361 (-884 |#1|)) (-857))) (-15 -2577 ((-142 (-333)) (-361 (-884 (-142 |#1|))))) (-15 -2577 ((-142 (-333)) (-361 (-884 (-142 |#1|))) (-857))) (IF (|has| |#1| (-781)) (PROGN (-15 -2576 ((-333) (-268 |#1|))) (-15 -2576 ((-333) (-268 |#1|) (-857))) (-15 -2577 ((-142 (-333)) (-268 |#1|))) (-15 -2577 ((-142 (-333)) (-268 |#1|) (-857))) (-15 -2577 ((-142 (-333)) (-268 (-142 |#1|)))) (-15 -2577 ((-142 (-333)) (-268 (-142 |#1|)) (-857)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-15 -2579 ((-3 (-142 (-333)) #1="failed") (-884 (-142 |#1|)))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-884 (-142 |#1|)) (-857)))) |%noBranch|) (IF (|has| |#1| (-989)) (PROGN (-15 -2578 ((-3 (-333) #1#) (-884 |#1|))) (-15 -2578 ((-3 (-333) #1#) (-884 |#1|) (-857))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-884 |#1|))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-884 |#1|) (-857)))) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -2578 ((-3 (-333) #1#) (-361 (-884 |#1|)))) (-15 -2578 ((-3 (-333) #1#) (-361 (-884 |#1|)) (-857))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-361 (-884 |#1|)))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-361 (-884 |#1|)) (-857))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-361 (-884 (-142 |#1|))))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-361 (-884 (-142 |#1|))) (-857))) (IF (|has| |#1| (-781)) (PROGN (-15 -2578 ((-3 (-333) #1#) (-268 |#1|))) (-15 -2578 ((-3 (-333) #1#) (-268 |#1|) (-857))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-268 |#1|))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-268 |#1|) (-857))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-268 (-142 |#1|)))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-268 (-142 |#1|)) (-857)))) |%noBranch|)) |%noBranch|)) (-569 (-333))) (T -728)) -((-2579 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-268 (-142 *5))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2579 (*1 *2 *3) (|partial| -12 (-5 *3 (-268 (-142 *4))) (-4 *4 (-510)) (-4 *4 (-781)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2579 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-268 *5)) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2579 (*1 *2 *3) (|partial| -12 (-5 *3 (-268 *4)) (-4 *4 (-510)) (-4 *4 (-781)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2578 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-268 *5)) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5)))) (-2578 (*1 *2 *3) (|partial| -12 (-5 *3 (-268 *4)) (-4 *4 (-510)) (-4 *4 (-781)) (-4 *4 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *4)))) (-2579 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-361 (-884 (-142 *5)))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2579 (*1 *2 *3) (|partial| -12 (-5 *3 (-361 (-884 (-142 *4)))) (-4 *4 (-510)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2579 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2579 (*1 *2 *3) (|partial| -12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2578 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5)))) (-2578 (*1 *2 *3) (|partial| -12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-4 *4 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *4)))) (-2579 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-884 *5)) (-5 *4 (-857)) (-4 *5 (-989)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2579 (*1 *2 *3) (|partial| -12 (-5 *3 (-884 *4)) (-4 *4 (-989)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2578 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-884 *5)) (-5 *4 (-857)) (-4 *5 (-989)) (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5)))) (-2578 (*1 *2 *3) (|partial| -12 (-5 *3 (-884 *4)) (-4 *4 (-989)) (-4 *4 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *4)))) (-2579 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-884 (-142 *5))) (-5 *4 (-857)) (-4 *5 (-146)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2579 (*1 *2 *3) (|partial| -12 (-5 *3 (-884 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-268 (-142 *5))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-268 (-142 *4))) (-4 *4 (-510)) (-4 *4 (-781)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-268 *5)) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-268 *4)) (-4 *4 (-510)) (-4 *4 (-781)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2576 (*1 *2 *3 *4) (-12 (-5 *3 (-268 *5)) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-268 *4)) (-4 *4 (-510)) (-4 *4 (-781)) (-4 *4 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 (-142 *5)))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-361 (-884 (-142 *4)))) (-4 *4 (-510)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2576 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-4 *4 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-884 *5)) (-5 *4 (-857)) (-4 *5 (-989)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-884 *4)) (-4 *4 (-989)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2576 (*1 *2 *3 *4) (-12 (-5 *3 (-884 *5)) (-5 *4 (-857)) (-4 *5 (-989)) (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-884 *4)) (-4 *4 (-989)) (-4 *4 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-884 (-142 *5))) (-5 *4 (-857)) (-4 *5 (-146)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-884 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-142 *5)) (-5 *4 (-857)) (-4 *5 (-146)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *4 (-857)) (-5 *2 (-142 (-333))) (-5 *1 (-728 *3)) (-4 *3 (-569 (-333))))) (-2577 (*1 *2 *3) (-12 (-5 *2 (-142 (-333))) (-5 *1 (-728 *3)) (-4 *3 (-569 (-333))))) (-2576 (*1 *2 *3 *4) (-12 (-5 *4 (-857)) (-5 *2 (-333)) (-5 *1 (-728 *3)) (-4 *3 (-569 *2)))) (-2576 (*1 *2 *3) (-12 (-5 *2 (-333)) (-5 *1 (-728 *3)) (-4 *3 (-569 *2))))) -((-2583 (((-857) (-1099)) 90 T ELT)) (-2585 (((-3 (-333) "failed") (-1099)) 36 T ELT)) (-2584 (((-333) (-1099)) 34 T ELT)) (-2581 (((-857) (-1099)) 64 T ELT)) (-2582 (((-1099) (-857)) 74 T ELT)) (-2580 (((-1099) (-857)) 63 T ELT))) -(((-729) (-10 -7 (-15 -2580 ((-1099) (-857))) (-15 -2581 ((-857) (-1099))) (-15 -2582 ((-1099) (-857))) (-15 -2583 ((-857) (-1099))) (-15 -2584 ((-333) (-1099))) (-15 -2585 ((-3 (-333) "failed") (-1099))))) (T -729)) -((-2585 (*1 *2 *3) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-729)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-729)))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-857)) (-5 *1 (-729)))) (-2582 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1099)) (-5 *1 (-729)))) (-2581 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-857)) (-5 *1 (-729)))) (-2580 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1099)) (-5 *1 (-729))))) -((-2687 (((-85) $ $) 7 T ELT)) (-2586 (((-975) (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179))) (-975)) 19 T ELT) (((-975) (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179))) (-975)) 17 T ELT)) (-2787 (((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)) (|:| |extra| (-975))) (-1003) (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) 20 T ELT) (((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)) (|:| |extra| (-975))) (-1003) (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) 18 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-730) (-113)) (T -730)) -((-2787 (*1 *2 *3 *4) (-12 (-4 *1 (-730)) (-5 *3 (-1003)) (-5 *4 (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)) (|:| |extra| (-975)))))) (-2586 (*1 *2 *3 *2) (-12 (-4 *1 (-730)) (-5 *2 (-975)) (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))))) (-2787 (*1 *2 *3 *4) (-12 (-4 *1 (-730)) (-5 *3 (-1003)) (-5 *4 (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)) (|:| |extra| (-975)))))) (-2586 (*1 *2 *3 *2) (-12 (-4 *1 (-730)) (-5 *2 (-975)) (-5 *3 (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))))) -(-13 (-1041) (-10 -7 (-15 -2787 ((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)) (|:| |extra| (-975))) (-1003) (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))) (-15 -2586 ((-975) (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179))) (-975))) (-15 -2787 ((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)) (|:| |extra| (-975))) (-1003) (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))) (-15 -2586 ((-975) (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179))) (-975))))) -(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-2589 (((-1213) (-1207 (-333)) (-499) (-333) (-2 (|:| |tryValue| (-333)) (|:| |did| (-333)) (|:| -1508 (-333))) (-333) (-1207 (-333)) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333))) 54 T ELT) (((-1213) (-1207 (-333)) (-499) (-333) (-2 (|:| |tryValue| (-333)) (|:| |did| (-333)) (|:| -1508 (-333))) (-333) (-1207 (-333)) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333))) 51 T ELT)) (-2590 (((-1213) (-1207 (-333)) (-499) (-333) (-333) (-499) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333))) 61 T ELT)) (-2588 (((-1213) (-1207 (-333)) (-499) (-333) (-333) (-333) (-333) (-499) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333))) 49 T ELT)) (-2587 (((-1213) (-1207 (-333)) (-499) (-333) (-333) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333))) 63 T ELT) (((-1213) (-1207 (-333)) (-499) (-333) (-333) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333))) 62 T ELT))) -(((-731) (-10 -7 (-15 -2587 ((-1213) (-1207 (-333)) (-499) (-333) (-333) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333)))) (-15 -2587 ((-1213) (-1207 (-333)) (-499) (-333) (-333) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)))) (-15 -2588 ((-1213) (-1207 (-333)) (-499) (-333) (-333) (-333) (-333) (-499) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333)))) (-15 -2589 ((-1213) (-1207 (-333)) (-499) (-333) (-2 (|:| |tryValue| (-333)) (|:| |did| (-333)) (|:| -1508 (-333))) (-333) (-1207 (-333)) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333)))) (-15 -2589 ((-1213) (-1207 (-333)) (-499) (-333) (-2 (|:| |tryValue| (-333)) (|:| |did| (-333)) (|:| -1508 (-333))) (-333) (-1207 (-333)) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)))) (-15 -2590 ((-1213) (-1207 (-333)) (-499) (-333) (-333) (-499) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333)))))) (T -731)) -((-2590 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-499)) (-5 *6 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731)))) (-2589 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-499)) (-5 *6 (-2 (|:| |tryValue| (-333)) (|:| |did| (-333)) (|:| -1508 (-333)))) (-5 *7 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731)))) (-2589 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-499)) (-5 *6 (-2 (|:| |tryValue| (-333)) (|:| |did| (-333)) (|:| -1508 (-333)))) (-5 *7 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731)))) (-2588 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-499)) (-5 *6 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731)))) (-2587 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-499)) (-5 *6 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731)))) (-2587 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-499)) (-5 *6 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731))))) -((-2599 (((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499)) 65 T ELT)) (-2596 (((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499)) 40 T ELT)) (-2598 (((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499)) 64 T ELT)) (-2595 (((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499)) 38 T ELT)) (-2597 (((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499)) 63 T ELT)) (-2594 (((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499)) 24 T ELT)) (-2593 (((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499) (-499)) 41 T ELT)) (-2592 (((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499) (-499)) 39 T ELT)) (-2591 (((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499) (-499)) 37 T ELT))) -(((-732) (-10 -7 (-15 -2591 ((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499) (-499))) (-15 -2592 ((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499) (-499))) (-15 -2593 ((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499) (-499))) (-15 -2594 ((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499))) (-15 -2595 ((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499))) (-15 -2596 ((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499))) (-15 -2597 ((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499))) (-15 -2598 ((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499))) (-15 -2599 ((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499))))) (T -732)) -((-2599 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) (|:| |success| (-85)))) (-5 *1 (-732)) (-5 *5 (-499)))) (-2598 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) (|:| |success| (-85)))) (-5 *1 (-732)) (-5 *5 (-499)))) (-2597 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) (|:| |success| (-85)))) (-5 *1 (-732)) (-5 *5 (-499)))) (-2596 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) (|:| |success| (-85)))) (-5 *1 (-732)) (-5 *5 (-499)))) (-2595 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) (|:| |success| (-85)))) (-5 *1 (-732)) (-5 *5 (-499)))) (-2594 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) (|:| |success| (-85)))) (-5 *1 (-732)) (-5 *5 (-499)))) (-2593 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) (|:| |success| (-85)))) (-5 *1 (-732)) (-5 *5 (-499)))) (-2592 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) (|:| |success| (-85)))) (-5 *1 (-732)) (-5 *5 (-499)))) (-2591 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) (|:| |success| (-85)))) (-5 *1 (-732)) (-5 *5 (-499))))) -((-3855 (((-1153 |#1|) |#1| (-179) (-499)) 69 T ELT))) -(((-733 |#1|) (-10 -7 (-15 -3855 ((-1153 |#1|) |#1| (-179) (-499)))) (-914)) (T -733)) -((-3855 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-179)) (-5 *5 (-499)) (-5 *2 (-1153 *3)) (-5 *1 (-733 *3)) (-4 *3 (-914))))) -((-3773 (((-499) $) 17 T ELT)) (-3325 (((-85) $) 10 T ELT)) (-3523 (($ $) 19 T ELT))) -(((-734 |#1|) (-10 -7 (-15 -3523 (|#1| |#1|)) (-15 -3773 ((-499) |#1|)) (-15 -3325 ((-85) |#1|))) (-735)) (T -734)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 31 T ELT)) (-1345 (((-3 $ "failed") $ $) 34 T ELT)) (-3773 (((-499) $) 37 T ELT)) (-3874 (($) 30 T CONST)) (-3324 (((-85) $) 28 T ELT)) (-3325 (((-85) $) 38 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3523 (($ $) 36 T ELT)) (-2779 (($) 29 T CONST)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT)) (-3987 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3989 (($ $ $) 25 T ELT)) (* (($ (-857) $) 26 T ELT) (($ (-714) $) 32 T ELT) (($ (-499) $) 39 T ELT))) -(((-735) (-113)) (T -735)) -((-3325 (*1 *2 *1) (-12 (-4 *1 (-735)) (-5 *2 (-85)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-735)) (-5 *2 (-499)))) (-3523 (*1 *1 *1) (-4 *1 (-735)))) -(-13 (-742) (-21) (-10 -8 (-15 -3325 ((-85) $)) (-15 -3773 ((-499) $)) (-15 -3523 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-737) . T) ((-739) . T) ((-742) . T) ((-781) . T) ((-784) . T) ((-1041) . T) ((-1157) . T)) -((-3324 (((-85) $) 10 T ELT))) -(((-736 |#1|) (-10 -7 (-15 -3324 ((-85) |#1|))) (-737)) (T -736)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 31 T ELT)) (-3874 (($) 30 T CONST)) (-3324 (((-85) $) 28 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 29 T CONST)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT)) (-3989 (($ $ $) 25 T ELT)) (* (($ (-857) $) 26 T ELT) (($ (-714) $) 32 T ELT))) -(((-737) (-113)) (T -737)) -((-3324 (*1 *2 *1) (-12 (-4 *1 (-737)) (-5 *2 (-85))))) -(-13 (-739) (-23) (-10 -8 (-15 -3324 ((-85) $)))) -(((-23) . T) ((-25) . T) ((-73) . T) ((-568 (-797)) . T) ((-739) . T) ((-781) . T) ((-784) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 31 T ELT)) (-2600 (($ $ $) 35 T ELT)) (-1345 (((-3 $ "failed") $ $) 34 T ELT)) (-3874 (($) 30 T CONST)) (-3324 (((-85) $) 28 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 29 T CONST)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT)) (-3989 (($ $ $) 25 T ELT)) (* (($ (-857) $) 26 T ELT) (($ (-714) $) 32 T ELT))) -(((-738) (-113)) (T -738)) -((-2600 (*1 *1 *1 *1) (-4 *1 (-738)))) -(-13 (-742) (-10 -8 (-15 -2600 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-737) . T) ((-739) . T) ((-742) . T) ((-781) . T) ((-784) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) 7 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT)) (-3989 (($ $ $) 25 T ELT)) (* (($ (-857) $) 26 T ELT))) -(((-739) (-113)) (T -739)) -NIL -(-13 (-781) (-25)) -(((-25) . T) ((-73) . T) ((-568 (-797)) . T) ((-781) . T) ((-784) . T) ((-1041) . T) ((-1157) . T)) -((-3326 (((-85) $) 42 T ELT)) (-3295 (((-3 (-499) #1="failed") $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3294 (((-499) $) NIL T ELT) (((-361 (-499)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) 78 T ELT)) (-3144 (((-85) $) 72 T ELT)) (-3143 (((-361 (-499)) $) 76 T ELT)) (-3254 ((|#2| $) 26 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2601 (($ $) 58 T ELT)) (-4122 (((-488) $) 67 T ELT)) (-3130 (($ $) 21 T ELT)) (-4096 (((-797) $) 53 T ELT) (($ (-499)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-361 (-499))) NIL T ELT)) (-3248 (((-714)) 10 T ELT)) (-3523 ((|#2| $) 71 T ELT)) (-3174 (((-85) $ $) 30 T ELT)) (-2806 (((-85) $ $) 69 T ELT)) (-3987 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 31 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) -(((-740 |#1| |#2|) (-10 -7 (-15 -2806 ((-85) |#1| |#1|)) (-15 -4122 ((-488) |#1|)) (-15 -2601 (|#1| |#1|)) (-15 -3145 ((-3 (-361 (-499)) #1="failed") |#1|)) (-15 -3143 ((-361 (-499)) |#1|)) (-15 -3144 ((-85) |#1|)) (-15 -3523 (|#2| |#1|)) (-15 -3254 (|#2| |#1|)) (-15 -3130 (|#1| |#1|)) (-15 -4108 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -4096 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3248 ((-714))) (-15 -4096 (|#1| (-499))) (-15 * (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 -3326 ((-85) |#1|)) (-15 * (|#1| (-857) |#1|)) (-15 -3989 (|#1| |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -3174 ((-85) |#1| |#1|))) (-741 |#2|) (-146)) (T -740)) -((-3248 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-714)) (-5 *1 (-740 *3 *4)) (-4 *3 (-741 *4))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3258 (((-714)) 64 (|has| |#1| (-323)) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 (-499) #1="failed") $) 106 (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) 103 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 100 T ELT)) (-3294 (((-499) $) 105 (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) 102 (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 101 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3793 ((|#1| $) 90 T ELT)) (-3145 (((-3 (-361 (-499)) "failed") $) 77 (|has| |#1| (-498)) ELT)) (-3144 (((-85) $) 79 (|has| |#1| (-498)) ELT)) (-3143 (((-361 (-499)) $) 78 (|has| |#1| (-498)) ELT)) (-3115 (($) 67 (|has| |#1| (-323)) ELT)) (-2528 (((-85) $) 40 T ELT)) (-2606 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 81 T ELT)) (-3254 ((|#1| $) 82 T ELT)) (-2650 (($ $ $) 68 (|has| |#1| (-781)) ELT)) (-2978 (($ $ $) 69 (|has| |#1| (-781)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-2111 (((-857) $) 66 (|has| |#1| (-323)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 76 (|has| |#1| (-318)) ELT)) (-2518 (($ (-857)) 65 (|has| |#1| (-323)) ELT)) (-2603 ((|#1| $) 87 T ELT)) (-2604 ((|#1| $) 88 T ELT)) (-2605 ((|#1| $) 89 T ELT)) (-3127 ((|#1| $) 83 T ELT)) (-3128 ((|#1| $) 84 T ELT)) (-3129 ((|#1| $) 85 T ELT)) (-2602 ((|#1| $) 86 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) 98 (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) 97 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) 96 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-247 |#1|))) 95 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) 94 (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) |#1|) 93 (|has| |#1| (-468 (-1117) |#1|)) ELT)) (-3950 (($ $ |#1|) 99 (|has| |#1| (-240 |#1| |#1|)) ELT)) (-4122 (((-488) $) 74 (|has| |#1| (-569 (-488))) ELT)) (-3130 (($ $) 91 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-361 (-499))) 104 (|has| |#1| (-978 (-361 (-499)))) ELT)) (-2823 (((-649 $) $) 75 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-3523 ((|#1| $) 80 (|has| |#1| (-1000)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2685 (((-85) $ $) 70 (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) 72 (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 71 (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 73 (|has| |#1| (-781)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) -(((-741 |#1|) (-113) (-146)) (T -741)) -((-3130 (*1 *1 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-2602 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-2606 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)) (-4 *2 (-1000)))) (-3144 (*1 *2 *1) (-12 (-4 *1 (-741 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-85)))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-741 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-361 (-499))))) (-3145 (*1 *2 *1) (|partial| -12 (-4 *1 (-741 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-361 (-499))))) (-2601 (*1 *1 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)) (-4 *2 (-318))))) -(-13 (-38 |t#1|) (-366 |t#1|) (-293 |t#1|) (-10 -8 (-15 -3130 ($ $)) (-15 -3793 (|t#1| $)) (-15 -2605 (|t#1| $)) (-15 -2604 (|t#1| $)) (-15 -2603 (|t#1| $)) (-15 -2602 (|t#1| $)) (-15 -3129 (|t#1| $)) (-15 -3128 (|t#1| $)) (-15 -3127 (|t#1| $)) (-15 -3254 (|t#1| $)) (-15 -2606 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-323)) (-6 (-323)) |%noBranch|) (IF (|has| |t#1| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |t#1| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-1000)) (-15 -3523 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-498)) (PROGN (-15 -3144 ((-85) $)) (-15 -3143 ((-361 (-499)) $)) (-15 -3145 ((-3 (-361 (-499)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-318)) (-15 -2601 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 |#1| $) |has| |#1| (-240 |#1| |#1|)) ((-263 |#1|) |has| |#1| (-263 |#1|)) ((-323) |has| |#1| (-323)) ((-293 |#1|) . T) ((-366 |#1|) . T) ((-468 (-1117) |#1|) |has| |#1| (-468 (-1117) |#1|)) ((-468 |#1| |#1|) |has| |#1| (-263 |#1|)) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 |#1|) . T) ((-675 |#1|) . T) ((-684) . T) ((-781) |has| |#1| (-781)) ((-784) |has| |#1| (-781)) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 31 T ELT)) (-1345 (((-3 $ "failed") $ $) 34 T ELT)) (-3874 (($) 30 T CONST)) (-3324 (((-85) $) 28 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 29 T CONST)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT)) (-3989 (($ $ $) 25 T ELT)) (* (($ (-857) $) 26 T ELT) (($ (-714) $) 32 T ELT))) -(((-742) (-113)) (T -742)) -NIL -(-13 (-737) (-104)) -(((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-737) . T) ((-739) . T) ((-781) . T) ((-784) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| |#1| (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-936 |#1|) #1#) $) 35 T ELT) (((-3 (-499) #1#) $) NIL (-3677 (|has| (-936 |#1|) (-978 (-499))) (|has| |#1| (-978 (-499)))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-3677 (|has| (-936 |#1|) (-978 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-3294 ((|#1| $) NIL T ELT) (((-936 |#1|) $) 33 T ELT) (((-499) $) NIL (-3677 (|has| (-936 |#1|) (-978 (-499))) (|has| |#1| (-978 (-499)))) ELT) (((-361 (-499)) $) NIL (-3677 (|has| (-936 |#1|) (-978 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3793 ((|#1| $) 16 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-498)) ELT)) (-3144 (((-85) $) NIL (|has| |#1| (-498)) ELT)) (-3143 (((-361 (-499)) $) NIL (|has| |#1| (-498)) ELT)) (-3115 (($) NIL (|has| |#1| (-323)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2606 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-936 |#1|) (-936 |#1|)) 29 T ELT)) (-3254 ((|#1| $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| |#1| (-323)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-2518 (($ (-857)) NIL (|has| |#1| (-323)) ELT)) (-2603 ((|#1| $) 22 T ELT)) (-2604 ((|#1| $) 20 T ELT)) (-2605 ((|#1| $) 18 T ELT)) (-3127 ((|#1| $) 26 T ELT)) (-3128 ((|#1| $) 25 T ELT)) (-3129 ((|#1| $) 24 T ELT)) (-2602 ((|#1| $) 23 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-247 |#1|))) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) NIL (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) |#1|) NIL (|has| |#1| (-468 (-1117) |#1|)) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-240 |#1| |#1|)) ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3130 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-936 |#1|)) 30 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| (-936 |#1|) (-978 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3523 ((|#1| $) NIL (|has| |#1| (-1000)) ELT)) (-2779 (($) 8 T CONST)) (-2785 (($) 12 T CONST)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-743 |#1|) (-13 (-741 |#1|) (-366 (-936 |#1|)) (-10 -8 (-15 -2606 ($ (-936 |#1|) (-936 |#1|))))) (-146)) (T -743)) -((-2606 (*1 *1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-146)) (-5 *1 (-743 *3))))) -((-4108 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) -(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 (|#3| (-1 |#4| |#2|) |#1|))) (-741 |#2|) (-146) (-741 |#4|) (-146)) (T -744)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-741 *6)) (-5 *1 (-744 *4 *5 *2 *6)) (-4 *4 (-741 *5))))) -((-2687 (((-85) $ $) 7 T ELT)) (-2787 (((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099))) (-1003) (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) 18 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2607 (((-975) (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) 17 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-745) (-113)) (T -745)) -((-2787 (*1 *2 *3 *4) (-12 (-4 *1 (-745)) (-5 *3 (-1003)) (-5 *4 (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)))))) (-2607 (*1 *2 *3) (-12 (-4 *1 (-745)) (-5 *3 (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *2 (-975))))) -(-13 (-1041) (-10 -7 (-15 -2787 ((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099))) (-1003) (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))) (-15 -2607 ((-975) (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))))) -(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-2608 (((-2 (|:| |particular| |#2|) (|:| -2113 (-599 |#2|))) |#3| |#2| (-1117)) 19 T ELT))) -(((-746 |#1| |#2| |#3|) (-10 -7 (-15 -2608 ((-2 (|:| |particular| |#2|) (|:| -2113 (-599 |#2|))) |#3| |#2| (-1117)))) (-13 (-261) (-978 (-499)) (-596 (-499)) (-120)) (-13 (-29 |#1|) (-1143) (-898)) (-616 |#2|)) (T -746)) -((-2608 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1117)) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-4 *4 (-13 (-29 *6) (-1143) (-898))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2113 (-599 *4)))) (-5 *1 (-746 *6 *4 *3)) (-4 *3 (-616 *4))))) -((-3721 (((-3 |#2| #1="failed") |#2| (-86) (-247 |#2|) (-599 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-247 |#2|) (-86) (-247 |#2|) (-599 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2113 (-599 |#2|))) |#2| #1#) |#2| (-86) (-1117)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2113 (-599 |#2|))) |#2| #1#) (-247 |#2|) (-86) (-1117)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1207 |#2|)) (|:| -2113 (-599 (-1207 |#2|)))) #1#) (-599 |#2|) (-599 (-86)) (-1117)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1207 |#2|)) (|:| -2113 (-599 (-1207 |#2|)))) #1#) (-599 (-247 |#2|)) (-599 (-86)) (-1117)) 26 T ELT) (((-3 (-599 (-1207 |#2|)) #1#) (-647 |#2|) (-1117)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1207 |#2|)) (|:| -2113 (-599 (-1207 |#2|)))) #1#) (-647 |#2|) (-1207 |#2|) (-1117)) 35 T ELT))) -(((-747 |#1| |#2|) (-10 -7 (-15 -3721 ((-3 (-2 (|:| |particular| (-1207 |#2|)) (|:| -2113 (-599 (-1207 |#2|)))) #1="failed") (-647 |#2|) (-1207 |#2|) (-1117))) (-15 -3721 ((-3 (-599 (-1207 |#2|)) #1#) (-647 |#2|) (-1117))) (-15 -3721 ((-3 (-2 (|:| |particular| (-1207 |#2|)) (|:| -2113 (-599 (-1207 |#2|)))) #1#) (-599 (-247 |#2|)) (-599 (-86)) (-1117))) (-15 -3721 ((-3 (-2 (|:| |particular| (-1207 |#2|)) (|:| -2113 (-599 (-1207 |#2|)))) #1#) (-599 |#2|) (-599 (-86)) (-1117))) (-15 -3721 ((-3 (-2 (|:| |particular| |#2|) (|:| -2113 (-599 |#2|))) |#2| #1#) (-247 |#2|) (-86) (-1117))) (-15 -3721 ((-3 (-2 (|:| |particular| |#2|) (|:| -2113 (-599 |#2|))) |#2| #1#) |#2| (-86) (-1117))) (-15 -3721 ((-3 |#2| #1#) (-247 |#2|) (-86) (-247 |#2|) (-599 |#2|))) (-15 -3721 ((-3 |#2| #1#) |#2| (-86) (-247 |#2|) (-599 |#2|)))) (-13 (-261) (-978 (-499)) (-596 (-499)) (-120)) (-13 (-29 |#1|) (-1143) (-898))) (T -747)) -((-3721 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-247 *2)) (-5 *5 (-599 *2)) (-4 *2 (-13 (-29 *6) (-1143) (-898))) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *1 (-747 *6 *2)))) (-3721 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-247 *2)) (-5 *4 (-86)) (-5 *5 (-599 *2)) (-4 *2 (-13 (-29 *6) (-1143) (-898))) (-5 *1 (-747 *6 *2)) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))))) (-3721 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1117)) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2113 (-599 *3))) *3 #1="failed")) (-5 *1 (-747 *6 *3)) (-4 *3 (-13 (-29 *6) (-1143) (-898))))) (-3721 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-247 *7)) (-5 *4 (-86)) (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1143) (-898))) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2113 (-599 *7))) *7 #1#)) (-5 *1 (-747 *6 *7)))) (-3721 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-599 *7)) (-5 *4 (-599 (-86))) (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1143) (-898))) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-2 (|:| |particular| (-1207 *7)) (|:| -2113 (-599 (-1207 *7))))) (-5 *1 (-747 *6 *7)))) (-3721 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-599 (-247 *7))) (-5 *4 (-599 (-86))) (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1143) (-898))) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-2 (|:| |particular| (-1207 *7)) (|:| -2113 (-599 (-1207 *7))))) (-5 *1 (-747 *6 *7)))) (-3721 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-647 *6)) (-5 *4 (-1117)) (-4 *6 (-13 (-29 *5) (-1143) (-898))) (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-599 (-1207 *6))) (-5 *1 (-747 *5 *6)))) (-3721 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-647 *7)) (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1143) (-898))) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-2 (|:| |particular| (-1207 *7)) (|:| -2113 (-599 (-1207 *7))))) (-5 *1 (-747 *6 *7)) (-5 *4 (-1207 *7))))) -((-3610 ((|#2| |#2| (-1117)) 17 T ELT)) (-2609 ((|#2| |#2| (-1117)) 56 T ELT)) (-2610 (((-1 |#2| |#2|) (-1117)) 11 T ELT))) -(((-748 |#1| |#2|) (-10 -7 (-15 -3610 (|#2| |#2| (-1117))) (-15 -2609 (|#2| |#2| (-1117))) (-15 -2610 ((-1 |#2| |#2|) (-1117)))) (-13 (-261) (-978 (-499)) (-596 (-499)) (-120)) (-13 (-29 |#1|) (-1143) (-898))) (T -748)) -((-2610 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-748 *4 *5)) (-4 *5 (-13 (-29 *4) (-1143) (-898))))) (-2609 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *1 (-748 *4 *2)) (-4 *2 (-13 (-29 *4) (-1143) (-898))))) (-3610 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *1 (-748 *4 *2)) (-4 *2 (-13 (-29 *4) (-1143) (-898)))))) -((-2611 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2113 (-599 |#4|))) (-613 |#4|) |#4|) 33 T ELT))) -(((-749 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2611 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2113 (-599 |#4|))) (-613 |#4|) |#4|))) (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499)))) (-1183 |#1|) (-1183 (-361 |#2|)) (-297 |#1| |#2| |#3|)) (T -749)) -((-2611 (*1 *2 *3 *4) (-12 (-5 *3 (-613 *4)) (-4 *4 (-297 *5 *6 *7)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2113 (-599 *4)))) (-5 *1 (-749 *5 *6 *7 *4))))) -((-3891 (((-2 (|:| -3404 |#3|) (|:| |rh| (-599 (-361 |#2|)))) |#4| (-599 (-361 |#2|))) 53 T ELT)) (-2613 (((-599 (-2 (|:| -3923 |#2|) (|:| -3364 |#2|))) |#4| |#2|) 62 T ELT) (((-599 (-2 (|:| -3923 |#2|) (|:| -3364 |#2|))) |#4|) 61 T ELT) (((-599 (-2 (|:| -3923 |#2|) (|:| -3364 |#2|))) |#3| |#2|) 20 T ELT) (((-599 (-2 (|:| -3923 |#2|) (|:| -3364 |#2|))) |#3|) 21 T ELT)) (-2614 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2612 ((|#2| |#3| (-599 (-361 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-361 |#2|)) 105 T ELT))) -(((-750 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2612 ((-3 |#2| "failed") |#3| (-361 |#2|))) (-15 -2612 (|#2| |#3| (-599 (-361 |#2|)))) (-15 -2613 ((-599 (-2 (|:| -3923 |#2|) (|:| -3364 |#2|))) |#3|)) (-15 -2613 ((-599 (-2 (|:| -3923 |#2|) (|:| -3364 |#2|))) |#3| |#2|)) (-15 -2614 (|#2| |#3| |#1|)) (-15 -2613 ((-599 (-2 (|:| -3923 |#2|) (|:| -3364 |#2|))) |#4|)) (-15 -2613 ((-599 (-2 (|:| -3923 |#2|) (|:| -3364 |#2|))) |#4| |#2|)) (-15 -2614 (|#2| |#4| |#1|)) (-15 -3891 ((-2 (|:| -3404 |#3|) (|:| |rh| (-599 (-361 |#2|)))) |#4| (-599 (-361 |#2|))))) (-13 (-318) (-120) (-978 (-361 (-499)))) (-1183 |#1|) (-616 |#2|) (-616 (-361 |#2|))) (T -750)) -((-3891 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) (-5 *2 (-2 (|:| -3404 *7) (|:| |rh| (-599 (-361 *6))))) (-5 *1 (-750 *5 *6 *7 *3)) (-5 *4 (-599 (-361 *6))) (-4 *7 (-616 *6)) (-4 *3 (-616 (-361 *6))))) (-2614 (*1 *2 *3 *4) (-12 (-4 *2 (-1183 *4)) (-5 *1 (-750 *4 *2 *5 *3)) (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *5 (-616 *2)) (-4 *3 (-616 (-361 *2))))) (-2613 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *4 (-1183 *5)) (-5 *2 (-599 (-2 (|:| -3923 *4) (|:| -3364 *4)))) (-5 *1 (-750 *5 *4 *6 *3)) (-4 *6 (-616 *4)) (-4 *3 (-616 (-361 *4))))) (-2613 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) (-5 *2 (-599 (-2 (|:| -3923 *5) (|:| -3364 *5)))) (-5 *1 (-750 *4 *5 *6 *3)) (-4 *6 (-616 *5)) (-4 *3 (-616 (-361 *5))))) (-2614 (*1 *2 *3 *4) (-12 (-4 *2 (-1183 *4)) (-5 *1 (-750 *4 *2 *3 *5)) (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *3 (-616 *2)) (-4 *5 (-616 (-361 *2))))) (-2613 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *4 (-1183 *5)) (-5 *2 (-599 (-2 (|:| -3923 *4) (|:| -3364 *4)))) (-5 *1 (-750 *5 *4 *3 *6)) (-4 *3 (-616 *4)) (-4 *6 (-616 (-361 *4))))) (-2613 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) (-5 *2 (-599 (-2 (|:| -3923 *5) (|:| -3364 *5)))) (-5 *1 (-750 *4 *5 *3 *6)) (-4 *3 (-616 *5)) (-4 *6 (-616 (-361 *5))))) (-2612 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-361 *2))) (-4 *2 (-1183 *5)) (-5 *1 (-750 *5 *2 *3 *6)) (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *3 (-616 *2)) (-4 *6 (-616 (-361 *2))))) (-2612 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-361 *2)) (-4 *2 (-1183 *5)) (-5 *1 (-750 *5 *2 *3 *6)) (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *3 (-616 *2)) (-4 *6 (-616 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3294 (((-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179))) $) 13 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 15 T ELT) (($ (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-751) (-13 (-1041) (-10 -8 (-15 -4096 ($ (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))) (-15 -3294 ((-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179))) $))))) (T -751)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *1 (-751)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *1 (-751))))) -((-2622 (((-599 (-2 (|:| |frac| (-361 |#2|)) (|:| -3404 |#3|))) |#3| (-1 (-599 |#2|) |#2| (-1111 |#2|)) (-1 (-359 |#2|) |#2|)) 156 T ELT)) (-2623 (((-599 (-2 (|:| |poly| |#2|) (|:| -3404 |#3|))) |#3| (-1 (-599 |#1|) |#2|)) 52 T ELT)) (-2616 (((-599 (-2 (|:| |deg| (-714)) (|:| -3404 |#2|))) |#3|) 123 T ELT)) (-2615 ((|#2| |#3|) 42 T ELT)) (-2617 (((-599 (-2 (|:| -4102 |#1|) (|:| -3404 |#3|))) |#3| (-1 (-599 |#1|) |#2|)) 100 T ELT)) (-2618 ((|#3| |#3| (-361 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) -(((-752 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2615 (|#2| |#3|)) (-15 -2616 ((-599 (-2 (|:| |deg| (-714)) (|:| -3404 |#2|))) |#3|)) (-15 -2617 ((-599 (-2 (|:| -4102 |#1|) (|:| -3404 |#3|))) |#3| (-1 (-599 |#1|) |#2|))) (-15 -2623 ((-599 (-2 (|:| |poly| |#2|) (|:| -3404 |#3|))) |#3| (-1 (-599 |#1|) |#2|))) (-15 -2622 ((-599 (-2 (|:| |frac| (-361 |#2|)) (|:| -3404 |#3|))) |#3| (-1 (-599 |#2|) |#2| (-1111 |#2|)) (-1 (-359 |#2|) |#2|))) (-15 -2618 (|#3| |#3| |#2|)) (-15 -2618 (|#3| |#3| (-361 |#2|)))) (-13 (-318) (-120) (-978 (-361 (-499)))) (-1183 |#1|) (-616 |#2|) (-616 (-361 |#2|))) (T -752)) -((-2618 (*1 *2 *2 *3) (-12 (-5 *3 (-361 *5)) (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) (-5 *1 (-752 *4 *5 *2 *6)) (-4 *2 (-616 *5)) (-4 *6 (-616 *3)))) (-2618 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *3 (-1183 *4)) (-5 *1 (-752 *4 *3 *2 *5)) (-4 *2 (-616 *3)) (-4 *5 (-616 (-361 *3))))) (-2622 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-599 *7) *7 (-1111 *7))) (-5 *5 (-1 (-359 *7) *7)) (-4 *7 (-1183 *6)) (-4 *6 (-13 (-318) (-120) (-978 (-361 (-499))))) (-5 *2 (-599 (-2 (|:| |frac| (-361 *7)) (|:| -3404 *3)))) (-5 *1 (-752 *6 *7 *3 *8)) (-4 *3 (-616 *7)) (-4 *8 (-616 (-361 *7))))) (-2623 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-599 *5) *6)) (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) (-5 *2 (-599 (-2 (|:| |poly| *6) (|:| -3404 *3)))) (-5 *1 (-752 *5 *6 *3 *7)) (-4 *3 (-616 *6)) (-4 *7 (-616 (-361 *6))))) (-2617 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-599 *5) *6)) (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) (-5 *2 (-599 (-2 (|:| -4102 *5) (|:| -3404 *3)))) (-5 *1 (-752 *5 *6 *3 *7)) (-4 *3 (-616 *6)) (-4 *7 (-616 (-361 *6))))) (-2616 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) (-5 *2 (-599 (-2 (|:| |deg| (-714)) (|:| -3404 *5)))) (-5 *1 (-752 *4 *5 *3 *6)) (-4 *3 (-616 *5)) (-4 *6 (-616 (-361 *5))))) (-2615 (*1 *2 *3) (-12 (-4 *2 (-1183 *4)) (-5 *1 (-752 *4 *2 *3 *5)) (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *3 (-616 *2)) (-4 *5 (-616 (-361 *2)))))) -((-2619 (((-2 (|:| -2113 (-599 (-361 |#2|))) (|:| -1673 (-647 |#1|))) (-614 |#2| (-361 |#2|)) (-599 (-361 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-361 |#2|) #1="failed")) (|:| -2113 (-599 (-361 |#2|)))) (-614 |#2| (-361 |#2|)) (-361 |#2|)) 145 T ELT) (((-2 (|:| -2113 (-599 (-361 |#2|))) (|:| -1673 (-647 |#1|))) (-613 (-361 |#2|)) (-599 (-361 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-361 |#2|) #1#)) (|:| -2113 (-599 (-361 |#2|)))) (-613 (-361 |#2|)) (-361 |#2|)) 138 T ELT)) (-2620 ((|#2| (-614 |#2| (-361 |#2|))) 86 T ELT) ((|#2| (-613 (-361 |#2|))) 89 T ELT))) -(((-753 |#1| |#2|) (-10 -7 (-15 -2619 ((-2 (|:| |particular| (-3 (-361 |#2|) #1="failed")) (|:| -2113 (-599 (-361 |#2|)))) (-613 (-361 |#2|)) (-361 |#2|))) (-15 -2619 ((-2 (|:| -2113 (-599 (-361 |#2|))) (|:| -1673 (-647 |#1|))) (-613 (-361 |#2|)) (-599 (-361 |#2|)))) (-15 -2619 ((-2 (|:| |particular| (-3 (-361 |#2|) #1#)) (|:| -2113 (-599 (-361 |#2|)))) (-614 |#2| (-361 |#2|)) (-361 |#2|))) (-15 -2619 ((-2 (|:| -2113 (-599 (-361 |#2|))) (|:| -1673 (-647 |#1|))) (-614 |#2| (-361 |#2|)) (-599 (-361 |#2|)))) (-15 -2620 (|#2| (-613 (-361 |#2|)))) (-15 -2620 (|#2| (-614 |#2| (-361 |#2|))))) (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499)))) (-1183 |#1|)) (T -753)) -((-2620 (*1 *2 *3) (-12 (-5 *3 (-614 *2 (-361 *2))) (-4 *2 (-1183 *4)) (-5 *1 (-753 *4 *2)) (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))))) (-2620 (*1 *2 *3) (-12 (-5 *3 (-613 (-361 *2))) (-4 *2 (-1183 *4)) (-5 *1 (-753 *4 *2)) (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-614 *6 (-361 *6))) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-2 (|:| -2113 (-599 (-361 *6))) (|:| -1673 (-647 *5)))) (-5 *1 (-753 *5 *6)) (-5 *4 (-599 (-361 *6))))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-614 *6 (-361 *6))) (-5 *4 (-361 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2113 (-599 *4)))) (-5 *1 (-753 *5 *6)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-613 (-361 *6))) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-2 (|:| -2113 (-599 (-361 *6))) (|:| -1673 (-647 *5)))) (-5 *1 (-753 *5 *6)) (-5 *4 (-599 (-361 *6))))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-613 (-361 *6))) (-5 *4 (-361 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2113 (-599 *4)))) (-5 *1 (-753 *5 *6))))) -((-2621 (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#1|))) |#5| |#4|) 49 T ELT))) -(((-754 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2621 ((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#1|))) |#5| |#4|))) (-318) (-616 |#1|) (-1183 |#1|) (-682 |#1| |#3|) (-616 |#4|)) (T -754)) -((-2621 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-4 *7 (-1183 *5)) (-4 *4 (-682 *5 *7)) (-5 *2 (-2 (|:| -1673 (-647 *6)) (|:| |vec| (-1207 *5)))) (-5 *1 (-754 *5 *6 *7 *4 *3)) (-4 *6 (-616 *5)) (-4 *3 (-616 *4))))) -((-2622 (((-599 (-2 (|:| |frac| (-361 |#2|)) (|:| -3404 (-614 |#2| (-361 |#2|))))) (-614 |#2| (-361 |#2|)) (-1 (-359 |#2|) |#2|)) 47 T ELT)) (-2624 (((-599 (-361 |#2|)) (-614 |#2| (-361 |#2|)) (-1 (-359 |#2|) |#2|)) 167 (|has| |#1| (-27)) ELT) (((-599 (-361 |#2|)) (-614 |#2| (-361 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-599 (-361 |#2|)) (-613 (-361 |#2|)) (-1 (-359 |#2|) |#2|)) 168 (|has| |#1| (-27)) ELT) (((-599 (-361 |#2|)) (-613 (-361 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-599 (-361 |#2|)) (-614 |#2| (-361 |#2|)) (-1 (-599 |#1|) |#2|) (-1 (-359 |#2|) |#2|)) 38 T ELT) (((-599 (-361 |#2|)) (-614 |#2| (-361 |#2|)) (-1 (-599 |#1|) |#2|)) 39 T ELT) (((-599 (-361 |#2|)) (-613 (-361 |#2|)) (-1 (-599 |#1|) |#2|) (-1 (-359 |#2|) |#2|)) 36 T ELT) (((-599 (-361 |#2|)) (-613 (-361 |#2|)) (-1 (-599 |#1|) |#2|)) 37 T ELT)) (-2623 (((-599 (-2 (|:| |poly| |#2|) (|:| -3404 (-614 |#2| (-361 |#2|))))) (-614 |#2| (-361 |#2|)) (-1 (-599 |#1|) |#2|)) 96 T ELT))) -(((-755 |#1| |#2|) (-10 -7 (-15 -2624 ((-599 (-361 |#2|)) (-613 (-361 |#2|)) (-1 (-599 |#1|) |#2|))) (-15 -2624 ((-599 (-361 |#2|)) (-613 (-361 |#2|)) (-1 (-599 |#1|) |#2|) (-1 (-359 |#2|) |#2|))) (-15 -2624 ((-599 (-361 |#2|)) (-614 |#2| (-361 |#2|)) (-1 (-599 |#1|) |#2|))) (-15 -2624 ((-599 (-361 |#2|)) (-614 |#2| (-361 |#2|)) (-1 (-599 |#1|) |#2|) (-1 (-359 |#2|) |#2|))) (-15 -2622 ((-599 (-2 (|:| |frac| (-361 |#2|)) (|:| -3404 (-614 |#2| (-361 |#2|))))) (-614 |#2| (-361 |#2|)) (-1 (-359 |#2|) |#2|))) (-15 -2623 ((-599 (-2 (|:| |poly| |#2|) (|:| -3404 (-614 |#2| (-361 |#2|))))) (-614 |#2| (-361 |#2|)) (-1 (-599 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2624 ((-599 (-361 |#2|)) (-613 (-361 |#2|)))) (-15 -2624 ((-599 (-361 |#2|)) (-613 (-361 |#2|)) (-1 (-359 |#2|) |#2|))) (-15 -2624 ((-599 (-361 |#2|)) (-614 |#2| (-361 |#2|)))) (-15 -2624 ((-599 (-361 |#2|)) (-614 |#2| (-361 |#2|)) (-1 (-359 |#2|) |#2|)))) |%noBranch|)) (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499)))) (-1183 |#1|)) (T -755)) -((-2624 (*1 *2 *3 *4) (-12 (-5 *3 (-614 *6 (-361 *6))) (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-599 (-361 *6))) (-5 *1 (-755 *5 *6)))) (-2624 (*1 *2 *3) (-12 (-5 *3 (-614 *5 (-361 *5))) (-4 *5 (-1183 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-599 (-361 *5))) (-5 *1 (-755 *4 *5)))) (-2624 (*1 *2 *3 *4) (-12 (-5 *3 (-613 (-361 *6))) (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-599 (-361 *6))) (-5 *1 (-755 *5 *6)))) (-2624 (*1 *2 *3) (-12 (-5 *3 (-613 (-361 *5))) (-4 *5 (-1183 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-599 (-361 *5))) (-5 *1 (-755 *4 *5)))) (-2623 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-599 *5) *6)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) (-5 *2 (-599 (-2 (|:| |poly| *6) (|:| -3404 (-614 *6 (-361 *6)))))) (-5 *1 (-755 *5 *6)) (-5 *3 (-614 *6 (-361 *6))))) (-2622 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-599 (-2 (|:| |frac| (-361 *6)) (|:| -3404 (-614 *6 (-361 *6)))))) (-5 *1 (-755 *5 *6)) (-5 *3 (-614 *6 (-361 *6))))) (-2624 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-614 *7 (-361 *7))) (-5 *4 (-1 (-599 *6) *7)) (-5 *5 (-1 (-359 *7) *7)) (-4 *6 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-4 *7 (-1183 *6)) (-5 *2 (-599 (-361 *7))) (-5 *1 (-755 *6 *7)))) (-2624 (*1 *2 *3 *4) (-12 (-5 *3 (-614 *6 (-361 *6))) (-5 *4 (-1 (-599 *5) *6)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) (-5 *2 (-599 (-361 *6))) (-5 *1 (-755 *5 *6)))) (-2624 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-613 (-361 *7))) (-5 *4 (-1 (-599 *6) *7)) (-5 *5 (-1 (-359 *7) *7)) (-4 *6 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-4 *7 (-1183 *6)) (-5 *2 (-599 (-361 *7))) (-5 *1 (-755 *6 *7)))) (-2624 (*1 *2 *3 *4) (-12 (-5 *3 (-613 (-361 *6))) (-5 *4 (-1 (-599 *5) *6)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) (-5 *2 (-599 (-361 *6))) (-5 *1 (-755 *5 *6))))) -((-2625 (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#1|))) (-647 |#2|) (-1207 |#1|)) 110 T ELT) (((-2 (|:| A (-647 |#1|)) (|:| |eqs| (-599 (-2 (|:| C (-647 |#1|)) (|:| |g| (-1207 |#1|)) (|:| -3404 |#2|) (|:| |rh| |#1|))))) (-647 |#1|) (-1207 |#1|)) 15 T ELT)) (-2626 (((-2 (|:| |particular| (-3 (-1207 |#1|) #1="failed")) (|:| -2113 (-599 (-1207 |#1|)))) (-647 |#2|) (-1207 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2113 (-599 |#1|))) |#2| |#1|)) 116 T ELT)) (-3721 (((-3 (-2 (|:| |particular| (-1207 |#1|)) (|:| -2113 (-647 |#1|))) #1#) (-647 |#1|) (-1207 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2113 (-599 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) -(((-756 |#1| |#2|) (-10 -7 (-15 -2625 ((-2 (|:| A (-647 |#1|)) (|:| |eqs| (-599 (-2 (|:| C (-647 |#1|)) (|:| |g| (-1207 |#1|)) (|:| -3404 |#2|) (|:| |rh| |#1|))))) (-647 |#1|) (-1207 |#1|))) (-15 -2625 ((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#1|))) (-647 |#2|) (-1207 |#1|))) (-15 -3721 ((-3 (-2 (|:| |particular| (-1207 |#1|)) (|:| -2113 (-647 |#1|))) #1="failed") (-647 |#1|) (-1207 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2113 (-599 |#1|))) #1#) |#2| |#1|))) (-15 -2626 ((-2 (|:| |particular| (-3 (-1207 |#1|) #1#)) (|:| -2113 (-599 (-1207 |#1|)))) (-647 |#2|) (-1207 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2113 (-599 |#1|))) |#2| |#1|)))) (-318) (-616 |#1|)) (T -756)) -((-2626 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-647 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2113 (-599 *6))) *7 *6)) (-4 *6 (-318)) (-4 *7 (-616 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1207 *6) "failed")) (|:| -2113 (-599 (-1207 *6))))) (-5 *1 (-756 *6 *7)) (-5 *4 (-1207 *6)))) (-3721 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2113 (-599 *6))) "failed") *7 *6)) (-4 *6 (-318)) (-4 *7 (-616 *6)) (-5 *2 (-2 (|:| |particular| (-1207 *6)) (|:| -2113 (-647 *6)))) (-5 *1 (-756 *6 *7)) (-5 *3 (-647 *6)) (-5 *4 (-1207 *6)))) (-2625 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-4 *6 (-616 *5)) (-5 *2 (-2 (|:| -1673 (-647 *6)) (|:| |vec| (-1207 *5)))) (-5 *1 (-756 *5 *6)) (-5 *3 (-647 *6)) (-5 *4 (-1207 *5)))) (-2625 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-5 *2 (-2 (|:| A (-647 *5)) (|:| |eqs| (-599 (-2 (|:| C (-647 *5)) (|:| |g| (-1207 *5)) (|:| -3404 *6) (|:| |rh| *5)))))) (-5 *1 (-756 *5 *6)) (-5 *3 (-647 *5)) (-5 *4 (-1207 *5)) (-4 *6 (-616 *5))))) -((-2627 (((-647 |#1|) (-599 |#1|) (-714)) 14 T ELT) (((-647 |#1|) (-599 |#1|)) 15 T ELT)) (-2628 (((-3 (-1207 |#1|) #1="failed") |#2| |#1| (-599 |#1|)) 39 T ELT)) (-3480 (((-3 |#1| #1#) |#2| |#1| (-599 |#1|) (-1 |#1| |#1|)) 46 T ELT))) -(((-757 |#1| |#2|) (-10 -7 (-15 -2627 ((-647 |#1|) (-599 |#1|))) (-15 -2627 ((-647 |#1|) (-599 |#1|) (-714))) (-15 -2628 ((-3 (-1207 |#1|) #1="failed") |#2| |#1| (-599 |#1|))) (-15 -3480 ((-3 |#1| #1#) |#2| |#1| (-599 |#1|) (-1 |#1| |#1|)))) (-318) (-616 |#1|)) (T -757)) -((-3480 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-599 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-318)) (-5 *1 (-757 *2 *3)) (-4 *3 (-616 *2)))) (-2628 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-599 *4)) (-4 *4 (-318)) (-5 *2 (-1207 *4)) (-5 *1 (-757 *4 *3)) (-4 *3 (-616 *4)))) (-2627 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *5)) (-5 *4 (-714)) (-4 *5 (-318)) (-5 *2 (-647 *5)) (-5 *1 (-757 *5 *6)) (-4 *6 (-616 *5)))) (-2627 (*1 *2 *3) (-12 (-5 *3 (-599 *4)) (-4 *4 (-318)) (-5 *2 (-647 *4)) (-5 *1 (-757 *4 *5)) (-4 *5 (-616 *4))))) -((-2687 (((-85) $ $) NIL (|has| |#2| (-73)) ELT)) (-3326 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3857 (($ (-857)) NIL (|has| |#2| (-989)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-2600 (($ $ $) NIL (|has| |#2| (-738)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3258 (((-714)) NIL (|has| |#2| (-323)) ELT)) (-3938 ((|#2| $ (-499) |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1041)) ELT)) (-3294 (((-499) $) NIL (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) ELT) (((-361 (-499)) $) NIL (-12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) ((|#2| $) NIL (|has| |#2| (-1041)) ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL (|has| |#2| (-989)) ELT) (((-647 |#2|) (-647 $)) NIL (|has| |#2| (-989)) ELT)) (-3607 (((-3 $ #1#) $) NIL (|has| |#2| (-989)) ELT)) (-3115 (($) NIL (|has| |#2| (-323)) ELT)) (-1609 ((|#2| $ (-499) |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ (-499)) NIL T ELT)) (-3324 (((-85) $) NIL (|has| |#2| (-738)) ELT)) (-3010 (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) NIL (|has| |#2| (-989)) ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#2| (-781)) ELT)) (-2727 (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#2| (-781)) ELT)) (-2051 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| |#2| (-323)) ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL (|has| |#2| (-989)) ELT) (((-647 |#2|) (-1207 $)) NIL (|has| |#2| (-989)) ELT)) (-3380 (((-1099) $) NIL (|has| |#2| (-1041)) ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-2518 (($ (-857)) NIL (|has| |#2| (-323)) ELT)) (-3381 (((-1060) $) NIL (|has| |#2| (-1041)) ELT)) (-3951 ((|#2| $) NIL (|has| (-499) (-781)) ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ (-499) |#2|) NIL T ELT) ((|#2| $ (-499)) NIL T ELT)) (-3986 ((|#2| $ $) NIL (|has| |#2| (-989)) ELT)) (-1501 (($ (-1207 |#2|)) NIL T ELT)) (-4061 (((-107)) NIL (|has| |#2| (-318)) ELT)) (-3908 (($ $ (-714)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-989)) ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL (|has| |#2| (-989)) ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-1207 |#2|) $) NIL T ELT) (($ (-499)) NIL (-3677 (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (|has| |#2| (-989))) ELT) (($ (-361 (-499))) NIL (-12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) (($ |#2|) NIL (|has| |#2| (-1041)) ELT) (((-797) $) NIL (|has| |#2| (-568 (-797))) ELT)) (-3248 (((-714)) NIL (|has| |#2| (-989)) CONST)) (-1297 (((-85) $ $) NIL (|has| |#2| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2779 (($) NIL (|has| |#2| (-23)) CONST)) (-2785 (($) NIL (|has| |#2| (-989)) CONST)) (-2790 (($ $ (-714)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-989)) ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL (|has| |#2| (-989)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#2| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-2806 (((-85) $ $) 11 (|has| |#2| (-781)) ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3989 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-714)) NIL (|has| |#2| (-989)) ELT) (($ $ (-857)) NIL (|has| |#2| (-989)) ELT)) (* (($ $ $) NIL (|has| |#2| (-989)) ELT) (($ $ |#2|) NIL (|has| |#2| (-684)) ELT) (($ |#2| $) NIL (|has| |#2| (-684)) ELT) (($ (-499) $) NIL (|has| |#2| (-21)) ELT) (($ (-714) $) NIL (|has| |#2| (-23)) ELT) (($ (-857) $) NIL (|has| |#2| (-25)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-758 |#1| |#2| |#3|) (-195 |#1| |#2|) (-714) (-738) (-1 (-85) (-1207 |#2|) (-1207 |#2|))) (T -758)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1521 (((-599 (-714)) $) NIL T ELT) (((-599 (-714)) $ (-1117)) NIL T ELT)) (-1555 (((-714) $) NIL T ELT) (((-714) $ (-1117)) NIL T ELT)) (-3204 (((-599 (-761 (-1117))) $) NIL T ELT)) (-3206 (((-1111 $) $ (-761 (-1117))) NIL T ELT) (((-1111 |#1|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-761 (-1117)))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-1517 (($ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-761 (-1117)) #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL T ELT) (((-3 (-1065 |#1| (-1117)) #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-761 (-1117)) $) NIL T ELT) (((-1117) $) NIL T ELT) (((-1065 |#1| (-1117)) $) NIL T ELT)) (-3906 (($ $ $ (-761 (-1117))) NIL (|has| |#1| (-146)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT) (($ $ (-761 (-1117))) NIL (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| (-484 (-761 (-1117))) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-761 (-1117)) (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-761 (-1117)) (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-3922 (((-714) $ (-1117)) NIL T ELT) (((-714) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3207 (($ (-1111 |#1|) (-761 (-1117))) NIL T ELT) (($ (-1111 $) (-761 (-1117))) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-484 (-761 (-1117)))) NIL T ELT) (($ $ (-761 (-1117)) (-714)) NIL T ELT) (($ $ (-599 (-761 (-1117))) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-761 (-1117))) NIL T ELT)) (-2941 (((-484 (-761 (-1117))) $) NIL T ELT) (((-714) $ (-761 (-1117))) NIL T ELT) (((-599 (-714)) $ (-599 (-761 (-1117)))) NIL T ELT)) (-1695 (($ (-1 (-484 (-761 (-1117))) (-484 (-761 (-1117)))) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1556 (((-1 $ (-714)) (-1117)) NIL T ELT) (((-1 $ (-714)) $) NIL (|has| |#1| (-190)) ELT)) (-3205 (((-3 (-761 (-1117)) #1#) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1519 (((-761 (-1117)) $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1520 (((-85) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-761 (-1117))) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-1518 (($ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-848)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-761 (-1117)) |#1|) NIL T ELT) (($ $ (-599 (-761 (-1117))) (-599 |#1|)) NIL T ELT) (($ $ (-761 (-1117)) $) NIL T ELT) (($ $ (-599 (-761 (-1117))) (-599 $)) NIL T ELT) (($ $ (-1117) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-599 (-1117)) (-599 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1117) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3907 (($ $ (-761 (-1117))) NIL (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 (-761 (-1117))) (-599 (-714))) NIL T ELT) (($ $ (-761 (-1117)) (-714)) NIL T ELT) (($ $ (-599 (-761 (-1117)))) NIL T ELT) (($ $ (-761 (-1117))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT)) (-1522 (((-599 (-1117)) $) NIL T ELT)) (-4098 (((-484 (-761 (-1117))) $) NIL T ELT) (((-714) $ (-761 (-1117))) NIL T ELT) (((-599 (-714)) $ (-599 (-761 (-1117)))) NIL T ELT) (((-714) $ (-1117)) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-761 (-1117)) (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-761 (-1117)) (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-761 (-1117)) (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT) (($ $ (-761 (-1117))) NIL (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-761 (-1117))) NIL T ELT) (($ (-1117)) NIL T ELT) (($ (-1065 |#1| (-1117))) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-484 (-761 (-1117)))) NIL T ELT) (($ $ (-761 (-1117)) (-714)) NIL T ELT) (($ $ (-599 (-761 (-1117))) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-599 (-761 (-1117))) (-599 (-714))) NIL T ELT) (($ $ (-761 (-1117)) (-714)) NIL T ELT) (($ $ (-599 (-761 (-1117)))) NIL T ELT) (($ $ (-761 (-1117))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-759 |#1|) (-13 (-212 |#1| (-1117) (-761 (-1117)) (-484 (-761 (-1117)))) (-978 (-1065 |#1| (-1117)))) (-989)) (T -759)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#2| (-318)) ELT)) (-2164 (($ $) NIL (|has| |#2| (-318)) ELT)) (-2162 (((-85) $) NIL (|has| |#2| (-318)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#2| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#2| (-318)) ELT)) (-1678 (((-85) $ $) NIL (|has| |#2| (-318)) ELT)) (-3874 (($) NIL T CONST)) (-2683 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#2| (-318)) ELT)) (-3873 (((-85) $) NIL (|has| |#2| (-318)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#2| (-318)) ELT)) (-1993 (($ (-599 $)) NIL (|has| |#2| (-318)) ELT) (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 20 (|has| |#2| (-318)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#2| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#2| (-318)) ELT) (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#2| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#2| (-318)) ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#2| (-318)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#2| (-318)) ELT)) (-1677 (((-714) $) NIL (|has| |#2| (-318)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#2| (-318)) ELT)) (-3908 (($ $) 13 T ELT) (($ $ (-714)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-361 (-499))) NIL (|has| |#2| (-318)) ELT) (($ $) NIL (|has| |#2| (-318)) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#2| (-318)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) 15 (|has| |#2| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-714)) NIL T ELT) (($ $ (-857)) NIL T ELT) (($ $ (-499)) 18 (|has| |#2| (-318)) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| |#2| (-318)) ELT) (($ $ (-361 (-499))) NIL (|has| |#2| (-318)) ELT))) -(((-760 |#1| |#2| |#3|) (-13 (-82 $ $) (-190) (-444 |#2|) (-10 -7 (IF (|has| |#2| (-318)) (-6 (-318)) |%noBranch|))) (-1041) (-836 |#1|) |#1|) (T -760)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-1555 (((-714) $) NIL T ELT)) (-3981 ((|#1| $) 10 T ELT)) (-3295 (((-3 |#1| "failed") $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-3922 (((-714) $) 11 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-1556 (($ |#1| (-714)) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3908 (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2790 (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT))) -(((-761 |#1|) (-227 |#1|) (-781)) (T -761)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-4084 (((-599 |#1|) $) 38 T ELT)) (-3258 (((-714) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-4089 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 28 T ELT)) (-3295 (((-3 |#1| #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-3949 (($ $) 42 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-1843 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2399 ((|#1| $ (-499)) NIL T ELT)) (-2400 (((-714) $ (-499)) NIL T ELT)) (-4086 (($ $) 54 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-2391 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2392 (($ (-1 (-714) (-714)) $) NIL T ELT)) (-4090 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 25 T ELT)) (-2629 (((-85) $ $) 51 T ELT)) (-3983 (((-714) $) 34 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1844 (($ $ $) NIL T ELT)) (-1845 (($ $ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 ((|#1| $) 41 T ELT)) (-1877 (((-599 (-2 (|:| |gen| |#1|) (|:| -4093 (-714)))) $) NIL T ELT)) (-3000 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2684 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2785 (($) 7 T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 53 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ |#1| (-714)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-762 |#1|) (-13 (-341 |#1|) (-779) (-10 -8 (-15 -3951 (|#1| $)) (-15 -3949 ($ $)) (-15 -4086 ($ $)) (-15 -2629 ((-85) $ $)) (-15 -4090 ((-3 $ #1="failed") $ |#1|)) (-15 -4089 ((-3 $ #1#) $ |#1|)) (-15 -2684 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3983 ((-714) $)) (-15 -4084 ((-599 |#1|) $)))) (-781)) (T -762)) -((-3951 (*1 *2 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) (-3949 (*1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) (-4086 (*1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) (-2629 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-762 *3)) (-4 *3 (-781)))) (-4090 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) (-4089 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) (-2684 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-762 *3)) (|:| |rm| (-762 *3)))) (-5 *1 (-762 *3)) (-4 *3 (-781)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-762 *3)) (-4 *3 (-781)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-762 *3)) (-4 *3 (-781))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3773 (((-499) $) 65 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3324 (((-85) $) 63 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3325 (((-85) $) 64 T ELT)) (-2650 (($ $ $) 57 T ELT)) (-2978 (($ $ $) 58 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-3523 (($ $) 66 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2685 (((-85) $ $) 59 T ELT)) (-2686 (((-85) $ $) 61 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 60 T ELT)) (-2806 (((-85) $ $) 62 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-763) (-113)) (T -763)) -NIL -(-13 (-510) (-780)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-244) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-735) . T) ((-737) . T) ((-739) . T) ((-742) . T) ((-780) . T) ((-781) . T) ((-784) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2630 ((|#1| $) 10 T ELT)) (-2631 (($ |#1|) 9 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3014 (($ |#2| (-714)) NIL T ELT)) (-2941 (((-714) $) NIL T ELT)) (-3312 ((|#2| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3908 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-714)) NIL (|has| |#1| (-190)) ELT)) (-4098 (((-714) $) NIL T ELT)) (-4096 (((-797) $) 17 T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-146)) ELT)) (-3827 ((|#2| $ (-714)) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-714)) NIL (|has| |#1| (-190)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-764 |#1| |#2|) (-13 (-666 |#2|) (-10 -8 (IF (|has| |#1| (-190)) (-6 (-190)) |%noBranch|) (-15 -2631 ($ |#1|)) (-15 -2630 (|#1| $)))) (-666 |#2|) (-989)) (T -764)) -((-2631 (*1 *1 *2) (-12 (-4 *3 (-989)) (-5 *1 (-764 *2 *3)) (-4 *2 (-666 *3)))) (-2630 (*1 *2 *1) (-12 (-4 *2 (-666 *3)) (-5 *1 (-764 *2 *3)) (-4 *3 (-989))))) -((-2687 (((-85) $ $) 19 T ELT)) (-3372 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3374 (($ $ $) 77 T ELT)) (-3373 (((-85) $ $) 78 T ELT)) (-3377 (($ (-599 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1603 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-2481 (($ $) 66 T ELT)) (-1386 (($ $) 62 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ |#1| $) 51 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3546 (($ |#1| $) 61 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3379 (((-85) $ $) 69 T ELT)) (-2650 ((|#1| $) 83 T ELT)) (-2977 (($ $ $) 86 T ELT)) (-3658 (($ $ $) 85 T ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2978 ((|#1| $) 84 T ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 T ELT)) (-3376 (($ $ $) 74 T ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT) (($ |#1| $ (-714)) 67 T ELT)) (-3381 (((-1060) $) 21 T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-2480 (((-599 (-2 (|:| |entry| |#1|) (|:| -2048 (-714)))) $) 65 T ELT)) (-3375 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1499 (($) 53 T ELT) (($ (-599 |#1|)) 52 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 63 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 54 T ELT)) (-4096 (((-797) $) 17 T ELT)) (-3378 (($ (-599 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1297 (((-85) $ $) 20 T ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 T ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-765 |#1|) (-113) (-781)) (T -765)) -((-2650 (*1 *2 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-781))))) -(-13 (-695 |t#1|) (-908 |t#1|) (-10 -8 (-15 -2650 (|t#1| $)))) -(((-34) . T) ((-78 |#1|) . T) ((-73) . T) ((-568 (-797)) . T) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-192 |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-653 |#1|) . T) ((-695 |#1|) . T) ((-908 |#1|) . T) ((-1039 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3773 (((-499) $) NIL (|has| |#1| (-780)) ELT)) (-3874 (($) NIL (|has| |#1| (-21)) CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 9 T ELT)) (-3607 (((-3 $ #1#) $) 42 (|has| |#1| (-780)) ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) 52 (|has| |#1| (-498)) ELT)) (-3144 (((-85) $) 46 (|has| |#1| (-498)) ELT)) (-3143 (((-361 (-499)) $) 49 (|has| |#1| (-498)) ELT)) (-3324 (((-85) $) NIL (|has| |#1| (-780)) ELT)) (-2528 (((-85) $) NIL (|has| |#1| (-780)) ELT)) (-3325 (((-85) $) NIL (|has| |#1| (-780)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-780)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-780)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2632 (($) 13 T ELT)) (-2643 (((-85) $) 12 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2644 (((-85) $) 11 T ELT)) (-4096 (((-797) $) 18 T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (($ |#1|) 8 T ELT) (($ (-499)) NIL (-3677 (|has| |#1| (-780)) (|has| |#1| (-978 (-499)))) ELT)) (-3248 (((-714)) 36 (|has| |#1| (-780)) CONST)) (-1297 (((-85) $ $) 54 T ELT)) (-3523 (($ $) NIL (|has| |#1| (-780)) ELT)) (-2779 (($) 23 (|has| |#1| (-21)) CONST)) (-2785 (($) 33 (|has| |#1| (-780)) CONST)) (-2685 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-3174 (((-85) $ $) 21 T ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-2806 (((-85) $ $) 45 (|has| |#1| (-780)) ELT)) (-3987 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3989 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-857)) NIL (|has| |#1| (-780)) ELT) (($ $ (-714)) NIL (|has| |#1| (-780)) ELT)) (* (($ $ $) 39 (|has| |#1| (-780)) ELT) (($ (-499) $) 27 (|has| |#1| (-21)) ELT) (($ (-714) $) NIL (|has| |#1| (-21)) ELT) (($ (-857) $) NIL (|has| |#1| (-21)) ELT))) -(((-766 |#1|) (-13 (-1041) (-366 |#1|) (-10 -8 (-15 -2632 ($)) (-15 -2644 ((-85) $)) (-15 -2643 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-780)) (-6 (-780)) |%noBranch|) (IF (|has| |#1| (-498)) (PROGN (-15 -3144 ((-85) $)) (-15 -3143 ((-361 (-499)) $)) (-15 -3145 ((-3 (-361 (-499)) "failed") $))) |%noBranch|))) (-1041)) (T -766)) -((-2632 (*1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-1041)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-766 *3)) (-4 *3 (-1041)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-766 *3)) (-4 *3 (-1041)))) (-3144 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-766 *3)) (-4 *3 (-498)) (-4 *3 (-1041)))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-766 *3)) (-4 *3 (-498)) (-4 *3 (-1041)))) (-3145 (*1 *2 *1) (|partial| -12 (-5 *2 (-361 (-499))) (-5 *1 (-766 *3)) (-4 *3 (-498)) (-4 *3 (-1041))))) -((-4108 (((-766 |#2|) (-1 |#2| |#1|) (-766 |#1|) (-766 |#2|)) 12 T ELT) (((-766 |#2|) (-1 |#2| |#1|) (-766 |#1|)) 13 T ELT))) -(((-767 |#1| |#2|) (-10 -7 (-15 -4108 ((-766 |#2|) (-1 |#2| |#1|) (-766 |#1|))) (-15 -4108 ((-766 |#2|) (-1 |#2| |#1|) (-766 |#1|) (-766 |#2|)))) (-1041) (-1041)) (T -767)) -((-4108 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-766 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-766 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *1 (-767 *5 *6)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-766 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *2 (-766 *6)) (-5 *1 (-767 *5 *6))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2634 ((|#1| (-86) |#1|) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2633 (($ |#1| (-316 (-86))) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2635 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2636 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3950 ((|#1| $ |#1|) NIL T ELT)) (-2637 ((|#1| |#1|) NIL (|has| |#1| (-146)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2638 (($ $) NIL (|has| |#1| (-146)) ELT) (($ $ $) NIL (|has| |#1| (-146)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ (-86) (-499)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-768 |#1|) (-13 (-989) (-978 |#1|) (-978 (-86)) (-240 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2638 ($ $)) (-15 -2638 ($ $ $)) (-15 -2637 (|#1| |#1|))) |%noBranch|) (-15 -2636 ($ $ (-1 |#1| |#1|))) (-15 -2635 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-499))) (-15 ** ($ $ (-499))) (-15 -2634 (|#1| (-86) |#1|)) (-15 -2633 ($ |#1| (-316 (-86)))))) (-989)) (T -768)) -((-2638 (*1 *1 *1) (-12 (-5 *1 (-768 *2)) (-4 *2 (-146)) (-4 *2 (-989)))) (-2638 (*1 *1 *1 *1) (-12 (-5 *1 (-768 *2)) (-4 *2 (-146)) (-4 *2 (-989)))) (-2637 (*1 *2 *2) (-12 (-5 *1 (-768 *2)) (-4 *2 (-146)) (-4 *2 (-989)))) (-2636 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-768 *3)))) (-2635 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-768 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-499)) (-5 *1 (-768 *4)) (-4 *4 (-989)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-768 *3)) (-4 *3 (-989)))) (-2634 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-768 *2)) (-4 *2 (-989)))) (-2633 (*1 *1 *2 *3) (-12 (-5 *3 (-316 (-86))) (-5 *1 (-768 *2)) (-4 *2 (-989))))) -((-2752 (((-85) $ |#2|) 14 T ELT)) (-4096 (((-797) $) 11 T ELT))) -(((-769 |#1| |#2|) (-10 -7 (-15 -2752 ((-85) |#1| |#2|)) (-15 -4096 ((-797) |#1|))) (-770 |#2|) (-1041)) (T -769)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3690 ((|#1| $) 19 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2752 (((-85) $ |#1|) 17 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2639 (((-55) $) 18 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-770 |#1|) (-113) (-1041)) (T -770)) -((-3690 (*1 *2 *1) (-12 (-4 *1 (-770 *2)) (-4 *2 (-1041)))) (-2639 (*1 *2 *1) (-12 (-4 *1 (-770 *3)) (-4 *3 (-1041)) (-5 *2 (-55)))) (-2752 (*1 *2 *1 *3) (-12 (-4 *1 (-770 *3)) (-4 *3 (-1041)) (-5 *2 (-85))))) -(-13 (-1041) (-10 -8 (-15 -3690 (|t#1| $)) (-15 -2639 ((-55) $)) (-15 -2752 ((-85) $ |t#1|)))) -(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-2640 (((-167 (-456)) (-1099)) 9 T ELT))) -(((-771) (-10 -7 (-15 -2640 ((-167 (-456)) (-1099))))) (T -771)) -((-2640 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-167 (-456))) (-5 *1 (-771))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3457 (((-1055) $) 10 T ELT)) (-3690 (((-460) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2752 (((-85) $ (-460)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3670 (($ (-460) (-1055)) 8 T ELT)) (-4096 (((-797) $) 25 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2639 (((-55) $) 20 T ELT)) (-3174 (((-85) $ $) 12 T ELT))) -(((-772) (-13 (-770 (-460)) (-10 -8 (-15 -3457 ((-1055) $)) (-15 -3670 ($ (-460) (-1055)))))) (T -772)) -((-3457 (*1 *2 *1) (-12 (-5 *2 (-1055)) (-5 *1 (-772)))) (-3670 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-1055)) (-5 *1 (-772))))) -((-2687 (((-85) $ $) 7 T ELT)) (-2641 (((-975) (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))) 18 T ELT) (((-975) (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) 17 T ELT)) (-2787 (((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099))) (-1003) (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) 20 T ELT) (((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099))) (-1003) (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))) 19 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-773) (-113)) (T -773)) -((-2787 (*1 *2 *3 *4) (-12 (-4 *1 (-773)) (-5 *3 (-1003)) (-5 *4 (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)))))) (-2787 (*1 *2 *3 *4) (-12 (-4 *1 (-773)) (-5 *3 (-1003)) (-5 *4 (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))) (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)))))) (-2641 (*1 *2 *3) (-12 (-4 *1 (-773)) (-5 *3 (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))) (-5 *2 (-975)))) (-2641 (*1 *2 *3) (-12 (-4 *1 (-773)) (-5 *3 (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) (-5 *2 (-975))))) -(-13 (-1041) (-10 -7 (-15 -2787 ((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099))) (-1003) (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179))))))) (-15 -2787 ((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099))) (-1003) (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179)))))) (-15 -2641 ((-975) (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179)))))) (-15 -2641 ((-975) (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179))))))))) -(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3294 (((-3 (|:| |noa| (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) (|:| |lsa| (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179)))))) $) 21 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 20 T ELT) (($ (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) 14 T ELT) (($ (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))) 16 T ELT) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) (|:| |lsa| (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))))) 18 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-774) (-13 (-1041) (-10 -8 (-15 -4096 ($ (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179))))))) (-15 -4096 ($ (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179)))))) (-15 -4096 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) (|:| |lsa| (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179)))))))) (-15 -3294 ((-3 (|:| |noa| (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) (|:| |lsa| (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179)))))) $))))) (T -774)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) (-5 *1 (-774)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))) (-5 *1 (-774)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) (|:| |lsa| (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))))) (-5 *1 (-774)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) (|:| |lsa| (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))))) (-5 *1 (-774))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2642 (((-1060) $) 31 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3773 (((-499) $) NIL (|has| |#1| (-780)) ELT)) (-3874 (($) NIL (|has| |#1| (-21)) CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 9 T ELT)) (-3607 (((-3 $ #1#) $) 57 (|has| |#1| (-780)) ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) 65 (|has| |#1| (-498)) ELT)) (-3144 (((-85) $) 60 (|has| |#1| (-498)) ELT)) (-3143 (((-361 (-499)) $) 63 (|has| |#1| (-498)) ELT)) (-3324 (((-85) $) NIL (|has| |#1| (-780)) ELT)) (-2646 (($) 14 T ELT)) (-2528 (((-85) $) NIL (|has| |#1| (-780)) ELT)) (-3325 (((-85) $) NIL (|has| |#1| (-780)) ELT)) (-2645 (($) 16 T ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-780)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-780)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2643 (((-85) $) 12 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2644 (((-85) $) 11 T ELT)) (-4096 (((-797) $) 24 T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (($ |#1|) 8 T ELT) (($ (-499)) NIL (-3677 (|has| |#1| (-780)) (|has| |#1| (-978 (-499)))) ELT)) (-3248 (((-714)) 50 (|has| |#1| (-780)) CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3523 (($ $) NIL (|has| |#1| (-780)) ELT)) (-2779 (($) 37 (|has| |#1| (-21)) CONST)) (-2785 (($) 47 (|has| |#1| (-780)) CONST)) (-2685 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-3174 (((-85) $ $) 35 T ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-2806 (((-85) $ $) 59 (|has| |#1| (-780)) ELT)) (-3987 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3989 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-857)) NIL (|has| |#1| (-780)) ELT) (($ $ (-714)) NIL (|has| |#1| (-780)) ELT)) (* (($ $ $) 54 (|has| |#1| (-780)) ELT) (($ (-499) $) 41 (|has| |#1| (-21)) ELT) (($ (-714) $) NIL (|has| |#1| (-21)) ELT) (($ (-857) $) NIL (|has| |#1| (-21)) ELT))) -(((-775 |#1|) (-13 (-1041) (-366 |#1|) (-10 -8 (-15 -2646 ($)) (-15 -2645 ($)) (-15 -2644 ((-85) $)) (-15 -2643 ((-85) $)) (-15 -2642 ((-1060) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-780)) (-6 (-780)) |%noBranch|) (IF (|has| |#1| (-498)) (PROGN (-15 -3144 ((-85) $)) (-15 -3143 ((-361 (-499)) $)) (-15 -3145 ((-3 (-361 (-499)) "failed") $))) |%noBranch|))) (-1041)) (T -775)) -((-2646 (*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1041)))) (-2645 (*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1041)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-775 *3)) (-4 *3 (-1041)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-775 *3)) (-4 *3 (-1041)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-775 *3)) (-4 *3 (-1041)))) (-3144 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-775 *3)) (-4 *3 (-498)) (-4 *3 (-1041)))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-775 *3)) (-4 *3 (-498)) (-4 *3 (-1041)))) (-3145 (*1 *2 *1) (|partial| -12 (-5 *2 (-361 (-499))) (-5 *1 (-775 *3)) (-4 *3 (-498)) (-4 *3 (-1041))))) -((-4108 (((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|) (-775 |#2|)) 13 T ELT) (((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|)) 14 T ELT))) -(((-776 |#1| |#2|) (-10 -7 (-15 -4108 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|))) (-15 -4108 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|) (-775 |#2|)))) (-1041) (-1041)) (T -776)) -((-4108 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-775 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *1 (-776 *5 *6)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *2 (-775 *6)) (-5 *1 (-776 *5 *6))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3258 (((-714)) 27 T ELT)) (-3115 (($) 30 T ELT)) (-2650 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2978 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2111 (((-857) $) 29 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2518 (($ (-857)) 28 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT))) -(((-777) (-113)) (T -777)) -((-2650 (*1 *1) (-4 *1 (-777))) (-2978 (*1 *1) (-4 *1 (-777)))) -(-13 (-781) (-323) (-10 -8 (-15 -2650 ($) -4102) (-15 -2978 ($) -4102))) -(((-73) . T) ((-568 (-797)) . T) ((-323) . T) ((-781) . T) ((-784) . T) ((-1041) . T) ((-1157) . T)) -((-2648 (((-85) (-1207 |#2|) (-1207 |#2|)) 19 T ELT)) (-2649 (((-85) (-1207 |#2|) (-1207 |#2|)) 20 T ELT)) (-2647 (((-85) (-1207 |#2|) (-1207 |#2|)) 16 T ELT))) -(((-778 |#1| |#2|) (-10 -7 (-15 -2647 ((-85) (-1207 |#2|) (-1207 |#2|))) (-15 -2648 ((-85) (-1207 |#2|) (-1207 |#2|))) (-15 -2649 ((-85) (-1207 |#2|) (-1207 |#2|)))) (-714) (-737)) (T -778)) -((-2649 (*1 *2 *3 *3) (-12 (-5 *3 (-1207 *5)) (-4 *5 (-737)) (-5 *2 (-85)) (-5 *1 (-778 *4 *5)) (-14 *4 (-714)))) (-2648 (*1 *2 *3 *3) (-12 (-5 *3 (-1207 *5)) (-4 *5 (-737)) (-5 *2 (-85)) (-5 *1 (-778 *4 *5)) (-14 *4 (-714)))) (-2647 (*1 *2 *3 *3) (-12 (-5 *3 (-1207 *5)) (-4 *5 (-737)) (-5 *2 (-85)) (-5 *1 (-778 *4 *5)) (-14 *4 (-714))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3874 (($) 29 T CONST)) (-3607 (((-3 $ "failed") $) 32 T ELT)) (-2528 (((-85) $) 30 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2785 (($) 28 T CONST)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT)) (** (($ $ (-857)) 26 T ELT) (($ $ (-714)) 31 T ELT)) (* (($ $ $) 25 T ELT))) -(((-779) (-113)) (T -779)) -NIL -(-13 (-791) (-684)) -(((-73) . T) ((-568 (-797)) . T) ((-684) . T) ((-791) . T) ((-781) . T) ((-784) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 31 T ELT)) (-1345 (((-3 $ "failed") $ $) 34 T ELT)) (-3773 (((-499) $) 37 T ELT)) (-3874 (($) 30 T CONST)) (-3607 (((-3 $ "failed") $) 49 T ELT)) (-3324 (((-85) $) 28 T ELT)) (-2528 (((-85) $) 51 T ELT)) (-3325 (((-85) $) 38 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 53 T ELT)) (-3248 (((-714)) 54 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-3523 (($ $) 36 T ELT)) (-2779 (($) 29 T CONST)) (-2785 (($) 52 T CONST)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT)) (-3987 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3989 (($ $ $) 25 T ELT)) (** (($ $ (-714)) 50 T ELT) (($ $ (-857)) 47 T ELT)) (* (($ (-857) $) 26 T ELT) (($ (-714) $) 32 T ELT) (($ (-499) $) 39 T ELT) (($ $ $) 48 T ELT))) -(((-780) (-113)) (T -780)) -NIL -(-13 (-735) (-989) (-684)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-684) . T) ((-735) . T) ((-737) . T) ((-739) . T) ((-742) . T) ((-781) . T) ((-784) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) 7 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT))) -(((-781) (-113)) (T -781)) -NIL -(-13 (-1041) (-784)) -(((-73) . T) ((-568 (-797)) . T) ((-784) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-4096 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-797) $) 15 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 12 T ELT))) -(((-782 |#1| |#2|) (-13 (-784) (-444 |#1|) (-10 -7 (IF (|has| |#1| (-568 (-797))) (-6 (-568 (-797))) |%noBranch|))) (-1157) (-1 (-85) |#1| |#1|)) (T -782)) -NIL -((-2650 (($ $ $) 16 T ELT)) (-2978 (($ $ $) 15 T ELT)) (-1297 (((-85) $ $) 17 T ELT)) (-2685 (((-85) $ $) 12 T ELT)) (-2686 (((-85) $ $) 9 T ELT)) (-3174 (((-85) $ $) 14 T ELT)) (-2805 (((-85) $ $) 11 T ELT))) -(((-783 |#1|) (-10 -7 (-15 -2650 (|#1| |#1| |#1|)) (-15 -2978 (|#1| |#1| |#1|)) (-15 -2685 ((-85) |#1| |#1|)) (-15 -2805 ((-85) |#1| |#1|)) (-15 -2686 ((-85) |#1| |#1|)) (-15 -1297 ((-85) |#1| |#1|)) (-15 -3174 ((-85) |#1| |#1|))) (-784)) (T -783)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-2650 (($ $ $) 10 T ELT)) (-2978 (($ $ $) 11 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2685 (((-85) $ $) 12 T ELT)) (-2686 (((-85) $ $) 14 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 13 T ELT)) (-2806 (((-85) $ $) 15 T ELT))) -(((-784) (-113)) (T -784)) -((-2806 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-85)))) (-2686 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-85)))) (-2805 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-85)))) (-2685 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-85)))) (-2978 (*1 *1 *1 *1) (-4 *1 (-784))) (-2650 (*1 *1 *1 *1) (-4 *1 (-784)))) -(-13 (-73) (-10 -8 (-15 -2806 ((-85) $ $)) (-15 -2686 ((-85) $ $)) (-15 -2805 ((-85) $ $)) (-15 -2685 ((-85) $ $)) (-15 -2978 ($ $ $)) (-15 -2650 ($ $ $)))) -(((-73) . T) ((-1157) . T)) -((-2655 (($ $ $) 49 T ELT)) (-2656 (($ $ $) 48 T ELT)) (-2657 (($ $ $) 46 T ELT)) (-2653 (($ $ $) 55 T ELT)) (-2652 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 50 T ELT)) (-2654 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3295 (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3643 (($ $) 39 T ELT)) (-2661 (($ $ $) 43 T ELT)) (-2662 (($ $ $) 42 T ELT)) (-2651 (($ $ $) 51 T ELT)) (-2659 (($ $ $) 57 T ELT)) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 45 T ELT)) (-2660 (((-3 $ #1#) $ $) 52 T ELT)) (-3606 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2938 ((|#2| $) 36 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3967 (((-599 |#2|) $) 21 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) -(((-785 |#1| |#2|) (-10 -7 (-15 -2651 (|#1| |#1| |#1|)) (-15 -2652 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2527 |#1|)) |#1| |#1|)) (-15 -2653 (|#1| |#1| |#1|)) (-15 -2654 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2655 (|#1| |#1| |#1|)) (-15 -2656 (|#1| |#1| |#1|)) (-15 -2657 (|#1| |#1| |#1|)) (-15 -2658 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2527 |#1|)) |#1| |#1|)) (-15 -2659 (|#1| |#1| |#1|)) (-15 -2660 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2661 (|#1| |#1| |#1|)) (-15 -2662 (|#1| |#1| |#1|)) (-15 -3643 (|#1| |#1|)) (-15 -2938 (|#2| |#1|)) (-15 -3606 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3967 ((-599 |#2|) |#1|)) (-15 -4096 (|#1| |#2|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4096 (|#1| (-499))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 * (|#1| (-857) |#1|)) (-15 -4096 ((-797) |#1|))) (-786 |#2|) (-989)) (T -785)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-2655 (($ $ $) 55 (|has| |#1| (-318)) ELT)) (-2656 (($ $ $) 56 (|has| |#1| (-318)) ELT)) (-2657 (($ $ $) 58 (|has| |#1| (-318)) ELT)) (-2653 (($ $ $) 53 (|has| |#1| (-318)) ELT)) (-2652 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 52 (|has| |#1| (-318)) ELT)) (-2654 (((-3 $ "failed") $ $) 54 (|has| |#1| (-318)) ELT)) (-2668 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 57 (|has| |#1| (-318)) ELT)) (-3295 (((-3 (-499) #1="failed") $) 85 (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) 82 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3294 (((-499) $) 84 (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) 81 (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 80 T ELT)) (-4109 (($ $) 74 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3643 (($ $) 65 (|has| |#1| (-406)) ELT)) (-2528 (((-85) $) 40 T ELT)) (-3014 (($ |#1| (-714)) 72 T ELT)) (-2666 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 67 (|has| |#1| (-510)) ELT)) (-2665 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 68 (|has| |#1| (-510)) ELT)) (-2941 (((-714) $) 76 T ELT)) (-2661 (($ $ $) 62 (|has| |#1| (-318)) ELT)) (-2662 (($ $ $) 63 (|has| |#1| (-318)) ELT)) (-2651 (($ $ $) 51 (|has| |#1| (-318)) ELT)) (-2659 (($ $ $) 60 (|has| |#1| (-318)) ELT)) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 59 (|has| |#1| (-318)) ELT)) (-2660 (((-3 $ "failed") $ $) 61 (|has| |#1| (-318)) ELT)) (-2667 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 64 (|has| |#1| (-318)) ELT)) (-3312 ((|#1| $) 75 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3606 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-510)) ELT)) (-4098 (((-714) $) 77 T ELT)) (-2938 ((|#1| $) 66 (|has| |#1| (-406)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 (-499))) 83 (|has| |#1| (-978 (-361 (-499)))) ELT) (($ |#1|) 78 T ELT)) (-3967 (((-599 |#1|) $) 71 T ELT)) (-3827 ((|#1| $ (-714)) 73 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2664 ((|#1| $ |#1| |#1|) 70 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) -(((-786 |#1|) (-113) (-989)) (T -786)) -((-4098 (*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) (-2941 (*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)))) (-4109 (*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)))) (-3827 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-786 *2)) (-4 *2 (-989)))) (-3014 (*1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-786 *2)) (-4 *2 (-989)))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-989)) (-5 *2 (-599 *3)))) (-2664 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)))) (-3606 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-510)))) (-2665 (*1 *2 *1 *1) (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-786 *3)))) (-2666 (*1 *2 *1 *1) (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-786 *3)))) (-2938 (*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-406)))) (-3643 (*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-406)))) (-2667 (*1 *2 *1 *1) (-12 (-4 *3 (-318)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-786 *3)))) (-2662 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2661 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2660 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2659 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2658 (*1 *2 *1 *1) (-12 (-4 *3 (-318)) (-4 *3 (-989)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2527 *1))) (-4 *1 (-786 *3)))) (-2657 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2668 (*1 *2 *1 *1) (-12 (-4 *3 (-318)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-786 *3)))) (-2656 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2655 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2654 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2653 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2652 (*1 *2 *1 *1) (-12 (-4 *3 (-318)) (-4 *3 (-989)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2527 *1))) (-4 *1 (-786 *3)))) (-2651 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) -(-13 (-989) (-82 |t#1| |t#1|) (-366 |t#1|) (-10 -8 (-15 -4098 ((-714) $)) (-15 -2941 ((-714) $)) (-15 -3312 (|t#1| $)) (-15 -4109 ($ $)) (-15 -3827 (|t#1| $ (-714))) (-15 -3014 ($ |t#1| (-714))) (-15 -3967 ((-599 |t#1|) $)) (-15 -2664 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -3606 ((-3 $ "failed") $ |t#1|)) (-15 -2665 ((-2 (|:| -2075 $) (|:| -3023 $)) $ $)) (-15 -2666 ((-2 (|:| -2075 $) (|:| -3023 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-406)) (PROGN (-15 -2938 (|t#1| $)) (-15 -3643 ($ $))) |%noBranch|) (IF (|has| |t#1| (-318)) (PROGN (-15 -2667 ((-2 (|:| -2075 $) (|:| -3023 $)) $ $)) (-15 -2662 ($ $ $)) (-15 -2661 ($ $ $)) (-15 -2660 ((-3 $ "failed") $ $)) (-15 -2659 ($ $ $)) (-15 -2658 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $)) (-15 -2657 ($ $ $)) (-15 -2668 ((-2 (|:| -2075 $) (|:| -3023 $)) $ $)) (-15 -2656 ($ $ $)) (-15 -2655 ($ $ $)) (-15 -2654 ((-3 $ "failed") $ $)) (-15 -2653 ($ $ $)) (-15 -2652 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $)) (-15 -2651 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-571 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-366 |#1|) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 |#1|) |has| |#1| (-146)) ((-675 |#1|) |has| |#1| (-146)) ((-684) . T) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2663 ((|#2| |#2| |#2| (-70 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2668 (((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2| (-70 |#1|)) 46 (|has| |#1| (-318)) ELT)) (-2666 (((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2| (-70 |#1|)) 43 (|has| |#1| (-510)) ELT)) (-2665 (((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2| (-70 |#1|)) 42 (|has| |#1| (-510)) ELT)) (-2667 (((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2| (-70 |#1|)) 45 (|has| |#1| (-318)) ELT)) (-2664 ((|#1| |#2| |#1| |#1| (-70 |#1|) (-1 |#1| |#1|)) 33 T ELT))) -(((-787 |#1| |#2|) (-10 -7 (-15 -2663 (|#2| |#2| |#2| (-70 |#1|) (-1 |#1| |#1|))) (-15 -2664 (|#1| |#2| |#1| |#1| (-70 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-510)) (PROGN (-15 -2665 ((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2| (-70 |#1|))) (-15 -2666 ((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2| (-70 |#1|)))) |%noBranch|) (IF (|has| |#1| (-318)) (PROGN (-15 -2667 ((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2| (-70 |#1|))) (-15 -2668 ((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2| (-70 |#1|)))) |%noBranch|)) (-989) (-786 |#1|)) (T -787)) -((-2668 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-70 *5)) (-4 *5 (-318)) (-4 *5 (-989)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-2667 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-70 *5)) (-4 *5 (-318)) (-4 *5 (-989)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-2666 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-70 *5)) (-4 *5 (-510)) (-4 *5 (-989)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-2665 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-70 *5)) (-4 *5 (-510)) (-4 *5 (-989)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-2664 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-70 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-989)) (-5 *1 (-787 *2 *3)) (-4 *3 (-786 *2)))) (-2663 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-70 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-989)) (-5 *1 (-787 *5 *2)) (-4 *2 (-786 *5))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2655 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2656 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2657 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2653 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2652 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-2654 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-2668 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 34 (|has| |#1| (-318)) ELT)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT)) (-3673 (((-797) $ (-797)) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-714)) NIL T ELT)) (-2666 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 30 (|has| |#1| (-510)) ELT)) (-2665 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 28 (|has| |#1| (-510)) ELT)) (-2941 (((-714) $) NIL T ELT)) (-2661 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2662 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2651 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2659 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-2660 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-2667 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 32 (|has| |#1| (-318)) ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT)) (-4098 (((-714) $) NIL T ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (($ |#1|) NIL T ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-714)) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2664 ((|#1| $ |#1| |#1|) 15 T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) 23 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) 19 T ELT) (($ $ (-714)) 24 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-788 |#1| |#2| |#3|) (-13 (-786 |#1|) (-10 -8 (-15 -3673 ((-797) $ (-797))))) (-989) (-70 |#1|) (-1 |#1| |#1|)) (T -788)) -((-3673 (*1 *2 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-788 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-70 *3)) (-14 *5 (-1 *3 *3))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2655 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-2656 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-2657 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-2653 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-2652 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#2| (-318)) ELT)) (-2654 (((-3 $ #1#) $ $) NIL (|has| |#2| (-318)) ELT)) (-2668 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#2| (-318)) ELT)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) ((|#2| $) NIL T ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#2| (-406)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3014 (($ |#2| (-714)) 17 T ELT)) (-2666 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#2| (-510)) ELT)) (-2665 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#2| (-510)) ELT)) (-2941 (((-714) $) NIL T ELT)) (-2661 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-2662 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-2651 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-2659 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#2| (-318)) ELT)) (-2660 (((-3 $ #1#) $ $) NIL (|has| |#2| (-318)) ELT)) (-2667 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#2| (-318)) ELT)) (-3312 ((|#2| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3606 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-510)) ELT)) (-4098 (((-714) $) NIL T ELT)) (-2938 ((|#2| $) NIL (|has| |#2| (-406)) ELT)) (-4096 (((-797) $) 24 T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (($ |#2|) NIL T ELT) (($ (-1204 |#1|)) 19 T ELT)) (-3967 (((-599 |#2|) $) NIL T ELT)) (-3827 ((|#2| $ (-714)) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2664 ((|#2| $ |#2| |#2|) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) 13 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-789 |#1| |#2| |#3| |#4|) (-13 (-786 |#2|) (-571 (-1204 |#1|))) (-1117) (-989) (-70 |#2|) (-1 |#2| |#2|)) (T -789)) -NIL -((-2671 ((|#1| (-714) |#1|) 45 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2670 ((|#1| (-714) (-714) |#1|) 36 T ELT) ((|#1| (-714) |#1|) 24 T ELT)) (-2669 ((|#1| (-714) |#1|) 40 T ELT)) (-2921 ((|#1| (-714) |#1|) 38 T ELT)) (-2920 ((|#1| (-714) |#1|) 37 T ELT))) -(((-790 |#1|) (-10 -7 (-15 -2920 (|#1| (-714) |#1|)) (-15 -2921 (|#1| (-714) |#1|)) (-15 -2669 (|#1| (-714) |#1|)) (-15 -2670 (|#1| (-714) |#1|)) (-15 -2670 (|#1| (-714) (-714) |#1|)) (IF (|has| |#1| (-38 (-361 (-499)))) (-15 -2671 (|#1| (-714) |#1|)) |%noBranch|)) (-146)) (T -790)) -((-2671 (*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-146)))) (-2670 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146)))) (-2670 (*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146)))) (-2669 (*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146)))) (-2921 (*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146)))) (-2920 (*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146))))) -((-2687 (((-85) $ $) 7 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT)) (** (($ $ (-857)) 26 T ELT)) (* (($ $ $) 25 T ELT))) -(((-791) (-113)) (T -791)) -NIL -(-13 (-781) (-1052)) -(((-73) . T) ((-568 (-797)) . T) ((-781) . T) ((-784) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3542 (((-499) $) 14 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 20 T ELT) (($ (-499)) 13 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 9 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 11 T ELT))) -(((-792) (-13 (-781) (-10 -8 (-15 -4096 ($ (-499))) (-15 -3542 ((-499) $))))) (T -792)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-792)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-792))))) -((-2672 (((-1213) (-599 (-51))) 23 T ELT)) (-3600 (((-1213) (-1099) (-797)) 13 T ELT) (((-1213) (-797)) 8 T ELT) (((-1213) (-1099)) 10 T ELT))) -(((-793) (-10 -7 (-15 -3600 ((-1213) (-1099))) (-15 -3600 ((-1213) (-797))) (-15 -3600 ((-1213) (-1099) (-797))) (-15 -2672 ((-1213) (-599 (-51)))))) (T -793)) -((-2672 (*1 *2 *3) (-12 (-5 *3 (-599 (-51))) (-5 *2 (-1213)) (-5 *1 (-793)))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-797)) (-5 *2 (-1213)) (-5 *1 (-793)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-793)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-793))))) -((-2674 (((-649 (-1166)) $ (-1166)) 15 T ELT)) (-2675 (((-649 (-503)) $ (-503)) 12 T ELT)) (-2673 (((-714) $ (-102)) 30 T ELT))) -(((-794 |#1|) (-10 -7 (-15 -2673 ((-714) |#1| (-102))) (-15 -2674 ((-649 (-1166)) |#1| (-1166))) (-15 -2675 ((-649 (-503)) |#1| (-503)))) (-795)) (T -794)) -NIL -((-2674 (((-649 (-1166)) $ (-1166)) 8 T ELT)) (-2675 (((-649 (-503)) $ (-503)) 9 T ELT)) (-2673 (((-714) $ (-102)) 7 T ELT)) (-2676 (((-649 (-101)) $ (-101)) 10 T ELT)) (-1793 (($ $) 6 T ELT))) -(((-795) (-113)) (T -795)) -((-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-795)) (-5 *2 (-649 (-101))) (-5 *3 (-101)))) (-2675 (*1 *2 *1 *3) (-12 (-4 *1 (-795)) (-5 *2 (-649 (-503))) (-5 *3 (-503)))) (-2674 (*1 *2 *1 *3) (-12 (-4 *1 (-795)) (-5 *2 (-649 (-1166))) (-5 *3 (-1166)))) (-2673 (*1 *2 *1 *3) (-12 (-4 *1 (-795)) (-5 *3 (-102)) (-5 *2 (-714))))) -(-13 (-147) (-10 -8 (-15 -2676 ((-649 (-101)) $ (-101))) (-15 -2675 ((-649 (-503)) $ (-503))) (-15 -2674 ((-649 (-1166)) $ (-1166))) (-15 -2673 ((-714) $ (-102))))) -(((-147) . T)) -((-2674 (((-649 (-1166)) $ (-1166)) NIL T ELT)) (-2675 (((-649 (-503)) $ (-503)) NIL T ELT)) (-2673 (((-714) $ (-102)) NIL T ELT)) (-2676 (((-649 (-101)) $ (-101)) 22 T ELT)) (-2678 (($ (-344)) 12 T ELT) (($ (-1099)) 14 T ELT)) (-2677 (((-85) $) 19 T ELT)) (-4096 (((-797) $) 26 T ELT)) (-1793 (($ $) 23 T ELT))) -(((-796) (-13 (-795) (-568 (-797)) (-10 -8 (-15 -2678 ($ (-344))) (-15 -2678 ($ (-1099))) (-15 -2677 ((-85) $))))) (T -796)) -((-2678 (*1 *1 *2) (-12 (-5 *2 (-344)) (-5 *1 (-796)))) (-2678 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-796)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-796))))) -((-2687 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2708 (($ $ $) 125 T ELT)) (-2723 (((-499) $) 31 T ELT) (((-499)) 36 T ELT)) (-2718 (($ (-499)) 53 T ELT)) (-2715 (($ $ $) 54 T ELT) (($ (-599 $)) 84 T ELT)) (-2699 (($ $ (-599 $)) 82 T ELT)) (-2720 (((-499) $) 34 T ELT)) (-2702 (($ $ $) 73 T ELT)) (-3672 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2721 (((-499) $) 33 T ELT)) (-2703 (($ $ $) 72 T ELT)) (-3683 (($ $) 114 T ELT)) (-2706 (($ $ $) 129 T ELT)) (-2689 (($ (-599 $)) 61 T ELT)) (-3688 (($ $ (-599 $)) 79 T ELT)) (-2717 (($ (-499) (-499)) 55 T ELT)) (-2730 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3259 (($ $ (-499)) 43 T ELT) (($ $) 46 T ELT)) (-2683 (($ $ $) 97 T ELT)) (-2704 (($ $ $) 132 T ELT)) (-2698 (($ $) 115 T ELT)) (-2682 (($ $ $) 98 T ELT)) (-2694 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2958 (((-1213) $) 10 T ELT)) (-2697 (($ $) 118 T ELT) (($ $ (-714)) 122 T ELT)) (-2700 (($ $ $) 75 T ELT)) (-2701 (($ $ $) 74 T ELT)) (-2714 (($ $ (-599 $)) 110 T ELT)) (-2712 (($ $ $) 113 T ELT)) (-2691 (($ (-599 $)) 59 T ELT)) (-2692 (($ $) 70 T ELT) (($ (-599 $)) 71 T ELT)) (-2695 (($ $ $) 123 T ELT)) (-2696 (($ $) 116 T ELT)) (-2707 (($ $ $) 128 T ELT)) (-3673 (($ (-499)) 21 T ELT) (($ (-1117)) 23 T ELT) (($ (-1099)) 30 T ELT) (($ (-179)) 25 T ELT)) (-2680 (($ $ $) 101 T ELT)) (-2679 (($ $) 102 T ELT)) (-2725 (((-1213) (-1099)) 15 T ELT)) (-2726 (($ (-1099)) 14 T ELT)) (-3246 (($ (-599 (-599 $))) 58 T ELT)) (-3260 (($ $ (-499)) 42 T ELT) (($ $) 45 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2710 (($ $ $) 131 T ELT)) (-3610 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2711 (((-85) $) 108 T ELT)) (-2713 (($ $ (-599 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2719 (($ (-499)) 39 T ELT)) (-2722 (((-499) $) 32 T ELT) (((-499)) 35 T ELT)) (-2716 (($ $ $) 40 T ELT) (($ (-599 $)) 83 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3606 (($ $ $) 99 T ELT)) (-3713 (($) 13 T ELT)) (-3950 (($ $ (-599 $)) 109 T ELT)) (-2724 (((-1099) (-1099)) 8 T ELT)) (-3986 (($ $) 117 T ELT) (($ $ (-714)) 121 T ELT)) (-2684 (($ $ $) 96 T ELT)) (-3908 (($ $ (-714)) 139 T ELT)) (-2690 (($ (-599 $)) 60 T ELT)) (-4096 (((-797) $) 19 T ELT)) (-3923 (($ $ (-499)) 41 T ELT) (($ $) 44 T ELT)) (-2693 (($ $) 68 T ELT) (($ (-599 $)) 69 T ELT)) (-3378 (($ $) 66 T ELT) (($ (-599 $)) 67 T ELT)) (-2709 (($ $) 124 T ELT)) (-2688 (($ (-599 $)) 65 T ELT)) (-3224 (($ $ $) 105 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2705 (($ $ $) 130 T ELT)) (-2681 (($ $ $) 100 T ELT)) (-3887 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2685 (($ $ $) 89 T ELT)) (-2686 (($ $ $) 87 T ELT)) (-3174 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2805 (($ $ $) 88 T ELT)) (-2806 (($ $ $) 86 T ELT)) (-4099 (($ $ $) 94 T ELT)) (-3987 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3989 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) -(((-797) (-13 (-1041) (-10 -8 (-15 -2958 ((-1213) $)) (-15 -2726 ($ (-1099))) (-15 -2725 ((-1213) (-1099))) (-15 -3673 ($ (-499))) (-15 -3673 ($ (-1117))) (-15 -3673 ($ (-1099))) (-15 -3673 ($ (-179))) (-15 -3713 ($)) (-15 -2724 ((-1099) (-1099))) (-15 -2723 ((-499) $)) (-15 -2722 ((-499) $)) (-15 -2723 ((-499))) (-15 -2722 ((-499))) (-15 -2721 ((-499) $)) (-15 -2720 ((-499) $)) (-15 -2719 ($ (-499))) (-15 -2718 ($ (-499))) (-15 -2717 ($ (-499) (-499))) (-15 -3260 ($ $ (-499))) (-15 -3259 ($ $ (-499))) (-15 -3923 ($ $ (-499))) (-15 -3260 ($ $)) (-15 -3259 ($ $)) (-15 -3923 ($ $)) (-15 -2716 ($ $ $)) (-15 -2715 ($ $ $)) (-15 -2716 ($ (-599 $))) (-15 -2715 ($ (-599 $))) (-15 -2714 ($ $ (-599 $))) (-15 -2713 ($ $ (-599 $))) (-15 -2713 ($ $ $ $)) (-15 -2712 ($ $ $)) (-15 -2711 ((-85) $)) (-15 -3950 ($ $ (-599 $))) (-15 -3683 ($ $)) (-15 -2710 ($ $ $)) (-15 -2709 ($ $)) (-15 -3246 ($ (-599 (-599 $)))) (-15 -2708 ($ $ $)) (-15 -2730 ($ $)) (-15 -2730 ($ $ $)) (-15 -2707 ($ $ $)) (-15 -2706 ($ $ $)) (-15 -2705 ($ $ $)) (-15 -2704 ($ $ $)) (-15 -3908 ($ $ (-714))) (-15 -3224 ($ $ $)) (-15 -2703 ($ $ $)) (-15 -2702 ($ $ $)) (-15 -2701 ($ $ $)) (-15 -2700 ($ $ $)) (-15 -3688 ($ $ (-599 $))) (-15 -2699 ($ $ (-599 $))) (-15 -2698 ($ $)) (-15 -3986 ($ $)) (-15 -3986 ($ $ (-714))) (-15 -2697 ($ $)) (-15 -2697 ($ $ (-714))) (-15 -2696 ($ $)) (-15 -2695 ($ $ $)) (-15 -3672 ($ $)) (-15 -3672 ($ $ $)) (-15 -3672 ($ $ $ $)) (-15 -2694 ($ $)) (-15 -2694 ($ $ $)) (-15 -2694 ($ $ $ $)) (-15 -3610 ($ $)) (-15 -3610 ($ $ $)) (-15 -3610 ($ $ $ $)) (-15 -3378 ($ $)) (-15 -3378 ($ (-599 $))) (-15 -2693 ($ $)) (-15 -2693 ($ (-599 $))) (-15 -2692 ($ $)) (-15 -2692 ($ (-599 $))) (-15 -2691 ($ (-599 $))) (-15 -2690 ($ (-599 $))) (-15 -2689 ($ (-599 $))) (-15 -2688 ($ (-599 $))) (-15 -3174 ($ $ $)) (-15 -2687 ($ $ $)) (-15 -2806 ($ $ $)) (-15 -2686 ($ $ $)) (-15 -2805 ($ $ $)) (-15 -2685 ($ $ $)) (-15 -3989 ($ $ $)) (-15 -3987 ($ $ $)) (-15 -3987 ($ $)) (-15 * ($ $ $)) (-15 -4099 ($ $ $)) (-15 ** ($ $ $)) (-15 -2684 ($ $ $)) (-15 -2683 ($ $ $)) (-15 -2682 ($ $ $)) (-15 -3606 ($ $ $)) (-15 -2681 ($ $ $)) (-15 -2680 ($ $ $)) (-15 -2679 ($ $)) (-15 -3887 ($ $ $)) (-15 -3887 ($ $))))) (T -797)) -((-2958 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-797)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-797)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-797)))) (-3673 (*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-3673 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-797)))) (-3673 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-797)))) (-3673 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-797)))) (-3713 (*1 *1) (-5 *1 (-797))) (-2724 (*1 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-797)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-2723 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-2722 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-2719 (*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-2718 (*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-2717 (*1 *1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-3260 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-3259 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-3923 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-3260 (*1 *1 *1) (-5 *1 (-797))) (-3259 (*1 *1 *1) (-5 *1 (-797))) (-3923 (*1 *1 *1) (-5 *1 (-797))) (-2716 (*1 *1 *1 *1) (-5 *1 (-797))) (-2715 (*1 *1 *1 *1) (-5 *1 (-797))) (-2716 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2715 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2714 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2713 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2713 (*1 *1 *1 *1 *1) (-5 *1 (-797))) (-2712 (*1 *1 *1 *1) (-5 *1 (-797))) (-2711 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-797)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-3683 (*1 *1 *1) (-5 *1 (-797))) (-2710 (*1 *1 *1 *1) (-5 *1 (-797))) (-2709 (*1 *1 *1) (-5 *1 (-797))) (-3246 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 (-797)))) (-5 *1 (-797)))) (-2708 (*1 *1 *1 *1) (-5 *1 (-797))) (-2730 (*1 *1 *1) (-5 *1 (-797))) (-2730 (*1 *1 *1 *1) (-5 *1 (-797))) (-2707 (*1 *1 *1 *1) (-5 *1 (-797))) (-2706 (*1 *1 *1 *1) (-5 *1 (-797))) (-2705 (*1 *1 *1 *1) (-5 *1 (-797))) (-2704 (*1 *1 *1 *1) (-5 *1 (-797))) (-3908 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-797)))) (-3224 (*1 *1 *1 *1) (-5 *1 (-797))) (-2703 (*1 *1 *1 *1) (-5 *1 (-797))) (-2702 (*1 *1 *1 *1) (-5 *1 (-797))) (-2701 (*1 *1 *1 *1) (-5 *1 (-797))) (-2700 (*1 *1 *1 *1) (-5 *1 (-797))) (-3688 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2699 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2698 (*1 *1 *1) (-5 *1 (-797))) (-3986 (*1 *1 *1) (-5 *1 (-797))) (-3986 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-797)))) (-2697 (*1 *1 *1) (-5 *1 (-797))) (-2697 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-797)))) (-2696 (*1 *1 *1) (-5 *1 (-797))) (-2695 (*1 *1 *1 *1) (-5 *1 (-797))) (-3672 (*1 *1 *1) (-5 *1 (-797))) (-3672 (*1 *1 *1 *1) (-5 *1 (-797))) (-3672 (*1 *1 *1 *1 *1) (-5 *1 (-797))) (-2694 (*1 *1 *1) (-5 *1 (-797))) (-2694 (*1 *1 *1 *1) (-5 *1 (-797))) (-2694 (*1 *1 *1 *1 *1) (-5 *1 (-797))) (-3610 (*1 *1 *1) (-5 *1 (-797))) (-3610 (*1 *1 *1 *1) (-5 *1 (-797))) (-3610 (*1 *1 *1 *1 *1) (-5 *1 (-797))) (-3378 (*1 *1 *1) (-5 *1 (-797))) (-3378 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2693 (*1 *1 *1) (-5 *1 (-797))) (-2693 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2692 (*1 *1 *1) (-5 *1 (-797))) (-2692 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2691 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2690 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2689 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2688 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-3174 (*1 *1 *1 *1) (-5 *1 (-797))) (-2687 (*1 *1 *1 *1) (-5 *1 (-797))) (-2806 (*1 *1 *1 *1) (-5 *1 (-797))) (-2686 (*1 *1 *1 *1) (-5 *1 (-797))) (-2805 (*1 *1 *1 *1) (-5 *1 (-797))) (-2685 (*1 *1 *1 *1) (-5 *1 (-797))) (-3989 (*1 *1 *1 *1) (-5 *1 (-797))) (-3987 (*1 *1 *1 *1) (-5 *1 (-797))) (-3987 (*1 *1 *1) (-5 *1 (-797))) (* (*1 *1 *1 *1) (-5 *1 (-797))) (-4099 (*1 *1 *1 *1) (-5 *1 (-797))) (** (*1 *1 *1 *1) (-5 *1 (-797))) (-2684 (*1 *1 *1 *1) (-5 *1 (-797))) (-2683 (*1 *1 *1 *1) (-5 *1 (-797))) (-2682 (*1 *1 *1 *1) (-5 *1 (-797))) (-3606 (*1 *1 *1 *1) (-5 *1 (-797))) (-2681 (*1 *1 *1 *1) (-5 *1 (-797))) (-2680 (*1 *1 *1 *1) (-5 *1 (-797))) (-2679 (*1 *1 *1) (-5 *1 (-797))) (-3887 (*1 *1 *1 *1) (-5 *1 (-797))) (-3887 (*1 *1 *1) (-5 *1 (-797)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3981 (((-3 $ "failed") (-1117)) 36 T ELT)) (-3258 (((-714)) 32 T ELT)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) 29 T ELT)) (-3380 (((-1099) $) 43 T ELT)) (-2518 (($ (-857)) 28 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4122 (((-1117) $) 13 T ELT) (((-488) $) 19 T ELT) (((-825 (-333)) $) 26 T ELT) (((-825 (-499)) $) 22 T ELT)) (-4096 (((-797) $) 16 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 40 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 38 T ELT))) -(((-798 |#1|) (-13 (-777) (-569 (-1117)) (-569 (-488)) (-569 (-825 (-333))) (-569 (-825 (-499))) (-10 -8 (-15 -3981 ((-3 $ "failed") (-1117))))) (-599 (-1117))) (T -798)) -((-3981 (*1 *1 *2) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-798 *3)) (-14 *3 (-599 *2))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3690 (((-460) $) 9 T ELT)) (-2727 (((-599 (-393)) $) 13 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 21 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 16 T ELT))) -(((-799) (-13 (-1041) (-10 -8 (-15 -3690 ((-460) $)) (-15 -2727 ((-599 (-393)) $))))) (T -799)) -((-3690 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-799)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-599 (-393))) (-5 *1 (-799))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-884 |#1|)) NIL T ELT) (((-884 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3248 (((-714)) NIL T CONST)) (-4073 (((-1213) (-714)) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-800 |#1| |#2| |#3| |#4|) (-13 (-989) (-444 (-884 |#1|)) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-318)) (-15 -4099 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4073 ((-1213) (-714))))) (-989) (-599 (-1117)) (-599 (-714)) (-714)) (T -800)) -((-4099 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-800 *2 *3 *4 *5)) (-4 *2 (-318)) (-4 *2 (-989)) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-714))) (-14 *5 (-714)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-800 *4 *5 *6 *7)) (-4 *4 (-989)) (-14 *5 (-599 (-1117))) (-14 *6 (-599 *3)) (-14 *7 *3)))) -((-2728 (((-3 (-148 |#3|) #1="failed") (-714) (-714) |#2| |#2|) 38 T ELT)) (-2729 (((-3 (-361 |#3|) #1#) (-714) (-714) |#2| |#2|) 29 T ELT))) -(((-801 |#1| |#2| |#3|) (-10 -7 (-15 -2729 ((-3 (-361 |#3|) #1="failed") (-714) (-714) |#2| |#2|)) (-15 -2728 ((-3 (-148 |#3|) #1#) (-714) (-714) |#2| |#2|))) (-318) (-1200 |#1|) (-1183 |#1|)) (T -801)) -((-2728 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-714)) (-4 *5 (-318)) (-5 *2 (-148 *6)) (-5 *1 (-801 *5 *4 *6)) (-4 *4 (-1200 *5)) (-4 *6 (-1183 *5)))) (-2729 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-714)) (-4 *5 (-318)) (-5 *2 (-361 *6)) (-5 *1 (-801 *5 *4 *6)) (-4 *4 (-1200 *5)) (-4 *6 (-1183 *5))))) -((-2729 (((-3 (-361 (-1176 |#2| |#1|)) #1="failed") (-714) (-714) (-1197 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-361 (-1176 |#2| |#1|)) #1#) (-714) (-714) (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|)) 28 T ELT))) -(((-802 |#1| |#2| |#3|) (-10 -7 (-15 -2729 ((-3 (-361 (-1176 |#2| |#1|)) #1="failed") (-714) (-714) (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|))) (-15 -2729 ((-3 (-361 (-1176 |#2| |#1|)) #1#) (-714) (-714) (-1197 |#1| |#2| |#3|)))) (-318) (-1117) |#1|) (T -802)) -((-2729 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-714)) (-5 *4 (-1197 *5 *6 *7)) (-4 *5 (-318)) (-14 *6 (-1117)) (-14 *7 *5) (-5 *2 (-361 (-1176 *6 *5))) (-5 *1 (-802 *5 *6 *7)))) (-2729 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-714)) (-5 *4 (-1197 *5 *6 *7)) (-4 *5 (-318)) (-14 *6 (-1117)) (-14 *7 *5) (-5 *2 (-361 (-1176 *6 *5))) (-5 *1 (-802 *5 *6 *7))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3158 (($ $ (-499)) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2730 (($ (-1111 (-499)) (-499)) NIL T ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2731 (($ $) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3922 (((-714) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2733 (((-499)) NIL T ELT)) (-2732 (((-499) $) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3919 (($ $ (-499)) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-2734 (((-1095 (-499)) $) NIL T ELT)) (-3012 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3920 (((-499) $ (-499)) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-803 |#1|) (-804 |#1|) (-499)) (T -803)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3158 (($ $ (-499)) 75 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3874 (($) 22 T CONST)) (-2730 (($ (-1111 (-499)) (-499)) 74 T ELT)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2731 (($ $) 77 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-3922 (((-714) $) 82 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 65 T ELT)) (-2733 (((-499)) 79 T ELT)) (-2732 (((-499) $) 78 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3919 (($ $ (-499)) 81 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-2734 (((-1095 (-499)) $) 83 T ELT)) (-3012 (($ $) 80 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-3920 (((-499) $ (-499)) 76 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-804 |#1|) (-113) (-499)) (T -804)) -((-2734 (*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-1095 (-499))))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-714)))) (-3919 (*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499)))) (-3012 (*1 *1 *1) (-4 *1 (-804 *2))) (-2733 (*1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499)))) (-2732 (*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499)))) (-2731 (*1 *1 *1) (-4 *1 (-804 *2))) (-3920 (*1 *2 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499)))) (-3158 (*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499)))) (-2730 (*1 *1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *3 (-499)) (-4 *1 (-804 *4))))) -(-13 (-261) (-120) (-10 -8 (-15 -2734 ((-1095 (-499)) $)) (-15 -3922 ((-714) $)) (-15 -3919 ($ $ (-499))) (-15 -3012 ($ $)) (-15 -2733 ((-499))) (-15 -2732 ((-499) $)) (-15 -2731 ($ $)) (-15 -3920 ((-499) $ (-499))) (-15 -3158 ($ $ (-499))) (-15 -2730 ($ (-1111 (-499)) (-499))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-244) . T) ((-261) . T) ((-406) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-859) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 (((-803 |#1|) $) NIL (|has| (-803 |#1|) (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-803 |#1|) (-848)) ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| (-803 |#1|) (-848)) ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| (-803 |#1|) (-763)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-803 |#1|) #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL (|has| (-803 |#1|) (-978 (-1117))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-803 |#1|) (-978 (-499))) ELT) (((-3 (-499) #1#) $) NIL (|has| (-803 |#1|) (-978 (-499))) ELT)) (-3294 (((-803 |#1|) $) NIL T ELT) (((-1117) $) NIL (|has| (-803 |#1|) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL (|has| (-803 |#1|) (-978 (-499))) ELT) (((-499) $) NIL (|has| (-803 |#1|) (-978 (-499))) ELT)) (-3880 (($ $) NIL T ELT) (($ (-499) $) NIL T ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| (-803 |#1|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-803 |#1|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-803 |#1|))) (|:| |vec| (-1207 (-803 |#1|)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-803 |#1|)) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-803 |#1|) (-498)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3324 (((-85) $) NIL (|has| (-803 |#1|) (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| (-803 |#1|) (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| (-803 |#1|) (-821 (-333))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL T ELT)) (-3119 (((-803 |#1|) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| (-803 |#1|) (-1092)) ELT)) (-3325 (((-85) $) NIL (|has| (-803 |#1|) (-763)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| (-803 |#1|) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-803 |#1|) (-781)) ELT)) (-4108 (($ (-1 (-803 |#1|) (-803 |#1|)) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| (-803 |#1|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-803 |#1|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-803 |#1|))) (|:| |vec| (-1207 (-803 |#1|)))) (-1207 $) $) NIL T ELT) (((-647 (-803 |#1|)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-803 |#1|) (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL (|has| (-803 |#1|) (-261)) ELT)) (-3252 (((-803 |#1|) $) NIL (|has| (-803 |#1|) (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-803 |#1|) (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-803 |#1|) (-848)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-3918 (($ $ (-599 (-803 |#1|)) (-599 (-803 |#1|))) NIL (|has| (-803 |#1|) (-263 (-803 |#1|))) ELT) (($ $ (-803 |#1|) (-803 |#1|)) NIL (|has| (-803 |#1|) (-263 (-803 |#1|))) ELT) (($ $ (-247 (-803 |#1|))) NIL (|has| (-803 |#1|) (-263 (-803 |#1|))) ELT) (($ $ (-599 (-247 (-803 |#1|)))) NIL (|has| (-803 |#1|) (-263 (-803 |#1|))) ELT) (($ $ (-599 (-1117)) (-599 (-803 |#1|))) NIL (|has| (-803 |#1|) (-468 (-1117) (-803 |#1|))) ELT) (($ $ (-1117) (-803 |#1|)) NIL (|has| (-803 |#1|) (-468 (-1117) (-803 |#1|))) ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ $ (-803 |#1|)) NIL (|has| (-803 |#1|) (-240 (-803 |#1|) (-803 |#1|))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-1 (-803 |#1|) (-803 |#1|))) NIL T ELT) (($ $ (-1 (-803 |#1|) (-803 |#1|)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-803 |#1|) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-803 |#1|) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-803 |#1|) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-803 |#1|) (-838 (-1117))) ELT) (($ $) NIL (|has| (-803 |#1|) (-189)) ELT) (($ $ (-714)) NIL (|has| (-803 |#1|) (-189)) ELT)) (-3116 (($ $) NIL T ELT)) (-3118 (((-803 |#1|) $) NIL T ELT)) (-4122 (((-825 (-499)) $) NIL (|has| (-803 |#1|) (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| (-803 |#1|) (-569 (-825 (-333)))) ELT) (((-488) $) NIL (|has| (-803 |#1|) (-569 (-488))) ELT) (((-333) $) NIL (|has| (-803 |#1|) (-960)) ELT) (((-179) $) NIL (|has| (-803 |#1|) (-960)) ELT)) (-2735 (((-148 (-361 (-499))) $) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| (-803 |#1|) (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-803 |#1|)) NIL T ELT) (($ (-1117)) NIL (|has| (-803 |#1|) (-978 (-1117))) ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| (-803 |#1|) (-848))) (|has| (-803 |#1|) (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-3253 (((-803 |#1|) $) NIL (|has| (-803 |#1|) (-498)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3920 (((-361 (-499)) $ (-499)) NIL T ELT)) (-3523 (($ $) NIL (|has| (-803 |#1|) (-763)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1 (-803 |#1|) (-803 |#1|))) NIL T ELT) (($ $ (-1 (-803 |#1|) (-803 |#1|)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-803 |#1|) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-803 |#1|) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-803 |#1|) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-803 |#1|) (-838 (-1117))) ELT) (($ $) NIL (|has| (-803 |#1|) (-189)) ELT) (($ $ (-714)) NIL (|has| (-803 |#1|) (-189)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-803 |#1|) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-803 |#1|) (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| (-803 |#1|) (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| (-803 |#1|) (-781)) ELT)) (-4099 (($ $ $) NIL T ELT) (($ (-803 |#1|) (-803 |#1|)) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ (-803 |#1|) $) NIL T ELT) (($ $ (-803 |#1|)) NIL T ELT))) -(((-805 |#1|) (-13 (-931 (-803 |#1|)) (-10 -8 (-15 -3920 ((-361 (-499)) $ (-499))) (-15 -2735 ((-148 (-361 (-499))) $)) (-15 -3880 ($ $)) (-15 -3880 ($ (-499) $)))) (-499)) (T -805)) -((-3920 (*1 *2 *1 *3) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-805 *4)) (-14 *4 *3) (-5 *3 (-499)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-148 (-361 (-499)))) (-5 *1 (-805 *3)) (-14 *3 (-499)))) (-3880 (*1 *1 *1) (-12 (-5 *1 (-805 *2)) (-14 *2 (-499)))) (-3880 (*1 *1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-805 *3)) (-14 *3 *2)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 ((|#2| $) NIL (|has| |#2| (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| |#2| (-763)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL (|has| |#2| (-978 (-1117))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT)) (-3294 ((|#2| $) NIL T ELT) (((-1117) $) NIL (|has| |#2| (-978 (-1117))) ELT) (((-361 (-499)) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-499) $) NIL (|has| |#2| (-978 (-499))) ELT)) (-3880 (($ $) 35 T ELT) (($ (-499) $) 38 T ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#2|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) 64 T ELT)) (-3115 (($) NIL (|has| |#2| (-498)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3324 (((-85) $) NIL (|has| |#2| (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| |#2| (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| |#2| (-821 (-333))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL T ELT)) (-3119 ((|#2| $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| |#2| (-1092)) ELT)) (-3325 (((-85) $) NIL (|has| |#2| (-763)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| |#2| (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#2| (-781)) ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 60 T ELT)) (-3586 (($) NIL (|has| |#2| (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL (|has| |#2| (-261)) ELT)) (-3252 ((|#2| $) NIL (|has| |#2| (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-3918 (($ $ (-599 |#2|) (-599 |#2|)) NIL (|has| |#2| (-263 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-263 |#2|)) ELT) (($ $ (-247 |#2|)) NIL (|has| |#2| (-263 |#2|)) ELT) (($ $ (-599 (-247 |#2|))) NIL (|has| |#2| (-263 |#2|)) ELT) (($ $ (-599 (-1117)) (-599 |#2|)) NIL (|has| |#2| (-468 (-1117) |#2|)) ELT) (($ $ (-1117) |#2|) NIL (|has| |#2| (-468 (-1117) |#2|)) ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-240 |#2| |#2|)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-714)) NIL (|has| |#2| (-189)) ELT)) (-3116 (($ $) NIL T ELT)) (-3118 ((|#2| $) NIL T ELT)) (-4122 (((-825 (-499)) $) NIL (|has| |#2| (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| |#2| (-569 (-825 (-333)))) ELT) (((-488) $) NIL (|has| |#2| (-569 (-488))) ELT) (((-333) $) NIL (|has| |#2| (-960)) ELT) (((-179) $) NIL (|has| |#2| (-960)) ELT)) (-2735 (((-148 (-361 (-499))) $) 78 T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-848))) ELT)) (-4096 (((-797) $) 106 T ELT) (($ (-499)) 20 T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1117)) NIL (|has| |#2| (-978 (-1117))) ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#2| (-848))) (|has| |#2| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-3253 ((|#2| $) NIL (|has| |#2| (-498)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3920 (((-361 (-499)) $ (-499)) 71 T ELT)) (-3523 (($ $) NIL (|has| |#2| (-763)) ELT)) (-2779 (($) 15 T CONST)) (-2785 (($) 17 T CONST)) (-2790 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-714)) NIL (|has| |#2| (-189)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-3174 (((-85) $ $) 46 T ELT)) (-2805 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-4099 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3987 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3989 (($ $ $) 48 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 61 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) -(((-806 |#1| |#2|) (-13 (-931 |#2|) (-10 -8 (-15 -3920 ((-361 (-499)) $ (-499))) (-15 -2735 ((-148 (-361 (-499))) $)) (-15 -3880 ($ $)) (-15 -3880 ($ (-499) $)))) (-499) (-804 |#1|)) (T -806)) -((-3920 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-361 (-499))) (-5 *1 (-806 *4 *5)) (-5 *3 (-499)) (-4 *5 (-804 *4)))) (-2735 (*1 *2 *1) (-12 (-14 *3 (-499)) (-5 *2 (-148 (-361 (-499)))) (-5 *1 (-806 *3 *4)) (-4 *4 (-804 *3)))) (-3880 (*1 *1 *1) (-12 (-14 *2 (-499)) (-5 *1 (-806 *2 *3)) (-4 *3 (-804 *2)))) (-3880 (*1 *1 *2 *1) (-12 (-5 *2 (-499)) (-14 *3 *2) (-5 *1 (-806 *3 *4)) (-4 *4 (-804 *3))))) -((-2687 (((-85) $ $) NIL (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ELT)) (-3946 ((|#2| $) 12 T ELT)) (-2736 (($ |#1| |#2|) 9 T ELT)) (-3380 (((-1099) $) NIL (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ELT)) (-3381 (((-1060) $) NIL (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ELT)) (-3951 ((|#1| $) 11 T ELT)) (-3670 (($ |#1| |#2|) 10 T ELT)) (-4096 (((-797) $) 18 (-3677 (-12 (|has| |#1| (-568 (-797))) (|has| |#2| (-568 (-797)))) (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041)))) ELT)) (-1297 (((-85) $ $) NIL (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ELT)) (-3174 (((-85) $ $) 23 (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ELT))) -(((-807 |#1| |#2|) (-13 (-1157) (-10 -8 (IF (|has| |#1| (-568 (-797))) (IF (|has| |#2| (-568 (-797))) (-6 (-568 (-797))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1041)) (IF (|has| |#2| (-1041)) (-6 (-1041)) |%noBranch|) |%noBranch|) (-15 -2736 ($ |#1| |#2|)) (-15 -3670 ($ |#1| |#2|)) (-15 -3951 (|#1| $)) (-15 -3946 (|#2| $)))) (-1157) (-1157)) (T -807)) -((-2736 (*1 *1 *2 *3) (-12 (-5 *1 (-807 *2 *3)) (-4 *2 (-1157)) (-4 *3 (-1157)))) (-3670 (*1 *1 *2 *3) (-12 (-5 *1 (-807 *2 *3)) (-4 *2 (-1157)) (-4 *3 (-1157)))) (-3951 (*1 *2 *1) (-12 (-4 *2 (-1157)) (-5 *1 (-807 *2 *3)) (-4 *3 (-1157)))) (-3946 (*1 *2 *1) (-12 (-4 *2 (-1157)) (-5 *1 (-807 *3 *2)) (-4 *3 (-1157))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3078 (((-499) $) 16 T ELT)) (-2738 (($ (-130)) 13 T ELT)) (-2737 (($ (-130)) 14 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3077 (((-130) $) 15 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2740 (($ (-130)) 11 T ELT)) (-2741 (($ (-130)) 10 T ELT)) (-4096 (((-797) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2739 (($ (-130)) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-808) (-13 (-1041) (-571 (-130)) (-10 -8 (-15 -2741 ($ (-130))) (-15 -2740 ($ (-130))) (-15 -2739 ($ (-130))) (-15 -2738 ($ (-130))) (-15 -2737 ($ (-130))) (-15 -3077 ((-130) $)) (-15 -3078 ((-499) $))))) (T -808)) -((-2741 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808)))) (-2740 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808)))) (-2739 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808)))) (-2738 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808)))) (-2737 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-808)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-808))))) -((-4096 (((-268 (-499)) (-361 (-884 (-48)))) 23 T ELT) (((-268 (-499)) (-884 (-48))) 18 T ELT))) -(((-809) (-10 -7 (-15 -4096 ((-268 (-499)) (-884 (-48)))) (-15 -4096 ((-268 (-499)) (-361 (-884 (-48))))))) (T -809)) -((-4096 (*1 *2 *3) (-12 (-5 *3 (-361 (-884 (-48)))) (-5 *2 (-268 (-499))) (-5 *1 (-809)))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-884 (-48))) (-5 *2 (-268 (-499))) (-5 *1 (-809))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 18 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3714 (((-85) $ (|[\|\|]| (-460))) 9 T ELT) (((-85) $ (|[\|\|]| (-1099))) 13 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3720 (((-460) $) 10 T ELT) (((-1099) $) 14 T ELT)) (-3174 (((-85) $ $) 15 T ELT))) -(((-810) (-13 (-1023) (-1203) (-10 -8 (-15 -3714 ((-85) $ (|[\|\|]| (-460)))) (-15 -3720 ((-460) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1099)))) (-15 -3720 ((-1099) $))))) (T -810)) -((-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-460))) (-5 *2 (-85)) (-5 *1 (-810)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-810)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-85)) (-5 *1 (-810)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-810))))) -((-4108 (((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|)) 15 T ELT))) -(((-811 |#1| |#2|) (-10 -7 (-15 -4108 ((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|)))) (-1157) (-1157)) (T -811)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-812 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-812 *6)) (-5 *1 (-811 *5 *6))))) -((-3511 (($ |#1| |#1|) 8 T ELT)) (-2744 ((|#1| $ (-714)) 15 T ELT))) -(((-812 |#1|) (-10 -8 (-15 -3511 ($ |#1| |#1|)) (-15 -2744 (|#1| $ (-714)))) (-1157)) (T -812)) -((-2744 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *1 (-812 *2)) (-4 *2 (-1157)))) (-3511 (*1 *1 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1157))))) -((-4108 (((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)) 15 T ELT))) -(((-813 |#1| |#2|) (-10 -7 (-15 -4108 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)))) (-1157) (-1157)) (T -813)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6))))) -((-3511 (($ |#1| |#1| |#1|) 8 T ELT)) (-2744 ((|#1| $ (-714)) 15 T ELT))) -(((-814 |#1|) (-10 -8 (-15 -3511 ($ |#1| |#1| |#1|)) (-15 -2744 (|#1| $ (-714)))) (-1157)) (T -814)) -((-2744 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *1 (-814 *2)) (-4 *2 (-1157)))) (-3511 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1157))))) -((-2742 (((-599 (-1122)) (-1099)) 9 T ELT))) -(((-815) (-10 -7 (-15 -2742 ((-599 (-1122)) (-1099))))) (T -815)) -((-2742 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-599 (-1122))) (-5 *1 (-815))))) -((-4108 (((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|)) 15 T ELT))) -(((-816 |#1| |#2|) (-10 -7 (-15 -4108 ((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|)))) (-1157) (-1157)) (T -816)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-817 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-817 *6)) (-5 *1 (-816 *5 *6))))) -((-2743 (($ |#1| |#1| |#1|) 8 T ELT)) (-2744 ((|#1| $ (-714)) 15 T ELT))) -(((-817 |#1|) (-10 -8 (-15 -2743 ($ |#1| |#1| |#1|)) (-15 -2744 (|#1| $ (-714)))) (-1157)) (T -817)) -((-2744 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *1 (-817 *2)) (-4 *2 (-1157)))) (-2743 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-1157))))) -((-2747 (((-1095 (-599 (-499))) (-599 (-499)) (-1095 (-599 (-499)))) 41 T ELT)) (-2746 (((-1095 (-599 (-499))) (-599 (-499)) (-599 (-499))) 31 T ELT)) (-2748 (((-1095 (-599 (-499))) (-599 (-499))) 53 T ELT) (((-1095 (-599 (-499))) (-599 (-499)) (-599 (-499))) 50 T ELT)) (-2749 (((-1095 (-599 (-499))) (-499)) 55 T ELT)) (-2745 (((-1095 (-599 (-857))) (-1095 (-599 (-857)))) 22 T ELT)) (-3130 (((-599 (-857)) (-599 (-857))) 18 T ELT))) -(((-818) (-10 -7 (-15 -3130 ((-599 (-857)) (-599 (-857)))) (-15 -2745 ((-1095 (-599 (-857))) (-1095 (-599 (-857))))) (-15 -2746 ((-1095 (-599 (-499))) (-599 (-499)) (-599 (-499)))) (-15 -2747 ((-1095 (-599 (-499))) (-599 (-499)) (-1095 (-599 (-499))))) (-15 -2748 ((-1095 (-599 (-499))) (-599 (-499)) (-599 (-499)))) (-15 -2748 ((-1095 (-599 (-499))) (-599 (-499)))) (-15 -2749 ((-1095 (-599 (-499))) (-499))))) (T -818)) -((-2749 (*1 *2 *3) (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *1 (-818)) (-5 *3 (-499)))) (-2748 (*1 *2 *3) (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *1 (-818)) (-5 *3 (-599 (-499))))) (-2748 (*1 *2 *3 *3) (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *1 (-818)) (-5 *3 (-599 (-499))))) (-2747 (*1 *2 *3 *2) (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *3 (-599 (-499))) (-5 *1 (-818)))) (-2746 (*1 *2 *3 *3) (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *1 (-818)) (-5 *3 (-599 (-499))))) (-2745 (*1 *2 *2) (-12 (-5 *2 (-1095 (-599 (-857)))) (-5 *1 (-818)))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-818))))) -((-4122 (((-825 (-333)) $) 9 (|has| |#1| (-569 (-825 (-333)))) ELT) (((-825 (-499)) $) 8 (|has| |#1| (-569 (-825 (-499)))) ELT))) -(((-819 |#1|) (-113) (-1157)) (T -819)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-569 (-825 (-499)))) (-6 (-569 (-825 (-499)))) |%noBranch|) (IF (|has| |t#1| (-569 (-825 (-333)))) (-6 (-569 (-825 (-333)))) |%noBranch|))) -(((-569 (-825 (-333))) |has| |#1| (-569 (-825 (-333)))) ((-569 (-825 (-499))) |has| |#1| (-569 (-825 (-499))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3764 (($) 14 T ELT)) (-2751 (($ (-823 |#1| |#2|) (-823 |#1| |#3|)) 28 T ELT)) (-2750 (((-823 |#1| |#3|) $) 16 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2759 (((-85) $) 22 T ELT)) (-2758 (($) 19 T ELT)) (-4096 (((-797) $) 31 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2971 (((-823 |#1| |#2|) $) 15 T ELT)) (-3174 (((-85) $ $) 26 T ELT))) -(((-820 |#1| |#2| |#3|) (-13 (-1041) (-10 -8 (-15 -2759 ((-85) $)) (-15 -2758 ($)) (-15 -3764 ($)) (-15 -2751 ($ (-823 |#1| |#2|) (-823 |#1| |#3|))) (-15 -2971 ((-823 |#1| |#2|) $)) (-15 -2750 ((-823 |#1| |#3|) $)))) (-1041) (-1041) (-624 |#2|)) (T -820)) -((-2759 (*1 *2 *1) (-12 (-4 *4 (-1041)) (-5 *2 (-85)) (-5 *1 (-820 *3 *4 *5)) (-4 *3 (-1041)) (-4 *5 (-624 *4)))) (-2758 (*1 *1) (-12 (-4 *3 (-1041)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1041)) (-4 *4 (-624 *3)))) (-3764 (*1 *1) (-12 (-4 *3 (-1041)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1041)) (-4 *4 (-624 *3)))) (-2751 (*1 *1 *2 *3) (-12 (-5 *2 (-823 *4 *5)) (-5 *3 (-823 *4 *6)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-624 *5)) (-5 *1 (-820 *4 *5 *6)))) (-2971 (*1 *2 *1) (-12 (-4 *4 (-1041)) (-5 *2 (-823 *3 *4)) (-5 *1 (-820 *3 *4 *5)) (-4 *3 (-1041)) (-4 *5 (-624 *4)))) (-2750 (*1 *2 *1) (-12 (-4 *4 (-1041)) (-5 *2 (-823 *3 *5)) (-5 *1 (-820 *3 *4 *5)) (-4 *3 (-1041)) (-4 *5 (-624 *4))))) -((-2687 (((-85) $ $) 7 T ELT)) (-2917 (((-823 |#1| $) $ (-825 |#1|) (-823 |#1| $)) 17 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-821 |#1|) (-113) (-1041)) (T -821)) -((-2917 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-823 *4 *1)) (-5 *3 (-825 *4)) (-4 *1 (-821 *4)) (-4 *4 (-1041))))) -(-13 (-1041) (-10 -8 (-15 -2917 ((-823 |t#1| $) $ (-825 |t#1|) (-823 |t#1| $))))) -(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-2752 (((-85) (-599 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2753 (((-823 |#1| |#2|) |#2| |#3|) 45 (-12 (-2679 (|has| |#2| (-978 (-1117)))) (-2679 (|has| |#2| (-989)))) ELT) (((-599 (-247 (-884 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-989)) (-2679 (|has| |#2| (-978 (-1117))))) ELT) (((-599 (-247 |#2|)) |#2| |#3|) 36 (|has| |#2| (-978 (-1117))) ELT) (((-820 |#1| |#2| (-599 |#2|)) (-599 |#2|) |#3|) 21 T ELT))) -(((-822 |#1| |#2| |#3|) (-10 -7 (-15 -2752 ((-85) |#2| |#3|)) (-15 -2752 ((-85) (-599 |#2|) |#3|)) (-15 -2753 ((-820 |#1| |#2| (-599 |#2|)) (-599 |#2|) |#3|)) (IF (|has| |#2| (-978 (-1117))) (-15 -2753 ((-599 (-247 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-989)) (-15 -2753 ((-599 (-247 (-884 |#2|))) |#2| |#3|)) (-15 -2753 ((-823 |#1| |#2|) |#2| |#3|))))) (-1041) (-821 |#1|) (-569 (-825 |#1|))) (T -822)) -((-2753 (*1 *2 *3 *4) (-12 (-4 *5 (-1041)) (-5 *2 (-823 *5 *3)) (-5 *1 (-822 *5 *3 *4)) (-2679 (-4 *3 (-978 (-1117)))) (-2679 (-4 *3 (-989))) (-4 *3 (-821 *5)) (-4 *4 (-569 (-825 *5))))) (-2753 (*1 *2 *3 *4) (-12 (-4 *5 (-1041)) (-5 *2 (-599 (-247 (-884 *3)))) (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-989)) (-2679 (-4 *3 (-978 (-1117)))) (-4 *3 (-821 *5)) (-4 *4 (-569 (-825 *5))))) (-2753 (*1 *2 *3 *4) (-12 (-4 *5 (-1041)) (-5 *2 (-599 (-247 *3))) (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-978 (-1117))) (-4 *3 (-821 *5)) (-4 *4 (-569 (-825 *5))))) (-2753 (*1 *2 *3 *4) (-12 (-4 *5 (-1041)) (-4 *6 (-821 *5)) (-5 *2 (-820 *5 *6 (-599 *6))) (-5 *1 (-822 *5 *6 *4)) (-5 *3 (-599 *6)) (-4 *4 (-569 (-825 *5))))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6)) (-4 *6 (-821 *5)) (-4 *5 (-1041)) (-5 *2 (-85)) (-5 *1 (-822 *5 *6 *4)) (-4 *4 (-569 (-825 *5))))) (-2752 (*1 *2 *3 *4) (-12 (-4 *5 (-1041)) (-5 *2 (-85)) (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-821 *5)) (-4 *4 (-569 (-825 *5)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3372 (($ $ $) 40 T ELT)) (-2780 (((-3 (-85) #1="failed") $ (-825 |#1|)) 37 T ELT)) (-3764 (($) 12 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2755 (($ (-825 |#1|) |#2| $) 20 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2757 (((-3 |#2| #1#) (-825 |#1|) $) 51 T ELT)) (-2759 (((-85) $) 15 T ELT)) (-2758 (($) 13 T ELT)) (-3395 (((-599 (-2 (|:| -4010 (-1117)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3670 (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| |#2|)))) 23 T ELT)) (-4096 (((-797) $) 45 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2754 (($ (-825 |#1|) |#2| $ |#2|) 49 T ELT)) (-2756 (($ (-825 |#1|) |#2| $) 48 T ELT)) (-3174 (((-85) $ $) 42 T ELT))) -(((-823 |#1| |#2|) (-13 (-1041) (-10 -8 (-15 -2759 ((-85) $)) (-15 -2758 ($)) (-15 -3764 ($)) (-15 -3372 ($ $ $)) (-15 -2757 ((-3 |#2| #1="failed") (-825 |#1|) $)) (-15 -2756 ($ (-825 |#1|) |#2| $)) (-15 -2755 ($ (-825 |#1|) |#2| $)) (-15 -2754 ($ (-825 |#1|) |#2| $ |#2|)) (-15 -3395 ((-599 (-2 (|:| -4010 (-1117)) (|:| |entry| |#2|))) $)) (-15 -3670 ($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| |#2|))))) (-15 -2780 ((-3 (-85) #1#) $ (-825 |#1|))))) (-1041) (-1041)) (T -823)) -((-2759 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-823 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) (-2758 (*1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) (-3764 (*1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) (-3372 (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) (-2757 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-825 *4)) (-4 *4 (-1041)) (-4 *2 (-1041)) (-5 *1 (-823 *4 *2)))) (-2756 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-825 *4)) (-4 *4 (-1041)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1041)))) (-2755 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-825 *4)) (-4 *4 (-1041)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1041)))) (-2754 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-825 *4)) (-4 *4 (-1041)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1041)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| *4)))) (-5 *1 (-823 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) (-3670 (*1 *1 *2) (-12 (-5 *2 (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| *4)))) (-4 *4 (-1041)) (-5 *1 (-823 *3 *4)) (-4 *3 (-1041)))) (-2780 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-825 *4)) (-4 *4 (-1041)) (-5 *2 (-85)) (-5 *1 (-823 *4 *5)) (-4 *5 (-1041))))) -((-4108 (((-823 |#1| |#3|) (-1 |#3| |#2|) (-823 |#1| |#2|)) 22 T ELT))) -(((-824 |#1| |#2| |#3|) (-10 -7 (-15 -4108 ((-823 |#1| |#3|) (-1 |#3| |#2|) (-823 |#1| |#2|)))) (-1041) (-1041) (-1041)) (T -824)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-823 *5 *6)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-823 *5 *7)) (-5 *1 (-824 *5 *6 *7))))) -((-2687 (((-85) $ $) NIL T ELT)) (-2767 (($ $ (-599 (-51))) 74 T ELT)) (-3204 (((-599 $) $) 139 T ELT)) (-2764 (((-2 (|:| |var| (-599 (-1117))) (|:| |pred| (-51))) $) 30 T ELT)) (-3398 (((-85) $) 35 T ELT)) (-2765 (($ $ (-599 (-1117)) (-51)) 31 T ELT)) (-2768 (($ $ (-599 (-51))) 73 T ELT)) (-3295 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1117) #1#) $) 167 T ELT)) (-3294 ((|#1| $) 68 T ELT) (((-1117) $) NIL T ELT)) (-2762 (($ $) 126 T ELT)) (-2774 (((-85) $) 55 T ELT)) (-2769 (((-599 (-51)) $) 50 T ELT)) (-2766 (($ (-1117) (-85) (-85) (-85)) 75 T ELT)) (-2760 (((-3 (-599 $) #1#) (-599 $)) 82 T ELT)) (-2771 (((-85) $) 58 T ELT)) (-2772 (((-85) $) 57 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) 41 T ELT)) (-2777 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2946 (((-3 (-2 (|:| |val| $) (|:| -2519 $)) #1#) $) 97 T ELT)) (-2943 (((-3 (-599 $) #1#) $) 40 T ELT)) (-2778 (((-3 (-599 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2631 (-86)) (|:| |arg| (-599 $))) #1#) $) 107 T ELT)) (-2776 (((-3 (-599 $) #1#) $) 42 T ELT)) (-2945 (((-3 (-2 (|:| |val| $) (|:| -2519 (-714))) #1#) $) 45 T ELT)) (-2775 (((-85) $) 34 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2763 (((-85) $) 28 T ELT)) (-2770 (((-85) $) 52 T ELT)) (-2761 (((-599 (-51)) $) 130 T ELT)) (-2773 (((-85) $) 56 T ELT)) (-3950 (($ (-86) (-599 $)) 104 T ELT)) (-3463 (((-714) $) 33 T ELT)) (-3540 (($ $) 72 T ELT)) (-4122 (($ (-599 $)) 69 T ELT)) (-4103 (((-85) $) 32 T ELT)) (-4096 (((-797) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1117)) 76 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2781 (($ $ (-51)) 129 T ELT)) (-2779 (($) 103 T CONST)) (-2785 (($) 83 T CONST)) (-3174 (((-85) $ $) 93 T ELT)) (-4099 (($ $ $) 117 T ELT)) (-3989 (($ $ $) 121 T ELT)) (** (($ $ (-714)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) -(((-825 |#1|) (-13 (-1041) (-978 |#1|) (-978 (-1117)) (-10 -8 (-15 0 ($) -4102) (-15 1 ($) -4102) (-15 -2943 ((-3 (-599 $) #1="failed") $)) (-15 -2944 ((-3 (-599 $) #1#) $)) (-15 -2778 ((-3 (-599 $) #1#) $ (-86))) (-15 -2778 ((-3 (-2 (|:| -2631 (-86)) (|:| |arg| (-599 $))) #1#) $)) (-15 -2945 ((-3 (-2 (|:| |val| $) (|:| -2519 (-714))) #1#) $)) (-15 -2777 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2776 ((-3 (-599 $) #1#) $)) (-15 -2946 ((-3 (-2 (|:| |val| $) (|:| -2519 $)) #1#) $)) (-15 -3950 ($ (-86) (-599 $))) (-15 -3989 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-714))) (-15 ** ($ $ $)) (-15 -4099 ($ $ $)) (-15 -3463 ((-714) $)) (-15 -4122 ($ (-599 $))) (-15 -3540 ($ $)) (-15 -2775 ((-85) $)) (-15 -2774 ((-85) $)) (-15 -3398 ((-85) $)) (-15 -4103 ((-85) $)) (-15 -2773 ((-85) $)) (-15 -2772 ((-85) $)) (-15 -2771 ((-85) $)) (-15 -2770 ((-85) $)) (-15 -2769 ((-599 (-51)) $)) (-15 -2768 ($ $ (-599 (-51)))) (-15 -2767 ($ $ (-599 (-51)))) (-15 -2766 ($ (-1117) (-85) (-85) (-85))) (-15 -2765 ($ $ (-599 (-1117)) (-51))) (-15 -2764 ((-2 (|:| |var| (-599 (-1117))) (|:| |pred| (-51))) $)) (-15 -2763 ((-85) $)) (-15 -2762 ($ $)) (-15 -2781 ($ $ (-51))) (-15 -2761 ((-599 (-51)) $)) (-15 -3204 ((-599 $) $)) (-15 -2760 ((-3 (-599 $) #1#) (-599 $))))) (-1041)) (T -825)) -((-2779 (*1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) (-2785 (*1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) (-2943 (*1 *2 *1) (|partial| -12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2944 (*1 *2 *1) (|partial| -12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2778 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-599 (-825 *4))) (-5 *1 (-825 *4)) (-4 *4 (-1041)))) (-2778 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2631 (-86)) (|:| |arg| (-599 (-825 *3))))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2945 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-825 *3)) (|:| -2519 (-714)))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2777 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-825 *3)) (|:| |den| (-825 *3)))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2776 (*1 *2 *1) (|partial| -12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2946 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-825 *3)) (|:| -2519 (-825 *3)))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-3950 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-599 (-825 *4))) (-5 *1 (-825 *4)) (-4 *4 (-1041)))) (-3989 (*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) (-4099 (*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-3540 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2774 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2770 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-599 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2768 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2767 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2766 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-85)) (-5 *1 (-825 *4)) (-4 *4 (-1041)))) (-2765 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-51)) (-5 *1 (-825 *4)) (-4 *4 (-1041)))) (-2764 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-599 (-1117))) (|:| |pred| (-51)))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2762 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) (-2781 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-599 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-3204 (*1 *2 *1) (-12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2760 (*1 *2 *2) (|partial| -12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) -((-3347 (((-825 |#1|) (-825 |#1|) (-599 (-1117)) (-1 (-85) (-599 |#2|))) 32 T ELT) (((-825 |#1|) (-825 |#1|) (-599 (-1 (-85) |#2|))) 46 T ELT) (((-825 |#1|) (-825 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2780 (((-85) (-599 |#2|) (-825 |#1|)) 42 T ELT) (((-85) |#2| (-825 |#1|)) 36 T ELT)) (-3671 (((-1 (-85) |#2|) (-825 |#1|)) 16 T ELT)) (-2782 (((-599 |#2|) (-825 |#1|)) 24 T ELT)) (-2781 (((-825 |#1|) (-825 |#1|) |#2|) 20 T ELT))) -(((-826 |#1| |#2|) (-10 -7 (-15 -3347 ((-825 |#1|) (-825 |#1|) (-1 (-85) |#2|))) (-15 -3347 ((-825 |#1|) (-825 |#1|) (-599 (-1 (-85) |#2|)))) (-15 -3347 ((-825 |#1|) (-825 |#1|) (-599 (-1117)) (-1 (-85) (-599 |#2|)))) (-15 -3671 ((-1 (-85) |#2|) (-825 |#1|))) (-15 -2780 ((-85) |#2| (-825 |#1|))) (-15 -2780 ((-85) (-599 |#2|) (-825 |#1|))) (-15 -2781 ((-825 |#1|) (-825 |#1|) |#2|)) (-15 -2782 ((-599 |#2|) (-825 |#1|)))) (-1041) (-1157)) (T -826)) -((-2782 (*1 *2 *3) (-12 (-5 *3 (-825 *4)) (-4 *4 (-1041)) (-5 *2 (-599 *5)) (-5 *1 (-826 *4 *5)) (-4 *5 (-1157)))) (-2781 (*1 *2 *2 *3) (-12 (-5 *2 (-825 *4)) (-4 *4 (-1041)) (-5 *1 (-826 *4 *3)) (-4 *3 (-1157)))) (-2780 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-4 *6 (-1157)) (-5 *2 (-85)) (-5 *1 (-826 *5 *6)))) (-2780 (*1 *2 *3 *4) (-12 (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-5 *2 (-85)) (-5 *1 (-826 *5 *3)) (-4 *3 (-1157)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-825 *4)) (-4 *4 (-1041)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-826 *4 *5)) (-4 *5 (-1157)))) (-3347 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-825 *5)) (-5 *3 (-599 (-1117))) (-5 *4 (-1 (-85) (-599 *6))) (-4 *5 (-1041)) (-4 *6 (-1157)) (-5 *1 (-826 *5 *6)))) (-3347 (*1 *2 *2 *3) (-12 (-5 *2 (-825 *4)) (-5 *3 (-599 (-1 (-85) *5))) (-4 *4 (-1041)) (-4 *5 (-1157)) (-5 *1 (-826 *4 *5)))) (-3347 (*1 *2 *2 *3) (-12 (-5 *2 (-825 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1041)) (-4 *5 (-1157)) (-5 *1 (-826 *4 *5))))) -((-4108 (((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|)) 19 T ELT))) -(((-827 |#1| |#2|) (-10 -7 (-15 -4108 ((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|)))) (-1041) (-1041)) (T -827)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *2 (-825 *6)) (-5 *1 (-827 *5 *6))))) -((-2687 (((-85) $ $) NIL T ELT)) (-4084 (((-599 |#1|) $) 19 T ELT)) (-2783 (((-85) $) 49 T ELT)) (-3295 (((-3 (-630 |#1|) "failed") $) 55 T ELT)) (-3294 (((-630 |#1|) $) 53 T ELT)) (-3949 (($ $) 23 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3983 (((-714) $) 60 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 (((-630 |#1|) $) 21 T ELT)) (-4096 (((-797) $) 47 T ELT) (($ (-630 |#1|)) 26 T ELT) (((-762 |#1|) $) 36 T ELT) (($ |#1|) 25 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2785 (($) 9 T CONST)) (-2784 (((-599 (-630 |#1|)) $) 28 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 12 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 66 T ELT))) -(((-828 |#1|) (-13 (-781) (-978 (-630 |#1|)) (-10 -8 (-15 1 ($) -4102) (-15 -4096 ((-762 |#1|) $)) (-15 -4096 ($ |#1|)) (-15 -3951 ((-630 |#1|) $)) (-15 -3983 ((-714) $)) (-15 -2784 ((-599 (-630 |#1|)) $)) (-15 -3949 ($ $)) (-15 -2783 ((-85) $)) (-15 -4084 ((-599 |#1|) $)))) (-781)) (T -828)) -((-2785 (*1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-781)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-762 *3)) (-5 *1 (-828 *3)) (-4 *3 (-781)))) (-4096 (*1 *1 *2) (-12 (-5 *1 (-828 *2)) (-4 *2 (-781)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-828 *3)) (-4 *3 (-781)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-828 *3)) (-4 *3 (-781)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-599 (-630 *3))) (-5 *1 (-828 *3)) (-4 *3 (-781)))) (-3949 (*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-781)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-828 *3)) (-4 *3 (-781)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-828 *3)) (-4 *3 (-781))))) -((-3614 ((|#1| |#1| |#1|) 19 T ELT))) -(((-829 |#1| |#2|) (-10 -7 (-15 -3614 (|#1| |#1| |#1|))) (-1183 |#2|) (-989)) (T -829)) -((-3614 (*1 *2 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-829 *2 *3)) (-4 *2 (-1183 *3))))) -((-2790 ((|#2| $ |#3|) 10 T ELT))) -(((-830 |#1| |#2| |#3|) (-10 -7 (-15 -2790 (|#2| |#1| |#3|))) (-831 |#2| |#3|) (-1157) (-1157)) (T -830)) -NIL -((-3908 ((|#1| $ |#2|) 7 T ELT)) (-2790 ((|#1| $ |#2|) 6 T ELT))) -(((-831 |#1| |#2|) (-113) (-1157) (-1157)) (T -831)) -((-3908 (*1 *2 *1 *3) (-12 (-4 *1 (-831 *2 *3)) (-4 *3 (-1157)) (-4 *2 (-1157)))) (-2790 (*1 *2 *1 *3) (-12 (-4 *1 (-831 *2 *3)) (-4 *3 (-1157)) (-4 *2 (-1157))))) -(-13 (-1157) (-10 -8 (-15 -3908 (|t#1| $ |t#2|)) (-15 -2790 (|t#1| $ |t#2|)))) -(((-1157) . T)) -((-2687 (((-85) $ $) 7 T ELT)) (-2787 (((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099))) (-1003) (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179)))) 18 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2786 (((-975) (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179)))) 17 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-832) (-113)) (T -832)) -((-2787 (*1 *2 *3 *4) (-12 (-4 *1 (-832)) (-5 *3 (-1003)) (-5 *4 (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179)))) (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)))))) (-2786 (*1 *2 *3) (-12 (-4 *1 (-832)) (-5 *3 (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179)))) (-5 *2 (-975))))) -(-13 (-1041) (-10 -7 (-15 -2787 ((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099))) (-1003) (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179))))) (-15 -2786 ((-975) (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179))))))) -(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-2789 ((|#1| |#1| (-714)) 26 T ELT)) (-2788 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3575 (((-3 (-2 (|:| -3260 |#1|) (|:| -3259 |#1|)) #1#) |#1| (-714) (-714)) 29 T ELT) (((-599 |#1|) |#1|) 38 T ELT))) -(((-833 |#1| |#2|) (-10 -7 (-15 -3575 ((-599 |#1|) |#1|)) (-15 -3575 ((-3 (-2 (|:| -3260 |#1|) (|:| -3259 |#1|)) #1="failed") |#1| (-714) (-714))) (-15 -2788 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2789 (|#1| |#1| (-714)))) (-1183 |#2|) (-318)) (T -833)) -((-2789 (*1 *2 *2 *3) (-12 (-5 *3 (-714)) (-4 *4 (-318)) (-5 *1 (-833 *2 *4)) (-4 *2 (-1183 *4)))) (-2788 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-318)) (-5 *1 (-833 *2 *3)) (-4 *2 (-1183 *3)))) (-3575 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-714)) (-4 *5 (-318)) (-5 *2 (-2 (|:| -3260 *3) (|:| -3259 *3))) (-5 *1 (-833 *3 *5)) (-4 *3 (-1183 *5)))) (-3575 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-599 *3)) (-5 *1 (-833 *3 *4)) (-4 *3 (-1183 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3294 (((-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179))) $) 19 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 21 T ELT) (($ (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179)))) 18 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-834) (-13 (-1041) (-10 -8 (-15 -4096 ($ (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179))))) (-15 -3294 ((-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179))) $))))) (T -834)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179)))) (-5 *1 (-834)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179)))) (-5 *1 (-834))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3908 (($ $ (-599 |#2|) (-599 (-714))) 44 T ELT) (($ $ |#2| (-714)) 43 T ELT) (($ $ (-599 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2790 (($ $ (-599 |#2|) (-599 (-714))) 47 T ELT) (($ $ |#2| (-714)) 46 T ELT) (($ $ (-599 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-835 |#1| |#2|) (-113) (-989) (-1041)) (T -835)) -NIL -(-13 (-82 |t#1| |t#1|) (-838 |t#2|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-675 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) |has| |#1| (-146)) ((-675 |#1|) |has| |#1| (-146)) ((-831 $ |#2|) . T) ((-838 |#2|) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3908 (($ $ (-599 |#1|) (-599 (-714))) 49 T ELT) (($ $ |#1| (-714)) 48 T ELT) (($ $ (-599 |#1|)) 47 T ELT) (($ $ |#1|) 45 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-599 |#1|) (-599 (-714))) 52 T ELT) (($ $ |#1| (-714)) 51 T ELT) (($ $ (-599 |#1|)) 50 T ELT) (($ $ |#1|) 46 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-836 |#1|) (-113) (-1041)) (T -836)) -NIL -(-13 (-989) (-838 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-684) . T) ((-831 $ |#1|) . T) ((-838 |#1|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-3908 (($ $ |#2|) NIL T ELT) (($ $ (-599 |#2|)) 10 T ELT) (($ $ |#2| (-714)) 12 T ELT) (($ $ (-599 |#2|) (-599 (-714))) 15 T ELT)) (-2790 (($ $ |#2|) 16 T ELT) (($ $ (-599 |#2|)) 18 T ELT) (($ $ |#2| (-714)) 19 T ELT) (($ $ (-599 |#2|) (-599 (-714))) 21 T ELT))) -(((-837 |#1| |#2|) (-10 -7 (-15 -2790 (|#1| |#1| (-599 |#2|) (-599 (-714)))) (-15 -2790 (|#1| |#1| |#2| (-714))) (-15 -2790 (|#1| |#1| (-599 |#2|))) (-15 -3908 (|#1| |#1| (-599 |#2|) (-599 (-714)))) (-15 -3908 (|#1| |#1| |#2| (-714))) (-15 -3908 (|#1| |#1| (-599 |#2|))) (-15 -2790 (|#1| |#1| |#2|)) (-15 -3908 (|#1| |#1| |#2|))) (-838 |#2|) (-1041)) (T -837)) -NIL -((-3908 (($ $ |#1|) 7 T ELT) (($ $ (-599 |#1|)) 15 T ELT) (($ $ |#1| (-714)) 14 T ELT) (($ $ (-599 |#1|) (-599 (-714))) 13 T ELT)) (-2790 (($ $ |#1|) 6 T ELT) (($ $ (-599 |#1|)) 12 T ELT) (($ $ |#1| (-714)) 11 T ELT) (($ $ (-599 |#1|) (-599 (-714))) 10 T ELT))) -(((-838 |#1|) (-113) (-1041)) (T -838)) -((-3908 (*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *1 (-838 *3)) (-4 *3 (-1041)))) (-3908 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-838 *2)) (-4 *2 (-1041)))) (-3908 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 *4)) (-5 *3 (-599 (-714))) (-4 *1 (-838 *4)) (-4 *4 (-1041)))) (-2790 (*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *1 (-838 *3)) (-4 *3 (-1041)))) (-2790 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-838 *2)) (-4 *2 (-1041)))) (-2790 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 *4)) (-5 *3 (-599 (-714))) (-4 *1 (-838 *4)) (-4 *4 (-1041))))) -(-13 (-831 $ |t#1|) (-10 -8 (-15 -3908 ($ $ (-599 |t#1|))) (-15 -3908 ($ $ |t#1| (-714))) (-15 -3908 ($ $ (-599 |t#1|) (-599 (-714)))) (-15 -2790 ($ $ (-599 |t#1|))) (-15 -2790 ($ $ |t#1| (-714))) (-15 -2790 ($ $ (-599 |t#1|) (-599 (-714)))))) -(((-831 $ |#1|) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 26 T ELT)) (-3146 ((|#1| $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-1326 (($ $ $) NIL (|has| $ (-6 -4146)) ELT)) (-1327 (($ $ $) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4146)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4146)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3259 (($ $) 25 T ELT)) (-2791 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) NIL T ELT)) (-3148 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3260 (($ $) 23 T ELT)) (-3151 (((-599 |#1|) $) NIL T ELT)) (-3667 (((-85) $) 20 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3150 (((-499) $ $) NIL T ELT)) (-3783 (((-85) $) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-1144 |#1|) $) 9 T ELT) (((-797) $) 29 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) NIL T ELT)) (-3149 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 21 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-839 |#1|) (-13 (-92 |#1|) (-568 (-1144 |#1|)) (-10 -8 (-15 -2791 ($ |#1|)) (-15 -2791 ($ $ $)))) (-1041)) (T -839)) -((-2791 (*1 *1 *2) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1041)))) (-2791 (*1 *1 *1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1041))))) -((-2687 (((-85) $ $) NIL T ELT)) (-2807 (((-1037 |#1|) $) 60 T ELT)) (-3030 (((-599 $) (-599 $)) 103 T ELT)) (-3773 (((-499) $) 83 T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ "failed") $) NIL T ELT)) (-3922 (((-714) $) 80 T ELT)) (-2811 (((-1037 |#1|) $ |#1|) 70 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2794 (((-85) $) 88 T ELT)) (-2796 (((-714) $) 84 T ELT)) (-2650 (($ $ $) NIL (-3677 (|has| |#1| (-323)) (|has| |#1| (-781))) ELT)) (-2978 (($ $ $) NIL (-3677 (|has| |#1| (-323)) (|has| |#1| (-781))) ELT)) (-2800 (((-2 (|:| |preimage| (-599 |#1|)) (|:| |image| (-599 |#1|))) $) 55 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 130 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2793 (((-1037 |#1|) $) 136 (|has| |#1| (-323)) ELT)) (-2795 (((-85) $) 81 T ELT)) (-3950 ((|#1| $ |#1|) 68 T ELT)) (-4098 (((-714) $) 62 T ELT)) (-2802 (($ (-599 (-599 |#1|))) 118 T ELT)) (-2797 (((-911) $) 74 T ELT)) (-2803 (($ (-599 |#1|)) 32 T ELT)) (-3130 (($ $ $) NIL T ELT)) (-2551 (($ $ $) NIL T ELT)) (-2799 (($ (-599 (-599 |#1|))) 57 T ELT)) (-2798 (($ (-599 (-599 |#1|))) 123 T ELT)) (-2792 (($ (-599 |#1|)) 132 T ELT)) (-4096 (((-797) $) 117 T ELT) (($ (-599 (-599 |#1|))) 91 T ELT) (($ (-599 |#1|)) 92 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2785 (($) 24 T CONST)) (-2685 (((-85) $ $) NIL (-3677 (|has| |#1| (-323)) (|has| |#1| (-781))) ELT)) (-2686 (((-85) $ $) NIL (-3677 (|has| |#1| (-323)) (|has| |#1| (-781))) ELT)) (-3174 (((-85) $ $) 66 T ELT)) (-2805 (((-85) $ $) NIL (-3677 (|has| |#1| (-323)) (|has| |#1| (-781))) ELT)) (-2806 (((-85) $ $) 90 T ELT)) (-4099 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ $ $) 33 T ELT))) -(((-840 |#1|) (-13 (-842 |#1|) (-10 -8 (-15 -2800 ((-2 (|:| |preimage| (-599 |#1|)) (|:| |image| (-599 |#1|))) $)) (-15 -2799 ($ (-599 (-599 |#1|)))) (-15 -4096 ($ (-599 (-599 |#1|)))) (-15 -4096 ($ (-599 |#1|))) (-15 -2798 ($ (-599 (-599 |#1|)))) (-15 -4098 ((-714) $)) (-15 -2797 ((-911) $)) (-15 -3922 ((-714) $)) (-15 -2796 ((-714) $)) (-15 -3773 ((-499) $)) (-15 -2795 ((-85) $)) (-15 -2794 ((-85) $)) (-15 -3030 ((-599 $) (-599 $))) (IF (|has| |#1| (-323)) (-15 -2793 ((-1037 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-498)) (-15 -2792 ($ (-599 |#1|))) (IF (|has| |#1| (-323)) (-15 -2792 ($ (-599 |#1|))) |%noBranch|)))) (-1041)) (T -840)) -((-2800 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-599 *3)) (|:| |image| (-599 *3)))) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) (-2799 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-5 *1 (-840 *3)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-5 *1 (-840 *3)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-840 *3)))) (-2798 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-5 *1 (-840 *3)))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) (-2796 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) (-3030 (*1 *2 *2) (-12 (-5 *2 (-599 (-840 *3))) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-1037 *3)) (-5 *1 (-840 *3)) (-4 *3 (-323)) (-4 *3 (-1041)))) (-2792 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-840 *3))))) -((-2801 ((|#2| (-1082 |#1| |#2|)) 48 T ELT))) -(((-841 |#1| |#2|) (-10 -7 (-15 -2801 (|#2| (-1082 |#1| |#2|)))) (-857) (-13 (-989) (-10 -7 (-6 (-4147 "*"))))) (T -841)) -((-2801 (*1 *2 *3) (-12 (-5 *3 (-1082 *4 *2)) (-14 *4 (-857)) (-4 *2 (-13 (-989) (-10 -7 (-6 (-4147 "*"))))) (-5 *1 (-841 *4 *2))))) -((-2687 (((-85) $ $) 7 T ELT)) (-2807 (((-1037 |#1|) $) 42 T ELT)) (-3874 (($) 23 T CONST)) (-3607 (((-3 $ "failed") $) 20 T ELT)) (-2811 (((-1037 |#1|) $ |#1|) 41 T ELT)) (-2528 (((-85) $) 22 T ELT)) (-2650 (($ $ $) 35 (-3677 (|has| |#1| (-781)) (|has| |#1| (-323))) ELT)) (-2978 (($ $ $) 36 (-3677 (|has| |#1| (-781)) (|has| |#1| (-323))) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 30 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3950 ((|#1| $ |#1|) 45 T ELT)) (-2802 (($ (-599 (-599 |#1|))) 43 T ELT)) (-2803 (($ (-599 |#1|)) 44 T ELT)) (-3130 (($ $ $) 27 T ELT)) (-2551 (($ $ $) 26 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2785 (($) 24 T CONST)) (-2685 (((-85) $ $) 37 (-3677 (|has| |#1| (-781)) (|has| |#1| (-323))) ELT)) (-2686 (((-85) $ $) 39 (-3677 (|has| |#1| (-781)) (|has| |#1| (-323))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 38 (-3677 (|has| |#1| (-781)) (|has| |#1| (-323))) ELT)) (-2806 (((-85) $ $) 40 T ELT)) (-4099 (($ $ $) 29 T ELT)) (** (($ $ (-857)) 17 T ELT) (($ $ (-714)) 21 T ELT) (($ $ (-499)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-842 |#1|) (-113) (-1041)) (T -842)) -((-2803 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-4 *1 (-842 *3)))) (-2802 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-4 *1 (-842 *3)))) (-2807 (*1 *2 *1) (-12 (-4 *1 (-842 *3)) (-4 *3 (-1041)) (-5 *2 (-1037 *3)))) (-2811 (*1 *2 *1 *3) (-12 (-4 *1 (-842 *3)) (-4 *3 (-1041)) (-5 *2 (-1037 *3)))) (-2806 (*1 *2 *1 *1) (-12 (-4 *1 (-842 *3)) (-4 *3 (-1041)) (-5 *2 (-85))))) -(-13 (-427) (-240 |t#1| |t#1|) (-10 -8 (-15 -2803 ($ (-599 |t#1|))) (-15 -2802 ($ (-599 (-599 |t#1|)))) (-15 -2807 ((-1037 |t#1|) $)) (-15 -2811 ((-1037 |t#1|) $ |t#1|)) (-15 -2806 ((-85) $ $)) (IF (|has| |t#1| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |t#1| (-323)) (-6 (-781)) |%noBranch|))) -(((-73) . T) ((-568 (-797)) . T) ((-240 |#1| |#1|) . T) ((-427) . T) ((-684) . T) ((-781) -3677 (|has| |#1| (-781)) (|has| |#1| (-323))) ((-784) -3677 (|has| |#1| (-781)) (|has| |#1| (-323))) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-2813 (((-599 (-599 (-714))) $) 163 T ELT)) (-2809 (((-599 (-714)) (-840 |#1|) $) 191 T ELT)) (-2808 (((-599 (-714)) (-840 |#1|) $) 192 T ELT)) (-2807 (((-1037 |#1|) $) 155 T ELT)) (-2814 (((-599 (-840 |#1|)) $) 152 T ELT)) (-3115 (((-840 |#1|) $ (-499)) 157 T ELT) (((-840 |#1|) $) 158 T ELT)) (-2812 (($ (-599 (-840 |#1|))) 165 T ELT)) (-3922 (((-714) $) 159 T ELT)) (-2810 (((-1037 (-1037 |#1|)) $) 189 T ELT)) (-2811 (((-1037 |#1|) $ |#1|) 180 T ELT) (((-1037 (-1037 |#1|)) $ (-1037 |#1|)) 201 T ELT) (((-1037 (-599 |#1|)) $ (-599 |#1|)) 204 T ELT)) (-3383 (((-85) (-840 |#1|) $) 140 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2804 (((-1213) $) 145 T ELT) (((-1213) $ (-499) (-499)) 205 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2816 (((-599 (-840 |#1|)) $) 146 T ELT)) (-3950 (((-840 |#1|) $ (-714)) 153 T ELT)) (-4098 (((-714) $) 160 T ELT)) (-4096 (((-797) $) 177 T ELT) (((-599 (-840 |#1|)) $) 28 T ELT) (($ (-599 (-840 |#1|))) 164 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2815 (((-599 |#1|) $) 162 T ELT)) (-3174 (((-85) $ $) 198 T ELT)) (-2805 (((-85) $ $) 195 T ELT)) (-2806 (((-85) $ $) 194 T ELT))) -(((-843 |#1|) (-13 (-1041) (-10 -8 (-15 -4096 ((-599 (-840 |#1|)) $)) (-15 -2816 ((-599 (-840 |#1|)) $)) (-15 -3950 ((-840 |#1|) $ (-714))) (-15 -3115 ((-840 |#1|) $ (-499))) (-15 -3115 ((-840 |#1|) $)) (-15 -3922 ((-714) $)) (-15 -4098 ((-714) $)) (-15 -2815 ((-599 |#1|) $)) (-15 -2814 ((-599 (-840 |#1|)) $)) (-15 -2813 ((-599 (-599 (-714))) $)) (-15 -4096 ($ (-599 (-840 |#1|)))) (-15 -2812 ($ (-599 (-840 |#1|)))) (-15 -2811 ((-1037 |#1|) $ |#1|)) (-15 -2810 ((-1037 (-1037 |#1|)) $)) (-15 -2811 ((-1037 (-1037 |#1|)) $ (-1037 |#1|))) (-15 -2811 ((-1037 (-599 |#1|)) $ (-599 |#1|))) (-15 -3383 ((-85) (-840 |#1|) $)) (-15 -2809 ((-599 (-714)) (-840 |#1|) $)) (-15 -2808 ((-599 (-714)) (-840 |#1|) $)) (-15 -2807 ((-1037 |#1|) $)) (-15 -2806 ((-85) $ $)) (-15 -2805 ((-85) $ $)) (-15 -2804 ((-1213) $)) (-15 -2804 ((-1213) $ (-499) (-499))))) (-1041)) (T -843)) -((-4096 (*1 *2 *1) (-12 (-5 *2 (-599 (-840 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-599 (-840 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *2 (-840 *4)) (-5 *1 (-843 *4)) (-4 *4 (-1041)))) (-3115 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *2 (-840 *4)) (-5 *1 (-843 *4)) (-4 *4 (-1041)))) (-3115 (*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-599 (-840 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-599 (-599 (-714)))) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-840 *3))) (-4 *3 (-1041)) (-5 *1 (-843 *3)))) (-2812 (*1 *1 *2) (-12 (-5 *2 (-599 (-840 *3))) (-4 *3 (-1041)) (-5 *1 (-843 *3)))) (-2811 (*1 *2 *1 *3) (-12 (-5 *2 (-1037 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-1037 (-1037 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2811 (*1 *2 *1 *3) (-12 (-4 *4 (-1041)) (-5 *2 (-1037 (-1037 *4))) (-5 *1 (-843 *4)) (-5 *3 (-1037 *4)))) (-2811 (*1 *2 *1 *3) (-12 (-4 *4 (-1041)) (-5 *2 (-1037 (-599 *4))) (-5 *1 (-843 *4)) (-5 *3 (-599 *4)))) (-3383 (*1 *2 *3 *1) (-12 (-5 *3 (-840 *4)) (-4 *4 (-1041)) (-5 *2 (-85)) (-5 *1 (-843 *4)))) (-2809 (*1 *2 *3 *1) (-12 (-5 *3 (-840 *4)) (-4 *4 (-1041)) (-5 *2 (-599 (-714))) (-5 *1 (-843 *4)))) (-2808 (*1 *2 *3 *1) (-12 (-5 *3 (-840 *4)) (-4 *4 (-1041)) (-5 *2 (-599 (-714))) (-5 *1 (-843 *4)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1037 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2806 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2805 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2804 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-843 *4)) (-4 *4 (-1041))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 (($ $ (-857)) NIL (|has| $ (-323)) ELT) (($ $) NIL T ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 $ #1#) $) NIL T ELT)) (-3294 (($ $) NIL T ELT)) (-1890 (($ (-1207 $)) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) NIL T ELT)) (-1773 (((-85) $) NIL T ELT)) (-1864 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) NIL (|has| $ (-323)) ELT)) (-2112 (((-85) $) NIL (|has| $ (-323)) ELT)) (-3254 (($ $ (-857)) NIL (|has| $ (-323)) ELT) (($ $) NIL T ELT)) (-3585 (((-649 $) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 $) $ (-857)) NIL (|has| $ (-323)) ELT) (((-1111 $) $) NIL T ELT)) (-2111 (((-857) $) NIL T ELT)) (-1697 (((-1111 $) $) NIL (|has| $ (-323)) ELT)) (-1696 (((-3 (-1111 $) #1#) $ $) NIL (|has| $ (-323)) ELT) (((-1111 $) $) NIL (|has| $ (-323)) ELT)) (-1698 (($ $ (-1111 $)) NIL (|has| $ (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL T CONST)) (-2518 (($ (-857)) NIL T ELT)) (-4081 (((-85) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($) NIL (|has| $ (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-857)) NIL T ELT) (((-766 (-857))) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-3 (-714) #1#) $ $) NIL T ELT) (((-714) $) NIL T ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-4098 (((-857) $) NIL T ELT) (((-766 (-857)) $) NIL T ELT)) (-3323 (((-1111 $)) NIL T ELT)) (-1767 (($) NIL T ELT)) (-1699 (($) NIL (|has| $ (-323)) ELT)) (-3362 (((-647 $) (-1207 $)) NIL T ELT) (((-1207 $) $) NIL T ELT)) (-4122 (((-499) $) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT)) (-2823 (((-649 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $) (-857)) NIL T ELT) (((-1207 $)) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-4078 (($ $ (-714)) NIL (|has| $ (-323)) ELT) (($ $) NIL (|has| $ (-323)) ELT)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT))) -(((-844 |#1|) (-13 (-305) (-283 $) (-569 (-499))) (-857)) (T -844)) -NIL -((-2818 (((-3 (-599 (-1111 |#4|)) #1="failed") (-599 (-1111 |#4|)) (-1111 |#4|)) 164 T ELT)) (-2821 ((|#1|) 101 T ELT)) (-2820 (((-359 (-1111 |#4|)) (-1111 |#4|)) 173 T ELT)) (-2822 (((-359 (-1111 |#4|)) (-599 |#3|) (-1111 |#4|)) 83 T ELT)) (-2819 (((-359 (-1111 |#4|)) (-1111 |#4|)) 183 T ELT)) (-2817 (((-3 (-599 (-1111 |#4|)) #1#) (-599 (-1111 |#4|)) (-1111 |#4|) |#3|) 117 T ELT))) -(((-845 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2818 ((-3 (-599 (-1111 |#4|)) #1="failed") (-599 (-1111 |#4|)) (-1111 |#4|))) (-15 -2819 ((-359 (-1111 |#4|)) (-1111 |#4|))) (-15 -2820 ((-359 (-1111 |#4|)) (-1111 |#4|))) (-15 -2821 (|#1|)) (-15 -2817 ((-3 (-599 (-1111 |#4|)) #1#) (-599 (-1111 |#4|)) (-1111 |#4|) |#3|)) (-15 -2822 ((-359 (-1111 |#4|)) (-599 |#3|) (-1111 |#4|)))) (-848) (-738) (-781) (-888 |#1| |#2| |#3|)) (T -845)) -((-2822 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *7)) (-4 *7 (-781)) (-4 *5 (-848)) (-4 *6 (-738)) (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-359 (-1111 *8))) (-5 *1 (-845 *5 *6 *7 *8)) (-5 *4 (-1111 *8)))) (-2817 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-599 (-1111 *7))) (-5 *3 (-1111 *7)) (-4 *7 (-888 *5 *6 *4)) (-4 *5 (-848)) (-4 *6 (-738)) (-4 *4 (-781)) (-5 *1 (-845 *5 *6 *4 *7)))) (-2821 (*1 *2) (-12 (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-848)) (-5 *1 (-845 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (-2820 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-359 (-1111 *7))) (-5 *1 (-845 *4 *5 *6 *7)) (-5 *3 (-1111 *7)))) (-2819 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-359 (-1111 *7))) (-5 *1 (-845 *4 *5 *6 *7)) (-5 *3 (-1111 *7)))) (-2818 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 (-1111 *7))) (-5 *3 (-1111 *7)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-848)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-845 *4 *5 *6 *7))))) -((-2818 (((-3 (-599 (-1111 |#2|)) "failed") (-599 (-1111 |#2|)) (-1111 |#2|)) 39 T ELT)) (-2821 ((|#1|) 71 T ELT)) (-2820 (((-359 (-1111 |#2|)) (-1111 |#2|)) 125 T ELT)) (-2822 (((-359 (-1111 |#2|)) (-1111 |#2|)) 109 T ELT)) (-2819 (((-359 (-1111 |#2|)) (-1111 |#2|)) 136 T ELT))) -(((-846 |#1| |#2|) (-10 -7 (-15 -2818 ((-3 (-599 (-1111 |#2|)) "failed") (-599 (-1111 |#2|)) (-1111 |#2|))) (-15 -2819 ((-359 (-1111 |#2|)) (-1111 |#2|))) (-15 -2820 ((-359 (-1111 |#2|)) (-1111 |#2|))) (-15 -2821 (|#1|)) (-15 -2822 ((-359 (-1111 |#2|)) (-1111 |#2|)))) (-848) (-1183 |#1|)) (T -846)) -((-2822 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-1183 *4)) (-5 *2 (-359 (-1111 *5))) (-5 *1 (-846 *4 *5)) (-5 *3 (-1111 *5)))) (-2821 (*1 *2) (-12 (-4 *2 (-848)) (-5 *1 (-846 *2 *3)) (-4 *3 (-1183 *2)))) (-2820 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-1183 *4)) (-5 *2 (-359 (-1111 *5))) (-5 *1 (-846 *4 *5)) (-5 *3 (-1111 *5)))) (-2819 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-1183 *4)) (-5 *2 (-359 (-1111 *5))) (-5 *1 (-846 *4 *5)) (-5 *3 (-1111 *5)))) (-2818 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 (-1111 *5))) (-5 *3 (-1111 *5)) (-4 *5 (-1183 *4)) (-4 *4 (-848)) (-5 *1 (-846 *4 *5))))) -((-2825 (((-3 (-599 (-1111 $)) "failed") (-599 (-1111 $)) (-1111 $)) 46 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 18 T ELT)) (-2823 (((-649 $) $) 40 T ELT))) -(((-847 |#1|) (-10 -7 (-15 -2823 ((-649 |#1|) |#1|)) (-15 -2825 ((-3 (-599 (-1111 |#1|)) "failed") (-599 (-1111 |#1|)) (-1111 |#1|))) (-15 -2829 ((-1111 |#1|) (-1111 |#1|) (-1111 |#1|)))) (-848)) (T -847)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 72 T ELT)) (-3925 (($ $) 63 T ELT)) (-4121 (((-359 $) $) 64 T ELT)) (-2825 (((-3 (-599 (-1111 $)) "failed") (-599 (-1111 $)) (-1111 $)) 69 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3873 (((-85) $) 65 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 70 T ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 71 T ELT)) (-3882 (((-359 $) $) 62 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2824 (((-3 (-1207 $) "failed") (-647 $)) 68 (|has| $ (-118)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT)) (-2823 (((-649 $) $) 67 (|has| $ (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-848) (-113)) (T -848)) -((-2829 (*1 *2 *2 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-848)))) (-2828 (*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *2 (-359 (-1111 *1))) (-5 *3 (-1111 *1)))) (-2827 (*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *2 (-359 (-1111 *1))) (-5 *3 (-1111 *1)))) (-2826 (*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *2 (-359 (-1111 *1))) (-5 *3 (-1111 *1)))) (-2825 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 (-1111 *1))) (-5 *3 (-1111 *1)) (-4 *1 (-848)))) (-2824 (*1 *2 *3) (|partial| -12 (-5 *3 (-647 *1)) (-4 *1 (-118)) (-4 *1 (-848)) (-5 *2 (-1207 *1)))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-649 *1)) (-4 *1 (-118)) (-4 *1 (-848))))) -(-13 (-1162) (-10 -8 (-15 -2828 ((-359 (-1111 $)) (-1111 $))) (-15 -2827 ((-359 (-1111 $)) (-1111 $))) (-15 -2826 ((-359 (-1111 $)) (-1111 $))) (-15 -2829 ((-1111 $) (-1111 $) (-1111 $))) (-15 -2825 ((-3 (-599 (-1111 $)) "failed") (-599 (-1111 $)) (-1111 $))) (IF (|has| $ (-118)) (PROGN (-15 -2824 ((-3 (-1207 $) "failed") (-647 $))) (-15 -2823 ((-649 $) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-244) . T) ((-406) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) . T)) -((-2831 (((-3 (-2 (|:| -3922 (-714)) (|:| -2501 |#5|)) #1="failed") (-288 |#2| |#3| |#4| |#5|)) 77 T ELT)) (-2830 (((-85) (-288 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3922 (((-3 (-714) #1#) (-288 |#2| |#3| |#4| |#5|)) 15 T ELT))) -(((-849 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3922 ((-3 (-714) #1="failed") (-288 |#2| |#3| |#4| |#5|))) (-15 -2830 ((-85) (-288 |#2| |#3| |#4| |#5|))) (-15 -2831 ((-3 (-2 (|:| -3922 (-714)) (|:| -2501 |#5|)) #1#) (-288 |#2| |#3| |#4| |#5|)))) (-13 (-510) (-978 (-499))) (-375 |#1|) (-1183 |#2|) (-1183 (-361 |#3|)) (-297 |#2| |#3| |#4|)) (T -849)) -((-2831 (*1 *2 *3) (|partial| -12 (-5 *3 (-288 *5 *6 *7 *8)) (-4 *5 (-375 *4)) (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-4 *8 (-297 *5 *6 *7)) (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-2 (|:| -3922 (-714)) (|:| -2501 *8))) (-5 *1 (-849 *4 *5 *6 *7 *8)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-288 *5 *6 *7 *8)) (-4 *5 (-375 *4)) (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-4 *8 (-297 *5 *6 *7)) (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-85)) (-5 *1 (-849 *4 *5 *6 *7 *8)))) (-3922 (*1 *2 *3) (|partial| -12 (-5 *3 (-288 *5 *6 *7 *8)) (-4 *5 (-375 *4)) (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-4 *8 (-297 *5 *6 *7)) (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-714)) (-5 *1 (-849 *4 *5 *6 *7 *8))))) -((-2831 (((-3 (-2 (|:| -3922 (-714)) (|:| -2501 |#3|)) #1="failed") (-288 (-361 (-499)) |#1| |#2| |#3|)) 64 T ELT)) (-2830 (((-85) (-288 (-361 (-499)) |#1| |#2| |#3|)) 16 T ELT)) (-3922 (((-3 (-714) #1#) (-288 (-361 (-499)) |#1| |#2| |#3|)) 14 T ELT))) -(((-850 |#1| |#2| |#3|) (-10 -7 (-15 -3922 ((-3 (-714) #1="failed") (-288 (-361 (-499)) |#1| |#2| |#3|))) (-15 -2830 ((-85) (-288 (-361 (-499)) |#1| |#2| |#3|))) (-15 -2831 ((-3 (-2 (|:| -3922 (-714)) (|:| -2501 |#3|)) #1#) (-288 (-361 (-499)) |#1| |#2| |#3|)))) (-1183 (-361 (-499))) (-1183 (-361 |#1|)) (-297 (-361 (-499)) |#1| |#2|)) (T -850)) -((-2831 (*1 *2 *3) (|partial| -12 (-5 *3 (-288 (-361 (-499)) *4 *5 *6)) (-4 *4 (-1183 (-361 (-499)))) (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 (-361 (-499)) *4 *5)) (-5 *2 (-2 (|:| -3922 (-714)) (|:| -2501 *6))) (-5 *1 (-850 *4 *5 *6)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-288 (-361 (-499)) *4 *5 *6)) (-4 *4 (-1183 (-361 (-499)))) (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 (-361 (-499)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-850 *4 *5 *6)))) (-3922 (*1 *2 *3) (|partial| -12 (-5 *3 (-288 (-361 (-499)) *4 *5 *6)) (-4 *4 (-1183 (-361 (-499)))) (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 (-361 (-499)) *4 *5)) (-5 *2 (-714)) (-5 *1 (-850 *4 *5 *6))))) -((-2836 ((|#2| |#2|) 26 T ELT)) (-2834 (((-499) (-599 (-2 (|:| |den| (-499)) (|:| |gcdnum| (-499))))) 15 T ELT)) (-2832 (((-857) (-499)) 38 T ELT)) (-2835 (((-499) |#2|) 45 T ELT)) (-2833 (((-499) |#2|) 21 T ELT) (((-2 (|:| |den| (-499)) (|:| |gcdnum| (-499))) |#1|) 20 T ELT))) -(((-851 |#1| |#2|) (-10 -7 (-15 -2832 ((-857) (-499))) (-15 -2833 ((-2 (|:| |den| (-499)) (|:| |gcdnum| (-499))) |#1|)) (-15 -2833 ((-499) |#2|)) (-15 -2834 ((-499) (-599 (-2 (|:| |den| (-499)) (|:| |gcdnum| (-499)))))) (-15 -2835 ((-499) |#2|)) (-15 -2836 (|#2| |#2|))) (-1183 (-361 (-499))) (-1183 (-361 |#1|))) (T -851)) -((-2836 (*1 *2 *2) (-12 (-4 *3 (-1183 (-361 (-499)))) (-5 *1 (-851 *3 *2)) (-4 *2 (-1183 (-361 *3))))) (-2835 (*1 *2 *3) (-12 (-4 *4 (-1183 (-361 *2))) (-5 *2 (-499)) (-5 *1 (-851 *4 *3)) (-4 *3 (-1183 (-361 *4))))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| |den| (-499)) (|:| |gcdnum| (-499))))) (-4 *4 (-1183 (-361 *2))) (-5 *2 (-499)) (-5 *1 (-851 *4 *5)) (-4 *5 (-1183 (-361 *4))))) (-2833 (*1 *2 *3) (-12 (-4 *4 (-1183 (-361 *2))) (-5 *2 (-499)) (-5 *1 (-851 *4 *3)) (-4 *3 (-1183 (-361 *4))))) (-2833 (*1 *2 *3) (-12 (-4 *3 (-1183 (-361 (-499)))) (-5 *2 (-2 (|:| |den| (-499)) (|:| |gcdnum| (-499)))) (-5 *1 (-851 *3 *4)) (-4 *4 (-1183 (-361 *3))))) (-2832 (*1 *2 *3) (-12 (-5 *3 (-499)) (-4 *4 (-1183 (-361 *3))) (-5 *2 (-857)) (-5 *1 (-851 *4 *5)) (-4 *5 (-1183 (-361 *4)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 ((|#1| $) 99 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) 93 T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2844 (($ |#1| (-359 |#1|)) 91 T ELT)) (-2838 (((-1111 |#1|) |#1| |#1|) 52 T ELT)) (-2837 (($ $) 60 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2839 (((-499) $) 96 T ELT)) (-2840 (($ $ (-499)) 98 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-2841 ((|#1| $) 95 T ELT)) (-2842 (((-359 |#1|) $) 94 T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) 92 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-2843 (($ $) 49 T ELT)) (-4096 (((-797) $) 123 T ELT) (($ (-499)) 72 T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#1|) 40 T ELT) (((-361 |#1|) $) 77 T ELT) (($ (-361 (-359 |#1|))) 85 T ELT)) (-3248 (((-714)) 70 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2779 (($) 24 T CONST)) (-2785 (($) 12 T CONST)) (-3174 (((-85) $ $) 86 T ELT)) (-4099 (($ $ $) NIL T ELT)) (-3987 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 48 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) -(((-852 |#1|) (-13 (-318) (-38 |#1|) (-10 -8 (-15 -4096 ((-361 |#1|) $)) (-15 -4096 ($ (-361 (-359 |#1|)))) (-15 -2843 ($ $)) (-15 -2842 ((-359 |#1|) $)) (-15 -2841 (|#1| $)) (-15 -2840 ($ $ (-499))) (-15 -2839 ((-499) $)) (-15 -2838 ((-1111 |#1|) |#1| |#1|)) (-15 -2837 ($ $)) (-15 -2844 ($ |#1| (-359 |#1|))) (-15 -3251 (|#1| $)))) (-261)) (T -852)) -((-4096 (*1 *2 *1) (-12 (-5 *2 (-361 *3)) (-5 *1 (-852 *3)) (-4 *3 (-261)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-361 (-359 *3))) (-4 *3 (-261)) (-5 *1 (-852 *3)))) (-2843 (*1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-261)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-359 *3)) (-5 *1 (-852 *3)) (-4 *3 (-261)))) (-2841 (*1 *2 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-261)))) (-2840 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-852 *3)) (-4 *3 (-261)))) (-2839 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-852 *3)) (-4 *3 (-261)))) (-2838 (*1 *2 *3 *3) (-12 (-5 *2 (-1111 *3)) (-5 *1 (-852 *3)) (-4 *3 (-261)))) (-2837 (*1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-261)))) (-2844 (*1 *1 *2 *3) (-12 (-5 *3 (-359 *2)) (-4 *2 (-261)) (-5 *1 (-852 *2)))) (-3251 (*1 *2 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-261))))) -((-2844 (((-51) (-884 |#1|) (-359 (-884 |#1|)) (-1117)) 17 T ELT) (((-51) (-361 (-884 |#1|)) (-1117)) 18 T ELT))) -(((-853 |#1|) (-10 -7 (-15 -2844 ((-51) (-361 (-884 |#1|)) (-1117))) (-15 -2844 ((-51) (-884 |#1|) (-359 (-884 |#1|)) (-1117)))) (-13 (-261) (-120))) (T -853)) -((-2844 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-359 (-884 *6))) (-5 *5 (-1117)) (-5 *3 (-884 *6)) (-4 *6 (-13 (-261) (-120))) (-5 *2 (-51)) (-5 *1 (-853 *6)))) (-2844 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-51)) (-5 *1 (-853 *5))))) -((-2845 ((|#4| (-599 |#4|)) 148 T ELT) (((-1111 |#4|) (-1111 |#4|) (-1111 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3282 (((-1111 |#4|) (-599 (-1111 |#4|))) 141 T ELT) (((-1111 |#4|) (-1111 |#4|) (-1111 |#4|)) 61 T ELT) ((|#4| (-599 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) -(((-854 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3282 (|#4| |#4| |#4|)) (-15 -3282 (|#4| (-599 |#4|))) (-15 -3282 ((-1111 |#4|) (-1111 |#4|) (-1111 |#4|))) (-15 -3282 ((-1111 |#4|) (-599 (-1111 |#4|)))) (-15 -2845 (|#4| |#4| |#4|)) (-15 -2845 ((-1111 |#4|) (-1111 |#4|) (-1111 |#4|))) (-15 -2845 (|#4| (-599 |#4|)))) (-738) (-781) (-261) (-888 |#3| |#1| |#2|)) (T -854)) -((-2845 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *6 *4 *5)) (-5 *1 (-854 *4 *5 *6 *2)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)))) (-2845 (*1 *2 *2 *2) (-12 (-5 *2 (-1111 *6)) (-4 *6 (-888 *5 *3 *4)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *5 (-261)) (-5 *1 (-854 *3 *4 *5 *6)))) (-2845 (*1 *2 *2 *2) (-12 (-4 *3 (-738)) (-4 *4 (-781)) (-4 *5 (-261)) (-5 *1 (-854 *3 *4 *5 *2)) (-4 *2 (-888 *5 *3 *4)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-599 (-1111 *7))) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) (-5 *2 (-1111 *7)) (-5 *1 (-854 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) (-3282 (*1 *2 *2 *2) (-12 (-5 *2 (-1111 *6)) (-4 *6 (-888 *5 *3 *4)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *5 (-261)) (-5 *1 (-854 *3 *4 *5 *6)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *6 *4 *5)) (-5 *1 (-854 *4 *5 *6 *2)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)))) (-3282 (*1 *2 *2 *2) (-12 (-4 *3 (-738)) (-4 *4 (-781)) (-4 *5 (-261)) (-5 *1 (-854 *3 *4 *5 *2)) (-4 *2 (-888 *5 *3 *4))))) -((-2858 (((-843 (-499)) (-911)) 38 T ELT) (((-843 (-499)) (-599 (-499))) 34 T ELT)) (-2846 (((-843 (-499)) (-599 (-499))) 66 T ELT) (((-843 (-499)) (-857)) 67 T ELT)) (-2857 (((-843 (-499))) 39 T ELT)) (-2855 (((-843 (-499))) 53 T ELT) (((-843 (-499)) (-599 (-499))) 52 T ELT)) (-2854 (((-843 (-499))) 51 T ELT) (((-843 (-499)) (-599 (-499))) 50 T ELT)) (-2853 (((-843 (-499))) 49 T ELT) (((-843 (-499)) (-599 (-499))) 48 T ELT)) (-2852 (((-843 (-499))) 47 T ELT) (((-843 (-499)) (-599 (-499))) 46 T ELT)) (-2851 (((-843 (-499))) 45 T ELT) (((-843 (-499)) (-599 (-499))) 44 T ELT)) (-2856 (((-843 (-499))) 55 T ELT) (((-843 (-499)) (-599 (-499))) 54 T ELT)) (-2850 (((-843 (-499)) (-599 (-499))) 71 T ELT) (((-843 (-499)) (-857)) 73 T ELT)) (-2849 (((-843 (-499)) (-599 (-499))) 68 T ELT) (((-843 (-499)) (-857)) 69 T ELT)) (-2847 (((-843 (-499)) (-599 (-499))) 64 T ELT) (((-843 (-499)) (-857)) 65 T ELT)) (-2848 (((-843 (-499)) (-599 (-857))) 57 T ELT))) -(((-855) (-10 -7 (-15 -2846 ((-843 (-499)) (-857))) (-15 -2846 ((-843 (-499)) (-599 (-499)))) (-15 -2847 ((-843 (-499)) (-857))) (-15 -2847 ((-843 (-499)) (-599 (-499)))) (-15 -2848 ((-843 (-499)) (-599 (-857)))) (-15 -2849 ((-843 (-499)) (-857))) (-15 -2849 ((-843 (-499)) (-599 (-499)))) (-15 -2850 ((-843 (-499)) (-857))) (-15 -2850 ((-843 (-499)) (-599 (-499)))) (-15 -2851 ((-843 (-499)) (-599 (-499)))) (-15 -2851 ((-843 (-499)))) (-15 -2852 ((-843 (-499)) (-599 (-499)))) (-15 -2852 ((-843 (-499)))) (-15 -2853 ((-843 (-499)) (-599 (-499)))) (-15 -2853 ((-843 (-499)))) (-15 -2854 ((-843 (-499)) (-599 (-499)))) (-15 -2854 ((-843 (-499)))) (-15 -2855 ((-843 (-499)) (-599 (-499)))) (-15 -2855 ((-843 (-499)))) (-15 -2856 ((-843 (-499)) (-599 (-499)))) (-15 -2856 ((-843 (-499)))) (-15 -2857 ((-843 (-499)))) (-15 -2858 ((-843 (-499)) (-599 (-499)))) (-15 -2858 ((-843 (-499)) (-911))))) (T -855)) -((-2858 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2857 (*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2856 (*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2856 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2855 (*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2854 (*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2853 (*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2852 (*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2851 (*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2851 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-599 (-857))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2846 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2846 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-843 (-499))) (-5 *1 (-855))))) -((-2860 (((-599 (-884 |#1|)) (-599 (-884 |#1|)) (-599 (-1117))) 14 T ELT)) (-2859 (((-599 (-884 |#1|)) (-599 (-884 |#1|)) (-599 (-1117))) 13 T ELT))) -(((-856 |#1|) (-10 -7 (-15 -2859 ((-599 (-884 |#1|)) (-599 (-884 |#1|)) (-599 (-1117)))) (-15 -2860 ((-599 (-884 |#1|)) (-599 (-884 |#1|)) (-599 (-1117))))) (-406)) (T -856)) -((-2860 (*1 *2 *2 *3) (-12 (-5 *2 (-599 (-884 *4))) (-5 *3 (-599 (-1117))) (-4 *4 (-406)) (-5 *1 (-856 *4)))) (-2859 (*1 *2 *2 *3) (-12 (-5 *2 (-599 (-884 *4))) (-5 *3 (-599 (-1117))) (-4 *4 (-406)) (-5 *1 (-856 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ "failed") $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3282 (($ $ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2785 (($) NIL T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-714)) NIL T ELT) (($ $ (-857)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-857) (-13 (-739) (-684) (-10 -8 (-15 -3282 ($ $ $)) (-6 (-4147 "*"))))) (T -857)) -((-3282 (*1 *1 *1 *1) (-5 *1 (-857)))) -((-714) (|%ilt| 0 |#1|)) -((-4096 (((-268 |#1|) (-431)) 16 T ELT))) -(((-858 |#1|) (-10 -7 (-15 -4096 ((-268 |#1|) (-431)))) (-510)) (T -858)) -((-4096 (*1 *2 *3) (-12 (-5 *3 (-431)) (-5 *2 (-268 *4)) (-5 *1 (-858 *4)) (-4 *4 (-510))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-859) (-113)) (T -859)) -((-2862 (*1 *2 *3) (-12 (-4 *1 (-859)) (-5 *2 (-2 (|:| -4104 (-599 *1)) (|:| -2527 *1))) (-5 *3 (-599 *1)))) (-2861 (*1 *2 *3 *1) (-12 (-4 *1 (-859)) (-5 *2 (-649 (-599 *1))) (-5 *3 (-599 *1))))) -(-13 (-406) (-10 -8 (-15 -2862 ((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $))) (-15 -2861 ((-649 (-599 $)) (-599 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-244) . T) ((-406) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-3228 (((-1111 |#2|) (-599 |#2|) (-599 |#2|)) 17 T ELT) (((-1176 |#1| |#2|) (-1176 |#1| |#2|) (-599 |#2|) (-599 |#2|)) 13 T ELT))) -(((-860 |#1| |#2|) (-10 -7 (-15 -3228 ((-1176 |#1| |#2|) (-1176 |#1| |#2|) (-599 |#2|) (-599 |#2|))) (-15 -3228 ((-1111 |#2|) (-599 |#2|) (-599 |#2|)))) (-1117) (-318)) (T -860)) -((-3228 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *5)) (-4 *5 (-318)) (-5 *2 (-1111 *5)) (-5 *1 (-860 *4 *5)) (-14 *4 (-1117)))) (-3228 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1176 *4 *5)) (-5 *3 (-599 *5)) (-14 *4 (-1117)) (-4 *5 (-318)) (-5 *1 (-860 *4 *5))))) -((-2863 ((|#2| (-599 |#1|) (-599 |#1|)) 28 T ELT))) -(((-861 |#1| |#2|) (-10 -7 (-15 -2863 (|#2| (-599 |#1|) (-599 |#1|)))) (-318) (-1183 |#1|)) (T -861)) -((-2863 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *4)) (-4 *4 (-318)) (-4 *2 (-1183 *4)) (-5 *1 (-861 *4 *2))))) -((-2865 (((-499) (-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-1099)) 175 T ELT)) (-2884 ((|#4| |#4|) 194 T ELT)) (-2869 (((-599 (-361 (-884 |#1|))) (-599 (-1117))) 146 T ELT)) (-2883 (((-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))) (-647 |#4|) (-599 (-361 (-884 |#1|))) (-599 (-599 |#4|)) (-714) (-714) (-499)) 88 T ELT)) (-2873 (((-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))) (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))) (-599 |#4|)) 69 T ELT)) (-2882 (((-647 |#4|) (-647 |#4|) (-599 |#4|)) 65 T ELT)) (-2866 (((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-1099)) 187 T ELT)) (-2864 (((-499) (-647 |#4|) (-857) (-1099)) 167 T ELT) (((-499) (-647 |#4|) (-599 (-1117)) (-857) (-1099)) 166 T ELT) (((-499) (-647 |#4|) (-599 |#4|) (-857) (-1099)) 165 T ELT) (((-499) (-647 |#4|) (-1099)) 154 T ELT) (((-499) (-647 |#4|) (-599 (-1117)) (-1099)) 153 T ELT) (((-499) (-647 |#4|) (-599 |#4|) (-1099)) 152 T ELT) (((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-857)) 151 T ELT) (((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-599 (-1117)) (-857)) 150 T ELT) (((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-599 |#4|) (-857)) 149 T ELT) (((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|)) 148 T ELT) (((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-599 (-1117))) 147 T ELT) (((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-599 |#4|)) 143 T ELT)) (-2870 ((|#4| (-884 |#1|)) 80 T ELT)) (-2880 (((-85) (-599 |#4|) (-599 (-599 |#4|))) 191 T ELT)) (-2879 (((-599 (-599 (-499))) (-499) (-499)) 161 T ELT)) (-2878 (((-599 (-599 |#4|)) (-599 (-599 |#4|))) 106 T ELT)) (-2877 (((-714) (-599 (-2 (|:| -3231 (-714)) (|:| |eqns| (-599 (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (|:| |fgb| (-599 |#4|))))) 100 T ELT)) (-2876 (((-714) (-599 (-2 (|:| -3231 (-714)) (|:| |eqns| (-599 (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (|:| |fgb| (-599 |#4|))))) 99 T ELT)) (-2885 (((-85) (-599 (-884 |#1|))) 19 T ELT) (((-85) (-599 |#4|)) 15 T ELT)) (-2871 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-599 |#4|)) (|:| |n0| (-599 |#4|))) (-599 |#4|) (-599 |#4|)) 84 T ELT)) (-2875 (((-599 |#4|) |#4|) 57 T ELT)) (-2868 (((-599 (-361 (-884 |#1|))) (-599 |#4|)) 142 T ELT) (((-647 (-361 (-884 |#1|))) (-647 |#4|)) 66 T ELT) (((-361 (-884 |#1|)) |#4|) 139 T ELT)) (-2867 (((-2 (|:| |rgl| (-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))))))) (|:| |rgsz| (-499))) (-647 |#4|) (-599 (-361 (-884 |#1|))) (-714) (-1099) (-499)) 112 T ELT)) (-2872 (((-599 (-2 (|:| -3231 (-714)) (|:| |eqns| (-599 (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (|:| |fgb| (-599 |#4|)))) (-647 |#4|) (-714)) 98 T ELT)) (-2881 (((-599 (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499))))) (-647 |#4|) (-714)) 121 T ELT)) (-2874 (((-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))) (-2 (|:| -1673 (-647 (-361 (-884 |#1|)))) (|:| |vec| (-599 (-361 (-884 |#1|)))) (|:| -3231 (-714)) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499))))) 56 T ELT))) -(((-862 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2864 ((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-599 |#4|))) (-15 -2864 ((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-599 (-1117)))) (-15 -2864 ((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|))) (-15 -2864 ((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-599 |#4|) (-857))) (-15 -2864 ((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-599 (-1117)) (-857))) (-15 -2864 ((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-857))) (-15 -2864 ((-499) (-647 |#4|) (-599 |#4|) (-1099))) (-15 -2864 ((-499) (-647 |#4|) (-599 (-1117)) (-1099))) (-15 -2864 ((-499) (-647 |#4|) (-1099))) (-15 -2864 ((-499) (-647 |#4|) (-599 |#4|) (-857) (-1099))) (-15 -2864 ((-499) (-647 |#4|) (-599 (-1117)) (-857) (-1099))) (-15 -2864 ((-499) (-647 |#4|) (-857) (-1099))) (-15 -2865 ((-499) (-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-1099))) (-15 -2866 ((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-1099))) (-15 -2867 ((-2 (|:| |rgl| (-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))))))) (|:| |rgsz| (-499))) (-647 |#4|) (-599 (-361 (-884 |#1|))) (-714) (-1099) (-499))) (-15 -2868 ((-361 (-884 |#1|)) |#4|)) (-15 -2868 ((-647 (-361 (-884 |#1|))) (-647 |#4|))) (-15 -2868 ((-599 (-361 (-884 |#1|))) (-599 |#4|))) (-15 -2869 ((-599 (-361 (-884 |#1|))) (-599 (-1117)))) (-15 -2870 (|#4| (-884 |#1|))) (-15 -2871 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-599 |#4|)) (|:| |n0| (-599 |#4|))) (-599 |#4|) (-599 |#4|))) (-15 -2872 ((-599 (-2 (|:| -3231 (-714)) (|:| |eqns| (-599 (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (|:| |fgb| (-599 |#4|)))) (-647 |#4|) (-714))) (-15 -2873 ((-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))) (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))) (-599 |#4|))) (-15 -2874 ((-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))) (-2 (|:| -1673 (-647 (-361 (-884 |#1|)))) (|:| |vec| (-599 (-361 (-884 |#1|)))) (|:| -3231 (-714)) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (-15 -2875 ((-599 |#4|) |#4|)) (-15 -2876 ((-714) (-599 (-2 (|:| -3231 (-714)) (|:| |eqns| (-599 (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (|:| |fgb| (-599 |#4|)))))) (-15 -2877 ((-714) (-599 (-2 (|:| -3231 (-714)) (|:| |eqns| (-599 (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (|:| |fgb| (-599 |#4|)))))) (-15 -2878 ((-599 (-599 |#4|)) (-599 (-599 |#4|)))) (-15 -2879 ((-599 (-599 (-499))) (-499) (-499))) (-15 -2880 ((-85) (-599 |#4|) (-599 (-599 |#4|)))) (-15 -2881 ((-599 (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499))))) (-647 |#4|) (-714))) (-15 -2882 ((-647 |#4|) (-647 |#4|) (-599 |#4|))) (-15 -2883 ((-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))) (-647 |#4|) (-599 (-361 (-884 |#1|))) (-599 (-599 |#4|)) (-714) (-714) (-499))) (-15 -2884 (|#4| |#4|)) (-15 -2885 ((-85) (-599 |#4|))) (-15 -2885 ((-85) (-599 (-884 |#1|))))) (-13 (-261) (-120)) (-13 (-781) (-569 (-1117))) (-738) (-888 |#1| |#3| |#2|)) (T -862)) -((-2885 (*1 *2 *3) (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-85)) (-5 *1 (-862 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5)))) (-2885 (*1 *2 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-85)) (-5 *1 (-862 *4 *5 *6 *7)))) (-2884 (*1 *2 *2) (-12 (-4 *3 (-13 (-261) (-120))) (-4 *4 (-13 (-781) (-569 (-1117)))) (-4 *5 (-738)) (-5 *1 (-862 *3 *4 *5 *2)) (-4 *2 (-888 *3 *5 *4)))) (-2883 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499))))) (-5 *4 (-647 *12)) (-5 *5 (-599 (-361 (-884 *9)))) (-5 *6 (-599 (-599 *12))) (-5 *7 (-714)) (-5 *8 (-499)) (-4 *9 (-13 (-261) (-120))) (-4 *12 (-888 *9 *11 *10)) (-4 *10 (-13 (-781) (-569 (-1117)))) (-4 *11 (-738)) (-5 *2 (-2 (|:| |eqzro| (-599 *12)) (|:| |neqzro| (-599 *12)) (|:| |wcond| (-599 (-884 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *9)))) (|:| -2113 (-599 (-1207 (-361 (-884 *9))))))))) (-5 *1 (-862 *9 *10 *11 *12)))) (-2882 (*1 *2 *2 *3) (-12 (-5 *2 (-647 *7)) (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *1 (-862 *4 *5 *6 *7)))) (-2881 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *8)) (-5 *4 (-714)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 (-599 (-2 (|:| |det| *8) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (-5 *1 (-862 *5 *6 *7 *8)))) (-2880 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-599 *8))) (-5 *3 (-599 *8)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 (-85)) (-5 *1 (-862 *5 *6 *7 *8)))) (-2879 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-599 (-599 (-499)))) (-5 *1 (-862 *4 *5 *6 *7)) (-5 *3 (-499)) (-4 *7 (-888 *4 *6 *5)))) (-2878 (*1 *2 *2) (-12 (-5 *2 (-599 (-599 *6))) (-4 *6 (-888 *3 *5 *4)) (-4 *3 (-13 (-261) (-120))) (-4 *4 (-13 (-781) (-569 (-1117)))) (-4 *5 (-738)) (-5 *1 (-862 *3 *4 *5 *6)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| -3231 (-714)) (|:| |eqns| (-599 (-2 (|:| |det| *7) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (|:| |fgb| (-599 *7))))) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-714)) (-5 *1 (-862 *4 *5 *6 *7)))) (-2876 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| -3231 (-714)) (|:| |eqns| (-599 (-2 (|:| |det| *7) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (|:| |fgb| (-599 *7))))) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-714)) (-5 *1 (-862 *4 *5 *6 *7)))) (-2875 (*1 *2 *3) (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-599 *3)) (-5 *1 (-862 *4 *5 *6 *3)) (-4 *3 (-888 *4 *6 *5)))) (-2874 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1673 (-647 (-361 (-884 *4)))) (|:| |vec| (-599 (-361 (-884 *4)))) (|:| -3231 (-714)) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499))))) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-2 (|:| |partsol| (-1207 (-361 (-884 *4)))) (|:| -2113 (-599 (-1207 (-361 (-884 *4))))))) (-5 *1 (-862 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5)))) (-2873 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1207 (-361 (-884 *4)))) (|:| -2113 (-599 (-1207 (-361 (-884 *4))))))) (-5 *3 (-599 *7)) (-4 *4 (-13 (-261) (-120))) (-4 *7 (-888 *4 *6 *5)) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *1 (-862 *4 *5 *6 *7)))) (-2872 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *8)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 (-599 (-2 (|:| -3231 (-714)) (|:| |eqns| (-599 (-2 (|:| |det| *8) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (|:| |fgb| (-599 *8))))) (-5 *1 (-862 *5 *6 *7 *8)) (-5 *4 (-714)))) (-2871 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-4 *7 (-888 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-599 *7)) (|:| |n0| (-599 *7)))) (-5 *1 (-862 *4 *5 *6 *7)) (-5 *3 (-599 *7)))) (-2870 (*1 *2 *3) (-12 (-5 *3 (-884 *4)) (-4 *4 (-13 (-261) (-120))) (-4 *2 (-888 *4 *6 *5)) (-5 *1 (-862 *4 *5 *6 *2)) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)))) (-2869 (*1 *2 *3) (-12 (-5 *3 (-599 (-1117))) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-599 (-361 (-884 *4)))) (-5 *1 (-862 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-599 (-361 (-884 *4)))) (-5 *1 (-862 *4 *5 *6 *7)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-647 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-647 (-361 (-884 *4)))) (-5 *1 (-862 *4 *5 *6 *7)))) (-2868 (*1 *2 *3) (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-361 (-884 *4))) (-5 *1 (-862 *4 *5 *6 *3)) (-4 *3 (-888 *4 *6 *5)))) (-2867 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-647 *11)) (-5 *4 (-599 (-361 (-884 *8)))) (-5 *5 (-714)) (-5 *6 (-1099)) (-4 *8 (-13 (-261) (-120))) (-4 *11 (-888 *8 *10 *9)) (-4 *9 (-13 (-781) (-569 (-1117)))) (-4 *10 (-738)) (-5 *2 (-2 (|:| |rgl| (-599 (-2 (|:| |eqzro| (-599 *11)) (|:| |neqzro| (-599 *11)) (|:| |wcond| (-599 (-884 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *8)))) (|:| -2113 (-599 (-1207 (-361 (-884 *8)))))))))) (|:| |rgsz| (-499)))) (-5 *1 (-862 *8 *9 *10 *11)) (-5 *7 (-499)))) (-2866 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-599 (-2 (|:| |eqzro| (-599 *7)) (|:| |neqzro| (-599 *7)) (|:| |wcond| (-599 (-884 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *4)))) (|:| -2113 (-599 (-1207 (-361 (-884 *4)))))))))) (-5 *1 (-862 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5)))) (-2865 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-2 (|:| |eqzro| (-599 *8)) (|:| |neqzro| (-599 *8)) (|:| |wcond| (-599 (-884 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *5)))) (|:| -2113 (-599 (-1207 (-361 (-884 *5)))))))))) (-5 *4 (-1099)) (-4 *5 (-13 (-261) (-120))) (-4 *8 (-888 *5 *7 *6)) (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 (-499)) (-5 *1 (-862 *5 *6 *7 *8)))) (-2864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-647 *9)) (-5 *4 (-857)) (-5 *5 (-1099)) (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-261) (-120))) (-4 *7 (-13 (-781) (-569 (-1117)))) (-4 *8 (-738)) (-5 *2 (-499)) (-5 *1 (-862 *6 *7 *8 *9)))) (-2864 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-647 *10)) (-5 *4 (-599 (-1117))) (-5 *5 (-857)) (-5 *6 (-1099)) (-4 *10 (-888 *7 *9 *8)) (-4 *7 (-13 (-261) (-120))) (-4 *8 (-13 (-781) (-569 (-1117)))) (-4 *9 (-738)) (-5 *2 (-499)) (-5 *1 (-862 *7 *8 *9 *10)))) (-2864 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-647 *10)) (-5 *4 (-599 *10)) (-5 *5 (-857)) (-5 *6 (-1099)) (-4 *10 (-888 *7 *9 *8)) (-4 *7 (-13 (-261) (-120))) (-4 *8 (-13 (-781) (-569 (-1117)))) (-4 *9 (-738)) (-5 *2 (-499)) (-5 *1 (-862 *7 *8 *9 *10)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *8)) (-5 *4 (-1099)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 (-499)) (-5 *1 (-862 *5 *6 *7 *8)))) (-2864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-647 *9)) (-5 *4 (-599 (-1117))) (-5 *5 (-1099)) (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-261) (-120))) (-4 *7 (-13 (-781) (-569 (-1117)))) (-4 *8 (-738)) (-5 *2 (-499)) (-5 *1 (-862 *6 *7 *8 *9)))) (-2864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-647 *9)) (-5 *4 (-599 *9)) (-5 *5 (-1099)) (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-261) (-120))) (-4 *7 (-13 (-781) (-569 (-1117)))) (-4 *8 (-738)) (-5 *2 (-499)) (-5 *1 (-862 *6 *7 *8 *9)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *8)) (-5 *4 (-857)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 (-599 (-2 (|:| |eqzro| (-599 *8)) (|:| |neqzro| (-599 *8)) (|:| |wcond| (-599 (-884 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *5)))) (|:| -2113 (-599 (-1207 (-361 (-884 *5)))))))))) (-5 *1 (-862 *5 *6 *7 *8)))) (-2864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-647 *9)) (-5 *4 (-599 (-1117))) (-5 *5 (-857)) (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-261) (-120))) (-4 *7 (-13 (-781) (-569 (-1117)))) (-4 *8 (-738)) (-5 *2 (-599 (-2 (|:| |eqzro| (-599 *9)) (|:| |neqzro| (-599 *9)) (|:| |wcond| (-599 (-884 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *6)))) (|:| -2113 (-599 (-1207 (-361 (-884 *6)))))))))) (-5 *1 (-862 *6 *7 *8 *9)))) (-2864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-647 *9)) (-5 *5 (-857)) (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-261) (-120))) (-4 *7 (-13 (-781) (-569 (-1117)))) (-4 *8 (-738)) (-5 *2 (-599 (-2 (|:| |eqzro| (-599 *9)) (|:| |neqzro| (-599 *9)) (|:| |wcond| (-599 (-884 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *6)))) (|:| -2113 (-599 (-1207 (-361 (-884 *6)))))))))) (-5 *1 (-862 *6 *7 *8 *9)) (-5 *4 (-599 *9)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-647 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-599 (-2 (|:| |eqzro| (-599 *7)) (|:| |neqzro| (-599 *7)) (|:| |wcond| (-599 (-884 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *4)))) (|:| -2113 (-599 (-1207 (-361 (-884 *4)))))))))) (-5 *1 (-862 *4 *5 *6 *7)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *8)) (-5 *4 (-599 (-1117))) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 (-599 (-2 (|:| |eqzro| (-599 *8)) (|:| |neqzro| (-599 *8)) (|:| |wcond| (-599 (-884 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *5)))) (|:| -2113 (-599 (-1207 (-361 (-884 *5)))))))))) (-5 *1 (-862 *5 *6 *7 *8)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *8)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 (-599 (-2 (|:| |eqzro| (-599 *8)) (|:| |neqzro| (-599 *8)) (|:| |wcond| (-599 (-884 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *5)))) (|:| -2113 (-599 (-1207 (-361 (-884 *5)))))))))) (-5 *1 (-862 *5 *6 *7 *8)) (-5 *4 (-599 *8))))) -((-4024 (($ $ (-1029 (-179))) 125 T ELT) (($ $ (-1029 (-179)) (-1029 (-179))) 126 T ELT)) (-3017 (((-1029 (-179)) $) 73 T ELT)) (-3018 (((-1029 (-179)) $) 72 T ELT)) (-2909 (((-1029 (-179)) $) 74 T ELT)) (-2890 (((-499) (-499)) 66 T ELT)) (-2894 (((-499) (-499)) 61 T ELT)) (-2892 (((-499) (-499)) 64 T ELT)) (-2888 (((-85) (-85)) 68 T ELT)) (-2891 (((-499)) 65 T ELT)) (-3256 (($ $ (-1029 (-179))) 129 T ELT) (($ $) 130 T ELT)) (-2911 (($ (-1 (-881 (-179)) (-179)) (-1029 (-179))) 148 T ELT) (($ (-1 (-881 (-179)) (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179))) 149 T ELT)) (-2897 (($ (-1 (-179) (-179)) (-1029 (-179))) 156 T ELT) (($ (-1 (-179) (-179))) 160 T ELT)) (-2910 (($ (-1 (-179) (-179)) (-1029 (-179))) 144 T ELT) (($ (-1 (-179) (-179)) (-1029 (-179)) (-1029 (-179))) 145 T ELT) (($ (-599 (-1 (-179) (-179))) (-1029 (-179))) 153 T ELT) (($ (-599 (-1 (-179) (-179))) (-1029 (-179)) (-1029 (-179))) 154 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1029 (-179))) 146 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179))) 147 T ELT) (($ $ (-1029 (-179))) 131 T ELT)) (-2896 (((-85) $) 69 T ELT)) (-2887 (((-499)) 70 T ELT)) (-2895 (((-499)) 59 T ELT)) (-2893 (((-499)) 62 T ELT)) (-3019 (((-599 (-599 (-881 (-179)))) $) 35 T ELT)) (-2886 (((-85) (-85)) 71 T ELT)) (-4096 (((-797) $) 174 T ELT)) (-2889 (((-85)) 67 T ELT))) -(((-863) (-13 (-893) (-10 -8 (-15 -2910 ($ (-1 (-179) (-179)) (-1029 (-179)))) (-15 -2910 ($ (-1 (-179) (-179)) (-1029 (-179)) (-1029 (-179)))) (-15 -2910 ($ (-599 (-1 (-179) (-179))) (-1029 (-179)))) (-15 -2910 ($ (-599 (-1 (-179) (-179))) (-1029 (-179)) (-1029 (-179)))) (-15 -2910 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1029 (-179)))) (-15 -2910 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179)))) (-15 -2911 ($ (-1 (-881 (-179)) (-179)) (-1029 (-179)))) (-15 -2911 ($ (-1 (-881 (-179)) (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179)))) (-15 -2897 ($ (-1 (-179) (-179)) (-1029 (-179)))) (-15 -2897 ($ (-1 (-179) (-179)))) (-15 -2910 ($ $ (-1029 (-179)))) (-15 -2896 ((-85) $)) (-15 -4024 ($ $ (-1029 (-179)))) (-15 -4024 ($ $ (-1029 (-179)) (-1029 (-179)))) (-15 -3256 ($ $ (-1029 (-179)))) (-15 -3256 ($ $)) (-15 -2909 ((-1029 (-179)) $)) (-15 -2895 ((-499))) (-15 -2894 ((-499) (-499))) (-15 -2893 ((-499))) (-15 -2892 ((-499) (-499))) (-15 -2891 ((-499))) (-15 -2890 ((-499) (-499))) (-15 -2889 ((-85))) (-15 -2888 ((-85) (-85))) (-15 -2887 ((-499))) (-15 -2886 ((-85) (-85)))))) (T -863)) -((-2910 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) (-2910 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) (-2910 (*1 *1 *2 *3) (-12 (-5 *2 (-599 (-1 (-179) (-179)))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) (-2910 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-599 (-1 (-179) (-179)))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) (-2910 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) (-2910 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-881 (-179)) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) (-2911 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-881 (-179)) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) (-2897 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) (-2897 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-863)))) (-2910 (*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) (-2896 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-863)))) (-4024 (*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) (-4024 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) (-3256 (*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) (-3256 (*1 *1 *1) (-5 *1 (-863))) (-2909 (*1 *2 *1) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) (-2895 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863)))) (-2894 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863)))) (-2893 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863)))) (-2892 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863)))) (-2891 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863)))) (-2890 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863)))) (-2889 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-863)))) (-2888 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-863)))) (-2887 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863)))) (-2886 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-863))))) -((-2897 (((-863) |#1| (-1117)) 17 T ELT) (((-863) |#1| (-1117) (-1029 (-179))) 21 T ELT)) (-2910 (((-863) |#1| |#1| (-1117) (-1029 (-179))) 19 T ELT) (((-863) |#1| (-1117) (-1029 (-179))) 15 T ELT))) -(((-864 |#1|) (-10 -7 (-15 -2910 ((-863) |#1| (-1117) (-1029 (-179)))) (-15 -2910 ((-863) |#1| |#1| (-1117) (-1029 (-179)))) (-15 -2897 ((-863) |#1| (-1117) (-1029 (-179)))) (-15 -2897 ((-863) |#1| (-1117)))) (-569 (-488))) (T -864)) -((-2897 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-863)) (-5 *1 (-864 *3)) (-4 *3 (-569 (-488))))) (-2897 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-1029 (-179))) (-5 *2 (-863)) (-5 *1 (-864 *3)) (-4 *3 (-569 (-488))))) (-2910 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-1029 (-179))) (-5 *2 (-863)) (-5 *1 (-864 *3)) (-4 *3 (-569 (-488))))) (-2910 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-1029 (-179))) (-5 *2 (-863)) (-5 *1 (-864 *3)) (-4 *3 (-569 (-488)))))) -((-4024 (($ $ (-1029 (-179)) (-1029 (-179)) (-1029 (-179))) 123 T ELT)) (-3016 (((-1029 (-179)) $) 64 T ELT)) (-3017 (((-1029 (-179)) $) 63 T ELT)) (-3018 (((-1029 (-179)) $) 62 T ELT)) (-2908 (((-599 (-599 (-179))) $) 69 T ELT)) (-2909 (((-1029 (-179)) $) 65 T ELT)) (-2902 (((-499) (-499)) 57 T ELT)) (-2906 (((-499) (-499)) 52 T ELT)) (-2904 (((-499) (-499)) 55 T ELT)) (-2900 (((-85) (-85)) 59 T ELT)) (-2903 (((-499)) 56 T ELT)) (-3256 (($ $ (-1029 (-179))) 126 T ELT) (($ $) 127 T ELT)) (-2911 (($ (-1 (-881 (-179)) (-179)) (-1029 (-179))) 133 T ELT) (($ (-1 (-881 (-179)) (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179))) 134 T ELT)) (-2910 (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1029 (-179))) 140 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179))) 141 T ELT) (($ $ (-1029 (-179))) 129 T ELT)) (-2899 (((-499)) 60 T ELT)) (-2907 (((-499)) 50 T ELT)) (-2905 (((-499)) 53 T ELT)) (-3019 (((-599 (-599 (-881 (-179)))) $) 157 T ELT)) (-2898 (((-85) (-85)) 61 T ELT)) (-4096 (((-797) $) 155 T ELT)) (-2901 (((-85)) 58 T ELT))) -(((-865) (-13 (-914) (-10 -8 (-15 -2911 ($ (-1 (-881 (-179)) (-179)) (-1029 (-179)))) (-15 -2911 ($ (-1 (-881 (-179)) (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179)))) (-15 -2910 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1029 (-179)))) (-15 -2910 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179)))) (-15 -2910 ($ $ (-1029 (-179)))) (-15 -4024 ($ $ (-1029 (-179)) (-1029 (-179)) (-1029 (-179)))) (-15 -3256 ($ $ (-1029 (-179)))) (-15 -3256 ($ $)) (-15 -2909 ((-1029 (-179)) $)) (-15 -2908 ((-599 (-599 (-179))) $)) (-15 -2907 ((-499))) (-15 -2906 ((-499) (-499))) (-15 -2905 ((-499))) (-15 -2904 ((-499) (-499))) (-15 -2903 ((-499))) (-15 -2902 ((-499) (-499))) (-15 -2901 ((-85))) (-15 -2900 ((-85) (-85))) (-15 -2899 ((-499))) (-15 -2898 ((-85) (-85)))))) (T -865)) -((-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-881 (-179)) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-865)))) (-2911 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-881 (-179)) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-865)))) (-2910 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-865)))) (-2910 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-865)))) (-2910 (*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-865)))) (-4024 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-865)))) (-3256 (*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-865)))) (-3256 (*1 *1 *1) (-5 *1 (-865))) (-2909 (*1 *2 *1) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-865)))) (-2908 (*1 *2 *1) (-12 (-5 *2 (-599 (-599 (-179)))) (-5 *1 (-865)))) (-2907 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865)))) (-2906 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865)))) (-2905 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865)))) (-2904 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865)))) (-2903 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865)))) (-2902 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865)))) (-2901 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-865)))) (-2900 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-865)))) (-2899 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865)))) (-2898 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-865))))) -((-2912 (((-599 (-1029 (-179))) (-599 (-599 (-881 (-179))))) 34 T ELT))) -(((-866) (-10 -7 (-15 -2912 ((-599 (-1029 (-179))) (-599 (-599 (-881 (-179)))))))) (T -866)) -((-2912 (*1 *2 *3) (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *2 (-599 (-1029 (-179)))) (-5 *1 (-866))))) -((-2914 (((-268 (-499)) (-1117)) 16 T ELT)) (-2915 (((-268 (-499)) (-1117)) 14 T ELT)) (-4102 (((-268 (-499)) (-1117)) 12 T ELT)) (-2913 (((-268 (-499)) (-1117) (-460)) 19 T ELT))) -(((-867) (-10 -7 (-15 -2913 ((-268 (-499)) (-1117) (-460))) (-15 -4102 ((-268 (-499)) (-1117))) (-15 -2914 ((-268 (-499)) (-1117))) (-15 -2915 ((-268 (-499)) (-1117))))) (T -867)) -((-2915 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-268 (-499))) (-5 *1 (-867)))) (-2914 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-268 (-499))) (-5 *1 (-867)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-268 (-499))) (-5 *1 (-867)))) (-2913 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-460)) (-5 *2 (-268 (-499))) (-5 *1 (-867))))) -((-2914 ((|#2| |#2|) 28 T ELT)) (-2915 ((|#2| |#2|) 29 T ELT)) (-4102 ((|#2| |#2|) 27 T ELT)) (-2913 ((|#2| |#2| (-460)) 26 T ELT))) -(((-868 |#1| |#2|) (-10 -7 (-15 -2913 (|#2| |#2| (-460))) (-15 -4102 (|#2| |#2|)) (-15 -2914 (|#2| |#2|)) (-15 -2915 (|#2| |#2|))) (-1041) (-375 |#1|)) (T -868)) -((-2915 (*1 *2 *2) (-12 (-4 *3 (-1041)) (-5 *1 (-868 *3 *2)) (-4 *2 (-375 *3)))) (-2914 (*1 *2 *2) (-12 (-4 *3 (-1041)) (-5 *1 (-868 *3 *2)) (-4 *2 (-375 *3)))) (-4102 (*1 *2 *2) (-12 (-4 *3 (-1041)) (-5 *1 (-868 *3 *2)) (-4 *2 (-375 *3)))) (-2913 (*1 *2 *2 *3) (-12 (-5 *3 (-460)) (-4 *4 (-1041)) (-5 *1 (-868 *4 *2)) (-4 *2 (-375 *4))))) -((-2917 (((-823 |#1| |#3|) |#2| (-825 |#1|) (-823 |#1| |#3|)) 25 T ELT)) (-2916 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT))) -(((-869 |#1| |#2| |#3|) (-10 -7 (-15 -2916 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2917 ((-823 |#1| |#3|) |#2| (-825 |#1|) (-823 |#1| |#3|)))) (-1041) (-821 |#1|) (-13 (-1041) (-978 |#2|))) (T -869)) -((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *6)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-4 *6 (-13 (-1041) (-978 *3))) (-4 *3 (-821 *5)) (-5 *1 (-869 *5 *3 *6)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1041) (-978 *5))) (-4 *5 (-821 *4)) (-4 *4 (-1041)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-869 *4 *5 *6))))) -((-2917 (((-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|)) 30 T ELT))) -(((-870 |#1| |#2| |#3|) (-10 -7 (-15 -2917 ((-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|)))) (-1041) (-13 (-510) (-821 |#1|)) (-13 (-375 |#2|) (-569 (-825 |#1|)) (-821 |#1|) (-978 (-566 $)))) (T -870)) -((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *3)) (-4 *5 (-1041)) (-4 *3 (-13 (-375 *6) (-569 *4) (-821 *5) (-978 (-566 $)))) (-5 *4 (-825 *5)) (-4 *6 (-13 (-510) (-821 *5))) (-5 *1 (-870 *5 *6 *3))))) -((-2917 (((-823 (-499) |#1|) |#1| (-825 (-499)) (-823 (-499) |#1|)) 13 T ELT))) -(((-871 |#1|) (-10 -7 (-15 -2917 ((-823 (-499) |#1|) |#1| (-825 (-499)) (-823 (-499) |#1|)))) (-498)) (T -871)) -((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 (-499) *3)) (-5 *4 (-825 (-499))) (-4 *3 (-498)) (-5 *1 (-871 *3))))) -((-2917 (((-823 |#1| |#2|) (-566 |#2|) (-825 |#1|) (-823 |#1| |#2|)) 57 T ELT))) -(((-872 |#1| |#2|) (-10 -7 (-15 -2917 ((-823 |#1| |#2|) (-566 |#2|) (-825 |#1|) (-823 |#1| |#2|)))) (-1041) (-13 (-1041) (-978 (-566 $)) (-569 (-825 |#1|)) (-821 |#1|))) (T -872)) -((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *6)) (-5 *3 (-566 *6)) (-4 *5 (-1041)) (-4 *6 (-13 (-1041) (-978 (-566 $)) (-569 *4) (-821 *5))) (-5 *4 (-825 *5)) (-5 *1 (-872 *5 *6))))) -((-2917 (((-820 |#1| |#2| |#3|) |#3| (-825 |#1|) (-820 |#1| |#2| |#3|)) 17 T ELT))) -(((-873 |#1| |#2| |#3|) (-10 -7 (-15 -2917 ((-820 |#1| |#2| |#3|) |#3| (-825 |#1|) (-820 |#1| |#2| |#3|)))) (-1041) (-821 |#1|) (-624 |#2|)) (T -873)) -((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *6 *3)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-4 *6 (-821 *5)) (-4 *3 (-624 *6)) (-5 *1 (-873 *5 *6 *3))))) -((-2917 (((-823 |#1| |#5|) |#5| (-825 |#1|) (-823 |#1| |#5|)) 17 (|has| |#3| (-821 |#1|)) ELT) (((-823 |#1| |#5|) |#5| (-825 |#1|) (-823 |#1| |#5|) (-1 (-823 |#1| |#5|) |#3| (-825 |#1|) (-823 |#1| |#5|))) 16 T ELT))) -(((-874 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2917 ((-823 |#1| |#5|) |#5| (-825 |#1|) (-823 |#1| |#5|) (-1 (-823 |#1| |#5|) |#3| (-825 |#1|) (-823 |#1| |#5|)))) (IF (|has| |#3| (-821 |#1|)) (-15 -2917 ((-823 |#1| |#5|) |#5| (-825 |#1|) (-823 |#1| |#5|))) |%noBranch|)) (-1041) (-738) (-781) (-13 (-989) (-821 |#1|)) (-13 (-888 |#4| |#2| |#3|) (-569 (-825 |#1|)))) (T -874)) -((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *3)) (-4 *5 (-1041)) (-4 *3 (-13 (-888 *8 *6 *7) (-569 *4))) (-5 *4 (-825 *5)) (-4 *7 (-821 *5)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-13 (-989) (-821 *5))) (-5 *1 (-874 *5 *6 *7 *8 *3)))) (-2917 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-823 *6 *3) *8 (-825 *6) (-823 *6 *3))) (-4 *8 (-781)) (-5 *2 (-823 *6 *3)) (-5 *4 (-825 *6)) (-4 *6 (-1041)) (-4 *3 (-13 (-888 *9 *7 *8) (-569 *4))) (-4 *7 (-738)) (-4 *9 (-13 (-989) (-821 *6))) (-5 *1 (-874 *6 *7 *8 *9 *3))))) -((-3347 (((-268 (-499)) (-1117) (-599 (-1 (-85) |#1|))) 18 T ELT) (((-268 (-499)) (-1117) (-1 (-85) |#1|)) 15 T ELT))) -(((-875 |#1|) (-10 -7 (-15 -3347 ((-268 (-499)) (-1117) (-1 (-85) |#1|))) (-15 -3347 ((-268 (-499)) (-1117) (-599 (-1 (-85) |#1|))))) (-1157)) (T -875)) -((-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-599 (-1 (-85) *5))) (-4 *5 (-1157)) (-5 *2 (-268 (-499))) (-5 *1 (-875 *5)))) (-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1157)) (-5 *2 (-268 (-499))) (-5 *1 (-875 *5))))) -((-3347 ((|#2| |#2| (-599 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT))) -(((-876 |#1| |#2| |#3|) (-10 -7 (-15 -3347 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3347 (|#2| |#2| (-599 (-1 (-85) |#3|))))) (-1041) (-375 |#1|) (-1157)) (T -876)) -((-3347 (*1 *2 *2 *3) (-12 (-5 *3 (-599 (-1 (-85) *5))) (-4 *5 (-1157)) (-4 *4 (-1041)) (-5 *1 (-876 *4 *2 *5)) (-4 *2 (-375 *4)))) (-3347 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1157)) (-4 *4 (-1041)) (-5 *1 (-876 *4 *2 *5)) (-4 *2 (-375 *4))))) -((-2917 (((-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|)) 25 T ELT))) -(((-877 |#1| |#2| |#3|) (-10 -7 (-15 -2917 ((-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|)))) (-1041) (-13 (-510) (-821 |#1|) (-569 (-825 |#1|))) (-931 |#2|)) (T -877)) -((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *3)) (-4 *5 (-1041)) (-4 *3 (-931 *6)) (-4 *6 (-13 (-510) (-821 *5) (-569 *4))) (-5 *4 (-825 *5)) (-5 *1 (-877 *5 *6 *3))))) -((-2917 (((-823 |#1| (-1117)) (-1117) (-825 |#1|) (-823 |#1| (-1117))) 18 T ELT))) -(((-878 |#1|) (-10 -7 (-15 -2917 ((-823 |#1| (-1117)) (-1117) (-825 |#1|) (-823 |#1| (-1117))))) (-1041)) (T -878)) -((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 (-1117))) (-5 *3 (-1117)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-5 *1 (-878 *5))))) -((-2918 (((-823 |#1| |#3|) (-599 |#3|) (-599 (-825 |#1|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|))) 34 T ELT)) (-2917 (((-823 |#1| |#3|) (-599 |#3|) (-599 (-825 |#1|)) (-1 |#3| (-599 |#3|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|))) 33 T ELT))) -(((-879 |#1| |#2| |#3|) (-10 -7 (-15 -2917 ((-823 |#1| |#3|) (-599 |#3|) (-599 (-825 |#1|)) (-1 |#3| (-599 |#3|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|)))) (-15 -2918 ((-823 |#1| |#3|) (-599 |#3|) (-599 (-825 |#1|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|))))) (-1041) (-989) (-13 (-989) (-569 (-825 |#1|)) (-978 |#2|))) (T -879)) -((-2918 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 (-825 *6))) (-5 *5 (-1 (-823 *6 *8) *8 (-825 *6) (-823 *6 *8))) (-4 *6 (-1041)) (-4 *8 (-13 (-989) (-569 (-825 *6)) (-978 *7))) (-5 *2 (-823 *6 *8)) (-4 *7 (-989)) (-5 *1 (-879 *6 *7 *8)))) (-2917 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-599 (-825 *7))) (-5 *5 (-1 *9 (-599 *9))) (-5 *6 (-1 (-823 *7 *9) *9 (-825 *7) (-823 *7 *9))) (-4 *7 (-1041)) (-4 *9 (-13 (-989) (-569 (-825 *7)) (-978 *8))) (-5 *2 (-823 *7 *9)) (-5 *3 (-599 *9)) (-4 *8 (-989)) (-5 *1 (-879 *7 *8 *9))))) -((-2926 (((-1111 (-361 (-499))) (-499)) 80 T ELT)) (-2925 (((-1111 (-499)) (-499)) 83 T ELT)) (-3474 (((-1111 (-499)) (-499)) 77 T ELT)) (-2924 (((-499) (-1111 (-499))) 73 T ELT)) (-2923 (((-1111 (-361 (-499))) (-499)) 66 T ELT)) (-2922 (((-1111 (-499)) (-499)) 49 T ELT)) (-2921 (((-1111 (-499)) (-499)) 85 T ELT)) (-2920 (((-1111 (-499)) (-499)) 84 T ELT)) (-2919 (((-1111 (-361 (-499))) (-499)) 68 T ELT))) -(((-880) (-10 -7 (-15 -2919 ((-1111 (-361 (-499))) (-499))) (-15 -2920 ((-1111 (-499)) (-499))) (-15 -2921 ((-1111 (-499)) (-499))) (-15 -2922 ((-1111 (-499)) (-499))) (-15 -2923 ((-1111 (-361 (-499))) (-499))) (-15 -2924 ((-499) (-1111 (-499)))) (-15 -3474 ((-1111 (-499)) (-499))) (-15 -2925 ((-1111 (-499)) (-499))) (-15 -2926 ((-1111 (-361 (-499))) (-499))))) (T -880)) -((-2926 (*1 *2 *3) (-12 (-5 *2 (-1111 (-361 (-499)))) (-5 *1 (-880)) (-5 *3 (-499)))) (-2925 (*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499)))) (-3474 (*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-1111 (-499))) (-5 *2 (-499)) (-5 *1 (-880)))) (-2923 (*1 *2 *3) (-12 (-5 *2 (-1111 (-361 (-499)))) (-5 *1 (-880)) (-5 *3 (-499)))) (-2922 (*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499)))) (-2921 (*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499)))) (-2920 (*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499)))) (-2919 (*1 *2 *3) (-12 (-5 *2 (-1111 (-361 (-499)))) (-5 *1 (-880)) (-5 *3 (-499))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3988 (($ (-714)) NIL (|has| |#1| (-23)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) NIL T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) NIL T ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT)) (-3856 (($ (-599 |#1|)) 9 T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3985 (((-647 |#1|) $ $) NIL (|has| |#1| (-989)) ELT)) (-3764 (($ (-714) |#1|) NIL T ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3982 ((|#1| $) NIL (-12 (|has| |#1| (-942)) (|has| |#1| (-989))) ELT)) (-3983 ((|#1| $) NIL (-12 (|has| |#1| (-942)) (|has| |#1| (-989))) ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3919 (($ $ (-599 |#1|)) 25 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) |#1|) NIL T ELT) ((|#1| $ (-499)) 18 T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-3986 ((|#1| $ $) NIL (|has| |#1| (-989)) ELT)) (-4061 (((-857) $) 13 T ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-3984 (($ $ $) 23 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT) (($ (-599 |#1|)) 14 T ELT)) (-3670 (($ (-599 |#1|)) NIL T ELT)) (-3952 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3987 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3989 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-499) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-684)) ELT) (($ $ |#1|) NIL (|has| |#1| (-684)) ELT)) (-4107 (((-714) $) 11 (|has| $ (-6 -4145)) ELT))) -(((-881 |#1|) (-920 |#1|) (-989)) (T -881)) -NIL -((-2929 (((-435 |#1| |#2|) (-884 |#2|)) 22 T ELT)) (-2932 (((-205 |#1| |#2|) (-884 |#2|)) 35 T ELT)) (-2930 (((-884 |#2|) (-435 |#1| |#2|)) 27 T ELT)) (-2928 (((-205 |#1| |#2|) (-435 |#1| |#2|)) 57 T ELT)) (-2931 (((-884 |#2|) (-205 |#1| |#2|)) 32 T ELT)) (-2927 (((-435 |#1| |#2|) (-205 |#1| |#2|)) 48 T ELT))) -(((-882 |#1| |#2|) (-10 -7 (-15 -2927 ((-435 |#1| |#2|) (-205 |#1| |#2|))) (-15 -2928 ((-205 |#1| |#2|) (-435 |#1| |#2|))) (-15 -2929 ((-435 |#1| |#2|) (-884 |#2|))) (-15 -2930 ((-884 |#2|) (-435 |#1| |#2|))) (-15 -2931 ((-884 |#2|) (-205 |#1| |#2|))) (-15 -2932 ((-205 |#1| |#2|) (-884 |#2|)))) (-599 (-1117)) (-989)) (T -882)) -((-2932 (*1 *2 *3) (-12 (-5 *3 (-884 *5)) (-4 *5 (-989)) (-5 *2 (-205 *4 *5)) (-5 *1 (-882 *4 *5)) (-14 *4 (-599 (-1117))))) (-2931 (*1 *2 *3) (-12 (-5 *3 (-205 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-989)) (-5 *2 (-884 *5)) (-5 *1 (-882 *4 *5)))) (-2930 (*1 *2 *3) (-12 (-5 *3 (-435 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-989)) (-5 *2 (-884 *5)) (-5 *1 (-882 *4 *5)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-884 *5)) (-4 *5 (-989)) (-5 *2 (-435 *4 *5)) (-5 *1 (-882 *4 *5)) (-14 *4 (-599 (-1117))))) (-2928 (*1 *2 *3) (-12 (-5 *3 (-435 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-989)) (-5 *2 (-205 *4 *5)) (-5 *1 (-882 *4 *5)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-205 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-989)) (-5 *2 (-435 *4 *5)) (-5 *1 (-882 *4 *5))))) -((-2933 (((-599 |#2|) |#2| |#2|) 10 T ELT)) (-2936 (((-714) (-599 |#1|)) 47 (|has| |#1| (-780)) ELT)) (-2934 (((-599 |#2|) |#2|) 11 T ELT)) (-2937 (((-714) (-599 |#1|) (-499) (-499)) 52 (|has| |#1| (-780)) ELT)) (-2935 ((|#1| |#2|) 37 (|has| |#1| (-780)) ELT))) -(((-883 |#1| |#2|) (-10 -7 (-15 -2933 ((-599 |#2|) |#2| |#2|)) (-15 -2934 ((-599 |#2|) |#2|)) (IF (|has| |#1| (-780)) (PROGN (-15 -2935 (|#1| |#2|)) (-15 -2936 ((-714) (-599 |#1|))) (-15 -2937 ((-714) (-599 |#1|) (-499) (-499)))) |%noBranch|)) (-318) (-1183 |#1|)) (T -883)) -((-2937 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-599 *5)) (-5 *4 (-499)) (-4 *5 (-780)) (-4 *5 (-318)) (-5 *2 (-714)) (-5 *1 (-883 *5 *6)) (-4 *6 (-1183 *5)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-599 *4)) (-4 *4 (-780)) (-4 *4 (-318)) (-5 *2 (-714)) (-5 *1 (-883 *4 *5)) (-4 *5 (-1183 *4)))) (-2935 (*1 *2 *3) (-12 (-4 *2 (-318)) (-4 *2 (-780)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1183 *2)))) (-2934 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-599 *3)) (-5 *1 (-883 *4 *3)) (-4 *3 (-1183 *4)))) (-2933 (*1 *2 *3 *3) (-12 (-4 *4 (-318)) (-5 *2 (-599 *3)) (-5 *1 (-883 *4 *3)) (-4 *3 (-1183 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-1117)) $) 16 T ELT)) (-3206 (((-1111 $) $ (-1117)) 21 T ELT) (((-1111 |#1|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-1117))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-1117) #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-1117) $) NIL T ELT)) (-3906 (($ $ $ (-1117)) NIL (|has| |#1| (-146)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT) (($ $ (-1117)) NIL (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| (-484 (-1117)) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-1117) (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-1117) (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3207 (($ (-1111 |#1|) (-1117)) NIL T ELT) (($ (-1111 $) (-1117)) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-484 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-1117)) NIL T ELT)) (-2941 (((-484 (-1117)) $) NIL T ELT) (((-714) $ (-1117)) NIL T ELT) (((-599 (-714)) $ (-599 (-1117))) NIL T ELT)) (-1695 (($ (-1 (-484 (-1117)) (-484 (-1117))) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3205 (((-3 (-1117) #1#) $) 19 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-1117)) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3962 (($ $ (-1117)) 29 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-848)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-1117) |#1|) NIL T ELT) (($ $ (-599 (-1117)) (-599 |#1|)) NIL T ELT) (($ $ (-1117) $) NIL T ELT) (($ $ (-599 (-1117)) (-599 $)) NIL T ELT)) (-3907 (($ $ (-1117)) NIL (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) NIL T ELT)) (-4098 (((-484 (-1117)) $) NIL T ELT) (((-714) $ (-1117)) NIL T ELT) (((-599 (-714)) $ (-599 (-1117))) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-1117) (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-1117) (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-1117) (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT) (($ $ (-1117)) NIL (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) 25 T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1117)) 27 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-484 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-884 |#1|) (-13 (-888 |#1| (-484 (-1117)) (-1117)) (-10 -8 (IF (|has| |#1| (-38 (-361 (-499)))) (-15 -3962 ($ $ (-1117))) |%noBranch|))) (-989)) (T -884)) -((-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-884 *3)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989))))) -((-4108 (((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)) 19 T ELT))) -(((-885 |#1| |#2|) (-10 -7 (-15 -4108 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)))) (-989) (-989)) (T -885)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-5 *2 (-884 *6)) (-5 *1 (-885 *5 *6))))) -((-3206 (((-1176 |#1| (-884 |#2|)) (-884 |#2|) (-1204 |#1|)) 18 T ELT))) -(((-886 |#1| |#2|) (-10 -7 (-15 -3206 ((-1176 |#1| (-884 |#2|)) (-884 |#2|) (-1204 |#1|)))) (-1117) (-989)) (T -886)) -((-3206 (*1 *2 *3 *4) (-12 (-5 *4 (-1204 *5)) (-14 *5 (-1117)) (-4 *6 (-989)) (-5 *2 (-1176 *5 (-884 *6))) (-5 *1 (-886 *5 *6)) (-5 *3 (-884 *6))))) -((-2940 (((-714) $) 88 T ELT) (((-714) $ (-599 |#4|)) 93 T ELT)) (-3925 (($ $) 213 T ELT)) (-4121 (((-359 $) $) 205 T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1="failed") (-599 (-1111 $)) (-1111 $)) 141 T ELT)) (-3295 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 (-499) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3294 ((|#2| $) NIL T ELT) (((-361 (-499)) $) NIL T ELT) (((-499) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3906 (($ $ $ |#4|) 95 T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) 131 T ELT) (((-647 |#2|) (-647 $)) 121 T ELT)) (-3643 (($ $) 220 T ELT) (($ $ |#4|) 223 T ELT)) (-2939 (((-599 $) $) 77 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 239 T ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 232 T ELT)) (-2942 (((-599 $) $) 34 T ELT)) (-3014 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-714)) NIL T ELT) (($ $ (-599 |#4|) (-599 (-714))) 71 T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ |#4|) 202 T ELT)) (-2944 (((-3 (-599 $) #1#) $) 52 T ELT)) (-2943 (((-3 (-599 $) #1#) $) 39 T ELT)) (-2945 (((-3 (-2 (|:| |var| |#4|) (|:| -2519 (-714))) #1#) $) 57 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 134 T ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 147 T ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 145 T ELT)) (-3882 (((-359 $) $) 165 T ELT)) (-3918 (($ $ (-599 (-247 $))) 24 T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-599 |#4|) (-599 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-599 |#4|) (-599 $)) NIL T ELT)) (-3907 (($ $ |#4|) 97 T ELT)) (-4122 (((-825 (-333)) $) 253 T ELT) (((-825 (-499)) $) 246 T ELT) (((-488) $) 261 T ELT)) (-2938 ((|#2| $) NIL T ELT) (($ $ |#4|) 215 T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) 184 T ELT)) (-3827 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-714)) 62 T ELT) (($ $ (-599 |#4|) (-599 (-714))) 69 T ELT)) (-2823 (((-649 $) $) 194 T ELT)) (-1297 (((-85) $ $) 226 T ELT))) -(((-887 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2829 ((-1111 |#1|) (-1111 |#1|) (-1111 |#1|))) (-15 -4121 ((-359 |#1|) |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -2823 ((-649 |#1|) |#1|)) (-15 -4122 ((-488) |#1|)) (-15 -4122 ((-825 (-499)) |#1|)) (-15 -4122 ((-825 (-333)) |#1|)) (-15 -2917 ((-823 (-499) |#1|) |#1| (-825 (-499)) (-823 (-499) |#1|))) (-15 -2917 ((-823 (-333) |#1|) |#1| (-825 (-333)) (-823 (-333) |#1|))) (-15 -3882 ((-359 |#1|) |#1|)) (-15 -2827 ((-359 (-1111 |#1|)) (-1111 |#1|))) (-15 -2826 ((-359 (-1111 |#1|)) (-1111 |#1|))) (-15 -2825 ((-3 (-599 (-1111 |#1|)) #1="failed") (-599 (-1111 |#1|)) (-1111 |#1|))) (-15 -2824 ((-3 (-1207 |#1|) #1#) (-647 |#1|))) (-15 -3643 (|#1| |#1| |#4|)) (-15 -2938 (|#1| |#1| |#4|)) (-15 -3907 (|#1| |#1| |#4|)) (-15 -3906 (|#1| |#1| |#1| |#4|)) (-15 -2939 ((-599 |#1|) |#1|)) (-15 -2940 ((-714) |#1| (-599 |#4|))) (-15 -2940 ((-714) |#1|)) (-15 -2945 ((-3 (-2 (|:| |var| |#4|) (|:| -2519 (-714))) #1#) |#1|)) (-15 -2944 ((-3 (-599 |#1|) #1#) |#1|)) (-15 -2943 ((-3 (-599 |#1|) #1#) |#1|)) (-15 -3014 (|#1| |#1| (-599 |#4|) (-599 (-714)))) (-15 -3014 (|#1| |#1| |#4| (-714))) (-15 -3913 ((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1| |#4|)) (-15 -2942 ((-599 |#1|) |#1|)) (-15 -3827 (|#1| |#1| (-599 |#4|) (-599 (-714)))) (-15 -3827 (|#1| |#1| |#4| (-714))) (-15 -2380 ((-647 |#2|) (-647 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-647 (-499)) (-647 |#1|))) (-15 -3295 ((-3 |#4| #1#) |#1|)) (-15 -3294 (|#4| |#1|)) (-15 -3918 (|#1| |#1| (-599 |#4|) (-599 |#1|))) (-15 -3918 (|#1| |#1| |#4| |#1|)) (-15 -3918 (|#1| |#1| (-599 |#4|) (-599 |#2|))) (-15 -3918 (|#1| |#1| |#4| |#2|)) (-15 -3918 (|#1| |#1| (-599 |#1|) (-599 |#1|))) (-15 -3918 (|#1| |#1| |#1| |#1|)) (-15 -3918 (|#1| |#1| (-247 |#1|))) (-15 -3918 (|#1| |#1| (-599 (-247 |#1|)))) (-15 -3014 (|#1| |#2| |#3|)) (-15 -3827 (|#2| |#1| |#3|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -2938 (|#2| |#1|)) (-15 -3643 (|#1| |#1|)) (-15 -1297 ((-85) |#1| |#1|))) (-888 |#2| |#3| |#4|) (-989) (-738) (-781)) (T -887)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 |#3|) $) 120 T ELT)) (-3206 (((-1111 $) $ |#3|) 135 T ELT) (((-1111 |#1|) $) 134 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 97 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 98 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 100 (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) 122 T ELT) (((-714) $ (-599 |#3|)) 121 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 110 (|has| |#1| (-848)) ELT)) (-3925 (($ $) 108 (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) 107 (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1="failed") (-599 (-1111 $)) (-1111 $)) 113 (|has| |#1| (-848)) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-361 (-499)) #2#) $) 175 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #2#) $) 173 (|has| |#1| (-978 (-499))) ELT) (((-3 |#3| #2#) $) 150 T ELT)) (-3294 ((|#1| $) 177 T ELT) (((-361 (-499)) $) 176 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) 174 (|has| |#1| (-978 (-499))) ELT) ((|#3| $) 151 T ELT)) (-3906 (($ $ $ |#3|) 118 (|has| |#1| (-146)) ELT)) (-4109 (($ $) 168 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 146 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 145 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 144 T ELT) (((-647 |#1|) (-647 $)) 143 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3643 (($ $) 190 (|has| |#1| (-406)) ELT) (($ $ |#3|) 115 (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) 119 T ELT)) (-3873 (((-85) $) 106 (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| |#2| $) 186 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 94 (-12 (|has| |#3| (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 93 (-12 (|has| |#3| (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-2528 (((-85) $) 40 T ELT)) (-2536 (((-714) $) 183 T ELT)) (-3207 (($ (-1111 |#1|) |#3|) 127 T ELT) (($ (-1111 $) |#3|) 126 T ELT)) (-2942 (((-599 $) $) 136 T ELT)) (-4087 (((-85) $) 166 T ELT)) (-3014 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-714)) 129 T ELT) (($ $ (-599 |#3|) (-599 (-714))) 128 T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ |#3|) 130 T ELT)) (-2941 ((|#2| $) 184 T ELT) (((-714) $ |#3|) 132 T ELT) (((-599 (-714)) $ (-599 |#3|)) 131 T ELT)) (-1695 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3205 (((-3 |#3| "failed") $) 133 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 148 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 147 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 142 T ELT) (((-647 |#1|) (-1207 $)) 141 T ELT)) (-3015 (($ $) 163 T ELT)) (-3312 ((|#1| $) 162 T ELT)) (-1993 (($ (-599 $)) 104 (|has| |#1| (-406)) ELT) (($ $ $) 103 (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2944 (((-3 (-599 $) "failed") $) 124 T ELT)) (-2943 (((-3 (-599 $) "failed") $) 125 T ELT)) (-2945 (((-3 (-2 (|:| |var| |#3|) (|:| -2519 (-714))) "failed") $) 123 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1895 (((-85) $) 180 T ELT)) (-1894 ((|#1| $) 181 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 105 (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) 102 (|has| |#1| (-406)) ELT) (($ $ $) 101 (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 112 (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 111 (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) 109 (|has| |#1| (-848)) ELT)) (-3606 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-510)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) 159 T ELT) (($ $ (-247 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-599 $) (-599 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-599 |#3|) (-599 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-599 |#3|) (-599 $)) 152 T ELT)) (-3907 (($ $ |#3|) 117 (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 |#3|) (-599 (-714))) 49 T ELT) (($ $ |#3| (-714)) 48 T ELT) (($ $ (-599 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-4098 ((|#2| $) 164 T ELT) (((-714) $ |#3|) 140 T ELT) (((-599 (-714)) $ (-599 |#3|)) 139 T ELT)) (-4122 (((-825 (-333)) $) 92 (-12 (|has| |#3| (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) 91 (-12 (|has| |#3| (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) 90 (-12 (|has| |#3| (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT)) (-2938 ((|#1| $) 189 (|has| |#1| (-406)) ELT) (($ $ |#3|) 116 (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) 114 (-2681 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ $) 95 (|has| |#1| (-510)) ELT) (($ (-361 (-499))) 88 (-3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ELT)) (-3967 (((-599 |#1|) $) 182 T ELT)) (-3827 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-714)) 138 T ELT) (($ $ (-599 |#3|) (-599 (-714))) 137 T ELT)) (-2823 (((-649 $) $) 89 (-3677 (-2681 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) 37 T CONST)) (-1693 (($ $ $ (-714)) 187 (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 99 (|has| |#1| (-510)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-599 |#3|) (-599 (-714))) 52 T ELT) (($ $ |#3| (-714)) 51 T ELT) (($ $ (-599 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 170 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 172 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) 171 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-888 |#1| |#2| |#3|) (-113) (-989) (-738) (-781)) (T -888)) -((-3643 (*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-406)))) (-4098 (*1 *2 *1 *3) (-12 (-4 *1 (-888 *4 *5 *3)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-5 *2 (-714)))) (-4098 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *6)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 (-714))))) (-3827 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-888 *4 *5 *2)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *2 (-781)))) (-3827 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 *6)) (-5 *3 (-599 (-714))) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)))) (-2942 (*1 *2 *1) (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-888 *3 *4 *5)))) (-3206 (*1 *2 *1 *3) (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-5 *2 (-1111 *1)) (-4 *1 (-888 *4 *5 *3)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-1111 *3)))) (-3205 (*1 *2 *1) (|partial| -12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) (-2941 (*1 *2 *1 *3) (-12 (-4 *1 (-888 *4 *5 *3)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-5 *2 (-714)))) (-2941 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *6)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 (-714))))) (-3913 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-888 *4 *5 *3)))) (-3014 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-888 *4 *5 *2)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *2 (-781)))) (-3014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 *6)) (-5 *3 (-599 (-714))) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)))) (-3207 (*1 *1 *2 *3) (-12 (-5 *2 (-1111 *4)) (-4 *4 (-989)) (-4 *1 (-888 *4 *5 *3)) (-4 *5 (-738)) (-4 *3 (-781)))) (-3207 (*1 *1 *2 *3) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-888 *4 *5 *3)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)))) (-2943 (*1 *2 *1) (|partial| -12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-888 *3 *4 *5)))) (-2944 (*1 *2 *1) (|partial| -12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-888 *3 *4 *5)))) (-2945 (*1 *2 *1) (|partial| -12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-2 (|:| |var| *5) (|:| -2519 (-714)))))) (-2940 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-714)))) (-2940 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *6)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-714)))) (-3204 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *5)))) (-2939 (*1 *2 *1) (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-888 *3 *4 *5)))) (-3906 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) (-4 *3 (-146)))) (-3907 (*1 *1 *1 *2) (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) (-4 *3 (-146)))) (-2938 (*1 *1 *1 *2) (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) (-4 *3 (-406)))) (-3643 (*1 *1 *1 *2) (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) (-4 *3 (-406)))) (-3925 (*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-406)))) (-4121 (*1 *2 *1) (-12 (-4 *3 (-406)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-359 *1)) (-4 *1 (-888 *3 *4 *5))))) -(-13 (-836 |t#3|) (-280 |t#1| |t#2|) (-263 $) (-468 |t#3| |t#1|) (-468 |t#3| $) (-978 |t#3|) (-332 |t#1|) (-10 -8 (-15 -4098 ((-714) $ |t#3|)) (-15 -4098 ((-599 (-714)) $ (-599 |t#3|))) (-15 -3827 ($ $ |t#3| (-714))) (-15 -3827 ($ $ (-599 |t#3|) (-599 (-714)))) (-15 -2942 ((-599 $) $)) (-15 -3206 ((-1111 $) $ |t#3|)) (-15 -3206 ((-1111 |t#1|) $)) (-15 -3205 ((-3 |t#3| "failed") $)) (-15 -2941 ((-714) $ |t#3|)) (-15 -2941 ((-599 (-714)) $ (-599 |t#3|))) (-15 -3913 ((-2 (|:| -2075 $) (|:| -3023 $)) $ $ |t#3|)) (-15 -3014 ($ $ |t#3| (-714))) (-15 -3014 ($ $ (-599 |t#3|) (-599 (-714)))) (-15 -3207 ($ (-1111 |t#1|) |t#3|)) (-15 -3207 ($ (-1111 $) |t#3|)) (-15 -2943 ((-3 (-599 $) "failed") $)) (-15 -2944 ((-3 (-599 $) "failed") $)) (-15 -2945 ((-3 (-2 (|:| |var| |t#3|) (|:| -2519 (-714))) "failed") $)) (-15 -2940 ((-714) $)) (-15 -2940 ((-714) $ (-599 |t#3|))) (-15 -3204 ((-599 |t#3|) $)) (-15 -2939 ((-599 $) $)) (IF (|has| |t#1| (-569 (-488))) (IF (|has| |t#3| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-569 (-825 (-499)))) (IF (|has| |t#3| (-569 (-825 (-499)))) (-6 (-569 (-825 (-499)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-569 (-825 (-333)))) (IF (|has| |t#3| (-569 (-825 (-333)))) (-6 (-569 (-825 (-333)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-821 (-499))) (IF (|has| |t#3| (-821 (-499))) (-6 (-821 (-499))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-821 (-333))) (IF (|has| |t#3| (-821 (-333))) (-6 (-821 (-333))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3906 ($ $ $ |t#3|)) (-15 -3907 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-406)) (PROGN (-6 (-406)) (-15 -2938 ($ $ |t#3|)) (-15 -3643 ($ $)) (-15 -3643 ($ $ |t#3|)) (-15 -4121 ((-359 $) $)) (-15 -3925 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4143)) (-6 -4143) |%noBranch|) (IF (|has| |t#1| (-848)) (-6 (-848)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-571 |#3|) . T) ((-571 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-569 (-488)) -12 (|has| |#1| (-569 (-488))) (|has| |#3| (-569 (-488)))) ((-569 (-825 (-333))) -12 (|has| |#1| (-569 (-825 (-333)))) (|has| |#3| (-569 (-825 (-333))))) ((-569 (-825 (-499))) -12 (|has| |#1| (-569 (-825 (-499)))) (|has| |#3| (-569 (-825 (-499))))) ((-244) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-263 $) . T) ((-280 |#1| |#2|) . T) ((-332 |#1|) . T) ((-366 |#1|) . T) ((-406) -3677 (|has| |#1| (-848)) (|has| |#1| (-406))) ((-468 |#3| |#1|) . T) ((-468 |#3| $) . T) ((-468 $ $) . T) ((-510) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 (-499)) |has| |#1| (-596 (-499))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-596 (-499)) |has| |#1| (-596 (-499))) ((-596 |#1|) . T) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-684) . T) ((-831 $ |#3|) . T) ((-836 |#3|) . T) ((-838 |#3|) . T) ((-821 (-333)) -12 (|has| |#1| (-821 (-333))) (|has| |#3| (-821 (-333)))) ((-821 (-499)) -12 (|has| |#1| (-821 (-499))) (|has| |#3| (-821 (-499)))) ((-848) |has| |#1| (-848)) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-978 |#3|) . T) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) |has| |#1| (-848))) -((-3204 (((-599 |#2|) |#5|) 40 T ELT)) (-3206 (((-1111 |#5|) |#5| |#2| (-1111 |#5|)) 23 T ELT) (((-361 (-1111 |#5|)) |#5| |#2|) 16 T ELT)) (-3207 ((|#5| (-361 (-1111 |#5|)) |#2|) 30 T ELT)) (-3205 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2944 (((-3 (-599 |#5|) #1#) |#5|) 64 T ELT)) (-2946 (((-3 (-2 (|:| |val| |#5|) (|:| -2519 (-499))) #1#) |#5|) 53 T ELT)) (-2943 (((-3 (-599 |#5|) #1#) |#5|) 66 T ELT)) (-2945 (((-3 (-2 (|:| |var| |#2|) (|:| -2519 (-499))) #1#) |#5|) 56 T ELT))) -(((-889 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3204 ((-599 |#2|) |#5|)) (-15 -3205 ((-3 |#2| #1="failed") |#5|)) (-15 -3206 ((-361 (-1111 |#5|)) |#5| |#2|)) (-15 -3207 (|#5| (-361 (-1111 |#5|)) |#2|)) (-15 -3206 ((-1111 |#5|) |#5| |#2| (-1111 |#5|))) (-15 -2943 ((-3 (-599 |#5|) #1#) |#5|)) (-15 -2944 ((-3 (-599 |#5|) #1#) |#5|)) (-15 -2945 ((-3 (-2 (|:| |var| |#2|) (|:| -2519 (-499))) #1#) |#5|)) (-15 -2946 ((-3 (-2 (|:| |val| |#5|) (|:| -2519 (-499))) #1#) |#5|))) (-738) (-781) (-989) (-888 |#3| |#1| |#2|) (-13 (-318) (-10 -8 (-15 -4096 ($ |#4|)) (-15 -3119 (|#4| $)) (-15 -3118 (|#4| $))))) (T -889)) -((-2946 (*1 *2 *3) (|partial| -12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2519 (-499)))) (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))))) (-2945 (*1 *2 *3) (|partial| -12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2519 (-499)))) (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))))) (-2944 (*1 *2 *3) (|partial| -12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-599 *3)) (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))))) (-2943 (*1 *2 *3) (|partial| -12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-599 *3)) (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))))) (-3206 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1111 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))) (-4 *7 (-888 *6 *5 *4)) (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-989)) (-5 *1 (-889 *5 *4 *6 *7 *3)))) (-3207 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-1111 *2))) (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-989)) (-4 *2 (-13 (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))) (-5 *1 (-889 *5 *4 *6 *7 *2)) (-4 *7 (-888 *6 *5 *4)))) (-3206 (*1 *2 *3 *4) (-12 (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-989)) (-4 *7 (-888 *6 *5 *4)) (-5 *2 (-361 (-1111 *3))) (-5 *1 (-889 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))))) (-3205 (*1 *2 *3) (|partial| -12 (-4 *4 (-738)) (-4 *5 (-989)) (-4 *6 (-888 *5 *4 *2)) (-4 *2 (-781)) (-5 *1 (-889 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4096 ($ *6)) (-15 -3119 (*6 $)) (-15 -3118 (*6 $))))))) (-3204 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-599 *5)) (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $)))))))) -((-4108 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) -(((-890 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4108 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-738) (-781) (-989) (-888 |#3| |#1| |#2|) (-13 (-1041) (-10 -8 (-15 -3989 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-714)))))) (T -890)) -((-4108 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-781)) (-4 *8 (-989)) (-4 *6 (-738)) (-4 *2 (-13 (-1041) (-10 -8 (-15 -3989 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-714)))))) (-5 *1 (-890 *6 *7 *8 *5 *2)) (-4 *5 (-888 *8 *6 *7))))) -((-2947 (((-2 (|:| -2519 (-714)) (|:| -4104 |#5|) (|:| |radicand| |#5|)) |#3| (-714)) 48 T ELT)) (-2948 (((-2 (|:| -2519 (-714)) (|:| -4104 |#5|) (|:| |radicand| |#5|)) (-361 (-499)) (-714)) 43 T ELT)) (-2950 (((-2 (|:| -2519 (-714)) (|:| -4104 |#4|) (|:| |radicand| (-599 |#4|))) |#4| (-714)) 64 T ELT)) (-2949 (((-2 (|:| -2519 (-714)) (|:| -4104 |#5|) (|:| |radicand| |#5|)) |#5| (-714)) 73 (|has| |#3| (-406)) ELT))) -(((-891 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2947 ((-2 (|:| -2519 (-714)) (|:| -4104 |#5|) (|:| |radicand| |#5|)) |#3| (-714))) (-15 -2948 ((-2 (|:| -2519 (-714)) (|:| -4104 |#5|) (|:| |radicand| |#5|)) (-361 (-499)) (-714))) (IF (|has| |#3| (-406)) (-15 -2949 ((-2 (|:| -2519 (-714)) (|:| -4104 |#5|) (|:| |radicand| |#5|)) |#5| (-714))) |%noBranch|) (-15 -2950 ((-2 (|:| -2519 (-714)) (|:| -4104 |#4|) (|:| |radicand| (-599 |#4|))) |#4| (-714)))) (-738) (-781) (-510) (-888 |#3| |#1| |#2|) (-13 (-318) (-10 -8 (-15 -4096 ($ |#4|)) (-15 -3119 (|#4| $)) (-15 -3118 (|#4| $))))) (T -891)) -((-2950 (*1 *2 *3 *4) (-12 (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-510)) (-4 *3 (-888 *7 *5 *6)) (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *3) (|:| |radicand| (-599 *3)))) (-5 *1 (-891 *5 *6 *7 *3 *8)) (-5 *4 (-714)) (-4 *8 (-13 (-318) (-10 -8 (-15 -4096 ($ *3)) (-15 -3119 (*3 $)) (-15 -3118 (*3 $))))))) (-2949 (*1 *2 *3 *4) (-12 (-4 *7 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-510)) (-4 *8 (-888 *7 *5 *6)) (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *3) (|:| |radicand| *3))) (-5 *1 (-891 *5 *6 *7 *8 *3)) (-5 *4 (-714)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4096 ($ *8)) (-15 -3119 (*8 $)) (-15 -3118 (*8 $))))))) (-2948 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-499))) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-510)) (-4 *8 (-888 *7 *5 *6)) (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *9) (|:| |radicand| *9))) (-5 *1 (-891 *5 *6 *7 *8 *9)) (-5 *4 (-714)) (-4 *9 (-13 (-318) (-10 -8 (-15 -4096 ($ *8)) (-15 -3119 (*8 $)) (-15 -3118 (*8 $))))))) (-2947 (*1 *2 *3 *4) (-12 (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-510)) (-4 *7 (-888 *3 *5 *6)) (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *8) (|:| |radicand| *8))) (-5 *1 (-891 *5 *6 *3 *7 *8)) (-5 *4 (-714)) (-4 *8 (-13 (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $)))))))) -((-2687 (((-85) $ $) NIL T ELT)) (-2951 (($ (-1060)) 8 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 15 T ELT) (((-1060) $) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 11 T ELT))) -(((-892) (-13 (-1041) (-568 (-1060)) (-10 -8 (-15 -2951 ($ (-1060)))))) (T -892)) -((-2951 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-892))))) -((-3017 (((-1029 (-179)) $) 8 T ELT)) (-3018 (((-1029 (-179)) $) 9 T ELT)) (-3019 (((-599 (-599 (-881 (-179)))) $) 10 T ELT)) (-4096 (((-797) $) 6 T ELT))) -(((-893) (-113)) (T -893)) -((-3019 (*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-599 (-599 (-881 (-179))))))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-1029 (-179))))) (-3017 (*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-1029 (-179)))))) -(-13 (-568 (-797)) (-10 -8 (-15 -3019 ((-599 (-599 (-881 (-179)))) $)) (-15 -3018 ((-1029 (-179)) $)) (-15 -3017 ((-1029 (-179)) $)))) -(((-568 (-797)) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 79 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 80 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 34 T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT)) (-4109 (($ $) 31 T ELT)) (-3607 (((-3 $ #1#) $) 42 T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT)) (-1694 (($ $ |#1| |#2| $) 63 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) 17 T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| |#2|) NIL T ELT)) (-2941 ((|#2| $) 24 T ELT)) (-1695 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3015 (($ $) 28 T ELT)) (-3312 ((|#1| $) 26 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) 51 T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-3888 (($ $ |#2| |#1| $) 91 (-12 (|has| |#2| (-104)) (|has| |#1| (-510))) ELT)) (-3606 (((-3 $ #1#) $ $) 92 (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ |#1|) 86 (|has| |#1| (-510)) ELT)) (-4098 ((|#2| $) 22 T ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) 46 T ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ |#1|) 41 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ |#2|) 37 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 15 T CONST)) (-1693 (($ $ $ (-714)) 75 (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) 85 (|has| |#1| (-510)) ELT)) (-2779 (($) 27 T CONST)) (-2785 (($) 12 T CONST)) (-3174 (((-85) $ $) 84 T ELT)) (-4099 (($ $ |#1|) 93 (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) 70 T ELT) (($ $ (-714)) 68 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 67 T ELT) (($ $ |#1|) 65 T ELT) (($ |#1| $) 64 T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-894 |#1| |#2|) (-13 (-280 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-510)) (IF (|has| |#2| (-104)) (-15 -3888 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4143)) (-6 -4143) |%noBranch|))) (-989) (-737)) (T -894)) -((-3888 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-894 *3 *2)) (-4 *2 (-104)) (-4 *3 (-510)) (-4 *3 (-989)) (-4 *2 (-737))))) -((-2952 (((-3 (-647 |#1|) "failed") |#2| (-857)) 18 T ELT))) -(((-895 |#1| |#2|) (-10 -7 (-15 -2952 ((-3 (-647 |#1|) "failed") |#2| (-857)))) (-510) (-616 |#1|)) (T -895)) -((-2952 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-857)) (-4 *5 (-510)) (-5 *2 (-647 *5)) (-5 *1 (-895 *5 *3)) (-4 *3 (-616 *5))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) 20 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) 19 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 17 T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) NIL T ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) |#1|) 16 T ELT)) (-2301 (((-499) $) 11 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) 21 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) 13 T ELT)) (-3950 ((|#1| $ (-499) |#1|) NIL T ELT) ((|#1| $ (-499)) 18 T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 22 T ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 15 T ELT)) (-3952 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) 8 (|has| $ (-6 -4145)) ELT))) -(((-896 |#1|) (-19 |#1|) (-1157)) (T -896)) -NIL -((-3991 (((-896 |#2|) (-1 |#2| |#1| |#2|) (-896 |#1|) |#2|) 16 T ELT)) (-3992 ((|#2| (-1 |#2| |#1| |#2|) (-896 |#1|) |#2|) 18 T ELT)) (-4108 (((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)) 13 T ELT))) -(((-897 |#1| |#2|) (-10 -7 (-15 -3991 ((-896 |#2|) (-1 |#2| |#1| |#2|) (-896 |#1|) |#2|)) (-15 -3992 (|#2| (-1 |#2| |#1| |#2|) (-896 |#1|) |#2|)) (-15 -4108 ((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)))) (-1157) (-1157)) (T -897)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-896 *6)) (-5 *1 (-897 *5 *6)))) (-3992 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-896 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) (-5 *1 (-897 *5 *2)))) (-3991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-896 *6)) (-4 *6 (-1157)) (-4 *5 (-1157)) (-5 *2 (-896 *5)) (-5 *1 (-897 *6 *5))))) -((-2953 (($ $ (-1032 $)) 7 T ELT) (($ $ (-1117)) 6 T ELT))) -(((-898) (-113)) (T -898)) -((-2953 (*1 *1 *1 *2) (-12 (-5 *2 (-1032 *1)) (-4 *1 (-898)))) (-2953 (*1 *1 *1 *2) (-12 (-4 *1 (-898)) (-5 *2 (-1117))))) -(-13 (-10 -8 (-15 -2953 ($ $ (-1117))) (-15 -2953 ($ $ (-1032 $))))) -((-2954 (((-2 (|:| -4104 (-599 (-499))) (|:| |poly| (-599 (-1111 |#1|))) (|:| |prim| (-1111 |#1|))) (-599 (-884 |#1|)) (-599 (-1117)) (-1117)) 26 T ELT) (((-2 (|:| -4104 (-599 (-499))) (|:| |poly| (-599 (-1111 |#1|))) (|:| |prim| (-1111 |#1|))) (-599 (-884 |#1|)) (-599 (-1117))) 27 T ELT) (((-2 (|:| |coef1| (-499)) (|:| |coef2| (-499)) (|:| |prim| (-1111 |#1|))) (-884 |#1|) (-1117) (-884 |#1|) (-1117)) 49 T ELT))) -(((-899 |#1|) (-10 -7 (-15 -2954 ((-2 (|:| |coef1| (-499)) (|:| |coef2| (-499)) (|:| |prim| (-1111 |#1|))) (-884 |#1|) (-1117) (-884 |#1|) (-1117))) (-15 -2954 ((-2 (|:| -4104 (-599 (-499))) (|:| |poly| (-599 (-1111 |#1|))) (|:| |prim| (-1111 |#1|))) (-599 (-884 |#1|)) (-599 (-1117)))) (-15 -2954 ((-2 (|:| -4104 (-599 (-499))) (|:| |poly| (-599 (-1111 |#1|))) (|:| |prim| (-1111 |#1|))) (-599 (-884 |#1|)) (-599 (-1117)) (-1117)))) (-13 (-318) (-120))) (T -899)) -((-2954 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-884 *6))) (-5 *4 (-599 (-1117))) (-5 *5 (-1117)) (-4 *6 (-13 (-318) (-120))) (-5 *2 (-2 (|:| -4104 (-599 (-499))) (|:| |poly| (-599 (-1111 *6))) (|:| |prim| (-1111 *6)))) (-5 *1 (-899 *6)))) (-2954 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-599 (-1117))) (-4 *5 (-13 (-318) (-120))) (-5 *2 (-2 (|:| -4104 (-599 (-499))) (|:| |poly| (-599 (-1111 *5))) (|:| |prim| (-1111 *5)))) (-5 *1 (-899 *5)))) (-2954 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-884 *5)) (-5 *4 (-1117)) (-4 *5 (-13 (-318) (-120))) (-5 *2 (-2 (|:| |coef1| (-499)) (|:| |coef2| (-499)) (|:| |prim| (-1111 *5)))) (-5 *1 (-899 *5))))) -((-2957 (((-599 |#1|) |#1| |#1|) 47 T ELT)) (-3873 (((-85) |#1|) 44 T ELT)) (-2956 ((|#1| |#1|) 80 T ELT)) (-2955 ((|#1| |#1|) 79 T ELT))) -(((-900 |#1|) (-10 -7 (-15 -3873 ((-85) |#1|)) (-15 -2955 (|#1| |#1|)) (-15 -2956 (|#1| |#1|)) (-15 -2957 ((-599 |#1|) |#1| |#1|))) (-498)) (T -900)) -((-2957 (*1 *2 *3 *3) (-12 (-5 *2 (-599 *3)) (-5 *1 (-900 *3)) (-4 *3 (-498)))) (-2956 (*1 *2 *2) (-12 (-5 *1 (-900 *2)) (-4 *2 (-498)))) (-2955 (*1 *2 *2) (-12 (-5 *1 (-900 *2)) (-4 *2 (-498)))) (-3873 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-900 *3)) (-4 *3 (-498))))) -((-2958 (((-1213) (-797)) 9 T ELT))) -(((-901) (-10 -7 (-15 -2958 ((-1213) (-797))))) (T -901)) -((-2958 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-901))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL (-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) ELT)) (-2600 (($ $ $) 65 (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) ELT)) (-1345 (((-3 $ #1="failed") $ $) 52 (-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) ELT)) (-3258 (((-714)) 36 (-12 (|has| |#1| (-323)) (|has| |#2| (-323))) ELT)) (-2959 ((|#2| $) 22 T ELT)) (-2960 ((|#1| $) 21 T ELT)) (-3874 (($) NIL (-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) (-12 (|has| |#1| (-684)) (|has| |#2| (-684))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) CONST)) (-3607 (((-3 $ #1#) $) NIL (-3677 (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) (-12 (|has| |#1| (-684)) (|has| |#2| (-684)))) ELT)) (-3115 (($) NIL (-12 (|has| |#1| (-323)) (|has| |#2| (-323))) ELT)) (-3324 (((-85) $) NIL (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) ELT)) (-2528 (((-85) $) NIL (-3677 (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) (-12 (|has| |#1| (-684)) (|has| |#2| (-684)))) ELT)) (-2650 (($ $ $) NIL (-3677 (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-781)) (|has| |#2| (-781)))) ELT)) (-2978 (($ $ $) NIL (-3677 (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-781)) (|has| |#2| (-781)))) ELT)) (-2961 (($ |#1| |#2|) 20 T ELT)) (-2111 (((-857) $) NIL (-12 (|has| |#1| (-323)) (|has| |#2| (-323))) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 39 (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) ELT)) (-2518 (($ (-857)) NIL (-12 (|has| |#1| (-323)) (|has| |#2| (-323))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3130 (($ $ $) NIL (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) ELT)) (-2551 (($ $ $) NIL (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) ELT)) (-4096 (((-797) $) 14 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 42 (-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) CONST)) (-2785 (($) 25 (-3677 (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) (-12 (|has| |#1| (-684)) (|has| |#2| (-684)))) CONST)) (-2685 (((-85) $ $) NIL (-3677 (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-781)) (|has| |#2| (-781)))) ELT)) (-2686 (((-85) $ $) NIL (-3677 (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-781)) (|has| |#2| (-781)))) ELT)) (-3174 (((-85) $ $) 19 T ELT)) (-2805 (((-85) $ $) NIL (-3677 (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-781)) (|has| |#2| (-781)))) ELT)) (-2806 (((-85) $ $) 69 (-3677 (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-781)) (|has| |#2| (-781)))) ELT)) (-4099 (($ $ $) NIL (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) ELT)) (-3987 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3989 (($ $ $) 45 (-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) ELT)) (** (($ $ (-499)) NIL (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) ELT) (($ $ (-714)) 32 (-3677 (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) (-12 (|has| |#1| (-684)) (|has| |#2| (-684)))) ELT) (($ $ (-857)) NIL (-3677 (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) (-12 (|has| |#1| (-684)) (|has| |#2| (-684)))) ELT)) (* (($ (-499) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-714) $) 48 (-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) ELT) (($ (-857) $) NIL (-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) ELT) (($ $ $) 28 (-3677 (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) (-12 (|has| |#1| (-684)) (|has| |#2| (-684)))) ELT))) -(((-902 |#1| |#2|) (-13 (-1041) (-10 -8 (IF (|has| |#1| (-323)) (IF (|has| |#2| (-323)) (-6 (-323)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-684)) (IF (|has| |#2| (-684)) (-6 (-684)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-427)) (IF (|has| |#2| (-427)) (-6 (-427)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-781)) (IF (|has| |#2| (-781)) (-6 (-781)) |%noBranch|) |%noBranch|) (-15 -2961 ($ |#1| |#2|)) (-15 -2960 (|#1| $)) (-15 -2959 (|#2| $)))) (-1041) (-1041)) (T -902)) -((-2961 (*1 *1 *2 *3) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) (-2960 (*1 *2 *1) (-12 (-4 *2 (-1041)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1041)))) (-2959 (*1 *2 *1) (-12 (-4 *2 (-1041)) (-5 *1 (-902 *3 *2)) (-4 *3 (-1041))))) -((-3542 (((-1043) $) 12 T ELT)) (-2962 (($ (-460) (-1043)) 14 T ELT)) (-3690 (((-460) $) 9 T ELT)) (-4096 (((-797) $) 24 T ELT))) -(((-903) (-13 (-568 (-797)) (-10 -8 (-15 -3690 ((-460) $)) (-15 -3542 ((-1043) $)) (-15 -2962 ($ (-460) (-1043)))))) (T -903)) -((-3690 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-903)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-903)))) (-2962 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-1043)) (-5 *1 (-903))))) -((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-2976 (($) 17 T CONST)) (-2680 (($ $ $) 37 T ELT)) (-2679 (($ $) 29 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2967 (((-649 (-807 $ $)) $) 62 T ELT)) (-2969 (((-649 $) $) 52 T ELT)) (-2966 (((-649 (-807 $ $)) $) 63 T ELT)) (-2965 (((-649 (-807 $ $)) $) 64 T ELT)) (-2970 (((-649 |#1|) $) 43 T ELT)) (-2968 (((-649 (-807 $ $)) $) 61 T ELT)) (-2974 (($ $ $) 38 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2975 (($) 16 T CONST)) (-2973 (($ $ $) 39 T ELT)) (-2963 (($ $ $) 36 T ELT)) (-2964 (($ $ $) 34 T ELT)) (-4096 (((-797) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2681 (($ $ $) 35 T ELT)) (-2411 (($ $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) NIL T ELT))) -(((-904 |#1|) (-13 (-907) (-571 |#1|) (-10 -8 (-15 -2970 ((-649 |#1|) $)) (-15 -2969 ((-649 $) $)) (-15 -2968 ((-649 (-807 $ $)) $)) (-15 -2967 ((-649 (-807 $ $)) $)) (-15 -2966 ((-649 (-807 $ $)) $)) (-15 -2965 ((-649 (-807 $ $)) $)) (-15 -2964 ($ $ $)) (-15 -2963 ($ $ $)))) (-1041)) (T -904)) -((-2970 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1041)))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-649 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1041)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-649 (-807 (-904 *3) (-904 *3)))) (-5 *1 (-904 *3)) (-4 *3 (-1041)))) (-2967 (*1 *2 *1) (-12 (-5 *2 (-649 (-807 (-904 *3) (-904 *3)))) (-5 *1 (-904 *3)) (-4 *3 (-1041)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-649 (-807 (-904 *3) (-904 *3)))) (-5 *1 (-904 *3)) (-4 *3 (-1041)))) (-2965 (*1 *2 *1) (-12 (-5 *2 (-649 (-807 (-904 *3) (-904 *3)))) (-5 *1 (-904 *3)) (-4 *3 (-1041)))) (-2964 (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1041)))) (-2963 (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1041))))) -((-3799 (((-904 |#1|) (-904 |#1|)) 46 T ELT)) (-2972 (((-904 |#1|) (-904 |#1|)) 22 T ELT)) (-2971 (((-1037 |#1|) (-904 |#1|)) 41 T ELT))) -(((-905 |#1|) (-13 (-1157) (-10 -7 (-15 -2972 ((-904 |#1|) (-904 |#1|))) (-15 -2971 ((-1037 |#1|) (-904 |#1|))) (-15 -3799 ((-904 |#1|) (-904 |#1|))))) (-1041)) (T -905)) -((-2972 (*1 *2 *2) (-12 (-5 *2 (-904 *3)) (-4 *3 (-1041)) (-5 *1 (-905 *3)))) (-2971 (*1 *2 *3) (-12 (-5 *3 (-904 *4)) (-4 *4 (-1041)) (-5 *2 (-1037 *4)) (-5 *1 (-905 *4)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-904 *3)) (-4 *3 (-1041)) (-5 *1 (-905 *3))))) -((-4108 (((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|)) 29 T ELT))) -(((-906 |#1| |#2|) (-13 (-1157) (-10 -7 (-15 -4108 ((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|))))) (-1041) (-1041)) (T -906)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-904 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *2 (-904 *6)) (-5 *1 (-906 *5 *6))))) -((-2687 (((-85) $ $) 19 T ELT)) (-2413 (($ $) 8 T ELT)) (-2976 (($) 17 T CONST)) (-2680 (($ $ $) 9 T ELT)) (-2679 (($ $) 11 T ELT)) (-3380 (((-1099) $) 23 T ELT)) (-2974 (($ $ $) 15 T ELT)) (-3381 (((-1060) $) 22 T ELT)) (-2975 (($) 16 T CONST)) (-2973 (($ $ $) 14 T ELT)) (-4096 (((-797) $) 21 T ELT)) (-1297 (((-85) $ $) 20 T ELT)) (-2681 (($ $ $) 10 T ELT)) (-2411 (($ $ $) 6 T ELT)) (-3174 (((-85) $ $) 18 T ELT)) (-2412 (($ $ $) 7 T ELT))) -(((-907) (-113)) (T -907)) -((-2976 (*1 *1) (-4 *1 (-907))) (-2975 (*1 *1) (-4 *1 (-907))) (-2974 (*1 *1 *1 *1) (-4 *1 (-907))) (-2973 (*1 *1 *1 *1) (-4 *1 (-907)))) -(-13 (-84) (-1041) (-10 -8 (-15 -2976 ($) -4102) (-15 -2975 ($) -4102) (-15 -2974 ($ $ $)) (-15 -2973 ($ $ $)))) -(((-73) . T) ((-84) . T) ((-568 (-797)) . T) ((-620) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3874 (($) 7 T CONST)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2977 (($ $ $) 47 T ELT)) (-3658 (($ $ $) 48 T ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2978 ((|#1| $) 49 T ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-908 |#1|) (-113) (-781)) (T -908)) -((-2978 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-781)))) (-3658 (*1 *1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-781)))) (-2977 (*1 *1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-781))))) -(-13 (-78 |t#1|) (-10 -8 (-6 -4145) (-15 -2978 (|t#1| $)) (-15 -3658 ($ $ $)) (-15 -2977 ($ $ $)))) -(((-34) . T) ((-78 |#1|) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) -((-2990 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3282 |#2|)) |#2| |#2|) 105 T ELT)) (-3905 ((|#2| |#2| |#2|) 103 T ELT)) (-2991 (((-2 (|:| |coef2| |#2|) (|:| -3282 |#2|)) |#2| |#2|) 107 T ELT)) (-2992 (((-2 (|:| |coef1| |#2|) (|:| -3282 |#2|)) |#2| |#2|) 109 T ELT)) (-2999 (((-2 (|:| |coef2| |#2|) (|:| -2997 |#1|)) |#2| |#2|) 132 (|has| |#1| (-406)) ELT)) (-3006 (((-2 (|:| |coef2| |#2|) (|:| -3906 |#1|)) |#2| |#2|) 56 T ELT)) (-2980 (((-2 (|:| |coef2| |#2|) (|:| -3906 |#1|)) |#2| |#2|) 80 T ELT)) (-2981 (((-2 (|:| |coef1| |#2|) (|:| -3906 |#1|)) |#2| |#2|) 82 T ELT)) (-2989 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2984 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-714)) 89 T ELT)) (-2994 (((-2 (|:| |coef2| |#2|) (|:| -3907 |#1|)) |#2|) 121 T ELT)) (-2987 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-714)) 92 T ELT)) (-2996 (((-599 (-714)) |#2| |#2|) 102 T ELT)) (-3004 ((|#1| |#2| |#2|) 50 T ELT)) (-2998 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2997 |#1|)) |#2| |#2|) 130 (|has| |#1| (-406)) ELT)) (-2997 ((|#1| |#2| |#2|) 128 (|has| |#1| (-406)) ELT)) (-3005 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3906 |#1|)) |#2| |#2|) 54 T ELT)) (-2979 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3906 |#1|)) |#2| |#2|) 79 T ELT)) (-3906 ((|#1| |#2| |#2|) 76 T ELT)) (-3902 (((-2 (|:| -4104 |#1|) (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2|) 41 T ELT)) (-3003 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2988 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3328 ((|#2| |#2| |#2|) 93 T ELT)) (-2983 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-714)) 87 T ELT)) (-2982 ((|#2| |#2| |#2| (-714)) 85 T ELT)) (-3282 ((|#2| |#2| |#2|) 136 (|has| |#1| (-406)) ELT)) (-3606 (((-1207 |#2|) (-1207 |#2|) |#1|) 22 T ELT)) (-3000 (((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2|) 46 T ELT)) (-2993 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3907 |#1|)) |#2|) 119 T ELT)) (-3907 ((|#1| |#2|) 116 T ELT)) (-2986 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-714)) 91 T ELT)) (-2985 ((|#2| |#2| |#2| (-714)) 90 T ELT)) (-2995 (((-599 |#2|) |#2| |#2|) 99 T ELT)) (-3002 ((|#2| |#2| |#1| |#1| (-714)) 62 T ELT)) (-3001 ((|#1| |#1| |#1| (-714)) 61 T ELT)) (* (((-1207 |#2|) |#1| (-1207 |#2|)) 17 T ELT))) -(((-909 |#1| |#2|) (-10 -7 (-15 -3906 (|#1| |#2| |#2|)) (-15 -2979 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3906 |#1|)) |#2| |#2|)) (-15 -2980 ((-2 (|:| |coef2| |#2|) (|:| -3906 |#1|)) |#2| |#2|)) (-15 -2981 ((-2 (|:| |coef1| |#2|) (|:| -3906 |#1|)) |#2| |#2|)) (-15 -2982 (|#2| |#2| |#2| (-714))) (-15 -2983 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-714))) (-15 -2984 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-714))) (-15 -2985 (|#2| |#2| |#2| (-714))) (-15 -2986 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-714))) (-15 -2987 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-714))) (-15 -3328 (|#2| |#2| |#2|)) (-15 -2988 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2989 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3905 (|#2| |#2| |#2|)) (-15 -2990 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3282 |#2|)) |#2| |#2|)) (-15 -2991 ((-2 (|:| |coef2| |#2|) (|:| -3282 |#2|)) |#2| |#2|)) (-15 -2992 ((-2 (|:| |coef1| |#2|) (|:| -3282 |#2|)) |#2| |#2|)) (-15 -3907 (|#1| |#2|)) (-15 -2993 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3907 |#1|)) |#2|)) (-15 -2994 ((-2 (|:| |coef2| |#2|) (|:| -3907 |#1|)) |#2|)) (-15 -2995 ((-599 |#2|) |#2| |#2|)) (-15 -2996 ((-599 (-714)) |#2| |#2|)) (IF (|has| |#1| (-406)) (PROGN (-15 -2997 (|#1| |#2| |#2|)) (-15 -2998 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2997 |#1|)) |#2| |#2|)) (-15 -2999 ((-2 (|:| |coef2| |#2|) (|:| -2997 |#1|)) |#2| |#2|)) (-15 -3282 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1207 |#2|) |#1| (-1207 |#2|))) (-15 -3606 ((-1207 |#2|) (-1207 |#2|) |#1|)) (-15 -3902 ((-2 (|:| -4104 |#1|) (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2|)) (-15 -3000 ((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2|)) (-15 -3001 (|#1| |#1| |#1| (-714))) (-15 -3002 (|#2| |#2| |#1| |#1| (-714))) (-15 -3003 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3004 (|#1| |#2| |#2|)) (-15 -3005 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3906 |#1|)) |#2| |#2|)) (-15 -3006 ((-2 (|:| |coef2| |#2|) (|:| -3906 |#1|)) |#2| |#2|))) (-510) (-1183 |#1|)) (T -909)) -((-3006 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3906 *4))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-3005 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3906 *4))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-3004 (*1 *2 *3 *3) (-12 (-4 *2 (-510)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1183 *2)))) (-3003 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3)))) (-3002 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-714)) (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3)))) (-3001 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-714)) (-4 *2 (-510)) (-5 *1 (-909 *2 *4)) (-4 *4 (-1183 *2)))) (-3000 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-3902 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| -4104 *4) (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-3606 (*1 *2 *2 *3) (-12 (-5 *2 (-1207 *4)) (-4 *4 (-1183 *3)) (-4 *3 (-510)) (-5 *1 (-909 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1207 *4)) (-4 *4 (-1183 *3)) (-4 *3 (-510)) (-5 *1 (-909 *3 *4)))) (-3282 (*1 *2 *2 *2) (-12 (-4 *3 (-406)) (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3)))) (-2999 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2997 *4))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2998 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2997 *4))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2997 (*1 *2 *3 *3) (-12 (-4 *2 (-510)) (-4 *2 (-406)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1183 *2)))) (-2996 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-599 (-714))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2995 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-599 *3)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2994 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3907 *4))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2993 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3907 *4))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-3907 (*1 *2 *3) (-12 (-4 *2 (-510)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1183 *2)))) (-2992 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3282 *3))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2991 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3282 *3))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2990 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3282 *3))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-3905 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3)))) (-2989 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2988 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-3328 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3)))) (-2987 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-714)) (-4 *5 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-909 *5 *3)) (-4 *3 (-1183 *5)))) (-2986 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-714)) (-4 *5 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-909 *5 *3)) (-4 *3 (-1183 *5)))) (-2985 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-714)) (-4 *4 (-510)) (-5 *1 (-909 *4 *2)) (-4 *2 (-1183 *4)))) (-2984 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-714)) (-4 *5 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-909 *5 *3)) (-4 *3 (-1183 *5)))) (-2983 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-714)) (-4 *5 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-909 *5 *3)) (-4 *3 (-1183 *5)))) (-2982 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-714)) (-4 *4 (-510)) (-5 *1 (-909 *4 *2)) (-4 *2 (-1183 *4)))) (-2981 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3906 *4))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2980 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3906 *4))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2979 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3906 *4))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-3906 (*1 *2 *3 *3) (-12 (-4 *2 (-510)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1183 *2))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3456 (((-1158) $) 13 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3344 (((-1075) $) 10 T ELT)) (-4096 (((-797) $) 20 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-910) (-13 (-1023) (-10 -8 (-15 -3344 ((-1075) $)) (-15 -3456 ((-1158) $))))) (T -910)) -((-3344 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-910)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-910))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 40 T ELT)) (-1345 (((-3 $ "failed") $ $) 54 T ELT)) (-3874 (($) NIL T CONST)) (-3008 (((-599 (-807 (-857) (-857))) $) 67 T ELT)) (-3324 (((-85) $) NIL T ELT)) (-3007 (((-857) $) 94 T ELT)) (-3010 (((-599 (-857)) $) 17 T ELT)) (-3009 (((-1095 $) (-714)) 39 T ELT)) (-3011 (($ (-599 (-857))) 16 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3130 (($ $) 70 T ELT)) (-4096 (((-797) $) 90 T ELT) (((-599 (-857)) $) 11 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 8 T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 44 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 42 T ELT)) (-3989 (($ $ $) 46 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) 49 T ELT)) (-4107 (((-714) $) 22 T ELT))) -(((-911) (-13 (-742) (-568 (-599 (-857))) (-10 -8 (-15 -3011 ($ (-599 (-857)))) (-15 -3010 ((-599 (-857)) $)) (-15 -4107 ((-714) $)) (-15 -3009 ((-1095 $) (-714))) (-15 -3008 ((-599 (-807 (-857) (-857))) $)) (-15 -3007 ((-857) $)) (-15 -3130 ($ $))))) (T -911)) -((-3011 (*1 *1 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-911)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-911)))) (-4107 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-911)))) (-3009 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1095 (-911))) (-5 *1 (-911)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-599 (-807 (-857) (-857)))) (-5 *1 (-911)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-911)))) (-3130 (*1 *1 *1) (-5 *1 (-911)))) -((-4099 (($ $ |#2|) 31 T ELT)) (-3987 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-361 (-499)) $) 27 T ELT) (($ $ (-361 (-499))) 29 T ELT))) -(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-361 (-499)))) (-15 * (|#1| (-361 (-499)) |#1|)) (-15 -4099 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 * (|#1| (-857) |#1|))) (-913 |#2| |#3| |#4|) (-989) (-737) (-781)) (T -912)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 |#3|) $) 92 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 68 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 69 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 71 (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-4109 (($ $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3013 (((-85) $) 91 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-4087 (((-85) $) 79 T ELT)) (-3014 (($ |#1| |#2|) 78 T ELT) (($ $ |#3| |#2|) 94 T ELT) (($ $ (-599 |#3|) (-599 |#2|)) 93 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3015 (($ $) 82 T ELT)) (-3312 ((|#1| $) 83 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3606 (((-3 $ "failed") $ $) 67 (|has| |#1| (-510)) ELT)) (-4098 ((|#2| $) 81 T ELT)) (-3012 (($ $) 90 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 (-499))) 74 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) 66 (|has| |#1| (-510)) ELT) (($ |#1|) 64 (|has| |#1| (-146)) ELT)) (-3827 ((|#1| $ |#2|) 76 T ELT)) (-2823 (((-649 $) $) 65 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 70 (|has| |#1| (-510)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 75 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-361 (-499)) $) 73 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 72 (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-913 |#1| |#2| |#3|) (-113) (-989) (-737) (-781)) (T -913)) -((-3312 (*1 *2 *1) (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *3 (-737)) (-4 *4 (-781)) (-4 *2 (-989)))) (-3015 (*1 *1 *1) (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-737)) (-4 *4 (-781)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *2 *4)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *2 (-737)))) (-3014 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-913 *4 *3 *2)) (-4 *4 (-989)) (-4 *3 (-737)) (-4 *2 (-781)))) (-3014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 *6)) (-5 *3 (-599 *5)) (-4 *1 (-913 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-737)) (-4 *6 (-781)))) (-3204 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-737)) (-4 *5 (-781)) (-5 *2 (-599 *5)))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-737)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3012 (*1 *1 *1) (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-737)) (-4 *4 (-781))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3014 ($ $ |t#3| |t#2|)) (-15 -3014 ($ $ (-599 |t#3|) (-599 |t#2|))) (-15 -3015 ($ $)) (-15 -3312 (|t#1| $)) (-15 -4098 (|t#2| $)) (-15 -3204 ((-599 |t#3|) $)) (-15 -3013 ((-85) $)) (-15 -3012 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-510)) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-571 (-499)) . T) ((-571 |#1|) |has| |#1| (-146)) ((-571 $) |has| |#1| (-510)) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-244) |has| |#1| (-510)) ((-510) |has| |#1| (-510)) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) |has| |#1| (-510)) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) |has| |#1| (-510)) ((-684) . T) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-3016 (((-1029 (-179)) $) 8 T ELT)) (-3017 (((-1029 (-179)) $) 9 T ELT)) (-3018 (((-1029 (-179)) $) 10 T ELT)) (-3019 (((-599 (-599 (-881 (-179)))) $) 11 T ELT)) (-4096 (((-797) $) 6 T ELT))) -(((-914) (-113)) (T -914)) -((-3019 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-599 (-599 (-881 (-179))))))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1029 (-179))))) (-3017 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1029 (-179))))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1029 (-179)))))) -(-13 (-568 (-797)) (-10 -8 (-15 -3019 ((-599 (-599 (-881 (-179)))) $)) (-15 -3018 ((-1029 (-179)) $)) (-15 -3017 ((-1029 (-179)) $)) (-15 -3016 ((-1029 (-179)) $)))) -(((-568 (-797)) . T)) -((-3204 (((-599 |#4|) $) 23 T ELT)) (-3029 (((-85) $) 55 T ELT)) (-3020 (((-85) $) 54 T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-3025 (((-85) $) 56 T ELT)) (-3027 (((-85) $ $) 62 T ELT)) (-3026 (((-85) $ $) 65 T ELT)) (-3028 (((-85) $) 60 T ELT)) (-3021 (((-599 |#5|) (-599 |#5|) $) 98 T ELT)) (-3022 (((-599 |#5|) (-599 |#5|) $) 95 T ELT)) (-3023 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-3035 (((-599 |#4|) $) 27 T ELT)) (-3034 (((-85) |#4| $) 34 T ELT)) (-3024 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-3031 (($ $ |#4|) 39 T ELT)) (-3033 (($ $ |#4|) 38 T ELT)) (-3032 (($ $ |#4|) 40 T ELT)) (-3174 (((-85) $ $) 46 T ELT))) -(((-915 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3020 ((-85) |#1|)) (-15 -3021 ((-599 |#5|) (-599 |#5|) |#1|)) (-15 -3022 ((-599 |#5|) (-599 |#5|) |#1|)) (-15 -3023 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3024 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3025 ((-85) |#1|)) (-15 -3026 ((-85) |#1| |#1|)) (-15 -3027 ((-85) |#1| |#1|)) (-15 -3028 ((-85) |#1|)) (-15 -3029 ((-85) |#1|)) (-15 -3030 ((-2 (|:| |under| |#1|) (|:| -3252 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3031 (|#1| |#1| |#4|)) (-15 -3032 (|#1| |#1| |#4|)) (-15 -3033 (|#1| |#1| |#4|)) (-15 -3034 ((-85) |#4| |#1|)) (-15 -3035 ((-599 |#4|) |#1|)) (-15 -3204 ((-599 |#4|) |#1|)) (-15 -3174 ((-85) |#1| |#1|))) (-916 |#2| |#3| |#4| |#5|) (-989) (-738) (-781) (-1005 |#2| |#3| |#4|)) (T -915)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3204 (((-599 |#3|) $) 37 T ELT)) (-3029 (((-85) $) 30 T ELT)) (-3020 (((-85) $) 21 (|has| |#1| (-510)) ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3860 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 46 T CONST)) (-3025 (((-85) $) 26 (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) 28 (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) 27 (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) 29 (|has| |#1| (-510)) ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) 22 (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) 23 (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ "failed") (-599 |#4|)) 40 T ELT)) (-3294 (($ (-599 |#4|)) 39 T ELT)) (-1386 (($ $) 69 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#4| $) 68 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-510)) ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#4|) $) 53 (|has| $ (-6 -4145)) ELT)) (-3318 ((|#3| $) 38 T ELT)) (-2727 (((-599 |#4|) $) 54 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3035 (((-599 |#3|) $) 36 T ELT)) (-3034 (((-85) |#3| $) 35 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-510)) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1387 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) 60 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) 58 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) 57 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) 42 T ELT)) (-3543 (((-85) $) 45 T ELT)) (-3713 (($) 44 T ELT)) (-2048 (((-714) |#4| $) 55 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 43 T ELT)) (-4122 (((-488) $) 70 (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) 61 T ELT)) (-3031 (($ $ |#3|) 32 T ELT)) (-3033 (($ $ |#3|) 34 T ELT)) (-3032 (($ $ |#3|) 33 T ELT)) (-4096 (((-797) $) 13 T ELT) (((-599 |#4|) $) 41 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4107 (((-714) $) 47 (|has| $ (-6 -4145)) ELT))) -(((-916 |#1| |#2| |#3| |#4|) (-113) (-989) (-738) (-781) (-1005 |t#1| |t#2| |t#3|)) (T -916)) -((-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *1 (-916 *3 *4 *5 *6)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *1 (-916 *3 *4 *5 *6)))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-1005 *3 *4 *2)) (-4 *2 (-781)))) (-3204 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-599 *5)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-599 *5)))) (-3034 (*1 *2 *3 *1) (-12 (-4 *1 (-916 *4 *5 *3 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-4 *6 (-1005 *4 *5 *3)) (-5 *2 (-85)))) (-3033 (*1 *1 *1 *2) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) (-4 *5 (-1005 *3 *4 *2)))) (-3032 (*1 *1 *1 *2) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) (-4 *5 (-1005 *3 *4 *2)))) (-3031 (*1 *1 *1 *2) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) (-4 *5 (-1005 *3 *4 *2)))) (-3030 (*1 *2 *1 *3) (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-4 *6 (-1005 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3252 *1) (|:| |upper| *1))) (-4 *1 (-916 *4 *5 *3 *6)))) (-3029 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) (-3028 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85)))) (-3027 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85)))) (-3026 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85)))) (-3024 (*1 *2 *3 *1) (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3023 (*1 *2 *3 *1) (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3022 (*1 *2 *2 *1) (-12 (-5 *2 (-599 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)))) (-3021 (*1 *2 *2 *1) (-12 (-5 *2 (-599 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)))) (-3020 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85))))) -(-13 (-1041) (-124 |t#4|) (-568 (-599 |t#4|)) (-10 -8 (-6 -4145) (-15 -3295 ((-3 $ "failed") (-599 |t#4|))) (-15 -3294 ($ (-599 |t#4|))) (-15 -3318 (|t#3| $)) (-15 -3204 ((-599 |t#3|) $)) (-15 -3035 ((-599 |t#3|) $)) (-15 -3034 ((-85) |t#3| $)) (-15 -3033 ($ $ |t#3|)) (-15 -3032 ($ $ |t#3|)) (-15 -3031 ($ $ |t#3|)) (-15 -3030 ((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |t#3|)) (-15 -3029 ((-85) $)) (IF (|has| |t#1| (-510)) (PROGN (-15 -3028 ((-85) $)) (-15 -3027 ((-85) $ $)) (-15 -3026 ((-85) $ $)) (-15 -3025 ((-85) $)) (-15 -3024 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3023 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3022 ((-599 |t#4|) (-599 |t#4|) $)) (-15 -3021 ((-599 |t#4|) (-599 |t#4|) $)) (-15 -3020 ((-85) $))) |%noBranch|))) -(((-34) . T) ((-73) . T) ((-568 (-599 |#4|)) . T) ((-568 (-797)) . T) ((-124 |#4|) . T) ((-569 (-488)) |has| |#4| (-569 (-488))) ((-263 |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-443 |#4|) . T) ((-468 |#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-1041) . T) ((-1157) . T)) -((-3037 (((-599 |#4|) |#4| |#4|) 137 T ELT)) (-3060 (((-599 |#4|) (-599 |#4|) (-85)) 125 (|has| |#1| (-406)) ELT) (((-599 |#4|) (-599 |#4|)) 126 (|has| |#1| (-406)) ELT)) (-3047 (((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 |#4|)) 44 T ELT)) (-3046 (((-85) |#4|) 43 T ELT)) (-3059 (((-599 |#4|) |#4|) 121 (|has| |#1| (-406)) ELT)) (-3042 (((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-1 (-85) |#4|) (-599 |#4|)) 24 T ELT)) (-3043 (((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 (-1 (-85) |#4|)) (-599 |#4|)) 30 T ELT)) (-3044 (((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 (-1 (-85) |#4|)) (-599 |#4|)) 31 T ELT)) (-3055 (((-3 (-2 (|:| |bas| (-430 |#1| |#2| |#3| |#4|)) (|:| -3464 (-599 |#4|))) "failed") (-599 |#4|)) 90 T ELT)) (-3057 (((-599 |#4|) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-3058 (((-599 |#4|) (-599 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129 T ELT)) (-3036 (((-599 |#4|) (-599 |#4|)) 128 T ELT)) (-3052 (((-599 |#4|) (-599 |#4|) (-599 |#4|) (-85)) 59 T ELT) (((-599 |#4|) (-599 |#4|) (-599 |#4|)) 61 T ELT)) (-3053 ((|#4| |#4| (-599 |#4|)) 60 T ELT)) (-3061 (((-599 |#4|) (-599 |#4|) (-599 |#4|)) 133 (|has| |#1| (-406)) ELT)) (-3063 (((-599 |#4|) (-599 |#4|) (-599 |#4|)) 136 (|has| |#1| (-406)) ELT)) (-3062 (((-599 |#4|) (-599 |#4|) (-599 |#4|)) 135 (|has| |#1| (-406)) ELT)) (-3038 (((-599 |#4|) (-599 |#4|) (-599 |#4|) (-1 (-599 |#4|) (-599 |#4|))) 105 T ELT) (((-599 |#4|) (-599 |#4|) (-599 |#4|)) 107 T ELT) (((-599 |#4|) (-599 |#4|) |#4|) 141 T ELT) (((-599 |#4|) |#4| |#4|) 138 T ELT) (((-599 |#4|) (-599 |#4|)) 106 T ELT)) (-3066 (((-599 |#4|) (-599 |#4|) (-599 |#4|)) 118 (-12 (|has| |#1| (-120)) (|has| |#1| (-261))) ELT)) (-3045 (((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 |#4|)) 52 T ELT)) (-3041 (((-85) (-599 |#4|)) 79 T ELT)) (-3040 (((-85) (-599 |#4|) (-599 (-599 |#4|))) 67 T ELT)) (-3049 (((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 |#4|)) 37 T ELT)) (-3048 (((-85) |#4|) 36 T ELT)) (-3065 (((-599 |#4|) (-599 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-261))) ELT)) (-3064 (((-599 |#4|) (-599 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-261))) ELT)) (-3054 (((-599 |#4|) (-599 |#4|)) 83 T ELT)) (-3056 (((-599 |#4|) (-599 |#4|)) 97 T ELT)) (-3039 (((-85) (-599 |#4|) (-599 |#4|)) 65 T ELT)) (-3051 (((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 |#4|)) 50 T ELT)) (-3050 (((-85) |#4|) 45 T ELT))) -(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3038 ((-599 |#4|) (-599 |#4|))) (-15 -3038 ((-599 |#4|) |#4| |#4|)) (-15 -3036 ((-599 |#4|) (-599 |#4|))) (-15 -3037 ((-599 |#4|) |#4| |#4|)) (-15 -3038 ((-599 |#4|) (-599 |#4|) |#4|)) (-15 -3038 ((-599 |#4|) (-599 |#4|) (-599 |#4|))) (-15 -3038 ((-599 |#4|) (-599 |#4|) (-599 |#4|) (-1 (-599 |#4|) (-599 |#4|)))) (-15 -3039 ((-85) (-599 |#4|) (-599 |#4|))) (-15 -3040 ((-85) (-599 |#4|) (-599 (-599 |#4|)))) (-15 -3041 ((-85) (-599 |#4|))) (-15 -3042 ((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-1 (-85) |#4|) (-599 |#4|))) (-15 -3043 ((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 (-1 (-85) |#4|)) (-599 |#4|))) (-15 -3044 ((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 (-1 (-85) |#4|)) (-599 |#4|))) (-15 -3045 ((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 |#4|))) (-15 -3046 ((-85) |#4|)) (-15 -3047 ((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 |#4|))) (-15 -3048 ((-85) |#4|)) (-15 -3049 ((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 |#4|))) (-15 -3050 ((-85) |#4|)) (-15 -3051 ((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 |#4|))) (-15 -3052 ((-599 |#4|) (-599 |#4|) (-599 |#4|))) (-15 -3052 ((-599 |#4|) (-599 |#4|) (-599 |#4|) (-85))) (-15 -3053 (|#4| |#4| (-599 |#4|))) (-15 -3054 ((-599 |#4|) (-599 |#4|))) (-15 -3055 ((-3 (-2 (|:| |bas| (-430 |#1| |#2| |#3| |#4|)) (|:| -3464 (-599 |#4|))) "failed") (-599 |#4|))) (-15 -3056 ((-599 |#4|) (-599 |#4|))) (-15 -3057 ((-599 |#4|) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3058 ((-599 |#4|) (-599 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-406)) (PROGN (-15 -3059 ((-599 |#4|) |#4|)) (-15 -3060 ((-599 |#4|) (-599 |#4|))) (-15 -3060 ((-599 |#4|) (-599 |#4|) (-85))) (-15 -3061 ((-599 |#4|) (-599 |#4|) (-599 |#4|))) (-15 -3062 ((-599 |#4|) (-599 |#4|) (-599 |#4|))) (-15 -3063 ((-599 |#4|) (-599 |#4|) (-599 |#4|)))) |%noBranch|) (IF (|has| |#1| (-261)) (IF (|has| |#1| (-120)) (PROGN (-15 -3064 ((-599 |#4|) (-599 |#4|))) (-15 -3065 ((-599 |#4|) (-599 |#4|))) (-15 -3066 ((-599 |#4|) (-599 |#4|) (-599 |#4|)))) |%noBranch|) |%noBranch|)) (-510) (-738) (-781) (-1005 |#1| |#2| |#3|)) (T -917)) -((-3066 (*1 *2 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-261)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3065 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-261)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3064 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-261)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3063 (*1 *2 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-406)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3062 (*1 *2 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-406)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3061 (*1 *2 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-406)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3060 (*1 *2 *2 *3) (-12 (-5 *2 (-599 *7)) (-5 *3 (-85)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3060 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-406)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3059 (*1 *2 *3) (-12 (-4 *4 (-406)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6)))) (-3058 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-599 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-917 *5 *6 *7 *8)))) (-3057 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-599 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1005 *6 *7 *8)) (-4 *6 (-510)) (-4 *7 (-738)) (-4 *8 (-781)) (-5 *1 (-917 *6 *7 *8 *9)))) (-3056 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3055 (*1 *2 *3) (|partial| -12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-430 *4 *5 *6 *7)) (|:| -3464 (-599 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7)))) (-3054 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3053 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-917 *4 *5 *6 *2)))) (-3052 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-599 *7)) (-5 *3 (-85)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3052 (*1 *2 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3051 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-599 *7)) (|:| |badPols| (-599 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7)))) (-3050 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6)))) (-3049 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-599 *7)) (|:| |badPols| (-599 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7)))) (-3048 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6)))) (-3047 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-599 *7)) (|:| |badPols| (-599 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7)))) (-3046 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6)))) (-3045 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-599 *7)) (|:| |badPols| (-599 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7)))) (-3044 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-1 (-85) *8))) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-2 (|:| |goodPols| (-599 *8)) (|:| |badPols| (-599 *8)))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-599 *8)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-1 (-85) *8))) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-2 (|:| |goodPols| (-599 *8)) (|:| |badPols| (-599 *8)))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-599 *8)))) (-3042 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-2 (|:| |goodPols| (-599 *8)) (|:| |badPols| (-599 *8)))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-599 *8)))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3040 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-599 *8))) (-5 *3 (-599 *8)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-85)) (-5 *1 (-917 *5 *6 *7 *8)))) (-3039 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3038 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-599 *7) (-599 *7))) (-5 *2 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3038 (*1 *2 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3038 (*1 *2 *2 *3) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-917 *4 *5 *6 *3)))) (-3037 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6)))) (-3036 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3038 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6)))) (-3038 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) -((-3067 (((-2 (|:| R (-647 |#1|)) (|:| A (-647 |#1|)) (|:| |Ainv| (-647 |#1|))) (-647 |#1|) (-70 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-3069 (((-599 (-2 (|:| C (-647 |#1|)) (|:| |g| (-1207 |#1|)))) (-647 |#1|) (-1207 |#1|)) 45 T ELT)) (-3068 (((-647 |#1|) (-647 |#1|) (-647 |#1|) (-70 |#1|) (-1 |#1| |#1|)) 16 T ELT))) -(((-918 |#1|) (-10 -7 (-15 -3067 ((-2 (|:| R (-647 |#1|)) (|:| A (-647 |#1|)) (|:| |Ainv| (-647 |#1|))) (-647 |#1|) (-70 |#1|) (-1 |#1| |#1|))) (-15 -3068 ((-647 |#1|) (-647 |#1|) (-647 |#1|) (-70 |#1|) (-1 |#1| |#1|))) (-15 -3069 ((-599 (-2 (|:| C (-647 |#1|)) (|:| |g| (-1207 |#1|)))) (-647 |#1|) (-1207 |#1|)))) (-318)) (T -918)) -((-3069 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-5 *2 (-599 (-2 (|:| C (-647 *5)) (|:| |g| (-1207 *5))))) (-5 *1 (-918 *5)) (-5 *3 (-647 *5)) (-5 *4 (-1207 *5)))) (-3068 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-647 *5)) (-5 *3 (-70 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-318)) (-5 *1 (-918 *5)))) (-3067 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-70 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-318)) (-5 *2 (-2 (|:| R (-647 *6)) (|:| A (-647 *6)) (|:| |Ainv| (-647 *6)))) (-5 *1 (-918 *6)) (-5 *3 (-647 *6))))) -((-4121 (((-359 |#4|) |#4|) 61 T ELT))) -(((-919 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4121 ((-359 |#4|) |#4|))) (-781) (-738) (-406) (-888 |#3| |#2| |#1|)) (T -919)) -((-4121 (*1 *2 *3) (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-406)) (-5 *2 (-359 *3)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-888 *6 *5 *4))))) -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3988 (($ (-714)) 121 (|has| |#1| (-23)) ELT)) (-2299 (((-1213) $ (-499) (-499)) 44 (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -4146)) ELT) (($ $) 97 (-12 (|has| |#1| (-781)) (|has| $ (-6 -4146))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) 56 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-2397 (($ $) 99 (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) 109 T ELT)) (-1386 (($ $) 84 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#1| $) 83 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) 57 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 55 T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) 106 T ELT) (((-499) |#1| $) 105 (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) 104 (|has| |#1| (-1041)) ELT)) (-3856 (($ (-599 |#1|)) 127 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3985 (((-647 |#1|) $ $) 114 (|has| |#1| (-989)) ELT)) (-3764 (($ (-714) |#1|) 74 T ELT)) (-2301 (((-499) $) 47 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) 91 (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 48 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) 92 (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3982 ((|#1| $) 111 (-12 (|has| |#1| (-989)) (|has| |#1| (-942))) ELT)) (-3983 ((|#1| $) 112 (-12 (|has| |#1| (-989)) (|has| |#1| (-942))) ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) 66 T ELT) (($ $ $ (-499)) 65 T ELT)) (-2304 (((-599 (-499)) $) 50 T ELT)) (-2305 (((-85) (-499) $) 51 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 46 (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2300 (($ $ |#1|) 45 (|has| $ (-6 -4146)) ELT)) (-3919 (($ $ (-599 |#1|)) 125 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ (-499) |#1|) 54 T ELT) ((|#1| $ (-499)) 53 T ELT) (($ $ (-1174 (-499))) 75 T ELT)) (-3986 ((|#1| $ $) 115 (|has| |#1| (-989)) ELT)) (-4061 (((-857) $) 126 T ELT)) (-2405 (($ $ (-499)) 68 T ELT) (($ $ (-1174 (-499))) 67 T ELT)) (-3984 (($ $ $) 113 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-1824 (($ $ $ (-499)) 100 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 85 (|has| |#1| (-569 (-488))) ELT) (($ (-599 |#1|)) 128 T ELT)) (-3670 (($ (-599 |#1|)) 76 T ELT)) (-3952 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-599 $)) 70 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) 93 (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) 95 (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) 94 (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 96 (|has| |#1| (-781)) ELT)) (-3987 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3989 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-499) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-684)) ELT) (($ $ |#1|) 116 (|has| |#1| (-684)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-920 |#1|) (-113) (-989)) (T -920)) -((-3856 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-989)) (-4 *1 (-920 *3)))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-989)) (-5 *2 (-857)))) (-3984 (*1 *1 *1 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-989)))) (-3919 (*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *1 (-920 *3)) (-4 *3 (-989))))) -(-13 (-1206 |t#1|) (-573 (-599 |t#1|)) (-10 -8 (-15 -3856 ($ (-599 |t#1|))) (-15 -4061 ((-857) $)) (-15 -3984 ($ $ $)) (-15 -3919 ($ $ (-599 |t#1|))))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-573 (-599 |#1|)) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 (-499) |#1|) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-327 |#1|) . T) ((-443 |#1|) . T) ((-554 (-499) |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-609 |#1|) . T) ((-19 |#1|) . T) ((-781) |has| |#1| (-781)) ((-784) |has| |#1| (-781)) ((-1041) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781))) ((-1157) . T) ((-1206 |#1|) . T)) -((-4108 (((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)) 17 T ELT))) -(((-921 |#1| |#2|) (-10 -7 (-15 -4108 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)))) (-989) (-989)) (T -921)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-5 *2 (-881 *6)) (-5 *1 (-921 *5 *6))))) -((-3072 ((|#1| (-881 |#1|)) 14 T ELT)) (-3071 ((|#1| (-881 |#1|)) 13 T ELT)) (-3070 ((|#1| (-881 |#1|)) 12 T ELT)) (-3074 ((|#1| (-881 |#1|)) 16 T ELT)) (-3078 ((|#1| (-881 |#1|)) 24 T ELT)) (-3073 ((|#1| (-881 |#1|)) 15 T ELT)) (-3075 ((|#1| (-881 |#1|)) 17 T ELT)) (-3077 ((|#1| (-881 |#1|)) 23 T ELT)) (-3076 ((|#1| (-881 |#1|)) 22 T ELT))) -(((-922 |#1|) (-10 -7 (-15 -3070 (|#1| (-881 |#1|))) (-15 -3071 (|#1| (-881 |#1|))) (-15 -3072 (|#1| (-881 |#1|))) (-15 -3073 (|#1| (-881 |#1|))) (-15 -3074 (|#1| (-881 |#1|))) (-15 -3075 (|#1| (-881 |#1|))) (-15 -3076 (|#1| (-881 |#1|))) (-15 -3077 (|#1| (-881 |#1|))) (-15 -3078 (|#1| (-881 |#1|)))) (-989)) (T -922)) -((-3078 (*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989)))) (-3074 (*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) -((-3096 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-3084 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-3094 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-3082 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-3098 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-3086 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-3079 (((-3 |#1| "failed") |#1| (-714)) 1 T ELT)) (-3081 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-3080 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-3099 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-3087 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-3097 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-3085 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-3095 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-3083 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-3102 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-3090 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-3100 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-3088 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-3104 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-3092 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-3105 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-3093 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-3103 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-3091 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-3101 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-3089 (((-3 |#1| "failed") |#1|) 11 T ELT))) -(((-923 |#1|) (-113) (-1143)) (T -923)) -((-3105 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3104 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3103 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3102 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3101 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3100 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3099 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3098 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3097 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3096 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3095 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3094 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3093 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3092 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3091 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3090 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3089 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3088 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3087 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3086 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3085 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3084 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3083 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3082 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3081 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3080 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3079 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-714)) (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(-13 (-10 -7 (-15 -3079 ((-3 |t#1| "failed") |t#1| (-714))) (-15 -3080 ((-3 |t#1| "failed") |t#1|)) (-15 -3081 ((-3 |t#1| "failed") |t#1|)) (-15 -3082 ((-3 |t#1| "failed") |t#1|)) (-15 -3083 ((-3 |t#1| "failed") |t#1|)) (-15 -3084 ((-3 |t#1| "failed") |t#1|)) (-15 -3085 ((-3 |t#1| "failed") |t#1|)) (-15 -3086 ((-3 |t#1| "failed") |t#1|)) (-15 -3087 ((-3 |t#1| "failed") |t#1|)) (-15 -3088 ((-3 |t#1| "failed") |t#1|)) (-15 -3089 ((-3 |t#1| "failed") |t#1|)) (-15 -3090 ((-3 |t#1| "failed") |t#1|)) (-15 -3091 ((-3 |t#1| "failed") |t#1|)) (-15 -3092 ((-3 |t#1| "failed") |t#1|)) (-15 -3093 ((-3 |t#1| "failed") |t#1|)) (-15 -3094 ((-3 |t#1| "failed") |t#1|)) (-15 -3095 ((-3 |t#1| "failed") |t#1|)) (-15 -3096 ((-3 |t#1| "failed") |t#1|)) (-15 -3097 ((-3 |t#1| "failed") |t#1|)) (-15 -3098 ((-3 |t#1| "failed") |t#1|)) (-15 -3099 ((-3 |t#1| "failed") |t#1|)) (-15 -3100 ((-3 |t#1| "failed") |t#1|)) (-15 -3101 ((-3 |t#1| "failed") |t#1|)) (-15 -3102 ((-3 |t#1| "failed") |t#1|)) (-15 -3103 ((-3 |t#1| "failed") |t#1|)) (-15 -3104 ((-3 |t#1| "failed") |t#1|)) (-15 -3105 ((-3 |t#1| "failed") |t#1|)))) -((-3107 ((|#4| |#4| (-599 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-3106 ((|#4| |#4| (-599 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-4108 ((|#4| (-1 |#4| (-884 |#1|)) |#4|) 31 T ELT))) -(((-924 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3106 (|#4| |#4| |#3|)) (-15 -3106 (|#4| |#4| (-599 |#3|))) (-15 -3107 (|#4| |#4| |#3|)) (-15 -3107 (|#4| |#4| (-599 |#3|))) (-15 -4108 (|#4| (-1 |#4| (-884 |#1|)) |#4|))) (-989) (-738) (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ "failed") (-1117))))) (-888 (-884 |#1|) |#2| |#3|)) (T -924)) -((-4108 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-884 *4))) (-4 *4 (-989)) (-4 *2 (-888 (-884 *4) *5 *6)) (-4 *5 (-738)) (-4 *6 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ #1="failed") (-1117)))))) (-5 *1 (-924 *4 *5 *6 *2)))) (-3107 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *6)) (-4 *6 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ #1#) (-1117)))))) (-4 *4 (-989)) (-4 *5 (-738)) (-5 *1 (-924 *4 *5 *6 *2)) (-4 *2 (-888 (-884 *4) *5 *6)))) (-3107 (*1 *2 *2 *3) (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ #1#) (-1117)))))) (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-888 (-884 *4) *5 *3)))) (-3106 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *6)) (-4 *6 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ #1#) (-1117)))))) (-4 *4 (-989)) (-4 *5 (-738)) (-5 *1 (-924 *4 *5 *6 *2)) (-4 *2 (-888 (-884 *4) *5 *6)))) (-3106 (*1 *2 *2 *3) (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ #1#) (-1117)))))) (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-888 (-884 *4) *5 *3))))) -((-3108 ((|#2| |#3|) 35 T ELT)) (-4069 (((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))) |#2|) 79 T ELT)) (-4068 (((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|)))) 100 T ELT))) -(((-925 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4068 ((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))))) (-15 -4069 ((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))) |#2|)) (-15 -3108 (|#2| |#3|))) (-305) (-1183 |#1|) (-1183 |#2|) (-682 |#2| |#3|)) (T -925)) -((-3108 (*1 *2 *3) (-12 (-4 *3 (-1183 *2)) (-4 *2 (-1183 *4)) (-5 *1 (-925 *4 *2 *3 *5)) (-4 *4 (-305)) (-4 *5 (-682 *2 *3)))) (-4069 (*1 *2 *3) (-12 (-4 *4 (-305)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 *3)) (-5 *2 (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) (-5 *1 (-925 *4 *3 *5 *6)) (-4 *6 (-682 *3 *5)))) (-4068 (*1 *2) (-12 (-4 *3 (-305)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 *4)) (-5 *2 (-2 (|:| -2113 (-647 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-647 *4)))) (-5 *1 (-925 *3 *4 *5 *6)) (-4 *6 (-682 *4 *5))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3541 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3799 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-261))) ELT)) (-3112 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-3113 (($ (-599 |#4|) |#4|) 25 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3109 (($ $) 69 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3543 (((-85) $) 70 T ELT)) (-3713 (($) 30 T ELT)) (-3110 ((|#4| $) 74 T ELT)) (-3111 (((-599 |#4|) $) 73 T ELT)) (-4096 (((-797) $) 68 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-926 |#1| |#2| |#3| |#4|) (-13 (-1041) (-568 (-797)) (-10 -8 (-15 -3713 ($)) (-15 -3113 ($ (-599 |#4|) |#4|)) (-15 -3541 ((-3 (-85) #1="failed") $)) (-15 -3112 ($ $ (-3 (-85) #1#))) (-15 -3543 ((-85) $)) (-15 -3111 ((-599 |#4|) $)) (-15 -3110 (|#4| $)) (-15 -3109 ($ $)) (IF (|has| |#1| (-261)) (IF (|has| |#1| (-120)) (-15 -3799 ($ $)) |%noBranch|) |%noBranch|))) (-406) (-781) (-738) (-888 |#1| |#3| |#2|)) (T -926)) -((-3713 (*1 *1) (-12 (-4 *2 (-406)) (-4 *3 (-781)) (-4 *4 (-738)) (-5 *1 (-926 *2 *3 *4 *5)) (-4 *5 (-888 *2 *4 *3)))) (-3113 (*1 *1 *2 *3) (-12 (-5 *2 (-599 *3)) (-4 *3 (-888 *4 *6 *5)) (-4 *4 (-406)) (-4 *5 (-781)) (-4 *6 (-738)) (-5 *1 (-926 *4 *5 *6 *3)))) (-3541 (*1 *2 *1) (|partial| -12 (-4 *3 (-406)) (-4 *4 (-781)) (-4 *5 (-738)) (-5 *2 (-85)) (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4)))) (-3112 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-406)) (-4 *4 (-781)) (-4 *5 (-738)) (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4)))) (-3543 (*1 *2 *1) (-12 (-4 *3 (-406)) (-4 *4 (-781)) (-4 *5 (-738)) (-5 *2 (-85)) (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4)))) (-3111 (*1 *2 *1) (-12 (-4 *3 (-406)) (-4 *4 (-781)) (-4 *5 (-738)) (-5 *2 (-599 *6)) (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4)))) (-3110 (*1 *2 *1) (-12 (-4 *2 (-888 *3 *5 *4)) (-5 *1 (-926 *3 *4 *5 *2)) (-4 *3 (-406)) (-4 *4 (-781)) (-4 *5 (-738)))) (-3109 (*1 *1 *1) (-12 (-4 *2 (-406)) (-4 *3 (-781)) (-4 *4 (-738)) (-5 *1 (-926 *2 *3 *4 *5)) (-4 *5 (-888 *2 *4 *3)))) (-3799 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-261)) (-4 *2 (-406)) (-4 *3 (-781)) (-4 *4 (-738)) (-5 *1 (-926 *2 *3 *4 *5)) (-4 *5 (-888 *2 *4 *3))))) -((-3114 (((-926 (-361 (-499)) (-798 |#1|) (-196 |#2| (-714)) (-205 |#1| (-361 (-499)))) (-926 (-361 (-499)) (-798 |#1|) (-196 |#2| (-714)) (-205 |#1| (-361 (-499))))) 82 T ELT))) -(((-927 |#1| |#2|) (-10 -7 (-15 -3114 ((-926 (-361 (-499)) (-798 |#1|) (-196 |#2| (-714)) (-205 |#1| (-361 (-499)))) (-926 (-361 (-499)) (-798 |#1|) (-196 |#2| (-714)) (-205 |#1| (-361 (-499))))))) (-599 (-1117)) (-714)) (T -927)) -((-3114 (*1 *2 *2) (-12 (-5 *2 (-926 (-361 (-499)) (-798 *3) (-196 *4 (-714)) (-205 *3 (-361 (-499))))) (-14 *3 (-599 (-1117))) (-14 *4 (-714)) (-5 *1 (-927 *3 *4))))) -((-3408 (((-85) |#5| |#5|) 44 T ELT)) (-3411 (((-85) |#5| |#5|) 59 T ELT)) (-3416 (((-85) |#5| (-599 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3412 (((-85) (-599 |#4|) (-599 |#4|)) 65 T ELT)) (-3418 (((-85) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) 70 T ELT)) (-3407 (((-1213)) 32 T ELT)) (-3406 (((-1213) (-1099) (-1099) (-1099)) 28 T ELT)) (-3417 (((-599 |#5|) (-599 |#5|)) 100 T ELT)) (-3419 (((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)))) 92 T ELT)) (-3420 (((-599 (-2 (|:| -3404 (-599 |#4|)) (|:| -1633 |#5|) (|:| |ineq| (-599 |#4|)))) (-599 |#4|) (-599 |#5|) (-85) (-85)) 122 T ELT)) (-3410 (((-85) |#5| |#5|) 53 T ELT)) (-3415 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3413 (((-85) (-599 |#4|) (-599 |#4|)) 64 T ELT)) (-3414 (((-85) (-599 |#4|) (-599 |#4|)) 66 T ELT)) (-3849 (((-85) (-599 |#4|) (-599 |#4|)) 67 T ELT)) (-3421 (((-3 (-2 (|:| -3404 (-599 |#4|)) (|:| -1633 |#5|) (|:| |ineq| (-599 |#4|))) #1#) (-599 |#4|) |#5| (-599 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3409 (((-599 |#5|) (-599 |#5|)) 49 T ELT))) -(((-928 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3406 ((-1213) (-1099) (-1099) (-1099))) (-15 -3407 ((-1213))) (-15 -3408 ((-85) |#5| |#5|)) (-15 -3409 ((-599 |#5|) (-599 |#5|))) (-15 -3410 ((-85) |#5| |#5|)) (-15 -3411 ((-85) |#5| |#5|)) (-15 -3412 ((-85) (-599 |#4|) (-599 |#4|))) (-15 -3413 ((-85) (-599 |#4|) (-599 |#4|))) (-15 -3414 ((-85) (-599 |#4|) (-599 |#4|))) (-15 -3849 ((-85) (-599 |#4|) (-599 |#4|))) (-15 -3415 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3416 ((-85) |#5| |#5|)) (-15 -3416 ((-85) |#5| (-599 |#5|))) (-15 -3417 ((-599 |#5|) (-599 |#5|))) (-15 -3418 ((-85) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)))) (-15 -3419 ((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) (-15 -3420 ((-599 (-2 (|:| -3404 (-599 |#4|)) (|:| -1633 |#5|) (|:| |ineq| (-599 |#4|)))) (-599 |#4|) (-599 |#5|) (-85) (-85))) (-15 -3421 ((-3 (-2 (|:| -3404 (-599 |#4|)) (|:| -1633 |#5|) (|:| |ineq| (-599 |#4|))) #1#) (-599 |#4|) |#5| (-599 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|) (-1011 |#1| |#2| |#3| |#4|)) (T -928)) -((-3421 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *9 (-1005 *6 *7 *8)) (-5 *2 (-2 (|:| -3404 (-599 *9)) (|:| -1633 *4) (|:| |ineq| (-599 *9)))) (-5 *1 (-928 *6 *7 *8 *9 *4)) (-5 *3 (-599 *9)) (-4 *4 (-1011 *6 *7 *8 *9)))) (-3420 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-599 *10)) (-5 *5 (-85)) (-4 *10 (-1011 *6 *7 *8 *9)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *9 (-1005 *6 *7 *8)) (-5 *2 (-599 (-2 (|:| -3404 (-599 *9)) (|:| -1633 *10) (|:| |ineq| (-599 *9))))) (-5 *1 (-928 *6 *7 *8 *9 *10)) (-5 *3 (-599 *9)))) (-3419 (*1 *2 *2) (-12 (-5 *2 (-599 (-2 (|:| |val| (-599 *6)) (|:| -1633 *7)))) (-4 *6 (-1005 *3 *4 *5)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) (-3418 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-599 *7)) (|:| -1633 *8))) (-4 *7 (-1005 *4 *5 *6)) (-4 *8 (-1011 *4 *5 *6 *7)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)))) (-3417 (*1 *2 *2) (-12 (-5 *2 (-599 *7)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) (-3416 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-928 *5 *6 *7 *8 *3)))) (-3416 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3415 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3849 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3414 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3413 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3412 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3411 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3410 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3409 (*1 *2 *2) (-12 (-5 *2 (-599 *7)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) (-3408 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3407 (*1 *2) (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-1213)) (-5 *1 (-928 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6)))) (-3406 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7))))) -((-3981 (((-1117) $) 15 T ELT)) (-3542 (((-1099) $) 16 T ELT)) (-3364 (($ (-1117) (-1099)) 14 T ELT)) (-4096 (((-797) $) 13 T ELT))) -(((-929) (-13 (-568 (-797)) (-10 -8 (-15 -3364 ($ (-1117) (-1099))) (-15 -3981 ((-1117) $)) (-15 -3542 ((-1099) $))))) (T -929)) -((-3364 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1099)) (-5 *1 (-929)))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-929)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-929))))) -((-3295 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1117) #1#) $) 72 T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 (-499) #1#) $) 102 T ELT)) (-3294 ((|#2| $) NIL T ELT) (((-1117) $) 67 T ELT) (((-361 (-499)) $) NIL T ELT) (((-499) $) 99 T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) 121 T ELT) (((-647 |#2|) (-647 $)) 35 T ELT)) (-3115 (($) 105 T ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 82 T ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 91 T ELT)) (-3117 (($ $) 10 T ELT)) (-3585 (((-649 $) $) 27 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3586 (($) 16 T ELT)) (-3250 (($ $) 61 T ELT)) (-3908 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3116 (($ $) 12 T ELT)) (-4122 (((-825 (-499)) $) 77 T ELT) (((-825 (-333)) $) 86 T ELT) (((-488) $) 47 T ELT) (((-333) $) 51 T ELT) (((-179) $) 55 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1117)) 64 T ELT)) (-3248 (((-714)) 38 T ELT)) (-2806 (((-85) $ $) 57 T ELT))) -(((-930 |#1| |#2|) (-10 -7 (-15 -2806 ((-85) |#1| |#1|)) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -3586 (|#1|)) (-15 -3585 ((-649 |#1|) |#1|)) (-15 -3295 ((-3 (-499) #1="failed") |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -4122 ((-179) |#1|)) (-15 -4122 ((-333) |#1|)) (-15 -4122 ((-488) |#1|)) (-15 -4096 (|#1| (-1117))) (-15 -3295 ((-3 (-1117) #1#) |#1|)) (-15 -3294 ((-1117) |#1|)) (-15 -3115 (|#1|)) (-15 -3250 (|#1| |#1|)) (-15 -3116 (|#1| |#1|)) (-15 -3117 (|#1| |#1|)) (-15 -2917 ((-823 (-333) |#1|) |#1| (-825 (-333)) (-823 (-333) |#1|))) (-15 -2917 ((-823 (-499) |#1|) |#1| (-825 (-499)) (-823 (-499) |#1|))) (-15 -4122 ((-825 (-333)) |#1|)) (-15 -4122 ((-825 (-499)) |#1|)) (-15 -2380 ((-647 |#2|) (-647 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-647 (-499)) (-647 |#1|))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|) (-714))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4108 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -4096 (|#1| |#2|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -4096 (|#1| |#1|)) (-15 -3248 ((-714))) (-15 -4096 (|#1| (-499))) (-15 -4096 ((-797) |#1|))) (-931 |#2|) (-510)) (T -930)) -((-3248 (*1 *2) (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-930 *3 *4)) (-4 *3 (-931 *4))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3251 ((|#1| $) 170 (|has| |#1| (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 161 (|has| |#1| (-848)) ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1="failed") (-599 (-1111 $)) (-1111 $)) 164 (|has| |#1| (-848)) ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3773 (((-499) $) 151 (|has| |#1| (-763)) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#1| #2="failed") $) 200 T ELT) (((-3 (-1117) #2#) $) 159 (|has| |#1| (-978 (-1117))) ELT) (((-3 (-361 (-499)) #2#) $) 142 (|has| |#1| (-978 (-499))) ELT) (((-3 (-499) #2#) $) 140 (|has| |#1| (-978 (-499))) ELT)) (-3294 ((|#1| $) 201 T ELT) (((-1117) $) 160 (|has| |#1| (-978 (-1117))) ELT) (((-361 (-499)) $) 143 (|has| |#1| (-978 (-499))) ELT) (((-499) $) 141 (|has| |#1| (-978 (-499))) ELT)) (-2683 (($ $ $) 68 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 185 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 184 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 183 T ELT) (((-647 |#1|) (-647 $)) 182 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3115 (($) 168 (|has| |#1| (-498)) ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-3873 (((-85) $) 86 T ELT)) (-3324 (((-85) $) 153 (|has| |#1| (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 177 (|has| |#1| (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 176 (|has| |#1| (-821 (-333))) ELT)) (-2528 (((-85) $) 40 T ELT)) (-3117 (($ $) 172 T ELT)) (-3119 ((|#1| $) 174 T ELT)) (-3585 (((-649 $) $) 139 (|has| |#1| (-1092)) ELT)) (-3325 (((-85) $) 152 (|has| |#1| (-763)) ELT)) (-1675 (((-3 (-599 $) #3="failed") (-599 $) $) 65 T ELT)) (-2650 (($ $ $) 144 (|has| |#1| (-781)) ELT)) (-2978 (($ $ $) 145 (|has| |#1| (-781)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 192 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 187 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 186 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 181 T ELT) (((-647 |#1|) (-1207 $)) 180 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 85 T ELT)) (-3586 (($) 138 (|has| |#1| (-1092)) CONST)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3250 (($ $) 169 (|has| |#1| (-261)) ELT)) (-3252 ((|#1| $) 166 (|has| |#1| (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 163 (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 162 (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) 198 (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) 197 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) 196 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-247 |#1|))) 195 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) 194 (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) |#1|) 193 (|has| |#1| (-468 (-1117) |#1|)) ELT)) (-1677 (((-714) $) 71 T ELT)) (-3950 (($ $ |#1|) 199 (|has| |#1| (-240 |#1| |#1|)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-3908 (($ $ (-1 |#1| |#1|)) 191 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 190 T ELT) (($ $) 137 (|has| |#1| (-189)) ELT) (($ $ (-714)) 135 (|has| |#1| (-189)) ELT) (($ $ (-1117)) 133 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 131 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 130 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 129 (|has| |#1| (-838 (-1117))) ELT)) (-3116 (($ $) 171 T ELT)) (-3118 ((|#1| $) 173 T ELT)) (-4122 (((-825 (-499)) $) 179 (|has| |#1| (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) 178 (|has| |#1| (-569 (-825 (-333)))) ELT) (((-488) $) 156 (|has| |#1| (-569 (-488))) ELT) (((-333) $) 155 (|has| |#1| (-960)) ELT) (((-179) $) 154 (|has| |#1| (-960)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) 165 (-2681 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT) (($ |#1|) 204 T ELT) (($ (-1117)) 158 (|has| |#1| (-978 (-1117))) ELT)) (-2823 (((-649 $) $) 157 (-3677 (|has| |#1| (-118)) (-2681 (|has| $ (-118)) (|has| |#1| (-848)))) ELT)) (-3248 (((-714)) 37 T CONST)) (-3253 ((|#1| $) 167 (|has| |#1| (-498)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-3523 (($ $) 150 (|has| |#1| (-763)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1 |#1| |#1|)) 189 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 188 T ELT) (($ $) 136 (|has| |#1| (-189)) ELT) (($ $ (-714)) 134 (|has| |#1| (-189)) ELT) (($ $ (-1117)) 132 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 128 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 127 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 126 (|has| |#1| (-838 (-1117))) ELT)) (-2685 (((-85) $ $) 146 (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) 148 (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 147 (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 149 (|has| |#1| (-781)) ELT)) (-4099 (($ $ $) 80 T ELT) (($ |#1| |#1|) 175 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT) (($ |#1| $) 203 T ELT) (($ $ |#1|) 202 T ELT))) -(((-931 |#1|) (-113) (-510)) (T -931)) -((-4099 (*1 *1 *2 *2) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)))) (-3117 (*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)))) (-3116 (*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)))) (-3251 (*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)) (-4 *2 (-261)))) (-3250 (*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)) (-4 *2 (-261)))) (-3115 (*1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-498)) (-4 *2 (-510)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)) (-4 *2 (-498)))) (-3252 (*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)) (-4 *2 (-498))))) -(-13 (-318) (-38 |t#1|) (-978 |t#1|) (-293 |t#1|) (-184 |t#1|) (-332 |t#1|) (-819 |t#1|) (-354 |t#1|) (-10 -8 (-15 -4099 ($ |t#1| |t#1|)) (-15 -3119 (|t#1| $)) (-15 -3118 (|t#1| $)) (-15 -3117 ($ $)) (-15 -3116 ($ $)) (IF (|has| |t#1| (-1092)) (-6 (-1092)) |%noBranch|) (IF (|has| |t#1| (-978 (-499))) (PROGN (-6 (-978 (-499))) (-6 (-978 (-361 (-499))))) |%noBranch|) (IF (|has| |t#1| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |t#1| (-763)) (-6 (-763)) |%noBranch|) (IF (|has| |t#1| (-960)) (-6 (-960)) |%noBranch|) (IF (|has| |t#1| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-978 (-1117))) (-6 (-978 (-1117))) |%noBranch|) (IF (|has| |t#1| (-261)) (PROGN (-15 -3251 (|t#1| $)) (-15 -3250 ($ $))) |%noBranch|) (IF (|has| |t#1| (-498)) (PROGN (-15 -3115 ($)) (-15 -3253 (|t#1| $)) (-15 -3252 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-848)) (-6 (-848)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 (-1117)) |has| |#1| (-978 (-1117))) ((-571 |#1|) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-569 (-179)) |has| |#1| (-960)) ((-569 (-333)) |has| |#1| (-960)) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-569 (-825 (-333))) |has| |#1| (-569 (-825 (-333)))) ((-569 (-825 (-499))) |has| |#1| (-569 (-825 (-499)))) ((-186 $) -3677 (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) -3677 (|has| |#1| (-189)) (|has| |#1| (-190))) ((-224 |#1|) . T) ((-200) . T) ((-240 |#1| $) |has| |#1| (-240 |#1| |#1|)) ((-244) . T) ((-261) . T) ((-263 |#1|) |has| |#1| (-263 |#1|)) ((-318) . T) ((-293 |#1|) . T) ((-332 |#1|) . T) ((-354 |#1|) . T) ((-406) . T) ((-468 (-1117) |#1|) |has| |#1| (-468 (-1117) |#1|)) ((-468 |#1| |#1|) |has| |#1| (-263 |#1|)) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 (-499)) |has| |#1| (-596 (-499))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 |#1|) . T) ((-598 $) . T) ((-596 (-499)) |has| |#1| (-596 (-499))) ((-596 |#1|) . T) ((-675 (-361 (-499))) . T) ((-675 |#1|) . T) ((-675 $) . T) ((-684) . T) ((-735) |has| |#1| (-763)) ((-737) |has| |#1| (-763)) ((-739) |has| |#1| (-763)) ((-742) |has| |#1| (-763)) ((-763) |has| |#1| (-763)) ((-780) |has| |#1| (-763)) ((-781) -3677 (|has| |#1| (-781)) (|has| |#1| (-763))) ((-784) -3677 (|has| |#1| (-781)) (|has| |#1| (-763))) ((-831 $ (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-836 (-1117)) |has| |#1| (-836 (-1117))) ((-838 (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-821 (-333)) |has| |#1| (-821 (-333))) ((-821 (-499)) |has| |#1| (-821 (-499))) ((-819 |#1|) . T) ((-848) |has| |#1| (-848)) ((-859) . T) ((-960) |has| |#1| (-960)) ((-978 (-361 (-499))) |has| |#1| (-978 (-499))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 (-1117)) |has| |#1| (-978 (-1117))) ((-978 |#1|) . T) ((-991 (-361 (-499))) . T) ((-991 |#1|) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 |#1|) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1092) |has| |#1| (-1092)) ((-1157) . T) ((-1162) . T)) -((-4108 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) -(((-932 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 (|#4| (-1 |#2| |#1|) |#3|))) (-510) (-510) (-931 |#1|) (-931 |#2|)) (T -932)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-510)) (-4 *6 (-510)) (-4 *2 (-931 *6)) (-5 *1 (-932 *5 *6 *4 *2)) (-4 *4 (-931 *5))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ "failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3120 (($ (-1082 |#1| |#2|)) 11 T ELT)) (-3246 (((-1082 |#1| |#2|) $) 12 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3950 ((|#2| $ (-196 |#1| |#2|)) 16 T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT))) -(((-933 |#1| |#2|) (-13 (-21) (-240 (-196 |#1| |#2|) |#2|) (-10 -8 (-15 -3120 ($ (-1082 |#1| |#2|))) (-15 -3246 ((-1082 |#1| |#2|) $)))) (-857) (-318)) (T -933)) -((-3120 (*1 *1 *2) (-12 (-5 *2 (-1082 *3 *4)) (-14 *3 (-857)) (-4 *4 (-318)) (-5 *1 (-933 *3 *4)))) (-3246 (*1 *2 *1) (-12 (-5 *2 (-1082 *3 *4)) (-5 *1 (-933 *3 *4)) (-14 *3 (-857)) (-4 *4 (-318))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3344 (((-1075) $) 9 T ELT)) (-4096 (((-797) $) 15 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-934) (-13 (-1023) (-10 -8 (-15 -3344 ((-1075) $))))) (T -934)) -((-3344 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-934))))) -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3874 (($) 7 T CONST)) (-3123 (($ $) 50 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3983 (((-714) $) 49 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3122 ((|#1| $) 48 T ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3125 ((|#1| |#1| $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3124 ((|#1| $) 51 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-3121 ((|#1| $) 47 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-935 |#1|) (-113) (-1157)) (T -935)) -((-3125 (*1 *2 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157)))) (-3123 (*1 *1 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157)))) (-3983 (*1 *2 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1157)) (-5 *2 (-714)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157))))) -(-13 (-78 |t#1|) (-10 -8 (-6 -4145) (-15 -3125 (|t#1| |t#1| $)) (-15 -3124 (|t#1| $)) (-15 -3123 ($ $)) (-15 -3983 ((-714) $)) (-15 -3122 (|t#1| $)) (-15 -3121 (|t#1| $)))) -(((-34) . T) ((-78 |#1|) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3793 ((|#1| $) 12 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-498)) ELT)) (-3144 (((-85) $) NIL (|has| |#1| (-498)) ELT)) (-3143 (((-361 (-499)) $) NIL (|has| |#1| (-498)) ELT)) (-3126 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3254 ((|#1| $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3127 ((|#1| $) 15 T ELT)) (-3128 ((|#1| $) 14 T ELT)) (-3129 ((|#1| $) 13 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-247 |#1|))) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) NIL (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) |#1|) NIL (|has| |#1| (-468 (-1117) |#1|)) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-240 |#1| |#1|)) ELT)) (-3908 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3130 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-318)) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3523 ((|#1| $) NIL (|has| |#1| (-1000)) ELT)) (-2779 (($) 8 T CONST)) (-2785 (($) 10 T CONST)) (-2790 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-318)) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-318)) ELT))) -(((-936 |#1|) (-938 |#1|) (-146)) (T -936)) -NIL -((-3326 (((-85) $) 43 T ELT)) (-3295 (((-3 (-499) #1="failed") $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3294 (((-499) $) NIL T ELT) (((-361 (-499)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) 78 T ELT)) (-3144 (((-85) $) 72 T ELT)) (-3143 (((-361 (-499)) $) 76 T ELT)) (-2528 (((-85) $) 42 T ELT)) (-3254 ((|#2| $) 22 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2601 (($ $) 58 T ELT)) (-3908 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-4122 (((-488) $) 67 T ELT)) (-3130 (($ $) 17 T ELT)) (-4096 (((-797) $) 53 T ELT) (($ (-499)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-361 (-499))) NIL T ELT)) (-3248 (((-714)) 10 T ELT)) (-3523 ((|#2| $) 71 T ELT)) (-3174 (((-85) $ $) 26 T ELT)) (-2806 (((-85) $ $) 69 T ELT)) (-3987 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3989 (($ $ $) 27 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT))) -(((-937 |#1| |#2|) (-10 -7 (-15 -4096 (|#1| (-361 (-499)))) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -2806 ((-85) |#1| |#1|)) (-15 * (|#1| (-361 (-499)) |#1|)) (-15 * (|#1| |#1| (-361 (-499)))) (-15 -2601 (|#1| |#1|)) (-15 -4122 ((-488) |#1|)) (-15 -3145 ((-3 (-361 (-499)) #1="failed") |#1|)) (-15 -3143 ((-361 (-499)) |#1|)) (-15 -3144 ((-85) |#1|)) (-15 -3523 (|#2| |#1|)) (-15 -3254 (|#2| |#1|)) (-15 -3130 (|#1| |#1|)) (-15 -4108 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|) (-714))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -4096 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3248 ((-714))) (-15 -4096 (|#1| (-499))) (-15 -2528 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 -3326 ((-85) |#1|)) (-15 * (|#1| (-857) |#1|)) (-15 -3989 (|#1| |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -3174 ((-85) |#1| |#1|))) (-938 |#2|) (-146)) (T -937)) -((-3248 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-714)) (-5 *1 (-937 *3 *4)) (-4 *3 (-938 *4))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 (-499) #1="failed") $) 140 (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) 138 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 135 T ELT)) (-3294 (((-499) $) 139 (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) 137 (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 136 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 120 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 119 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 118 T ELT) (((-647 |#1|) (-647 $)) 117 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3793 ((|#1| $) 108 T ELT)) (-3145 (((-3 (-361 (-499)) "failed") $) 104 (|has| |#1| (-498)) ELT)) (-3144 (((-85) $) 106 (|has| |#1| (-498)) ELT)) (-3143 (((-361 (-499)) $) 105 (|has| |#1| (-498)) ELT)) (-3126 (($ |#1| |#1| |#1| |#1|) 109 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3254 ((|#1| $) 110 T ELT)) (-2650 (($ $ $) 92 (|has| |#1| (-781)) ELT)) (-2978 (($ $ $) 93 (|has| |#1| (-781)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 123 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 122 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 121 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 116 T ELT) (((-647 |#1|) (-1207 $)) 115 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 101 (|has| |#1| (-318)) ELT)) (-3127 ((|#1| $) 111 T ELT)) (-3128 ((|#1| $) 112 T ELT)) (-3129 ((|#1| $) 113 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) 129 (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) 128 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) 127 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-247 |#1|))) 126 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) 125 (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) |#1|) 124 (|has| |#1| (-468 (-1117) |#1|)) ELT)) (-3950 (($ $ |#1|) 130 (|has| |#1| (-240 |#1| |#1|)) ELT)) (-3908 (($ $ (-1 |#1| |#1|)) 134 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 133 T ELT) (($ $) 91 (|has| |#1| (-189)) ELT) (($ $ (-714)) 89 (|has| |#1| (-189)) ELT) (($ $ (-1117)) 87 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 85 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 84 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 83 (|has| |#1| (-838 (-1117))) ELT)) (-4122 (((-488) $) 102 (|has| |#1| (-569 (-488))) ELT)) (-3130 (($ $) 114 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-361 (-499))) 79 (-3677 (|has| |#1| (-318)) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-2823 (((-649 $) $) 103 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-3523 ((|#1| $) 107 (|has| |#1| (-1000)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1 |#1| |#1|)) 132 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 131 T ELT) (($ $) 90 (|has| |#1| (-189)) ELT) (($ $ (-714)) 88 (|has| |#1| (-189)) ELT) (($ $ (-1117)) 86 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 82 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 81 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 80 (|has| |#1| (-838 (-1117))) ELT)) (-2685 (((-85) $ $) 94 (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) 96 (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 95 (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 97 (|has| |#1| (-781)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 100 (|has| |#1| (-318)) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ $ (-361 (-499))) 99 (|has| |#1| (-318)) ELT) (($ (-361 (-499)) $) 98 (|has| |#1| (-318)) ELT))) -(((-938 |#1|) (-113) (-146)) (T -938)) -((-3130 (*1 *1 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)))) (-3126 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)) (-4 *2 (-1000)))) (-3144 (*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-85)))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-361 (-499))))) (-3145 (*1 *2 *1) (|partial| -12 (-4 *1 (-938 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-361 (-499)))))) -(-13 (-38 |t#1|) (-366 |t#1|) (-184 |t#1|) (-293 |t#1|) (-332 |t#1|) (-10 -8 (-15 -3130 ($ $)) (-15 -3129 (|t#1| $)) (-15 -3128 (|t#1| $)) (-15 -3127 (|t#1| $)) (-15 -3254 (|t#1| $)) (-15 -3126 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3793 (|t#1| $)) (IF (|has| |t#1| (-244)) (-6 (-244)) |%noBranch|) (IF (|has| |t#1| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |t#1| (-318)) (-6 (-200)) |%noBranch|) (IF (|has| |t#1| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-1000)) (-15 -3523 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-498)) (PROGN (-15 -3144 ((-85) $)) (-15 -3143 ((-361 (-499)) $)) (-15 -3145 ((-3 (-361 (-499)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-318)) ((-38 |#1|) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-318)) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-318)) (|has| |#1| (-244))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-318))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-186 $) -3677 (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) -3677 (|has| |#1| (-189)) (|has| |#1| (-190))) ((-224 |#1|) . T) ((-200) |has| |#1| (-318)) ((-240 |#1| $) |has| |#1| (-240 |#1| |#1|)) ((-244) -3677 (|has| |#1| (-318)) (|has| |#1| (-244))) ((-263 |#1|) |has| |#1| (-263 |#1|)) ((-293 |#1|) . T) ((-332 |#1|) . T) ((-366 |#1|) . T) ((-468 (-1117) |#1|) |has| |#1| (-468 (-1117) |#1|)) ((-468 |#1| |#1|) |has| |#1| (-263 |#1|)) ((-604 (-361 (-499))) |has| |#1| (-318)) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-318)) ((-606 (-499)) |has| |#1| (-596 (-499))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-318)) ((-598 |#1|) . T) ((-596 (-499)) |has| |#1| (-596 (-499))) ((-596 |#1|) . T) ((-675 (-361 (-499))) |has| |#1| (-318)) ((-675 |#1|) . T) ((-684) . T) ((-781) |has| |#1| (-781)) ((-784) |has| |#1| (-781)) ((-831 $ (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-836 (-1117)) |has| |#1| (-836 (-1117))) ((-838 (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-991 (-361 (-499))) |has| |#1| (-318)) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-318)) (|has| |#1| (-244))) ((-996 (-361 (-499))) |has| |#1| (-318)) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-318)) (|has| |#1| (-244))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-4108 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) -(((-939 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 (|#3| (-1 |#4| |#2|) |#1|))) (-938 |#2|) (-146) (-938 |#4|) (-146)) (T -939)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-938 *6)) (-5 *1 (-939 *4 *5 *2 *6)) (-4 *4 (-938 *5))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3874 (($) NIL T CONST)) (-3123 (($ $) 23 T ELT)) (-3131 (($ (-599 |#1|)) 33 T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3983 (((-714) $) 26 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 28 T ELT)) (-3757 (($ |#1| $) 17 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3122 ((|#1| $) 27 T ELT)) (-1309 ((|#1| $) 22 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3125 ((|#1| |#1| $) 16 T ELT)) (-3543 (((-85) $) 18 T ELT)) (-3713 (($) NIL T ELT)) (-3124 ((|#1| $) 21 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) NIL T ELT)) (-3121 ((|#1| $) 30 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-940 |#1|) (-13 (-935 |#1|) (-10 -8 (-15 -3131 ($ (-599 |#1|))))) (-1041)) (T -940)) -((-3131 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-940 *3))))) -((-3158 (($ $) 12 T ELT)) (-3132 (($ $ (-499)) 13 T ELT))) -(((-941 |#1|) (-10 -7 (-15 -3158 (|#1| |#1|)) (-15 -3132 (|#1| |#1| (-499)))) (-942)) (T -941)) -NIL -((-3158 (($ $) 6 T ELT)) (-3132 (($ $ (-499)) 7 T ELT)) (** (($ $ (-361 (-499))) 8 T ELT))) -(((-942) (-113)) (T -942)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-942)) (-5 *2 (-361 (-499))))) (-3132 (*1 *1 *1 *2) (-12 (-4 *1 (-942)) (-5 *2 (-499)))) (-3158 (*1 *1 *1) (-4 *1 (-942)))) -(-13 (-10 -8 (-15 -3158 ($ $)) (-15 -3132 ($ $ (-499))) (-15 ** ($ $ (-361 (-499)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1740 (((-2 (|:| |num| (-1207 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2164 (($ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2162 (((-85) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1880 (((-647 (-361 |#2|)) (-1207 $)) NIL T ELT) (((-647 (-361 |#2|))) NIL T ELT)) (-3470 (((-361 |#2|) $) NIL T ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1678 (((-85) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3258 (((-714)) NIL (|has| (-361 |#2|) (-323)) ELT)) (-1754 (((-85)) NIL T ELT)) (-1753 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| (-361 |#2|) (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-361 |#2|) (-978 (-361 (-499)))) ELT) (((-3 (-361 |#2|) #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| (-361 |#2|) (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| (-361 |#2|) (-978 (-361 (-499)))) ELT) (((-361 |#2|) $) NIL T ELT)) (-1890 (($ (-1207 (-361 |#2|)) (-1207 $)) NIL T ELT) (($ (-1207 (-361 |#2|))) 79 T ELT) (($ (-1207 |#2|) |#2|) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-361 |#2|) (-305)) ELT)) (-2683 (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1879 (((-647 (-361 |#2|)) $ (-1207 $)) NIL T ELT) (((-647 (-361 |#2|)) $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-361 |#2|))) (|:| |vec| (-1207 (-361 |#2|)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-361 |#2|)) (-647 $)) NIL T ELT)) (-1745 (((-1207 $) (-1207 $)) NIL T ELT)) (-3992 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-361 |#3|)) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-1732 (((-599 (-599 |#1|))) NIL (|has| |#1| (-323)) ELT)) (-1757 (((-85) |#1| |#1|) NIL T ELT)) (-3231 (((-857)) NIL T ELT)) (-3115 (($) NIL (|has| (-361 |#2|) (-323)) ELT)) (-1752 (((-85)) NIL T ELT)) (-1751 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2682 (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3643 (($ $) NIL T ELT)) (-2954 (($) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1773 (((-85) $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1864 (($ $ (-714)) NIL (|has| (-361 |#2|) (-305)) ELT) (($ $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-3873 (((-85) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3922 (((-857) $) NIL (|has| (-361 |#2|) (-305)) ELT) (((-766 (-857)) $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3517 (((-714)) NIL T ELT)) (-1746 (((-1207 $) (-1207 $)) NIL T ELT)) (-3254 (((-361 |#2|) $) NIL T ELT)) (-1733 (((-599 (-884 |#1|)) (-1117)) NIL (|has| |#1| (-318)) ELT)) (-3585 (((-649 $) $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2115 ((|#3| $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2111 (((-857) $) NIL (|has| (-361 |#2|) (-323)) ELT)) (-3200 ((|#3| $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-361 |#2|))) (|:| |vec| (-1207 (-361 |#2|)))) (-1207 $) $) NIL T ELT) (((-647 (-361 |#2|)) (-1207 $)) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1741 (((-647 (-361 |#2|))) 57 T ELT)) (-1743 (((-647 (-361 |#2|))) 56 T ELT)) (-2601 (($ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1738 (($ (-1207 |#2|) |#2|) 80 T ELT)) (-1742 (((-647 (-361 |#2|))) 55 T ELT)) (-1744 (((-647 (-361 |#2|))) 54 T ELT)) (-1737 (((-2 (|:| |num| (-647 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1739 (((-2 (|:| |num| (-1207 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1750 (((-1207 $)) 51 T ELT)) (-4068 (((-1207 $)) 50 T ELT)) (-1749 (((-85) $) NIL T ELT)) (-1748 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3586 (($) NIL (|has| (-361 |#2|) (-305)) CONST)) (-2518 (($ (-857)) NIL (|has| (-361 |#2|) (-323)) ELT)) (-1735 (((-3 |#2| #1#)) 70 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1759 (((-714)) NIL T ELT)) (-2527 (($) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| (-361 |#2|) (-305)) ELT)) (-3882 (((-359 $) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-361 |#2|) (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1677 (((-714) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3950 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1736 (((-3 |#2| #1#)) 68 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3907 (((-361 |#2|) (-1207 $)) NIL T ELT) (((-361 |#2|)) 47 T ELT)) (-1865 (((-714) $) NIL (|has| (-361 |#2|) (-305)) ELT) (((-3 (-714) #1#) $ $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-3908 (($ $ (-1 (-361 |#2|) (-361 |#2|))) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-1 (-361 |#2|) (-361 |#2|)) (-714)) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT) (($ $) NIL (-3677 (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT)) (-2526 (((-647 (-361 |#2|)) (-1207 $) (-1 (-361 |#2|) (-361 |#2|))) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3323 ((|#3|) 58 T ELT)) (-1767 (($) NIL (|has| (-361 |#2|) (-305)) ELT)) (-3362 (((-1207 (-361 |#2|)) $ (-1207 $)) NIL T ELT) (((-647 (-361 |#2|)) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 (-361 |#2|)) $) 81 T ELT) (((-647 (-361 |#2|)) (-1207 $)) NIL T ELT)) (-4122 (((-1207 (-361 |#2|)) $) NIL T ELT) (($ (-1207 (-361 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1747 (((-1207 $) (-1207 $)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-361 |#2|)) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2823 (($ $) NIL (|has| (-361 |#2|) (-305)) ELT) (((-649 $) $) NIL (|has| (-361 |#2|) (-118)) ELT)) (-2565 ((|#3| $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1756 (((-85)) 65 T ELT)) (-1755 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1734 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1758 (((-85)) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1 (-361 |#2|) (-361 |#2|))) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-1 (-361 |#2|) (-361 |#2|)) (-714)) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT) (($ $) NIL (-3677 (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| (-361 |#2|) (-318)) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 |#2|)) NIL T ELT) (($ (-361 |#2|) $) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-361 (-499))) NIL (|has| (-361 |#2|) (-318)) ELT))) -(((-943 |#1| |#2| |#3| |#4| |#5|) (-297 |#1| |#2| |#3|) (-1162) (-1183 |#1|) (-1183 (-361 |#2|)) (-361 |#2|) (-714)) (T -943)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3138 (((-599 (-499)) $) 73 T ELT)) (-3134 (($ (-599 (-499))) 81 T ELT)) (-3251 (((-499) $) 48 (|has| (-499) (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| (-499) (-763)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) 60 T ELT) (((-3 (-1117) #1#) $) NIL (|has| (-499) (-978 (-1117))) ELT) (((-3 (-361 (-499)) #1#) $) 57 (|has| (-499) (-978 (-499))) ELT) (((-3 (-499) #1#) $) 60 (|has| (-499) (-978 (-499))) ELT)) (-3294 (((-499) $) NIL T ELT) (((-1117) $) NIL (|has| (-499) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL (|has| (-499) (-978 (-499))) ELT) (((-499) $) NIL (|has| (-499) (-978 (-499))) ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-499)) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-499) (-498)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3136 (((-599 (-499)) $) 79 T ELT)) (-3324 (((-85) $) NIL (|has| (-499) (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| (-499) (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| (-499) (-821 (-333))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL T ELT)) (-3119 (((-499) $) 45 T ELT)) (-3585 (((-649 $) $) NIL (|has| (-499) (-1092)) ELT)) (-3325 (((-85) $) NIL (|has| (-499) (-763)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-499) (-781)) ELT)) (-4108 (($ (-1 (-499) (-499)) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT) (((-647 (-499)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-499) (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL (|has| (-499) (-261)) ELT) (((-361 (-499)) $) 50 T ELT)) (-3137 (((-1095 (-499)) $) 78 T ELT)) (-3133 (($ (-599 (-499)) (-599 (-499))) 82 T ELT)) (-3252 (((-499) $) 64 (|has| (-499) (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-3918 (($ $ (-599 (-499)) (-599 (-499))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-499) (-499)) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-247 (-499))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-599 (-247 (-499)))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-599 (-1117)) (-599 (-499))) NIL (|has| (-499) (-468 (-1117) (-499))) ELT) (($ $ (-1117) (-499)) NIL (|has| (-499) (-468 (-1117) (-499))) ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ $ (-499)) NIL (|has| (-499) (-240 (-499) (-499))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-1 (-499) (-499))) NIL T ELT) (($ $ (-1 (-499) (-499)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $) 15 (|has| (-499) (-189)) ELT) (($ $ (-714)) NIL (|has| (-499) (-189)) ELT)) (-3116 (($ $) NIL T ELT)) (-3118 (((-499) $) 47 T ELT)) (-3135 (((-599 (-499)) $) 80 T ELT)) (-4122 (((-825 (-499)) $) NIL (|has| (-499) (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| (-499) (-569 (-825 (-333)))) ELT) (((-488) $) NIL (|has| (-499) (-569 (-488))) ELT) (((-333) $) NIL (|has| (-499) (-960)) ELT) (((-179) $) NIL (|has| (-499) (-960)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| (-499) (-848))) ELT)) (-4096 (((-797) $) 108 T ELT) (($ (-499)) 51 T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) 27 T ELT) (($ (-499)) 51 T ELT) (($ (-1117)) NIL (|has| (-499) (-978 (-1117))) ELT) (((-361 (-499)) $) 25 T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| (-499) (-848))) (|has| (-499) (-118))) ELT)) (-3248 (((-714)) 13 T CONST)) (-3253 (((-499) $) 62 (|has| (-499) (-498)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3523 (($ $) NIL (|has| (-499) (-763)) ELT)) (-2779 (($) 14 T CONST)) (-2785 (($) 17 T CONST)) (-2790 (($ $ (-1 (-499) (-499))) NIL T ELT) (($ $ (-1 (-499) (-499)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $) NIL (|has| (-499) (-189)) ELT) (($ $ (-714)) NIL (|has| (-499) (-189)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-3174 (((-85) $ $) 21 T ELT)) (-2805 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-2806 (((-85) $ $) 40 (|has| (-499) (-781)) ELT)) (-4099 (($ $ $) 36 T ELT) (($ (-499) (-499)) 38 T ELT)) (-3987 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3989 (($ $ $) 28 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ (-499) $) 32 T ELT) (($ $ (-499)) NIL T ELT))) -(((-944 |#1|) (-13 (-931 (-499)) (-568 (-361 (-499))) (-10 -8 (-15 -3250 ((-361 (-499)) $)) (-15 -3138 ((-599 (-499)) $)) (-15 -3137 ((-1095 (-499)) $)) (-15 -3136 ((-599 (-499)) $)) (-15 -3135 ((-599 (-499)) $)) (-15 -3134 ($ (-599 (-499)))) (-15 -3133 ($ (-599 (-499)) (-599 (-499)))))) (-499)) (T -944)) -((-3250 (*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499)))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499)))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-1095 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499)))) (-3136 (*1 *2 *1) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499)))) (-3134 (*1 *1 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499)))) (-3133 (*1 *1 *2 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499))))) -((-3139 (((-51) (-361 (-499)) (-499)) 9 T ELT))) -(((-945) (-10 -7 (-15 -3139 ((-51) (-361 (-499)) (-499))))) (T -945)) -((-3139 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-499))) (-5 *4 (-499)) (-5 *2 (-51)) (-5 *1 (-945))))) -((-3258 (((-499)) 21 T ELT)) (-3142 (((-499)) 26 T ELT)) (-3141 (((-1213) (-499)) 24 T ELT)) (-3140 (((-499) (-499)) 27 T ELT) (((-499)) 20 T ELT))) -(((-946) (-10 -7 (-15 -3140 ((-499))) (-15 -3258 ((-499))) (-15 -3140 ((-499) (-499))) (-15 -3141 ((-1213) (-499))) (-15 -3142 ((-499))))) (T -946)) -((-3142 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-946)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-946)))) (-3140 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-946)))) (-3258 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-946)))) (-3140 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-946))))) -((-3883 (((-359 |#1|) |#1|) 43 T ELT)) (-3882 (((-359 |#1|) |#1|) 41 T ELT))) -(((-947 |#1|) (-10 -7 (-15 -3882 ((-359 |#1|) |#1|)) (-15 -3883 ((-359 |#1|) |#1|))) (-1183 (-361 (-499)))) (T -947)) -((-3883 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-947 *3)) (-4 *3 (-1183 (-361 (-499)))))) (-3882 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-947 *3)) (-4 *3 (-1183 (-361 (-499))))))) -((-3145 (((-3 (-361 (-499)) "failed") |#1|) 15 T ELT)) (-3144 (((-85) |#1|) 14 T ELT)) (-3143 (((-361 (-499)) |#1|) 10 T ELT))) -(((-948 |#1|) (-10 -7 (-15 -3143 ((-361 (-499)) |#1|)) (-15 -3144 ((-85) |#1|)) (-15 -3145 ((-3 (-361 (-499)) "failed") |#1|))) (-978 (-361 (-499)))) (T -948)) -((-3145 (*1 *2 *3) (|partial| -12 (-5 *2 (-361 (-499))) (-5 *1 (-948 *3)) (-4 *3 (-978 *2)))) (-3144 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-948 *3)) (-4 *3 (-978 (-361 (-499)))))) (-3143 (*1 *2 *3) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-948 *3)) (-4 *3 (-978 *2))))) -((-3938 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3950 ((|#2| $ #1#) 10 T ELT)) (-3149 (((-85) $ $) 18 T ELT))) -(((-949 |#1| |#2|) (-10 -7 (-15 -3938 (|#2| |#1| #1="value" |#2|)) (-15 -3149 ((-85) |#1| |#1|)) (-15 -3950 (|#2| |#1| #1#))) (-950 |#2|) (-1157)) (T -949)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 52 T ELT)) (-3146 ((|#1| $ |#1|) 43 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 45 (|has| $ (-6 -4146)) ELT)) (-3874 (($) 7 T CONST)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 54 T ELT)) (-3148 (((-85) $ $) 46 (|has| |#1| (-1041)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3151 (((-599 |#1|) $) 49 T ELT)) (-3667 (((-85) $) 53 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ "value") 51 T ELT)) (-3150 (((-499) $ $) 48 T ELT)) (-3783 (((-85) $) 50 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) 55 T ELT)) (-3149 (((-85) $ $) 47 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-950 |#1|) (-113) (-1157)) (T -950)) -((-3662 (*1 *2 *1) (-12 (-4 *3 (-1157)) (-5 *2 (-599 *1)) (-4 *1 (-950 *3)))) (-3152 (*1 *2 *1) (-12 (-4 *3 (-1157)) (-5 *2 (-599 *1)) (-4 *1 (-950 *3)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-5 *2 (-85)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1157)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-950 *2)) (-4 *2 (-1157)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-5 *2 (-85)))) (-3151 (*1 *2 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-5 *2 (-599 *3)))) (-3150 (*1 *2 *1 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-5 *2 (-499)))) (-3149 (*1 *2 *1 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-85)))) (-3148 (*1 *2 *1 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-85)))) (-3147 (*1 *1 *1 *2) (-12 (-5 *2 (-599 *1)) (|has| *1 (-6 -4146)) (-4 *1 (-950 *3)) (-4 *3 (-1157)))) (-3938 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4146)) (-4 *1 (-950 *2)) (-4 *2 (-1157)))) (-3146 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-950 *2)) (-4 *2 (-1157))))) -(-13 (-443 |t#1|) (-10 -8 (-15 -3662 ((-599 $) $)) (-15 -3152 ((-599 $) $)) (-15 -3667 ((-85) $)) (-15 -3542 (|t#1| $)) (-15 -3950 (|t#1| $ "value")) (-15 -3783 ((-85) $)) (-15 -3151 ((-599 |t#1|) $)) (-15 -3150 ((-499) $ $)) (IF (|has| |t#1| (-1041)) (PROGN (-15 -3149 ((-85) $ $)) (-15 -3148 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-6 -4146)) (PROGN (-15 -3147 ($ $ (-599 $))) (-15 -3938 (|t#1| $ "value" |t#1|)) (-15 -3146 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) -((-3158 (($ $) 9 T ELT) (($ $ (-857)) 49 T ELT) (($ (-361 (-499))) 13 T ELT) (($ (-499)) 15 T ELT)) (-3321 (((-3 $ #1="failed") (-1111 $) (-857) (-797)) 24 T ELT) (((-3 $ #1#) (-1111 $) (-857)) 32 T ELT)) (-3132 (($ $ (-499)) 58 T ELT)) (-3248 (((-714)) 18 T ELT)) (-3322 (((-599 $) (-1111 $)) NIL T ELT) (((-599 $) (-1111 (-361 (-499)))) 63 T ELT) (((-599 $) (-1111 (-499))) 68 T ELT) (((-599 $) (-884 $)) 72 T ELT) (((-599 $) (-884 (-361 (-499)))) 76 T ELT) (((-599 $) (-884 (-499))) 80 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT) (($ $ (-361 (-499))) 53 T ELT))) -(((-951 |#1|) (-10 -7 (-15 -3158 (|#1| (-499))) (-15 -3158 (|#1| (-361 (-499)))) (-15 -3158 (|#1| |#1| (-857))) (-15 -3322 ((-599 |#1|) (-884 (-499)))) (-15 -3322 ((-599 |#1|) (-884 (-361 (-499))))) (-15 -3322 ((-599 |#1|) (-884 |#1|))) (-15 -3322 ((-599 |#1|) (-1111 (-499)))) (-15 -3322 ((-599 |#1|) (-1111 (-361 (-499))))) (-15 -3322 ((-599 |#1|) (-1111 |#1|))) (-15 -3321 ((-3 |#1| #1="failed") (-1111 |#1|) (-857))) (-15 -3321 ((-3 |#1| #1#) (-1111 |#1|) (-857) (-797))) (-15 ** (|#1| |#1| (-361 (-499)))) (-15 -3132 (|#1| |#1| (-499))) (-15 -3158 (|#1| |#1|)) (-15 ** (|#1| |#1| (-499))) (-15 -3248 ((-714))) (-15 ** (|#1| |#1| (-714))) (-15 ** (|#1| |#1| (-857)))) (-952)) (T -951)) -((-3248 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-951 *3)) (-4 *3 (-952))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 108 T ELT)) (-2164 (($ $) 109 T ELT)) (-2162 (((-85) $) 111 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 128 T ELT)) (-4121 (((-359 $) $) 129 T ELT)) (-3158 (($ $) 92 T ELT) (($ $ (-857)) 78 T ELT) (($ (-361 (-499))) 77 T ELT) (($ (-499)) 76 T ELT)) (-1678 (((-85) $ $) 119 T ELT)) (-3773 (((-499) $) 145 T ELT)) (-3874 (($) 22 T CONST)) (-3321 (((-3 $ "failed") (-1111 $) (-857) (-797)) 86 T ELT) (((-3 $ "failed") (-1111 $) (-857)) 85 T ELT)) (-3295 (((-3 (-499) #1="failed") $) 105 (|has| (-361 (-499)) (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) 103 (|has| (-361 (-499)) (-978 (-361 (-499)))) ELT) (((-3 (-361 (-499)) #1#) $) 100 T ELT)) (-3294 (((-499) $) 104 (|has| (-361 (-499)) (-978 (-499))) ELT) (((-361 (-499)) $) 102 (|has| (-361 (-499)) (-978 (-361 (-499)))) ELT) (((-361 (-499)) $) 101 T ELT)) (-3154 (($ $ (-797)) 75 T ELT)) (-3153 (($ $ (-797)) 74 T ELT)) (-2683 (($ $ $) 123 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 122 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 117 T ELT)) (-3873 (((-85) $) 130 T ELT)) (-3324 (((-85) $) 143 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 91 T ELT)) (-3325 (((-85) $) 144 T ELT)) (-1675 (((-3 (-599 $) #2="failed") (-599 $) $) 126 T ELT)) (-2650 (($ $ $) 137 T ELT)) (-2978 (($ $ $) 138 T ELT)) (-3155 (((-3 (-1111 $) "failed") $) 87 T ELT)) (-3157 (((-3 (-797) "failed") $) 89 T ELT)) (-3156 (((-3 (-1111 $) "failed") $) 88 T ELT)) (-1993 (($ (-599 $)) 115 T ELT) (($ $ $) 114 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 131 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 116 T ELT)) (-3282 (($ (-599 $)) 113 T ELT) (($ $ $) 112 T ELT)) (-3882 (((-359 $) $) 127 T ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 125 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 124 T ELT)) (-3606 (((-3 $ "failed") $ $) 107 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 118 T ELT)) (-1677 (((-714) $) 120 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 121 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 (-499))) 135 T ELT) (($ $) 106 T ELT) (($ (-361 (-499))) 99 T ELT) (($ (-499)) 98 T ELT) (($ (-361 (-499))) 95 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 110 T ELT)) (-3920 (((-361 (-499)) $ $) 73 T ELT)) (-3322 (((-599 $) (-1111 $)) 84 T ELT) (((-599 $) (-1111 (-361 (-499)))) 83 T ELT) (((-599 $) (-1111 (-499))) 82 T ELT) (((-599 $) (-884 $)) 81 T ELT) (((-599 $) (-884 (-361 (-499)))) 80 T ELT) (((-599 $) (-884 (-499))) 79 T ELT)) (-3523 (($ $) 146 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2685 (((-85) $ $) 139 T ELT)) (-2686 (((-85) $ $) 141 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 140 T ELT)) (-2806 (((-85) $ $) 142 T ELT)) (-4099 (($ $ $) 136 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 132 T ELT) (($ $ (-361 (-499))) 90 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-361 (-499)) $) 134 T ELT) (($ $ (-361 (-499))) 133 T ELT) (($ (-499) $) 97 T ELT) (($ $ (-499)) 96 T ELT) (($ (-361 (-499)) $) 94 T ELT) (($ $ (-361 (-499))) 93 T ELT))) -(((-952) (-113)) (T -952)) -((-3158 (*1 *1 *1) (-4 *1 (-952))) (-3157 (*1 *2 *1) (|partial| -12 (-4 *1 (-952)) (-5 *2 (-797)))) (-3156 (*1 *2 *1) (|partial| -12 (-5 *2 (-1111 *1)) (-4 *1 (-952)))) (-3155 (*1 *2 *1) (|partial| -12 (-5 *2 (-1111 *1)) (-4 *1 (-952)))) (-3321 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1111 *1)) (-5 *3 (-857)) (-5 *4 (-797)) (-4 *1 (-952)))) (-3321 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1111 *1)) (-5 *3 (-857)) (-4 *1 (-952)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-1111 *1)) (-4 *1 (-952)) (-5 *2 (-599 *1)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-1111 (-361 (-499)))) (-5 *2 (-599 *1)) (-4 *1 (-952)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-1111 (-499))) (-5 *2 (-599 *1)) (-4 *1 (-952)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-884 *1)) (-4 *1 (-952)) (-5 *2 (-599 *1)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-884 (-361 (-499)))) (-5 *2 (-599 *1)) (-4 *1 (-952)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-884 (-499))) (-5 *2 (-599 *1)) (-4 *1 (-952)))) (-3158 (*1 *1 *1 *2) (-12 (-4 *1 (-952)) (-5 *2 (-857)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-4 *1 (-952)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-952)))) (-3154 (*1 *1 *1 *2) (-12 (-4 *1 (-952)) (-5 *2 (-797)))) (-3153 (*1 *1 *1 *2) (-12 (-4 *1 (-952)) (-5 *2 (-797)))) (-3920 (*1 *2 *1 *1) (-12 (-4 *1 (-952)) (-5 *2 (-361 (-499)))))) -(-13 (-120) (-780) (-146) (-318) (-366 (-361 (-499))) (-38 (-499)) (-38 (-361 (-499))) (-942) (-10 -8 (-15 -3157 ((-3 (-797) "failed") $)) (-15 -3156 ((-3 (-1111 $) "failed") $)) (-15 -3155 ((-3 (-1111 $) "failed") $)) (-15 -3321 ((-3 $ "failed") (-1111 $) (-857) (-797))) (-15 -3321 ((-3 $ "failed") (-1111 $) (-857))) (-15 -3322 ((-599 $) (-1111 $))) (-15 -3322 ((-599 $) (-1111 (-361 (-499))))) (-15 -3322 ((-599 $) (-1111 (-499)))) (-15 -3322 ((-599 $) (-884 $))) (-15 -3322 ((-599 $) (-884 (-361 (-499))))) (-15 -3322 ((-599 $) (-884 (-499)))) (-15 -3158 ($ $ (-857))) (-15 -3158 ($ $)) (-15 -3158 ($ (-361 (-499)))) (-15 -3158 ($ (-499))) (-15 -3154 ($ $ (-797))) (-15 -3153 ($ $ (-797))) (-15 -3920 ((-361 (-499)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 (-499)) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 (-499) (-499)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-200) . T) ((-244) . T) ((-261) . T) ((-318) . T) ((-366 (-361 (-499))) . T) ((-406) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 (-499)) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 (-499)) . T) ((-598 $) . T) ((-675 (-361 (-499))) . T) ((-675 (-499)) . T) ((-675 $) . T) ((-684) . T) ((-735) . T) ((-737) . T) ((-739) . T) ((-742) . T) ((-780) . T) ((-781) . T) ((-784) . T) ((-859) . T) ((-942) . T) ((-978 (-361 (-499))) . T) ((-978 (-499)) |has| (-361 (-499)) (-978 (-499))) ((-991 (-361 (-499))) . T) ((-991 (-499)) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 (-499)) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) . T)) -((-3159 (((-2 (|:| |ans| |#2|) (|:| -3259 |#2|) (|:| |sol?| (-85))) (-499) |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-599 |#2|)) (-1 (-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) -(((-953 |#1| |#2|) (-10 -7 (-15 -3159 ((-2 (|:| |ans| |#2|) (|:| -3259 |#2|) (|:| |sol?| (-85))) (-499) |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-599 |#2|)) (-1 (-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-406) (-120) (-978 (-499)) (-596 (-499))) (-13 (-1143) (-27) (-375 |#1|))) (T -953)) -((-3159 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1117)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-599 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2237 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1143) (-27) (-375 *8))) (-4 *8 (-13 (-406) (-120) (-978 *3) (-596 *3))) (-5 *3 (-499)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3259 *4) (|:| |sol?| (-85)))) (-5 *1 (-953 *8 *4))))) -((-3160 (((-3 (-599 |#2|) #1="failed") (-499) |#2| |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-599 |#2|)) (-1 (-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) -(((-954 |#1| |#2|) (-10 -7 (-15 -3160 ((-3 (-599 |#2|) #1="failed") (-499) |#2| |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-599 |#2|)) (-1 (-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-406) (-120) (-978 (-499)) (-596 (-499))) (-13 (-1143) (-27) (-375 |#1|))) (T -954)) -((-3160 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1117)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-599 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2237 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1143) (-27) (-375 *8))) (-4 *8 (-13 (-406) (-120) (-978 *3) (-596 *3))) (-5 *3 (-499)) (-5 *2 (-599 *4)) (-5 *1 (-954 *8 *4))))) -((-3163 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3404 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-499)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-499) (-1 |#2| |#2|)) 39 T ELT)) (-3161 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-361 |#2|)) (|:| |c| (-361 |#2|)) (|:| -3216 |#2|)) "failed") (-361 |#2|) (-361 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3162 (((-2 (|:| |ans| (-361 |#2|)) (|:| |nosol| (-85))) (-361 |#2|) (-361 |#2|)) 76 T ELT))) -(((-955 |#1| |#2|) (-10 -7 (-15 -3161 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-361 |#2|)) (|:| |c| (-361 |#2|)) (|:| -3216 |#2|)) "failed") (-361 |#2|) (-361 |#2|) (-1 |#2| |#2|))) (-15 -3162 ((-2 (|:| |ans| (-361 |#2|)) (|:| |nosol| (-85))) (-361 |#2|) (-361 |#2|))) (-15 -3163 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3404 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-499)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-499) (-1 |#2| |#2|)))) (-13 (-318) (-120) (-978 (-499))) (-1183 |#1|)) (T -955)) -((-3163 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1183 *6)) (-4 *6 (-13 (-318) (-120) (-978 *4))) (-5 *4 (-499)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3404 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-955 *6 *3)))) (-3162 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-318) (-120) (-978 (-499)))) (-4 *5 (-1183 *4)) (-5 *2 (-2 (|:| |ans| (-361 *5)) (|:| |nosol| (-85)))) (-5 *1 (-955 *4 *5)) (-5 *3 (-361 *5)))) (-3161 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-318) (-120) (-978 (-499)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-361 *6)) (|:| |c| (-361 *6)) (|:| -3216 *6))) (-5 *1 (-955 *5 *6)) (-5 *3 (-361 *6))))) -((-3164 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-361 |#2|)) (|:| |h| |#2|) (|:| |c1| (-361 |#2|)) (|:| |c2| (-361 |#2|)) (|:| -3216 |#2|)) #1="failed") (-361 |#2|) (-361 |#2|) (-361 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3165 (((-3 (-599 (-361 |#2|)) #1#) (-361 |#2|) (-361 |#2|) (-361 |#2|)) 34 T ELT))) -(((-956 |#1| |#2|) (-10 -7 (-15 -3164 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-361 |#2|)) (|:| |h| |#2|) (|:| |c1| (-361 |#2|)) (|:| |c2| (-361 |#2|)) (|:| -3216 |#2|)) #1="failed") (-361 |#2|) (-361 |#2|) (-361 |#2|) (-1 |#2| |#2|))) (-15 -3165 ((-3 (-599 (-361 |#2|)) #1#) (-361 |#2|) (-361 |#2|) (-361 |#2|)))) (-13 (-318) (-120) (-978 (-499))) (-1183 |#1|)) (T -956)) -((-3165 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-318) (-120) (-978 (-499)))) (-4 *5 (-1183 *4)) (-5 *2 (-599 (-361 *5))) (-5 *1 (-956 *4 *5)) (-5 *3 (-361 *5)))) (-3164 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-318) (-120) (-978 (-499)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-361 *6)) (|:| |h| *6) (|:| |c1| (-361 *6)) (|:| |c2| (-361 *6)) (|:| -3216 *6))) (-5 *1 (-956 *5 *6)) (-5 *3 (-361 *6))))) -((-3166 (((-1 |#1|) (-599 (-2 (|:| -3542 |#1|) (|:| -1555 (-499))))) 34 T ELT)) (-3223 (((-1 |#1|) (-1037 |#1|)) 42 T ELT)) (-3167 (((-1 |#1|) (-1207 |#1|) (-1207 (-499)) (-499)) 31 T ELT))) -(((-957 |#1|) (-10 -7 (-15 -3223 ((-1 |#1|) (-1037 |#1|))) (-15 -3166 ((-1 |#1|) (-599 (-2 (|:| -3542 |#1|) (|:| -1555 (-499)))))) (-15 -3167 ((-1 |#1|) (-1207 |#1|) (-1207 (-499)) (-499)))) (-1041)) (T -957)) -((-3167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1207 *6)) (-5 *4 (-1207 (-499))) (-5 *5 (-499)) (-4 *6 (-1041)) (-5 *2 (-1 *6)) (-5 *1 (-957 *6)))) (-3166 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| -3542 *4) (|:| -1555 (-499))))) (-4 *4 (-1041)) (-5 *2 (-1 *4)) (-5 *1 (-957 *4)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-1037 *4)) (-4 *4 (-1041)) (-5 *2 (-1 *4)) (-5 *1 (-957 *4))))) -((-3922 (((-714) (-288 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) -(((-958 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3922 ((-714) (-288 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-318) (-1183 |#1|) (-1183 (-361 |#2|)) (-297 |#1| |#2| |#3|) (-13 (-323) (-318))) (T -958)) -((-3922 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-288 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-318)) (-4 *7 (-1183 *6)) (-4 *4 (-1183 (-361 *7))) (-4 *8 (-297 *6 *7 *4)) (-4 *9 (-13 (-323) (-318))) (-5 *2 (-714)) (-5 *1 (-958 *6 *7 *4 *8 *9))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3743 (((-1075) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-1075) $) 11 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-959) (-13 (-1023) (-10 -8 (-15 -3743 ((-1075) $)) (-15 -3371 ((-1075) $))))) (T -959)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-959)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-959))))) -((-4122 (((-179) $) 6 T ELT) (((-333) $) 9 T ELT))) -(((-960) (-113)) (T -960)) -NIL -(-13 (-569 (-179)) (-569 (-333))) -(((-569 (-179)) . T) ((-569 (-333)) . T)) -((-3256 (((-3 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) "failed") |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) 32 T ELT) (((-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-361 (-499))) 29 T ELT)) (-3170 (((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-361 (-499))) 34 T ELT) (((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-361 (-499))) 30 T ELT) (((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) 33 T ELT) (((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1|) 28 T ELT)) (-3169 (((-599 (-361 (-499))) (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) 20 T ELT)) (-3168 (((-361 (-499)) (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) 17 T ELT))) -(((-961 |#1|) (-10 -7 (-15 -3170 ((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1|)) (-15 -3170 ((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-15 -3170 ((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-361 (-499)))) (-15 -3170 ((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-361 (-499)))) (-15 -3256 ((-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-361 (-499)))) (-15 -3256 ((-3 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) "failed") |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-15 -3168 ((-361 (-499)) (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-15 -3169 ((-599 (-361 (-499))) (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))))) (-1183 (-499))) (T -961)) -((-3169 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-5 *2 (-599 (-361 (-499)))) (-5 *1 (-961 *4)) (-4 *4 (-1183 (-499))))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) (-5 *2 (-361 (-499))) (-5 *1 (-961 *4)) (-4 *4 (-1183 (-499))))) (-3256 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))))) (-3256 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) (-5 *4 (-361 (-499))) (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))))) (-3170 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-361 (-499))) (-5 *2 (-599 (-2 (|:| -3260 *5) (|:| -3259 *5)))) (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))) (-5 *4 (-2 (|:| -3260 *5) (|:| -3259 *5))))) (-3170 (*1 *2 *3 *4) (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))) (-5 *4 (-361 (-499))))) (-3170 (*1 *2 *3 *4) (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))) (-5 *4 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))))) (-3170 (*1 *2 *3) (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499)))))) -((-3256 (((-3 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) "failed") |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) 35 T ELT) (((-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-361 (-499))) 32 T ELT)) (-3170 (((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-361 (-499))) 30 T ELT) (((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-361 (-499))) 26 T ELT) (((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) 28 T ELT) (((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1|) 24 T ELT))) -(((-962 |#1|) (-10 -7 (-15 -3170 ((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1|)) (-15 -3170 ((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-15 -3170 ((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-361 (-499)))) (-15 -3170 ((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-361 (-499)))) (-15 -3256 ((-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-361 (-499)))) (-15 -3256 ((-3 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) "failed") |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))))) (-1183 (-361 (-499)))) (T -962)) -((-3256 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) (-5 *1 (-962 *3)) (-4 *3 (-1183 (-361 (-499)))))) (-3256 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) (-5 *4 (-361 (-499))) (-5 *1 (-962 *3)) (-4 *3 (-1183 *4)))) (-3170 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-361 (-499))) (-5 *2 (-599 (-2 (|:| -3260 *5) (|:| -3259 *5)))) (-5 *1 (-962 *3)) (-4 *3 (-1183 *5)) (-5 *4 (-2 (|:| -3260 *5) (|:| -3259 *5))))) (-3170 (*1 *2 *3 *4) (-12 (-5 *4 (-361 (-499))) (-5 *2 (-599 (-2 (|:| -3260 *4) (|:| -3259 *4)))) (-5 *1 (-962 *3)) (-4 *3 (-1183 *4)))) (-3170 (*1 *2 *3 *4) (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-5 *1 (-962 *3)) (-4 *3 (-1183 (-361 (-499)))) (-5 *4 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))))) (-3170 (*1 *2 *3) (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-5 *1 (-962 *3)) (-4 *3 (-1183 (-361 (-499))))))) -((-3721 (((-599 (-333)) (-884 (-499)) (-333)) 28 T ELT) (((-599 (-333)) (-884 (-361 (-499))) (-333)) 27 T ELT)) (-4119 (((-599 (-599 (-333))) (-599 (-884 (-499))) (-599 (-1117)) (-333)) 37 T ELT))) -(((-963) (-10 -7 (-15 -3721 ((-599 (-333)) (-884 (-361 (-499))) (-333))) (-15 -3721 ((-599 (-333)) (-884 (-499)) (-333))) (-15 -4119 ((-599 (-599 (-333))) (-599 (-884 (-499))) (-599 (-1117)) (-333))))) (T -963)) -((-4119 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-599 (-1117))) (-5 *2 (-599 (-599 (-333)))) (-5 *1 (-963)) (-5 *5 (-333)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-884 (-499))) (-5 *2 (-599 (-333))) (-5 *1 (-963)) (-5 *4 (-333)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-884 (-361 (-499)))) (-5 *2 (-599 (-333))) (-5 *1 (-963)) (-5 *4 (-333))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 75 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-3158 (($ $) NIL T ELT) (($ $ (-857)) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-499)) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) 70 T ELT)) (-3874 (($) NIL T CONST)) (-3321 (((-3 $ #1#) (-1111 $) (-857) (-797)) NIL T ELT) (((-3 $ #1#) (-1111 $) (-857)) 55 T ELT)) (-3295 (((-3 (-361 (-499)) #1#) $) NIL (|has| (-361 (-499)) (-978 (-361 (-499)))) ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 116 T ELT) (((-3 (-499) #1#) $) NIL (-3677 (|has| (-361 (-499)) (-978 (-499))) (|has| |#1| (-978 (-499)))) ELT)) (-3294 (((-361 (-499)) $) 17 (|has| (-361 (-499)) (-978 (-361 (-499)))) ELT) (((-361 (-499)) $) 17 T ELT) ((|#1| $) 117 T ELT) (((-499) $) NIL (-3677 (|has| (-361 (-499)) (-978 (-499))) (|has| |#1| (-978 (-499)))) ELT)) (-3154 (($ $ (-797)) 47 T ELT)) (-3153 (($ $ (-797)) 48 T ELT)) (-2683 (($ $ $) NIL T ELT)) (-3320 (((-361 (-499)) $ $) 21 T ELT)) (-3607 (((-3 $ #1#) $) 88 T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3324 (((-85) $) 66 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL T ELT)) (-3325 (((-85) $) 69 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3155 (((-3 (-1111 $) #1#) $) 83 T ELT)) (-3157 (((-3 (-797) #1#) $) 82 T ELT)) (-3156 (((-3 (-1111 $) #1#) $) 80 T ELT)) (-3171 (((-3 (-1001 $ (-1111 $)) #1#) $) 78 T ELT)) (-1993 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 89 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-4096 (((-797) $) 87 T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ $) 63 T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#1|) 119 T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3920 (((-361 (-499)) $ $) 27 T ELT)) (-3322 (((-599 $) (-1111 $)) 61 T ELT) (((-599 $) (-1111 (-361 (-499)))) NIL T ELT) (((-599 $) (-1111 (-499))) NIL T ELT) (((-599 $) (-884 $)) NIL T ELT) (((-599 $) (-884 (-361 (-499)))) NIL T ELT) (((-599 $) (-884 (-499))) NIL T ELT)) (-3172 (($ (-1001 $ (-1111 $)) (-797)) 46 T ELT)) (-3523 (($ $) 22 T ELT)) (-2779 (($) 32 T CONST)) (-2785 (($) 39 T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 76 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 24 T ELT)) (-4099 (($ $ $) 37 T ELT)) (-3987 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3989 (($ $ $) 112 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 98 T ELT) (($ $ $) 104 T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-499) $) 98 T ELT) (($ $ (-499)) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ |#1| $) 102 T ELT) (($ $ |#1|) NIL T ELT))) -(((-964 |#1|) (-13 (-952) (-366 |#1|) (-38 |#1|) (-10 -8 (-15 -3172 ($ (-1001 $ (-1111 $)) (-797))) (-15 -3171 ((-3 (-1001 $ (-1111 $)) "failed") $)) (-15 -3320 ((-361 (-499)) $ $)))) (-13 (-780) (-318) (-960))) (T -964)) -((-3172 (*1 *1 *2 *3) (-12 (-5 *2 (-1001 (-964 *4) (-1111 (-964 *4)))) (-5 *3 (-797)) (-5 *1 (-964 *4)) (-4 *4 (-13 (-780) (-318) (-960))))) (-3171 (*1 *2 *1) (|partial| -12 (-5 *2 (-1001 (-964 *3) (-1111 (-964 *3)))) (-5 *1 (-964 *3)) (-4 *3 (-13 (-780) (-318) (-960))))) (-3320 (*1 *2 *1 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-964 *3)) (-4 *3 (-13 (-780) (-318) (-960)))))) -((-3173 (((-2 (|:| -3404 |#2|) (|:| -2631 (-599 |#1|))) |#2| (-599 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) -(((-965 |#1| |#2|) (-10 -7 (-15 -3173 (|#2| |#2| |#1|)) (-15 -3173 ((-2 (|:| -3404 |#2|) (|:| -2631 (-599 |#1|))) |#2| (-599 |#1|)))) (-318) (-616 |#1|)) (T -965)) -((-3173 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-5 *2 (-2 (|:| -3404 *3) (|:| -2631 (-599 *5)))) (-5 *1 (-965 *5 *3)) (-5 *4 (-599 *5)) (-4 *3 (-616 *5)))) (-3173 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-965 *3 *2)) (-4 *2 (-616 *3))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3175 ((|#1| $ |#1|) 14 T ELT)) (-3938 ((|#1| $ |#1|) 12 T ELT)) (-3177 (($ |#1|) 10 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3950 ((|#1| $) 11 T ELT)) (-3176 ((|#1| $) 13 T ELT)) (-4096 (((-797) $) 19 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3174 (((-85) $ $) 9 T ELT))) -(((-966 |#1|) (-13 (-1157) (-10 -8 (-15 -3177 ($ |#1|)) (-15 -3950 (|#1| $)) (-15 -3938 (|#1| $ |#1|)) (-15 -3176 (|#1| $)) (-15 -3175 (|#1| $ |#1|)) (-15 -3174 ((-85) $ $)) (IF (|has| |#1| (-1041)) (-6 (-1041)) |%noBranch|))) (-1157)) (T -966)) -((-3177 (*1 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157)))) (-3950 (*1 *2 *1) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157)))) (-3938 (*1 *2 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157)))) (-3176 (*1 *2 *1) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157)))) (-3175 (*1 *2 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157)))) (-3174 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-966 *3)) (-4 *3 (-1157))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |#4|)))) (-599 |#4|)) NIL T ELT)) (-3832 (((-599 $) (-599 |#4|)) 117 T ELT) (((-599 $) (-599 |#4|) (-85)) 118 T ELT) (((-599 $) (-599 |#4|) (-85) (-85)) 116 T ELT) (((-599 $) (-599 |#4|) (-85) (-85) (-85) (-85)) 119 T ELT)) (-3204 (((-599 |#3|) $) NIL T ELT)) (-3029 (((-85) $) NIL T ELT)) (-3020 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3843 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3838 ((|#4| |#4| $) NIL T ELT)) (-3925 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| $) 111 T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3860 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#4| #1="failed") $ |#3|) 66 T ELT)) (-3874 (($) NIL T CONST)) (-3025 (((-85) $) 29 (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3839 (((-599 |#4|) (-599 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) NIL (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) NIL (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ #1#) (-599 |#4|)) NIL T ELT)) (-3294 (($ (-599 |#4|)) NIL T ELT)) (-3949 (((-3 $ #1#) $) 45 T ELT)) (-3835 ((|#4| |#4| $) 69 T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-3546 (($ |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 84 (|has| |#1| (-510)) ELT)) (-3844 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3833 ((|#4| |#4| $) NIL T ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4145)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#4|)) (|:| -1795 (-599 |#4|))) $) NIL T ELT)) (-3335 (((-85) |#4| $) NIL T ELT)) (-3333 (((-85) |#4| $) NIL T ELT)) (-3336 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3578 (((-2 (|:| |val| (-599 |#4|)) (|:| |towers| (-599 $))) (-599 |#4|) (-85) (-85)) 132 T ELT)) (-3010 (((-599 |#4|) $) 18 (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3318 ((|#3| $) 38 T ELT)) (-2727 (((-599 |#4|) $) 19 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3035 (((-599 |#3|) $) NIL T ELT)) (-3034 (((-85) |#3| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3329 (((-3 |#4| (-599 $)) |#4| |#4| $) NIL T ELT)) (-3328 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| |#4| $) 109 T ELT)) (-3948 (((-3 |#4| #1#) $) 42 T ELT)) (-3330 (((-599 $) |#4| $) 92 T ELT)) (-3332 (((-3 (-85) (-599 $)) |#4| $) NIL T ELT)) (-3331 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 $))) |#4| $) 102 T ELT) (((-85) |#4| $) 64 T ELT)) (-3376 (((-599 $) |#4| $) 114 T ELT) (((-599 $) (-599 |#4|) $) NIL T ELT) (((-599 $) (-599 |#4|) (-599 $)) 115 T ELT) (((-599 $) |#4| (-599 $)) NIL T ELT)) (-3579 (((-599 $) (-599 |#4|) (-85) (-85) (-85)) 127 T ELT)) (-3580 (($ |#4| $) 81 T ELT) (($ (-599 |#4|) $) 82 T ELT) (((-599 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 78 T ELT)) (-3847 (((-599 |#4|) $) NIL T ELT)) (-3841 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3836 ((|#4| |#4| $) NIL T ELT)) (-3849 (((-85) $ $) NIL T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-510)) ELT)) (-3842 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3837 ((|#4| |#4| $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 (((-3 |#4| #1#) $) 40 T ELT)) (-1387 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3829 (((-3 $ #1#) $ |#4|) 59 T ELT)) (-3919 (($ $ |#4|) NIL T ELT) (((-599 $) |#4| $) 94 T ELT) (((-599 $) |#4| (-599 $)) NIL T ELT) (((-599 $) (-599 |#4|) $) NIL T ELT) (((-599 $) (-599 |#4|) (-599 $)) 88 T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 17 T ELT)) (-3713 (($) 14 T ELT)) (-4098 (((-714) $) NIL T ELT)) (-2048 (((-714) |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (((-714) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 13 T ELT)) (-4122 (((-488) $) NIL (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) 22 T ELT)) (-3031 (($ $ |#3|) 52 T ELT)) (-3033 (($ $ |#3|) 54 T ELT)) (-3834 (($ $) NIL T ELT)) (-3032 (($ $ |#3|) NIL T ELT)) (-4096 (((-797) $) 35 T ELT) (((-599 |#4|) $) 46 T ELT)) (-3828 (((-714) $) NIL (|has| |#3| (-323)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3840 (((-85) $ (-1 (-85) |#4| (-599 |#4|))) NIL T ELT)) (-3327 (((-599 $) |#4| $) 91 T ELT) (((-599 $) |#4| (-599 $)) NIL T ELT) (((-599 $) (-599 |#4|) $) NIL T ELT) (((-599 $) (-599 |#4|) (-599 $)) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 |#3|) $) NIL T ELT)) (-3334 (((-85) |#4| $) NIL T ELT)) (-4083 (((-85) |#3| $) 65 T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-967 |#1| |#2| |#3| |#4|) (-13 (-1011 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3580 ((-599 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3832 ((-599 $) (-599 |#4|) (-85) (-85))) (-15 -3832 ((-599 $) (-599 |#4|) (-85) (-85) (-85) (-85))) (-15 -3579 ((-599 $) (-599 |#4|) (-85) (-85) (-85))) (-15 -3578 ((-2 (|:| |val| (-599 |#4|)) (|:| |towers| (-599 $))) (-599 |#4|) (-85) (-85))))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|)) (T -967)) -((-3580 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-967 *5 *6 *7 *3))) (-5 *1 (-967 *5 *6 *7 *3)) (-4 *3 (-1005 *5 *6 *7)))) (-3832 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-967 *5 *6 *7 *8))) (-5 *1 (-967 *5 *6 *7 *8)))) (-3832 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-967 *5 *6 *7 *8))) (-5 *1 (-967 *5 *6 *7 *8)))) (-3579 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-967 *5 *6 *7 *8))) (-5 *1 (-967 *5 *6 *7 *8)))) (-3578 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-599 *8)) (|:| |towers| (-599 (-967 *5 *6 *7 *8))))) (-5 *1 (-967 *5 *6 *7 *8)) (-5 *3 (-599 *8))))) -((-3178 (((-599 (-2 (|:| |radval| (-268 (-499))) (|:| |radmult| (-499)) (|:| |radvect| (-599 (-647 (-268 (-499))))))) (-647 (-361 (-884 (-499))))) 67 T ELT)) (-3179 (((-599 (-647 (-268 (-499)))) (-268 (-499)) (-647 (-361 (-884 (-499))))) 52 T ELT)) (-3180 (((-599 (-268 (-499))) (-647 (-361 (-884 (-499))))) 45 T ELT)) (-3184 (((-599 (-647 (-268 (-499)))) (-647 (-361 (-884 (-499))))) 85 T ELT)) (-3182 (((-647 (-268 (-499))) (-647 (-268 (-499)))) 38 T ELT)) (-3183 (((-599 (-647 (-268 (-499)))) (-599 (-647 (-268 (-499))))) 74 T ELT)) (-3181 (((-3 (-647 (-268 (-499))) "failed") (-647 (-361 (-884 (-499))))) 82 T ELT))) -(((-968) (-10 -7 (-15 -3178 ((-599 (-2 (|:| |radval| (-268 (-499))) (|:| |radmult| (-499)) (|:| |radvect| (-599 (-647 (-268 (-499))))))) (-647 (-361 (-884 (-499)))))) (-15 -3179 ((-599 (-647 (-268 (-499)))) (-268 (-499)) (-647 (-361 (-884 (-499)))))) (-15 -3180 ((-599 (-268 (-499))) (-647 (-361 (-884 (-499)))))) (-15 -3181 ((-3 (-647 (-268 (-499))) "failed") (-647 (-361 (-884 (-499)))))) (-15 -3182 ((-647 (-268 (-499))) (-647 (-268 (-499))))) (-15 -3183 ((-599 (-647 (-268 (-499)))) (-599 (-647 (-268 (-499)))))) (-15 -3184 ((-599 (-647 (-268 (-499)))) (-647 (-361 (-884 (-499)))))))) (T -968)) -((-3184 (*1 *2 *3) (-12 (-5 *3 (-647 (-361 (-884 (-499))))) (-5 *2 (-599 (-647 (-268 (-499))))) (-5 *1 (-968)))) (-3183 (*1 *2 *2) (-12 (-5 *2 (-599 (-647 (-268 (-499))))) (-5 *1 (-968)))) (-3182 (*1 *2 *2) (-12 (-5 *2 (-647 (-268 (-499)))) (-5 *1 (-968)))) (-3181 (*1 *2 *3) (|partial| -12 (-5 *3 (-647 (-361 (-884 (-499))))) (-5 *2 (-647 (-268 (-499)))) (-5 *1 (-968)))) (-3180 (*1 *2 *3) (-12 (-5 *3 (-647 (-361 (-884 (-499))))) (-5 *2 (-599 (-268 (-499)))) (-5 *1 (-968)))) (-3179 (*1 *2 *3 *4) (-12 (-5 *4 (-647 (-361 (-884 (-499))))) (-5 *2 (-599 (-647 (-268 (-499))))) (-5 *1 (-968)) (-5 *3 (-268 (-499))))) (-3178 (*1 *2 *3) (-12 (-5 *3 (-647 (-361 (-884 (-499))))) (-5 *2 (-599 (-2 (|:| |radval| (-268 (-499))) (|:| |radmult| (-499)) (|:| |radvect| (-599 (-647 (-268 (-499)))))))) (-5 *1 (-968))))) -((-3188 (((-599 (-647 |#1|)) (-599 (-647 |#1|))) 70 T ELT) (((-647 |#1|) (-647 |#1|)) 69 T ELT) (((-599 (-647 |#1|)) (-599 (-647 |#1|)) (-599 (-647 |#1|))) 68 T ELT) (((-647 |#1|) (-647 |#1|) (-647 |#1|)) 65 T ELT)) (-3187 (((-599 (-647 |#1|)) (-599 (-647 |#1|)) (-857)) 63 T ELT) (((-647 |#1|) (-647 |#1|) (-857)) 62 T ELT)) (-3189 (((-599 (-647 (-499))) (-599 (-599 (-499)))) 81 T ELT) (((-599 (-647 (-499))) (-599 (-840 (-499))) (-499)) 80 T ELT) (((-647 (-499)) (-599 (-499))) 77 T ELT) (((-647 (-499)) (-840 (-499)) (-499)) 75 T ELT)) (-3186 (((-647 (-884 |#1|)) (-714)) 95 T ELT)) (-3185 (((-599 (-647 |#1|)) (-599 (-647 |#1|)) (-857)) 49 (|has| |#1| (-6 (-4147 #1="*"))) ELT) (((-647 |#1|) (-647 |#1|) (-857)) 47 (|has| |#1| (-6 (-4147 #1#))) ELT))) -(((-969 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4147 #1="*"))) (-15 -3185 ((-647 |#1|) (-647 |#1|) (-857))) |%noBranch|) (IF (|has| |#1| (-6 (-4147 #1#))) (-15 -3185 ((-599 (-647 |#1|)) (-599 (-647 |#1|)) (-857))) |%noBranch|) (-15 -3186 ((-647 (-884 |#1|)) (-714))) (-15 -3187 ((-647 |#1|) (-647 |#1|) (-857))) (-15 -3187 ((-599 (-647 |#1|)) (-599 (-647 |#1|)) (-857))) (-15 -3188 ((-647 |#1|) (-647 |#1|) (-647 |#1|))) (-15 -3188 ((-599 (-647 |#1|)) (-599 (-647 |#1|)) (-599 (-647 |#1|)))) (-15 -3188 ((-647 |#1|) (-647 |#1|))) (-15 -3188 ((-599 (-647 |#1|)) (-599 (-647 |#1|)))) (-15 -3189 ((-647 (-499)) (-840 (-499)) (-499))) (-15 -3189 ((-647 (-499)) (-599 (-499)))) (-15 -3189 ((-599 (-647 (-499))) (-599 (-840 (-499))) (-499))) (-15 -3189 ((-599 (-647 (-499))) (-599 (-599 (-499)))))) (-989)) (T -969)) -((-3189 (*1 *2 *3) (-12 (-5 *3 (-599 (-599 (-499)))) (-5 *2 (-599 (-647 (-499)))) (-5 *1 (-969 *4)) (-4 *4 (-989)))) (-3189 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-840 (-499)))) (-5 *4 (-499)) (-5 *2 (-599 (-647 *4))) (-5 *1 (-969 *5)) (-4 *5 (-989)))) (-3189 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-647 (-499))) (-5 *1 (-969 *4)) (-4 *4 (-989)))) (-3189 (*1 *2 *3 *4) (-12 (-5 *3 (-840 (-499))) (-5 *4 (-499)) (-5 *2 (-647 *4)) (-5 *1 (-969 *5)) (-4 *5 (-989)))) (-3188 (*1 *2 *2) (-12 (-5 *2 (-599 (-647 *3))) (-4 *3 (-989)) (-5 *1 (-969 *3)))) (-3188 (*1 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-969 *3)))) (-3188 (*1 *2 *2 *2) (-12 (-5 *2 (-599 (-647 *3))) (-4 *3 (-989)) (-5 *1 (-969 *3)))) (-3188 (*1 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-969 *3)))) (-3187 (*1 *2 *2 *3) (-12 (-5 *2 (-599 (-647 *4))) (-5 *3 (-857)) (-4 *4 (-989)) (-5 *1 (-969 *4)))) (-3187 (*1 *2 *2 *3) (-12 (-5 *2 (-647 *4)) (-5 *3 (-857)) (-4 *4 (-989)) (-5 *1 (-969 *4)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-647 (-884 *4))) (-5 *1 (-969 *4)) (-4 *4 (-989)))) (-3185 (*1 *2 *2 *3) (-12 (-5 *2 (-599 (-647 *4))) (-5 *3 (-857)) (|has| *4 (-6 (-4147 "*"))) (-4 *4 (-989)) (-5 *1 (-969 *4)))) (-3185 (*1 *2 *2 *3) (-12 (-5 *2 (-647 *4)) (-5 *3 (-857)) (|has| *4 (-6 (-4147 "*"))) (-4 *4 (-989)) (-5 *1 (-969 *4))))) -((-3193 (((-647 |#1|) (-599 (-647 |#1|)) (-1207 |#1|)) 69 (|has| |#1| (-261)) ELT)) (-3558 (((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-1207 (-1207 |#1|))) 109 (|has| |#1| (-318)) ELT) (((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-1207 |#1|)) 116 (|has| |#1| (-318)) ELT)) (-3197 (((-1207 |#1|) (-599 (-1207 |#1|)) (-499)) 135 (-12 (|has| |#1| (-318)) (|has| |#1| (-323))) ELT)) (-3196 (((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-857)) 123 (-12 (|has| |#1| (-318)) (|has| |#1| (-323))) ELT) (((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-85)) 122 (-12 (|has| |#1| (-318)) (|has| |#1| (-323))) ELT) (((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|))) 121 (-12 (|has| |#1| (-318)) (|has| |#1| (-323))) ELT) (((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-85) (-499) (-499)) 120 (-12 (|has| |#1| (-318)) (|has| |#1| (-323))) ELT)) (-3195 (((-85) (-599 (-647 |#1|))) 102 (|has| |#1| (-318)) ELT) (((-85) (-599 (-647 |#1|)) (-499)) 105 (|has| |#1| (-318)) ELT)) (-3192 (((-1207 (-1207 |#1|)) (-599 (-647 |#1|)) (-1207 |#1|)) 66 (|has| |#1| (-261)) ELT)) (-3191 (((-647 |#1|) (-599 (-647 |#1|)) (-647 |#1|)) 46 T ELT)) (-3190 (((-647 |#1|) (-1207 (-1207 |#1|))) 39 T ELT)) (-3194 (((-647 |#1|) (-599 (-647 |#1|)) (-599 (-647 |#1|)) (-499)) 93 (|has| |#1| (-318)) ELT) (((-647 |#1|) (-599 (-647 |#1|)) (-599 (-647 |#1|))) 92 (|has| |#1| (-318)) ELT) (((-647 |#1|) (-599 (-647 |#1|)) (-599 (-647 |#1|)) (-85) (-499)) 100 (|has| |#1| (-318)) ELT))) -(((-970 |#1|) (-10 -7 (-15 -3190 ((-647 |#1|) (-1207 (-1207 |#1|)))) (-15 -3191 ((-647 |#1|) (-599 (-647 |#1|)) (-647 |#1|))) (IF (|has| |#1| (-261)) (PROGN (-15 -3192 ((-1207 (-1207 |#1|)) (-599 (-647 |#1|)) (-1207 |#1|))) (-15 -3193 ((-647 |#1|) (-599 (-647 |#1|)) (-1207 |#1|)))) |%noBranch|) (IF (|has| |#1| (-318)) (PROGN (-15 -3194 ((-647 |#1|) (-599 (-647 |#1|)) (-599 (-647 |#1|)) (-85) (-499))) (-15 -3194 ((-647 |#1|) (-599 (-647 |#1|)) (-599 (-647 |#1|)))) (-15 -3194 ((-647 |#1|) (-599 (-647 |#1|)) (-599 (-647 |#1|)) (-499))) (-15 -3195 ((-85) (-599 (-647 |#1|)) (-499))) (-15 -3195 ((-85) (-599 (-647 |#1|)))) (-15 -3558 ((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-1207 |#1|))) (-15 -3558 ((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-1207 (-1207 |#1|))))) |%noBranch|) (IF (|has| |#1| (-323)) (IF (|has| |#1| (-318)) (PROGN (-15 -3196 ((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-85) (-499) (-499))) (-15 -3196 ((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)))) (-15 -3196 ((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-85))) (-15 -3196 ((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-857))) (-15 -3197 ((-1207 |#1|) (-599 (-1207 |#1|)) (-499)))) |%noBranch|) |%noBranch|)) (-989)) (T -970)) -((-3197 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-1207 *5))) (-5 *4 (-499)) (-5 *2 (-1207 *5)) (-5 *1 (-970 *5)) (-4 *5 (-318)) (-4 *5 (-323)) (-4 *5 (-989)))) (-3196 (*1 *2 *3 *4) (-12 (-5 *4 (-857)) (-4 *5 (-318)) (-4 *5 (-323)) (-4 *5 (-989)) (-5 *2 (-599 (-599 (-647 *5)))) (-5 *1 (-970 *5)) (-5 *3 (-599 (-647 *5))))) (-3196 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-318)) (-4 *5 (-323)) (-4 *5 (-989)) (-5 *2 (-599 (-599 (-647 *5)))) (-5 *1 (-970 *5)) (-5 *3 (-599 (-647 *5))))) (-3196 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *4 (-323)) (-4 *4 (-989)) (-5 *2 (-599 (-599 (-647 *4)))) (-5 *1 (-970 *4)) (-5 *3 (-599 (-647 *4))))) (-3196 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-499)) (-4 *6 (-318)) (-4 *6 (-323)) (-4 *6 (-989)) (-5 *2 (-599 (-599 (-647 *6)))) (-5 *1 (-970 *6)) (-5 *3 (-599 (-647 *6))))) (-3558 (*1 *2 *3 *4) (-12 (-5 *4 (-1207 (-1207 *5))) (-4 *5 (-318)) (-4 *5 (-989)) (-5 *2 (-599 (-599 (-647 *5)))) (-5 *1 (-970 *5)) (-5 *3 (-599 (-647 *5))))) (-3558 (*1 *2 *3 *4) (-12 (-5 *4 (-1207 *5)) (-4 *5 (-318)) (-4 *5 (-989)) (-5 *2 (-599 (-599 (-647 *5)))) (-5 *1 (-970 *5)) (-5 *3 (-599 (-647 *5))))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-599 (-647 *4))) (-4 *4 (-318)) (-4 *4 (-989)) (-5 *2 (-85)) (-5 *1 (-970 *4)))) (-3195 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-647 *5))) (-5 *4 (-499)) (-4 *5 (-318)) (-4 *5 (-989)) (-5 *2 (-85)) (-5 *1 (-970 *5)))) (-3194 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-599 (-647 *5))) (-5 *4 (-499)) (-5 *2 (-647 *5)) (-5 *1 (-970 *5)) (-4 *5 (-318)) (-4 *5 (-989)))) (-3194 (*1 *2 *3 *3) (-12 (-5 *3 (-599 (-647 *4))) (-5 *2 (-647 *4)) (-5 *1 (-970 *4)) (-4 *4 (-318)) (-4 *4 (-989)))) (-3194 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-599 (-647 *6))) (-5 *4 (-85)) (-5 *5 (-499)) (-5 *2 (-647 *6)) (-5 *1 (-970 *6)) (-4 *6 (-318)) (-4 *6 (-989)))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-647 *5))) (-5 *4 (-1207 *5)) (-4 *5 (-261)) (-4 *5 (-989)) (-5 *2 (-647 *5)) (-5 *1 (-970 *5)))) (-3192 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-647 *5))) (-4 *5 (-261)) (-4 *5 (-989)) (-5 *2 (-1207 (-1207 *5))) (-5 *1 (-970 *5)) (-5 *4 (-1207 *5)))) (-3191 (*1 *2 *3 *2) (-12 (-5 *3 (-599 (-647 *4))) (-5 *2 (-647 *4)) (-4 *4 (-989)) (-5 *1 (-970 *4)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-1207 (-1207 *4))) (-4 *4 (-989)) (-5 *2 (-647 *4)) (-5 *1 (-970 *4))))) -((-3198 ((|#1| (-857) |#1|) 18 T ELT))) -(((-971 |#1|) (-10 -7 (-15 -3198 (|#1| (-857) |#1|))) (-13 (-1041) (-10 -8 (-15 -3989 ($ $ $))))) (T -971)) -((-3198 (*1 *2 *3 *2) (-12 (-5 *3 (-857)) (-5 *1 (-971 *2)) (-4 *2 (-13 (-1041) (-10 -8 (-15 -3989 ($ $ $)))))))) -((-3199 ((|#1| |#1| (-857)) 18 T ELT))) -(((-972 |#1|) (-10 -7 (-15 -3199 (|#1| |#1| (-857)))) (-13 (-1041) (-10 -8 (-15 * ($ $ $))))) (T -972)) -((-3199 (*1 *2 *2 *3) (-12 (-5 *3 (-857)) (-5 *1 (-972 *2)) (-4 *2 (-13 (-1041) (-10 -8 (-15 * ($ $ $)))))))) -((-4096 ((|#1| (-265)) 11 T ELT) (((-1213) |#1|) 9 T ELT))) -(((-973 |#1|) (-10 -7 (-15 -4096 ((-1213) |#1|)) (-15 -4096 (|#1| (-265)))) (-1157)) (T -973)) -((-4096 (*1 *2 *3) (-12 (-5 *3 (-265)) (-5 *1 (-973 *2)) (-4 *2 (-1157)))) (-4096 (*1 *2 *3) (-12 (-5 *2 (-1213)) (-5 *1 (-973 *3)) (-4 *3 (-1157))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3992 (($ |#4|) 25 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3200 ((|#4| $) 27 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 46 T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 26 T ELT)) (-3248 (((-714)) 43 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 21 T CONST)) (-2785 (($) 23 T CONST)) (-3174 (((-85) $ $) 40 T ELT)) (-3987 (($ $) 31 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 29 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 36 T ELT) (($ $ $) 33 T ELT) (($ |#1| $) 38 T ELT) (($ $ |#1|) NIL T ELT))) -(((-974 |#1| |#2| |#3| |#4| |#5|) (-13 (-146) (-38 |#1|) (-10 -8 (-15 -3992 ($ |#4|)) (-15 -4096 ($ |#4|)) (-15 -3200 (|#4| $)))) (-318) (-738) (-781) (-888 |#1| |#2| |#3|) (-599 |#4|)) (T -974)) -((-3992 (*1 *1 *2) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *2 (-888 *3 *4 *5)) (-14 *6 (-599 *2)))) (-4096 (*1 *1 *2) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *2 (-888 *3 *4 *5)) (-14 *6 (-599 *2)))) (-3200 (*1 *2 *1) (-12 (-4 *2 (-888 *3 *4 *5)) (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-14 *6 (-599 *2))))) -((-2687 (((-85) $ $) NIL (-3677 (|has| (-51) (-73)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL T ELT)) (-2299 (((-1213) $ (-1117) (-1117)) NIL (|has| $ (-6 -4146)) ELT)) (-3202 (((-85) (-85)) 43 T ELT)) (-3201 (((-85) (-85)) 42 T ELT)) (-3938 (((-51) $ (-1117) (-51)) NIL T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 (-51) #1="failed") (-1117) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 (-51) #1#) (-1117) $) NIL T ELT)) (-3546 (($ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 (((-51) $ (-1117) (-51)) NIL (|has| $ (-6 -4146)) ELT)) (-3235 (((-51) $ (-1117)) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-2301 (((-1117) $) NIL (|has| (-1117) (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (((-85) (-51) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-51) (-1041))) ELT)) (-2302 (((-1117) $) NIL (|has| (-1117) (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-51) (-1041)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT)) (-2333 (((-599 (-1117)) $) 37 T ELT)) (-2334 (((-85) (-1117) $) NIL T ELT)) (-1308 (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL T ELT)) (-2304 (((-599 (-1117)) $) NIL T ELT)) (-2305 (((-85) (-1117) $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-51) (-1041)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT)) (-3951 (((-51) $) NIL (|has| (-1117) (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2300 (($ $ (-51)) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-599 (-51)) (-599 (-51))) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT) (($ $ (-247 (-51))) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT) (($ $ (-599 (-247 (-51)))) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) (-51) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-51) (-1041))) ELT)) (-2306 (((-599 (-51)) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 (((-51) $ (-1117)) 39 T ELT) (((-51) $ (-1117) (-51)) NIL T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (((-714) (-51) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-51) (-1041))) ELT) (((-714) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL T ELT)) (-4096 (((-797) $) 41 (-3677 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-568 (-797))) (|has| (-51) (-568 (-797)))) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-51) (-73)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-51) (-73)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-73))) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-975) (-13 (-1134 (-1117) (-51)) (-10 -7 (-15 -3202 ((-85) (-85))) (-15 -3201 ((-85) (-85))) (-6 -4145)))) (T -975)) -((-3202 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-975)))) (-3201 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-975))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3344 (((-1075) $) 9 T ELT)) (-4096 (((-797) $) 15 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-976) (-13 (-1023) (-10 -8 (-15 -3344 ((-1075) $))))) (T -976)) -((-3344 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-976))))) -((-3294 ((|#2| $) 10 T ELT))) -(((-977 |#1| |#2|) (-10 -7 (-15 -3294 (|#2| |#1|))) (-978 |#2|) (-1157)) (T -977)) -NIL -((-3295 (((-3 |#1| "failed") $) 9 T ELT)) (-3294 ((|#1| $) 8 T ELT)) (-4096 (($ |#1|) 6 T ELT))) -(((-978 |#1|) (-113) (-1157)) (T -978)) -((-3295 (*1 *2 *1) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1157)))) (-3294 (*1 *2 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-1157))))) -(-13 (-571 |t#1|) (-10 -8 (-15 -3295 ((-3 |t#1| "failed") $)) (-15 -3294 (|t#1| $)))) -(((-571 |#1|) . T)) -((-3203 (((-599 (-599 (-247 (-361 (-884 |#2|))))) (-599 (-884 |#2|)) (-599 (-1117))) 38 T ELT))) -(((-979 |#1| |#2|) (-10 -7 (-15 -3203 ((-599 (-599 (-247 (-361 (-884 |#2|))))) (-599 (-884 |#2|)) (-599 (-1117))))) (-510) (-13 (-510) (-978 |#1|))) (T -979)) -((-3203 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-884 *6))) (-5 *4 (-599 (-1117))) (-4 *6 (-13 (-510) (-978 *5))) (-4 *5 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *6)))))) (-5 *1 (-979 *5 *6))))) -((-3204 (((-599 (-1117)) (-361 (-884 |#1|))) 17 T ELT)) (-3206 (((-361 (-1111 (-361 (-884 |#1|)))) (-361 (-884 |#1|)) (-1117)) 24 T ELT)) (-3207 (((-361 (-884 |#1|)) (-361 (-1111 (-361 (-884 |#1|)))) (-1117)) 26 T ELT)) (-3205 (((-3 (-1117) "failed") (-361 (-884 |#1|))) 20 T ELT)) (-3918 (((-361 (-884 |#1|)) (-361 (-884 |#1|)) (-599 (-247 (-361 (-884 |#1|))))) 32 T ELT) (((-361 (-884 |#1|)) (-361 (-884 |#1|)) (-247 (-361 (-884 |#1|)))) 33 T ELT) (((-361 (-884 |#1|)) (-361 (-884 |#1|)) (-599 (-1117)) (-599 (-361 (-884 |#1|)))) 28 T ELT) (((-361 (-884 |#1|)) (-361 (-884 |#1|)) (-1117) (-361 (-884 |#1|))) 29 T ELT)) (-4096 (((-361 (-884 |#1|)) |#1|) 11 T ELT))) -(((-980 |#1|) (-10 -7 (-15 -3204 ((-599 (-1117)) (-361 (-884 |#1|)))) (-15 -3205 ((-3 (-1117) "failed") (-361 (-884 |#1|)))) (-15 -3206 ((-361 (-1111 (-361 (-884 |#1|)))) (-361 (-884 |#1|)) (-1117))) (-15 -3207 ((-361 (-884 |#1|)) (-361 (-1111 (-361 (-884 |#1|)))) (-1117))) (-15 -3918 ((-361 (-884 |#1|)) (-361 (-884 |#1|)) (-1117) (-361 (-884 |#1|)))) (-15 -3918 ((-361 (-884 |#1|)) (-361 (-884 |#1|)) (-599 (-1117)) (-599 (-361 (-884 |#1|))))) (-15 -3918 ((-361 (-884 |#1|)) (-361 (-884 |#1|)) (-247 (-361 (-884 |#1|))))) (-15 -3918 ((-361 (-884 |#1|)) (-361 (-884 |#1|)) (-599 (-247 (-361 (-884 |#1|)))))) (-15 -4096 ((-361 (-884 |#1|)) |#1|))) (-510)) (T -980)) -((-4096 (*1 *2 *3) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-980 *3)) (-4 *3 (-510)))) (-3918 (*1 *2 *2 *3) (-12 (-5 *3 (-599 (-247 (-361 (-884 *4))))) (-5 *2 (-361 (-884 *4))) (-4 *4 (-510)) (-5 *1 (-980 *4)))) (-3918 (*1 *2 *2 *3) (-12 (-5 *3 (-247 (-361 (-884 *4)))) (-5 *2 (-361 (-884 *4))) (-4 *4 (-510)) (-5 *1 (-980 *4)))) (-3918 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-599 (-1117))) (-5 *4 (-599 (-361 (-884 *5)))) (-5 *2 (-361 (-884 *5))) (-4 *5 (-510)) (-5 *1 (-980 *5)))) (-3918 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-361 (-884 *4))) (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *1 (-980 *4)))) (-3207 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-1111 (-361 (-884 *5))))) (-5 *4 (-1117)) (-5 *2 (-361 (-884 *5))) (-5 *1 (-980 *5)) (-4 *5 (-510)))) (-3206 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-510)) (-5 *2 (-361 (-1111 (-361 (-884 *5))))) (-5 *1 (-980 *5)) (-5 *3 (-361 (-884 *5))))) (-3205 (*1 *2 *3) (|partial| -12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-5 *2 (-1117)) (-5 *1 (-980 *4)))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-5 *2 (-599 (-1117))) (-5 *1 (-980 *4))))) -((-3208 (((-333)) 17 T ELT)) (-3223 (((-1 (-333)) (-333) (-333)) 22 T ELT)) (-3216 (((-1 (-333)) (-714)) 48 T ELT)) (-3209 (((-333)) 37 T ELT)) (-3212 (((-1 (-333)) (-333) (-333)) 38 T ELT)) (-3210 (((-333)) 29 T ELT)) (-3213 (((-1 (-333)) (-333)) 30 T ELT)) (-3211 (((-333) (-714)) 43 T ELT)) (-3214 (((-1 (-333)) (-714)) 44 T ELT)) (-3215 (((-1 (-333)) (-714) (-714)) 47 T ELT)) (-3524 (((-1 (-333)) (-714) (-714)) 45 T ELT))) -(((-981) (-10 -7 (-15 -3208 ((-333))) (-15 -3209 ((-333))) (-15 -3210 ((-333))) (-15 -3211 ((-333) (-714))) (-15 -3223 ((-1 (-333)) (-333) (-333))) (-15 -3212 ((-1 (-333)) (-333) (-333))) (-15 -3213 ((-1 (-333)) (-333))) (-15 -3214 ((-1 (-333)) (-714))) (-15 -3524 ((-1 (-333)) (-714) (-714))) (-15 -3215 ((-1 (-333)) (-714) (-714))) (-15 -3216 ((-1 (-333)) (-714))))) (T -981)) -((-3216 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-333))) (-5 *1 (-981)))) (-3215 (*1 *2 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-333))) (-5 *1 (-981)))) (-3524 (*1 *2 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-333))) (-5 *1 (-981)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-333))) (-5 *1 (-981)))) (-3213 (*1 *2 *3) (-12 (-5 *2 (-1 (-333))) (-5 *1 (-981)) (-5 *3 (-333)))) (-3212 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-333))) (-5 *1 (-981)) (-5 *3 (-333)))) (-3223 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-333))) (-5 *1 (-981)) (-5 *3 (-333)))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-333)) (-5 *1 (-981)))) (-3210 (*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-981)))) (-3209 (*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-981)))) (-3208 (*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-981))))) -((-3882 (((-359 |#1|) |#1|) 33 T ELT))) -(((-982 |#1|) (-10 -7 (-15 -3882 ((-359 |#1|) |#1|))) (-1183 (-361 (-884 (-499))))) (T -982)) -((-3882 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-982 *3)) (-4 *3 (-1183 (-361 (-884 (-499)))))))) -((-3217 (((-361 (-359 (-884 |#1|))) (-361 (-884 |#1|))) 14 T ELT))) -(((-983 |#1|) (-10 -7 (-15 -3217 ((-361 (-359 (-884 |#1|))) (-361 (-884 |#1|))))) (-261)) (T -983)) -((-3217 (*1 *2 *3) (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-261)) (-5 *2 (-361 (-359 (-884 *4)))) (-5 *1 (-983 *4))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3874 (($) 22 T CONST)) (-3221 ((|#1| $) 28 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3220 ((|#1| $) 27 T ELT)) (-3218 ((|#1|) 25 T CONST)) (-4096 (((-797) $) 13 T ELT)) (-3219 ((|#1| $) 26 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT))) -(((-984 |#1|) (-113) (-23)) (T -984)) -((-3221 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-23)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-23)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-23)))) (-3218 (*1 *2) (-12 (-4 *1 (-984 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3221 (|t#1| $)) (-15 -3220 (|t#1| $)) (-15 -3219 (|t#1| $)) (-15 -3218 (|t#1|) -4102))) -(((-23) . T) ((-25) . T) ((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3222 (($) 30 T CONST)) (-3874 (($) 22 T CONST)) (-3221 ((|#1| $) 28 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3220 ((|#1| $) 27 T ELT)) (-3218 ((|#1|) 25 T CONST)) (-4096 (((-797) $) 13 T ELT)) (-3219 ((|#1| $) 26 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT))) -(((-985 |#1|) (-113) (-23)) (T -985)) -((-3222 (*1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-23))))) -(-13 (-984 |t#1|) (-10 -8 (-15 -3222 ($) -4102))) -(((-23) . T) ((-25) . T) ((-73) . T) ((-568 (-797)) . T) ((-984 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 (-723 |#1| (-798 |#2|)))))) (-599 (-723 |#1| (-798 |#2|)))) NIL T ELT)) (-3832 (((-599 $) (-599 (-723 |#1| (-798 |#2|)))) NIL T ELT) (((-599 $) (-599 (-723 |#1| (-798 |#2|))) (-85)) NIL T ELT) (((-599 $) (-599 (-723 |#1| (-798 |#2|))) (-85) (-85)) NIL T ELT)) (-3204 (((-599 (-798 |#2|)) $) NIL T ELT)) (-3029 (((-85) $) NIL T ELT)) (-3020 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3843 (((-85) (-723 |#1| (-798 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3838 (((-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3925 (((-599 (-2 (|:| |val| (-723 |#1| (-798 |#2|))) (|:| -1633 $))) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ (-798 |#2|)) NIL T ELT)) (-3860 (($ (-1 (-85) (-723 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 (-723 |#1| (-798 |#2|)) #1="failed") $ (-798 |#2|)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3025 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3839 (((-599 (-723 |#1| (-798 |#2|))) (-599 (-723 |#1| (-798 |#2|))) $ (-1 (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) (-1 (-85) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)))) NIL T ELT)) (-3021 (((-599 (-723 |#1| (-798 |#2|))) (-599 (-723 |#1| (-798 |#2|))) $) NIL (|has| |#1| (-510)) ELT)) (-3022 (((-599 (-723 |#1| (-798 |#2|))) (-599 (-723 |#1| (-798 |#2|))) $) NIL (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ #1#) (-599 (-723 |#1| (-798 |#2|)))) NIL T ELT)) (-3294 (($ (-599 (-723 |#1| (-798 |#2|)))) NIL T ELT)) (-3949 (((-3 $ #1#) $) NIL T ELT)) (-3835 (((-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-723 |#1| (-798 |#2|)) (-1041))) ELT)) (-3546 (($ (-723 |#1| (-798 |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-723 |#1| (-798 |#2|)) (-1041))) ELT) (($ (-1 (-85) (-723 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-723 |#1| (-798 |#2|))) (|:| |den| |#1|)) (-723 |#1| (-798 |#2|)) $) NIL (|has| |#1| (-510)) ELT)) (-3844 (((-85) (-723 |#1| (-798 |#2|)) $ (-1 (-85) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)))) NIL T ELT)) (-3833 (((-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3992 (((-723 |#1| (-798 |#2|)) (-1 (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) $ (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-723 |#1| (-798 |#2|)) (-1041))) ELT) (((-723 |#1| (-798 |#2|)) (-1 (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) $ (-723 |#1| (-798 |#2|))) NIL (|has| $ (-6 -4145)) ELT) (((-723 |#1| (-798 |#2|)) (-1 (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) $ (-1 (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) (-1 (-85) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)))) NIL T ELT)) (-3846 (((-2 (|:| -4011 (-599 (-723 |#1| (-798 |#2|)))) (|:| -1795 (-599 (-723 |#1| (-798 |#2|))))) $) NIL T ELT)) (-3335 (((-85) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3333 (((-85) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3336 (((-85) (-723 |#1| (-798 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3010 (((-599 (-723 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) (-723 |#1| (-798 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3318 (((-798 |#2|) $) NIL T ELT)) (-2727 (((-599 (-723 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-723 |#1| (-798 |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-723 |#1| (-798 |#2|)) (-1041))) ELT)) (-2051 (($ (-1 (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) $) NIL T ELT)) (-3035 (((-599 (-798 |#2|)) $) NIL T ELT)) (-3034 (((-85) (-798 |#2|) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3329 (((-3 (-723 |#1| (-798 |#2|)) (-599 $)) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3328 (((-599 (-2 (|:| |val| (-723 |#1| (-798 |#2|))) (|:| -1633 $))) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3948 (((-3 (-723 |#1| (-798 |#2|)) #1#) $) NIL T ELT)) (-3330 (((-599 $) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3332 (((-3 (-85) (-599 $)) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3331 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 $))) (-723 |#1| (-798 |#2|)) $) NIL T ELT) (((-85) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3376 (((-599 $) (-723 |#1| (-798 |#2|)) $) NIL T ELT) (((-599 $) (-599 (-723 |#1| (-798 |#2|))) $) NIL T ELT) (((-599 $) (-599 (-723 |#1| (-798 |#2|))) (-599 $)) NIL T ELT) (((-599 $) (-723 |#1| (-798 |#2|)) (-599 $)) NIL T ELT)) (-3580 (($ (-723 |#1| (-798 |#2|)) $) NIL T ELT) (($ (-599 (-723 |#1| (-798 |#2|))) $) NIL T ELT)) (-3847 (((-599 (-723 |#1| (-798 |#2|))) $) NIL T ELT)) (-3841 (((-85) (-723 |#1| (-798 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3836 (((-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3849 (((-85) $ $) NIL T ELT)) (-3024 (((-2 (|:| |num| (-723 |#1| (-798 |#2|))) (|:| |den| |#1|)) (-723 |#1| (-798 |#2|)) $) NIL (|has| |#1| (-510)) ELT)) (-3842 (((-85) (-723 |#1| (-798 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3837 (((-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 (((-3 (-723 |#1| (-798 |#2|)) #1#) $) NIL T ELT)) (-1387 (((-3 (-723 |#1| (-798 |#2|)) #1#) (-1 (-85) (-723 |#1| (-798 |#2|))) $) NIL T ELT)) (-3829 (((-3 $ #1#) $ (-723 |#1| (-798 |#2|))) NIL T ELT)) (-3919 (($ $ (-723 |#1| (-798 |#2|))) NIL T ELT) (((-599 $) (-723 |#1| (-798 |#2|)) $) NIL T ELT) (((-599 $) (-723 |#1| (-798 |#2|)) (-599 $)) NIL T ELT) (((-599 $) (-599 (-723 |#1| (-798 |#2|))) $) NIL T ELT) (((-599 $) (-599 (-723 |#1| (-798 |#2|))) (-599 $)) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-723 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-723 |#1| (-798 |#2|))) (-599 (-723 |#1| (-798 |#2|)))) NIL (-12 (|has| (-723 |#1| (-798 |#2|)) (-263 (-723 |#1| (-798 |#2|)))) (|has| (-723 |#1| (-798 |#2|)) (-1041))) ELT) (($ $ (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) NIL (-12 (|has| (-723 |#1| (-798 |#2|)) (-263 (-723 |#1| (-798 |#2|)))) (|has| (-723 |#1| (-798 |#2|)) (-1041))) ELT) (($ $ (-247 (-723 |#1| (-798 |#2|)))) NIL (-12 (|has| (-723 |#1| (-798 |#2|)) (-263 (-723 |#1| (-798 |#2|)))) (|has| (-723 |#1| (-798 |#2|)) (-1041))) ELT) (($ $ (-599 (-247 (-723 |#1| (-798 |#2|))))) NIL (-12 (|has| (-723 |#1| (-798 |#2|)) (-263 (-723 |#1| (-798 |#2|)))) (|has| (-723 |#1| (-798 |#2|)) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-4098 (((-714) $) NIL T ELT)) (-2048 (((-714) (-723 |#1| (-798 |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-723 |#1| (-798 |#2|)) (-1041))) ELT) (((-714) (-1 (-85) (-723 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-723 |#1| (-798 |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-723 |#1| (-798 |#2|)))) NIL T ELT)) (-3031 (($ $ (-798 |#2|)) NIL T ELT)) (-3033 (($ $ (-798 |#2|)) NIL T ELT)) (-3834 (($ $) NIL T ELT)) (-3032 (($ $ (-798 |#2|)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (((-599 (-723 |#1| (-798 |#2|))) $) NIL T ELT)) (-3828 (((-714) $) NIL (|has| (-798 |#2|) (-323)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 (-723 |#1| (-798 |#2|))))) #1#) (-599 (-723 |#1| (-798 |#2|))) (-1 (-85) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 (-723 |#1| (-798 |#2|))))) #1#) (-599 (-723 |#1| (-798 |#2|))) (-1 (-85) (-723 |#1| (-798 |#2|))) (-1 (-85) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)))) NIL T ELT)) (-3840 (((-85) $ (-1 (-85) (-723 |#1| (-798 |#2|)) (-599 (-723 |#1| (-798 |#2|))))) NIL T ELT)) (-3327 (((-599 $) (-723 |#1| (-798 |#2|)) $) NIL T ELT) (((-599 $) (-723 |#1| (-798 |#2|)) (-599 $)) NIL T ELT) (((-599 $) (-599 (-723 |#1| (-798 |#2|))) $) NIL T ELT) (((-599 $) (-599 (-723 |#1| (-798 |#2|))) (-599 $)) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-723 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 (-798 |#2|)) $) NIL T ELT)) (-3334 (((-85) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-4083 (((-85) (-798 |#2|) $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-986 |#1| |#2|) (-13 (-1011 |#1| (-484 (-798 |#2|)) (-798 |#2|) (-723 |#1| (-798 |#2|))) (-10 -8 (-15 -3832 ((-599 $) (-599 (-723 |#1| (-798 |#2|))) (-85) (-85))))) (-406) (-599 (-1117))) (T -986)) -((-3832 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) (-14 *6 (-599 (-1117))) (-5 *2 (-599 (-986 *5 *6))) (-5 *1 (-986 *5 *6))))) -((-3223 (((-1 (-499)) (-1029 (-499))) 32 T ELT)) (-3227 (((-499) (-499) (-499) (-499) (-499)) 29 T ELT)) (-3225 (((-1 (-499)) |RationalNumber|) NIL T ELT)) (-3226 (((-1 (-499)) |RationalNumber|) NIL T ELT)) (-3224 (((-1 (-499)) (-499) |RationalNumber|) NIL T ELT))) -(((-987) (-10 -7 (-15 -3223 ((-1 (-499)) (-1029 (-499)))) (-15 -3224 ((-1 (-499)) (-499) |RationalNumber|)) (-15 -3225 ((-1 (-499)) |RationalNumber|)) (-15 -3226 ((-1 (-499)) |RationalNumber|)) (-15 -3227 ((-499) (-499) (-499) (-499) (-499))))) (T -987)) -((-3227 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-987)))) (-3226 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-499))) (-5 *1 (-987)))) (-3225 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-499))) (-5 *1 (-987)))) (-3224 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-499))) (-5 *1 (-987)) (-5 *3 (-499)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-1029 (-499))) (-5 *2 (-1 (-499))) (-5 *1 (-987))))) -((-4096 (((-797) $) NIL T ELT) (($ (-499)) 10 T ELT))) -(((-988 |#1|) (-10 -7 (-15 -4096 (|#1| (-499))) (-15 -4096 ((-797) |#1|))) (-989)) (T -988)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-989) (-113)) (T -989)) -((-3248 (*1 *2) (-12 (-4 *1 (-989)) (-5 *2 (-714))))) -(-13 (-997) (-684) (-606 $) (-571 (-499)) (-10 -7 (-15 -3248 ((-714)) -4102) (-6 -4142))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-684) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-3228 (((-361 (-884 |#2|)) (-599 |#2|) (-599 |#2|) (-714) (-714)) 55 T ELT))) -(((-990 |#1| |#2|) (-10 -7 (-15 -3228 ((-361 (-884 |#2|)) (-599 |#2|) (-599 |#2|) (-714) (-714)))) (-1117) (-318)) (T -990)) -((-3228 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-599 *6)) (-5 *4 (-714)) (-4 *6 (-318)) (-5 *2 (-361 (-884 *6))) (-5 *1 (-990 *5 *6)) (-14 *5 (-1117))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) -(((-991 |#1|) (-113) (-1052)) (T -991)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1052))))) -(-13 (-1041) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-3243 (((-85) $) 38 T ELT)) (-3245 (((-85) $) 17 T ELT)) (-3237 (((-714) $) 13 T ELT)) (-3236 (((-714) $) 14 T ELT)) (-3244 (((-85) $) 30 T ELT)) (-3242 (((-85) $) 40 T ELT))) -(((-992 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3236 ((-714) |#1|)) (-15 -3237 ((-714) |#1|)) (-15 -3242 ((-85) |#1|)) (-15 -3243 ((-85) |#1|)) (-15 -3244 ((-85) |#1|)) (-15 -3245 ((-85) |#1|))) (-993 |#2| |#3| |#4| |#5| |#6|) (-714) (-714) (-989) (-195 |#3| |#4|) (-195 |#2| |#4|)) (T -992)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3243 (((-85) $) 61 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3245 (((-85) $) 63 T ELT)) (-3874 (($) 22 T CONST)) (-3232 (($ $) 44 (|has| |#3| (-261)) ELT)) (-3234 ((|#4| $ (-499)) 49 T ELT)) (-3231 (((-714) $) 43 (|has| |#3| (-510)) ELT)) (-3235 ((|#3| $ (-499) (-499)) 51 T ELT)) (-3010 (((-599 |#3|) $) 75 (|has| $ (-6 -4145)) ELT)) (-3230 (((-714) $) 42 (|has| |#3| (-510)) ELT)) (-3229 (((-599 |#5|) $) 41 (|has| |#3| (-510)) ELT)) (-3237 (((-714) $) 55 T ELT)) (-3236 (((-714) $) 54 T ELT)) (-3241 (((-499) $) 59 T ELT)) (-3239 (((-499) $) 57 T ELT)) (-2727 (((-599 |#3|) $) 76 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#3| $) 78 (-12 (|has| |#3| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3240 (((-499) $) 58 T ELT)) (-3238 (((-499) $) 56 T ELT)) (-3246 (($ (-599 (-599 |#3|))) 64 T ELT)) (-2051 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 47 T ELT)) (-3742 (((-599 (-599 |#3|)) $) 53 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3606 (((-3 $ "failed") $ |#3|) 46 (|has| |#3| (-510)) ELT)) (-2049 (((-85) (-1 (-85) |#3|) $) 73 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#3|) (-599 |#3|)) 82 (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ |#3| |#3|) 81 (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ (-247 |#3|)) 80 (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ (-599 (-247 |#3|))) 79 (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT)) (-1248 (((-85) $ $) 65 T ELT)) (-3543 (((-85) $) 68 T ELT)) (-3713 (($) 67 T ELT)) (-3950 ((|#3| $ (-499) (-499)) 52 T ELT) ((|#3| $ (-499) (-499) |#3|) 50 T ELT)) (-3244 (((-85) $) 62 T ELT)) (-2048 (((-714) |#3| $) 77 (-12 (|has| |#3| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#3|) $) 74 (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 66 T ELT)) (-3233 ((|#5| $ (-499)) 48 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2050 (((-85) (-1 (-85) |#3|) $) 72 (|has| $ (-6 -4145)) ELT)) (-3242 (((-85) $) 60 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#3|) 45 (|has| |#3| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#3| $) 32 T ELT) (($ $ |#3|) 36 T ELT)) (-4107 (((-714) $) 69 (|has| $ (-6 -4145)) ELT))) -(((-993 |#1| |#2| |#3| |#4| |#5|) (-113) (-714) (-714) (-989) (-195 |t#2| |t#3|) (-195 |t#1| |t#3|)) (T -993)) -((-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)))) (-3246 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 *5))) (-4 *5 (-989)) (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)))) (-3245 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-85)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-85)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-85)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-85)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-499)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-499)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-499)))) (-3238 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-499)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-714)))) (-3236 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-714)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-599 (-599 *5))))) (-3950 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *2 *6 *7)) (-4 *6 (-195 *5 *2)) (-4 *7 (-195 *4 *2)) (-4 *2 (-989)))) (-3235 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *2 *6 *7)) (-4 *6 (-195 *5 *2)) (-4 *7 (-195 *4 *2)) (-4 *2 (-989)))) (-3950 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *2 *6 *7)) (-4 *2 (-989)) (-4 *6 (-195 *5 *2)) (-4 *7 (-195 *4 *2)))) (-3234 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *6 *2 *7)) (-4 *6 (-989)) (-4 *7 (-195 *4 *6)) (-4 *2 (-195 *5 *6)))) (-3233 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *6 *7 *2)) (-4 *6 (-989)) (-4 *7 (-195 *5 *6)) (-4 *2 (-195 *4 *6)))) (-4108 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)))) (-3606 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-993 *3 *4 *2 *5 *6)) (-4 *2 (-989)) (-4 *5 (-195 *4 *2)) (-4 *6 (-195 *3 *2)) (-4 *2 (-510)))) (-4099 (*1 *1 *1 *2) (-12 (-4 *1 (-993 *3 *4 *2 *5 *6)) (-4 *2 (-989)) (-4 *5 (-195 *4 *2)) (-4 *6 (-195 *3 *2)) (-4 *2 (-318)))) (-3232 (*1 *1 *1) (-12 (-4 *1 (-993 *2 *3 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-195 *3 *4)) (-4 *6 (-195 *2 *4)) (-4 *4 (-261)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-4 *5 (-510)) (-5 *2 (-714)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-4 *5 (-510)) (-5 *2 (-714)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-4 *5 (-510)) (-5 *2 (-599 *7))))) -(-13 (-82 |t#3| |t#3|) (-443 |t#3|) (-10 -8 (-6 -4145) (IF (|has| |t#3| (-146)) (-6 (-675 |t#3|)) |%noBranch|) (-15 -3246 ($ (-599 (-599 |t#3|)))) (-15 -3245 ((-85) $)) (-15 -3244 ((-85) $)) (-15 -3243 ((-85) $)) (-15 -3242 ((-85) $)) (-15 -3241 ((-499) $)) (-15 -3240 ((-499) $)) (-15 -3239 ((-499) $)) (-15 -3238 ((-499) $)) (-15 -3237 ((-714) $)) (-15 -3236 ((-714) $)) (-15 -3742 ((-599 (-599 |t#3|)) $)) (-15 -3950 (|t#3| $ (-499) (-499))) (-15 -3235 (|t#3| $ (-499) (-499))) (-15 -3950 (|t#3| $ (-499) (-499) |t#3|)) (-15 -3234 (|t#4| $ (-499))) (-15 -3233 (|t#5| $ (-499))) (-15 -4108 ($ (-1 |t#3| |t#3|) $)) (-15 -4108 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-510)) (-15 -3606 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-318)) (-15 -4099 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-261)) (-15 -3232 ($ $)) |%noBranch|) (IF (|has| |t#3| (-510)) (PROGN (-15 -3231 ((-714) $)) (-15 -3230 ((-714) $)) (-15 -3229 ((-599 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-73) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-568 (-797)) . T) ((-263 |#3|) -12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ((-443 |#3|) . T) ((-468 |#3| |#3|) -12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ((-604 (-499)) . T) ((-604 |#3|) . T) ((-606 |#3|) . T) ((-598 |#3|) |has| |#3| (-146)) ((-675 |#3|) |has| |#3| (-146)) ((-991 |#3|) . T) ((-996 |#3|) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3243 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3245 (((-85) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3232 (($ $) 47 (|has| |#3| (-261)) ELT)) (-3234 (((-196 |#2| |#3|) $ (-499)) 36 T ELT)) (-3247 (($ (-647 |#3|)) 45 T ELT)) (-3231 (((-714) $) 49 (|has| |#3| (-510)) ELT)) (-3235 ((|#3| $ (-499) (-499)) NIL T ELT)) (-3010 (((-599 |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3230 (((-714) $) 51 (|has| |#3| (-510)) ELT)) (-3229 (((-599 (-196 |#1| |#3|)) $) 55 (|has| |#3| (-510)) ELT)) (-3237 (((-714) $) NIL T ELT)) (-3236 (((-714) $) NIL T ELT)) (-3241 (((-499) $) NIL T ELT)) (-3239 (((-499) $) NIL T ELT)) (-2727 (((-599 |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#3| (-1041))) ELT)) (-3240 (((-499) $) NIL T ELT)) (-3238 (((-499) $) NIL T ELT)) (-3246 (($ (-599 (-599 |#3|))) 31 T ELT)) (-2051 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3742 (((-599 (-599 |#3|)) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3606 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-510)) ELT)) (-2049 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#3|) (-599 |#3|)) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ (-247 |#3|)) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ (-599 (-247 |#3|))) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#3| $ (-499) (-499)) NIL T ELT) ((|#3| $ (-499) (-499) |#3|) NIL T ELT)) (-4061 (((-107)) 59 (|has| |#3| (-318)) ELT)) (-3244 (((-85) $) NIL T ELT)) (-2048 (((-714) |#3| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#3| (-1041))) ELT) (((-714) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) 66 (|has| |#3| (-569 (-488))) ELT)) (-3233 (((-196 |#1| |#3|) $ (-499)) 40 T ELT)) (-4096 (((-797) $) 19 T ELT) (((-647 |#3|) $) 42 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3242 (((-85) $) NIL T ELT)) (-2779 (($) 16 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#3|) NIL (|has| |#3| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-994 |#1| |#2| |#3|) (-13 (-993 |#1| |#2| |#3| (-196 |#2| |#3|) (-196 |#1| |#3|)) (-568 (-647 |#3|)) (-10 -8 (IF (|has| |#3| (-318)) (-6 (-1215 |#3|)) |%noBranch|) (IF (|has| |#3| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|) (-15 -3247 ($ (-647 |#3|))))) (-714) (-714) (-989)) (T -994)) -((-3247 (*1 *1 *2) (-12 (-5 *2 (-647 *5)) (-4 *5 (-989)) (-5 *1 (-994 *3 *4 *5)) (-14 *3 (-714)) (-14 *4 (-714))))) -((-3992 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-4108 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) -(((-995 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4108 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3992 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-714) (-714) (-989) (-195 |#2| |#3|) (-195 |#1| |#3|) (-993 |#1| |#2| |#3| |#4| |#5|) (-989) (-195 |#2| |#7|) (-195 |#1| |#7|) (-993 |#1| |#2| |#7| |#8| |#9|)) (T -995)) -((-3992 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-989)) (-4 *2 (-989)) (-14 *5 (-714)) (-14 *6 (-714)) (-4 *8 (-195 *6 *7)) (-4 *9 (-195 *5 *7)) (-4 *10 (-195 *6 *2)) (-4 *11 (-195 *5 *2)) (-5 *1 (-995 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-993 *5 *6 *7 *8 *9)) (-4 *12 (-993 *5 *6 *2 *10 *11)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-989)) (-4 *10 (-989)) (-14 *5 (-714)) (-14 *6 (-714)) (-4 *8 (-195 *6 *7)) (-4 *9 (-195 *5 *7)) (-4 *2 (-993 *5 *6 *10 *11 *12)) (-5 *1 (-995 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-993 *5 *6 *7 *8 *9)) (-4 *11 (-195 *6 *10)) (-4 *12 (-195 *5 *10))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ |#1|) 32 T ELT))) -(((-996 |#1|) (-113) (-997)) (T -996)) -NIL -(-13 (-21) (-991 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-991 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-997) (-113)) (T -997)) -NIL -(-13 (-21) (-1052)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3981 (((-1117) $) 11 T ELT)) (-3886 ((|#1| $) 12 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3364 (($ (-1117) |#1|) 10 T ELT)) (-4096 (((-797) $) 22 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3174 (((-85) $ $) 17 (|has| |#1| (-1041)) ELT))) -(((-998 |#1| |#2|) (-13 (-1157) (-10 -8 (-15 -3364 ($ (-1117) |#1|)) (-15 -3981 ((-1117) $)) (-15 -3886 (|#1| $)) (IF (|has| |#1| (-1041)) (-6 (-1041)) |%noBranch|))) (-1034 |#2|) (-1157)) (T -998)) -((-3364 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-4 *4 (-1157)) (-5 *1 (-998 *3 *4)) (-4 *3 (-1034 *4)))) (-3981 (*1 *2 *1) (-12 (-4 *4 (-1157)) (-5 *2 (-1117)) (-5 *1 (-998 *3 *4)) (-4 *3 (-1034 *4)))) (-3886 (*1 *2 *1) (-12 (-4 *2 (-1034 *3)) (-5 *1 (-998 *2 *3)) (-4 *3 (-1157))))) -((-3921 (($ $) 17 T ELT)) (-3249 (($ $) 25 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 54 T ELT)) (-3254 (($ $) 27 T ELT)) (-3250 (($ $) 12 T ELT)) (-3252 (($ $) 40 T ELT)) (-4122 (((-333) $) NIL T ELT) (((-179) $) NIL T ELT) (((-825 (-333)) $) 36 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) 31 T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) 31 T ELT)) (-3248 (((-714)) 9 T ELT)) (-3253 (($ $) 44 T ELT))) -(((-999 |#1|) (-10 -7 (-15 -3249 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -3250 (|#1| |#1|)) (-15 -3252 (|#1| |#1|)) (-15 -3253 (|#1| |#1|)) (-15 -3254 (|#1| |#1|)) (-15 -2917 ((-823 (-333) |#1|) |#1| (-825 (-333)) (-823 (-333) |#1|))) (-15 -4122 ((-825 (-333)) |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -4096 (|#1| (-499))) (-15 -4122 ((-179) |#1|)) (-15 -4122 ((-333) |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -4096 (|#1| |#1|)) (-15 -3248 ((-714))) (-15 -4096 (|#1| (-499))) (-15 -4096 ((-797) |#1|))) (-1000)) (T -999)) -((-3248 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-999 *3)) (-4 *3 (-1000))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3251 (((-499) $) 105 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-3921 (($ $) 103 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-3158 (($ $) 113 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3773 (((-499) $) 130 T ELT)) (-3874 (($) 22 T CONST)) (-3249 (($ $) 102 T ELT)) (-3295 (((-3 (-499) #1="failed") $) 118 T ELT) (((-3 (-361 (-499)) #1#) $) 115 T ELT)) (-3294 (((-499) $) 119 T ELT) (((-361 (-499)) $) 116 T ELT)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-3873 (((-85) $) 86 T ELT)) (-3324 (((-85) $) 128 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 109 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 112 T ELT)) (-3254 (($ $) 108 T ELT)) (-3325 (((-85) $) 129 T ELT)) (-1675 (((-3 (-599 $) #2="failed") (-599 $) $) 65 T ELT)) (-2650 (($ $ $) 122 T ELT)) (-2978 (($ $ $) 123 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 85 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3250 (($ $) 104 T ELT)) (-3252 (($ $) 106 T ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-4122 (((-333) $) 121 T ELT) (((-179) $) 120 T ELT) (((-825 (-333)) $) 110 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT) (($ (-499)) 117 T ELT) (($ (-361 (-499))) 114 T ELT)) (-3248 (((-714)) 37 T CONST)) (-3253 (($ $) 107 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-3523 (($ $) 131 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2685 (((-85) $ $) 124 T ELT)) (-2686 (((-85) $ $) 126 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 125 T ELT)) (-2806 (((-85) $ $) 127 T ELT)) (-4099 (($ $ $) 80 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT) (($ $ (-361 (-499))) 111 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT))) -(((-1000) (-113)) (T -1000)) -((-3254 (*1 *1 *1) (-4 *1 (-1000))) (-3253 (*1 *1 *1) (-4 *1 (-1000))) (-3252 (*1 *1 *1) (-4 *1 (-1000))) (-3251 (*1 *2 *1) (-12 (-4 *1 (-1000)) (-5 *2 (-499)))) (-3250 (*1 *1 *1) (-4 *1 (-1000))) (-3921 (*1 *1 *1) (-4 *1 (-1000))) (-3249 (*1 *1 *1) (-4 *1 (-1000)))) -(-13 (-318) (-780) (-960) (-978 (-499)) (-978 (-361 (-499))) (-942) (-569 (-825 (-333))) (-821 (-333)) (-120) (-10 -8 (-15 -3254 ($ $)) (-15 -3253 ($ $)) (-15 -3252 ($ $)) (-15 -3251 ((-499) $)) (-15 -3250 ($ $)) (-15 -3921 ($ $)) (-15 -3249 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-569 (-179)) . T) ((-569 (-333)) . T) ((-569 (-825 (-333))) . T) ((-200) . T) ((-244) . T) ((-261) . T) ((-318) . T) ((-406) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 $) . T) ((-675 (-361 (-499))) . T) ((-675 $) . T) ((-684) . T) ((-735) . T) ((-737) . T) ((-739) . T) ((-742) . T) ((-780) . T) ((-781) . T) ((-784) . T) ((-821 (-333)) . T) ((-859) . T) ((-942) . T) ((-960) . T) ((-978 (-361 (-499))) . T) ((-978 (-499)) . T) ((-991 (-361 (-499))) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) |#2| $) 26 T ELT)) (-3258 ((|#1| $) 10 T ELT)) (-3773 (((-499) |#2| $) 119 T ELT)) (-3321 (((-3 $ #1="failed") |#2| (-857)) 76 T ELT)) (-3259 ((|#1| $) 31 T ELT)) (-3320 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3256 (($ $) 28 T ELT)) (-3607 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3324 (((-85) |#2| $) NIL T ELT)) (-3325 (((-85) |#2| $) NIL T ELT)) (-3255 (((-85) |#2| $) 27 T ELT)) (-3257 ((|#1| $) 120 T ELT)) (-3260 ((|#1| $) 30 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3323 ((|#2| $) 104 T ELT)) (-4096 (((-797) $) 95 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3920 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3322 (((-599 $) |#2|) 78 T ELT)) (-3174 (((-85) $ $) 99 T ELT))) -(((-1001 |#1| |#2|) (-13 (-1008 |#1| |#2|) (-10 -8 (-15 -3260 (|#1| $)) (-15 -3259 (|#1| $)) (-15 -3258 (|#1| $)) (-15 -3257 (|#1| $)) (-15 -3256 ($ $)) (-15 -3255 ((-85) |#2| $)) (-15 -3320 (|#1| |#2| $ |#1|)))) (-13 (-780) (-318)) (-1183 |#1|)) (T -1001)) -((-3320 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2)))) (-3260 (*1 *2 *1) (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2)))) (-3259 (*1 *2 *1) (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2)))) (-3258 (*1 *2 *1) (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2)))) (-3257 (*1 *2 *1) (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2)))) (-3256 (*1 *1 *1) (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2)))) (-3255 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-780) (-318))) (-5 *2 (-85)) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1183 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-2148 (($ $ $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2143 (($ $ $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL T ELT)) (-2557 (($ $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3261 (($ (-1117)) 10 T ELT) (($ (-499)) 7 T ELT)) (-3295 (((-3 (-499) #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL T ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-499)) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) NIL T ELT)) (-3144 (((-85) $) NIL T ELT)) (-3143 (((-361 (-499)) $) NIL T ELT)) (-3115 (($) NIL T ELT) (($ $) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2141 (($ $ $ $) NIL T ELT)) (-2149 (($ $ $) NIL T ELT)) (-3324 (((-85) $) NIL T ELT)) (-1402 (($ $ $) NIL T ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2794 (((-85) $) NIL T ELT)) (-3585 (((-649 $) $) NIL T ELT)) (-3325 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2142 (($ $ $ $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-2145 (($ $) NIL T ELT)) (-3983 (($ $) NIL T ELT)) (-2381 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT) (((-647 (-499)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2140 (($ $ $) NIL T ELT)) (-3586 (($) NIL T CONST)) (-2147 (($ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1400 (($ $) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2795 (((-85) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-2146 (($ $) NIL T ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-499) $) 16 T ELT) (((-488) $) NIL T ELT) (((-825 (-499)) $) NIL T ELT) (((-333) $) NIL T ELT) (((-179) $) NIL T ELT) (($ (-1117)) 9 T ELT)) (-4096 (((-797) $) 23 T ELT) (($ (-499)) 6 T ELT) (($ $) NIL T ELT) (($ (-499)) 6 T ELT)) (-3248 (((-714)) NIL T CONST)) (-2150 (((-85) $ $) NIL T ELT)) (-3224 (($ $ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2815 (($) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2144 (($ $ $ $) NIL T ELT)) (-3523 (($ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-3987 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-499) $) NIL T ELT))) -(((-1002) (-13 (-498) (-573 (-1117)) (-10 -8 (-6 -4132) (-6 -4137) (-6 -4133) (-15 -3261 ($ (-1117))) (-15 -3261 ($ (-499)))))) (T -1002)) -((-3261 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1002)))) (-3261 (*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-1002))))) -((-2687 (((-85) $ $) NIL (-3677 (|has| (-51) (-73)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL T ELT)) (-2299 (((-1213) $ (-1117) (-1117)) NIL (|has| $ (-6 -4146)) ELT)) (-3263 (($) 9 T ELT)) (-3938 (((-51) $ (-1117) (-51)) NIL T ELT)) (-3271 (($ $) 32 T ELT)) (-3274 (($ $) 30 T ELT)) (-3275 (($ $) 29 T ELT)) (-3273 (($ $) 31 T ELT)) (-3270 (($ $) 35 T ELT)) (-3269 (($ $) 36 T ELT)) (-3276 (($ $) 28 T ELT)) (-3272 (($ $) 33 T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) 27 (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 (-51) #1="failed") (-1117) $) 43 T ELT)) (-3874 (($) NIL T CONST)) (-3277 (($) 7 T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) 53 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 (-51) #1#) (-1117) $) NIL T ELT)) (-3546 (($ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3262 (((-3 (-1099) #1#) $ (-1099) (-499)) 72 T ELT)) (-1609 (((-51) $ (-1117) (-51)) NIL (|has| $ (-6 -4146)) ELT)) (-3235 (((-51) $ (-1117)) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-2301 (((-1117) $) NIL (|has| (-1117) (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) 38 (|has| $ (-6 -4145)) ELT) (((-599 (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (((-85) (-51) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-51) (-1041))) ELT)) (-2302 (((-1117) $) NIL (|has| (-1117) (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-51) (-1041)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT)) (-2333 (((-599 (-1117)) $) NIL T ELT)) (-2334 (((-85) (-1117) $) NIL T ELT)) (-1308 (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) 46 T ELT)) (-2304 (((-599 (-1117)) $) NIL T ELT)) (-2305 (((-85) (-1117) $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-51) (-1041)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT)) (-3266 (((-333) $ (-1117)) 52 T ELT)) (-3265 (((-599 (-1099)) $ (-1099)) 74 T ELT)) (-3951 (((-51) $) NIL (|has| (-1117) (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2300 (($ $ (-51)) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-599 (-51)) (-599 (-51))) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT) (($ $ (-247 (-51))) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT) (($ $ (-599 (-247 (-51)))) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) (-51) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-51) (-1041))) ELT)) (-2306 (((-599 (-51)) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 (((-51) $ (-1117)) NIL T ELT) (((-51) $ (-1117) (-51)) NIL T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL T ELT)) (-3264 (($ $ (-1117)) 54 T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (((-714) (-51) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-51) (-1041))) ELT) (((-714) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) 40 T ELT)) (-3952 (($ $ $) 41 T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-568 (-797))) (|has| (-51) (-568 (-797)))) ELT)) (-3268 (($ $ (-1117) (-333)) 50 T ELT)) (-3267 (($ $ (-1117) (-333)) 51 T ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-51) (-73)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-51) (-73)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-73))) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-1003) (-13 (-1134 (-1117) (-51)) (-10 -8 (-15 -3952 ($ $ $)) (-15 -3277 ($)) (-15 -3276 ($ $)) (-15 -3275 ($ $)) (-15 -3274 ($ $)) (-15 -3273 ($ $)) (-15 -3272 ($ $)) (-15 -3271 ($ $)) (-15 -3270 ($ $)) (-15 -3269 ($ $)) (-15 -3268 ($ $ (-1117) (-333))) (-15 -3267 ($ $ (-1117) (-333))) (-15 -3266 ((-333) $ (-1117))) (-15 -3265 ((-599 (-1099)) $ (-1099))) (-15 -3264 ($ $ (-1117))) (-15 -3263 ($)) (-15 -3262 ((-3 (-1099) "failed") $ (-1099) (-499))) (-6 -4145)))) (T -1003)) -((-3952 (*1 *1 *1 *1) (-5 *1 (-1003))) (-3277 (*1 *1) (-5 *1 (-1003))) (-3276 (*1 *1 *1) (-5 *1 (-1003))) (-3275 (*1 *1 *1) (-5 *1 (-1003))) (-3274 (*1 *1 *1) (-5 *1 (-1003))) (-3273 (*1 *1 *1) (-5 *1 (-1003))) (-3272 (*1 *1 *1) (-5 *1 (-1003))) (-3271 (*1 *1 *1) (-5 *1 (-1003))) (-3270 (*1 *1 *1) (-5 *1 (-1003))) (-3269 (*1 *1 *1) (-5 *1 (-1003))) (-3268 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-333)) (-5 *1 (-1003)))) (-3267 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-333)) (-5 *1 (-1003)))) (-3266 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-333)) (-5 *1 (-1003)))) (-3265 (*1 *2 *1 *3) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1003)) (-5 *3 (-1099)))) (-3264 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1003)))) (-3263 (*1 *1) (-5 *1 (-1003))) (-3262 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1099)) (-5 *3 (-499)) (-5 *1 (-1003))))) -((-3947 (($ $) 46 T ELT)) (-3304 (((-85) $ $) 82 T ELT)) (-3295 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 (-499) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-884 (-361 (-499)))) 247 T ELT) (((-3 $ #1#) (-884 (-499))) 246 T ELT) (((-3 $ #1#) (-884 |#2|)) 249 T ELT)) (-3294 ((|#2| $) NIL T ELT) (((-361 (-499)) $) NIL T ELT) (((-499) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-884 (-361 (-499)))) 235 T ELT) (($ (-884 (-499))) 231 T ELT) (($ (-884 |#2|)) 255 T ELT)) (-4109 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3844 (((-85) $ $) 131 T ELT) (((-85) $ (-599 $)) 135 T ELT)) (-3310 (((-85) $) 60 T ELT)) (-3902 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 125 T ELT)) (-3281 (($ $) 160 T ELT)) (-3292 (($ $) 156 T ELT)) (-3293 (($ $) 155 T ELT)) (-3303 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3302 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3845 (((-85) $ $) 143 T ELT) (((-85) $ (-599 $)) 144 T ELT)) (-3318 ((|#4| $) 32 T ELT)) (-3297 (($ $ $) 128 T ELT)) (-3311 (((-85) $) 59 T ELT)) (-3317 (((-714) $) 35 T ELT)) (-3278 (($ $) 174 T ELT)) (-3279 (($ $) 171 T ELT)) (-3306 (((-599 $) $) 72 T ELT)) (-3309 (($ $) 62 T ELT)) (-3280 (($ $) 167 T ELT)) (-3307 (((-599 $) $) 69 T ELT)) (-3308 (($ $) 64 T ELT)) (-3312 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3296 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3621 (-714))) $ $) 130 T ELT)) (-3298 (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $) 126 T ELT) (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $ |#4|) 127 T ELT)) (-3299 (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -3023 $)) $ $) 121 T ELT) (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -3023 $)) $ $ |#4|) 123 T ELT)) (-3301 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3300 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3314 (((-599 $) $) 54 T ELT)) (-3841 (((-85) $ $) 140 T ELT) (((-85) $ (-599 $)) 141 T ELT)) (-3836 (($ $ $) 116 T ELT)) (-3586 (($ $) 37 T ELT)) (-3849 (((-85) $ $) 80 T ELT)) (-3842 (((-85) $ $) 136 T ELT) (((-85) $ (-599 $)) 138 T ELT)) (-3837 (($ $ $) 112 T ELT)) (-3316 (($ $) 41 T ELT)) (-3282 ((|#2| |#2| $) 164 T ELT) (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3290 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3291 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3315 (($ $) 49 T ELT)) (-3313 (($ $) 55 T ELT)) (-4122 (((-825 (-333)) $) NIL T ELT) (((-825 (-499)) $) NIL T ELT) (((-488) $) NIL T ELT) (($ (-884 (-361 (-499)))) 237 T ELT) (($ (-884 (-499))) 233 T ELT) (($ (-884 |#2|)) 248 T ELT) (((-1099) $) 278 T ELT) (((-884 |#2|) $) 184 T ELT)) (-4096 (((-797) $) 29 T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-884 |#2|) $) 185 T ELT) (($ (-361 (-499))) NIL T ELT) (($ $) NIL T ELT)) (-3305 (((-3 (-85) #1#) $ $) 79 T ELT))) -(((-1004 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4096 (|#1| |#1|)) (-15 -3282 (|#1| |#1| |#1|)) (-15 -3282 (|#1| (-599 |#1|))) (-15 -4096 (|#1| (-361 (-499)))) (-15 -4096 ((-884 |#2|) |#1|)) (-15 -4122 ((-884 |#2|) |#1|)) (-15 -4122 ((-1099) |#1|)) (-15 -3278 (|#1| |#1|)) (-15 -3279 (|#1| |#1|)) (-15 -3280 (|#1| |#1|)) (-15 -3281 (|#1| |#1|)) (-15 -3282 (|#2| |#2| |#1|)) (-15 -3290 (|#1| |#1| |#1|)) (-15 -3291 (|#1| |#1| |#1|)) (-15 -3290 (|#1| |#1| |#2|)) (-15 -3291 (|#1| |#1| |#2|)) (-15 -3292 (|#1| |#1|)) (-15 -3293 (|#1| |#1|)) (-15 -4122 (|#1| (-884 |#2|))) (-15 -3294 (|#1| (-884 |#2|))) (-15 -3295 ((-3 |#1| #1="failed") (-884 |#2|))) (-15 -4122 (|#1| (-884 (-499)))) (-15 -3294 (|#1| (-884 (-499)))) (-15 -3295 ((-3 |#1| #1#) (-884 (-499)))) (-15 -4122 (|#1| (-884 (-361 (-499))))) (-15 -3294 (|#1| (-884 (-361 (-499))))) (-15 -3295 ((-3 |#1| #1#) (-884 (-361 (-499))))) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3296 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3621 (-714))) |#1| |#1|)) (-15 -3297 (|#1| |#1| |#1|)) (-15 -3902 ((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|)) (-15 -3298 ((-2 (|:| -4104 |#1|) (|:| |gap| (-714)) (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1| |#4|)) (-15 -3298 ((-2 (|:| -4104 |#1|) (|:| |gap| (-714)) (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|)) (-15 -3299 ((-2 (|:| -4104 |#1|) (|:| |gap| (-714)) (|:| -3023 |#1|)) |#1| |#1| |#4|)) (-15 -3299 ((-2 (|:| -4104 |#1|) (|:| |gap| (-714)) (|:| -3023 |#1|)) |#1| |#1|)) (-15 -3300 (|#1| |#1| |#1| |#4|)) (-15 -3301 (|#1| |#1| |#1| |#4|)) (-15 -3300 (|#1| |#1| |#1|)) (-15 -3301 (|#1| |#1| |#1|)) (-15 -3302 (|#1| |#1| |#1| |#4|)) (-15 -3303 (|#1| |#1| |#1| |#4|)) (-15 -3302 (|#1| |#1| |#1|)) (-15 -3303 (|#1| |#1| |#1|)) (-15 -3845 ((-85) |#1| (-599 |#1|))) (-15 -3845 ((-85) |#1| |#1|)) (-15 -3841 ((-85) |#1| (-599 |#1|))) (-15 -3841 ((-85) |#1| |#1|)) (-15 -3842 ((-85) |#1| (-599 |#1|))) (-15 -3842 ((-85) |#1| |#1|)) (-15 -3844 ((-85) |#1| (-599 |#1|))) (-15 -3844 ((-85) |#1| |#1|)) (-15 -3304 ((-85) |#1| |#1|)) (-15 -3849 ((-85) |#1| |#1|)) (-15 -3305 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3306 ((-599 |#1|) |#1|)) (-15 -3307 ((-599 |#1|) |#1|)) (-15 -3308 (|#1| |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -3310 ((-85) |#1|)) (-15 -3311 ((-85) |#1|)) (-15 -4109 (|#1| |#1| |#4|)) (-15 -3312 (|#1| |#1| |#4|)) (-15 -3313 (|#1| |#1|)) (-15 -3314 ((-599 |#1|) |#1|)) (-15 -3315 (|#1| |#1|)) (-15 -3947 (|#1| |#1|)) (-15 -3316 (|#1| |#1|)) (-15 -3586 (|#1| |#1|)) (-15 -3317 ((-714) |#1|)) (-15 -3318 (|#4| |#1|)) (-15 -4122 ((-488) |#1|)) (-15 -4122 ((-825 (-499)) |#1|)) (-15 -4122 ((-825 (-333)) |#1|)) (-15 -4096 (|#1| |#4|)) (-15 -3295 ((-3 |#4| #1#) |#1|)) (-15 -3294 (|#4| |#1|)) (-15 -3312 (|#2| |#1|)) (-15 -4109 (|#1| |#1|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -4096 (|#1| |#2|)) (-15 -4096 (|#1| (-499))) (-15 -4096 ((-797) |#1|))) (-1005 |#2| |#3| |#4|) (-989) (-738) (-781)) (T -1004)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 |#3|) $) 120 T ELT)) (-3206 (((-1111 $) $ |#3|) 135 T ELT) (((-1111 |#1|) $) 134 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 97 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 98 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 100 (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) 122 T ELT) (((-714) $ (-599 |#3|)) 121 T ELT)) (-3947 (($ $) 290 T ELT)) (-3304 (((-85) $ $) 276 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3905 (($ $ $) 235 (|has| |#1| (-510)) ELT)) (-3286 (((-599 $) $ $) 230 (|has| |#1| (-510)) ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 110 (|has| |#1| (-848)) ELT)) (-3925 (($ $) 108 (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) 107 (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1="failed") (-599 (-1111 $)) (-1111 $)) 113 (|has| |#1| (-848)) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-361 (-499)) #2#) $) 175 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #2#) $) 173 (|has| |#1| (-978 (-499))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 $ "failed") (-884 (-361 (-499)))) 250 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#3| (-569 (-1117)))) ELT) (((-3 $ "failed") (-884 (-499))) 247 (-3677 (-12 (-2679 (|has| |#1| (-38 (-361 (-499))))) (|has| |#1| (-38 (-499))) (|has| |#3| (-569 (-1117)))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#3| (-569 (-1117))))) ELT) (((-3 $ "failed") (-884 |#1|)) 244 (-3677 (-12 (-2679 (|has| |#1| (-38 (-361 (-499))))) (-2679 (|has| |#1| (-38 (-499)))) (|has| |#3| (-569 (-1117)))) (-12 (-2679 (|has| |#1| (-498))) (-2679 (|has| |#1| (-38 (-361 (-499))))) (|has| |#1| (-38 (-499))) (|has| |#3| (-569 (-1117)))) (-12 (-2679 (|has| |#1| (-931 (-499)))) (|has| |#1| (-38 (-361 (-499)))) (|has| |#3| (-569 (-1117))))) ELT)) (-3294 ((|#1| $) 177 T ELT) (((-361 (-499)) $) 176 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) 174 (|has| |#1| (-978 (-499))) ELT) ((|#3| $) 151 T ELT) (($ (-884 (-361 (-499)))) 249 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#3| (-569 (-1117)))) ELT) (($ (-884 (-499))) 246 (-3677 (-12 (-2679 (|has| |#1| (-38 (-361 (-499))))) (|has| |#1| (-38 (-499))) (|has| |#3| (-569 (-1117)))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#3| (-569 (-1117))))) ELT) (($ (-884 |#1|)) 243 (-3677 (-12 (-2679 (|has| |#1| (-38 (-361 (-499))))) (-2679 (|has| |#1| (-38 (-499)))) (|has| |#3| (-569 (-1117)))) (-12 (-2679 (|has| |#1| (-498))) (-2679 (|has| |#1| (-38 (-361 (-499))))) (|has| |#1| (-38 (-499))) (|has| |#3| (-569 (-1117)))) (-12 (-2679 (|has| |#1| (-931 (-499)))) (|has| |#1| (-38 (-361 (-499)))) (|has| |#3| (-569 (-1117))))) ELT)) (-3906 (($ $ $ |#3|) 118 (|has| |#1| (-146)) ELT) (($ $ $) 231 (|has| |#1| (-510)) ELT)) (-4109 (($ $) 168 T ELT) (($ $ |#3|) 285 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 146 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 145 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 144 T ELT) (((-647 |#1|) (-647 $)) 143 T ELT)) (-3844 (((-85) $ $) 275 T ELT) (((-85) $ (-599 $)) 274 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3310 (((-85) $) 283 T ELT)) (-3902 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 255 T ELT)) (-3281 (($ $) 224 (|has| |#1| (-406)) ELT)) (-3643 (($ $) 190 (|has| |#1| (-406)) ELT) (($ $ |#3|) 115 (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) 119 T ELT)) (-3873 (((-85) $) 106 (|has| |#1| (-848)) ELT)) (-3292 (($ $) 240 (|has| |#1| (-510)) ELT)) (-3293 (($ $) 241 (|has| |#1| (-510)) ELT)) (-3303 (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (-3302 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-1694 (($ $ |#1| |#2| $) 186 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 94 (-12 (|has| |#3| (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 93 (-12 (|has| |#3| (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-2528 (((-85) $) 40 T ELT)) (-2536 (((-714) $) 183 T ELT)) (-3845 (((-85) $ $) 269 T ELT) (((-85) $ (-599 $)) 268 T ELT)) (-3283 (($ $ $ $ $) 226 (|has| |#1| (-510)) ELT)) (-3318 ((|#3| $) 294 T ELT)) (-3207 (($ (-1111 |#1|) |#3|) 127 T ELT) (($ (-1111 $) |#3|) 126 T ELT)) (-2942 (((-599 $) $) 136 T ELT)) (-4087 (((-85) $) 166 T ELT)) (-3014 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-714)) 129 T ELT) (($ $ (-599 |#3|) (-599 (-714))) 128 T ELT)) (-3297 (($ $ $) 254 T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ |#3|) 130 T ELT)) (-3311 (((-85) $) 284 T ELT)) (-2941 ((|#2| $) 184 T ELT) (((-714) $ |#3|) 132 T ELT) (((-599 (-714)) $ (-599 |#3|)) 131 T ELT)) (-3317 (((-714) $) 293 T ELT)) (-1695 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3205 (((-3 |#3| #3="failed") $) 133 T ELT)) (-3278 (($ $) 221 (|has| |#1| (-406)) ELT)) (-3279 (($ $) 222 (|has| |#1| (-406)) ELT)) (-3306 (((-599 $) $) 279 T ELT)) (-3309 (($ $) 282 T ELT)) (-3280 (($ $) 223 (|has| |#1| (-406)) ELT)) (-3307 (((-599 $) $) 280 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 148 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 147 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 142 T ELT) (((-647 |#1|) (-1207 $)) 141 T ELT)) (-3308 (($ $) 281 T ELT)) (-3015 (($ $) 163 T ELT)) (-3312 ((|#1| $) 162 T ELT) (($ $ |#3|) 286 T ELT)) (-1993 (($ (-599 $)) 104 (|has| |#1| (-406)) ELT) (($ $ $) 103 (|has| |#1| (-406)) ELT)) (-3296 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3621 (-714))) $ $) 253 T ELT)) (-3298 (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $) 257 T ELT) (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $ |#3|) 256 T ELT)) (-3299 (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -3023 $)) $ $) 259 T ELT) (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -3023 $)) $ $ |#3|) 258 T ELT)) (-3301 (($ $ $) 263 T ELT) (($ $ $ |#3|) 261 T ELT)) (-3300 (($ $ $) 262 T ELT) (($ $ $ |#3|) 260 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3328 (($ $ $) 229 (|has| |#1| (-510)) ELT)) (-3314 (((-599 $) $) 288 T ELT)) (-2944 (((-3 (-599 $) #3#) $) 124 T ELT)) (-2943 (((-3 (-599 $) #3#) $) 125 T ELT)) (-2945 (((-3 (-2 (|:| |var| |#3|) (|:| -2519 (-714))) #3#) $) 123 T ELT)) (-3841 (((-85) $ $) 271 T ELT) (((-85) $ (-599 $)) 270 T ELT)) (-3836 (($ $ $) 251 T ELT)) (-3586 (($ $) 292 T ELT)) (-3849 (((-85) $ $) 277 T ELT)) (-3842 (((-85) $ $) 273 T ELT) (((-85) $ (-599 $)) 272 T ELT)) (-3837 (($ $ $) 252 T ELT)) (-3316 (($ $) 291 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3287 (((-2 (|:| -3282 $) (|:| |coef2| $)) $ $) 232 (|has| |#1| (-510)) ELT)) (-3288 (((-2 (|:| -3282 $) (|:| |coef1| $)) $ $) 233 (|has| |#1| (-510)) ELT)) (-1895 (((-85) $) 180 T ELT)) (-1894 ((|#1| $) 181 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 105 (|has| |#1| (-406)) ELT)) (-3282 ((|#1| |#1| $) 225 (|has| |#1| (-406)) ELT) (($ (-599 $)) 102 (|has| |#1| (-406)) ELT) (($ $ $) 101 (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 112 (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 111 (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) 109 (|has| |#1| (-848)) ELT)) (-3289 (((-2 (|:| -3282 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 234 (|has| |#1| (-510)) ELT)) (-3606 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-510)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-510)) ELT)) (-3290 (($ $ |#1|) 238 (|has| |#1| (-510)) ELT) (($ $ $) 236 (|has| |#1| (-510)) ELT)) (-3291 (($ $ |#1|) 239 (|has| |#1| (-510)) ELT) (($ $ $) 237 (|has| |#1| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) 159 T ELT) (($ $ (-247 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-599 $) (-599 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-599 |#3|) (-599 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-599 |#3|) (-599 $)) 152 T ELT)) (-3907 (($ $ |#3|) 117 (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 |#3|) (-599 (-714))) 49 T ELT) (($ $ |#3| (-714)) 48 T ELT) (($ $ (-599 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-4098 ((|#2| $) 164 T ELT) (((-714) $ |#3|) 140 T ELT) (((-599 (-714)) $ (-599 |#3|)) 139 T ELT)) (-3315 (($ $) 289 T ELT)) (-3313 (($ $) 287 T ELT)) (-4122 (((-825 (-333)) $) 92 (-12 (|has| |#3| (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) 91 (-12 (|has| |#3| (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) 90 (-12 (|has| |#3| (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT) (($ (-884 (-361 (-499)))) 248 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#3| (-569 (-1117)))) ELT) (($ (-884 (-499))) 245 (-3677 (-12 (-2679 (|has| |#1| (-38 (-361 (-499))))) (|has| |#1| (-38 (-499))) (|has| |#3| (-569 (-1117)))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#3| (-569 (-1117))))) ELT) (($ (-884 |#1|)) 242 (|has| |#3| (-569 (-1117))) ELT) (((-1099) $) 220 (-12 (|has| |#1| (-978 (-499))) (|has| |#3| (-569 (-1117)))) ELT) (((-884 |#1|) $) 219 (|has| |#3| (-569 (-1117))) ELT)) (-2938 ((|#1| $) 189 (|has| |#1| (-406)) ELT) (($ $ |#3|) 116 (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) 114 (-2681 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (((-884 |#1|) $) 218 (|has| |#3| (-569 (-1117))) ELT) (($ (-361 (-499))) 88 (-3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ELT) (($ $) 95 (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) 182 T ELT)) (-3827 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-714)) 138 T ELT) (($ $ (-599 |#3|) (-599 (-714))) 137 T ELT)) (-2823 (((-649 $) $) 89 (-3677 (-2681 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) 37 T CONST)) (-1693 (($ $ $ (-714)) 187 (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 99 (|has| |#1| (-510)) ELT)) (-2779 (($) 23 T CONST)) (-3305 (((-3 (-85) "failed") $ $) 278 T ELT)) (-2785 (($) 39 T CONST)) (-3284 (($ $ $ $ (-714)) 227 (|has| |#1| (-510)) ELT)) (-3285 (($ $ $ (-714)) 228 (|has| |#1| (-510)) ELT)) (-2790 (($ $ (-599 |#3|) (-599 (-714))) 52 T ELT) (($ $ |#3| (-714)) 51 T ELT) (($ $ (-599 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 170 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 172 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) 171 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-1005 |#1| |#2| |#3|) (-113) (-989) (-738) (-781)) (T -1005)) -((-3318 (*1 *2 *1) (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) (-3317 (*1 *2 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-714)))) (-3586 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3316 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3947 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3315 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3314 (*1 *2 *1) (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1005 *3 *4 *5)))) (-3313 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3312 (*1 *1 *1 *2) (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) (-4109 (*1 *1 *1 *2) (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) (-3311 (*1 *2 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3310 (*1 *2 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3309 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3308 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3307 (*1 *2 *1) (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1005 *3 *4 *5)))) (-3306 (*1 *2 *1) (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1005 *3 *4 *5)))) (-3305 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3849 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3304 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3844 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3844 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *1)) (-4 *1 (-1005 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)))) (-3842 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3842 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *1)) (-4 *1 (-1005 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)))) (-3841 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3841 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *1)) (-4 *1 (-1005 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)))) (-3845 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3845 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *1)) (-4 *1 (-1005 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)))) (-3303 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3302 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3303 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) (-3302 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) (-3301 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3300 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3301 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) (-3300 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) (-3299 (*1 *2 *1 *1) (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-2 (|:| -4104 *1) (|:| |gap| (-714)) (|:| -3023 *1))) (-4 *1 (-1005 *3 *4 *5)))) (-3299 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-5 *2 (-2 (|:| -4104 *1) (|:| |gap| (-714)) (|:| -3023 *1))) (-4 *1 (-1005 *4 *5 *3)))) (-3298 (*1 *2 *1 *1) (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-2 (|:| -4104 *1) (|:| |gap| (-714)) (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-1005 *3 *4 *5)))) (-3298 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-5 *2 (-2 (|:| -4104 *1) (|:| |gap| (-714)) (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-1005 *4 *5 *3)))) (-3902 (*1 *2 *1 *1) (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-1005 *3 *4 *5)))) (-3297 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3296 (*1 *2 *1 *1) (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3621 (-714)))) (-4 *1 (-1005 *3 *4 *5)))) (-3837 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-884 (-361 (-499)))) (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117))) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-884 (-361 (-499)))) (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117))) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-884 (-361 (-499)))) (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117))) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)))) (-3295 (*1 *1 *2) (|partial| -3677 (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-4 *3 (-38 (-499))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781))) (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781))))) (-3294 (*1 *1 *2) (-3677 (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-4 *3 (-38 (-499))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781))) (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781))))) (-4122 (*1 *1 *2) (-3677 (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-4 *3 (-38 (-499))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781))) (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781))))) (-3295 (*1 *1 *2) (|partial| -3677 (-12 (-5 *2 (-884 *3)) (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-2679 (-4 *3 (-38 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))) (-12 (-5 *2 (-884 *3)) (-12 (-2679 (-4 *3 (-498))) (-2679 (-4 *3 (-38 (-361 (-499))))) (-4 *3 (-38 (-499))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))) (-12 (-5 *2 (-884 *3)) (-12 (-2679 (-4 *3 (-931 (-499)))) (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))))) (-3294 (*1 *1 *2) (-3677 (-12 (-5 *2 (-884 *3)) (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-2679 (-4 *3 (-38 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))) (-12 (-5 *2 (-884 *3)) (-12 (-2679 (-4 *3 (-498))) (-2679 (-4 *3 (-38 (-361 (-499))))) (-4 *3 (-38 (-499))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))) (-12 (-5 *2 (-884 *3)) (-12 (-2679 (-4 *3 (-931 (-499)))) (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *5 (-569 (-1117))) (-4 *4 (-738)) (-4 *5 (-781)))) (-3293 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3292 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3291 (*1 *1 *1 *2) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3290 (*1 *1 *1 *2) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3291 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3290 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3905 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3289 (*1 *2 *1 *1) (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-2 (|:| -3282 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1005 *3 *4 *5)))) (-3288 (*1 *2 *1 *1) (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-2 (|:| -3282 *1) (|:| |coef1| *1))) (-4 *1 (-1005 *3 *4 *5)))) (-3287 (*1 *2 *1 *1) (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-2 (|:| -3282 *1) (|:| |coef2| *1))) (-4 *1 (-1005 *3 *4 *5)))) (-3906 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3286 (*1 *2 *1 *1) (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1005 *3 *4 *5)))) (-3328 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3285 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *3 (-510)))) (-3284 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *3 (-510)))) (-3283 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3282 (*1 *2 *2 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-406)))) (-3281 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-406)))) (-3280 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-406)))) (-3279 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-406)))) (-3278 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-406))))) -(-13 (-888 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3318 (|t#3| $)) (-15 -3317 ((-714) $)) (-15 -3586 ($ $)) (-15 -3316 ($ $)) (-15 -3947 ($ $)) (-15 -3315 ($ $)) (-15 -3314 ((-599 $) $)) (-15 -3313 ($ $)) (-15 -3312 ($ $ |t#3|)) (-15 -4109 ($ $ |t#3|)) (-15 -3311 ((-85) $)) (-15 -3310 ((-85) $)) (-15 -3309 ($ $)) (-15 -3308 ($ $)) (-15 -3307 ((-599 $) $)) (-15 -3306 ((-599 $) $)) (-15 -3305 ((-3 (-85) "failed") $ $)) (-15 -3849 ((-85) $ $)) (-15 -3304 ((-85) $ $)) (-15 -3844 ((-85) $ $)) (-15 -3844 ((-85) $ (-599 $))) (-15 -3842 ((-85) $ $)) (-15 -3842 ((-85) $ (-599 $))) (-15 -3841 ((-85) $ $)) (-15 -3841 ((-85) $ (-599 $))) (-15 -3845 ((-85) $ $)) (-15 -3845 ((-85) $ (-599 $))) (-15 -3303 ($ $ $)) (-15 -3302 ($ $ $)) (-15 -3303 ($ $ $ |t#3|)) (-15 -3302 ($ $ $ |t#3|)) (-15 -3301 ($ $ $)) (-15 -3300 ($ $ $)) (-15 -3301 ($ $ $ |t#3|)) (-15 -3300 ($ $ $ |t#3|)) (-15 -3299 ((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -3023 $)) $ $)) (-15 -3299 ((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -3023 $)) $ $ |t#3|)) (-15 -3298 ((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $)) (-15 -3298 ((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $ |t#3|)) (-15 -3902 ((-2 (|:| -2075 $) (|:| -3023 $)) $ $)) (-15 -3297 ($ $ $)) (-15 -3296 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3621 (-714))) $ $)) (-15 -3837 ($ $ $)) (-15 -3836 ($ $ $)) (IF (|has| |t#3| (-569 (-1117))) (PROGN (-6 (-568 (-884 |t#1|))) (-6 (-569 (-884 |t#1|))) (IF (|has| |t#1| (-38 (-361 (-499)))) (PROGN (-15 -3295 ((-3 $ "failed") (-884 (-361 (-499))))) (-15 -3294 ($ (-884 (-361 (-499))))) (-15 -4122 ($ (-884 (-361 (-499))))) (-15 -3295 ((-3 $ "failed") (-884 (-499)))) (-15 -3294 ($ (-884 (-499)))) (-15 -4122 ($ (-884 (-499)))) (IF (|has| |t#1| (-931 (-499))) |%noBranch| (PROGN (-15 -3295 ((-3 $ "failed") (-884 |t#1|))) (-15 -3294 ($ (-884 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-499))) (IF (|has| |t#1| (-38 (-361 (-499)))) |%noBranch| (PROGN (-15 -3295 ((-3 $ "failed") (-884 (-499)))) (-15 -3294 ($ (-884 (-499)))) (-15 -4122 ($ (-884 (-499)))) (IF (|has| |t#1| (-498)) |%noBranch| (PROGN (-15 -3295 ((-3 $ "failed") (-884 |t#1|))) (-15 -3294 ($ (-884 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-499))) |%noBranch| (IF (|has| |t#1| (-38 (-361 (-499)))) |%noBranch| (PROGN (-15 -3295 ((-3 $ "failed") (-884 |t#1|))) (-15 -3294 ($ (-884 |t#1|)))))) (-15 -4122 ($ (-884 |t#1|))) (IF (|has| |t#1| (-978 (-499))) (-6 (-569 (-1099))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -3293 ($ $)) (-15 -3292 ($ $)) (-15 -3291 ($ $ |t#1|)) (-15 -3290 ($ $ |t#1|)) (-15 -3291 ($ $ $)) (-15 -3290 ($ $ $)) (-15 -3905 ($ $ $)) (-15 -3289 ((-2 (|:| -3282 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3288 ((-2 (|:| -3282 $) (|:| |coef1| $)) $ $)) (-15 -3287 ((-2 (|:| -3282 $) (|:| |coef2| $)) $ $)) (-15 -3906 ($ $ $)) (-15 -3286 ((-599 $) $ $)) (-15 -3328 ($ $ $)) (-15 -3285 ($ $ $ (-714))) (-15 -3284 ($ $ $ $ (-714))) (-15 -3283 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-406)) (PROGN (-15 -3282 (|t#1| |t#1| $)) (-15 -3281 ($ $)) (-15 -3280 ($ $)) (-15 -3279 ($ $)) (-15 -3278 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-571 |#3|) . T) ((-571 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-568 (-797)) . T) ((-568 (-884 |#1|)) |has| |#3| (-569 (-1117))) ((-146) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-569 (-488)) -12 (|has| |#1| (-569 (-488))) (|has| |#3| (-569 (-488)))) ((-569 (-825 (-333))) -12 (|has| |#1| (-569 (-825 (-333)))) (|has| |#3| (-569 (-825 (-333))))) ((-569 (-825 (-499))) -12 (|has| |#1| (-569 (-825 (-499)))) (|has| |#3| (-569 (-825 (-499))))) ((-569 (-884 |#1|)) |has| |#3| (-569 (-1117))) ((-569 (-1099)) -12 (|has| |#1| (-978 (-499))) (|has| |#3| (-569 (-1117)))) ((-244) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-263 $) . T) ((-280 |#1| |#2|) . T) ((-332 |#1|) . T) ((-366 |#1|) . T) ((-406) -3677 (|has| |#1| (-848)) (|has| |#1| (-406))) ((-468 |#3| |#1|) . T) ((-468 |#3| $) . T) ((-468 $ $) . T) ((-510) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 (-499)) |has| |#1| (-596 (-499))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-596 (-499)) |has| |#1| (-596 (-499))) ((-596 |#1|) . T) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-684) . T) ((-831 $ |#3|) . T) ((-836 |#3|) . T) ((-838 |#3|) . T) ((-821 (-333)) -12 (|has| |#1| (-821 (-333))) (|has| |#3| (-821 (-333)))) ((-821 (-499)) -12 (|has| |#1| (-821 (-499))) (|has| |#3| (-821 (-499)))) ((-888 |#1| |#2| |#3|) . T) ((-848) |has| |#1| (-848)) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-978 |#3|) . T) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) |has| |#1| (-848))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3319 (((-599 (-1075)) $) 18 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 27 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-1075) $) 20 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-1006) (-13 (-1023) (-10 -8 (-15 -3319 ((-599 (-1075)) $)) (-15 -3371 ((-1075) $))))) (T -1006)) -((-3319 (*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-1006)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1006))))) -((-3326 (((-85) |#3| $) 15 T ELT)) (-3321 (((-3 $ #1="failed") |#3| (-857)) 29 T ELT)) (-3607 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3324 (((-85) |#3| $) 19 T ELT)) (-3325 (((-85) |#3| $) 17 T ELT))) -(((-1007 |#1| |#2| |#3|) (-10 -7 (-15 -3321 ((-3 |#1| #1="failed") |#3| (-857))) (-15 -3607 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3324 ((-85) |#3| |#1|)) (-15 -3325 ((-85) |#3| |#1|)) (-15 -3326 ((-85) |#3| |#1|))) (-1008 |#2| |#3|) (-13 (-780) (-318)) (-1183 |#2|)) (T -1007)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) |#2| $) 25 T ELT)) (-3773 (((-499) |#2| $) 26 T ELT)) (-3321 (((-3 $ "failed") |#2| (-857)) 19 T ELT)) (-3320 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3607 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3324 (((-85) |#2| $) 23 T ELT)) (-3325 (((-85) |#2| $) 24 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3323 ((|#2| $) 21 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3920 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3322 (((-599 $) |#2|) 20 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-1008 |#1| |#2|) (-113) (-13 (-780) (-318)) (-1183 |t#1|)) (T -1008)) -((-3773 (*1 *2 *3 *1) (-12 (-4 *1 (-1008 *4 *3)) (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) (-5 *2 (-499)))) (-3326 (*1 *2 *3 *1) (-12 (-4 *1 (-1008 *4 *3)) (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) (-5 *2 (-85)))) (-3325 (*1 *2 *3 *1) (-12 (-4 *1 (-1008 *4 *3)) (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) (-5 *2 (-85)))) (-3324 (*1 *2 *3 *1) (-12 (-4 *1 (-1008 *4 *3)) (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) (-5 *2 (-85)))) (-3607 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1008 *3 *2)) (-4 *3 (-13 (-780) (-318))) (-4 *2 (-1183 *3)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *2)) (-4 *3 (-13 (-780) (-318))) (-4 *2 (-1183 *3)))) (-3322 (*1 *2 *3) (-12 (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) (-5 *2 (-599 *1)) (-4 *1 (-1008 *4 *3)))) (-3321 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-857)) (-4 *4 (-13 (-780) (-318))) (-4 *1 (-1008 *4 *2)) (-4 *2 (-1183 *4)))) (-3920 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1008 *2 *3)) (-4 *2 (-13 (-780) (-318))) (-4 *3 (-1183 *2)))) (-3320 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1008 *2 *3)) (-4 *2 (-13 (-780) (-318))) (-4 *3 (-1183 *2))))) -(-13 (-1041) (-10 -8 (-15 -3773 ((-499) |t#2| $)) (-15 -3326 ((-85) |t#2| $)) (-15 -3325 ((-85) |t#2| $)) (-15 -3324 ((-85) |t#2| $)) (-15 -3607 ((-3 |t#2| "failed") |t#2| $)) (-15 -3323 (|t#2| $)) (-15 -3322 ((-599 $) |t#2|)) (-15 -3321 ((-3 $ "failed") |t#2| (-857))) (-15 -3920 (|t#1| |t#2| $ |t#1|)) (-15 -3320 (|t#1| |t#2| $ |t#1|)))) -(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-3576 (((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-599 |#4|) (-599 |#5|) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) (-714)) 114 T ELT)) (-3573 (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714)) 63 T ELT)) (-3577 (((-1213) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-714)) 99 T ELT)) (-3571 (((-714) (-599 |#4|) (-599 |#5|)) 30 T ELT)) (-3574 (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714)) 65 T ELT) (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714) (-85)) 67 T ELT)) (-3575 (((-599 |#5|) (-599 |#4|) (-599 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-599 |#5|) (-599 |#4|) (-599 |#5|) (-85) (-85)) 87 T ELT)) (-4122 (((-1099) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) 92 T ELT)) (-3572 (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3570 (((-714) (-599 |#4|) (-599 |#5|)) 21 T ELT))) -(((-1009 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3570 ((-714) (-599 |#4|) (-599 |#5|))) (-15 -3571 ((-714) (-599 |#4|) (-599 |#5|))) (-15 -3572 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-85))) (-15 -3573 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714))) (-15 -3573 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|)) (-15 -3574 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714) (-85))) (-15 -3574 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714))) (-15 -3574 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|)) (-15 -3575 ((-599 |#5|) (-599 |#4|) (-599 |#5|) (-85) (-85))) (-15 -3575 ((-599 |#5|) (-599 |#4|) (-599 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3576 ((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-599 |#4|) (-599 |#5|) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) (-714))) (-15 -4122 ((-1099) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)))) (-15 -3577 ((-1213) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-714)))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|) (-1011 |#1| |#2| |#3| |#4|)) (T -1009)) -((-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-2 (|:| |val| (-599 *8)) (|:| -1633 *9)))) (-5 *4 (-714)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-1213)) (-5 *1 (-1009 *5 *6 *7 *8 *9)))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-599 *7)) (|:| -1633 *8))) (-4 *7 (-1005 *4 *5 *6)) (-4 *8 (-1011 *4 *5 *6 *7)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-1099)) (-5 *1 (-1009 *4 *5 *6 *7 *8)))) (-3576 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-599 *11)) (|:| |todo| (-599 (-2 (|:| |val| *3) (|:| -1633 *11)))))) (-5 *6 (-714)) (-5 *2 (-599 (-2 (|:| |val| (-599 *10)) (|:| -1633 *11)))) (-5 *3 (-599 *10)) (-5 *4 (-599 *11)) (-4 *10 (-1005 *7 *8 *9)) (-4 *11 (-1011 *7 *8 *9 *10)) (-4 *7 (-406)) (-4 *8 (-738)) (-4 *9 (-781)) (-5 *1 (-1009 *7 *8 *9 *10 *11)))) (-3575 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-599 *9)) (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1009 *5 *6 *7 *8 *9)))) (-3575 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-599 *9)) (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1009 *5 *6 *7 *8 *9)))) (-3574 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3574 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-714)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *3 (-1005 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1009 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) (-3574 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-714)) (-5 *6 (-85)) (-4 *7 (-406)) (-4 *8 (-738)) (-4 *9 (-781)) (-4 *3 (-1005 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1009 *7 *8 *9 *3 *4)) (-4 *4 (-1011 *7 *8 *9 *3)))) (-3573 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3573 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-714)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *3 (-1005 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1009 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) (-3572 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *3 (-1005 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1009 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *9)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-714)) (-5 *1 (-1009 *5 *6 *7 *8 *9)))) (-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *9)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-714)) (-5 *1 (-1009 *5 *6 *7 *8 *9))))) -((-3335 (((-85) |#5| $) 26 T ELT)) (-3333 (((-85) |#5| $) 29 T ELT)) (-3336 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3376 (((-599 $) |#5| $) NIL T ELT) (((-599 $) (-599 |#5|) $) 94 T ELT) (((-599 $) (-599 |#5|) (-599 $)) 92 T ELT) (((-599 $) |#5| (-599 $)) 95 T ELT)) (-3919 (($ $ |#5|) NIL T ELT) (((-599 $) |#5| $) NIL T ELT) (((-599 $) |#5| (-599 $)) 73 T ELT) (((-599 $) (-599 |#5|) $) 75 T ELT) (((-599 $) (-599 |#5|) (-599 $)) 77 T ELT)) (-3327 (((-599 $) |#5| $) NIL T ELT) (((-599 $) |#5| (-599 $)) 64 T ELT) (((-599 $) (-599 |#5|) $) 69 T ELT) (((-599 $) (-599 |#5|) (-599 $)) 71 T ELT)) (-3334 (((-85) |#5| $) 32 T ELT))) -(((-1010 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3919 ((-599 |#1|) (-599 |#5|) (-599 |#1|))) (-15 -3919 ((-599 |#1|) (-599 |#5|) |#1|)) (-15 -3919 ((-599 |#1|) |#5| (-599 |#1|))) (-15 -3919 ((-599 |#1|) |#5| |#1|)) (-15 -3327 ((-599 |#1|) (-599 |#5|) (-599 |#1|))) (-15 -3327 ((-599 |#1|) (-599 |#5|) |#1|)) (-15 -3327 ((-599 |#1|) |#5| (-599 |#1|))) (-15 -3327 ((-599 |#1|) |#5| |#1|)) (-15 -3376 ((-599 |#1|) |#5| (-599 |#1|))) (-15 -3376 ((-599 |#1|) (-599 |#5|) (-599 |#1|))) (-15 -3376 ((-599 |#1|) (-599 |#5|) |#1|)) (-15 -3376 ((-599 |#1|) |#5| |#1|)) (-15 -3333 ((-85) |#5| |#1|)) (-15 -3336 ((-85) |#1|)) (-15 -3334 ((-85) |#5| |#1|)) (-15 -3335 ((-85) |#5| |#1|)) (-15 -3336 ((-85) |#5| |#1|)) (-15 -3919 (|#1| |#1| |#5|))) (-1011 |#2| |#3| |#4| |#5|) (-406) (-738) (-781) (-1005 |#2| |#3| |#4|)) (T -1010)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |#4|)))) (-599 |#4|)) 90 T ELT)) (-3832 (((-599 $) (-599 |#4|)) 91 T ELT) (((-599 $) (-599 |#4|) (-85)) 118 T ELT)) (-3204 (((-599 |#3|) $) 37 T ELT)) (-3029 (((-85) $) 30 T ELT)) (-3020 (((-85) $) 21 (|has| |#1| (-510)) ELT)) (-3843 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3838 ((|#4| |#4| $) 97 T ELT)) (-3925 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| $) 133 T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3860 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -4145)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3874 (($) 46 T CONST)) (-3025 (((-85) $) 26 (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) 28 (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) 27 (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) 29 (|has| |#1| (-510)) ELT)) (-3839 (((-599 |#4|) (-599 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) 22 (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) 23 (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ "failed") (-599 |#4|)) 40 T ELT)) (-3294 (($ (-599 |#4|)) 39 T ELT)) (-3949 (((-3 $ #1#) $) 87 T ELT)) (-3835 ((|#4| |#4| $) 94 T ELT)) (-1386 (($ $) 69 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#4| $) 68 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-510)) ELT)) (-3844 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3833 ((|#4| |#4| $) 92 T ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4145)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#4|)) (|:| -1795 (-599 |#4|))) $) 110 T ELT)) (-3335 (((-85) |#4| $) 143 T ELT)) (-3333 (((-85) |#4| $) 140 T ELT)) (-3336 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-3010 (((-599 |#4|) $) 53 (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3318 ((|#3| $) 38 T ELT)) (-2727 (((-599 |#4|) $) 54 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3035 (((-599 |#3|) $) 36 T ELT)) (-3034 (((-85) |#3| $) 35 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3329 (((-3 |#4| (-599 $)) |#4| |#4| $) 135 T ELT)) (-3328 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| |#4| $) 134 T ELT)) (-3948 (((-3 |#4| #1#) $) 88 T ELT)) (-3330 (((-599 $) |#4| $) 136 T ELT)) (-3332 (((-3 (-85) (-599 $)) |#4| $) 139 T ELT)) (-3331 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3376 (((-599 $) |#4| $) 132 T ELT) (((-599 $) (-599 |#4|) $) 131 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 130 T ELT) (((-599 $) |#4| (-599 $)) 129 T ELT)) (-3580 (($ |#4| $) 124 T ELT) (($ (-599 |#4|) $) 123 T ELT)) (-3847 (((-599 |#4|) $) 112 T ELT)) (-3841 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3836 ((|#4| |#4| $) 95 T ELT)) (-3849 (((-85) $ $) 115 T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-510)) ELT)) (-3842 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3837 ((|#4| |#4| $) 96 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3951 (((-3 |#4| #1#) $) 89 T ELT)) (-1387 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3829 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3919 (($ $ |#4|) 82 T ELT) (((-599 $) |#4| $) 122 T ELT) (((-599 $) |#4| (-599 $)) 121 T ELT) (((-599 $) (-599 |#4|) $) 120 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 119 T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) 60 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) 58 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) 57 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) 42 T ELT)) (-3543 (((-85) $) 45 T ELT)) (-3713 (($) 44 T ELT)) (-4098 (((-714) $) 111 T ELT)) (-2048 (((-714) |#4| $) 55 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 43 T ELT)) (-4122 (((-488) $) 70 (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) 61 T ELT)) (-3031 (($ $ |#3|) 32 T ELT)) (-3033 (($ $ |#3|) 34 T ELT)) (-3834 (($ $) 93 T ELT)) (-3032 (($ $ |#3|) 33 T ELT)) (-4096 (((-797) $) 13 T ELT) (((-599 |#4|) $) 41 T ELT)) (-3828 (((-714) $) 81 (|has| |#3| (-323)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3840 (((-85) $ (-1 (-85) |#4| (-599 |#4|))) 103 T ELT)) (-3327 (((-599 $) |#4| $) 128 T ELT) (((-599 $) |#4| (-599 $)) 127 T ELT) (((-599 $) (-599 |#4|) $) 126 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 125 T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 |#3|) $) 86 T ELT)) (-3334 (((-85) |#4| $) 142 T ELT)) (-4083 (((-85) |#3| $) 85 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4107 (((-714) $) 47 (|has| $ (-6 -4145)) ELT))) -(((-1011 |#1| |#2| |#3| |#4|) (-113) (-406) (-738) (-781) (-1005 |t#1| |t#2| |t#3|)) (T -1011)) -((-3336 (*1 *2 *3 *1) (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3335 (*1 *2 *3 *1) (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3334 (*1 *2 *3 *1) (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3336 (*1 *2 *1) (-12 (-4 *1 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) (-3333 (*1 *2 *3 *1) (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3332 (*1 *2 *3 *1) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-3 (-85) (-599 *1))) (-4 *1 (-1011 *4 *5 *6 *3)))) (-3331 (*1 *2 *3 *1) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *1)))) (-4 *1 (-1011 *4 *5 *6 *3)))) (-3331 (*1 *2 *3 *1) (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3330 (*1 *2 *3 *1) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)))) (-3329 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-3 *3 (-599 *1))) (-4 *1 (-1011 *4 *5 *6 *3)))) (-3328 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *1)))) (-4 *1 (-1011 *4 *5 *6 *3)))) (-3925 (*1 *2 *3 *1) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *1)))) (-4 *1 (-1011 *4 *5 *6 *3)))) (-3376 (*1 *2 *3 *1) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)))) (-3376 (*1 *2 *3 *1) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *7)))) (-3376 (*1 *2 *3 *2) (-12 (-5 *2 (-599 *1)) (-5 *3 (-599 *7)) (-4 *1 (-1011 *4 *5 *6 *7)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)))) (-3376 (*1 *2 *3 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)))) (-3327 (*1 *2 *3 *1) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)))) (-3327 (*1 *2 *3 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)))) (-3327 (*1 *2 *3 *1) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *7)))) (-3327 (*1 *2 *3 *2) (-12 (-5 *2 (-599 *1)) (-5 *3 (-599 *7)) (-4 *1 (-1011 *4 *5 *6 *7)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)))) (-3580 (*1 *1 *2 *1) (-12 (-4 *1 (-1011 *3 *4 *5 *2)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3580 (*1 *1 *2 *1) (-12 (-5 *2 (-599 *6)) (-4 *1 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)))) (-3919 (*1 *2 *3 *1) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)))) (-3919 (*1 *2 *3 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)))) (-3919 (*1 *2 *3 *1) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *7)))) (-3919 (*1 *2 *3 *2) (-12 (-5 *2 (-599 *1)) (-5 *3 (-599 *7)) (-4 *1 (-1011 *4 *5 *6 *7)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)))) (-3832 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *5 *6 *7 *8))))) -(-13 (-1152 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3336 ((-85) |t#4| $)) (-15 -3335 ((-85) |t#4| $)) (-15 -3334 ((-85) |t#4| $)) (-15 -3336 ((-85) $)) (-15 -3333 ((-85) |t#4| $)) (-15 -3332 ((-3 (-85) (-599 $)) |t#4| $)) (-15 -3331 ((-599 (-2 (|:| |val| (-85)) (|:| -1633 $))) |t#4| $)) (-15 -3331 ((-85) |t#4| $)) (-15 -3330 ((-599 $) |t#4| $)) (-15 -3329 ((-3 |t#4| (-599 $)) |t#4| |t#4| $)) (-15 -3328 ((-599 (-2 (|:| |val| |t#4|) (|:| -1633 $))) |t#4| |t#4| $)) (-15 -3925 ((-599 (-2 (|:| |val| |t#4|) (|:| -1633 $))) |t#4| $)) (-15 -3376 ((-599 $) |t#4| $)) (-15 -3376 ((-599 $) (-599 |t#4|) $)) (-15 -3376 ((-599 $) (-599 |t#4|) (-599 $))) (-15 -3376 ((-599 $) |t#4| (-599 $))) (-15 -3327 ((-599 $) |t#4| $)) (-15 -3327 ((-599 $) |t#4| (-599 $))) (-15 -3327 ((-599 $) (-599 |t#4|) $)) (-15 -3327 ((-599 $) (-599 |t#4|) (-599 $))) (-15 -3580 ($ |t#4| $)) (-15 -3580 ($ (-599 |t#4|) $)) (-15 -3919 ((-599 $) |t#4| $)) (-15 -3919 ((-599 $) |t#4| (-599 $))) (-15 -3919 ((-599 $) (-599 |t#4|) $)) (-15 -3919 ((-599 $) (-599 |t#4|) (-599 $))) (-15 -3832 ((-599 $) (-599 |t#4|) (-85))))) -(((-34) . T) ((-73) . T) ((-568 (-599 |#4|)) . T) ((-568 (-797)) . T) ((-124 |#4|) . T) ((-569 (-488)) |has| |#4| (-569 (-488))) ((-263 |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-443 |#4|) . T) ((-468 |#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1041) . T) ((-1152 |#1| |#2| |#3| |#4|) . T) ((-1157) . T)) -((-3343 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#5|) 86 T ELT)) (-3340 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3342 (((-599 |#5|) |#4| |#5|) 74 T ELT)) (-3341 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3425 (((-1213)) 36 T ELT)) (-3423 (((-1213)) 25 T ELT)) (-3424 (((-1213) (-1099) (-1099) (-1099)) 32 T ELT)) (-3422 (((-1213) (-1099) (-1099) (-1099)) 21 T ELT)) (-3337 (((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3338 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) |#3| (-85)) 117 T ELT) (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3339 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5|) 112 T ELT))) -(((-1012 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3422 ((-1213) (-1099) (-1099) (-1099))) (-15 -3423 ((-1213))) (-15 -3424 ((-1213) (-1099) (-1099) (-1099))) (-15 -3425 ((-1213))) (-15 -3337 ((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) |#4| |#4| |#5|)) (-15 -3338 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3338 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) |#3| (-85))) (-15 -3339 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5|)) (-15 -3340 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5|)) (-15 -3341 ((-85) |#4| |#5|)) (-15 -3341 ((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|)) (-15 -3342 ((-599 |#5|) |#4| |#5|)) (-15 -3343 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#5|))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|) (-1011 |#1| |#2| |#3| |#4|)) (T -1012)) -((-3343 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3342 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 *4)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3341 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3341 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3340 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3339 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3338 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-2 (|:| |val| (-599 *8)) (|:| -1633 *9)))) (-5 *5 (-85)) (-4 *8 (-1005 *6 *7 *4)) (-4 *9 (-1011 *6 *7 *4 *8)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *4 (-781)) (-5 *2 (-599 (-2 (|:| |val| *8) (|:| -1633 *9)))) (-5 *1 (-1012 *6 *7 *4 *8 *9)))) (-3338 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *3 (-1005 *6 *7 *8)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1012 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) (-3337 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3425 (*1 *2) (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-1213)) (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6)))) (-3424 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3423 (*1 *2) (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-1213)) (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6)))) (-3422 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3456 (((-1158) $) 13 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3344 (((-1075) $) 10 T ELT)) (-4096 (((-797) $) 20 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-1013) (-13 (-1023) (-10 -8 (-15 -3344 ((-1075) $)) (-15 -3456 ((-1158) $))))) (T -1013)) -((-3344 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1013)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1013))))) -((-3404 (((-85) $ $) 7 T ELT))) -(((-1014) (-13 (-1157) (-10 -8 (-15 -3404 ((-85) $ $))))) (T -1014)) -((-3404 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1014))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3347 (($ $ (-599 (-1117)) (-1 (-85) (-599 |#3|))) 34 T ELT)) (-3348 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-599 (-1117))) 21 T ELT)) (-3668 ((|#3| $) 13 T ELT)) (-3295 (((-3 (-247 |#3|) "failed") $) 60 T ELT)) (-3294 (((-247 |#3|) $) NIL T ELT)) (-3345 (((-599 (-1117)) $) 16 T ELT)) (-3346 (((-825 |#1|) $) 11 T ELT)) (-3669 ((|#3| $) 12 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3950 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-857)) 41 T ELT)) (-4096 (((-797) $) 89 T ELT) (($ (-247 |#3|)) 22 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 38 T ELT))) -(((-1015 |#1| |#2| |#3|) (-13 (-1041) (-240 |#3| |#3|) (-978 (-247 |#3|)) (-10 -8 (-15 -3348 ($ |#3| |#3|)) (-15 -3348 ($ |#3| |#3| (-599 (-1117)))) (-15 -3347 ($ $ (-599 (-1117)) (-1 (-85) (-599 |#3|)))) (-15 -3346 ((-825 |#1|) $)) (-15 -3669 (|#3| $)) (-15 -3668 (|#3| $)) (-15 -3950 (|#3| $ |#3| (-857))) (-15 -3345 ((-599 (-1117)) $)))) (-1041) (-13 (-989) (-821 |#1|) (-569 (-825 |#1|))) (-13 (-375 |#2|) (-821 |#1|) (-569 (-825 |#1|)))) (T -1015)) -((-3348 (*1 *1 *2 *2) (-12 (-4 *3 (-1041)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))) (-5 *1 (-1015 *3 *4 *2)) (-4 *2 (-13 (-375 *4) (-821 *3) (-569 (-825 *3)))))) (-3348 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-599 (-1117))) (-4 *4 (-1041)) (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-1015 *4 *5 *2)) (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))))) (-3347 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-1 (-85) (-599 *6))) (-4 *6 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))) (-4 *4 (-1041)) (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-1015 *4 *5 *6)))) (-3346 (*1 *2 *1) (-12 (-4 *3 (-1041)) (-4 *4 (-13 (-989) (-821 *3) (-569 *2))) (-5 *2 (-825 *3)) (-5 *1 (-1015 *3 *4 *5)) (-4 *5 (-13 (-375 *4) (-821 *3) (-569 *2))))) (-3669 (*1 *2 *1) (-12 (-4 *3 (-1041)) (-4 *2 (-13 (-375 *4) (-821 *3) (-569 (-825 *3)))) (-5 *1 (-1015 *3 *4 *2)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))))) (-3668 (*1 *2 *1) (-12 (-4 *3 (-1041)) (-4 *2 (-13 (-375 *4) (-821 *3) (-569 (-825 *3)))) (-5 *1 (-1015 *3 *4 *2)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))))) (-3950 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-857)) (-4 *4 (-1041)) (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-1015 *4 *5 *2)) (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))))) (-3345 (*1 *2 *1) (-12 (-4 *3 (-1041)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))) (-5 *2 (-599 (-1117))) (-5 *1 (-1015 *3 *4 *5)) (-4 *5 (-13 (-375 *4) (-821 *3) (-569 (-825 *3))))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3690 (((-1117) $) 8 T ELT)) (-3380 (((-1099) $) 17 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 11 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 14 T ELT))) -(((-1016 |#1|) (-13 (-1041) (-10 -8 (-15 -3690 ((-1117) $)))) (-1117)) (T -1016)) -((-3690 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1016 *3)) (-14 *3 *2)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3350 (($ (-599 (-1015 |#1| |#2| |#3|))) 14 T ELT)) (-3349 (((-599 (-1015 |#1| |#2| |#3|)) $) 21 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3950 ((|#3| $ |#3|) 24 T ELT) ((|#3| $ |#3| (-857)) 27 T ELT)) (-4096 (((-797) $) 17 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 20 T ELT))) -(((-1017 |#1| |#2| |#3|) (-13 (-1041) (-240 |#3| |#3|) (-10 -8 (-15 -3350 ($ (-599 (-1015 |#1| |#2| |#3|)))) (-15 -3349 ((-599 (-1015 |#1| |#2| |#3|)) $)) (-15 -3950 (|#3| $ |#3| (-857))))) (-1041) (-13 (-989) (-821 |#1|) (-569 (-825 |#1|))) (-13 (-375 |#2|) (-821 |#1|) (-569 (-825 |#1|)))) (T -1017)) -((-3350 (*1 *1 *2) (-12 (-5 *2 (-599 (-1015 *3 *4 *5))) (-4 *3 (-1041)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))) (-4 *5 (-13 (-375 *4) (-821 *3) (-569 (-825 *3)))) (-5 *1 (-1017 *3 *4 *5)))) (-3349 (*1 *2 *1) (-12 (-4 *3 (-1041)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))) (-5 *2 (-599 (-1015 *3 *4 *5))) (-5 *1 (-1017 *3 *4 *5)) (-4 *5 (-13 (-375 *4) (-821 *3) (-569 (-825 *3)))))) (-3950 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-857)) (-4 *4 (-1041)) (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-1017 *4 *5 *2)) (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4))))))) -((-3351 (((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85) (-85)) 88 T ELT) (((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|))) 92 T ELT) (((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85)) 90 T ELT))) -(((-1018 |#1| |#2|) (-10 -7 (-15 -3351 ((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85))) (-15 -3351 ((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)))) (-15 -3351 ((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85) (-85)))) (-13 (-261) (-120)) (-599 (-1117))) (T -1018)) -((-3351 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) (-5 *1 (-1018 *5 *6)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117))))) (-3351 (*1 *2 *3) (-12 (-4 *4 (-13 (-261) (-120))) (-5 *2 (-599 (-2 (|:| -1840 (-1111 *4)) (|:| -3362 (-599 (-884 *4)))))) (-5 *1 (-1018 *4 *5)) (-5 *3 (-599 (-884 *4))) (-14 *5 (-599 (-1117))))) (-3351 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) (-5 *1 (-1018 *5 *6)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 136 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-318)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-318)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-1880 (((-647 |#1|) (-1207 $)) NIL T ELT) (((-647 |#1|)) 121 T ELT)) (-3470 ((|#1| $) 125 T ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| |#1| (-305)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3258 (((-714)) 43 (|has| |#1| (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT)) (-1890 (($ (-1207 |#1|) (-1207 $)) NIL T ELT) (($ (-1207 |#1|)) 46 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-305)) ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-1879 (((-647 |#1|) $ (-1207 $)) NIL T ELT) (((-647 |#1|) $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 113 T ELT) (((-647 |#1|) (-647 $)) 108 T ELT)) (-3992 (($ |#2|) 65 T ELT) (((-3 $ #1#) (-361 |#2|)) NIL (|has| |#1| (-318)) ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3231 (((-857)) 84 T ELT)) (-3115 (($) 47 (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-2954 (($) NIL (|has| |#1| (-305)) ELT)) (-1773 (((-85) $) NIL (|has| |#1| (-305)) ELT)) (-1864 (($ $ (-714)) NIL (|has| |#1| (-305)) ELT) (($ $) NIL (|has| |#1| (-305)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3922 (((-857) $) NIL (|has| |#1| (-305)) ELT) (((-766 (-857)) $) NIL (|has| |#1| (-305)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3254 ((|#1| $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-305)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-2115 ((|#2| $) 91 (|has| |#1| (-318)) ELT)) (-2111 (((-857) $) 145 (|has| |#1| (-323)) ELT)) (-3200 ((|#2| $) 62 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3586 (($) NIL (|has| |#1| (-305)) CONST)) (-2518 (($ (-857)) 135 (|has| |#1| (-323)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($) 127 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| |#1| (-305)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3907 ((|#1| (-1207 $)) NIL T ELT) ((|#1|) 117 T ELT)) (-1865 (((-714) $) NIL (|has| |#1| (-305)) ELT) (((-3 (-714) #1#) $ $) NIL (|has| |#1| (-305)) ELT)) (-3908 (($ $ (-714)) NIL (-3677 (-12 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305))) ELT) (($ $) NIL (-3677 (-12 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-318)) ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL (|has| |#1| (-318)) ELT)) (-2526 (((-647 |#1|) (-1207 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-318)) ELT)) (-3323 ((|#2|) 81 T ELT)) (-1767 (($) NIL (|has| |#1| (-305)) ELT)) (-3362 (((-1207 |#1|) $ (-1207 $)) 96 T ELT) (((-647 |#1|) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 |#1|) $) 75 T ELT) (((-647 |#1|) (-1207 $)) 92 T ELT)) (-4122 (((-1207 |#1|) $) NIL T ELT) (($ (-1207 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| |#1| (-305)) ELT)) (-4096 (((-797) $) 61 T ELT) (($ (-499)) 56 T ELT) (($ |#1|) 58 T ELT) (($ $) NIL (|has| |#1| (-318)) ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-318)) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-2823 (($ $) NIL (|has| |#1| (-305)) ELT) (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-2565 ((|#2| $) 89 T ELT)) (-3248 (((-714)) 83 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) 88 T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-2779 (($) 32 T CONST)) (-2785 (($) 19 T CONST)) (-2790 (($ $ (-714)) NIL (-3677 (-12 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305))) ELT) (($ $) NIL (-3677 (-12 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-318)) ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL (|has| |#1| (-318)) ELT)) (-3174 (((-85) $ $) 67 T ELT)) (-4099 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) 71 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 69 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 54 T ELT) (($ $ $) 73 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 51 T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-318)) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-318)) ELT))) -(((-1019 |#1| |#2| |#3|) (-682 |#1| |#2|) (-146) (-1183 |#1|) |#2|) (T -1019)) -NIL -((-3882 (((-359 |#3|) |#3|) 18 T ELT))) -(((-1020 |#1| |#2| |#3|) (-10 -7 (-15 -3882 ((-359 |#3|) |#3|))) (-1183 (-361 (-499))) (-13 (-318) (-120) (-682 (-361 (-499)) |#1|)) (-1183 |#2|)) (T -1020)) -((-3882 (*1 *2 *3) (-12 (-4 *4 (-1183 (-361 (-499)))) (-4 *5 (-13 (-318) (-120) (-682 (-361 (-499)) *4))) (-5 *2 (-359 *3)) (-5 *1 (-1020 *4 *5 *3)) (-4 *3 (-1183 *5))))) -((-3882 (((-359 |#3|) |#3|) 19 T ELT))) -(((-1021 |#1| |#2| |#3|) (-10 -7 (-15 -3882 ((-359 |#3|) |#3|))) (-1183 (-361 (-884 (-499)))) (-13 (-318) (-120) (-682 (-361 (-884 (-499))) |#1|)) (-1183 |#2|)) (T -1021)) -((-3882 (*1 *2 *3) (-12 (-4 *4 (-1183 (-361 (-884 (-499))))) (-4 *5 (-13 (-318) (-120) (-682 (-361 (-884 (-499))) *4))) (-5 *2 (-359 *3)) (-5 *1 (-1021 *4 *5 *3)) (-4 *3 (-1183 *5))))) -((-2687 (((-85) $ $) NIL T ELT)) (-2650 (($ $ $) 16 T ELT)) (-2978 (($ $ $) 17 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3352 (($) 6 T ELT)) (-4122 (((-1117) $) 20 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 15 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 9 T ELT))) -(((-1022) (-13 (-781) (-569 (-1117)) (-10 -8 (-15 -3352 ($))))) (T -1022)) -((-3352 (*1 *1) (-5 *1 (-1022)))) -((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-1122)) 20 T ELT) (((-1122) $) 19 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-1023) (-113)) (T -1023)) +(((-235 |#1|) (-10 -7 (-15 ** (|#1| |#1| |#1|))) (-236)) (T -235)) +NIL +((-3926 (($ $) 6 T ELT)) (-3927 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) +(((-236) (-111)) (T -236)) +((** (*1 *1 *1 *1) (-4 *1 (-236))) (-3927 (*1 *1 *1) (-4 *1 (-236))) (-3926 (*1 *1 *1) (-4 *1 (-236)))) +(-13 (-10 -8 (-15 -3926 ($ $)) (-15 -3927 ($ $)) (-15 ** ($ $ $)))) +((-1562 (((-578 (-1058 |#1|)) (-1058 |#1|) |#1|) 35 T ELT)) (-1559 ((|#2| |#2| |#1|) 39 T ELT)) (-1561 ((|#2| |#2| |#1|) 41 T ELT)) (-1560 ((|#2| |#2| |#1|) 40 T ELT))) +(((-237 |#1| |#2|) (-10 -7 (-15 -1559 (|#2| |#2| |#1|)) (-15 -1560 (|#2| |#2| |#1|)) (-15 -1561 (|#2| |#2| |#1|)) (-15 -1562 ((-578 (-1058 |#1|)) (-1058 |#1|) |#1|))) (-308) (-1161 |#1|)) (T -237)) +((-1562 (*1 *2 *3 *4) (-12 (-4 *4 (-308)) (-5 *2 (-578 (-1058 *4))) (-5 *1 (-237 *4 *5)) (-5 *3 (-1058 *4)) (-4 *5 (-1161 *4)))) (-1561 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-237 *3 *2)) (-4 *2 (-1161 *3)))) (-1560 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-237 *3 *2)) (-4 *2 (-1161 *3)))) (-1559 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-237 *3 *2)) (-4 *2 (-1161 *3))))) +((-3784 ((|#2| $ |#1|) 6 T ELT))) +(((-238 |#1| |#2|) (-111) (-1118) (-1118)) (T -238)) +((-3784 (*1 *2 *1 *3) (-12 (-4 *1 (-238 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118))))) +(-13 (-1118) (-10 -8 (-15 -3784 (|t#2| $ |t#1|)))) +(((-1118) . T)) +((-1563 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3096 ((|#3| $ |#2|) 10 T ELT))) +(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -1563 (|#3| |#1| |#2| |#3|)) (-15 -3096 (|#3| |#1| |#2|))) (-240 |#2| |#3|) (-1005) (-1118)) (T -239)) +NIL +((-3772 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -3980)) ELT)) (-1563 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -3980)) ELT)) (-3096 ((|#2| $ |#1|) 11 T ELT)) (-3784 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) +(((-240 |#1| |#2|) (-111) (-1005) (-1118)) (T -240)) +((-3784 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-240 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1118)))) (-3096 (*1 *2 *1 *3) (-12 (-4 *1 (-240 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1118)))) (-3772 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-240 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1118)))) (-1563 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-240 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1118))))) +(-13 (-238 |t#1| |t#2|) (-10 -8 (-15 -3784 (|t#2| $ |t#1| |t#2|)) (-15 -3096 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -3980)) (PROGN (-15 -3772 (|t#2| $ |t#1| |t#2|)) (-15 -1563 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-238 |#1| |#2|) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 37 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 44 T ELT)) (-2049 (($ $) 41 T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2548 (($ $ $) 35 T ELT)) (-3826 (($ |#2| |#3|) 18 T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2598 ((|#3| $) NIL T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) 19 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-2388 (((-3 $ #1#) $ $) NIL T ELT)) (-1594 (((-687) $) 36 T ELT)) (-3784 ((|#2| $ |#2|) 46 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 23 T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-2644 (($) 31 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 40 T ELT))) +(((-241 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-254) (-238 |#2| |#2|) (-10 -8 (-15 -2598 (|#3| $)) (-15 -3930 (|#2| $)) (-15 -3826 ($ |#2| |#3|)) (-15 -2388 ((-3 $ #1="failed") $ $)) (-15 -3451 ((-3 $ #1#) $)) (-15 -2468 ($ $)))) (-144) (-1144 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -241)) +((-3451 (*1 *1 *1) (|partial| -12 (-4 *2 (-144)) (-5 *1 (-241 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1144 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2598 (*1 *2 *1) (-12 (-4 *3 (-144)) (-4 *2 (-23)) (-5 *1 (-241 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1144 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3930 (*1 *2 *1) (-12 (-4 *2 (-1144 *3)) (-5 *1 (-241 *3 *2 *4 *5 *6 *7)) (-4 *3 (-144)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3826 (*1 *1 *2 *3) (-12 (-4 *4 (-144)) (-5 *1 (-241 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1144 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2388 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-144)) (-5 *1 (-241 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1144 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2468 (*1 *1 *1) (-12 (-4 *2 (-144)) (-5 *1 (-241 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1144 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-242) (-111)) (T -242)) +NIL +(-13 (-954) (-80 $ $) (-10 -7 (-6 -3972))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-658) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-1571 (((-578 (-989)) $) 10 T ELT)) (-1569 (($ (-439) (-439) (-1007) $) 19 T ELT)) (-1567 (($ (-439) (-578 (-869)) $) 23 T ELT)) (-1565 (($) 25 T ELT)) (-1570 (((-627 (-1007)) (-439) (-439) $) 18 T ELT)) (-1568 (((-578 (-869)) (-439) $) 22 T ELT)) (-3549 (($) 7 T ELT)) (-1566 (($) 24 T ELT)) (-3930 (((-765) $) 29 T ELT)) (-1564 (($) 26 T ELT))) +(((-243) (-13 (-547 (-765)) (-10 -8 (-15 -3549 ($)) (-15 -1571 ((-578 (-989)) $)) (-15 -1570 ((-627 (-1007)) (-439) (-439) $)) (-15 -1569 ($ (-439) (-439) (-1007) $)) (-15 -1568 ((-578 (-869)) (-439) $)) (-15 -1567 ($ (-439) (-578 (-869)) $)) (-15 -1566 ($)) (-15 -1565 ($)) (-15 -1564 ($))))) (T -243)) +((-3549 (*1 *1) (-5 *1 (-243))) (-1571 (*1 *2 *1) (-12 (-5 *2 (-578 (-989))) (-5 *1 (-243)))) (-1570 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-1007))) (-5 *1 (-243)))) (-1569 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1007)) (-5 *1 (-243)))) (-1568 (*1 *2 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-578 (-869))) (-5 *1 (-243)))) (-1567 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-578 (-869))) (-5 *1 (-243)))) (-1566 (*1 *1) (-5 *1 (-243))) (-1565 (*1 *1) (-5 *1 (-243))) (-1564 (*1 *1) (-5 *1 (-243)))) +((-1575 (((-578 (-2 (|:| |eigval| (-3 (-343 (-850 |#1|)) (-1069 (-1079) (-850 |#1|)))) (|:| |geneigvec| (-578 (-625 (-343 (-850 |#1|))))))) (-625 (-343 (-850 |#1|)))) 103 T ELT)) (-1574 (((-578 (-625 (-343 (-850 |#1|)))) (-2 (|:| |eigval| (-3 (-343 (-850 |#1|)) (-1069 (-1079) (-850 |#1|)))) (|:| |eigmult| (-687)) (|:| |eigvec| (-578 (-625 (-343 (-850 |#1|)))))) (-625 (-343 (-850 |#1|)))) 98 T ELT) (((-578 (-625 (-343 (-850 |#1|)))) (-3 (-343 (-850 |#1|)) (-1069 (-1079) (-850 |#1|))) (-625 (-343 (-850 |#1|))) (-687) (-687)) 42 T ELT)) (-1576 (((-578 (-2 (|:| |eigval| (-3 (-343 (-850 |#1|)) (-1069 (-1079) (-850 |#1|)))) (|:| |eigmult| (-687)) (|:| |eigvec| (-578 (-625 (-343 (-850 |#1|))))))) (-625 (-343 (-850 |#1|)))) 100 T ELT)) (-1573 (((-578 (-625 (-343 (-850 |#1|)))) (-3 (-343 (-850 |#1|)) (-1069 (-1079) (-850 |#1|))) (-625 (-343 (-850 |#1|)))) 76 T ELT)) (-1572 (((-578 (-3 (-343 (-850 |#1|)) (-1069 (-1079) (-850 |#1|)))) (-625 (-343 (-850 |#1|)))) 75 T ELT)) (-2433 (((-850 |#1|) (-625 (-343 (-850 |#1|)))) 56 T ELT) (((-850 |#1|) (-625 (-343 (-850 |#1|))) (-1079)) 57 T ELT))) +(((-244 |#1|) (-10 -7 (-15 -2433 ((-850 |#1|) (-625 (-343 (-850 |#1|))) (-1079))) (-15 -2433 ((-850 |#1|) (-625 (-343 (-850 |#1|))))) (-15 -1572 ((-578 (-3 (-343 (-850 |#1|)) (-1069 (-1079) (-850 |#1|)))) (-625 (-343 (-850 |#1|))))) (-15 -1573 ((-578 (-625 (-343 (-850 |#1|)))) (-3 (-343 (-850 |#1|)) (-1069 (-1079) (-850 |#1|))) (-625 (-343 (-850 |#1|))))) (-15 -1574 ((-578 (-625 (-343 (-850 |#1|)))) (-3 (-343 (-850 |#1|)) (-1069 (-1079) (-850 |#1|))) (-625 (-343 (-850 |#1|))) (-687) (-687))) (-15 -1574 ((-578 (-625 (-343 (-850 |#1|)))) (-2 (|:| |eigval| (-3 (-343 (-850 |#1|)) (-1069 (-1079) (-850 |#1|)))) (|:| |eigmult| (-687)) (|:| |eigvec| (-578 (-625 (-343 (-850 |#1|)))))) (-625 (-343 (-850 |#1|))))) (-15 -1575 ((-578 (-2 (|:| |eigval| (-3 (-343 (-850 |#1|)) (-1069 (-1079) (-850 |#1|)))) (|:| |geneigvec| (-578 (-625 (-343 (-850 |#1|))))))) (-625 (-343 (-850 |#1|))))) (-15 -1576 ((-578 (-2 (|:| |eigval| (-3 (-343 (-850 |#1|)) (-1069 (-1079) (-850 |#1|)))) (|:| |eigmult| (-687)) (|:| |eigvec| (-578 (-625 (-343 (-850 |#1|))))))) (-625 (-343 (-850 |#1|)))))) (-385)) (T -244)) +((-1576 (*1 *2 *3) (-12 (-4 *4 (-385)) (-5 *2 (-578 (-2 (|:| |eigval| (-3 (-343 (-850 *4)) (-1069 (-1079) (-850 *4)))) (|:| |eigmult| (-687)) (|:| |eigvec| (-578 (-625 (-343 (-850 *4)))))))) (-5 *1 (-244 *4)) (-5 *3 (-625 (-343 (-850 *4)))))) (-1575 (*1 *2 *3) (-12 (-4 *4 (-385)) (-5 *2 (-578 (-2 (|:| |eigval| (-3 (-343 (-850 *4)) (-1069 (-1079) (-850 *4)))) (|:| |geneigvec| (-578 (-625 (-343 (-850 *4)))))))) (-5 *1 (-244 *4)) (-5 *3 (-625 (-343 (-850 *4)))))) (-1574 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-343 (-850 *5)) (-1069 (-1079) (-850 *5)))) (|:| |eigmult| (-687)) (|:| |eigvec| (-578 *4)))) (-4 *5 (-385)) (-5 *2 (-578 (-625 (-343 (-850 *5))))) (-5 *1 (-244 *5)) (-5 *4 (-625 (-343 (-850 *5)))))) (-1574 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-343 (-850 *6)) (-1069 (-1079) (-850 *6)))) (-5 *5 (-687)) (-4 *6 (-385)) (-5 *2 (-578 (-625 (-343 (-850 *6))))) (-5 *1 (-244 *6)) (-5 *4 (-625 (-343 (-850 *6)))))) (-1573 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-343 (-850 *5)) (-1069 (-1079) (-850 *5)))) (-4 *5 (-385)) (-5 *2 (-578 (-625 (-343 (-850 *5))))) (-5 *1 (-244 *5)) (-5 *4 (-625 (-343 (-850 *5)))))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-625 (-343 (-850 *4)))) (-4 *4 (-385)) (-5 *2 (-578 (-3 (-343 (-850 *4)) (-1069 (-1079) (-850 *4))))) (-5 *1 (-244 *4)))) (-2433 (*1 *2 *3) (-12 (-5 *3 (-625 (-343 (-850 *4)))) (-5 *2 (-850 *4)) (-5 *1 (-244 *4)) (-4 *4 (-385)))) (-2433 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-343 (-850 *5)))) (-5 *4 (-1079)) (-5 *2 (-850 *5)) (-5 *1 (-244 *5)) (-4 *5 (-385))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-3171 (((-83) $) NIL (|has| |#1| (-21)) ELT)) (-1582 (($ $) 12 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1591 (($ $ $) 95 (|has| |#1| (-250)) ELT)) (-3708 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-658))) CONST)) (-1580 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1578 (((-3 $ #1#) $) 62 (|has| |#1| (-658)) ELT)) (-3512 ((|#1| $) 11 T ELT)) (-3451 (((-3 $ #1#) $) 60 (|has| |#1| (-658)) ELT)) (-2396 (((-83) $) NIL (|has| |#1| (-658)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3513 ((|#1| $) 10 T ELT)) (-1581 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1579 (((-3 $ #1#) $) 61 (|has| |#1| (-658)) ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-2468 (($ $) 64 (OR (|has| |#1| (-308)) (|has| |#1| (-406))) ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-1577 (((-578 $) $) 85 (|has| |#1| (-489)) ELT)) (-3752 (($ $ $) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 $)) 28 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-1079) |#1|) 17 (|has| |#1| (-447 (-1079) |#1|)) ELT) (($ $ (-578 (-1079)) (-578 |#1|)) 21 (|has| |#1| (-447 (-1079) |#1|)) ELT)) (-3209 (($ |#1| |#1|) 9 T ELT)) (-3895 (((-105)) 90 (|has| |#1| (-308)) ELT)) (-3742 (($ $ (-1079)) 87 (|has| |#1| (-802 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-802 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-802 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-802 (-1079))) ELT)) (-2993 (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-2419 (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3930 (($ (-478)) NIL (|has| |#1| (-954)) ELT) (((-83) $) 37 (|has| |#1| (-1005)) ELT) (((-765) $) 36 (|has| |#1| (-1005)) ELT)) (-3109 (((-687)) 67 (|has| |#1| (-954)) CONST)) (-1253 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-2644 (($) 47 (|has| |#1| (-21)) CONST)) (-2650 (($) 57 (|has| |#1| (-658)) CONST)) (-2653 (($ $ (-1079)) NIL (|has| |#1| (-802 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-802 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-802 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-802 (-1079))) ELT)) (-3037 (($ |#1| |#1|) 8 T ELT) (((-83) $ $) 32 (|has| |#1| (-1005)) ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) 92 (OR (|has| |#1| (-308)) (|has| |#1| (-406))) ELT)) (-3821 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3823 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-478)) NIL (|has| |#1| (-406)) ELT) (($ $ (-687)) NIL (|has| |#1| (-658)) ELT) (($ $ (-823)) NIL (|has| |#1| (-1015)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1015)) ELT) (($ |#1| $) 54 (|has| |#1| (-1015)) ELT) (($ $ $) 53 (|has| |#1| (-1015)) ELT) (($ (-478) $) 70 (|has| |#1| (-21)) ELT) (($ (-687) $) NIL (|has| |#1| (-21)) ELT) (($ (-823) $) NIL (|has| |#1| (-25)) ELT))) +(((-245 |#1|) (-13 (-1118) (-10 -8 (-15 -3037 ($ |#1| |#1|)) (-15 -3209 ($ |#1| |#1|)) (-15 -1582 ($ $)) (-15 -3513 (|#1| $)) (-15 -3512 (|#1| $)) (-15 -3942 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-447 (-1079) |#1|)) (-6 (-447 (-1079) |#1|)) |%noBranch|) (IF (|has| |#1| (-1005)) (PROGN (-6 (-1005)) (-6 (-547 (-83))) (IF (|has| |#1| (-256 |#1|)) (PROGN (-15 -3752 ($ $ $)) (-15 -3752 ($ $ (-578 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3823 ($ |#1| $)) (-15 -3823 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1581 ($ $)) (-15 -1580 ($ $)) (-15 -3821 ($ |#1| $)) (-15 -3821 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1015)) (PROGN (-6 (-1015)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-658)) (PROGN (-6 (-658)) (-15 -1579 ((-3 $ #1="failed") $)) (-15 -1578 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-406)) (PROGN (-6 (-406)) (-15 -1579 ((-3 $ #1#) $)) (-15 -1578 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-954)) (PROGN (-6 (-954)) (-6 (-80 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-649 |#1|)) |%noBranch|) (IF (|has| |#1| (-489)) (-15 -1577 ((-578 $) $)) |%noBranch|) (IF (|has| |#1| (-802 (-1079))) (-6 (-802 (-1079))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-6 (-1176 |#1|)) (-15 -3933 ($ $ $)) (-15 -2468 ($ $))) |%noBranch|) (IF (|has| |#1| (-250)) (-15 -1591 ($ $ $)) |%noBranch|))) (-1118)) (T -245)) +((-3037 (*1 *1 *2 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1118)))) (-3209 (*1 *1 *2 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1118)))) (-1582 (*1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1118)))) (-3513 (*1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1118)))) (-3512 (*1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1118)))) (-3942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-245 *3)))) (-3752 (*1 *1 *1 *1) (-12 (-4 *2 (-256 *2)) (-4 *2 (-1005)) (-4 *2 (-1118)) (-5 *1 (-245 *2)))) (-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-245 *3))) (-4 *3 (-256 *3)) (-4 *3 (-1005)) (-4 *3 (-1118)) (-5 *1 (-245 *3)))) (-3823 (*1 *1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-25)) (-4 *2 (-1118)))) (-3823 (*1 *1 *1 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-25)) (-4 *2 (-1118)))) (-1581 (*1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1118)))) (-1580 (*1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1118)))) (-3821 (*1 *1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1118)))) (-3821 (*1 *1 *1 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1118)))) (-1579 (*1 *1 *1) (|partial| -12 (-5 *1 (-245 *2)) (-4 *2 (-658)) (-4 *2 (-1118)))) (-1578 (*1 *1 *1) (|partial| -12 (-5 *1 (-245 *2)) (-4 *2 (-658)) (-4 *2 (-1118)))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-578 (-245 *3))) (-5 *1 (-245 *3)) (-4 *3 (-489)) (-4 *3 (-1118)))) (-1591 (*1 *1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-250)) (-4 *2 (-1118)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1015)) (-4 *2 (-1118)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1015)) (-4 *2 (-1118)))) (-3933 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-245 *2)) (-4 *2 (-308)) (-4 *2 (-1118))) (-12 (-5 *1 (-245 *2)) (-4 *2 (-406)) (-4 *2 (-1118))))) (-2468 (*1 *1 *1) (OR (-12 (-5 *1 (-245 *2)) (-4 *2 (-308)) (-4 *2 (-1118))) (-12 (-5 *1 (-245 *2)) (-4 *2 (-406)) (-4 *2 (-1118)))))) +((-3942 (((-245 |#2|) (-1 |#2| |#1|) (-245 |#1|)) 14 T ELT))) +(((-246 |#1| |#2|) (-10 -7 (-15 -3942 ((-245 |#2|) (-1 |#2| |#1|) (-245 |#1|)))) (-1118) (-1118)) (T -246)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-245 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-245 *6)) (-5 *1 (-246 *5 *6))))) +((-2552 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3583 (($) NIL T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2184 (((-1174) $ |#1| |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3772 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1557 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-2217 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT)) (-3389 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3390 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#2| $ |#1|) NIL T ELT)) (-2873 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2186 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-2592 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2187 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3980)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| |#2| (-1005))) ELT)) (-2218 (((-578 |#1|) $) NIL T ELT)) (-2219 (((-83) |#1| $) NIL T ELT)) (-1262 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3593 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2189 (((-578 |#1|) $) NIL T ELT)) (-2190 (((-83) |#1| $) NIL T ELT)) (-3226 (((-1023) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| |#2| (-1005))) ELT)) (-3785 ((|#2| $) NIL (|has| |#1| (-749)) ELT)) (-1341 (((-3 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2185 (($ $ |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-1263 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1934 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2191 (((-578 |#2|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1453 (($) NIL T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1933 (((-687) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT) (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ELT)) (-3514 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3930 (((-765) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-547 (-765)))) ELT)) (-1253 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1264 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-247 |#1| |#2|) (-13 (-1096 |#1| |#2|) (-10 -7 (-6 -3979))) (-1005) (-1005)) (T -247)) +NIL +((-1583 (((-258) (-1062) (-578 (-1062))) 17 T ELT) (((-258) (-1062) (-1062)) 16 T ELT) (((-258) (-578 (-1062))) 15 T ELT) (((-258) (-1062)) 14 T ELT))) +(((-248) (-10 -7 (-15 -1583 ((-258) (-1062))) (-15 -1583 ((-258) (-578 (-1062)))) (-15 -1583 ((-258) (-1062) (-1062))) (-15 -1583 ((-258) (-1062) (-578 (-1062)))))) (T -248)) +((-1583 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1062))) (-5 *3 (-1062)) (-5 *2 (-258)) (-5 *1 (-248)))) (-1583 (*1 *2 *3 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-258)) (-5 *1 (-248)))) (-1583 (*1 *2 *3) (-12 (-5 *3 (-578 (-1062))) (-5 *2 (-258)) (-5 *1 (-248)))) (-1583 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-258)) (-5 *1 (-248))))) +((-1587 (((-578 (-545 $)) $) 27 T ELT)) (-1591 (($ $ (-245 $)) 78 T ELT) (($ $ (-578 (-245 $))) 139 T ELT) (($ $ (-578 (-545 $)) (-578 $)) NIL T ELT)) (-3140 (((-3 (-545 $) #1="failed") $) 127 T ELT)) (-3139 (((-545 $) $) 126 T ELT)) (-2557 (($ $) 17 T ELT) (($ (-578 $)) 54 T ELT)) (-1586 (((-578 (-84)) $) 35 T ELT)) (-3579 (((-84) (-84)) 88 T ELT)) (-2657 (((-83) $) 150 T ELT)) (-3942 (($ (-1 $ $) (-545 $)) 86 T ELT)) (-1589 (((-3 (-545 $) #1#) $) 94 T ELT)) (-2221 (($ (-84) $) 59 T ELT) (($ (-84) (-578 $)) 110 T ELT)) (-2617 (((-83) $ (-84)) 132 T ELT) (((-83) $ (-1079)) 131 T ELT)) (-2587 (((-687) $) 44 T ELT)) (-1585 (((-83) $ $) 57 T ELT) (((-83) $ (-1079)) 49 T ELT)) (-2658 (((-83) $) 148 T ELT)) (-3752 (($ $ (-545 $) $) NIL T ELT) (($ $ (-578 (-545 $)) (-578 $)) NIL T ELT) (($ $ (-578 (-245 $))) 137 T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-1 $ $))) 81 T ELT) (($ $ (-578 (-1079)) (-578 (-1 $ (-578 $)))) NIL T ELT) (($ $ (-1079) (-1 $ (-578 $))) 67 T ELT) (($ $ (-1079) (-1 $ $)) 72 T ELT) (($ $ (-578 (-84)) (-578 (-1 $ $))) 80 T ELT) (($ $ (-578 (-84)) (-578 (-1 $ (-578 $)))) 82 T ELT) (($ $ (-84) (-1 $ (-578 $))) 68 T ELT) (($ $ (-84) (-1 $ $)) 74 T ELT)) (-3784 (($ (-84) $) 60 T ELT) (($ (-84) $ $) 61 T ELT) (($ (-84) $ $ $) 62 T ELT) (($ (-84) $ $ $ $) 63 T ELT) (($ (-84) (-578 $)) 123 T ELT)) (-1590 (($ $) 51 T ELT) (($ $ $) 135 T ELT)) (-2574 (($ $) 15 T ELT) (($ (-578 $)) 53 T ELT)) (-2240 (((-83) (-84)) 21 T ELT))) +(((-249 |#1|) (-10 -7 (-15 -2657 ((-83) |#1|)) (-15 -2658 ((-83) |#1|)) (-15 -3752 (|#1| |#1| (-84) (-1 |#1| |#1|))) (-15 -3752 (|#1| |#1| (-84) (-1 |#1| (-578 |#1|)))) (-15 -3752 (|#1| |#1| (-578 (-84)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3752 (|#1| |#1| (-578 (-84)) (-578 (-1 |#1| |#1|)))) (-15 -3752 (|#1| |#1| (-1079) (-1 |#1| |#1|))) (-15 -3752 (|#1| |#1| (-1079) (-1 |#1| (-578 |#1|)))) (-15 -3752 (|#1| |#1| (-578 (-1079)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3752 (|#1| |#1| (-578 (-1079)) (-578 (-1 |#1| |#1|)))) (-15 -1585 ((-83) |#1| (-1079))) (-15 -1585 ((-83) |#1| |#1|)) (-15 -3942 (|#1| (-1 |#1| |#1|) (-545 |#1|))) (-15 -2221 (|#1| (-84) (-578 |#1|))) (-15 -2221 (|#1| (-84) |#1|)) (-15 -2617 ((-83) |#1| (-1079))) (-15 -2617 ((-83) |#1| (-84))) (-15 -2240 ((-83) (-84))) (-15 -3579 ((-84) (-84))) (-15 -1586 ((-578 (-84)) |#1|)) (-15 -1587 ((-578 (-545 |#1|)) |#1|)) (-15 -1589 ((-3 (-545 |#1|) #1="failed") |#1|)) (-15 -2587 ((-687) |#1|)) (-15 -1590 (|#1| |#1| |#1|)) (-15 -1590 (|#1| |#1|)) (-15 -2557 (|#1| (-578 |#1|))) (-15 -2557 (|#1| |#1|)) (-15 -2574 (|#1| (-578 |#1|))) (-15 -2574 (|#1| |#1|)) (-15 -1591 (|#1| |#1| (-578 (-545 |#1|)) (-578 |#1|))) (-15 -1591 (|#1| |#1| (-578 (-245 |#1|)))) (-15 -1591 (|#1| |#1| (-245 |#1|))) (-15 -3784 (|#1| (-84) (-578 |#1|))) (-15 -3784 (|#1| (-84) |#1| |#1| |#1| |#1|)) (-15 -3784 (|#1| (-84) |#1| |#1| |#1|)) (-15 -3784 (|#1| (-84) |#1| |#1|)) (-15 -3784 (|#1| (-84) |#1|)) (-15 -3752 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3752 (|#1| |#1| |#1| |#1|)) (-15 -3752 (|#1| |#1| (-245 |#1|))) (-15 -3752 (|#1| |#1| (-578 (-245 |#1|)))) (-15 -3752 (|#1| |#1| (-578 (-545 |#1|)) (-578 |#1|))) (-15 -3752 (|#1| |#1| (-545 |#1|) |#1|)) (-15 -3140 ((-3 (-545 |#1|) #1#) |#1|)) (-15 -3139 ((-545 |#1|) |#1|))) (-250)) (T -249)) +((-3579 (*1 *2 *2) (-12 (-5 *2 (-84)) (-5 *1 (-249 *3)) (-4 *3 (-250)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-84)) (-5 *2 (-83)) (-5 *1 (-249 *4)) (-4 *4 (-250))))) +((-2552 (((-83) $ $) 7 T ELT)) (-1587 (((-578 (-545 $)) $) 42 T ELT)) (-1591 (($ $ (-245 $)) 54 T ELT) (($ $ (-578 (-245 $))) 53 T ELT) (($ $ (-578 (-545 $)) (-578 $)) 52 T ELT)) (-3140 (((-3 (-545 $) "failed") $) 67 T ELT)) (-3139 (((-545 $) $) 68 T ELT)) (-2557 (($ $) 49 T ELT) (($ (-578 $)) 48 T ELT)) (-1586 (((-578 (-84)) $) 41 T ELT)) (-3579 (((-84) (-84)) 40 T ELT)) (-2657 (((-83) $) 20 (|has| $ (-943 (-478))) ELT)) (-1584 (((-1074 $) (-545 $)) 23 (|has| $ (-954)) ELT)) (-3942 (($ (-1 $ $) (-545 $)) 34 T ELT)) (-1589 (((-3 (-545 $) "failed") $) 44 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-1588 (((-578 (-545 $)) $) 43 T ELT)) (-2221 (($ (-84) $) 36 T ELT) (($ (-84) (-578 $)) 35 T ELT)) (-2617 (((-83) $ (-84)) 38 T ELT) (((-83) $ (-1079)) 37 T ELT)) (-2587 (((-687) $) 45 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-1585 (((-83) $ $) 33 T ELT) (((-83) $ (-1079)) 32 T ELT)) (-2658 (((-83) $) 21 (|has| $ (-943 (-478))) ELT)) (-3752 (($ $ (-545 $) $) 65 T ELT) (($ $ (-578 (-545 $)) (-578 $)) 64 T ELT) (($ $ (-578 (-245 $))) 63 T ELT) (($ $ (-245 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-578 $) (-578 $)) 60 T ELT) (($ $ (-578 (-1079)) (-578 (-1 $ $))) 31 T ELT) (($ $ (-578 (-1079)) (-578 (-1 $ (-578 $)))) 30 T ELT) (($ $ (-1079) (-1 $ (-578 $))) 29 T ELT) (($ $ (-1079) (-1 $ $)) 28 T ELT) (($ $ (-578 (-84)) (-578 (-1 $ $))) 27 T ELT) (($ $ (-578 (-84)) (-578 (-1 $ (-578 $)))) 26 T ELT) (($ $ (-84) (-1 $ (-578 $))) 25 T ELT) (($ $ (-84) (-1 $ $)) 24 T ELT)) (-3784 (($ (-84) $) 59 T ELT) (($ (-84) $ $) 58 T ELT) (($ (-84) $ $ $) 57 T ELT) (($ (-84) $ $ $ $) 56 T ELT) (($ (-84) (-578 $)) 55 T ELT)) (-1590 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3168 (($ $) 22 (|has| $ (-954)) ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-545 $)) 66 T ELT)) (-2574 (($ $) 51 T ELT) (($ (-578 $)) 50 T ELT)) (-2240 (((-83) (-84)) 39 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(((-250) (-111)) (T -250)) +((-3784 (*1 *1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) (-3784 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) (-3784 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) (-3784 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) (-3784 (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-578 *1)) (-4 *1 (-250)))) (-1591 (*1 *1 *1 *2) (-12 (-5 *2 (-245 *1)) (-4 *1 (-250)))) (-1591 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-245 *1))) (-4 *1 (-250)))) (-1591 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-545 *1))) (-5 *3 (-578 *1)) (-4 *1 (-250)))) (-2574 (*1 *1 *1) (-4 *1 (-250))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-250)))) (-2557 (*1 *1 *1) (-4 *1 (-250))) (-2557 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-250)))) (-1590 (*1 *1 *1) (-4 *1 (-250))) (-1590 (*1 *1 *1 *1) (-4 *1 (-250))) (-2587 (*1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-687)))) (-1589 (*1 *2 *1) (|partial| -12 (-5 *2 (-545 *1)) (-4 *1 (-250)))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-578 (-545 *1))) (-4 *1 (-250)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-578 (-545 *1))) (-4 *1 (-250)))) (-1586 (*1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-578 (-84))))) (-3579 (*1 *2 *2) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) (-2240 (*1 *2 *3) (-12 (-4 *1 (-250)) (-5 *3 (-84)) (-5 *2 (-83)))) (-2617 (*1 *2 *1 *3) (-12 (-4 *1 (-250)) (-5 *3 (-84)) (-5 *2 (-83)))) (-2617 (*1 *2 *1 *3) (-12 (-4 *1 (-250)) (-5 *3 (-1079)) (-5 *2 (-83)))) (-2221 (*1 *1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) (-2221 (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-578 *1)) (-4 *1 (-250)))) (-3942 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-545 *1)) (-4 *1 (-250)))) (-1585 (*1 *2 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-83)))) (-1585 (*1 *2 *1 *3) (-12 (-4 *1 (-250)) (-5 *3 (-1079)) (-5 *2 (-83)))) (-3752 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1079))) (-5 *3 (-578 (-1 *1 *1))) (-4 *1 (-250)))) (-3752 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1079))) (-5 *3 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-250)))) (-3752 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1079)) (-5 *3 (-1 *1 (-578 *1))) (-4 *1 (-250)))) (-3752 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1079)) (-5 *3 (-1 *1 *1)) (-4 *1 (-250)))) (-3752 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-84))) (-5 *3 (-578 (-1 *1 *1))) (-4 *1 (-250)))) (-3752 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-84))) (-5 *3 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-250)))) (-3752 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *1 (-578 *1))) (-4 *1 (-250)))) (-3752 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *1 *1)) (-4 *1 (-250)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-545 *1)) (-4 *1 (-954)) (-4 *1 (-250)) (-5 *2 (-1074 *1)))) (-3168 (*1 *1 *1) (-12 (-4 *1 (-954)) (-4 *1 (-250)))) (-2658 (*1 *2 *1) (-12 (-4 *1 (-943 (-478))) (-4 *1 (-250)) (-5 *2 (-83)))) (-2657 (*1 *2 *1) (-12 (-4 *1 (-943 (-478))) (-4 *1 (-250)) (-5 *2 (-83))))) +(-13 (-1005) (-943 (-545 $)) (-447 (-545 $) $) (-256 $) (-10 -8 (-15 -3784 ($ (-84) $)) (-15 -3784 ($ (-84) $ $)) (-15 -3784 ($ (-84) $ $ $)) (-15 -3784 ($ (-84) $ $ $ $)) (-15 -3784 ($ (-84) (-578 $))) (-15 -1591 ($ $ (-245 $))) (-15 -1591 ($ $ (-578 (-245 $)))) (-15 -1591 ($ $ (-578 (-545 $)) (-578 $))) (-15 -2574 ($ $)) (-15 -2574 ($ (-578 $))) (-15 -2557 ($ $)) (-15 -2557 ($ (-578 $))) (-15 -1590 ($ $)) (-15 -1590 ($ $ $)) (-15 -2587 ((-687) $)) (-15 -1589 ((-3 (-545 $) "failed") $)) (-15 -1588 ((-578 (-545 $)) $)) (-15 -1587 ((-578 (-545 $)) $)) (-15 -1586 ((-578 (-84)) $)) (-15 -3579 ((-84) (-84))) (-15 -2240 ((-83) (-84))) (-15 -2617 ((-83) $ (-84))) (-15 -2617 ((-83) $ (-1079))) (-15 -2221 ($ (-84) $)) (-15 -2221 ($ (-84) (-578 $))) (-15 -3942 ($ (-1 $ $) (-545 $))) (-15 -1585 ((-83) $ $)) (-15 -1585 ((-83) $ (-1079))) (-15 -3752 ($ $ (-578 (-1079)) (-578 (-1 $ $)))) (-15 -3752 ($ $ (-578 (-1079)) (-578 (-1 $ (-578 $))))) (-15 -3752 ($ $ (-1079) (-1 $ (-578 $)))) (-15 -3752 ($ $ (-1079) (-1 $ $))) (-15 -3752 ($ $ (-578 (-84)) (-578 (-1 $ $)))) (-15 -3752 ($ $ (-578 (-84)) (-578 (-1 $ (-578 $))))) (-15 -3752 ($ $ (-84) (-1 $ (-578 $)))) (-15 -3752 ($ $ (-84) (-1 $ $))) (IF (|has| $ (-954)) (PROGN (-15 -1584 ((-1074 $) (-545 $))) (-15 -3168 ($ $))) |%noBranch|) (IF (|has| $ (-943 (-478))) (PROGN (-15 -2658 ((-83) $)) (-15 -2657 ((-83) $))) |%noBranch|))) +(((-72) . T) ((-550 (-545 $)) . T) ((-547 (-765)) . T) ((-256 $) . T) ((-447 (-545 $) $) . T) ((-447 $ $) . T) ((-943 (-545 $)) . T) ((-1005) . T) ((-1118) . T)) +((-3942 ((|#2| (-1 |#2| |#1|) (-1062) (-545 |#1|)) 18 T ELT))) +(((-251 |#1| |#2|) (-10 -7 (-15 -3942 (|#2| (-1 |#2| |#1|) (-1062) (-545 |#1|)))) (-250) (-1118)) (T -251)) +((-3942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1062)) (-5 *5 (-545 *6)) (-4 *6 (-250)) (-4 *2 (-1118)) (-5 *1 (-251 *6 *2))))) +((-3942 ((|#2| (-1 |#2| |#1|) (-545 |#1|)) 17 T ELT))) +(((-252 |#1| |#2|) (-10 -7 (-15 -3942 (|#2| (-1 |#2| |#1|) (-545 |#1|)))) (-250) (-250)) (T -252)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-545 *5)) (-4 *5 (-250)) (-4 *2 (-250)) (-5 *1 (-252 *5 *2))))) +((-1595 (((-83) $ $) 14 T ELT)) (-2548 (($ $ $) 18 T ELT)) (-2547 (($ $ $) 17 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 50 T ELT)) (-1592 (((-3 (-578 $) #1="failed") (-578 $) $) 67 T ELT)) (-3127 (($ $ $) 25 T ELT) (($ (-578 $)) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3450 (((-3 $ #1#) $ $) 21 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 55 T ELT))) +(((-253 |#1|) (-10 -7 (-15 -1592 ((-3 (-578 |#1|) #1="failed") (-578 |#1|) |#1|)) (-15 -1593 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1593 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2395 |#1|)) |#1| |#1|)) (-15 -2548 (|#1| |#1| |#1|)) (-15 -2547 (|#1| |#1| |#1|)) (-15 -1595 ((-83) |#1| |#1|)) (-15 -2724 ((-627 (-578 |#1|)) (-578 |#1|) |#1|)) (-15 -2725 ((-2 (|:| -3938 (-578 |#1|)) (|:| -2395 |#1|)) (-578 |#1|))) (-15 -3127 (|#1| (-578 |#1|))) (-15 -3127 (|#1| |#1| |#1|)) (-15 -3450 ((-3 |#1| #1#) |#1| |#1|))) (-254)) (T -253)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-1595 (((-83) $ $) 72 T ELT)) (-3708 (($) 22 T CONST)) (-2548 (($ $ $) 68 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2547 (($ $ $) 69 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 63 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-1592 (((-3 (-578 $) "failed") (-578 $) $) 65 T ELT)) (-1878 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 55 T ELT)) (-3127 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 66 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-1594 (((-687) $) 71 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 70 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-254) (-111)) (T -254)) +((-1595 (*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-83)))) (-1594 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-687)))) (-2863 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1960 *1) (|:| -2886 *1))) (-4 *1 (-254)))) (-2547 (*1 *1 *1 *1) (-4 *1 (-254))) (-2548 (*1 *1 *1 *1) (-4 *1 (-254))) (-1593 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2395 *1))) (-4 *1 (-254)))) (-1593 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-254)))) (-1592 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-578 *1)) (-4 *1 (-254))))) +(-13 (-825) (-10 -8 (-15 -1595 ((-83) $ $)) (-15 -1594 ((-687) $)) (-15 -2863 ((-2 (|:| -1960 $) (|:| -2886 $)) $ $)) (-15 -2547 ($ $ $)) (-15 -2548 ($ $ $)) (-15 -1593 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $)) (-15 -1593 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1592 ((-3 (-578 $) "failed") (-578 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-242) . T) ((-385) . T) ((-489) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-577 $) . T) ((-649 $) . T) ((-658) . T) ((-825) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-3752 (($ $ (-578 |#2|) (-578 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-245 |#2|)) 11 T ELT) (($ $ (-578 (-245 |#2|))) NIL T ELT))) +(((-255 |#1| |#2|) (-10 -7 (-15 -3752 (|#1| |#1| (-578 (-245 |#2|)))) (-15 -3752 (|#1| |#1| (-245 |#2|))) (-15 -3752 (|#1| |#1| |#2| |#2|)) (-15 -3752 (|#1| |#1| (-578 |#2|) (-578 |#2|)))) (-256 |#2|) (-1005)) (T -255)) +NIL +((-3752 (($ $ (-578 |#1|) (-578 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-245 |#1|)) 13 T ELT) (($ $ (-578 (-245 |#1|))) 12 T ELT))) +(((-256 |#1|) (-111) (-1005)) (T -256)) +((-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-245 *3)) (-4 *1 (-256 *3)) (-4 *3 (-1005)))) (-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-245 *3))) (-4 *1 (-256 *3)) (-4 *3 (-1005))))) +(-13 (-447 |t#1| |t#1|) (-10 -8 (-15 -3752 ($ $ (-245 |t#1|))) (-15 -3752 ($ $ (-578 (-245 |t#1|)))))) +(((-447 |#1| |#1|) . T)) +((-3752 ((|#1| (-1 |#1| (-478)) (-1081 (-343 (-478)))) 26 T ELT))) +(((-257 |#1|) (-10 -7 (-15 -3752 (|#1| (-1 |#1| (-478)) (-1081 (-343 (-478)))))) (-38 (-343 (-478)))) (T -257)) +((-3752 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-478))) (-5 *4 (-1081 (-343 (-478)))) (-5 *1 (-257 *2)) (-4 *2 (-38 (-343 (-478))))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 7 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 9 T ELT))) +(((-258) (-1005)) (T -258)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3490 (((-478) $) 12 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3189 (((-1038) $) 9 T ELT)) (-3930 (((-765) $) 19 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-259) (-13 (-987) (-10 -8 (-15 -3189 ((-1038) $)) (-15 -3490 ((-478) $))))) (T -259)) +((-3189 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-259)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-259))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 60 T ELT)) (-3112 (((-1155 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-254)) ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-814)) ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-814)) ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3607 (((-478) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-733)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-1155 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1079) #1#) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-943 (-1079))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-943 (-478))) ELT) (((-3 (-478) #1#) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-943 (-478))) ELT) (((-3 (-1149 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3139 (((-1155 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1079) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-943 (-1079))) ELT) (((-343 (-478)) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-943 (-478))) ELT) (((-478) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-943 (-478))) ELT) (((-1149 |#2| |#3| |#4|) $) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-1155 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1168 (-1155 |#1| |#2| |#3| |#4|)))) (-625 $) (-1168 $)) NIL T ELT) (((-625 (-1155 |#1| |#2| |#3| |#4|)) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-477)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-3169 (((-83) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-733)) ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-789 (-323))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2980 (($ $) NIL T ELT)) (-2982 (((-1155 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3429 (((-627 $) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-1055)) ELT)) (-3170 (((-83) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-733)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2515 (($ $ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-749)) ELT)) (-3942 (($ (-1 (-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3768 (((-3 (-743 |#2|) #1#) $) 80 T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-1155 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1168 (-1155 |#1| |#2| |#3| |#4|)))) (-1168 $) $) NIL T ELT) (((-625 (-1155 |#1| |#2| |#3| |#4|)) (-1168 $)) NIL T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3430 (($) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-1055)) CONST)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3111 (($ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-254)) ELT)) (-3113 (((-1155 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-477)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-814)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-3752 (($ $ (-578 (-1155 |#1| |#2| |#3| |#4|)) (-578 (-1155 |#1| |#2| |#3| |#4|))) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-256 (-1155 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-256 (-1155 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-245 (-1155 |#1| |#2| |#3| |#4|))) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-256 (-1155 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-578 (-245 (-1155 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-256 (-1155 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-578 (-1079)) (-578 (-1155 |#1| |#2| |#3| |#4|))) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-447 (-1079) (-1155 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1079) (-1155 |#1| |#2| |#3| |#4|)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-447 (-1079) (-1155 |#1| |#2| |#3| |#4|))) ELT)) (-1594 (((-687) $) NIL T ELT)) (-3784 (($ $ (-1155 |#1| |#2| |#3| |#4|)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-238 (-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|))) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-3742 (($ $ (-1 (-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|)) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-804 (-1079))) ELT) (($ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-187)) ELT) (($ $ (-687)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-187)) ELT)) (-2979 (($ $) NIL T ELT)) (-2981 (((-1155 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3956 (((-793 (-478)) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-548 (-793 (-323)))) ELT) (((-467) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-548 (-467))) ELT) (((-323) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-926)) ELT) (((-177) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-926)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| (-1155 |#1| |#2| |#3| |#4|) (-814))) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-1155 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1079)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-943 (-1079))) ELT) (($ (-1149 |#2| |#3| |#4|)) 37 T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-1155 |#1| |#2| |#3| |#4|) (-814))) (|has| (-1155 |#1| |#2| |#3| |#4|) (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-3114 (((-1155 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-477)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3367 (($ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-733)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $ (-1 (-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|)) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-804 (-1079))) ELT) (($ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-187)) ELT) (($ $ (-687)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-187)) ELT)) (-2550 (((-83) $ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-749)) ELT)) (-3933 (($ $ $) 35 T ELT) (($ (-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ (-1155 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1155 |#1| |#2| |#3| |#4|)) NIL T ELT))) +(((-260 |#1| |#2| |#3| |#4|) (-13 (-897 (-1155 |#1| |#2| |#3| |#4|)) (-943 (-1149 |#2| |#3| |#4|)) (-10 -8 (-15 -3768 ((-3 (-743 |#2|) "failed") $)) (-15 -3930 ($ (-1149 |#2| |#3| |#4|))))) (-13 (-943 (-478)) (-575 (-478)) (-385)) (-13 (-27) (-1104) (-357 |#1|)) (-1079) |#2|) (T -260)) +((-3930 (*1 *1 *2) (-12 (-5 *2 (-1149 *4 *5 *6)) (-4 *4 (-13 (-27) (-1104) (-357 *3))) (-14 *5 (-1079)) (-14 *6 *4) (-4 *3 (-13 (-943 (-478)) (-575 (-478)) (-385))) (-5 *1 (-260 *3 *4 *5 *6)))) (-3768 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-943 (-478)) (-575 (-478)) (-385))) (-5 *2 (-743 *4)) (-5 *1 (-260 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1104) (-357 *3))) (-14 *5 (-1079)) (-14 *6 *4)))) +((-2552 (((-83) $ $) NIL T ELT)) (-1203 (((-578 $) $ (-1079)) NIL (|has| |#1| (-489)) ELT) (((-578 $) $) NIL (|has| |#1| (-489)) ELT) (((-578 $) (-1074 $) (-1079)) NIL (|has| |#1| (-489)) ELT) (((-578 $) (-1074 $)) NIL (|has| |#1| (-489)) ELT) (((-578 $) (-850 $)) NIL (|has| |#1| (-489)) ELT)) (-1204 (($ $ (-1079)) NIL (|has| |#1| (-489)) ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ (-1074 $) (-1079)) NIL (|has| |#1| (-489)) ELT) (($ (-1074 $)) NIL (|has| |#1| (-489)) ELT) (($ (-850 $)) NIL (|has| |#1| (-489)) ELT)) (-3171 (((-83) $) 27 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT)) (-3065 (((-578 (-1079)) $) 368 T ELT)) (-3067 (((-343 (-1074 $)) $ (-545 $)) NIL (|has| |#1| (-489)) ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-1587 (((-578 (-545 $)) $) NIL T ELT)) (-3476 (($ $) 171 (|has| |#1| (-489)) ELT)) (-3623 (($ $) 147 (|has| |#1| (-489)) ELT)) (-1359 (($ $ (-996 $)) 232 (|has| |#1| (-489)) ELT) (($ $ (-1079)) 228 (|has| |#1| (-489)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT)) (-1591 (($ $ (-245 $)) NIL T ELT) (($ $ (-578 (-245 $))) 386 T ELT) (($ $ (-578 (-545 $)) (-578 $)) 430 T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) 308 (-12 (|has| |#1| (-385)) (|has| |#1| (-489))) ELT)) (-3759 (($ $) NIL (|has| |#1| (-489)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-489)) ELT)) (-3021 (($ $) NIL (|has| |#1| (-489)) ELT)) (-1595 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3474 (($ $) 167 (|has| |#1| (-489)) ELT)) (-3622 (($ $) 143 (|has| |#1| (-489)) ELT)) (-1596 (($ $ (-478)) 73 (|has| |#1| (-489)) ELT)) (-3478 (($ $) 175 (|has| |#1| (-489)) ELT)) (-3621 (($ $) 151 (|has| |#1| (-489)) ELT)) (-3708 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) (|has| |#1| (-1015))) CONST)) (-1205 (((-578 $) $ (-1079)) NIL (|has| |#1| (-489)) ELT) (((-578 $) $) NIL (|has| |#1| (-489)) ELT) (((-578 $) (-1074 $) (-1079)) NIL (|has| |#1| (-489)) ELT) (((-578 $) (-1074 $)) NIL (|has| |#1| (-489)) ELT) (((-578 $) (-850 $)) NIL (|has| |#1| (-489)) ELT)) (-3166 (($ $ (-1079)) NIL (|has| |#1| (-489)) ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ (-1074 $) (-1079)) 134 (|has| |#1| (-489)) ELT) (($ (-1074 $)) NIL (|has| |#1| (-489)) ELT) (($ (-850 $)) NIL (|has| |#1| (-489)) ELT)) (-3140 (((-3 (-545 $) #1#) $) 18 T ELT) (((-3 (-1079) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 441 T ELT) (((-3 (-48) #1#) $) 336 (-12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-850 |#1|)) #1#) $) NIL (|has| |#1| (-489)) ELT) (((-3 (-850 |#1|) #1#) $) NIL (|has| |#1| (-954)) ELT) (((-3 (-343 (-478)) #1#) $) 46 (OR (-12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-3139 (((-545 $) $) 12 T ELT) (((-1079) $) NIL T ELT) ((|#1| $) 421 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-850 |#1|)) $) NIL (|has| |#1| (-489)) ELT) (((-850 |#1|) $) NIL (|has| |#1| (-954)) ELT) (((-343 (-478)) $) 319 (OR (-12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-489)) ELT)) (-2265 (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) 125 (|has| |#1| (-954)) ELT) (((-625 |#1|) (-625 $)) 115 (|has| |#1| (-954)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ELT) (((-625 (-478)) (-625 $)) NIL (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ELT)) (-3826 (($ $) 96 (|has| |#1| (-489)) ELT)) (-3451 (((-3 $ #1#) $) NIL (|has| |#1| (-1015)) ELT)) (-2547 (($ $ $) NIL (|has| |#1| (-489)) ELT)) (-3928 (($ $ (-996 $)) 236 (|has| |#1| (-489)) ELT) (($ $ (-1079)) 234 (|has| |#1| (-489)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| |#1| (-489)) ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3370 (($ $ $) 202 (|has| |#1| (-489)) ELT)) (-3611 (($) 137 (|has| |#1| (-489)) ELT)) (-1356 (($ $ $) 222 (|has| |#1| (-489)) ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 392 (|has| |#1| (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 399 (|has| |#1| (-789 (-323))) ELT)) (-2557 (($ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1586 (((-578 (-84)) $) NIL T ELT)) (-3579 (((-84) (-84)) 276 T ELT)) (-2396 (((-83) $) 25 (|has| |#1| (-1015)) ELT)) (-2657 (((-83) $) NIL (|has| $ (-943 (-478))) ELT)) (-2980 (($ $) 72 (|has| |#1| (-954)) ELT)) (-2982 (((-1028 |#1| (-545 $)) $) 91 (|has| |#1| (-954)) ELT)) (-1597 (((-83) $) 62 (|has| |#1| (-489)) ELT)) (-2995 (($ $ (-478)) NIL (|has| |#1| (-489)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-489)) ELT)) (-1584 (((-1074 $) (-545 $)) 277 (|has| $ (-954)) ELT)) (-3942 (($ (-1 $ $) (-545 $)) 426 T ELT)) (-1589 (((-3 (-545 $) #1#) $) NIL T ELT)) (-3926 (($ $) 141 (|has| |#1| (-489)) ELT)) (-2243 (($ $) 247 (|has| |#1| (-489)) ELT)) (-2266 (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) NIL (|has| |#1| (-954)) ELT) (((-625 |#1|) (-1168 $)) NIL (|has| |#1| (-954)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ELT) (((-625 (-478)) (-1168 $)) NIL (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-489)) ELT) (($ $ $) NIL (|has| |#1| (-489)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1588 (((-578 (-545 $)) $) 49 T ELT)) (-2221 (($ (-84) $) NIL T ELT) (($ (-84) (-578 $)) 431 T ELT)) (-2807 (((-3 (-578 $) #1#) $) NIL (|has| |#1| (-1015)) ELT)) (-2809 (((-3 (-2 (|:| |val| $) (|:| -2387 (-478))) #1#) $) NIL (|has| |#1| (-954)) ELT)) (-2806 (((-3 (-578 $) #1#) $) 436 (|has| |#1| (-25)) ELT)) (-1781 (((-3 (-2 (|:| -3938 (-478)) (|:| |var| (-545 $))) #1#) $) 440 (|has| |#1| (-25)) ELT)) (-2808 (((-3 (-2 (|:| |var| (-545 $)) (|:| -2387 (-478))) #1#) $) NIL (|has| |#1| (-1015)) ELT) (((-3 (-2 (|:| |var| (-545 $)) (|:| -2387 (-478))) #1#) $ (-84)) NIL (|has| |#1| (-954)) ELT) (((-3 (-2 (|:| |var| (-545 $)) (|:| -2387 (-478))) #1#) $ (-1079)) NIL (|has| |#1| (-954)) ELT)) (-2617 (((-83) $ (-84)) NIL T ELT) (((-83) $ (-1079)) 51 T ELT)) (-2468 (($ $) NIL (OR (|has| |#1| (-406)) (|has| |#1| (-489))) ELT)) (-2816 (($ $ (-1079)) 251 (|has| |#1| (-489)) ELT) (($ $ (-996 $)) 253 (|has| |#1| (-489)) ELT)) (-2587 (((-687) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1784 (((-83) $) 43 T ELT)) (-1783 ((|#1| $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 301 (|has| |#1| (-489)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-489)) ELT) (($ $ $) NIL (|has| |#1| (-489)) ELT)) (-1585 (((-83) $ $) NIL T ELT) (((-83) $ (-1079)) NIL T ELT)) (-1360 (($ $ (-1079)) 226 (|has| |#1| (-489)) ELT) (($ $) 224 (|has| |#1| (-489)) ELT)) (-1354 (($ $) 218 (|has| |#1| (-489)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) 306 (-12 (|has| |#1| (-385)) (|has| |#1| (-489))) ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-489)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-489)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-3450 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-489)) ELT)) (-3927 (($ $) 139 (|has| |#1| (-489)) ELT)) (-2658 (((-83) $) NIL (|has| $ (-943 (-478))) ELT)) (-3752 (($ $ (-545 $) $) NIL T ELT) (($ $ (-578 (-545 $)) (-578 $)) 425 T ELT) (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-1 $ $))) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-1 $ (-578 $)))) NIL T ELT) (($ $ (-1079) (-1 $ (-578 $))) NIL T ELT) (($ $ (-1079) (-1 $ $)) NIL T ELT) (($ $ (-578 (-84)) (-578 (-1 $ $))) 379 T ELT) (($ $ (-578 (-84)) (-578 (-1 $ (-578 $)))) NIL T ELT) (($ $ (-84) (-1 $ (-578 $))) NIL T ELT) (($ $ (-84) (-1 $ $)) NIL T ELT) (($ $ (-1079)) NIL (|has| |#1| (-548 (-467))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-548 (-467))) ELT) (($ $) NIL (|has| |#1| (-548 (-467))) ELT) (($ $ (-84) $ (-1079)) 366 (|has| |#1| (-548 (-467))) ELT) (($ $ (-578 (-84)) (-578 $) (-1079)) 365 (|has| |#1| (-548 (-467))) ELT) (($ $ (-578 (-1079)) (-578 (-687)) (-578 (-1 $ $))) NIL (|has| |#1| (-954)) ELT) (($ $ (-578 (-1079)) (-578 (-687)) (-578 (-1 $ (-578 $)))) NIL (|has| |#1| (-954)) ELT) (($ $ (-1079) (-687) (-1 $ (-578 $))) NIL (|has| |#1| (-954)) ELT) (($ $ (-1079) (-687) (-1 $ $)) NIL (|has| |#1| (-954)) ELT)) (-1594 (((-687) $) NIL (|has| |#1| (-489)) ELT)) (-2241 (($ $) 239 (|has| |#1| (-489)) ELT)) (-3784 (($ (-84) $) NIL T ELT) (($ (-84) $ $) NIL T ELT) (($ (-84) $ $ $) NIL T ELT) (($ (-84) $ $ $ $) NIL T ELT) (($ (-84) (-578 $)) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-1590 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2242 (($ $) 249 (|has| |#1| (-489)) ELT)) (-3369 (($ $) 200 (|has| |#1| (-489)) ELT)) (-3742 (($ $ (-1079)) NIL (|has| |#1| (-954)) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-954)) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-954)) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-954)) ELT)) (-2979 (($ $) 74 (|has| |#1| (-489)) ELT)) (-2981 (((-1028 |#1| (-545 $)) $) 93 (|has| |#1| (-489)) ELT)) (-3168 (($ $) 317 (|has| $ (-954)) ELT)) (-3479 (($ $) 177 (|has| |#1| (-489)) ELT)) (-3620 (($ $) 153 (|has| |#1| (-489)) ELT)) (-3477 (($ $) 173 (|has| |#1| (-489)) ELT)) (-3619 (($ $) 149 (|has| |#1| (-489)) ELT)) (-3475 (($ $) 169 (|has| |#1| (-489)) ELT)) (-3618 (($ $) 145 (|has| |#1| (-489)) ELT)) (-3956 (((-793 (-478)) $) NIL (|has| |#1| (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| |#1| (-548 (-793 (-323)))) ELT) (($ (-341 $)) NIL (|has| |#1| (-489)) ELT) (((-467) $) 363 (|has| |#1| (-548 (-467))) ELT)) (-2993 (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-2419 (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3930 (((-765) $) 424 T ELT) (($ (-545 $)) 415 T ELT) (($ (-1079)) 381 T ELT) (($ |#1|) 337 T ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ (-48)) 312 (-12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478)))) ELT) (($ (-1028 |#1| (-545 $))) 95 (|has| |#1| (-954)) ELT) (($ (-343 |#1|)) NIL (|has| |#1| (-489)) ELT) (($ (-850 (-343 |#1|))) NIL (|has| |#1| (-489)) ELT) (($ (-343 (-850 (-343 |#1|)))) NIL (|has| |#1| (-489)) ELT) (($ (-343 (-850 |#1|))) NIL (|has| |#1| (-489)) ELT) (($ (-850 |#1|)) NIL (|has| |#1| (-954)) ELT) (($ (-478)) 34 (OR (|has| |#1| (-943 (-478))) (|has| |#1| (-954))) ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-489)) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) NIL (|has| |#1| (-954)) CONST)) (-2574 (($ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3085 (($ $ $) 220 (|has| |#1| (-489)) ELT)) (-3373 (($ $ $) 206 (|has| |#1| (-489)) ELT)) (-3375 (($ $ $) 210 (|has| |#1| (-489)) ELT)) (-3372 (($ $ $) 204 (|has| |#1| (-489)) ELT)) (-3374 (($ $ $) 208 (|has| |#1| (-489)) ELT)) (-2240 (((-83) (-84)) 10 T ELT)) (-1253 (((-83) $ $) 86 T ELT)) (-3482 (($ $) 183 (|has| |#1| (-489)) ELT)) (-3470 (($ $) 159 (|has| |#1| (-489)) ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3480 (($ $) 179 (|has| |#1| (-489)) ELT)) (-3468 (($ $) 155 (|has| |#1| (-489)) ELT)) (-3484 (($ $) 187 (|has| |#1| (-489)) ELT)) (-3472 (($ $) 163 (|has| |#1| (-489)) ELT)) (-1782 (($ (-1079) $) NIL T ELT) (($ (-1079) $ $) NIL T ELT) (($ (-1079) $ $ $) NIL T ELT) (($ (-1079) $ $ $ $) NIL T ELT) (($ (-1079) (-578 $)) NIL T ELT)) (-3377 (($ $) 214 (|has| |#1| (-489)) ELT)) (-3376 (($ $) 212 (|has| |#1| (-489)) ELT)) (-3485 (($ $) 189 (|has| |#1| (-489)) ELT)) (-3473 (($ $) 165 (|has| |#1| (-489)) ELT)) (-3483 (($ $) 185 (|has| |#1| (-489)) ELT)) (-3471 (($ $) 161 (|has| |#1| (-489)) ELT)) (-3481 (($ $) 181 (|has| |#1| (-489)) ELT)) (-3469 (($ $) 157 (|has| |#1| (-489)) ELT)) (-3367 (($ $) 192 (|has| |#1| (-489)) ELT)) (-2644 (($) 21 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) CONST)) (-2245 (($ $) 243 (|has| |#1| (-489)) ELT)) (-2650 (($) 23 (|has| |#1| (-1015)) CONST)) (-3371 (($ $) 194 (|has| |#1| (-489)) ELT) (($ $ $) 196 (|has| |#1| (-489)) ELT)) (-2246 (($ $) 241 (|has| |#1| (-489)) ELT)) (-2653 (($ $ (-1079)) NIL (|has| |#1| (-954)) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-954)) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-954)) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-954)) ELT)) (-2244 (($ $) 245 (|has| |#1| (-489)) ELT)) (-3368 (($ $ $) 198 (|has| |#1| (-489)) ELT)) (-3037 (((-83) $ $) 88 T ELT)) (-3933 (($ (-1028 |#1| (-545 $)) (-1028 |#1| (-545 $))) 106 (|has| |#1| (-489)) ELT) (($ $ $) 42 (OR (|has| |#1| (-406)) (|has| |#1| (-489))) ELT)) (-3821 (($ $ $) 40 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT) (($ $) 29 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT)) (-3823 (($ $ $) 38 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT)) (** (($ $ $) 64 (|has| |#1| (-489)) ELT) (($ $ (-343 (-478))) 314 (|has| |#1| (-489)) ELT) (($ $ (-478)) 80 (OR (|has| |#1| (-406)) (|has| |#1| (-489))) ELT) (($ $ (-687)) 75 (|has| |#1| (-1015)) ELT) (($ $ (-823)) 84 (|has| |#1| (-1015)) ELT)) (* (($ (-343 (-478)) $) NIL (|has| |#1| (-489)) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-489)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT) (($ |#1| $) NIL (|has| |#1| (-954)) ELT) (($ $ $) 36 (|has| |#1| (-1015)) ELT) (($ (-478) $) 32 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT) (($ (-687) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT) (($ (-823) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT))) +(((-261 |#1|) (-13 (-357 |#1|) (-10 -8 (IF (|has| |#1| (-489)) (PROGN (-6 (-29 |#1|)) (-6 (-1104)) (-6 (-131)) (-6 (-564)) (-6 (-1042)) (-15 -3826 ($ $)) (-15 -1597 ((-83) $)) (-15 -1596 ($ $ (-478))) (IF (|has| |#1| (-385)) (PROGN (-15 -2690 ((-341 (-1074 $)) (-1074 $))) (-15 -2691 ((-341 (-1074 $)) (-1074 $)))) |%noBranch|) (IF (|has| |#1| (-943 (-478))) (-6 (-943 (-48))) |%noBranch|)) |%noBranch|))) (-1005)) (T -261)) +((-3826 (*1 *1 *1) (-12 (-5 *1 (-261 *2)) (-4 *2 (-489)) (-4 *2 (-1005)))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-261 *3)) (-4 *3 (-489)) (-4 *3 (-1005)))) (-1596 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-261 *3)) (-4 *3 (-489)) (-4 *3 (-1005)))) (-2690 (*1 *2 *3) (-12 (-5 *2 (-341 (-1074 *1))) (-5 *1 (-261 *4)) (-5 *3 (-1074 *1)) (-4 *4 (-385)) (-4 *4 (-489)) (-4 *4 (-1005)))) (-2691 (*1 *2 *3) (-12 (-5 *2 (-341 (-1074 *1))) (-5 *1 (-261 *4)) (-5 *3 (-1074 *1)) (-4 *4 (-385)) (-4 *4 (-489)) (-4 *4 (-1005))))) +((-3942 (((-261 |#2|) (-1 |#2| |#1|) (-261 |#1|)) 13 T ELT))) +(((-262 |#1| |#2|) (-10 -7 (-15 -3942 ((-261 |#2|) (-1 |#2| |#1|) (-261 |#1|)))) (-1005) (-1005)) (T -262)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-261 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *2 (-261 *6)) (-5 *1 (-262 *5 *6))))) +((-3713 (((-51) |#2| (-245 |#2|) (-687)) 40 T ELT) (((-51) |#2| (-245 |#2|)) 32 T ELT) (((-51) |#2| (-687)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1079)) 26 T ELT)) (-3802 (((-51) |#2| (-245 |#2|) (-343 (-478))) 59 T ELT) (((-51) |#2| (-245 |#2|)) 56 T ELT) (((-51) |#2| (-343 (-478))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1079)) 55 T ELT)) (-3766 (((-51) |#2| (-245 |#2|) (-343 (-478))) 54 T ELT) (((-51) |#2| (-245 |#2|)) 51 T ELT) (((-51) |#2| (-343 (-478))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1079)) 50 T ELT)) (-3763 (((-51) |#2| (-245 |#2|) (-478)) 47 T ELT) (((-51) |#2| (-245 |#2|)) 44 T ELT) (((-51) |#2| (-478)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1079)) 43 T ELT))) +(((-263 |#1| |#2|) (-10 -7 (-15 -3713 ((-51) (-1079))) (-15 -3713 ((-51) |#2|)) (-15 -3713 ((-51) |#2| (-687))) (-15 -3713 ((-51) |#2| (-245 |#2|))) (-15 -3713 ((-51) |#2| (-245 |#2|) (-687))) (-15 -3763 ((-51) (-1079))) (-15 -3763 ((-51) |#2|)) (-15 -3763 ((-51) |#2| (-478))) (-15 -3763 ((-51) |#2| (-245 |#2|))) (-15 -3763 ((-51) |#2| (-245 |#2|) (-478))) (-15 -3766 ((-51) (-1079))) (-15 -3766 ((-51) |#2|)) (-15 -3766 ((-51) |#2| (-343 (-478)))) (-15 -3766 ((-51) |#2| (-245 |#2|))) (-15 -3766 ((-51) |#2| (-245 |#2|) (-343 (-478)))) (-15 -3802 ((-51) (-1079))) (-15 -3802 ((-51) |#2|)) (-15 -3802 ((-51) |#2| (-343 (-478)))) (-15 -3802 ((-51) |#2| (-245 |#2|))) (-15 -3802 ((-51) |#2| (-245 |#2|) (-343 (-478))))) (-13 (-385) (-943 (-478)) (-575 (-478))) (-13 (-27) (-1104) (-357 |#1|))) (T -263)) +((-3802 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-245 *3)) (-5 *5 (-343 (-478))) (-4 *3 (-13 (-27) (-1104) (-357 *6))) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *6 *3)))) (-3802 (*1 *2 *3 *4) (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)))) (-3802 (*1 *2 *3 *4) (-12 (-5 *4 (-343 (-478))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))))) (-3802 (*1 *2 *3) (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *4))))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1104) (-357 *4))))) (-3766 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-245 *3)) (-5 *5 (-343 (-478))) (-4 *3 (-13 (-27) (-1104) (-357 *6))) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *6 *3)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *4 (-343 (-478))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))))) (-3766 (*1 *2 *3) (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *4))))) (-3766 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1104) (-357 *4))))) (-3763 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *6))) (-4 *6 (-13 (-385) (-943 *5) (-575 *5))) (-5 *5 (-478)) (-5 *2 (-51)) (-5 *1 (-263 *6 *3)))) (-3763 (*1 *2 *3 *4) (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)))) (-3763 (*1 *2 *3 *4) (-12 (-5 *4 (-478)) (-4 *5 (-13 (-385) (-943 *4) (-575 *4))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))))) (-3763 (*1 *2 *3) (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *4))))) (-3763 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1104) (-357 *4))))) (-3713 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-245 *3)) (-5 *5 (-687)) (-4 *3 (-13 (-27) (-1104) (-357 *6))) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *6 *3)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *4 (-687)) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))))) (-3713 (*1 *2 *3) (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *4))))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1104) (-357 *4)))))) +((-1598 (((-51) |#2| (-84) (-245 |#2|) (-578 |#2|)) 89 T ELT) (((-51) |#2| (-84) (-245 |#2|) (-245 |#2|)) 85 T ELT) (((-51) |#2| (-84) (-245 |#2|) |#2|) 87 T ELT) (((-51) (-245 |#2|) (-84) (-245 |#2|) |#2|) 88 T ELT) (((-51) (-578 |#2|) (-578 (-84)) (-245 |#2|) (-578 (-245 |#2|))) 81 T ELT) (((-51) (-578 |#2|) (-578 (-84)) (-245 |#2|) (-578 |#2|)) 83 T ELT) (((-51) (-578 (-245 |#2|)) (-578 (-84)) (-245 |#2|) (-578 |#2|)) 84 T ELT) (((-51) (-578 (-245 |#2|)) (-578 (-84)) (-245 |#2|) (-578 (-245 |#2|))) 82 T ELT) (((-51) (-245 |#2|) (-84) (-245 |#2|) (-578 |#2|)) 90 T ELT) (((-51) (-245 |#2|) (-84) (-245 |#2|) (-245 |#2|)) 86 T ELT))) +(((-264 |#1| |#2|) (-10 -7 (-15 -1598 ((-51) (-245 |#2|) (-84) (-245 |#2|) (-245 |#2|))) (-15 -1598 ((-51) (-245 |#2|) (-84) (-245 |#2|) (-578 |#2|))) (-15 -1598 ((-51) (-578 (-245 |#2|)) (-578 (-84)) (-245 |#2|) (-578 (-245 |#2|)))) (-15 -1598 ((-51) (-578 (-245 |#2|)) (-578 (-84)) (-245 |#2|) (-578 |#2|))) (-15 -1598 ((-51) (-578 |#2|) (-578 (-84)) (-245 |#2|) (-578 |#2|))) (-15 -1598 ((-51) (-578 |#2|) (-578 (-84)) (-245 |#2|) (-578 (-245 |#2|)))) (-15 -1598 ((-51) (-245 |#2|) (-84) (-245 |#2|) |#2|)) (-15 -1598 ((-51) |#2| (-84) (-245 |#2|) |#2|)) (-15 -1598 ((-51) |#2| (-84) (-245 |#2|) (-245 |#2|))) (-15 -1598 ((-51) |#2| (-84) (-245 |#2|) (-578 |#2|)))) (-13 (-489) (-548 (-467))) (-357 |#1|)) (T -264)) +((-1598 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-84)) (-5 *5 (-245 *3)) (-5 *6 (-578 *3)) (-4 *3 (-357 *7)) (-4 *7 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *7 *3)))) (-1598 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-84)) (-5 *5 (-245 *3)) (-4 *3 (-357 *6)) (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *3)))) (-1598 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-84)) (-5 *5 (-245 *3)) (-4 *3 (-357 *6)) (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *3)))) (-1598 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-245 *5)) (-5 *4 (-84)) (-4 *5 (-357 *6)) (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *5)))) (-1598 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-84))) (-5 *6 (-578 (-245 *8))) (-4 *8 (-357 *7)) (-5 *5 (-245 *8)) (-4 *7 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *7 *8)))) (-1598 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-578 *7)) (-5 *4 (-578 (-84))) (-5 *5 (-245 *7)) (-4 *7 (-357 *6)) (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *7)))) (-1598 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-578 (-245 *8))) (-5 *4 (-578 (-84))) (-5 *5 (-245 *8)) (-5 *6 (-578 *8)) (-4 *8 (-357 *7)) (-4 *7 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *7 *8)))) (-1598 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-578 (-245 *7))) (-5 *4 (-578 (-84))) (-5 *5 (-245 *7)) (-4 *7 (-357 *6)) (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *7)))) (-1598 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-245 *7)) (-5 *4 (-84)) (-5 *5 (-578 *7)) (-4 *7 (-357 *6)) (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *7)))) (-1598 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-245 *6)) (-5 *4 (-84)) (-4 *6 (-357 *5)) (-4 *5 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *5 *6))))) +((-1600 (((-1114 (-831)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-993 (-177)) (-177) (-478) (-1062)) 67 T ELT) (((-1114 (-831)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-993 (-177)) (-177) (-478)) 68 T ELT) (((-1114 (-831)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-993 (-177)) (-1 (-177) (-177)) (-478) (-1062)) 64 T ELT) (((-1114 (-831)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-993 (-177)) (-1 (-177) (-177)) (-478)) 65 T ELT)) (-1599 (((-1 (-177) (-177)) (-177)) 66 T ELT))) +(((-265) (-10 -7 (-15 -1599 ((-1 (-177) (-177)) (-177))) (-15 -1600 ((-1114 (-831)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-993 (-177)) (-1 (-177) (-177)) (-478))) (-15 -1600 ((-1114 (-831)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-993 (-177)) (-1 (-177) (-177)) (-478) (-1062))) (-15 -1600 ((-1114 (-831)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-993 (-177)) (-177) (-478))) (-15 -1600 ((-1114 (-831)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-993 (-177)) (-177) (-478) (-1062))))) (T -265)) +((-1600 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-993 (-177))) (-5 *6 (-177)) (-5 *7 (-478)) (-5 *8 (-1062)) (-5 *2 (-1114 (-831))) (-5 *1 (-265)))) (-1600 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-993 (-177))) (-5 *6 (-177)) (-5 *7 (-478)) (-5 *2 (-1114 (-831))) (-5 *1 (-265)))) (-1600 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-993 (-177))) (-5 *6 (-478)) (-5 *7 (-1062)) (-5 *2 (-1114 (-831))) (-5 *1 (-265)))) (-1600 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-993 (-177))) (-5 *6 (-478)) (-5 *2 (-1114 (-831))) (-5 *1 (-265)))) (-1599 (*1 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-265)) (-5 *3 (-177))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 26 T ELT)) (-3065 (((-578 (-986)) $) NIL T ELT)) (-3815 (((-1079) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3755 (($ $ (-343 (-478))) NIL T ELT) (($ $ (-343 (-478)) (-343 (-478))) NIL T ELT)) (-3758 (((-1058 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|))) $) 20 T ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3623 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-3021 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1595 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3622 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3802 (($ (-687) (-1058 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|)))) NIL T ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3708 (($) NIL T CONST)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3943 (($ $) 36 T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2547 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-3169 (((-83) $) NIL T ELT)) (-2876 (((-83) $) NIL T ELT)) (-3611 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3756 (((-343 (-478)) $) NIL T ELT) (((-343 (-478)) $ (-343 (-478))) 16 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2995 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3761 (($ $ (-823)) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-343 (-478))) NIL T ELT) (($ $ (-986) (-343 (-478))) NIL T ELT) (($ $ (-578 (-986)) (-578 (-343 (-478)))) NIL T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3926 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3796 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1104))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3796 (|#1| |#1| (-1079)))) (|has| |#1| (-15 -3065 ((-578 (-1079)) |#1|))))) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-308)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3753 (($ $ (-343 (-478))) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-1601 (((-343 (-478)) $) 17 T ELT)) (-3074 (($ (-1149 |#1| |#2| |#3|)) 11 T ELT)) (-2387 (((-1149 |#1| |#2| |#3|) $) 12 T ELT)) (-3927 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3752 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) ELT)) (-1594 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3784 ((|#1| $ (-343 (-478))) NIL T ELT) (($ $ $) NIL (|has| (-343 (-478)) (-1015)) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3742 (($ $ (-1079)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT)) (-3932 (((-343 (-478)) $) NIL T ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) 10 T ELT)) (-3930 (((-765) $) 42 T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3661 ((|#1| $ (-343 (-478))) 34 T ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) NIL T CONST)) (-3757 ((|#1| $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3754 ((|#1| $ (-343 (-478))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) (|has| |#1| (-15 -3930 (|#1| (-1079))))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $ (-1079)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 28 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 37 T ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-266 |#1| |#2| |#3|) (-13 (-1151 |#1|) (-709) (-10 -8 (-15 -3074 ($ (-1149 |#1| |#2| |#3|))) (-15 -2387 ((-1149 |#1| |#2| |#3|) $)) (-15 -1601 ((-343 (-478)) $)))) (-308) (-1079) |#1|) (T -266)) +((-3074 (*1 *1 *2) (-12 (-5 *2 (-1149 *3 *4 *5)) (-4 *3 (-308)) (-14 *4 (-1079)) (-14 *5 *3) (-5 *1 (-266 *3 *4 *5)))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-1149 *3 *4 *5)) (-5 *1 (-266 *3 *4 *5)) (-4 *3 (-308)) (-14 *4 (-1079)) (-14 *5 *3))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-266 *3 *4 *5)) (-4 *3 (-308)) (-14 *4 (-1079)) (-14 *5 *3)))) +((-2995 (((-2 (|:| -2387 (-687)) (|:| -3938 |#1|) (|:| |radicand| (-578 |#1|))) (-341 |#1|) (-687)) 35 T ELT)) (-3926 (((-578 (-2 (|:| -3938 (-687)) (|:| |logand| |#1|))) (-341 |#1|)) 40 T ELT))) +(((-267 |#1|) (-10 -7 (-15 -2995 ((-2 (|:| -2387 (-687)) (|:| -3938 |#1|) (|:| |radicand| (-578 |#1|))) (-341 |#1|) (-687))) (-15 -3926 ((-578 (-2 (|:| -3938 (-687)) (|:| |logand| |#1|))) (-341 |#1|)))) (-489)) (T -267)) +((-3926 (*1 *2 *3) (-12 (-5 *3 (-341 *4)) (-4 *4 (-489)) (-5 *2 (-578 (-2 (|:| -3938 (-687)) (|:| |logand| *4)))) (-5 *1 (-267 *4)))) (-2995 (*1 *2 *3 *4) (-12 (-5 *3 (-341 *5)) (-4 *5 (-489)) (-5 *2 (-2 (|:| -2387 (-687)) (|:| -3938 *5) (|:| |radicand| (-578 *5)))) (-5 *1 (-267 *5)) (-5 *4 (-687))))) +((-3065 (((-578 |#2|) (-1074 |#4|)) 44 T ELT)) (-1606 ((|#3| (-478)) 47 T ELT)) (-1604 (((-1074 |#4|) (-1074 |#3|)) 30 T ELT)) (-1605 (((-1074 |#4|) (-1074 |#4|) (-478)) 66 T ELT)) (-1603 (((-1074 |#3|) (-1074 |#4|)) 21 T ELT)) (-3932 (((-578 (-687)) (-1074 |#4|) (-578 |#2|)) 41 T ELT)) (-1602 (((-1074 |#3|) (-1074 |#4|) (-578 |#2|) (-578 |#3|)) 35 T ELT))) +(((-268 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1602 ((-1074 |#3|) (-1074 |#4|) (-578 |#2|) (-578 |#3|))) (-15 -3932 ((-578 (-687)) (-1074 |#4|) (-578 |#2|))) (-15 -3065 ((-578 |#2|) (-1074 |#4|))) (-15 -1603 ((-1074 |#3|) (-1074 |#4|))) (-15 -1604 ((-1074 |#4|) (-1074 |#3|))) (-15 -1605 ((-1074 |#4|) (-1074 |#4|) (-478))) (-15 -1606 (|#3| (-478)))) (-710) (-749) (-954) (-854 |#3| |#1| |#2|)) (T -268)) +((-1606 (*1 *2 *3) (-12 (-5 *3 (-478)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-954)) (-5 *1 (-268 *4 *5 *2 *6)) (-4 *6 (-854 *2 *4 *5)))) (-1605 (*1 *2 *2 *3) (-12 (-5 *2 (-1074 *7)) (-5 *3 (-478)) (-4 *7 (-854 *6 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) (-5 *1 (-268 *4 *5 *6 *7)))) (-1604 (*1 *2 *3) (-12 (-5 *3 (-1074 *6)) (-4 *6 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-1074 *7)) (-5 *1 (-268 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5)))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-1074 *7)) (-4 *7 (-854 *6 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) (-5 *2 (-1074 *6)) (-5 *1 (-268 *4 *5 *6 *7)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-1074 *7)) (-4 *7 (-854 *6 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) (-5 *2 (-578 *5)) (-5 *1 (-268 *4 *5 *6 *7)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-1074 *8)) (-5 *4 (-578 *6)) (-4 *6 (-749)) (-4 *8 (-854 *7 *5 *6)) (-4 *5 (-710)) (-4 *7 (-954)) (-5 *2 (-578 (-687))) (-5 *1 (-268 *5 *6 *7 *8)))) (-1602 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1074 *9)) (-5 *4 (-578 *7)) (-5 *5 (-578 *8)) (-4 *7 (-749)) (-4 *8 (-954)) (-4 *9 (-854 *8 *6 *7)) (-4 *6 (-710)) (-5 *2 (-1074 *8)) (-5 *1 (-268 *6 *7 *8 *9))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 19 T ELT)) (-3758 (((-578 (-2 (|:| |gen| |#1|) (|:| -3927 (-478)))) $) 21 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3119 (((-687) $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) NIL T ELT)) (-3139 ((|#1| $) NIL T ELT)) (-2285 ((|#1| $ (-478)) NIL T ELT)) (-1609 (((-478) $ (-478)) NIL T ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2276 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1608 (($ (-1 (-478) (-478)) $) 11 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1607 (($ $ $) NIL (|has| (-478) (-709)) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3661 (((-478) |#1| $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2550 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) 30 (|has| |#1| (-749)) ELT)) (-3821 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3823 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ (-478)) NIL T ELT) (($ (-478) |#1|) 28 T ELT))) +(((-269 |#1|) (-13 (-21) (-649 (-478)) (-270 |#1| (-478)) (-10 -7 (IF (|has| |#1| (-749)) (-6 (-749)) |%noBranch|))) (-1005)) (T -269)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3758 (((-578 (-2 (|:| |gen| |#1|) (|:| -3927 |#2|))) $) 33 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3119 (((-687) $) 34 T ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 |#1| "failed") $) 38 T ELT)) (-3139 ((|#1| $) 39 T ELT)) (-2285 ((|#1| $ (-478)) 31 T ELT)) (-1609 ((|#2| $ (-478)) 32 T ELT)) (-2276 (($ (-1 |#1| |#1|) $) 28 T ELT)) (-1608 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-1607 (($ $ $) 27 (|has| |#2| (-709)) ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ |#1|) 37 T ELT)) (-3661 ((|#2| |#1| $) 30 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3823 (($ $ $) 18 T ELT) (($ |#1| $) 36 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ |#2| |#1|) 35 T ELT))) +(((-270 |#1| |#2|) (-111) (-1005) (-102)) (T -270)) +((-3823 (*1 *1 *2 *1) (-12 (-4 *1 (-270 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-102)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-102)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-270 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-102)) (-5 *2 (-687)))) (-3758 (*1 *2 *1) (-12 (-4 *1 (-270 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-102)) (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3927 *4)))))) (-1609 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-270 *4 *2)) (-4 *4 (-1005)) (-4 *2 (-102)))) (-2285 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-270 *2 *4)) (-4 *4 (-102)) (-4 *2 (-1005)))) (-3661 (*1 *2 *3 *1) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-102)))) (-1608 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-270 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-102)))) (-2276 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-270 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-102)))) (-1607 (*1 *1 *1 *1) (-12 (-4 *1 (-270 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-102)) (-4 *3 (-709))))) +(-13 (-102) (-943 |t#1|) (-10 -8 (-15 -3823 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3119 ((-687) $)) (-15 -3758 ((-578 (-2 (|:| |gen| |t#1|) (|:| -3927 |t#2|))) $)) (-15 -1609 (|t#2| $ (-478))) (-15 -2285 (|t#1| $ (-478))) (-15 -3661 (|t#2| |t#1| $)) (-15 -1608 ($ (-1 |t#2| |t#2|) $)) (-15 -2276 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-709)) (-15 -1607 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-943 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3758 (((-578 (-2 (|:| |gen| |#1|) (|:| -3927 (-687)))) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3119 (((-687) $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) NIL T ELT)) (-3139 ((|#1| $) NIL T ELT)) (-2285 ((|#1| $ (-478)) NIL T ELT)) (-1609 (((-687) $ (-478)) NIL T ELT)) (-2276 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1608 (($ (-1 (-687) (-687)) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1607 (($ $ $) NIL (|has| (-687) (-709)) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3661 (((-687) |#1| $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-687) |#1|) NIL T ELT))) +(((-271 |#1|) (-270 |#1| (-687)) (-1005)) (T -271)) +NIL +((-3487 (($ $) 72 T ELT)) (-1611 (($ $ |#2| |#3| $) 14 T ELT)) (-1612 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1784 (((-83) $) 42 T ELT)) (-1783 ((|#2| $) 44 T ELT)) (-3450 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2801 ((|#2| $) 68 T ELT)) (-3801 (((-578 |#2|) $) 56 T ELT)) (-1610 (($ $ $ (-687)) 37 T ELT)) (-3933 (($ $ |#2|) 60 T ELT))) +(((-272 |#1| |#2| |#3|) (-10 -7 (-15 -3487 (|#1| |#1|)) (-15 -2801 (|#2| |#1|)) (-15 -3450 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1610 (|#1| |#1| |#1| (-687))) (-15 -1611 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1612 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3801 ((-578 |#2|) |#1|)) (-15 -1783 (|#2| |#1|)) (-15 -1784 ((-83) |#1|)) (-15 -3450 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3933 (|#1| |#1| |#2|))) (-273 |#2| |#3|) (-954) (-709)) (T -272)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 68 (|has| |#1| (-489)) ELT)) (-2049 (($ $) 69 (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) 71 (|has| |#1| (-489)) ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 (-478) #1="failed") $) 106 (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) 104 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 101 T ELT)) (-3139 (((-478) $) 105 (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) 103 (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 102 T ELT)) (-3943 (($ $) 77 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3487 (($ $) 90 (|has| |#1| (-385)) ELT)) (-1611 (($ $ |#1| |#2| $) 94 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-2404 (((-687) $) 97 T ELT)) (-3921 (((-83) $) 79 T ELT)) (-2877 (($ |#1| |#2|) 78 T ELT)) (-2804 ((|#2| $) 96 T ELT)) (-1612 (($ (-1 |#2| |#2|) $) 95 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-2878 (($ $) 82 T ELT)) (-3157 ((|#1| $) 83 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-1784 (((-83) $) 100 T ELT)) (-1783 ((|#1| $) 99 T ELT)) (-3450 (((-3 $ "failed") $ $) 67 (|has| |#1| (-489)) ELT) (((-3 $ "failed") $ |#1|) 92 (|has| |#1| (-489)) ELT)) (-3932 ((|#2| $) 81 T ELT)) (-2801 ((|#1| $) 91 (|has| |#1| (-385)) ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 66 (|has| |#1| (-489)) ELT) (($ |#1|) 64 T ELT) (($ (-343 (-478))) 74 (OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ELT)) (-3801 (((-578 |#1|) $) 98 T ELT)) (-3661 ((|#1| $ |#2|) 76 T ELT)) (-2686 (((-627 $) $) 65 (|has| |#1| (-116)) ELT)) (-3109 (((-687)) 37 T CONST)) (-1610 (($ $ $ (-687)) 93 (|has| |#1| (-144)) ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 70 (|has| |#1| (-489)) ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-343 (-478)) $) 73 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 72 (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-273 |#1| |#2|) (-111) (-954) (-709)) (T -273)) +((-1784 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-83)))) (-1783 (*1 *2 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-578 *3)))) (-2404 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-687)))) (-2804 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) (-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)))) (-1611 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)))) (-1610 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-4 *3 (-144)))) (-3450 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-273 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)) (-4 *2 (-489)))) (-2801 (*1 *2 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954)) (-4 *2 (-385)))) (-3487 (*1 *1 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)) (-4 *2 (-385))))) +(-13 (-47 |t#1| |t#2|) (-348 |t#1|) (-10 -8 (-15 -1784 ((-83) $)) (-15 -1783 (|t#1| $)) (-15 -3801 ((-578 |t#1|) $)) (-15 -2404 ((-687) $)) (-15 -2804 (|t#2| $)) (-15 -1612 ($ (-1 |t#2| |t#2|) $)) (-15 -1611 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-144)) (-15 -1610 ($ $ $ (-687))) |%noBranch|) (IF (|has| |t#1| (-489)) (-15 -3450 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-385)) (PROGN (-15 -2801 (|t#1| $)) (-15 -3487 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-489)) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-550 $) |has| |#1| (-489)) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-242) |has| |#1| (-489)) ((-348 |#1|) . T) ((-489) |has| |#1| (-489)) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) |has| |#1| (-489)) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) |has| |#1| (-489)) ((-658) . T) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-1717 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3980)) (|has| |#1| (-749))) ELT)) (-2893 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-749)) ELT)) (-1972 (((-83) (-83)) NIL T ELT)) (-3772 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-1557 (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3694 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3708 (($) NIL T CONST)) (-2283 (($ $) NIL (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) NIL T ELT)) (-2354 (($ $) NIL (|has| |#1| (-1005)) ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3389 (($ |#1| $) NIL (|has| |#1| (-1005)) ELT) (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3390 (($ |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) NIL T ELT)) (-3403 (((-478) (-1 (-83) |#1|) $) NIL T ELT) (((-478) |#1| $) NIL (|has| |#1| (-1005)) ELT) (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1005)) ELT)) (-1973 (($ $ (-478)) NIL T ELT)) (-1974 (((-687) $) NIL T ELT)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3598 (($ (-687) |#1|) NIL T ELT)) (-2186 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2840 (($ $ $) NIL (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT)) (-3502 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2187 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3593 (($ $ $ (-478)) NIL T ELT) (($ |#1| $ (-478)) NIL T ELT)) (-2290 (($ |#1| $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-1975 (($ (-578 |#1|)) NIL T ELT)) (-3785 ((|#1| $) NIL (|has| (-478) (-749)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2185 (($ $ |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#1| $ (-478) |#1|) NIL T ELT) ((|#1| $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-1558 (($ $ (-1135 (-478))) NIL T ELT) (($ $ (-478)) NIL T ELT)) (-2291 (($ $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1718 (($ $ $ (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) NIL T ELT)) (-3775 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3786 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3930 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-274 |#1|) (-13 (-19 |#1|) (-234 |#1|) (-10 -8 (-15 -1975 ($ (-578 |#1|))) (-15 -1974 ((-687) $)) (-15 -1973 ($ $ (-478))) (-15 -1972 ((-83) (-83))))) (-1118)) (T -274)) +((-1975 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1118)) (-5 *1 (-274 *3)))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-274 *3)) (-4 *3 (-1118)))) (-1973 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-274 *3)) (-4 *3 (-1118)))) (-1972 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-274 *3)) (-4 *3 (-1118))))) +((-3916 (((-83) $) 47 T ELT)) (-3913 (((-687)) 23 T ELT)) (-3314 ((|#2| $) 51 T ELT) (($ $ (-823)) 123 T ELT)) (-3119 (((-687)) 124 T ELT)) (-1779 (($ (-1168 |#2|)) 20 T ELT)) (-1997 (((-83) $) 136 T ELT)) (-3115 ((|#2| $) 53 T ELT) (($ $ (-823)) 120 T ELT)) (-2000 (((-1074 |#2|) $) NIL T ELT) (((-1074 $) $ (-823)) 111 T ELT)) (-1614 (((-1074 |#2|) $) 95 T ELT)) (-1613 (((-1074 |#2|) $) 91 T ELT) (((-3 (-1074 |#2|) "failed") $ $) 88 T ELT)) (-1615 (($ $ (-1074 |#2|)) 58 T ELT)) (-3914 (((-736 (-823))) 30 T ELT) (((-823)) 48 T ELT)) (-3895 (((-105)) 27 T ELT)) (-3932 (((-736 (-823)) $) 32 T ELT) (((-823) $) 139 T ELT)) (-1616 (($) 130 T ELT)) (-3207 (((-1168 |#2|) $) NIL T ELT) (((-625 |#2|) (-1168 $)) 42 T ELT)) (-2686 (($ $) NIL T ELT) (((-627 $) $) 100 T ELT)) (-3917 (((-83) $) 45 T ELT))) +(((-275 |#1| |#2|) (-10 -7 (-15 -2686 ((-627 |#1|) |#1|)) (-15 -3119 ((-687))) (-15 -2686 (|#1| |#1|)) (-15 -1613 ((-3 (-1074 |#2|) "failed") |#1| |#1|)) (-15 -1613 ((-1074 |#2|) |#1|)) (-15 -1614 ((-1074 |#2|) |#1|)) (-15 -1615 (|#1| |#1| (-1074 |#2|))) (-15 -1997 ((-83) |#1|)) (-15 -1616 (|#1|)) (-15 -3314 (|#1| |#1| (-823))) (-15 -3115 (|#1| |#1| (-823))) (-15 -2000 ((-1074 |#1|) |#1| (-823))) (-15 -3314 (|#2| |#1|)) (-15 -3115 (|#2| |#1|)) (-15 -3932 ((-823) |#1|)) (-15 -3914 ((-823))) (-15 -2000 ((-1074 |#2|) |#1|)) (-15 -1779 (|#1| (-1168 |#2|))) (-15 -3207 ((-625 |#2|) (-1168 |#1|))) (-15 -3207 ((-1168 |#2|) |#1|)) (-15 -3913 ((-687))) (-15 -3914 ((-736 (-823)))) (-15 -3932 ((-736 (-823)) |#1|)) (-15 -3916 ((-83) |#1|)) (-15 -3917 ((-83) |#1|)) (-15 -3895 ((-105)))) (-276 |#2|) (-308)) (T -275)) +((-3895 (*1 *2) (-12 (-4 *4 (-308)) (-5 *2 (-105)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) (-3914 (*1 *2) (-12 (-4 *4 (-308)) (-5 *2 (-736 (-823))) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) (-3913 (*1 *2) (-12 (-4 *4 (-308)) (-5 *2 (-687)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) (-3914 (*1 *2) (-12 (-4 *4 (-308)) (-5 *2 (-823)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) (-3119 (*1 *2) (-12 (-4 *4 (-308)) (-5 *2 (-687)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-3916 (((-83) $) 111 T ELT)) (-3913 (((-687)) 107 T ELT)) (-3314 ((|#1| $) 159 T ELT) (($ $ (-823)) 156 (|has| |#1| (-313)) ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) 141 (|has| |#1| (-313)) ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3759 (($ $) 88 T ELT)) (-3955 (((-341 $) $) 87 T ELT)) (-1595 (((-83) $ $) 72 T ELT)) (-3119 (((-687)) 131 (|has| |#1| (-313)) ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 |#1| "failed") $) 118 T ELT)) (-3139 ((|#1| $) 119 T ELT)) (-1779 (($ (-1168 |#1|)) 165 T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) 147 (|has| |#1| (-313)) ELT)) (-2548 (($ $ $) 68 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2978 (($) 128 (|has| |#1| (-313)) ELT)) (-2547 (($ $ $) 69 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 63 T ELT)) (-2817 (($) 143 (|has| |#1| (-313)) ELT)) (-1667 (((-83) $) 144 (|has| |#1| (-313)) ELT)) (-1751 (($ $ (-687)) 104 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT) (($ $) 103 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3707 (((-83) $) 86 T ELT)) (-3756 (((-823) $) 146 (|has| |#1| (-313)) ELT) (((-736 (-823)) $) 101 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-2396 (((-83) $) 40 T ELT)) (-1999 (($) 154 (|has| |#1| (-313)) ELT)) (-1997 (((-83) $) 153 (|has| |#1| (-313)) ELT)) (-3115 ((|#1| $) 160 T ELT) (($ $ (-823)) 157 (|has| |#1| (-313)) ELT)) (-3429 (((-627 $) $) 132 (|has| |#1| (-313)) ELT)) (-1592 (((-3 (-578 $) #1="failed") (-578 $) $) 65 T ELT)) (-2000 (((-1074 |#1|) $) 164 T ELT) (((-1074 $) $ (-823)) 158 (|has| |#1| (-313)) ELT)) (-1996 (((-823) $) 129 (|has| |#1| (-313)) ELT)) (-1614 (((-1074 |#1|) $) 150 (|has| |#1| (-313)) ELT)) (-1613 (((-1074 |#1|) $) 149 (|has| |#1| (-313)) ELT) (((-3 (-1074 |#1|) "failed") $ $) 148 (|has| |#1| (-313)) ELT)) (-1615 (($ $ (-1074 |#1|)) 151 (|has| |#1| (-313)) ELT)) (-1878 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 85 T ELT)) (-3430 (($) 133 (|has| |#1| (-313)) CONST)) (-2386 (($ (-823)) 130 (|has| |#1| (-313)) ELT)) (-3915 (((-83) $) 110 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2395 (($) 152 (|has| |#1| (-313)) ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 55 T ELT)) (-3127 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) 140 (|has| |#1| (-313)) ELT)) (-3716 (((-341 $) $) 89 T ELT)) (-3914 (((-736 (-823))) 108 T ELT) (((-823)) 162 T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-1594 (((-687) $) 71 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 70 T ELT)) (-1752 (((-687) $) 145 (|has| |#1| (-313)) ELT) (((-3 (-687) "failed") $ $) 102 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3895 (((-105)) 116 T ELT)) (-3742 (($ $ (-687)) 136 (|has| |#1| (-313)) ELT) (($ $) 134 (|has| |#1| (-313)) ELT)) (-3932 (((-736 (-823)) $) 109 T ELT) (((-823) $) 161 T ELT)) (-3168 (((-1074 |#1|)) 163 T ELT)) (-1661 (($) 142 (|has| |#1| (-313)) ELT)) (-1616 (($) 155 (|has| |#1| (-313)) ELT)) (-3207 (((-1168 |#1|) $) 167 T ELT) (((-625 |#1|) (-1168 $)) 166 T ELT)) (-2687 (((-3 (-1168 $) "failed") (-625 $)) 139 (|has| |#1| (-313)) ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT) (($ |#1|) 117 T ELT)) (-2686 (($ $) 138 (|has| |#1| (-313)) ELT) (((-627 $) $) 100 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-1998 (((-1168 $)) 169 T ELT) (((-1168 $) (-823)) 168 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-3917 (((-83) $) 112 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3912 (($ $) 106 (|has| |#1| (-313)) ELT) (($ $ (-687)) 105 (|has| |#1| (-313)) ELT)) (-2653 (($ $ (-687)) 137 (|has| |#1| (-313)) ELT) (($ $) 135 (|has| |#1| (-313)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) +(((-276 |#1|) (-111) (-308)) (T -276)) +((-1998 (*1 *2) (-12 (-4 *3 (-308)) (-5 *2 (-1168 *1)) (-4 *1 (-276 *3)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-823)) (-4 *4 (-308)) (-5 *2 (-1168 *1)) (-4 *1 (-276 *4)))) (-3207 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-1168 *3)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-276 *4)) (-4 *4 (-308)) (-5 *2 (-625 *4)))) (-1779 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-308)) (-4 *1 (-276 *3)))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-1074 *3)))) (-3168 (*1 *2) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-1074 *3)))) (-3914 (*1 *2) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-823)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-823)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-308)))) (-3314 (*1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-308)))) (-2000 (*1 *2 *1 *3) (-12 (-5 *3 (-823)) (-4 *4 (-313)) (-4 *4 (-308)) (-5 *2 (-1074 *1)) (-4 *1 (-276 *4)))) (-3115 (*1 *1 *1 *2) (-12 (-5 *2 (-823)) (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)))) (-3314 (*1 *1 *1 *2) (-12 (-5 *2 (-823)) (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)))) (-1616 (*1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-313)) (-4 *2 (-308)))) (-1999 (*1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-313)) (-4 *2 (-308)))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)) (-5 *2 (-83)))) (-2395 (*1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-313)) (-4 *2 (-308)))) (-1615 (*1 *1 *1 *2) (-12 (-5 *2 (-1074 *3)) (-4 *3 (-313)) (-4 *1 (-276 *3)) (-4 *3 (-308)))) (-1614 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)) (-5 *2 (-1074 *3)))) (-1613 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)) (-5 *2 (-1074 *3)))) (-1613 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)) (-5 *2 (-1074 *3))))) +(-13 (-1187 |t#1|) (-943 |t#1|) (-10 -8 (-15 -1998 ((-1168 $))) (-15 -1998 ((-1168 $) (-823))) (-15 -3207 ((-1168 |t#1|) $)) (-15 -3207 ((-625 |t#1|) (-1168 $))) (-15 -1779 ($ (-1168 |t#1|))) (-15 -2000 ((-1074 |t#1|) $)) (-15 -3168 ((-1074 |t#1|))) (-15 -3914 ((-823))) (-15 -3932 ((-823) $)) (-15 -3115 (|t#1| $)) (-15 -3314 (|t#1| $)) (IF (|has| |t#1| (-313)) (PROGN (-6 (-295)) (-15 -2000 ((-1074 $) $ (-823))) (-15 -3115 ($ $ (-823))) (-15 -3314 ($ $ (-823))) (-15 -1616 ($)) (-15 -1999 ($)) (-15 -1997 ((-83) $)) (-15 -2395 ($)) (-15 -1615 ($ $ (-1074 |t#1|))) (-15 -1614 ((-1074 |t#1|) $)) (-15 -1613 ((-1074 |t#1|) $)) (-15 -1613 ((-3 (-1074 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| |#1| (-313)) (|has| |#1| (-116))) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-184 $) |has| |#1| (-313)) ((-188) |has| |#1| (-313)) ((-187) |has| |#1| (-313)) ((-198) . T) ((-242) . T) ((-254) . T) ((-1187 |#1|) . T) ((-308) . T) ((-338) OR (|has| |#1| (-313)) (|has| |#1| (-116))) ((-313) |has| |#1| (-313)) ((-295) |has| |#1| (-313)) ((-385) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 |#1|) . T) ((-577 $) . T) ((-649 (-343 (-478))) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-658) . T) ((-825) . T) ((-943 |#1|) . T) ((-956 (-343 (-478))) . T) ((-956 |#1|) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 |#1|) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1055) |has| |#1| (-313)) ((-1118) . T) ((-1123) . T) ((-1176 |#1|) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-1617 (((-83) $) 13 T ELT)) (-3622 (($ |#1|) 10 T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3618 (($ |#1|) 12 T ELT)) (-3930 (((-765) $) 19 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2222 ((|#1| $) 14 T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 21 T ELT))) +(((-277 |#1|) (-13 (-749) (-10 -8 (-15 -3622 ($ |#1|)) (-15 -3618 ($ |#1|)) (-15 -1617 ((-83) $)) (-15 -2222 (|#1| $)))) (-749)) (T -277)) +((-3622 (*1 *1 *2) (-12 (-5 *1 (-277 *2)) (-4 *2 (-749)))) (-3618 (*1 *1 *2) (-12 (-5 *1 (-277 *2)) (-4 *2 (-749)))) (-1617 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-277 *3)) (-4 *3 (-749)))) (-2222 (*1 *2 *1) (-12 (-5 *1 (-277 *2)) (-4 *2 (-749))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1618 (((-439) $) 20 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1619 (((-862 (-687)) $) 18 T ELT)) (-1621 (((-206) $) 7 T ELT)) (-3930 (((-765) $) 26 T ELT)) (-2192 (((-862 (-156 (-110))) $) 16 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1620 (((-578 (-775 (-1084) (-687))) $) 12 T ELT)) (-3037 (((-83) $ $) 22 T ELT))) +(((-278) (-13 (-1005) (-10 -8 (-15 -1621 ((-206) $)) (-15 -1620 ((-578 (-775 (-1084) (-687))) $)) (-15 -1619 ((-862 (-687)) $)) (-15 -2192 ((-862 (-156 (-110))) $)) (-15 -1618 ((-439) $))))) (T -278)) +((-1621 (*1 *2 *1) (-12 (-5 *2 (-206)) (-5 *1 (-278)))) (-1620 (*1 *2 *1) (-12 (-5 *2 (-578 (-775 (-1084) (-687)))) (-5 *1 (-278)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-862 (-687))) (-5 *1 (-278)))) (-2192 (*1 *2 *1) (-12 (-5 *2 (-862 (-156 (-110)))) (-5 *1 (-278)))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-278))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3826 (($ $) 33 T ELT)) (-1624 (((-83) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1622 (((-1168 |#4|) $) 132 T ELT)) (-1956 (((-349 |#2| (-343 |#2|) |#3| |#4|) $) 31 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2395 (((-3 |#4| #1#) $) 36 T ELT)) (-1623 (((-1168 |#4|) $) 124 T ELT)) (-1625 (($ (-349 |#2| (-343 |#2|) |#3| |#4|)) 41 T ELT) (($ |#4|) 43 T ELT) (($ |#1| |#1|) 45 T ELT) (($ |#1| |#1| (-478)) 47 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 49 T ELT)) (-3419 (((-2 (|:| -2322 (-349 |#2| (-343 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39 T ELT)) (-3930 (((-765) $) 17 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 14 T CONST)) (-3037 (((-83) $ $) 20 T ELT)) (-3821 (($ $) 27 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 25 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 23 T ELT))) +(((-279 |#1| |#2| |#3| |#4|) (-13 (-282 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1623 ((-1168 |#4|) $)) (-15 -1622 ((-1168 |#4|) $)))) (-308) (-1144 |#1|) (-1144 (-343 |#2|)) (-287 |#1| |#2| |#3|)) (T -279)) +((-1623 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-1168 *6)) (-5 *1 (-279 *3 *4 *5 *6)) (-4 *6 (-287 *3 *4 *5)))) (-1622 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-1168 *6)) (-5 *1 (-279 *3 *4 *5 *6)) (-4 *6 (-287 *3 *4 *5))))) +((-3942 (((-279 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-279 |#1| |#2| |#3| |#4|)) 33 T ELT))) +(((-280 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3942 ((-279 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-279 |#1| |#2| |#3| |#4|)))) (-308) (-1144 |#1|) (-1144 (-343 |#2|)) (-287 |#1| |#2| |#3|) (-308) (-1144 |#5|) (-1144 (-343 |#6|)) (-287 |#5| |#6| |#7|)) (T -280)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-279 *5 *6 *7 *8)) (-4 *5 (-308)) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-343 *6))) (-4 *8 (-287 *5 *6 *7)) (-4 *9 (-308)) (-4 *10 (-1144 *9)) (-4 *11 (-1144 (-343 *10))) (-5 *2 (-279 *9 *10 *11 *12)) (-5 *1 (-280 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-287 *9 *10 *11))))) +((-1624 (((-83) $) 14 T ELT))) +(((-281 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1624 ((-83) |#1|))) (-282 |#2| |#3| |#4| |#5|) (-308) (-1144 |#2|) (-1144 (-343 |#3|)) (-287 |#2| |#3| |#4|)) (T -281)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3826 (($ $) 34 T ELT)) (-1624 (((-83) $) 33 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-1956 (((-349 |#2| (-343 |#2|) |#3| |#4|) $) 40 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2395 (((-3 |#4| "failed") $) 32 T ELT)) (-1625 (($ (-349 |#2| (-343 |#2|) |#3| |#4|)) 39 T ELT) (($ |#4|) 38 T ELT) (($ |#1| |#1|) 37 T ELT) (($ |#1| |#1| (-478)) 36 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 31 T ELT)) (-3419 (((-2 (|:| -2322 (-349 |#2| (-343 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 35 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT))) +(((-282 |#1| |#2| |#3| |#4|) (-111) (-308) (-1144 |t#1|) (-1144 (-343 |t#2|)) (-287 |t#1| |t#2| |t#3|)) (T -282)) +((-1956 (*1 *2 *1) (-12 (-4 *1 (-282 *3 *4 *5 *6)) (-4 *3 (-308)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-4 *6 (-287 *3 *4 *5)) (-5 *2 (-349 *4 (-343 *4) *5 *6)))) (-1625 (*1 *1 *2) (-12 (-5 *2 (-349 *4 (-343 *4) *5 *6)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-4 *6 (-287 *3 *4 *5)) (-4 *3 (-308)) (-4 *1 (-282 *3 *4 *5 *6)))) (-1625 (*1 *1 *2) (-12 (-4 *3 (-308)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-4 *1 (-282 *3 *4 *5 *2)) (-4 *2 (-287 *3 *4 *5)))) (-1625 (*1 *1 *2 *2) (-12 (-4 *2 (-308)) (-4 *3 (-1144 *2)) (-4 *4 (-1144 (-343 *3))) (-4 *1 (-282 *2 *3 *4 *5)) (-4 *5 (-287 *2 *3 *4)))) (-1625 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-478)) (-4 *2 (-308)) (-4 *4 (-1144 *2)) (-4 *5 (-1144 (-343 *4))) (-4 *1 (-282 *2 *4 *5 *6)) (-4 *6 (-287 *2 *4 *5)))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-282 *3 *4 *5 *6)) (-4 *3 (-308)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-4 *6 (-287 *3 *4 *5)) (-5 *2 (-2 (|:| -2322 (-349 *4 (-343 *4) *5 *6)) (|:| |principalPart| *6))))) (-3826 (*1 *1 *1) (-12 (-4 *1 (-282 *2 *3 *4 *5)) (-4 *2 (-308)) (-4 *3 (-1144 *2)) (-4 *4 (-1144 (-343 *3))) (-4 *5 (-287 *2 *3 *4)))) (-1624 (*1 *2 *1) (-12 (-4 *1 (-282 *3 *4 *5 *6)) (-4 *3 (-308)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-4 *6 (-287 *3 *4 *5)) (-5 *2 (-83)))) (-2395 (*1 *2 *1) (|partial| -12 (-4 *1 (-282 *3 *4 *5 *2)) (-4 *3 (-308)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-4 *2 (-287 *3 *4 *5)))) (-1625 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-308)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 (-343 *3))) (-4 *1 (-282 *4 *3 *5 *2)) (-4 *2 (-287 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1956 ((-349 |t#2| (-343 |t#2|) |t#3| |t#4|) $)) (-15 -1625 ($ (-349 |t#2| (-343 |t#2|) |t#3| |t#4|))) (-15 -1625 ($ |t#4|)) (-15 -1625 ($ |t#1| |t#1|)) (-15 -1625 ($ |t#1| |t#1| (-478))) (-15 -3419 ((-2 (|:| -2322 (-349 |t#2| (-343 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3826 ($ $)) (-15 -1624 ((-83) $)) (-15 -2395 ((-3 |t#4| "failed") $)) (-15 -1625 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-1005) . T) ((-1118) . T)) +((-3752 (($ $ (-1079) |#2|) NIL T ELT) (($ $ (-578 (-1079)) (-578 |#2|)) 20 T ELT) (($ $ (-578 (-245 |#2|))) 15 T ELT) (($ $ (-245 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL T ELT)) (-3784 (($ $ |#2|) 11 T ELT))) +(((-283 |#1| |#2|) (-10 -7 (-15 -3784 (|#1| |#1| |#2|)) (-15 -3752 (|#1| |#1| (-578 |#2|) (-578 |#2|))) (-15 -3752 (|#1| |#1| |#2| |#2|)) (-15 -3752 (|#1| |#1| (-245 |#2|))) (-15 -3752 (|#1| |#1| (-578 (-245 |#2|)))) (-15 -3752 (|#1| |#1| (-578 (-1079)) (-578 |#2|))) (-15 -3752 (|#1| |#1| (-1079) |#2|))) (-284 |#2|) (-1005)) (T -283)) +NIL +((-3942 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3752 (($ $ (-1079) |#1|) 17 (|has| |#1| (-447 (-1079) |#1|)) ELT) (($ $ (-578 (-1079)) (-578 |#1|)) 16 (|has| |#1| (-447 (-1079) |#1|)) ELT) (($ $ (-578 (-245 |#1|))) 15 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) 14 (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 12 (|has| |#1| (-256 |#1|)) ELT)) (-3784 (($ $ |#1|) 11 (|has| |#1| (-238 |#1| |#1|)) ELT))) +(((-284 |#1|) (-111) (-1005)) (T -284)) +((-3942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-284 *3)) (-4 *3 (-1005))))) +(-13 (-10 -8 (-15 -3942 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-238 |t#1| |t#1|)) (-6 (-238 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-256 |t#1|)) (-6 (-256 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-447 (-1079) |t#1|)) (-6 (-447 (-1079) |t#1|)) |%noBranch|))) +(((-238 |#1| $) |has| |#1| (-238 |#1| |#1|)) ((-256 |#1|) |has| |#1| (-256 |#1|)) ((-447 (-1079) |#1|) |has| |#1| (-447 (-1079) |#1|)) ((-447 |#1| |#1|) |has| |#1| (-256 |#1|)) ((-1118) |has| |#1| (-238 |#1| |#1|))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-3913 (((-687)) NIL T ELT)) (-3314 (((-810 |#1|) $) NIL T ELT) (($ $ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-810 |#1|) #1#) $) NIL T ELT)) (-3139 (((-810 |#1|) $) NIL T ELT)) (-1779 (($ (-1168 (-810 |#1|))) NIL T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-2817 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1667 (((-83) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1751 (($ $ (-687)) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT) (($ $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-3707 (((-83) $) NIL T ELT)) (-3756 (((-823) $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-1999 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1997 (((-83) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3115 (((-810 |#1|) $) NIL T ELT) (($ $ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3429 (((-627 $) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2000 (((-1074 (-810 |#1|)) $) NIL T ELT) (((-1074 $) $ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1996 (((-823) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1614 (((-1074 (-810 |#1|)) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1613 (((-1074 (-810 |#1|)) $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-3 (-1074 (-810 |#1|)) #1#) $ $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1615 (($ $ (-1074 (-810 |#1|))) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3430 (($) NIL (|has| (-810 |#1|) (-313)) CONST)) (-2386 (($ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3915 (((-83) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2395 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-3914 (((-736 (-823))) NIL T ELT) (((-823)) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-1752 (((-687) $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-3 (-687) #1#) $ $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-3895 (((-105)) NIL T ELT)) (-3742 (($ $ (-687)) NIL (|has| (-810 |#1|) (-313)) ELT) (($ $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3932 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-3168 (((-1074 (-810 |#1|))) NIL T ELT)) (-1661 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1616 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3207 (((-1168 (-810 |#1|)) $) NIL T ELT) (((-625 (-810 |#1|)) (-1168 $)) NIL T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-810 |#1|)) NIL T ELT)) (-2686 (($ $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-627 $) $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $)) NIL T ELT) (((-1168 $) (-823)) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3917 (((-83) $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-3912 (($ $) NIL (|has| (-810 |#1|) (-313)) ELT) (($ $ (-687)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2653 (($ $ (-687)) NIL (|has| (-810 |#1|) (-313)) ELT) (($ $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ $) NIL T ELT) (($ $ (-810 |#1|)) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ (-810 |#1|)) NIL T ELT) (($ (-810 |#1|) $) NIL T ELT))) +(((-285 |#1| |#2|) (-276 (-810 |#1|)) (-823) (-823)) (T -285)) +NIL +((-1634 (((-2 (|:| |num| (-1168 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1779 (($ (-1168 (-343 |#3|)) (-1168 $)) NIL T ELT) (($ (-1168 (-343 |#3|))) NIL T ELT) (($ (-1168 |#3|) |#3|) 172 T ELT)) (-1639 (((-1168 $) (-1168 $)) 156 T ELT)) (-1626 (((-578 (-578 |#2|))) 126 T ELT)) (-1651 (((-83) |#2| |#2|) 76 T ELT)) (-3487 (($ $) 148 T ELT)) (-3361 (((-687)) 171 T ELT)) (-1640 (((-1168 $) (-1168 $)) 219 T ELT)) (-1627 (((-578 (-850 |#2|)) (-1079)) 115 T ELT)) (-1643 (((-83) $) 168 T ELT)) (-1642 (((-83) $) 27 T ELT) (((-83) $ |#2|) 31 T ELT) (((-83) $ |#3|) 223 T ELT)) (-1629 (((-3 |#3| #1="failed")) 52 T ELT)) (-1653 (((-687)) 183 T ELT)) (-3784 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1630 (((-3 |#3| #1#)) 71 T ELT)) (-3742 (($ $ (-1 (-343 |#3|) (-343 |#3|))) NIL T ELT) (($ $ (-1 (-343 |#3|) (-343 |#3|)) (-687)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079))) NIL T ELT) (($ $ (-1079)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $) NIL T ELT)) (-1641 (((-1168 $) (-1168 $)) 162 T ELT)) (-1628 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1652 (((-83)) 34 T ELT))) +(((-286 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3742 (|#1| |#1|)) (-15 -3742 (|#1| |#1| (-687))) (-15 -3742 (|#1| |#1| (-1079))) (-15 -3742 (|#1| |#1| (-578 (-1079)))) (-15 -3742 (|#1| |#1| (-1079) (-687))) (-15 -3742 (|#1| |#1| (-578 (-1079)) (-578 (-687)))) (-15 -1626 ((-578 (-578 |#2|)))) (-15 -1627 ((-578 (-850 |#2|)) (-1079))) (-15 -1628 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1629 ((-3 |#3| #1="failed"))) (-15 -1630 ((-3 |#3| #1#))) (-15 -3784 (|#2| |#1| |#2| |#2|)) (-15 -3487 (|#1| |#1|)) (-15 -3742 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1642 ((-83) |#1| |#3|)) (-15 -1642 ((-83) |#1| |#2|)) (-15 -1779 (|#1| (-1168 |#3|) |#3|)) (-15 -1634 ((-2 (|:| |num| (-1168 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1639 ((-1168 |#1|) (-1168 |#1|))) (-15 -1640 ((-1168 |#1|) (-1168 |#1|))) (-15 -1641 ((-1168 |#1|) (-1168 |#1|))) (-15 -1642 ((-83) |#1|)) (-15 -1643 ((-83) |#1|)) (-15 -1651 ((-83) |#2| |#2|)) (-15 -1652 ((-83))) (-15 -1653 ((-687))) (-15 -3361 ((-687))) (-15 -3742 (|#1| |#1| (-1 (-343 |#3|) (-343 |#3|)) (-687))) (-15 -3742 (|#1| |#1| (-1 (-343 |#3|) (-343 |#3|)))) (-15 -1779 (|#1| (-1168 (-343 |#3|)))) (-15 -1779 (|#1| (-1168 (-343 |#3|)) (-1168 |#1|)))) (-287 |#2| |#3| |#4|) (-1123) (-1144 |#2|) (-1144 (-343 |#3|))) (T -286)) +((-3361 (*1 *2) (-12 (-4 *4 (-1123)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-343 *5))) (-5 *2 (-687)) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6)))) (-1653 (*1 *2) (-12 (-4 *4 (-1123)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-343 *5))) (-5 *2 (-687)) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6)))) (-1652 (*1 *2) (-12 (-4 *4 (-1123)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-343 *5))) (-5 *2 (-83)) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6)))) (-1651 (*1 *2 *3 *3) (-12 (-4 *3 (-1123)) (-4 *5 (-1144 *3)) (-4 *6 (-1144 (-343 *5))) (-5 *2 (-83)) (-5 *1 (-286 *4 *3 *5 *6)) (-4 *4 (-287 *3 *5 *6)))) (-1630 (*1 *2) (|partial| -12 (-4 *4 (-1123)) (-4 *5 (-1144 (-343 *2))) (-4 *2 (-1144 *4)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *3 (-287 *4 *2 *5)))) (-1629 (*1 *2) (|partial| -12 (-4 *4 (-1123)) (-4 *5 (-1144 (-343 *2))) (-4 *2 (-1144 *4)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *3 (-287 *4 *2 *5)))) (-1627 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-4 *5 (-1123)) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-343 *6))) (-5 *2 (-578 (-850 *5))) (-5 *1 (-286 *4 *5 *6 *7)) (-4 *4 (-287 *5 *6 *7)))) (-1626 (*1 *2) (-12 (-4 *4 (-1123)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-343 *5))) (-5 *2 (-578 (-578 *4))) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1634 (((-2 (|:| |num| (-1168 |#2|)) (|:| |den| |#2|)) $) 222 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 111 (|has| (-343 |#2|) (-308)) ELT)) (-2049 (($ $) 112 (|has| (-343 |#2|) (-308)) ELT)) (-2047 (((-83) $) 114 (|has| (-343 |#2|) (-308)) ELT)) (-1769 (((-625 (-343 |#2|)) (-1168 $)) 58 T ELT) (((-625 (-343 |#2|))) 74 T ELT)) (-3314 (((-343 |#2|) $) 64 T ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) 164 (|has| (-343 |#2|) (-295)) ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3759 (($ $) 131 (|has| (-343 |#2|) (-308)) ELT)) (-3955 (((-341 $) $) 132 (|has| (-343 |#2|) (-308)) ELT)) (-1595 (((-83) $ $) 122 (|has| (-343 |#2|) (-308)) ELT)) (-3119 (((-687)) 105 (|has| (-343 |#2|) (-313)) ELT)) (-1648 (((-83)) 239 T ELT)) (-1647 (((-83) |#1|) 238 T ELT) (((-83) |#2|) 237 T ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 (-478) #1="failed") $) 191 (|has| (-343 |#2|) (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) 189 (|has| (-343 |#2|) (-943 (-343 (-478)))) ELT) (((-3 (-343 |#2|) #1#) $) 186 T ELT)) (-3139 (((-478) $) 190 (|has| (-343 |#2|) (-943 (-478))) ELT) (((-343 (-478)) $) 188 (|has| (-343 |#2|) (-943 (-343 (-478)))) ELT) (((-343 |#2|) $) 187 T ELT)) (-1779 (($ (-1168 (-343 |#2|)) (-1168 $)) 60 T ELT) (($ (-1168 (-343 |#2|))) 77 T ELT) (($ (-1168 |#2|) |#2|) 221 T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| (-343 |#2|) (-295)) ELT)) (-2548 (($ $ $) 126 (|has| (-343 |#2|) (-308)) ELT)) (-1768 (((-625 (-343 |#2|)) $ (-1168 $)) 65 T ELT) (((-625 (-343 |#2|)) $) 72 T ELT)) (-2265 (((-625 (-478)) (-625 $)) 183 (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 182 (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-343 |#2|))) (|:| |vec| (-1168 (-343 |#2|)))) (-625 $) (-1168 $)) 181 T ELT) (((-625 (-343 |#2|)) (-625 $)) 180 T ELT)) (-1639 (((-1168 $) (-1168 $)) 227 T ELT)) (-3826 (($ |#3|) 175 T ELT) (((-3 $ "failed") (-343 |#3|)) 172 (|has| (-343 |#2|) (-308)) ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-1626 (((-578 (-578 |#1|))) 208 (|has| |#1| (-313)) ELT)) (-1651 (((-83) |#1| |#1|) 243 T ELT)) (-3092 (((-823)) 66 T ELT)) (-2978 (($) 108 (|has| (-343 |#2|) (-313)) ELT)) (-1646 (((-83)) 236 T ELT)) (-1645 (((-83) |#1|) 235 T ELT) (((-83) |#2|) 234 T ELT)) (-2547 (($ $ $) 125 (|has| (-343 |#2|) (-308)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 120 (|has| (-343 |#2|) (-308)) ELT)) (-3487 (($ $) 214 T ELT)) (-2817 (($) 166 (|has| (-343 |#2|) (-295)) ELT)) (-1667 (((-83) $) 167 (|has| (-343 |#2|) (-295)) ELT)) (-1751 (($ $ (-687)) 158 (|has| (-343 |#2|) (-295)) ELT) (($ $) 157 (|has| (-343 |#2|) (-295)) ELT)) (-3707 (((-83) $) 133 (|has| (-343 |#2|) (-308)) ELT)) (-3756 (((-823) $) 169 (|has| (-343 |#2|) (-295)) ELT) (((-736 (-823)) $) 155 (|has| (-343 |#2|) (-295)) ELT)) (-2396 (((-83) $) 40 T ELT)) (-3361 (((-687)) 246 T ELT)) (-1640 (((-1168 $) (-1168 $)) 228 T ELT)) (-3115 (((-343 |#2|) $) 63 T ELT)) (-1627 (((-578 (-850 |#1|)) (-1079)) 209 (|has| |#1| (-308)) ELT)) (-3429 (((-627 $) $) 159 (|has| (-343 |#2|) (-295)) ELT)) (-1592 (((-3 (-578 $) #2="failed") (-578 $) $) 129 (|has| (-343 |#2|) (-308)) ELT)) (-2000 ((|#3| $) 56 (|has| (-343 |#2|) (-308)) ELT)) (-1996 (((-823) $) 107 (|has| (-343 |#2|) (-313)) ELT)) (-3063 ((|#3| $) 173 T ELT)) (-2266 (((-625 (-478)) (-1168 $)) 185 (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) 184 (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-343 |#2|))) (|:| |vec| (-1168 (-343 |#2|)))) (-1168 $) $) 179 T ELT) (((-625 (-343 |#2|)) (-1168 $)) 178 T ELT)) (-1878 (($ (-578 $)) 118 (|has| (-343 |#2|) (-308)) ELT) (($ $ $) 117 (|has| (-343 |#2|) (-308)) ELT)) (-3225 (((-1062) $) 11 T ELT)) (-1635 (((-625 (-343 |#2|))) 223 T ELT)) (-1637 (((-625 (-343 |#2|))) 225 T ELT)) (-2468 (($ $) 134 (|has| (-343 |#2|) (-308)) ELT)) (-1632 (($ (-1168 |#2|) |#2|) 219 T ELT)) (-1636 (((-625 (-343 |#2|))) 224 T ELT)) (-1638 (((-625 (-343 |#2|))) 226 T ELT)) (-1631 (((-2 (|:| |num| (-625 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 218 T ELT)) (-1633 (((-2 (|:| |num| (-1168 |#2|)) (|:| |den| |#2|)) $) 220 T ELT)) (-1644 (((-1168 $)) 232 T ELT)) (-3902 (((-1168 $)) 233 T ELT)) (-1643 (((-83) $) 231 T ELT)) (-1642 (((-83) $) 230 T ELT) (((-83) $ |#1|) 217 T ELT) (((-83) $ |#2|) 216 T ELT)) (-3430 (($) 160 (|has| (-343 |#2|) (-295)) CONST)) (-2386 (($ (-823)) 106 (|has| (-343 |#2|) (-313)) ELT)) (-1629 (((-3 |#2| "failed")) 211 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-1653 (((-687)) 245 T ELT)) (-2395 (($) 177 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 119 (|has| (-343 |#2|) (-308)) ELT)) (-3127 (($ (-578 $)) 116 (|has| (-343 |#2|) (-308)) ELT) (($ $ $) 115 (|has| (-343 |#2|) (-308)) ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) 163 (|has| (-343 |#2|) (-295)) ELT)) (-3716 (((-341 $) $) 130 (|has| (-343 |#2|) (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| (-343 |#2|) (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 127 (|has| (-343 |#2|) (-308)) ELT)) (-3450 (((-3 $ "failed") $ $) 110 (|has| (-343 |#2|) (-308)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 121 (|has| (-343 |#2|) (-308)) ELT)) (-1594 (((-687) $) 123 (|has| (-343 |#2|) (-308)) ELT)) (-3784 ((|#1| $ |#1| |#1|) 213 T ELT)) (-1630 (((-3 |#2| "failed")) 212 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 124 (|has| (-343 |#2|) (-308)) ELT)) (-3741 (((-343 |#2|) (-1168 $)) 59 T ELT) (((-343 |#2|)) 73 T ELT)) (-1752 (((-687) $) 168 (|has| (-343 |#2|) (-295)) ELT) (((-3 (-687) "failed") $ $) 156 (|has| (-343 |#2|) (-295)) ELT)) (-3742 (($ $ (-1 (-343 |#2|) (-343 |#2|))) 142 (|has| (-343 |#2|) (-308)) ELT) (($ $ (-1 (-343 |#2|) (-343 |#2|)) (-687)) 141 (|has| (-343 |#2|) (-308)) ELT) (($ $ (-1 |#2| |#2|)) 215 T ELT) (($ $ (-578 (-1079)) (-578 (-687))) 147 (OR (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079)))) (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-2546 (|has| (-343 |#2|) (-804 (-1079))) (|has| (-343 |#2|) (-308)))) ELT) (($ $ (-1079) (-687)) 146 (OR (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079)))) (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-2546 (|has| (-343 |#2|) (-804 (-1079))) (|has| (-343 |#2|) (-308)))) ELT) (($ $ (-578 (-1079))) 145 (OR (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079)))) (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-2546 (|has| (-343 |#2|) (-804 (-1079))) (|has| (-343 |#2|) (-308)))) ELT) (($ $ (-1079)) 143 (OR (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079)))) (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-2546 (|has| (-343 |#2|) (-804 (-1079))) (|has| (-343 |#2|) (-308)))) ELT) (($ $ (-687)) 153 (OR (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-187))) (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-188))) (-2546 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT) (($ $) 151 (OR (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-187))) (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-188))) (-2546 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT)) (-2394 (((-625 (-343 |#2|)) (-1168 $) (-1 (-343 |#2|) (-343 |#2|))) 171 (|has| (-343 |#2|) (-308)) ELT)) (-3168 ((|#3|) 176 T ELT)) (-1661 (($) 165 (|has| (-343 |#2|) (-295)) ELT)) (-3207 (((-1168 (-343 |#2|)) $ (-1168 $)) 62 T ELT) (((-625 (-343 |#2|)) (-1168 $) (-1168 $)) 61 T ELT) (((-1168 (-343 |#2|)) $) 79 T ELT) (((-625 (-343 |#2|)) (-1168 $)) 78 T ELT)) (-3956 (((-1168 (-343 |#2|)) $) 76 T ELT) (($ (-1168 (-343 |#2|))) 75 T ELT) ((|#3| $) 192 T ELT) (($ |#3|) 174 T ELT)) (-2687 (((-3 (-1168 $) "failed") (-625 $)) 162 (|has| (-343 |#2|) (-295)) ELT)) (-1641 (((-1168 $) (-1168 $)) 229 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 |#2|)) 49 T ELT) (($ (-343 (-478))) 104 (OR (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-943 (-343 (-478))))) ELT) (($ $) 109 (|has| (-343 |#2|) (-308)) ELT)) (-2686 (($ $) 161 (|has| (-343 |#2|) (-295)) ELT) (((-627 $) $) 55 (|has| (-343 |#2|) (-116)) ELT)) (-2433 ((|#3| $) 57 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1650 (((-83)) 242 T ELT)) (-1649 (((-83) |#1|) 241 T ELT) (((-83) |#2|) 240 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-1998 (((-1168 $)) 80 T ELT)) (-2048 (((-83) $ $) 113 (|has| (-343 |#2|) (-308)) ELT)) (-1628 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 210 T ELT)) (-1652 (((-83)) 244 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-1 (-343 |#2|) (-343 |#2|))) 140 (|has| (-343 |#2|) (-308)) ELT) (($ $ (-1 (-343 |#2|) (-343 |#2|)) (-687)) 139 (|has| (-343 |#2|) (-308)) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 150 (OR (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079)))) (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-2546 (|has| (-343 |#2|) (-804 (-1079))) (|has| (-343 |#2|) (-308)))) ELT) (($ $ (-1079) (-687)) 149 (OR (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079)))) (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-2546 (|has| (-343 |#2|) (-804 (-1079))) (|has| (-343 |#2|) (-308)))) ELT) (($ $ (-578 (-1079))) 148 (OR (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079)))) (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-2546 (|has| (-343 |#2|) (-804 (-1079))) (|has| (-343 |#2|) (-308)))) ELT) (($ $ (-1079)) 144 (OR (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079)))) (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-2546 (|has| (-343 |#2|) (-804 (-1079))) (|has| (-343 |#2|) (-308)))) ELT) (($ $ (-687)) 154 (OR (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-187))) (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-188))) (-2546 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT) (($ $) 152 (OR (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-187))) (-2546 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-188))) (-2546 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ $) 138 (|has| (-343 |#2|) (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 135 (|has| (-343 |#2|) (-308)) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 |#2|)) 51 T ELT) (($ (-343 |#2|) $) 50 T ELT) (($ (-343 (-478)) $) 137 (|has| (-343 |#2|) (-308)) ELT) (($ $ (-343 (-478))) 136 (|has| (-343 |#2|) (-308)) ELT))) +(((-287 |#1| |#2| |#3|) (-111) (-1123) (-1144 |t#1|) (-1144 (-343 |t#2|))) (T -287)) +((-3361 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-687)))) (-1653 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-687)))) (-1652 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83)))) (-1651 (*1 *2 *3 *3) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83)))) (-1650 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83)))) (-1649 (*1 *2 *3) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83)))) (-1649 (*1 *2 *3) (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 (-343 *3))) (-5 *2 (-83)))) (-1648 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83)))) (-1647 (*1 *2 *3) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83)))) (-1647 (*1 *2 *3) (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 (-343 *3))) (-5 *2 (-83)))) (-1646 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83)))) (-1645 (*1 *2 *3) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83)))) (-1645 (*1 *2 *3) (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 (-343 *3))) (-5 *2 (-83)))) (-3902 (*1 *2) (-12 (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-1168 *1)) (-4 *1 (-287 *3 *4 *5)))) (-1644 (*1 *2) (-12 (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-1168 *1)) (-4 *1 (-287 *3 *4 *5)))) (-1643 (*1 *2 *1) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83)))) (-1642 (*1 *2 *1) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83)))) (-1641 (*1 *2 *2) (-12 (-5 *2 (-1168 *1)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))))) (-1640 (*1 *2 *2) (-12 (-5 *2 (-1168 *1)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))))) (-1639 (*1 *2 *2) (-12 (-5 *2 (-1168 *1)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))))) (-1638 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-625 (-343 *4))))) (-1637 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-625 (-343 *4))))) (-1636 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-625 (-343 *4))))) (-1635 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-625 (-343 *4))))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-2 (|:| |num| (-1168 *4)) (|:| |den| *4))))) (-1779 (*1 *1 *2 *3) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1144 *4)) (-4 *4 (-1123)) (-4 *1 (-287 *4 *3 *5)) (-4 *5 (-1144 (-343 *3))))) (-1633 (*1 *2 *1) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-2 (|:| |num| (-1168 *4)) (|:| |den| *4))))) (-1632 (*1 *1 *2 *3) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1144 *4)) (-4 *4 (-1123)) (-4 *1 (-287 *4 *3 *5)) (-4 *5 (-1144 (-343 *3))))) (-1631 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-287 *4 *5 *6)) (-4 *4 (-1123)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-343 *5))) (-5 *2 (-2 (|:| |num| (-625 *5)) (|:| |den| *5))))) (-1642 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83)))) (-1642 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 (-343 *3))) (-5 *2 (-83)))) (-3742 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))))) (-3487 (*1 *1 *1) (-12 (-4 *1 (-287 *2 *3 *4)) (-4 *2 (-1123)) (-4 *3 (-1144 *2)) (-4 *4 (-1144 (-343 *3))))) (-3784 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-287 *2 *3 *4)) (-4 *2 (-1123)) (-4 *3 (-1144 *2)) (-4 *4 (-1144 (-343 *3))))) (-1630 (*1 *2) (|partial| -12 (-4 *1 (-287 *3 *2 *4)) (-4 *3 (-1123)) (-4 *4 (-1144 (-343 *2))) (-4 *2 (-1144 *3)))) (-1629 (*1 *2) (|partial| -12 (-4 *1 (-287 *3 *2 *4)) (-4 *3 (-1123)) (-4 *4 (-1144 (-343 *2))) (-4 *2 (-1144 *3)))) (-1628 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-1123)) (-4 *6 (-1144 (-343 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-287 *4 *5 *6)))) (-1627 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-4 *1 (-287 *4 *5 *6)) (-4 *4 (-1123)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-343 *5))) (-4 *4 (-308)) (-5 *2 (-578 (-850 *4))))) (-1626 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) (-4 *3 (-313)) (-5 *2 (-578 (-578 *3)))))) +(-13 (-656 (-343 |t#2|) |t#3|) (-10 -8 (-15 -3361 ((-687))) (-15 -1653 ((-687))) (-15 -1652 ((-83))) (-15 -1651 ((-83) |t#1| |t#1|)) (-15 -1650 ((-83))) (-15 -1649 ((-83) |t#1|)) (-15 -1649 ((-83) |t#2|)) (-15 -1648 ((-83))) (-15 -1647 ((-83) |t#1|)) (-15 -1647 ((-83) |t#2|)) (-15 -1646 ((-83))) (-15 -1645 ((-83) |t#1|)) (-15 -1645 ((-83) |t#2|)) (-15 -3902 ((-1168 $))) (-15 -1644 ((-1168 $))) (-15 -1643 ((-83) $)) (-15 -1642 ((-83) $)) (-15 -1641 ((-1168 $) (-1168 $))) (-15 -1640 ((-1168 $) (-1168 $))) (-15 -1639 ((-1168 $) (-1168 $))) (-15 -1638 ((-625 (-343 |t#2|)))) (-15 -1637 ((-625 (-343 |t#2|)))) (-15 -1636 ((-625 (-343 |t#2|)))) (-15 -1635 ((-625 (-343 |t#2|)))) (-15 -1634 ((-2 (|:| |num| (-1168 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1779 ($ (-1168 |t#2|) |t#2|)) (-15 -1633 ((-2 (|:| |num| (-1168 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1632 ($ (-1168 |t#2|) |t#2|)) (-15 -1631 ((-2 (|:| |num| (-625 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1642 ((-83) $ |t#1|)) (-15 -1642 ((-83) $ |t#2|)) (-15 -3742 ($ $ (-1 |t#2| |t#2|))) (-15 -3487 ($ $)) (-15 -3784 (|t#1| $ |t#1| |t#1|)) (-15 -1630 ((-3 |t#2| "failed"))) (-15 -1629 ((-3 |t#2| "failed"))) (-15 -1628 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-308)) (-15 -1627 ((-578 (-850 |t#1|)) (-1079))) |%noBranch|) (IF (|has| |t#1| (-313)) (-15 -1626 ((-578 (-578 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-38 (-343 |#2|)) . T) ((-38 $) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-80 (-343 |#2|) (-343 |#2|)) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-116))) ((-118) |has| (-343 |#2|) (-118)) ((-550 (-343 (-478))) OR (|has| (-343 |#2|) (-943 (-343 (-478)))) (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-550 (-343 |#2|)) . T) ((-550 (-478)) . T) ((-550 $) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-547 (-765)) . T) ((-144) . T) ((-548 |#3|) . T) ((-184 $) OR (|has| (-343 |#2|) (-295)) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308)))) ((-182 (-343 |#2|)) |has| (-343 |#2|) (-308)) ((-188) OR (|has| (-343 |#2|) (-295)) (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308)))) ((-187) OR (|has| (-343 |#2|) (-295)) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308)))) ((-222 (-343 |#2|)) |has| (-343 |#2|) (-308)) ((-198) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-242) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-254) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-308) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-338) |has| (-343 |#2|) (-295)) ((-313) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-313))) ((-295) |has| (-343 |#2|) (-295)) ((-315 (-343 |#2|) |#3|) . T) ((-346 (-343 |#2|) |#3|) . T) ((-322 (-343 |#2|)) . T) ((-348 (-343 |#2|)) . T) ((-385) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-489) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-583 (-343 (-478))) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-583 (-343 |#2|)) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-343 (-478))) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-585 (-343 |#2|)) . T) ((-585 (-478)) |has| (-343 |#2|) (-575 (-478))) ((-585 $) . T) ((-577 (-343 (-478))) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-577 (-343 |#2|)) . T) ((-577 $) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-575 (-343 |#2|)) . T) ((-575 (-478)) |has| (-343 |#2|) (-575 (-478))) ((-649 (-343 (-478))) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-649 (-343 |#2|)) . T) ((-649 $) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-656 (-343 |#2|) |#3|) . T) ((-658) . T) ((-799 $ (-1079)) OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079))))) ((-802 (-1079)) -12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) ((-804 (-1079)) OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079))))) ((-825) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-943 (-343 (-478))) |has| (-343 |#2|) (-943 (-343 (-478)))) ((-943 (-343 |#2|)) . T) ((-943 (-478)) |has| (-343 |#2|) (-943 (-478))) ((-956 (-343 (-478))) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-956 (-343 |#2|)) . T) ((-956 $) . T) ((-961 (-343 (-478))) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-961 (-343 |#2|)) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1055) |has| (-343 |#2|) (-295)) ((-1118) . T) ((-1123) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308)))) +((-3942 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) +(((-288 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3942 (|#8| (-1 |#5| |#1|) |#4|))) (-1123) (-1144 |#1|) (-1144 (-343 |#2|)) (-287 |#1| |#2| |#3|) (-1123) (-1144 |#5|) (-1144 (-343 |#6|)) (-287 |#5| |#6| |#7|)) (T -288)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1123)) (-4 *8 (-1123)) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-343 *6))) (-4 *9 (-1144 *8)) (-4 *2 (-287 *8 *9 *10)) (-5 *1 (-288 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-287 *5 *6 *7)) (-4 *10 (-1144 (-343 *9)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-3913 (((-687)) NIL T ELT)) (-3314 (((-810 |#1|) $) NIL T ELT) (($ $ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-810 |#1|) #1#) $) NIL T ELT)) (-3139 (((-810 |#1|) $) NIL T ELT)) (-1779 (($ (-1168 (-810 |#1|))) NIL T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-2817 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1667 (((-83) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1751 (($ $ (-687)) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT) (($ $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-3707 (((-83) $) NIL T ELT)) (-3756 (((-823) $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-1999 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1997 (((-83) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3115 (((-810 |#1|) $) NIL T ELT) (($ $ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3429 (((-627 $) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2000 (((-1074 (-810 |#1|)) $) NIL T ELT) (((-1074 $) $ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1996 (((-823) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1614 (((-1074 (-810 |#1|)) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1613 (((-1074 (-810 |#1|)) $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-3 (-1074 (-810 |#1|)) #1#) $ $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1615 (($ $ (-1074 (-810 |#1|))) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3430 (($) NIL (|has| (-810 |#1|) (-313)) CONST)) (-2386 (($ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3915 (((-83) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1654 (((-862 (-1023))) NIL T ELT)) (-2395 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-3914 (((-736 (-823))) NIL T ELT) (((-823)) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-1752 (((-687) $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-3 (-687) #1#) $ $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-3895 (((-105)) NIL T ELT)) (-3742 (($ $ (-687)) NIL (|has| (-810 |#1|) (-313)) ELT) (($ $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3932 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-3168 (((-1074 (-810 |#1|))) NIL T ELT)) (-1661 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1616 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3207 (((-1168 (-810 |#1|)) $) NIL T ELT) (((-625 (-810 |#1|)) (-1168 $)) NIL T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-810 |#1|)) NIL T ELT)) (-2686 (($ $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-627 $) $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $)) NIL T ELT) (((-1168 $) (-823)) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3917 (((-83) $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-3912 (($ $) NIL (|has| (-810 |#1|) (-313)) ELT) (($ $ (-687)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2653 (($ $ (-687)) NIL (|has| (-810 |#1|) (-313)) ELT) (($ $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ $) NIL T ELT) (($ $ (-810 |#1|)) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ (-810 |#1|)) NIL T ELT) (($ (-810 |#1|) $) NIL T ELT))) +(((-289 |#1| |#2|) (-13 (-276 (-810 |#1|)) (-10 -7 (-15 -1654 ((-862 (-1023)))))) (-823) (-823)) (T -289)) +((-1654 (*1 *2) (-12 (-5 *2 (-862 (-1023))) (-5 *1 (-289 *3 *4)) (-14 *3 (-823)) (-14 *4 (-823))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 58 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-3913 (((-687)) NIL T ELT)) (-3314 ((|#1| $) NIL T ELT) (($ $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) 56 (|has| |#1| (-313)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) NIL (|has| |#1| (-313)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) 141 T ELT)) (-3139 ((|#1| $) 113 T ELT)) (-1779 (($ (-1168 |#1|)) 130 T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-313)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($) 124 (|has| |#1| (-313)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-2817 (($) 159 (|has| |#1| (-313)) ELT)) (-1667 (((-83) $) 66 (|has| |#1| (-313)) ELT)) (-1751 (($ $ (-687)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3707 (((-83) $) NIL T ELT)) (-3756 (((-823) $) 60 (|has| |#1| (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-2396 (((-83) $) 62 T ELT)) (-1999 (($) 161 (|has| |#1| (-313)) ELT)) (-1997 (((-83) $) NIL (|has| |#1| (-313)) ELT)) (-3115 ((|#1| $) NIL T ELT) (($ $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-3429 (((-627 $) $) NIL (|has| |#1| (-313)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2000 (((-1074 |#1|) $) 117 T ELT) (((-1074 $) $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1996 (((-823) $) 170 (|has| |#1| (-313)) ELT)) (-1614 (((-1074 |#1|) $) NIL (|has| |#1| (-313)) ELT)) (-1613 (((-1074 |#1|) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-1074 |#1|) #1#) $ $) NIL (|has| |#1| (-313)) ELT)) (-1615 (($ $ (-1074 |#1|)) NIL (|has| |#1| (-313)) ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) 177 T ELT)) (-3430 (($) NIL (|has| |#1| (-313)) CONST)) (-2386 (($ (-823)) 96 (|has| |#1| (-313)) ELT)) (-3915 (((-83) $) 146 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1654 (((-862 (-1023))) 57 T ELT)) (-2395 (($) 157 (|has| |#1| (-313)) ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) 119 (|has| |#1| (-313)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-3914 (((-736 (-823))) 90 T ELT) (((-823)) 91 T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-1752 (((-687) $) 160 (|has| |#1| (-313)) ELT) (((-3 (-687) #1#) $ $) 153 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3895 (((-105)) NIL T ELT)) (-3742 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3932 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-3168 (((-1074 |#1|)) 122 T ELT)) (-1661 (($) 158 (|has| |#1| (-313)) ELT)) (-1616 (($) 166 (|has| |#1| (-313)) ELT)) (-3207 (((-1168 |#1|) $) 77 T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (|has| |#1| (-313)) ELT)) (-3930 (((-765) $) 173 T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#1|) 100 T ELT)) (-2686 (($ $) NIL (|has| |#1| (-313)) ELT) (((-627 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3109 (((-687)) 154 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $)) 143 T ELT) (((-1168 $) (-823)) 98 T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3917 (((-83) $) NIL T ELT)) (-2644 (($) 67 T CONST)) (-2650 (($) 103 T CONST)) (-3912 (($ $) 107 (|has| |#1| (-313)) ELT) (($ $ (-687)) NIL (|has| |#1| (-313)) ELT)) (-2653 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3037 (((-83) $ $) 65 T ELT)) (-3933 (($ $ $) 175 T ELT) (($ $ |#1|) 176 T ELT)) (-3821 (($ $) 156 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 86 T ELT)) (** (($ $ (-823)) 179 T ELT) (($ $ (-687)) 180 T ELT) (($ $ (-478)) 178 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 102 T ELT) (($ $ $) 101 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 174 T ELT))) +(((-290 |#1| |#2|) (-13 (-276 |#1|) (-10 -7 (-15 -1654 ((-862 (-1023)))))) (-295) (-1074 |#1|)) (T -290)) +((-1654 (*1 *2) (-12 (-5 *2 (-862 (-1023))) (-5 *1 (-290 *3 *4)) (-4 *3 (-295)) (-14 *4 (-1074 *3))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-3913 (((-687)) NIL T ELT)) (-3314 ((|#1| $) NIL T ELT) (($ $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) NIL (|has| |#1| (-313)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) NIL (|has| |#1| (-313)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) NIL T ELT)) (-3139 ((|#1| $) NIL T ELT)) (-1779 (($ (-1168 |#1|)) NIL T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-313)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($) NIL (|has| |#1| (-313)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-2817 (($) NIL (|has| |#1| (-313)) ELT)) (-1667 (((-83) $) NIL (|has| |#1| (-313)) ELT)) (-1751 (($ $ (-687)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3707 (((-83) $) NIL T ELT)) (-3756 (((-823) $) NIL (|has| |#1| (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-1999 (($) NIL (|has| |#1| (-313)) ELT)) (-1997 (((-83) $) NIL (|has| |#1| (-313)) ELT)) (-3115 ((|#1| $) NIL T ELT) (($ $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-3429 (((-627 $) $) NIL (|has| |#1| (-313)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2000 (((-1074 |#1|) $) NIL T ELT) (((-1074 $) $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1996 (((-823) $) NIL (|has| |#1| (-313)) ELT)) (-1614 (((-1074 |#1|) $) NIL (|has| |#1| (-313)) ELT)) (-1613 (((-1074 |#1|) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-1074 |#1|) #1#) $ $) NIL (|has| |#1| (-313)) ELT)) (-1615 (($ $ (-1074 |#1|)) NIL (|has| |#1| (-313)) ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3430 (($) NIL (|has| |#1| (-313)) CONST)) (-2386 (($ (-823)) NIL (|has| |#1| (-313)) ELT)) (-3915 (((-83) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1654 (((-862 (-1023))) NIL T ELT)) (-2395 (($) NIL (|has| |#1| (-313)) ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) NIL (|has| |#1| (-313)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-3914 (((-736 (-823))) NIL T ELT) (((-823)) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-1752 (((-687) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-687) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3895 (((-105)) NIL T ELT)) (-3742 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3932 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-3168 (((-1074 |#1|)) NIL T ELT)) (-1661 (($) NIL (|has| |#1| (-313)) ELT)) (-1616 (($) NIL (|has| |#1| (-313)) ELT)) (-3207 (((-1168 |#1|) $) NIL T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (|has| |#1| (-313)) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2686 (($ $) NIL (|has| |#1| (-313)) ELT) (((-627 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $)) NIL T ELT) (((-1168 $) (-823)) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3917 (((-83) $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-3912 (($ $) NIL (|has| |#1| (-313)) ELT) (($ $ (-687)) NIL (|has| |#1| (-313)) ELT)) (-2653 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-291 |#1| |#2|) (-13 (-276 |#1|) (-10 -7 (-15 -1654 ((-862 (-1023)))))) (-295) (-823)) (T -291)) +((-1654 (*1 *2) (-12 (-5 *2 (-862 (-1023))) (-5 *1 (-291 *3 *4)) (-4 *3 (-295)) (-14 *4 (-823))))) +((-1664 (((-687) (-1168 (-578 (-2 (|:| -3386 |#1|) (|:| -2386 (-1023)))))) 61 T ELT)) (-1655 (((-862 (-1023)) (-1074 |#1|)) 112 T ELT)) (-1656 (((-1168 (-578 (-2 (|:| -3386 |#1|) (|:| -2386 (-1023))))) (-1074 |#1|)) 103 T ELT)) (-1657 (((-625 |#1|) (-1168 (-578 (-2 (|:| -3386 |#1|) (|:| -2386 (-1023)))))) 113 T ELT)) (-1658 (((-3 (-1168 (-578 (-2 (|:| -3386 |#1|) (|:| -2386 (-1023))))) "failed") (-823)) 13 T ELT)) (-1659 (((-3 (-1074 |#1|) (-1168 (-578 (-2 (|:| -3386 |#1|) (|:| -2386 (-1023)))))) (-823)) 18 T ELT))) +(((-292 |#1|) (-10 -7 (-15 -1655 ((-862 (-1023)) (-1074 |#1|))) (-15 -1656 ((-1168 (-578 (-2 (|:| -3386 |#1|) (|:| -2386 (-1023))))) (-1074 |#1|))) (-15 -1657 ((-625 |#1|) (-1168 (-578 (-2 (|:| -3386 |#1|) (|:| -2386 (-1023))))))) (-15 -1664 ((-687) (-1168 (-578 (-2 (|:| -3386 |#1|) (|:| -2386 (-1023))))))) (-15 -1658 ((-3 (-1168 (-578 (-2 (|:| -3386 |#1|) (|:| -2386 (-1023))))) "failed") (-823))) (-15 -1659 ((-3 (-1074 |#1|) (-1168 (-578 (-2 (|:| -3386 |#1|) (|:| -2386 (-1023)))))) (-823)))) (-295)) (T -292)) +((-1659 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-3 (-1074 *4) (-1168 (-578 (-2 (|:| -3386 *4) (|:| -2386 (-1023))))))) (-5 *1 (-292 *4)) (-4 *4 (-295)))) (-1658 (*1 *2 *3) (|partial| -12 (-5 *3 (-823)) (-5 *2 (-1168 (-578 (-2 (|:| -3386 *4) (|:| -2386 (-1023)))))) (-5 *1 (-292 *4)) (-4 *4 (-295)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-1168 (-578 (-2 (|:| -3386 *4) (|:| -2386 (-1023)))))) (-4 *4 (-295)) (-5 *2 (-687)) (-5 *1 (-292 *4)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-1168 (-578 (-2 (|:| -3386 *4) (|:| -2386 (-1023)))))) (-4 *4 (-295)) (-5 *2 (-625 *4)) (-5 *1 (-292 *4)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-1074 *4)) (-4 *4 (-295)) (-5 *2 (-1168 (-578 (-2 (|:| -3386 *4) (|:| -2386 (-1023)))))) (-5 *1 (-292 *4)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-1074 *4)) (-4 *4 (-295)) (-5 *2 (-862 (-1023))) (-5 *1 (-292 *4))))) +((-3930 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) +(((-293 |#1| |#2| |#3|) (-10 -7 (-15 -3930 (|#3| |#1|)) (-15 -3930 (|#1| |#3|))) (-276 |#2|) (-295) (-276 |#2|)) (T -293)) +((-3930 (*1 *2 *3) (-12 (-4 *4 (-295)) (-4 *2 (-276 *4)) (-5 *1 (-293 *2 *4 *3)) (-4 *3 (-276 *4)))) (-3930 (*1 *2 *3) (-12 (-4 *4 (-295)) (-4 *2 (-276 *4)) (-5 *1 (-293 *3 *4 *2)) (-4 *3 (-276 *4))))) +((-1667 (((-83) $) 65 T ELT)) (-3756 (((-736 (-823)) $) 26 T ELT) (((-823) $) 69 T ELT)) (-3429 (((-627 $) $) 21 T ELT)) (-3430 (($) 9 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 120 T ELT)) (-1752 (((-3 (-687) #1="failed") $ $) 98 T ELT) (((-687) $) 84 T ELT)) (-3742 (($ $) 8 T ELT) (($ $ (-687)) NIL T ELT)) (-1661 (($) 58 T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) 41 T ELT)) (-2686 (((-627 $) $) 50 T ELT) (($ $) 47 T ELT))) +(((-294 |#1|) (-10 -7 (-15 -3756 ((-823) |#1|)) (-15 -1752 ((-687) |#1|)) (-15 -1667 ((-83) |#1|)) (-15 -1661 (|#1|)) (-15 -2687 ((-3 (-1168 |#1|) #1="failed") (-625 |#1|))) (-15 -2686 (|#1| |#1|)) (-15 -3742 (|#1| |#1| (-687))) (-15 -3742 (|#1| |#1|)) (-15 -3430 (|#1|)) (-15 -3429 ((-627 |#1|) |#1|)) (-15 -1752 ((-3 (-687) #1#) |#1| |#1|)) (-15 -3756 ((-736 (-823)) |#1|)) (-15 -2686 ((-627 |#1|) |#1|)) (-15 -2692 ((-1074 |#1|) (-1074 |#1|) (-1074 |#1|)))) (-295)) (T -294)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) 110 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3759 (($ $) 88 T ELT)) (-3955 (((-341 $) $) 87 T ELT)) (-1595 (((-83) $ $) 72 T ELT)) (-3119 (((-687)) 120 T ELT)) (-3708 (($) 22 T CONST)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) 104 T ELT)) (-2548 (($ $ $) 68 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2978 (($) 123 T ELT)) (-2547 (($ $ $) 69 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 63 T ELT)) (-2817 (($) 108 T ELT)) (-1667 (((-83) $) 107 T ELT)) (-1751 (($ $) 94 T ELT) (($ $ (-687)) 93 T ELT)) (-3707 (((-83) $) 86 T ELT)) (-3756 (((-736 (-823)) $) 96 T ELT) (((-823) $) 105 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3429 (((-627 $) $) 119 T ELT)) (-1592 (((-3 (-578 $) #1="failed") (-578 $) $) 65 T ELT)) (-1996 (((-823) $) 122 T ELT)) (-1878 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 85 T ELT)) (-3430 (($) 118 T CONST)) (-2386 (($ (-823)) 121 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 55 T ELT)) (-3127 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) 111 T ELT)) (-3716 (((-341 $) $) 89 T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-1594 (((-687) $) 71 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 70 T ELT)) (-1752 (((-3 (-687) "failed") $ $) 95 T ELT) (((-687) $) 106 T ELT)) (-3742 (($ $) 117 T ELT) (($ $ (-687)) 115 T ELT)) (-1661 (($) 109 T ELT)) (-2687 (((-3 (-1168 $) "failed") (-625 $)) 112 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT)) (-2686 (((-627 $) $) 97 T ELT) (($ $) 113 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $) 116 T ELT) (($ $ (-687)) 114 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ $) 80 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT))) +(((-295) (-111)) (T -295)) +((-2686 (*1 *1 *1) (-4 *1 (-295))) (-2687 (*1 *2 *3) (|partial| -12 (-5 *3 (-625 *1)) (-4 *1 (-295)) (-5 *2 (-1168 *1)))) (-1663 (*1 *2) (-12 (-4 *1 (-295)) (-5 *2 (-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))))) (-1662 (*1 *2 *3) (-12 (-4 *1 (-295)) (-5 *3 (-478)) (-5 *2 (-1091 (-823) (-687))))) (-1661 (*1 *1) (-4 *1 (-295))) (-2817 (*1 *1) (-4 *1 (-295))) (-1667 (*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-83)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-687)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-823)))) (-1660 (*1 *2) (-12 (-4 *1 (-295)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-338) (-313) (-1055) (-188) (-10 -8 (-15 -2686 ($ $)) (-15 -2687 ((-3 (-1168 $) "failed") (-625 $))) (-15 -1663 ((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478)))))) (-15 -1662 ((-1091 (-823) (-687)) (-478))) (-15 -1661 ($)) (-15 -2817 ($)) (-15 -1667 ((-83) $)) (-15 -1752 ((-687) $)) (-15 -3756 ((-823) $)) (-15 -1660 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 $ $) . T) ((-102) . T) ((-116) . T) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-184 $) . T) ((-188) . T) ((-187) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-338) . T) ((-313) . T) ((-385) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 $) . T) ((-649 (-343 (-478))) . T) ((-649 $) . T) ((-658) . T) ((-825) . T) ((-956 (-343 (-478))) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1055) . T) ((-1118) . T) ((-1123) . T)) +((-3903 (((-2 (|:| -1998 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) |#1|) 55 T ELT)) (-3902 (((-2 (|:| -1998 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|)))) 53 T ELT))) +(((-296 |#1| |#2| |#3|) (-10 -7 (-15 -3902 ((-2 (|:| -1998 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))))) (-15 -3903 ((-2 (|:| -1998 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) |#1|))) (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $)))) (-1144 |#1|) (-346 |#1| |#2|)) (T -296)) +((-3903 (*1 *2 *3) (-12 (-4 *3 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) (-4 *4 (-1144 *3)) (-5 *2 (-2 (|:| -1998 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) (-5 *1 (-296 *3 *4 *5)) (-4 *5 (-346 *3 *4)))) (-3902 (*1 *2) (-12 (-4 *3 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) (-4 *4 (-1144 *3)) (-5 *2 (-2 (|:| -1998 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) (-5 *1 (-296 *3 *4 *5)) (-4 *5 (-346 *3 *4))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-3913 (((-687)) NIL T ELT)) (-3314 (((-810 |#1|) $) NIL T ELT) (($ $ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1664 (((-687)) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-810 |#1|) #1#) $) NIL T ELT)) (-3139 (((-810 |#1|) $) NIL T ELT)) (-1779 (($ (-1168 (-810 |#1|))) NIL T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-2817 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1667 (((-83) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1751 (($ $ (-687)) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT) (($ $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-3707 (((-83) $) NIL T ELT)) (-3756 (((-823) $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-1999 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1997 (((-83) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3115 (((-810 |#1|) $) NIL T ELT) (($ $ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3429 (((-627 $) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2000 (((-1074 (-810 |#1|)) $) NIL T ELT) (((-1074 $) $ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1996 (((-823) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1614 (((-1074 (-810 |#1|)) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1613 (((-1074 (-810 |#1|)) $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-3 (-1074 (-810 |#1|)) #1#) $ $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1615 (($ $ (-1074 (-810 |#1|))) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3430 (($) NIL (|has| (-810 |#1|) (-313)) CONST)) (-2386 (($ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3915 (((-83) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1666 (((-1168 (-578 (-2 (|:| -3386 (-810 |#1|)) (|:| -2386 (-1023)))))) NIL T ELT)) (-1665 (((-625 (-810 |#1|))) NIL T ELT)) (-2395 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-3914 (((-736 (-823))) NIL T ELT) (((-823)) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-1752 (((-687) $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-3 (-687) #1#) $ $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-3895 (((-105)) NIL T ELT)) (-3742 (($ $ (-687)) NIL (|has| (-810 |#1|) (-313)) ELT) (($ $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3932 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-3168 (((-1074 (-810 |#1|))) NIL T ELT)) (-1661 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1616 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3207 (((-1168 (-810 |#1|)) $) NIL T ELT) (((-625 (-810 |#1|)) (-1168 $)) NIL T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-810 |#1|)) NIL T ELT)) (-2686 (($ $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-627 $) $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $)) NIL T ELT) (((-1168 $) (-823)) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3917 (((-83) $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-3912 (($ $) NIL (|has| (-810 |#1|) (-313)) ELT) (($ $ (-687)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2653 (($ $ (-687)) NIL (|has| (-810 |#1|) (-313)) ELT) (($ $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ $) NIL T ELT) (($ $ (-810 |#1|)) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ (-810 |#1|)) NIL T ELT) (($ (-810 |#1|) $) NIL T ELT))) +(((-297 |#1| |#2|) (-13 (-276 (-810 |#1|)) (-10 -7 (-15 -1666 ((-1168 (-578 (-2 (|:| -3386 (-810 |#1|)) (|:| -2386 (-1023))))))) (-15 -1665 ((-625 (-810 |#1|)))) (-15 -1664 ((-687))))) (-823) (-823)) (T -297)) +((-1666 (*1 *2) (-12 (-5 *2 (-1168 (-578 (-2 (|:| -3386 (-810 *3)) (|:| -2386 (-1023)))))) (-5 *1 (-297 *3 *4)) (-14 *3 (-823)) (-14 *4 (-823)))) (-1665 (*1 *2) (-12 (-5 *2 (-625 (-810 *3))) (-5 *1 (-297 *3 *4)) (-14 *3 (-823)) (-14 *4 (-823)))) (-1664 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-297 *3 *4)) (-14 *3 (-823)) (-14 *4 (-823))))) +((-2552 (((-83) $ $) 73 T ELT)) (-3171 (((-83) $) 88 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-3913 (((-687)) NIL T ELT)) (-3314 ((|#1| $) 106 T ELT) (($ $ (-823)) 104 (|has| |#1| (-313)) ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) 170 (|has| |#1| (-313)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1664 (((-687)) 103 T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) 187 (|has| |#1| (-313)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) 127 T ELT)) (-3139 ((|#1| $) 105 T ELT)) (-1779 (($ (-1168 |#1|)) 71 T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-313)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($) 182 (|has| |#1| (-313)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-2817 (($) 171 (|has| |#1| (-313)) ELT)) (-1667 (((-83) $) NIL (|has| |#1| (-313)) ELT)) (-1751 (($ $ (-687)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3707 (((-83) $) NIL T ELT)) (-3756 (((-823) $) NIL (|has| |#1| (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-1999 (($) 113 (|has| |#1| (-313)) ELT)) (-1997 (((-83) $) 200 (|has| |#1| (-313)) ELT)) (-3115 ((|#1| $) 108 T ELT) (($ $ (-823)) 107 (|has| |#1| (-313)) ELT)) (-3429 (((-627 $) $) NIL (|has| |#1| (-313)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2000 (((-1074 |#1|) $) 214 T ELT) (((-1074 $) $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1996 (((-823) $) 148 (|has| |#1| (-313)) ELT)) (-1614 (((-1074 |#1|) $) 87 (|has| |#1| (-313)) ELT)) (-1613 (((-1074 |#1|) $) 84 (|has| |#1| (-313)) ELT) (((-3 (-1074 |#1|) #1#) $ $) 96 (|has| |#1| (-313)) ELT)) (-1615 (($ $ (-1074 |#1|)) 83 (|has| |#1| (-313)) ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) 218 T ELT)) (-3430 (($) NIL (|has| |#1| (-313)) CONST)) (-2386 (($ (-823)) 150 (|has| |#1| (-313)) ELT)) (-3915 (((-83) $) 123 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1666 (((-1168 (-578 (-2 (|:| -3386 |#1|) (|:| -2386 (-1023)))))) 97 T ELT)) (-1665 (((-625 |#1|)) 101 T ELT)) (-2395 (($) 110 (|has| |#1| (-313)) ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) 173 (|has| |#1| (-313)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-3914 (((-736 (-823))) NIL T ELT) (((-823)) 174 T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-1752 (((-687) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-687) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3895 (((-105)) NIL T ELT)) (-3742 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3932 (((-736 (-823)) $) NIL T ELT) (((-823) $) 75 T ELT)) (-3168 (((-1074 |#1|)) 175 T ELT)) (-1661 (($) 147 (|has| |#1| (-313)) ELT)) (-1616 (($) NIL (|has| |#1| (-313)) ELT)) (-3207 (((-1168 |#1|) $) 121 T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (|has| |#1| (-313)) ELT)) (-3930 (((-765) $) 140 T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#1|) 70 T ELT)) (-2686 (($ $) NIL (|has| |#1| (-313)) ELT) (((-627 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3109 (((-687)) 180 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $)) 197 T ELT) (((-1168 $) (-823)) 116 T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3917 (((-83) $) NIL T ELT)) (-2644 (($) 186 T CONST)) (-2650 (($) 161 T CONST)) (-3912 (($ $) 122 (|has| |#1| (-313)) ELT) (($ $ (-687)) 114 (|has| |#1| (-313)) ELT)) (-2653 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3037 (((-83) $ $) 208 T ELT)) (-3933 (($ $ $) 119 T ELT) (($ $ |#1|) 120 T ELT)) (-3821 (($ $) 202 T ELT) (($ $ $) 206 T ELT)) (-3823 (($ $ $) 204 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 153 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 211 T ELT) (($ $ $) 164 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 118 T ELT))) +(((-298 |#1| |#2|) (-13 (-276 |#1|) (-10 -7 (-15 -1666 ((-1168 (-578 (-2 (|:| -3386 |#1|) (|:| -2386 (-1023))))))) (-15 -1665 ((-625 |#1|))) (-15 -1664 ((-687))))) (-295) (-3 (-1074 |#1|) (-1168 (-578 (-2 (|:| -3386 |#1|) (|:| -2386 (-1023))))))) (T -298)) +((-1666 (*1 *2) (-12 (-5 *2 (-1168 (-578 (-2 (|:| -3386 *3) (|:| -2386 (-1023)))))) (-5 *1 (-298 *3 *4)) (-4 *3 (-295)) (-14 *4 (-3 (-1074 *3) *2)))) (-1665 (*1 *2) (-12 (-5 *2 (-625 *3)) (-5 *1 (-298 *3 *4)) (-4 *3 (-295)) (-14 *4 (-3 (-1074 *3) (-1168 (-578 (-2 (|:| -3386 *3) (|:| -2386 (-1023))))))))) (-1664 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-298 *3 *4)) (-4 *3 (-295)) (-14 *4 (-3 (-1074 *3) (-1168 (-578 (-2 (|:| -3386 *3) (|:| -2386 (-1023)))))))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-3913 (((-687)) NIL T ELT)) (-3314 ((|#1| $) NIL T ELT) (($ $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) NIL (|has| |#1| (-313)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1664 (((-687)) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) NIL (|has| |#1| (-313)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) NIL T ELT)) (-3139 ((|#1| $) NIL T ELT)) (-1779 (($ (-1168 |#1|)) NIL T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-313)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($) NIL (|has| |#1| (-313)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-2817 (($) NIL (|has| |#1| (-313)) ELT)) (-1667 (((-83) $) NIL (|has| |#1| (-313)) ELT)) (-1751 (($ $ (-687)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3707 (((-83) $) NIL T ELT)) (-3756 (((-823) $) NIL (|has| |#1| (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-1999 (($) NIL (|has| |#1| (-313)) ELT)) (-1997 (((-83) $) NIL (|has| |#1| (-313)) ELT)) (-3115 ((|#1| $) NIL T ELT) (($ $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-3429 (((-627 $) $) NIL (|has| |#1| (-313)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2000 (((-1074 |#1|) $) NIL T ELT) (((-1074 $) $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1996 (((-823) $) NIL (|has| |#1| (-313)) ELT)) (-1614 (((-1074 |#1|) $) NIL (|has| |#1| (-313)) ELT)) (-1613 (((-1074 |#1|) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-1074 |#1|) #1#) $ $) NIL (|has| |#1| (-313)) ELT)) (-1615 (($ $ (-1074 |#1|)) NIL (|has| |#1| (-313)) ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3430 (($) NIL (|has| |#1| (-313)) CONST)) (-2386 (($ (-823)) NIL (|has| |#1| (-313)) ELT)) (-3915 (((-83) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1666 (((-1168 (-578 (-2 (|:| -3386 |#1|) (|:| -2386 (-1023)))))) NIL T ELT)) (-1665 (((-625 |#1|)) NIL T ELT)) (-2395 (($) NIL (|has| |#1| (-313)) ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) NIL (|has| |#1| (-313)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-3914 (((-736 (-823))) NIL T ELT) (((-823)) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-1752 (((-687) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-687) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3895 (((-105)) NIL T ELT)) (-3742 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3932 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-3168 (((-1074 |#1|)) NIL T ELT)) (-1661 (($) NIL (|has| |#1| (-313)) ELT)) (-1616 (($) NIL (|has| |#1| (-313)) ELT)) (-3207 (((-1168 |#1|) $) NIL T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (|has| |#1| (-313)) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2686 (($ $) NIL (|has| |#1| (-313)) ELT) (((-627 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $)) NIL T ELT) (((-1168 $) (-823)) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3917 (((-83) $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-3912 (($ $) NIL (|has| |#1| (-313)) ELT) (($ $ (-687)) NIL (|has| |#1| (-313)) ELT)) (-2653 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-299 |#1| |#2|) (-13 (-276 |#1|) (-10 -7 (-15 -1666 ((-1168 (-578 (-2 (|:| -3386 |#1|) (|:| -2386 (-1023))))))) (-15 -1665 ((-625 |#1|))) (-15 -1664 ((-687))))) (-295) (-823)) (T -299)) +((-1666 (*1 *2) (-12 (-5 *2 (-1168 (-578 (-2 (|:| -3386 *3) (|:| -2386 (-1023)))))) (-5 *1 (-299 *3 *4)) (-4 *3 (-295)) (-14 *4 (-823)))) (-1665 (*1 *2) (-12 (-5 *2 (-625 *3)) (-5 *1 (-299 *3 *4)) (-4 *3 (-295)) (-14 *4 (-823)))) (-1664 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-299 *3 *4)) (-4 *3 (-295)) (-14 *4 (-823))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-3913 (((-687)) NIL T ELT)) (-3314 ((|#1| $) NIL T ELT) (($ $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) 129 (|has| |#1| (-313)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) 155 (|has| |#1| (-313)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) 103 T ELT)) (-3139 ((|#1| $) 100 T ELT)) (-1779 (($ (-1168 |#1|)) 95 T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-313)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($) 92 (|has| |#1| (-313)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-2817 (($) 51 (|has| |#1| (-313)) ELT)) (-1667 (((-83) $) NIL (|has| |#1| (-313)) ELT)) (-1751 (($ $ (-687)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3707 (((-83) $) NIL T ELT)) (-3756 (((-823) $) NIL (|has| |#1| (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-1999 (($) 130 (|has| |#1| (-313)) ELT)) (-1997 (((-83) $) 84 (|has| |#1| (-313)) ELT)) (-3115 ((|#1| $) 47 T ELT) (($ $ (-823)) 52 (|has| |#1| (-313)) ELT)) (-3429 (((-627 $) $) NIL (|has| |#1| (-313)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2000 (((-1074 |#1|) $) 75 T ELT) (((-1074 $) $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1996 (((-823) $) 107 (|has| |#1| (-313)) ELT)) (-1614 (((-1074 |#1|) $) NIL (|has| |#1| (-313)) ELT)) (-1613 (((-1074 |#1|) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-1074 |#1|) #1#) $ $) NIL (|has| |#1| (-313)) ELT)) (-1615 (($ $ (-1074 |#1|)) NIL (|has| |#1| (-313)) ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3430 (($) NIL (|has| |#1| (-313)) CONST)) (-2386 (($ (-823)) 105 (|has| |#1| (-313)) ELT)) (-3915 (((-83) $) 157 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2395 (($) 44 (|has| |#1| (-313)) ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) 124 (|has| |#1| (-313)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-3914 (((-736 (-823))) NIL T ELT) (((-823)) 154 T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-1752 (((-687) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-687) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3895 (((-105)) NIL T ELT)) (-3742 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3932 (((-736 (-823)) $) NIL T ELT) (((-823) $) 67 T ELT)) (-3168 (((-1074 |#1|)) 98 T ELT)) (-1661 (($) 135 (|has| |#1| (-313)) ELT)) (-1616 (($) NIL (|has| |#1| (-313)) ELT)) (-3207 (((-1168 |#1|) $) 63 T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (|has| |#1| (-313)) ELT)) (-3930 (((-765) $) 153 T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#1|) 97 T ELT)) (-2686 (($ $) NIL (|has| |#1| (-313)) ELT) (((-627 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3109 (((-687)) 159 T CONST)) (-1253 (((-83) $ $) 161 T ELT)) (-1998 (((-1168 $)) 119 T ELT) (((-1168 $) (-823)) 58 T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3917 (((-83) $) NIL T ELT)) (-2644 (($) 121 T CONST)) (-2650 (($) 40 T CONST)) (-3912 (($ $) 78 (|has| |#1| (-313)) ELT) (($ $ (-687)) NIL (|has| |#1| (-313)) ELT)) (-2653 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3037 (((-83) $ $) 117 T ELT)) (-3933 (($ $ $) 109 T ELT) (($ $ |#1|) 110 T ELT)) (-3821 (($ $) 90 T ELT) (($ $ $) 115 T ELT)) (-3823 (($ $ $) 113 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 53 T ELT) (($ $ (-478)) 138 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 88 T ELT) (($ $ $) 65 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 86 T ELT))) +(((-300 |#1| |#2|) (-276 |#1|) (-295) (-1074 |#1|)) (T -300)) +NIL +((-1682 (((-862 (-1074 |#1|)) (-1074 |#1|)) 49 T ELT)) (-2978 (((-1074 |#1|) (-823) (-823)) 159 T ELT) (((-1074 |#1|) (-823)) 155 T ELT)) (-1667 (((-83) (-1074 |#1|)) 110 T ELT)) (-1669 (((-823) (-823)) 85 T ELT)) (-1670 (((-823) (-823)) 94 T ELT)) (-1668 (((-823) (-823)) 83 T ELT)) (-1997 (((-83) (-1074 |#1|)) 114 T ELT)) (-1677 (((-3 (-1074 |#1|) #1="failed") (-1074 |#1|)) 139 T ELT)) (-1680 (((-3 (-1074 |#1|) #1#) (-1074 |#1|)) 144 T ELT)) (-1679 (((-3 (-1074 |#1|) #1#) (-1074 |#1|)) 143 T ELT)) (-1678 (((-3 (-1074 |#1|) #1#) (-1074 |#1|)) 142 T ELT)) (-1676 (((-3 (-1074 |#1|) #1#) (-1074 |#1|)) 134 T ELT)) (-1681 (((-1074 |#1|) (-1074 |#1|)) 71 T ELT)) (-1672 (((-1074 |#1|) (-823)) 149 T ELT)) (-1675 (((-1074 |#1|) (-823)) 152 T ELT)) (-1674 (((-1074 |#1|) (-823)) 151 T ELT)) (-1673 (((-1074 |#1|) (-823)) 150 T ELT)) (-1671 (((-1074 |#1|) (-823)) 147 T ELT))) +(((-301 |#1|) (-10 -7 (-15 -1667 ((-83) (-1074 |#1|))) (-15 -1997 ((-83) (-1074 |#1|))) (-15 -1668 ((-823) (-823))) (-15 -1669 ((-823) (-823))) (-15 -1670 ((-823) (-823))) (-15 -1671 ((-1074 |#1|) (-823))) (-15 -1672 ((-1074 |#1|) (-823))) (-15 -1673 ((-1074 |#1|) (-823))) (-15 -1674 ((-1074 |#1|) (-823))) (-15 -1675 ((-1074 |#1|) (-823))) (-15 -1676 ((-3 (-1074 |#1|) #1="failed") (-1074 |#1|))) (-15 -1677 ((-3 (-1074 |#1|) #1#) (-1074 |#1|))) (-15 -1678 ((-3 (-1074 |#1|) #1#) (-1074 |#1|))) (-15 -1679 ((-3 (-1074 |#1|) #1#) (-1074 |#1|))) (-15 -1680 ((-3 (-1074 |#1|) #1#) (-1074 |#1|))) (-15 -2978 ((-1074 |#1|) (-823))) (-15 -2978 ((-1074 |#1|) (-823) (-823))) (-15 -1681 ((-1074 |#1|) (-1074 |#1|))) (-15 -1682 ((-862 (-1074 |#1|)) (-1074 |#1|)))) (-295)) (T -301)) +((-1682 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-862 (-1074 *4))) (-5 *1 (-301 *4)) (-5 *3 (-1074 *4)))) (-1681 (*1 *2 *2) (-12 (-5 *2 (-1074 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3)))) (-2978 (*1 *2 *3 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1074 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-2978 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1074 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-1680 (*1 *2 *2) (|partial| -12 (-5 *2 (-1074 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3)))) (-1679 (*1 *2 *2) (|partial| -12 (-5 *2 (-1074 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3)))) (-1678 (*1 *2 *2) (|partial| -12 (-5 *2 (-1074 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3)))) (-1677 (*1 *2 *2) (|partial| -12 (-5 *2 (-1074 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3)))) (-1676 (*1 *2 *2) (|partial| -12 (-5 *2 (-1074 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1074 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1074 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-1673 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1074 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1074 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1074 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-1670 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-301 *3)) (-4 *3 (-295)))) (-1669 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-301 *3)) (-4 *3 (-295)))) (-1668 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-301 *3)) (-4 *3 (-295)))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-1074 *4)) (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-301 *4)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-1074 *4)) (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-301 *4))))) +((-1683 ((|#1| (-1074 |#2|)) 60 T ELT))) +(((-302 |#1| |#2|) (-10 -7 (-15 -1683 (|#1| (-1074 |#2|)))) (-13 (-338) (-10 -7 (-15 -3930 (|#1| |#2|)) (-15 -1996 ((-823) |#1|)) (-15 -1998 ((-1168 |#1|) (-823))) (-15 -3912 (|#1| |#1|)))) (-295)) (T -302)) +((-1683 (*1 *2 *3) (-12 (-5 *3 (-1074 *4)) (-4 *4 (-295)) (-4 *2 (-13 (-338) (-10 -7 (-15 -3930 (*2 *4)) (-15 -1996 ((-823) *2)) (-15 -1998 ((-1168 *2) (-823))) (-15 -3912 (*2 *2))))) (-5 *1 (-302 *2 *4))))) +((-2688 (((-3 (-578 |#3|) "failed") (-578 |#3|) |#3|) 40 T ELT))) +(((-303 |#1| |#2| |#3|) (-10 -7 (-15 -2688 ((-3 (-578 |#3|) "failed") (-578 |#3|) |#3|))) (-295) (-1144 |#1|) (-1144 |#2|)) (T -303)) +((-2688 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-295)) (-5 *1 (-303 *4 *5 *3))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-3913 (((-687)) NIL T ELT)) (-3314 ((|#1| $) NIL T ELT) (($ $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) NIL (|has| |#1| (-313)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) NIL (|has| |#1| (-313)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) NIL T ELT)) (-3139 ((|#1| $) NIL T ELT)) (-1779 (($ (-1168 |#1|)) NIL T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-313)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($) NIL (|has| |#1| (-313)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-2817 (($) NIL (|has| |#1| (-313)) ELT)) (-1667 (((-83) $) NIL (|has| |#1| (-313)) ELT)) (-1751 (($ $ (-687)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3707 (((-83) $) NIL T ELT)) (-3756 (((-823) $) NIL (|has| |#1| (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-1999 (($) NIL (|has| |#1| (-313)) ELT)) (-1997 (((-83) $) NIL (|has| |#1| (-313)) ELT)) (-3115 ((|#1| $) NIL T ELT) (($ $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-3429 (((-627 $) $) NIL (|has| |#1| (-313)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2000 (((-1074 |#1|) $) NIL T ELT) (((-1074 $) $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1996 (((-823) $) NIL (|has| |#1| (-313)) ELT)) (-1614 (((-1074 |#1|) $) NIL (|has| |#1| (-313)) ELT)) (-1613 (((-1074 |#1|) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-1074 |#1|) #1#) $ $) NIL (|has| |#1| (-313)) ELT)) (-1615 (($ $ (-1074 |#1|)) NIL (|has| |#1| (-313)) ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3430 (($) NIL (|has| |#1| (-313)) CONST)) (-2386 (($ (-823)) NIL (|has| |#1| (-313)) ELT)) (-3915 (((-83) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2395 (($) NIL (|has| |#1| (-313)) ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) NIL (|has| |#1| (-313)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-3914 (((-736 (-823))) NIL T ELT) (((-823)) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-1752 (((-687) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-687) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3895 (((-105)) NIL T ELT)) (-3742 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3932 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-3168 (((-1074 |#1|)) NIL T ELT)) (-1661 (($) NIL (|has| |#1| (-313)) ELT)) (-1616 (($) NIL (|has| |#1| (-313)) ELT)) (-3207 (((-1168 |#1|) $) NIL T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (|has| |#1| (-313)) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2686 (($ $) NIL (|has| |#1| (-313)) ELT) (((-627 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $)) NIL T ELT) (((-1168 $) (-823)) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3917 (((-83) $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-3912 (($ $) NIL (|has| |#1| (-313)) ELT) (($ $ (-687)) NIL (|has| |#1| (-313)) ELT)) (-2653 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-304 |#1| |#2|) (-276 |#1|) (-295) (-823)) (T -304)) +NIL +((-2235 (((-83) (-578 (-850 |#1|))) 41 T ELT)) (-2237 (((-578 (-850 |#1|)) (-578 (-850 |#1|))) 53 T ELT)) (-2236 (((-3 (-578 (-850 |#1|)) "failed") (-578 (-850 |#1|))) 48 T ELT))) +(((-305 |#1| |#2|) (-10 -7 (-15 -2235 ((-83) (-578 (-850 |#1|)))) (-15 -2236 ((-3 (-578 (-850 |#1|)) "failed") (-578 (-850 |#1|)))) (-15 -2237 ((-578 (-850 |#1|)) (-578 (-850 |#1|))))) (-385) (-578 (-1079))) (T -305)) +((-2237 (*1 *2 *2) (-12 (-5 *2 (-578 (-850 *3))) (-4 *3 (-385)) (-5 *1 (-305 *3 *4)) (-14 *4 (-578 (-1079))))) (-2236 (*1 *2 *2) (|partial| -12 (-5 *2 (-578 (-850 *3))) (-4 *3 (-385)) (-5 *1 (-305 *3 *4)) (-14 *4 (-578 (-1079))))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-385)) (-5 *2 (-83)) (-5 *1 (-305 *4 *5)) (-14 *5 (-578 (-1079)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3119 (((-687) $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3139 ((|#1| $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2396 (((-83) $) 17 T ELT)) (-2285 ((|#1| $ (-478)) NIL T ELT)) (-2286 (((-478) $ (-478)) NIL T ELT)) (-2276 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2277 (($ (-1 (-478) (-478)) $) 26 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) 28 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1766 (((-578 (-2 (|:| |gen| |#1|) (|:| -3927 (-478)))) $) 30 T ELT)) (-2993 (($ $ $) NIL T ELT)) (-2419 (($ $ $) NIL T ELT)) (-3930 (((-765) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2650 (($) 7 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT) (($ |#1| (-478)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) +(((-306 |#1|) (-13 (-406) (-943 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-478))) (-15 -3119 ((-687) $)) (-15 -2286 ((-478) $ (-478))) (-15 -2285 (|#1| $ (-478))) (-15 -2277 ($ (-1 (-478) (-478)) $)) (-15 -2276 ($ (-1 |#1| |#1|) $)) (-15 -1766 ((-578 (-2 (|:| |gen| |#1|) (|:| -3927 (-478)))) $)))) (-1005)) (T -306)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1005)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1005)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-306 *2)) (-4 *2 (-1005)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-306 *3)) (-4 *3 (-1005)))) (-2286 (*1 *2 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-306 *3)) (-4 *3 (-1005)))) (-2285 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *1 (-306 *2)) (-4 *2 (-1005)))) (-2277 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-478) (-478))) (-5 *1 (-306 *3)) (-4 *3 (-1005)))) (-2276 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1005)) (-5 *1 (-306 *3)))) (-1766 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3927 (-478))))) (-5 *1 (-306 *3)) (-4 *3 (-1005))))) +((-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 13 T ELT)) (-2049 (($ $) 14 T ELT)) (-3955 (((-341 $) $) 31 T ELT)) (-3707 (((-83) $) 27 T ELT)) (-2468 (($ $) 19 T ELT)) (-3127 (($ $ $) 22 T ELT) (($ (-578 $)) NIL T ELT)) (-3716 (((-341 $) $) 32 T ELT)) (-3450 (((-3 $ "failed") $ $) 21 T ELT)) (-1594 (((-687) $) 25 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 36 T ELT)) (-2048 (((-83) $ $) 16 T ELT)) (-3933 (($ $ $) 34 T ELT))) +(((-307 |#1|) (-10 -7 (-15 -3933 (|#1| |#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -3707 ((-83) |#1|)) (-15 -3955 ((-341 |#1|) |#1|)) (-15 -3716 ((-341 |#1|) |#1|)) (-15 -2863 ((-2 (|:| -1960 |#1|) (|:| -2886 |#1|)) |#1| |#1|)) (-15 -1594 ((-687) |#1|)) (-15 -3127 (|#1| (-578 |#1|))) (-15 -3127 (|#1| |#1| |#1|)) (-15 -2048 ((-83) |#1| |#1|)) (-15 -2049 (|#1| |#1|)) (-15 -2050 ((-2 (|:| -1759 |#1|) (|:| -3966 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3450 ((-3 |#1| "failed") |#1| |#1|))) (-308)) (T -307)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3759 (($ $) 88 T ELT)) (-3955 (((-341 $) $) 87 T ELT)) (-1595 (((-83) $ $) 72 T ELT)) (-3708 (($) 22 T CONST)) (-2548 (($ $ $) 68 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2547 (($ $ $) 69 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 63 T ELT)) (-3707 (((-83) $) 86 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-1592 (((-3 (-578 $) #1="failed") (-578 $) $) 65 T ELT)) (-1878 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 85 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 55 T ELT)) (-3127 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3716 (((-341 $) $) 89 T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-1594 (((-687) $) 71 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 70 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ $) 80 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT))) +(((-308) (-111)) (T -308)) +((-3933 (*1 *1 *1 *1) (-4 *1 (-308)))) +(-13 (-254) (-1123) (-198) (-10 -8 (-15 -3933 ($ $ $)) (-6 -3977) (-6 -3971))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-385) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 $) . T) ((-649 (-343 (-478))) . T) ((-649 $) . T) ((-658) . T) ((-825) . T) ((-956 (-343 (-478))) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T) ((-1123) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-1684 ((|#1| $ |#1|) 35 T ELT)) (-1688 (($ $ (-1062)) 23 T ELT)) (-3603 (((-3 |#1| "failed") $) 34 T ELT)) (-1685 ((|#1| $) 32 T ELT)) (-1689 (($ (-331)) 22 T ELT) (($ (-331) (-1062)) 21 T ELT)) (-3526 (((-331) $) 25 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1686 (((-1062) $) 26 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 20 T ELT)) (-1687 (($ $) 24 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 19 T ELT))) +(((-309 |#1|) (-13 (-310 (-331) |#1|) (-10 -8 (-15 -3603 ((-3 |#1| "failed") $)))) (-1005)) (T -309)) +((-3603 (*1 *2 *1) (|partial| -12 (-5 *1 (-309 *2)) (-4 *2 (-1005))))) +((-2552 (((-83) $ $) 7 T ELT)) (-1684 ((|#2| $ |#2|) 17 T ELT)) (-1688 (($ $ (-1062)) 22 T ELT)) (-1685 ((|#2| $) 18 T ELT)) (-1689 (($ |#1|) 24 T ELT) (($ |#1| (-1062)) 23 T ELT)) (-3526 ((|#1| $) 20 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-1686 (((-1062) $) 19 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1687 (($ $) 21 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(((-310 |#1| |#2|) (-111) (-1005) (-1005)) (T -310)) +((-1689 (*1 *1 *2) (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))) (-1689 (*1 *1 *2 *3) (-12 (-5 *3 (-1062)) (-4 *1 (-310 *2 *4)) (-4 *2 (-1005)) (-4 *4 (-1005)))) (-1688 (*1 *1 *1 *2) (-12 (-5 *2 (-1062)) (-4 *1 (-310 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) (-1687 (*1 *1 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *3 (-1005)) (-4 *2 (-1005)))) (-1686 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-5 *2 (-1062)))) (-1685 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005)))) (-1684 (*1 *2 *1 *2) (-12 (-4 *1 (-310 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005))))) +(-13 (-1005) (-10 -8 (-15 -1689 ($ |t#1|)) (-15 -1689 ($ |t#1| (-1062))) (-15 -1688 ($ $ (-1062))) (-15 -1687 ($ $)) (-15 -3526 (|t#1| $)) (-15 -1686 ((-1062) $)) (-15 -1685 (|t#2| $)) (-15 -1684 (|t#2| $ |t#2|)))) +(((-72) . T) ((-547 (-765)) . T) ((-1005) . T) ((-1118) . T)) +((-3206 (((-1168 (-625 |#2|)) (-1168 $)) 67 T ELT)) (-1775 (((-625 |#2|) (-1168 $)) 139 T ELT)) (-1714 ((|#2| $) 36 T ELT)) (-1773 (((-625 |#2|) $ (-1168 $)) 142 T ELT)) (-2390 (((-3 $ #1="failed") $) 89 T ELT)) (-1712 ((|#2| $) 39 T ELT)) (-1692 (((-1074 |#2|) $) 98 T ELT)) (-1777 ((|#2| (-1168 $)) 122 T ELT)) (-1710 (((-1074 |#2|) $) 32 T ELT)) (-1704 (((-83)) 116 T ELT)) (-1779 (($ (-1168 |#2|) (-1168 $)) 132 T ELT)) (-3451 (((-3 $ #1#) $) 93 T ELT)) (-1697 (((-83)) 111 T ELT)) (-1695 (((-83)) 106 T ELT)) (-1699 (((-83)) 58 T ELT)) (-1776 (((-625 |#2|) (-1168 $)) 137 T ELT)) (-1715 ((|#2| $) 35 T ELT)) (-1774 (((-625 |#2|) $ (-1168 $)) 141 T ELT)) (-2391 (((-3 $ #1#) $) 87 T ELT)) (-1713 ((|#2| $) 38 T ELT)) (-1693 (((-1074 |#2|) $) 97 T ELT)) (-1778 ((|#2| (-1168 $)) 120 T ELT)) (-1711 (((-1074 |#2|) $) 30 T ELT)) (-1705 (((-83)) 115 T ELT)) (-1696 (((-83)) 108 T ELT)) (-1698 (((-83)) 56 T ELT)) (-1700 (((-83)) 103 T ELT)) (-1703 (((-83)) 117 T ELT)) (-3207 (((-1168 |#2|) $ (-1168 $)) NIL T ELT) (((-625 |#2|) (-1168 $) (-1168 $)) 128 T ELT)) (-1709 (((-83)) 113 T ELT)) (-1694 (((-578 (-1168 |#2|))) 102 T ELT)) (-1707 (((-83)) 114 T ELT)) (-1708 (((-83)) 112 T ELT)) (-1706 (((-83)) 51 T ELT)) (-1702 (((-83)) 118 T ELT))) +(((-311 |#1| |#2|) (-10 -7 (-15 -1692 ((-1074 |#2|) |#1|)) (-15 -1693 ((-1074 |#2|) |#1|)) (-15 -1694 ((-578 (-1168 |#2|)))) (-15 -2390 ((-3 |#1| #1="failed") |#1|)) (-15 -2391 ((-3 |#1| #1#) |#1|)) (-15 -3451 ((-3 |#1| #1#) |#1|)) (-15 -1695 ((-83))) (-15 -1696 ((-83))) (-15 -1697 ((-83))) (-15 -1698 ((-83))) (-15 -1699 ((-83))) (-15 -1700 ((-83))) (-15 -1702 ((-83))) (-15 -1703 ((-83))) (-15 -1704 ((-83))) (-15 -1705 ((-83))) (-15 -1706 ((-83))) (-15 -1707 ((-83))) (-15 -1708 ((-83))) (-15 -1709 ((-83))) (-15 -1710 ((-1074 |#2|) |#1|)) (-15 -1711 ((-1074 |#2|) |#1|)) (-15 -1775 ((-625 |#2|) (-1168 |#1|))) (-15 -1776 ((-625 |#2|) (-1168 |#1|))) (-15 -1777 (|#2| (-1168 |#1|))) (-15 -1778 (|#2| (-1168 |#1|))) (-15 -1779 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -3207 ((-625 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -3207 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -1712 (|#2| |#1|)) (-15 -1713 (|#2| |#1|)) (-15 -1714 (|#2| |#1|)) (-15 -1715 (|#2| |#1|)) (-15 -1773 ((-625 |#2|) |#1| (-1168 |#1|))) (-15 -1774 ((-625 |#2|) |#1| (-1168 |#1|))) (-15 -3206 ((-1168 (-625 |#2|)) (-1168 |#1|)))) (-312 |#2|) (-144)) (T -311)) +((-1709 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1708 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1707 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1706 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1705 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1704 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1703 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1702 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1700 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1699 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1698 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1697 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1696 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1695 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1694 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-578 (-1168 *4))) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1759 (((-3 $ "failed")) 47 (|has| |#1| (-489)) ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3206 (((-1168 (-625 |#1|)) (-1168 $)) 88 T ELT)) (-1716 (((-1168 $)) 91 T ELT)) (-3708 (($) 22 T CONST)) (-1893 (((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) "failed")) 50 (|has| |#1| (-489)) ELT)) (-1690 (((-3 $ "failed")) 48 (|has| |#1| (-489)) ELT)) (-1775 (((-625 |#1|) (-1168 $)) 75 T ELT)) (-1714 ((|#1| $) 84 T ELT)) (-1773 (((-625 |#1|) $ (-1168 $)) 86 T ELT)) (-2390 (((-3 $ "failed") $) 55 (|has| |#1| (-489)) ELT)) (-2393 (($ $ (-823)) 36 T ELT)) (-1712 ((|#1| $) 82 T ELT)) (-1692 (((-1074 |#1|) $) 52 (|has| |#1| (-489)) ELT)) (-1777 ((|#1| (-1168 $)) 77 T ELT)) (-1710 (((-1074 |#1|) $) 73 T ELT)) (-1704 (((-83)) 67 T ELT)) (-1779 (($ (-1168 |#1|) (-1168 $)) 79 T ELT)) (-3451 (((-3 $ "failed") $) 57 (|has| |#1| (-489)) ELT)) (-3092 (((-823)) 90 T ELT)) (-1701 (((-83)) 64 T ELT)) (-2417 (($ $ (-823)) 43 T ELT)) (-1697 (((-83)) 60 T ELT)) (-1695 (((-83)) 58 T ELT)) (-1699 (((-83)) 62 T ELT)) (-1894 (((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) "failed")) 51 (|has| |#1| (-489)) ELT)) (-1691 (((-3 $ "failed")) 49 (|has| |#1| (-489)) ELT)) (-1776 (((-625 |#1|) (-1168 $)) 76 T ELT)) (-1715 ((|#1| $) 85 T ELT)) (-1774 (((-625 |#1|) $ (-1168 $)) 87 T ELT)) (-2391 (((-3 $ "failed") $) 56 (|has| |#1| (-489)) ELT)) (-2392 (($ $ (-823)) 37 T ELT)) (-1713 ((|#1| $) 83 T ELT)) (-1693 (((-1074 |#1|) $) 53 (|has| |#1| (-489)) ELT)) (-1778 ((|#1| (-1168 $)) 78 T ELT)) (-1711 (((-1074 |#1|) $) 74 T ELT)) (-1705 (((-83)) 68 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-1696 (((-83)) 59 T ELT)) (-1698 (((-83)) 61 T ELT)) (-1700 (((-83)) 63 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-1703 (((-83)) 66 T ELT)) (-3207 (((-1168 |#1|) $ (-1168 $)) 81 T ELT) (((-625 |#1|) (-1168 $) (-1168 $)) 80 T ELT)) (-1879 (((-578 (-850 |#1|)) (-1168 $)) 89 T ELT)) (-2419 (($ $ $) 33 T ELT)) (-1709 (((-83)) 72 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-1694 (((-578 (-1168 |#1|))) 54 (|has| |#1| (-489)) ELT)) (-2420 (($ $ $ $) 34 T ELT)) (-1707 (((-83)) 70 T ELT)) (-2418 (($ $ $) 32 T ELT)) (-1708 (((-83)) 71 T ELT)) (-1706 (((-83)) 69 T ELT)) (-1702 (((-83)) 65 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 38 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) +(((-312 |#1|) (-111) (-144)) (T -312)) +((-1716 (*1 *2) (-12 (-4 *3 (-144)) (-5 *2 (-1168 *1)) (-4 *1 (-312 *3)))) (-3092 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-823)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-578 (-850 *4))))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-1168 (-625 *4))))) (-1774 (*1 *2 *1 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) (-1773 (*1 *2 *1 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144)))) (-1714 (*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144)))) (-1713 (*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144)))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144)))) (-3207 (*1 *2 *1 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-1168 *4)))) (-3207 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) (-1779 (*1 *1 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1168 *1)) (-4 *4 (-144)) (-4 *1 (-312 *4)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *2)) (-4 *2 (-144)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *2)) (-4 *2 (-144)))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) (-1775 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-1074 *3)))) (-1710 (*1 *2 *1) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-1074 *3)))) (-1709 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1708 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1707 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1706 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1705 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1704 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1703 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1702 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1701 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1700 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1699 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1698 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1697 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1696 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1695 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-3451 (*1 *1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-144)) (-4 *2 (-489)))) (-2391 (*1 *1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-144)) (-4 *2 (-489)))) (-2390 (*1 *1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-144)) (-4 *2 (-489)))) (-1694 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-4 *3 (-489)) (-5 *2 (-578 (-1168 *3))))) (-1693 (*1 *2 *1) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-4 *3 (-489)) (-5 *2 (-1074 *3)))) (-1692 (*1 *2 *1) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-4 *3 (-489)) (-5 *2 (-1074 *3)))) (-1894 (*1 *2) (|partial| -12 (-4 *3 (-489)) (-4 *3 (-144)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1998 (-578 *1)))) (-4 *1 (-312 *3)))) (-1893 (*1 *2) (|partial| -12 (-4 *3 (-489)) (-4 *3 (-144)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1998 (-578 *1)))) (-4 *1 (-312 *3)))) (-1691 (*1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-489)) (-4 *2 (-144)))) (-1690 (*1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-489)) (-4 *2 (-144)))) (-1759 (*1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-489)) (-4 *2 (-144))))) +(-13 (-676 |t#1|) (-10 -8 (-15 -1716 ((-1168 $))) (-15 -3092 ((-823))) (-15 -1879 ((-578 (-850 |t#1|)) (-1168 $))) (-15 -3206 ((-1168 (-625 |t#1|)) (-1168 $))) (-15 -1774 ((-625 |t#1|) $ (-1168 $))) (-15 -1773 ((-625 |t#1|) $ (-1168 $))) (-15 -1715 (|t#1| $)) (-15 -1714 (|t#1| $)) (-15 -1713 (|t#1| $)) (-15 -1712 (|t#1| $)) (-15 -3207 ((-1168 |t#1|) $ (-1168 $))) (-15 -3207 ((-625 |t#1|) (-1168 $) (-1168 $))) (-15 -1779 ($ (-1168 |t#1|) (-1168 $))) (-15 -1778 (|t#1| (-1168 $))) (-15 -1777 (|t#1| (-1168 $))) (-15 -1776 ((-625 |t#1|) (-1168 $))) (-15 -1775 ((-625 |t#1|) (-1168 $))) (-15 -1711 ((-1074 |t#1|) $)) (-15 -1710 ((-1074 |t#1|) $)) (-15 -1709 ((-83))) (-15 -1708 ((-83))) (-15 -1707 ((-83))) (-15 -1706 ((-83))) (-15 -1705 ((-83))) (-15 -1704 ((-83))) (-15 -1703 ((-83))) (-15 -1702 ((-83))) (-15 -1701 ((-83))) (-15 -1700 ((-83))) (-15 -1699 ((-83))) (-15 -1698 ((-83))) (-15 -1697 ((-83))) (-15 -1696 ((-83))) (-15 -1695 ((-83))) (IF (|has| |t#1| (-489)) (PROGN (-15 -3451 ((-3 $ "failed") $)) (-15 -2391 ((-3 $ "failed") $)) (-15 -2390 ((-3 $ "failed") $)) (-15 -1694 ((-578 (-1168 |t#1|)))) (-15 -1693 ((-1074 |t#1|) $)) (-15 -1692 ((-1074 |t#1|) $)) (-15 -1894 ((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) "failed"))) (-15 -1893 ((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) "failed"))) (-15 -1691 ((-3 $ "failed"))) (-15 -1690 ((-3 $ "failed"))) (-15 -1759 ((-3 $ "failed"))) (-6 -3976)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) . T) ((-649 |#1|) . T) ((-652) . T) ((-676 |#1|) . T) ((-678) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) 7 T ELT)) (-3119 (((-687)) 20 T ELT)) (-2978 (($) 17 T ELT)) (-1996 (((-823) $) 18 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2386 (($ (-823)) 19 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(((-313) (-111)) (T -313)) +((-3119 (*1 *2) (-12 (-4 *1 (-313)) (-5 *2 (-687)))) (-2386 (*1 *1 *2) (-12 (-5 *2 (-823)) (-4 *1 (-313)))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-823)))) (-2978 (*1 *1) (-4 *1 (-313)))) +(-13 (-1005) (-10 -8 (-15 -3119 ((-687))) (-15 -2386 ($ (-823))) (-15 -1996 ((-823) $)) (-15 -2978 ($)))) +(((-72) . T) ((-547 (-765)) . T) ((-1005) . T) ((-1118) . T)) +((-1769 (((-625 |#2|) (-1168 $)) 45 T ELT)) (-1779 (($ (-1168 |#2|) (-1168 $)) 39 T ELT)) (-1768 (((-625 |#2|) $ (-1168 $)) 47 T ELT)) (-3741 ((|#2| (-1168 $)) 13 T ELT)) (-3207 (((-1168 |#2|) $ (-1168 $)) NIL T ELT) (((-625 |#2|) (-1168 $) (-1168 $)) 27 T ELT))) +(((-314 |#1| |#2| |#3|) (-10 -7 (-15 -1769 ((-625 |#2|) (-1168 |#1|))) (-15 -3741 (|#2| (-1168 |#1|))) (-15 -1779 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -3207 ((-625 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -3207 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -1768 ((-625 |#2|) |#1| (-1168 |#1|)))) (-315 |#2| |#3|) (-144) (-1144 |#2|)) (T -314)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1769 (((-625 |#1|) (-1168 $)) 58 T ELT)) (-3314 ((|#1| $) 64 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-1779 (($ (-1168 |#1|) (-1168 $)) 60 T ELT)) (-1768 (((-625 |#1|) $ (-1168 $)) 65 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3092 (((-823)) 66 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3115 ((|#1| $) 63 T ELT)) (-2000 ((|#2| $) 56 (|has| |#1| (-308)) ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3741 ((|#1| (-1168 $)) 59 T ELT)) (-3207 (((-1168 |#1|) $ (-1168 $)) 62 T ELT) (((-625 |#1|) (-1168 $) (-1168 $)) 61 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 49 T ELT)) (-2686 (((-627 $) $) 55 (|has| |#1| (-116)) ELT)) (-2433 ((|#2| $) 57 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +(((-315 |#1| |#2|) (-111) (-144) (-1144 |t#1|)) (T -315)) +((-3092 (*1 *2) (-12 (-4 *1 (-315 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1144 *3)) (-5 *2 (-823)))) (-1768 (*1 *2 *1 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-315 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1144 *4)) (-5 *2 (-625 *4)))) (-3314 (*1 *2 *1) (-12 (-4 *1 (-315 *2 *3)) (-4 *3 (-1144 *2)) (-4 *2 (-144)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-315 *2 *3)) (-4 *3 (-1144 *2)) (-4 *2 (-144)))) (-3207 (*1 *2 *1 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-315 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1144 *4)) (-5 *2 (-1168 *4)))) (-3207 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-315 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1144 *4)) (-5 *2 (-625 *4)))) (-1779 (*1 *1 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1168 *1)) (-4 *4 (-144)) (-4 *1 (-315 *4 *5)) (-4 *5 (-1144 *4)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-315 *2 *4)) (-4 *4 (-1144 *2)) (-4 *2 (-144)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-315 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1144 *4)) (-5 *2 (-625 *4)))) (-2433 (*1 *2 *1) (-12 (-4 *1 (-315 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1144 *3)))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-315 *3 *2)) (-4 *3 (-144)) (-4 *3 (-308)) (-4 *2 (-1144 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3092 ((-823))) (-15 -1768 ((-625 |t#1|) $ (-1168 $))) (-15 -3314 (|t#1| $)) (-15 -3115 (|t#1| $)) (-15 -3207 ((-1168 |t#1|) $ (-1168 $))) (-15 -3207 ((-625 |t#1|) (-1168 $) (-1168 $))) (-15 -1779 ($ (-1168 |t#1|) (-1168 $))) (-15 -3741 (|t#1| (-1168 $))) (-15 -1769 ((-625 |t#1|) (-1168 $))) (-15 -2433 (|t#2| $)) (IF (|has| |t#1| (-308)) (-15 -2000 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 |#1|) . T) ((-649 |#1|) . T) ((-658) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-1719 (((-83) (-1 (-83) |#2| |#2|) $) NIL T ELT) (((-83) $) 18 T ELT)) (-1717 (($ (-1 (-83) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2893 (($ (-1 (-83) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2284 (($ $) 25 T ELT)) (-3403 (((-478) (-1 (-83) |#2|) $) NIL T ELT) (((-478) |#2| $) 11 T ELT) (((-478) |#2| $ (-478)) NIL T ELT)) (-3502 (($ (-1 (-83) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) +(((-316 |#1| |#2|) (-10 -7 (-15 -1717 (|#1| |#1|)) (-15 -1717 (|#1| (-1 (-83) |#2| |#2|) |#1|)) (-15 -1719 ((-83) |#1|)) (-15 -2893 (|#1| |#1|)) (-15 -3502 (|#1| |#1| |#1|)) (-15 -3403 ((-478) |#2| |#1| (-478))) (-15 -3403 ((-478) |#2| |#1|)) (-15 -3403 ((-478) (-1 (-83) |#2|) |#1|)) (-15 -1719 ((-83) (-1 (-83) |#2| |#2|) |#1|)) (-15 -2893 (|#1| (-1 (-83) |#2| |#2|) |#1|)) (-15 -2284 (|#1| |#1|)) (-15 -3502 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|))) (-317 |#2|) (-1118)) (T -316)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-2184 (((-1174) $ (-478) (-478)) 44 (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) (-1 (-83) |#1| |#1|) $) 107 T ELT) (((-83) $) 101 (|has| |#1| (-749)) ELT)) (-1717 (($ (-1 (-83) |#1| |#1|) $) 98 (|has| $ (-6 -3980)) ELT) (($ $) 97 (-12 (|has| |#1| (-749)) (|has| $ (-6 -3980))) ELT)) (-2893 (($ (-1 (-83) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-749)) ELT)) (-3772 ((|#1| $ (-478) |#1|) 56 (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) 64 (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3979)) ELT)) (-3708 (($) 7 T CONST)) (-2283 (($ $) 99 (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) 109 T ELT)) (-1340 (($ $) 84 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3390 (($ |#1| $) 83 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3979)) ELT)) (-1563 ((|#1| $ (-478) |#1|) 57 (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) 55 T ELT)) (-3403 (((-478) (-1 (-83) |#1|) $) 106 T ELT) (((-478) |#1| $) 105 (|has| |#1| (-1005)) ELT) (((-478) |#1| $ (-478)) 104 (|has| |#1| (-1005)) ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-3598 (($ (-687) |#1|) 74 T ELT)) (-2186 (((-478) $) 47 (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) 91 (|has| |#1| (-749)) ELT)) (-3502 (($ (-1 (-83) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-749)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-2187 (((-478) $) 48 (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) 92 (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-2290 (($ |#1| $ (-478)) 66 T ELT) (($ $ $ (-478)) 65 T ELT)) (-2189 (((-578 (-478)) $) 50 T ELT)) (-2190 (((-83) (-478) $) 51 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-3785 ((|#1| $) 46 (|has| (-478) (-749)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2185 (($ $ |#1|) 45 (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-2188 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) 52 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#1| $ (-478) |#1|) 54 T ELT) ((|#1| $ (-478)) 53 T ELT) (($ $ (-1135 (-478))) 75 T ELT)) (-2291 (($ $ (-478)) 68 T ELT) (($ $ (-1135 (-478))) 67 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1718 (($ $ $ (-478)) 100 (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 85 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 76 T ELT)) (-3786 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-578 $)) 70 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) 93 (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) 95 (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2668 (((-83) $ $) 94 (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) 96 (|has| |#1| (-749)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-317 |#1|) (-111) (-1118)) (T -317)) +((-3502 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1118)))) (-2284 (*1 *1 *1) (-12 (-4 *1 (-317 *2)) (-4 *2 (-1118)))) (-2893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1118)))) (-1719 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *1 (-317 *4)) (-4 *4 (-1118)) (-5 *2 (-83)))) (-3403 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1118)) (-5 *2 (-478)))) (-3403 (*1 *2 *3 *1) (-12 (-4 *1 (-317 *3)) (-4 *3 (-1118)) (-4 *3 (-1005)) (-5 *2 (-478)))) (-3403 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-317 *3)) (-4 *3 (-1118)) (-4 *3 (-1005)))) (-3502 (*1 *1 *1 *1) (-12 (-4 *1 (-317 *2)) (-4 *2 (-1118)) (-4 *2 (-749)))) (-2893 (*1 *1 *1) (-12 (-4 *1 (-317 *2)) (-4 *2 (-1118)) (-4 *2 (-749)))) (-1719 (*1 *2 *1) (-12 (-4 *1 (-317 *3)) (-4 *3 (-1118)) (-4 *3 (-749)) (-5 *2 (-83)))) (-1718 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-478)) (|has| *1 (-6 -3980)) (-4 *1 (-317 *3)) (-4 *3 (-1118)))) (-2283 (*1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-317 *2)) (-4 *2 (-1118)))) (-1717 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3 *3)) (|has| *1 (-6 -3980)) (-4 *1 (-317 *3)) (-4 *3 (-1118)))) (-1717 (*1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-317 *2)) (-4 *2 (-1118)) (-4 *2 (-749))))) +(-13 (-588 |t#1|) (-10 -8 (-6 -3979) (-15 -3502 ($ (-1 (-83) |t#1| |t#1|) $ $)) (-15 -2284 ($ $)) (-15 -2893 ($ (-1 (-83) |t#1| |t#1|) $)) (-15 -1719 ((-83) (-1 (-83) |t#1| |t#1|) $)) (-15 -3403 ((-478) (-1 (-83) |t#1|) $)) (IF (|has| |t#1| (-1005)) (PROGN (-15 -3403 ((-478) |t#1| $)) (-15 -3403 ((-478) |t#1| $ (-478)))) |%noBranch|) (IF (|has| |t#1| (-749)) (PROGN (-6 (-749)) (-15 -3502 ($ $ $)) (-15 -2893 ($ $)) (-15 -1719 ((-83) $))) |%noBranch|) (IF (|has| $ (-6 -3980)) (PROGN (-15 -1718 ($ $ $ (-478))) (-15 -2283 ($ $)) (-15 -1717 ($ (-1 (-83) |t#1| |t#1|) $)) (IF (|has| |t#1| (-749)) (-15 -1717 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-749)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-749)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 (-478) |#1|) . T) ((-238 (-1135 (-478)) $) . T) ((-240 (-478) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-533 (-478) |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-588 |#1|) . T) ((-749) |has| |#1| (-749)) ((-752) |has| |#1| (-749)) ((-1005) OR (|has| |#1| (-1005)) (|has| |#1| (-749))) ((-1118) . T)) +((-3825 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3826 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3942 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) +(((-318 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3942 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3826 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3825 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1118) (-317 |#1|) (-1118) (-317 |#3|)) (T -318)) +((-3825 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1118)) (-4 *5 (-1118)) (-4 *2 (-317 *5)) (-5 *1 (-318 *6 *4 *5 *2)) (-4 *4 (-317 *6)))) (-3826 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1118)) (-4 *2 (-1118)) (-5 *1 (-318 *5 *4 *2 *6)) (-4 *4 (-317 *5)) (-4 *6 (-317 *2)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-317 *6)) (-5 *1 (-318 *5 *4 *6 *2)) (-4 *4 (-317 *5))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3918 (((-578 |#1|) $) 42 T ELT)) (-3931 (($ $ (-687)) 43 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3923 (((-1193 |#1| |#2|) (-1193 |#1| |#2|) $) 46 T ELT)) (-3920 (($ $) 44 T ELT)) (-3924 (((-1193 |#1| |#2|) (-1193 |#1| |#2|) $) 47 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3752 (($ $ |#1| $) 41 T ELT) (($ $ (-578 |#1|) (-578 $)) 40 T ELT)) (-3932 (((-687) $) 48 T ELT)) (-3514 (($ $ $) 39 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ |#1|) 51 T ELT) (((-1184 |#1| |#2|) $) 50 T ELT) (((-1193 |#1| |#2|) $) 49 T ELT)) (-3938 ((|#2| (-1193 |#1| |#2|) $) 52 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-1720 (($ (-609 |#1|)) 45 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ |#2|) 38 (|has| |#2| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) +(((-319 |#1| |#2|) (-111) (-749) (-144)) (T -319)) +((-3938 (*1 *2 *3 *1) (-12 (-5 *3 (-1193 *4 *2)) (-4 *1 (-319 *4 *2)) (-4 *4 (-749)) (-4 *2 (-144)))) (-3930 (*1 *1 *2) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-749)) (-4 *3 (-144)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) (-5 *2 (-1184 *3 *4)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) (-5 *2 (-1193 *3 *4)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) (-5 *2 (-687)))) (-3924 (*1 *2 *2 *1) (-12 (-5 *2 (-1193 *3 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)))) (-3923 (*1 *2 *2 *1) (-12 (-5 *2 (-1193 *3 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)))) (-1720 (*1 *1 *2) (-12 (-5 *2 (-609 *3)) (-4 *3 (-749)) (-4 *1 (-319 *3 *4)) (-4 *4 (-144)))) (-3920 (*1 *1 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-749)) (-4 *3 (-144)))) (-3931 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) (-5 *2 (-578 *3)))) (-3752 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-749)) (-4 *3 (-144)))) (-3752 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-749)) (-4 *5 (-144))))) +(-13 (-569 |t#2|) (-10 -8 (-15 -3938 (|t#2| (-1193 |t#1| |t#2|) $)) (-15 -3930 ($ |t#1|)) (-15 -3930 ((-1184 |t#1| |t#2|) $)) (-15 -3930 ((-1193 |t#1| |t#2|) $)) (-15 -3932 ((-687) $)) (-15 -3924 ((-1193 |t#1| |t#2|) (-1193 |t#1| |t#2|) $)) (-15 -3923 ((-1193 |t#1| |t#2|) (-1193 |t#1| |t#2|) $)) (-15 -1720 ($ (-609 |t#1|))) (-15 -3920 ($ $)) (-15 -3931 ($ $ (-687))) (-15 -3918 ((-578 |t#1|) $)) (-15 -3752 ($ $ |t#1| $)) (-15 -3752 ($ $ (-578 |t#1|) (-578 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#2| |#2|) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#2|) . T) ((-585 |#2|) . T) ((-569 |#2|) . T) ((-577 |#2|) . T) ((-649 |#2|) . T) ((-956 |#2|) . T) ((-961 |#2|) . T) ((-1005) . T) ((-1118) . T)) +((-1723 ((|#2| (-1 (-83) |#1| |#1|) |#2|) 40 T ELT)) (-1721 ((|#2| (-1 (-83) |#1| |#1|) |#2|) 13 T ELT)) (-1722 ((|#2| (-1 (-83) |#1| |#1|) |#2|) 33 T ELT))) +(((-320 |#1| |#2|) (-10 -7 (-15 -1721 (|#2| (-1 (-83) |#1| |#1|) |#2|)) (-15 -1722 (|#2| (-1 (-83) |#1| |#1|) |#2|)) (-15 -1723 (|#2| (-1 (-83) |#1| |#1|) |#2|))) (-1118) (-13 (-317 |#1|) (-10 -7 (-6 -3980)))) (T -320)) +((-1723 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-320 *4 *2)) (-4 *2 (-13 (-317 *4) (-10 -7 (-6 -3980)))))) (-1722 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-320 *4 *2)) (-4 *2 (-13 (-317 *4) (-10 -7 (-6 -3980)))))) (-1721 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-320 *4 *2)) (-4 *2 (-13 (-317 *4) (-10 -7 (-6 -3980))))))) +((-2265 (((-625 |#2|) (-625 $)) NIL T ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) NIL T ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 22 T ELT) (((-625 (-478)) (-625 $)) 14 T ELT))) +(((-321 |#1| |#2|) (-10 -7 (-15 -2265 ((-625 (-478)) (-625 |#1|))) (-15 -2265 ((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 |#1|) (-1168 |#1|))) (-15 -2265 ((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 |#1|) (-1168 |#1|))) (-15 -2265 ((-625 |#2|) (-625 |#1|)))) (-322 |#2|) (-954)) (T -321)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-2265 (((-625 |#1|) (-625 $)) 35 T ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) 34 T ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 46 (|has| |#1| (-575 (-478))) ELT) (((-625 (-478)) (-625 $)) 45 (|has| |#1| (-575 (-478))) ELT)) (-2266 (((-625 |#1|) (-1168 $)) 37 T ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) 36 T ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) 44 (|has| |#1| (-575 (-478))) ELT) (((-625 (-478)) (-1168 $)) 43 (|has| |#1| (-575 (-478))) ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT))) +(((-322 |#1|) (-111) (-954)) (T -322)) +NIL +(-13 (-575 |t#1|) (-10 -7 (IF (|has| |t#1| (-575 (-478))) (-6 (-575 (-478))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 (-478)) |has| |#1| (-575 (-478))) ((-585 |#1|) . T) ((-575 (-478)) |has| |#1| (-575 (-478))) ((-575 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 16 T ELT)) (-3112 (((-478) $) 44 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-3755 (($ $) 120 T ELT)) (-3476 (($ $) 81 T ELT)) (-3623 (($ $) 72 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-3021 (($ $) 28 T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3474 (($ $) 79 T ELT)) (-3622 (($ $) 67 T ELT)) (-3607 (((-478) $) 60 T ELT)) (-2425 (($ $ (-478)) 55 T ELT)) (-3478 (($ $) NIL T ELT)) (-3621 (($ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3110 (($ $) 122 T ELT)) (-3140 (((-3 (-478) #1#) $) 217 T ELT) (((-3 (-343 (-478)) #1#) $) 213 T ELT)) (-3139 (((-478) $) 215 T ELT) (((-343 (-478)) $) 211 T ELT)) (-2548 (($ $ $) NIL T ELT)) (-1732 (((-478) $ $) 110 T ELT)) (-3451 (((-3 $ #1#) $) 125 T ELT)) (-1731 (((-343 (-478)) $ (-687)) 218 T ELT) (((-343 (-478)) $ (-687) (-687)) 210 T ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-1755 (((-823)) 106 T ELT) (((-823) (-823)) 107 (|has| $ (-6 -3970)) ELT)) (-3169 (((-83) $) 38 T ELT)) (-3611 (($) 22 T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL T ELT)) (-1724 (((-1174) (-687)) 177 T ELT)) (-1725 (((-1174)) 182 T ELT) (((-1174) (-687)) 183 T ELT)) (-1727 (((-1174)) 184 T ELT) (((-1174) (-687)) 185 T ELT)) (-1726 (((-1174)) 180 T ELT) (((-1174) (-687)) 181 T ELT)) (-3756 (((-478) $) 50 T ELT)) (-2396 (((-83) $) 21 T ELT)) (-2995 (($ $ (-478)) NIL T ELT)) (-2427 (($ $) 32 T ELT)) (-3115 (($ $) NIL T ELT)) (-3170 (((-83) $) 18 T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2515 (($ $ $) NIL T ELT) (($) NIL (-12 (-2544 (|has| $ (-6 -3962))) (-2544 (|has| $ (-6 -3970)))) ELT)) (-2841 (($ $ $) NIL T ELT) (($) NIL (-12 (-2544 (|has| $ (-6 -3962))) (-2544 (|has| $ (-6 -3970)))) ELT)) (-1757 (((-478) $) 112 T ELT)) (-1730 (($) 90 T ELT) (($ $) 97 T ELT)) (-1729 (($) 96 T ELT) (($ $) 98 T ELT)) (-3926 (($ $) 84 T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) 127 T ELT)) (-1754 (((-823) (-478)) 27 (|has| $ (-6 -3970)) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3111 (($ $) 41 T ELT)) (-3113 (($ $) 119 T ELT)) (-3237 (($ (-478) (-478)) 115 T ELT) (($ (-478) (-478) (-823)) 116 T ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-2387 (((-478) $) 113 T ELT)) (-1728 (($) 99 T ELT)) (-3927 (($ $) 78 T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-2599 (((-823)) 108 T ELT) (((-823) (-823)) 109 (|has| $ (-6 -3970)) ELT)) (-3742 (($ $) 126 T ELT) (($ $ (-687)) NIL T ELT)) (-1753 (((-823) (-478)) 31 (|has| $ (-6 -3970)) ELT)) (-3479 (($ $) NIL T ELT)) (-3620 (($ $) NIL T ELT)) (-3477 (($ $) NIL T ELT)) (-3619 (($ $) NIL T ELT)) (-3475 (($ $) 80 T ELT)) (-3618 (($ $) 71 T ELT)) (-3956 (((-323) $) 202 T ELT) (((-177) $) 204 T ELT) (((-793 (-323)) $) NIL T ELT) (((-1062) $) 188 T ELT) (((-467) $) 200 T ELT) (($ (-177)) 209 T ELT)) (-3930 (((-765) $) 192 T ELT) (($ (-478)) 214 T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-478)) 214 T ELT) (($ (-343 (-478))) NIL T ELT) (((-177) $) 205 T ELT)) (-3109 (((-687)) NIL T CONST)) (-3114 (($ $) 121 T ELT)) (-1756 (((-823)) 42 T ELT) (((-823) (-823)) 62 (|has| $ (-6 -3970)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2678 (((-823)) 111 T ELT)) (-3482 (($ $) 87 T ELT)) (-3470 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3480 (($ $) 85 T ELT)) (-3468 (($ $) 20 T ELT)) (-3484 (($ $) NIL T ELT)) (-3472 (($ $) NIL T ELT)) (-3485 (($ $) NIL T ELT)) (-3473 (($ $) NIL T ELT)) (-3483 (($ $) NIL T ELT)) (-3471 (($ $) NIL T ELT)) (-3481 (($ $) 86 T ELT)) (-3469 (($ $) 33 T ELT)) (-3367 (($ $) 39 T ELT)) (-2644 (($) 17 T CONST)) (-2650 (($) 24 T CONST)) (-2653 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2550 (((-83) $ $) 189 T ELT)) (-2551 (((-83) $ $) 26 T ELT)) (-3037 (((-83) $ $) 37 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 43 T ELT)) (-3933 (($ $ $) 29 T ELT) (($ $ (-478)) 23 T ELT)) (-3821 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3823 (($ $ $) 54 T ELT)) (** (($ $ (-823)) 65 T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 91 T ELT) (($ $ (-343 (-478))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-823) $) 61 T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT))) +(((-323) (-13 (-340) (-188) (-548 (-1062)) (-547 (-177)) (-1104) (-548 (-467)) (-552 (-177)) (-10 -8 (-15 -3933 ($ $ (-478))) (-15 ** ($ $ $)) (-15 -2427 ($ $)) (-15 -1732 ((-478) $ $)) (-15 -2425 ($ $ (-478))) (-15 -1731 ((-343 (-478)) $ (-687))) (-15 -1731 ((-343 (-478)) $ (-687) (-687))) (-15 -1730 ($)) (-15 -1729 ($)) (-15 -1728 ($)) (-15 -3470 ($ $ $)) (-15 -1730 ($ $)) (-15 -1729 ($ $)) (-15 -1727 ((-1174))) (-15 -1727 ((-1174) (-687))) (-15 -1726 ((-1174))) (-15 -1726 ((-1174) (-687))) (-15 -1725 ((-1174))) (-15 -1725 ((-1174) (-687))) (-15 -1724 ((-1174) (-687))) (-6 -3970) (-6 -3962)))) (T -323)) +((** (*1 *1 *1 *1) (-5 *1 (-323))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-323)))) (-2427 (*1 *1 *1) (-5 *1 (-323))) (-1732 (*1 *2 *1 *1) (-12 (-5 *2 (-478)) (-5 *1 (-323)))) (-2425 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-323)))) (-1731 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *2 (-343 (-478))) (-5 *1 (-323)))) (-1731 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-343 (-478))) (-5 *1 (-323)))) (-1730 (*1 *1) (-5 *1 (-323))) (-1729 (*1 *1) (-5 *1 (-323))) (-1728 (*1 *1) (-5 *1 (-323))) (-3470 (*1 *1 *1 *1) (-5 *1 (-323))) (-1730 (*1 *1 *1) (-5 *1 (-323))) (-1729 (*1 *1 *1) (-5 *1 (-323))) (-1727 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-323)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1174)) (-5 *1 (-323)))) (-1726 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-323)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1174)) (-5 *1 (-323)))) (-1725 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-323)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1174)) (-5 *1 (-323)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1174)) (-5 *1 (-323))))) +((-1733 (((-578 (-245 (-850 (-140 |#1|)))) (-245 (-343 (-850 (-140 (-478))))) |#1|) 51 T ELT) (((-578 (-245 (-850 (-140 |#1|)))) (-343 (-850 (-140 (-478)))) |#1|) 50 T ELT) (((-578 (-578 (-245 (-850 (-140 |#1|))))) (-578 (-245 (-343 (-850 (-140 (-478)))))) |#1|) 47 T ELT) (((-578 (-578 (-245 (-850 (-140 |#1|))))) (-578 (-343 (-850 (-140 (-478))))) |#1|) 41 T ELT)) (-1734 (((-578 (-578 (-140 |#1|))) (-578 (-343 (-850 (-140 (-478))))) (-578 (-1079)) |#1|) 30 T ELT) (((-578 (-140 |#1|)) (-343 (-850 (-140 (-478)))) |#1|) 18 T ELT))) +(((-324 |#1|) (-10 -7 (-15 -1733 ((-578 (-578 (-245 (-850 (-140 |#1|))))) (-578 (-343 (-850 (-140 (-478))))) |#1|)) (-15 -1733 ((-578 (-578 (-245 (-850 (-140 |#1|))))) (-578 (-245 (-343 (-850 (-140 (-478)))))) |#1|)) (-15 -1733 ((-578 (-245 (-850 (-140 |#1|)))) (-343 (-850 (-140 (-478)))) |#1|)) (-15 -1733 ((-578 (-245 (-850 (-140 |#1|)))) (-245 (-343 (-850 (-140 (-478))))) |#1|)) (-15 -1734 ((-578 (-140 |#1|)) (-343 (-850 (-140 (-478)))) |#1|)) (-15 -1734 ((-578 (-578 (-140 |#1|))) (-578 (-343 (-850 (-140 (-478))))) (-578 (-1079)) |#1|))) (-13 (-308) (-748))) (T -324)) +((-1734 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-343 (-850 (-140 (-478)))))) (-5 *4 (-578 (-1079))) (-5 *2 (-578 (-578 (-140 *5)))) (-5 *1 (-324 *5)) (-4 *5 (-13 (-308) (-748))))) (-1734 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 (-140 (-478))))) (-5 *2 (-578 (-140 *4))) (-5 *1 (-324 *4)) (-4 *4 (-13 (-308) (-748))))) (-1733 (*1 *2 *3 *4) (-12 (-5 *3 (-245 (-343 (-850 (-140 (-478)))))) (-5 *2 (-578 (-245 (-850 (-140 *4))))) (-5 *1 (-324 *4)) (-4 *4 (-13 (-308) (-748))))) (-1733 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 (-140 (-478))))) (-5 *2 (-578 (-245 (-850 (-140 *4))))) (-5 *1 (-324 *4)) (-4 *4 (-13 (-308) (-748))))) (-1733 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-245 (-343 (-850 (-140 (-478))))))) (-5 *2 (-578 (-578 (-245 (-850 (-140 *4)))))) (-5 *1 (-324 *4)) (-4 *4 (-13 (-308) (-748))))) (-1733 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-343 (-850 (-140 (-478)))))) (-5 *2 (-578 (-578 (-245 (-850 (-140 *4)))))) (-5 *1 (-324 *4)) (-4 *4 (-13 (-308) (-748)))))) +((-3557 (((-578 (-245 (-850 |#1|))) (-245 (-343 (-850 (-478)))) |#1|) 46 T ELT) (((-578 (-245 (-850 |#1|))) (-343 (-850 (-478))) |#1|) 45 T ELT) (((-578 (-578 (-245 (-850 |#1|)))) (-578 (-245 (-343 (-850 (-478))))) |#1|) 42 T ELT) (((-578 (-578 (-245 (-850 |#1|)))) (-578 (-343 (-850 (-478)))) |#1|) 36 T ELT)) (-1735 (((-578 |#1|) (-343 (-850 (-478))) |#1|) 20 T ELT) (((-578 (-578 |#1|)) (-578 (-343 (-850 (-478)))) (-578 (-1079)) |#1|) 30 T ELT))) +(((-325 |#1|) (-10 -7 (-15 -3557 ((-578 (-578 (-245 (-850 |#1|)))) (-578 (-343 (-850 (-478)))) |#1|)) (-15 -3557 ((-578 (-578 (-245 (-850 |#1|)))) (-578 (-245 (-343 (-850 (-478))))) |#1|)) (-15 -3557 ((-578 (-245 (-850 |#1|))) (-343 (-850 (-478))) |#1|)) (-15 -3557 ((-578 (-245 (-850 |#1|))) (-245 (-343 (-850 (-478)))) |#1|)) (-15 -1735 ((-578 (-578 |#1|)) (-578 (-343 (-850 (-478)))) (-578 (-1079)) |#1|)) (-15 -1735 ((-578 |#1|) (-343 (-850 (-478))) |#1|))) (-13 (-748) (-308))) (T -325)) +((-1735 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 (-478)))) (-5 *2 (-578 *4)) (-5 *1 (-325 *4)) (-4 *4 (-13 (-748) (-308))))) (-1735 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-343 (-850 (-478))))) (-5 *4 (-578 (-1079))) (-5 *2 (-578 (-578 *5))) (-5 *1 (-325 *5)) (-4 *5 (-13 (-748) (-308))))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-245 (-343 (-850 (-478))))) (-5 *2 (-578 (-245 (-850 *4)))) (-5 *1 (-325 *4)) (-4 *4 (-13 (-748) (-308))))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 (-478)))) (-5 *2 (-578 (-245 (-850 *4)))) (-5 *1 (-325 *4)) (-4 *4 (-13 (-748) (-308))))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-245 (-343 (-850 (-478)))))) (-5 *2 (-578 (-578 (-245 (-850 *4))))) (-5 *1 (-325 *4)) (-4 *4 (-13 (-748) (-308))))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-343 (-850 (-478))))) (-5 *2 (-578 (-578 (-245 (-850 *4))))) (-5 *1 (-325 *4)) (-4 *4 (-13 (-748) (-308)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3758 (((-578 (-775 |#2| |#1|)) $) NIL T ELT)) (-1299 (((-3 $ "failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3943 (($ $) NIL T ELT)) (-2877 (($ |#1| |#2|) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1971 ((|#2| $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 33 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 12 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) +(((-326 |#1| |#2|) (-13 (-80 |#1| |#1|) (-442 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-144)) (-6 (-649 |#1|)) |%noBranch|))) (-954) (-752)) (T -326)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#2| #1#) $) 29 T ELT)) (-3139 ((|#2| $) 31 T ELT)) (-3943 (($ $) NIL T ELT)) (-2404 (((-687) $) 11 T ELT)) (-2805 (((-578 $) $) 23 T ELT)) (-3921 (((-83) $) NIL T ELT)) (-3922 (($ |#2| |#1|) 21 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1736 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2878 ((|#2| $) 18 T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3801 (((-578 |#1|) $) 20 T ELT)) (-3661 ((|#1| $ |#2|) 54 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 32 T CONST)) (-2649 (((-578 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) +(((-327 |#1| |#2|) (-13 (-328 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-954) (-749)) (T -327)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-327 *3 *2)) (-4 *3 (-954)) (-4 *2 (-749))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 |#2| "failed") $) 54 T ELT)) (-3139 ((|#2| $) 55 T ELT)) (-3943 (($ $) 40 T ELT)) (-2404 (((-687) $) 44 T ELT)) (-2805 (((-578 $) $) 45 T ELT)) (-3921 (((-83) $) 48 T ELT)) (-3922 (($ |#2| |#1|) 49 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 50 T ELT)) (-1736 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 41 T ELT)) (-2878 ((|#2| $) 43 T ELT)) (-3157 ((|#1| $) 42 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ |#2|) 53 T ELT)) (-3801 (((-578 |#1|) $) 46 T ELT)) (-3661 ((|#1| $ |#2|) 51 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2649 (((-578 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 47 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 52 T ELT))) +(((-328 |#1| |#2|) (-111) (-954) (-1005)) (T -328)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-328 *2 *3)) (-4 *2 (-954)) (-4 *3 (-1005)))) (-3661 (*1 *2 *1 *3) (-12 (-4 *1 (-328 *2 *3)) (-4 *3 (-1005)) (-4 *2 (-954)))) (-3942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1005)))) (-3922 (*1 *1 *2 *3) (-12 (-4 *1 (-328 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1005)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1005)) (-5 *2 (-83)))) (-2649 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1005)) (-5 *2 (-578 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1005)) (-5 *2 (-578 *3)))) (-2805 (*1 *2 *1) (-12 (-4 *3 (-954)) (-4 *4 (-1005)) (-5 *2 (-578 *1)) (-4 *1 (-328 *3 *4)))) (-2404 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1005)) (-5 *2 (-687)))) (-2878 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1005)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-328 *2 *3)) (-4 *3 (-1005)) (-4 *2 (-954)))) (-1736 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1005)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3943 (*1 *1 *1) (-12 (-4 *1 (-328 *2 *3)) (-4 *2 (-954)) (-4 *3 (-1005))))) +(-13 (-80 |t#1| |t#1|) (-943 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3661 (|t#1| $ |t#2|)) (-15 -3942 ($ (-1 |t#1| |t#1|) $)) (-15 -3922 ($ |t#2| |t#1|)) (-15 -3921 ((-83) $)) (-15 -2649 ((-578 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3801 ((-578 |t#1|) $)) (-15 -2805 ((-578 $) $)) (-15 -2404 ((-687) $)) (-15 -2878 (|t#2| $)) (-15 -3157 (|t#1| $)) (-15 -1736 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3943 ($ $)) (IF (|has| |t#1| (-144)) (-6 (-649 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-550 |#2|) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) |has| |#1| (-144)) ((-649 |#1|) |has| |#1| (-144)) ((-943 |#2|) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) 7 T ELT)) (-3119 (((-687) $) 40 T ELT)) (-3708 (($) 23 T CONST)) (-3923 (((-3 $ "failed") $ $) 43 T ELT)) (-3140 (((-3 |#1| "failed") $) 51 T ELT)) (-3139 ((|#1| $) 52 T ELT)) (-3451 (((-3 $ "failed") $) 20 T ELT)) (-1737 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2396 (((-83) $) 22 T ELT)) (-2285 ((|#1| $ (-478)) 37 T ELT)) (-2286 (((-687) $ (-478)) 38 T ELT)) (-2515 (($ $ $) 29 (|has| |#1| (-749)) ELT)) (-2841 (($ $ $) 30 (|has| |#1| (-749)) ELT)) (-2276 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2277 (($ (-1 (-687) (-687)) $) 36 T ELT)) (-3924 (((-3 $ "failed") $ $) 44 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-1738 (($ $ $) 45 T ELT)) (-1739 (($ $ $) 46 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-1766 (((-578 (-2 (|:| |gen| |#1|) (|:| -3927 (-687)))) $) 39 T ELT)) (-2863 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2650 (($) 24 T CONST)) (-2550 (((-83) $ $) 31 (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) 33 (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 32 (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) 34 (|has| |#1| (-749)) ELT)) (** (($ $ (-823)) 17 T ELT) (($ $ (-687)) 21 T ELT) (($ |#1| (-687)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) +(((-329 |#1|) (-111) (-1005)) (T -329)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-1005)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-329 *2)) (-4 *2 (-1005)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-329 *2)) (-4 *2 (-1005)))) (-1739 (*1 *1 *1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-1005)))) (-1738 (*1 *1 *1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-1005)))) (-3924 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-329 *2)) (-4 *2 (-1005)))) (-3923 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-329 *2)) (-4 *2 (-1005)))) (-2863 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1005)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-329 *3)))) (-1737 (*1 *2 *1 *1) (-12 (-4 *3 (-1005)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-329 *3)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-1005)) (-5 *2 (-687)))) (-1766 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-1005)) (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3927 (-687))))))) (-2286 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-329 *4)) (-4 *4 (-1005)) (-5 *2 (-687)))) (-2285 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-329 *2)) (-4 *2 (-1005)))) (-2277 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-687) (-687))) (-4 *1 (-329 *3)) (-4 *3 (-1005)))) (-2276 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-329 *3)) (-4 *3 (-1005))))) +(-13 (-658) (-943 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-687))) (-15 -1739 ($ $ $)) (-15 -1738 ($ $ $)) (-15 -3924 ((-3 $ "failed") $ $)) (-15 -3923 ((-3 $ "failed") $ $)) (-15 -2863 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1737 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3119 ((-687) $)) (-15 -1766 ((-578 (-2 (|:| |gen| |t#1|) (|:| -3927 (-687)))) $)) (-15 -2286 ((-687) $ (-478))) (-15 -2285 (|t#1| $ (-478))) (-15 -2277 ($ (-1 (-687) (-687)) $)) (-15 -2276 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-749)) (-6 (-749)) |%noBranch|))) +(((-72) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-658) . T) ((-749) |has| |#1| (-749)) ((-752) |has| |#1| (-749)) ((-943 |#1|) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3119 (((-687) $) 74 T ELT)) (-3708 (($) NIL T CONST)) (-3923 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3140 (((-3 |#1| #1#) $) NIL T ELT)) (-3139 ((|#1| $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-1737 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2396 (((-83) $) 17 T ELT)) (-2285 ((|#1| $ (-478)) NIL T ELT)) (-2286 (((-687) $ (-478)) NIL T ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2276 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2277 (($ (-1 (-687) (-687)) $) 37 T ELT)) (-3924 (((-3 $ #1#) $ $) 60 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1738 (($ $ $) 28 T ELT)) (-1739 (($ $ $) 26 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1766 (((-578 (-2 (|:| |gen| |#1|) (|:| -3927 (-687)))) $) 34 T ELT)) (-2863 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3930 (((-765) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2650 (($) 7 T CONST)) (-2550 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) 83 (|has| |#1| (-749)) ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ |#1| (-687)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) +(((-330 |#1|) (-329 |#1|) (-1005)) (T -330)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-1740 (((-83) $) 25 T ELT)) (-1741 (((-83) $) 22 T ELT)) (-3598 (($ (-1062) (-1062) (-1062)) 26 T ELT)) (-3526 (((-1062) $) 16 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1745 (($ (-1062) (-1062) (-1062)) 14 T ELT)) (-1743 (((-1062) $) 17 T ELT)) (-1742 (((-83) $) 18 T ELT)) (-1744 (((-1062) $) 15 T ELT)) (-3930 (((-765) $) 12 T ELT) (($ (-1062)) 13 T ELT) (((-1062) $) 9 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 7 T ELT))) +(((-331) (-332)) (T -331)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-1740 (((-83) $) 20 T ELT)) (-1741 (((-83) $) 21 T ELT)) (-3598 (($ (-1062) (-1062) (-1062)) 19 T ELT)) (-3526 (((-1062) $) 24 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-1745 (($ (-1062) (-1062) (-1062)) 26 T ELT)) (-1743 (((-1062) $) 23 T ELT)) (-1742 (((-83) $) 22 T ELT)) (-1744 (((-1062) $) 25 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-1062)) 28 T ELT) (((-1062) $) 27 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(((-332) (-111)) (T -332)) +((-1745 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1062)) (-4 *1 (-332)))) (-1744 (*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-1062)))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-1062)))) (-1743 (*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-1062)))) (-1742 (*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-83)))) (-1741 (*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-83)))) (-1740 (*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-83)))) (-3598 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1062)) (-4 *1 (-332))))) +(-13 (-1005) (-423 (-1062)) (-10 -8 (-15 -1745 ($ (-1062) (-1062) (-1062))) (-15 -1744 ((-1062) $)) (-15 -3526 ((-1062) $)) (-15 -1743 ((-1062) $)) (-15 -1742 ((-83) $)) (-15 -1741 ((-83) $)) (-15 -1740 ((-83) $)) (-15 -3598 ($ (-1062) (-1062) (-1062))))) +(((-72) . T) ((-550 (-1062)) . T) ((-547 (-765)) . T) ((-547 (-1062)) . T) ((-423 (-1062)) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ "failed") $ $) NIL T ELT)) (-1746 (((-765) $) 64 T ELT)) (-3708 (($) NIL T CONST)) (-2393 (($ $ (-823)) NIL T ELT)) (-2417 (($ $ (-823)) NIL T ELT)) (-2392 (($ $ (-823)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2395 (($ (-687)) 38 T ELT)) (-3895 (((-687)) 18 T ELT)) (-1747 (((-765) $) 66 T ELT)) (-2419 (($ $ $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2420 (($ $ $ $) NIL T ELT)) (-2418 (($ $ $) NIL T ELT)) (-2644 (($) 24 T CONST)) (-3037 (((-83) $ $) 41 T ELT)) (-3821 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3823 (($ $ $) 51 T ELT)) (** (($ $ (-823)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) +(((-333 |#1| |#2| |#3|) (-13 (-676 |#3|) (-10 -8 (-15 -3895 ((-687))) (-15 -1747 ((-765) $)) (-15 -1746 ((-765) $)) (-15 -2395 ($ (-687))))) (-687) (-687) (-144)) (T -333)) +((-3895 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-144)))) (-1747 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-687)) (-14 *4 (-687)) (-4 *5 (-144)))) (-1746 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-687)) (-14 *4 (-687)) (-4 *5 (-144)))) (-2395 (*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-144))))) +((-3756 (((-687) (-279 |#1| |#2| |#3| |#4|)) 16 T ELT))) +(((-334 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3756 ((-687) (-279 |#1| |#2| |#3| |#4|)))) (-13 (-313) (-308)) (-1144 |#1|) (-1144 (-343 |#2|)) (-287 |#1| |#2| |#3|)) (T -334)) +((-3756 (*1 *2 *3) (-12 (-5 *3 (-279 *4 *5 *6 *7)) (-4 *4 (-13 (-313) (-308))) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-343 *5))) (-4 *7 (-287 *4 *5 *6)) (-5 *2 (-687)) (-5 *1 (-334 *4 *5 *6 *7))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1749 ((|#2| $) 38 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1750 (($ (-343 |#2|)) 93 T ELT)) (-1748 (((-578 (-2 (|:| -2387 (-687)) (|:| -3757 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3742 (($ $ (-687)) 36 T ELT) (($ $) 34 T ELT)) (-3956 (((-343 |#2|) $) 49 T ELT)) (-3514 (($ (-578 (-2 (|:| -2387 (-687)) (|:| -3757 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3930 (((-765) $) 131 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2653 (($ $ (-687)) 37 T ELT) (($ $) 35 T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3823 (($ |#2| $) 41 T ELT))) +(((-335 |#1| |#2|) (-13 (-1005) (-187) (-548 (-343 |#2|)) (-10 -8 (-15 -3823 ($ |#2| $)) (-15 -1750 ($ (-343 |#2|))) (-15 -1749 (|#2| $)) (-15 -1748 ((-578 (-2 (|:| -2387 (-687)) (|:| -3757 |#2|) (|:| |num| |#2|))) $)) (-15 -3514 ($ (-578 (-2 (|:| -2387 (-687)) (|:| -3757 |#2|) (|:| |num| |#2|))))))) (-13 (-308) (-118)) (-1144 |#1|)) (T -335)) +((-3823 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-308) (-118))) (-5 *1 (-335 *3 *2)) (-4 *2 (-1144 *3)))) (-1750 (*1 *1 *2) (-12 (-5 *2 (-343 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-13 (-308) (-118))) (-5 *1 (-335 *3 *4)))) (-1749 (*1 *2 *1) (-12 (-4 *2 (-1144 *3)) (-5 *1 (-335 *3 *2)) (-4 *3 (-13 (-308) (-118))))) (-1748 (*1 *2 *1) (-12 (-4 *3 (-13 (-308) (-118))) (-5 *2 (-578 (-2 (|:| -2387 (-687)) (|:| -3757 *4) (|:| |num| *4)))) (-5 *1 (-335 *3 *4)) (-4 *4 (-1144 *3)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -2387 (-687)) (|:| -3757 *4) (|:| |num| *4)))) (-4 *4 (-1144 *3)) (-4 *3 (-13 (-308) (-118))) (-5 *1 (-335 *3 *4))))) +((-2552 (((-83) $ $) 10 (OR (|has| |#1| (-789 (-478))) (|has| |#1| (-789 (-323)))) ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 16 (|has| |#1| (-789 (-323))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 15 (|has| |#1| (-789 (-478))) ELT)) (-3225 (((-1062) $) 14 (OR (|has| |#1| (-789 (-478))) (|has| |#1| (-789 (-323)))) ELT)) (-3226 (((-1023) $) 13 (OR (|has| |#1| (-789 (-478))) (|has| |#1| (-789 (-323)))) ELT)) (-3930 (((-765) $) 12 (OR (|has| |#1| (-789 (-478))) (|has| |#1| (-789 (-323)))) ELT)) (-1253 (((-83) $ $) 11 (OR (|has| |#1| (-789 (-478))) (|has| |#1| (-789 (-323)))) ELT)) (-3037 (((-83) $ $) 9 (OR (|has| |#1| (-789 (-478))) (|has| |#1| (-789 (-323)))) ELT))) +(((-336 |#1|) (-111) (-1118)) (T -336)) +NIL +(-13 (-1118) (-10 -7 (IF (|has| |t#1| (-789 (-478))) (-6 (-789 (-478))) |%noBranch|) (IF (|has| |t#1| (-789 (-323))) (-6 (-789 (-323))) |%noBranch|))) +(((-72) OR (|has| |#1| (-789 (-478))) (|has| |#1| (-789 (-323)))) ((-547 (-765)) OR (|has| |#1| (-789 (-478))) (|has| |#1| (-789 (-323)))) ((-789 (-323)) |has| |#1| (-789 (-323))) ((-789 (-478)) |has| |#1| (-789 (-478))) ((-1005) OR (|has| |#1| (-789 (-478))) (|has| |#1| (-789 (-323)))) ((-1118) . T)) +((-1751 (($ $) 10 T ELT) (($ $ (-687)) 12 T ELT))) +(((-337 |#1|) (-10 -7 (-15 -1751 (|#1| |#1| (-687))) (-15 -1751 (|#1| |#1|))) (-338)) (T -337)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3759 (($ $) 88 T ELT)) (-3955 (((-341 $) $) 87 T ELT)) (-1595 (((-83) $ $) 72 T ELT)) (-3708 (($) 22 T CONST)) (-2548 (($ $ $) 68 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2547 (($ $ $) 69 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 63 T ELT)) (-1751 (($ $) 94 T ELT) (($ $ (-687)) 93 T ELT)) (-3707 (((-83) $) 86 T ELT)) (-3756 (((-736 (-823)) $) 96 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-1592 (((-3 (-578 $) #1="failed") (-578 $) $) 65 T ELT)) (-1878 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 85 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 55 T ELT)) (-3127 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3716 (((-341 $) $) 89 T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-1594 (((-687) $) 71 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 70 T ELT)) (-1752 (((-3 (-687) "failed") $ $) 95 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT)) (-2686 (((-627 $) $) 97 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ $) 80 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT))) +(((-338) (-111)) (T -338)) +((-3756 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-736 (-823))))) (-1752 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-338)) (-5 *2 (-687)))) (-1751 (*1 *1 *1) (-4 *1 (-338))) (-1751 (*1 *1 *1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-687))))) +(-13 (-308) (-116) (-10 -8 (-15 -3756 ((-736 (-823)) $)) (-15 -1752 ((-3 (-687) "failed") $ $)) (-15 -1751 ($ $)) (-15 -1751 ($ $ (-687))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 $ $) . T) ((-102) . T) ((-116) . T) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-385) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 $) . T) ((-649 (-343 (-478))) . T) ((-649 $) . T) ((-658) . T) ((-825) . T) ((-956 (-343 (-478))) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T) ((-1123) . T)) +((-3237 (($ (-478) (-478)) 11 T ELT) (($ (-478) (-478) (-823)) NIL T ELT)) (-2599 (((-823)) 19 T ELT) (((-823) (-823)) NIL T ELT))) +(((-339 |#1|) (-10 -7 (-15 -2599 ((-823) (-823))) (-15 -2599 ((-823))) (-15 -3237 (|#1| (-478) (-478) (-823))) (-15 -3237 (|#1| (-478) (-478)))) (-340)) (T -339)) +((-2599 (*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-339 *3)) (-4 *3 (-340)))) (-2599 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-339 *3)) (-4 *3 (-340))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3112 (((-478) $) 105 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-3755 (($ $) 103 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3759 (($ $) 88 T ELT)) (-3955 (((-341 $) $) 87 T ELT)) (-3021 (($ $) 113 T ELT)) (-1595 (((-83) $ $) 72 T ELT)) (-3607 (((-478) $) 130 T ELT)) (-3708 (($) 22 T CONST)) (-3110 (($ $) 102 T ELT)) (-3140 (((-3 (-478) #1="failed") $) 118 T ELT) (((-3 (-343 (-478)) #1#) $) 115 T ELT)) (-3139 (((-478) $) 119 T ELT) (((-343 (-478)) $) 116 T ELT)) (-2548 (($ $ $) 68 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2547 (($ $ $) 69 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 63 T ELT)) (-3707 (((-83) $) 86 T ELT)) (-1755 (((-823)) 146 T ELT) (((-823) (-823)) 143 (|has| $ (-6 -3970)) ELT)) (-3169 (((-83) $) 128 T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 109 T ELT)) (-3756 (((-478) $) 152 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-2995 (($ $ (-478)) 112 T ELT)) (-3115 (($ $) 108 T ELT)) (-3170 (((-83) $) 129 T ELT)) (-1592 (((-3 (-578 $) #2="failed") (-578 $) $) 65 T ELT)) (-2515 (($ $ $) 122 T ELT) (($) 140 (-12 (-2544 (|has| $ (-6 -3970))) (-2544 (|has| $ (-6 -3962)))) ELT)) (-2841 (($ $ $) 123 T ELT) (($) 139 (-12 (-2544 (|has| $ (-6 -3970))) (-2544 (|has| $ (-6 -3962)))) ELT)) (-1757 (((-478) $) 149 T ELT)) (-1878 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 85 T ELT)) (-1754 (((-823) (-478)) 142 (|has| $ (-6 -3970)) ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 55 T ELT)) (-3127 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3111 (($ $) 104 T ELT)) (-3113 (($ $) 106 T ELT)) (-3237 (($ (-478) (-478)) 154 T ELT) (($ (-478) (-478) (-823)) 153 T ELT)) (-3716 (((-341 $) $) 89 T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-2387 (((-478) $) 150 T ELT)) (-1594 (((-687) $) 71 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 70 T ELT)) (-2599 (((-823)) 147 T ELT) (((-823) (-823)) 144 (|has| $ (-6 -3970)) ELT)) (-1753 (((-823) (-478)) 141 (|has| $ (-6 -3970)) ELT)) (-3956 (((-323) $) 121 T ELT) (((-177) $) 120 T ELT) (((-793 (-323)) $) 110 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT) (($ (-478)) 117 T ELT) (($ (-343 (-478))) 114 T ELT)) (-3109 (((-687)) 37 T CONST)) (-3114 (($ $) 107 T ELT)) (-1756 (((-823)) 148 T ELT) (((-823) (-823)) 145 (|has| $ (-6 -3970)) ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2678 (((-823)) 151 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-3367 (($ $) 131 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2550 (((-83) $ $) 124 T ELT)) (-2551 (((-83) $ $) 126 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 125 T ELT)) (-2669 (((-83) $ $) 127 T ELT)) (-3933 (($ $ $) 80 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT) (($ $ (-343 (-478))) 111 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT))) +(((-340) (-111)) (T -340)) +((-3237 (*1 *1 *2 *2) (-12 (-5 *2 (-478)) (-4 *1 (-340)))) (-3237 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-478)) (-5 *3 (-823)) (-4 *1 (-340)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-478)))) (-2678 (*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-823)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-478)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-478)))) (-1756 (*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-823)))) (-2599 (*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-823)))) (-1755 (*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-823)))) (-1756 (*1 *2 *2) (-12 (-5 *2 (-823)) (|has| *1 (-6 -3970)) (-4 *1 (-340)))) (-2599 (*1 *2 *2) (-12 (-5 *2 (-823)) (|has| *1 (-6 -3970)) (-4 *1 (-340)))) (-1755 (*1 *2 *2) (-12 (-5 *2 (-823)) (|has| *1 (-6 -3970)) (-4 *1 (-340)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-478)) (|has| *1 (-6 -3970)) (-4 *1 (-340)) (-5 *2 (-823)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-478)) (|has| *1 (-6 -3970)) (-4 *1 (-340)) (-5 *2 (-823)))) (-2515 (*1 *1) (-12 (-4 *1 (-340)) (-2544 (|has| *1 (-6 -3970))) (-2544 (|has| *1 (-6 -3962))))) (-2841 (*1 *1) (-12 (-4 *1 (-340)) (-2544 (|has| *1 (-6 -3970))) (-2544 (|has| *1 (-6 -3962)))))) +(-13 (-965) (-10 -8 (-6 -3754) (-15 -3237 ($ (-478) (-478))) (-15 -3237 ($ (-478) (-478) (-823))) (-15 -3756 ((-478) $)) (-15 -2678 ((-823))) (-15 -2387 ((-478) $)) (-15 -1757 ((-478) $)) (-15 -1756 ((-823))) (-15 -2599 ((-823))) (-15 -1755 ((-823))) (IF (|has| $ (-6 -3970)) (PROGN (-15 -1756 ((-823) (-823))) (-15 -2599 ((-823) (-823))) (-15 -1755 ((-823) (-823))) (-15 -1754 ((-823) (-478))) (-15 -1753 ((-823) (-478)))) |%noBranch|) (IF (|has| $ (-6 -3962)) |%noBranch| (IF (|has| $ (-6 -3970)) |%noBranch| (PROGN (-15 -2515 ($)) (-15 -2841 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-548 (-177)) . T) ((-548 (-323)) . T) ((-548 (-793 (-323))) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-385) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 $) . T) ((-649 (-343 (-478))) . T) ((-649 $) . T) ((-658) . T) ((-707) . T) ((-709) . T) ((-711) . T) ((-714) . T) ((-748) . T) ((-749) . T) ((-752) . T) ((-789 (-323)) . T) ((-825) . T) ((-908) . T) ((-926) . T) ((-965) . T) ((-943 (-343 (-478))) . T) ((-943 (-478)) . T) ((-956 (-343 (-478))) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T) ((-1123) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 59 T ELT)) (-1758 (($ $) 77 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 190 T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) 48 T ELT)) (-1759 ((|#1| $) 16 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL (|has| |#1| (-1123)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-1123)) ELT)) (-1761 (($ |#1| (-478)) 42 T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 148 T ELT)) (-3139 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 73 T ELT)) (-3451 (((-3 $ #1#) $) 164 T ELT)) (-3008 (((-3 (-343 (-478)) #1#) $) 84 (|has| |#1| (-477)) ELT)) (-3007 (((-83) $) 80 (|has| |#1| (-477)) ELT)) (-3006 (((-343 (-478)) $) 91 (|has| |#1| (-477)) ELT)) (-1762 (($ |#1| (-478)) 44 T ELT)) (-3707 (((-83) $) 210 (|has| |#1| (-1123)) ELT)) (-2396 (((-83) $) 61 T ELT)) (-1821 (((-687) $) 51 T ELT)) (-1763 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-478)) 175 T ELT)) (-2285 ((|#1| $ (-478)) 174 T ELT)) (-1764 (((-478) $ (-478)) 173 T ELT)) (-1767 (($ |#1| (-478)) 41 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 183 T ELT)) (-1818 (($ |#1| (-578 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-478))))) 78 T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1765 (($ |#1| (-478)) 43 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-385)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) 191 (|has| |#1| (-385)) ELT)) (-1760 (($ |#1| (-478) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1766 (((-578 (-2 (|:| -3716 |#1|) (|:| -2387 (-478)))) $) 72 T ELT)) (-1939 (((-578 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-478)))) $) 12 T ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-1123)) ELT)) (-3450 (((-3 $ #1#) $ $) 176 T ELT)) (-2387 (((-478) $) 167 T ELT)) (-3947 ((|#1| $) 74 T ELT)) (-3752 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-245 |#1|))) 100 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-1079)) (-578 |#1|)) 106 (|has| |#1| (-447 (-1079) |#1|)) ELT) (($ $ (-1079) |#1|) NIL (|has| |#1| (-447 (-1079) |#1|)) ELT) (($ $ (-1079) $) NIL (|has| |#1| (-447 (-1079) $)) ELT) (($ $ (-578 (-1079)) (-578 $)) 107 (|has| |#1| (-447 (-1079) $)) ELT) (($ $ (-578 (-245 $))) 103 (|has| |#1| (-256 $)) ELT) (($ $ (-245 $)) NIL (|has| |#1| (-256 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-256 $)) ELT) (($ $ (-578 $) (-578 $)) NIL (|has| |#1| (-256 $)) ELT)) (-3784 (($ $ |#1|) 92 (|has| |#1| (-238 |#1| |#1|)) ELT) (($ $ $) 93 (|has| |#1| (-238 $ $)) ELT)) (-3742 (($ $ (-1 |#1| |#1|)) 182 T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT) (($ $ (-1079)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-804 (-1079))) ELT)) (-3956 (((-467) $) 39 (|has| |#1| (-548 (-467))) ELT) (((-323) $) 113 (|has| |#1| (-926)) ELT) (((-177) $) 119 (|has| |#1| (-926)) ELT)) (-3930 (((-765) $) 146 T ELT) (($ (-478)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-943 (-343 (-478)))) ELT)) (-3109 (((-687)) 66 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-2644 (($) 53 T CONST)) (-2650 (($) 52 T CONST)) (-2653 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT) (($ $ (-1079)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-804 (-1079))) ELT)) (-3037 (((-83) $ $) 159 T ELT)) (-3821 (($ $) 161 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 180 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 125 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) +(((-341 |#1|) (-13 (-489) (-182 |#1|) (-38 |#1|) (-284 |#1|) (-348 |#1|) (-10 -8 (-15 -3947 (|#1| $)) (-15 -2387 ((-478) $)) (-15 -1818 ($ |#1| (-578 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-478)))))) (-15 -1939 ((-578 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-478)))) $)) (-15 -1767 ($ |#1| (-478))) (-15 -1766 ((-578 (-2 (|:| -3716 |#1|) (|:| -2387 (-478)))) $)) (-15 -1765 ($ |#1| (-478))) (-15 -1764 ((-478) $ (-478))) (-15 -2285 (|#1| $ (-478))) (-15 -1763 ((-3 #1# #2# #3# #4#) $ (-478))) (-15 -1821 ((-687) $)) (-15 -1762 ($ |#1| (-478))) (-15 -1761 ($ |#1| (-478))) (-15 -1760 ($ |#1| (-478) (-3 #1# #2# #3# #4#))) (-15 -1759 (|#1| $)) (-15 -1758 ($ $)) (-15 -3942 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-385)) (-6 (-385)) |%noBranch|) (IF (|has| |#1| (-926)) (-6 (-926)) |%noBranch|) (IF (|has| |#1| (-1123)) (-6 (-1123)) |%noBranch|) (IF (|has| |#1| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|) (IF (|has| |#1| (-477)) (PROGN (-15 -3007 ((-83) $)) (-15 -3006 ((-343 (-478)) $)) (-15 -3008 ((-3 (-343 (-478)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-238 $ $)) (-6 (-238 $ $)) |%noBranch|) (IF (|has| |#1| (-256 $)) (-6 (-256 $)) |%noBranch|) (IF (|has| |#1| (-447 (-1079) $)) (-6 (-447 (-1079) $)) |%noBranch|))) (-489)) (T -341)) +((-3942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-489)) (-5 *1 (-341 *3)))) (-3947 (*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-489)))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-341 *3)) (-4 *3 (-489)))) (-1818 (*1 *1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-478))))) (-4 *2 (-489)) (-5 *1 (-341 *2)))) (-1939 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-478))))) (-5 *1 (-341 *3)) (-4 *3 (-489)))) (-1767 (*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489)))) (-1766 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3716 *3) (|:| -2387 (-478))))) (-5 *1 (-341 *3)) (-4 *3 (-489)))) (-1765 (*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489)))) (-1764 (*1 *2 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-341 *3)) (-4 *3 (-489)))) (-2285 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489)))) (-1763 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-341 *4)) (-4 *4 (-489)))) (-1821 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-341 *3)) (-4 *3 (-489)))) (-1762 (*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489)))) (-1761 (*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489)))) (-1760 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-478)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-341 *2)) (-4 *2 (-489)))) (-1759 (*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-489)))) (-1758 (*1 *1 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-489)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-341 *3)) (-4 *3 (-477)) (-4 *3 (-489)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-341 *3)) (-4 *3 (-477)) (-4 *3 (-489)))) (-3008 (*1 *2 *1) (|partial| -12 (-5 *2 (-343 (-478))) (-5 *1 (-341 *3)) (-4 *3 (-477)) (-4 *3 (-489))))) +((-3942 (((-341 |#2|) (-1 |#2| |#1|) (-341 |#1|)) 20 T ELT))) +(((-342 |#1| |#2|) (-10 -7 (-15 -3942 ((-341 |#2|) (-1 |#2| |#1|) (-341 |#1|)))) (-489) (-489)) (T -342)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-341 *5)) (-4 *5 (-489)) (-4 *6 (-489)) (-5 *2 (-341 *6)) (-5 *1 (-342 *5 *6))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 13 T ELT)) (-3112 ((|#1| $) 21 (|has| |#1| (-254)) ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3607 (((-478) $) NIL (|has| |#1| (-733)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1079) #1#) $) NIL (|has| |#1| (-943 (-1079))) ELT) (((-3 (-343 (-478)) #1#) $) 54 (|has| |#1| (-943 (-478))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT)) (-3139 ((|#1| $) 15 T ELT) (((-1079) $) NIL (|has| |#1| (-943 (-1079))) ELT) (((-343 (-478)) $) 51 (|has| |#1| (-943 (-478))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) 32 T ELT)) (-2978 (($) NIL (|has| |#1| (-477)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-3169 (((-83) $) NIL (|has| |#1| (-733)) ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| |#1| (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| |#1| (-789 (-323))) ELT)) (-2396 (((-83) $) 38 T ELT)) (-2980 (($ $) NIL T ELT)) (-2982 ((|#1| $) 55 T ELT)) (-3429 (((-627 $) $) NIL (|has| |#1| (-1055)) ELT)) (-3170 (((-83) $) 22 (|has| |#1| (-733)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) NIL T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3430 (($) NIL (|has| |#1| (-1055)) CONST)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 82 T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3111 (($ $) NIL (|has| |#1| (-254)) ELT)) (-3113 ((|#1| $) 26 (|has| |#1| (-477)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) 135 (|has| |#1| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) 128 (|has| |#1| (-814)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-3752 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-245 |#1|))) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-1079)) (-578 |#1|)) NIL (|has| |#1| (-447 (-1079) |#1|)) ELT) (($ $ (-1079) |#1|) NIL (|has| |#1| (-447 (-1079) |#1|)) ELT)) (-1594 (((-687) $) NIL T ELT)) (-3784 (($ $ |#1|) NIL (|has| |#1| (-238 |#1| |#1|)) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-3742 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT)) (-2979 (($ $) NIL T ELT)) (-2981 ((|#1| $) 57 T ELT)) (-3956 (((-793 (-478)) $) NIL (|has| |#1| (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| |#1| (-548 (-793 (-323)))) ELT) (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT) (((-323) $) NIL (|has| |#1| (-926)) ELT) (((-177) $) NIL (|has| |#1| (-926)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) 112 (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1079)) NIL (|has| |#1| (-943 (-1079))) ELT)) (-2686 (((-627 $) $) 92 (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3109 (((-687)) 93 T CONST)) (-3114 ((|#1| $) 24 (|has| |#1| (-477)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3367 (($ $) NIL (|has| |#1| (-733)) ELT)) (-2644 (($) 28 T CONST)) (-2650 (($) 8 T CONST)) (-2653 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT)) (-2550 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 48 T ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3933 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3821 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3823 (($ $ $) 35 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 122 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) +(((-343 |#1|) (-13 (-897 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3966)) (IF (|has| |#1| (-385)) (IF (|has| |#1| (-6 -3977)) (-6 -3966) |%noBranch|) |%noBranch|) |%noBranch|))) (-489)) (T -343)) +NIL +((-3942 (((-343 |#2|) (-1 |#2| |#1|) (-343 |#1|)) 13 T ELT))) +(((-344 |#1| |#2|) (-10 -7 (-15 -3942 ((-343 |#2|) (-1 |#2| |#1|) (-343 |#1|)))) (-489) (-489)) (T -344)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-343 *5)) (-4 *5 (-489)) (-4 *6 (-489)) (-5 *2 (-343 *6)) (-5 *1 (-344 *5 *6))))) +((-1769 (((-625 |#2|) (-1168 $)) NIL T ELT) (((-625 |#2|)) 18 T ELT)) (-1779 (($ (-1168 |#2|) (-1168 $)) NIL T ELT) (($ (-1168 |#2|)) 24 T ELT)) (-1768 (((-625 |#2|) $ (-1168 $)) NIL T ELT) (((-625 |#2|) $) 40 T ELT)) (-2000 ((|#3| $) 69 T ELT)) (-3741 ((|#2| (-1168 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3207 (((-1168 |#2|) $ (-1168 $)) NIL T ELT) (((-625 |#2|) (-1168 $) (-1168 $)) NIL T ELT) (((-1168 |#2|) $) 22 T ELT) (((-625 |#2|) (-1168 $)) 38 T ELT)) (-3956 (((-1168 |#2|) $) 11 T ELT) (($ (-1168 |#2|)) 13 T ELT)) (-2433 ((|#3| $) 55 T ELT))) +(((-345 |#1| |#2| |#3|) (-10 -7 (-15 -1768 ((-625 |#2|) |#1|)) (-15 -3741 (|#2|)) (-15 -1769 ((-625 |#2|))) (-15 -3956 (|#1| (-1168 |#2|))) (-15 -3956 ((-1168 |#2|) |#1|)) (-15 -1779 (|#1| (-1168 |#2|))) (-15 -3207 ((-625 |#2|) (-1168 |#1|))) (-15 -3207 ((-1168 |#2|) |#1|)) (-15 -2000 (|#3| |#1|)) (-15 -2433 (|#3| |#1|)) (-15 -1769 ((-625 |#2|) (-1168 |#1|))) (-15 -3741 (|#2| (-1168 |#1|))) (-15 -1779 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -3207 ((-625 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -3207 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -1768 ((-625 |#2|) |#1| (-1168 |#1|)))) (-346 |#2| |#3|) (-144) (-1144 |#2|)) (T -345)) +((-1769 (*1 *2) (-12 (-4 *4 (-144)) (-4 *5 (-1144 *4)) (-5 *2 (-625 *4)) (-5 *1 (-345 *3 *4 *5)) (-4 *3 (-346 *4 *5)))) (-3741 (*1 *2) (-12 (-4 *4 (-1144 *2)) (-4 *2 (-144)) (-5 *1 (-345 *3 *2 *4)) (-4 *3 (-346 *2 *4))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1769 (((-625 |#1|) (-1168 $)) 58 T ELT) (((-625 |#1|)) 74 T ELT)) (-3314 ((|#1| $) 64 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-1779 (($ (-1168 |#1|) (-1168 $)) 60 T ELT) (($ (-1168 |#1|)) 77 T ELT)) (-1768 (((-625 |#1|) $ (-1168 $)) 65 T ELT) (((-625 |#1|) $) 72 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3092 (((-823)) 66 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3115 ((|#1| $) 63 T ELT)) (-2000 ((|#2| $) 56 (|has| |#1| (-308)) ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3741 ((|#1| (-1168 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-3207 (((-1168 |#1|) $ (-1168 $)) 62 T ELT) (((-625 |#1|) (-1168 $) (-1168 $)) 61 T ELT) (((-1168 |#1|) $) 79 T ELT) (((-625 |#1|) (-1168 $)) 78 T ELT)) (-3956 (((-1168 |#1|) $) 76 T ELT) (($ (-1168 |#1|)) 75 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 49 T ELT)) (-2686 (((-627 $) $) 55 (|has| |#1| (-116)) ELT)) (-2433 ((|#2| $) 57 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-1998 (((-1168 $)) 80 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +(((-346 |#1| |#2|) (-111) (-144) (-1144 |t#1|)) (T -346)) +((-1998 (*1 *2) (-12 (-4 *3 (-144)) (-4 *4 (-1144 *3)) (-5 *2 (-1168 *1)) (-4 *1 (-346 *3 *4)))) (-3207 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1144 *3)) (-5 *2 (-1168 *3)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1144 *4)) (-5 *2 (-625 *4)))) (-1779 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-144)) (-4 *1 (-346 *3 *4)) (-4 *4 (-1144 *3)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1144 *3)) (-5 *2 (-1168 *3)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-144)) (-4 *1 (-346 *3 *4)) (-4 *4 (-1144 *3)))) (-1769 (*1 *2) (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1144 *3)) (-5 *2 (-625 *3)))) (-3741 (*1 *2) (-12 (-4 *1 (-346 *2 *3)) (-4 *3 (-1144 *2)) (-4 *2 (-144)))) (-1768 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1144 *3)) (-5 *2 (-625 *3))))) +(-13 (-315 |t#1| |t#2|) (-10 -8 (-15 -1998 ((-1168 $))) (-15 -3207 ((-1168 |t#1|) $)) (-15 -3207 ((-625 |t#1|) (-1168 $))) (-15 -1779 ($ (-1168 |t#1|))) (-15 -3956 ((-1168 |t#1|) $)) (-15 -3956 ($ (-1168 |t#1|))) (-15 -1769 ((-625 |t#1|))) (-15 -3741 (|t#1|)) (-15 -1768 ((-625 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-315 |#1| |#2|) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 |#1|) . T) ((-649 |#1|) . T) ((-658) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-3140 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) 27 T ELT) (((-3 (-478) #1#) $) 19 T ELT)) (-3139 ((|#2| $) NIL T ELT) (((-343 (-478)) $) 24 T ELT) (((-478) $) 14 T ELT)) (-3930 (($ |#2|) NIL T ELT) (($ (-343 (-478))) 22 T ELT) (($ (-478)) 11 T ELT))) +(((-347 |#1| |#2|) (-10 -7 (-15 -3930 (|#1| (-478))) (-15 -3140 ((-3 (-478) #1="failed") |#1|)) (-15 -3139 ((-478) |#1|)) (-15 -3930 (|#1| (-343 (-478)))) (-15 -3140 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3139 ((-343 (-478)) |#1|)) (-15 -3139 (|#2| |#1|)) (-15 -3140 ((-3 |#2| #1#) |#1|)) (-15 -3930 (|#1| |#2|))) (-348 |#2|) (-1118)) (T -347)) +NIL +((-3140 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-343 (-478)) #1#) $) 16 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) 13 (|has| |#1| (-943 (-478))) ELT)) (-3139 ((|#1| $) 8 T ELT) (((-343 (-478)) $) 17 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) 14 (|has| |#1| (-943 (-478))) ELT)) (-3930 (($ |#1|) 6 T ELT) (($ (-343 (-478))) 15 (|has| |#1| (-943 (-343 (-478)))) ELT) (($ (-478)) 12 (|has| |#1| (-943 (-478))) ELT))) +(((-348 |#1|) (-111) (-1118)) (T -348)) +NIL +(-13 (-943 |t#1|) (-10 -7 (IF (|has| |t#1| (-943 (-478))) (-6 (-943 (-478))) |%noBranch|) (IF (|has| |t#1| (-943 (-343 (-478)))) (-6 (-943 (-343 (-478)))) |%noBranch|))) +(((-550 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-550 (-478)) |has| |#1| (-943 (-478))) ((-550 |#1|) . T) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) NIL T ELT)) (-1770 ((|#4| (-687) (-1168 |#4|)) 55 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2982 (((-1168 |#4|) $) 15 T ELT)) (-3115 ((|#2| $) 53 T ELT)) (-1771 (($ $) 156 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) 103 T ELT)) (-1956 (($ (-1168 |#4|)) 102 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2981 ((|#1| $) 16 T ELT)) (-2993 (($ $ $) NIL T ELT)) (-2419 (($ $ $) NIL T ELT)) (-3930 (((-765) $) 147 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 |#4|) $) 140 T ELT)) (-2650 (($) 11 T CONST)) (-3037 (((-83) $ $) 39 T ELT)) (-3933 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 133 T ELT)) (* (($ $ $) 130 T ELT))) +(((-349 |#1| |#2| |#3| |#4|) (-13 (-406) (-10 -8 (-15 -1956 ($ (-1168 |#4|))) (-15 -1998 ((-1168 |#4|) $)) (-15 -3115 (|#2| $)) (-15 -2982 ((-1168 |#4|) $)) (-15 -2981 (|#1| $)) (-15 -1771 ($ $)) (-15 -1770 (|#4| (-687) (-1168 |#4|))))) (-254) (-897 |#1|) (-1144 |#2|) (-13 (-346 |#2| |#3|) (-943 |#2|))) (T -349)) +((-1956 (*1 *1 *2) (-12 (-5 *2 (-1168 *6)) (-4 *6 (-13 (-346 *4 *5) (-943 *4))) (-4 *4 (-897 *3)) (-4 *5 (-1144 *4)) (-4 *3 (-254)) (-5 *1 (-349 *3 *4 *5 *6)))) (-1998 (*1 *2 *1) (-12 (-4 *3 (-254)) (-4 *4 (-897 *3)) (-4 *5 (-1144 *4)) (-5 *2 (-1168 *6)) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *6 (-13 (-346 *4 *5) (-943 *4))))) (-3115 (*1 *2 *1) (-12 (-4 *4 (-1144 *2)) (-4 *2 (-897 *3)) (-5 *1 (-349 *3 *2 *4 *5)) (-4 *3 (-254)) (-4 *5 (-13 (-346 *2 *4) (-943 *2))))) (-2982 (*1 *2 *1) (-12 (-4 *3 (-254)) (-4 *4 (-897 *3)) (-4 *5 (-1144 *4)) (-5 *2 (-1168 *6)) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *6 (-13 (-346 *4 *5) (-943 *4))))) (-2981 (*1 *2 *1) (-12 (-4 *3 (-897 *2)) (-4 *4 (-1144 *3)) (-4 *2 (-254)) (-5 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-13 (-346 *3 *4) (-943 *3))))) (-1771 (*1 *1 *1) (-12 (-4 *2 (-254)) (-4 *3 (-897 *2)) (-4 *4 (-1144 *3)) (-5 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-13 (-346 *3 *4) (-943 *3))))) (-1770 (*1 *2 *3 *4) (-12 (-5 *3 (-687)) (-5 *4 (-1168 *2)) (-4 *5 (-254)) (-4 *6 (-897 *5)) (-4 *2 (-13 (-346 *6 *7) (-943 *6))) (-5 *1 (-349 *5 *6 *7 *2)) (-4 *7 (-1144 *6))))) +((-3942 (((-349 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-349 |#1| |#2| |#3| |#4|)) 35 T ELT))) +(((-350 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3942 ((-349 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-349 |#1| |#2| |#3| |#4|)))) (-254) (-897 |#1|) (-1144 |#2|) (-13 (-346 |#2| |#3|) (-943 |#2|)) (-254) (-897 |#5|) (-1144 |#6|) (-13 (-346 |#6| |#7|) (-943 |#6|))) (T -350)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-349 *5 *6 *7 *8)) (-4 *5 (-254)) (-4 *6 (-897 *5)) (-4 *7 (-1144 *6)) (-4 *8 (-13 (-346 *6 *7) (-943 *6))) (-4 *9 (-254)) (-4 *10 (-897 *9)) (-4 *11 (-1144 *10)) (-5 *2 (-349 *9 *10 *11 *12)) (-5 *1 (-350 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-346 *10 *11) (-943 *10)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-3115 ((|#2| $) 71 T ELT)) (-1772 (($ (-1168 |#4|)) 27 T ELT) (($ (-349 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-943 |#2|)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 37 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 |#4|) $) 28 T ELT)) (-2650 (($) 25 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ $ $) 82 T ELT))) +(((-351 |#1| |#2| |#3| |#4| |#5|) (-13 (-658) (-10 -8 (-15 -1998 ((-1168 |#4|) $)) (-15 -3115 (|#2| $)) (-15 -1772 ($ (-1168 |#4|))) (IF (|has| |#4| (-943 |#2|)) (-15 -1772 ($ (-349 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-254) (-897 |#1|) (-1144 |#2|) (-346 |#2| |#3|) (-1168 |#4|)) (T -351)) +((-1998 (*1 *2 *1) (-12 (-4 *3 (-254)) (-4 *4 (-897 *3)) (-4 *5 (-1144 *4)) (-5 *2 (-1168 *6)) (-5 *1 (-351 *3 *4 *5 *6 *7)) (-4 *6 (-346 *4 *5)) (-14 *7 *2))) (-3115 (*1 *2 *1) (-12 (-4 *4 (-1144 *2)) (-4 *2 (-897 *3)) (-5 *1 (-351 *3 *2 *4 *5 *6)) (-4 *3 (-254)) (-4 *5 (-346 *2 *4)) (-14 *6 (-1168 *5)))) (-1772 (*1 *1 *2) (-12 (-5 *2 (-1168 *6)) (-4 *6 (-346 *4 *5)) (-4 *4 (-897 *3)) (-4 *5 (-1144 *4)) (-4 *3 (-254)) (-5 *1 (-351 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1772 (*1 *1 *2) (-12 (-5 *2 (-349 *3 *4 *5 *6)) (-4 *6 (-943 *4)) (-4 *3 (-254)) (-4 *4 (-897 *3)) (-4 *5 (-1144 *4)) (-4 *6 (-346 *4 *5)) (-14 *7 (-1168 *6)) (-5 *1 (-351 *3 *4 *5 *6 *7))))) +((-3942 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) +(((-352 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3942 (|#3| (-1 |#4| |#2|) |#1|))) (-354 |#2|) (-144) (-354 |#4|) (-144)) (T -352)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-354 *6)) (-5 *1 (-352 *4 *5 *2 *6)) (-4 *4 (-354 *5))))) +((-1759 (((-3 $ #1="failed")) 99 T ELT)) (-3206 (((-1168 (-625 |#2|)) (-1168 $)) NIL T ELT) (((-1168 (-625 |#2|))) 104 T ELT)) (-1893 (((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) #1#)) 97 T ELT)) (-1690 (((-3 $ #1#)) 96 T ELT)) (-1775 (((-625 |#2|) (-1168 $)) NIL T ELT) (((-625 |#2|)) 115 T ELT)) (-1773 (((-625 |#2|) $ (-1168 $)) NIL T ELT) (((-625 |#2|) $) 123 T ELT)) (-1887 (((-1074 (-850 |#2|))) 64 T ELT)) (-1777 ((|#2| (-1168 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1779 (($ (-1168 |#2|) (-1168 $)) NIL T ELT) (($ (-1168 |#2|)) 125 T ELT)) (-1894 (((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) #1#)) 95 T ELT)) (-1691 (((-3 $ #1#)) 87 T ELT)) (-1776 (((-625 |#2|) (-1168 $)) NIL T ELT) (((-625 |#2|)) 113 T ELT)) (-1774 (((-625 |#2|) $ (-1168 $)) NIL T ELT) (((-625 |#2|) $) 121 T ELT)) (-1891 (((-1074 (-850 |#2|))) 63 T ELT)) (-1778 ((|#2| (-1168 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3207 (((-1168 |#2|) $ (-1168 $)) NIL T ELT) (((-625 |#2|) (-1168 $) (-1168 $)) NIL T ELT) (((-1168 |#2|) $) 124 T ELT) (((-625 |#2|) (-1168 $)) 133 T ELT)) (-3956 (((-1168 |#2|) $) 109 T ELT) (($ (-1168 |#2|)) 111 T ELT)) (-1879 (((-578 (-850 |#2|)) (-1168 $)) NIL T ELT) (((-578 (-850 |#2|))) 107 T ELT)) (-2529 (($ (-625 |#2|) $) 103 T ELT))) +(((-353 |#1| |#2|) (-10 -7 (-15 -2529 (|#1| (-625 |#2|) |#1|)) (-15 -1887 ((-1074 (-850 |#2|)))) (-15 -1891 ((-1074 (-850 |#2|)))) (-15 -1773 ((-625 |#2|) |#1|)) (-15 -1774 ((-625 |#2|) |#1|)) (-15 -1775 ((-625 |#2|))) (-15 -1776 ((-625 |#2|))) (-15 -1777 (|#2|)) (-15 -1778 (|#2|)) (-15 -3956 (|#1| (-1168 |#2|))) (-15 -3956 ((-1168 |#2|) |#1|)) (-15 -1779 (|#1| (-1168 |#2|))) (-15 -1879 ((-578 (-850 |#2|)))) (-15 -3206 ((-1168 (-625 |#2|)))) (-15 -3207 ((-625 |#2|) (-1168 |#1|))) (-15 -3207 ((-1168 |#2|) |#1|)) (-15 -1759 ((-3 |#1| #1="failed"))) (-15 -1690 ((-3 |#1| #1#))) (-15 -1691 ((-3 |#1| #1#))) (-15 -1893 ((-3 (-2 (|:| |particular| |#1|) (|:| -1998 (-578 |#1|))) #1#))) (-15 -1894 ((-3 (-2 (|:| |particular| |#1|) (|:| -1998 (-578 |#1|))) #1#))) (-15 -1775 ((-625 |#2|) (-1168 |#1|))) (-15 -1776 ((-625 |#2|) (-1168 |#1|))) (-15 -1777 (|#2| (-1168 |#1|))) (-15 -1778 (|#2| (-1168 |#1|))) (-15 -1779 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -3207 ((-625 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -3207 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -1773 ((-625 |#2|) |#1| (-1168 |#1|))) (-15 -1774 ((-625 |#2|) |#1| (-1168 |#1|))) (-15 -3206 ((-1168 (-625 |#2|)) (-1168 |#1|))) (-15 -1879 ((-578 (-850 |#2|)) (-1168 |#1|)))) (-354 |#2|) (-144)) (T -353)) +((-3206 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-1168 (-625 *4))) (-5 *1 (-353 *3 *4)) (-4 *3 (-354 *4)))) (-1879 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-578 (-850 *4))) (-5 *1 (-353 *3 *4)) (-4 *3 (-354 *4)))) (-1778 (*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-353 *3 *2)) (-4 *3 (-354 *2)))) (-1777 (*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-353 *3 *2)) (-4 *3 (-354 *2)))) (-1776 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-625 *4)) (-5 *1 (-353 *3 *4)) (-4 *3 (-354 *4)))) (-1775 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-625 *4)) (-5 *1 (-353 *3 *4)) (-4 *3 (-354 *4)))) (-1891 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-1074 (-850 *4))) (-5 *1 (-353 *3 *4)) (-4 *3 (-354 *4)))) (-1887 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-1074 (-850 *4))) (-5 *1 (-353 *3 *4)) (-4 *3 (-354 *4))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1759 (((-3 $ #1="failed")) 47 (|has| |#1| (-489)) ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3206 (((-1168 (-625 |#1|)) (-1168 $)) 88 T ELT) (((-1168 (-625 |#1|))) 114 T ELT)) (-1716 (((-1168 $)) 91 T ELT)) (-3708 (($) 22 T CONST)) (-1893 (((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) #1#)) 50 (|has| |#1| (-489)) ELT)) (-1690 (((-3 $ #1#)) 48 (|has| |#1| (-489)) ELT)) (-1775 (((-625 |#1|) (-1168 $)) 75 T ELT) (((-625 |#1|)) 106 T ELT)) (-1714 ((|#1| $) 84 T ELT)) (-1773 (((-625 |#1|) $ (-1168 $)) 86 T ELT) (((-625 |#1|) $) 104 T ELT)) (-2390 (((-3 $ #1#) $) 55 (|has| |#1| (-489)) ELT)) (-1887 (((-1074 (-850 |#1|))) 102 (|has| |#1| (-308)) ELT)) (-2393 (($ $ (-823)) 36 T ELT)) (-1712 ((|#1| $) 82 T ELT)) (-1692 (((-1074 |#1|) $) 52 (|has| |#1| (-489)) ELT)) (-1777 ((|#1| (-1168 $)) 77 T ELT) ((|#1|) 108 T ELT)) (-1710 (((-1074 |#1|) $) 73 T ELT)) (-1704 (((-83)) 67 T ELT)) (-1779 (($ (-1168 |#1|) (-1168 $)) 79 T ELT) (($ (-1168 |#1|)) 112 T ELT)) (-3451 (((-3 $ #1#) $) 57 (|has| |#1| (-489)) ELT)) (-3092 (((-823)) 90 T ELT)) (-1701 (((-83)) 64 T ELT)) (-2417 (($ $ (-823)) 43 T ELT)) (-1697 (((-83)) 60 T ELT)) (-1695 (((-83)) 58 T ELT)) (-1699 (((-83)) 62 T ELT)) (-1894 (((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) #1#)) 51 (|has| |#1| (-489)) ELT)) (-1691 (((-3 $ #1#)) 49 (|has| |#1| (-489)) ELT)) (-1776 (((-625 |#1|) (-1168 $)) 76 T ELT) (((-625 |#1|)) 107 T ELT)) (-1715 ((|#1| $) 85 T ELT)) (-1774 (((-625 |#1|) $ (-1168 $)) 87 T ELT) (((-625 |#1|) $) 105 T ELT)) (-2391 (((-3 $ #1#) $) 56 (|has| |#1| (-489)) ELT)) (-1891 (((-1074 (-850 |#1|))) 103 (|has| |#1| (-308)) ELT)) (-2392 (($ $ (-823)) 37 T ELT)) (-1713 ((|#1| $) 83 T ELT)) (-1693 (((-1074 |#1|) $) 53 (|has| |#1| (-489)) ELT)) (-1778 ((|#1| (-1168 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1711 (((-1074 |#1|) $) 74 T ELT)) (-1705 (((-83)) 68 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-1696 (((-83)) 59 T ELT)) (-1698 (((-83)) 61 T ELT)) (-1700 (((-83)) 63 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-1703 (((-83)) 66 T ELT)) (-3784 ((|#1| $ (-478)) 118 T ELT)) (-3207 (((-1168 |#1|) $ (-1168 $)) 81 T ELT) (((-625 |#1|) (-1168 $) (-1168 $)) 80 T ELT) (((-1168 |#1|) $) 116 T ELT) (((-625 |#1|) (-1168 $)) 115 T ELT)) (-3956 (((-1168 |#1|) $) 111 T ELT) (($ (-1168 |#1|)) 110 T ELT)) (-1879 (((-578 (-850 |#1|)) (-1168 $)) 89 T ELT) (((-578 (-850 |#1|))) 113 T ELT)) (-2419 (($ $ $) 33 T ELT)) (-1709 (((-83)) 72 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-1998 (((-1168 $)) 117 T ELT)) (-1694 (((-578 (-1168 |#1|))) 54 (|has| |#1| (-489)) ELT)) (-2420 (($ $ $ $) 34 T ELT)) (-1707 (((-83)) 70 T ELT)) (-2529 (($ (-625 |#1|) $) 101 T ELT)) (-2418 (($ $ $) 32 T ELT)) (-1708 (((-83)) 71 T ELT)) (-1706 (((-83)) 69 T ELT)) (-1702 (((-83)) 65 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 38 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) +(((-354 |#1|) (-111) (-144)) (T -354)) +((-1998 (*1 *2) (-12 (-4 *3 (-144)) (-5 *2 (-1168 *1)) (-4 *1 (-354 *3)))) (-3207 (*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-1168 *3)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-354 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) (-3206 (*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-1168 (-625 *3))))) (-1879 (*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-578 (-850 *3))))) (-1779 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-144)) (-4 *1 (-354 *3)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-1168 *3)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-144)) (-4 *1 (-354 *3)))) (-1778 (*1 *2) (-12 (-4 *1 (-354 *2)) (-4 *2 (-144)))) (-1777 (*1 *2) (-12 (-4 *1 (-354 *2)) (-4 *2 (-144)))) (-1776 (*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-625 *3)))) (-1775 (*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-625 *3)))) (-1774 (*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-625 *3)))) (-1773 (*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-625 *3)))) (-1891 (*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-4 *3 (-308)) (-5 *2 (-1074 (-850 *3))))) (-1887 (*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-4 *3 (-308)) (-5 *2 (-1074 (-850 *3))))) (-2529 (*1 *1 *2 *1) (-12 (-5 *2 (-625 *3)) (-4 *1 (-354 *3)) (-4 *3 (-144))))) +(-13 (-312 |t#1|) (-238 (-478) |t#1|) (-10 -8 (-15 -1998 ((-1168 $))) (-15 -3207 ((-1168 |t#1|) $)) (-15 -3207 ((-625 |t#1|) (-1168 $))) (-15 -3206 ((-1168 (-625 |t#1|)))) (-15 -1879 ((-578 (-850 |t#1|)))) (-15 -1779 ($ (-1168 |t#1|))) (-15 -3956 ((-1168 |t#1|) $)) (-15 -3956 ($ (-1168 |t#1|))) (-15 -1778 (|t#1|)) (-15 -1777 (|t#1|)) (-15 -1776 ((-625 |t#1|))) (-15 -1775 ((-625 |t#1|))) (-15 -1774 ((-625 |t#1|) $)) (-15 -1773 ((-625 |t#1|) $)) (IF (|has| |t#1| (-308)) (PROGN (-15 -1891 ((-1074 (-850 |t#1|)))) (-15 -1887 ((-1074 (-850 |t#1|))))) |%noBranch|) (-15 -2529 ($ (-625 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-547 (-765)) . T) ((-238 (-478) |#1|) . T) ((-312 |#1|) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) . T) ((-649 |#1|) . T) ((-652) . T) ((-676 |#1|) . T) ((-678) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-3117 (((-341 |#1|) (-341 |#1|) (-1 (-341 |#1|) |#1|)) 28 T ELT)) (-1780 (((-341 |#1|) (-341 |#1|) (-341 |#1|)) 17 T ELT))) +(((-355 |#1|) (-10 -7 (-15 -3117 ((-341 |#1|) (-341 |#1|) (-1 (-341 |#1|) |#1|))) (-15 -1780 ((-341 |#1|) (-341 |#1|) (-341 |#1|)))) (-489)) (T -355)) +((-1780 (*1 *2 *2 *2) (-12 (-5 *2 (-341 *3)) (-4 *3 (-489)) (-5 *1 (-355 *3)))) (-3117 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-341 *4) *4)) (-4 *4 (-489)) (-5 *2 (-341 *4)) (-5 *1 (-355 *4))))) +((-3065 (((-578 (-1079)) $) 81 T ELT)) (-3067 (((-343 (-1074 $)) $ (-545 $)) 313 T ELT)) (-1591 (($ $ (-245 $)) NIL T ELT) (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-578 (-545 $)) (-578 $)) 277 T ELT)) (-3140 (((-3 (-545 $) #1="failed") $) NIL T ELT) (((-3 (-1079) #1#) $) 84 T ELT) (((-3 (-478) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-343 (-850 |#2|)) #1#) $) 363 T ELT) (((-3 (-850 |#2|) #1#) $) 275 T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT)) (-3139 (((-545 $) $) NIL T ELT) (((-1079) $) 28 T ELT) (((-478) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-343 (-850 |#2|)) $) 345 T ELT) (((-850 |#2|) $) 272 T ELT) (((-343 (-478)) $) NIL T ELT)) (-3579 (((-84) (-84)) 47 T ELT)) (-2980 (($ $) 99 T ELT)) (-1589 (((-3 (-545 $) #1#) $) 268 T ELT)) (-1588 (((-578 (-545 $)) $) 269 T ELT)) (-2807 (((-3 (-578 $) #1#) $) 287 T ELT)) (-2809 (((-3 (-2 (|:| |val| $) (|:| -2387 (-478))) #1#) $) 294 T ELT)) (-2806 (((-3 (-578 $) #1#) $) 285 T ELT)) (-1781 (((-3 (-2 (|:| -3938 (-478)) (|:| |var| (-545 $))) #1#) $) 304 T ELT)) (-2808 (((-3 (-2 (|:| |var| (-545 $)) (|:| -2387 (-478))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-545 $)) (|:| -2387 (-478))) #1#) $ (-84)) 255 T ELT) (((-3 (-2 (|:| |var| (-545 $)) (|:| -2387 (-478))) #1#) $ (-1079)) 257 T ELT)) (-1784 (((-83) $) 17 T ELT)) (-1783 ((|#2| $) 19 T ELT)) (-3752 (($ $ (-545 $) $) NIL T ELT) (($ $ (-578 (-545 $)) (-578 $)) 276 T ELT) (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-1 $ $))) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-1 $ (-578 $)))) 109 T ELT) (($ $ (-1079) (-1 $ (-578 $))) NIL T ELT) (($ $ (-1079) (-1 $ $)) NIL T ELT) (($ $ (-578 (-84)) (-578 (-1 $ $))) NIL T ELT) (($ $ (-578 (-84)) (-578 (-1 $ (-578 $)))) NIL T ELT) (($ $ (-84) (-1 $ (-578 $))) NIL T ELT) (($ $ (-84) (-1 $ $)) NIL T ELT) (($ $ (-1079)) 62 T ELT) (($ $ (-578 (-1079))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-84) $ (-1079)) 65 T ELT) (($ $ (-578 (-84)) (-578 $) (-1079)) 72 T ELT) (($ $ (-578 (-1079)) (-578 (-687)) (-578 (-1 $ $))) 120 T ELT) (($ $ (-578 (-1079)) (-578 (-687)) (-578 (-1 $ (-578 $)))) 282 T ELT) (($ $ (-1079) (-687) (-1 $ (-578 $))) 105 T ELT) (($ $ (-1079) (-687) (-1 $ $)) 104 T ELT)) (-3784 (($ (-84) $) NIL T ELT) (($ (-84) $ $) NIL T ELT) (($ (-84) $ $ $) NIL T ELT) (($ (-84) $ $ $ $) NIL T ELT) (($ (-84) (-578 $)) 119 T ELT)) (-3742 (($ $ (-1079)) 278 T ELT) (($ $ (-578 (-1079))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT)) (-2979 (($ $) 324 T ELT)) (-3956 (((-793 (-478)) $) 297 T ELT) (((-793 (-323)) $) 301 T ELT) (($ (-341 $)) 359 T ELT) (((-467) $) NIL T ELT)) (-3930 (((-765) $) 279 T ELT) (($ (-545 $)) 93 T ELT) (($ (-1079)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1028 |#2| (-545 $))) NIL T ELT) (($ (-343 |#2|)) 329 T ELT) (($ (-850 (-343 |#2|))) 368 T ELT) (($ (-343 (-850 (-343 |#2|)))) 341 T ELT) (($ (-343 (-850 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-850 |#2|)) 216 T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) 373 T ELT)) (-3109 (((-687)) 88 T ELT)) (-2240 (((-83) (-84)) 42 T ELT)) (-1782 (($ (-1079) $) 31 T ELT) (($ (-1079) $ $) 32 T ELT) (($ (-1079) $ $ $) 33 T ELT) (($ (-1079) $ $ $ $) 34 T ELT) (($ (-1079) (-578 $)) 39 T ELT)) (* (($ (-343 (-478)) $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-823) $) NIL T ELT))) +(((-356 |#1| |#2|) (-10 -7 (-15 * (|#1| (-823) |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 -3930 (|#1| (-343 (-478)))) (-15 -3140 ((-3 (-343 (-478)) #1="failed") |#1|)) (-15 -3139 ((-343 (-478)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3930 (|#1| (-478))) (-15 -3109 ((-687))) (-15 * (|#1| |#2| |#1|)) (-15 -3956 ((-467) |#1|)) (-15 -3930 (|#1| (-850 |#2|))) (-15 -3140 ((-3 (-850 |#2|) #1#) |#1|)) (-15 -3139 ((-850 |#2|) |#1|)) (-15 -3742 (|#1| |#1| (-578 (-1079)) (-578 (-687)))) (-15 -3742 (|#1| |#1| (-1079) (-687))) (-15 -3742 (|#1| |#1| (-578 (-1079)))) (-15 -3742 (|#1| |#1| (-1079))) (-15 * (|#1| |#1| |#2|)) (-15 -3930 (|#1| |#1|)) (-15 * (|#1| |#1| (-343 (-478)))) (-15 * (|#1| (-343 (-478)) |#1|)) (-15 -3930 (|#1| (-343 (-850 |#2|)))) (-15 -3140 ((-3 (-343 (-850 |#2|)) #1#) |#1|)) (-15 -3139 ((-343 (-850 |#2|)) |#1|)) (-15 -3067 ((-343 (-1074 |#1|)) |#1| (-545 |#1|))) (-15 -3930 (|#1| (-343 (-850 (-343 |#2|))))) (-15 -3930 (|#1| (-850 (-343 |#2|)))) (-15 -3930 (|#1| (-343 |#2|))) (-15 -2979 (|#1| |#1|)) (-15 -3956 (|#1| (-341 |#1|))) (-15 -3752 (|#1| |#1| (-1079) (-687) (-1 |#1| |#1|))) (-15 -3752 (|#1| |#1| (-1079) (-687) (-1 |#1| (-578 |#1|)))) (-15 -3752 (|#1| |#1| (-578 (-1079)) (-578 (-687)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3752 (|#1| |#1| (-578 (-1079)) (-578 (-687)) (-578 (-1 |#1| |#1|)))) (-15 -2809 ((-3 (-2 (|:| |val| |#1|) (|:| -2387 (-478))) #1#) |#1|)) (-15 -2808 ((-3 (-2 (|:| |var| (-545 |#1|)) (|:| -2387 (-478))) #1#) |#1| (-1079))) (-15 -2808 ((-3 (-2 (|:| |var| (-545 |#1|)) (|:| -2387 (-478))) #1#) |#1| (-84))) (-15 -2980 (|#1| |#1|)) (-15 -3930 (|#1| (-1028 |#2| (-545 |#1|)))) (-15 -1781 ((-3 (-2 (|:| -3938 (-478)) (|:| |var| (-545 |#1|))) #1#) |#1|)) (-15 -2806 ((-3 (-578 |#1|) #1#) |#1|)) (-15 -2808 ((-3 (-2 (|:| |var| (-545 |#1|)) (|:| -2387 (-478))) #1#) |#1|)) (-15 -2807 ((-3 (-578 |#1|) #1#) |#1|)) (-15 -3752 (|#1| |#1| (-578 (-84)) (-578 |#1|) (-1079))) (-15 -3752 (|#1| |#1| (-84) |#1| (-1079))) (-15 -3752 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-578 (-1079)))) (-15 -3752 (|#1| |#1| (-1079))) (-15 -1782 (|#1| (-1079) (-578 |#1|))) (-15 -1782 (|#1| (-1079) |#1| |#1| |#1| |#1|)) (-15 -1782 (|#1| (-1079) |#1| |#1| |#1|)) (-15 -1782 (|#1| (-1079) |#1| |#1|)) (-15 -1782 (|#1| (-1079) |#1|)) (-15 -3065 ((-578 (-1079)) |#1|)) (-15 -1783 (|#2| |#1|)) (-15 -1784 ((-83) |#1|)) (-15 -3930 (|#1| |#2|)) (-15 -3140 ((-3 |#2| #1#) |#1|)) (-15 -3139 (|#2| |#1|)) (-15 -3139 ((-478) |#1|)) (-15 -3140 ((-3 (-478) #1#) |#1|)) (-15 -3956 ((-793 (-323)) |#1|)) (-15 -3956 ((-793 (-478)) |#1|)) (-15 -3930 (|#1| (-1079))) (-15 -3140 ((-3 (-1079) #1#) |#1|)) (-15 -3139 ((-1079) |#1|)) (-15 -3752 (|#1| |#1| (-84) (-1 |#1| |#1|))) (-15 -3752 (|#1| |#1| (-84) (-1 |#1| (-578 |#1|)))) (-15 -3752 (|#1| |#1| (-578 (-84)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3752 (|#1| |#1| (-578 (-84)) (-578 (-1 |#1| |#1|)))) (-15 -3752 (|#1| |#1| (-1079) (-1 |#1| |#1|))) (-15 -3752 (|#1| |#1| (-1079) (-1 |#1| (-578 |#1|)))) (-15 -3752 (|#1| |#1| (-578 (-1079)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3752 (|#1| |#1| (-578 (-1079)) (-578 (-1 |#1| |#1|)))) (-15 -2240 ((-83) (-84))) (-15 -3579 ((-84) (-84))) (-15 -1588 ((-578 (-545 |#1|)) |#1|)) (-15 -1589 ((-3 (-545 |#1|) #1#) |#1|)) (-15 -1591 (|#1| |#1| (-578 (-545 |#1|)) (-578 |#1|))) (-15 -1591 (|#1| |#1| (-578 (-245 |#1|)))) (-15 -1591 (|#1| |#1| (-245 |#1|))) (-15 -3784 (|#1| (-84) (-578 |#1|))) (-15 -3784 (|#1| (-84) |#1| |#1| |#1| |#1|)) (-15 -3784 (|#1| (-84) |#1| |#1| |#1|)) (-15 -3784 (|#1| (-84) |#1| |#1|)) (-15 -3784 (|#1| (-84) |#1|)) (-15 -3752 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3752 (|#1| |#1| |#1| |#1|)) (-15 -3752 (|#1| |#1| (-245 |#1|))) (-15 -3752 (|#1| |#1| (-578 (-245 |#1|)))) (-15 -3752 (|#1| |#1| (-578 (-545 |#1|)) (-578 |#1|))) (-15 -3752 (|#1| |#1| (-545 |#1|) |#1|)) (-15 -3930 (|#1| (-545 |#1|))) (-15 -3140 ((-3 (-545 |#1|) #1#) |#1|)) (-15 -3139 ((-545 |#1|) |#1|)) (-15 -3930 ((-765) |#1|))) (-357 |#2|) (-1005)) (T -356)) +((-3579 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *4 (-1005)) (-5 *1 (-356 *3 *4)) (-4 *3 (-357 *4)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *5 (-1005)) (-5 *2 (-83)) (-5 *1 (-356 *4 *5)) (-4 *4 (-357 *5)))) (-3109 (*1 *2) (-12 (-4 *4 (-1005)) (-5 *2 (-687)) (-5 *1 (-356 *3 *4)) (-4 *3 (-357 *4))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 129 (|has| |#1| (-25)) ELT)) (-3065 (((-578 (-1079)) $) 220 T ELT)) (-3067 (((-343 (-1074 $)) $ (-545 $)) 188 (|has| |#1| (-489)) ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 160 (|has| |#1| (-489)) ELT)) (-2049 (($ $) 161 (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) 163 (|has| |#1| (-489)) ELT)) (-1587 (((-578 (-545 $)) $) 42 T ELT)) (-1299 (((-3 $ "failed") $ $) 131 (|has| |#1| (-21)) ELT)) (-1591 (($ $ (-245 $)) 54 T ELT) (($ $ (-578 (-245 $))) 53 T ELT) (($ $ (-578 (-545 $)) (-578 $)) 52 T ELT)) (-3759 (($ $) 180 (|has| |#1| (-489)) ELT)) (-3955 (((-341 $) $) 181 (|has| |#1| (-489)) ELT)) (-1595 (((-83) $ $) 171 (|has| |#1| (-489)) ELT)) (-3708 (($) 117 (OR (|has| |#1| (-1015)) (|has| |#1| (-25))) CONST)) (-3140 (((-3 (-545 $) #1="failed") $) 67 T ELT) (((-3 (-1079) #1#) $) 233 T ELT) (((-3 (-478) #1#) $) 227 (|has| |#1| (-943 (-478))) ELT) (((-3 |#1| #1#) $) 224 T ELT) (((-3 (-343 (-850 |#1|)) #1#) $) 186 (|has| |#1| (-489)) ELT) (((-3 (-850 |#1|) #1#) $) 136 (|has| |#1| (-954)) ELT) (((-3 (-343 (-478)) #1#) $) 111 (OR (-12 (|has| |#1| (-943 (-478))) (|has| |#1| (-489))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-3139 (((-545 $) $) 68 T ELT) (((-1079) $) 234 T ELT) (((-478) $) 226 (|has| |#1| (-943 (-478))) ELT) ((|#1| $) 225 T ELT) (((-343 (-850 |#1|)) $) 187 (|has| |#1| (-489)) ELT) (((-850 |#1|) $) 137 (|has| |#1| (-954)) ELT) (((-343 (-478)) $) 112 (OR (-12 (|has| |#1| (-943 (-478))) (|has| |#1| (-489))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-2548 (($ $ $) 175 (|has| |#1| (-489)) ELT)) (-2265 (((-625 (-478)) (-625 $)) 153 (-2546 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 152 (-2546 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) 151 (|has| |#1| (-954)) ELT) (((-625 |#1|) (-625 $)) 150 (|has| |#1| (-954)) ELT)) (-3451 (((-3 $ "failed") $) 119 (|has| |#1| (-1015)) ELT)) (-2547 (($ $ $) 174 (|has| |#1| (-489)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 169 (|has| |#1| (-489)) ELT)) (-3707 (((-83) $) 182 (|has| |#1| (-489)) ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 229 (|has| |#1| (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 228 (|has| |#1| (-789 (-323))) ELT)) (-2557 (($ $) 49 T ELT) (($ (-578 $)) 48 T ELT)) (-1586 (((-578 (-84)) $) 41 T ELT)) (-3579 (((-84) (-84)) 40 T ELT)) (-2396 (((-83) $) 118 (|has| |#1| (-1015)) ELT)) (-2657 (((-83) $) 20 (|has| $ (-943 (-478))) ELT)) (-2980 (($ $) 203 (|has| |#1| (-954)) ELT)) (-2982 (((-1028 |#1| (-545 $)) $) 204 (|has| |#1| (-954)) ELT)) (-1592 (((-3 (-578 $) #2="failed") (-578 $) $) 178 (|has| |#1| (-489)) ELT)) (-1584 (((-1074 $) (-545 $)) 23 (|has| $ (-954)) ELT)) (-3942 (($ (-1 $ $) (-545 $)) 34 T ELT)) (-1589 (((-3 (-545 $) "failed") $) 44 T ELT)) (-2266 (((-625 (-478)) (-1168 $)) 155 (-2546 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) 154 (-2546 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) 149 (|has| |#1| (-954)) ELT) (((-625 |#1|) (-1168 $)) 148 (|has| |#1| (-954)) ELT)) (-1878 (($ (-578 $)) 167 (|has| |#1| (-489)) ELT) (($ $ $) 166 (|has| |#1| (-489)) ELT)) (-3225 (((-1062) $) 11 T ELT)) (-1588 (((-578 (-545 $)) $) 43 T ELT)) (-2221 (($ (-84) $) 36 T ELT) (($ (-84) (-578 $)) 35 T ELT)) (-2807 (((-3 (-578 $) "failed") $) 209 (|has| |#1| (-1015)) ELT)) (-2809 (((-3 (-2 (|:| |val| $) (|:| -2387 (-478))) "failed") $) 200 (|has| |#1| (-954)) ELT)) (-2806 (((-3 (-578 $) "failed") $) 207 (|has| |#1| (-25)) ELT)) (-1781 (((-3 (-2 (|:| -3938 (-478)) (|:| |var| (-545 $))) "failed") $) 206 (|has| |#1| (-25)) ELT)) (-2808 (((-3 (-2 (|:| |var| (-545 $)) (|:| -2387 (-478))) "failed") $) 208 (|has| |#1| (-1015)) ELT) (((-3 (-2 (|:| |var| (-545 $)) (|:| -2387 (-478))) "failed") $ (-84)) 202 (|has| |#1| (-954)) ELT) (((-3 (-2 (|:| |var| (-545 $)) (|:| -2387 (-478))) "failed") $ (-1079)) 201 (|has| |#1| (-954)) ELT)) (-2617 (((-83) $ (-84)) 38 T ELT) (((-83) $ (-1079)) 37 T ELT)) (-2468 (($ $) 121 (OR (|has| |#1| (-406)) (|has| |#1| (-489))) ELT)) (-2587 (((-687) $) 45 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-1784 (((-83) $) 222 T ELT)) (-1783 ((|#1| $) 221 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 168 (|has| |#1| (-489)) ELT)) (-3127 (($ (-578 $)) 165 (|has| |#1| (-489)) ELT) (($ $ $) 164 (|has| |#1| (-489)) ELT)) (-1585 (((-83) $ $) 33 T ELT) (((-83) $ (-1079)) 32 T ELT)) (-3716 (((-341 $) $) 179 (|has| |#1| (-489)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 177 (|has| |#1| (-489)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 176 (|has| |#1| (-489)) ELT)) (-3450 (((-3 $ "failed") $ $) 159 (|has| |#1| (-489)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 170 (|has| |#1| (-489)) ELT)) (-2658 (((-83) $) 21 (|has| $ (-943 (-478))) ELT)) (-3752 (($ $ (-545 $) $) 65 T ELT) (($ $ (-578 (-545 $)) (-578 $)) 64 T ELT) (($ $ (-578 (-245 $))) 63 T ELT) (($ $ (-245 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-578 $) (-578 $)) 60 T ELT) (($ $ (-578 (-1079)) (-578 (-1 $ $))) 31 T ELT) (($ $ (-578 (-1079)) (-578 (-1 $ (-578 $)))) 30 T ELT) (($ $ (-1079) (-1 $ (-578 $))) 29 T ELT) (($ $ (-1079) (-1 $ $)) 28 T ELT) (($ $ (-578 (-84)) (-578 (-1 $ $))) 27 T ELT) (($ $ (-578 (-84)) (-578 (-1 $ (-578 $)))) 26 T ELT) (($ $ (-84) (-1 $ (-578 $))) 25 T ELT) (($ $ (-84) (-1 $ $)) 24 T ELT) (($ $ (-1079)) 214 (|has| |#1| (-548 (-467))) ELT) (($ $ (-578 (-1079))) 213 (|has| |#1| (-548 (-467))) ELT) (($ $) 212 (|has| |#1| (-548 (-467))) ELT) (($ $ (-84) $ (-1079)) 211 (|has| |#1| (-548 (-467))) ELT) (($ $ (-578 (-84)) (-578 $) (-1079)) 210 (|has| |#1| (-548 (-467))) ELT) (($ $ (-578 (-1079)) (-578 (-687)) (-578 (-1 $ $))) 199 (|has| |#1| (-954)) ELT) (($ $ (-578 (-1079)) (-578 (-687)) (-578 (-1 $ (-578 $)))) 198 (|has| |#1| (-954)) ELT) (($ $ (-1079) (-687) (-1 $ (-578 $))) 197 (|has| |#1| (-954)) ELT) (($ $ (-1079) (-687) (-1 $ $)) 196 (|has| |#1| (-954)) ELT)) (-1594 (((-687) $) 172 (|has| |#1| (-489)) ELT)) (-3784 (($ (-84) $) 59 T ELT) (($ (-84) $ $) 58 T ELT) (($ (-84) $ $ $) 57 T ELT) (($ (-84) $ $ $ $) 56 T ELT) (($ (-84) (-578 $)) 55 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 173 (|has| |#1| (-489)) ELT)) (-1590 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3742 (($ $ (-1079)) 146 (|has| |#1| (-954)) ELT) (($ $ (-578 (-1079))) 144 (|has| |#1| (-954)) ELT) (($ $ (-1079) (-687)) 143 (|has| |#1| (-954)) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 142 (|has| |#1| (-954)) ELT)) (-2979 (($ $) 193 (|has| |#1| (-489)) ELT)) (-2981 (((-1028 |#1| (-545 $)) $) 194 (|has| |#1| (-489)) ELT)) (-3168 (($ $) 22 (|has| $ (-954)) ELT)) (-3956 (((-793 (-478)) $) 231 (|has| |#1| (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) 230 (|has| |#1| (-548 (-793 (-323)))) ELT) (($ (-341 $)) 195 (|has| |#1| (-489)) ELT) (((-467) $) 113 (|has| |#1| (-548 (-467))) ELT)) (-2993 (($ $ $) 124 (|has| |#1| (-406)) ELT)) (-2419 (($ $ $) 125 (|has| |#1| (-406)) ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-545 $)) 66 T ELT) (($ (-1079)) 232 T ELT) (($ |#1|) 223 T ELT) (($ (-1028 |#1| (-545 $))) 205 (|has| |#1| (-954)) ELT) (($ (-343 |#1|)) 191 (|has| |#1| (-489)) ELT) (($ (-850 (-343 |#1|))) 190 (|has| |#1| (-489)) ELT) (($ (-343 (-850 (-343 |#1|)))) 189 (|has| |#1| (-489)) ELT) (($ (-343 (-850 |#1|))) 185 (|has| |#1| (-489)) ELT) (($ $) 158 (|has| |#1| (-489)) ELT) (($ (-850 |#1|)) 135 (|has| |#1| (-954)) ELT) (($ (-343 (-478))) 110 (OR (|has| |#1| (-489)) (-12 (|has| |#1| (-943 (-478))) (|has| |#1| (-489))) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ (-478)) 109 (OR (|has| |#1| (-954)) (|has| |#1| (-943 (-478)))) ELT)) (-2686 (((-627 $) $) 156 (|has| |#1| (-116)) ELT)) (-3109 (((-687)) 138 (|has| |#1| (-954)) CONST)) (-2574 (($ $) 51 T ELT) (($ (-578 $)) 50 T ELT)) (-2240 (((-83) (-84)) 39 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 162 (|has| |#1| (-489)) ELT)) (-1782 (($ (-1079) $) 219 T ELT) (($ (-1079) $ $) 218 T ELT) (($ (-1079) $ $ $) 217 T ELT) (($ (-1079) $ $ $ $) 216 T ELT) (($ (-1079) (-578 $)) 215 T ELT)) (-2644 (($) 128 (|has| |#1| (-25)) CONST)) (-2650 (($) 116 (|has| |#1| (-1015)) CONST)) (-2653 (($ $ (-1079)) 145 (|has| |#1| (-954)) ELT) (($ $ (-578 (-1079))) 141 (|has| |#1| (-954)) ELT) (($ $ (-1079) (-687)) 140 (|has| |#1| (-954)) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 139 (|has| |#1| (-954)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ (-1028 |#1| (-545 $)) (-1028 |#1| (-545 $))) 192 (|has| |#1| (-489)) ELT) (($ $ $) 122 (OR (|has| |#1| (-406)) (|has| |#1| (-489))) ELT)) (-3821 (($ $ $) 134 (|has| |#1| (-21)) ELT) (($ $) 133 (|has| |#1| (-21)) ELT)) (-3823 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-478)) 123 (OR (|has| |#1| (-406)) (|has| |#1| (-489))) ELT) (($ $ (-687)) 120 (|has| |#1| (-1015)) ELT) (($ $ (-823)) 115 (|has| |#1| (-1015)) ELT)) (* (($ (-343 (-478)) $) 184 (|has| |#1| (-489)) ELT) (($ $ (-343 (-478))) 183 (|has| |#1| (-489)) ELT) (($ $ |#1|) 157 (|has| |#1| (-144)) ELT) (($ |#1| $) 147 (|has| |#1| (-954)) ELT) (($ (-478) $) 132 (|has| |#1| (-21)) ELT) (($ (-687) $) 130 (|has| |#1| (-25)) ELT) (($ (-823) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1015)) ELT))) +(((-357 |#1|) (-111) (-1005)) (T -357)) +((-1784 (*1 *2 *1) (-12 (-4 *1 (-357 *3)) (-4 *3 (-1005)) (-5 *2 (-83)))) (-1783 (*1 *2 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1005)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-357 *3)) (-4 *3 (-1005)) (-5 *2 (-578 (-1079))))) (-1782 (*1 *1 *2 *1) (-12 (-5 *2 (-1079)) (-4 *1 (-357 *3)) (-4 *3 (-1005)))) (-1782 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1079)) (-4 *1 (-357 *3)) (-4 *3 (-1005)))) (-1782 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1079)) (-4 *1 (-357 *3)) (-4 *3 (-1005)))) (-1782 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1079)) (-4 *1 (-357 *3)) (-4 *3 (-1005)))) (-1782 (*1 *1 *2 *3) (-12 (-5 *2 (-1079)) (-5 *3 (-578 *1)) (-4 *1 (-357 *4)) (-4 *4 (-1005)))) (-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-1079)) (-4 *1 (-357 *3)) (-4 *3 (-1005)) (-4 *3 (-548 (-467))))) (-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-1079))) (-4 *1 (-357 *3)) (-4 *3 (-1005)) (-4 *3 (-548 (-467))))) (-3752 (*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1005)) (-4 *2 (-548 (-467))))) (-3752 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1079)) (-4 *1 (-357 *4)) (-4 *4 (-1005)) (-4 *4 (-548 (-467))))) (-3752 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-84))) (-5 *3 (-578 *1)) (-5 *4 (-1079)) (-4 *1 (-357 *5)) (-4 *5 (-1005)) (-4 *5 (-548 (-467))))) (-2807 (*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-1005)) (-5 *2 (-578 *1)) (-4 *1 (-357 *3)))) (-2808 (*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-1005)) (-5 *2 (-2 (|:| |var| (-545 *1)) (|:| -2387 (-478)))) (-4 *1 (-357 *3)))) (-2806 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1005)) (-5 *2 (-578 *1)) (-4 *1 (-357 *3)))) (-1781 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1005)) (-5 *2 (-2 (|:| -3938 (-478)) (|:| |var| (-545 *1)))) (-4 *1 (-357 *3)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-1028 *3 (-545 *1))) (-4 *3 (-954)) (-4 *3 (-1005)) (-4 *1 (-357 *3)))) (-2982 (*1 *2 *1) (-12 (-4 *3 (-954)) (-4 *3 (-1005)) (-5 *2 (-1028 *3 (-545 *1))) (-4 *1 (-357 *3)))) (-2980 (*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1005)) (-4 *2 (-954)))) (-2808 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-84)) (-4 *4 (-954)) (-4 *4 (-1005)) (-5 *2 (-2 (|:| |var| (-545 *1)) (|:| -2387 (-478)))) (-4 *1 (-357 *4)))) (-2808 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1079)) (-4 *4 (-954)) (-4 *4 (-1005)) (-5 *2 (-2 (|:| |var| (-545 *1)) (|:| -2387 (-478)))) (-4 *1 (-357 *4)))) (-2809 (*1 *2 *1) (|partial| -12 (-4 *3 (-954)) (-4 *3 (-1005)) (-5 *2 (-2 (|:| |val| *1) (|:| -2387 (-478)))) (-4 *1 (-357 *3)))) (-3752 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-1079))) (-5 *3 (-578 (-687))) (-5 *4 (-578 (-1 *1 *1))) (-4 *1 (-357 *5)) (-4 *5 (-1005)) (-4 *5 (-954)))) (-3752 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-1079))) (-5 *3 (-578 (-687))) (-5 *4 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-357 *5)) (-4 *5 (-1005)) (-4 *5 (-954)))) (-3752 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1079)) (-5 *3 (-687)) (-5 *4 (-1 *1 (-578 *1))) (-4 *1 (-357 *5)) (-4 *5 (-1005)) (-4 *5 (-954)))) (-3752 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1079)) (-5 *3 (-687)) (-5 *4 (-1 *1 *1)) (-4 *1 (-357 *5)) (-4 *5 (-1005)) (-4 *5 (-954)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-341 *1)) (-4 *1 (-357 *3)) (-4 *3 (-489)) (-4 *3 (-1005)))) (-2981 (*1 *2 *1) (-12 (-4 *3 (-489)) (-4 *3 (-1005)) (-5 *2 (-1028 *3 (-545 *1))) (-4 *1 (-357 *3)))) (-2979 (*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1005)) (-4 *2 (-489)))) (-3933 (*1 *1 *2 *2) (-12 (-5 *2 (-1028 *3 (-545 *1))) (-4 *3 (-489)) (-4 *3 (-1005)) (-4 *1 (-357 *3)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-343 *3)) (-4 *3 (-489)) (-4 *3 (-1005)) (-4 *1 (-357 *3)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-850 (-343 *3))) (-4 *3 (-489)) (-4 *3 (-1005)) (-4 *1 (-357 *3)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-343 (-850 (-343 *3)))) (-4 *3 (-489)) (-4 *3 (-1005)) (-4 *1 (-357 *3)))) (-3067 (*1 *2 *1 *3) (-12 (-5 *3 (-545 *1)) (-4 *1 (-357 *4)) (-4 *4 (-1005)) (-4 *4 (-489)) (-5 *2 (-343 (-1074 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-357 *3)) (-4 *3 (-1005)) (-4 *3 (-1015))))) +(-13 (-250) (-943 (-1079)) (-787 |t#1|) (-336 |t#1|) (-348 |t#1|) (-10 -8 (-15 -1784 ((-83) $)) (-15 -1783 (|t#1| $)) (-15 -3065 ((-578 (-1079)) $)) (-15 -1782 ($ (-1079) $)) (-15 -1782 ($ (-1079) $ $)) (-15 -1782 ($ (-1079) $ $ $)) (-15 -1782 ($ (-1079) $ $ $ $)) (-15 -1782 ($ (-1079) (-578 $))) (IF (|has| |t#1| (-548 (-467))) (PROGN (-6 (-548 (-467))) (-15 -3752 ($ $ (-1079))) (-15 -3752 ($ $ (-578 (-1079)))) (-15 -3752 ($ $)) (-15 -3752 ($ $ (-84) $ (-1079))) (-15 -3752 ($ $ (-578 (-84)) (-578 $) (-1079)))) |%noBranch|) (IF (|has| |t#1| (-1015)) (PROGN (-6 (-658)) (-15 ** ($ $ (-687))) (-15 -2807 ((-3 (-578 $) "failed") $)) (-15 -2808 ((-3 (-2 (|:| |var| (-545 $)) (|:| -2387 (-478))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-406)) (-6 (-406)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2806 ((-3 (-578 $) "failed") $)) (-15 -1781 ((-3 (-2 (|:| -3938 (-478)) (|:| |var| (-545 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-954)) (PROGN (-6 (-954)) (-6 (-943 (-850 |t#1|))) (-6 (-802 (-1079))) (-6 (-322 |t#1|)) (-15 -3930 ($ (-1028 |t#1| (-545 $)))) (-15 -2982 ((-1028 |t#1| (-545 $)) $)) (-15 -2980 ($ $)) (-15 -2808 ((-3 (-2 (|:| |var| (-545 $)) (|:| -2387 (-478))) "failed") $ (-84))) (-15 -2808 ((-3 (-2 (|:| |var| (-545 $)) (|:| -2387 (-478))) "failed") $ (-1079))) (-15 -2809 ((-3 (-2 (|:| |val| $) (|:| -2387 (-478))) "failed") $)) (-15 -3752 ($ $ (-578 (-1079)) (-578 (-687)) (-578 (-1 $ $)))) (-15 -3752 ($ $ (-578 (-1079)) (-578 (-687)) (-578 (-1 $ (-578 $))))) (-15 -3752 ($ $ (-1079) (-687) (-1 $ (-578 $)))) (-15 -3752 ($ $ (-1079) (-687) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-489)) (PROGN (-6 (-308)) (-6 (-943 (-343 (-850 |t#1|)))) (-15 -3956 ($ (-341 $))) (-15 -2981 ((-1028 |t#1| (-545 $)) $)) (-15 -2979 ($ $)) (-15 -3933 ($ (-1028 |t#1| (-545 $)) (-1028 |t#1| (-545 $)))) (-15 -3930 ($ (-343 |t#1|))) (-15 -3930 ($ (-850 (-343 |t#1|)))) (-15 -3930 ($ (-343 (-850 (-343 |t#1|))))) (-15 -3067 ((-343 (-1074 $)) $ (-545 $))) (IF (|has| |t#1| (-943 (-478))) (-6 (-943 (-343 (-478)))) |%noBranch|)) |%noBranch|))) +(((-21) OR (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-343 (-478))) |has| |#1| (-489)) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-489)) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-489)) ((-80 |#1| |#1|) |has| |#1| (-144)) ((-80 $ $) |has| |#1| (-489)) ((-102) OR (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-21))) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-489))) ((-550 (-343 (-850 |#1|))) |has| |#1| (-489)) ((-550 (-478)) OR (|has| |#1| (-954)) (|has| |#1| (-943 (-478))) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-550 (-545 $)) . T) ((-550 (-850 |#1|)) |has| |#1| (-954)) ((-550 (-1079)) . T) ((-550 |#1|) . T) ((-550 $) |has| |#1| (-489)) ((-547 (-765)) . T) ((-144) |has| |#1| (-489)) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-548 (-793 (-323))) |has| |#1| (-548 (-793 (-323)))) ((-548 (-793 (-478))) |has| |#1| (-548 (-793 (-478)))) ((-198) |has| |#1| (-489)) ((-242) |has| |#1| (-489)) ((-254) |has| |#1| (-489)) ((-256 $) . T) ((-250) . T) ((-308) |has| |#1| (-489)) ((-322 |#1|) |has| |#1| (-954)) ((-336 |#1|) . T) ((-348 |#1|) . T) ((-385) |has| |#1| (-489)) ((-406) |has| |#1| (-406)) ((-447 (-545 $) $) . T) ((-447 $ $) . T) ((-489) |has| |#1| (-489)) ((-583 (-343 (-478))) |has| |#1| (-489)) ((-583 (-478)) OR (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-21))) ((-583 |#1|) OR (|has| |#1| (-954)) (|has| |#1| (-144))) ((-583 $) OR (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-585 (-343 (-478))) |has| |#1| (-489)) ((-585 (-478)) -12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ((-585 |#1|) OR (|has| |#1| (-954)) (|has| |#1| (-144))) ((-585 $) OR (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-577 (-343 (-478))) |has| |#1| (-489)) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) |has| |#1| (-489)) ((-575 (-478)) -12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ((-575 |#1|) |has| |#1| (-954)) ((-649 (-343 (-478))) |has| |#1| (-489)) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) |has| |#1| (-489)) ((-658) OR (|has| |#1| (-1015)) (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-406)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-799 $ (-1079)) |has| |#1| (-954)) ((-802 (-1079)) |has| |#1| (-954)) ((-804 (-1079)) |has| |#1| (-954)) ((-789 (-323)) |has| |#1| (-789 (-323))) ((-789 (-478)) |has| |#1| (-789 (-478))) ((-787 |#1|) . T) ((-825) |has| |#1| (-489)) ((-943 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (-12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478))))) ((-943 (-343 (-850 |#1|))) |has| |#1| (-489)) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 (-545 $)) . T) ((-943 (-850 |#1|)) |has| |#1| (-954)) ((-943 (-1079)) . T) ((-943 |#1|) . T) ((-956 (-343 (-478))) |has| |#1| (-489)) ((-956 |#1|) |has| |#1| (-144)) ((-956 $) |has| |#1| (-489)) ((-961 (-343 (-478))) |has| |#1| (-489)) ((-961 |#1|) |has| |#1| (-144)) ((-961 $) |has| |#1| (-489)) ((-954) OR (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-962) OR (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-1015) OR (|has| |#1| (-1015)) (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-406)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-1005) . T) ((-1118) . T) ((-1123) |has| |#1| (-489))) +((-3942 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) +(((-358 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3942 (|#4| (-1 |#3| |#1|) |#2|))) (-954) (-357 |#1|) (-954) (-357 |#3|)) (T -358)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-4 *2 (-357 *6)) (-5 *1 (-358 *5 *4 *6 *2)) (-4 *4 (-357 *5))))) +((-1788 ((|#2| |#2|) 182 T ELT)) (-1785 (((-3 (|:| |%expansion| (-260 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1062)) (|:| |prob| (-1062))))) |#2| (-83)) 60 T ELT))) +(((-359 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 ((-3 (|:| |%expansion| (-260 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1062)) (|:| |prob| (-1062))))) |#2| (-83))) (-15 -1788 (|#2| |#2|))) (-13 (-385) (-943 (-478)) (-575 (-478))) (-13 (-27) (-1104) (-357 |#1|)) (-1079) |#2|) (T -359)) +((-1788 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-359 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1104) (-357 *3))) (-14 *4 (-1079)) (-14 *5 *2))) (-1785 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 (|:| |%expansion| (-260 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1062)) (|:| |prob| (-1062)))))) (-5 *1 (-359 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1104) (-357 *5))) (-14 *6 (-1079)) (-14 *7 *3)))) +((-1788 ((|#2| |#2|) 105 T ELT)) (-1786 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1062)) (|:| |prob| (-1062))))) |#2| (-83) (-1062)) 52 T ELT)) (-1787 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1062)) (|:| |prob| (-1062))))) |#2| (-83) (-1062)) 169 T ELT))) +(((-360 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1786 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1062)) (|:| |prob| (-1062))))) |#2| (-83) (-1062))) (-15 -1787 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1062)) (|:| |prob| (-1062))))) |#2| (-83) (-1062))) (-15 -1788 (|#2| |#2|))) (-13 (-385) (-943 (-478)) (-575 (-478))) (-13 (-27) (-1104) (-357 |#1|) (-10 -8 (-15 -3930 ($ |#3|)))) (-748) (-13 (-1147 |#2| |#3|) (-308) (-1104) (-10 -8 (-15 -3742 ($ $)) (-15 -3796 ($ $)))) (-889 |#4|) (-1079)) (T -360)) +((-1788 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-4 *2 (-13 (-27) (-1104) (-357 *3) (-10 -8 (-15 -3930 ($ *4))))) (-4 *4 (-748)) (-4 *5 (-13 (-1147 *2 *4) (-308) (-1104) (-10 -8 (-15 -3742 ($ $)) (-15 -3796 ($ $))))) (-5 *1 (-360 *3 *2 *4 *5 *6 *7)) (-4 *6 (-889 *5)) (-14 *7 (-1079)))) (-1787 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-83)) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-4 *3 (-13 (-27) (-1104) (-357 *6) (-10 -8 (-15 -3930 ($ *7))))) (-4 *7 (-748)) (-4 *8 (-13 (-1147 *3 *7) (-308) (-1104) (-10 -8 (-15 -3742 ($ $)) (-15 -3796 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1062)) (|:| |prob| (-1062)))))) (-5 *1 (-360 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1062)) (-4 *9 (-889 *8)) (-14 *10 (-1079)))) (-1786 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-83)) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-4 *3 (-13 (-27) (-1104) (-357 *6) (-10 -8 (-15 -3930 ($ *7))))) (-4 *7 (-748)) (-4 *8 (-13 (-1147 *3 *7) (-308) (-1104) (-10 -8 (-15 -3742 ($ $)) (-15 -3796 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1062)) (|:| |prob| (-1062)))))) (-5 *1 (-360 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1062)) (-4 *9 (-889 *8)) (-14 *10 (-1079))))) +((-1789 (($) 51 T ELT)) (-3217 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3219 (($ $ $) 46 T ELT)) (-3218 (((-83) $ $) 35 T ELT)) (-3119 (((-687)) 55 T ELT)) (-3222 (($ (-578 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2978 (($) 66 T ELT)) (-3224 (((-83) $ $) 15 T ELT)) (-2515 ((|#2| $) 77 T ELT)) (-2841 ((|#2| $) 75 T ELT)) (-1996 (((-823) $) 70 T ELT)) (-3221 (($ $ $) 42 T ELT)) (-2386 (($ (-823)) 60 T ELT)) (-3220 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1933 (((-687) (-1 (-83) |#2|) $) NIL T ELT) (((-687) |#2| $) 31 T ELT)) (-3514 (($ (-578 |#2|)) 27 T ELT)) (-1790 (($ $) 53 T ELT)) (-3930 (((-765) $) 40 T ELT)) (-1791 (((-687) $) 24 T ELT)) (-3223 (($ (-578 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3037 (((-83) $ $) 19 T ELT))) +(((-361 |#1| |#2|) (-10 -7 (-15 -3119 ((-687))) (-15 -2386 (|#1| (-823))) (-15 -1996 ((-823) |#1|)) (-15 -2978 (|#1|)) (-15 -2515 (|#2| |#1|)) (-15 -2841 (|#2| |#1|)) (-15 -1789 (|#1|)) (-15 -1790 (|#1| |#1|)) (-15 -1791 ((-687) |#1|)) (-15 -3037 ((-83) |#1| |#1|)) (-15 -3930 ((-765) |#1|)) (-15 -3224 ((-83) |#1| |#1|)) (-15 -3223 (|#1|)) (-15 -3223 (|#1| (-578 |#2|))) (-15 -3222 (|#1|)) (-15 -3222 (|#1| (-578 |#2|))) (-15 -3221 (|#1| |#1| |#1|)) (-15 -3220 (|#1| |#1| |#1|)) (-15 -3220 (|#1| |#1| |#2|)) (-15 -3219 (|#1| |#1| |#1|)) (-15 -3218 ((-83) |#1| |#1|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1| |#2|)) (-15 -3217 (|#1| |#2| |#1|)) (-15 -3514 (|#1| (-578 |#2|))) (-15 -1933 ((-687) |#2| |#1|)) (-15 -1933 ((-687) (-1 (-83) |#2|) |#1|))) (-362 |#2|) (-1005)) (T -361)) +((-3119 (*1 *2) (-12 (-4 *4 (-1005)) (-5 *2 (-687)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))) +((-2552 (((-83) $ $) 19 T ELT)) (-1789 (($) 71 (|has| |#1| (-313)) ELT)) (-3217 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3219 (($ $ $) 82 T ELT)) (-3218 (((-83) $ $) 83 T ELT)) (-3119 (((-687)) 65 (|has| |#1| (-313)) ELT)) (-3222 (($ (-578 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1557 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3979)) ELT)) (-3708 (($) 7 T CONST)) (-1340 (($ $) 62 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3389 (($ |#1| $) 51 (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3979)) ELT)) (-3390 (($ |#1| $) 61 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3979)) ELT)) (-2978 (($) 68 (|has| |#1| (-313)) ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-3224 (((-83) $ $) 74 T ELT)) (-2515 ((|#1| $) 69 (|has| |#1| (-749)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-2841 ((|#1| $) 70 (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-1996 (((-823) $) 67 (|has| |#1| (-313)) ELT)) (-3225 (((-1062) $) 22 T ELT)) (-3221 (($ $ $) 79 T ELT)) (-1262 ((|#1| $) 43 T ELT)) (-3593 (($ |#1| $) 44 T ELT)) (-2386 (($ (-823)) 66 (|has| |#1| (-313)) ELT)) (-3226 (((-1023) $) 21 T ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1263 ((|#1| $) 45 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3220 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1453 (($) 53 T ELT) (($ (-578 |#1|)) 52 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 63 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 54 T ELT)) (-1790 (($ $) 72 (|has| |#1| (-313)) ELT)) (-3930 (((-765) $) 17 T ELT)) (-1791 (((-687) $) 73 T ELT)) (-3223 (($ (-578 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1253 (((-83) $ $) 20 T ELT)) (-1264 (($ (-578 |#1|)) 46 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 T ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-362 |#1|) (-111) (-1005)) (T -362)) +((-1791 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-1005)) (-5 *2 (-687)))) (-1790 (*1 *1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1005)) (-4 *2 (-313)))) (-1789 (*1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-313)) (-4 *2 (-1005)))) (-2841 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1005)) (-4 *2 (-749)))) (-2515 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1005)) (-4 *2 (-749))))) +(-13 (-181 |t#1|) (-1003 |t#1|) (-10 -8 (-6 -3979) (-15 -1791 ((-687) $)) (IF (|has| |t#1| (-313)) (PROGN (-6 (-313)) (-15 -1790 ($ $)) (-15 -1789 ($))) |%noBranch|) (IF (|has| |t#1| (-749)) (PROGN (-15 -2841 (|t#1| $)) (-15 -2515 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-547 (-765)) . T) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-181 |#1|) . T) ((-190 |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-313) |has| |#1| (-313)) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-1003 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-3825 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3826 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3942 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) +(((-363 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3942 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3826 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3825 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1005) (-362 |#1|) (-1005) (-362 |#3|)) (T -363)) +((-3825 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1005)) (-4 *5 (-1005)) (-4 *2 (-362 *5)) (-5 *1 (-363 *6 *4 *5 *2)) (-4 *4 (-362 *6)))) (-3826 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1005)) (-4 *2 (-1005)) (-5 *1 (-363 *5 *4 *2 *6)) (-4 *4 (-362 *5)) (-4 *6 (-362 *2)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-362 *6)) (-5 *1 (-363 *5 *4 *6 *2)) (-4 *4 (-362 *5))))) +((-1792 (((-513 |#2|) |#2| (-1079)) 36 T ELT)) (-2086 (((-513 |#2|) |#2| (-1079)) 21 T ELT)) (-2135 ((|#2| |#2| (-1079)) 26 T ELT))) +(((-364 |#1| |#2|) (-10 -7 (-15 -2086 ((-513 |#2|) |#2| (-1079))) (-15 -1792 ((-513 |#2|) |#2| (-1079))) (-15 -2135 (|#2| |#2| (-1079)))) (-13 (-254) (-118) (-943 (-478)) (-575 (-478))) (-13 (-1104) (-29 |#1|))) (T -364)) +((-2135 (*1 *2 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *1 (-364 *4 *2)) (-4 *2 (-13 (-1104) (-29 *4))))) (-1792 (*1 *2 *3 *4) (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-513 *3)) (-5 *1 (-364 *5 *3)) (-4 *3 (-13 (-1104) (-29 *5))))) (-2086 (*1 *2 *3 *4) (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-513 *3)) (-5 *1 (-364 *5 *3)) (-4 *3 (-13 (-1104) (-29 *5)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-1794 (($ |#2| |#1|) 37 T ELT)) (-1793 (($ |#2| |#1|) 35 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-277 |#2|)) 25 T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 10 T CONST)) (-2650 (($) 16 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 36 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-365 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3966)) (IF (|has| |#1| (-6 -3966)) (-6 -3966) |%noBranch|) |%noBranch|) (-15 -3930 ($ |#1|)) (-15 -3930 ($ (-277 |#2|))) (-15 -1794 ($ |#2| |#1|)) (-15 -1793 ($ |#2| |#1|)))) (-13 (-144) (-38 (-343 (-478)))) (-13 (-749) (-21))) (T -365)) +((-3930 (*1 *1 *2) (-12 (-5 *1 (-365 *2 *3)) (-4 *2 (-13 (-144) (-38 (-343 (-478))))) (-4 *3 (-13 (-749) (-21))))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-277 *4)) (-4 *4 (-13 (-749) (-21))) (-5 *1 (-365 *3 *4)) (-4 *3 (-13 (-144) (-38 (-343 (-478))))))) (-1794 (*1 *1 *2 *3) (-12 (-5 *1 (-365 *3 *2)) (-4 *3 (-13 (-144) (-38 (-343 (-478))))) (-4 *2 (-13 (-749) (-21))))) (-1793 (*1 *1 *2 *3) (-12 (-5 *1 (-365 *3 *2)) (-4 *3 (-13 (-144) (-38 (-343 (-478))))) (-4 *2 (-13 (-749) (-21)))))) +((-3796 (((-3 |#2| (-578 |#2|)) |#2| (-1079)) 115 T ELT))) +(((-366 |#1| |#2|) (-10 -7 (-15 -3796 ((-3 |#2| (-578 |#2|)) |#2| (-1079)))) (-13 (-254) (-118) (-943 (-478)) (-575 (-478))) (-13 (-1104) (-864) (-29 |#1|))) (T -366)) +((-3796 (*1 *2 *3 *4) (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 *3 (-578 *3))) (-5 *1 (-366 *5 *3)) (-4 *3 (-13 (-1104) (-864) (-29 *5)))))) +((-3370 ((|#2| |#2| |#2|) 31 T ELT)) (-3579 (((-84) (-84)) 43 T ELT)) (-1796 ((|#2| |#2|) 63 T ELT)) (-1795 ((|#2| |#2|) 66 T ELT)) (-3369 ((|#2| |#2|) 30 T ELT)) (-3373 ((|#2| |#2| |#2|) 33 T ELT)) (-3375 ((|#2| |#2| |#2|) 35 T ELT)) (-3372 ((|#2| |#2| |#2|) 32 T ELT)) (-3374 ((|#2| |#2| |#2|) 34 T ELT)) (-2240 (((-83) (-84)) 41 T ELT)) (-3377 ((|#2| |#2|) 37 T ELT)) (-3376 ((|#2| |#2|) 36 T ELT)) (-3367 ((|#2| |#2|) 25 T ELT)) (-3371 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3368 ((|#2| |#2| |#2|) 29 T ELT))) +(((-367 |#1| |#2|) (-10 -7 (-15 -2240 ((-83) (-84))) (-15 -3579 ((-84) (-84))) (-15 -3367 (|#2| |#2|)) (-15 -3371 (|#2| |#2|)) (-15 -3371 (|#2| |#2| |#2|)) (-15 -3368 (|#2| |#2| |#2|)) (-15 -3369 (|#2| |#2|)) (-15 -3370 (|#2| |#2| |#2|)) (-15 -3372 (|#2| |#2| |#2|)) (-15 -3373 (|#2| |#2| |#2|)) (-15 -3374 (|#2| |#2| |#2|)) (-15 -3375 (|#2| |#2| |#2|)) (-15 -3376 (|#2| |#2|)) (-15 -3377 (|#2| |#2|)) (-15 -1795 (|#2| |#2|)) (-15 -1796 (|#2| |#2|))) (-489) (-357 |#1|)) (T -367)) +((-1796 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-1795 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3377 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3376 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3375 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3374 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3373 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3372 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3370 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3369 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3368 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3371 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3371 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3367 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3579 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-367 *3 *4)) (-4 *4 (-357 *3)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-367 *4 *5)) (-4 *5 (-357 *4))))) +((-2817 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1074 |#2|)) (|:| |pol2| (-1074 |#2|)) (|:| |prim| (-1074 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-578 (-1074 |#2|))) (|:| |prim| (-1074 |#2|))) (-578 |#2|)) 65 T ELT))) +(((-368 |#1| |#2|) (-10 -7 (-15 -2817 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-578 (-1074 |#2|))) (|:| |prim| (-1074 |#2|))) (-578 |#2|))) (IF (|has| |#2| (-27)) (-15 -2817 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1074 |#2|)) (|:| |pol2| (-1074 |#2|)) (|:| |prim| (-1074 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-489) (-118)) (-357 |#1|)) (T -368)) +((-2817 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-489) (-118))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1074 *3)) (|:| |pol2| (-1074 *3)) (|:| |prim| (-1074 *3)))) (-5 *1 (-368 *4 *3)) (-4 *3 (-27)) (-4 *3 (-357 *4)))) (-2817 (*1 *2 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-357 *4)) (-4 *4 (-13 (-489) (-118))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-578 (-1074 *5))) (|:| |prim| (-1074 *5)))) (-5 *1 (-368 *4 *5))))) +((-1798 (((-1174)) 18 T ELT)) (-1797 (((-1074 (-343 (-478))) |#2| (-545 |#2|)) 40 T ELT) (((-343 (-478)) |#2|) 24 T ELT))) +(((-369 |#1| |#2|) (-10 -7 (-15 -1797 ((-343 (-478)) |#2|)) (-15 -1797 ((-1074 (-343 (-478))) |#2| (-545 |#2|))) (-15 -1798 ((-1174)))) (-13 (-489) (-943 (-478))) (-357 |#1|)) (T -369)) +((-1798 (*1 *2) (-12 (-4 *3 (-13 (-489) (-943 (-478)))) (-5 *2 (-1174)) (-5 *1 (-369 *3 *4)) (-4 *4 (-357 *3)))) (-1797 (*1 *2 *3 *4) (-12 (-5 *4 (-545 *3)) (-4 *3 (-357 *5)) (-4 *5 (-13 (-489) (-943 (-478)))) (-5 *2 (-1074 (-343 (-478)))) (-5 *1 (-369 *5 *3)))) (-1797 (*1 *2 *3) (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-343 (-478))) (-5 *1 (-369 *4 *3)) (-4 *3 (-357 *4))))) +((-3629 (((-83) $) 33 T ELT)) (-1799 (((-83) $) 35 T ELT)) (-3242 (((-83) $) 36 T ELT)) (-1801 (((-83) $) 39 T ELT)) (-1803 (((-83) $) 34 T ELT)) (-1802 (((-83) $) 38 T ELT)) (-3930 (((-765) $) 20 T ELT) (($ (-1062)) 32 T ELT) (($ (-1079)) 30 T ELT) (((-1079) $) 24 T ELT) (((-1007) $) 23 T ELT)) (-1800 (((-83) $) 37 T ELT)) (-3037 (((-83) $ $) 17 T ELT))) +(((-370) (-13 (-547 (-765)) (-10 -8 (-15 -3930 ($ (-1062))) (-15 -3930 ($ (-1079))) (-15 -3930 ((-1079) $)) (-15 -3930 ((-1007) $)) (-15 -3629 ((-83) $)) (-15 -1803 ((-83) $)) (-15 -3242 ((-83) $)) (-15 -1802 ((-83) $)) (-15 -1801 ((-83) $)) (-15 -1800 ((-83) $)) (-15 -1799 ((-83) $)) (-15 -3037 ((-83) $ $))))) (T -370)) +((-3930 (*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-370)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-370)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-1079)) (-5 *1 (-370)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-370)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) (-1803 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) (-1802 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) (-1799 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) (-3037 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370))))) +((-1805 (((-3 (-341 (-1074 (-343 (-478)))) #1="failed") |#3|) 72 T ELT)) (-1804 (((-341 |#3|) |#3|) 34 T ELT)) (-1807 (((-3 (-341 (-1074 (-48))) #1#) |#3|) 46 (|has| |#2| (-943 (-48))) ELT)) (-1806 (((-3 (|:| |overq| (-1074 (-343 (-478)))) (|:| |overan| (-1074 (-48))) (|:| -2623 (-83))) |#3|) 37 T ELT))) +(((-371 |#1| |#2| |#3|) (-10 -7 (-15 -1804 ((-341 |#3|) |#3|)) (-15 -1805 ((-3 (-341 (-1074 (-343 (-478)))) #1="failed") |#3|)) (-15 -1806 ((-3 (|:| |overq| (-1074 (-343 (-478)))) (|:| |overan| (-1074 (-48))) (|:| -2623 (-83))) |#3|)) (IF (|has| |#2| (-943 (-48))) (-15 -1807 ((-3 (-341 (-1074 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-489) (-943 (-478))) (-357 |#1|) (-1144 |#2|)) (T -371)) +((-1807 (*1 *2 *3) (|partial| -12 (-4 *5 (-943 (-48))) (-4 *4 (-13 (-489) (-943 (-478)))) (-4 *5 (-357 *4)) (-5 *2 (-341 (-1074 (-48)))) (-5 *1 (-371 *4 *5 *3)) (-4 *3 (-1144 *5)))) (-1806 (*1 *2 *3) (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-4 *5 (-357 *4)) (-5 *2 (-3 (|:| |overq| (-1074 (-343 (-478)))) (|:| |overan| (-1074 (-48))) (|:| -2623 (-83)))) (-5 *1 (-371 *4 *5 *3)) (-4 *3 (-1144 *5)))) (-1805 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-489) (-943 (-478)))) (-4 *5 (-357 *4)) (-5 *2 (-341 (-1074 (-343 (-478))))) (-5 *1 (-371 *4 *5 *3)) (-4 *3 (-1144 *5)))) (-1804 (*1 *2 *3) (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-4 *5 (-357 *4)) (-5 *2 (-341 *3)) (-5 *1 (-371 *4 *5 *3)) (-4 *3 (-1144 *5))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1817 (((-3 (|:| |fst| (-370)) (|:| -3894 #1="void")) $) 11 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1814 (($) 35 T ELT)) (-1811 (($) 41 T ELT)) (-1812 (($) 37 T ELT)) (-1809 (($) 39 T ELT)) (-1813 (($) 36 T ELT)) (-1810 (($) 38 T ELT)) (-1808 (($) 40 T ELT)) (-1815 (((-83) $) 8 T ELT)) (-1816 (((-578 (-850 (-478))) $) 19 T ELT)) (-3514 (($ (-3 (|:| |fst| (-370)) (|:| -3894 #1#)) (-578 (-1079)) (-83)) 29 T ELT) (($ (-3 (|:| |fst| (-370)) (|:| -3894 #1#)) (-578 (-850 (-478))) (-83)) 30 T ELT)) (-3930 (((-765) $) 24 T ELT) (($ (-370)) 32 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-372) (-13 (-1005) (-10 -8 (-15 -3930 ($ (-370))) (-15 -1817 ((-3 (|:| |fst| (-370)) (|:| -3894 #1="void")) $)) (-15 -1816 ((-578 (-850 (-478))) $)) (-15 -1815 ((-83) $)) (-15 -3514 ($ (-3 (|:| |fst| (-370)) (|:| -3894 #1#)) (-578 (-1079)) (-83))) (-15 -3514 ($ (-3 (|:| |fst| (-370)) (|:| -3894 #1#)) (-578 (-850 (-478))) (-83))) (-15 -1814 ($)) (-15 -1813 ($)) (-15 -1812 ($)) (-15 -1811 ($)) (-15 -1810 ($)) (-15 -1809 ($)) (-15 -1808 ($))))) (T -372)) +((-3930 (*1 *1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-372)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-370)) (|:| -3894 #1="void"))) (-5 *1 (-372)))) (-1816 (*1 *2 *1) (-12 (-5 *2 (-578 (-850 (-478)))) (-5 *1 (-372)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372)))) (-3514 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-370)) (|:| -3894 #1#))) (-5 *3 (-578 (-1079))) (-5 *4 (-83)) (-5 *1 (-372)))) (-3514 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-370)) (|:| -3894 #1#))) (-5 *3 (-578 (-850 (-478)))) (-5 *4 (-83)) (-5 *1 (-372)))) (-1814 (*1 *1) (-5 *1 (-372))) (-1813 (*1 *1) (-5 *1 (-372))) (-1812 (*1 *1) (-5 *1 (-372))) (-1811 (*1 *1) (-5 *1 (-372))) (-1810 (*1 *1) (-5 *1 (-372))) (-1809 (*1 *1) (-5 *1 (-372))) (-1808 (*1 *1) (-5 *1 (-372)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3526 (((-1079) $) 8 T ELT)) (-3225 (((-1062) $) 17 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 11 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 14 T ELT))) +(((-373 |#1|) (-13 (-1005) (-10 -8 (-15 -3526 ((-1079) $)))) (-1079)) (T -373)) +((-3526 (*1 *2 *1) (-12 (-5 *2 (-1079)) (-5 *1 (-373 *3)) (-14 *3 *2)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3301 (((-1018) $) 7 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 9 T ELT))) +(((-374) (-13 (-1005) (-10 -8 (-15 -3301 ((-1018) $))))) (T -374)) +((-3301 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-374))))) +((-1823 (((-83)) 18 T ELT)) (-1824 (((-83) (-83)) 19 T ELT)) (-1825 (((-83)) 14 T ELT)) (-1826 (((-83) (-83)) 15 T ELT)) (-1828 (((-83)) 16 T ELT)) (-1829 (((-83) (-83)) 17 T ELT)) (-1820 (((-823) (-823)) 22 T ELT) (((-823)) 21 T ELT)) (-1821 (((-687) (-578 (-2 (|:| -3716 |#1|) (|:| -3932 (-478))))) 52 T ELT)) (-1819 (((-823) (-823)) 24 T ELT) (((-823)) 23 T ELT)) (-1822 (((-2 (|:| -2562 (-478)) (|:| -1766 (-578 |#1|))) |#1|) 94 T ELT)) (-1818 (((-341 |#1|) (-2 (|:| |contp| (-478)) (|:| -1766 (-578 (-2 (|:| |irr| |#1|) (|:| -2381 (-478))))))) 176 T ELT)) (-3718 (((-2 (|:| |contp| (-478)) (|:| -1766 (-578 (-2 (|:| |irr| |#1|) (|:| -2381 (-478)))))) |#1| (-83)) 209 T ELT)) (-3717 (((-341 |#1|) |#1| (-687) (-687)) 224 T ELT) (((-341 |#1|) |#1| (-578 (-687)) (-687)) 221 T ELT) (((-341 |#1|) |#1| (-578 (-687))) 223 T ELT) (((-341 |#1|) |#1| (-687)) 222 T ELT) (((-341 |#1|) |#1|) 220 T ELT)) (-1840 (((-3 |#1| #1="failed") (-823) |#1| (-578 (-687)) (-687) (-83)) 226 T ELT) (((-3 |#1| #1#) (-823) |#1| (-578 (-687)) (-687)) 227 T ELT) (((-3 |#1| #1#) (-823) |#1| (-578 (-687))) 229 T ELT) (((-3 |#1| #1#) (-823) |#1| (-687)) 228 T ELT) (((-3 |#1| #1#) (-823) |#1|) 230 T ELT)) (-3716 (((-341 |#1|) |#1| (-687) (-687)) 219 T ELT) (((-341 |#1|) |#1| (-578 (-687)) (-687)) 215 T ELT) (((-341 |#1|) |#1| (-578 (-687))) 217 T ELT) (((-341 |#1|) |#1| (-687)) 216 T ELT) (((-341 |#1|) |#1|) 214 T ELT)) (-1827 (((-83) |#1|) 43 T ELT)) (-1839 (((-668 (-687)) (-578 (-2 (|:| -3716 |#1|) (|:| -3932 (-478))))) 99 T ELT)) (-1830 (((-2 (|:| |contp| (-478)) (|:| -1766 (-578 (-2 (|:| |irr| |#1|) (|:| -2381 (-478)))))) |#1| (-83) (-1001 (-687)) (-687)) 213 T ELT))) +(((-375 |#1|) (-10 -7 (-15 -1818 ((-341 |#1|) (-2 (|:| |contp| (-478)) (|:| -1766 (-578 (-2 (|:| |irr| |#1|) (|:| -2381 (-478)))))))) (-15 -1839 ((-668 (-687)) (-578 (-2 (|:| -3716 |#1|) (|:| -3932 (-478)))))) (-15 -1819 ((-823))) (-15 -1819 ((-823) (-823))) (-15 -1820 ((-823))) (-15 -1820 ((-823) (-823))) (-15 -1821 ((-687) (-578 (-2 (|:| -3716 |#1|) (|:| -3932 (-478)))))) (-15 -1822 ((-2 (|:| -2562 (-478)) (|:| -1766 (-578 |#1|))) |#1|)) (-15 -1823 ((-83))) (-15 -1824 ((-83) (-83))) (-15 -1825 ((-83))) (-15 -1826 ((-83) (-83))) (-15 -1827 ((-83) |#1|)) (-15 -1828 ((-83))) (-15 -1829 ((-83) (-83))) (-15 -3716 ((-341 |#1|) |#1|)) (-15 -3716 ((-341 |#1|) |#1| (-687))) (-15 -3716 ((-341 |#1|) |#1| (-578 (-687)))) (-15 -3716 ((-341 |#1|) |#1| (-578 (-687)) (-687))) (-15 -3716 ((-341 |#1|) |#1| (-687) (-687))) (-15 -3717 ((-341 |#1|) |#1|)) (-15 -3717 ((-341 |#1|) |#1| (-687))) (-15 -3717 ((-341 |#1|) |#1| (-578 (-687)))) (-15 -3717 ((-341 |#1|) |#1| (-578 (-687)) (-687))) (-15 -3717 ((-341 |#1|) |#1| (-687) (-687))) (-15 -1840 ((-3 |#1| #1="failed") (-823) |#1|)) (-15 -1840 ((-3 |#1| #1#) (-823) |#1| (-687))) (-15 -1840 ((-3 |#1| #1#) (-823) |#1| (-578 (-687)))) (-15 -1840 ((-3 |#1| #1#) (-823) |#1| (-578 (-687)) (-687))) (-15 -1840 ((-3 |#1| #1#) (-823) |#1| (-578 (-687)) (-687) (-83))) (-15 -3718 ((-2 (|:| |contp| (-478)) (|:| -1766 (-578 (-2 (|:| |irr| |#1|) (|:| -2381 (-478)))))) |#1| (-83))) (-15 -1830 ((-2 (|:| |contp| (-478)) (|:| -1766 (-578 (-2 (|:| |irr| |#1|) (|:| -2381 (-478)))))) |#1| (-83) (-1001 (-687)) (-687)))) (-1144 (-478))) (T -375)) +((-1830 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-83)) (-5 *5 (-1001 (-687))) (-5 *6 (-687)) (-5 *2 (-2 (|:| |contp| (-478)) (|:| -1766 (-578 (-2 (|:| |irr| *3) (|:| -2381 (-478))))))) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-3718 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-5 *2 (-2 (|:| |contp| (-478)) (|:| -1766 (-578 (-2 (|:| |irr| *3) (|:| -2381 (-478))))))) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-1840 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-823)) (-5 *4 (-578 (-687))) (-5 *5 (-687)) (-5 *6 (-83)) (-5 *1 (-375 *2)) (-4 *2 (-1144 (-478))))) (-1840 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-823)) (-5 *4 (-578 (-687))) (-5 *5 (-687)) (-5 *1 (-375 *2)) (-4 *2 (-1144 (-478))))) (-1840 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-823)) (-5 *4 (-578 (-687))) (-5 *1 (-375 *2)) (-4 *2 (-1144 (-478))))) (-1840 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-823)) (-5 *4 (-687)) (-5 *1 (-375 *2)) (-4 *2 (-1144 (-478))))) (-1840 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-823)) (-5 *1 (-375 *2)) (-4 *2 (-1144 (-478))))) (-3717 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-3717 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-578 (-687))) (-5 *5 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-3717 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-687))) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-3717 (*1 *2 *3 *4) (-12 (-5 *4 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-3717 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-3716 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-3716 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-578 (-687))) (-5 *5 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-687))) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-3716 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-1829 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-1828 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-1827 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-1825 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-1824 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-1823 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-1822 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2562 (-478)) (|:| -1766 (-578 *3)))) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-1821 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3716 *4) (|:| -3932 (-478))))) (-4 *4 (-1144 (-478))) (-5 *2 (-687)) (-5 *1 (-375 *4)))) (-1820 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-1820 (*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-1819 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-1819 (*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) (-1839 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3716 *4) (|:| -3932 (-478))))) (-4 *4 (-1144 (-478))) (-5 *2 (-668 (-687))) (-5 *1 (-375 *4)))) (-1818 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-478)) (|:| -1766 (-578 (-2 (|:| |irr| *4) (|:| -2381 (-478))))))) (-4 *4 (-1144 (-478))) (-5 *2 (-341 *4)) (-5 *1 (-375 *4))))) +((-1834 (((-478) |#2|) 52 T ELT) (((-478) |#2| (-687)) 51 T ELT)) (-1833 (((-478) |#2|) 64 T ELT)) (-1835 ((|#3| |#2|) 26 T ELT)) (-3115 ((|#3| |#2| (-823)) 15 T ELT)) (-3817 ((|#3| |#2|) 16 T ELT)) (-1836 ((|#3| |#2|) 9 T ELT)) (-2587 ((|#3| |#2|) 10 T ELT)) (-1832 ((|#3| |#2| (-823)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1831 (((-478) |#2|) 66 T ELT))) +(((-376 |#1| |#2| |#3|) (-10 -7 (-15 -1831 ((-478) |#2|)) (-15 -1832 (|#3| |#2|)) (-15 -1832 (|#3| |#2| (-823))) (-15 -1833 ((-478) |#2|)) (-15 -1834 ((-478) |#2| (-687))) (-15 -1834 ((-478) |#2|)) (-15 -3115 (|#3| |#2| (-823))) (-15 -1835 (|#3| |#2|)) (-15 -1836 (|#3| |#2|)) (-15 -2587 (|#3| |#2|)) (-15 -3817 (|#3| |#2|))) (-954) (-1144 |#1|) (-13 (-340) (-943 |#1|) (-308) (-1104) (-236))) (T -376)) +((-3817 (*1 *2 *3) (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1104) (-236))) (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1144 *4)))) (-2587 (*1 *2 *3) (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1104) (-236))) (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1144 *4)))) (-1836 (*1 *2 *3) (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1104) (-236))) (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1144 *4)))) (-1835 (*1 *2 *3) (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1104) (-236))) (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1144 *4)))) (-3115 (*1 *2 *3 *4) (-12 (-5 *4 (-823)) (-4 *5 (-954)) (-4 *2 (-13 (-340) (-943 *5) (-308) (-1104) (-236))) (-5 *1 (-376 *5 *3 *2)) (-4 *3 (-1144 *5)))) (-1834 (*1 *2 *3) (-12 (-4 *4 (-954)) (-5 *2 (-478)) (-5 *1 (-376 *4 *3 *5)) (-4 *3 (-1144 *4)) (-4 *5 (-13 (-340) (-943 *4) (-308) (-1104) (-236))))) (-1834 (*1 *2 *3 *4) (-12 (-5 *4 (-687)) (-4 *5 (-954)) (-5 *2 (-478)) (-5 *1 (-376 *5 *3 *6)) (-4 *3 (-1144 *5)) (-4 *6 (-13 (-340) (-943 *5) (-308) (-1104) (-236))))) (-1833 (*1 *2 *3) (-12 (-4 *4 (-954)) (-5 *2 (-478)) (-5 *1 (-376 *4 *3 *5)) (-4 *3 (-1144 *4)) (-4 *5 (-13 (-340) (-943 *4) (-308) (-1104) (-236))))) (-1832 (*1 *2 *3 *4) (-12 (-5 *4 (-823)) (-4 *5 (-954)) (-4 *2 (-13 (-340) (-943 *5) (-308) (-1104) (-236))) (-5 *1 (-376 *5 *3 *2)) (-4 *3 (-1144 *5)))) (-1832 (*1 *2 *3) (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1104) (-236))) (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1144 *4)))) (-1831 (*1 *2 *3) (-12 (-4 *4 (-954)) (-5 *2 (-478)) (-5 *1 (-376 *4 *3 *5)) (-4 *3 (-1144 *4)) (-4 *5 (-13 (-340) (-943 *4) (-308) (-1104) (-236)))))) +((-3338 ((|#2| (-1168 |#1|)) 42 T ELT)) (-1838 ((|#2| |#2| |#1|) 58 T ELT)) (-1837 ((|#2| |#2| |#1|) 49 T ELT)) (-2284 ((|#2| |#2|) 44 T ELT)) (-3156 (((-83) |#2|) 32 T ELT)) (-1841 (((-578 |#2|) (-823) (-341 |#2|)) 21 T ELT)) (-1840 ((|#2| (-823) (-341 |#2|)) 25 T ELT)) (-1839 (((-668 (-687)) (-341 |#2|)) 29 T ELT))) +(((-377 |#1| |#2|) (-10 -7 (-15 -3156 ((-83) |#2|)) (-15 -3338 (|#2| (-1168 |#1|))) (-15 -2284 (|#2| |#2|)) (-15 -1837 (|#2| |#2| |#1|)) (-15 -1838 (|#2| |#2| |#1|)) (-15 -1839 ((-668 (-687)) (-341 |#2|))) (-15 -1840 (|#2| (-823) (-341 |#2|))) (-15 -1841 ((-578 |#2|) (-823) (-341 |#2|)))) (-954) (-1144 |#1|)) (T -377)) +((-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-341 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-954)) (-5 *2 (-578 *6)) (-5 *1 (-377 *5 *6)))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-341 *2)) (-4 *2 (-1144 *5)) (-5 *1 (-377 *5 *2)) (-4 *5 (-954)))) (-1839 (*1 *2 *3) (-12 (-5 *3 (-341 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-954)) (-5 *2 (-668 (-687))) (-5 *1 (-377 *4 *5)))) (-1838 (*1 *2 *2 *3) (-12 (-4 *3 (-954)) (-5 *1 (-377 *3 *2)) (-4 *2 (-1144 *3)))) (-1837 (*1 *2 *2 *3) (-12 (-4 *3 (-954)) (-5 *1 (-377 *3 *2)) (-4 *2 (-1144 *3)))) (-2284 (*1 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-377 *3 *2)) (-4 *2 (-1144 *3)))) (-3338 (*1 *2 *3) (-12 (-5 *3 (-1168 *4)) (-4 *4 (-954)) (-4 *2 (-1144 *4)) (-5 *1 (-377 *4 *2)))) (-3156 (*1 *2 *3) (-12 (-4 *4 (-954)) (-5 *2 (-83)) (-5 *1 (-377 *4 *3)) (-4 *3 (-1144 *4))))) +((-1844 (((-687)) 59 T ELT)) (-1848 (((-687)) 29 (|has| |#1| (-340)) ELT) (((-687) (-687)) 28 (|has| |#1| (-340)) ELT)) (-1847 (((-478) |#1|) 25 (|has| |#1| (-340)) ELT)) (-1846 (((-478) |#1|) 27 (|has| |#1| (-340)) ELT)) (-1843 (((-687)) 58 T ELT) (((-687) (-687)) 57 T ELT)) (-1842 ((|#1| (-687) (-478)) 37 T ELT)) (-1845 (((-1174)) 61 T ELT))) +(((-378 |#1|) (-10 -7 (-15 -1842 (|#1| (-687) (-478))) (-15 -1843 ((-687) (-687))) (-15 -1843 ((-687))) (-15 -1844 ((-687))) (-15 -1845 ((-1174))) (IF (|has| |#1| (-340)) (PROGN (-15 -1846 ((-478) |#1|)) (-15 -1847 ((-478) |#1|)) (-15 -1848 ((-687) (-687))) (-15 -1848 ((-687)))) |%noBranch|)) (-954)) (T -378)) +((-1848 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-340)) (-4 *3 (-954)))) (-1848 (*1 *2 *2) (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-340)) (-4 *3 (-954)))) (-1847 (*1 *2 *3) (-12 (-5 *2 (-478)) (-5 *1 (-378 *3)) (-4 *3 (-340)) (-4 *3 (-954)))) (-1846 (*1 *2 *3) (-12 (-5 *2 (-478)) (-5 *1 (-378 *3)) (-4 *3 (-340)) (-4 *3 (-954)))) (-1845 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-378 *3)) (-4 *3 (-954)))) (-1844 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-954)))) (-1843 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-954)))) (-1843 (*1 *2 *2) (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-954)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *3 (-687)) (-5 *4 (-478)) (-5 *1 (-378 *2)) (-4 *2 (-954))))) +((-1849 (((-578 (-478)) (-478)) 76 T ELT)) (-3707 (((-83) (-140 (-478))) 84 T ELT)) (-3716 (((-341 (-140 (-478))) (-140 (-478))) 75 T ELT))) +(((-379) (-10 -7 (-15 -3716 ((-341 (-140 (-478))) (-140 (-478)))) (-15 -1849 ((-578 (-478)) (-478))) (-15 -3707 ((-83) (-140 (-478)))))) (T -379)) +((-3707 (*1 *2 *3) (-12 (-5 *3 (-140 (-478))) (-5 *2 (-83)) (-5 *1 (-379)))) (-1849 (*1 *2 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-379)) (-5 *3 (-478)))) (-3716 (*1 *2 *3) (-12 (-5 *2 (-341 (-140 (-478)))) (-5 *1 (-379)) (-5 *3 (-140 (-478)))))) +((-2930 ((|#4| |#4| (-578 |#4|)) 20 (|has| |#1| (-308)) ELT)) (-2237 (((-578 |#4|) (-578 |#4|) (-1062) (-1062)) 46 T ELT) (((-578 |#4|) (-578 |#4|) (-1062)) 45 T ELT) (((-578 |#4|) (-578 |#4|)) 34 T ELT))) +(((-380 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2237 ((-578 |#4|) (-578 |#4|))) (-15 -2237 ((-578 |#4|) (-578 |#4|) (-1062))) (-15 -2237 ((-578 |#4|) (-578 |#4|) (-1062) (-1062))) (IF (|has| |#1| (-308)) (-15 -2930 (|#4| |#4| (-578 |#4|))) |%noBranch|)) (-385) (-710) (-749) (-854 |#1| |#2| |#3|)) (T -380)) +((-2930 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *4 *5 *6)) (-4 *4 (-308)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-380 *4 *5 *6 *2)))) (-2237 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1062)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-380 *4 *5 *6 *7)))) (-2237 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1062)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-380 *4 *5 *6 *7)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-380 *3 *4 *5 *6))))) +((-1850 ((|#4| |#4| (-578 |#4|)) 82 T ELT)) (-1851 (((-578 |#4|) (-578 |#4|) (-1062) (-1062)) 22 T ELT) (((-578 |#4|) (-578 |#4|) (-1062)) 21 T ELT) (((-578 |#4|) (-578 |#4|)) 13 T ELT))) +(((-381 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1850 (|#4| |#4| (-578 |#4|))) (-15 -1851 ((-578 |#4|) (-578 |#4|))) (-15 -1851 ((-578 |#4|) (-578 |#4|) (-1062))) (-15 -1851 ((-578 |#4|) (-578 |#4|) (-1062) (-1062)))) (-254) (-710) (-749) (-854 |#1| |#2| |#3|)) (T -381)) +((-1851 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1062)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-254)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-381 *4 *5 *6 *7)))) (-1851 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1062)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-254)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-381 *4 *5 *6 *7)))) (-1851 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-254)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-381 *3 *4 *5 *6)))) (-1850 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *4 *5 *6)) (-4 *4 (-254)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-381 *4 *5 *6 *2))))) +((-1853 (((-578 (-578 |#4|)) (-578 |#4|) (-83)) 90 T ELT) (((-578 (-578 |#4|)) (-578 |#4|)) 89 T ELT) (((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|) (-83)) 83 T ELT) (((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|)) 84 T ELT)) (-1852 (((-578 (-578 |#4|)) (-578 |#4|) (-83)) 56 T ELT) (((-578 (-578 |#4|)) (-578 |#4|)) 78 T ELT))) +(((-382 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1852 ((-578 (-578 |#4|)) (-578 |#4|))) (-15 -1852 ((-578 (-578 |#4|)) (-578 |#4|) (-83))) (-15 -1853 ((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|))) (-15 -1853 ((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|) (-83))) (-15 -1853 ((-578 (-578 |#4|)) (-578 |#4|))) (-15 -1853 ((-578 (-578 |#4|)) (-578 |#4|) (-83)))) (-13 (-254) (-118)) (-710) (-749) (-854 |#1| |#2| |#3|)) (T -382)) +((-1853 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-854 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-382 *5 *6 *7 *8)) (-5 *3 (-578 *8)))) (-1853 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-854 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-382 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-1853 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-854 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-382 *5 *6 *7 *8)) (-5 *3 (-578 *8)))) (-1853 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-854 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-382 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-1852 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-854 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-382 *5 *6 *7 *8)) (-5 *3 (-578 *8)))) (-1852 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-854 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-382 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) +((-1877 (((-687) |#4|) 12 T ELT)) (-1865 (((-578 (-2 (|:| |totdeg| (-687)) (|:| -1990 |#4|))) |#4| (-687) (-578 (-2 (|:| |totdeg| (-687)) (|:| -1990 |#4|)))) 39 T ELT)) (-1867 (((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1866 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1855 ((|#4| |#4| (-578 |#4|)) 54 T ELT)) (-1863 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-578 |#4|)) 96 T ELT)) (-1870 (((-1174) |#4|) 59 T ELT)) (-1873 (((-1174) (-578 |#4|)) 69 T ELT)) (-1871 (((-478) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-478) (-478) (-478)) 66 T ELT)) (-1874 (((-1174) (-478)) 110 T ELT)) (-1868 (((-578 |#4|) (-578 |#4|)) 104 T ELT)) (-1876 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-687)) (|:| -1990 |#4|)) |#4| (-687)) 31 T ELT)) (-1869 (((-478) |#4|) 109 T ELT)) (-1864 ((|#4| |#4|) 37 T ELT)) (-1856 (((-578 |#4|) (-578 |#4|) (-478) (-478)) 74 T ELT)) (-1872 (((-478) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-478) (-478) (-478) (-478)) 123 T ELT)) (-1875 (((-83) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1857 (((-83) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1862 (((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1861 (((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1858 (((-83) |#2| |#2|) 75 T ELT)) (-1860 (((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1859 (((-83) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1854 ((|#4| |#4| (-578 |#4|)) 97 T ELT))) +(((-383 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1854 (|#4| |#4| (-578 |#4|))) (-15 -1855 (|#4| |#4| (-578 |#4|))) (-15 -1856 ((-578 |#4|) (-578 |#4|) (-478) (-478))) (-15 -1857 ((-83) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1858 ((-83) |#2| |#2|)) (-15 -1859 ((-83) |#2| |#2| |#2| |#2|)) (-15 -1860 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1861 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1862 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1863 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-578 |#4|))) (-15 -1864 (|#4| |#4|)) (-15 -1865 ((-578 (-2 (|:| |totdeg| (-687)) (|:| -1990 |#4|))) |#4| (-687) (-578 (-2 (|:| |totdeg| (-687)) (|:| -1990 |#4|))))) (-15 -1866 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1867 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1868 ((-578 |#4|) (-578 |#4|))) (-15 -1869 ((-478) |#4|)) (-15 -1870 ((-1174) |#4|)) (-15 -1871 ((-478) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-478) (-478) (-478))) (-15 -1872 ((-478) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-478) (-478) (-478) (-478))) (-15 -1873 ((-1174) (-578 |#4|))) (-15 -1874 ((-1174) (-478))) (-15 -1875 ((-83) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1876 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-687)) (|:| -1990 |#4|)) |#4| (-687))) (-15 -1877 ((-687) |#4|))) (-385) (-710) (-749) (-854 |#1| |#2| |#3|)) (T -383)) +((-1877 (*1 *2 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-687)) (-5 *1 (-383 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6)))) (-1876 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-687)) (|:| -1990 *4))) (-5 *5 (-687)) (-4 *4 (-854 *6 *7 *8)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-383 *6 *7 *8 *4)))) (-1875 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-687)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-710)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-383 *4 *5 *6 *7)))) (-1874 (*1 *2 *3) (-12 (-5 *3 (-478)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-1174)) (-5 *1 (-383 *4 *5 *6 *7)) (-4 *7 (-854 *4 *5 *6)))) (-1873 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-1174)) (-5 *1 (-383 *4 *5 *6 *7)))) (-1872 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-687)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-710)) (-4 *4 (-854 *5 *6 *7)) (-4 *5 (-385)) (-4 *7 (-749)) (-5 *1 (-383 *5 *6 *7 *4)))) (-1871 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-687)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-710)) (-4 *4 (-854 *5 *6 *7)) (-4 *5 (-385)) (-4 *7 (-749)) (-5 *1 (-383 *5 *6 *7 *4)))) (-1870 (*1 *2 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-1174)) (-5 *1 (-383 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6)))) (-1869 (*1 *2 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-478)) (-5 *1 (-383 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6)))) (-1868 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-383 *3 *4 *5 *6)))) (-1867 (*1 *2 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-687)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-710)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-385)) (-4 *5 (-749)) (-5 *1 (-383 *3 *4 *5 *6)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-687)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-710)) (-4 *2 (-854 *4 *5 *6)) (-5 *1 (-383 *4 *5 *6 *2)) (-4 *4 (-385)) (-4 *6 (-749)))) (-1865 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-578 (-2 (|:| |totdeg| (-687)) (|:| -1990 *3)))) (-5 *4 (-687)) (-4 *3 (-854 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-383 *5 *6 *7 *3)))) (-1864 (*1 *2 *2) (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-383 *3 *4 *5 *2)) (-4 *2 (-854 *3 *4 *5)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-854 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-383 *5 *6 *7 *3)))) (-1862 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-687)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-710)) (-4 *6 (-854 *4 *3 *5)) (-4 *4 (-385)) (-4 *5 (-749)) (-5 *1 (-383 *4 *3 *5 *6)))) (-1861 (*1 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-687)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-710)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-385)) (-4 *5 (-749)) (-5 *1 (-383 *3 *4 *5 *6)))) (-1860 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-687)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-710)) (-4 *3 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *6 (-749)) (-5 *1 (-383 *4 *5 *6 *3)))) (-1859 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-385)) (-4 *3 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) (-5 *1 (-383 *4 *3 *5 *6)) (-4 *6 (-854 *4 *3 *5)))) (-1858 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *3 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) (-5 *1 (-383 *4 *3 *5 *6)) (-4 *6 (-854 *4 *3 *5)))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-687)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-710)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-383 *4 *5 *6 *7)))) (-1856 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-478)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-383 *4 *5 *6 *7)))) (-1855 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-383 *4 *5 *6 *2)))) (-1854 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-383 *4 *5 *6 *2))))) +((-1878 (($ $ $) 14 T ELT) (($ (-578 $)) 21 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 45 T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) 22 T ELT))) +(((-384 |#1|) (-10 -7 (-15 -2692 ((-1074 |#1|) (-1074 |#1|) (-1074 |#1|))) (-15 -1878 (|#1| (-578 |#1|))) (-15 -1878 (|#1| |#1| |#1|)) (-15 -3127 (|#1| (-578 |#1|))) (-15 -3127 (|#1| |#1| |#1|))) (-385)) (T -384)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-1878 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 55 T ELT)) (-3127 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-385) (-111)) (T -385)) +((-3127 (*1 *1 *1 *1) (-4 *1 (-385))) (-3127 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-385)))) (-1878 (*1 *1 *1 *1) (-4 *1 (-385))) (-1878 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-385)))) (-2692 (*1 *2 *2 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-385))))) +(-13 (-489) (-10 -8 (-15 -3127 ($ $ $)) (-15 -3127 ($ (-578 $))) (-15 -1878 ($ $ $)) (-15 -1878 ($ (-578 $))) (-15 -2692 ((-1074 $) (-1074 $) (-1074 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-242) . T) ((-489) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-577 $) . T) ((-649 $) . T) ((-658) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1759 (((-3 $ #1="failed")) NIL (|has| (-343 (-850 |#1|)) (-489)) ELT)) (-1299 (((-3 $ #1#) $ $) NIL T ELT)) (-3206 (((-1168 (-625 (-343 (-850 |#1|)))) (-1168 $)) NIL T ELT) (((-1168 (-625 (-343 (-850 |#1|))))) NIL T ELT)) (-1716 (((-1168 $)) NIL T ELT)) (-3708 (($) NIL T CONST)) (-1893 (((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) #1#)) NIL T ELT)) (-1690 (((-3 $ #1#)) NIL (|has| (-343 (-850 |#1|)) (-489)) ELT)) (-1775 (((-625 (-343 (-850 |#1|))) (-1168 $)) NIL T ELT) (((-625 (-343 (-850 |#1|)))) NIL T ELT)) (-1714 (((-343 (-850 |#1|)) $) NIL T ELT)) (-1773 (((-625 (-343 (-850 |#1|))) $ (-1168 $)) NIL T ELT) (((-625 (-343 (-850 |#1|))) $) NIL T ELT)) (-2390 (((-3 $ #1#) $) NIL (|has| (-343 (-850 |#1|)) (-489)) ELT)) (-1887 (((-1074 (-850 (-343 (-850 |#1|))))) NIL (|has| (-343 (-850 |#1|)) (-308)) ELT) (((-1074 (-343 (-850 |#1|)))) 91 (|has| |#1| (-489)) ELT)) (-2393 (($ $ (-823)) NIL T ELT)) (-1712 (((-343 (-850 |#1|)) $) NIL T ELT)) (-1692 (((-1074 (-343 (-850 |#1|))) $) 89 (|has| (-343 (-850 |#1|)) (-489)) ELT)) (-1777 (((-343 (-850 |#1|)) (-1168 $)) NIL T ELT) (((-343 (-850 |#1|))) NIL T ELT)) (-1710 (((-1074 (-343 (-850 |#1|))) $) NIL T ELT)) (-1704 (((-83)) NIL T ELT)) (-1779 (($ (-1168 (-343 (-850 |#1|))) (-1168 $)) 115 T ELT) (($ (-1168 (-343 (-850 |#1|)))) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL (|has| (-343 (-850 |#1|)) (-489)) ELT)) (-3092 (((-823)) NIL T ELT)) (-1701 (((-83)) NIL T ELT)) (-2417 (($ $ (-823)) NIL T ELT)) (-1697 (((-83)) NIL T ELT)) (-1695 (((-83)) NIL T ELT)) (-1699 (((-83)) NIL T ELT)) (-1894 (((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) #1#)) NIL T ELT)) (-1691 (((-3 $ #1#)) NIL (|has| (-343 (-850 |#1|)) (-489)) ELT)) (-1776 (((-625 (-343 (-850 |#1|))) (-1168 $)) NIL T ELT) (((-625 (-343 (-850 |#1|)))) NIL T ELT)) (-1715 (((-343 (-850 |#1|)) $) NIL T ELT)) (-1774 (((-625 (-343 (-850 |#1|))) $ (-1168 $)) NIL T ELT) (((-625 (-343 (-850 |#1|))) $) NIL T ELT)) (-2391 (((-3 $ #1#) $) NIL (|has| (-343 (-850 |#1|)) (-489)) ELT)) (-1891 (((-1074 (-850 (-343 (-850 |#1|))))) NIL (|has| (-343 (-850 |#1|)) (-308)) ELT) (((-1074 (-343 (-850 |#1|)))) 90 (|has| |#1| (-489)) ELT)) (-2392 (($ $ (-823)) NIL T ELT)) (-1713 (((-343 (-850 |#1|)) $) NIL T ELT)) (-1693 (((-1074 (-343 (-850 |#1|))) $) 86 (|has| (-343 (-850 |#1|)) (-489)) ELT)) (-1778 (((-343 (-850 |#1|)) (-1168 $)) NIL T ELT) (((-343 (-850 |#1|))) NIL T ELT)) (-1711 (((-1074 (-343 (-850 |#1|))) $) NIL T ELT)) (-1705 (((-83)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1696 (((-83)) NIL T ELT)) (-1698 (((-83)) NIL T ELT)) (-1700 (((-83)) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1881 (((-343 (-850 |#1|)) $ $) 77 (|has| |#1| (-489)) ELT)) (-1885 (((-343 (-850 |#1|)) $) 101 (|has| |#1| (-489)) ELT)) (-1884 (((-343 (-850 |#1|)) $) 105 (|has| |#1| (-489)) ELT)) (-1886 (((-1074 (-343 (-850 |#1|))) $) 95 (|has| |#1| (-489)) ELT)) (-1880 (((-343 (-850 |#1|))) 78 (|has| |#1| (-489)) ELT)) (-1883 (((-343 (-850 |#1|)) $ $) 70 (|has| |#1| (-489)) ELT)) (-1889 (((-343 (-850 |#1|)) $) 100 (|has| |#1| (-489)) ELT)) (-1888 (((-343 (-850 |#1|)) $) 104 (|has| |#1| (-489)) ELT)) (-1890 (((-1074 (-343 (-850 |#1|))) $) 94 (|has| |#1| (-489)) ELT)) (-1882 (((-343 (-850 |#1|))) 74 (|has| |#1| (-489)) ELT)) (-1892 (($) 111 T ELT) (($ (-1079)) 119 T ELT) (($ (-1168 (-1079))) 118 T ELT) (($ (-1168 $)) 106 T ELT) (($ (-1079) (-1168 $)) 117 T ELT) (($ (-1168 (-1079)) (-1168 $)) 116 T ELT)) (-1703 (((-83)) NIL T ELT)) (-3784 (((-343 (-850 |#1|)) $ (-478)) NIL T ELT)) (-3207 (((-1168 (-343 (-850 |#1|))) $ (-1168 $)) 108 T ELT) (((-625 (-343 (-850 |#1|))) (-1168 $) (-1168 $)) NIL T ELT) (((-1168 (-343 (-850 |#1|))) $) 44 T ELT) (((-625 (-343 (-850 |#1|))) (-1168 $)) NIL T ELT)) (-3956 (((-1168 (-343 (-850 |#1|))) $) NIL T ELT) (($ (-1168 (-343 (-850 |#1|)))) 41 T ELT)) (-1879 (((-578 (-850 (-343 (-850 |#1|)))) (-1168 $)) NIL T ELT) (((-578 (-850 (-343 (-850 |#1|))))) NIL T ELT) (((-578 (-850 |#1|)) (-1168 $)) 109 (|has| |#1| (-489)) ELT) (((-578 (-850 |#1|))) 110 (|has| |#1| (-489)) ELT)) (-2419 (($ $ $) NIL T ELT)) (-1709 (((-83)) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-1168 (-343 (-850 |#1|)))) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $)) 66 T ELT)) (-1694 (((-578 (-1168 (-343 (-850 |#1|))))) NIL (|has| (-343 (-850 |#1|)) (-489)) ELT)) (-2420 (($ $ $ $) NIL T ELT)) (-1707 (((-83)) NIL T ELT)) (-2529 (($ (-625 (-343 (-850 |#1|))) $) NIL T ELT)) (-2418 (($ $ $) NIL T ELT)) (-1708 (((-83)) NIL T ELT)) (-1706 (((-83)) NIL T ELT)) (-1702 (((-83)) NIL T ELT)) (-2644 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) 107 T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-343 (-850 |#1|))) NIL T ELT) (($ (-343 (-850 |#1|)) $) NIL T ELT) (($ (-1045 |#2| (-343 (-850 |#1|))) $) NIL T ELT))) +(((-386 |#1| |#2| |#3| |#4|) (-13 (-354 (-343 (-850 |#1|))) (-585 (-1045 |#2| (-343 (-850 |#1|)))) (-10 -8 (-15 -3930 ($ (-1168 (-343 (-850 |#1|))))) (-15 -1894 ((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) #1="failed"))) (-15 -1893 ((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) #1#))) (-15 -1892 ($)) (-15 -1892 ($ (-1079))) (-15 -1892 ($ (-1168 (-1079)))) (-15 -1892 ($ (-1168 $))) (-15 -1892 ($ (-1079) (-1168 $))) (-15 -1892 ($ (-1168 (-1079)) (-1168 $))) (IF (|has| |#1| (-489)) (PROGN (-15 -1891 ((-1074 (-343 (-850 |#1|))))) (-15 -1890 ((-1074 (-343 (-850 |#1|))) $)) (-15 -1889 ((-343 (-850 |#1|)) $)) (-15 -1888 ((-343 (-850 |#1|)) $)) (-15 -1887 ((-1074 (-343 (-850 |#1|))))) (-15 -1886 ((-1074 (-343 (-850 |#1|))) $)) (-15 -1885 ((-343 (-850 |#1|)) $)) (-15 -1884 ((-343 (-850 |#1|)) $)) (-15 -1883 ((-343 (-850 |#1|)) $ $)) (-15 -1882 ((-343 (-850 |#1|)))) (-15 -1881 ((-343 (-850 |#1|)) $ $)) (-15 -1880 ((-343 (-850 |#1|)))) (-15 -1879 ((-578 (-850 |#1|)) (-1168 $))) (-15 -1879 ((-578 (-850 |#1|))))) |%noBranch|))) (-144) (-823) (-578 (-1079)) (-1168 (-625 |#1|))) (T -386)) +((-3930 (*1 *1 *2) (-12 (-5 *2 (-1168 (-343 (-850 *3)))) (-4 *3 (-144)) (-14 *6 (-1168 (-625 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))))) (-1894 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-386 *3 *4 *5 *6)) (|:| -1998 (-578 (-386 *3 *4 *5 *6))))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3))))) (-1893 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-386 *3 *4 *5 *6)) (|:| -1998 (-578 (-386 *3 *4 *5 *6))))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3))))) (-1892 (*1 *1) (-12 (-5 *1 (-386 *2 *3 *4 *5)) (-4 *2 (-144)) (-14 *3 (-823)) (-14 *4 (-578 (-1079))) (-14 *5 (-1168 (-625 *2))))) (-1892 (*1 *1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 *2)) (-14 *6 (-1168 (-625 *3))))) (-1892 (*1 *1 *2) (-12 (-5 *2 (-1168 (-1079))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3))))) (-1892 (*1 *1 *2) (-12 (-5 *2 (-1168 (-386 *3 *4 *5 *6))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3))))) (-1892 (*1 *1 *2 *3) (-12 (-5 *2 (-1079)) (-5 *3 (-1168 (-386 *4 *5 *6 *7))) (-5 *1 (-386 *4 *5 *6 *7)) (-4 *4 (-144)) (-14 *5 (-823)) (-14 *6 (-578 *2)) (-14 *7 (-1168 (-625 *4))))) (-1892 (*1 *1 *2 *3) (-12 (-5 *2 (-1168 (-1079))) (-5 *3 (-1168 (-386 *4 *5 *6 *7))) (-5 *1 (-386 *4 *5 *6 *7)) (-4 *4 (-144)) (-14 *5 (-823)) (-14 *6 (-578 (-1079))) (-14 *7 (-1168 (-625 *4))))) (-1891 (*1 *2) (-12 (-5 *2 (-1074 (-343 (-850 *3)))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3))))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-1074 (-343 (-850 *3)))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3))))) (-1889 (*1 *2 *1) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3))))) (-1888 (*1 *2 *1) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3))))) (-1887 (*1 *2) (-12 (-5 *2 (-1074 (-343 (-850 *3)))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3))))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-1074 (-343 (-850 *3)))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3))))) (-1885 (*1 *2 *1) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3))))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3))))) (-1883 (*1 *2 *1 *1) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3))))) (-1882 (*1 *2) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3))))) (-1881 (*1 *2 *1 *1) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3))))) (-1880 (*1 *2) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3))))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-1168 (-386 *4 *5 *6 *7))) (-5 *2 (-578 (-850 *4))) (-5 *1 (-386 *4 *5 *6 *7)) (-4 *4 (-489)) (-4 *4 (-144)) (-14 *5 (-823)) (-14 *6 (-578 (-1079))) (-14 *7 (-1168 (-625 *4))))) (-1879 (*1 *2) (-12 (-5 *2 (-578 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 18 T ELT)) (-3065 (((-578 (-766 |#1|)) $) 87 T ELT)) (-3067 (((-1074 $) $ (-766 |#1|)) 52 T ELT) (((-1074 |#2|) $) 139 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#2| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#2| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#2| (-489)) ELT)) (-2803 (((-687) $) 27 T ELT) (((-687) $ (-578 (-766 |#1|))) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-3759 (($ $) NIL (|has| |#2| (-385)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#2| (-385)) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#2| #1#) $) 50 T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-3 (-766 |#1|) #1#) $) NIL T ELT)) (-3139 ((|#2| $) 48 T ELT) (((-343 (-478)) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-766 |#1|) $) NIL T ELT)) (-3740 (($ $ $ (-766 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-1924 (($ $ (-578 (-478))) 94 T ELT)) (-3943 (($ $) 80 T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#2|) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3487 (($ $) NIL (|has| |#2| (-385)) ELT) (($ $ (-766 |#1|)) NIL (|has| |#2| (-385)) ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3707 (((-83) $) NIL (|has| |#2| (-814)) ELT)) (-1611 (($ $ |#2| |#3| $) NIL T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-766 |#1|) (-789 (-323))) (|has| |#2| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-766 |#1|) (-789 (-478))) (|has| |#2| (-789 (-478)))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2404 (((-687) $) 65 T ELT)) (-3068 (($ (-1074 |#2|) (-766 |#1|)) 144 T ELT) (($ (-1074 $) (-766 |#1|)) 58 T ELT)) (-2805 (((-578 $) $) NIL T ELT)) (-3921 (((-83) $) 68 T ELT)) (-2877 (($ |#2| |#3|) 35 T ELT) (($ $ (-766 |#1|) (-687)) 37 T ELT) (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ (-766 |#1|)) NIL T ELT)) (-2804 ((|#3| $) NIL T ELT) (((-687) $ (-766 |#1|)) 56 T ELT) (((-578 (-687)) $ (-578 (-766 |#1|))) 63 T ELT)) (-1612 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3942 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3066 (((-3 (-766 |#1|) #1#) $) 45 T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-1168 $) $) NIL T ELT) (((-625 |#2|) (-1168 $)) NIL T ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#2| $) 47 T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) NIL (|has| |#2| (-385)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2807 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2806 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-2 (|:| |var| (-766 |#1|)) (|:| -2387 (-687))) #1#) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1784 (((-83) $) 46 T ELT)) (-1783 ((|#2| $) 137 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#2| (-385)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) 150 (|has| |#2| (-385)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#2| (-814)) ELT)) (-3450 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-489)) ELT)) (-3752 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-766 |#1|) |#2|) 101 T ELT) (($ $ (-578 (-766 |#1|)) (-578 |#2|)) 107 T ELT) (($ $ (-766 |#1|) $) 99 T ELT) (($ $ (-578 (-766 |#1|)) (-578 $)) 125 T ELT)) (-3741 (($ $ (-766 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3742 (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|)) 59 T ELT)) (-3932 ((|#3| $) 79 T ELT) (((-687) $ (-766 |#1|)) 42 T ELT) (((-578 (-687)) $ (-578 (-766 |#1|))) 62 T ELT)) (-3956 (((-793 (-323)) $) NIL (-12 (|has| (-766 |#1|) (-548 (-793 (-323)))) (|has| |#2| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-766 |#1|) (-548 (-793 (-478)))) (|has| |#2| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-766 |#1|) (-548 (-467))) (|has| |#2| (-548 (-467)))) ELT)) (-2801 ((|#2| $) 146 (|has| |#2| (-385)) ELT) (($ $ (-766 |#1|)) NIL (|has| |#2| (-385)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-814))) ELT)) (-3930 (((-765) $) 174 T ELT) (($ (-478)) NIL T ELT) (($ |#2|) 100 T ELT) (($ (-766 |#1|)) 39 T ELT) (($ (-343 (-478))) NIL (OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#2| (-489)) ELT)) (-3801 (((-578 |#2|) $) NIL T ELT)) (-3661 ((|#2| $ |#3|) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-814))) (|has| |#2| (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1610 (($ $ $ (-687)) NIL (|has| |#2| (-144)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| |#2| (-489)) ELT)) (-2644 (($) 22 T CONST)) (-2650 (($) 31 T CONST)) (-2653 (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#2|) 76 (|has| |#2| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 132 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 130 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 36 T ELT) (($ $ (-343 (-478))) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ |#2| $) 75 T ELT) (($ $ |#2|) NIL T ELT))) +(((-387 |#1| |#2| |#3|) (-13 (-854 |#2| |#3| (-766 |#1|)) (-10 -8 (-15 -1924 ($ $ (-578 (-478)))))) (-578 (-1079)) (-954) (-193 (-3941 |#1|) (-687))) (T -387)) +((-1924 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-478))) (-14 *3 (-578 (-1079))) (-5 *1 (-387 *3 *4 *5)) (-4 *4 (-954)) (-4 *5 (-193 (-3941 *3) (-687)))))) +((-1898 (((-83) |#1| (-578 |#2|)) 90 T ELT)) (-1896 (((-3 (-1168 (-578 |#2|)) #1="failed") (-687) |#1| (-578 |#2|)) 99 T ELT)) (-1897 (((-3 (-578 |#2|) #1#) |#2| |#1| (-1168 (-578 |#2|))) 101 T ELT)) (-2023 ((|#2| |#2| |#1|) 35 T ELT)) (-1895 (((-687) |#2| (-578 |#2|)) 26 T ELT))) +(((-388 |#1| |#2|) (-10 -7 (-15 -2023 (|#2| |#2| |#1|)) (-15 -1895 ((-687) |#2| (-578 |#2|))) (-15 -1896 ((-3 (-1168 (-578 |#2|)) #1="failed") (-687) |#1| (-578 |#2|))) (-15 -1897 ((-3 (-578 |#2|) #1#) |#2| |#1| (-1168 (-578 |#2|)))) (-15 -1898 ((-83) |#1| (-578 |#2|)))) (-254) (-1144 |#1|)) (T -388)) +((-1898 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *5)) (-4 *5 (-1144 *3)) (-4 *3 (-254)) (-5 *2 (-83)) (-5 *1 (-388 *3 *5)))) (-1897 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1168 (-578 *3))) (-4 *4 (-254)) (-5 *2 (-578 *3)) (-5 *1 (-388 *4 *3)) (-4 *3 (-1144 *4)))) (-1896 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-687)) (-4 *4 (-254)) (-4 *6 (-1144 *4)) (-5 *2 (-1168 (-578 *6))) (-5 *1 (-388 *4 *6)) (-5 *5 (-578 *6)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-254)) (-5 *2 (-687)) (-5 *1 (-388 *5 *3)))) (-2023 (*1 *2 *2 *3) (-12 (-4 *3 (-254)) (-5 *1 (-388 *3 *2)) (-4 *2 (-1144 *3))))) +((-3716 (((-341 |#5|) |#5|) 24 T ELT))) +(((-389 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3716 ((-341 |#5|) |#5|))) (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $)) (-15 -3815 ((-3 $ "failed") (-1079))))) (-710) (-489) (-489) (-854 |#4| |#2| |#1|)) (T -389)) +((-3716 (*1 *2 *3) (-12 (-4 *4 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $)) (-15 -3815 ((-3 $ "failed") (-1079)))))) (-4 *5 (-710)) (-4 *7 (-489)) (-5 *2 (-341 *3)) (-5 *1 (-389 *4 *5 *6 *7 *3)) (-4 *6 (-489)) (-4 *3 (-854 *7 *5 *4))))) +((-2684 ((|#3|) 43 T ELT)) (-2692 (((-1074 |#4|) (-1074 |#4|) (-1074 |#4|)) 34 T ELT))) +(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2692 ((-1074 |#4|) (-1074 |#4|) (-1074 |#4|))) (-15 -2684 (|#3|))) (-710) (-749) (-814) (-854 |#3| |#1| |#2|)) (T -390)) +((-2684 (*1 *2) (-12 (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-814)) (-5 *1 (-390 *3 *4 *2 *5)) (-4 *5 (-854 *2 *3 *4)))) (-2692 (*1 *2 *2 *2) (-12 (-5 *2 (-1074 *6)) (-4 *6 (-854 *5 *3 *4)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *5 (-814)) (-5 *1 (-390 *3 *4 *5 *6))))) +((-3716 (((-341 (-1074 |#1|)) (-1074 |#1|)) 43 T ELT))) +(((-391 |#1|) (-10 -7 (-15 -3716 ((-341 (-1074 |#1|)) (-1074 |#1|)))) (-254)) (T -391)) +((-3716 (*1 *2 *3) (-12 (-4 *4 (-254)) (-5 *2 (-341 (-1074 *4))) (-5 *1 (-391 *4)) (-5 *3 (-1074 *4))))) +((-3713 (((-51) |#2| (-1079) (-245 |#2|) (-1135 (-687))) 44 T ELT) (((-51) (-1 |#2| (-478)) (-245 |#2|) (-1135 (-687))) 43 T ELT) (((-51) |#2| (-1079) (-245 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-478)) (-245 |#2|)) 29 T ELT)) (-3802 (((-51) |#2| (-1079) (-245 |#2|) (-1135 (-343 (-478))) (-343 (-478))) 88 T ELT) (((-51) (-1 |#2| (-343 (-478))) (-245 |#2|) (-1135 (-343 (-478))) (-343 (-478))) 87 T ELT) (((-51) |#2| (-1079) (-245 |#2|) (-1135 (-478))) 86 T ELT) (((-51) (-1 |#2| (-478)) (-245 |#2|) (-1135 (-478))) 85 T ELT) (((-51) |#2| (-1079) (-245 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-478)) (-245 |#2|)) 79 T ELT)) (-3766 (((-51) |#2| (-1079) (-245 |#2|) (-1135 (-343 (-478))) (-343 (-478))) 74 T ELT) (((-51) (-1 |#2| (-343 (-478))) (-245 |#2|) (-1135 (-343 (-478))) (-343 (-478))) 72 T ELT)) (-3763 (((-51) |#2| (-1079) (-245 |#2|) (-1135 (-478))) 51 T ELT) (((-51) (-1 |#2| (-478)) (-245 |#2|) (-1135 (-478))) 50 T ELT))) +(((-392 |#1| |#2|) (-10 -7 (-15 -3713 ((-51) (-1 |#2| (-478)) (-245 |#2|))) (-15 -3713 ((-51) |#2| (-1079) (-245 |#2|))) (-15 -3713 ((-51) (-1 |#2| (-478)) (-245 |#2|) (-1135 (-687)))) (-15 -3713 ((-51) |#2| (-1079) (-245 |#2|) (-1135 (-687)))) (-15 -3763 ((-51) (-1 |#2| (-478)) (-245 |#2|) (-1135 (-478)))) (-15 -3763 ((-51) |#2| (-1079) (-245 |#2|) (-1135 (-478)))) (-15 -3766 ((-51) (-1 |#2| (-343 (-478))) (-245 |#2|) (-1135 (-343 (-478))) (-343 (-478)))) (-15 -3766 ((-51) |#2| (-1079) (-245 |#2|) (-1135 (-343 (-478))) (-343 (-478)))) (-15 -3802 ((-51) (-1 |#2| (-478)) (-245 |#2|))) (-15 -3802 ((-51) |#2| (-1079) (-245 |#2|))) (-15 -3802 ((-51) (-1 |#2| (-478)) (-245 |#2|) (-1135 (-478)))) (-15 -3802 ((-51) |#2| (-1079) (-245 |#2|) (-1135 (-478)))) (-15 -3802 ((-51) (-1 |#2| (-343 (-478))) (-245 |#2|) (-1135 (-343 (-478))) (-343 (-478)))) (-15 -3802 ((-51) |#2| (-1079) (-245 |#2|) (-1135 (-343 (-478))) (-343 (-478))))) (-13 (-489) (-943 (-478)) (-575 (-478))) (-13 (-27) (-1104) (-357 |#1|))) (T -392)) +((-3802 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1079)) (-5 *5 (-245 *3)) (-5 *6 (-1135 (-343 (-478)))) (-5 *7 (-343 (-478))) (-4 *3 (-13 (-27) (-1104) (-357 *8))) (-4 *8 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *8 *3)))) (-3802 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-343 (-478)))) (-5 *4 (-245 *8)) (-5 *5 (-1135 (-343 (-478)))) (-5 *6 (-343 (-478))) (-4 *8 (-13 (-27) (-1104) (-357 *7))) (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *7 *8)))) (-3802 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1079)) (-5 *5 (-245 *3)) (-5 *6 (-1135 (-478))) (-4 *3 (-13 (-27) (-1104) (-357 *7))) (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *7 *3)))) (-3802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-478))) (-5 *4 (-245 *7)) (-5 *5 (-1135 (-478))) (-4 *7 (-13 (-27) (-1104) (-357 *6))) (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *6 *7)))) (-3802 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1079)) (-5 *5 (-245 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *6))) (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *6 *3)))) (-3802 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-478))) (-5 *4 (-245 *6)) (-4 *6 (-13 (-27) (-1104) (-357 *5))) (-4 *5 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *5 *6)))) (-3766 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1079)) (-5 *5 (-245 *3)) (-5 *6 (-1135 (-343 (-478)))) (-5 *7 (-343 (-478))) (-4 *3 (-13 (-27) (-1104) (-357 *8))) (-4 *8 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *8 *3)))) (-3766 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-343 (-478)))) (-5 *4 (-245 *8)) (-5 *5 (-1135 (-343 (-478)))) (-5 *6 (-343 (-478))) (-4 *8 (-13 (-27) (-1104) (-357 *7))) (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *7 *8)))) (-3763 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1079)) (-5 *5 (-245 *3)) (-5 *6 (-1135 (-478))) (-4 *3 (-13 (-27) (-1104) (-357 *7))) (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *7 *3)))) (-3763 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-478))) (-5 *4 (-245 *7)) (-5 *5 (-1135 (-478))) (-4 *7 (-13 (-27) (-1104) (-357 *6))) (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *6 *7)))) (-3713 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1079)) (-5 *5 (-245 *3)) (-5 *6 (-1135 (-687))) (-4 *3 (-13 (-27) (-1104) (-357 *7))) (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *7 *3)))) (-3713 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-478))) (-5 *4 (-245 *7)) (-5 *5 (-1135 (-687))) (-4 *7 (-13 (-27) (-1104) (-357 *6))) (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *6 *7)))) (-3713 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1079)) (-5 *5 (-245 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *6))) (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *6 *3)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-478))) (-5 *4 (-245 *6)) (-4 *6 (-13 (-27) (-1104) (-357 *5))) (-4 *5 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *5 *6))))) +((-2023 ((|#2| |#2| |#1|) 15 T ELT)) (-1900 (((-578 |#2|) |#2| (-578 |#2|) |#1| (-823)) 82 T ELT)) (-1899 (((-2 (|:| |plist| (-578 |#2|)) (|:| |modulo| |#1|)) |#2| (-578 |#2|) |#1| (-823)) 71 T ELT))) +(((-393 |#1| |#2|) (-10 -7 (-15 -1899 ((-2 (|:| |plist| (-578 |#2|)) (|:| |modulo| |#1|)) |#2| (-578 |#2|) |#1| (-823))) (-15 -1900 ((-578 |#2|) |#2| (-578 |#2|) |#1| (-823))) (-15 -2023 (|#2| |#2| |#1|))) (-254) (-1144 |#1|)) (T -393)) +((-2023 (*1 *2 *2 *3) (-12 (-4 *3 (-254)) (-5 *1 (-393 *3 *2)) (-4 *2 (-1144 *3)))) (-1900 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-578 *3)) (-5 *5 (-823)) (-4 *3 (-1144 *4)) (-4 *4 (-254)) (-5 *1 (-393 *4 *3)))) (-1899 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-823)) (-4 *5 (-254)) (-4 *3 (-1144 *5)) (-5 *2 (-2 (|:| |plist| (-578 *3)) (|:| |modulo| *5))) (-5 *1 (-393 *5 *3)) (-5 *4 (-578 *3))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 28 T ELT)) (-3691 (($ |#3|) 25 T ELT)) (-1299 (((-3 $ "failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3943 (($ $) 32 T ELT)) (-1901 (($ |#2| |#4| $) 33 T ELT)) (-2877 (($ |#2| (-645 |#3| |#4| |#5|)) 24 T ELT)) (-2878 (((-645 |#3| |#4| |#5|) $) 15 T ELT)) (-1903 ((|#3| $) 19 T ELT)) (-1904 ((|#4| $) 17 T ELT)) (-3157 ((|#2| $) 29 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1902 (($ |#2| |#3| |#4|) 26 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 36 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 34 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-394 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-649 |#6|) (-649 |#2|) (-10 -8 (-15 -3157 (|#2| $)) (-15 -2878 ((-645 |#3| |#4| |#5|) $)) (-15 -1904 (|#4| $)) (-15 -1903 (|#3| $)) (-15 -3943 ($ $)) (-15 -2877 ($ |#2| (-645 |#3| |#4| |#5|))) (-15 -3691 ($ |#3|)) (-15 -1902 ($ |#2| |#3| |#4|)) (-15 -1901 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-578 (-1079)) (-144) (-749) (-193 (-3941 |#1|) (-687)) (-1 (-83) (-2 (|:| -2386 |#3|) (|:| -2387 |#4|)) (-2 (|:| -2386 |#3|) (|:| -2387 |#4|))) (-854 |#2| |#4| (-766 |#1|))) (T -394)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-578 (-1079))) (-4 *4 (-144)) (-4 *6 (-193 (-3941 *3) (-687))) (-14 *7 (-1 (-83) (-2 (|:| -2386 *5) (|:| -2387 *6)) (-2 (|:| -2386 *5) (|:| -2387 *6)))) (-5 *1 (-394 *3 *4 *5 *6 *7 *2)) (-4 *5 (-749)) (-4 *2 (-854 *4 *6 (-766 *3))))) (-3157 (*1 *2 *1) (-12 (-14 *3 (-578 (-1079))) (-4 *5 (-193 (-3941 *3) (-687))) (-14 *6 (-1 (-83) (-2 (|:| -2386 *4) (|:| -2387 *5)) (-2 (|:| -2386 *4) (|:| -2387 *5)))) (-4 *2 (-144)) (-5 *1 (-394 *3 *2 *4 *5 *6 *7)) (-4 *4 (-749)) (-4 *7 (-854 *2 *5 (-766 *3))))) (-2878 (*1 *2 *1) (-12 (-14 *3 (-578 (-1079))) (-4 *4 (-144)) (-4 *6 (-193 (-3941 *3) (-687))) (-14 *7 (-1 (-83) (-2 (|:| -2386 *5) (|:| -2387 *6)) (-2 (|:| -2386 *5) (|:| -2387 *6)))) (-5 *2 (-645 *5 *6 *7)) (-5 *1 (-394 *3 *4 *5 *6 *7 *8)) (-4 *5 (-749)) (-4 *8 (-854 *4 *6 (-766 *3))))) (-1904 (*1 *2 *1) (-12 (-14 *3 (-578 (-1079))) (-4 *4 (-144)) (-14 *6 (-1 (-83) (-2 (|:| -2386 *5) (|:| -2387 *2)) (-2 (|:| -2386 *5) (|:| -2387 *2)))) (-4 *2 (-193 (-3941 *3) (-687))) (-5 *1 (-394 *3 *4 *5 *2 *6 *7)) (-4 *5 (-749)) (-4 *7 (-854 *4 *2 (-766 *3))))) (-1903 (*1 *2 *1) (-12 (-14 *3 (-578 (-1079))) (-4 *4 (-144)) (-4 *5 (-193 (-3941 *3) (-687))) (-14 *6 (-1 (-83) (-2 (|:| -2386 *2) (|:| -2387 *5)) (-2 (|:| -2386 *2) (|:| -2387 *5)))) (-4 *2 (-749)) (-5 *1 (-394 *3 *4 *2 *5 *6 *7)) (-4 *7 (-854 *4 *5 (-766 *3))))) (-3943 (*1 *1 *1) (-12 (-14 *2 (-578 (-1079))) (-4 *3 (-144)) (-4 *5 (-193 (-3941 *2) (-687))) (-14 *6 (-1 (-83) (-2 (|:| -2386 *4) (|:| -2387 *5)) (-2 (|:| -2386 *4) (|:| -2387 *5)))) (-5 *1 (-394 *2 *3 *4 *5 *6 *7)) (-4 *4 (-749)) (-4 *7 (-854 *3 *5 (-766 *2))))) (-2877 (*1 *1 *2 *3) (-12 (-5 *3 (-645 *5 *6 *7)) (-4 *5 (-749)) (-4 *6 (-193 (-3941 *4) (-687))) (-14 *7 (-1 (-83) (-2 (|:| -2386 *5) (|:| -2387 *6)) (-2 (|:| -2386 *5) (|:| -2387 *6)))) (-14 *4 (-578 (-1079))) (-4 *2 (-144)) (-5 *1 (-394 *4 *2 *5 *6 *7 *8)) (-4 *8 (-854 *2 *6 (-766 *4))))) (-3691 (*1 *1 *2) (-12 (-14 *3 (-578 (-1079))) (-4 *4 (-144)) (-4 *5 (-193 (-3941 *3) (-687))) (-14 *6 (-1 (-83) (-2 (|:| -2386 *2) (|:| -2387 *5)) (-2 (|:| -2386 *2) (|:| -2387 *5)))) (-5 *1 (-394 *3 *4 *2 *5 *6 *7)) (-4 *2 (-749)) (-4 *7 (-854 *4 *5 (-766 *3))))) (-1902 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-578 (-1079))) (-4 *2 (-144)) (-4 *4 (-193 (-3941 *5) (-687))) (-14 *6 (-1 (-83) (-2 (|:| -2386 *3) (|:| -2387 *4)) (-2 (|:| -2386 *3) (|:| -2387 *4)))) (-5 *1 (-394 *5 *2 *3 *4 *6 *7)) (-4 *3 (-749)) (-4 *7 (-854 *2 *4 (-766 *5))))) (-1901 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-578 (-1079))) (-4 *2 (-144)) (-4 *3 (-193 (-3941 *4) (-687))) (-14 *6 (-1 (-83) (-2 (|:| -2386 *5) (|:| -2387 *3)) (-2 (|:| -2386 *5) (|:| -2387 *3)))) (-5 *1 (-394 *4 *2 *5 *3 *6 *7)) (-4 *5 (-749)) (-4 *7 (-854 *2 *3 (-766 *4)))))) +((-1905 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) +(((-395 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1905 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-710) (-749) (-489) (-854 |#3| |#1| |#2|) (-13 (-943 (-343 (-478))) (-308) (-10 -8 (-15 -3930 ($ |#4|)) (-15 -2982 (|#4| $)) (-15 -2981 (|#4| $))))) (T -395)) +((-1905 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-749)) (-4 *5 (-710)) (-4 *6 (-489)) (-4 *7 (-854 *6 *5 *3)) (-5 *1 (-395 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-943 (-343 (-478))) (-308) (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $)))))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3065 (((-578 |#3|) $) 41 T ELT)) (-2892 (((-83) $) NIL T ELT)) (-2883 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2893 (((-2 (|:| |under| $) (|:| -3113 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3694 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3708 (($) NIL T CONST)) (-2888 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2890 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2889 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2891 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2884 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-489)) ELT)) (-2885 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-489)) ELT)) (-3140 (((-3 $ #1="failed") (-578 |#4|)) 49 T ELT)) (-3139 (($ (-578 |#4|)) NIL T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT)) (-3390 (($ |#4| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-489)) ELT)) (-3826 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3979)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2873 (((-578 |#4|) $) 18 (|has| $ (-6 -3979)) ELT)) (-3163 ((|#3| $) 47 T ELT)) (-2592 (((-578 |#4|) $) 14 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#4| $) 26 (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT)) (-1936 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-2898 (((-578 |#3|) $) NIL T ELT)) (-2897 (((-83) |#3| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2887 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-489)) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1341 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-1934 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-245 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-578 (-245 |#4|))) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) 39 T ELT)) (-3549 (($) 17 T ELT)) (-1933 (((-687) |#4| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT) (((-687) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) 16 T ELT)) (-3956 (((-467) $) NIL (|has| |#4| (-548 (-467))) ELT) (($ (-578 |#4|)) 51 T ELT)) (-3514 (($ (-578 |#4|)) 13 T ELT)) (-2894 (($ $ |#3|) NIL T ELT)) (-2896 (($ $ |#3|) NIL T ELT)) (-2895 (($ $ |#3|) NIL T ELT)) (-3930 (((-765) $) 38 T ELT) (((-578 |#4|) $) 50 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 30 T ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-396 |#1| |#2| |#3| |#4|) (-13 (-882 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3956 ($ (-578 |#4|))) (-6 -3979) (-6 -3980))) (-954) (-710) (-749) (-969 |#1| |#2| |#3|)) (T -396)) +((-3956 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-396 *3 *4 *5 *6))))) +((-2644 (($) 11 T ELT)) (-2650 (($) 13 T ELT)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) +(((-397 |#1| |#2| |#3|) (-10 -7 (-15 -2650 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2644 (|#1|))) (-398 |#2| |#3|) (-144) (-23)) (T -397)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3140 (((-3 |#1| "failed") $) 30 T ELT)) (-3139 ((|#1| $) 31 T ELT)) (-3928 (($ $ $) 27 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3932 ((|#2| $) 23 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 22 T CONST)) (-2650 (($) 28 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +(((-398 |#1| |#2|) (-111) (-144) (-23)) (T -398)) +((-2650 (*1 *1) (-12 (-4 *1 (-398 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (-3928 (*1 *1 *1 *1) (-12 (-4 *1 (-398 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23))))) +(-13 (-403 |t#1| |t#2|) (-943 |t#1|) (-10 -8 (-15 (-2650) ($) -3936) (-15 -3928 ($ $ $)))) +(((-72) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-403 |#1| |#2|) . T) ((-943 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-1906 (((-1168 (-1168 (-478))) (-1168 (-1168 (-478))) (-823)) 26 T ELT)) (-1907 (((-1168 (-1168 (-478))) (-823)) 21 T ELT))) +(((-399) (-10 -7 (-15 -1906 ((-1168 (-1168 (-478))) (-1168 (-1168 (-478))) (-823))) (-15 -1907 ((-1168 (-1168 (-478))) (-823))))) (T -399)) +((-1907 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1168 (-1168 (-478)))) (-5 *1 (-399)))) (-1906 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 (-1168 (-478)))) (-5 *3 (-823)) (-5 *1 (-399))))) +((-2754 (((-478) (-478)) 32 T ELT) (((-478)) 24 T ELT)) (-2758 (((-478) (-478)) 28 T ELT) (((-478)) 20 T ELT)) (-2756 (((-478) (-478)) 30 T ELT) (((-478)) 22 T ELT)) (-1909 (((-83) (-83)) 14 T ELT) (((-83)) 12 T ELT)) (-1908 (((-83) (-83)) 13 T ELT) (((-83)) 11 T ELT)) (-1910 (((-83) (-83)) 26 T ELT) (((-83)) 17 T ELT))) +(((-400) (-10 -7 (-15 -1908 ((-83))) (-15 -1909 ((-83))) (-15 -1908 ((-83) (-83))) (-15 -1909 ((-83) (-83))) (-15 -1910 ((-83))) (-15 -2756 ((-478))) (-15 -2758 ((-478))) (-15 -2754 ((-478))) (-15 -1910 ((-83) (-83))) (-15 -2756 ((-478) (-478))) (-15 -2758 ((-478) (-478))) (-15 -2754 ((-478) (-478))))) (T -400)) +((-2754 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) (-2758 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) (-2756 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) (-1910 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400)))) (-2754 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) (-2758 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) (-2756 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) (-1910 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400)))) (-1909 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400)))) (-1908 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400)))) (-1909 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400)))) (-1908 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3835 (((-578 (-323)) $) 34 T ELT) (((-578 (-323)) $ (-578 (-323))) 145 T ELT)) (-1915 (((-578 (-993 (-323))) $) 16 T ELT) (((-578 (-993 (-323))) $ (-578 (-993 (-323)))) 142 T ELT)) (-1912 (((-578 (-578 (-847 (-177)))) (-578 (-578 (-847 (-177)))) (-578 (-776))) 58 T ELT)) (-1916 (((-578 (-578 (-847 (-177)))) $) 137 T ELT)) (-3690 (((-1174) $ (-847 (-177)) (-776)) 162 T ELT)) (-1917 (($ $) 136 T ELT) (($ (-578 (-578 (-847 (-177))))) 148 T ELT) (($ (-578 (-578 (-847 (-177)))) (-578 (-776)) (-578 (-776)) (-578 (-823))) 147 T ELT) (($ (-578 (-578 (-847 (-177)))) (-578 (-776)) (-578 (-776)) (-578 (-823)) (-578 (-218))) 149 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3844 (((-478) $) 110 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1918 (($) 146 T ELT)) (-1911 (((-578 (-177)) (-578 (-578 (-847 (-177))))) 89 T ELT)) (-1914 (((-1174) $ (-578 (-847 (-177))) (-776) (-776) (-823)) 154 T ELT) (((-1174) $ (-847 (-177))) 156 T ELT) (((-1174) $ (-847 (-177)) (-776) (-776) (-823)) 155 T ELT)) (-3930 (((-765) $) 168 T ELT) (($ (-578 (-578 (-847 (-177))))) 163 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1913 (((-1174) $ (-847 (-177))) 161 T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-401) (-13 (-1005) (-10 -8 (-15 -1918 ($)) (-15 -1917 ($ $)) (-15 -1917 ($ (-578 (-578 (-847 (-177)))))) (-15 -1917 ($ (-578 (-578 (-847 (-177)))) (-578 (-776)) (-578 (-776)) (-578 (-823)))) (-15 -1917 ($ (-578 (-578 (-847 (-177)))) (-578 (-776)) (-578 (-776)) (-578 (-823)) (-578 (-218)))) (-15 -1916 ((-578 (-578 (-847 (-177)))) $)) (-15 -3844 ((-478) $)) (-15 -1915 ((-578 (-993 (-323))) $)) (-15 -1915 ((-578 (-993 (-323))) $ (-578 (-993 (-323))))) (-15 -3835 ((-578 (-323)) $)) (-15 -3835 ((-578 (-323)) $ (-578 (-323)))) (-15 -1914 ((-1174) $ (-578 (-847 (-177))) (-776) (-776) (-823))) (-15 -1914 ((-1174) $ (-847 (-177)))) (-15 -1914 ((-1174) $ (-847 (-177)) (-776) (-776) (-823))) (-15 -1913 ((-1174) $ (-847 (-177)))) (-15 -3690 ((-1174) $ (-847 (-177)) (-776))) (-15 -3930 ($ (-578 (-578 (-847 (-177)))))) (-15 -3930 ((-765) $)) (-15 -1912 ((-578 (-578 (-847 (-177)))) (-578 (-578 (-847 (-177)))) (-578 (-776)))) (-15 -1911 ((-578 (-177)) (-578 (-578 (-847 (-177))))))))) (T -401)) +((-3930 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-401)))) (-1918 (*1 *1) (-5 *1 (-401))) (-1917 (*1 *1 *1) (-5 *1 (-401))) (-1917 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *1 (-401)))) (-1917 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *3 (-578 (-776))) (-5 *4 (-578 (-823))) (-5 *1 (-401)))) (-1917 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *3 (-578 (-776))) (-5 *4 (-578 (-823))) (-5 *5 (-578 (-218))) (-5 *1 (-401)))) (-1916 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *1 (-401)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-401)))) (-1915 (*1 *2 *1) (-12 (-5 *2 (-578 (-993 (-323)))) (-5 *1 (-401)))) (-1915 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-993 (-323)))) (-5 *1 (-401)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-578 (-323))) (-5 *1 (-401)))) (-3835 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-323))) (-5 *1 (-401)))) (-1914 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-578 (-847 (-177)))) (-5 *4 (-776)) (-5 *5 (-823)) (-5 *2 (-1174)) (-5 *1 (-401)))) (-1914 (*1 *2 *1 *3) (-12 (-5 *3 (-847 (-177))) (-5 *2 (-1174)) (-5 *1 (-401)))) (-1914 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-847 (-177))) (-5 *4 (-776)) (-5 *5 (-823)) (-5 *2 (-1174)) (-5 *1 (-401)))) (-1913 (*1 *2 *1 *3) (-12 (-5 *3 (-847 (-177))) (-5 *2 (-1174)) (-5 *1 (-401)))) (-3690 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-847 (-177))) (-5 *4 (-776)) (-5 *2 (-1174)) (-5 *1 (-401)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *1 (-401)))) (-1912 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *3 (-578 (-776))) (-5 *1 (-401)))) (-1911 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *2 (-578 (-177))) (-5 *1 (-401))))) +((-3821 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) +(((-402 |#1| |#2| |#3|) (-10 -7 (-15 -3821 (|#1| |#1| |#1|)) (-15 -3821 (|#1| |#1|))) (-403 |#2| |#3|) (-144) (-23)) (T -402)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3932 ((|#2| $) 23 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 22 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +(((-403 |#1| |#2|) (-111) (-144) (-23)) (T -403)) +((-3932 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *2)) (-4 *3 (-144)) (-4 *2 (-23)))) (-2644 (*1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (-3821 (*1 *1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (-3823 (*1 *1 *1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (-3821 (*1 *1 *1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23))))) +(-13 (-1005) (-10 -8 (-15 -3932 (|t#2| $)) (-15 (-2644) ($) -3936) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3821 ($ $)) (-15 -3823 ($ $ $)) (-15 -3821 ($ $ $)))) +(((-72) . T) ((-547 (-765)) . T) ((-1005) . T) ((-1118) . T)) +((-1920 (((-3 (-578 (-414 |#1| |#2|)) "failed") (-578 (-414 |#1| |#2|)) (-578 (-766 |#1|))) 135 T ELT)) (-1919 (((-578 (-578 (-203 |#1| |#2|))) (-578 (-203 |#1| |#2|)) (-578 (-766 |#1|))) 132 T ELT)) (-1921 (((-2 (|:| |dpolys| (-578 (-203 |#1| |#2|))) (|:| |coords| (-578 (-478)))) (-578 (-203 |#1| |#2|)) (-578 (-766 |#1|))) 87 T ELT))) +(((-404 |#1| |#2| |#3|) (-10 -7 (-15 -1919 ((-578 (-578 (-203 |#1| |#2|))) (-578 (-203 |#1| |#2|)) (-578 (-766 |#1|)))) (-15 -1920 ((-3 (-578 (-414 |#1| |#2|)) "failed") (-578 (-414 |#1| |#2|)) (-578 (-766 |#1|)))) (-15 -1921 ((-2 (|:| |dpolys| (-578 (-203 |#1| |#2|))) (|:| |coords| (-578 (-478)))) (-578 (-203 |#1| |#2|)) (-578 (-766 |#1|))))) (-578 (-1079)) (-385) (-385)) (T -404)) +((-1921 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-766 *5))) (-14 *5 (-578 (-1079))) (-4 *6 (-385)) (-5 *2 (-2 (|:| |dpolys| (-578 (-203 *5 *6))) (|:| |coords| (-578 (-478))))) (-5 *1 (-404 *5 *6 *7)) (-5 *3 (-578 (-203 *5 *6))) (-4 *7 (-385)))) (-1920 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-414 *4 *5))) (-5 *3 (-578 (-766 *4))) (-14 *4 (-578 (-1079))) (-4 *5 (-385)) (-5 *1 (-404 *4 *5 *6)) (-4 *6 (-385)))) (-1919 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-766 *5))) (-14 *5 (-578 (-1079))) (-4 *6 (-385)) (-5 *2 (-578 (-578 (-203 *5 *6)))) (-5 *1 (-404 *5 *6 *7)) (-5 *3 (-578 (-203 *5 *6))) (-4 *7 (-385))))) +((-3451 (((-3 $ "failed") $) 11 T ELT)) (-2993 (($ $ $) 22 T ELT)) (-2419 (($ $ $) 23 T ELT)) (-3933 (($ $ $) 9 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 21 T ELT))) +(((-405 |#1|) (-10 -7 (-15 -2419 (|#1| |#1| |#1|)) (-15 -2993 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-478))) (-15 -3933 (|#1| |#1| |#1|)) (-15 -3451 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-687))) (-15 ** (|#1| |#1| (-823)))) (-406)) (T -405)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3708 (($) 23 T CONST)) (-3451 (((-3 $ "failed") $) 20 T ELT)) (-2396 (((-83) $) 22 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 30 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2993 (($ $ $) 27 T ELT)) (-2419 (($ $ $) 26 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2650 (($) 24 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ $) 29 T ELT)) (** (($ $ (-823)) 17 T ELT) (($ $ (-687)) 21 T ELT) (($ $ (-478)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-406) (-111)) (T -406)) +((-2468 (*1 *1 *1) (-4 *1 (-406))) (-3933 (*1 *1 *1 *1) (-4 *1 (-406))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-478)))) (-2993 (*1 *1 *1 *1) (-4 *1 (-406))) (-2419 (*1 *1 *1 *1) (-4 *1 (-406)))) +(-13 (-658) (-10 -8 (-15 -2468 ($ $)) (-15 -3933 ($ $ $)) (-15 ** ($ $ (-478))) (-6 -3976) (-15 -2993 ($ $ $)) (-15 -2419 ($ $ $)))) +(((-72) . T) ((-547 (-765)) . T) ((-658) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3065 (((-578 (-986)) $) NIL T ELT)) (-3815 (((-1079) $) 18 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3755 (($ $ (-343 (-478))) NIL T ELT) (($ $ (-343 (-478)) (-343 (-478))) NIL T ELT)) (-3758 (((-1058 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|))) $) NIL T ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3623 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-3021 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1595 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3622 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3802 (($ (-687) (-1058 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|)))) NIL T ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3708 (($) NIL T CONST)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3943 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2547 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-2876 (((-83) $) NIL T ELT)) (-3611 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3756 (((-343 (-478)) $) NIL T ELT) (((-343 (-478)) $ (-343 (-478))) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2995 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3761 (($ $ (-823)) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-343 (-478))) NIL T ELT) (($ $ (-986) (-343 (-478))) NIL T ELT) (($ $ (-578 (-986)) (-578 (-343 (-478)))) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3926 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3796 (($ $) 29 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1079)) 35 (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1104))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3796 (|#1| |#1| (-1079)))) (|has| |#1| (-15 -3065 ((-578 (-1079)) |#1|))))) ELT) (($ $ (-1165 |#2|)) 30 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-308)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3753 (($ $ (-343 (-478))) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3927 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3752 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) ELT)) (-1594 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3784 ((|#1| $ (-343 (-478))) NIL T ELT) (($ $ $) NIL (|has| (-343 (-478)) (-1015)) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3742 (($ $ (-1079)) 28 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-1165 |#2|)) 16 T ELT)) (-3932 (((-343 (-478)) $) NIL T ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1165 |#2|)) NIL T ELT) (($ (-1149 |#1| |#2| |#3|)) 9 T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3661 ((|#1| $ (-343 (-478))) NIL T ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) NIL T CONST)) (-3757 ((|#1| $) 21 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3754 ((|#1| $ (-343 (-478))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) (|has| |#1| (-15 -3930 (|#1| (-1079))))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $ (-1079)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-1165 |#2|)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-407 |#1| |#2| |#3|) (-13 (-1151 |#1|) (-799 $ (-1165 |#2|)) (-10 -8 (-15 -3930 ($ (-1165 |#2|))) (-15 -3930 ($ (-1149 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-343 (-478)))) (-15 -3796 ($ $ (-1165 |#2|))) |%noBranch|))) (-954) (-1079) |#1|) (T -407)) +((-3930 (*1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-407 *3 *4 *5)) (-4 *3 (-954)) (-14 *5 *3))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-1149 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-1079)) (-14 *5 *3) (-5 *1 (-407 *3 *4 *5)))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-407 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3)))) +((-2552 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3583 (($) NIL T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2184 (((-1174) $ |#1| |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3772 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1557 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-2217 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3708 (($) NIL T CONST)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT)) (-3389 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3390 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#2| $ |#1|) NIL T ELT)) (-2873 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2186 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-2592 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2187 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3980)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| |#2| (-1005))) ELT)) (-2218 (((-578 |#1|) $) NIL T ELT)) (-2219 (((-83) |#1| $) NIL T ELT)) (-1262 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3593 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2189 (((-578 |#1|) $) NIL T ELT)) (-2190 (((-83) |#1| $) NIL T ELT)) (-3226 (((-1023) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| |#2| (-1005))) ELT)) (-3785 ((|#2| $) NIL (|has| |#1| (-749)) ELT)) (-1341 (((-3 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2185 (($ $ |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-1263 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1934 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2191 (((-578 |#2|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1453 (($) NIL T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1933 (((-687) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT) (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ELT)) (-3514 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3930 (((-765) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-547 (-765)))) ELT)) (-1253 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1264 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-408 |#1| |#2| |#3| |#4|) (-1096 |#1| |#2|) (-1005) (-1005) (-1096 |#1| |#2|) |#2|) (T -408)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3665 (((-578 (-2 (|:| -3845 $) (|:| -1689 (-578 |#4|)))) (-578 |#4|)) NIL T ELT)) (-3666 (((-578 $) (-578 |#4|)) NIL T ELT)) (-3065 (((-578 |#3|) $) NIL T ELT)) (-2892 (((-83) $) NIL T ELT)) (-2883 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3677 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3672 ((|#4| |#4| $) NIL T ELT)) (-2893 (((-2 (|:| |under| $) (|:| -3113 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3694 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2888 (((-83) $) 29 (|has| |#1| (-489)) ELT)) (-2890 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2889 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2891 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3673 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-2884 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-489)) ELT)) (-2885 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-489)) ELT)) (-3140 (((-3 $ #1#) (-578 |#4|)) NIL T ELT)) (-3139 (($ (-578 |#4|)) NIL T ELT)) (-3783 (((-3 $ #1#) $) 45 T ELT)) (-3669 ((|#4| |#4| $) NIL T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT)) (-3390 (($ |#4| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-489)) ELT)) (-3678 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3667 ((|#4| |#4| $) NIL T ELT)) (-3826 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3979)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3979)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3680 (((-2 (|:| -3845 (-578 |#4|)) (|:| -1689 (-578 |#4|))) $) NIL T ELT)) (-2873 (((-578 |#4|) $) 18 (|has| $ (-6 -3979)) ELT)) (-3679 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3163 ((|#3| $) 38 T ELT)) (-2592 (((-578 |#4|) $) 19 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#4| $) 27 (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT)) (-1936 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2898 (((-578 |#3|) $) NIL T ELT)) (-2897 (((-83) |#3| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3782 (((-3 |#4| #1#) $) 42 T ELT)) (-3681 (((-578 |#4|) $) NIL T ELT)) (-3675 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3670 ((|#4| |#4| $) NIL T ELT)) (-3683 (((-83) $ $) NIL T ELT)) (-2887 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-489)) ELT)) (-3676 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3671 ((|#4| |#4| $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3785 (((-3 |#4| #1#) $) 40 T ELT)) (-1341 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-3663 (((-3 $ #1#) $ |#4|) 58 T ELT)) (-3753 (($ $ |#4|) NIL T ELT)) (-1934 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-245 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-578 (-245 |#4|))) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) 17 T ELT)) (-3549 (($) 14 T ELT)) (-3932 (((-687) $) NIL T ELT)) (-1933 (((-687) |#4| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT) (((-687) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) 13 T ELT)) (-3956 (((-467) $) NIL (|has| |#4| (-548 (-467))) ELT)) (-3514 (($ (-578 |#4|)) 22 T ELT)) (-2894 (($ $ |#3|) 52 T ELT)) (-2896 (($ $ |#3|) 54 T ELT)) (-3668 (($ $) NIL T ELT)) (-2895 (($ $ |#3|) NIL T ELT)) (-3930 (((-765) $) 35 T ELT) (((-578 |#4|) $) 46 T ELT)) (-3662 (((-687) $) NIL (|has| |#3| (-313)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3682 (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3674 (((-83) $ (-1 (-83) |#4| (-578 |#4|))) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3664 (((-578 |#3|) $) NIL T ELT)) (-3917 (((-83) |#3| $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-409 |#1| |#2| |#3| |#4|) (-1113 |#1| |#2| |#3| |#4|) (-489) (-710) (-749) (-969 |#1| |#2| |#3|)) (T -409)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT)) (-3139 (((-478) $) NIL T ELT) (((-343 (-478)) $) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-3611 (($) 17 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-3956 (((-323) $) 21 T ELT) (((-177) $) 24 T ELT) (((-343 (-1074 (-478))) $) 18 T ELT) (((-467) $) 53 T ELT)) (-3930 (((-765) $) 51 T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (((-177) $) 23 T ELT) (((-323) $) 20 T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-2644 (($) 37 T CONST)) (-2650 (($) 8 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT))) +(((-410) (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))) (-926) (-547 (-177)) (-547 (-323)) (-548 (-343 (-1074 (-478)))) (-548 (-467)) (-10 -8 (-15 -3611 ($))))) (T -410)) +((-3611 (*1 *1) (-5 *1 (-410)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3512 (((-1038) $) 11 T ELT)) (-3513 (((-1038) $) 9 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 17 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-411) (-13 (-987) (-10 -8 (-15 -3513 ((-1038) $)) (-15 -3512 ((-1038) $))))) (T -411)) +((-3513 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-411)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-411))))) +((-2552 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3583 (($) NIL T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2184 (((-1174) $ |#1| |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3772 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1557 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-2217 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3708 (($) NIL T CONST)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT)) (-3389 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3390 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#2| $ |#1|) NIL T ELT)) (-2873 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2186 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-2592 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2187 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3980)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| |#2| (-1005))) ELT)) (-2218 (((-578 |#1|) $) 13 T ELT)) (-2219 (((-83) |#1| $) NIL T ELT)) (-1262 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3593 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2189 (((-578 |#1|) $) NIL T ELT)) (-2190 (((-83) |#1| $) NIL T ELT)) (-3226 (((-1023) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| |#2| (-1005))) ELT)) (-3785 ((|#2| $) NIL (|has| |#1| (-749)) ELT)) (-1341 (((-3 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2185 (($ $ |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-1263 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1934 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2191 (((-578 |#2|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) 19 T ELT)) (-3784 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1453 (($) NIL T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1933 (((-687) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT) (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ELT)) (-3514 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3930 (((-765) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-547 (-765)))) ELT)) (-1253 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1264 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 11 (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3941 (((-687) $) 15 (|has| $ (-6 -3979)) ELT))) +(((-412 |#1| |#2| |#3|) (-13 (-1096 |#1| |#2|) (-10 -7 (-6 -3979))) (-1005) (-1005) (-1062)) (T -412)) +NIL +((-1922 (((-478) (-478) (-478)) 19 T ELT)) (-1923 (((-83) (-478) (-478) (-478) (-478)) 28 T ELT)) (-3441 (((-1168 (-578 (-478))) (-687) (-687)) 42 T ELT))) +(((-413) (-10 -7 (-15 -1922 ((-478) (-478) (-478))) (-15 -1923 ((-83) (-478) (-478) (-478) (-478))) (-15 -3441 ((-1168 (-578 (-478))) (-687) (-687))))) (T -413)) +((-3441 (*1 *2 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1168 (-578 (-478)))) (-5 *1 (-413)))) (-1923 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-478)) (-5 *2 (-83)) (-5 *1 (-413)))) (-1922 (*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-413))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3065 (((-578 (-766 |#1|)) $) NIL T ELT)) (-3067 (((-1074 $) $ (-766 |#1|)) NIL T ELT) (((-1074 |#2|) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#2| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#2| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#2| (-489)) ELT)) (-2803 (((-687) $) NIL T ELT) (((-687) $ (-578 (-766 |#1|))) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-3759 (($ $) NIL (|has| |#2| (-385)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#2| (-385)) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-3 (-766 |#1|) #1#) $) NIL T ELT)) (-3139 ((|#2| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-766 |#1|) $) NIL T ELT)) (-3740 (($ $ $ (-766 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-1924 (($ $ (-578 (-478))) NIL T ELT)) (-3943 (($ $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#2|) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3487 (($ $) NIL (|has| |#2| (-385)) ELT) (($ $ (-766 |#1|)) NIL (|has| |#2| (-385)) ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3707 (((-83) $) NIL (|has| |#2| (-814)) ELT)) (-1611 (($ $ |#2| (-415 (-3941 |#1|) (-687)) $) NIL T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-766 |#1|) (-789 (-323))) (|has| |#2| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-766 |#1|) (-789 (-478))) (|has| |#2| (-789 (-478)))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2404 (((-687) $) NIL T ELT)) (-3068 (($ (-1074 |#2|) (-766 |#1|)) NIL T ELT) (($ (-1074 $) (-766 |#1|)) NIL T ELT)) (-2805 (((-578 $) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#2| (-415 (-3941 |#1|) (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ (-766 |#1|)) NIL T ELT)) (-2804 (((-415 (-3941 |#1|) (-687)) $) NIL T ELT) (((-687) $ (-766 |#1|)) NIL T ELT) (((-578 (-687)) $ (-578 (-766 |#1|))) NIL T ELT)) (-1612 (($ (-1 (-415 (-3941 |#1|) (-687)) (-415 (-3941 |#1|) (-687))) $) NIL T ELT)) (-3942 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3066 (((-3 (-766 |#1|) #1#) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-1168 $) $) NIL T ELT) (((-625 |#2|) (-1168 $)) NIL T ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) NIL (|has| |#2| (-385)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2807 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2806 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-2 (|:| |var| (-766 |#1|)) (|:| -2387 (-687))) #1#) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1784 (((-83) $) NIL T ELT)) (-1783 ((|#2| $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#2| (-385)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) NIL (|has| |#2| (-385)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#2| (-814)) ELT)) (-3450 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-489)) ELT)) (-3752 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-766 |#1|) |#2|) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 |#2|)) NIL T ELT) (($ $ (-766 |#1|) $) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 $)) NIL T ELT)) (-3741 (($ $ (-766 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3742 (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|)) NIL T ELT)) (-3932 (((-415 (-3941 |#1|) (-687)) $) NIL T ELT) (((-687) $ (-766 |#1|)) NIL T ELT) (((-578 (-687)) $ (-578 (-766 |#1|))) NIL T ELT)) (-3956 (((-793 (-323)) $) NIL (-12 (|has| (-766 |#1|) (-548 (-793 (-323)))) (|has| |#2| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-766 |#1|) (-548 (-793 (-478)))) (|has| |#2| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-766 |#1|) (-548 (-467))) (|has| |#2| (-548 (-467)))) ELT)) (-2801 ((|#2| $) NIL (|has| |#2| (-385)) ELT) (($ $ (-766 |#1|)) NIL (|has| |#2| (-385)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-814))) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-766 |#1|)) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#2| (-489)) ELT)) (-3801 (((-578 |#2|) $) NIL T ELT)) (-3661 ((|#2| $ (-415 (-3941 |#1|) (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-814))) (|has| |#2| (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1610 (($ $ $ (-687)) NIL (|has| |#2| (-144)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| |#2| (-489)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-414 |#1| |#2|) (-13 (-854 |#2| (-415 (-3941 |#1|) (-687)) (-766 |#1|)) (-10 -8 (-15 -1924 ($ $ (-578 (-478)))))) (-578 (-1079)) (-954)) (T -414)) +((-1924 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-414 *3 *4)) (-14 *3 (-578 (-1079))) (-4 *4 (-954))))) +((-2552 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-3171 (((-83) $) NIL (|has| |#2| (-23)) ELT)) (-3691 (($ (-823)) NIL (|has| |#2| (-954)) ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-2467 (($ $ $) NIL (|has| |#2| (-710)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-102)) ELT)) (-3119 (((-687)) NIL (|has| |#2| (-313)) ELT)) (-3772 ((|#2| $ (-478) |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (-12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1005)) ELT)) (-3139 (((-478) $) NIL (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) ELT) (((-343 (-478)) $) NIL (-12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005))) ELT) ((|#2| $) NIL (|has| |#2| (-1005)) ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) NIL (|has| |#2| (-954)) ELT) (((-625 |#2|) (-625 $)) NIL (|has| |#2| (-954)) ELT)) (-3451 (((-3 $ #1#) $) NIL (|has| |#2| (-954)) ELT)) (-2978 (($) NIL (|has| |#2| (-313)) ELT)) (-1563 ((|#2| $ (-478) |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#2| $ (-478)) 11 T ELT)) (-3169 (((-83) $) NIL (|has| |#2| (-710)) ELT)) (-2873 (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2396 (((-83) $) NIL (|has| |#2| (-954)) ELT)) (-2186 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| |#2| (-749)) ELT)) (-2592 (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2187 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#2| (-749)) ELT)) (-1936 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1996 (((-823) $) NIL (|has| |#2| (-313)) ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-1168 $) $) NIL (|has| |#2| (-954)) ELT) (((-625 |#2|) (-1168 $)) NIL (|has| |#2| (-954)) ELT)) (-3225 (((-1062) $) NIL (|has| |#2| (-1005)) ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-2386 (($ (-823)) NIL (|has| |#2| (-313)) ELT)) (-3226 (((-1023) $) NIL (|has| |#2| (-1005)) ELT)) (-3785 ((|#2| $) NIL (|has| (-478) (-749)) ELT)) (-2185 (($ $ |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2191 (((-578 |#2|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#2| $ (-478) |#2|) NIL T ELT) ((|#2| $ (-478)) NIL T ELT)) (-3820 ((|#2| $ $) NIL (|has| |#2| (-954)) ELT)) (-1455 (($ (-1168 |#2|)) NIL T ELT)) (-3895 (((-105)) NIL (|has| |#2| (-308)) ELT)) (-3742 (($ $ (-687)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1079)) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-954)) ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL (|has| |#2| (-954)) ELT)) (-1933 (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3930 (((-1168 |#2|) $) NIL T ELT) (($ (-478)) NIL (OR (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) (|has| |#2| (-954))) ELT) (($ (-343 (-478))) NIL (-12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005))) ELT) (($ |#2|) NIL (|has| |#2| (-1005)) ELT) (((-765) $) NIL (|has| |#2| (-547 (-765))) ELT)) (-3109 (((-687)) NIL (|has| |#2| (-954)) CONST)) (-1253 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2644 (($) NIL (|has| |#2| (-23)) CONST)) (-2650 (($) NIL (|has| |#2| (-954)) CONST)) (-2653 (($ $ (-687)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1079)) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-954)) ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL (|has| |#2| (-954)) ELT)) (-2550 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-2668 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-2669 (((-83) $ $) 17 (|has| |#2| (-749)) ELT)) (-3933 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3821 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3823 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-687)) NIL (|has| |#2| (-954)) ELT) (($ $ (-823)) NIL (|has| |#2| (-954)) ELT)) (* (($ $ $) NIL (|has| |#2| (-954)) ELT) (($ $ |#2|) NIL (|has| |#2| (-658)) ELT) (($ |#2| $) NIL (|has| |#2| (-658)) ELT) (($ (-478) $) NIL (|has| |#2| (-21)) ELT) (($ (-687) $) NIL (|has| |#2| (-23)) ELT) (($ (-823) $) NIL (|has| |#2| (-25)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-415 |#1| |#2|) (-193 |#1| |#2|) (-687) (-710)) (T -415)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-1925 (((-578 (-778)) $) 15 T ELT)) (-3526 (((-439) $) 13 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1926 (($ (-439) (-578 (-778))) 11 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 22 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-416) (-13 (-987) (-10 -8 (-15 -1926 ($ (-439) (-578 (-778)))) (-15 -3526 ((-439) $)) (-15 -1925 ((-578 (-778)) $))))) (T -416)) +((-1926 (*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-578 (-778))) (-5 *1 (-416)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-416)))) (-1925 (*1 *2 *1) (-12 (-5 *2 (-578 (-778))) (-5 *1 (-416))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3708 (($) NIL T CONST)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2840 (($ $ $) 48 T ELT)) (-3502 (($ $ $) 47 T ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2841 ((|#1| $) 40 T ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-1262 ((|#1| $) 41 T ELT)) (-3593 (($ |#1| $) 18 T ELT)) (-1927 (($ (-578 |#1|)) 19 T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-1263 ((|#1| $) 34 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) 11 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3930 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1264 (($ (-578 |#1|)) 45 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 29 (|has| $ (-6 -3979)) ELT))) +(((-417 |#1|) (-13 (-874 |#1|) (-10 -8 (-15 -1927 ($ (-578 |#1|))))) (-749)) (T -417)) +((-1927 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-417 *3))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3826 (($ $) 71 T ELT)) (-1624 (((-83) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1956 (((-349 |#2| (-343 |#2|) |#3| |#4|) $) 45 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2395 (((-3 |#4| #1#) $) 117 T ELT)) (-1625 (($ (-349 |#2| (-343 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-478)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3419 (((-2 (|:| -2322 (-349 |#2| (-343 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3930 (((-765) $) 110 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 32 T CONST)) (-3037 (((-83) $ $) 121 T ELT)) (-3821 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 72 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 77 T ELT))) +(((-418 |#1| |#2| |#3| |#4|) (-282 |#1| |#2| |#3| |#4|) (-308) (-1144 |#1|) (-1144 (-343 |#2|)) (-287 |#1| |#2| |#3|)) (T -418)) +NIL +((-1931 (((-478) (-578 (-478))) 53 T ELT)) (-1928 ((|#1| (-578 |#1|)) 94 T ELT)) (-1930 (((-578 |#1|) (-578 |#1|)) 95 T ELT)) (-1929 (((-578 |#1|) (-578 |#1|)) 97 T ELT)) (-3127 ((|#1| (-578 |#1|)) 96 T ELT)) (-2801 (((-578 (-478)) (-578 |#1|)) 56 T ELT))) +(((-419 |#1|) (-10 -7 (-15 -3127 (|#1| (-578 |#1|))) (-15 -1928 (|#1| (-578 |#1|))) (-15 -1929 ((-578 |#1|) (-578 |#1|))) (-15 -1930 ((-578 |#1|) (-578 |#1|))) (-15 -2801 ((-578 (-478)) (-578 |#1|))) (-15 -1931 ((-478) (-578 (-478))))) (-1144 (-478))) (T -419)) +((-1931 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-478)) (-5 *1 (-419 *4)) (-4 *4 (-1144 *2)))) (-2801 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1144 (-478))) (-5 *2 (-578 (-478))) (-5 *1 (-419 *4)))) (-1930 (*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1144 (-478))) (-5 *1 (-419 *3)))) (-1929 (*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1144 (-478))) (-5 *1 (-419 *3)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-419 *2)) (-4 *2 (-1144 (-478))))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-419 *2)) (-4 *2 (-1144 (-478)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3112 (((-478) $) NIL (|has| (-478) (-254)) ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-478) (-814)) ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| (-478) (-814)) ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3607 (((-478) $) NIL (|has| (-478) (-733)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL T ELT) (((-3 (-1079) #1#) $) NIL (|has| (-478) (-943 (-1079))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| (-478) (-943 (-478))) ELT) (((-3 (-478) #1#) $) NIL (|has| (-478) (-943 (-478))) ELT)) (-3139 (((-478) $) NIL T ELT) (((-1079) $) NIL (|has| (-478) (-943 (-1079))) ELT) (((-343 (-478)) $) NIL (|has| (-478) (-943 (-478))) ELT) (((-478) $) NIL (|has| (-478) (-943 (-478))) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL T ELT) (((-625 (-478)) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($) NIL (|has| (-478) (-477)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-3169 (((-83) $) NIL (|has| (-478) (-733)) ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| (-478) (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| (-478) (-789 (-323))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2980 (($ $) NIL T ELT)) (-2982 (((-478) $) NIL T ELT)) (-3429 (((-627 $) $) NIL (|has| (-478) (-1055)) ELT)) (-3170 (((-83) $) NIL (|has| (-478) (-733)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2515 (($ $ $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| (-478) (-749)) ELT)) (-3942 (($ (-1 (-478) (-478)) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL T ELT) (((-625 (-478)) (-1168 $)) NIL T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3430 (($) NIL (|has| (-478) (-1055)) CONST)) (-1932 (($ (-343 (-478))) 9 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3111 (($ $) NIL (|has| (-478) (-254)) ELT) (((-343 (-478)) $) NIL T ELT)) (-3113 (((-478) $) NIL (|has| (-478) (-477)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-478) (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-478) (-814)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-3752 (($ $ (-578 (-478)) (-578 (-478))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-478) (-478)) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-245 (-478))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-578 (-245 (-478)))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-578 (-1079)) (-578 (-478))) NIL (|has| (-478) (-447 (-1079) (-478))) ELT) (($ $ (-1079) (-478)) NIL (|has| (-478) (-447 (-1079) (-478))) ELT)) (-1594 (((-687) $) NIL T ELT)) (-3784 (($ $ (-478)) NIL (|has| (-478) (-238 (-478) (-478))) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-3742 (($ $ (-1 (-478) (-478))) NIL T ELT) (($ $ (-1 (-478) (-478)) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $) NIL (|has| (-478) (-187)) ELT) (($ $ (-687)) NIL (|has| (-478) (-187)) ELT)) (-2979 (($ $) NIL T ELT)) (-2981 (((-478) $) NIL T ELT)) (-3956 (((-793 (-478)) $) NIL (|has| (-478) (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| (-478) (-548 (-793 (-323)))) ELT) (((-467) $) NIL (|has| (-478) (-548 (-467))) ELT) (((-323) $) NIL (|has| (-478) (-926)) ELT) (((-177) $) NIL (|has| (-478) (-926)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| (-478) (-814))) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) 8 T ELT) (($ (-478)) NIL T ELT) (($ (-1079)) NIL (|has| (-478) (-943 (-1079))) ELT) (((-343 (-478)) $) NIL T ELT) (((-910 16) $) 10 T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-478) (-814))) (|has| (-478) (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-3114 (((-478) $) NIL (|has| (-478) (-477)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3367 (($ $) NIL (|has| (-478) (-733)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $ (-1 (-478) (-478))) NIL T ELT) (($ $ (-1 (-478) (-478)) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $) NIL (|has| (-478) (-187)) ELT) (($ $ (-687)) NIL (|has| (-478) (-187)) ELT)) (-2550 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-3933 (($ $ $) NIL T ELT) (($ (-478) (-478)) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ (-478)) NIL T ELT))) +(((-420) (-13 (-897 (-478)) (-547 (-343 (-478))) (-547 (-910 16)) (-10 -8 (-15 -3111 ((-343 (-478)) $)) (-15 -1932 ($ (-343 (-478))))))) (T -420)) +((-3111 (*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-420)))) (-1932 (*1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-420))))) +((-2592 (((-578 |#2|) $) 31 T ELT)) (-3228 (((-83) |#2| $) 39 T ELT)) (-1934 (((-83) (-1 (-83) |#2|) $) 26 T ELT)) (-3752 (($ $ (-578 (-245 |#2|))) 13 T ELT) (($ $ (-245 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#2|) $) 30 T ELT) (((-687) |#2| $) 37 T ELT)) (-3930 (((-765) $) 45 T ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) 23 T ELT)) (-3037 (((-83) $ $) 35 T ELT)) (-3941 (((-687) $) 18 T ELT))) +(((-421 |#1| |#2|) (-10 -7 (-15 -3037 ((-83) |#1| |#1|)) (-15 -3930 ((-765) |#1|)) (-15 -3752 (|#1| |#1| (-578 |#2|) (-578 |#2|))) (-15 -3752 (|#1| |#1| |#2| |#2|)) (-15 -3752 (|#1| |#1| (-245 |#2|))) (-15 -3752 (|#1| |#1| (-578 (-245 |#2|)))) (-15 -3228 ((-83) |#2| |#1|)) (-15 -1933 ((-687) |#2| |#1|)) (-15 -2592 ((-578 |#2|) |#1|)) (-15 -1933 ((-687) (-1 (-83) |#2|) |#1|)) (-15 -1934 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1935 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -3941 ((-687) |#1|))) (-422 |#2|) (-1118)) (T -421)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3708 (($) 7 T CONST)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-422 |#1|) (-111) (-1118)) (T -422)) +((-3942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-422 *3)) (-4 *3 (-1118)))) (-1936 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3980)) (-4 *1 (-422 *3)) (-4 *3 (-1118)))) (-1935 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3979)) (-4 *1 (-422 *4)) (-4 *4 (-1118)) (-5 *2 (-83)))) (-1934 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3979)) (-4 *1 (-422 *4)) (-4 *4 (-1118)) (-5 *2 (-83)))) (-1933 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3979)) (-4 *1 (-422 *4)) (-4 *4 (-1118)) (-5 *2 (-687)))) (-2873 (*1 *2 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-422 *3)) (-4 *3 (-1118)) (-5 *2 (-578 *3)))) (-2592 (*1 *2 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-422 *3)) (-4 *3 (-1118)) (-5 *2 (-578 *3)))) (-1933 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-422 *3)) (-4 *3 (-1118)) (-4 *3 (-1005)) (-5 *2 (-687)))) (-3228 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-422 *3)) (-4 *3 (-1118)) (-4 *3 (-1005)) (-5 *2 (-83))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-547 (-765))) (-6 (-547 (-765))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1005)) (-6 (-1005)) |%noBranch|) (IF (|has| |t#1| (-1005)) (IF (|has| |t#1| (-256 |t#1|)) (-6 (-256 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3942 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -3980)) (-15 -1936 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -3979)) (PROGN (-15 -1935 ((-83) (-1 (-83) |t#1|) $)) (-15 -1934 ((-83) (-1 (-83) |t#1|) $)) (-15 -1933 ((-687) (-1 (-83) |t#1|) $)) (-15 -2873 ((-578 |t#1|) $)) (-15 -2592 ((-578 |t#1|) $)) (IF (|has| |t#1| (-1005)) (PROGN (-15 -1933 ((-687) |t#1| $)) (-15 -3228 ((-83) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1118) . T)) +((-3930 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) +(((-423 |#1|) (-111) (-1118)) (T -423)) +NIL +(-13 (-547 |t#1|) (-550 |t#1|)) +(((-550 |#1|) . T) ((-547 |#1|) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1937 (($ (-1062)) 8 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 15 T ELT) (((-1062) $) 12 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 11 T ELT))) +(((-424) (-13 (-1005) (-547 (-1062)) (-10 -8 (-15 -1937 ($ (-1062)))))) (T -424)) +((-1937 (*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-424))))) +((-3476 (($ $) 15 T ELT)) (-3474 (($ $) 24 T ELT)) (-3478 (($ $) 12 T ELT)) (-3479 (($ $) 10 T ELT)) (-3477 (($ $) 17 T ELT)) (-3475 (($ $) 22 T ELT))) +(((-425 |#1|) (-10 -7 (-15 -3475 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3476 (|#1| |#1|))) (-426)) (T -425)) +NIL +((-3476 (($ $) 11 T ELT)) (-3474 (($ $) 10 T ELT)) (-3478 (($ $) 9 T ELT)) (-3479 (($ $) 8 T ELT)) (-3477 (($ $) 7 T ELT)) (-3475 (($ $) 6 T ELT))) +(((-426) (-111)) (T -426)) +((-3476 (*1 *1 *1) (-4 *1 (-426))) (-3474 (*1 *1 *1) (-4 *1 (-426))) (-3478 (*1 *1 *1) (-4 *1 (-426))) (-3479 (*1 *1 *1) (-4 *1 (-426))) (-3477 (*1 *1 *1) (-4 *1 (-426))) (-3475 (*1 *1 *1) (-4 *1 (-426)))) +(-13 (-10 -8 (-15 -3475 ($ $)) (-15 -3477 ($ $)) (-15 -3479 ($ $)) (-15 -3478 ($ $)) (-15 -3474 ($ $)) (-15 -3476 ($ $)))) +((-3716 (((-341 |#4|) |#4| (-1 (-341 |#2|) |#2|)) 54 T ELT))) +(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3716 ((-341 |#4|) |#4| (-1 (-341 |#2|) |#2|)))) (-308) (-1144 |#1|) (-13 (-308) (-118) (-656 |#1| |#2|)) (-1144 |#3|)) (T -427)) +((-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1144 *5)) (-4 *5 (-308)) (-4 *7 (-13 (-308) (-118) (-656 *5 *6))) (-5 *2 (-341 *3)) (-5 *1 (-427 *5 *6 *7 *3)) (-4 *3 (-1144 *7))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1203 (((-578 $) (-1074 $) (-1079)) NIL T ELT) (((-578 $) (-1074 $)) NIL T ELT) (((-578 $) (-850 $)) NIL T ELT)) (-1204 (($ (-1074 $) (-1079)) NIL T ELT) (($ (-1074 $)) NIL T ELT) (($ (-850 $)) NIL T ELT)) (-3171 (((-83) $) 39 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1938 (((-83) $ $) 72 T ELT)) (-1587 (((-578 (-545 $)) $) 49 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1591 (($ $ (-245 $)) NIL T ELT) (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-578 (-545 $)) (-578 $)) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-3021 (($ $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-1205 (((-578 $) (-1074 $) (-1079)) NIL T ELT) (((-578 $) (-1074 $)) NIL T ELT) (((-578 $) (-850 $)) NIL T ELT)) (-3166 (($ (-1074 $) (-1079)) NIL T ELT) (($ (-1074 $)) NIL T ELT) (($ (-850 $)) NIL T ELT)) (-3140 (((-3 (-545 $) #1#) $) NIL T ELT) (((-3 (-478) #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT)) (-3139 (((-545 $) $) NIL T ELT) (((-478) $) NIL T ELT) (((-343 (-478)) $) 54 T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2265 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL T ELT) (((-625 (-478)) (-625 $)) NIL T ELT) (((-2 (|:| |mat| (-625 (-343 (-478)))) (|:| |vec| (-1168 (-343 (-478))))) (-625 $) (-1168 $)) NIL T ELT) (((-625 (-343 (-478))) (-625 $)) NIL T ELT)) (-3826 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-2557 (($ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1586 (((-578 (-84)) $) NIL T ELT)) (-3579 (((-84) (-84)) NIL T ELT)) (-2396 (((-83) $) 42 T ELT)) (-2657 (((-83) $) NIL (|has| $ (-943 (-478))) ELT)) (-2982 (((-1028 (-478) (-545 $)) $) 37 T ELT)) (-2995 (($ $ (-478)) NIL T ELT)) (-3115 (((-1074 $) (-1074 $) (-545 $)) 86 T ELT) (((-1074 $) (-1074 $) (-578 (-545 $))) 61 T ELT) (($ $ (-545 $)) 75 T ELT) (($ $ (-578 (-545 $))) 76 T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1584 (((-1074 $) (-545 $)) 73 (|has| $ (-954)) ELT)) (-3942 (($ (-1 $ $) (-545 $)) NIL T ELT)) (-1589 (((-3 (-545 $) #1#) $) NIL T ELT)) (-2266 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL T ELT) (((-625 (-478)) (-1168 $)) NIL T ELT) (((-2 (|:| |mat| (-625 (-343 (-478)))) (|:| |vec| (-1168 (-343 (-478))))) (-1168 $) $) NIL T ELT) (((-625 (-343 (-478))) (-1168 $)) NIL T ELT)) (-1878 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1588 (((-578 (-545 $)) $) NIL T ELT)) (-2221 (($ (-84) $) NIL T ELT) (($ (-84) (-578 $)) NIL T ELT)) (-2617 (((-83) $ (-84)) NIL T ELT) (((-83) $ (-1079)) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-2587 (((-687) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1585 (((-83) $ $) NIL T ELT) (((-83) $ (-1079)) NIL T ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-2658 (((-83) $) NIL (|has| $ (-943 (-478))) ELT)) (-3752 (($ $ (-545 $) $) NIL T ELT) (($ $ (-578 (-545 $)) (-578 $)) NIL T ELT) (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-1 $ $))) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-1 $ (-578 $)))) NIL T ELT) (($ $ (-1079) (-1 $ (-578 $))) NIL T ELT) (($ $ (-1079) (-1 $ $)) NIL T ELT) (($ $ (-578 (-84)) (-578 (-1 $ $))) NIL T ELT) (($ $ (-578 (-84)) (-578 (-1 $ (-578 $)))) NIL T ELT) (($ $ (-84) (-1 $ (-578 $))) NIL T ELT) (($ $ (-84) (-1 $ $)) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-3784 (($ (-84) $) NIL T ELT) (($ (-84) $ $) NIL T ELT) (($ (-84) $ $ $) NIL T ELT) (($ (-84) $ $ $ $) NIL T ELT) (($ (-84) (-578 $)) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-1590 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3742 (($ $) 36 T ELT) (($ $ (-687)) NIL T ELT)) (-2981 (((-1028 (-478) (-545 $)) $) 20 T ELT)) (-3168 (($ $) NIL (|has| $ (-954)) ELT)) (-3956 (((-323) $) 100 T ELT) (((-177) $) 108 T ELT) (((-140 (-323)) $) 116 T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-545 $)) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-1028 (-478) (-545 $))) 21 T ELT)) (-3109 (((-687)) NIL T CONST)) (-2574 (($ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-2240 (((-83) (-84)) 92 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-2644 (($) 10 T CONST)) (-2650 (($) 22 T CONST)) (-2653 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3037 (((-83) $ $) 24 T ELT)) (-3933 (($ $ $) 44 T ELT)) (-3821 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-343 (-478))) NIL T ELT) (($ $ (-478)) 47 T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-823)) NIL T ELT)) (* (($ (-343 (-478)) $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-478) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-823) $) NIL T ELT))) +(((-428) (-13 (-250) (-27) (-943 (-478)) (-943 (-343 (-478))) (-575 (-478)) (-926) (-575 (-343 (-478))) (-118) (-548 (-140 (-323))) (-188) (-550 (-1028 (-478) (-545 $))) (-10 -8 (-15 -2982 ((-1028 (-478) (-545 $)) $)) (-15 -2981 ((-1028 (-478) (-545 $)) $)) (-15 -3826 ($ $)) (-15 -1938 ((-83) $ $)) (-15 -3115 ((-1074 $) (-1074 $) (-545 $))) (-15 -3115 ((-1074 $) (-1074 $) (-578 (-545 $)))) (-15 -3115 ($ $ (-545 $))) (-15 -3115 ($ $ (-578 (-545 $))))))) (T -428)) +((-2982 (*1 *2 *1) (-12 (-5 *2 (-1028 (-478) (-545 (-428)))) (-5 *1 (-428)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-1028 (-478) (-545 (-428)))) (-5 *1 (-428)))) (-3826 (*1 *1 *1) (-5 *1 (-428))) (-1938 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-428)))) (-3115 (*1 *2 *2 *3) (-12 (-5 *2 (-1074 (-428))) (-5 *3 (-545 (-428))) (-5 *1 (-428)))) (-3115 (*1 *2 *2 *3) (-12 (-5 *2 (-1074 (-428))) (-5 *3 (-578 (-545 (-428)))) (-5 *1 (-428)))) (-3115 (*1 *1 *1 *2) (-12 (-5 *2 (-545 (-428))) (-5 *1 (-428)))) (-3115 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-545 (-428)))) (-5 *1 (-428))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-1717 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3980)) (|has| |#1| (-749))) ELT)) (-2893 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-749)) ELT)) (-3772 ((|#1| $ (-478) |#1|) 42 (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3708 (($) NIL T CONST)) (-2283 (($ $) NIL (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) NIL T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3390 (($ |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 ((|#1| $ (-478) |#1|) 38 (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) 37 T ELT)) (-3403 (((-478) (-1 (-83) |#1|) $) NIL T ELT) (((-478) |#1| $) NIL (|has| |#1| (-1005)) ELT) (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1005)) ELT)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3598 (($ (-687) |#1|) 21 T ELT)) (-2186 (((-478) $) 17 (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3502 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2187 (((-478) $) 39 (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 28 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 31 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 34 T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-2290 (($ |#1| $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-3785 ((|#1| $) NIL (|has| (-478) (-749)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2185 (($ $ |#1|) 15 (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) 19 T ELT)) (-3784 ((|#1| $ (-478) |#1|) NIL T ELT) ((|#1| $ (-478)) 41 T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-2291 (($ $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1718 (($ $ $ (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) 13 T ELT)) (-3956 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 24 T ELT)) (-3786 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3930 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3941 (((-687) $) 11 (|has| $ (-6 -3979)) ELT))) +(((-429 |#1| |#2|) (-19 |#1|) (-1118) (-478)) (T -429)) +NIL +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3772 ((|#1| $ (-478) (-478) |#1|) NIL T ELT)) (-1245 (($ $ (-478) (-429 |#1| |#3|)) NIL T ELT)) (-1244 (($ $ (-478) (-429 |#1| |#2|)) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3095 (((-429 |#1| |#3|) $ (-478)) NIL T ELT)) (-1563 ((|#1| $ (-478) (-478) |#1|) NIL T ELT)) (-3096 ((|#1| $ (-478) (-478)) NIL T ELT)) (-2873 (((-578 |#1|) $) NIL T ELT)) (-3098 (((-687) $) NIL T ELT)) (-3598 (($ (-687) (-687) |#1|) NIL T ELT)) (-3097 (((-687) $) NIL T ELT)) (-3102 (((-478) $) NIL T ELT)) (-3100 (((-478) $) NIL T ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3101 (((-478) $) NIL T ELT)) (-3099 (((-478) $) NIL T ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-2185 (($ $ |#1|) NIL T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#1| $ (-478) (-478)) NIL T ELT) ((|#1| $ (-478) (-478) |#1|) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3094 (((-429 |#1| |#2|) $ (-478)) NIL T ELT)) (-3930 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-430 |#1| |#2| |#3|) (-57 |#1| (-429 |#1| |#3|) (-429 |#1| |#2|)) (-1118) (-478) (-478)) (T -430)) +NIL +((-1940 (((-578 (-2 (|:| -1998 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) (-2 (|:| -1998 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) (-687) (-687)) 32 T ELT)) (-1939 (((-578 (-1074 |#1|)) |#1| (-687) (-687) (-687)) 43 T ELT)) (-2063 (((-2 (|:| -1998 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) (-578 |#3|) (-578 (-2 (|:| -1998 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) (-687)) 107 T ELT))) +(((-431 |#1| |#2| |#3|) (-10 -7 (-15 -1939 ((-578 (-1074 |#1|)) |#1| (-687) (-687) (-687))) (-15 -1940 ((-578 (-2 (|:| -1998 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) (-2 (|:| -1998 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) (-687) (-687))) (-15 -2063 ((-2 (|:| -1998 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) (-578 |#3|) (-578 (-2 (|:| -1998 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) (-687)))) (-295) (-1144 |#1|) (-1144 |#2|)) (T -431)) +((-2063 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-2 (|:| -1998 (-625 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-625 *7))))) (-5 *5 (-687)) (-4 *8 (-1144 *7)) (-4 *7 (-1144 *6)) (-4 *6 (-295)) (-5 *2 (-2 (|:| -1998 (-625 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-625 *7)))) (-5 *1 (-431 *6 *7 *8)))) (-1940 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-687)) (-4 *5 (-295)) (-4 *6 (-1144 *5)) (-5 *2 (-578 (-2 (|:| -1998 (-625 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-625 *6))))) (-5 *1 (-431 *5 *6 *7)) (-5 *3 (-2 (|:| -1998 (-625 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-625 *6)))) (-4 *7 (-1144 *6)))) (-1939 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-687)) (-4 *3 (-295)) (-4 *5 (-1144 *3)) (-5 *2 (-578 (-1074 *3))) (-5 *1 (-431 *3 *5 *6)) (-4 *6 (-1144 *5))))) +((-1946 (((-2 (|:| -1998 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) (-2 (|:| -1998 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) (-2 (|:| -1998 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|)))) 70 T ELT)) (-1941 ((|#1| (-625 |#1|) |#1| (-687)) 24 T ELT)) (-1943 (((-687) (-687) (-687)) 34 T ELT)) (-1945 (((-625 |#1|) (-625 |#1|) (-625 |#1|)) 50 T ELT)) (-1944 (((-625 |#1|) (-625 |#1|) (-625 |#1|) |#1|) 58 T ELT) (((-625 |#1|) (-625 |#1|) (-625 |#1|)) 55 T ELT)) (-1942 ((|#1| (-625 |#1|) (-625 |#1|) |#1| (-478)) 28 T ELT)) (-3313 ((|#1| (-625 |#1|)) 18 T ELT))) +(((-432 |#1| |#2| |#3|) (-10 -7 (-15 -3313 (|#1| (-625 |#1|))) (-15 -1941 (|#1| (-625 |#1|) |#1| (-687))) (-15 -1942 (|#1| (-625 |#1|) (-625 |#1|) |#1| (-478))) (-15 -1943 ((-687) (-687) (-687))) (-15 -1944 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -1944 ((-625 |#1|) (-625 |#1|) (-625 |#1|) |#1|)) (-15 -1945 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -1946 ((-2 (|:| -1998 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) (-2 (|:| -1998 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) (-2 (|:| -1998 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|)))))) (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $)))) (-1144 |#1|) (-346 |#1| |#2|)) (T -432)) +((-1946 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1998 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) (-4 *3 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) (-4 *4 (-1144 *3)) (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4)))) (-1945 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) (-4 *4 (-1144 *3)) (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4)))) (-1944 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) (-4 *4 (-1144 *3)) (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4)))) (-1944 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) (-4 *4 (-1144 *3)) (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4)))) (-1943 (*1 *2 *2 *2) (-12 (-5 *2 (-687)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) (-4 *4 (-1144 *3)) (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4)))) (-1942 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-625 *2)) (-5 *4 (-478)) (-4 *2 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) (-4 *5 (-1144 *2)) (-5 *1 (-432 *2 *5 *6)) (-4 *6 (-346 *2 *5)))) (-1941 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-625 *2)) (-5 *4 (-687)) (-4 *2 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) (-4 *5 (-1144 *2)) (-5 *1 (-432 *2 *5 *6)) (-4 *6 (-346 *2 *5)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *4 (-1144 *2)) (-4 *2 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) (-5 *1 (-432 *2 *4 *5)) (-4 *5 (-346 *2 *4))))) +((-2552 (((-83) $ $) NIL T ELT)) (-2299 (($ $) NIL T ELT)) (-3306 (($ $ $) 41 T ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) $) NIL (|has| (-83) (-749)) ELT) (((-83) (-1 (-83) (-83) (-83)) $) NIL T ELT)) (-1717 (($ $) NIL (-12 (|has| $ (-6 -3980)) (|has| (-83) (-749))) ELT) (($ (-1 (-83) (-83) (-83)) $) NIL (|has| $ (-6 -3980)) ELT)) (-2893 (($ $) NIL (|has| (-83) (-749)) ELT) (($ (-1 (-83) (-83) (-83)) $) NIL T ELT)) (-3772 (((-83) $ (-1135 (-478)) (-83)) NIL (|has| $ (-6 -3980)) ELT) (((-83) $ (-478) (-83)) 43 (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3708 (($) NIL T CONST)) (-2283 (($ $) NIL (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) NIL T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-83) (-1005))) ELT)) (-3390 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-83) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-83) (-1005))) ELT)) (-3826 (((-83) (-1 (-83) (-83) (-83)) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83)) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83) (-83)) NIL (-12 (|has| $ (-6 -3979)) (|has| (-83) (-1005))) ELT)) (-1563 (((-83) $ (-478) (-83)) NIL (|has| $ (-6 -3980)) ELT)) (-3096 (((-83) $ (-478)) NIL T ELT)) (-3403 (((-478) (-83) $ (-478)) NIL (|has| (-83) (-1005)) ELT) (((-478) (-83) $) NIL (|has| (-83) (-1005)) ELT) (((-478) (-1 (-83) (-83)) $) NIL T ELT)) (-2873 (((-578 (-83)) $) NIL (|has| $ (-6 -3979)) ELT)) (-2545 (($ $ $) 39 T ELT)) (-2544 (($ $) NIL T ELT)) (-1287 (($ $ $) NIL T ELT)) (-3598 (($ (-687) (-83)) 27 T ELT)) (-1288 (($ $ $) NIL T ELT)) (-2186 (((-478) $) 8 (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL T ELT)) (-3502 (($ $ $) NIL (|has| (-83) (-749)) ELT) (($ (-1 (-83) (-83) (-83)) $ $) NIL T ELT)) (-2592 (((-578 (-83)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-83) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-83) (-1005))) ELT)) (-2187 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL T ELT)) (-1936 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-83) (-83) (-83)) $ $) 36 T ELT) (($ (-1 (-83) (-83)) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2290 (($ $ $ (-478)) NIL T ELT) (($ (-83) $ (-478)) NIL T ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3785 (((-83) $) NIL (|has| (-478) (-749)) ELT)) (-1341 (((-3 (-83) "failed") (-1 (-83) (-83)) $) NIL T ELT)) (-2185 (($ $ (-83)) NIL (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-83)) (-578 (-83))) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1005))) ELT) (($ $ (-83) (-83)) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1005))) ELT) (($ $ (-245 (-83))) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1005))) ELT) (($ $ (-578 (-245 (-83)))) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) (-83) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-83) (-1005))) ELT)) (-2191 (((-578 (-83)) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) 29 T ELT)) (-3784 (($ $ (-1135 (-478))) NIL T ELT) (((-83) $ (-478)) 22 T ELT) (((-83) $ (-478) (-83)) NIL T ELT)) (-2291 (($ $ (-1135 (-478))) NIL T ELT) (($ $ (-478)) NIL T ELT)) (-1933 (((-687) (-83) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-83) (-1005))) ELT) (((-687) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3979)) ELT)) (-1718 (($ $ $ (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) 30 T ELT)) (-3956 (((-467) $) NIL (|has| (-83) (-548 (-467))) ELT)) (-3514 (($ (-578 (-83))) NIL T ELT)) (-3786 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-83) $) NIL T ELT) (($ $ (-83)) NIL T ELT)) (-3930 (((-765) $) 26 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3979)) ELT)) (-2546 (($ $ $) 37 T ELT)) (-2297 (($ $ $) NIL T ELT)) (-3303 (($ $ $) 46 T ELT)) (-3305 (($ $) 44 T ELT)) (-3304 (($ $ $) 45 T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 31 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 32 T ELT)) (-2298 (($ $ $) NIL T ELT)) (-3941 (((-687) $) 13 (|has| $ (-6 -3979)) ELT))) +(((-433 |#1|) (-13 (-94) (-10 -8 (-15 -3305 ($ $)) (-15 -3303 ($ $ $)) (-15 -3304 ($ $ $)))) (-478)) (T -433)) +((-3305 (*1 *1 *1) (-12 (-5 *1 (-433 *2)) (-14 *2 (-478)))) (-3303 (*1 *1 *1 *1) (-12 (-5 *1 (-433 *2)) (-14 *2 (-478)))) (-3304 (*1 *1 *1 *1) (-12 (-5 *1 (-433 *2)) (-14 *2 (-478))))) +((-1948 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1074 |#4|)) 35 T ELT)) (-1947 (((-1074 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1074 |#4|)) 22 T ELT)) (-1949 (((-3 (-625 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-625 (-1074 |#4|))) 46 T ELT)) (-1950 (((-1074 (-1074 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) +(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1947 (|#2| (-1 |#1| |#4|) (-1074 |#4|))) (-15 -1947 ((-1074 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1948 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1074 |#4|))) (-15 -1949 ((-3 (-625 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-625 (-1074 |#4|)))) (-15 -1950 ((-1074 (-1074 |#4|)) (-1 |#4| |#1|) |#3|))) (-954) (-1144 |#1|) (-1144 |#2|) (-954)) (T -434)) +((-1950 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-954)) (-4 *7 (-954)) (-4 *6 (-1144 *5)) (-5 *2 (-1074 (-1074 *7))) (-5 *1 (-434 *5 *6 *4 *7)) (-4 *4 (-1144 *6)))) (-1949 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-625 (-1074 *8))) (-4 *5 (-954)) (-4 *8 (-954)) (-4 *6 (-1144 *5)) (-5 *2 (-625 *6)) (-5 *1 (-434 *5 *6 *7 *8)) (-4 *7 (-1144 *6)))) (-1948 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1074 *7)) (-4 *5 (-954)) (-4 *7 (-954)) (-4 *2 (-1144 *5)) (-5 *1 (-434 *5 *2 *6 *7)) (-4 *6 (-1144 *2)))) (-1947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-954)) (-4 *7 (-954)) (-4 *4 (-1144 *5)) (-5 *2 (-1074 *7)) (-5 *1 (-434 *5 *4 *6 *7)) (-4 *6 (-1144 *4)))) (-1947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1074 *7)) (-4 *5 (-954)) (-4 *7 (-954)) (-4 *2 (-1144 *5)) (-5 *1 (-434 *5 *2 *6 *7)) (-4 *6 (-1144 *2))))) +((-2552 (((-83) $ $) NIL T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1951 (((-1174) $) 25 T ELT)) (-3784 (((-1062) $ (-1079)) 30 T ELT)) (-3601 (((-1174) $) 19 T ELT)) (-3930 (((-765) $) 27 T ELT) (($ (-1062)) 26 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 11 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 9 T ELT))) +(((-435) (-13 (-749) (-550 (-1062)) (-10 -8 (-15 -3784 ((-1062) $ (-1079))) (-15 -3601 ((-1174) $)) (-15 -1951 ((-1174) $))))) (T -435)) +((-3784 (*1 *2 *1 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-1062)) (-5 *1 (-435)))) (-3601 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-435)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-435))))) +((-3725 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3723 ((|#1| |#4|) 10 T ELT)) (-3724 ((|#3| |#4|) 17 T ELT))) +(((-436 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3723 (|#1| |#4|)) (-15 -3724 (|#3| |#4|)) (-15 -3725 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-489) (-897 |#1|) (-317 |#1|) (-317 |#2|)) (T -436)) +((-3725 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-897 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-436 *4 *5 *6 *3)) (-4 *6 (-317 *4)) (-4 *3 (-317 *5)))) (-3724 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-897 *4)) (-4 *2 (-317 *4)) (-5 *1 (-436 *4 *5 *2 *3)) (-4 *3 (-317 *5)))) (-3723 (*1 *2 *3) (-12 (-4 *4 (-897 *2)) (-4 *2 (-489)) (-5 *1 (-436 *2 *4 *5 *3)) (-4 *5 (-317 *2)) (-4 *3 (-317 *4))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1961 (((-83) $ (-578 |#3|)) 126 T ELT) (((-83) $) 127 T ELT)) (-3171 (((-83) $) 177 T ELT)) (-1953 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-578 |#3|)) 121 T ELT)) (-1952 (((-1069 (-578 (-850 |#1|)) (-578 (-245 (-850 |#1|)))) (-578 |#4|)) 170 (|has| |#3| (-548 (-1079))) ELT)) (-1960 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2396 (((-83) $) 176 T ELT)) (-1957 (($ $) 131 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3221 (($ $ $) 99 T ELT) (($ (-578 $)) 101 T ELT)) (-1962 (((-83) |#4| $) 129 T ELT)) (-1963 (((-83) $ $) 82 T ELT)) (-1956 (($ (-578 |#4|)) 106 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1955 (($ (-578 |#4|)) 174 T ELT)) (-1954 (((-83) $) 175 T ELT)) (-2237 (($ $) 85 T ELT)) (-2679 (((-578 |#4|) $) 73 T ELT)) (-1959 (((-2 (|:| |mval| (-625 |#1|)) (|:| |invmval| (-625 |#1|)) (|:| |genIdeal| $)) $ (-578 |#3|)) NIL T ELT)) (-1964 (((-83) |#4| $) 89 T ELT)) (-3895 (((-478) $ (-578 |#3|)) 133 T ELT) (((-478) $) 134 T ELT)) (-3930 (((-765) $) 173 T ELT) (($ (-578 |#4|)) 102 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1958 (($ (-2 (|:| |mval| (-625 |#1|)) (|:| |invmval| (-625 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3037 (((-83) $ $) 84 T ELT)) (-3823 (($ $ $) 109 T ELT)) (** (($ $ (-687)) 115 T ELT)) (* (($ $ $) 113 T ELT))) +(((-437 |#1| |#2| |#3| |#4|) (-13 (-1005) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-687))) (-15 -3823 ($ $ $)) (-15 -2396 ((-83) $)) (-15 -3171 ((-83) $)) (-15 -1964 ((-83) |#4| $)) (-15 -1963 ((-83) $ $)) (-15 -1962 ((-83) |#4| $)) (-15 -1961 ((-83) $ (-578 |#3|))) (-15 -1961 ((-83) $)) (-15 -3221 ($ $ $)) (-15 -3221 ($ (-578 $))) (-15 -1960 ($ $ $)) (-15 -1960 ($ $ |#4|)) (-15 -2237 ($ $)) (-15 -1959 ((-2 (|:| |mval| (-625 |#1|)) (|:| |invmval| (-625 |#1|)) (|:| |genIdeal| $)) $ (-578 |#3|))) (-15 -1958 ($ (-2 (|:| |mval| (-625 |#1|)) (|:| |invmval| (-625 |#1|)) (|:| |genIdeal| $)))) (-15 -3895 ((-478) $ (-578 |#3|))) (-15 -3895 ((-478) $)) (-15 -1957 ($ $)) (-15 -1956 ($ (-578 |#4|))) (-15 -1955 ($ (-578 |#4|))) (-15 -1954 ((-83) $)) (-15 -2679 ((-578 |#4|) $)) (-15 -3930 ($ (-578 |#4|))) (-15 -1953 ($ $ |#4|)) (-15 -1953 ($ $ |#4| (-578 |#3|))) (IF (|has| |#3| (-548 (-1079))) (-15 -1952 ((-1069 (-578 (-850 |#1|)) (-578 (-245 (-850 |#1|)))) (-578 |#4|))) |%noBranch|))) (-308) (-710) (-749) (-854 |#1| |#2| |#3|)) (T -437)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) (-4 *5 (-854 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-3823 (*1 *1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) (-4 *5 (-854 *2 *3 *4)))) (-2396 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-3171 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-1964 (*1 *2 *3 *1) (-12 (-4 *4 (-308)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-437 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6)))) (-1963 (*1 *2 *1 *1) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-1962 (*1 *2 *3 *1) (-12 (-4 *4 (-308)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-437 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6)))) (-1961 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-749)) (-4 *4 (-308)) (-4 *5 (-710)) (-5 *2 (-83)) (-5 *1 (-437 *4 *5 *6 *7)) (-4 *7 (-854 *4 *5 *6)))) (-1961 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-3221 (*1 *1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) (-4 *5 (-854 *2 *3 *4)))) (-3221 (*1 *1 *2) (-12 (-5 *2 (-578 (-437 *3 *4 *5 *6))) (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-1960 (*1 *1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) (-4 *5 (-854 *2 *3 *4)))) (-1960 (*1 *1 *1 *2) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *2)) (-4 *2 (-854 *3 *4 *5)))) (-2237 (*1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) (-4 *5 (-854 *2 *3 *4)))) (-1959 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-749)) (-4 *4 (-308)) (-4 *5 (-710)) (-5 *2 (-2 (|:| |mval| (-625 *4)) (|:| |invmval| (-625 *4)) (|:| |genIdeal| (-437 *4 *5 *6 *7)))) (-5 *1 (-437 *4 *5 *6 *7)) (-4 *7 (-854 *4 *5 *6)))) (-1958 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-625 *3)) (|:| |invmval| (-625 *3)) (|:| |genIdeal| (-437 *3 *4 *5 *6)))) (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-3895 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-749)) (-4 *4 (-308)) (-4 *5 (-710)) (-5 *2 (-478)) (-5 *1 (-437 *4 *5 *6 *7)) (-4 *7 (-854 *4 *5 *6)))) (-3895 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-478)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-1957 (*1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) (-4 *5 (-854 *2 *3 *4)))) (-1956 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6)))) (-1955 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6)))) (-1954 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-2679 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *6)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6)))) (-1953 (*1 *1 *1 *2) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *2)) (-4 *2 (-854 *3 *4 *5)))) (-1953 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-749)) (-4 *4 (-308)) (-4 *5 (-710)) (-5 *1 (-437 *4 *5 *6 *2)) (-4 *2 (-854 *4 *5 *6)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *5 *6)) (-4 *6 (-548 (-1079))) (-4 *4 (-308)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-1069 (-578 (-850 *4)) (-578 (-245 (-850 *4))))) (-5 *1 (-437 *4 *5 *6 *7))))) +((-1965 (((-83) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478))))) 177 T ELT)) (-1966 (((-83) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478))))) 178 T ELT)) (-1967 (((-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478))))) 128 T ELT)) (-3707 (((-83) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478))))) NIL T ELT)) (-1968 (((-578 (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478))))) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478))))) 180 T ELT)) (-1969 (((-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))) (-578 (-766 |#1|))) 196 T ELT))) +(((-438 |#1| |#2|) (-10 -7 (-15 -1965 ((-83) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))))) (-15 -1966 ((-83) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))))) (-15 -3707 ((-83) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))))) (-15 -1967 ((-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))))) (-15 -1968 ((-578 (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478))))) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))))) (-15 -1969 ((-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))) (-578 (-766 |#1|))))) (-578 (-1079)) (-687)) (T -438)) +((-1969 (*1 *2 *2 *3) (-12 (-5 *2 (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478))))) (-5 *3 (-578 (-766 *4))) (-14 *4 (-578 (-1079))) (-14 *5 (-687)) (-5 *1 (-438 *4 *5)))) (-1968 (*1 *2 *3) (-12 (-14 *4 (-578 (-1079))) (-14 *5 (-687)) (-5 *2 (-578 (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478)))))) (-5 *1 (-438 *4 *5)) (-5 *3 (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478))))))) (-1967 (*1 *2 *2) (-12 (-5 *2 (-437 (-343 (-478)) (-194 *4 (-687)) (-766 *3) (-203 *3 (-343 (-478))))) (-14 *3 (-578 (-1079))) (-14 *4 (-687)) (-5 *1 (-438 *3 *4)))) (-3707 (*1 *2 *3) (-12 (-5 *3 (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478))))) (-14 *4 (-578 (-1079))) (-14 *5 (-687)) (-5 *2 (-83)) (-5 *1 (-438 *4 *5)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478))))) (-14 *4 (-578 (-1079))) (-14 *5 (-687)) (-5 *2 (-83)) (-5 *1 (-438 *4 *5)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478))))) (-14 *4 (-578 (-1079))) (-14 *5 (-687)) (-5 *2 (-83)) (-5 *1 (-438 *4 *5))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1970 (($) 6 T ELT)) (-3930 (((-765) $) 10 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(((-439) (-13 (-1005) (-10 -8 (-15 -1970 ($))))) (T -439)) +((-1970 (*1 *1) (-5 *1 (-439)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3758 (((-578 (-775 |#2| |#1|)) $) 12 T ELT)) (-1299 (((-3 $ "failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3943 (($ $) NIL T ELT)) (-2877 (($ |#1| |#2|) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1971 ((|#2| $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 16 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-3823 (($ $ $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 26 T ELT))) +(((-440 |#1| |#2|) (-13 (-21) (-442 |#1| |#2|)) (-21) (-752)) (T -440)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 17 T ELT)) (-3758 (((-578 (-775 |#2| |#1|)) $) 14 T ELT)) (-3708 (($) NIL T CONST)) (-3943 (($ $) 44 T ELT)) (-2877 (($ |#1| |#2|) 41 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-1971 ((|#2| $) NIL T ELT)) (-3157 ((|#1| $) 45 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 13 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3823 (($ $ $) 31 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) 40 T ELT))) +(((-441 |#1| |#2|) (-13 (-23) (-442 |#1| |#2|)) (-23) (-752)) (T -441)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3758 (((-578 (-775 |#2| |#1|)) $) 15 T ELT)) (-3943 (($ $) 16 T ELT)) (-2877 (($ |#1| |#2|) 19 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 20 T ELT)) (-1971 ((|#2| $) 17 T ELT)) (-3157 ((|#1| $) 18 T ELT)) (-3225 (((-1062) $) 14 (-12 (|has| |#2| (-1005)) (|has| |#1| (-1005))) ELT)) (-3226 (((-1023) $) 13 (-12 (|has| |#2| (-1005)) (|has| |#1| (-1005))) ELT)) (-3930 (((-765) $) 12 (-12 (|has| |#2| (-1005)) (|has| |#1| (-1005))) ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(((-442 |#1| |#2|) (-111) (-72) (-752)) (T -442)) +((-3942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-442 *3 *4)) (-4 *3 (-72)) (-4 *4 (-752)))) (-2877 (*1 *1 *2 *3) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-72)) (-4 *3 (-752)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *3 (-752)) (-4 *2 (-72)))) (-1971 (*1 *2 *1) (-12 (-4 *1 (-442 *3 *2)) (-4 *3 (-72)) (-4 *2 (-752)))) (-3943 (*1 *1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-72)) (-4 *3 (-752)))) (-3758 (*1 *2 *1) (-12 (-4 *1 (-442 *3 *4)) (-4 *3 (-72)) (-4 *4 (-752)) (-5 *2 (-578 (-775 *4 *3)))))) +(-13 (-72) (-10 -8 (IF (|has| |t#1| (-1005)) (IF (|has| |t#2| (-1005)) (-6 (-1005)) |%noBranch|) |%noBranch|) (-15 -3942 ($ (-1 |t#1| |t#1|) $)) (-15 -2877 ($ |t#1| |t#2|)) (-15 -3157 (|t#1| $)) (-15 -1971 (|t#2| $)) (-15 -3943 ($ $)) (-15 -3758 ((-578 (-775 |t#2| |t#1|)) $)))) +(((-72) . T) ((-547 (-765)) -12 (|has| |#1| (-1005)) (|has| |#2| (-1005))) ((-1005) -12 (|has| |#1| (-1005)) (|has| |#2| (-1005))) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3758 (((-578 (-775 |#2| |#1|)) $) 39 T ELT)) (-3943 (($ $) 34 T ELT)) (-2877 (($ |#1| |#2|) 30 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-1971 ((|#2| $) 38 T ELT)) (-3157 ((|#1| $) 37 T ELT)) (-3225 (((-1062) $) NIL (-12 (|has| |#1| (-1005)) (|has| |#2| (-1005))) ELT)) (-3226 (((-1023) $) NIL (-12 (|has| |#1| (-1005)) (|has| |#2| (-1005))) ELT)) (-3930 (((-765) $) 28 (-12 (|has| |#1| (-1005)) (|has| |#2| (-1005))) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 21 T ELT))) +(((-443 |#1| |#2|) (-442 |#1| |#2|) (-72) (-752)) (T -443)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3758 (((-578 (-775 |#2| |#1|)) $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3943 (($ $) NIL T ELT)) (-3169 (((-83) $) NIL T ELT)) (-2877 (($ |#1| |#2|) NIL T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1971 ((|#2| $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 22 T ELT)) (-3823 (($ $ $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT))) +(((-444 |#1| |#2|) (-13 (-709) (-442 |#1| |#2|)) (-709) (-752)) (T -444)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3758 (((-578 (-775 |#2| |#1|)) $) NIL T ELT)) (-2467 (($ $ $) 23 T ELT)) (-1299 (((-3 $ "failed") $ $) 19 T ELT)) (-3708 (($) NIL T CONST)) (-3943 (($ $) NIL T ELT)) (-3169 (((-83) $) NIL T ELT)) (-2877 (($ |#1| |#2|) NIL T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1971 ((|#2| $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT))) +(((-445 |#1| |#2|) (-13 (-710) (-442 |#1| |#2|)) (-710) (-749)) (T -445)) +NIL +((-3752 (($ $ (-578 |#2|) (-578 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) +(((-446 |#1| |#2| |#3|) (-10 -7 (-15 -3752 (|#1| |#1| |#2| |#3|)) (-15 -3752 (|#1| |#1| (-578 |#2|) (-578 |#3|)))) (-447 |#2| |#3|) (-1005) (-1118)) (T -446)) +NIL +((-3752 (($ $ (-578 |#1|) (-578 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) +(((-447 |#1| |#2|) (-111) (-1005) (-1118)) (T -447)) +((-3752 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 *5)) (-4 *1 (-447 *4 *5)) (-4 *4 (-1005)) (-4 *5 (-1118)))) (-3752 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1118))))) +(-13 (-10 -8 (-15 -3752 ($ $ |t#1| |t#2|)) (-15 -3752 ($ $ (-578 |t#1|) (-578 |t#2|))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 17 T ELT)) (-3758 (((-578 (-2 (|:| |gen| |#1|) (|:| -3927 |#2|))) $) 19 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3119 (((-687) $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) NIL T ELT)) (-3139 ((|#1| $) NIL T ELT)) (-2285 ((|#1| $ (-478)) 24 T ELT)) (-1609 ((|#2| $ (-478)) 22 T ELT)) (-2276 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1608 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1607 (($ $ $) 55 (|has| |#2| (-709)) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3661 ((|#2| |#1| $) 51 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 11 T CONST)) (-3037 (((-83) $ $) 30 T ELT)) (-3823 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) +(((-448 |#1| |#2| |#3|) (-270 |#1| |#2|) (-1005) (-102) |#2|) (T -448)) +NIL +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-1717 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3980)) (|has| |#1| (-749))) ELT)) (-2893 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-749)) ELT)) (-1972 (((-83) (-83)) 32 T ELT)) (-3772 ((|#1| $ (-478) |#1|) 42 (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-1557 (($ (-1 (-83) |#1|) $) 79 T ELT)) (-3694 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3708 (($) NIL T CONST)) (-2283 (($ $) NIL (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) NIL T ELT)) (-2354 (($ $) 83 (|has| |#1| (-1005)) ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3389 (($ |#1| $) NIL (|has| |#1| (-1005)) ELT) (($ (-1 (-83) |#1|) $) 66 T ELT)) (-3390 (($ |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) NIL T ELT)) (-3403 (((-478) (-1 (-83) |#1|) $) NIL T ELT) (((-478) |#1| $) NIL (|has| |#1| (-1005)) ELT) (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1005)) ELT)) (-1973 (($ $ (-478)) 19 T ELT)) (-1974 (((-687) $) 13 T ELT)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3598 (($ (-687) |#1|) 31 T ELT)) (-2186 (((-478) $) 29 (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2840 (($ $ $) NIL (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) 57 T ELT)) (-3502 (($ (-1 (-83) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2187 (((-478) $) 28 (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3593 (($ $ $ (-478)) 75 T ELT) (($ |#1| $ (-478)) 59 T ELT)) (-2290 (($ |#1| $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-1975 (($ (-578 |#1|)) 43 T ELT)) (-3785 ((|#1| $) NIL (|has| (-478) (-749)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2185 (($ $ |#1|) 24 (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 62 T ELT)) (-2188 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) 21 T ELT)) (-3784 ((|#1| $ (-478) |#1|) NIL T ELT) ((|#1| $ (-478)) 55 T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-1558 (($ $ (-1135 (-478))) 73 T ELT) (($ $ (-478)) 67 T ELT)) (-2291 (($ $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1718 (($ $ $ (-478)) 63 (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) 53 T ELT)) (-3956 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) NIL T ELT)) (-3775 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3786 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3930 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3941 (((-687) $) 22 (|has| $ (-6 -3979)) ELT))) +(((-449 |#1| |#2|) (-13 (-19 |#1|) (-234 |#1|) (-10 -8 (-15 -1975 ($ (-578 |#1|))) (-15 -1974 ((-687) $)) (-15 -1973 ($ $ (-478))) (-15 -1972 ((-83) (-83))))) (-1118) (-478)) (T -449)) +((-1975 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1118)) (-5 *1 (-449 *3 *4)) (-14 *4 (-478)))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-449 *3 *4)) (-4 *3 (-1118)) (-14 *4 (-478)))) (-1973 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-449 *3 *4)) (-4 *3 (-1118)) (-14 *4 *2))) (-1972 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-449 *3 *4)) (-4 *3 (-1118)) (-14 *4 (-478))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1977 (((-1038) $) 11 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1976 (((-1038) $) 13 T ELT)) (-3906 (((-1038) $) 9 T ELT)) (-3930 (((-765) $) 19 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-450) (-13 (-987) (-10 -8 (-15 -3906 ((-1038) $)) (-15 -1977 ((-1038) $)) (-15 -1976 ((-1038) $))))) (T -450)) +((-3906 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-450)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-450)))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-450))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-3913 (((-687)) NIL T ELT)) (-3314 (((-511 |#1|) $) NIL T ELT) (($ $ (-823)) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) NIL (|has| (-511 |#1|) (-313)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-511 |#1|) #1#) $) NIL T ELT)) (-3139 (((-511 |#1|) $) NIL T ELT)) (-1779 (($ (-1168 (-511 |#1|))) NIL T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-511 |#1|) (-313)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($) NIL (|has| (-511 |#1|) (-313)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-2817 (($) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1667 (((-83) $) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1751 (($ $ (-687)) NIL (OR (|has| (-511 |#1|) (-116)) (|has| (-511 |#1|) (-313))) ELT) (($ $) NIL (OR (|has| (-511 |#1|) (-116)) (|has| (-511 |#1|) (-313))) ELT)) (-3707 (((-83) $) NIL T ELT)) (-3756 (((-823) $) NIL (|has| (-511 |#1|) (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| (-511 |#1|) (-116)) (|has| (-511 |#1|) (-313))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-1999 (($) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1997 (((-83) $) NIL (|has| (-511 |#1|) (-313)) ELT)) (-3115 (((-511 |#1|) $) NIL T ELT) (($ $ (-823)) NIL (|has| (-511 |#1|) (-313)) ELT)) (-3429 (((-627 $) $) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2000 (((-1074 (-511 |#1|)) $) NIL T ELT) (((-1074 $) $ (-823)) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1996 (((-823) $) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1614 (((-1074 (-511 |#1|)) $) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1613 (((-1074 (-511 |#1|)) $) NIL (|has| (-511 |#1|) (-313)) ELT) (((-3 (-1074 (-511 |#1|)) #1#) $ $) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1615 (($ $ (-1074 (-511 |#1|))) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3430 (($) NIL (|has| (-511 |#1|) (-313)) CONST)) (-2386 (($ (-823)) NIL (|has| (-511 |#1|) (-313)) ELT)) (-3915 (((-83) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2395 (($) NIL (|has| (-511 |#1|) (-313)) ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) NIL (|has| (-511 |#1|) (-313)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-3914 (((-736 (-823))) NIL T ELT) (((-823)) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-1752 (((-687) $) NIL (|has| (-511 |#1|) (-313)) ELT) (((-3 (-687) #1#) $ $) NIL (OR (|has| (-511 |#1|) (-116)) (|has| (-511 |#1|) (-313))) ELT)) (-3895 (((-105)) NIL T ELT)) (-3742 (($ $ (-687)) NIL (|has| (-511 |#1|) (-313)) ELT) (($ $) NIL (|has| (-511 |#1|) (-313)) ELT)) (-3932 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-3168 (((-1074 (-511 |#1|))) NIL T ELT)) (-1661 (($) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1616 (($) NIL (|has| (-511 |#1|) (-313)) ELT)) (-3207 (((-1168 (-511 |#1|)) $) NIL T ELT) (((-625 (-511 |#1|)) (-1168 $)) NIL T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (|has| (-511 |#1|) (-313)) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-511 |#1|)) NIL T ELT)) (-2686 (($ $) NIL (|has| (-511 |#1|) (-313)) ELT) (((-627 $) $) NIL (OR (|has| (-511 |#1|) (-116)) (|has| (-511 |#1|) (-313))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $)) NIL T ELT) (((-1168 $) (-823)) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3917 (((-83) $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-3912 (($ $) NIL (|has| (-511 |#1|) (-313)) ELT) (($ $ (-687)) NIL (|has| (-511 |#1|) (-313)) ELT)) (-2653 (($ $ (-687)) NIL (|has| (-511 |#1|) (-313)) ELT) (($ $) NIL (|has| (-511 |#1|) (-313)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ $) NIL T ELT) (($ $ (-511 |#1|)) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ (-511 |#1|)) NIL T ELT) (($ (-511 |#1|) $) NIL T ELT))) +(((-451 |#1| |#2|) (-276 (-511 |#1|)) (-823) (-823)) (T -451)) +NIL +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3772 ((|#1| $ (-478) (-478) |#1|) 51 T ELT)) (-1245 (($ $ (-478) |#4|) NIL T ELT)) (-1244 (($ $ (-478) |#5|) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3095 ((|#4| $ (-478)) NIL T ELT)) (-1563 ((|#1| $ (-478) (-478) |#1|) 50 T ELT)) (-3096 ((|#1| $ (-478) (-478)) 45 T ELT)) (-2873 (((-578 |#1|) $) NIL T ELT)) (-3098 (((-687) $) 33 T ELT)) (-3598 (($ (-687) (-687) |#1|) 30 T ELT)) (-3097 (((-687) $) 38 T ELT)) (-3102 (((-478) $) 31 T ELT)) (-3100 (((-478) $) 32 T ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3101 (((-478) $) 37 T ELT)) (-3099 (((-478) $) 39 T ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3225 (((-1062) $) 55 (|has| |#1| (-1005)) ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-2185 (($ $ |#1|) NIL T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) 14 T ELT)) (-3549 (($) 16 T ELT)) (-3784 ((|#1| $ (-478) (-478)) 48 T ELT) ((|#1| $ (-478) (-478) |#1|) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3094 ((|#5| $ (-478)) NIL T ELT)) (-3930 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-452 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1118) (-478) (-478) (-317 |#1|) (-317 |#1|)) (T -452)) +NIL +((-3093 ((|#4| |#4|) 38 T ELT)) (-3092 (((-687) |#4|) 45 T ELT)) (-3091 (((-687) |#4|) 46 T ELT)) (-3090 (((-578 |#3|) |#4|) 57 (|has| |#3| (-6 -3980)) ELT)) (-3574 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1978 ((|#4| |#4|) 61 T ELT)) (-3312 ((|#1| |#4|) 60 T ELT))) +(((-453 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3093 (|#4| |#4|)) (-15 -3092 ((-687) |#4|)) (-15 -3091 ((-687) |#4|)) (IF (|has| |#3| (-6 -3980)) (-15 -3090 ((-578 |#3|) |#4|)) |%noBranch|) (-15 -3312 (|#1| |#4|)) (-15 -1978 (|#4| |#4|)) (-15 -3574 ((-3 |#4| "failed") |#4|))) (-308) (-317 |#1|) (-317 |#1|) (-622 |#1| |#2| |#3|)) (T -453)) +((-3574 (*1 *2 *2) (|partial| -12 (-4 *3 (-308)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-453 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) (-1978 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-453 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) (-3312 (*1 *2 *3) (-12 (-4 *4 (-317 *2)) (-4 *5 (-317 *2)) (-4 *2 (-308)) (-5 *1 (-453 *2 *4 *5 *3)) (-4 *3 (-622 *2 *4 *5)))) (-3090 (*1 *2 *3) (-12 (|has| *6 (-6 -3980)) (-4 *4 (-308)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-578 *6)) (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) (-3091 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-687)) (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) (-3092 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-687)) (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) (-3093 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-453 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) +((-3093 ((|#8| |#4|) 20 T ELT)) (-3090 (((-578 |#3|) |#4|) 29 (|has| |#7| (-6 -3980)) ELT)) (-3574 (((-3 |#8| "failed") |#4|) 23 T ELT))) +(((-454 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3093 (|#8| |#4|)) (-15 -3574 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -3980)) (-15 -3090 ((-578 |#3|) |#4|)) |%noBranch|)) (-489) (-317 |#1|) (-317 |#1|) (-622 |#1| |#2| |#3|) (-897 |#1|) (-317 |#5|) (-317 |#5|) (-622 |#5| |#6| |#7|)) (T -454)) +((-3090 (*1 *2 *3) (-12 (|has| *9 (-6 -3980)) (-4 *4 (-489)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-4 *7 (-897 *4)) (-4 *8 (-317 *7)) (-4 *9 (-317 *7)) (-5 *2 (-578 *6)) (-5 *1 (-454 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-622 *4 *5 *6)) (-4 *10 (-622 *7 *8 *9)))) (-3574 (*1 *2 *3) (|partial| -12 (-4 *4 (-489)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-4 *7 (-897 *4)) (-4 *2 (-622 *7 *8 *9)) (-5 *1 (-454 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-622 *4 *5 *6)) (-4 *8 (-317 *7)) (-4 *9 (-317 *7)))) (-3093 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-4 *7 (-897 *4)) (-4 *2 (-622 *7 *8 *9)) (-5 *1 (-454 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-622 *4 *5 *6)) (-4 *8 (-317 *7)) (-4 *9 (-317 *7))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3822 (($ (-687) (-687)) NIL T ELT)) (-2336 (($ $ $) NIL T ELT)) (-3398 (($ (-531 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3104 (((-83) $) NIL T ELT)) (-2335 (($ $ (-478) (-478)) 21 T ELT)) (-2334 (($ $ (-478) (-478)) NIL T ELT)) (-2333 (($ $ (-478) (-478) (-478) (-478)) NIL T ELT)) (-2338 (($ $) NIL T ELT)) (-3106 (((-83) $) NIL T ELT)) (-2332 (($ $ (-478) (-478) $) NIL T ELT)) (-3772 ((|#1| $ (-478) (-478) |#1|) NIL T ELT) (($ $ (-578 (-478)) (-578 (-478)) $) NIL T ELT)) (-1245 (($ $ (-478) (-531 |#1| |#3|)) NIL T ELT)) (-1244 (($ $ (-478) (-531 |#1| |#2|)) NIL T ELT)) (-3317 (($ (-687) |#1|) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3093 (($ $) 30 (|has| |#1| (-254)) ELT)) (-3095 (((-531 |#1| |#3|) $ (-478)) NIL T ELT)) (-3092 (((-687) $) 33 (|has| |#1| (-489)) ELT)) (-1563 ((|#1| $ (-478) (-478) |#1|) NIL T ELT)) (-3096 ((|#1| $ (-478) (-478)) NIL T ELT)) (-2873 (((-578 |#1|) $) NIL T ELT)) (-3091 (((-687) $) 35 (|has| |#1| (-489)) ELT)) (-3090 (((-578 (-531 |#1| |#2|)) $) 38 (|has| |#1| (-489)) ELT)) (-3098 (((-687) $) NIL T ELT)) (-3598 (($ (-687) (-687) |#1|) NIL T ELT)) (-3097 (((-687) $) NIL T ELT)) (-3311 ((|#1| $) 28 (|has| |#1| (-6 (-3981 #1="*"))) ELT)) (-3102 (((-478) $) 10 T ELT)) (-3100 (((-478) $) NIL T ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3101 (((-478) $) 13 T ELT)) (-3099 (((-478) $) NIL T ELT)) (-3107 (($ (-578 (-578 |#1|))) NIL T ELT) (($ (-687) (-687) (-1 |#1| (-478) (-478))) NIL T ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3578 (((-578 (-578 |#1|)) $) NIL T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3574 (((-3 $ #2="failed") $) 42 (|has| |#1| (-308)) ELT)) (-2337 (($ $ $) NIL T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-2185 (($ $ |#1|) NIL T ELT)) (-3450 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-489)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#1| $ (-478) (-478)) NIL T ELT) ((|#1| $ (-478) (-478) |#1|) NIL T ELT) (($ $ (-578 (-478)) (-578 (-478))) NIL T ELT)) (-3316 (($ (-578 |#1|)) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3105 (((-83) $) NIL T ELT)) (-3312 ((|#1| $) 26 (|has| |#1| (-6 (-3981 #1#))) ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3094 (((-531 |#1| |#2|) $ (-478)) NIL T ELT)) (-3930 (($ (-531 |#1| |#2|)) NIL T ELT) (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3103 (((-83) $) NIL T ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-478) $) NIL T ELT) (((-531 |#1| |#2|) $ (-531 |#1| |#2|)) NIL T ELT) (((-531 |#1| |#3|) (-531 |#1| |#3|) $) NIL T ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-455 |#1| |#2| |#3|) (-622 |#1| (-531 |#1| |#3|) (-531 |#1| |#2|)) (-954) (-478) (-478)) (T -455)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1979 (((-578 (-1119)) $) 13 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 19 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT) (($ (-578 (-1119))) 11 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-456) (-13 (-987) (-10 -8 (-15 -3930 ($ (-578 (-1119)))) (-15 -1979 ((-578 (-1119)) $))))) (T -456)) +((-3930 (*1 *1 *2) (-12 (-5 *2 (-578 (-1119))) (-5 *1 (-456)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-578 (-1119))) (-5 *1 (-456))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1980 (((-1038) $) 14 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3434 (((-439) $) 11 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 21 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-457) (-13 (-987) (-10 -8 (-15 -3434 ((-439) $)) (-15 -1980 ((-1038) $))))) (T -457)) +((-3434 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-457)))) (-1980 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-457))))) +((-1986 (((-627 (-1127)) $) 15 T ELT)) (-1982 (((-627 (-1125)) $) 38 T ELT)) (-1984 (((-627 (-1124)) $) 29 T ELT)) (-1987 (((-627 (-482)) $) 12 T ELT)) (-1983 (((-627 (-480)) $) 42 T ELT)) (-1985 (((-627 (-479)) $) 33 T ELT)) (-1981 (((-687) $ (-100)) 54 T ELT))) +(((-458 |#1|) (-10 -7 (-15 -1981 ((-687) |#1| (-100))) (-15 -1982 ((-627 (-1125)) |#1|)) (-15 -1983 ((-627 (-480)) |#1|)) (-15 -1984 ((-627 (-1124)) |#1|)) (-15 -1985 ((-627 (-479)) |#1|)) (-15 -1986 ((-627 (-1127)) |#1|)) (-15 -1987 ((-627 (-482)) |#1|))) (-459)) (T -458)) +NIL +((-1986 (((-627 (-1127)) $) 12 T ELT)) (-1982 (((-627 (-1125)) $) 8 T ELT)) (-1984 (((-627 (-1124)) $) 10 T ELT)) (-1987 (((-627 (-482)) $) 13 T ELT)) (-1983 (((-627 (-480)) $) 9 T ELT)) (-1985 (((-627 (-479)) $) 11 T ELT)) (-1981 (((-687) $ (-100)) 7 T ELT)) (-1988 (((-627 (-99)) $) 14 T ELT)) (-1687 (($ $) 6 T ELT))) +(((-459) (-111)) (T -459)) +((-1988 (*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-99))))) (-1987 (*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-482))))) (-1986 (*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-1127))))) (-1985 (*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-479))))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-1124))))) (-1983 (*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-480))))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-1125))))) (-1981 (*1 *2 *1 *3) (-12 (-4 *1 (-459)) (-5 *3 (-100)) (-5 *2 (-687))))) +(-13 (-145) (-10 -8 (-15 -1988 ((-627 (-99)) $)) (-15 -1987 ((-627 (-482)) $)) (-15 -1986 ((-627 (-1127)) $)) (-15 -1985 ((-627 (-479)) $)) (-15 -1984 ((-627 (-1124)) $)) (-15 -1983 ((-627 (-480)) $)) (-15 -1982 ((-627 (-1125)) $)) (-15 -1981 ((-687) $ (-100))))) +(((-145) . T)) +((-1991 (((-1074 |#1|) (-687)) 114 T ELT)) (-3314 (((-1168 |#1|) (-1168 |#1|) (-823)) 107 T ELT)) (-1989 (((-1174) (-1168 (-578 (-2 (|:| -3386 |#1|) (|:| -2386 (-1023))))) |#1|) 122 T ELT)) (-1993 (((-1168 |#1|) (-1168 |#1|) (-687)) 53 T ELT)) (-2978 (((-1168 |#1|) (-823)) 109 T ELT)) (-1995 (((-1168 |#1|) (-1168 |#1|) (-478)) 30 T ELT)) (-1990 (((-1074 |#1|) (-1168 |#1|)) 115 T ELT)) (-1999 (((-1168 |#1|) (-823)) 136 T ELT)) (-1997 (((-83) (-1168 |#1|)) 119 T ELT)) (-3115 (((-1168 |#1|) (-1168 |#1|) (-823)) 99 T ELT)) (-2000 (((-1074 |#1|) (-1168 |#1|)) 130 T ELT)) (-1996 (((-823) (-1168 |#1|)) 95 T ELT)) (-2468 (((-1168 |#1|) (-1168 |#1|)) 38 T ELT)) (-2386 (((-1168 |#1|) (-823) (-823)) 139 T ELT)) (-1994 (((-1168 |#1|) (-1168 |#1|) (-1023) (-1023)) 29 T ELT)) (-1992 (((-1168 |#1|) (-1168 |#1|) (-687) (-1023)) 54 T ELT)) (-1998 (((-1168 (-1168 |#1|)) (-823)) 135 T ELT)) (-3933 (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 120 T ELT)) (** (((-1168 |#1|) (-1168 |#1|) (-478)) 67 T ELT)) (* (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 31 T ELT))) +(((-460 |#1|) (-10 -7 (-15 -1989 ((-1174) (-1168 (-578 (-2 (|:| -3386 |#1|) (|:| -2386 (-1023))))) |#1|)) (-15 -2978 ((-1168 |#1|) (-823))) (-15 -2386 ((-1168 |#1|) (-823) (-823))) (-15 -1990 ((-1074 |#1|) (-1168 |#1|))) (-15 -1991 ((-1074 |#1|) (-687))) (-15 -1992 ((-1168 |#1|) (-1168 |#1|) (-687) (-1023))) (-15 -1993 ((-1168 |#1|) (-1168 |#1|) (-687))) (-15 -1994 ((-1168 |#1|) (-1168 |#1|) (-1023) (-1023))) (-15 -1995 ((-1168 |#1|) (-1168 |#1|) (-478))) (-15 ** ((-1168 |#1|) (-1168 |#1|) (-478))) (-15 * ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3933 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3115 ((-1168 |#1|) (-1168 |#1|) (-823))) (-15 -3314 ((-1168 |#1|) (-1168 |#1|) (-823))) (-15 -2468 ((-1168 |#1|) (-1168 |#1|))) (-15 -1996 ((-823) (-1168 |#1|))) (-15 -1997 ((-83) (-1168 |#1|))) (-15 -1998 ((-1168 (-1168 |#1|)) (-823))) (-15 -1999 ((-1168 |#1|) (-823))) (-15 -2000 ((-1074 |#1|) (-1168 |#1|)))) (-295)) (T -460)) +((-2000 (*1 *2 *3) (-12 (-5 *3 (-1168 *4)) (-4 *4 (-295)) (-5 *2 (-1074 *4)) (-5 *1 (-460 *4)))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1168 *4)) (-5 *1 (-460 *4)) (-4 *4 (-295)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1168 (-1168 *4))) (-5 *1 (-460 *4)) (-4 *4 (-295)))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-1168 *4)) (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-460 *4)))) (-1996 (*1 *2 *3) (-12 (-5 *3 (-1168 *4)) (-4 *4 (-295)) (-5 *2 (-823)) (-5 *1 (-460 *4)))) (-2468 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-295)) (-5 *1 (-460 *3)))) (-3314 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-823)) (-4 *4 (-295)) (-5 *1 (-460 *4)))) (-3115 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-823)) (-4 *4 (-295)) (-5 *1 (-460 *4)))) (-3933 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-295)) (-5 *1 (-460 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-295)) (-5 *1 (-460 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-478)) (-4 *4 (-295)) (-5 *1 (-460 *4)))) (-1995 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-478)) (-4 *4 (-295)) (-5 *1 (-460 *4)))) (-1994 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1023)) (-4 *4 (-295)) (-5 *1 (-460 *4)))) (-1993 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-687)) (-4 *4 (-295)) (-5 *1 (-460 *4)))) (-1992 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1168 *5)) (-5 *3 (-687)) (-5 *4 (-1023)) (-4 *5 (-295)) (-5 *1 (-460 *5)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1074 *4)) (-5 *1 (-460 *4)) (-4 *4 (-295)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-1168 *4)) (-4 *4 (-295)) (-5 *2 (-1074 *4)) (-5 *1 (-460 *4)))) (-2386 (*1 *2 *3 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1168 *4)) (-5 *1 (-460 *4)) (-4 *4 (-295)))) (-2978 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1168 *4)) (-5 *1 (-460 *4)) (-4 *4 (-295)))) (-1989 (*1 *2 *3 *4) (-12 (-5 *3 (-1168 (-578 (-2 (|:| -3386 *4) (|:| -2386 (-1023)))))) (-4 *4 (-295)) (-5 *2 (-1174)) (-5 *1 (-460 *4))))) +((-1986 (((-627 (-1127)) $) NIL T ELT)) (-1982 (((-627 (-1125)) $) NIL T ELT)) (-1984 (((-627 (-1124)) $) NIL T ELT)) (-1987 (((-627 (-482)) $) NIL T ELT)) (-1983 (((-627 (-480)) $) NIL T ELT)) (-1985 (((-627 (-479)) $) NIL T ELT)) (-1981 (((-687) $ (-100)) NIL T ELT)) (-1988 (((-627 (-99)) $) 26 T ELT)) (-2001 (((-1023) $ (-1023)) 31 T ELT)) (-3403 (((-1023) $) 30 T ELT)) (-2542 (((-83) $) 20 T ELT)) (-2003 (($ (-331)) 14 T ELT) (($ (-1062)) 16 T ELT)) (-2002 (((-83) $) 27 T ELT)) (-3930 (((-765) $) 34 T ELT)) (-1687 (($ $) 28 T ELT))) +(((-461) (-13 (-459) (-547 (-765)) (-10 -8 (-15 -2003 ($ (-331))) (-15 -2003 ($ (-1062))) (-15 -2002 ((-83) $)) (-15 -2542 ((-83) $)) (-15 -3403 ((-1023) $)) (-15 -2001 ((-1023) $ (-1023)))))) (T -461)) +((-2003 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-461)))) (-2003 (*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-461)))) (-2002 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-461)))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-461)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-461)))) (-2001 (*1 *2 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-461))))) +((-2005 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2004 (((-1 |#1| |#1|)) 10 T ELT))) +(((-462 |#1|) (-10 -7 (-15 -2004 ((-1 |#1| |#1|))) (-15 -2005 ((-1 |#1| |#1|) |#1|))) (-13 (-658) (-25))) (T -462)) +((-2005 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-462 *3)) (-4 *3 (-13 (-658) (-25))))) (-2004 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-462 *3)) (-4 *3 (-13 (-658) (-25)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3758 (((-578 (-775 |#1| (-687))) $) NIL T ELT)) (-2467 (($ $ $) NIL T ELT)) (-1299 (((-3 $ "failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3943 (($ $) NIL T ELT)) (-3169 (((-83) $) NIL T ELT)) (-2877 (($ (-687) |#1|) NIL T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3942 (($ (-1 (-687) (-687)) $) NIL T ELT)) (-1971 ((|#1| $) NIL T ELT)) (-3157 (((-687) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 27 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT))) +(((-463 |#1|) (-13 (-710) (-442 (-687) |#1|)) (-749)) (T -463)) +NIL +((-2007 (((-578 |#2|) (-1074 |#1|) |#3|) 98 T ELT)) (-2008 (((-578 (-2 (|:| |outval| |#2|) (|:| |outmult| (-478)) (|:| |outvect| (-578 (-625 |#2|))))) (-625 |#1|) |#3| (-1 (-341 (-1074 |#1|)) (-1074 |#1|))) 114 T ELT)) (-2006 (((-1074 |#1|) (-625 |#1|)) 110 T ELT))) +(((-464 |#1| |#2| |#3|) (-10 -7 (-15 -2006 ((-1074 |#1|) (-625 |#1|))) (-15 -2007 ((-578 |#2|) (-1074 |#1|) |#3|)) (-15 -2008 ((-578 (-2 (|:| |outval| |#2|) (|:| |outmult| (-478)) (|:| |outvect| (-578 (-625 |#2|))))) (-625 |#1|) |#3| (-1 (-341 (-1074 |#1|)) (-1074 |#1|))))) (-308) (-308) (-13 (-308) (-748))) (T -464)) +((-2008 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *6)) (-5 *5 (-1 (-341 (-1074 *6)) (-1074 *6))) (-4 *6 (-308)) (-5 *2 (-578 (-2 (|:| |outval| *7) (|:| |outmult| (-478)) (|:| |outvect| (-578 (-625 *7)))))) (-5 *1 (-464 *6 *7 *4)) (-4 *7 (-308)) (-4 *4 (-13 (-308) (-748))))) (-2007 (*1 *2 *3 *4) (-12 (-5 *3 (-1074 *5)) (-4 *5 (-308)) (-5 *2 (-578 *6)) (-5 *1 (-464 *5 *6 *4)) (-4 *6 (-308)) (-4 *4 (-13 (-308) (-748))))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-308)) (-5 *2 (-1074 *4)) (-5 *1 (-464 *4 *5 *6)) (-4 *5 (-308)) (-4 *6 (-13 (-308) (-748)))))) +((-2539 (((-627 (-1127)) $ (-1127)) NIL T ELT)) (-2540 (((-627 (-482)) $ (-482)) NIL T ELT)) (-2538 (((-687) $ (-100)) 39 T ELT)) (-2541 (((-627 (-99)) $ (-99)) 40 T ELT)) (-1986 (((-627 (-1127)) $) NIL T ELT)) (-1982 (((-627 (-1125)) $) NIL T ELT)) (-1984 (((-627 (-1124)) $) NIL T ELT)) (-1987 (((-627 (-482)) $) NIL T ELT)) (-1983 (((-627 (-480)) $) NIL T ELT)) (-1985 (((-627 (-479)) $) NIL T ELT)) (-1981 (((-687) $ (-100)) 35 T ELT)) (-1988 (((-627 (-99)) $) 37 T ELT)) (-2423 (((-83) $) 27 T ELT)) (-2424 (((-627 $) (-509) (-858)) 18 T ELT) (((-627 $) (-424) (-858)) 24 T ELT)) (-3930 (((-765) $) 48 T ELT)) (-1687 (($ $) 42 T ELT))) +(((-465) (-13 (-684 (-509)) (-547 (-765)) (-10 -8 (-15 -2424 ((-627 $) (-424) (-858)))))) (T -465)) +((-2424 (*1 *2 *3 *4) (-12 (-5 *3 (-424)) (-5 *4 (-858)) (-5 *2 (-627 (-465))) (-5 *1 (-465))))) +((-2511 (((-743 (-478))) 12 T ELT)) (-2510 (((-743 (-478))) 14 T ELT)) (-2498 (((-736 (-478))) 9 T ELT))) +(((-466) (-10 -7 (-15 -2498 ((-736 (-478)))) (-15 -2511 ((-743 (-478)))) (-15 -2510 ((-743 (-478)))))) (T -466)) +((-2510 (*1 *2) (-12 (-5 *2 (-743 (-478))) (-5 *1 (-466)))) (-2511 (*1 *2) (-12 (-5 *2 (-743 (-478))) (-5 *1 (-466)))) (-2498 (*1 *2) (-12 (-5 *2 (-736 (-478))) (-5 *1 (-466))))) +((-2552 (((-83) $ $) NIL T ELT)) (-2012 (((-1062) $) 55 T ELT)) (-3243 (((-83) $) 51 T ELT)) (-3239 (((-1079) $) 52 T ELT)) (-3244 (((-83) $) 49 T ELT)) (-3519 (((-1062) $) 50 T ELT)) (-2011 (($ (-1062)) 56 T ELT)) (-3246 (((-83) $) NIL T ELT)) (-3248 (((-83) $) NIL T ELT)) (-3245 (((-83) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2014 (($ $ (-578 (-1079))) 21 T ELT)) (-2017 (((-51) $) 23 T ELT)) (-3242 (((-83) $) NIL T ELT)) (-3238 (((-478) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2369 (($ $ (-578 (-1079)) (-1079)) 73 T ELT)) (-3241 (((-83) $) NIL T ELT)) (-3237 (((-177) $) NIL T ELT)) (-2013 (($ $) 44 T ELT)) (-3236 (((-765) $) NIL T ELT)) (-3249 (((-83) $ $) NIL T ELT)) (-3784 (($ $ (-478)) NIL T ELT) (($ $ (-578 (-478))) NIL T ELT)) (-3240 (((-578 $) $) 30 T ELT)) (-2010 (((-1079) (-578 $)) 57 T ELT)) (-3956 (($ (-1062)) NIL T ELT) (($ (-1079)) 19 T ELT) (($ (-478)) 8 T ELT) (($ (-177)) 28 T ELT) (($ (-765)) NIL T ELT) (($ (-578 $)) 65 T ELT) (((-1007) $) 12 T ELT) (($ (-1007)) 13 T ELT)) (-2009 (((-1079) (-1079) (-578 $)) 60 T ELT)) (-3930 (((-765) $) 54 T ELT)) (-3234 (($ $) 59 T ELT)) (-3235 (($ $) 58 T ELT)) (-2015 (($ $ (-578 $)) 66 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3247 (((-83) $) 29 T ELT)) (-2644 (($) 9 T CONST)) (-2650 (($) 11 T CONST)) (-3037 (((-83) $ $) 74 T ELT)) (-3933 (($ $ $) 82 T ELT)) (-3823 (($ $ $) 75 T ELT)) (** (($ $ (-687)) 81 T ELT) (($ $ (-478)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3941 (((-478) $) NIL T ELT))) +(((-467) (-13 (-1008 (-1062) (-1079) (-478) (-177) (-765)) (-548 (-1007)) (-10 -8 (-15 -2017 ((-51) $)) (-15 -3956 ($ (-1007))) (-15 -2015 ($ $ (-578 $))) (-15 -2369 ($ $ (-578 (-1079)) (-1079))) (-15 -2014 ($ $ (-578 (-1079)))) (-15 -3823 ($ $ $)) (-15 * ($ $ $)) (-15 -3933 ($ $ $)) (-15 ** ($ $ (-687))) (-15 ** ($ $ (-478))) (-15 0 ($) -3936) (-15 1 ($) -3936) (-15 -2013 ($ $)) (-15 -2012 ((-1062) $)) (-15 -2011 ($ (-1062))) (-15 -2010 ((-1079) (-578 $))) (-15 -2009 ((-1079) (-1079) (-578 $)))))) (T -467)) +((-2017 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-467)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-467)))) (-2015 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-467))) (-5 *1 (-467)))) (-2369 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1079))) (-5 *3 (-1079)) (-5 *1 (-467)))) (-2014 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-1079))) (-5 *1 (-467)))) (-3823 (*1 *1 *1 *1) (-5 *1 (-467))) (* (*1 *1 *1 *1) (-5 *1 (-467))) (-3933 (*1 *1 *1 *1) (-5 *1 (-467))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-467)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-467)))) (-2644 (*1 *1) (-5 *1 (-467))) (-2650 (*1 *1) (-5 *1 (-467))) (-2013 (*1 *1 *1) (-5 *1 (-467))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-1062)) (-5 *1 (-467)))) (-2011 (*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-467)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-578 (-467))) (-5 *2 (-1079)) (-5 *1 (-467)))) (-2009 (*1 *2 *2 *3) (-12 (-5 *2 (-1079)) (-5 *3 (-578 (-467))) (-5 *1 (-467))))) +((-2016 (((-467) (-1079)) 15 T ELT)) (-2017 ((|#1| (-467)) 20 T ELT))) +(((-468 |#1|) (-10 -7 (-15 -2016 ((-467) (-1079))) (-15 -2017 (|#1| (-467)))) (-1118)) (T -468)) +((-2017 (*1 *2 *3) (-12 (-5 *3 (-467)) (-5 *1 (-468 *2)) (-4 *2 (-1118)))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-467)) (-5 *1 (-468 *4)) (-4 *4 (-1118))))) +((-3437 ((|#2| |#2|) 17 T ELT)) (-3435 ((|#2| |#2|) 13 T ELT)) (-3438 ((|#2| |#2| (-478) (-478)) 20 T ELT)) (-3436 ((|#2| |#2|) 15 T ELT))) +(((-469 |#1| |#2|) (-10 -7 (-15 -3435 (|#2| |#2|)) (-15 -3436 (|#2| |#2|)) (-15 -3437 (|#2| |#2|)) (-15 -3438 (|#2| |#2| (-478) (-478)))) (-13 (-489) (-118)) (-1161 |#1|)) (T -469)) +((-3438 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-478)) (-4 *4 (-13 (-489) (-118))) (-5 *1 (-469 *4 *2)) (-4 *2 (-1161 *4)))) (-3437 (*1 *2 *2) (-12 (-4 *3 (-13 (-489) (-118))) (-5 *1 (-469 *3 *2)) (-4 *2 (-1161 *3)))) (-3436 (*1 *2 *2) (-12 (-4 *3 (-13 (-489) (-118))) (-5 *1 (-469 *3 *2)) (-4 *2 (-1161 *3)))) (-3435 (*1 *2 *2) (-12 (-4 *3 (-13 (-489) (-118))) (-5 *1 (-469 *3 *2)) (-4 *2 (-1161 *3))))) +((-2020 (((-578 (-245 (-850 |#2|))) (-578 |#2|) (-578 (-1079))) 32 T ELT)) (-2018 (((-578 |#2|) (-850 |#1|) |#3|) 54 T ELT) (((-578 |#2|) (-1074 |#1|) |#3|) 53 T ELT)) (-2019 (((-578 (-578 |#2|)) (-578 (-850 |#1|)) (-578 (-850 |#1|)) (-578 (-1079)) |#3|) 106 T ELT))) +(((-470 |#1| |#2| |#3|) (-10 -7 (-15 -2018 ((-578 |#2|) (-1074 |#1|) |#3|)) (-15 -2018 ((-578 |#2|) (-850 |#1|) |#3|)) (-15 -2019 ((-578 (-578 |#2|)) (-578 (-850 |#1|)) (-578 (-850 |#1|)) (-578 (-1079)) |#3|)) (-15 -2020 ((-578 (-245 (-850 |#2|))) (-578 |#2|) (-578 (-1079))))) (-385) (-308) (-13 (-308) (-748))) (T -470)) +((-2020 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-1079))) (-4 *6 (-308)) (-5 *2 (-578 (-245 (-850 *6)))) (-5 *1 (-470 *5 *6 *7)) (-4 *5 (-385)) (-4 *7 (-13 (-308) (-748))))) (-2019 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-578 (-850 *6))) (-5 *4 (-578 (-1079))) (-4 *6 (-385)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-470 *6 *7 *5)) (-4 *7 (-308)) (-4 *5 (-13 (-308) (-748))))) (-2018 (*1 *2 *3 *4) (-12 (-5 *3 (-850 *5)) (-4 *5 (-385)) (-5 *2 (-578 *6)) (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-308)) (-4 *4 (-13 (-308) (-748))))) (-2018 (*1 *2 *3 *4) (-12 (-5 *3 (-1074 *5)) (-4 *5 (-385)) (-5 *2 (-578 *6)) (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-308)) (-4 *4 (-13 (-308) (-748)))))) +((-2023 ((|#2| |#2| |#1|) 17 T ELT)) (-2021 ((|#2| (-578 |#2|)) 30 T ELT)) (-2022 ((|#2| (-578 |#2|)) 51 T ELT))) +(((-471 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2021 (|#2| (-578 |#2|))) (-15 -2022 (|#2| (-578 |#2|))) (-15 -2023 (|#2| |#2| |#1|))) (-254) (-1144 |#1|) |#1| (-1 |#1| |#1| (-687))) (T -471)) +((-2023 (*1 *2 *2 *3) (-12 (-4 *3 (-254)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-687))) (-5 *1 (-471 *3 *2 *4 *5)) (-4 *2 (-1144 *3)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-471 *4 *2 *5 *6)) (-4 *4 (-254)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-687))))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-471 *4 *2 *5 *6)) (-4 *4 (-254)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-687)))))) +((-3716 (((-341 (-1074 |#4|)) (-1074 |#4|) (-1 (-341 (-1074 |#3|)) (-1074 |#3|))) 89 T ELT) (((-341 |#4|) |#4| (-1 (-341 (-1074 |#3|)) (-1074 |#3|))) 212 T ELT))) +(((-472 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3716 ((-341 |#4|) |#4| (-1 (-341 (-1074 |#3|)) (-1074 |#3|)))) (-15 -3716 ((-341 (-1074 |#4|)) (-1074 |#4|) (-1 (-341 (-1074 |#3|)) (-1074 |#3|))))) (-749) (-710) (-13 (-254) (-118)) (-854 |#3| |#2| |#1|)) (T -472)) +((-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-341 (-1074 *7)) (-1074 *7))) (-4 *7 (-13 (-254) (-118))) (-4 *5 (-749)) (-4 *6 (-710)) (-4 *8 (-854 *7 *6 *5)) (-5 *2 (-341 (-1074 *8))) (-5 *1 (-472 *5 *6 *7 *8)) (-5 *3 (-1074 *8)))) (-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-341 (-1074 *7)) (-1074 *7))) (-4 *7 (-13 (-254) (-118))) (-4 *5 (-749)) (-4 *6 (-710)) (-5 *2 (-341 *3)) (-5 *1 (-472 *5 *6 *7 *3)) (-4 *3 (-854 *7 *6 *5))))) +((-3437 ((|#4| |#4|) 74 T ELT)) (-3435 ((|#4| |#4|) 70 T ELT)) (-3438 ((|#4| |#4| (-478) (-478)) 76 T ELT)) (-3436 ((|#4| |#4|) 72 T ELT))) +(((-473 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3435 (|#4| |#4|)) (-15 -3436 (|#4| |#4|)) (-15 -3437 (|#4| |#4|)) (-15 -3438 (|#4| |#4| (-478) (-478)))) (-13 (-308) (-313) (-548 (-478))) (-1144 |#1|) (-656 |#1| |#2|) (-1161 |#3|)) (T -473)) +((-3438 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-478)) (-4 *4 (-13 (-308) (-313) (-548 *3))) (-4 *5 (-1144 *4)) (-4 *6 (-656 *4 *5)) (-5 *1 (-473 *4 *5 *6 *2)) (-4 *2 (-1161 *6)))) (-3437 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-4 *4 (-1144 *3)) (-4 *5 (-656 *3 *4)) (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-1161 *5)))) (-3436 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-4 *4 (-1144 *3)) (-4 *5 (-656 *3 *4)) (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-1161 *5)))) (-3435 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-4 *4 (-1144 *3)) (-4 *5 (-656 *3 *4)) (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-1161 *5))))) +((-3437 ((|#2| |#2|) 27 T ELT)) (-3435 ((|#2| |#2|) 23 T ELT)) (-3438 ((|#2| |#2| (-478) (-478)) 29 T ELT)) (-3436 ((|#2| |#2|) 25 T ELT))) +(((-474 |#1| |#2|) (-10 -7 (-15 -3435 (|#2| |#2|)) (-15 -3436 (|#2| |#2|)) (-15 -3437 (|#2| |#2|)) (-15 -3438 (|#2| |#2| (-478) (-478)))) (-13 (-308) (-313) (-548 (-478))) (-1161 |#1|)) (T -474)) +((-3438 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-478)) (-4 *4 (-13 (-308) (-313) (-548 *3))) (-5 *1 (-474 *4 *2)) (-4 *2 (-1161 *4)))) (-3437 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1161 *3)))) (-3436 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1161 *3)))) (-3435 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1161 *3))))) +((-2024 (((-3 (-478) #1="failed") |#2| |#1| (-1 (-3 (-478) #1#) |#1|)) 18 T ELT) (((-3 (-478) #1#) |#2| |#1| (-478) (-1 (-3 (-478) #1#) |#1|)) 14 T ELT) (((-3 (-478) #1#) |#2| (-478) (-1 (-3 (-478) #1#) |#1|)) 30 T ELT))) +(((-475 |#1| |#2|) (-10 -7 (-15 -2024 ((-3 (-478) #1="failed") |#2| (-478) (-1 (-3 (-478) #1#) |#1|))) (-15 -2024 ((-3 (-478) #1#) |#2| |#1| (-478) (-1 (-3 (-478) #1#) |#1|))) (-15 -2024 ((-3 (-478) #1#) |#2| |#1| (-1 (-3 (-478) #1#) |#1|)))) (-954) (-1144 |#1|)) (T -475)) +((-2024 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-478) #1="failed") *4)) (-4 *4 (-954)) (-5 *2 (-478)) (-5 *1 (-475 *4 *3)) (-4 *3 (-1144 *4)))) (-2024 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-478) #1#) *4)) (-4 *4 (-954)) (-5 *2 (-478)) (-5 *1 (-475 *4 *3)) (-4 *3 (-1144 *4)))) (-2024 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-478) #1#) *5)) (-4 *5 (-954)) (-5 *2 (-478)) (-5 *1 (-475 *5 *3)) (-4 *3 (-1144 *5))))) +((-2033 (($ $ $) 87 T ELT)) (-3955 (((-341 $) $) 50 T ELT)) (-3140 (((-3 (-478) #1="failed") $) 62 T ELT)) (-3139 (((-478) $) 40 T ELT)) (-3008 (((-3 (-343 (-478)) #1#) $) 80 T ELT)) (-3007 (((-83) $) 24 T ELT)) (-3006 (((-343 (-478)) $) 78 T ELT)) (-3707 (((-83) $) 53 T ELT)) (-2026 (($ $ $ $) 94 T ELT)) (-1356 (($ $ $) 60 T ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 75 T ELT)) (-3429 (((-627 $) $) 70 T ELT)) (-2030 (($ $) 22 T ELT)) (-2025 (($ $ $) 92 T ELT)) (-3430 (($) 63 T ELT)) (-1354 (($ $) 56 T ELT)) (-3716 (((-341 $) $) 48 T ELT)) (-2658 (((-83) $) 15 T ELT)) (-1594 (((-687) $) 30 T ELT)) (-3742 (($ $) 11 T ELT) (($ $ (-687)) NIL T ELT)) (-3384 (($ $) 16 T ELT)) (-3956 (((-478) $) NIL T ELT) (((-467) $) 39 T ELT) (((-793 (-478)) $) 43 T ELT) (((-323) $) 33 T ELT) (((-177) $) 36 T ELT)) (-3109 (((-687)) 9 T ELT)) (-2035 (((-83) $ $) 19 T ELT)) (-3085 (($ $ $) 58 T ELT))) +(((-476 |#1|) (-10 -7 (-15 -2025 (|#1| |#1| |#1|)) (-15 -2026 (|#1| |#1| |#1| |#1|)) (-15 -2030 (|#1| |#1|)) (-15 -3384 (|#1| |#1|)) (-15 -3008 ((-3 (-343 (-478)) #1="failed") |#1|)) (-15 -3006 ((-343 (-478)) |#1|)) (-15 -3007 ((-83) |#1|)) (-15 -2033 (|#1| |#1| |#1|)) (-15 -2035 ((-83) |#1| |#1|)) (-15 -2658 ((-83) |#1|)) (-15 -3430 (|#1|)) (-15 -3429 ((-627 |#1|) |#1|)) (-15 -3956 ((-177) |#1|)) (-15 -3956 ((-323) |#1|)) (-15 -1356 (|#1| |#1| |#1|)) (-15 -1354 (|#1| |#1|)) (-15 -3085 (|#1| |#1| |#1|)) (-15 -2780 ((-791 (-478) |#1|) |#1| (-793 (-478)) (-791 (-478) |#1|))) (-15 -3956 ((-793 (-478)) |#1|)) (-15 -3956 ((-467) |#1|)) (-15 -3140 ((-3 (-478) #1#) |#1|)) (-15 -3139 ((-478) |#1|)) (-15 -3956 ((-478) |#1|)) (-15 -3742 (|#1| |#1| (-687))) (-15 -3742 (|#1| |#1|)) (-15 -1594 ((-687) |#1|)) (-15 -3716 ((-341 |#1|) |#1|)) (-15 -3955 ((-341 |#1|) |#1|)) (-15 -3707 ((-83) |#1|)) (-15 -3109 ((-687)))) (-477)) (T -476)) +((-3109 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-476 *3)) (-4 *3 (-477))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-2033 (($ $ $) 99 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-2028 (($ $ $ $) 88 T ELT)) (-3759 (($ $) 63 T ELT)) (-3955 (((-341 $) $) 64 T ELT)) (-1595 (((-83) $ $) 142 T ELT)) (-3607 (((-478) $) 131 T ELT)) (-2425 (($ $ $) 102 T ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 (-478) "failed") $) 123 T ELT)) (-3139 (((-478) $) 124 T ELT)) (-2548 (($ $ $) 146 T ELT)) (-2265 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 121 T ELT) (((-625 (-478)) (-625 $)) 120 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3008 (((-3 (-343 (-478)) "failed") $) 96 T ELT)) (-3007 (((-83) $) 98 T ELT)) (-3006 (((-343 (-478)) $) 97 T ELT)) (-2978 (($) 95 T ELT) (($ $) 94 T ELT)) (-2547 (($ $ $) 145 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 140 T ELT)) (-3707 (((-83) $) 65 T ELT)) (-2026 (($ $ $ $) 86 T ELT)) (-2034 (($ $ $) 100 T ELT)) (-3169 (((-83) $) 133 T ELT)) (-1356 (($ $ $) 111 T ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 114 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-2657 (((-83) $) 106 T ELT)) (-3429 (((-627 $) $) 108 T ELT)) (-3170 (((-83) $) 132 T ELT)) (-1592 (((-3 (-578 $) #1="failed") (-578 $) $) 149 T ELT)) (-2027 (($ $ $ $) 87 T ELT)) (-2515 (($ $ $) 139 T ELT)) (-2841 (($ $ $) 138 T ELT)) (-2030 (($ $) 90 T ELT)) (-3817 (($ $) 103 T ELT)) (-2266 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) 119 T ELT) (((-625 (-478)) (-1168 $)) 118 T ELT)) (-1878 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2025 (($ $ $) 85 T ELT)) (-3430 (($) 107 T CONST)) (-2032 (($ $) 92 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 55 T ELT)) (-3127 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-1354 (($ $) 112 T ELT)) (-3716 (((-341 $) $) 62 T ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 148 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 147 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 141 T ELT)) (-2658 (((-83) $) 105 T ELT)) (-1594 (((-687) $) 143 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 144 T ELT)) (-3742 (($ $) 129 T ELT) (($ $ (-687)) 127 T ELT)) (-2031 (($ $) 91 T ELT)) (-3384 (($ $) 93 T ELT)) (-3956 (((-478) $) 125 T ELT) (((-467) $) 116 T ELT) (((-793 (-478)) $) 115 T ELT) (((-323) $) 110 T ELT) (((-177) $) 109 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-478)) 122 T ELT)) (-3109 (((-687)) 37 T CONST)) (-2035 (((-83) $ $) 101 T ELT)) (-3085 (($ $ $) 113 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2678 (($) 104 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-2029 (($ $ $ $) 89 T ELT)) (-3367 (($ $) 130 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $) 128 T ELT) (($ $ (-687)) 126 T ELT)) (-2550 (((-83) $ $) 137 T ELT)) (-2551 (((-83) $ $) 135 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 136 T ELT)) (-2669 (((-83) $ $) 134 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-478) $) 117 T ELT))) +(((-477) (-111)) (T -477)) +((-2657 (*1 *2 *1) (-12 (-4 *1 (-477)) (-5 *2 (-83)))) (-2658 (*1 *2 *1) (-12 (-4 *1 (-477)) (-5 *2 (-83)))) (-2678 (*1 *1) (-4 *1 (-477))) (-3817 (*1 *1 *1) (-4 *1 (-477))) (-2425 (*1 *1 *1 *1) (-4 *1 (-477))) (-2035 (*1 *2 *1 *1) (-12 (-4 *1 (-477)) (-5 *2 (-83)))) (-2034 (*1 *1 *1 *1) (-4 *1 (-477))) (-2033 (*1 *1 *1 *1) (-4 *1 (-477))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-477)) (-5 *2 (-83)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-477)) (-5 *2 (-343 (-478))))) (-3008 (*1 *2 *1) (|partial| -12 (-4 *1 (-477)) (-5 *2 (-343 (-478))))) (-2978 (*1 *1) (-4 *1 (-477))) (-2978 (*1 *1 *1) (-4 *1 (-477))) (-3384 (*1 *1 *1) (-4 *1 (-477))) (-2032 (*1 *1 *1) (-4 *1 (-477))) (-2031 (*1 *1 *1) (-4 *1 (-477))) (-2030 (*1 *1 *1) (-4 *1 (-477))) (-2029 (*1 *1 *1 *1 *1) (-4 *1 (-477))) (-2028 (*1 *1 *1 *1 *1) (-4 *1 (-477))) (-2027 (*1 *1 *1 *1 *1) (-4 *1 (-477))) (-2026 (*1 *1 *1 *1 *1) (-4 *1 (-477))) (-2025 (*1 *1 *1 *1) (-4 *1 (-477)))) +(-13 (-1123) (-254) (-733) (-188) (-548 (-478)) (-943 (-478)) (-575 (-478)) (-548 (-467)) (-548 (-793 (-478))) (-789 (-478)) (-114) (-926) (-118) (-1055) (-10 -8 (-15 -2657 ((-83) $)) (-15 -2658 ((-83) $)) (-6 -3978) (-15 -2678 ($)) (-15 -3817 ($ $)) (-15 -2425 ($ $ $)) (-15 -2035 ((-83) $ $)) (-15 -2034 ($ $ $)) (-15 -2033 ($ $ $)) (-15 -3007 ((-83) $)) (-15 -3006 ((-343 (-478)) $)) (-15 -3008 ((-3 (-343 (-478)) "failed") $)) (-15 -2978 ($)) (-15 -2978 ($ $)) (-15 -3384 ($ $)) (-15 -2032 ($ $)) (-15 -2031 ($ $)) (-15 -2030 ($ $)) (-15 -2029 ($ $ $ $)) (-15 -2028 ($ $ $ $)) (-15 -2027 ($ $ $ $)) (-15 -2026 ($ $ $ $)) (-15 -2025 ($ $ $)) (-6 -3977))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-114) . T) ((-144) . T) ((-548 (-177)) . T) ((-548 (-323)) . T) ((-548 (-467)) . T) ((-548 (-478)) . T) ((-548 (-793 (-478))) . T) ((-184 $) . T) ((-188) . T) ((-187) . T) ((-242) . T) ((-254) . T) ((-385) . T) ((-489) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-478)) . T) ((-585 $) . T) ((-577 $) . T) ((-575 (-478)) . T) ((-649 $) . T) ((-658) . T) ((-707) . T) ((-709) . T) ((-711) . T) ((-714) . T) ((-733) . T) ((-748) . T) ((-749) . T) ((-752) . T) ((-789 (-478)) . T) ((-825) . T) ((-926) . T) ((-943 (-478)) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1055) . T) ((-1118) . T) ((-1123) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 8 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 84 T ELT)) (-2049 (($ $) 85 T ELT)) (-2047 (((-83) $) NIL T ELT)) (-2033 (($ $ $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2028 (($ $ $ $) 32 T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3607 (((-478) $) NIL T ELT)) (-2425 (($ $ $) 76 T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL T ELT)) (-3139 (((-478) $) NIL T ELT)) (-2548 (($ $ $) 48 T ELT)) (-2265 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 59 T ELT) (((-625 (-478)) (-625 $)) 55 T ELT)) (-3451 (((-3 $ #1#) $) 81 T ELT)) (-3008 (((-3 (-343 (-478)) #1#) $) NIL T ELT)) (-3007 (((-83) $) NIL T ELT)) (-3006 (((-343 (-478)) $) NIL T ELT)) (-2978 (($) 61 T ELT) (($ $) 62 T ELT)) (-2547 (($ $ $) 75 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-2026 (($ $ $ $) NIL T ELT)) (-2034 (($ $ $) 52 T ELT)) (-3169 (((-83) $) 22 T ELT)) (-1356 (($ $ $) NIL T ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL T ELT)) (-2396 (((-83) $) 9 T ELT)) (-2657 (((-83) $) 69 T ELT)) (-3429 (((-627 $) $) NIL T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2027 (($ $ $ $) 34 T ELT)) (-2515 (($ $ $) 72 T ELT)) (-2841 (($ $ $) 71 T ELT)) (-2030 (($ $) NIL T ELT)) (-3817 (($ $) 29 T ELT)) (-2266 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL T ELT) (((-625 (-478)) (-1168 $)) NIL T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) 47 T ELT)) (-2025 (($ $ $) NIL T ELT)) (-3430 (($) NIL T CONST)) (-2032 (($ $) 15 T ELT)) (-3226 (((-1023) $) 19 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 117 T ELT)) (-3127 (($ $ $) 82 T ELT) (($ (-578 $)) NIL T ELT)) (-1354 (($ $) NIL T ELT)) (-3716 (((-341 $) $) 103 T ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-2658 (((-83) $) 70 T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 74 T ELT)) (-3742 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2031 (($ $) 17 T ELT)) (-3384 (($ $) 13 T ELT)) (-3956 (((-478) $) 28 T ELT) (((-467) $) 43 T ELT) (((-793 (-478)) $) NIL T ELT) (((-323) $) 37 T ELT) (((-177) $) 40 T ELT)) (-3930 (((-765) $) 26 T ELT) (($ (-478)) 27 T ELT) (($ $) NIL T ELT) (($ (-478)) 27 T ELT)) (-3109 (((-687)) NIL T CONST)) (-2035 (((-83) $ $) NIL T ELT)) (-3085 (($ $ $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2678 (($) 12 T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-2029 (($ $ $ $) 31 T ELT)) (-3367 (($ $) 60 T ELT)) (-2644 (($) 10 T CONST)) (-2650 (($) 11 T CONST)) (-2653 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2550 (((-83) $ $) 30 T ELT)) (-2551 (((-83) $ $) 63 T ELT)) (-3037 (((-83) $ $) 7 T ELT)) (-2668 (((-83) $ $) 64 T ELT)) (-2669 (((-83) $ $) 20 T ELT)) (-3821 (($ $) 44 T ELT) (($ $ $) 16 T ELT)) (-3823 (($ $ $) 14 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 68 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 66 T ELT) (($ $ $) 65 T ELT) (($ (-478) $) 66 T ELT))) +(((-478) (-13 (-477) (-10 -7 (-6 -3966) (-6 -3971) (-6 -3967)))) (T -478)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2978 (($) NIL T ELT)) (-2515 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2841 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1996 (((-823) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2386 (($ (-823)) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT))) +(((-479) (-13 (-745) (-10 -8 (-15 -3708 ($) -3936)))) (T -479)) +((-3708 (*1 *1) (-5 *1 (-479)))) +((-478) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2978 (($) NIL T ELT)) (-2515 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2841 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1996 (((-823) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2386 (($ (-823)) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT))) +(((-480) (-13 (-745) (-10 -8 (-15 -3708 ($) -3936)))) (T -480)) +((-3708 (*1 *1) (-5 *1 (-480)))) +((-478) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2978 (($) NIL T ELT)) (-2515 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2841 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1996 (((-823) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2386 (($ (-823)) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT))) +(((-481) (-13 (-745) (-10 -8 (-15 -3708 ($) -3936)))) (T -481)) +((-3708 (*1 *1) (-5 *1 (-481)))) +((-478) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2978 (($) NIL T ELT)) (-2515 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2841 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1996 (((-823) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2386 (($ (-823)) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT))) +(((-482) (-13 (-745) (-10 -8 (-15 -3708 ($) -3936)))) (T -482)) +((-3708 (*1 *1) (-5 *1 (-482)))) +((-478) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2552 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3583 (($) NIL T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2184 (((-1174) $ |#1| |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3772 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1557 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-2217 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT)) (-3389 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3390 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#2| $ |#1|) NIL T ELT)) (-2873 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2186 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-2592 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2187 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3980)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| |#2| (-1005))) ELT)) (-2218 (((-578 |#1|) $) NIL T ELT)) (-2219 (((-83) |#1| $) NIL T ELT)) (-1262 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3593 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2189 (((-578 |#1|) $) NIL T ELT)) (-2190 (((-83) |#1| $) NIL T ELT)) (-3226 (((-1023) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| |#2| (-1005))) ELT)) (-3785 ((|#2| $) NIL (|has| |#1| (-749)) ELT)) (-1341 (((-3 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2185 (($ $ |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-1263 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1934 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2191 (((-578 |#2|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1453 (($) NIL T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1933 (((-687) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT) (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ELT)) (-3514 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3930 (((-765) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-547 (-765)))) ELT)) (-1253 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1264 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-483 |#1| |#2| |#3|) (-13 (-1096 |#1| |#2|) (-10 -7 (-6 -3979))) (-1005) (-1005) (-13 (-1096 |#1| |#2|) (-10 -7 (-6 -3979)))) (T -483)) +NIL +((-2036 (((-513 |#2|) |#2| (-545 |#2|) (-545 |#2|) (-1 (-1074 |#2|) (-1074 |#2|))) 50 T ELT))) +(((-484 |#1| |#2|) (-10 -7 (-15 -2036 ((-513 |#2|) |#2| (-545 |#2|) (-545 |#2|) (-1 (-1074 |#2|) (-1074 |#2|))))) (-489) (-13 (-27) (-357 |#1|))) (T -484)) +((-2036 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-545 *3)) (-5 *5 (-1 (-1074 *3) (-1074 *3))) (-4 *3 (-13 (-27) (-357 *6))) (-4 *6 (-489)) (-5 *2 (-513 *3)) (-5 *1 (-484 *6 *3))))) +((-2038 (((-513 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2039 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2037 (((-513 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) +(((-485 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2037 ((-513 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2038 ((-513 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2039 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-489) (-943 (-478))) (-13 (-27) (-357 |#1|)) (-1144 |#2|) (-1144 (-343 |#3|)) (-287 |#2| |#3| |#4|)) (T -485)) +((-2039 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-27) (-357 *4))) (-4 *4 (-13 (-489) (-943 (-478)))) (-4 *7 (-1144 (-343 *6))) (-5 *1 (-485 *4 *5 *6 *7 *2)) (-4 *2 (-287 *5 *6 *7)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1144 *6)) (-4 *6 (-13 (-27) (-357 *5))) (-4 *5 (-13 (-489) (-943 (-478)))) (-4 *8 (-1144 (-343 *7))) (-5 *2 (-513 *3)) (-5 *1 (-485 *5 *6 *7 *8 *3)) (-4 *3 (-287 *6 *7 *8)))) (-2037 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1144 *6)) (-4 *6 (-13 (-27) (-357 *5))) (-4 *5 (-13 (-489) (-943 (-478)))) (-4 *8 (-1144 (-343 *7))) (-5 *2 (-513 *3)) (-5 *1 (-485 *5 *6 *7 *8 *3)) (-4 *3 (-287 *6 *7 *8))))) +((-2042 (((-83) (-478) (-478)) 12 T ELT)) (-2040 (((-478) (-478)) 7 T ELT)) (-2041 (((-478) (-478) (-478)) 10 T ELT))) +(((-486) (-10 -7 (-15 -2040 ((-478) (-478))) (-15 -2041 ((-478) (-478) (-478))) (-15 -2042 ((-83) (-478) (-478))))) (T -486)) +((-2042 (*1 *2 *3 *3) (-12 (-5 *3 (-478)) (-5 *2 (-83)) (-5 *1 (-486)))) (-2041 (*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-486)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-486))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2588 ((|#1| $) 74 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-3476 (($ $) 104 T ELT)) (-3623 (($ $) 87 T ELT)) (-2467 ((|#1| $) 75 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3021 (($ $) 86 T ELT)) (-3474 (($ $) 103 T ELT)) (-3622 (($ $) 88 T ELT)) (-3478 (($ $) 102 T ELT)) (-3621 (($ $) 89 T ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 (-478) "failed") $) 82 T ELT)) (-3139 (((-478) $) 83 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2045 (($ |#1| |#1|) 79 T ELT)) (-3169 (((-83) $) 73 T ELT)) (-3611 (($) 114 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-2995 (($ $ (-478)) 85 T ELT)) (-3170 (((-83) $) 72 T ELT)) (-2515 (($ $ $) 115 T ELT)) (-2841 (($ $ $) 116 T ELT)) (-3926 (($ $) 111 T ELT)) (-1878 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2046 (($ |#1| |#1|) 80 T ELT) (($ |#1|) 78 T ELT) (($ (-343 (-478))) 77 T ELT)) (-2044 ((|#1| $) 76 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 55 T ELT)) (-3127 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-3927 (($ $) 112 T ELT)) (-3479 (($ $) 101 T ELT)) (-3620 (($ $) 90 T ELT)) (-3477 (($ $) 100 T ELT)) (-3619 (($ $) 91 T ELT)) (-3475 (($ $) 99 T ELT)) (-3618 (($ $) 92 T ELT)) (-2043 (((-83) $ |#1|) 71 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-478)) 81 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-3482 (($ $) 110 T ELT)) (-3470 (($ $) 98 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-3480 (($ $) 109 T ELT)) (-3468 (($ $) 97 T ELT)) (-3484 (($ $) 108 T ELT)) (-3472 (($ $) 96 T ELT)) (-3485 (($ $) 107 T ELT)) (-3473 (($ $) 95 T ELT)) (-3483 (($ $) 106 T ELT)) (-3471 (($ $) 94 T ELT)) (-3481 (($ $) 105 T ELT)) (-3469 (($ $) 93 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2550 (((-83) $ $) 117 T ELT)) (-2551 (((-83) $ $) 119 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 118 T ELT)) (-2669 (((-83) $ $) 120 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ $) 113 T ELT) (($ $ (-343 (-478))) 84 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-487 |#1|) (-111) (-13 (-340) (-1104))) (T -487)) +((-2046 (*1 *1 *2 *2) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1104))))) (-2045 (*1 *1 *2 *2) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1104))))) (-2046 (*1 *1 *2) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1104))))) (-2046 (*1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-4 *1 (-487 *3)) (-4 *3 (-13 (-340) (-1104))))) (-2044 (*1 *2 *1) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1104))))) (-2467 (*1 *2 *1) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1104))))) (-2588 (*1 *2 *1) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1104))))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-487 *3)) (-4 *3 (-13 (-340) (-1104))) (-5 *2 (-83)))) (-3170 (*1 *2 *1) (-12 (-4 *1 (-487 *3)) (-4 *3 (-13 (-340) (-1104))) (-5 *2 (-83)))) (-2043 (*1 *2 *1 *3) (-12 (-4 *1 (-487 *3)) (-4 *3 (-13 (-340) (-1104))) (-5 *2 (-83))))) +(-13 (-385) (-749) (-1104) (-908) (-943 (-478)) (-10 -8 (-6 -3754) (-15 -2046 ($ |t#1| |t#1|)) (-15 -2045 ($ |t#1| |t#1|)) (-15 -2046 ($ |t#1|)) (-15 -2046 ($ (-343 (-478)))) (-15 -2044 (|t#1| $)) (-15 -2467 (|t#1| $)) (-15 -2588 (|t#1| $)) (-15 -3169 ((-83) $)) (-15 -3170 ((-83) $)) (-15 -2043 ((-83) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-236) . T) ((-242) . T) ((-385) . T) ((-426) . T) ((-489) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-577 $) . T) ((-649 $) . T) ((-658) . T) ((-749) . T) ((-752) . T) ((-908) . T) ((-943 (-478)) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1104) . T) ((-1107) . T) ((-1118) . T)) +((-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 9 T ELT)) (-2049 (($ $) 11 T ELT)) (-2047 (((-83) $) 20 T ELT)) (-3451 (((-3 $ "failed") $) 16 T ELT)) (-2048 (((-83) $ $) 22 T ELT))) +(((-488 |#1|) (-10 -7 (-15 -2047 ((-83) |#1|)) (-15 -2048 ((-83) |#1| |#1|)) (-15 -2049 (|#1| |#1|)) (-15 -2050 ((-2 (|:| -1759 |#1|) (|:| -3966 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3451 ((-3 |#1| "failed") |#1|))) (-489)) (T -488)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-489) (-111)) (T -489)) +((-3450 (*1 *1 *1 *1) (|partial| -4 *1 (-489))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1759 *1) (|:| -3966 *1) (|:| |associate| *1))) (-4 *1 (-489)))) (-2049 (*1 *1 *1) (-4 *1 (-489))) (-2048 (*1 *2 *1 *1) (-12 (-4 *1 (-489)) (-5 *2 (-83)))) (-2047 (*1 *2 *1) (-12 (-4 *1 (-489)) (-5 *2 (-83))))) +(-13 (-144) (-38 $) (-242) (-10 -8 (-15 -3450 ((-3 $ "failed") $ $)) (-15 -2050 ((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $)) (-15 -2049 ($ $)) (-15 -2048 ((-83) $ $)) (-15 -2047 ((-83) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-242) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-577 $) . T) ((-649 $) . T) ((-658) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2052 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1079) (-578 |#2|)) 38 T ELT)) (-2054 (((-513 |#2|) |#2| (-1079)) 63 T ELT)) (-2053 (((-3 |#2| #1#) |#2| (-1079)) 156 T ELT)) (-2055 (((-3 (-2 (|:| -2122 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1079) (-545 |#2|) (-578 (-545 |#2|))) 159 T ELT)) (-2051 (((-3 (-2 (|:| -2122 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1079) |#2|) 41 T ELT))) +(((-490 |#1| |#2|) (-10 -7 (-15 -2051 ((-3 (-2 (|:| -2122 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1079) |#2|)) (-15 -2052 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1079) (-578 |#2|))) (-15 -2053 ((-3 |#2| #1#) |#2| (-1079))) (-15 -2054 ((-513 |#2|) |#2| (-1079))) (-15 -2055 ((-3 (-2 (|:| -2122 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1079) (-545 |#2|) (-578 (-545 |#2|))))) (-13 (-385) (-118) (-943 (-478)) (-575 (-478))) (-13 (-27) (-1104) (-357 |#1|))) (T -490)) +((-2055 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1079)) (-5 *6 (-578 (-545 *3))) (-5 *5 (-545 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *7))) (-4 *7 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-2 (|:| -2122 *3) (|:| |coeff| *3))) (-5 *1 (-490 *7 *3)))) (-2054 (*1 *2 *3 *4) (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-513 *3)) (-5 *1 (-490 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))))) (-2053 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1079)) (-4 *4 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) (-5 *1 (-490 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *4))))) (-2052 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1079)) (-5 *5 (-578 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *6))) (-4 *6 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-490 *6 *3)))) (-2051 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1079)) (-4 *5 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-2 (|:| -2122 *3) (|:| |coeff| *3))) (-5 *1 (-490 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5)))))) +((-3955 (((-341 |#1|) |#1|) 17 T ELT)) (-3716 (((-341 |#1|) |#1|) 32 T ELT)) (-2057 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2056 (((-341 |#1|) |#1|) 59 T ELT))) +(((-491 |#1|) (-10 -7 (-15 -3716 ((-341 |#1|) |#1|)) (-15 -3955 ((-341 |#1|) |#1|)) (-15 -2056 ((-341 |#1|) |#1|)) (-15 -2057 ((-3 |#1| "failed") |#1|))) (-477)) (T -491)) +((-2057 (*1 *2 *2) (|partial| -12 (-5 *1 (-491 *2)) (-4 *2 (-477)))) (-2056 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-491 *3)) (-4 *3 (-477)))) (-3955 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-491 *3)) (-4 *3 (-477)))) (-3716 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-491 *3)) (-4 *3 (-477))))) +((-3067 (((-1074 (-343 (-1074 |#2|))) |#2| (-545 |#2|) (-545 |#2|) (-1074 |#2|)) 35 T ELT)) (-2060 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-545 |#2|) (-545 |#2|) (-578 |#2|) (-545 |#2|) |#2| (-343 (-1074 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-545 |#2|) (-545 |#2|) (-578 |#2|) |#2| (-1074 |#2|)) 115 T ELT)) (-2058 (((-513 |#2|) |#2| (-545 |#2|) (-545 |#2|) (-545 |#2|) |#2| (-343 (-1074 |#2|))) 85 T ELT) (((-513 |#2|) |#2| (-545 |#2|) (-545 |#2|) |#2| (-1074 |#2|)) 55 T ELT)) (-2059 (((-3 (-2 (|:| -2122 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-545 |#2|) (-545 |#2|) |#2| (-545 |#2|) |#2| (-343 (-1074 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2122 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-545 |#2|) (-545 |#2|) |#2| |#2| (-1074 |#2|)) 114 T ELT)) (-2061 (((-3 |#2| #1#) |#2| |#2| (-545 |#2|) (-545 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1079)) (-545 |#2|) |#2| (-343 (-1074 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-545 |#2|) (-545 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1079)) |#2| (-1074 |#2|)) 116 T ELT)) (-2062 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -1998 (-578 |#2|))) |#3| |#2| (-545 |#2|) (-545 |#2|) (-545 |#2|) |#2| (-343 (-1074 |#2|))) 133 (|has| |#3| (-595 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -1998 (-578 |#2|))) |#3| |#2| (-545 |#2|) (-545 |#2|) |#2| (-1074 |#2|)) 132 (|has| |#3| (-595 |#2|)) ELT)) (-3068 ((|#2| (-1074 (-343 (-1074 |#2|))) (-545 |#2|) |#2|) 53 T ELT)) (-3063 (((-1074 (-343 (-1074 |#2|))) (-1074 |#2|) (-545 |#2|)) 34 T ELT))) +(((-492 |#1| |#2| |#3|) (-10 -7 (-15 -2058 ((-513 |#2|) |#2| (-545 |#2|) (-545 |#2|) |#2| (-1074 |#2|))) (-15 -2058 ((-513 |#2|) |#2| (-545 |#2|) (-545 |#2|) (-545 |#2|) |#2| (-343 (-1074 |#2|)))) (-15 -2059 ((-3 (-2 (|:| -2122 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-545 |#2|) (-545 |#2|) |#2| |#2| (-1074 |#2|))) (-15 -2059 ((-3 (-2 (|:| -2122 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-545 |#2|) (-545 |#2|) |#2| (-545 |#2|) |#2| (-343 (-1074 |#2|)))) (-15 -2060 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-545 |#2|) (-545 |#2|) (-578 |#2|) |#2| (-1074 |#2|))) (-15 -2060 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-545 |#2|) (-545 |#2|) (-578 |#2|) (-545 |#2|) |#2| (-343 (-1074 |#2|)))) (-15 -2061 ((-3 |#2| #1#) |#2| |#2| (-545 |#2|) (-545 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1079)) |#2| (-1074 |#2|))) (-15 -2061 ((-3 |#2| #1#) |#2| |#2| (-545 |#2|) (-545 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1079)) (-545 |#2|) |#2| (-343 (-1074 |#2|)))) (-15 -3067 ((-1074 (-343 (-1074 |#2|))) |#2| (-545 |#2|) (-545 |#2|) (-1074 |#2|))) (-15 -3068 (|#2| (-1074 (-343 (-1074 |#2|))) (-545 |#2|) |#2|)) (-15 -3063 ((-1074 (-343 (-1074 |#2|))) (-1074 |#2|) (-545 |#2|))) (IF (|has| |#3| (-595 |#2|)) (PROGN (-15 -2062 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -1998 (-578 |#2|))) |#3| |#2| (-545 |#2|) (-545 |#2|) |#2| (-1074 |#2|))) (-15 -2062 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -1998 (-578 |#2|))) |#3| |#2| (-545 |#2|) (-545 |#2|) (-545 |#2|) |#2| (-343 (-1074 |#2|))))) |%noBranch|)) (-13 (-385) (-943 (-478)) (-118) (-575 (-478))) (-13 (-357 |#1|) (-27) (-1104)) (-1005)) (T -492)) +((-2062 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-545 *4)) (-5 *6 (-343 (-1074 *4))) (-4 *4 (-13 (-357 *7) (-27) (-1104))) (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -1998 (-578 *4)))) (-5 *1 (-492 *7 *4 *3)) (-4 *3 (-595 *4)) (-4 *3 (-1005)))) (-2062 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-545 *4)) (-5 *6 (-1074 *4)) (-4 *4 (-13 (-357 *7) (-27) (-1104))) (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -1998 (-578 *4)))) (-5 *1 (-492 *7 *4 *3)) (-4 *3 (-595 *4)) (-4 *3 (-1005)))) (-3063 (*1 *2 *3 *4) (-12 (-5 *4 (-545 *6)) (-4 *6 (-13 (-357 *5) (-27) (-1104))) (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-1074 (-343 (-1074 *6)))) (-5 *1 (-492 *5 *6 *7)) (-5 *3 (-1074 *6)) (-4 *7 (-1005)))) (-3068 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1074 (-343 (-1074 *2)))) (-5 *4 (-545 *2)) (-4 *2 (-13 (-357 *5) (-27) (-1104))) (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *1 (-492 *5 *2 *6)) (-4 *6 (-1005)))) (-3067 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-545 *3)) (-4 *3 (-13 (-357 *6) (-27) (-1104))) (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-1074 (-343 (-1074 *3)))) (-5 *1 (-492 *6 *3 *7)) (-5 *5 (-1074 *3)) (-4 *7 (-1005)))) (-2061 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-545 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1079))) (-5 *5 (-343 (-1074 *2))) (-4 *2 (-13 (-357 *6) (-27) (-1104))) (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *1 (-492 *6 *2 *7)) (-4 *7 (-1005)))) (-2061 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-545 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1079))) (-5 *5 (-1074 *2)) (-4 *2 (-13 (-357 *6) (-27) (-1104))) (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *1 (-492 *6 *2 *7)) (-4 *7 (-1005)))) (-2060 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-578 *3)) (-5 *6 (-343 (-1074 *3))) (-4 *3 (-13 (-357 *7) (-27) (-1104))) (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-492 *7 *3 *8)) (-4 *8 (-1005)))) (-2060 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-578 *3)) (-5 *6 (-1074 *3)) (-4 *3 (-13 (-357 *7) (-27) (-1104))) (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-492 *7 *3 *8)) (-4 *8 (-1005)))) (-2059 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-343 (-1074 *3))) (-4 *3 (-13 (-357 *6) (-27) (-1104))) (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| -2122 *3) (|:| |coeff| *3))) (-5 *1 (-492 *6 *3 *7)) (-4 *7 (-1005)))) (-2059 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-1074 *3)) (-4 *3 (-13 (-357 *6) (-27) (-1104))) (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| -2122 *3) (|:| |coeff| *3))) (-5 *1 (-492 *6 *3 *7)) (-4 *7 (-1005)))) (-2058 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-545 *3)) (-5 *5 (-343 (-1074 *3))) (-4 *3 (-13 (-357 *6) (-27) (-1104))) (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-513 *3)) (-5 *1 (-492 *6 *3 *7)) (-4 *7 (-1005)))) (-2058 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-545 *3)) (-5 *5 (-1074 *3)) (-4 *3 (-13 (-357 *6) (-27) (-1104))) (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-513 *3)) (-5 *1 (-492 *6 *3 *7)) (-4 *7 (-1005))))) +((-2072 (((-478) (-478) (-687)) 87 T ELT)) (-2071 (((-478) (-478)) 85 T ELT)) (-2070 (((-478) (-478)) 82 T ELT)) (-2069 (((-478) (-478)) 89 T ELT)) (-2789 (((-478) (-478) (-478)) 67 T ELT)) (-2068 (((-478) (-478) (-478)) 64 T ELT)) (-2067 (((-343 (-478)) (-478)) 29 T ELT)) (-2066 (((-478) (-478)) 34 T ELT)) (-2065 (((-478) (-478)) 76 T ELT)) (-2786 (((-478) (-478)) 47 T ELT)) (-2064 (((-578 (-478)) (-478)) 81 T ELT)) (-2063 (((-478) (-478) (-478) (-478) (-478)) 60 T ELT)) (-2782 (((-343 (-478)) (-478)) 56 T ELT))) +(((-493) (-10 -7 (-15 -2782 ((-343 (-478)) (-478))) (-15 -2063 ((-478) (-478) (-478) (-478) (-478))) (-15 -2064 ((-578 (-478)) (-478))) (-15 -2786 ((-478) (-478))) (-15 -2065 ((-478) (-478))) (-15 -2066 ((-478) (-478))) (-15 -2067 ((-343 (-478)) (-478))) (-15 -2068 ((-478) (-478) (-478))) (-15 -2789 ((-478) (-478) (-478))) (-15 -2069 ((-478) (-478))) (-15 -2070 ((-478) (-478))) (-15 -2071 ((-478) (-478))) (-15 -2072 ((-478) (-478) (-687))))) (T -493)) +((-2072 (*1 *2 *2 *3) (-12 (-5 *2 (-478)) (-5 *3 (-687)) (-5 *1 (-493)))) (-2071 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) (-2070 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) (-2069 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) (-2789 (*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) (-2068 (*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) (-2067 (*1 *2 *3) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-493)) (-5 *3 (-478)))) (-2066 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) (-2065 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) (-2786 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) (-2064 (*1 *2 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-493)) (-5 *3 (-478)))) (-2063 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) (-2782 (*1 *2 *3) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-493)) (-5 *3 (-478))))) +((-2073 (((-2 (|:| |answer| |#4|) (|:| -2121 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) +(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2073 ((-2 (|:| |answer| |#4|) (|:| -2121 |#4|)) |#4| (-1 |#2| |#2|)))) (-308) (-1144 |#1|) (-1144 (-343 |#2|)) (-287 |#1| |#2| |#3|)) (T -494)) +((-2073 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-308)) (-4 *7 (-1144 (-343 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2121 *3))) (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-287 *5 *6 *7))))) +((-2073 (((-2 (|:| |answer| (-343 |#2|)) (|:| -2121 (-343 |#2|)) (|:| |specpart| (-343 |#2|)) (|:| |polypart| |#2|)) (-343 |#2|) (-1 |#2| |#2|)) 18 T ELT))) +(((-495 |#1| |#2|) (-10 -7 (-15 -2073 ((-2 (|:| |answer| (-343 |#2|)) (|:| -2121 (-343 |#2|)) (|:| |specpart| (-343 |#2|)) (|:| |polypart| |#2|)) (-343 |#2|) (-1 |#2| |#2|)))) (-308) (-1144 |#1|)) (T -495)) +((-2073 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| |answer| (-343 *6)) (|:| -2121 (-343 *6)) (|:| |specpart| (-343 *6)) (|:| |polypart| *6))) (-5 *1 (-495 *5 *6)) (-5 *3 (-343 *6))))) +((-2076 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-545 |#2|) (-545 |#2|) (-578 |#2|)) 195 T ELT)) (-2074 (((-513 |#2|) |#2| (-545 |#2|) (-545 |#2|)) 97 T ELT)) (-2075 (((-3 (-2 (|:| -2122 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-545 |#2|) (-545 |#2|) |#2|) 191 T ELT)) (-2077 (((-3 |#2| #1#) |#2| |#2| |#2| (-545 |#2|) (-545 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1079))) 200 T ELT)) (-2078 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -1998 (-578 |#2|))) |#3| |#2| (-545 |#2|) (-545 |#2|) (-1079)) 209 (|has| |#3| (-595 |#2|)) ELT))) +(((-496 |#1| |#2| |#3|) (-10 -7 (-15 -2074 ((-513 |#2|) |#2| (-545 |#2|) (-545 |#2|))) (-15 -2075 ((-3 (-2 (|:| -2122 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-545 |#2|) (-545 |#2|) |#2|)) (-15 -2076 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-545 |#2|) (-545 |#2|) (-578 |#2|))) (-15 -2077 ((-3 |#2| #1#) |#2| |#2| |#2| (-545 |#2|) (-545 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1079)))) (IF (|has| |#3| (-595 |#2|)) (-15 -2078 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -1998 (-578 |#2|))) |#3| |#2| (-545 |#2|) (-545 |#2|) (-1079))) |%noBranch|)) (-13 (-385) (-943 (-478)) (-118) (-575 (-478))) (-13 (-357 |#1|) (-27) (-1104)) (-1005)) (T -496)) +((-2078 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-545 *4)) (-5 *6 (-1079)) (-4 *4 (-13 (-357 *7) (-27) (-1104))) (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -1998 (-578 *4)))) (-5 *1 (-496 *7 *4 *3)) (-4 *3 (-595 *4)) (-4 *3 (-1005)))) (-2077 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-545 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1079))) (-4 *2 (-13 (-357 *5) (-27) (-1104))) (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *1 (-496 *5 *2 *6)) (-4 *6 (-1005)))) (-2076 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-578 *3)) (-4 *3 (-13 (-357 *6) (-27) (-1104))) (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-496 *6 *3 *7)) (-4 *7 (-1005)))) (-2075 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-545 *3)) (-4 *3 (-13 (-357 *5) (-27) (-1104))) (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| -2122 *3) (|:| |coeff| *3))) (-5 *1 (-496 *5 *3 *6)) (-4 *6 (-1005)))) (-2074 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-545 *3)) (-4 *3 (-13 (-357 *5) (-27) (-1104))) (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-513 *3)) (-5 *1 (-496 *5 *3 *6)) (-4 *6 (-1005))))) +((-2079 (((-2 (|:| -2324 |#2|) (|:| |nconst| |#2|)) |#2| (-1079)) 64 T ELT)) (-2081 (((-3 |#2| #1="failed") |#2| (-1079) (-743 |#2|) (-743 |#2|)) 175 (-12 (|has| |#2| (-1042)) (|has| |#1| (-548 (-793 (-478)))) (|has| |#1| (-789 (-478)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1079)) 155 (-12 (|has| |#2| (-564)) (|has| |#1| (-548 (-793 (-478)))) (|has| |#1| (-789 (-478)))) ELT)) (-2080 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1079)) 157 (-12 (|has| |#2| (-564)) (|has| |#1| (-548 (-793 (-478)))) (|has| |#1| (-789 (-478)))) ELT))) +(((-497 |#1| |#2|) (-10 -7 (-15 -2079 ((-2 (|:| -2324 |#2|) (|:| |nconst| |#2|)) |#2| (-1079))) (IF (|has| |#1| (-548 (-793 (-478)))) (IF (|has| |#1| (-789 (-478))) (PROGN (IF (|has| |#2| (-564)) (PROGN (-15 -2080 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1079))) (-15 -2081 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1079)))) |%noBranch|) (IF (|has| |#2| (-1042)) (-15 -2081 ((-3 |#2| #1#) |#2| (-1079) (-743 |#2|) (-743 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-943 (-478)) (-385) (-575 (-478))) (-13 (-27) (-1104) (-357 |#1|))) (T -497)) +((-2081 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1079)) (-5 *4 (-743 *2)) (-4 *2 (-1042)) (-4 *2 (-13 (-27) (-1104) (-357 *5))) (-4 *5 (-548 (-793 (-478)))) (-4 *5 (-789 (-478))) (-4 *5 (-13 (-943 (-478)) (-385) (-575 (-478)))) (-5 *1 (-497 *5 *2)))) (-2081 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1079)) (-4 *5 (-548 (-793 (-478)))) (-4 *5 (-789 (-478))) (-4 *5 (-13 (-943 (-478)) (-385) (-575 (-478)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-497 *5 *3)) (-4 *3 (-564)) (-4 *3 (-13 (-27) (-1104) (-357 *5))))) (-2080 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1079)) (-4 *5 (-548 (-793 (-478)))) (-4 *5 (-789 (-478))) (-4 *5 (-13 (-943 (-478)) (-385) (-575 (-478)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-497 *5 *3)) (-4 *3 (-564)) (-4 *3 (-13 (-27) (-1104) (-357 *5))))) (-2079 (*1 *2 *3 *4) (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-943 (-478)) (-385) (-575 (-478)))) (-5 *2 (-2 (|:| -2324 *3) (|:| |nconst| *3))) (-5 *1 (-497 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5)))))) +((-2084 (((-3 (-2 (|:| |mainpart| (-343 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 |#2|)) (|:| |logand| (-343 |#2|)))))) #1="failed") (-343 |#2|) (-578 (-343 |#2|))) 41 T ELT)) (-3796 (((-513 (-343 |#2|)) (-343 |#2|)) 28 T ELT)) (-2082 (((-3 (-343 |#2|) #1#) (-343 |#2|)) 17 T ELT)) (-2083 (((-3 (-2 (|:| -2122 (-343 |#2|)) (|:| |coeff| (-343 |#2|))) #1#) (-343 |#2|) (-343 |#2|)) 48 T ELT))) +(((-498 |#1| |#2|) (-10 -7 (-15 -3796 ((-513 (-343 |#2|)) (-343 |#2|))) (-15 -2082 ((-3 (-343 |#2|) #1="failed") (-343 |#2|))) (-15 -2083 ((-3 (-2 (|:| -2122 (-343 |#2|)) (|:| |coeff| (-343 |#2|))) #1#) (-343 |#2|) (-343 |#2|))) (-15 -2084 ((-3 (-2 (|:| |mainpart| (-343 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 |#2|)) (|:| |logand| (-343 |#2|)))))) #1#) (-343 |#2|) (-578 (-343 |#2|))))) (-13 (-308) (-118) (-943 (-478))) (-1144 |#1|)) (T -498)) +((-2084 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-578 (-343 *6))) (-5 *3 (-343 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-308) (-118) (-943 (-478)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-498 *5 *6)))) (-2083 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-308) (-118) (-943 (-478)))) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| -2122 (-343 *5)) (|:| |coeff| (-343 *5)))) (-5 *1 (-498 *4 *5)) (-5 *3 (-343 *5)))) (-2082 (*1 *2 *2) (|partial| -12 (-5 *2 (-343 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-13 (-308) (-118) (-943 (-478)))) (-5 *1 (-498 *3 *4)))) (-3796 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-118) (-943 (-478)))) (-4 *5 (-1144 *4)) (-5 *2 (-513 (-343 *5))) (-5 *1 (-498 *4 *5)) (-5 *3 (-343 *5))))) +((-2085 (((-3 (-478) "failed") |#1|) 14 T ELT)) (-3242 (((-83) |#1|) 13 T ELT)) (-3238 (((-478) |#1|) 9 T ELT))) +(((-499 |#1|) (-10 -7 (-15 -3238 ((-478) |#1|)) (-15 -3242 ((-83) |#1|)) (-15 -2085 ((-3 (-478) "failed") |#1|))) (-943 (-478))) (T -499)) +((-2085 (*1 *2 *3) (|partial| -12 (-5 *2 (-478)) (-5 *1 (-499 *3)) (-4 *3 (-943 *2)))) (-3242 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-499 *3)) (-4 *3 (-943 (-478))))) (-3238 (*1 *2 *3) (-12 (-5 *2 (-478)) (-5 *1 (-499 *3)) (-4 *3 (-943 *2))))) +((-2088 (((-3 (-2 (|:| |mainpart| (-343 (-850 |#1|))) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 (-850 |#1|))) (|:| |logand| (-343 (-850 |#1|))))))) #1="failed") (-343 (-850 |#1|)) (-1079) (-578 (-343 (-850 |#1|)))) 48 T ELT)) (-2086 (((-513 (-343 (-850 |#1|))) (-343 (-850 |#1|)) (-1079)) 28 T ELT)) (-2087 (((-3 (-343 (-850 |#1|)) #1#) (-343 (-850 |#1|)) (-1079)) 23 T ELT)) (-2089 (((-3 (-2 (|:| -2122 (-343 (-850 |#1|))) (|:| |coeff| (-343 (-850 |#1|)))) #1#) (-343 (-850 |#1|)) (-1079) (-343 (-850 |#1|))) 35 T ELT))) +(((-500 |#1|) (-10 -7 (-15 -2086 ((-513 (-343 (-850 |#1|))) (-343 (-850 |#1|)) (-1079))) (-15 -2087 ((-3 (-343 (-850 |#1|)) #1="failed") (-343 (-850 |#1|)) (-1079))) (-15 -2088 ((-3 (-2 (|:| |mainpart| (-343 (-850 |#1|))) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 (-850 |#1|))) (|:| |logand| (-343 (-850 |#1|))))))) #1#) (-343 (-850 |#1|)) (-1079) (-578 (-343 (-850 |#1|))))) (-15 -2089 ((-3 (-2 (|:| -2122 (-343 (-850 |#1|))) (|:| |coeff| (-343 (-850 |#1|)))) #1#) (-343 (-850 |#1|)) (-1079) (-343 (-850 |#1|))))) (-13 (-489) (-943 (-478)) (-118))) (T -500)) +((-2089 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1079)) (-4 *5 (-13 (-489) (-943 (-478)) (-118))) (-5 *2 (-2 (|:| -2122 (-343 (-850 *5))) (|:| |coeff| (-343 (-850 *5))))) (-5 *1 (-500 *5)) (-5 *3 (-343 (-850 *5))))) (-2088 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1079)) (-5 *5 (-578 (-343 (-850 *6)))) (-5 *3 (-343 (-850 *6))) (-4 *6 (-13 (-489) (-943 (-478)) (-118))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-500 *6)))) (-2087 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-343 (-850 *4))) (-5 *3 (-1079)) (-4 *4 (-13 (-489) (-943 (-478)) (-118))) (-5 *1 (-500 *4)))) (-2086 (*1 *2 *3 *4) (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-489) (-943 (-478)) (-118))) (-5 *2 (-513 (-343 (-850 *5)))) (-5 *1 (-500 *5)) (-5 *3 (-343 (-850 *5)))))) +((-2552 (((-83) $ $) 77 T ELT)) (-3171 (((-83) $) 49 T ELT)) (-2588 ((|#1| $) 39 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) 81 T ELT)) (-3476 (($ $) 142 T ELT)) (-3623 (($ $) 120 T ELT)) (-2467 ((|#1| $) 37 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3021 (($ $) NIL T ELT)) (-3474 (($ $) 144 T ELT)) (-3622 (($ $) 116 T ELT)) (-3478 (($ $) 146 T ELT)) (-3621 (($ $) 124 T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) 95 T ELT)) (-3139 (((-478) $) 97 T ELT)) (-3451 (((-3 $ #1#) $) 80 T ELT)) (-2045 (($ |#1| |#1|) 35 T ELT)) (-3169 (((-83) $) 44 T ELT)) (-3611 (($) 106 T ELT)) (-2396 (((-83) $) 56 T ELT)) (-2995 (($ $ (-478)) NIL T ELT)) (-3170 (((-83) $) 46 T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3926 (($ $) 108 T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2046 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-343 (-478))) 94 T ELT)) (-2044 ((|#1| $) 36 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) 83 T ELT) (($ (-578 $)) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) 82 T ELT)) (-3927 (($ $) 110 T ELT)) (-3479 (($ $) 150 T ELT)) (-3620 (($ $) 122 T ELT)) (-3477 (($ $) 152 T ELT)) (-3619 (($ $) 126 T ELT)) (-3475 (($ $) 148 T ELT)) (-3618 (($ $) 118 T ELT)) (-2043 (((-83) $ |#1|) 42 T ELT)) (-3930 (((-765) $) 102 T ELT) (($ (-478)) 85 T ELT) (($ $) NIL T ELT) (($ (-478)) 85 T ELT)) (-3109 (((-687)) 104 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-3482 (($ $) 164 T ELT)) (-3470 (($ $) 132 T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3480 (($ $) 162 T ELT)) (-3468 (($ $) 128 T ELT)) (-3484 (($ $) 160 T ELT)) (-3472 (($ $) 140 T ELT)) (-3485 (($ $) 158 T ELT)) (-3473 (($ $) 138 T ELT)) (-3483 (($ $) 156 T ELT)) (-3471 (($ $) 134 T ELT)) (-3481 (($ $) 154 T ELT)) (-3469 (($ $) 130 T ELT)) (-2644 (($) 30 T CONST)) (-2650 (($) 10 T CONST)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 50 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 48 T ELT)) (-3821 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3823 (($ $ $) 53 T ELT)) (** (($ $ (-823)) 73 T ELT) (($ $ (-687)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-343 (-478))) 166 T ELT)) (* (($ (-823) $) 67 T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 66 T ELT) (($ $ $) 62 T ELT))) +(((-501 |#1|) (-487 |#1|) (-13 (-340) (-1104))) (T -501)) +NIL +((-2688 (((-3 (-578 (-1074 (-478))) "failed") (-578 (-1074 (-478))) (-1074 (-478))) 27 T ELT))) +(((-502) (-10 -7 (-15 -2688 ((-3 (-578 (-1074 (-478))) "failed") (-578 (-1074 (-478))) (-1074 (-478)))))) (T -502)) +((-2688 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1074 (-478)))) (-5 *3 (-1074 (-478))) (-5 *1 (-502))))) +((-2090 (((-578 (-545 |#2|)) (-578 (-545 |#2|)) (-1079)) 19 T ELT)) (-2093 (((-578 (-545 |#2|)) (-578 |#2|) (-1079)) 23 T ELT)) (-3217 (((-578 (-545 |#2|)) (-578 (-545 |#2|)) (-578 (-545 |#2|))) 11 T ELT)) (-2094 ((|#2| |#2| (-1079)) 59 (|has| |#1| (-489)) ELT)) (-2095 ((|#2| |#2| (-1079)) 87 (-12 (|has| |#2| (-236)) (|has| |#1| (-385))) ELT)) (-2092 (((-545 |#2|) (-545 |#2|) (-578 (-545 |#2|)) (-1079)) 25 T ELT)) (-2091 (((-545 |#2|) (-578 (-545 |#2|))) 24 T ELT)) (-2096 (((-513 |#2|) |#2| (-1079) (-1 (-513 |#2|) |#2| (-1079)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1079))) 115 (-12 (|has| |#2| (-236)) (|has| |#2| (-564)) (|has| |#2| (-943 (-1079))) (|has| |#1| (-548 (-793 (-478)))) (|has| |#1| (-385)) (|has| |#1| (-789 (-478)))) ELT))) +(((-503 |#1| |#2|) (-10 -7 (-15 -2090 ((-578 (-545 |#2|)) (-578 (-545 |#2|)) (-1079))) (-15 -2091 ((-545 |#2|) (-578 (-545 |#2|)))) (-15 -2092 ((-545 |#2|) (-545 |#2|) (-578 (-545 |#2|)) (-1079))) (-15 -3217 ((-578 (-545 |#2|)) (-578 (-545 |#2|)) (-578 (-545 |#2|)))) (-15 -2093 ((-578 (-545 |#2|)) (-578 |#2|) (-1079))) (IF (|has| |#1| (-489)) (-15 -2094 (|#2| |#2| (-1079))) |%noBranch|) (IF (|has| |#1| (-385)) (IF (|has| |#2| (-236)) (PROGN (-15 -2095 (|#2| |#2| (-1079))) (IF (|has| |#1| (-548 (-793 (-478)))) (IF (|has| |#1| (-789 (-478))) (IF (|has| |#2| (-564)) (IF (|has| |#2| (-943 (-1079))) (-15 -2096 ((-513 |#2|) |#2| (-1079) (-1 (-513 |#2|) |#2| (-1079)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1079)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1005) (-357 |#1|)) (T -503)) +((-2096 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-513 *3) *3 (-1079))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1079))) (-4 *3 (-236)) (-4 *3 (-564)) (-4 *3 (-943 *4)) (-4 *3 (-357 *7)) (-5 *4 (-1079)) (-4 *7 (-548 (-793 (-478)))) (-4 *7 (-385)) (-4 *7 (-789 (-478))) (-4 *7 (-1005)) (-5 *2 (-513 *3)) (-5 *1 (-503 *7 *3)))) (-2095 (*1 *2 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-385)) (-4 *4 (-1005)) (-5 *1 (-503 *4 *2)) (-4 *2 (-236)) (-4 *2 (-357 *4)))) (-2094 (*1 *2 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-489)) (-4 *4 (-1005)) (-5 *1 (-503 *4 *2)) (-4 *2 (-357 *4)))) (-2093 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-1079)) (-4 *6 (-357 *5)) (-4 *5 (-1005)) (-5 *2 (-578 (-545 *6))) (-5 *1 (-503 *5 *6)))) (-3217 (*1 *2 *2 *2) (-12 (-5 *2 (-578 (-545 *4))) (-4 *4 (-357 *3)) (-4 *3 (-1005)) (-5 *1 (-503 *3 *4)))) (-2092 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-578 (-545 *6))) (-5 *4 (-1079)) (-5 *2 (-545 *6)) (-4 *6 (-357 *5)) (-4 *5 (-1005)) (-5 *1 (-503 *5 *6)))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-578 (-545 *5))) (-4 *4 (-1005)) (-5 *2 (-545 *5)) (-5 *1 (-503 *4 *5)) (-4 *5 (-357 *4)))) (-2090 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-545 *5))) (-5 *3 (-1079)) (-4 *5 (-357 *4)) (-4 *4 (-1005)) (-5 *1 (-503 *4 *5))))) +((-2099 (((-2 (|:| |answer| (-513 (-343 |#2|))) (|:| |a0| |#1|)) (-343 |#2|) (-1 |#2| |#2|) (-1 (-3 (-578 |#1|) #1="failed") (-478) |#1| |#1|)) 199 T ELT)) (-2102 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-343 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 |#2|)) (|:| |logand| (-343 |#2|))))))) (|:| |a0| |#1|)) #1#) (-343 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2122 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-578 (-343 |#2|))) 174 T ELT)) (-2105 (((-3 (-2 (|:| |mainpart| (-343 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 |#2|)) (|:| |logand| (-343 |#2|)))))) #1#) (-343 |#2|) (-1 |#2| |#2|) (-578 (-343 |#2|))) 171 T ELT)) (-2106 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2122 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2097 (((-2 (|:| |answer| (-513 (-343 |#2|))) (|:| |a0| |#1|)) (-343 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2122 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2104 (((-3 (-2 (|:| -2122 (-343 |#2|)) (|:| |coeff| (-343 |#2|))) #1#) (-343 |#2|) (-1 |#2| |#2|) (-343 |#2|)) 202 T ELT)) (-2100 (((-3 (-2 (|:| |answer| (-343 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2122 (-343 |#2|)) (|:| |coeff| (-343 |#2|))) #1#) (-343 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2122 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-343 |#2|)) 205 T ELT)) (-2108 (((-2 (|:| |ir| (-513 (-343 |#2|))) (|:| |specpart| (-343 |#2|)) (|:| |polypart| |#2|)) (-343 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2109 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2103 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-343 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 |#2|)) (|:| |logand| (-343 |#2|))))))) (|:| |a0| |#1|)) #1#) (-343 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3120 |#1|) (|:| |sol?| (-83))) (-478) |#1|) (-578 (-343 |#2|))) 178 T ELT)) (-2107 (((-3 (-557 |#1| |#2|) #1#) (-557 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3120 |#1|) (|:| |sol?| (-83))) (-478) |#1|)) 166 T ELT)) (-2098 (((-2 (|:| |answer| (-513 (-343 |#2|))) (|:| |a0| |#1|)) (-343 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3120 |#1|) (|:| |sol?| (-83))) (-478) |#1|)) 189 T ELT)) (-2101 (((-3 (-2 (|:| |answer| (-343 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2122 (-343 |#2|)) (|:| |coeff| (-343 |#2|))) #1#) (-343 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3120 |#1|) (|:| |sol?| (-83))) (-478) |#1|) (-343 |#2|)) 210 T ELT))) +(((-504 |#1| |#2|) (-10 -7 (-15 -2097 ((-2 (|:| |answer| (-513 (-343 |#2|))) (|:| |a0| |#1|)) (-343 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2122 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2098 ((-2 (|:| |answer| (-513 (-343 |#2|))) (|:| |a0| |#1|)) (-343 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3120 |#1|) (|:| |sol?| (-83))) (-478) |#1|))) (-15 -2099 ((-2 (|:| |answer| (-513 (-343 |#2|))) (|:| |a0| |#1|)) (-343 |#2|) (-1 |#2| |#2|) (-1 (-3 (-578 |#1|) #1#) (-478) |#1| |#1|))) (-15 -2100 ((-3 (-2 (|:| |answer| (-343 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2122 (-343 |#2|)) (|:| |coeff| (-343 |#2|))) #1#) (-343 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2122 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-343 |#2|))) (-15 -2101 ((-3 (-2 (|:| |answer| (-343 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2122 (-343 |#2|)) (|:| |coeff| (-343 |#2|))) #1#) (-343 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3120 |#1|) (|:| |sol?| (-83))) (-478) |#1|) (-343 |#2|))) (-15 -2102 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-343 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 |#2|)) (|:| |logand| (-343 |#2|))))))) (|:| |a0| |#1|)) #1#) (-343 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2122 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-578 (-343 |#2|)))) (-15 -2103 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-343 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 |#2|)) (|:| |logand| (-343 |#2|))))))) (|:| |a0| |#1|)) #1#) (-343 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3120 |#1|) (|:| |sol?| (-83))) (-478) |#1|) (-578 (-343 |#2|)))) (-15 -2104 ((-3 (-2 (|:| -2122 (-343 |#2|)) (|:| |coeff| (-343 |#2|))) #1#) (-343 |#2|) (-1 |#2| |#2|) (-343 |#2|))) (-15 -2105 ((-3 (-2 (|:| |mainpart| (-343 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 |#2|)) (|:| |logand| (-343 |#2|)))))) #1#) (-343 |#2|) (-1 |#2| |#2|) (-578 (-343 |#2|)))) (-15 -2106 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2122 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2107 ((-3 (-557 |#1| |#2|) #1#) (-557 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3120 |#1|) (|:| |sol?| (-83))) (-478) |#1|))) (-15 -2108 ((-2 (|:| |ir| (-513 (-343 |#2|))) (|:| |specpart| (-343 |#2|)) (|:| |polypart| |#2|)) (-343 |#2|) (-1 |#2| |#2|))) (-15 -2109 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-308) (-1144 |#1|)) (T -504)) +((-2109 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-504 *5 *3)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| |ir| (-513 (-343 *6))) (|:| |specpart| (-343 *6)) (|:| |polypart| *6))) (-5 *1 (-504 *5 *6)) (-5 *3 (-343 *6)))) (-2107 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-557 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3120 *4) (|:| |sol?| (-83))) (-478) *4)) (-4 *4 (-308)) (-4 *5 (-1144 *4)) (-5 *1 (-504 *4 *5)))) (-2106 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2122 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-308)) (-5 *1 (-504 *4 *2)) (-4 *2 (-1144 *4)))) (-2105 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-578 (-343 *7))) (-4 *7 (-1144 *6)) (-5 *3 (-343 *7)) (-4 *6 (-308)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-504 *6 *7)))) (-2104 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| -2122 (-343 *6)) (|:| |coeff| (-343 *6)))) (-5 *1 (-504 *5 *6)) (-5 *3 (-343 *6)))) (-2103 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3120 *7) (|:| |sol?| (-83))) (-478) *7)) (-5 *6 (-578 (-343 *8))) (-4 *7 (-308)) (-4 *8 (-1144 *7)) (-5 *3 (-343 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-504 *7 *8)))) (-2102 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2122 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-578 (-343 *8))) (-4 *7 (-308)) (-4 *8 (-1144 *7)) (-5 *3 (-343 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-504 *7 *8)))) (-2101 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3120 *6) (|:| |sol?| (-83))) (-478) *6)) (-4 *6 (-308)) (-4 *7 (-1144 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-343 *7)) (|:| |a0| *6)) (-2 (|:| -2122 (-343 *7)) (|:| |coeff| (-343 *7))) "failed")) (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7)))) (-2100 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2122 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-308)) (-4 *7 (-1144 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-343 *7)) (|:| |a0| *6)) (-2 (|:| -2122 (-343 *7)) (|:| |coeff| (-343 *7))) "failed")) (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7)))) (-2099 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-578 *6) "failed") (-478) *6 *6)) (-4 *6 (-308)) (-4 *7 (-1144 *6)) (-5 *2 (-2 (|:| |answer| (-513 (-343 *7))) (|:| |a0| *6))) (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7)))) (-2098 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3120 *6) (|:| |sol?| (-83))) (-478) *6)) (-4 *6 (-308)) (-4 *7 (-1144 *6)) (-5 *2 (-2 (|:| |answer| (-513 (-343 *7))) (|:| |a0| *6))) (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7)))) (-2097 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2122 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-308)) (-4 *7 (-1144 *6)) (-5 *2 (-2 (|:| |answer| (-513 (-343 *7))) (|:| |a0| *6))) (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7))))) +((-2110 (((-3 |#2| "failed") |#2| (-1079) (-1079)) 10 T ELT))) +(((-505 |#1| |#2|) (-10 -7 (-15 -2110 ((-3 |#2| "failed") |#2| (-1079) (-1079)))) (-13 (-254) (-118) (-943 (-478)) (-575 (-478))) (-13 (-1104) (-864) (-1042) (-29 |#1|))) (T -505)) +((-2110 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1079)) (-4 *4 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *1 (-505 *4 *2)) (-4 *2 (-13 (-1104) (-864) (-1042) (-29 *4)))))) +((-2539 (((-627 (-1127)) $ (-1127)) 27 T ELT)) (-2540 (((-627 (-482)) $ (-482)) 26 T ELT)) (-2538 (((-687) $ (-100)) 28 T ELT)) (-2541 (((-627 (-99)) $ (-99)) 25 T ELT)) (-1986 (((-627 (-1127)) $) 12 T ELT)) (-1982 (((-627 (-1125)) $) 8 T ELT)) (-1984 (((-627 (-1124)) $) 10 T ELT)) (-1987 (((-627 (-482)) $) 13 T ELT)) (-1983 (((-627 (-480)) $) 9 T ELT)) (-1985 (((-627 (-479)) $) 11 T ELT)) (-1981 (((-687) $ (-100)) 7 T ELT)) (-1988 (((-627 (-99)) $) 14 T ELT)) (-1687 (($ $) 6 T ELT))) +(((-506) (-111)) (T -506)) +NIL +(-13 (-459) (-763)) +(((-145) . T) ((-459) . T) ((-763) . T)) +((-2539 (((-627 (-1127)) $ (-1127)) NIL T ELT)) (-2540 (((-627 (-482)) $ (-482)) NIL T ELT)) (-2538 (((-687) $ (-100)) NIL T ELT)) (-2541 (((-627 (-99)) $ (-99)) NIL T ELT)) (-1986 (((-627 (-1127)) $) NIL T ELT)) (-1982 (((-627 (-1125)) $) NIL T ELT)) (-1984 (((-627 (-1124)) $) NIL T ELT)) (-1987 (((-627 (-482)) $) NIL T ELT)) (-1983 (((-627 (-480)) $) NIL T ELT)) (-1985 (((-627 (-479)) $) NIL T ELT)) (-1981 (((-687) $ (-100)) NIL T ELT)) (-1988 (((-627 (-99)) $) NIL T ELT)) (-2542 (((-83) $) NIL T ELT)) (-2111 (($ (-331)) 14 T ELT) (($ (-1062)) 16 T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1687 (($ $) NIL T ELT))) +(((-507) (-13 (-506) (-547 (-765)) (-10 -8 (-15 -2111 ($ (-331))) (-15 -2111 ($ (-1062))) (-15 -2542 ((-83) $))))) (T -507)) +((-2111 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-507)))) (-2111 (*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-507)))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-507))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3444 (($) 7 T CONST)) (-3225 (((-1062) $) NIL T ELT)) (-2114 (($) 6 T CONST)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 15 T ELT)) (-2112 (($) 9 T CONST)) (-2113 (($) 8 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 11 T ELT))) +(((-508) (-13 (-1005) (-10 -8 (-15 -2114 ($) -3936) (-15 -3444 ($) -3936) (-15 -2113 ($) -3936) (-15 -2112 ($) -3936)))) (T -508)) +((-2114 (*1 *1) (-5 *1 (-508))) (-3444 (*1 *1) (-5 *1 (-508))) (-2113 (*1 *1) (-5 *1 (-508))) (-2112 (*1 *1) (-5 *1 (-508)))) +((-2552 (((-83) $ $) NIL T ELT)) (-2115 (((-627 $) (-424)) 21 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2117 (($ (-1062)) 14 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 33 T ELT)) (-2116 (((-164 4 (-99)) $) 24 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 26 T ELT))) +(((-509) (-13 (-1005) (-10 -8 (-15 -2117 ($ (-1062))) (-15 -2116 ((-164 4 (-99)) $)) (-15 -2115 ((-627 $) (-424)))))) (T -509)) +((-2117 (*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-509)))) (-2116 (*1 *2 *1) (-12 (-5 *2 (-164 4 (-99))) (-5 *1 (-509)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-424)) (-5 *2 (-627 (-509))) (-5 *1 (-509))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3021 (($ $ (-478)) 76 T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2595 (($ (-1074 (-478)) (-478)) 82 T ELT)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) 66 T ELT)) (-2596 (($ $) 43 T ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3756 (((-687) $) 16 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2598 (((-478)) 37 T ELT)) (-2597 (((-478) $) 41 T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3753 (($ $ (-478)) 24 T ELT)) (-3450 (((-3 $ #1#) $ $) 72 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) 17 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 73 T ELT)) (-2599 (((-1058 (-478)) $) 19 T ELT)) (-2875 (($ $) 26 T ELT)) (-3930 (((-765) $) 103 T ELT) (($ (-478)) 61 T ELT) (($ $) NIL T ELT)) (-3109 (((-687)) 15 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3754 (((-478) $ (-478)) 46 T ELT)) (-2644 (($) 44 T CONST)) (-2650 (($) 21 T CONST)) (-3037 (((-83) $ $) 52 T ELT)) (-3821 (($ $) 60 T ELT) (($ $ $) 48 T ELT)) (-3823 (($ $ $) 59 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 62 T ELT) (($ $ $) 63 T ELT))) +(((-510 |#1| |#2|) (-772 |#1|) (-478) (-83)) (T -510)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 30 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-3913 (((-687)) NIL T ELT)) (-3314 (($ $ (-823)) NIL (|has| $ (-313)) ELT) (($ $) NIL T ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) 59 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 $ #1#) $) 95 T ELT)) (-3139 (($ $) 94 T ELT)) (-1779 (($ (-1168 $)) 93 T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) 47 T ELT)) (-2978 (($) NIL T ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-2817 (($) 61 T ELT)) (-1667 (((-83) $) NIL T ELT)) (-1751 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-3756 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-1999 (($) 49 (|has| $ (-313)) ELT)) (-1997 (((-83) $) NIL (|has| $ (-313)) ELT)) (-3115 (($ $ (-823)) NIL (|has| $ (-313)) ELT) (($ $) NIL T ELT)) (-3429 (((-627 $) $) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2000 (((-1074 $) $ (-823)) NIL (|has| $ (-313)) ELT) (((-1074 $) $) 104 T ELT)) (-1996 (((-823) $) 67 T ELT)) (-1614 (((-1074 $) $) NIL (|has| $ (-313)) ELT)) (-1613 (((-3 (-1074 $) #1#) $ $) NIL (|has| $ (-313)) ELT) (((-1074 $) $) NIL (|has| $ (-313)) ELT)) (-1615 (($ $ (-1074 $)) NIL (|has| $ (-313)) ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3430 (($) NIL T CONST)) (-2386 (($ (-823)) 60 T ELT)) (-3915 (((-83) $) 87 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2395 (($) 28 (|has| $ (-313)) ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) 54 T ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-3914 (((-823)) 86 T ELT) (((-736 (-823))) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-1752 (((-3 (-687) #1#) $ $) NIL T ELT) (((-687) $) NIL T ELT)) (-3895 (((-105)) NIL T ELT)) (-3742 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3932 (((-823) $) 85 T ELT) (((-736 (-823)) $) NIL T ELT)) (-3168 (((-1074 $)) 102 T ELT)) (-1661 (($) 66 T ELT)) (-1616 (($) 50 (|has| $ (-313)) ELT)) (-3207 (((-625 $) (-1168 $)) NIL T ELT) (((-1168 $) $) 91 T ELT)) (-3956 (((-478) $) 42 T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) 45 T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT)) (-2686 (((-627 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3109 (((-687)) 51 T CONST)) (-1253 (((-83) $ $) 107 T ELT)) (-1998 (((-1168 $) (-823)) 97 T ELT) (((-1168 $)) 96 T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3917 (((-83) $) NIL T ELT)) (-2644 (($) 31 T CONST)) (-2650 (($) 27 T CONST)) (-3912 (($ $ (-687)) NIL (|has| $ (-313)) ELT) (($ $) NIL (|has| $ (-313)) ELT)) (-2653 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 34 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT))) +(((-511 |#1|) (-13 (-295) (-276 $) (-548 (-478))) (-823)) (T -511)) +NIL +((-2118 (((-1174) (-1062)) 10 T ELT))) +(((-512) (-10 -7 (-15 -2118 ((-1174) (-1062))))) (T -512)) +((-2118 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-512))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) 77 T ELT)) (-3139 ((|#1| $) NIL T ELT)) (-2122 ((|#1| $) 30 T ELT)) (-2120 (((-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2123 (($ |#1| (-578 (-2 (|:| |scalar| (-343 (-478))) (|:| |coeff| (-1074 |#1|)) (|:| |logand| (-1074 |#1|)))) (-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2121 (((-578 (-2 (|:| |scalar| (-343 (-478))) (|:| |coeff| (-1074 |#1|)) (|:| |logand| (-1074 |#1|)))) $) 31 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2816 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1079)) 49 (|has| |#1| (-943 (-1079))) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2119 (((-83) $) 35 T ELT)) (-3742 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1079)) 90 (|has| |#1| (-802 (-1079))) ELT)) (-3930 (((-765) $) 110 T ELT) (($ |#1|) 29 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 18 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 86 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 16 T ELT) (($ (-343 (-478)) $) 41 T ELT) (($ $ (-343 (-478))) NIL T ELT))) +(((-513 |#1|) (-13 (-649 (-343 (-478))) (-943 |#1|) (-10 -8 (-15 -2123 ($ |#1| (-578 (-2 (|:| |scalar| (-343 (-478))) (|:| |coeff| (-1074 |#1|)) (|:| |logand| (-1074 |#1|)))) (-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2122 (|#1| $)) (-15 -2121 ((-578 (-2 (|:| |scalar| (-343 (-478))) (|:| |coeff| (-1074 |#1|)) (|:| |logand| (-1074 |#1|)))) $)) (-15 -2120 ((-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2119 ((-83) $)) (-15 -2816 ($ |#1| |#1|)) (-15 -3742 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-802 (-1079))) (-15 -3742 (|#1| $ (-1079))) |%noBranch|) (IF (|has| |#1| (-943 (-1079))) (-15 -2816 ($ |#1| (-1079))) |%noBranch|))) (-308)) (T -513)) +((-2123 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |scalar| (-343 (-478))) (|:| |coeff| (-1074 *2)) (|:| |logand| (-1074 *2))))) (-5 *4 (-578 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-308)) (-5 *1 (-513 *2)))) (-2122 (*1 *2 *1) (-12 (-5 *1 (-513 *2)) (-4 *2 (-308)))) (-2121 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |scalar| (-343 (-478))) (|:| |coeff| (-1074 *3)) (|:| |logand| (-1074 *3))))) (-5 *1 (-513 *3)) (-4 *3 (-308)))) (-2120 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-513 *3)) (-4 *3 (-308)))) (-2119 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-513 *3)) (-4 *3 (-308)))) (-2816 (*1 *1 *2 *2) (-12 (-5 *1 (-513 *2)) (-4 *2 (-308)))) (-3742 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-513 *2)) (-4 *2 (-308)))) (-3742 (*1 *2 *1 *3) (-12 (-4 *2 (-308)) (-4 *2 (-802 *3)) (-5 *1 (-513 *2)) (-5 *3 (-1079)))) (-2816 (*1 *1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *1 (-513 *2)) (-4 *2 (-943 *3)) (-4 *2 (-308))))) +((-3942 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2122 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2122 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-513 |#2|) (-1 |#2| |#1|) (-513 |#1|)) 30 T ELT))) +(((-514 |#1| |#2|) (-10 -7 (-15 -3942 ((-513 |#2|) (-1 |#2| |#1|) (-513 |#1|))) (-15 -3942 ((-3 (-2 (|:| -2122 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2122 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3942 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3942 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-308) (-308)) (T -514)) +((-3942 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-308)) (-4 *6 (-308)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-514 *5 *6)))) (-3942 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-308)) (-4 *2 (-308)) (-5 *1 (-514 *5 *2)))) (-3942 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2122 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-308)) (-4 *6 (-308)) (-5 *2 (-2 (|:| -2122 *6) (|:| |coeff| *6))) (-5 *1 (-514 *5 *6)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-513 *5)) (-4 *5 (-308)) (-4 *6 (-308)) (-5 *2 (-513 *6)) (-5 *1 (-514 *5 *6))))) +((-3402 (((-513 |#2|) (-513 |#2|)) 42 T ELT)) (-3947 (((-578 |#2|) (-513 |#2|)) 44 T ELT)) (-2134 ((|#2| (-513 |#2|)) 50 T ELT))) +(((-515 |#1| |#2|) (-10 -7 (-15 -3402 ((-513 |#2|) (-513 |#2|))) (-15 -3947 ((-578 |#2|) (-513 |#2|))) (-15 -2134 (|#2| (-513 |#2|)))) (-13 (-385) (-943 (-478)) (-575 (-478))) (-13 (-29 |#1|) (-1104))) (T -515)) +((-2134 (*1 *2 *3) (-12 (-5 *3 (-513 *2)) (-4 *2 (-13 (-29 *4) (-1104))) (-5 *1 (-515 *4 *2)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))))) (-3947 (*1 *2 *3) (-12 (-5 *3 (-513 *5)) (-4 *5 (-13 (-29 *4) (-1104))) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-578 *5)) (-5 *1 (-515 *4 *5)))) (-3402 (*1 *2 *2) (-12 (-5 *2 (-513 *4)) (-4 *4 (-13 (-29 *3) (-1104))) (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-515 *3 *4))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2126 (($ (-439) (-526)) 14 T ELT)) (-2124 (($ (-439) (-526) $) 16 T ELT)) (-2125 (($ (-439) (-526)) 15 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-1084)) 7 T ELT) (((-1084) $) 6 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-516) (-13 (-1005) (-423 (-1084)) (-10 -8 (-15 -2126 ($ (-439) (-526))) (-15 -2125 ($ (-439) (-526))) (-15 -2124 ($ (-439) (-526) $))))) (T -516)) +((-2126 (*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-526)) (-5 *1 (-516)))) (-2125 (*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-526)) (-5 *1 (-516)))) (-2124 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-526)) (-5 *1 (-516))))) +((-2130 (((-83) |#1|) 16 T ELT)) (-2131 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2128 (((-2 (|:| -2678 |#1|) (|:| -2387 (-687))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-687)) 18 T ELT)) (-2127 (((-83) |#1| (-687)) 19 T ELT)) (-2132 ((|#1| |#1|) 41 T ELT)) (-2129 ((|#1| |#1| (-687)) 44 T ELT))) +(((-517 |#1|) (-10 -7 (-15 -2127 ((-83) |#1| (-687))) (-15 -2128 ((-3 |#1| #1="failed") |#1| (-687))) (-15 -2128 ((-2 (|:| -2678 |#1|) (|:| -2387 (-687))) |#1|)) (-15 -2129 (|#1| |#1| (-687))) (-15 -2130 ((-83) |#1|)) (-15 -2131 ((-3 |#1| #1#) |#1|)) (-15 -2132 (|#1| |#1|))) (-477)) (T -517)) +((-2132 (*1 *2 *2) (-12 (-5 *1 (-517 *2)) (-4 *2 (-477)))) (-2131 (*1 *2 *2) (|partial| -12 (-5 *1 (-517 *2)) (-4 *2 (-477)))) (-2130 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-517 *3)) (-4 *3 (-477)))) (-2129 (*1 *2 *2 *3) (-12 (-5 *3 (-687)) (-5 *1 (-517 *2)) (-4 *2 (-477)))) (-2128 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2678 *3) (|:| -2387 (-687)))) (-5 *1 (-517 *3)) (-4 *3 (-477)))) (-2128 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-687)) (-5 *1 (-517 *2)) (-4 *2 (-477)))) (-2127 (*1 *2 *3 *4) (-12 (-5 *4 (-687)) (-5 *2 (-83)) (-5 *1 (-517 *3)) (-4 *3 (-477))))) +((-2133 (((-1074 |#1|) (-823)) 44 T ELT))) +(((-518 |#1|) (-10 -7 (-15 -2133 ((-1074 |#1|) (-823)))) (-295)) (T -518)) +((-2133 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1074 *4)) (-5 *1 (-518 *4)) (-4 *4 (-295))))) +((-3402 (((-513 (-343 (-850 |#1|))) (-513 (-343 (-850 |#1|)))) 27 T ELT)) (-3796 (((-3 (-261 |#1|) (-578 (-261 |#1|))) (-343 (-850 |#1|)) (-1079)) 34 (|has| |#1| (-118)) ELT)) (-3947 (((-578 (-261 |#1|)) (-513 (-343 (-850 |#1|)))) 19 T ELT)) (-2135 (((-261 |#1|) (-343 (-850 |#1|)) (-1079)) 32 (|has| |#1| (-118)) ELT)) (-2134 (((-261 |#1|) (-513 (-343 (-850 |#1|)))) 21 T ELT))) +(((-519 |#1|) (-10 -7 (-15 -3402 ((-513 (-343 (-850 |#1|))) (-513 (-343 (-850 |#1|))))) (-15 -3947 ((-578 (-261 |#1|)) (-513 (-343 (-850 |#1|))))) (-15 -2134 ((-261 |#1|) (-513 (-343 (-850 |#1|))))) (IF (|has| |#1| (-118)) (PROGN (-15 -3796 ((-3 (-261 |#1|) (-578 (-261 |#1|))) (-343 (-850 |#1|)) (-1079))) (-15 -2135 ((-261 |#1|) (-343 (-850 |#1|)) (-1079)))) |%noBranch|)) (-13 (-385) (-943 (-478)) (-575 (-478)))) (T -519)) +((-2135 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1079)) (-4 *5 (-118)) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-261 *5)) (-5 *1 (-519 *5)))) (-3796 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1079)) (-4 *5 (-118)) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 (-261 *5) (-578 (-261 *5)))) (-5 *1 (-519 *5)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-513 (-343 (-850 *4)))) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-261 *4)) (-5 *1 (-519 *4)))) (-3947 (*1 *2 *3) (-12 (-5 *3 (-513 (-343 (-850 *4)))) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-578 (-261 *4))) (-5 *1 (-519 *4)))) (-3402 (*1 *2 *2) (-12 (-5 *2 (-513 (-343 (-850 *3)))) (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-519 *3))))) +((-2137 (((-578 (-625 (-478))) (-578 (-823)) (-578 (-806 (-478)))) 80 T ELT) (((-578 (-625 (-478))) (-578 (-823))) 81 T ELT) (((-625 (-478)) (-578 (-823)) (-806 (-478))) 74 T ELT)) (-2136 (((-687) (-578 (-823))) 71 T ELT))) +(((-520) (-10 -7 (-15 -2136 ((-687) (-578 (-823)))) (-15 -2137 ((-625 (-478)) (-578 (-823)) (-806 (-478)))) (-15 -2137 ((-578 (-625 (-478))) (-578 (-823)))) (-15 -2137 ((-578 (-625 (-478))) (-578 (-823)) (-578 (-806 (-478))))))) (T -520)) +((-2137 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-823))) (-5 *4 (-578 (-806 (-478)))) (-5 *2 (-578 (-625 (-478)))) (-5 *1 (-520)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-578 (-823))) (-5 *2 (-578 (-625 (-478)))) (-5 *1 (-520)))) (-2137 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-823))) (-5 *4 (-806 (-478))) (-5 *2 (-625 (-478))) (-5 *1 (-520)))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-578 (-823))) (-5 *2 (-687)) (-5 *1 (-520))))) +((-3196 (((-578 |#5|) |#5| (-83)) 97 T ELT)) (-2138 (((-83) |#5| (-578 |#5|)) 34 T ELT))) +(((-521 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3196 ((-578 |#5|) |#5| (-83))) (-15 -2138 ((-83) |#5| (-578 |#5|)))) (-13 (-254) (-118)) (-710) (-749) (-969 |#1| |#2| |#3|) (-1012 |#1| |#2| |#3| |#4|)) (T -521)) +((-2138 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-1012 *5 *6 *7 *8)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-521 *5 *6 *7 *8 *3)))) (-3196 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-578 *3)) (-5 *1 (-521 *5 *6 *7 *8 *3)) (-4 *3 (-1012 *5 *6 *7 *8))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3512 (((-1038) $) 11 T ELT)) (-3513 (((-1038) $) 9 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 17 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-522) (-13 (-987) (-10 -8 (-15 -3513 ((-1038) $)) (-15 -3512 ((-1038) $))))) (T -522)) +((-3513 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-522)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-522))))) +((-3516 (((-2 (|:| |num| |#4|) (|:| |den| (-478))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-478))) |#4| |#2| (-993 |#4|)) 32 T ELT))) +(((-523 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 ((-2 (|:| |num| |#4|) (|:| |den| (-478))) |#4| |#2| (-993 |#4|))) (-15 -3516 ((-2 (|:| |num| |#4|) (|:| |den| (-478))) |#4| |#2|))) (-710) (-749) (-489) (-854 |#3| |#1| |#2|)) (T -523)) +((-3516 (*1 *2 *3 *4) (-12 (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-489)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-478)))) (-5 *1 (-523 *5 *4 *6 *3)) (-4 *3 (-854 *6 *5 *4)))) (-3516 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-993 *3)) (-4 *3 (-854 *7 *6 *4)) (-4 *6 (-710)) (-4 *4 (-749)) (-4 *7 (-489)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-478)))) (-5 *1 (-523 *6 *4 *7 *3))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 71 T ELT)) (-3065 (((-578 (-986)) $) NIL T ELT)) (-3815 (((-1079) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3755 (($ $ (-478)) 58 T ELT) (($ $ (-478) (-478)) 59 T ELT)) (-3758 (((-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) $) 65 T ELT)) (-2169 (($ $) 109 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2167 (((-765) (-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) (-932 (-743 (-478))) (-1079) |#1| (-343 (-478))) 241 T ELT)) (-3802 (($ (-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|)))) 36 T ELT)) (-3708 (($) NIL T CONST)) (-3943 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2876 (((-83) $) NIL T ELT)) (-3756 (((-478) $) 63 T ELT) (((-478) $ (-478)) 64 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-3761 (($ $ (-823)) 83 T ELT)) (-3799 (($ (-1 |#1| (-478)) $) 80 T ELT)) (-3921 (((-83) $) 26 T ELT)) (-2877 (($ |#1| (-478)) 22 T ELT) (($ $ (-986) (-478)) NIL T ELT) (($ $ (-578 (-986)) (-578 (-478))) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2173 (($ (-932 (-743 (-478))) (-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|)))) 13 T ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3796 (($ $) 161 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2170 (((-3 $ #1#) $ $ (-83)) 108 T ELT)) (-2168 (($ $ $) 116 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2171 (((-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) $) 15 T ELT)) (-2172 (((-932 (-743 (-478))) $) 14 T ELT)) (-3753 (($ $ (-478)) 47 T ELT)) (-3450 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-3752 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-478)))) ELT)) (-3784 ((|#1| $ (-478)) 62 T ELT) (($ $ $) NIL (|has| (-478) (-1015)) ELT)) (-3742 (($ $ (-1079)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-478) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-478) |#1|))) ELT)) (-3932 (((-478) $) NIL T ELT)) (-2875 (($ $) 48 T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) 29 T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ |#1|) 28 (|has| |#1| (-144)) ELT)) (-3661 ((|#1| $ (-478)) 61 T ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) 39 T CONST)) (-3757 ((|#1| $) NIL T ELT)) (-2148 (($ $) 198 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2160 (($ $) 169 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2150 (($ $) 202 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2162 (($ $) 174 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2146 (($ $) 201 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2158 (($ $) 173 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2165 (($ $ (-343 (-478))) 177 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2166 (($ $ |#1|) 157 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2163 (($ $) 204 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2164 (($ $) 160 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2145 (($ $) 203 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2157 (($ $) 175 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2147 (($ $) 199 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2159 (($ $) 171 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2149 (($ $) 200 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2161 (($ $) 172 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2142 (($ $) 209 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2154 (($ $) 185 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2144 (($ $) 206 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2156 (($ $) 181 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2140 (($ $) 213 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2152 (($ $) 189 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2139 (($ $) 215 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2151 (($ $) 191 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2141 (($ $) 211 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2153 (($ $) 187 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2143 (($ $) 208 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2155 (($ $) 183 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3754 ((|#1| $ (-478)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-478)))) (|has| |#1| (-15 -3930 (|#1| (-1079))))) ELT)) (-2644 (($) 30 T CONST)) (-2650 (($) 40 T CONST)) (-2653 (($ $ (-1079)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-478) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-478) |#1|))) ELT)) (-3037 (((-83) $ $) 73 T ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3823 (($ $ $) 88 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 111 T ELT)) (* (($ (-823) $) 98 T ELT) (($ (-687) $) 96 T ELT) (($ (-478) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-524 |#1|) (-13 (-1147 |#1| (-478)) (-10 -8 (-15 -2173 ($ (-932 (-743 (-478))) (-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|))))) (-15 -2172 ((-932 (-743 (-478))) $)) (-15 -2171 ((-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) $)) (-15 -3802 ($ (-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|))))) (-15 -3921 ((-83) $)) (-15 -3799 ($ (-1 |#1| (-478)) $)) (-15 -2170 ((-3 $ "failed") $ $ (-83))) (-15 -2169 ($ $)) (-15 -2168 ($ $ $)) (-15 -2167 ((-765) (-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) (-932 (-743 (-478))) (-1079) |#1| (-343 (-478)))) (IF (|has| |#1| (-38 (-343 (-478)))) (PROGN (-15 -3796 ($ $)) (-15 -2166 ($ $ |#1|)) (-15 -2165 ($ $ (-343 (-478)))) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $)) (-15 -2153 ($ $)) (-15 -2152 ($ $)) (-15 -2151 ($ $)) (-15 -2150 ($ $)) (-15 -2149 ($ $)) (-15 -2148 ($ $)) (-15 -2147 ($ $)) (-15 -2146 ($ $)) (-15 -2145 ($ $)) (-15 -2144 ($ $)) (-15 -2143 ($ $)) (-15 -2142 ($ $)) (-15 -2141 ($ $)) (-15 -2140 ($ $)) (-15 -2139 ($ $))) |%noBranch|))) (-954)) (T -524)) +((-3921 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-524 *3)) (-4 *3 (-954)))) (-2173 (*1 *1 *2 *3) (-12 (-5 *2 (-932 (-743 (-478)))) (-5 *3 (-1058 (-2 (|:| |k| (-478)) (|:| |c| *4)))) (-4 *4 (-954)) (-5 *1 (-524 *4)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-932 (-743 (-478)))) (-5 *1 (-524 *3)) (-4 *3 (-954)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-1058 (-2 (|:| |k| (-478)) (|:| |c| *3)))) (-5 *1 (-524 *3)) (-4 *3 (-954)))) (-3802 (*1 *1 *2) (-12 (-5 *2 (-1058 (-2 (|:| |k| (-478)) (|:| |c| *3)))) (-4 *3 (-954)) (-5 *1 (-524 *3)))) (-3799 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-478))) (-4 *3 (-954)) (-5 *1 (-524 *3)))) (-2170 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-83)) (-5 *1 (-524 *3)) (-4 *3 (-954)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-954)))) (-2168 (*1 *1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-954)))) (-2167 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1058 (-2 (|:| |k| (-478)) (|:| |c| *6)))) (-5 *4 (-932 (-743 (-478)))) (-5 *5 (-1079)) (-5 *7 (-343 (-478))) (-4 *6 (-954)) (-5 *2 (-765)) (-5 *1 (-524 *6)))) (-3796 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2166 (*1 *1 *1 *2) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2165 (*1 *1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-524 *3)) (-4 *3 (-38 *2)) (-4 *3 (-954)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2153 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2152 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2151 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2150 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2149 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2148 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2147 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2146 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2145 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2144 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2143 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2142 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2141 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2140 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2139 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 63 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3802 (($ (-1058 |#1|)) 9 T ELT)) (-3708 (($) NIL T CONST)) (-3451 (((-3 $ #1#) $) 44 T ELT)) (-2876 (((-83) $) 56 T ELT)) (-3756 (((-687) $) 61 T ELT) (((-687) $ (-687)) 60 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) 46 (|has| |#1| (-489)) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3801 (((-1058 |#1|) $) 25 T ELT)) (-3109 (((-687)) 55 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2644 (($) 10 T CONST)) (-2650 (($) 14 T CONST)) (-3037 (((-83) $ $) 24 T ELT)) (-3821 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3823 (($ $ $) 27 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 53 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-478)) 38 T ELT))) +(((-525 |#1|) (-13 (-954) (-80 |#1| |#1|) (-10 -8 (-15 -3801 ((-1058 |#1|) $)) (-15 -3802 ($ (-1058 |#1|))) (-15 -2876 ((-83) $)) (-15 -3756 ((-687) $)) (-15 -3756 ((-687) $ (-687))) (-15 * ($ $ (-478))) (IF (|has| |#1| (-489)) (-6 (-489)) |%noBranch|))) (-954)) (T -525)) +((-3801 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-525 *3)) (-4 *3 (-954)))) (-3802 (*1 *1 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-525 *3)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-525 *3)) (-4 *3 (-954)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-525 *3)) (-4 *3 (-954)))) (-3756 (*1 *2 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-525 *3)) (-4 *3 (-954)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-525 *3)) (-4 *3 (-954))))) +((-2552 (((-83) $ $) NIL T ELT)) (-2176 (($) 8 T CONST)) (-2177 (($) 7 T CONST)) (-2174 (($ $ (-578 $)) 16 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2178 (($) 6 T CONST)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-1084)) 15 T ELT) (((-1084) $) 10 T ELT)) (-2175 (($) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-526) (-13 (-1005) (-423 (-1084)) (-10 -8 (-15 -2178 ($) -3936) (-15 -2177 ($) -3936) (-15 -2176 ($) -3936) (-15 -2175 ($) -3936) (-15 -2174 ($ $ (-578 $)))))) (T -526)) +((-2178 (*1 *1) (-5 *1 (-526))) (-2177 (*1 *1) (-5 *1 (-526))) (-2176 (*1 *1) (-5 *1 (-526))) (-2175 (*1 *1) (-5 *1 (-526))) (-2174 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-526))) (-5 *1 (-526))))) +((-3942 (((-530 |#2|) (-1 |#2| |#1|) (-530 |#1|)) 15 T ELT))) +(((-527 |#1| |#2|) (-13 (-1118) (-10 -7 (-15 -3942 ((-530 |#2|) (-1 |#2| |#1|) (-530 |#1|))))) (-1118) (-1118)) (T -527)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-530 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-530 *6)) (-5 *1 (-527 *5 *6))))) +((-3942 (((-1058 |#3|) (-1 |#3| |#1| |#2|) (-530 |#1|) (-1058 |#2|)) 20 T ELT) (((-1058 |#3|) (-1 |#3| |#1| |#2|) (-1058 |#1|) (-530 |#2|)) 19 T ELT) (((-530 |#3|) (-1 |#3| |#1| |#2|) (-530 |#1|) (-530 |#2|)) 18 T ELT))) +(((-528 |#1| |#2| |#3|) (-10 -7 (-15 -3942 ((-530 |#3|) (-1 |#3| |#1| |#2|) (-530 |#1|) (-530 |#2|))) (-15 -3942 ((-1058 |#3|) (-1 |#3| |#1| |#2|) (-1058 |#1|) (-530 |#2|))) (-15 -3942 ((-1058 |#3|) (-1 |#3| |#1| |#2|) (-530 |#1|) (-1058 |#2|)))) (-1118) (-1118) (-1118)) (T -528)) +((-3942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-530 *6)) (-5 *5 (-1058 *7)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-1058 *8)) (-5 *1 (-528 *6 *7 *8)))) (-3942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1058 *6)) (-5 *5 (-530 *7)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-1058 *8)) (-5 *1 (-528 *6 *7 *8)))) (-3942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-530 *6)) (-5 *5 (-530 *7)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-530 *8)) (-5 *1 (-528 *6 *7 *8))))) +((-2183 ((|#3| |#3| (-578 (-545 |#3|)) (-578 (-1079))) 57 T ELT)) (-2182 (((-140 |#2|) |#3|) 122 T ELT)) (-2179 ((|#3| (-140 |#2|)) 46 T ELT)) (-2180 ((|#2| |#3|) 21 T ELT)) (-2181 ((|#3| |#2|) 35 T ELT))) +(((-529 |#1| |#2| |#3|) (-10 -7 (-15 -2179 (|#3| (-140 |#2|))) (-15 -2180 (|#2| |#3|)) (-15 -2181 (|#3| |#2|)) (-15 -2182 ((-140 |#2|) |#3|)) (-15 -2183 (|#3| |#3| (-578 (-545 |#3|)) (-578 (-1079))))) (-489) (-13 (-357 |#1|) (-908) (-1104)) (-13 (-357 (-140 |#1|)) (-908) (-1104))) (T -529)) +((-2183 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-578 (-545 *2))) (-5 *4 (-578 (-1079))) (-4 *2 (-13 (-357 (-140 *5)) (-908) (-1104))) (-4 *5 (-489)) (-5 *1 (-529 *5 *6 *2)) (-4 *6 (-13 (-357 *5) (-908) (-1104))))) (-2182 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-140 *5)) (-5 *1 (-529 *4 *5 *3)) (-4 *5 (-13 (-357 *4) (-908) (-1104))) (-4 *3 (-13 (-357 (-140 *4)) (-908) (-1104))))) (-2181 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *2 (-13 (-357 (-140 *4)) (-908) (-1104))) (-5 *1 (-529 *4 *3 *2)) (-4 *3 (-13 (-357 *4) (-908) (-1104))))) (-2180 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *2 (-13 (-357 *4) (-908) (-1104))) (-5 *1 (-529 *4 *2 *3)) (-4 *3 (-13 (-357 (-140 *4)) (-908) (-1104))))) (-2179 (*1 *2 *3) (-12 (-5 *3 (-140 *5)) (-4 *5 (-13 (-357 *4) (-908) (-1104))) (-4 *4 (-489)) (-4 *2 (-13 (-357 (-140 *4)) (-908) (-1104))) (-5 *1 (-529 *4 *5 *2))))) +((-3694 (($ (-1 (-83) |#1|) $) 19 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3441 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3440 (($ (-1 (-83) |#1|) $) 15 T ELT)) (-3439 (($ (-1 (-83) |#1|) $) 17 T ELT)) (-3514 (((-1058 |#1|) $) 20 T ELT)) (-3930 (((-765) $) 25 T ELT))) +(((-530 |#1|) (-13 (-547 (-765)) (-10 -8 (-15 -3942 ($ (-1 |#1| |#1|) $)) (-15 -3440 ($ (-1 (-83) |#1|) $)) (-15 -3439 ($ (-1 (-83) |#1|) $)) (-15 -3694 ($ (-1 (-83) |#1|) $)) (-15 -3441 ($ (-1 |#1| |#1|) |#1|)) (-15 -3514 ((-1058 |#1|) $)))) (-1118)) (T -530)) +((-3942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-530 *3)))) (-3440 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1118)) (-5 *1 (-530 *3)))) (-3439 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1118)) (-5 *1 (-530 *3)))) (-3694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1118)) (-5 *1 (-530 *3)))) (-3441 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-530 *3)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-530 *3)) (-4 *3 (-1118))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3822 (($ (-687)) NIL (|has| |#1| (-23)) ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-1717 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3980)) (|has| |#1| (-749))) ELT)) (-2893 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-749)) ELT)) (-3772 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3708 (($) NIL T CONST)) (-2283 (($ $) NIL (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) NIL T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3390 (($ |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) NIL T ELT)) (-3403 (((-478) (-1 (-83) |#1|) $) NIL T ELT) (((-478) |#1| $) NIL (|has| |#1| (-1005)) ELT) (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1005)) ELT)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3819 (((-625 |#1|) $ $) NIL (|has| |#1| (-954)) ELT)) (-3598 (($ (-687) |#1|) NIL T ELT)) (-2186 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3502 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2187 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3816 ((|#1| $) NIL (-12 (|has| |#1| (-908)) (|has| |#1| (-954))) ELT)) (-3817 ((|#1| $) NIL (-12 (|has| |#1| (-908)) (|has| |#1| (-954))) ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-2290 (($ |#1| $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-3785 ((|#1| $) NIL (|has| (-478) (-749)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2185 (($ $ |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#1| $ (-478) |#1|) NIL T ELT) ((|#1| $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-3820 ((|#1| $ $) NIL (|has| |#1| (-954)) ELT)) (-2291 (($ $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-3818 (($ $ $) NIL (|has| |#1| (-954)) ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1718 (($ $ $ (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) NIL T ELT)) (-3786 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3930 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3821 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3823 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-478) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-658)) ELT) (($ $ |#1|) NIL (|has| |#1| (-658)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-531 |#1| |#2|) (-1167 |#1|) (-1118) (-478)) (T -531)) +NIL +((-2184 (((-1174) $ |#2| |#2|) 35 T ELT)) (-2186 ((|#2| $) 23 T ELT)) (-2187 ((|#2| $) 21 T ELT)) (-1936 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3942 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3785 ((|#3| $) 26 T ELT)) (-2185 (($ $ |#3|) 33 T ELT)) (-2188 (((-83) |#3| $) 17 T ELT)) (-2191 (((-578 |#3|) $) 15 T ELT)) (-3784 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) +(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -2184 ((-1174) |#1| |#2| |#2|)) (-15 -2185 (|#1| |#1| |#3|)) (-15 -3785 (|#3| |#1|)) (-15 -2186 (|#2| |#1|)) (-15 -2187 (|#2| |#1|)) (-15 -2188 ((-83) |#3| |#1|)) (-15 -2191 ((-578 |#3|) |#1|)) (-15 -3784 (|#3| |#1| |#2|)) (-15 -3784 (|#3| |#1| |#2| |#3|)) (-15 -1936 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3942 (|#1| (-1 |#3| |#3|) |#1|))) (-533 |#2| |#3|) (-1005) (-1118)) (T -532)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#2| (-72)) ELT)) (-2184 (((-1174) $ |#1| |#1|) 44 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -3980)) ELT)) (-3708 (($) 7 T CONST)) (-1563 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -3980)) ELT)) (-3096 ((|#2| $ |#1|) 55 T ELT)) (-2873 (((-578 |#2|) $) 30 (|has| $ (-6 -3979)) ELT)) (-2186 ((|#1| $) 47 (|has| |#1| (-749)) ELT)) (-2592 (((-578 |#2|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#2| $) 27 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -3979))) ELT)) (-2187 ((|#1| $) 48 (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3225 (((-1062) $) 22 (|has| |#2| (-1005)) ELT)) (-2189 (((-578 |#1|) $) 50 T ELT)) (-2190 (((-83) |#1| $) 51 T ELT)) (-3226 (((-1023) $) 21 (|has| |#2| (-1005)) ELT)) (-3785 ((|#2| $) 46 (|has| |#1| (-749)) ELT)) (-2185 (($ $ |#2|) 45 (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#2|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#2|))) 26 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-245 |#2|)) 25 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) 23 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-2188 (((-83) |#2| $) 49 (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2191 (((-578 |#2|) $) 52 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-1933 (((-687) (-1 (-83) |#2|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#2| $) 28 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3930 (((-765) $) 17 (|has| |#2| (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| |#2| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#2| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-533 |#1| |#2|) (-111) (-1005) (-1118)) (T -533)) +((-2191 (*1 *2 *1) (-12 (-4 *1 (-533 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1118)) (-5 *2 (-578 *4)))) (-2190 (*1 *2 *3 *1) (-12 (-4 *1 (-533 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1118)) (-5 *2 (-83)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-533 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1118)) (-5 *2 (-578 *3)))) (-2188 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-533 *4 *3)) (-4 *4 (-1005)) (-4 *3 (-1118)) (-4 *3 (-1005)) (-5 *2 (-83)))) (-2187 (*1 *2 *1) (-12 (-4 *1 (-533 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1005)) (-4 *2 (-749)))) (-2186 (*1 *2 *1) (-12 (-4 *1 (-533 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1005)) (-4 *2 (-749)))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-533 *3 *2)) (-4 *3 (-1005)) (-4 *3 (-749)) (-4 *2 (-1118)))) (-2185 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-533 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1118)))) (-2184 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-533 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1118)) (-5 *2 (-1174))))) +(-13 (-422 |t#2|) (-240 |t#1| |t#2|) (-10 -8 (-15 -2191 ((-578 |t#2|) $)) (-15 -2190 ((-83) |t#1| $)) (-15 -2189 ((-578 |t#1|) $)) (IF (|has| |t#2| (-1005)) (IF (|has| $ (-6 -3979)) (-15 -2188 ((-83) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-749)) (PROGN (-15 -2187 (|t#1| $)) (-15 -2186 (|t#1| $)) (-15 -3785 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -3980)) (PROGN (-15 -2185 ($ $ |t#2|)) (-15 -2184 ((-1174) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#2| (-1005)) (|has| |#2| (-72))) ((-547 (-765)) OR (|has| |#2| (-1005)) (|has| |#2| (-547 (-765)))) ((-238 |#1| |#2|) . T) ((-240 |#1| |#2|) . T) ((-256 |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ((-422 |#2|) . T) ((-447 |#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ((-1005) |has| |#2| (-1005)) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT) (((-1119) $) 14 T ELT) (($ (-578 (-1119))) 13 T ELT)) (-2192 (((-578 (-1119)) $) 10 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-534) (-13 (-987) (-547 (-1119)) (-10 -8 (-15 -3930 ($ (-578 (-1119)))) (-15 -2192 ((-578 (-1119)) $))))) (T -534)) +((-3930 (*1 *1 *2) (-12 (-5 *2 (-578 (-1119))) (-5 *1 (-534)))) (-2192 (*1 *2 *1) (-12 (-5 *2 (-578 (-1119))) (-5 *1 (-534))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1759 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1299 (((-3 $ #1#) $ $) NIL T ELT)) (-3206 (((-1168 (-625 |#1|))) NIL (|has| |#2| (-354 |#1|)) ELT) (((-1168 (-625 |#1|)) (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1716 (((-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3708 (($) NIL T CONST)) (-1893 (((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1690 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1775 (((-625 |#1|)) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1714 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1773 (((-625 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) $ (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2390 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1887 (((-1074 (-850 |#1|))) NIL (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-308))) ELT)) (-2393 (($ $ (-823)) NIL T ELT)) (-1712 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1692 (((-1074 |#1|) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1777 ((|#1|) NIL (|has| |#2| (-354 |#1|)) ELT) ((|#1| (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1710 (((-1074 |#1|) $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1704 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1779 (($ (-1168 |#1|)) NIL (|has| |#2| (-354 |#1|)) ELT) (($ (-1168 |#1|) (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3451 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-3092 (((-823)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1701 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2417 (($ $ (-823)) NIL T ELT)) (-1697 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1695 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1699 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1894 (((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1691 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1776 (((-625 |#1|)) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1715 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1774 (((-625 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) $ (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2391 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1891 (((-1074 (-850 |#1|))) NIL (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-308))) ELT)) (-2392 (($ $ (-823)) NIL T ELT)) (-1713 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1693 (((-1074 |#1|) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1778 ((|#1|) NIL (|has| |#2| (-354 |#1|)) ELT) ((|#1| (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1711 (((-1074 |#1|) $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1705 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1696 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1698 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1700 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1703 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3784 ((|#1| $ (-478)) NIL (|has| |#2| (-354 |#1|)) ELT)) (-3207 (((-625 |#1|) (-1168 $)) NIL (|has| |#2| (-354 |#1|)) ELT) (((-1168 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) (-1168 $) (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT) (((-1168 |#1|) $ (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3956 (($ (-1168 |#1|)) NIL (|has| |#2| (-354 |#1|)) ELT) (((-1168 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT)) (-1879 (((-578 (-850 |#1|))) NIL (|has| |#2| (-354 |#1|)) ELT) (((-578 (-850 |#1|)) (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2419 (($ $ $) NIL T ELT)) (-1709 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3930 (((-765) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $)) NIL (|has| |#2| (-354 |#1|)) ELT)) (-1694 (((-578 (-1168 |#1|))) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-2420 (($ $ $ $) NIL T ELT)) (-1707 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2529 (($ (-625 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT)) (-2418 (($ $ $) NIL T ELT)) (-1708 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1706 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1702 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2644 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) 24 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-535 |#1| |#2|) (-13 (-676 |#1|) (-547 |#2|) (-10 -8 (-15 -3930 ($ |#2|)) (IF (|has| |#2| (-354 |#1|)) (-6 (-354 |#1|)) |%noBranch|) (IF (|has| |#2| (-312 |#1|)) (-6 (-312 |#1|)) |%noBranch|))) (-144) (-676 |#1|)) (T -535)) +((-3930 (*1 *1 *2) (-12 (-4 *3 (-144)) (-5 *1 (-535 *3 *2)) (-4 *2 (-676 *3))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-99)) 6 T ELT) (((-99) $) 7 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-536) (-13 (-1005) (-423 (-99)))) (T -536)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-2299 (($ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2194 (($) 12 T CONST)) (-2216 (($) 10 T CONST)) (-2193 (($) 13 T CONST)) (-2212 (($) 11 T CONST)) (-2209 (($) 14 T CONST)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2297 (($ $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) NIL T ELT))) +(((-537) (-13 (-1005) (-599) (-10 -8 (-15 -2216 ($) -3936) (-15 -2212 ($) -3936) (-15 -2194 ($) -3936) (-15 -2193 ($) -3936) (-15 -2209 ($) -3936)))) (T -537)) +((-2216 (*1 *1) (-5 *1 (-537))) (-2212 (*1 *1) (-5 *1 (-537))) (-2194 (*1 *1) (-5 *1 (-537))) (-2193 (*1 *1) (-5 *1 (-537))) (-2209 (*1 *1) (-5 *1 (-537)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2205 (($) 11 T CONST)) (-2199 (($) 17 T CONST)) (-2195 (($) 21 T CONST)) (-2197 (($) 19 T CONST)) (-2202 (($) 14 T CONST)) (-2196 (($) 20 T CONST)) (-2204 (($) 12 T CONST)) (-2203 (($) 13 T CONST)) (-2198 (($) 18 T CONST)) (-2201 (($) 15 T CONST)) (-2200 (($) 16 T CONST)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (((-99) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-538) (-13 (-1005) (-547 (-99)) (-10 -8 (-15 -2205 ($) -3936) (-15 -2204 ($) -3936) (-15 -2203 ($) -3936) (-15 -2202 ($) -3936) (-15 -2201 ($) -3936) (-15 -2200 ($) -3936) (-15 -2199 ($) -3936) (-15 -2198 ($) -3936) (-15 -2197 ($) -3936) (-15 -2196 ($) -3936) (-15 -2195 ($) -3936)))) (T -538)) +((-2205 (*1 *1) (-5 *1 (-538))) (-2204 (*1 *1) (-5 *1 (-538))) (-2203 (*1 *1) (-5 *1 (-538))) (-2202 (*1 *1) (-5 *1 (-538))) (-2201 (*1 *1) (-5 *1 (-538))) (-2200 (*1 *1) (-5 *1 (-538))) (-2199 (*1 *1) (-5 *1 (-538))) (-2198 (*1 *1) (-5 *1 (-538))) (-2197 (*1 *1) (-5 *1 (-538))) (-2196 (*1 *1) (-5 *1 (-538))) (-2195 (*1 *1) (-5 *1 (-538)))) +((-2552 (((-83) $ $) NIL T ELT)) (-2299 (($ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2207 (($) 15 T CONST)) (-2206 (($) 16 T CONST)) (-2213 (($) 13 T CONST)) (-2216 (($) 10 T CONST)) (-2214 (($) 12 T CONST)) (-2215 (($) 11 T CONST)) (-2212 (($) 14 T CONST)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2297 (($ $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) NIL T ELT))) +(((-539) (-13 (-1005) (-599) (-10 -8 (-15 -2216 ($) -3936) (-15 -2215 ($) -3936) (-15 -2214 ($) -3936) (-15 -2213 ($) -3936) (-15 -2212 ($) -3936) (-15 -2207 ($) -3936) (-15 -2206 ($) -3936)))) (T -539)) +((-2216 (*1 *1) (-5 *1 (-539))) (-2215 (*1 *1) (-5 *1 (-539))) (-2214 (*1 *1) (-5 *1 (-539))) (-2213 (*1 *1) (-5 *1 (-539))) (-2212 (*1 *1) (-5 *1 (-539))) (-2207 (*1 *1) (-5 *1 (-539))) (-2206 (*1 *1) (-5 *1 (-539)))) +((-2552 (((-83) $ $) NIL T ELT)) (-2299 (($ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2211 (($) 15 T CONST)) (-2208 (($) 18 T CONST)) (-2213 (($) 13 T CONST)) (-2216 (($) 10 T CONST)) (-2214 (($) 12 T CONST)) (-2215 (($) 11 T CONST)) (-2210 (($) 16 T CONST)) (-2212 (($) 14 T CONST)) (-2209 (($) 17 T CONST)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2297 (($ $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) NIL T ELT))) +(((-540) (-13 (-1005) (-599) (-10 -8 (-15 -2216 ($) -3936) (-15 -2215 ($) -3936) (-15 -2214 ($) -3936) (-15 -2213 ($) -3936) (-15 -2212 ($) -3936) (-15 -2211 ($) -3936) (-15 -2210 ($) -3936) (-15 -2209 ($) -3936) (-15 -2208 ($) -3936)))) (T -540)) +((-2216 (*1 *1) (-5 *1 (-540))) (-2215 (*1 *1) (-5 *1 (-540))) (-2214 (*1 *1) (-5 *1 (-540))) (-2213 (*1 *1) (-5 *1 (-540))) (-2212 (*1 *1) (-5 *1 (-540))) (-2211 (*1 *1) (-5 *1 (-540))) (-2210 (*1 *1) (-5 *1 (-540))) (-2209 (*1 *1) (-5 *1 (-540))) (-2208 (*1 *1) (-5 *1 (-540)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 19 T ELT) (($ (-536)) 12 T ELT) (((-536) $) 11 T ELT) (($ (-99)) NIL T ELT) (((-99) $) 14 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-541) (-13 (-1005) (-423 (-536)) (-423 (-99)))) (T -541)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-1684 (((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) $ (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) 40 T ELT)) (-3583 (($ (-578 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2184 (((-1174) $ (-1062) (-1062)) NIL (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ (-1062) |#1|) 50 T ELT)) (-1557 (($ (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-2217 (((-3 |#1| #1="failed") (-1062) $) 53 T ELT)) (-3708 (($) NIL T CONST)) (-1688 (($ $ (-1062)) 25 T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005))) ELT)) (-3389 (((-3 |#1| #1#) (-1062) $) 54 T ELT) (($ (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3390 (($ (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005))) ELT)) (-3826 (((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $ (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $ (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005))) ELT)) (-1685 (((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1563 ((|#1| $ (-1062) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-1062)) NIL T ELT)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-2257 (($ $) 55 T ELT)) (-1689 (($ (-331)) 23 T ELT) (($ (-331) (-1062)) 22 T ELT)) (-3526 (((-331) $) 41 T ELT)) (-2186 (((-1062) $) NIL (|has| (-1062) (-749)) ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) (((-83) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005))) ELT)) (-2187 (((-1062) $) NIL (|has| (-1062) (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT) (($ (-1 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2218 (((-578 (-1062)) $) 46 T ELT)) (-2219 (((-83) (-1062) $) NIL T ELT)) (-1686 (((-1062) $) 42 T ELT)) (-1262 (((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3593 (($ (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2189 (((-578 (-1062)) $) NIL T ELT)) (-2190 (((-83) (-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3785 ((|#1| $) NIL (|has| (-1062) (-749)) ELT)) (-1341 (((-3 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) #1#) (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2185 (($ $ |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-1263 (((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) (-578 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005))) ELT) (($ $ (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005))) ELT) (($ $ (-245 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005))) ELT) (($ $ (-578 (-245 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) 44 T ELT)) (-3784 ((|#1| $ (-1062) |#1|) NIL T ELT) ((|#1| $ (-1062)) 49 T ELT)) (-1453 (($ (-578 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) (((-687) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005))) ELT) (((-687) (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-548 (-467))) ELT)) (-3514 (($ (-578 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) NIL T ELT)) (-3930 (((-765) $) 21 T ELT)) (-1687 (($ $) 26 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1264 (($ (-578 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 20 T ELT)) (-3941 (((-687) $) 48 (|has| $ (-6 -3979)) ELT))) +(((-542 |#1|) (-13 (-310 (-331) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) (-1096 (-1062) |#1|) (-10 -8 (-6 -3979) (-15 -2257 ($ $)))) (-1005)) (T -542)) +((-2257 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-1005))))) +((-3228 (((-83) (-2 (|:| -3844 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2218 (((-578 |#2|) $) 20 T ELT)) (-2219 (((-83) |#2| $) 12 T ELT))) +(((-543 |#1| |#2| |#3|) (-10 -7 (-15 -2218 ((-578 |#2|) |#1|)) (-15 -2219 ((-83) |#2| |#1|)) (-15 -3228 ((-83) (-2 (|:| -3844 |#2|) (|:| |entry| |#3|)) |#1|))) (-544 |#2| |#3|) (-1005) (-1005)) (T -543)) +NIL +((-2552 (((-83) $ $) 19 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1557 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3979)) ELT)) (-2217 (((-3 |#2| "failed") |#1| $) 65 T ELT)) (-3708 (($) 7 T CONST)) (-1340 (($ $) 62 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) ELT)) (-3389 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3979)) ELT) (((-3 |#2| "failed") |#1| $) 66 T ELT)) (-3390 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3979)) ELT)) (-3826 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3979)) ELT)) (-2873 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3979)) ELT)) (-2592 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 35 T ELT)) (-3225 (((-1062) $) 22 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) ELT)) (-2218 (((-578 |#1|) $) 67 T ELT)) (-2219 (((-83) |#1| $) 68 T ELT)) (-1262 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3593 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-3226 (((-1023) $) 21 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) ELT)) (-1341 (((-3 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-1263 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1934 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-1453 (($) 53 T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1933 (((-687) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 63 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ELT)) (-3514 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3930 (((-765) $) 17 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1264 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-544 |#1| |#2|) (-111) (-1005) (-1005)) (T -544)) +((-2219 (*1 *2 *3 *1) (-12 (-4 *1 (-544 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-5 *2 (-83)))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-544 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-5 *2 (-578 *3)))) (-3389 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-544 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005)))) (-2217 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-544 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005))))) +(-13 (-181 (-2 (|:| -3844 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -2219 ((-83) |t#1| $)) (-15 -2218 ((-578 |t#1|) $)) (-15 -3389 ((-3 |t#2| "failed") |t#1| $)) (-15 -2217 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-76 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72))) ((-547 (-765)) OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-547 (-765)))) ((-122 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-548 (-467)) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ((-181 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-190 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ((-422 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-447 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ((-1005) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-2220 (((-3 (-1079) "failed") $) 46 T ELT)) (-1300 (((-1174) $ (-687)) 22 T ELT)) (-3403 (((-687) $) 20 T ELT)) (-3579 (((-84) $) 9 T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2221 (($ (-84) (-578 |#1|) (-687)) 32 T ELT) (($ (-1079)) 33 T ELT)) (-2617 (((-83) $ (-84)) 15 T ELT) (((-83) $ (-1079)) 13 T ELT)) (-2587 (((-687) $) 17 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3956 (((-793 (-478)) $) 99 (|has| |#1| (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) 106 (|has| |#1| (-548 (-793 (-323)))) ELT) (((-467) $) 92 (|has| |#1| (-548 (-467))) ELT)) (-3930 (((-765) $) 74 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2222 (((-578 |#1|) $) 19 T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 51 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 53 T ELT))) +(((-545 |#1|) (-13 (-103) (-749) (-787 |#1|) (-10 -8 (-15 -3579 ((-84) $)) (-15 -2222 ((-578 |#1|) $)) (-15 -2587 ((-687) $)) (-15 -2221 ($ (-84) (-578 |#1|) (-687))) (-15 -2221 ($ (-1079))) (-15 -2220 ((-3 (-1079) "failed") $)) (-15 -2617 ((-83) $ (-84))) (-15 -2617 ((-83) $ (-1079))) (IF (|has| |#1| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|))) (-1005)) (T -545)) +((-3579 (*1 *2 *1) (-12 (-5 *2 (-84)) (-5 *1 (-545 *3)) (-4 *3 (-1005)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-545 *3)) (-4 *3 (-1005)))) (-2587 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-545 *3)) (-4 *3 (-1005)))) (-2221 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-84)) (-5 *3 (-578 *5)) (-5 *4 (-687)) (-4 *5 (-1005)) (-5 *1 (-545 *5)))) (-2221 (*1 *1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-545 *3)) (-4 *3 (-1005)))) (-2220 (*1 *2 *1) (|partial| -12 (-5 *2 (-1079)) (-5 *1 (-545 *3)) (-4 *3 (-1005)))) (-2617 (*1 *2 *1 *3) (-12 (-5 *3 (-84)) (-5 *2 (-83)) (-5 *1 (-545 *4)) (-4 *4 (-1005)))) (-2617 (*1 *2 *1 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-83)) (-5 *1 (-545 *4)) (-4 *4 (-1005))))) +((-2223 (((-545 |#2|) |#1|) 17 T ELT)) (-2224 (((-3 |#1| "failed") (-545 |#2|)) 21 T ELT))) +(((-546 |#1| |#2|) (-10 -7 (-15 -2223 ((-545 |#2|) |#1|)) (-15 -2224 ((-3 |#1| "failed") (-545 |#2|)))) (-1005) (-1005)) (T -546)) +((-2224 (*1 *2 *3) (|partial| -12 (-5 *3 (-545 *4)) (-4 *4 (-1005)) (-4 *2 (-1005)) (-5 *1 (-546 *2 *4)))) (-2223 (*1 *2 *3) (-12 (-5 *2 (-545 *4)) (-5 *1 (-546 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005))))) +((-3930 ((|#1| $) 6 T ELT))) +(((-547 |#1|) (-111) (-1118)) (T -547)) +((-3930 (*1 *2 *1) (-12 (-4 *1 (-547 *2)) (-4 *2 (-1118))))) +(-13 (-10 -8 (-15 -3930 (|t#1| $)))) +((-3956 ((|#1| $) 6 T ELT))) +(((-548 |#1|) (-111) (-1118)) (T -548)) +((-3956 (*1 *2 *1) (-12 (-4 *1 (-548 *2)) (-4 *2 (-1118))))) +(-13 (-10 -8 (-15 -3956 (|t#1| $)))) +((-2225 (((-3 (-1074 (-343 |#2|)) #1="failed") (-343 |#2|) (-343 |#2|) (-343 |#2|) (-1 (-341 |#2|) |#2|)) 15 T ELT) (((-3 (-1074 (-343 |#2|)) #1#) (-343 |#2|) (-343 |#2|) (-343 |#2|)) 16 T ELT))) +(((-549 |#1| |#2|) (-10 -7 (-15 -2225 ((-3 (-1074 (-343 |#2|)) #1="failed") (-343 |#2|) (-343 |#2|) (-343 |#2|))) (-15 -2225 ((-3 (-1074 (-343 |#2|)) #1#) (-343 |#2|) (-343 |#2|) (-343 |#2|) (-1 (-341 |#2|) |#2|)))) (-13 (-118) (-27) (-943 (-478)) (-943 (-343 (-478)))) (-1144 |#1|)) (T -549)) +((-2225 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-118) (-27) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-1074 (-343 *6))) (-5 *1 (-549 *5 *6)) (-5 *3 (-343 *6)))) (-2225 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-118) (-27) (-943 (-478)) (-943 (-343 (-478))))) (-4 *5 (-1144 *4)) (-5 *2 (-1074 (-343 *5))) (-5 *1 (-549 *4 *5)) (-5 *3 (-343 *5))))) +((-3930 (($ |#1|) 6 T ELT))) +(((-550 |#1|) (-111) (-1118)) (T -550)) +((-3930 (*1 *1 *2) (-12 (-4 *1 (-550 *2)) (-4 *2 (-1118))))) +(-13 (-10 -8 (-15 -3930 ($ |t#1|)))) +((-2552 (((-83) $ $) NIL T ELT)) (-2299 (($ $) NIL T ELT)) (-2226 (($) 14 T CONST)) (-2839 (($) 15 T CONST)) (-2545 (($ $ $) 29 T ELT)) (-2544 (($ $) 27 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2837 (($ $ $) 30 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2838 (($) 11 T CONST)) (-2836 (($ $ $) 31 T ELT)) (-3930 (((-765) $) 35 T ELT)) (-3550 (((-83) $ (|[\|\|]| -2838)) 24 T ELT) (((-83) $ (|[\|\|]| -2226)) 26 T ELT) (((-83) $ (|[\|\|]| -2839)) 21 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2546 (($ $ $) 28 T ELT)) (-2297 (($ $ $) NIL T ELT)) (-3037 (((-83) $ $) 18 T ELT)) (-2298 (($ $ $) NIL T ELT))) +(((-551) (-13 (-873) (-10 -8 (-15 -2226 ($) -3936) (-15 -3550 ((-83) $ (|[\|\|]| -2838))) (-15 -3550 ((-83) $ (|[\|\|]| -2226))) (-15 -3550 ((-83) $ (|[\|\|]| -2839)))))) (T -551)) +((-2226 (*1 *1) (-5 *1 (-551))) (-3550 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2838)) (-5 *2 (-83)) (-5 *1 (-551)))) (-3550 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2226)) (-5 *2 (-83)) (-5 *1 (-551)))) (-3550 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2839)) (-5 *2 (-83)) (-5 *1 (-551))))) +((-3956 (($ |#1|) 6 T ELT))) +(((-552 |#1|) (-111) (-1118)) (T -552)) +((-3956 (*1 *1 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1118))))) +(-13 (-10 -8 (-15 -3956 ($ |t#1|)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3607 (((-478) $) NIL (|has| |#1| (-748)) ELT)) (-3708 (($) NIL T CONST)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3169 (((-83) $) NIL (|has| |#1| (-748)) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2982 ((|#1| $) 13 T ELT)) (-3170 (((-83) $) NIL (|has| |#1| (-748)) ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-748)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-748)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2981 ((|#3| $) 15 T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3109 (((-687)) 20 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-3367 (($ $) NIL (|has| |#1| (-748)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) 12 T CONST)) (-2550 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-3933 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-553 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-748)) (-6 (-748)) |%noBranch|) (-15 -3933 ($ $ |#3|)) (-15 -3933 ($ |#1| |#3|)) (-15 -2982 (|#1| $)) (-15 -2981 (|#3| $)))) (-38 |#2|) (-144) (|SubsetCategory| (-658) |#2|)) (T -553)) +((-3933 (*1 *1 *1 *2) (-12 (-4 *4 (-144)) (-5 *1 (-553 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-658) *4)))) (-3933 (*1 *1 *2 *3) (-12 (-4 *4 (-144)) (-5 *1 (-553 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-658) *4)))) (-2982 (*1 *2 *1) (-12 (-4 *3 (-144)) (-4 *2 (-38 *3)) (-5 *1 (-553 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-658) *3)))) (-2981 (*1 *2 *1) (-12 (-4 *4 (-144)) (-4 *2 (|SubsetCategory| (-658) *4)) (-5 *1 (-553 *3 *4 *2)) (-4 *3 (-38 *4))))) +((-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-554 |#1| |#2|) (-10 -7 (-15 -3930 (|#1| |#2|)) (-15 -3930 (|#1| (-478))) (-15 -3930 ((-765) |#1|))) (-555 |#2|) (-954)) (T -554)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 46 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 47 T ELT))) +(((-555 |#1|) (-111) (-954)) (T -555)) +((-3930 (*1 *1 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-954))))) +(-13 (-954) (-585 |t#1|) (-10 -8 (-15 -3930 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-658) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2227 ((|#2| |#2| (-1079) (-1079)) 16 T ELT))) +(((-556 |#1| |#2|) (-10 -7 (-15 -2227 (|#2| |#2| (-1079) (-1079)))) (-13 (-254) (-118) (-943 (-478)) (-575 (-478))) (-13 (-1104) (-864) (-29 |#1|))) (T -556)) +((-2227 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *1 (-556 *4 *2)) (-4 *2 (-13 (-1104) (-864) (-29 *4)))))) +((-2552 (((-83) $ $) 64 T ELT)) (-3171 (((-83) $) 58 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-2228 ((|#1| $) 55 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1595 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3735 (((-2 (|:| -1749 $) (|:| -1748 (-343 |#2|))) (-343 |#2|)) 111 (|has| |#1| (-308)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3139 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3943 (($ $) 27 T ELT)) (-3451 (((-3 $ #1#) $) 88 T ELT)) (-2547 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3756 (((-478) $) 22 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3921 (((-83) $) 40 T ELT)) (-2877 (($ |#1| (-478)) 24 T ELT)) (-3157 ((|#1| $) 57 T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-308)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) 101 (|has| |#1| (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3450 (((-3 $ #1#) $ $) 93 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-1594 (((-687) $) 115 (|has| |#1| (-308)) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 114 (|has| |#1| (-308)) ELT)) (-3742 (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-687)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1079)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#2| (-804 (-1079))) ELT)) (-3932 (((-478) $) 38 T ELT)) (-3956 (((-343 |#2|) $) 47 T ELT)) (-3930 (((-765) $) 69 T ELT) (($ (-478)) 35 T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3661 ((|#1| $ (-478)) 72 T ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) 32 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-2644 (($) 9 T CONST)) (-2650 (($) 14 T CONST)) (-2653 (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-687)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1079)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#2| (-804 (-1079))) ELT)) (-3037 (((-83) $ $) 21 T ELT)) (-3821 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 90 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 49 T ELT))) +(((-557 |#1| |#2|) (-13 (-182 |#2|) (-489) (-548 (-343 |#2|)) (-348 |#1|) (-943 |#2|) (-10 -8 (-15 -3921 ((-83) $)) (-15 -3932 ((-478) $)) (-15 -3756 ((-478) $)) (-15 -3943 ($ $)) (-15 -3157 (|#1| $)) (-15 -2228 (|#1| $)) (-15 -3661 (|#1| $ (-478))) (-15 -2877 ($ |#1| (-478))) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-6 (-254)) (-15 -3735 ((-2 (|:| -1749 $) (|:| -1748 (-343 |#2|))) (-343 |#2|)))) |%noBranch|))) (-489) (-1144 |#1|)) (T -557)) +((-3921 (*1 *2 *1) (-12 (-4 *3 (-489)) (-5 *2 (-83)) (-5 *1 (-557 *3 *4)) (-4 *4 (-1144 *3)))) (-3932 (*1 *2 *1) (-12 (-4 *3 (-489)) (-5 *2 (-478)) (-5 *1 (-557 *3 *4)) (-4 *4 (-1144 *3)))) (-3756 (*1 *2 *1) (-12 (-4 *3 (-489)) (-5 *2 (-478)) (-5 *1 (-557 *3 *4)) (-4 *4 (-1144 *3)))) (-3943 (*1 *1 *1) (-12 (-4 *2 (-489)) (-5 *1 (-557 *2 *3)) (-4 *3 (-1144 *2)))) (-3157 (*1 *2 *1) (-12 (-4 *2 (-489)) (-5 *1 (-557 *2 *3)) (-4 *3 (-1144 *2)))) (-2228 (*1 *2 *1) (-12 (-4 *2 (-489)) (-5 *1 (-557 *2 *3)) (-4 *3 (-1144 *2)))) (-3661 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *2 (-489)) (-5 *1 (-557 *2 *4)) (-4 *4 (-1144 *2)))) (-2877 (*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-4 *2 (-489)) (-5 *1 (-557 *2 *4)) (-4 *4 (-1144 *2)))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *4 (-489)) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| -1749 (-557 *4 *5)) (|:| -1748 (-343 *5)))) (-5 *1 (-557 *4 *5)) (-5 *3 (-343 *5))))) +((-3666 (((-578 |#6|) (-578 |#4|) (-83)) 54 T ELT)) (-2229 ((|#6| |#6|) 48 T ELT))) +(((-558 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2229 (|#6| |#6|)) (-15 -3666 ((-578 |#6|) (-578 |#4|) (-83)))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|) (-975 |#1| |#2| |#3| |#4|) (-1012 |#1| |#2| |#3| |#4|)) (T -558)) +((-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 *10)) (-5 *1 (-558 *5 *6 *7 *8 *9 *10)) (-4 *9 (-975 *5 *6 *7 *8)) (-4 *10 (-1012 *5 *6 *7 *8)))) (-2229 (*1 *2 *2) (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *1 (-558 *3 *4 *5 *6 *7 *2)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *2 (-1012 *3 *4 *5 *6))))) +((-2230 (((-83) |#3| (-687) (-578 |#3|)) 30 T ELT)) (-2231 (((-3 (-2 (|:| |polfac| (-578 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-578 (-1074 |#3|)))) "failed") |#3| (-578 (-1074 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1766 (-578 (-2 (|:| |irr| |#4|) (|:| -2381 (-478)))))) (-578 |#3|) (-578 |#1|) (-578 |#3|)) 68 T ELT))) +(((-559 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2230 ((-83) |#3| (-687) (-578 |#3|))) (-15 -2231 ((-3 (-2 (|:| |polfac| (-578 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-578 (-1074 |#3|)))) "failed") |#3| (-578 (-1074 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1766 (-578 (-2 (|:| |irr| |#4|) (|:| -2381 (-478)))))) (-578 |#3|) (-578 |#1|) (-578 |#3|)))) (-749) (-710) (-254) (-854 |#3| |#2| |#1|)) (T -559)) +((-2231 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1766 (-578 (-2 (|:| |irr| *10) (|:| -2381 (-478))))))) (-5 *6 (-578 *3)) (-5 *7 (-578 *8)) (-4 *8 (-749)) (-4 *3 (-254)) (-4 *10 (-854 *3 *9 *8)) (-4 *9 (-710)) (-5 *2 (-2 (|:| |polfac| (-578 *10)) (|:| |correct| *3) (|:| |corrfact| (-578 (-1074 *3))))) (-5 *1 (-559 *8 *9 *3 *10)) (-5 *4 (-578 (-1074 *3))))) (-2230 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-687)) (-5 *5 (-578 *3)) (-4 *3 (-254)) (-4 *6 (-749)) (-4 *7 (-710)) (-5 *2 (-83)) (-5 *1 (-559 *6 *7 *3 *8)) (-4 *8 (-854 *3 *7 *6))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3512 (((-1038) $) 11 T ELT)) (-3513 (((-1038) $) 9 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 17 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-560) (-13 (-987) (-10 -8 (-15 -3513 ((-1038) $)) (-15 -3512 ((-1038) $))))) (T -560)) +((-3513 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-560)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-560))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3918 (((-578 |#1|) $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-3920 (($ $) 77 T ELT)) (-3926 (((-601 |#1| |#2|) $) 60 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) 81 T ELT)) (-2232 (((-578 (-245 |#2|)) $ $) 42 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3927 (($ (-601 |#1| |#2|)) 56 T ELT)) (-2993 (($ $ $) NIL T ELT)) (-2419 (($ $ $) NIL T ELT)) (-3930 (((-765) $) 66 T ELT) (((-1184 |#1| |#2|) $) NIL T ELT) (((-1189 |#1| |#2|) $) 74 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2650 (($) 61 T CONST)) (-2233 (((-578 (-2 (|:| |k| (-609 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2234 (((-578 (-601 |#1| |#2|)) (-578 |#1|)) 73 T ELT)) (-2649 (((-578 (-2 (|:| |k| (-796 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3037 (((-83) $ $) 62 T ELT)) (-3933 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ $ $) 52 T ELT))) +(((-561 |#1| |#2| |#3|) (-13 (-406) (-10 -8 (-15 -3927 ($ (-601 |#1| |#2|))) (-15 -3926 ((-601 |#1| |#2|) $)) (-15 -2649 ((-578 (-2 (|:| |k| (-796 |#1|)) (|:| |c| |#2|))) $)) (-15 -3930 ((-1184 |#1| |#2|) $)) (-15 -3930 ((-1189 |#1| |#2|) $)) (-15 -3920 ($ $)) (-15 -3918 ((-578 |#1|) $)) (-15 -2234 ((-578 (-601 |#1| |#2|)) (-578 |#1|))) (-15 -2233 ((-578 (-2 (|:| |k| (-609 |#1|)) (|:| |c| |#2|))) $)) (-15 -2232 ((-578 (-245 |#2|)) $ $)))) (-749) (-13 (-144) (-649 (-343 (-478)))) (-823)) (T -561)) +((-3927 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-749)) (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-5 *1 (-561 *3 *4 *5)) (-14 *5 (-823)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) (-2649 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| (-796 *3)) (|:| |c| *4)))) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-1184 *3 *4)) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-1189 *3 *4)) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) (-3920 (*1 *1 *1) (-12 (-5 *1 (-561 *2 *3 *4)) (-4 *2 (-749)) (-4 *3 (-13 (-144) (-649 (-343 (-478))))) (-14 *4 (-823)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-749)) (-5 *2 (-578 (-601 *4 *5))) (-5 *1 (-561 *4 *5 *6)) (-4 *5 (-13 (-144) (-649 (-343 (-478))))) (-14 *6 (-823)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| (-609 *3)) (|:| |c| *4)))) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) (-2232 (*1 *2 *1 *1) (-12 (-5 *2 (-578 (-245 *4))) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823))))) +((-3666 (((-578 (-1049 |#1| (-463 (-766 |#2|)) (-766 |#2|) (-696 |#1| (-766 |#2|)))) (-578 (-696 |#1| (-766 |#2|))) (-83)) 103 T ELT) (((-578 (-951 |#1| |#2|)) (-578 (-696 |#1| (-766 |#2|))) (-83)) 77 T ELT)) (-2235 (((-83) (-578 (-696 |#1| (-766 |#2|)))) 26 T ELT)) (-2239 (((-578 (-1049 |#1| (-463 (-766 |#2|)) (-766 |#2|) (-696 |#1| (-766 |#2|)))) (-578 (-696 |#1| (-766 |#2|))) (-83)) 102 T ELT)) (-2238 (((-578 (-951 |#1| |#2|)) (-578 (-696 |#1| (-766 |#2|))) (-83)) 76 T ELT)) (-2237 (((-578 (-696 |#1| (-766 |#2|))) (-578 (-696 |#1| (-766 |#2|)))) 30 T ELT)) (-2236 (((-3 (-578 (-696 |#1| (-766 |#2|))) "failed") (-578 (-696 |#1| (-766 |#2|)))) 29 T ELT))) +(((-562 |#1| |#2|) (-10 -7 (-15 -2235 ((-83) (-578 (-696 |#1| (-766 |#2|))))) (-15 -2236 ((-3 (-578 (-696 |#1| (-766 |#2|))) "failed") (-578 (-696 |#1| (-766 |#2|))))) (-15 -2237 ((-578 (-696 |#1| (-766 |#2|))) (-578 (-696 |#1| (-766 |#2|))))) (-15 -2238 ((-578 (-951 |#1| |#2|)) (-578 (-696 |#1| (-766 |#2|))) (-83))) (-15 -2239 ((-578 (-1049 |#1| (-463 (-766 |#2|)) (-766 |#2|) (-696 |#1| (-766 |#2|)))) (-578 (-696 |#1| (-766 |#2|))) (-83))) (-15 -3666 ((-578 (-951 |#1| |#2|)) (-578 (-696 |#1| (-766 |#2|))) (-83))) (-15 -3666 ((-578 (-1049 |#1| (-463 (-766 |#2|)) (-766 |#2|) (-696 |#1| (-766 |#2|)))) (-578 (-696 |#1| (-766 |#2|))) (-83)))) (-385) (-578 (-1079))) (T -562)) +((-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) (-14 *6 (-578 (-1079))) (-5 *2 (-578 (-1049 *5 (-463 (-766 *6)) (-766 *6) (-696 *5 (-766 *6))))) (-5 *1 (-562 *5 *6)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) (-14 *6 (-578 (-1079))) (-5 *2 (-578 (-951 *5 *6))) (-5 *1 (-562 *5 *6)))) (-2239 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) (-14 *6 (-578 (-1079))) (-5 *2 (-578 (-1049 *5 (-463 (-766 *6)) (-766 *6) (-696 *5 (-766 *6))))) (-5 *1 (-562 *5 *6)))) (-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) (-14 *6 (-578 (-1079))) (-5 *2 (-578 (-951 *5 *6))) (-5 *1 (-562 *5 *6)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-578 (-696 *3 (-766 *4)))) (-4 *3 (-385)) (-14 *4 (-578 (-1079))) (-5 *1 (-562 *3 *4)))) (-2236 (*1 *2 *2) (|partial| -12 (-5 *2 (-578 (-696 *3 (-766 *4)))) (-4 *3 (-385)) (-14 *4 (-578 (-1079))) (-5 *1 (-562 *3 *4)))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-578 (-696 *4 (-766 *5)))) (-4 *4 (-385)) (-14 *5 (-578 (-1079))) (-5 *2 (-83)) (-5 *1 (-562 *4 *5))))) +((-3579 (((-84) (-84)) 88 T ELT)) (-2243 ((|#2| |#2|) 28 T ELT)) (-2816 ((|#2| |#2| (-996 |#2|)) 84 T ELT) ((|#2| |#2| (-1079)) 50 T ELT)) (-2241 ((|#2| |#2|) 27 T ELT)) (-2242 ((|#2| |#2|) 29 T ELT)) (-2240 (((-83) (-84)) 33 T ELT)) (-2245 ((|#2| |#2|) 24 T ELT)) (-2246 ((|#2| |#2|) 26 T ELT)) (-2244 ((|#2| |#2|) 25 T ELT))) +(((-563 |#1| |#2|) (-10 -7 (-15 -2240 ((-83) (-84))) (-15 -3579 ((-84) (-84))) (-15 -2246 (|#2| |#2|)) (-15 -2245 (|#2| |#2|)) (-15 -2244 (|#2| |#2|)) (-15 -2243 (|#2| |#2|)) (-15 -2241 (|#2| |#2|)) (-15 -2242 (|#2| |#2|)) (-15 -2816 (|#2| |#2| (-1079))) (-15 -2816 (|#2| |#2| (-996 |#2|)))) (-489) (-13 (-357 |#1|) (-908) (-1104))) (T -563)) +((-2816 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-357 *4) (-908) (-1104))) (-4 *4 (-489)) (-5 *1 (-563 *4 *2)))) (-2816 (*1 *2 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-489)) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-357 *4) (-908) (-1104))))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) (-4 *2 (-13 (-357 *3) (-908) (-1104))))) (-2241 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) (-4 *2 (-13 (-357 *3) (-908) (-1104))))) (-2243 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) (-4 *2 (-13 (-357 *3) (-908) (-1104))))) (-2244 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) (-4 *2 (-13 (-357 *3) (-908) (-1104))))) (-2245 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) (-4 *2 (-13 (-357 *3) (-908) (-1104))))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) (-4 *2 (-13 (-357 *3) (-908) (-1104))))) (-3579 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-563 *3 *4)) (-4 *4 (-13 (-357 *3) (-908) (-1104))))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-563 *4 *5)) (-4 *5 (-13 (-357 *4) (-908) (-1104)))))) +((-3476 (($ $) 38 T ELT)) (-3623 (($ $) 21 T ELT)) (-3474 (($ $) 37 T ELT)) (-3622 (($ $) 22 T ELT)) (-3478 (($ $) 36 T ELT)) (-3621 (($ $) 23 T ELT)) (-3611 (($) 48 T ELT)) (-3926 (($ $) 45 T ELT)) (-2243 (($ $) 17 T ELT)) (-2816 (($ $ (-996 $)) 7 T ELT) (($ $ (-1079)) 6 T ELT)) (-3927 (($ $) 46 T ELT)) (-2241 (($ $) 15 T ELT)) (-2242 (($ $) 16 T ELT)) (-3479 (($ $) 35 T ELT)) (-3620 (($ $) 24 T ELT)) (-3477 (($ $) 34 T ELT)) (-3619 (($ $) 25 T ELT)) (-3475 (($ $) 33 T ELT)) (-3618 (($ $) 26 T ELT)) (-3482 (($ $) 44 T ELT)) (-3470 (($ $) 32 T ELT)) (-3480 (($ $) 43 T ELT)) (-3468 (($ $) 31 T ELT)) (-3484 (($ $) 42 T ELT)) (-3472 (($ $) 30 T ELT)) (-3485 (($ $) 41 T ELT)) (-3473 (($ $) 29 T ELT)) (-3483 (($ $) 40 T ELT)) (-3471 (($ $) 28 T ELT)) (-3481 (($ $) 39 T ELT)) (-3469 (($ $) 27 T ELT)) (-2245 (($ $) 19 T ELT)) (-2246 (($ $) 20 T ELT)) (-2244 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) +(((-564) (-111)) (T -564)) +((-2246 (*1 *1 *1) (-4 *1 (-564))) (-2245 (*1 *1 *1) (-4 *1 (-564))) (-2244 (*1 *1 *1) (-4 *1 (-564))) (-2243 (*1 *1 *1) (-4 *1 (-564))) (-2242 (*1 *1 *1) (-4 *1 (-564))) (-2241 (*1 *1 *1) (-4 *1 (-564)))) +(-13 (-864) (-1104) (-10 -8 (-15 -2246 ($ $)) (-15 -2245 ($ $)) (-15 -2244 ($ $)) (-15 -2243 ($ $)) (-15 -2242 ($ $)) (-15 -2241 ($ $)))) +(((-35) . T) ((-66) . T) ((-236) . T) ((-426) . T) ((-864) . T) ((-1104) . T) ((-1107) . T)) +((-2256 (((-414 |#1| |#2|) (-203 |#1| |#2|)) 65 T ELT)) (-2249 (((-578 (-203 |#1| |#2|)) (-578 (-414 |#1| |#2|))) 90 T ELT)) (-2250 (((-414 |#1| |#2|) (-578 (-414 |#1| |#2|)) (-766 |#1|)) 92 T ELT) (((-414 |#1| |#2|) (-578 (-414 |#1| |#2|)) (-578 (-414 |#1| |#2|)) (-766 |#1|)) 91 T ELT)) (-2247 (((-2 (|:| |gblist| (-578 (-203 |#1| |#2|))) (|:| |gvlist| (-578 (-478)))) (-578 (-414 |#1| |#2|))) 136 T ELT)) (-2254 (((-578 (-414 |#1| |#2|)) (-766 |#1|) (-578 (-414 |#1| |#2|)) (-578 (-414 |#1| |#2|))) 105 T ELT)) (-2248 (((-2 (|:| |glbase| (-578 (-203 |#1| |#2|))) (|:| |glval| (-578 (-478)))) (-578 (-203 |#1| |#2|))) 147 T ELT)) (-2252 (((-1168 |#2|) (-414 |#1| |#2|) (-578 (-414 |#1| |#2|))) 70 T ELT)) (-2251 (((-578 (-414 |#1| |#2|)) (-578 (-414 |#1| |#2|))) 47 T ELT)) (-2255 (((-203 |#1| |#2|) (-203 |#1| |#2|) (-578 (-203 |#1| |#2|))) 61 T ELT)) (-2253 (((-203 |#1| |#2|) (-578 |#2|) (-203 |#1| |#2|) (-578 (-203 |#1| |#2|))) 113 T ELT))) +(((-565 |#1| |#2|) (-10 -7 (-15 -2247 ((-2 (|:| |gblist| (-578 (-203 |#1| |#2|))) (|:| |gvlist| (-578 (-478)))) (-578 (-414 |#1| |#2|)))) (-15 -2248 ((-2 (|:| |glbase| (-578 (-203 |#1| |#2|))) (|:| |glval| (-578 (-478)))) (-578 (-203 |#1| |#2|)))) (-15 -2249 ((-578 (-203 |#1| |#2|)) (-578 (-414 |#1| |#2|)))) (-15 -2250 ((-414 |#1| |#2|) (-578 (-414 |#1| |#2|)) (-578 (-414 |#1| |#2|)) (-766 |#1|))) (-15 -2250 ((-414 |#1| |#2|) (-578 (-414 |#1| |#2|)) (-766 |#1|))) (-15 -2251 ((-578 (-414 |#1| |#2|)) (-578 (-414 |#1| |#2|)))) (-15 -2252 ((-1168 |#2|) (-414 |#1| |#2|) (-578 (-414 |#1| |#2|)))) (-15 -2253 ((-203 |#1| |#2|) (-578 |#2|) (-203 |#1| |#2|) (-578 (-203 |#1| |#2|)))) (-15 -2254 ((-578 (-414 |#1| |#2|)) (-766 |#1|) (-578 (-414 |#1| |#2|)) (-578 (-414 |#1| |#2|)))) (-15 -2255 ((-203 |#1| |#2|) (-203 |#1| |#2|) (-578 (-203 |#1| |#2|)))) (-15 -2256 ((-414 |#1| |#2|) (-203 |#1| |#2|)))) (-578 (-1079)) (-385)) (T -565)) +((-2256 (*1 *2 *3) (-12 (-5 *3 (-203 *4 *5)) (-14 *4 (-578 (-1079))) (-4 *5 (-385)) (-5 *2 (-414 *4 *5)) (-5 *1 (-565 *4 *5)))) (-2255 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-203 *4 *5))) (-5 *2 (-203 *4 *5)) (-14 *4 (-578 (-1079))) (-4 *5 (-385)) (-5 *1 (-565 *4 *5)))) (-2254 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-578 (-414 *4 *5))) (-5 *3 (-766 *4)) (-14 *4 (-578 (-1079))) (-4 *5 (-385)) (-5 *1 (-565 *4 *5)))) (-2253 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-203 *5 *6))) (-4 *6 (-385)) (-5 *2 (-203 *5 *6)) (-14 *5 (-578 (-1079))) (-5 *1 (-565 *5 *6)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-414 *5 *6))) (-5 *3 (-414 *5 *6)) (-14 *5 (-578 (-1079))) (-4 *6 (-385)) (-5 *2 (-1168 *6)) (-5 *1 (-565 *5 *6)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-578 (-414 *3 *4))) (-14 *3 (-578 (-1079))) (-4 *4 (-385)) (-5 *1 (-565 *3 *4)))) (-2250 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-414 *5 *6))) (-5 *4 (-766 *5)) (-14 *5 (-578 (-1079))) (-5 *2 (-414 *5 *6)) (-5 *1 (-565 *5 *6)) (-4 *6 (-385)))) (-2250 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-578 (-414 *5 *6))) (-5 *4 (-766 *5)) (-14 *5 (-578 (-1079))) (-5 *2 (-414 *5 *6)) (-5 *1 (-565 *5 *6)) (-4 *6 (-385)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-578 (-414 *4 *5))) (-14 *4 (-578 (-1079))) (-4 *5 (-385)) (-5 *2 (-578 (-203 *4 *5))) (-5 *1 (-565 *4 *5)))) (-2248 (*1 *2 *3) (-12 (-14 *4 (-578 (-1079))) (-4 *5 (-385)) (-5 *2 (-2 (|:| |glbase| (-578 (-203 *4 *5))) (|:| |glval| (-578 (-478))))) (-5 *1 (-565 *4 *5)) (-5 *3 (-578 (-203 *4 *5))))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-578 (-414 *4 *5))) (-14 *4 (-578 (-1079))) (-4 *5 (-385)) (-5 *2 (-2 (|:| |gblist| (-578 (-203 *4 *5))) (|:| |gvlist| (-578 (-478))))) (-5 *1 (-565 *4 *5))))) +((-2552 (((-83) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-72))) ELT)) (-3583 (($) NIL T ELT) (($ (-578 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))))) NIL T ELT)) (-2184 (((-1174) $ (-1062) (-1062)) NIL (|has| $ (-6 -3980)) ELT)) (-3772 (((-51) $ (-1062) (-51)) NIL T ELT) (((-51) $ (-1079) (-51)) 16 T ELT)) (-1557 (($ (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3979)) ELT)) (-2217 (((-3 (-51) #1="failed") (-1062) $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-1005))) ELT)) (-3389 (($ (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3979)) ELT) (((-3 (-51) #1#) (-1062) $) NIL T ELT)) (-3390 (($ (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-1005))) ELT) (($ (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 (((-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-1 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) $ (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-1005))) ELT) (((-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-1 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) $ (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-1 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 (((-51) $ (-1062) (-51)) NIL (|has| $ (-6 -3980)) ELT)) (-3096 (((-51) $ (-1062)) NIL T ELT)) (-2873 (((-578 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 (-51)) $) NIL (|has| $ (-6 -3979)) ELT)) (-2257 (($ $) NIL T ELT)) (-2186 (((-1062) $) NIL (|has| (-1062) (-749)) ELT)) (-2592 (((-578 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 (-51)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-1005))) ELT) (((-83) (-51) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-51) (-1005))) ELT)) (-2187 (((-1062) $) NIL (|has| (-1062) (-749)) ELT)) (-1936 (($ (-1 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3980)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2258 (($ (-331)) 8 T ELT)) (-3225 (((-1062) $) NIL (OR (|has| (-51) (-1005)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-1005))) ELT)) (-2218 (((-578 (-1062)) $) NIL T ELT)) (-2219 (((-83) (-1062) $) NIL T ELT)) (-1262 (((-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) $) NIL T ELT)) (-3593 (($ (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) $) NIL T ELT)) (-2189 (((-578 (-1062)) $) NIL T ELT)) (-2190 (((-83) (-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL (OR (|has| (-51) (-1005)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-1005))) ELT)) (-3785 (((-51) $) NIL (|has| (-1062) (-749)) ELT)) (-1341 (((-3 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) #1#) (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2185 (($ $ (-51)) NIL (|has| $ (-6 -3980)) ELT)) (-1263 (((-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) $) NIL T ELT)) (-1934 (((-83) (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) (-51)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-256 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-1005))) ELT) (($ $ (-245 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-256 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-1005))) ELT) (($ $ (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-256 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-1005))) ELT) (($ $ (-578 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) (-578 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-256 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-1005))) ELT) (($ $ (-578 (-51)) (-578 (-51))) NIL (-12 (|has| (-51) (-256 (-51))) (|has| (-51) (-1005))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-256 (-51))) (|has| (-51) (-1005))) ELT) (($ $ (-245 (-51))) NIL (-12 (|has| (-51) (-256 (-51))) (|has| (-51) (-1005))) ELT) (($ $ (-578 (-245 (-51)))) NIL (-12 (|has| (-51) (-256 (-51))) (|has| (-51) (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) (-51) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-51) (-1005))) ELT)) (-2191 (((-578 (-51)) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 (((-51) $ (-1062)) NIL T ELT) (((-51) $ (-1062) (-51)) NIL T ELT) (((-51) $ (-1079)) 14 T ELT)) (-1453 (($) NIL T ELT) (($ (-578 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))))) NIL T ELT)) (-1933 (((-687) (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-1005))) ELT) (((-687) (-51) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-51) (-1005))) ELT) (((-687) (-1 (-83) (-51)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-548 (-467))) ELT)) (-3514 (($ (-578 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))))) NIL T ELT)) (-3930 (((-765) $) NIL (OR (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-547 (-765))) (|has| (-51) (-547 (-765)))) ELT)) (-1253 (((-83) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-72))) ELT)) (-1264 (($ (-578 (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))))) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) (-51)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| (-51))) (-72))) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-566) (-13 (-1096 (-1062) (-51)) (-238 (-1079) (-51)) (-10 -8 (-15 -2258 ($ (-331))) (-15 -2257 ($ $)) (-15 -3772 ((-51) $ (-1079) (-51)))))) (T -566)) +((-2258 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-566)))) (-2257 (*1 *1 *1) (-5 *1 (-566))) (-3772 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1079)) (-5 *1 (-566))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1759 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1299 (((-3 $ #1#) $ $) NIL T ELT)) (-3206 (((-1168 (-625 |#1|))) NIL (|has| |#2| (-354 |#1|)) ELT) (((-1168 (-625 |#1|)) (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1716 (((-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3708 (($) NIL T CONST)) (-1893 (((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1690 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1775 (((-625 |#1|)) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1714 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1773 (((-625 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) $ (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2390 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1887 (((-1074 (-850 |#1|))) NIL (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-308))) ELT)) (-2393 (($ $ (-823)) NIL T ELT)) (-1712 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1692 (((-1074 |#1|) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1777 ((|#1|) NIL (|has| |#2| (-354 |#1|)) ELT) ((|#1| (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1710 (((-1074 |#1|) $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1704 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1779 (($ (-1168 |#1|)) NIL (|has| |#2| (-354 |#1|)) ELT) (($ (-1168 |#1|) (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3451 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-3092 (((-823)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1701 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2417 (($ $ (-823)) NIL T ELT)) (-1697 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1695 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1699 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1894 (((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1691 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1776 (((-625 |#1|)) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1715 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1774 (((-625 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) $ (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2391 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1891 (((-1074 (-850 |#1|))) NIL (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-308))) ELT)) (-2392 (($ $ (-823)) NIL T ELT)) (-1713 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1693 (((-1074 |#1|) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1778 ((|#1|) NIL (|has| |#2| (-354 |#1|)) ELT) ((|#1| (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1711 (((-1074 |#1|) $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1705 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1696 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1698 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1700 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1703 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3784 ((|#1| $ (-478)) NIL (|has| |#2| (-354 |#1|)) ELT)) (-3207 (((-625 |#1|) (-1168 $)) NIL (|has| |#2| (-354 |#1|)) ELT) (((-1168 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) (-1168 $) (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT) (((-1168 |#1|) $ (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3956 (($ (-1168 |#1|)) NIL (|has| |#2| (-354 |#1|)) ELT) (((-1168 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT)) (-1879 (((-578 (-850 |#1|))) NIL (|has| |#2| (-354 |#1|)) ELT) (((-578 (-850 |#1|)) (-1168 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2419 (($ $ $) NIL T ELT)) (-1709 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3930 (((-765) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $)) NIL (|has| |#2| (-354 |#1|)) ELT)) (-1694 (((-578 (-1168 |#1|))) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-2420 (($ $ $ $) NIL T ELT)) (-1707 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2529 (($ (-625 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT)) (-2418 (($ $ $) NIL T ELT)) (-1708 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1706 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1702 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2644 (($) 18 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) 19 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-567 |#1| |#2|) (-13 (-676 |#1|) (-547 |#2|) (-10 -8 (-15 -3930 ($ |#2|)) (IF (|has| |#2| (-354 |#1|)) (-6 (-354 |#1|)) |%noBranch|) (IF (|has| |#2| (-312 |#1|)) (-6 (-312 |#1|)) |%noBranch|))) (-144) (-676 |#1|)) (T -567)) +((-3930 (*1 *1 *2) (-12 (-4 *3 (-144)) (-5 *1 (-567 *3 *2)) (-4 *2 (-676 *3))))) +((-3933 (($ $ |#2|) 10 T ELT))) +(((-568 |#1| |#2|) (-10 -7 (-15 -3933 (|#1| |#1| |#2|))) (-569 |#2|) (-144)) (T -568)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3514 (($ $ $) 39 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ |#1|) 38 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-569 |#1|) (-111) (-144)) (T -569)) +((-3514 (*1 *1 *1 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-144)))) (-3933 (*1 *1 *1 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-144)) (-4 *2 (-308))))) +(-13 (-649 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3514 ($ $ $)) (IF (|has| |t#1| (-308)) (-15 -3933 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) . T) ((-649 |#1|) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-2260 (((-3 (-743 |#2|) #1="failed") |#2| (-245 |#2|) (-1062)) 105 T ELT) (((-3 (-743 |#2|) (-2 (|:| |leftHandLimit| (-3 (-743 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-743 |#2|) #1#))) #1#) |#2| (-245 (-743 |#2|))) 130 T ELT)) (-2259 (((-3 (-736 |#2|) #1#) |#2| (-245 (-736 |#2|))) 135 T ELT))) +(((-570 |#1| |#2|) (-10 -7 (-15 -2260 ((-3 (-743 |#2|) (-2 (|:| |leftHandLimit| (-3 (-743 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-743 |#2|) #1#))) #1#) |#2| (-245 (-743 |#2|)))) (-15 -2259 ((-3 (-736 |#2|) #1#) |#2| (-245 (-736 |#2|)))) (-15 -2260 ((-3 (-743 |#2|) #1#) |#2| (-245 |#2|) (-1062)))) (-13 (-385) (-943 (-478)) (-575 (-478))) (-13 (-27) (-1104) (-357 |#1|))) (T -570)) +((-2260 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-245 *3)) (-5 *5 (-1062)) (-4 *3 (-13 (-27) (-1104) (-357 *6))) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-743 *3)) (-5 *1 (-570 *6 *3)))) (-2259 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-245 (-736 *3))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-736 *3)) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))))) (-2260 (*1 *2 *3 *4) (-12 (-5 *4 (-245 (-743 *3))) (-4 *3 (-13 (-27) (-1104) (-357 *5))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 (-743 *3) (-2 (|:| |leftHandLimit| (-3 (-743 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-743 *3) #1#))) "failed")) (-5 *1 (-570 *5 *3))))) +((-2260 (((-3 (-743 (-343 (-850 |#1|))) #1="failed") (-343 (-850 |#1|)) (-245 (-343 (-850 |#1|))) (-1062)) 86 T ELT) (((-3 (-743 (-343 (-850 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-743 (-343 (-850 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-743 (-343 (-850 |#1|))) #1#))) #1#) (-343 (-850 |#1|)) (-245 (-343 (-850 |#1|)))) 20 T ELT) (((-3 (-743 (-343 (-850 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-743 (-343 (-850 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-743 (-343 (-850 |#1|))) #1#))) #1#) (-343 (-850 |#1|)) (-245 (-743 (-850 |#1|)))) 35 T ELT)) (-2259 (((-736 (-343 (-850 |#1|))) (-343 (-850 |#1|)) (-245 (-343 (-850 |#1|)))) 23 T ELT) (((-736 (-343 (-850 |#1|))) (-343 (-850 |#1|)) (-245 (-736 (-850 |#1|)))) 43 T ELT))) +(((-571 |#1|) (-10 -7 (-15 -2260 ((-3 (-743 (-343 (-850 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-743 (-343 (-850 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-743 (-343 (-850 |#1|))) #1#))) #1#) (-343 (-850 |#1|)) (-245 (-743 (-850 |#1|))))) (-15 -2260 ((-3 (-743 (-343 (-850 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-743 (-343 (-850 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-743 (-343 (-850 |#1|))) #1#))) #1#) (-343 (-850 |#1|)) (-245 (-343 (-850 |#1|))))) (-15 -2259 ((-736 (-343 (-850 |#1|))) (-343 (-850 |#1|)) (-245 (-736 (-850 |#1|))))) (-15 -2259 ((-736 (-343 (-850 |#1|))) (-343 (-850 |#1|)) (-245 (-343 (-850 |#1|))))) (-15 -2260 ((-3 (-743 (-343 (-850 |#1|))) #1#) (-343 (-850 |#1|)) (-245 (-343 (-850 |#1|))) (-1062)))) (-385)) (T -571)) +((-2260 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-245 (-343 (-850 *6)))) (-5 *5 (-1062)) (-5 *3 (-343 (-850 *6))) (-4 *6 (-385)) (-5 *2 (-743 *3)) (-5 *1 (-571 *6)))) (-2259 (*1 *2 *3 *4) (-12 (-5 *4 (-245 (-343 (-850 *5)))) (-5 *3 (-343 (-850 *5))) (-4 *5 (-385)) (-5 *2 (-736 *3)) (-5 *1 (-571 *5)))) (-2259 (*1 *2 *3 *4) (-12 (-5 *4 (-245 (-736 (-850 *5)))) (-4 *5 (-385)) (-5 *2 (-736 (-343 (-850 *5)))) (-5 *1 (-571 *5)) (-5 *3 (-343 (-850 *5))))) (-2260 (*1 *2 *3 *4) (-12 (-5 *4 (-245 (-343 (-850 *5)))) (-5 *3 (-343 (-850 *5))) (-4 *5 (-385)) (-5 *2 (-3 (-743 *3) (-2 (|:| |leftHandLimit| (-3 (-743 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-743 *3) #1#))) #2="failed")) (-5 *1 (-571 *5)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *4 (-245 (-743 (-850 *5)))) (-4 *5 (-385)) (-5 *2 (-3 (-743 (-343 (-850 *5))) (-2 (|:| |leftHandLimit| (-3 (-743 (-343 (-850 *5))) #1#)) (|:| |rightHandLimit| (-3 (-743 (-343 (-850 *5))) #1#))) #2#)) (-5 *1 (-571 *5)) (-5 *3 (-343 (-850 *5)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) NIL T ELT)) (-2978 (($) NIL T ELT)) (-2515 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2841 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1996 (((-823) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2386 (($ (-823)) 11 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2835 (($ (-166 |#1|)) 12 T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-766 |#1|)) 7 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT))) +(((-572 |#1|) (-13 (-745) (-550 (-766 |#1|)) (-10 -8 (-15 -2835 ($ (-166 |#1|))))) (-578 (-1079))) (T -572)) +((-2835 (*1 *1 *2) (-12 (-5 *2 (-166 *3)) (-14 *3 (-578 (-1079))) (-5 *1 (-572 *3))))) +((-2263 (((-3 (-1168 (-343 |#1|)) #1="failed") (-1168 |#2|) |#2|) 64 (-2544 (|has| |#1| (-308))) ELT) (((-3 (-1168 |#1|) #1#) (-1168 |#2|) |#2|) 49 (|has| |#1| (-308)) ELT)) (-2261 (((-83) (-1168 |#2|)) 33 T ELT)) (-2262 (((-3 (-1168 |#1|) #1#) (-1168 |#2|)) 40 T ELT))) +(((-573 |#1| |#2|) (-10 -7 (-15 -2261 ((-83) (-1168 |#2|))) (-15 -2262 ((-3 (-1168 |#1|) #1="failed") (-1168 |#2|))) (IF (|has| |#1| (-308)) (-15 -2263 ((-3 (-1168 |#1|) #1#) (-1168 |#2|) |#2|)) (-15 -2263 ((-3 (-1168 (-343 |#1|)) #1#) (-1168 |#2|) |#2|)))) (-489) (-13 (-954) (-575 |#1|))) (T -573)) +((-2263 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-13 (-954) (-575 *5))) (-2544 (-4 *5 (-308))) (-4 *5 (-489)) (-5 *2 (-1168 (-343 *5))) (-5 *1 (-573 *5 *4)))) (-2263 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-13 (-954) (-575 *5))) (-4 *5 (-308)) (-4 *5 (-489)) (-5 *2 (-1168 *5)) (-5 *1 (-573 *5 *4)))) (-2262 (*1 *2 *3) (|partial| -12 (-5 *3 (-1168 *5)) (-4 *5 (-13 (-954) (-575 *4))) (-4 *4 (-489)) (-5 *2 (-1168 *4)) (-5 *1 (-573 *4 *5)))) (-2261 (*1 *2 *3) (-12 (-5 *3 (-1168 *5)) (-4 *5 (-13 (-954) (-575 *4))) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-573 *4 *5))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3758 (((-578 (-775 (-572 |#2|) |#1|)) $) NIL T ELT)) (-1299 (((-3 $ "failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3943 (($ $) NIL T ELT)) (-2877 (($ |#1| (-572 |#2|)) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2264 (($ (-578 |#1|)) 25 T ELT)) (-1971 (((-572 |#2|) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3895 (((-105)) 16 T ELT)) (-3207 (((-1168 |#1|) $) 44 T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-572 |#2|)) 11 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 20 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#1|) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 17 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-574 |#1| |#2|) (-13 (-1176 |#1|) (-550 (-572 |#2|)) (-442 |#1| (-572 |#2|)) (-10 -8 (-15 -2264 ($ (-578 |#1|))) (-15 -3207 ((-1168 |#1|) $)))) (-308) (-578 (-1079))) (T -574)) +((-2264 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-308)) (-5 *1 (-574 *3 *4)) (-14 *4 (-578 (-1079))))) (-3207 (*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-574 *3 *4)) (-4 *3 (-308)) (-14 *4 (-578 (-1079)))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-2265 (((-625 |#1|) (-625 $)) 35 T ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) 34 T ELT)) (-2266 (((-625 |#1|) (-1168 $)) 37 T ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) 36 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT))) +(((-575 |#1|) (-111) (-954)) (T -575)) +((-2266 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-575 *4)) (-4 *4 (-954)) (-5 *2 (-625 *4)))) (-2266 (*1 *2 *3 *1) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-575 *4)) (-4 *4 (-954)) (-5 *2 (-2 (|:| |mat| (-625 *4)) (|:| |vec| (-1168 *4)))))) (-2265 (*1 *2 *3) (-12 (-5 *3 (-625 *1)) (-4 *1 (-575 *4)) (-4 *4 (-954)) (-5 *2 (-625 *4)))) (-2265 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *1)) (-5 *4 (-1168 *1)) (-4 *1 (-575 *5)) (-4 *5 (-954)) (-5 *2 (-2 (|:| |mat| (-625 *5)) (|:| |vec| (-1168 *5))))))) +(-13 (-585 |t#1|) (-10 -8 (-15 -2266 ((-625 |t#1|) (-1168 $))) (-15 -2266 ((-2 (|:| |mat| (-625 |t#1|)) (|:| |vec| (-1168 |t#1|))) (-1168 $) $)) (-15 -2265 ((-625 |t#1|) (-625 $))) (-15 -2265 ((-2 (|:| |mat| (-625 |t#1|)) (|:| |vec| (-1168 |t#1|))) (-625 $) (-1168 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ "failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2267 (($ (-578 |#1|)) 23 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3784 ((|#1| $ (-574 |#1| |#2|)) 46 T ELT)) (-3895 (((-105)) 13 T ELT)) (-3207 (((-1168 |#1|) $) 42 T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 18 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#1|) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 14 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-576 |#1| |#2|) (-13 (-1176 |#1|) (-238 (-574 |#1| |#2|) |#1|) (-10 -8 (-15 -2267 ($ (-578 |#1|))) (-15 -3207 ((-1168 |#1|) $)))) (-308) (-578 (-1079))) (T -576)) +((-2267 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-308)) (-5 *1 (-576 *3 *4)) (-14 *4 (-578 (-1079))))) (-3207 (*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-576 *3 *4)) (-4 *3 (-308)) (-14 *4 (-578 (-1079)))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) +(((-577 |#1|) (-111) (-1015)) (T -577)) +NIL +(-13 (-583 |t#1|) (-956 |t#1|)) +(((-72) . T) ((-547 (-765)) . T) ((-583 |#1|) . T) ((-956 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3386 ((|#1| $) NIL T ELT)) (-3779 ((|#1| $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-3769 (($ $ (-478)) 71 (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) $) NIL (|has| |#1| (-749)) ELT) (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT)) (-1717 (($ $) NIL (-12 (|has| $ (-6 -3980)) (|has| |#1| (-749))) ELT) (($ (-1 (-83) |#1| |#1|) $) 68 (|has| $ (-6 -3980)) ELT)) (-2893 (($ $) NIL (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $) NIL T ELT)) (-3426 (((-83) $ (-687)) NIL T ELT)) (-3009 ((|#1| $ |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3771 (($ $ $) 26 (|has| $ (-6 -3980)) ELT)) (-3770 ((|#1| $ |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3773 ((|#1| $ |#1|) 24 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3980)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-6 -3980)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-6 -3980)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) NIL (|has| $ (-6 -3980)) ELT) ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) NIL (|has| $ (-6 -3980)) ELT)) (-2270 (($ $ $) 77 (|has| |#1| (-1005)) ELT)) (-2269 (($ $ $) 78 (|has| |#1| (-1005)) ELT)) (-2268 (($ $ $) 81 (|has| |#1| (-1005)) ELT)) (-1557 (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3694 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3780 ((|#1| $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2283 (($ $) 31 (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) 32 T ELT)) (-3783 (($ $) 21 T ELT) (($ $ (-687)) 36 T ELT)) (-2354 (($ $) 66 (|has| |#1| (-1005)) ELT)) (-1340 (($ $) 76 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3389 (($ |#1| $) NIL (|has| |#1| (-1005)) ELT) (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3390 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1563 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) NIL T ELT)) (-3427 (((-83) $) NIL T ELT)) (-3403 (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1005)) ELT) (((-478) |#1| $) NIL (|has| |#1| (-1005)) ELT) (((-478) (-1 (-83) |#1|) $) NIL T ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-2272 (((-83) $) 9 T ELT)) (-3015 (((-578 $) $) NIL T ELT)) (-3011 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-2273 (($) 7 T CONST)) (-3598 (($ (-687) |#1|) NIL T ELT)) (-3703 (((-83) $ (-687)) NIL T ELT)) (-2186 (((-478) $) 35 (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2840 (($ $ $) NIL (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) 69 T ELT)) (-3502 (($ $ $) NIL (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 64 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2187 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3518 (($ |#1|) NIL T ELT)) (-3700 (((-83) $ (-687)) NIL T ELT)) (-3014 (((-578 |#1|) $) NIL T ELT)) (-3511 (((-83) $) NIL T ELT)) (-3225 (((-1062) $) 62 (|has| |#1| (-1005)) ELT)) (-3782 ((|#1| $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3593 (($ $ $ (-478)) NIL T ELT) (($ |#1| $ (-478)) NIL T ELT)) (-2290 (($ $ $ (-478)) NIL T ELT) (($ |#1| $ (-478)) NIL T ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-3785 ((|#1| $) 16 T ELT) (($ $ (-687)) NIL T ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2185 (($ $ |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3428 (((-83) $) NIL T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 15 T ELT)) (-2188 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) NIL T ELT)) (-3387 (((-83) $) 20 T ELT)) (-3549 (($) 19 T ELT)) (-3784 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT) ((|#1| $ (-478)) 80 T ELT) ((|#1| $ (-478) |#1|) NIL T ELT)) (-3013 (((-478) $ $) NIL T ELT)) (-1558 (($ $ (-1135 (-478))) NIL T ELT) (($ $ (-478)) NIL T ELT)) (-2291 (($ $ (-1135 (-478))) NIL T ELT) (($ $ (-478)) NIL T ELT)) (-3617 (((-83) $) 39 T ELT)) (-3776 (($ $) NIL T ELT)) (-3774 (($ $) NIL (|has| $ (-6 -3980)) ELT)) (-3777 (((-687) $) NIL T ELT)) (-3778 (($ $) 44 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1718 (($ $ $ (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) 40 T ELT)) (-3956 (((-467) $) 89 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 29 T ELT)) (-3445 (($ |#1| $) 10 T ELT)) (-3775 (($ $ $) 65 T ELT) (($ $ |#1|) NIL T ELT)) (-3786 (($ $ $) 75 T ELT) (($ |#1| $) 14 T ELT) (($ (-578 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3930 (((-765) $) 54 (|has| |#1| (-547 (-765))) ELT)) (-3506 (((-578 $) $) NIL T ELT)) (-3012 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2271 (($ $ $) 11 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 58 (|has| |#1| (-72)) ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3941 (((-687) $) 13 (|has| $ (-6 -3979)) ELT))) +(((-578 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -2273 ($) -3936) (-15 -2272 ((-83) $)) (-15 -3445 ($ |#1| $)) (-15 -2271 ($ $ $)) (IF (|has| |#1| (-1005)) (PROGN (-15 -2270 ($ $ $)) (-15 -2269 ($ $ $)) (-15 -2268 ($ $ $))) |%noBranch|))) (-1118)) (T -578)) +((-2273 (*1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1118)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-578 *3)) (-4 *3 (-1118)))) (-3445 (*1 *1 *2 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1118)))) (-2271 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1118)))) (-2270 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1005)) (-4 *2 (-1118)))) (-2269 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1005)) (-4 *2 (-1118)))) (-2268 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1005)) (-4 *2 (-1118))))) +((-3825 (((-578 |#2|) (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|) 16 T ELT)) (-3826 ((|#2| (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|) 18 T ELT)) (-3942 (((-578 |#2|) (-1 |#2| |#1|) (-578 |#1|)) 13 T ELT))) +(((-579 |#1| |#2|) (-10 -7 (-15 -3825 ((-578 |#2|) (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|)) (-15 -3826 (|#2| (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|)) (-15 -3942 ((-578 |#2|) (-1 |#2| |#1|) (-578 |#1|)))) (-1118) (-1118)) (T -579)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-578 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-578 *6)) (-5 *1 (-579 *5 *6)))) (-3826 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-578 *5)) (-4 *5 (-1118)) (-4 *2 (-1118)) (-5 *1 (-579 *5 *2)))) (-3825 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-578 *6)) (-4 *6 (-1118)) (-4 *5 (-1118)) (-5 *2 (-578 *5)) (-5 *1 (-579 *6 *5))))) +((-3406 ((|#2| (-578 |#1|) (-578 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-578 |#1|) (-578 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) |#2|) 17 T ELT) ((|#2| (-578 |#1|) (-578 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|)) 12 T ELT))) +(((-580 |#1| |#2|) (-10 -7 (-15 -3406 ((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|))) (-15 -3406 (|#2| (-578 |#1|) (-578 |#2|) |#1|)) (-15 -3406 ((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) |#2|)) (-15 -3406 (|#2| (-578 |#1|) (-578 |#2|) |#1| |#2|)) (-15 -3406 ((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) (-1 |#2| |#1|))) (-15 -3406 (|#2| (-578 |#1|) (-578 |#2|) |#1| (-1 |#2| |#1|)))) (-1005) (-1118)) (T -580)) +((-3406 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1005)) (-4 *2 (-1118)) (-5 *1 (-580 *5 *2)))) (-3406 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-578 *5)) (-5 *4 (-578 *6)) (-4 *5 (-1005)) (-4 *6 (-1118)) (-5 *1 (-580 *5 *6)))) (-3406 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-4 *5 (-1005)) (-4 *2 (-1118)) (-5 *1 (-580 *5 *2)))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 *5)) (-4 *6 (-1005)) (-4 *5 (-1118)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-4 *5 (-1005)) (-4 *2 (-1118)) (-5 *1 (-580 *5 *2)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *6)) (-4 *5 (-1005)) (-4 *6 (-1118)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6))))) +((-3942 (((-578 |#3|) (-1 |#3| |#1| |#2|) (-578 |#1|) (-578 |#2|)) 21 T ELT))) +(((-581 |#1| |#2| |#3|) (-10 -7 (-15 -3942 ((-578 |#3|) (-1 |#3| |#1| |#2|) (-578 |#1|) (-578 |#2|)))) (-1118) (-1118) (-1118)) (T -581)) +((-3942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-578 *6)) (-5 *5 (-578 *7)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-578 *8)) (-5 *1 (-581 *6 *7 *8))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 11 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-582 |#1|) (-13 (-987) (-547 |#1|)) (-1005)) (T -582)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) +(((-583 |#1|) (-111) (-1015)) (T -583)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-1015))))) +(-13 (-1005) (-10 -8 (-15 * ($ |t#1| $)))) +(((-72) . T) ((-547 (-765)) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2274 (($ |#1| |#1| $) 44 T ELT)) (-1557 (($ (-1 (-83) |#1|) $) 60 (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3708 (($) NIL T CONST)) (-2354 (($ $) 46 T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3389 (($ |#1| $) 57 (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3979)) ELT)) (-3390 (($ |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2873 (((-578 |#1|) $) 9 (|has| $ (-6 -3979)) ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-1262 ((|#1| $) 48 T ELT)) (-3593 (($ |#1| $) 29 T ELT) (($ |#1| $ (-687)) 43 T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-1263 ((|#1| $) 51 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) 23 T ELT)) (-3549 (($) 28 T ELT)) (-2275 (((-83) $) 55 T ELT)) (-2353 (((-578 (-2 (|:| |entry| |#1|) (|:| -1933 (-687)))) $) 68 T ELT)) (-1453 (($) 26 T ELT) (($ (-578 |#1|)) 19 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 64 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) 20 T ELT)) (-3956 (((-467) $) 35 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) NIL T ELT)) (-3930 (((-765) $) 14 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1264 (($ (-578 |#1|)) 24 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 70 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 17 (|has| $ (-6 -3979)) ELT))) +(((-584 |#1|) (-13 (-629 |#1|) (-10 -8 (-6 -3979) (-15 -2275 ((-83) $)) (-15 -2274 ($ |#1| |#1| $)))) (-1005)) (T -584)) +((-2275 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-584 *3)) (-4 *3 (-1005)))) (-2274 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1005))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT))) +(((-585 |#1|) (-111) (-962)) (T -585)) +NIL +(-13 (-21) (-583 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3119 (((-687) $) 17 T ELT)) (-2281 (($ $ |#1|) 69 T ELT)) (-2283 (($ $) 39 T ELT)) (-2284 (($ $) 37 T ELT)) (-3140 (((-3 |#1| "failed") $) 61 T ELT)) (-3139 ((|#1| $) NIL T ELT)) (-2279 (($ |#1| |#2| $) 79 T ELT) (($ $ $) 81 T ELT)) (-3517 (((-765) $ (-1 (-765) (-765) (-765)) (-1 (-765) (-765) (-765)) (-478)) 56 T ELT)) (-2285 ((|#1| $ (-478)) 35 T ELT)) (-2286 ((|#2| $ (-478)) 34 T ELT)) (-2276 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2277 (($ (-1 |#2| |#2|) $) 47 T ELT)) (-2282 (($) 11 T ELT)) (-2288 (($ |#1| |#2|) 24 T ELT)) (-2287 (($ (-578 (-2 (|:| |gen| |#1|) (|:| -3927 |#2|)))) 25 T ELT)) (-2289 (((-578 (-2 (|:| |gen| |#1|) (|:| -3927 |#2|))) $) 14 T ELT)) (-2280 (($ |#1| $) 71 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2278 (((-83) $ $) 76 T ELT)) (-3930 (((-765) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 27 T ELT))) +(((-586 |#1| |#2| |#3|) (-13 (-1005) (-943 |#1|) (-10 -8 (-15 -3517 ((-765) $ (-1 (-765) (-765) (-765)) (-1 (-765) (-765) (-765)) (-478))) (-15 -2289 ((-578 (-2 (|:| |gen| |#1|) (|:| -3927 |#2|))) $)) (-15 -2288 ($ |#1| |#2|)) (-15 -2287 ($ (-578 (-2 (|:| |gen| |#1|) (|:| -3927 |#2|))))) (-15 -2286 (|#2| $ (-478))) (-15 -2285 (|#1| $ (-478))) (-15 -2284 ($ $)) (-15 -2283 ($ $)) (-15 -3119 ((-687) $)) (-15 -2282 ($)) (-15 -2281 ($ $ |#1|)) (-15 -2280 ($ |#1| $)) (-15 -2279 ($ |#1| |#2| $)) (-15 -2279 ($ $ $)) (-15 -2278 ((-83) $ $)) (-15 -2277 ($ (-1 |#2| |#2|) $)) (-15 -2276 ($ (-1 |#1| |#1|) $)))) (-1005) (-23) |#2|) (T -586)) +((-3517 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-765) (-765) (-765))) (-5 *4 (-478)) (-5 *2 (-765)) (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1005)) (-4 *6 (-23)) (-14 *7 *6))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3927 *4)))) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1005)) (-4 *4 (-23)) (-14 *5 *4))) (-2288 (*1 *1 *2 *3) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3))) (-2287 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3927 *4)))) (-4 *3 (-1005)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)))) (-2286 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) (-4 *4 (-1005)) (-14 *5 *2))) (-2285 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *2 (-1005)) (-5 *1 (-586 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2284 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3))) (-2283 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1005)) (-4 *4 (-23)) (-14 *5 *4))) (-2282 (*1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3))) (-2281 (*1 *1 *1 *2) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3))) (-2280 (*1 *1 *2 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3))) (-2279 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3))) (-2279 (*1 *1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3))) (-2278 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1005)) (-4 *4 (-23)) (-14 *5 *4))) (-2277 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1005)))) (-2276 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1005)) (-5 *1 (-586 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +((-2187 (((-478) $) 30 T ELT)) (-2290 (($ |#2| $ (-478)) 26 T ELT) (($ $ $ (-478)) NIL T ELT)) (-2189 (((-578 (-478)) $) 12 T ELT)) (-2190 (((-83) (-478) $) 17 T ELT)) (-3786 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT))) +(((-587 |#1| |#2|) (-10 -7 (-15 -2290 (|#1| |#1| |#1| (-478))) (-15 -2290 (|#1| |#2| |#1| (-478))) (-15 -3786 (|#1| (-578 |#1|))) (-15 -3786 (|#1| |#1| |#1|)) (-15 -3786 (|#1| |#2| |#1|)) (-15 -3786 (|#1| |#1| |#2|)) (-15 -2187 ((-478) |#1|)) (-15 -2189 ((-578 (-478)) |#1|)) (-15 -2190 ((-83) (-478) |#1|))) (-588 |#2|) (-1118)) (T -587)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-2184 (((-1174) $ (-478) (-478)) 44 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ (-478) |#1|) 56 (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) 64 (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3979)) ELT)) (-3708 (($) 7 T CONST)) (-1340 (($ $) 84 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3390 (($ |#1| $) 83 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3979)) ELT)) (-1563 ((|#1| $ (-478) |#1|) 57 (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) 55 T ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-3598 (($ (-687) |#1|) 74 T ELT)) (-2186 (((-478) $) 47 (|has| (-478) (-749)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-2187 (((-478) $) 48 (|has| (-478) (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-2290 (($ |#1| $ (-478)) 66 T ELT) (($ $ $ (-478)) 65 T ELT)) (-2189 (((-578 (-478)) $) 50 T ELT)) (-2190 (((-83) (-478) $) 51 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-3785 ((|#1| $) 46 (|has| (-478) (-749)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2185 (($ $ |#1|) 45 (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-2188 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) 52 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#1| $ (-478) |#1|) 54 T ELT) ((|#1| $ (-478)) 53 T ELT) (($ $ (-1135 (-478))) 75 T ELT)) (-2291 (($ $ (-478)) 68 T ELT) (($ $ (-1135 (-478))) 67 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 85 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 76 T ELT)) (-3786 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-578 $)) 70 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-588 |#1|) (-111) (-1118)) (T -588)) +((-3598 (*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-4 *1 (-588 *3)) (-4 *3 (-1118)))) (-3786 (*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1118)))) (-3786 (*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1118)))) (-3786 (*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1118)))) (-3786 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1118)))) (-3942 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1118)))) (-2291 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-588 *3)) (-4 *3 (-1118)))) (-2291 (*1 *1 *1 *2) (-12 (-5 *2 (-1135 (-478))) (-4 *1 (-588 *3)) (-4 *3 (-1118)))) (-2290 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-588 *2)) (-4 *2 (-1118)))) (-2290 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-588 *3)) (-4 *3 (-1118)))) (-3772 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1135 (-478))) (|has| *1 (-6 -3980)) (-4 *1 (-588 *2)) (-4 *2 (-1118))))) +(-13 (-533 (-478) |t#1|) (-122 |t#1|) (-238 (-1135 (-478)) $) (-10 -8 (-15 -3598 ($ (-687) |t#1|)) (-15 -3786 ($ $ |t#1|)) (-15 -3786 ($ |t#1| $)) (-15 -3786 ($ $ $)) (-15 -3786 ($ (-578 $))) (-15 -3942 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2291 ($ $ (-478))) (-15 -2291 ($ $ (-1135 (-478)))) (-15 -2290 ($ |t#1| $ (-478))) (-15 -2290 ($ $ $ (-478))) (IF (|has| $ (-6 -3980)) (-15 -3772 (|t#1| $ (-1135 (-478)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 (-478) |#1|) . T) ((-238 (-1135 (-478)) $) . T) ((-240 (-478) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-533 (-478) |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 15 T ELT)) (-1299 (((-3 $ "failed") $ $) NIL T ELT)) (-3607 (((-478) $) NIL (|has| |#1| (-707)) ELT)) (-3708 (($) NIL T CONST)) (-3169 (((-83) $) NIL (|has| |#1| (-707)) ELT)) (-2982 ((|#1| $) 23 T ELT)) (-3170 (((-83) $) NIL (|has| |#1| (-707)) ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-707)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-707)) ELT)) (-3225 (((-1062) $) 48 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2981 ((|#3| $) 24 T ELT)) (-3930 (((-765) $) 43 T ELT)) (-1253 (((-83) $ $) 22 T ELT)) (-3367 (($ $) NIL (|has| |#1| (-707)) ELT)) (-2644 (($) 10 T CONST)) (-2550 (((-83) $ $) NIL (|has| |#1| (-707)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-707)) ELT)) (-3037 (((-83) $ $) 20 T ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-707)) ELT)) (-2669 (((-83) $ $) 26 (|has| |#1| (-707)) ELT)) (-3933 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3821 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 29 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) +(((-589 |#1| |#2| |#3|) (-13 (-649 |#2|) (-10 -8 (IF (|has| |#1| (-707)) (-6 (-707)) |%noBranch|) (-15 -3933 ($ $ |#3|)) (-15 -3933 ($ |#1| |#3|)) (-15 -2982 (|#1| $)) (-15 -2981 (|#3| $)))) (-649 |#2|) (-144) (|SubsetCategory| (-658) |#2|)) (T -589)) +((-3933 (*1 *1 *1 *2) (-12 (-4 *4 (-144)) (-5 *1 (-589 *3 *4 *2)) (-4 *3 (-649 *4)) (-4 *2 (|SubsetCategory| (-658) *4)))) (-3933 (*1 *1 *2 *3) (-12 (-4 *4 (-144)) (-5 *1 (-589 *2 *4 *3)) (-4 *2 (-649 *4)) (-4 *3 (|SubsetCategory| (-658) *4)))) (-2982 (*1 *2 *1) (-12 (-4 *3 (-144)) (-4 *2 (-649 *3)) (-5 *1 (-589 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-658) *3)))) (-2981 (*1 *2 *1) (-12 (-4 *4 (-144)) (-4 *2 (|SubsetCategory| (-658) *4)) (-5 *1 (-589 *3 *4 *2)) (-4 *3 (-649 *4))))) +((-3557 (((-3 |#2| #1="failed") |#3| |#2| (-1079) |#2| (-578 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -1998 (-578 |#2|))) #1#) |#3| |#2| (-1079)) 44 T ELT))) +(((-590 |#1| |#2| |#3|) (-10 -7 (-15 -3557 ((-3 (-2 (|:| |particular| |#2|) (|:| -1998 (-578 |#2|))) #1="failed") |#3| |#2| (-1079))) (-15 -3557 ((-3 |#2| #1#) |#3| |#2| (-1079) |#2| (-578 |#2|)))) (-13 (-254) (-943 (-478)) (-575 (-478)) (-118)) (-13 (-29 |#1|) (-1104) (-864)) (-595 |#2|)) (T -590)) +((-3557 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1079)) (-5 *5 (-578 *2)) (-4 *2 (-13 (-29 *6) (-1104) (-864))) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *1 (-590 *6 *2 *3)) (-4 *3 (-595 *2)))) (-3557 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1079)) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-4 *4 (-13 (-29 *6) (-1104) (-864))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1998 (-578 *4)))) (-5 *1 (-590 *6 *4 *3)) (-4 *3 (-595 *4))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2292 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2294 (($ $ $) 28 (|has| |#1| (-308)) ELT)) (-2295 (($ $ (-687)) 31 (|has| |#1| (-308)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2520 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2521 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2522 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2518 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2517 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2519 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2533 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3140 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3139 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT)) (-3943 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3487 (($ $) NIL (|has| |#1| (-385)) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-687)) NIL T ELT)) (-2531 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-2530 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-2804 (((-687) $) NIL T ELT)) (-2526 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2524 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2525 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2532 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3450 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT)) (-3784 ((|#1| $ |#1|) 24 T ELT)) (-2296 (($ $ $) 33 (|has| |#1| (-308)) ELT)) (-3932 (((-687) $) NIL T ELT)) (-2801 ((|#1| $) NIL (|has| |#1| (-385)) ELT)) (-3930 (((-765) $) 20 T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (($ |#1|) NIL T ELT)) (-3801 (((-578 |#1|) $) NIL T ELT)) (-3661 ((|#1| $ (-687)) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2529 ((|#1| $ |#1| |#1|) 23 T ELT)) (-2504 (($ $) NIL T ELT)) (-2644 (($) 21 T CONST)) (-2650 (($) 8 T CONST)) (-2653 (($) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-591 |#1| |#2|) (-595 |#1|) (-954) (-1 |#1| |#1|)) (T -591)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2292 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2294 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2295 (($ $ (-687)) NIL (|has| |#1| (-308)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2520 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2521 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2522 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2518 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2517 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2519 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2533 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3140 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3139 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT)) (-3943 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3487 (($ $) NIL (|has| |#1| (-385)) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-687)) NIL T ELT)) (-2531 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-2530 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-2804 (((-687) $) NIL T ELT)) (-2526 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2524 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2525 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2532 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3450 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT)) (-3784 ((|#1| $ |#1|) NIL T ELT)) (-2296 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3932 (((-687) $) NIL T ELT)) (-2801 ((|#1| $) NIL (|has| |#1| (-385)) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (($ |#1|) NIL T ELT)) (-3801 (((-578 |#1|) $) NIL T ELT)) (-3661 ((|#1| $ (-687)) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2529 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2504 (($ $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-592 |#1|) (-595 |#1|) (-188)) (T -592)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2292 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2294 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2295 (($ $ (-687)) NIL (|has| |#1| (-308)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2520 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2521 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2522 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2518 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2517 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2519 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2533 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3140 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3139 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT)) (-3943 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3487 (($ $) NIL (|has| |#1| (-385)) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-687)) NIL T ELT)) (-2531 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-2530 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-2804 (((-687) $) NIL T ELT)) (-2526 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2524 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2525 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2532 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3450 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT)) (-3784 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2296 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3932 (((-687) $) NIL T ELT)) (-2801 ((|#1| $) NIL (|has| |#1| (-385)) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (($ |#1|) NIL T ELT)) (-3801 (((-578 |#1|) $) NIL T ELT)) (-3661 ((|#1| $ (-687)) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2529 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2504 (($ $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-593 |#1| |#2|) (-13 (-595 |#1|) (-238 |#2| |#2|)) (-188) (-13 (-585 |#1|) (-10 -8 (-15 -3742 ($ $))))) (T -593)) +NIL +((-2292 (($ $) 29 T ELT)) (-2504 (($ $) 27 T ELT)) (-2653 (($) 13 T ELT))) +(((-594 |#1| |#2|) (-10 -7 (-15 -2292 (|#1| |#1|)) (-15 -2504 (|#1| |#1|)) (-15 -2653 (|#1|))) (-595 |#2|) (-954)) (T -594)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2292 (($ $) 93 (|has| |#1| (-308)) ELT)) (-2294 (($ $ $) 95 (|has| |#1| (-308)) ELT)) (-2295 (($ $ (-687)) 94 (|has| |#1| (-308)) ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-2520 (($ $ $) 55 (|has| |#1| (-308)) ELT)) (-2521 (($ $ $) 56 (|has| |#1| (-308)) ELT)) (-2522 (($ $ $) 58 (|has| |#1| (-308)) ELT)) (-2518 (($ $ $) 53 (|has| |#1| (-308)) ELT)) (-2517 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 52 (|has| |#1| (-308)) ELT)) (-2519 (((-3 $ #1="failed") $ $) 54 (|has| |#1| (-308)) ELT)) (-2533 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 57 (|has| |#1| (-308)) ELT)) (-3140 (((-3 (-478) #2="failed") $) 85 (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #2#) $) 82 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #2#) $) 79 T ELT)) (-3139 (((-478) $) 84 (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) 81 (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 80 T ELT)) (-3943 (($ $) 74 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3487 (($ $) 65 (|has| |#1| (-385)) ELT)) (-2396 (((-83) $) 40 T ELT)) (-2877 (($ |#1| (-687)) 72 T ELT)) (-2531 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 67 (|has| |#1| (-489)) ELT)) (-2530 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 68 (|has| |#1| (-489)) ELT)) (-2804 (((-687) $) 76 T ELT)) (-2526 (($ $ $) 62 (|has| |#1| (-308)) ELT)) (-2527 (($ $ $) 63 (|has| |#1| (-308)) ELT)) (-2516 (($ $ $) 51 (|has| |#1| (-308)) ELT)) (-2524 (($ $ $) 60 (|has| |#1| (-308)) ELT)) (-2523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 59 (|has| |#1| (-308)) ELT)) (-2525 (((-3 $ #1#) $ $) 61 (|has| |#1| (-308)) ELT)) (-2532 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 64 (|has| |#1| (-308)) ELT)) (-3157 ((|#1| $) 75 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3450 (((-3 $ #1#) $ |#1|) 69 (|has| |#1| (-489)) ELT)) (-3784 ((|#1| $ |#1|) 98 T ELT)) (-2296 (($ $ $) 92 (|has| |#1| (-308)) ELT)) (-3932 (((-687) $) 77 T ELT)) (-2801 ((|#1| $) 66 (|has| |#1| (-385)) ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 (-478))) 83 (|has| |#1| (-943 (-343 (-478)))) ELT) (($ |#1|) 78 T ELT)) (-3801 (((-578 |#1|) $) 71 T ELT)) (-3661 ((|#1| $ (-687)) 73 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2529 ((|#1| $ |#1| |#1|) 70 T ELT)) (-2504 (($ $) 96 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($) 97 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) +(((-595 |#1|) (-111) (-954)) (T -595)) +((-2653 (*1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)))) (-2504 (*1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)))) (-2294 (*1 *1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2295 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-595 *3)) (-4 *3 (-954)) (-4 *3 (-308)))) (-2292 (*1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2296 (*1 *1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) +(-13 (-754 |t#1|) (-238 |t#1| |t#1|) (-10 -8 (-15 -2653 ($)) (-15 -2504 ($ $)) (IF (|has| |t#1| (-308)) (PROGN (-15 -2294 ($ $ $)) (-15 -2295 ($ $ (-687))) (-15 -2292 ($ $)) (-15 -2296 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-144)) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-550 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-238 |#1| |#1|) . T) ((-348 |#1|) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 |#1|) |has| |#1| (-144)) ((-649 |#1|) |has| |#1| (-144)) ((-658) . T) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T) ((-754 |#1|) . T)) +((-2293 (((-578 (-592 (-343 |#2|))) (-592 (-343 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3716 (((-578 (-592 (-343 |#2|))) (-592 (-343 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-578 (-592 (-343 |#2|))) (-592 (-343 |#2|)) (-1 (-578 |#1|) |#2|)) 19 T ELT))) +(((-596 |#1| |#2|) (-10 -7 (-15 -3716 ((-578 (-592 (-343 |#2|))) (-592 (-343 |#2|)) (-1 (-578 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3716 ((-578 (-592 (-343 |#2|))) (-592 (-343 |#2|)))) (-15 -2293 ((-578 (-592 (-343 |#2|))) (-592 (-343 |#2|))))) |%noBranch|)) (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478)))) (-1144 |#1|)) (T -596)) +((-2293 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-4 *5 (-1144 *4)) (-5 *2 (-578 (-592 (-343 *5)))) (-5 *1 (-596 *4 *5)) (-5 *3 (-592 (-343 *5))))) (-3716 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-4 *5 (-1144 *4)) (-5 *2 (-578 (-592 (-343 *5)))) (-5 *1 (-596 *4 *5)) (-5 *3 (-592 (-343 *5))))) (-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-4 *6 (-1144 *5)) (-5 *2 (-578 (-592 (-343 *6)))) (-5 *1 (-596 *5 *6)) (-5 *3 (-592 (-343 *6)))))) +((-2294 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2295 ((|#2| |#2| (-687) (-1 |#1| |#1|)) 45 T ELT)) (-2296 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) +(((-597 |#1| |#2|) (-10 -7 (-15 -2294 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2295 (|#2| |#2| (-687) (-1 |#1| |#1|))) (-15 -2296 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-308) (-595 |#1|)) (T -597)) +((-2296 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-308)) (-5 *1 (-597 *4 *2)) (-4 *2 (-595 *4)))) (-2295 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-687)) (-5 *4 (-1 *5 *5)) (-4 *5 (-308)) (-5 *1 (-597 *5 *2)) (-4 *2 (-595 *5)))) (-2294 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-308)) (-5 *1 (-597 *4 *2)) (-4 *2 (-595 *4))))) +((-2297 (($ $ $) 9 T ELT))) +(((-598 |#1|) (-10 -7 (-15 -2297 (|#1| |#1| |#1|))) (-599)) (T -598)) +NIL +((-2299 (($ $) 8 T ELT)) (-2297 (($ $ $) 6 T ELT)) (-2298 (($ $ $) 7 T ELT))) +(((-599) (-111)) (T -599)) +((-2299 (*1 *1 *1) (-4 *1 (-599))) (-2298 (*1 *1 *1 *1) (-4 *1 (-599))) (-2297 (*1 *1 *1 *1) (-4 *1 (-599)))) +(-13 (-1118) (-10 -8 (-15 -2299 ($ $)) (-15 -2298 ($ $ $)) (-15 -2297 ($ $ $)))) +(((-1118) . T)) +((-2300 (((-3 (-578 (-1074 |#1|)) "failed") (-578 (-1074 |#1|)) (-1074 |#1|)) 33 T ELT))) +(((-600 |#1|) (-10 -7 (-15 -2300 ((-3 (-578 (-1074 |#1|)) "failed") (-578 (-1074 |#1|)) (-1074 |#1|)))) (-814)) (T -600)) +((-2300 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1074 *4))) (-5 *3 (-1074 *4)) (-4 *4 (-814)) (-5 *1 (-600 *4))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3918 (((-578 |#1|) $) 84 T ELT)) (-3931 (($ $ (-687)) 94 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3923 (((-1193 |#1| |#2|) (-1193 |#1| |#2|) $) 50 T ELT)) (-3140 (((-3 (-609 |#1|) #1#) $) NIL T ELT)) (-3139 (((-609 |#1|) $) NIL T ELT)) (-3943 (($ $) 93 T ELT)) (-2404 (((-687) $) NIL T ELT)) (-2805 (((-578 $) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-3922 (($ (-609 |#1|) |#2|) 70 T ELT)) (-3920 (($ $) 89 T ELT)) (-3942 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3924 (((-1193 |#1| |#2|) (-1193 |#1| |#2|) $) 49 T ELT)) (-1736 (((-2 (|:| |k| (-609 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2878 (((-609 |#1|) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3752 (($ $ |#1| $) 32 T ELT) (($ $ (-578 |#1|) (-578 $)) 34 T ELT)) (-3932 (((-687) $) 91 T ELT)) (-3514 (($ $ $) 20 T ELT) (($ (-609 |#1|) (-609 |#1|)) 79 T ELT) (($ (-609 |#1|) $) 77 T ELT) (($ $ (-609 |#1|)) 78 T ELT)) (-3930 (((-765) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1184 |#1| |#2|) $) 60 T ELT) (((-1193 |#1| |#2|) $) 43 T ELT) (($ (-609 |#1|)) 27 T ELT)) (-3801 (((-578 |#2|) $) NIL T ELT)) (-3661 ((|#2| $ (-609 |#1|)) NIL T ELT)) (-3938 ((|#2| (-1193 |#1| |#2|) $) 45 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 23 T CONST)) (-2649 (((-578 (-2 (|:| |k| (-609 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3929 (((-3 $ #1#) (-1184 |#1| |#2|)) 62 T ELT)) (-1720 (($ (-609 |#1|)) 14 T ELT)) (-3037 (((-83) $ $) 46 T ELT)) (-3933 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3821 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 31 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-609 |#1|)) NIL T ELT))) +(((-601 |#1| |#2|) (-13 (-319 |#1| |#2|) (-328 |#2| (-609 |#1|)) (-10 -8 (-15 -3929 ((-3 $ "failed") (-1184 |#1| |#2|))) (-15 -3514 ($ (-609 |#1|) (-609 |#1|))) (-15 -3514 ($ (-609 |#1|) $)) (-15 -3514 ($ $ (-609 |#1|))))) (-749) (-144)) (T -601)) +((-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) (-5 *1 (-601 *3 *4)))) (-3514 (*1 *1 *2 *2) (-12 (-5 *2 (-609 *3)) (-4 *3 (-749)) (-5 *1 (-601 *3 *4)) (-4 *4 (-144)))) (-3514 (*1 *1 *2 *1) (-12 (-5 *2 (-609 *3)) (-4 *3 (-749)) (-5 *1 (-601 *3 *4)) (-4 *4 (-144)))) (-3514 (*1 *1 *1 *2) (-12 (-5 *2 (-609 *3)) (-4 *3 (-749)) (-5 *1 (-601 *3 *4)) (-4 *4 (-144))))) +((-1719 (((-83) $) NIL T ELT) (((-83) (-1 (-83) |#2| |#2|) $) 59 T ELT)) (-1717 (($ $) NIL T ELT) (($ (-1 (-83) |#2| |#2|) $) 12 T ELT)) (-1557 (($ (-1 (-83) |#2|) $) 29 T ELT)) (-2283 (($ $) 65 T ELT)) (-2354 (($ $) 74 T ELT)) (-3389 (($ |#2| $) NIL T ELT) (($ (-1 (-83) |#2|) $) 43 T ELT)) (-3826 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3403 (((-478) |#2| $ (-478)) 71 T ELT) (((-478) |#2| $) NIL T ELT) (((-478) (-1 (-83) |#2|) $) 54 T ELT)) (-3598 (($ (-687) |#2|) 63 T ELT)) (-2840 (($ $ $) NIL T ELT) (($ (-1 (-83) |#2| |#2|) $ $) 31 T ELT)) (-3502 (($ $ $) NIL T ELT) (($ (-1 (-83) |#2| |#2|) $ $) 24 T ELT)) (-3942 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3518 (($ |#2|) 15 T ELT)) (-3593 (($ $ $ (-478)) 42 T ELT) (($ |#2| $ (-478)) 40 T ELT)) (-1341 (((-3 |#2| "failed") (-1 (-83) |#2|) $) 53 T ELT)) (-1558 (($ $ (-1135 (-478))) 51 T ELT) (($ $ (-478)) 44 T ELT)) (-1718 (($ $ $ (-478)) 70 T ELT)) (-3384 (($ $) 68 T ELT)) (-2669 (((-83) $ $) 76 T ELT))) +(((-602 |#1| |#2|) (-10 -7 (-15 -3518 (|#1| |#2|)) (-15 -1558 (|#1| |#1| (-478))) (-15 -1558 (|#1| |#1| (-1135 (-478)))) (-15 -3389 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3593 (|#1| |#2| |#1| (-478))) (-15 -3593 (|#1| |#1| |#1| (-478))) (-15 -2840 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|)) (-15 -1557 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3389 (|#1| |#2| |#1|)) (-15 -2354 (|#1| |#1|)) (-15 -2840 (|#1| |#1| |#1|)) (-15 -3502 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|)) (-15 -1719 ((-83) (-1 (-83) |#2| |#2|) |#1|)) (-15 -3403 ((-478) (-1 (-83) |#2|) |#1|)) (-15 -3403 ((-478) |#2| |#1|)) (-15 -3403 ((-478) |#2| |#1| (-478))) (-15 -3502 (|#1| |#1| |#1|)) (-15 -1719 ((-83) |#1|)) (-15 -1718 (|#1| |#1| |#1| (-478))) (-15 -2283 (|#1| |#1|)) (-15 -1717 (|#1| (-1 (-83) |#2| |#2|) |#1|)) (-15 -1717 (|#1| |#1|)) (-15 -2669 ((-83) |#1| |#1|)) (-15 -3826 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3826 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3826 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1341 ((-3 |#2| "failed") (-1 (-83) |#2|) |#1|)) (-15 -3598 (|#1| (-687) |#2|)) (-15 -3942 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3942 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3384 (|#1| |#1|))) (-603 |#2|) (-1118)) (T -602)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3386 ((|#1| $) 52 T ELT)) (-3779 ((|#1| $) 71 T ELT)) (-3781 (($ $) 73 T ELT)) (-2184 (((-1174) $ (-478) (-478)) 107 (|has| $ (-6 -3980)) ELT)) (-3769 (($ $ (-478)) 58 (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) $) 153 (|has| |#1| (-749)) ELT) (((-83) (-1 (-83) |#1| |#1|) $) 147 T ELT)) (-1717 (($ $) 157 (-12 (|has| |#1| (-749)) (|has| $ (-6 -3980))) ELT) (($ (-1 (-83) |#1| |#1|) $) 156 (|has| $ (-6 -3980)) ELT)) (-2893 (($ $) 152 (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $) 146 T ELT)) (-3426 (((-83) $ (-687)) 90 T ELT)) (-3009 ((|#1| $ |#1|) 43 (|has| $ (-6 -3980)) ELT)) (-3771 (($ $ $) 62 (|has| $ (-6 -3980)) ELT)) (-3770 ((|#1| $ |#1|) 60 (|has| $ (-6 -3980)) ELT)) (-3773 ((|#1| $ |#1|) 64 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3980)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3980)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3980)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) 127 (|has| $ (-6 -3980)) ELT) ((|#1| $ (-478) |#1|) 96 (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) 45 (|has| $ (-6 -3980)) ELT)) (-1557 (($ (-1 (-83) |#1|) $) 140 T ELT)) (-3694 (($ (-1 (-83) |#1|) $) 112 (|has| $ (-6 -3979)) ELT)) (-3780 ((|#1| $) 72 T ELT)) (-3708 (($) 7 T CONST)) (-2283 (($ $) 155 (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) 145 T ELT)) (-3783 (($ $) 79 T ELT) (($ $ (-687)) 77 T ELT)) (-2354 (($ $) 142 (|has| |#1| (-1005)) ELT)) (-1340 (($ $) 109 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3389 (($ |#1| $) 141 (|has| |#1| (-1005)) ELT) (($ (-1 (-83) |#1|) $) 136 T ELT)) (-3390 (($ (-1 (-83) |#1|) $) 113 (|has| $ (-6 -3979)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1563 ((|#1| $ (-478) |#1|) 95 (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) 97 T ELT)) (-3427 (((-83) $) 93 T ELT)) (-3403 (((-478) |#1| $ (-478)) 150 (|has| |#1| (-1005)) ELT) (((-478) |#1| $) 149 (|has| |#1| (-1005)) ELT) (((-478) (-1 (-83) |#1|) $) 148 T ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-3015 (((-578 $) $) 54 T ELT)) (-3011 (((-83) $ $) 46 (|has| |#1| (-1005)) ELT)) (-3598 (($ (-687) |#1|) 119 T ELT)) (-3703 (((-83) $ (-687)) 91 T ELT)) (-2186 (((-478) $) 105 (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) 163 (|has| |#1| (-749)) ELT)) (-2840 (($ $ $) 143 (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) 139 T ELT)) (-3502 (($ $ $) 151 (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) 144 T ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-2187 (((-478) $) 104 (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) 162 (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3518 (($ |#1|) 133 T ELT)) (-3700 (((-83) $ (-687)) 92 T ELT)) (-3014 (((-578 |#1|) $) 49 T ELT)) (-3511 (((-83) $) 53 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-3782 ((|#1| $) 76 T ELT) (($ $ (-687)) 74 T ELT)) (-3593 (($ $ $ (-478)) 138 T ELT) (($ |#1| $ (-478)) 137 T ELT)) (-2290 (($ $ $ (-478)) 126 T ELT) (($ |#1| $ (-478)) 125 T ELT)) (-2189 (((-578 (-478)) $) 102 T ELT)) (-2190 (((-83) (-478) $) 101 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-3785 ((|#1| $) 82 T ELT) (($ $ (-687)) 80 T ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 116 T ELT)) (-2185 (($ $ |#1|) 106 (|has| $ (-6 -3980)) ELT)) (-3428 (((-83) $) 94 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-2188 (((-83) |#1| $) 103 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) 100 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1135 (-478))) 118 T ELT) ((|#1| $ (-478)) 99 T ELT) ((|#1| $ (-478) |#1|) 98 T ELT)) (-3013 (((-478) $ $) 48 T ELT)) (-1558 (($ $ (-1135 (-478))) 135 T ELT) (($ $ (-478)) 134 T ELT)) (-2291 (($ $ (-1135 (-478))) 124 T ELT) (($ $ (-478)) 123 T ELT)) (-3617 (((-83) $) 50 T ELT)) (-3776 (($ $) 68 T ELT)) (-3774 (($ $) 65 (|has| $ (-6 -3980)) ELT)) (-3777 (((-687) $) 69 T ELT)) (-3778 (($ $) 70 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1718 (($ $ $ (-478)) 154 (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 108 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 117 T ELT)) (-3775 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-3786 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-578 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-3506 (((-578 $) $) 55 T ELT)) (-3012 (((-83) $ $) 47 (|has| |#1| (-1005)) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) 161 (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) 159 (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2668 (((-83) $ $) 160 (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) 158 (|has| |#1| (-749)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-603 |#1|) (-111) (-1118)) (T -603)) +((-3518 (*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1118))))) +(-13 (-1053 |t#1|) (-317 |t#1|) (-234 |t#1|) (-10 -8 (-15 -3518 ($ |t#1|)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-749)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-749)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 (-478) |#1|) . T) ((-238 (-1135 (-478)) $) . T) ((-240 (-478) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-234 |#1|) . T) ((-317 |#1|) . T) ((-422 |#1|) . T) ((-533 (-478) |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-588 |#1|) . T) ((-749) |has| |#1| (-749)) ((-752) |has| |#1| (-749)) ((-916 |#1|) . T) ((-1005) OR (|has| |#1| (-1005)) (|has| |#1| (-749))) ((-1053 |#1|) . T) ((-1118) . T) ((-1157 |#1|) . T)) +((-3557 (((-578 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -1998 (-578 |#3|)))) |#4| (-578 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -1998 (-578 |#3|))) |#4| |#3|) 60 T ELT)) (-3092 (((-687) |#4| |#3|) 18 T ELT)) (-3324 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2301 (((-83) |#4| |#3|) 14 T ELT))) +(((-604 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3557 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -1998 (-578 |#3|))) |#4| |#3|)) (-15 -3557 ((-578 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -1998 (-578 |#3|)))) |#4| (-578 |#3|))) (-15 -3324 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2301 ((-83) |#4| |#3|)) (-15 -3092 ((-687) |#4| |#3|))) (-308) (-13 (-317 |#1|) (-10 -7 (-6 -3980))) (-13 (-317 |#1|) (-10 -7 (-6 -3980))) (-622 |#1| |#2| |#3|)) (T -604)) +((-3092 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-13 (-317 *5) (-10 -7 (-6 -3980)))) (-4 *4 (-13 (-317 *5) (-10 -7 (-6 -3980)))) (-5 *2 (-687)) (-5 *1 (-604 *5 *6 *4 *3)) (-4 *3 (-622 *5 *6 *4)))) (-2301 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-13 (-317 *5) (-10 -7 (-6 -3980)))) (-4 *4 (-13 (-317 *5) (-10 -7 (-6 -3980)))) (-5 *2 (-83)) (-5 *1 (-604 *5 *6 *4 *3)) (-4 *3 (-622 *5 *6 *4)))) (-3324 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-308)) (-4 *5 (-13 (-317 *4) (-10 -7 (-6 -3980)))) (-4 *2 (-13 (-317 *4) (-10 -7 (-6 -3980)))) (-5 *1 (-604 *4 *5 *2 *3)) (-4 *3 (-622 *4 *5 *2)))) (-3557 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-13 (-317 *5) (-10 -7 (-6 -3980)))) (-4 *7 (-13 (-317 *5) (-10 -7 (-6 -3980)))) (-5 *2 (-578 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -1998 (-578 *7))))) (-5 *1 (-604 *5 *6 *7 *3)) (-5 *4 (-578 *7)) (-4 *3 (-622 *5 *6 *7)))) (-3557 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-13 (-317 *5) (-10 -7 (-6 -3980)))) (-4 *4 (-13 (-317 *5) (-10 -7 (-6 -3980)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -1998 (-578 *4)))) (-5 *1 (-604 *5 *6 *4 *3)) (-4 *3 (-622 *5 *6 *4))))) +((-3557 (((-578 (-2 (|:| |particular| (-3 (-1168 |#1|) #1="failed")) (|:| -1998 (-578 (-1168 |#1|))))) (-578 (-578 |#1|)) (-578 (-1168 |#1|))) 22 T ELT) (((-578 (-2 (|:| |particular| (-3 (-1168 |#1|) #1#)) (|:| -1998 (-578 (-1168 |#1|))))) (-625 |#1|) (-578 (-1168 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1168 |#1|) #1#)) (|:| -1998 (-578 (-1168 |#1|)))) (-578 (-578 |#1|)) (-1168 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1168 |#1|) #1#)) (|:| -1998 (-578 (-1168 |#1|)))) (-625 |#1|) (-1168 |#1|)) 14 T ELT)) (-3092 (((-687) (-625 |#1|) (-1168 |#1|)) 30 T ELT)) (-3324 (((-3 (-1168 |#1|) #1#) (-625 |#1|) (-1168 |#1|)) 24 T ELT)) (-2301 (((-83) (-625 |#1|) (-1168 |#1|)) 27 T ELT))) +(((-605 |#1|) (-10 -7 (-15 -3557 ((-2 (|:| |particular| (-3 (-1168 |#1|) #1="failed")) (|:| -1998 (-578 (-1168 |#1|)))) (-625 |#1|) (-1168 |#1|))) (-15 -3557 ((-2 (|:| |particular| (-3 (-1168 |#1|) #1#)) (|:| -1998 (-578 (-1168 |#1|)))) (-578 (-578 |#1|)) (-1168 |#1|))) (-15 -3557 ((-578 (-2 (|:| |particular| (-3 (-1168 |#1|) #1#)) (|:| -1998 (-578 (-1168 |#1|))))) (-625 |#1|) (-578 (-1168 |#1|)))) (-15 -3557 ((-578 (-2 (|:| |particular| (-3 (-1168 |#1|) #1#)) (|:| -1998 (-578 (-1168 |#1|))))) (-578 (-578 |#1|)) (-578 (-1168 |#1|)))) (-15 -3324 ((-3 (-1168 |#1|) #1#) (-625 |#1|) (-1168 |#1|))) (-15 -2301 ((-83) (-625 |#1|) (-1168 |#1|))) (-15 -3092 ((-687) (-625 |#1|) (-1168 |#1|)))) (-308)) (T -605)) +((-3092 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-308)) (-5 *2 (-687)) (-5 *1 (-605 *5)))) (-2301 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-308)) (-5 *2 (-83)) (-5 *1 (-605 *5)))) (-3324 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1168 *4)) (-5 *3 (-625 *4)) (-4 *4 (-308)) (-5 *1 (-605 *4)))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 *5))) (-4 *5 (-308)) (-5 *2 (-578 (-2 (|:| |particular| (-3 (-1168 *5) #1="failed")) (|:| -1998 (-578 (-1168 *5)))))) (-5 *1 (-605 *5)) (-5 *4 (-578 (-1168 *5))))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-4 *5 (-308)) (-5 *2 (-578 (-2 (|:| |particular| (-3 (-1168 *5) #1#)) (|:| -1998 (-578 (-1168 *5)))))) (-5 *1 (-605 *5)) (-5 *4 (-578 (-1168 *5))))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 *5))) (-4 *5 (-308)) (-5 *2 (-2 (|:| |particular| (-3 (-1168 *5) #1#)) (|:| -1998 (-578 (-1168 *5))))) (-5 *1 (-605 *5)) (-5 *4 (-1168 *5)))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| |particular| (-3 (-1168 *5) #1#)) (|:| -1998 (-578 (-1168 *5))))) (-5 *1 (-605 *5)) (-5 *4 (-1168 *5))))) +((-2302 (((-2 (|:| |particular| (-3 (-1168 (-343 |#4|)) "failed")) (|:| -1998 (-578 (-1168 (-343 |#4|))))) (-578 |#4|) (-578 |#3|)) 51 T ELT))) +(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2302 ((-2 (|:| |particular| (-3 (-1168 (-343 |#4|)) "failed")) (|:| -1998 (-578 (-1168 (-343 |#4|))))) (-578 |#4|) (-578 |#3|)))) (-489) (-710) (-749) (-854 |#1| |#2| |#3|)) (T -606)) +((-2302 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *7)) (-4 *7 (-749)) (-4 *8 (-854 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-5 *2 (-2 (|:| |particular| (-3 (-1168 (-343 *8)) "failed")) (|:| -1998 (-578 (-1168 (-343 *8)))))) (-5 *1 (-606 *5 *6 *7 *8))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1759 (((-3 $ #1="failed")) NIL (|has| |#2| (-489)) ELT)) (-3314 ((|#2| $) NIL T ELT)) (-3104 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1#) $ $) NIL T ELT)) (-3206 (((-1168 (-625 |#2|))) NIL T ELT) (((-1168 (-625 |#2|)) (-1168 $)) NIL T ELT)) (-3106 (((-83) $) NIL T ELT)) (-1716 (((-1168 $)) 41 T ELT)) (-3317 (($ |#2|) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3093 (($ $) NIL (|has| |#2| (-254)) ELT)) (-3095 (((-194 |#1| |#2|) $ (-478)) NIL T ELT)) (-1893 (((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) #1#)) NIL (|has| |#2| (-489)) ELT)) (-1690 (((-3 $ #1#)) NIL (|has| |#2| (-489)) ELT)) (-1775 (((-625 |#2|)) NIL T ELT) (((-625 |#2|) (-1168 $)) NIL T ELT)) (-1714 ((|#2| $) NIL T ELT)) (-1773 (((-625 |#2|) $) NIL T ELT) (((-625 |#2|) $ (-1168 $)) NIL T ELT)) (-2390 (((-3 $ #1#) $) NIL (|has| |#2| (-489)) ELT)) (-1887 (((-1074 (-850 |#2|))) NIL (|has| |#2| (-308)) ELT)) (-2393 (($ $ (-823)) NIL T ELT)) (-1712 ((|#2| $) NIL T ELT)) (-1692 (((-1074 |#2|) $) NIL (|has| |#2| (-489)) ELT)) (-1777 ((|#2|) NIL T ELT) ((|#2| (-1168 $)) NIL T ELT)) (-1710 (((-1074 |#2|) $) NIL T ELT)) (-1704 (((-83)) NIL T ELT)) (-3140 (((-3 (-478) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3139 (((-478) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) ((|#2| $) NIL T ELT)) (-1779 (($ (-1168 |#2|)) NIL T ELT) (($ (-1168 |#2|) (-1168 $)) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#2|) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3092 (((-687) $) NIL (|has| |#2| (-489)) ELT) (((-823)) 42 T ELT)) (-3096 ((|#2| $ (-478) (-478)) NIL T ELT)) (-1701 (((-83)) NIL T ELT)) (-2417 (($ $ (-823)) NIL T ELT)) (-2873 (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2396 (((-83) $) NIL T ELT)) (-3091 (((-687) $) NIL (|has| |#2| (-489)) ELT)) (-3090 (((-578 (-194 |#1| |#2|)) $) NIL (|has| |#2| (-489)) ELT)) (-3098 (((-687) $) NIL T ELT)) (-1697 (((-83)) NIL T ELT)) (-3097 (((-687) $) NIL T ELT)) (-3311 ((|#2| $) NIL (|has| |#2| (-6 (-3981 #2="*"))) ELT)) (-3102 (((-478) $) NIL T ELT)) (-3100 (((-478) $) NIL T ELT)) (-2592 (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-3101 (((-478) $) NIL T ELT)) (-3099 (((-478) $) NIL T ELT)) (-3107 (($ (-578 (-578 |#2|))) NIL T ELT)) (-1936 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3578 (((-578 (-578 |#2|)) $) NIL T ELT)) (-1695 (((-83)) NIL T ELT)) (-1699 (((-83)) NIL T ELT)) (-1894 (((-3 (-2 (|:| |particular| $) (|:| -1998 (-578 $))) #1#)) NIL (|has| |#2| (-489)) ELT)) (-1691 (((-3 $ #1#)) NIL (|has| |#2| (-489)) ELT)) (-1776 (((-625 |#2|)) NIL T ELT) (((-625 |#2|) (-1168 $)) NIL T ELT)) (-1715 ((|#2| $) NIL T ELT)) (-1774 (((-625 |#2|) $) NIL T ELT) (((-625 |#2|) $ (-1168 $)) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-1168 $) $) NIL T ELT) (((-625 |#2|) (-1168 $)) NIL T ELT)) (-2391 (((-3 $ #1#) $) NIL (|has| |#2| (-489)) ELT)) (-1891 (((-1074 (-850 |#2|))) NIL (|has| |#2| (-308)) ELT)) (-2392 (($ $ (-823)) NIL T ELT)) (-1713 ((|#2| $) NIL T ELT)) (-1693 (((-1074 |#2|) $) NIL (|has| |#2| (-489)) ELT)) (-1778 ((|#2|) NIL T ELT) ((|#2| (-1168 $)) NIL T ELT)) (-1711 (((-1074 |#2|) $) NIL T ELT)) (-1705 (((-83)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1696 (((-83)) NIL T ELT)) (-1698 (((-83)) NIL T ELT)) (-1700 (((-83)) NIL T ELT)) (-3574 (((-3 $ #1#) $) NIL (|has| |#2| (-308)) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1703 (((-83)) NIL T ELT)) (-3450 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-489)) ELT)) (-1934 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#2| $ (-478) (-478) |#2|) NIL T ELT) ((|#2| $ (-478) (-478)) 27 T ELT) ((|#2| $ (-478)) NIL T ELT)) (-3742 (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-687)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1079)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#2| (-804 (-1079))) ELT)) (-3313 ((|#2| $) NIL T ELT)) (-3316 (($ (-578 |#2|)) NIL T ELT)) (-3105 (((-83) $) NIL T ELT)) (-3315 (((-194 |#1| |#2|) $) NIL T ELT)) (-3312 ((|#2| $) NIL (|has| |#2| (-6 (-3981 #2#))) ELT)) (-1933 (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3207 (((-625 |#2|) (-1168 $)) NIL T ELT) (((-1168 |#2|) $) NIL T ELT) (((-625 |#2|) (-1168 $) (-1168 $)) NIL T ELT) (((-1168 |#2|) $ (-1168 $)) 30 T ELT)) (-3956 (($ (-1168 |#2|)) NIL T ELT) (((-1168 |#2|) $) NIL T ELT)) (-1879 (((-578 (-850 |#2|))) NIL T ELT) (((-578 (-850 |#2|)) (-1168 $)) NIL T ELT)) (-2419 (($ $ $) NIL T ELT)) (-1709 (((-83)) NIL T ELT)) (-3094 (((-194 |#1| |#2|) $ (-478)) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (($ |#2|) NIL T ELT) (((-625 |#2|) $) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $)) 40 T ELT)) (-1694 (((-578 (-1168 |#2|))) NIL (|has| |#2| (-489)) ELT)) (-2420 (($ $ $ $) NIL T ELT)) (-1707 (((-83)) NIL T ELT)) (-2529 (($ (-625 |#2|) $) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3103 (((-83) $) NIL T ELT)) (-2418 (($ $ $) NIL T ELT)) (-1708 (((-83)) NIL T ELT)) (-1706 (((-83)) NIL T ELT)) (-1702 (((-83)) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-687)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1079)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#2| (-804 (-1079))) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#2| (-308)) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-194 |#1| |#2|) $ (-194 |#1| |#2|)) NIL T ELT) (((-194 |#1| |#2|) (-194 |#1| |#2|) $) NIL T ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-607 |#1| |#2|) (-13 (-1026 |#1| |#2| (-194 |#1| |#2|) (-194 |#1| |#2|)) (-547 (-625 |#2|)) (-354 |#2|)) (-823) (-144)) (T -607)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3231 (((-578 (-1038)) $) 10 T ELT)) (-3930 (((-765) $) 16 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-608) (-13 (-987) (-10 -8 (-15 -3231 ((-578 (-1038)) $))))) (T -608)) +((-3231 (*1 *2 *1) (-12 (-5 *2 (-578 (-1038))) (-5 *1 (-608))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3918 (((-578 |#1|) $) NIL T ELT)) (-3120 (($ $) 62 T ELT)) (-2648 (((-83) $) NIL T ELT)) (-3140 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3139 ((|#1| $) NIL T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-2305 (((-3 $ #1#) (-732 |#1|)) 28 T ELT)) (-2307 (((-83) (-732 |#1|)) 18 T ELT)) (-2306 (($ (-732 |#1|)) 29 T ELT)) (-2495 (((-83) $ $) 36 T ELT)) (-3817 (((-823) $) 43 T ELT)) (-3121 (($ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3716 (((-578 $) (-732 |#1|)) 20 T ELT)) (-3930 (((-765) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-732 |#1|) $) 47 T ELT) (((-613 |#1|) $) 52 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2304 (((-58 (-578 $)) (-578 |#1|) (-823)) 67 T ELT)) (-2303 (((-578 $) (-578 |#1|) (-823)) 70 T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 63 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 46 T ELT))) +(((-609 |#1|) (-13 (-749) (-943 |#1|) (-10 -8 (-15 -2648 ((-83) $)) (-15 -3121 ($ $)) (-15 -3120 ($ $)) (-15 -3817 ((-823) $)) (-15 -2495 ((-83) $ $)) (-15 -3930 ((-732 |#1|) $)) (-15 -3930 ((-613 |#1|) $)) (-15 -3716 ((-578 $) (-732 |#1|))) (-15 -2307 ((-83) (-732 |#1|))) (-15 -2306 ($ (-732 |#1|))) (-15 -2305 ((-3 $ "failed") (-732 |#1|))) (-15 -3918 ((-578 |#1|) $)) (-15 -2304 ((-58 (-578 $)) (-578 |#1|) (-823))) (-15 -2303 ((-578 $) (-578 |#1|) (-823))))) (-749)) (T -609)) +((-2648 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) (-3121 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-749)))) (-3120 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-749)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) (-2495 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-732 *3)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-613 *3)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-732 *4)) (-4 *4 (-749)) (-5 *2 (-578 (-609 *4))) (-5 *1 (-609 *4)))) (-2307 (*1 *2 *3) (-12 (-5 *3 (-732 *4)) (-4 *4 (-749)) (-5 *2 (-83)) (-5 *1 (-609 *4)))) (-2306 (*1 *1 *2) (-12 (-5 *2 (-732 *3)) (-4 *3 (-749)) (-5 *1 (-609 *3)))) (-2305 (*1 *1 *2) (|partial| -12 (-5 *2 (-732 *3)) (-4 *3 (-749)) (-5 *1 (-609 *3)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) (-2304 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-823)) (-4 *5 (-749)) (-5 *2 (-58 (-578 (-609 *5)))) (-5 *1 (-609 *5)))) (-2303 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-823)) (-4 *5 (-749)) (-5 *2 (-578 (-609 *5))) (-5 *1 (-609 *5))))) +((-3386 ((|#2| $) 100 T ELT)) (-3781 (($ $) 121 T ELT)) (-3426 (((-83) $ (-687)) 35 T ELT)) (-3783 (($ $) 109 T ELT) (($ $ (-687)) 112 T ELT)) (-3427 (((-83) $) 122 T ELT)) (-3015 (((-578 $) $) 96 T ELT)) (-3011 (((-83) $ $) 92 T ELT)) (-3703 (((-83) $ (-687)) 33 T ELT)) (-2186 (((-478) $) 66 T ELT)) (-2187 (((-478) $) 65 T ELT)) (-3700 (((-83) $ (-687)) 31 T ELT)) (-3511 (((-83) $) 98 T ELT)) (-3782 ((|#2| $) 113 T ELT) (($ $ (-687)) 117 T ELT)) (-2290 (($ $ $ (-478)) 83 T ELT) (($ |#2| $ (-478)) 82 T ELT)) (-2189 (((-578 (-478)) $) 64 T ELT)) (-2190 (((-83) (-478) $) 59 T ELT)) (-3785 ((|#2| $) NIL T ELT) (($ $ (-687)) 108 T ELT)) (-3753 (($ $ (-478)) 125 T ELT)) (-3428 (((-83) $) 124 T ELT)) (-1934 (((-83) (-1 (-83) |#2|) $) 42 T ELT)) (-2191 (((-578 |#2|) $) 46 T ELT)) (-3784 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1135 (-478))) 79 T ELT) ((|#2| $ (-478)) 57 T ELT) ((|#2| $ (-478) |#2|) 58 T ELT)) (-3013 (((-478) $ $) 91 T ELT)) (-2291 (($ $ (-1135 (-478))) 78 T ELT) (($ $ (-478)) 72 T ELT)) (-3617 (((-83) $) 87 T ELT)) (-3776 (($ $) 105 T ELT)) (-3777 (((-687) $) 104 T ELT)) (-3778 (($ $) 103 T ELT)) (-3514 (($ (-578 |#2|)) 53 T ELT)) (-2875 (($ $) 126 T ELT)) (-3506 (((-578 $) $) 90 T ELT)) (-3012 (((-83) $ $) 89 T ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) 41 T ELT)) (-3037 (((-83) $ $) 20 T ELT)) (-3941 (((-687) $) 39 T ELT))) +(((-610 |#1| |#2|) (-10 -7 (-15 -3037 ((-83) |#1| |#1|)) (-15 -2875 (|#1| |#1|)) (-15 -3753 (|#1| |#1| (-478))) (-15 -3426 ((-83) |#1| (-687))) (-15 -3703 ((-83) |#1| (-687))) (-15 -3700 ((-83) |#1| (-687))) (-15 -3427 ((-83) |#1|)) (-15 -3428 ((-83) |#1|)) (-15 -3784 (|#2| |#1| (-478) |#2|)) (-15 -3784 (|#2| |#1| (-478))) (-15 -2191 ((-578 |#2|) |#1|)) (-15 -2190 ((-83) (-478) |#1|)) (-15 -2189 ((-578 (-478)) |#1|)) (-15 -2187 ((-478) |#1|)) (-15 -2186 ((-478) |#1|)) (-15 -3514 (|#1| (-578 |#2|))) (-15 -3784 (|#1| |#1| (-1135 (-478)))) (-15 -2291 (|#1| |#1| (-478))) (-15 -2291 (|#1| |#1| (-1135 (-478)))) (-15 -2290 (|#1| |#2| |#1| (-478))) (-15 -2290 (|#1| |#1| |#1| (-478))) (-15 -3776 (|#1| |#1|)) (-15 -3777 ((-687) |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -3782 (|#1| |#1| (-687))) (-15 -3784 (|#2| |#1| "last")) (-15 -3782 (|#2| |#1|)) (-15 -3783 (|#1| |#1| (-687))) (-15 -3784 (|#1| |#1| "rest")) (-15 -3783 (|#1| |#1|)) (-15 -3785 (|#1| |#1| (-687))) (-15 -3784 (|#2| |#1| "first")) (-15 -3785 (|#2| |#1|)) (-15 -3011 ((-83) |#1| |#1|)) (-15 -3012 ((-83) |#1| |#1|)) (-15 -3013 ((-478) |#1| |#1|)) (-15 -3617 ((-83) |#1|)) (-15 -3784 (|#2| |#1| "value")) (-15 -3386 (|#2| |#1|)) (-15 -3511 ((-83) |#1|)) (-15 -3015 ((-578 |#1|) |#1|)) (-15 -3506 ((-578 |#1|) |#1|)) (-15 -1934 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1935 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -3941 ((-687) |#1|))) (-611 |#2|) (-1118)) (T -610)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3386 ((|#1| $) 52 T ELT)) (-3779 ((|#1| $) 71 T ELT)) (-3781 (($ $) 73 T ELT)) (-2184 (((-1174) $ (-478) (-478)) 107 (|has| $ (-6 -3980)) ELT)) (-3769 (($ $ (-478)) 58 (|has| $ (-6 -3980)) ELT)) (-3426 (((-83) $ (-687)) 90 T ELT)) (-3009 ((|#1| $ |#1|) 43 (|has| $ (-6 -3980)) ELT)) (-3771 (($ $ $) 62 (|has| $ (-6 -3980)) ELT)) (-3770 ((|#1| $ |#1|) 60 (|has| $ (-6 -3980)) ELT)) (-3773 ((|#1| $ |#1|) 64 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3980)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3980)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3980)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) 127 (|has| $ (-6 -3980)) ELT) ((|#1| $ (-478) |#1|) 96 (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) 45 (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) 112 T ELT)) (-3780 ((|#1| $) 72 T ELT)) (-3708 (($) 7 T CONST)) (-2309 (($ $) 135 T ELT)) (-3783 (($ $) 79 T ELT) (($ $ (-687)) 77 T ELT)) (-1340 (($ $) 109 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3390 (($ |#1| $) 110 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#1|) $) 113 T ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1563 ((|#1| $ (-478) |#1|) 95 (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) 97 T ELT)) (-3427 (((-83) $) 93 T ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-2308 (((-687) $) 134 T ELT)) (-3015 (((-578 $) $) 54 T ELT)) (-3011 (((-83) $ $) 46 (|has| |#1| (-1005)) ELT)) (-3598 (($ (-687) |#1|) 119 T ELT)) (-3703 (((-83) $ (-687)) 91 T ELT)) (-2186 (((-478) $) 105 (|has| (-478) (-749)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-2187 (((-478) $) 104 (|has| (-478) (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3700 (((-83) $ (-687)) 92 T ELT)) (-3014 (((-578 |#1|) $) 49 T ELT)) (-3511 (((-83) $) 53 T ELT)) (-2311 (($ $) 137 T ELT)) (-2312 (((-83) $) 138 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-3782 ((|#1| $) 76 T ELT) (($ $ (-687)) 74 T ELT)) (-2290 (($ $ $ (-478)) 126 T ELT) (($ |#1| $ (-478)) 125 T ELT)) (-2189 (((-578 (-478)) $) 102 T ELT)) (-2190 (((-83) (-478) $) 101 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-2310 ((|#1| $) 136 T ELT)) (-3785 ((|#1| $) 82 T ELT) (($ $ (-687)) 80 T ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 116 T ELT)) (-2185 (($ $ |#1|) 106 (|has| $ (-6 -3980)) ELT)) (-3753 (($ $ (-478)) 133 T ELT)) (-3428 (((-83) $) 94 T ELT)) (-2313 (((-83) $) 139 T ELT)) (-2314 (((-83) $) 140 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-2188 (((-83) |#1| $) 103 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) 100 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1135 (-478))) 118 T ELT) ((|#1| $ (-478)) 99 T ELT) ((|#1| $ (-478) |#1|) 98 T ELT)) (-3013 (((-478) $ $) 48 T ELT)) (-2291 (($ $ (-1135 (-478))) 124 T ELT) (($ $ (-478)) 123 T ELT)) (-3617 (((-83) $) 50 T ELT)) (-3776 (($ $) 68 T ELT)) (-3774 (($ $) 65 (|has| $ (-6 -3980)) ELT)) (-3777 (((-687) $) 69 T ELT)) (-3778 (($ $) 70 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 108 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 117 T ELT)) (-3775 (($ $ $) 67 (|has| $ (-6 -3980)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3980)) ELT)) (-3786 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-578 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-2875 (($ $) 132 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-3506 (((-578 $) $) 55 T ELT)) (-3012 (((-83) $ $) 47 (|has| |#1| (-1005)) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-611 |#1|) (-111) (-1118)) (T -611)) +((-3390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-611 *3)) (-4 *3 (-1118)))) (-3694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-611 *3)) (-4 *3 (-1118)))) (-2314 (*1 *2 *1) (-12 (-4 *1 (-611 *3)) (-4 *3 (-1118)) (-5 *2 (-83)))) (-2313 (*1 *2 *1) (-12 (-4 *1 (-611 *3)) (-4 *3 (-1118)) (-5 *2 (-83)))) (-2312 (*1 *2 *1) (-12 (-4 *1 (-611 *3)) (-4 *3 (-1118)) (-5 *2 (-83)))) (-2311 (*1 *1 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1118)))) (-2310 (*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1118)))) (-2309 (*1 *1 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1118)))) (-2308 (*1 *2 *1) (-12 (-4 *1 (-611 *3)) (-4 *3 (-1118)) (-5 *2 (-687)))) (-3753 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-611 *3)) (-4 *3 (-1118)))) (-2875 (*1 *1 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1118))))) +(-13 (-1053 |t#1|) (-10 -8 (-15 -3390 ($ (-1 (-83) |t#1|) $)) (-15 -3694 ($ (-1 (-83) |t#1|) $)) (-15 -2314 ((-83) $)) (-15 -2313 ((-83) $)) (-15 -2312 ((-83) $)) (-15 -2311 ($ $)) (-15 -2310 (|t#1| $)) (-15 -2309 ($ $)) (-15 -2308 ((-687) $)) (-15 -3753 ($ $ (-478))) (-15 -2875 ($ $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 (-478) |#1|) . T) ((-238 (-1135 (-478)) $) . T) ((-240 (-478) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-533 (-478) |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-588 |#1|) . T) ((-916 |#1|) . T) ((-1005) |has| |#1| (-1005)) ((-1053 |#1|) . T) ((-1118) . T) ((-1157 |#1|) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3161 (((-416) $) 10 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 19 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-3216 (((-1038) $) 12 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-612) (-13 (-987) (-10 -8 (-15 -3161 ((-416) $)) (-15 -3216 ((-1038) $))))) (T -612)) +((-3161 (*1 *2 *1) (-12 (-5 *2 (-416)) (-5 *1 (-612)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-612))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3918 (((-578 |#1|) $) 15 T ELT)) (-3120 (($ $) 19 T ELT)) (-2648 (((-83) $) 20 T ELT)) (-3140 (((-3 |#1| "failed") $) 23 T ELT)) (-3139 ((|#1| $) 21 T ELT)) (-3783 (($ $) 37 T ELT)) (-3920 (($ $) 25 T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-2495 (((-83) $ $) 46 T ELT)) (-3817 (((-823) $) 40 T ELT)) (-3121 (($ $) 18 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3785 ((|#1| $) 36 T ELT)) (-3930 (((-765) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-732 |#1|) $) 28 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 13 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) +(((-613 |#1|) (-13 (-749) (-943 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3930 ((-732 |#1|) $)) (-15 -3785 (|#1| $)) (-15 -3121 ($ $)) (-15 -3817 ((-823) $)) (-15 -2495 ((-83) $ $)) (-15 -3920 ($ $)) (-15 -3783 ($ $)) (-15 -2648 ((-83) $)) (-15 -3120 ($ $)) (-15 -3918 ((-578 |#1|) $)))) (-749)) (T -613)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-732 *3)) (-5 *1 (-613 *3)) (-4 *3 (-749)))) (-3785 (*1 *2 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) (-3121 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-613 *3)) (-4 *3 (-749)))) (-2495 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-613 *3)) (-4 *3 (-749)))) (-3920 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) (-3783 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-613 *3)) (-4 *3 (-749)))) (-3120 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-613 *3)) (-4 *3 (-749))))) +((-2323 ((|#1| (-1 |#1| (-687) |#1|) (-687) |#1|) 11 T ELT)) (-2315 ((|#1| (-1 |#1| |#1|) (-687) |#1|) 9 T ELT))) +(((-614 |#1|) (-10 -7 (-15 -2315 (|#1| (-1 |#1| |#1|) (-687) |#1|)) (-15 -2323 (|#1| (-1 |#1| (-687) |#1|) (-687) |#1|))) (-1005)) (T -614)) +((-2323 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-687) *2)) (-5 *4 (-687)) (-4 *2 (-1005)) (-5 *1 (-614 *2)))) (-2315 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-687)) (-4 *2 (-1005)) (-5 *1 (-614 *2))))) +((-2317 ((|#2| |#1| |#2|) 9 T ELT)) (-2316 ((|#1| |#1| |#2|) 8 T ELT))) +(((-615 |#1| |#2|) (-10 -7 (-15 -2316 (|#1| |#1| |#2|)) (-15 -2317 (|#2| |#1| |#2|))) (-1005) (-1005)) (T -615)) +((-2317 (*1 *2 *3 *2) (-12 (-5 *1 (-615 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005)))) (-2316 (*1 *2 *2 *3) (-12 (-5 *1 (-615 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005))))) +((-2318 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) +(((-616 |#1| |#2| |#3|) (-10 -7 (-15 -2318 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1005) (-1005) (-1005)) (T -616)) +((-2318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005)) (-5 *1 (-616 *5 *6 *2))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3300 (((-1119) $) 21 T ELT)) (-3299 (((-578 (-1119)) $) 19 T ELT)) (-2319 (($ (-578 (-1119)) (-1119)) 14 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 29 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT) (((-1119) $) 22 T ELT) (($ (-1018)) 10 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-617) (-13 (-987) (-547 (-1119)) (-10 -8 (-15 -3930 ($ (-1018))) (-15 -2319 ($ (-578 (-1119)) (-1119))) (-15 -3299 ((-578 (-1119)) $)) (-15 -3300 ((-1119) $))))) (T -617)) +((-3930 (*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-617)))) (-2319 (*1 *1 *2 *3) (-12 (-5 *2 (-578 (-1119))) (-5 *3 (-1119)) (-5 *1 (-617)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-578 (-1119))) (-5 *1 (-617)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-617))))) +((-2323 (((-1 |#1| (-687) |#1|) (-1 |#1| (-687) |#1|)) 26 T ELT)) (-2320 (((-1 |#1|) |#1|) 8 T ELT)) (-2322 ((|#1| |#1|) 19 T ELT)) (-2321 (((-578 |#1|) (-1 (-578 |#1|) (-578 |#1|)) (-478)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3930 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-687)) 23 T ELT))) +(((-618 |#1|) (-10 -7 (-15 -2320 ((-1 |#1|) |#1|)) (-15 -3930 ((-1 |#1|) |#1|)) (-15 -2321 (|#1| (-1 |#1| |#1|))) (-15 -2321 ((-578 |#1|) (-1 (-578 |#1|) (-578 |#1|)) (-478))) (-15 -2322 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-687))) (-15 -2323 ((-1 |#1| (-687) |#1|) (-1 |#1| (-687) |#1|)))) (-1005)) (T -618)) +((-2323 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-687) *3)) (-4 *3 (-1005)) (-5 *1 (-618 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-687)) (-4 *4 (-1005)) (-5 *1 (-618 *4)))) (-2322 (*1 *2 *2) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1005)))) (-2321 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-578 *5) (-578 *5))) (-5 *4 (-478)) (-5 *2 (-578 *5)) (-5 *1 (-618 *5)) (-4 *5 (-1005)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-618 *2)) (-4 *2 (-1005)))) (-3930 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-618 *3)) (-4 *3 (-1005)))) (-2320 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-618 *3)) (-4 *3 (-1005))))) +((-2326 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2325 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3936 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2324 (((-1 |#2| |#1|) |#2|) 11 T ELT))) +(((-619 |#1| |#2|) (-10 -7 (-15 -2324 ((-1 |#2| |#1|) |#2|)) (-15 -2325 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3936 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2326 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1005) (-1005)) (T -619)) +((-2326 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-5 *2 (-1 *5 *4)) (-5 *1 (-619 *4 *5)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1005)) (-5 *2 (-1 *5 *4)) (-5 *1 (-619 *4 *5)) (-4 *4 (-1005)))) (-2325 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-5 *2 (-1 *5)) (-5 *1 (-619 *4 *5)))) (-2324 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-619 *4 *3)) (-4 *4 (-1005)) (-4 *3 (-1005))))) +((-2331 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2327 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2328 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2329 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2330 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) +(((-620 |#1| |#2| |#3|) (-10 -7 (-15 -2327 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2328 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2329 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2330 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2331 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1005) (-1005) (-1005)) (T -620)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-1 *7 *5)) (-5 *1 (-620 *5 *6 *7)))) (-2331 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-620 *4 *5 *6)))) (-2330 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-620 *4 *5 *6)) (-4 *4 (-1005)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1005)) (-4 *6 (-1005)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-620 *4 *5 *6)) (-4 *5 (-1005)))) (-2328 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *4 *5 *6)))) (-2327 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1005)) (-4 *4 (-1005)) (-4 *6 (-1005)) (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *5 *4 *6))))) +((-3822 (($ (-687) (-687)) 42 T ELT)) (-2336 (($ $ $) 73 T ELT)) (-3398 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3104 (((-83) $) 36 T ELT)) (-2335 (($ $ (-478) (-478)) 84 T ELT)) (-2334 (($ $ (-478) (-478)) 85 T ELT)) (-2333 (($ $ (-478) (-478) (-478) (-478)) 90 T ELT)) (-2338 (($ $) 71 T ELT)) (-3106 (((-83) $) 15 T ELT)) (-2332 (($ $ (-478) (-478) $) 91 T ELT)) (-3772 ((|#2| $ (-478) (-478) |#2|) NIL T ELT) (($ $ (-578 (-478)) (-578 (-478)) $) 89 T ELT)) (-3317 (($ (-687) |#2|) 55 T ELT)) (-3107 (($ (-578 (-578 |#2|))) 51 T ELT) (($ (-687) (-687) (-1 |#2| (-478) (-478))) 53 T ELT)) (-3578 (((-578 (-578 |#2|)) $) 80 T ELT)) (-2337 (($ $ $) 72 T ELT)) (-3450 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3784 ((|#2| $ (-478) (-478)) NIL T ELT) ((|#2| $ (-478) (-478) |#2|) NIL T ELT) (($ $ (-578 (-478)) (-578 (-478))) 88 T ELT)) (-3316 (($ (-578 |#2|)) 56 T ELT) (($ (-578 $)) 58 T ELT)) (-3105 (((-83) $) 28 T ELT)) (-3930 (($ |#4|) 63 T ELT) (((-765) $) NIL T ELT)) (-3103 (((-83) $) 38 T ELT)) (-3933 (($ $ |#2|) 124 T ELT)) (-3821 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3823 (($ $ $) 93 T ELT)) (** (($ $ (-687)) 111 T ELT) (($ $ (-478)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-478) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) +(((-621 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3930 ((-765) |#1|)) (-15 ** (|#1| |#1| (-478))) (-15 -3933 (|#1| |#1| |#2|)) (-15 -3450 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-687))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-478) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -3821 (|#1| |#1| |#1|)) (-15 -3823 (|#1| |#1| |#1|)) (-15 -2332 (|#1| |#1| (-478) (-478) |#1|)) (-15 -2333 (|#1| |#1| (-478) (-478) (-478) (-478))) (-15 -2334 (|#1| |#1| (-478) (-478))) (-15 -2335 (|#1| |#1| (-478) (-478))) (-15 -3772 (|#1| |#1| (-578 (-478)) (-578 (-478)) |#1|)) (-15 -3784 (|#1| |#1| (-578 (-478)) (-578 (-478)))) (-15 -3578 ((-578 (-578 |#2|)) |#1|)) (-15 -2336 (|#1| |#1| |#1|)) (-15 -2337 (|#1| |#1| |#1|)) (-15 -2338 (|#1| |#1|)) (-15 -3398 (|#1| |#1|)) (-15 -3398 (|#1| |#3|)) (-15 -3930 (|#1| |#4|)) (-15 -3316 (|#1| (-578 |#1|))) (-15 -3316 (|#1| (-578 |#2|))) (-15 -3317 (|#1| (-687) |#2|)) (-15 -3107 (|#1| (-687) (-687) (-1 |#2| (-478) (-478)))) (-15 -3107 (|#1| (-578 (-578 |#2|)))) (-15 -3822 (|#1| (-687) (-687))) (-15 -3103 ((-83) |#1|)) (-15 -3104 ((-83) |#1|)) (-15 -3105 ((-83) |#1|)) (-15 -3106 ((-83) |#1|)) (-15 -3772 (|#2| |#1| (-478) (-478) |#2|)) (-15 -3784 (|#2| |#1| (-478) (-478) |#2|)) (-15 -3784 (|#2| |#1| (-478) (-478)))) (-622 |#2| |#3| |#4|) (-954) (-317 |#2|) (-317 |#2|)) (T -621)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3822 (($ (-687) (-687)) 103 T ELT)) (-2336 (($ $ $) 92 T ELT)) (-3398 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3104 (((-83) $) 105 T ELT)) (-2335 (($ $ (-478) (-478)) 88 T ELT)) (-2334 (($ $ (-478) (-478)) 87 T ELT)) (-2333 (($ $ (-478) (-478) (-478) (-478)) 86 T ELT)) (-2338 (($ $) 94 T ELT)) (-3106 (((-83) $) 107 T ELT)) (-2332 (($ $ (-478) (-478) $) 85 T ELT)) (-3772 ((|#1| $ (-478) (-478) |#1|) 48 T ELT) (($ $ (-578 (-478)) (-578 (-478)) $) 89 T ELT)) (-1245 (($ $ (-478) |#2|) 46 T ELT)) (-1244 (($ $ (-478) |#3|) 45 T ELT)) (-3317 (($ (-687) |#1|) 100 T ELT)) (-3708 (($) 7 T CONST)) (-3093 (($ $) 72 (|has| |#1| (-254)) ELT)) (-3095 ((|#2| $ (-478)) 50 T ELT)) (-3092 (((-687) $) 71 (|has| |#1| (-489)) ELT)) (-1563 ((|#1| $ (-478) (-478) |#1|) 47 T ELT)) (-3096 ((|#1| $ (-478) (-478)) 52 T ELT)) (-2873 (((-578 |#1|) $) 30 T ELT)) (-3091 (((-687) $) 70 (|has| |#1| (-489)) ELT)) (-3090 (((-578 |#3|) $) 69 (|has| |#1| (-489)) ELT)) (-3098 (((-687) $) 55 T ELT)) (-3598 (($ (-687) (-687) |#1|) 61 T ELT)) (-3097 (((-687) $) 54 T ELT)) (-3311 ((|#1| $) 67 (|has| |#1| (-6 (-3981 #1="*"))) ELT)) (-3102 (((-478) $) 59 T ELT)) (-3100 (((-478) $) 57 T ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3101 (((-478) $) 58 T ELT)) (-3099 (((-478) $) 56 T ELT)) (-3107 (($ (-578 (-578 |#1|))) 102 T ELT) (($ (-687) (-687) (-1 |#1| (-478) (-478))) 101 T ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3578 (((-578 (-578 |#1|)) $) 91 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-3574 (((-3 $ "failed") $) 66 (|has| |#1| (-308)) ELT)) (-2337 (($ $ $) 93 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-2185 (($ $ |#1|) 60 T ELT)) (-3450 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-489)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#1| $ (-478) (-478)) 53 T ELT) ((|#1| $ (-478) (-478) |#1|) 51 T ELT) (($ $ (-578 (-478)) (-578 (-478))) 90 T ELT)) (-3316 (($ (-578 |#1|)) 99 T ELT) (($ (-578 $)) 98 T ELT)) (-3105 (((-83) $) 106 T ELT)) (-3312 ((|#1| $) 68 (|has| |#1| (-6 (-3981 #1#))) ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3094 ((|#3| $ (-478)) 49 T ELT)) (-3930 (($ |#3|) 97 T ELT) (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3103 (((-83) $) 104 T ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (($ $ |#1|) 73 (|has| |#1| (-308)) ELT)) (-3821 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-3823 (($ $ $) 84 T ELT)) (** (($ $ (-687)) 75 T ELT) (($ $ (-478)) 65 (|has| |#1| (-308)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-478) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-622 |#1| |#2| |#3|) (-111) (-954) (-317 |t#1|) (-317 |t#1|)) (T -622)) +((-3106 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-83)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-83)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-83)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-83)))) (-3822 (*1 *1 *2 *2) (-12 (-5 *2 (-687)) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3107 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3107 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-687)) (-5 *3 (-1 *4 (-478) (-478))) (-4 *4 (-954)) (-4 *1 (-622 *4 *5 *6)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)))) (-3317 (*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3316 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3316 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3930 (*1 *1 *2) (-12 (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *2)) (-4 *4 (-317 *3)) (-4 *2 (-317 *3)))) (-3398 (*1 *1 *2) (-12 (-4 *3 (-954)) (-4 *1 (-622 *3 *2 *4)) (-4 *2 (-317 *3)) (-4 *4 (-317 *3)))) (-3398 (*1 *1 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (-2338 (*1 *1 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (-2337 (*1 *1 *1 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (-2336 (*1 *1 *1 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-578 (-578 *3))))) (-3784 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-578 (-478))) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3772 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-578 (-478))) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-2335 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-2334 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-2333 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-2332 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3823 (*1 *1 *1 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (-3821 (*1 *1 *1 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (-3821 (*1 *1 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-622 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *2 (-317 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-622 *3 *2 *4)) (-4 *3 (-954)) (-4 *2 (-317 *3)) (-4 *4 (-317 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3450 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)) (-4 *2 (-489)))) (-3933 (*1 *1 *1 *2) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)) (-4 *2 (-308)))) (-3093 (*1 *1 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)) (-4 *2 (-254)))) (-3092 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-4 *3 (-489)) (-5 *2 (-687)))) (-3091 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-4 *3 (-489)) (-5 *2 (-687)))) (-3090 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-4 *3 (-489)) (-5 *2 (-578 *5)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)) (|has| *2 (-6 (-3981 #1="*"))) (-4 *2 (-954)))) (-3311 (*1 *2 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)) (|has| *2 (-6 (-3981 #1#))) (-4 *2 (-954)))) (-3574 (*1 *1 *1) (|partial| -12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)) (-4 *2 (-308)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-4 *3 (-308))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -3980) (-6 -3979) (-15 -3106 ((-83) $)) (-15 -3105 ((-83) $)) (-15 -3104 ((-83) $)) (-15 -3103 ((-83) $)) (-15 -3822 ($ (-687) (-687))) (-15 -3107 ($ (-578 (-578 |t#1|)))) (-15 -3107 ($ (-687) (-687) (-1 |t#1| (-478) (-478)))) (-15 -3317 ($ (-687) |t#1|)) (-15 -3316 ($ (-578 |t#1|))) (-15 -3316 ($ (-578 $))) (-15 -3930 ($ |t#3|)) (-15 -3398 ($ |t#2|)) (-15 -3398 ($ $)) (-15 -2338 ($ $)) (-15 -2337 ($ $ $)) (-15 -2336 ($ $ $)) (-15 -3578 ((-578 (-578 |t#1|)) $)) (-15 -3784 ($ $ (-578 (-478)) (-578 (-478)))) (-15 -3772 ($ $ (-578 (-478)) (-578 (-478)) $)) (-15 -2335 ($ $ (-478) (-478))) (-15 -2334 ($ $ (-478) (-478))) (-15 -2333 ($ $ (-478) (-478) (-478) (-478))) (-15 -2332 ($ $ (-478) (-478) $)) (-15 -3823 ($ $ $)) (-15 -3821 ($ $ $)) (-15 -3821 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-478) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-687))) (IF (|has| |t#1| (-489)) (-15 -3450 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-308)) (-15 -3933 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-254)) (-15 -3093 ($ $)) |%noBranch|) (IF (|has| |t#1| (-489)) (PROGN (-15 -3092 ((-687) $)) (-15 -3091 ((-687) $)) (-15 -3090 ((-578 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3981 "*"))) (PROGN (-15 -3312 (|t#1| $)) (-15 -3311 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-15 -3574 ((-3 $ "failed") $)) (-15 ** ($ $ (-478)))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-57 |#1| |#2| |#3|) . T) ((-1118) . T)) +((-3826 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3942 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) +(((-623 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3942 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3942 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3826 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-954) (-317 |#1|) (-317 |#1|) (-622 |#1| |#2| |#3|) (-954) (-317 |#5|) (-317 |#5|) (-622 |#5| |#6| |#7|)) (T -623)) +((-3826 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-954)) (-4 *2 (-954)) (-4 *6 (-317 *5)) (-4 *7 (-317 *5)) (-4 *8 (-317 *2)) (-4 *9 (-317 *2)) (-5 *1 (-623 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-622 *5 *6 *7)) (-4 *10 (-622 *2 *8 *9)))) (-3942 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-954)) (-4 *8 (-954)) (-4 *6 (-317 *5)) (-4 *7 (-317 *5)) (-4 *2 (-622 *8 *9 *10)) (-5 *1 (-623 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-622 *5 *6 *7)) (-4 *9 (-317 *8)) (-4 *10 (-317 *8)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-954)) (-4 *8 (-954)) (-4 *6 (-317 *5)) (-4 *7 (-317 *5)) (-4 *2 (-622 *8 *9 *10)) (-5 *1 (-623 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-622 *5 *6 *7)) (-4 *9 (-317 *8)) (-4 *10 (-317 *8))))) +((-3093 ((|#4| |#4|) 92 (|has| |#1| (-254)) ELT)) (-3092 (((-687) |#4|) 121 (|has| |#1| (-489)) ELT)) (-3091 (((-687) |#4|) 96 (|has| |#1| (-489)) ELT)) (-3090 (((-578 |#3|) |#4|) 103 (|has| |#1| (-489)) ELT)) (-2366 (((-2 (|:| -1960 |#1|) (|:| -2886 |#1|)) |#1| |#1|) 137 (|has| |#1| (-254)) ELT)) (-3311 ((|#1| |#4|) 52 T ELT)) (-2343 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-489)) ELT)) (-3574 (((-3 |#4| #1#) |#4|) 100 (|has| |#1| (-308)) ELT)) (-2342 ((|#4| |#4|) 88 (|has| |#1| (-489)) ELT)) (-2340 ((|#4| |#4| |#1| (-478) (-478)) 60 T ELT)) (-2339 ((|#4| |#4| (-478) (-478)) 55 T ELT)) (-2341 ((|#4| |#4| |#1| (-478) (-478)) 65 T ELT)) (-3312 ((|#1| |#4|) 98 T ELT)) (-2504 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-489)) ELT))) +(((-624 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#1| |#4|)) (-15 -3311 (|#1| |#4|)) (-15 -2339 (|#4| |#4| (-478) (-478))) (-15 -2340 (|#4| |#4| |#1| (-478) (-478))) (-15 -2341 (|#4| |#4| |#1| (-478) (-478))) (IF (|has| |#1| (-489)) (PROGN (-15 -3092 ((-687) |#4|)) (-15 -3091 ((-687) |#4|)) (-15 -3090 ((-578 |#3|) |#4|)) (-15 -2342 (|#4| |#4|)) (-15 -2343 ((-3 |#4| #1="failed") |#4|)) (-15 -2504 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-254)) (PROGN (-15 -3093 (|#4| |#4|)) (-15 -2366 ((-2 (|:| -1960 |#1|) (|:| -2886 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-308)) (-15 -3574 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-144) (-317 |#1|) (-317 |#1|) (-622 |#1| |#2| |#3|)) (T -624)) +((-3574 (*1 *2 *2) (|partial| -12 (-4 *3 (-308)) (-4 *3 (-144)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) (-2366 (*1 *2 *3 *3) (-12 (-4 *3 (-254)) (-4 *3 (-144)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-2 (|:| -1960 *3) (|:| -2886 *3))) (-5 *1 (-624 *3 *4 *5 *6)) (-4 *6 (-622 *3 *4 *5)))) (-3093 (*1 *2 *2) (-12 (-4 *3 (-254)) (-4 *3 (-144)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) (-2504 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) (-2343 (*1 *2 *2) (|partial| -12 (-4 *3 (-489)) (-4 *3 (-144)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) (-2342 (*1 *2 *2) (-12 (-4 *3 (-489)) (-4 *3 (-144)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) (-3090 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-578 *6)) (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) (-3091 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-687)) (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) (-3092 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-687)) (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) (-2341 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-478)) (-4 *3 (-144)) (-4 *5 (-317 *3)) (-4 *6 (-317 *3)) (-5 *1 (-624 *3 *5 *6 *2)) (-4 *2 (-622 *3 *5 *6)))) (-2340 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-478)) (-4 *3 (-144)) (-4 *5 (-317 *3)) (-4 *6 (-317 *3)) (-5 *1 (-624 *3 *5 *6 *2)) (-4 *2 (-622 *3 *5 *6)))) (-2339 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-478)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *1 (-624 *4 *5 *6 *2)) (-4 *2 (-622 *4 *5 *6)))) (-3311 (*1 *2 *3) (-12 (-4 *4 (-317 *2)) (-4 *5 (-317 *2)) (-4 *2 (-144)) (-5 *1 (-624 *2 *4 *5 *3)) (-4 *3 (-622 *2 *4 *5)))) (-3312 (*1 *2 *3) (-12 (-4 *4 (-317 *2)) (-4 *5 (-317 *2)) (-4 *2 (-144)) (-5 *1 (-624 *2 *4 *5 *3)) (-4 *3 (-622 *2 *4 *5))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3822 (($ (-687) (-687)) 64 T ELT)) (-2336 (($ $ $) NIL T ELT)) (-3398 (($ (-1168 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3104 (((-83) $) NIL T ELT)) (-2335 (($ $ (-478) (-478)) 22 T ELT)) (-2334 (($ $ (-478) (-478)) NIL T ELT)) (-2333 (($ $ (-478) (-478) (-478) (-478)) NIL T ELT)) (-2338 (($ $) NIL T ELT)) (-3106 (((-83) $) NIL T ELT)) (-2332 (($ $ (-478) (-478) $) NIL T ELT)) (-3772 ((|#1| $ (-478) (-478) |#1|) NIL T ELT) (($ $ (-578 (-478)) (-578 (-478)) $) NIL T ELT)) (-1245 (($ $ (-478) (-1168 |#1|)) NIL T ELT)) (-1244 (($ $ (-478) (-1168 |#1|)) NIL T ELT)) (-3317 (($ (-687) |#1|) 37 T ELT)) (-3708 (($) NIL T CONST)) (-3093 (($ $) 46 (|has| |#1| (-254)) ELT)) (-3095 (((-1168 |#1|) $ (-478)) NIL T ELT)) (-3092 (((-687) $) 48 (|has| |#1| (-489)) ELT)) (-1563 ((|#1| $ (-478) (-478) |#1|) 69 T ELT)) (-3096 ((|#1| $ (-478) (-478)) NIL T ELT)) (-2873 (((-578 |#1|) $) NIL T ELT)) (-3091 (((-687) $) 50 (|has| |#1| (-489)) ELT)) (-3090 (((-578 (-1168 |#1|)) $) 53 (|has| |#1| (-489)) ELT)) (-3098 (((-687) $) 32 T ELT)) (-3598 (($ (-687) (-687) |#1|) NIL T ELT)) (-3097 (((-687) $) 33 T ELT)) (-3311 ((|#1| $) 44 (|has| |#1| (-6 (-3981 #1="*"))) ELT)) (-3102 (((-478) $) 10 T ELT)) (-3100 (((-478) $) 11 T ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3101 (((-478) $) 14 T ELT)) (-3099 (((-478) $) 65 T ELT)) (-3107 (($ (-578 (-578 |#1|))) NIL T ELT) (($ (-687) (-687) (-1 |#1| (-478) (-478))) NIL T ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3578 (((-578 (-578 |#1|)) $) 76 T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3574 (((-3 $ #2="failed") $) 60 (|has| |#1| (-308)) ELT)) (-2337 (($ $ $) NIL T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-2185 (($ $ |#1|) NIL T ELT)) (-3450 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-489)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#1| $ (-478) (-478)) NIL T ELT) ((|#1| $ (-478) (-478) |#1|) NIL T ELT) (($ $ (-578 (-478)) (-578 (-478))) NIL T ELT)) (-3316 (($ (-578 |#1|)) NIL T ELT) (($ (-578 $)) NIL T ELT) (($ (-1168 |#1|)) 70 T ELT)) (-3105 (((-83) $) NIL T ELT)) (-3312 ((|#1| $) 42 (|has| |#1| (-6 (-3981 #1#))) ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) 80 (|has| |#1| (-548 (-467))) ELT)) (-3094 (((-1168 |#1|) $ (-478)) NIL T ELT)) (-3930 (($ (-1168 |#1|)) NIL T ELT) (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3103 (((-83) $) NIL T ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-687)) 38 T ELT) (($ $ (-478)) 62 (|has| |#1| (-308)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-478) $) NIL T ELT) (((-1168 |#1|) $ (-1168 |#1|)) NIL T ELT) (((-1168 |#1|) (-1168 |#1|) $) NIL T ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-625 |#1|) (-13 (-622 |#1| (-1168 |#1|) (-1168 |#1|)) (-10 -8 (-15 -3316 ($ (-1168 |#1|))) (IF (|has| |#1| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|) (IF (|has| |#1| (-308)) (-15 -3574 ((-3 $ "failed") $)) |%noBranch|))) (-954)) (T -625)) +((-3574 (*1 *1 *1) (|partial| -12 (-5 *1 (-625 *2)) (-4 *2 (-308)) (-4 *2 (-954)))) (-3316 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-954)) (-5 *1 (-625 *3))))) +((-2349 (((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|)) 37 T ELT)) (-2348 (((-625 |#1|) (-625 |#1|) (-625 |#1|) |#1|) 32 T ELT)) (-2350 (((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|) (-687)) 43 T ELT)) (-2345 (((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|)) 25 T ELT)) (-2346 (((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|)) 29 T ELT) (((-625 |#1|) (-625 |#1|) (-625 |#1|)) 27 T ELT)) (-2347 (((-625 |#1|) (-625 |#1|) |#1| (-625 |#1|)) 31 T ELT)) (-2344 (((-625 |#1|) (-625 |#1|) (-625 |#1|)) 23 T ELT)) (** (((-625 |#1|) (-625 |#1|) (-687)) 46 T ELT))) +(((-626 |#1|) (-10 -7 (-15 -2344 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -2345 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -2346 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -2346 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -2347 ((-625 |#1|) (-625 |#1|) |#1| (-625 |#1|))) (-15 -2348 ((-625 |#1|) (-625 |#1|) (-625 |#1|) |#1|)) (-15 -2349 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -2350 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|) (-687))) (-15 ** ((-625 |#1|) (-625 |#1|) (-687)))) (-954)) (T -626)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-687)) (-4 *4 (-954)) (-5 *1 (-626 *4)))) (-2350 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-687)) (-4 *4 (-954)) (-5 *1 (-626 *4)))) (-2349 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3)))) (-2348 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3)))) (-2347 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3)))) (-2346 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3)))) (-2346 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3)))) (-2345 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3)))) (-2344 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3))))) +((-3140 (((-3 |#1| "failed") $) 18 T ELT)) (-3139 ((|#1| $) NIL T ELT)) (-2351 (($) 7 T CONST)) (-2352 (($ |#1|) 8 T ELT)) (-3930 (($ |#1|) 16 T ELT) (((-765) $) 23 T ELT)) (-3550 (((-83) $ (|[\|\|]| |#1|)) 14 T ELT) (((-83) $ (|[\|\|]| -2351)) 11 T ELT)) (-3556 ((|#1| $) 15 T ELT))) +(((-627 |#1|) (-13 (-1164) (-943 |#1|) (-547 (-765)) (-10 -8 (-15 -2352 ($ |#1|)) (-15 -3550 ((-83) $ (|[\|\|]| |#1|))) (-15 -3550 ((-83) $ (|[\|\|]| -2351))) (-15 -3556 (|#1| $)) (-15 -2351 ($) -3936))) (-547 (-765))) (T -627)) +((-2352 (*1 *1 *2) (-12 (-5 *1 (-627 *2)) (-4 *2 (-547 (-765))))) (-3550 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-547 (-765))) (-5 *2 (-83)) (-5 *1 (-627 *4)))) (-3550 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2351)) (-5 *2 (-83)) (-5 *1 (-627 *4)) (-4 *4 (-547 (-765))))) (-3556 (*1 *2 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-547 (-765))))) (-2351 (*1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-547 (-765)))))) +((-3725 (((-2 (|:| |num| (-625 |#1|)) (|:| |den| |#1|)) (-625 |#2|)) 20 T ELT)) (-3723 ((|#1| (-625 |#2|)) 9 T ELT)) (-3724 (((-625 |#1|) (-625 |#2|)) 18 T ELT))) +(((-628 |#1| |#2|) (-10 -7 (-15 -3723 (|#1| (-625 |#2|))) (-15 -3724 ((-625 |#1|) (-625 |#2|))) (-15 -3725 ((-2 (|:| |num| (-625 |#1|)) (|:| |den| |#1|)) (-625 |#2|)))) (-489) (-897 |#1|)) (T -628)) +((-3725 (*1 *2 *3) (-12 (-5 *3 (-625 *5)) (-4 *5 (-897 *4)) (-4 *4 (-489)) (-5 *2 (-2 (|:| |num| (-625 *4)) (|:| |den| *4))) (-5 *1 (-628 *4 *5)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-625 *5)) (-4 *5 (-897 *4)) (-4 *4 (-489)) (-5 *2 (-625 *4)) (-5 *1 (-628 *4 *5)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-897 *2)) (-4 *2 (-489)) (-5 *1 (-628 *2 *4))))) +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-1557 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3979)) ELT)) (-3708 (($) 7 T CONST)) (-2354 (($ $) 66 T ELT)) (-1340 (($ $) 62 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3389 (($ |#1| $) 51 (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3979)) ELT)) (-3390 (($ |#1| $) 61 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3979)) ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-1262 ((|#1| $) 43 T ELT)) (-3593 (($ |#1| $) 44 T ELT) (($ |#1| $ (-687)) 67 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1263 ((|#1| $) 45 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-2353 (((-578 (-2 (|:| |entry| |#1|) (|:| -1933 (-687)))) $) 65 T ELT)) (-1453 (($) 53 T ELT) (($ (-578 |#1|)) 52 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 63 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 54 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1264 (($ (-578 |#1|)) 46 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-629 |#1|) (-111) (-1005)) (T -629)) +((-3593 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-629 *2)) (-4 *2 (-1005)))) (-2354 (*1 *1 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1005)))) (-2353 (*1 *2 *1) (-12 (-4 *1 (-629 *3)) (-4 *3 (-1005)) (-5 *2 (-578 (-2 (|:| |entry| *3) (|:| -1933 (-687)))))))) +(-13 (-190 |t#1|) (-10 -8 (-15 -3593 ($ |t#1| $ (-687))) (-15 -2354 ($ $)) (-15 -2353 ((-578 (-2 (|:| |entry| |t#1|) (|:| -1933 (-687)))) $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-190 |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1118) . T)) +((-2357 (((-578 |#1|) (-578 (-2 (|:| -3716 |#1|) (|:| -3932 (-478)))) (-478)) 66 T ELT)) (-2355 ((|#1| |#1| (-478)) 63 T ELT)) (-3127 ((|#1| |#1| |#1| (-478)) 46 T ELT)) (-3716 (((-578 |#1|) |#1| (-478)) 49 T ELT)) (-2358 ((|#1| |#1| (-478) |#1| (-478)) 40 T ELT)) (-2356 (((-578 (-2 (|:| -3716 |#1|) (|:| -3932 (-478)))) |#1| (-478)) 62 T ELT))) +(((-630 |#1|) (-10 -7 (-15 -3127 (|#1| |#1| |#1| (-478))) (-15 -2355 (|#1| |#1| (-478))) (-15 -3716 ((-578 |#1|) |#1| (-478))) (-15 -2356 ((-578 (-2 (|:| -3716 |#1|) (|:| -3932 (-478)))) |#1| (-478))) (-15 -2357 ((-578 |#1|) (-578 (-2 (|:| -3716 |#1|) (|:| -3932 (-478)))) (-478))) (-15 -2358 (|#1| |#1| (-478) |#1| (-478)))) (-1144 (-478))) (T -630)) +((-2358 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-630 *2)) (-4 *2 (-1144 *3)))) (-2357 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| -3716 *5) (|:| -3932 (-478))))) (-5 *4 (-478)) (-4 *5 (-1144 *4)) (-5 *2 (-578 *5)) (-5 *1 (-630 *5)))) (-2356 (*1 *2 *3 *4) (-12 (-5 *4 (-478)) (-5 *2 (-578 (-2 (|:| -3716 *3) (|:| -3932 *4)))) (-5 *1 (-630 *3)) (-4 *3 (-1144 *4)))) (-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-478)) (-5 *2 (-578 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1144 *4)))) (-2355 (*1 *2 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-630 *2)) (-4 *2 (-1144 *3)))) (-3127 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-630 *2)) (-4 *2 (-1144 *3))))) +((-2362 (((-1 (-847 (-177)) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177) (-177))) 17 T ELT)) (-2359 (((-1036 (-177)) (-1036 (-177)) (-1 (-847 (-177)) (-177) (-177)) (-993 (-177)) (-993 (-177)) (-578 (-218))) 53 T ELT) (((-1036 (-177)) (-1 (-847 (-177)) (-177) (-177)) (-993 (-177)) (-993 (-177)) (-578 (-218))) 55 T ELT) (((-1036 (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-3 (-1 (-177) (-177) (-177) (-177)) #1="undefined") (-993 (-177)) (-993 (-177)) (-578 (-218))) 57 T ELT)) (-2361 (((-1036 (-177)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-993 (-177)) (-578 (-218))) NIL T ELT)) (-2360 (((-1036 (-177)) (-1 (-177) (-177) (-177)) (-3 (-1 (-177) (-177) (-177) (-177)) #1#) (-993 (-177)) (-993 (-177)) (-578 (-218))) 58 T ELT))) +(((-631) (-10 -7 (-15 -2359 ((-1036 (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-3 (-1 (-177) (-177) (-177) (-177)) #1="undefined") (-993 (-177)) (-993 (-177)) (-578 (-218)))) (-15 -2359 ((-1036 (-177)) (-1 (-847 (-177)) (-177) (-177)) (-993 (-177)) (-993 (-177)) (-578 (-218)))) (-15 -2359 ((-1036 (-177)) (-1036 (-177)) (-1 (-847 (-177)) (-177) (-177)) (-993 (-177)) (-993 (-177)) (-578 (-218)))) (-15 -2360 ((-1036 (-177)) (-1 (-177) (-177) (-177)) (-3 (-1 (-177) (-177) (-177) (-177)) #1#) (-993 (-177)) (-993 (-177)) (-578 (-218)))) (-15 -2361 ((-1036 (-177)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-993 (-177)) (-578 (-218)))) (-15 -2362 ((-1 (-847 (-177)) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177) (-177)))))) (T -631)) +((-2362 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-1 (-177) (-177) (-177) (-177))) (-5 *2 (-1 (-847 (-177)) (-177) (-177))) (-5 *1 (-631)))) (-2361 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-993 (-177))) (-5 *6 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-631)))) (-2360 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-3 (-1 (-177) (-177) (-177) (-177)) #1="undefined")) (-5 *5 (-993 (-177))) (-5 *6 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-631)))) (-2359 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1036 (-177))) (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-993 (-177))) (-5 *5 (-578 (-218))) (-5 *1 (-631)))) (-2359 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-993 (-177))) (-5 *5 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-631)))) (-2359 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-3 (-1 (-177) (-177) (-177) (-177)) #1#)) (-5 *5 (-993 (-177))) (-5 *6 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-631))))) +((-3716 (((-341 (-1074 |#4|)) (-1074 |#4|)) 86 T ELT) (((-341 |#4|) |#4|) 269 T ELT))) +(((-632 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3716 ((-341 |#4|) |#4|)) (-15 -3716 ((-341 (-1074 |#4|)) (-1074 |#4|)))) (-749) (-710) (-295) (-854 |#3| |#2| |#1|)) (T -632)) +((-3716 (*1 *2 *3) (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-295)) (-4 *7 (-854 *6 *5 *4)) (-5 *2 (-341 (-1074 *7))) (-5 *1 (-632 *4 *5 *6 *7)) (-5 *3 (-1074 *7)))) (-3716 (*1 *2 *3) (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-295)) (-5 *2 (-341 *3)) (-5 *1 (-632 *4 *5 *6 *3)) (-4 *3 (-854 *6 *5 *4))))) +((-2365 (((-625 |#1|) (-625 |#1|) |#1| |#1|) 85 T ELT)) (-3093 (((-625 |#1|) (-625 |#1|) |#1|) 66 T ELT)) (-2364 (((-625 |#1|) (-625 |#1|) |#1|) 86 T ELT)) (-2363 (((-625 |#1|) (-625 |#1|)) 67 T ELT)) (-2366 (((-2 (|:| -1960 |#1|) (|:| -2886 |#1|)) |#1| |#1|) 84 T ELT))) +(((-633 |#1|) (-10 -7 (-15 -2363 ((-625 |#1|) (-625 |#1|))) (-15 -3093 ((-625 |#1|) (-625 |#1|) |#1|)) (-15 -2364 ((-625 |#1|) (-625 |#1|) |#1|)) (-15 -2365 ((-625 |#1|) (-625 |#1|) |#1| |#1|)) (-15 -2366 ((-2 (|:| -1960 |#1|) (|:| -2886 |#1|)) |#1| |#1|))) (-254)) (T -633)) +((-2366 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1960 *3) (|:| -2886 *3))) (-5 *1 (-633 *3)) (-4 *3 (-254)))) (-2365 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-254)) (-5 *1 (-633 *3)))) (-2364 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-254)) (-5 *1 (-633 *3)))) (-3093 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-254)) (-5 *1 (-633 *3)))) (-2363 (*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-254)) (-5 *1 (-633 *3))))) +((-2372 (((-1 |#4| |#2| |#3|) |#1| (-1079) (-1079)) 19 T ELT)) (-2367 (((-1 |#4| |#2| |#3|) (-1079)) 12 T ELT))) +(((-634 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2367 ((-1 |#4| |#2| |#3|) (-1079))) (-15 -2372 ((-1 |#4| |#2| |#3|) |#1| (-1079) (-1079)))) (-548 (-467)) (-1118) (-1118) (-1118)) (T -634)) +((-2372 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1079)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-634 *3 *5 *6 *7)) (-4 *3 (-548 (-467))) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-634 *4 *5 *6 *7)) (-4 *4 (-548 (-467))) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118))))) +((-2368 (((-1 (-177) (-177) (-177)) |#1| (-1079) (-1079)) 43 T ELT) (((-1 (-177) (-177)) |#1| (-1079)) 48 T ELT))) +(((-635 |#1|) (-10 -7 (-15 -2368 ((-1 (-177) (-177)) |#1| (-1079))) (-15 -2368 ((-1 (-177) (-177) (-177)) |#1| (-1079) (-1079)))) (-548 (-467))) (T -635)) +((-2368 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1079)) (-5 *2 (-1 (-177) (-177) (-177))) (-5 *1 (-635 *3)) (-4 *3 (-548 (-467))))) (-2368 (*1 *2 *3 *4) (-12 (-5 *4 (-1079)) (-5 *2 (-1 (-177) (-177))) (-5 *1 (-635 *3)) (-4 *3 (-548 (-467)))))) +((-2369 (((-1079) |#1| (-1079) (-578 (-1079))) 10 T ELT) (((-1079) |#1| (-1079) (-1079) (-1079)) 13 T ELT) (((-1079) |#1| (-1079) (-1079)) 12 T ELT) (((-1079) |#1| (-1079)) 11 T ELT))) +(((-636 |#1|) (-10 -7 (-15 -2369 ((-1079) |#1| (-1079))) (-15 -2369 ((-1079) |#1| (-1079) (-1079))) (-15 -2369 ((-1079) |#1| (-1079) (-1079) (-1079))) (-15 -2369 ((-1079) |#1| (-1079) (-578 (-1079))))) (-548 (-467))) (T -636)) +((-2369 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-578 (-1079))) (-5 *2 (-1079)) (-5 *1 (-636 *3)) (-4 *3 (-548 (-467))))) (-2369 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-636 *3)) (-4 *3 (-548 (-467))))) (-2369 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-636 *3)) (-4 *3 (-548 (-467))))) (-2369 (*1 *2 *3 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-636 *3)) (-4 *3 (-548 (-467)))))) +((-2370 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) +(((-637 |#1| |#2|) (-10 -7 (-15 -2370 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1118) (-1118)) (T -637)) +((-2370 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-637 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118))))) +((-2371 (((-1 |#3| |#2|) (-1079)) 11 T ELT)) (-2372 (((-1 |#3| |#2|) |#1| (-1079)) 21 T ELT))) +(((-638 |#1| |#2| |#3|) (-10 -7 (-15 -2371 ((-1 |#3| |#2|) (-1079))) (-15 -2372 ((-1 |#3| |#2|) |#1| (-1079)))) (-548 (-467)) (-1118) (-1118)) (T -638)) +((-2372 (*1 *2 *3 *4) (-12 (-5 *4 (-1079)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *3 *5 *6)) (-4 *3 (-548 (-467))) (-4 *5 (-1118)) (-4 *6 (-1118)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *4 *5 *6)) (-4 *4 (-548 (-467))) (-4 *5 (-1118)) (-4 *6 (-1118))))) +((-2375 (((-3 (-578 (-1074 |#4|)) #1="failed") (-1074 |#4|) (-578 |#2|) (-578 (-1074 |#4|)) (-578 |#3|) (-578 |#4|) (-578 (-578 (-2 (|:| -3062 (-687)) (|:| |pcoef| |#4|)))) (-578 (-687)) (-1168 (-578 (-1074 |#3|))) |#3|) 92 T ELT)) (-2374 (((-3 (-578 (-1074 |#4|)) #1#) (-1074 |#4|) (-578 |#2|) (-578 (-1074 |#3|)) (-578 |#3|) (-578 |#4|) (-578 (-687)) |#3|) 110 T ELT)) (-2373 (((-3 (-578 (-1074 |#4|)) #1#) (-1074 |#4|) (-578 |#2|) (-578 |#3|) (-578 (-687)) (-578 (-1074 |#4|)) (-1168 (-578 (-1074 |#3|))) |#3|) 48 T ELT))) +(((-639 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2373 ((-3 (-578 (-1074 |#4|)) #1="failed") (-1074 |#4|) (-578 |#2|) (-578 |#3|) (-578 (-687)) (-578 (-1074 |#4|)) (-1168 (-578 (-1074 |#3|))) |#3|)) (-15 -2374 ((-3 (-578 (-1074 |#4|)) #1#) (-1074 |#4|) (-578 |#2|) (-578 (-1074 |#3|)) (-578 |#3|) (-578 |#4|) (-578 (-687)) |#3|)) (-15 -2375 ((-3 (-578 (-1074 |#4|)) #1#) (-1074 |#4|) (-578 |#2|) (-578 (-1074 |#4|)) (-578 |#3|) (-578 |#4|) (-578 (-578 (-2 (|:| -3062 (-687)) (|:| |pcoef| |#4|)))) (-578 (-687)) (-1168 (-578 (-1074 |#3|))) |#3|))) (-710) (-749) (-254) (-854 |#3| |#1| |#2|)) (T -639)) +((-2375 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-578 (-1074 *13))) (-5 *3 (-1074 *13)) (-5 *4 (-578 *12)) (-5 *5 (-578 *10)) (-5 *6 (-578 *13)) (-5 *7 (-578 (-578 (-2 (|:| -3062 (-687)) (|:| |pcoef| *13))))) (-5 *8 (-578 (-687))) (-5 *9 (-1168 (-578 (-1074 *10)))) (-4 *12 (-749)) (-4 *10 (-254)) (-4 *13 (-854 *10 *11 *12)) (-4 *11 (-710)) (-5 *1 (-639 *11 *12 *10 *13)))) (-2374 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-578 *11)) (-5 *5 (-578 (-1074 *9))) (-5 *6 (-578 *9)) (-5 *7 (-578 *12)) (-5 *8 (-578 (-687))) (-4 *11 (-749)) (-4 *9 (-254)) (-4 *12 (-854 *9 *10 *11)) (-4 *10 (-710)) (-5 *2 (-578 (-1074 *12))) (-5 *1 (-639 *10 *11 *9 *12)) (-5 *3 (-1074 *12)))) (-2373 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-578 (-1074 *11))) (-5 *3 (-1074 *11)) (-5 *4 (-578 *10)) (-5 *5 (-578 *8)) (-5 *6 (-578 (-687))) (-5 *7 (-1168 (-578 (-1074 *8)))) (-4 *10 (-749)) (-4 *8 (-254)) (-4 *11 (-854 *8 *9 *10)) (-4 *9 (-710)) (-5 *1 (-639 *9 *10 *8 *11))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3943 (($ $) 53 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-2877 (($ |#1| (-687)) 51 T ELT)) (-2804 (((-687) $) 55 T ELT)) (-3157 ((|#1| $) 54 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3932 (((-687) $) 56 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 50 (|has| |#1| (-144)) ELT)) (-3661 ((|#1| $ (-687)) 52 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 58 T ELT) (($ |#1| $) 57 T ELT))) +(((-640 |#1|) (-111) (-954)) (T -640)) +((-3932 (*1 *2 *1) (-12 (-4 *1 (-640 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) (-2804 (*1 *2 *1) (-12 (-4 *1 (-640 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-954)))) (-3943 (*1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-954)))) (-3661 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-640 *2)) (-4 *2 (-954)))) (-2877 (*1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-640 *2)) (-4 *2 (-954))))) +(-13 (-954) (-80 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-144)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3932 ((-687) $)) (-15 -2804 ((-687) $)) (-15 -3157 (|t#1| $)) (-15 -3943 ($ $)) (-15 -3661 (|t#1| $ (-687))) (-15 -2877 ($ |t#1| (-687))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-144)) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 |#1|) |has| |#1| (-144)) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 |#1|) |has| |#1| (-144)) ((-649 |#1|) |has| |#1| (-144)) ((-658) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-3942 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) +(((-641 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3942 (|#6| (-1 |#4| |#1|) |#3|))) (-489) (-1144 |#1|) (-1144 (-343 |#2|)) (-489) (-1144 |#4|) (-1144 (-343 |#5|))) (T -641)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-489)) (-4 *7 (-489)) (-4 *6 (-1144 *5)) (-4 *2 (-1144 (-343 *8))) (-5 *1 (-641 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1144 (-343 *6))) (-4 *8 (-1144 *7))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2376 (((-1062) (-765)) 38 T ELT)) (-3601 (((-1174) (-1062)) 31 T ELT)) (-2378 (((-1062) (-765)) 28 T ELT)) (-2377 (((-1062) (-765)) 29 T ELT)) (-3930 (((-765) $) NIL T ELT) (((-1062) (-765)) 27 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-642) (-13 (-1005) (-10 -7 (-15 -3930 ((-1062) (-765))) (-15 -2378 ((-1062) (-765))) (-15 -2377 ((-1062) (-765))) (-15 -2376 ((-1062) (-765))) (-15 -3601 ((-1174) (-1062)))))) (T -642)) +((-3930 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1062)) (-5 *1 (-642)))) (-2378 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1062)) (-5 *1 (-642)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1062)) (-5 *1 (-642)))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1062)) (-5 *1 (-642)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-642))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2548 (($ $ $) NIL T ELT)) (-3826 (($ |#1| |#2|) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2598 ((|#2| $) NIL T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-2388 (((-3 $ #1#) $ $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT))) +(((-643 |#1| |#2| |#3| |#4| |#5|) (-13 (-308) (-10 -8 (-15 -2598 (|#2| $)) (-15 -3930 (|#1| $)) (-15 -3826 ($ |#1| |#2|)) (-15 -2388 ((-3 $ #1="failed") $ $)))) (-144) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -643)) +((-2598 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-643 *3 *2 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3930 (*1 *2 *1) (-12 (-4 *2 (-144)) (-5 *1 (-643 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3826 (*1 *1 *2 *3) (-12 (-5 *1 (-643 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2388 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-643 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 36 T ELT)) (-3751 (((-1168 |#1|) $ (-687)) NIL T ELT)) (-3065 (((-578 (-986)) $) NIL T ELT)) (-3749 (($ (-1074 |#1|)) NIL T ELT)) (-3067 (((-1074 $) $ (-986)) NIL T ELT) (((-1074 |#1|) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2803 (((-687) $) NIL T ELT) (((-687) $ (-578 (-986))) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3739 (($ $ $) NIL (|has| |#1| (-489)) ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3759 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-385)) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-1595 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3119 (((-687)) 54 (|has| |#1| (-313)) ELT)) (-3745 (($ $ (-687)) NIL T ELT)) (-3744 (($ $ (-687)) NIL T ELT)) (-2385 ((|#2| |#2|) 50 T ELT)) (-3735 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-385)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-986) #1#) $) NIL T ELT)) (-3139 ((|#1| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-986) $) NIL T ELT)) (-3740 (($ $ $ (-986)) NIL (|has| |#1| (-144)) ELT) ((|#1| $ $) NIL (|has| |#1| (-144)) ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3943 (($ $) 40 T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3826 (($ |#2|) 48 T ELT)) (-3451 (((-3 $ #1#) $) 97 T ELT)) (-2978 (($) 58 (|has| |#1| (-313)) ELT)) (-2547 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3743 (($ $ $) NIL T ELT)) (-3737 (($ $ $) NIL (|has| |#1| (-489)) ELT)) (-3736 (((-2 (|:| -3938 |#1|) (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-385)) ELT) (($ $ (-986)) NIL (|has| |#1| (-385)) ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-814)) ELT)) (-2381 (((-862 $)) 88 T ELT)) (-1611 (($ $ |#1| (-687) $) NIL T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-986) (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-986) (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-3756 (((-687) $ $) NIL (|has| |#1| (-489)) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2404 (((-687) $) NIL T ELT)) (-3429 (((-627 $) $) NIL (|has| |#1| (-1055)) ELT)) (-3068 (($ (-1074 |#1|) (-986)) NIL T ELT) (($ (-1074 $) (-986)) NIL T ELT)) (-3761 (($ $ (-687)) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-2805 (((-578 $) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-687)) 85 T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ (-986)) NIL T ELT) (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-2598 ((|#2|) 51 T ELT)) (-2804 (((-687) $) NIL T ELT) (((-687) $ (-986)) NIL T ELT) (((-578 (-687)) $ (-578 (-986))) NIL T ELT)) (-1612 (($ (-1 (-687) (-687)) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3750 (((-1074 |#1|) $) NIL T ELT)) (-3066 (((-3 (-986) #1#) $) NIL T ELT)) (-1996 (((-823) $) NIL (|has| |#1| (-313)) ELT)) (-3063 ((|#2| $) 47 T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) NIL T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) 34 T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3746 (((-2 (|:| -1960 $) (|:| -2886 $)) $ (-687)) NIL T ELT)) (-2807 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2806 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-2 (|:| |var| (-986)) (|:| -2387 (-687))) #1#) $) NIL T ELT)) (-3796 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3430 (($) NIL (|has| |#1| (-1055)) CONST)) (-2386 (($ (-823)) NIL (|has| |#1| (-313)) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1784 (((-83) $) NIL T ELT)) (-1783 ((|#1| $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-385)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-2379 (($ $) 87 (|has| |#1| (-295)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-814)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3450 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) 96 (|has| |#1| (-489)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3752 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-986) |#1|) NIL T ELT) (($ $ (-578 (-986)) (-578 |#1|)) NIL T ELT) (($ $ (-986) $) NIL T ELT) (($ $ (-578 (-986)) (-578 $)) NIL T ELT)) (-1594 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3784 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-343 $) (-343 $) (-343 $)) NIL (|has| |#1| (-489)) ELT) ((|#1| (-343 $) |#1|) NIL (|has| |#1| (-308)) ELT) (((-343 $) $ (-343 $)) NIL (|has| |#1| (-489)) ELT)) (-3748 (((-3 $ #1#) $ (-687)) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 98 (|has| |#1| (-308)) ELT)) (-3741 (($ $ (-986)) NIL (|has| |#1| (-144)) ELT) ((|#1| $) NIL (|has| |#1| (-144)) ELT)) (-3742 (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986))) NIL T ELT) (($ $ (-986)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1079)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-804 (-1079))) ELT)) (-3932 (((-687) $) 38 T ELT) (((-687) $ (-986)) NIL T ELT) (((-578 (-687)) $ (-578 (-986))) NIL T ELT)) (-3956 (((-793 (-323)) $) NIL (-12 (|has| (-986) (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-986) (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-986) (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT)) (-2801 ((|#1| $) NIL (|has| |#1| (-385)) ELT) (($ $ (-986)) NIL (|has| |#1| (-385)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-2380 (((-862 $)) 42 T ELT)) (-3738 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT) (((-3 (-343 $) #1#) (-343 $) $) NIL (|has| |#1| (-489)) ELT)) (-3930 (((-765) $) 68 T ELT) (($ (-478)) NIL T ELT) (($ |#1|) 65 T ELT) (($ (-986)) NIL T ELT) (($ |#2|) 75 T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3801 (((-578 |#1|) $) NIL T ELT)) (-3661 ((|#1| $ (-687)) 70 T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1610 (($ $ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2644 (($) 25 T CONST)) (-2384 (((-1168 |#1|) $) 83 T ELT)) (-2383 (($ (-1168 |#1|)) 57 T ELT)) (-2650 (($) 8 T CONST)) (-2653 (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986))) NIL T ELT) (($ $ (-986)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-804 (-1079))) ELT)) (-2382 (((-1168 |#1|) $) NIL T ELT)) (-3037 (((-83) $ $) 76 T ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) 79 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 39 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 92 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 64 T ELT) (($ $ $) 82 T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) NIL T ELT))) +(((-644 |#1| |#2|) (-13 (-1144 |#1|) (-550 |#2|) (-10 -8 (-15 -2385 (|#2| |#2|)) (-15 -2598 (|#2|)) (-15 -3826 ($ |#2|)) (-15 -3063 (|#2| $)) (-15 -2384 ((-1168 |#1|) $)) (-15 -2383 ($ (-1168 |#1|))) (-15 -2382 ((-1168 |#1|) $)) (-15 -2381 ((-862 $))) (-15 -2380 ((-862 $))) (IF (|has| |#1| (-295)) (-15 -2379 ($ $)) |%noBranch|) (IF (|has| |#1| (-313)) (-6 (-313)) |%noBranch|))) (-954) (-1144 |#1|)) (T -644)) +((-2385 (*1 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-644 *3 *2)) (-4 *2 (-1144 *3)))) (-2598 (*1 *2) (-12 (-4 *2 (-1144 *3)) (-5 *1 (-644 *3 *2)) (-4 *3 (-954)))) (-3826 (*1 *1 *2) (-12 (-4 *3 (-954)) (-5 *1 (-644 *3 *2)) (-4 *2 (-1144 *3)))) (-3063 (*1 *2 *1) (-12 (-4 *2 (-1144 *3)) (-5 *1 (-644 *3 *2)) (-4 *3 (-954)))) (-2384 (*1 *2 *1) (-12 (-4 *3 (-954)) (-5 *2 (-1168 *3)) (-5 *1 (-644 *3 *4)) (-4 *4 (-1144 *3)))) (-2383 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-954)) (-5 *1 (-644 *3 *4)) (-4 *4 (-1144 *3)))) (-2382 (*1 *2 *1) (-12 (-4 *3 (-954)) (-5 *2 (-1168 *3)) (-5 *1 (-644 *3 *4)) (-4 *4 (-1144 *3)))) (-2381 (*1 *2) (-12 (-4 *3 (-954)) (-5 *2 (-862 (-644 *3 *4))) (-5 *1 (-644 *3 *4)) (-4 *4 (-1144 *3)))) (-2380 (*1 *2) (-12 (-4 *3 (-954)) (-5 *2 (-862 (-644 *3 *4))) (-5 *1 (-644 *3 *4)) (-4 *4 (-1144 *3)))) (-2379 (*1 *1 *1) (-12 (-4 *2 (-295)) (-4 *2 (-954)) (-5 *1 (-644 *2 *3)) (-4 *3 (-1144 *2))))) +((-2552 (((-83) $ $) NIL T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2386 ((|#1| $) 13 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2387 ((|#2| $) 12 T ELT)) (-3514 (($ |#1| |#2|) 16 T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-2 (|:| -2386 |#1|) (|:| -2387 |#2|))) 15 T ELT) (((-2 (|:| -2386 |#1|) (|:| -2387 |#2|)) $) 14 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 11 T ELT))) +(((-645 |#1| |#2| |#3|) (-13 (-749) (-423 (-2 (|:| -2386 |#1|) (|:| -2387 |#2|))) (-10 -8 (-15 -2387 (|#2| $)) (-15 -2386 (|#1| $)) (-15 -3514 ($ |#1| |#2|)))) (-749) (-1005) (-1 (-83) (-2 (|:| -2386 |#1|) (|:| -2387 |#2|)) (-2 (|:| -2386 |#1|) (|:| -2387 |#2|)))) (T -645)) +((-2387 (*1 *2 *1) (-12 (-4 *2 (-1005)) (-5 *1 (-645 *3 *2 *4)) (-4 *3 (-749)) (-14 *4 (-1 (-83) (-2 (|:| -2386 *3) (|:| -2387 *2)) (-2 (|:| -2386 *3) (|:| -2387 *2)))))) (-2386 (*1 *2 *1) (-12 (-4 *2 (-749)) (-5 *1 (-645 *2 *3 *4)) (-4 *3 (-1005)) (-14 *4 (-1 (-83) (-2 (|:| -2386 *2) (|:| -2387 *3)) (-2 (|:| -2386 *2) (|:| -2387 *3)))))) (-3514 (*1 *1 *2 *3) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-749)) (-4 *3 (-1005)) (-14 *4 (-1 (-83) (-2 (|:| -2386 *2) (|:| -2387 *3)) (-2 (|:| -2386 *2) (|:| -2387 *3))))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 66 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-84) #1#) $) 107 T ELT)) (-3139 ((|#1| $) NIL T ELT) (((-84) $) 39 T ELT)) (-3451 (((-3 $ #1#) $) 102 T ELT)) (-2500 ((|#2| (-84) |#2|) 93 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2499 (($ |#1| (-306 (-84))) 14 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2501 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2502 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3784 ((|#2| $ |#2|) 33 T ELT)) (-2503 ((|#1| |#1|) 117 (|has| |#1| (-144)) ELT)) (-3930 (((-765) $) 73 T ELT) (($ (-478)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-84)) 23 T ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2504 (($ $) 111 (|has| |#1| (-144)) ELT) (($ $ $) 115 (|has| |#1| (-144)) ELT)) (-2644 (($) 21 T CONST)) (-2650 (($) 9 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 83 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ (-84) (-478)) NIL T ELT) (($ $ (-478)) 64 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-144)) ELT) (($ $ |#1|) 109 (|has| |#1| (-144)) ELT))) +(((-646 |#1| |#2|) (-13 (-954) (-943 |#1|) (-943 (-84)) (-238 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |#1| (-144)) (PROGN (-6 (-38 |#1|)) (-15 -2504 ($ $)) (-15 -2504 ($ $ $)) (-15 -2503 (|#1| |#1|))) |%noBranch|) (-15 -2502 ($ $ (-1 |#2| |#2|))) (-15 -2501 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-84) (-478))) (-15 ** ($ $ (-478))) (-15 -2500 (|#2| (-84) |#2|)) (-15 -2499 ($ |#1| (-306 (-84)))))) (-954) (-585 |#1|)) (T -646)) +((-2504 (*1 *1 *1) (-12 (-4 *2 (-144)) (-4 *2 (-954)) (-5 *1 (-646 *2 *3)) (-4 *3 (-585 *2)))) (-2504 (*1 *1 *1 *1) (-12 (-4 *2 (-144)) (-4 *2 (-954)) (-5 *1 (-646 *2 *3)) (-4 *3 (-585 *2)))) (-2503 (*1 *2 *2) (-12 (-4 *2 (-144)) (-4 *2 (-954)) (-5 *1 (-646 *2 *3)) (-4 *3 (-585 *2)))) (-2502 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-954)) (-5 *1 (-646 *3 *4)))) (-2501 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-954)) (-5 *1 (-646 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-478)) (-4 *4 (-954)) (-5 *1 (-646 *4 *5)) (-4 *5 (-585 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *3 (-954)) (-5 *1 (-646 *3 *4)) (-4 *4 (-585 *3)))) (-2500 (*1 *2 *3 *2) (-12 (-5 *3 (-84)) (-4 *4 (-954)) (-5 *1 (-646 *4 *2)) (-4 *2 (-585 *4)))) (-2499 (*1 *1 *2 *3) (-12 (-5 *3 (-306 (-84))) (-4 *2 (-954)) (-5 *1 (-646 *2 *4)) (-4 *4 (-585 *2))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 33 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3826 (($ |#1| |#2|) 25 T ELT)) (-3451 (((-3 $ #1#) $) 51 T ELT)) (-2396 (((-83) $) 35 T ELT)) (-2598 ((|#2| $) 12 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) 52 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2388 (((-3 $ #1#) $ $) 50 T ELT)) (-3930 (((-765) $) 24 T ELT) (($ (-478)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3109 (((-687)) 28 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 16 T CONST)) (-2650 (($) 30 T CONST)) (-3037 (((-83) $ $) 41 T ELT)) (-3821 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3823 (($ $ $) 43 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 21 T ELT) (($ $ $) 20 T ELT))) +(((-647 |#1| |#2| |#3| |#4| |#5|) (-13 (-954) (-10 -8 (-15 -2598 (|#2| $)) (-15 -3930 (|#1| $)) (-15 -3826 ($ |#1| |#2|)) (-15 -2388 ((-3 $ #1="failed") $ $)) (-15 -3451 ((-3 $ #1#) $)) (-15 -2468 ($ $)))) (-144) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -647)) +((-3451 (*1 *1 *1) (|partial| -12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2598 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-647 *3 *2 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3930 (*1 *2 *1) (-12 (-4 *2 (-144)) (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3826 (*1 *1 *2 *3) (-12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2388 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2468 (*1 *1 *1) (-12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +((* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) +(((-648 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 * (|#1| (-823) |#1|))) (-649 |#2|) (-144)) (T -648)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-649 |#1|) (-111) (-144)) (T -649)) +NIL +(-13 (-80 |t#1| |t#1|) (-577 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-2425 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3831 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3708 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2389 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) 16 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3752 ((|#1| $ |#1|) 24 T ELT) (((-736 |#1|) $ (-736 |#1|)) 32 T ELT)) (-2993 (($ $ $) NIL T ELT)) (-2419 (($ $ $) NIL T ELT)) (-3930 (((-765) $) 39 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2650 (($) 9 T CONST)) (-3037 (((-83) $ $) 48 T ELT)) (-3933 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ $ $) 14 T ELT))) +(((-650 |#1|) (-13 (-406) (-10 -8 (-15 -2389 ($ |#1| |#1| |#1| |#1|)) (-15 -2425 ($ |#1|)) (-15 -3831 ($ |#1|)) (-15 -3451 ($)) (-15 -2425 ($ $ |#1|)) (-15 -3831 ($ $ |#1|)) (-15 -3451 ($ $)) (-15 -3752 (|#1| $ |#1|)) (-15 -3752 ((-736 |#1|) $ (-736 |#1|))))) (-308)) (T -650)) +((-2389 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) (-2425 (*1 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) (-3831 (*1 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) (-3451 (*1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) (-2425 (*1 *1 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) (-3831 (*1 *1 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) (-3451 (*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) (-3752 (*1 *2 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) (-3752 (*1 *2 *1 *2) (-12 (-5 *2 (-736 *3)) (-4 *3 (-308)) (-5 *1 (-650 *3))))) +((-2393 (($ $ (-823)) 19 T ELT)) (-2392 (($ $ (-823)) 20 T ELT)) (** (($ $ (-823)) 10 T ELT))) +(((-651 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-823))) (-15 -2392 (|#1| |#1| (-823))) (-15 -2393 (|#1| |#1| (-823)))) (-652)) (T -651)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-2393 (($ $ (-823)) 19 T ELT)) (-2392 (($ $ (-823)) 18 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (** (($ $ (-823)) 17 T ELT)) (* (($ $ $) 20 T ELT))) +(((-652) (-111)) (T -652)) +((* (*1 *1 *1 *1) (-4 *1 (-652))) (-2393 (*1 *1 *1 *2) (-12 (-4 *1 (-652)) (-5 *2 (-823)))) (-2392 (*1 *1 *1 *2) (-12 (-4 *1 (-652)) (-5 *2 (-823)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-652)) (-5 *2 (-823))))) +(-13 (-1005) (-10 -8 (-15 * ($ $ $)) (-15 -2393 ($ $ (-823))) (-15 -2392 ($ $ (-823))) (-15 ** ($ $ (-823))))) +(((-72) . T) ((-547 (-765)) . T) ((-1005) . T) ((-1118) . T)) +((-2393 (($ $ (-823)) NIL T ELT) (($ $ (-687)) 18 T ELT)) (-2396 (((-83) $) 10 T ELT)) (-2392 (($ $ (-823)) NIL T ELT) (($ $ (-687)) 19 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 16 T ELT))) +(((-653 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-687))) (-15 -2392 (|#1| |#1| (-687))) (-15 -2393 (|#1| |#1| (-687))) (-15 -2396 ((-83) |#1|)) (-15 ** (|#1| |#1| (-823))) (-15 -2392 (|#1| |#1| (-823))) (-15 -2393 (|#1| |#1| (-823)))) (-654)) (T -653)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-2390 (((-3 $ "failed") $) 22 T ELT)) (-2393 (($ $ (-823)) 19 T ELT) (($ $ (-687)) 27 T ELT)) (-3451 (((-3 $ "failed") $) 24 T ELT)) (-2396 (((-83) $) 28 T ELT)) (-2391 (((-3 $ "failed") $) 23 T ELT)) (-2392 (($ $ (-823)) 18 T ELT) (($ $ (-687)) 26 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2650 (($) 29 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (** (($ $ (-823)) 17 T ELT) (($ $ (-687)) 25 T ELT)) (* (($ $ $) 20 T ELT))) +(((-654) (-111)) (T -654)) +((-2650 (*1 *1) (-4 *1 (-654))) (-2396 (*1 *2 *1) (-12 (-4 *1 (-654)) (-5 *2 (-83)))) (-2393 (*1 *1 *1 *2) (-12 (-4 *1 (-654)) (-5 *2 (-687)))) (-2392 (*1 *1 *1 *2) (-12 (-4 *1 (-654)) (-5 *2 (-687)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-654)) (-5 *2 (-687)))) (-3451 (*1 *1 *1) (|partial| -4 *1 (-654))) (-2391 (*1 *1 *1) (|partial| -4 *1 (-654))) (-2390 (*1 *1 *1) (|partial| -4 *1 (-654)))) +(-13 (-652) (-10 -8 (-15 (-2650) ($) -3936) (-15 -2396 ((-83) $)) (-15 -2393 ($ $ (-687))) (-15 -2392 ($ $ (-687))) (-15 ** ($ $ (-687))) (-15 -3451 ((-3 $ "failed") $)) (-15 -2391 ((-3 $ "failed") $)) (-15 -2390 ((-3 $ "failed") $)))) +(((-72) . T) ((-547 (-765)) . T) ((-652) . T) ((-1005) . T) ((-1118) . T)) +((-3119 (((-687)) 39 T ELT)) (-3140 (((-3 (-478) #1="failed") $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3139 (((-478) $) NIL T ELT) (((-343 (-478)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3826 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-343 |#3|)) 49 T ELT)) (-3451 (((-3 $ #1#) $) 69 T ELT)) (-2978 (($) 43 T ELT)) (-3115 ((|#2| $) 21 T ELT)) (-2395 (($) 18 T ELT)) (-3742 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079))) NIL T ELT) (($ $ (-1079)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $) NIL T ELT)) (-2394 (((-625 |#2|) (-1168 $) (-1 |#2| |#2|)) 64 T ELT)) (-3956 (((-1168 |#2|) $) NIL T ELT) (($ (-1168 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2433 ((|#3| $) 36 T ELT)) (-1998 (((-1168 $)) 33 T ELT))) +(((-655 |#1| |#2| |#3|) (-10 -7 (-15 -3742 (|#1| |#1|)) (-15 -3742 (|#1| |#1| (-687))) (-15 -3742 (|#1| |#1| (-1079))) (-15 -3742 (|#1| |#1| (-578 (-1079)))) (-15 -3742 (|#1| |#1| (-1079) (-687))) (-15 -3742 (|#1| |#1| (-578 (-1079)) (-578 (-687)))) (-15 -2978 (|#1|)) (-15 -3119 ((-687))) (-15 -3742 (|#1| |#1| (-1 |#2| |#2|) (-687))) (-15 -3742 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2394 ((-625 |#2|) (-1168 |#1|) (-1 |#2| |#2|))) (-15 -3826 ((-3 |#1| #1="failed") (-343 |#3|))) (-15 -3956 (|#1| |#3|)) (-15 -3826 (|#1| |#3|)) (-15 -2395 (|#1|)) (-15 -3140 ((-3 |#2| #1#) |#1|)) (-15 -3139 (|#2| |#1|)) (-15 -3139 ((-343 (-478)) |#1|)) (-15 -3140 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3139 ((-478) |#1|)) (-15 -3140 ((-3 (-478) #1#) |#1|)) (-15 -3956 (|#3| |#1|)) (-15 -3956 (|#1| (-1168 |#2|))) (-15 -3956 ((-1168 |#2|) |#1|)) (-15 -1998 ((-1168 |#1|))) (-15 -2433 (|#3| |#1|)) (-15 -3115 (|#2| |#1|)) (-15 -3451 ((-3 |#1| #1#) |#1|))) (-656 |#2| |#3|) (-144) (-1144 |#2|)) (T -655)) +((-3119 (*1 *2) (-12 (-4 *4 (-144)) (-4 *5 (-1144 *4)) (-5 *2 (-687)) (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-656 *4 *5))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 111 (|has| |#1| (-308)) ELT)) (-2049 (($ $) 112 (|has| |#1| (-308)) ELT)) (-2047 (((-83) $) 114 (|has| |#1| (-308)) ELT)) (-1769 (((-625 |#1|) (-1168 $)) 58 T ELT) (((-625 |#1|)) 74 T ELT)) (-3314 ((|#1| $) 64 T ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) 164 (|has| |#1| (-295)) ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3759 (($ $) 131 (|has| |#1| (-308)) ELT)) (-3955 (((-341 $) $) 132 (|has| |#1| (-308)) ELT)) (-1595 (((-83) $ $) 122 (|has| |#1| (-308)) ELT)) (-3119 (((-687)) 105 (|has| |#1| (-313)) ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 (-478) #1="failed") $) 191 (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) 189 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3139 (((-478) $) 190 (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) 188 (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 187 T ELT)) (-1779 (($ (-1168 |#1|) (-1168 $)) 60 T ELT) (($ (-1168 |#1|)) 77 T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-295)) ELT)) (-2548 (($ $ $) 126 (|has| |#1| (-308)) ELT)) (-1768 (((-625 |#1|) $ (-1168 $)) 65 T ELT) (((-625 |#1|) $) 72 T ELT)) (-2265 (((-625 (-478)) (-625 $)) 183 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 182 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) 181 T ELT) (((-625 |#1|) (-625 $)) 180 T ELT)) (-3826 (($ |#2|) 175 T ELT) (((-3 $ "failed") (-343 |#2|)) 172 (|has| |#1| (-308)) ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3092 (((-823)) 66 T ELT)) (-2978 (($) 108 (|has| |#1| (-313)) ELT)) (-2547 (($ $ $) 125 (|has| |#1| (-308)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 120 (|has| |#1| (-308)) ELT)) (-2817 (($) 166 (|has| |#1| (-295)) ELT)) (-1667 (((-83) $) 167 (|has| |#1| (-295)) ELT)) (-1751 (($ $ (-687)) 158 (|has| |#1| (-295)) ELT) (($ $) 157 (|has| |#1| (-295)) ELT)) (-3707 (((-83) $) 133 (|has| |#1| (-308)) ELT)) (-3756 (((-823) $) 169 (|has| |#1| (-295)) ELT) (((-736 (-823)) $) 155 (|has| |#1| (-295)) ELT)) (-2396 (((-83) $) 40 T ELT)) (-3115 ((|#1| $) 63 T ELT)) (-3429 (((-627 $) $) 159 (|has| |#1| (-295)) ELT)) (-1592 (((-3 (-578 $) #2="failed") (-578 $) $) 129 (|has| |#1| (-308)) ELT)) (-2000 ((|#2| $) 56 (|has| |#1| (-308)) ELT)) (-1996 (((-823) $) 107 (|has| |#1| (-313)) ELT)) (-3063 ((|#2| $) 173 T ELT)) (-2266 (((-625 (-478)) (-1168 $)) 185 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) 184 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) 179 T ELT) (((-625 |#1|) (-1168 $)) 178 T ELT)) (-1878 (($ (-578 $)) 118 (|has| |#1| (-308)) ELT) (($ $ $) 117 (|has| |#1| (-308)) ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 134 (|has| |#1| (-308)) ELT)) (-3430 (($) 160 (|has| |#1| (-295)) CONST)) (-2386 (($ (-823)) 106 (|has| |#1| (-313)) ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2395 (($) 177 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 119 (|has| |#1| (-308)) ELT)) (-3127 (($ (-578 $)) 116 (|has| |#1| (-308)) ELT) (($ $ $) 115 (|has| |#1| (-308)) ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) 163 (|has| |#1| (-295)) ELT)) (-3716 (((-341 $) $) 130 (|has| |#1| (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 127 (|has| |#1| (-308)) ELT)) (-3450 (((-3 $ "failed") $ $) 110 (|has| |#1| (-308)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 121 (|has| |#1| (-308)) ELT)) (-1594 (((-687) $) 123 (|has| |#1| (-308)) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 124 (|has| |#1| (-308)) ELT)) (-3741 ((|#1| (-1168 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1752 (((-687) $) 168 (|has| |#1| (-295)) ELT) (((-3 (-687) "failed") $ $) 156 (|has| |#1| (-295)) ELT)) (-3742 (($ $ (-687)) 153 (OR (-2546 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $) 151 (OR (-2546 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 147 (-2546 (|has| |#1| (-804 (-1079))) (|has| |#1| (-308))) ELT) (($ $ (-1079) (-687)) 146 (-2546 (|has| |#1| (-804 (-1079))) (|has| |#1| (-308))) ELT) (($ $ (-578 (-1079))) 145 (-2546 (|has| |#1| (-804 (-1079))) (|has| |#1| (-308))) ELT) (($ $ (-1079)) 143 (-2546 (|has| |#1| (-804 (-1079))) (|has| |#1| (-308))) ELT) (($ $ (-1 |#1| |#1|)) 142 (|has| |#1| (-308)) ELT) (($ $ (-1 |#1| |#1|) (-687)) 141 (|has| |#1| (-308)) ELT)) (-2394 (((-625 |#1|) (-1168 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-308)) ELT)) (-3168 ((|#2|) 176 T ELT)) (-1661 (($) 165 (|has| |#1| (-295)) ELT)) (-3207 (((-1168 |#1|) $ (-1168 $)) 62 T ELT) (((-625 |#1|) (-1168 $) (-1168 $)) 61 T ELT) (((-1168 |#1|) $) 79 T ELT) (((-625 |#1|) (-1168 $)) 78 T ELT)) (-3956 (((-1168 |#1|) $) 76 T ELT) (($ (-1168 |#1|)) 75 T ELT) ((|#2| $) 192 T ELT) (($ |#2|) 174 T ELT)) (-2687 (((-3 (-1168 $) "failed") (-625 $)) 162 (|has| |#1| (-295)) ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 49 T ELT) (($ $) 109 (|has| |#1| (-308)) ELT) (($ (-343 (-478))) 104 (OR (|has| |#1| (-308)) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-2686 (($ $) 161 (|has| |#1| (-295)) ELT) (((-627 $) $) 55 (|has| |#1| (-116)) ELT)) (-2433 ((|#2| $) 57 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-1998 (((-1168 $)) 80 T ELT)) (-2048 (((-83) $ $) 113 (|has| |#1| (-308)) ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-687)) 154 (OR (-2546 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $) 152 (OR (-2546 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 150 (-2546 (|has| |#1| (-804 (-1079))) (|has| |#1| (-308))) ELT) (($ $ (-1079) (-687)) 149 (-2546 (|has| |#1| (-804 (-1079))) (|has| |#1| (-308))) ELT) (($ $ (-578 (-1079))) 148 (-2546 (|has| |#1| (-804 (-1079))) (|has| |#1| (-308))) ELT) (($ $ (-1079)) 144 (-2546 (|has| |#1| (-804 (-1079))) (|has| |#1| (-308))) ELT) (($ $ (-1 |#1| |#1|)) 140 (|has| |#1| (-308)) ELT) (($ $ (-1 |#1| |#1|) (-687)) 139 (|has| |#1| (-308)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ $) 138 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 135 (|has| |#1| (-308)) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-343 (-478)) $) 137 (|has| |#1| (-308)) ELT) (($ $ (-343 (-478))) 136 (|has| |#1| (-308)) ELT))) +(((-656 |#1| |#2|) (-111) (-144) (-1144 |t#1|)) (T -656)) +((-2395 (*1 *1) (-12 (-4 *2 (-144)) (-4 *1 (-656 *2 *3)) (-4 *3 (-1144 *2)))) (-3168 (*1 *2) (-12 (-4 *1 (-656 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1144 *3)))) (-3826 (*1 *1 *2) (-12 (-4 *3 (-144)) (-4 *1 (-656 *3 *2)) (-4 *2 (-1144 *3)))) (-3956 (*1 *1 *2) (-12 (-4 *3 (-144)) (-4 *1 (-656 *3 *2)) (-4 *2 (-1144 *3)))) (-3063 (*1 *2 *1) (-12 (-4 *1 (-656 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1144 *3)))) (-3826 (*1 *1 *2) (|partial| -12 (-5 *2 (-343 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-308)) (-4 *3 (-144)) (-4 *1 (-656 *3 *4)))) (-2394 (*1 *2 *3 *4) (-12 (-5 *3 (-1168 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-308)) (-4 *1 (-656 *5 *6)) (-4 *5 (-144)) (-4 *6 (-1144 *5)) (-5 *2 (-625 *5))))) +(-13 (-346 |t#1| |t#2|) (-144) (-548 |t#2|) (-348 |t#1|) (-322 |t#1|) (-10 -8 (-15 -2395 ($)) (-15 -3168 (|t#2|)) (-15 -3826 ($ |t#2|)) (-15 -3956 ($ |t#2|)) (-15 -3063 (|t#2| $)) (IF (|has| |t#1| (-313)) (-6 (-313)) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-6 (-308)) (-6 (-182 |t#1|)) (-15 -3826 ((-3 $ "failed") (-343 |t#2|))) (-15 -2394 ((-625 |t#1|) (-1168 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-295)) (-6 (-295)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| |#1| (-295)) (|has| |#1| (-116))) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-295)) (|has| |#1| (-308))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-550 $) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-547 (-765)) . T) ((-144) . T) ((-548 |#2|) . T) ((-184 $) OR (|has| |#1| (-295)) (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (-12 (|has| |#1| (-188)) (|has| |#1| (-308)))) ((-182 |#1|) |has| |#1| (-308)) ((-188) OR (|has| |#1| (-295)) (-12 (|has| |#1| (-188)) (|has| |#1| (-308)))) ((-187) OR (|has| |#1| (-295)) (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (-12 (|has| |#1| (-188)) (|has| |#1| (-308)))) ((-222 |#1|) |has| |#1| (-308)) ((-198) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-242) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-254) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-308) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-338) |has| |#1| (-295)) ((-313) OR (|has| |#1| (-295)) (|has| |#1| (-313))) ((-295) |has| |#1| (-295)) ((-315 |#1| |#2|) . T) ((-346 |#1| |#2|) . T) ((-322 |#1|) . T) ((-348 |#1|) . T) ((-385) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-489) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-583 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-585 (-478)) |has| |#1| (-575 (-478))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-577 |#1|) . T) ((-577 $) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-575 (-478)) |has| |#1| (-575 (-478))) ((-575 |#1|) . T) ((-649 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-649 |#1|) . T) ((-649 $) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-658) . T) ((-799 $ (-1079)) OR (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))) (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079))))) ((-802 (-1079)) -12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079)))) ((-804 (-1079)) OR (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))) (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1079))))) ((-825) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-956 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-956 |#1|) . T) ((-956 $) . T) ((-961 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-961 |#1|) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1055) |has| |#1| (-295)) ((-1118) . T) ((-1123) OR (|has| |#1| (-295)) (|has| |#1| (-308)))) +((-3708 (($) 11 T ELT)) (-3451 (((-3 $ "failed") $) 14 T ELT)) (-2396 (((-83) $) 10 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 20 T ELT))) +(((-657 |#1|) (-10 -7 (-15 -3451 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-687))) (-15 -2396 ((-83) |#1|)) (-15 -3708 (|#1|)) (-15 ** (|#1| |#1| (-823)))) (-658)) (T -657)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3708 (($) 23 T CONST)) (-3451 (((-3 $ "failed") $) 20 T ELT)) (-2396 (((-83) $) 22 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2650 (($) 24 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (** (($ $ (-823)) 17 T ELT) (($ $ (-687)) 21 T ELT)) (* (($ $ $) 18 T ELT))) +(((-658) (-111)) (T -658)) +((-2650 (*1 *1) (-4 *1 (-658))) (-3708 (*1 *1) (-4 *1 (-658))) (-2396 (*1 *2 *1) (-12 (-4 *1 (-658)) (-5 *2 (-83)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-687)))) (-3451 (*1 *1 *1) (|partial| -4 *1 (-658)))) +(-13 (-1015) (-10 -8 (-15 (-2650) ($) -3936) (-15 -3708 ($) -3936) (-15 -2396 ((-83) $)) (-15 ** ($ $ (-687))) (-15 -3451 ((-3 $ "failed") $)))) +(((-72) . T) ((-547 (-765)) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2397 (((-2 (|:| -3073 (-341 |#2|)) (|:| |special| (-341 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3402 (((-2 (|:| -3073 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2398 ((|#2| (-343 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3419 (((-2 (|:| |poly| |#2|) (|:| -3073 (-343 |#2|)) (|:| |special| (-343 |#2|))) (-343 |#2|) (-1 |#2| |#2|)) 48 T ELT))) +(((-659 |#1| |#2|) (-10 -7 (-15 -3402 ((-2 (|:| -3073 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2397 ((-2 (|:| -3073 (-341 |#2|)) (|:| |special| (-341 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2398 (|#2| (-343 |#2|) (-1 |#2| |#2|))) (-15 -3419 ((-2 (|:| |poly| |#2|) (|:| -3073 (-343 |#2|)) (|:| |special| (-343 |#2|))) (-343 |#2|) (-1 |#2| |#2|)))) (-308) (-1144 |#1|)) (T -659)) +((-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3073 (-343 *6)) (|:| |special| (-343 *6)))) (-5 *1 (-659 *5 *6)) (-5 *3 (-343 *6)))) (-2398 (*1 *2 *3 *4) (-12 (-5 *3 (-343 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1144 *5)) (-5 *1 (-659 *5 *2)) (-4 *5 (-308)))) (-2397 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| -3073 (-341 *3)) (|:| |special| (-341 *3)))) (-5 *1 (-659 *5 *3)))) (-3402 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| -3073 *3) (|:| |special| *3))) (-5 *1 (-659 *5 *3))))) +((-2399 ((|#7| (-578 |#5|) |#6|) NIL T ELT)) (-3942 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) +(((-660 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3942 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2399 (|#7| (-578 |#5|) |#6|))) (-749) (-710) (-710) (-954) (-954) (-854 |#4| |#2| |#1|) (-854 |#5| |#3| |#1|)) (T -660)) +((-2399 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *9)) (-4 *9 (-954)) (-4 *5 (-749)) (-4 *6 (-710)) (-4 *8 (-954)) (-4 *2 (-854 *9 *7 *5)) (-5 *1 (-660 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-710)) (-4 *4 (-854 *8 *6 *5)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-954)) (-4 *9 (-954)) (-4 *5 (-749)) (-4 *6 (-710)) (-4 *2 (-854 *9 *7 *5)) (-5 *1 (-660 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-710)) (-4 *4 (-854 *8 *6 *5))))) +((-3942 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) +(((-661 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3942 (|#7| (-1 |#2| |#1|) |#6|))) (-749) (-749) (-710) (-710) (-954) (-854 |#5| |#3| |#1|) (-854 |#5| |#4| |#2|)) (T -661)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-749)) (-4 *6 (-749)) (-4 *7 (-710)) (-4 *9 (-954)) (-4 *2 (-854 *9 *8 *6)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-710)) (-4 *4 (-854 *9 *7 *5))))) +((-3716 (((-341 |#4|) |#4|) 42 T ELT))) +(((-662 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3716 ((-341 |#4|) |#4|))) (-710) (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $)) (-15 -3815 ((-3 $ "failed") (-1079))))) (-254) (-854 (-850 |#3|) |#1| |#2|)) (T -662)) +((-3716 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $)) (-15 -3815 ((-3 $ "failed") (-1079)))))) (-4 *6 (-254)) (-5 *2 (-341 *3)) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-854 (-850 *6) *4 *5))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3065 (((-578 (-766 |#1|)) $) NIL T ELT)) (-3067 (((-1074 $) $ (-766 |#1|)) NIL T ELT) (((-1074 |#2|) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#2| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#2| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#2| (-489)) ELT)) (-2803 (((-687) $) NIL T ELT) (((-687) $ (-578 (-766 |#1|))) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-3759 (($ $) NIL (|has| |#2| (-385)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#2| (-385)) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-3 (-766 |#1|) #1#) $) NIL T ELT)) (-3139 ((|#2| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-766 |#1|) $) NIL T ELT)) (-3740 (($ $ $ (-766 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3943 (($ $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#2|) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3487 (($ $) NIL (|has| |#2| (-385)) ELT) (($ $ (-766 |#1|)) NIL (|has| |#2| (-385)) ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3707 (((-83) $) NIL (|has| |#2| (-814)) ELT)) (-1611 (($ $ |#2| (-463 (-766 |#1|)) $) NIL T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-766 |#1|) (-789 (-323))) (|has| |#2| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-766 |#1|) (-789 (-478))) (|has| |#2| (-789 (-478)))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2404 (((-687) $) NIL T ELT)) (-3068 (($ (-1074 |#2|) (-766 |#1|)) NIL T ELT) (($ (-1074 $) (-766 |#1|)) NIL T ELT)) (-2805 (((-578 $) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#2| (-463 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ (-766 |#1|)) NIL T ELT)) (-2804 (((-463 (-766 |#1|)) $) NIL T ELT) (((-687) $ (-766 |#1|)) NIL T ELT) (((-578 (-687)) $ (-578 (-766 |#1|))) NIL T ELT)) (-1612 (($ (-1 (-463 (-766 |#1|)) (-463 (-766 |#1|))) $) NIL T ELT)) (-3942 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3066 (((-3 (-766 |#1|) #1#) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-1168 $) $) NIL T ELT) (((-625 |#2|) (-1168 $)) NIL T ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) NIL (|has| |#2| (-385)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2807 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2806 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-2 (|:| |var| (-766 |#1|)) (|:| -2387 (-687))) #1#) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1784 (((-83) $) NIL T ELT)) (-1783 ((|#2| $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#2| (-385)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) NIL (|has| |#2| (-385)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#2| (-814)) ELT)) (-3450 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-489)) ELT)) (-3752 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-766 |#1|) |#2|) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 |#2|)) NIL T ELT) (($ $ (-766 |#1|) $) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 $)) NIL T ELT)) (-3741 (($ $ (-766 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3742 (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|)) NIL T ELT)) (-3932 (((-463 (-766 |#1|)) $) NIL T ELT) (((-687) $ (-766 |#1|)) NIL T ELT) (((-578 (-687)) $ (-578 (-766 |#1|))) NIL T ELT)) (-3956 (((-793 (-323)) $) NIL (-12 (|has| (-766 |#1|) (-548 (-793 (-323)))) (|has| |#2| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-766 |#1|) (-548 (-793 (-478)))) (|has| |#2| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-766 |#1|) (-548 (-467))) (|has| |#2| (-548 (-467)))) ELT)) (-2801 ((|#2| $) NIL (|has| |#2| (-385)) ELT) (($ $ (-766 |#1|)) NIL (|has| |#2| (-385)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-814))) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-766 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-489)) ELT) (($ (-343 (-478))) NIL (OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478))))) ELT)) (-3801 (((-578 |#2|) $) NIL T ELT)) (-3661 ((|#2| $ (-463 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-814))) (|has| |#2| (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1610 (($ $ $ (-687)) NIL (|has| |#2| (-144)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| |#2| (-489)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-663 |#1| |#2|) (-854 |#2| (-463 (-766 |#1|)) (-766 |#1|)) (-578 (-1079)) (-954)) (T -663)) +NIL +((-2400 (((-2 (|:| -2467 (-850 |#3|)) (|:| -2044 (-850 |#3|))) |#4|) 14 T ELT)) (-2970 ((|#4| |#4| |#2|) 33 T ELT)) (-2403 ((|#4| (-343 (-850 |#3|)) |#2|) 62 T ELT)) (-2402 ((|#4| (-1074 (-850 |#3|)) |#2|) 74 T ELT)) (-2401 ((|#4| (-1074 |#4|) |#2|) 49 T ELT)) (-2969 ((|#4| |#4| |#2|) 52 T ELT)) (-3716 (((-341 |#4|) |#4|) 40 T ELT))) +(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2400 ((-2 (|:| -2467 (-850 |#3|)) (|:| -2044 (-850 |#3|))) |#4|)) (-15 -2969 (|#4| |#4| |#2|)) (-15 -2401 (|#4| (-1074 |#4|) |#2|)) (-15 -2970 (|#4| |#4| |#2|)) (-15 -2402 (|#4| (-1074 (-850 |#3|)) |#2|)) (-15 -2403 (|#4| (-343 (-850 |#3|)) |#2|)) (-15 -3716 ((-341 |#4|) |#4|))) (-710) (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $)))) (-489) (-854 (-343 (-850 |#3|)) |#1| |#2|)) (T -664)) +((-3716 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $))))) (-4 *6 (-489)) (-5 *2 (-341 *3)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-854 (-343 (-850 *6)) *4 *5)))) (-2403 (*1 *2 *3 *4) (-12 (-4 *6 (-489)) (-4 *2 (-854 *3 *5 *4)) (-5 *1 (-664 *5 *4 *6 *2)) (-5 *3 (-343 (-850 *6))) (-4 *5 (-710)) (-4 *4 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $))))))) (-2402 (*1 *2 *3 *4) (-12 (-5 *3 (-1074 (-850 *6))) (-4 *6 (-489)) (-4 *2 (-854 (-343 (-850 *6)) *5 *4)) (-5 *1 (-664 *5 *4 *6 *2)) (-4 *5 (-710)) (-4 *4 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $))))))) (-2970 (*1 *2 *2 *3) (-12 (-4 *4 (-710)) (-4 *3 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $))))) (-4 *5 (-489)) (-5 *1 (-664 *4 *3 *5 *2)) (-4 *2 (-854 (-343 (-850 *5)) *4 *3)))) (-2401 (*1 *2 *3 *4) (-12 (-5 *3 (-1074 *2)) (-4 *2 (-854 (-343 (-850 *6)) *5 *4)) (-5 *1 (-664 *5 *4 *6 *2)) (-4 *5 (-710)) (-4 *4 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $))))) (-4 *6 (-489)))) (-2969 (*1 *2 *2 *3) (-12 (-4 *4 (-710)) (-4 *3 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $))))) (-4 *5 (-489)) (-5 *1 (-664 *4 *3 *5 *2)) (-4 *2 (-854 (-343 (-850 *5)) *4 *3)))) (-2400 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $))))) (-4 *6 (-489)) (-5 *2 (-2 (|:| -2467 (-850 *6)) (|:| -2044 (-850 *6)))) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-854 (-343 (-850 *6)) *4 *5))))) +((-3716 (((-341 |#4|) |#4|) 54 T ELT))) +(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3716 ((-341 |#4|) |#4|))) (-710) (-749) (-13 (-254) (-118)) (-854 (-343 |#3|) |#1| |#2|)) (T -665)) +((-3716 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-13 (-254) (-118))) (-5 *2 (-341 *3)) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-854 (-343 *6) *4 *5))))) +((-3942 (((-667 |#2| |#3|) (-1 |#2| |#1|) (-667 |#1| |#3|)) 18 T ELT))) +(((-666 |#1| |#2| |#3|) (-10 -7 (-15 -3942 ((-667 |#2| |#3|) (-1 |#2| |#1|) (-667 |#1| |#3|)))) (-954) (-954) (-658)) (T -666)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-667 *5 *7)) (-4 *5 (-954)) (-4 *6 (-954)) (-4 *7 (-658)) (-5 *2 (-667 *6 *7)) (-5 *1 (-666 *5 *6 *7))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 36 T ELT)) (-3758 (((-578 (-2 (|:| -3938 |#1|) (|:| -3922 |#2|))) $) 37 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3119 (((-687)) 22 (-12 (|has| |#2| (-313)) (|has| |#1| (-313))) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3139 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3943 (($ $) 99 (|has| |#2| (-749)) ELT)) (-3451 (((-3 $ #1#) $) 83 T ELT)) (-2978 (($) 48 (-12 (|has| |#2| (-313)) (|has| |#1| (-313))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2404 (((-687) $) 70 T ELT)) (-2805 (((-578 $) $) 52 T ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| |#2|) 17 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-1996 (((-823) $) 43 (-12 (|has| |#2| (-313)) (|has| |#1| (-313))) ELT)) (-2878 ((|#2| $) 98 (|has| |#2| (-749)) ELT)) (-3157 ((|#1| $) 97 (|has| |#2| (-749)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2386 (($ (-823)) 35 (-12 (|has| |#2| (-313)) (|has| |#1| (-313))) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 96 T ELT) (($ (-478)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-578 (-2 (|:| -3938 |#1|) (|:| -3922 |#2|)))) 11 T ELT)) (-3801 (((-578 |#1|) $) 54 T ELT)) (-3661 ((|#1| $ |#2|) 114 T ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 12 T CONST)) (-2650 (($) 44 T CONST)) (-3037 (((-83) $ $) 104 T ELT)) (-3821 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 33 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-144)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT))) +(((-667 |#1| |#2|) (-13 (-954) (-943 |#2|) (-943 |#1|) (-10 -8 (-15 -2877 ($ |#1| |#2|)) (-15 -3661 (|#1| $ |#2|)) (-15 -3930 ($ (-578 (-2 (|:| -3938 |#1|) (|:| -3922 |#2|))))) (-15 -3758 ((-578 (-2 (|:| -3938 |#1|) (|:| -3922 |#2|))) $)) (-15 -3942 ($ (-1 |#1| |#1|) $)) (-15 -3921 ((-83) $)) (-15 -3801 ((-578 |#1|) $)) (-15 -2805 ((-578 $) $)) (-15 -2404 ((-687) $)) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-313)) (IF (|has| |#2| (-313)) (-6 (-313)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-749)) (PROGN (-15 -2878 (|#2| $)) (-15 -3157 (|#1| $)) (-15 -3943 ($ $))) |%noBranch|))) (-954) (-658)) (T -667)) +((-2877 (*1 *1 *2 *3) (-12 (-5 *1 (-667 *2 *3)) (-4 *2 (-954)) (-4 *3 (-658)))) (-3661 (*1 *2 *1 *3) (-12 (-4 *2 (-954)) (-5 *1 (-667 *2 *3)) (-4 *3 (-658)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3938 *3) (|:| -3922 *4)))) (-4 *3 (-954)) (-4 *4 (-658)) (-5 *1 (-667 *3 *4)))) (-3758 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3938 *3) (|:| -3922 *4)))) (-5 *1 (-667 *3 *4)) (-4 *3 (-954)) (-4 *4 (-658)))) (-3942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-667 *3 *4)) (-4 *4 (-658)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-667 *3 *4)) (-4 *3 (-954)) (-4 *4 (-658)))) (-3801 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-667 *3 *4)) (-4 *3 (-954)) (-4 *4 (-658)))) (-2805 (*1 *2 *1) (-12 (-5 *2 (-578 (-667 *3 *4))) (-5 *1 (-667 *3 *4)) (-4 *3 (-954)) (-4 *4 (-658)))) (-2404 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-667 *3 *4)) (-4 *3 (-954)) (-4 *4 (-658)))) (-2878 (*1 *2 *1) (-12 (-4 *2 (-658)) (-4 *2 (-749)) (-5 *1 (-667 *3 *2)) (-4 *3 (-954)))) (-3157 (*1 *2 *1) (-12 (-4 *2 (-954)) (-5 *1 (-667 *2 *3)) (-4 *3 (-749)) (-4 *3 (-658)))) (-3943 (*1 *1 *1) (-12 (-5 *1 (-667 *2 *3)) (-4 *3 (-749)) (-4 *2 (-954)) (-4 *3 (-658))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3217 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3219 (($ $ $) 99 T ELT)) (-3218 (((-83) $ $) 107 T ELT)) (-3222 (($ (-578 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1557 (($ (-1 (-83) |#1|) $) 86 (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3708 (($) NIL T CONST)) (-2354 (($ $) 88 T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3389 (($ |#1| $) 71 (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3979)) ELT) (($ |#1| $ (-478)) 78 T ELT) (($ (-1 (-83) |#1|) $ (-478)) 81 T ELT)) (-3390 (($ |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (($ |#1| $ (-478)) 83 T ELT) (($ (-1 (-83) |#1|) $ (-478)) 84 T ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2873 (((-578 |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3224 (((-83) $ $) 106 T ELT)) (-2405 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-578 |#1|)) 23 T ELT)) (-2592 (((-578 |#1|) $) 38 T ELT)) (-3228 (((-83) |#1| $) 66 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3221 (($ $ $) 97 T ELT)) (-1262 ((|#1| $) 63 T ELT)) (-3593 (($ |#1| $) 64 T ELT) (($ |#1| $ (-687)) 89 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-1263 ((|#1| $) 62 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) 57 T ELT)) (-3549 (($) 14 T ELT)) (-2353 (((-578 (-2 (|:| |entry| |#1|) (|:| -1933 (-687)))) $) 56 T ELT)) (-3220 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1453 (($) 16 T ELT) (($ (-578 |#1|)) 25 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 69 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) 82 T ELT)) (-3956 (((-467) $) 36 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 22 T ELT)) (-3930 (((-765) $) 50 T ELT)) (-3223 (($ (-578 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1264 (($ (-578 |#1|)) 24 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 103 T ELT)) (-3941 (((-687) $) 68 (|has| $ (-6 -3979)) ELT))) +(((-668 |#1|) (-13 (-669 |#1|) (-10 -8 (-6 -3979) (-6 -3980) (-15 -2405 ($)) (-15 -2405 ($ |#1|)) (-15 -2405 ($ (-578 |#1|))) (-15 -2592 ((-578 |#1|) $)) (-15 -3390 ($ |#1| $ (-478))) (-15 -3390 ($ (-1 (-83) |#1|) $ (-478))) (-15 -3389 ($ |#1| $ (-478))) (-15 -3389 ($ (-1 (-83) |#1|) $ (-478))))) (-1005)) (T -668)) +((-2405 (*1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1005)))) (-2405 (*1 *1 *2) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1005)))) (-2405 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-5 *1 (-668 *3)))) (-2592 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-668 *3)) (-4 *3 (-1005)))) (-3390 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *1 (-668 *2)) (-4 *2 (-1005)))) (-3390 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-83) *4)) (-5 *3 (-478)) (-4 *4 (-1005)) (-5 *1 (-668 *4)))) (-3389 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *1 (-668 *2)) (-4 *2 (-1005)))) (-3389 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-83) *4)) (-5 *3 (-478)) (-4 *4 (-1005)) (-5 *1 (-668 *4))))) +((-2552 (((-83) $ $) 19 T ELT)) (-3217 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3219 (($ $ $) 77 T ELT)) (-3218 (((-83) $ $) 78 T ELT)) (-3222 (($ (-578 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1557 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3979)) ELT)) (-3708 (($) 7 T CONST)) (-2354 (($ $) 66 T ELT)) (-1340 (($ $) 62 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3389 (($ |#1| $) 51 (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3979)) ELT)) (-3390 (($ |#1| $) 61 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3979)) ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-3224 (((-83) $ $) 69 T ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3225 (((-1062) $) 22 T ELT)) (-3221 (($ $ $) 74 T ELT)) (-1262 ((|#1| $) 43 T ELT)) (-3593 (($ |#1| $) 44 T ELT) (($ |#1| $ (-687)) 67 T ELT)) (-3226 (((-1023) $) 21 T ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1263 ((|#1| $) 45 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-2353 (((-578 (-2 (|:| |entry| |#1|) (|:| -1933 (-687)))) $) 65 T ELT)) (-3220 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1453 (($) 53 T ELT) (($ (-578 |#1|)) 52 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 63 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 54 T ELT)) (-3930 (((-765) $) 17 T ELT)) (-3223 (($ (-578 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1253 (((-83) $ $) 20 T ELT)) (-1264 (($ (-578 |#1|)) 46 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 T ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-669 |#1|) (-111) (-1005)) (T -669)) +NIL +(-13 (-629 |t#1|) (-1003 |t#1|)) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-547 (-765)) . T) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-190 |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-629 |#1|) . T) ((-1003 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-2406 (((-1174) (-1062)) 8 T ELT))) +(((-670) (-10 -7 (-15 -2406 ((-1174) (-1062))))) (T -670)) +((-2406 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-670))))) +((-2407 (((-578 |#1|) (-578 |#1|) (-578 |#1|)) 15 T ELT))) +(((-671 |#1|) (-10 -7 (-15 -2407 ((-578 |#1|) (-578 |#1|) (-578 |#1|)))) (-749)) (T -671)) +((-2407 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-671 *3))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3065 (((-578 |#2|) $) 156 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 149 (|has| |#1| (-489)) ELT)) (-2049 (($ $) 148 (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) 146 (|has| |#1| (-489)) ELT)) (-3476 (($ $) 105 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3623 (($ $) 88 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3021 (($ $) 87 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) 104 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3622 (($ $) 89 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3478 (($ $) 103 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3621 (($ $) 90 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3708 (($) 22 T CONST)) (-3943 (($ $) 140 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3798 (((-850 |#1|) $ (-687)) 118 T ELT) (((-850 |#1|) $ (-687) (-687)) 117 T ELT)) (-2876 (((-83) $) 157 T ELT)) (-3611 (($) 115 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3756 (((-687) $ |#2|) 120 T ELT) (((-687) $ |#2| (-687)) 119 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-2995 (($ $ (-478)) 86 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3921 (((-83) $) 138 T ELT)) (-2877 (($ $ (-578 |#2|) (-578 (-463 |#2|))) 155 T ELT) (($ $ |#2| (-463 |#2|)) 154 T ELT) (($ |#1| (-463 |#2|)) 139 T ELT) (($ $ |#2| (-687)) 122 T ELT) (($ $ (-578 |#2|) (-578 (-687))) 121 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 137 T ELT)) (-3926 (($ $) 112 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2878 (($ $) 135 T ELT)) (-3157 ((|#1| $) 134 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3796 (($ $ |#2|) 116 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3753 (($ $ (-687)) 123 T ELT)) (-3450 (((-3 $ "failed") $ $) 150 (|has| |#1| (-489)) ELT)) (-3927 (($ $) 113 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3752 (($ $ |#2| $) 131 T ELT) (($ $ (-578 |#2|) (-578 $)) 130 T ELT) (($ $ (-578 (-245 $))) 129 T ELT) (($ $ (-245 $)) 128 T ELT) (($ $ $ $) 127 T ELT) (($ $ (-578 $) (-578 $)) 126 T ELT)) (-3742 (($ $ (-578 |#2|) (-578 (-687))) 49 T ELT) (($ $ |#2| (-687)) 48 T ELT) (($ $ (-578 |#2|)) 47 T ELT) (($ $ |#2|) 45 T ELT)) (-3932 (((-463 |#2|) $) 136 T ELT)) (-3479 (($ $) 102 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3620 (($ $) 91 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 101 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3619 (($ $) 92 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3475 (($ $) 100 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3618 (($ $) 93 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) 158 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 153 (|has| |#1| (-144)) ELT) (($ $) 151 (|has| |#1| (-489)) ELT) (($ (-343 (-478))) 143 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3661 ((|#1| $ (-463 |#2|)) 141 T ELT) (($ $ |#2| (-687)) 125 T ELT) (($ $ (-578 |#2|) (-578 (-687))) 124 T ELT)) (-2686 (((-627 $) $) 152 (|has| |#1| (-116)) ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-3482 (($ $) 111 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 99 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2048 (((-83) $ $) 147 (|has| |#1| (-489)) ELT)) (-3480 (($ $) 110 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 98 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3484 (($ $) 109 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3472 (($ $) 97 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3485 (($ $) 108 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3473 (($ $) 96 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3483 (($ $) 107 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) 95 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3481 (($ $) 106 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3469 (($ $) 94 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-578 |#2|) (-578 (-687))) 52 T ELT) (($ $ |#2| (-687)) 51 T ELT) (($ $ (-578 |#2|)) 50 T ELT) (($ $ |#2|) 46 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ |#1|) 142 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ $) 114 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 85 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 145 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) 144 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 133 T ELT) (($ $ |#1|) 132 T ELT))) +(((-672 |#1| |#2|) (-111) (-954) (-749)) (T -672)) +((-3661 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-672 *4 *2)) (-4 *4 (-954)) (-4 *2 (-749)))) (-3661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *5)) (-5 *3 (-578 (-687))) (-4 *1 (-672 *4 *5)) (-4 *4 (-954)) (-4 *5 (-749)))) (-3753 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-672 *3 *4)) (-4 *3 (-954)) (-4 *4 (-749)))) (-2877 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-672 *4 *2)) (-4 *4 (-954)) (-4 *2 (-749)))) (-2877 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *5)) (-5 *3 (-578 (-687))) (-4 *1 (-672 *4 *5)) (-4 *4 (-954)) (-4 *5 (-749)))) (-3756 (*1 *2 *1 *3) (-12 (-4 *1 (-672 *4 *3)) (-4 *4 (-954)) (-4 *3 (-749)) (-5 *2 (-687)))) (-3756 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-687)) (-4 *1 (-672 *4 *3)) (-4 *4 (-954)) (-4 *3 (-749)))) (-3798 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-672 *4 *5)) (-4 *4 (-954)) (-4 *5 (-749)) (-5 *2 (-850 *4)))) (-3798 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-4 *1 (-672 *4 *5)) (-4 *4 (-954)) (-4 *5 (-749)) (-5 *2 (-850 *4)))) (-3796 (*1 *1 *1 *2) (-12 (-4 *1 (-672 *3 *2)) (-4 *3 (-954)) (-4 *2 (-749)) (-4 *3 (-38 (-343 (-478))))))) +(-13 (-802 |t#2|) (-879 |t#1| (-463 |t#2|) |t#2|) (-447 |t#2| $) (-256 $) (-10 -8 (-15 -3661 ($ $ |t#2| (-687))) (-15 -3661 ($ $ (-578 |t#2|) (-578 (-687)))) (-15 -3753 ($ $ (-687))) (-15 -2877 ($ $ |t#2| (-687))) (-15 -2877 ($ $ (-578 |t#2|) (-578 (-687)))) (-15 -3756 ((-687) $ |t#2|)) (-15 -3756 ((-687) $ |t#2| (-687))) (-15 -3798 ((-850 |t#1|) $ (-687))) (-15 -3798 ((-850 |t#1|) $ (-687) (-687))) (IF (|has| |t#1| (-38 (-343 (-478)))) (PROGN (-15 -3796 ($ $ |t#2|)) (-6 (-908)) (-6 (-1104))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-463 |#2|)) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-489)) ((-35) |has| |#1| (-38 (-343 (-478)))) ((-66) |has| |#1| (-38 (-343 (-478)))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-550 (-478)) . T) ((-550 |#1|) |has| |#1| (-144)) ((-550 $) |has| |#1| (-489)) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-236) |has| |#1| (-38 (-343 (-478)))) ((-242) |has| |#1| (-489)) ((-256 $) . T) ((-426) |has| |#1| (-38 (-343 (-478)))) ((-447 |#2| $) . T) ((-447 $ $) . T) ((-489) |has| |#1| (-489)) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) |has| |#1| (-489)) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) |has| |#1| (-489)) ((-658) . T) ((-799 $ |#2|) . T) ((-802 |#2|) . T) ((-804 |#2|) . T) ((-879 |#1| (-463 |#2|) |#2|) . T) ((-908) |has| |#1| (-38 (-343 (-478)))) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1104) |has| |#1| (-38 (-343 (-478)))) ((-1107) |has| |#1| (-38 (-343 (-478)))) ((-1118) . T)) +((-3716 (((-341 (-1074 |#4|)) (-1074 |#4|)) 30 T ELT) (((-341 |#4|) |#4|) 26 T ELT))) +(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3716 ((-341 |#4|) |#4|)) (-15 -3716 ((-341 (-1074 |#4|)) (-1074 |#4|)))) (-749) (-710) (-13 (-254) (-118)) (-854 |#3| |#2| |#1|)) (T -673)) +((-3716 (*1 *2 *3) (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-13 (-254) (-118))) (-4 *7 (-854 *6 *5 *4)) (-5 *2 (-341 (-1074 *7))) (-5 *1 (-673 *4 *5 *6 *7)) (-5 *3 (-1074 *7)))) (-3716 (*1 *2 *3) (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-13 (-254) (-118))) (-5 *2 (-341 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-854 *6 *5 *4))))) +((-2410 (((-341 |#4|) |#4| |#2|) 141 T ELT)) (-2408 (((-341 |#4|) |#4|) NIL T ELT)) (-3955 (((-341 (-1074 |#4|)) (-1074 |#4|)) 128 T ELT) (((-341 |#4|) |#4|) 52 T ELT)) (-2412 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-578 (-2 (|:| -3716 (-1074 |#4|)) (|:| -2387 (-478)))))) (-1074 |#4|) (-578 |#2|) (-578 (-578 |#3|))) 81 T ELT)) (-2416 (((-1074 |#3|) (-1074 |#3|) (-478)) 168 T ELT)) (-2415 (((-578 (-687)) (-1074 |#4|) (-578 |#2|) (-687)) 75 T ELT)) (-3063 (((-3 (-578 (-1074 |#4|)) "failed") (-1074 |#4|) (-1074 |#3|) (-1074 |#3|) |#4| (-578 |#2|) (-578 (-687)) (-578 |#3|)) 79 T ELT)) (-2413 (((-2 (|:| |upol| (-1074 |#3|)) (|:| |Lval| (-578 |#3|)) (|:| |Lfact| (-578 (-2 (|:| -3716 (-1074 |#3|)) (|:| -2387 (-478))))) (|:| |ctpol| |#3|)) (-1074 |#4|) (-578 |#2|) (-578 (-578 |#3|))) 27 T ELT)) (-2411 (((-2 (|:| -1990 (-1074 |#4|)) (|:| |polval| (-1074 |#3|))) (-1074 |#4|) (-1074 |#3|) (-478)) 72 T ELT)) (-2409 (((-478) (-578 (-2 (|:| -3716 (-1074 |#3|)) (|:| -2387 (-478))))) 164 T ELT)) (-2414 ((|#4| (-478) (-341 |#4|)) 73 T ELT)) (-3341 (((-83) (-578 (-2 (|:| -3716 (-1074 |#3|)) (|:| -2387 (-478)))) (-578 (-2 (|:| -3716 (-1074 |#3|)) (|:| -2387 (-478))))) NIL T ELT))) +(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3955 ((-341 |#4|) |#4|)) (-15 -3955 ((-341 (-1074 |#4|)) (-1074 |#4|))) (-15 -2408 ((-341 |#4|) |#4|)) (-15 -2409 ((-478) (-578 (-2 (|:| -3716 (-1074 |#3|)) (|:| -2387 (-478)))))) (-15 -2410 ((-341 |#4|) |#4| |#2|)) (-15 -2411 ((-2 (|:| -1990 (-1074 |#4|)) (|:| |polval| (-1074 |#3|))) (-1074 |#4|) (-1074 |#3|) (-478))) (-15 -2412 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-578 (-2 (|:| -3716 (-1074 |#4|)) (|:| -2387 (-478)))))) (-1074 |#4|) (-578 |#2|) (-578 (-578 |#3|)))) (-15 -2413 ((-2 (|:| |upol| (-1074 |#3|)) (|:| |Lval| (-578 |#3|)) (|:| |Lfact| (-578 (-2 (|:| -3716 (-1074 |#3|)) (|:| -2387 (-478))))) (|:| |ctpol| |#3|)) (-1074 |#4|) (-578 |#2|) (-578 (-578 |#3|)))) (-15 -2414 (|#4| (-478) (-341 |#4|))) (-15 -3341 ((-83) (-578 (-2 (|:| -3716 (-1074 |#3|)) (|:| -2387 (-478)))) (-578 (-2 (|:| -3716 (-1074 |#3|)) (|:| -2387 (-478)))))) (-15 -3063 ((-3 (-578 (-1074 |#4|)) "failed") (-1074 |#4|) (-1074 |#3|) (-1074 |#3|) |#4| (-578 |#2|) (-578 (-687)) (-578 |#3|))) (-15 -2415 ((-578 (-687)) (-1074 |#4|) (-578 |#2|) (-687))) (-15 -2416 ((-1074 |#3|) (-1074 |#3|) (-478)))) (-710) (-749) (-254) (-854 |#3| |#1| |#2|)) (T -674)) +((-2416 (*1 *2 *2 *3) (-12 (-5 *2 (-1074 *6)) (-5 *3 (-478)) (-4 *6 (-254)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-674 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5)))) (-2415 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1074 *9)) (-5 *4 (-578 *7)) (-4 *7 (-749)) (-4 *9 (-854 *8 *6 *7)) (-4 *6 (-710)) (-4 *8 (-254)) (-5 *2 (-578 (-687))) (-5 *1 (-674 *6 *7 *8 *9)) (-5 *5 (-687)))) (-3063 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1074 *11)) (-5 *6 (-578 *10)) (-5 *7 (-578 (-687))) (-5 *8 (-578 *11)) (-4 *10 (-749)) (-4 *11 (-254)) (-4 *9 (-710)) (-4 *5 (-854 *11 *9 *10)) (-5 *2 (-578 (-1074 *5))) (-5 *1 (-674 *9 *10 *11 *5)) (-5 *3 (-1074 *5)))) (-3341 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-2 (|:| -3716 (-1074 *6)) (|:| -2387 (-478))))) (-4 *6 (-254)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) (-5 *1 (-674 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5)))) (-2414 (*1 *2 *3 *4) (-12 (-5 *3 (-478)) (-5 *4 (-341 *2)) (-4 *2 (-854 *7 *5 *6)) (-5 *1 (-674 *5 *6 *7 *2)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-254)))) (-2413 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1074 *9)) (-5 *4 (-578 *7)) (-5 *5 (-578 (-578 *8))) (-4 *7 (-749)) (-4 *8 (-254)) (-4 *9 (-854 *8 *6 *7)) (-4 *6 (-710)) (-5 *2 (-2 (|:| |upol| (-1074 *8)) (|:| |Lval| (-578 *8)) (|:| |Lfact| (-578 (-2 (|:| -3716 (-1074 *8)) (|:| -2387 (-478))))) (|:| |ctpol| *8))) (-5 *1 (-674 *6 *7 *8 *9)))) (-2412 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-578 *7)) (-5 *5 (-578 (-578 *8))) (-4 *7 (-749)) (-4 *8 (-254)) (-4 *6 (-710)) (-4 *9 (-854 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-578 (-2 (|:| -3716 (-1074 *9)) (|:| -2387 (-478))))))) (-5 *1 (-674 *6 *7 *8 *9)) (-5 *3 (-1074 *9)))) (-2411 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-478)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-254)) (-4 *9 (-854 *8 *6 *7)) (-5 *2 (-2 (|:| -1990 (-1074 *9)) (|:| |polval| (-1074 *8)))) (-5 *1 (-674 *6 *7 *8 *9)) (-5 *3 (-1074 *9)) (-5 *4 (-1074 *8)))) (-2410 (*1 *2 *3 *4) (-12 (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-254)) (-5 *2 (-341 *3)) (-5 *1 (-674 *5 *4 *6 *3)) (-4 *3 (-854 *6 *5 *4)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3716 (-1074 *6)) (|:| -2387 (-478))))) (-4 *6 (-254)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-478)) (-5 *1 (-674 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5)))) (-2408 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) (-5 *2 (-341 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-854 *6 *4 *5)))) (-3955 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-341 (-1074 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1074 *7)))) (-3955 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) (-5 *2 (-341 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-854 *6 *4 *5))))) +((-2417 (($ $ (-823)) 17 T ELT))) +(((-675 |#1| |#2|) (-10 -7 (-15 -2417 (|#1| |#1| (-823)))) (-676 |#2|) (-144)) (T -675)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-2393 (($ $ (-823)) 36 T ELT)) (-2417 (($ $ (-823)) 43 T ELT)) (-2392 (($ $ (-823)) 37 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2419 (($ $ $) 33 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2420 (($ $ $ $) 34 T ELT)) (-2418 (($ $ $) 32 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 38 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) +(((-676 |#1|) (-111) (-144)) (T -676)) +((-2417 (*1 *1 *1 *2) (-12 (-5 *2 (-823)) (-4 *1 (-676 *3)) (-4 *3 (-144))))) +(-13 (-678) (-649 |t#1|) (-10 -8 (-15 -2417 ($ $ (-823))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) . T) ((-649 |#1|) . T) ((-652) . T) ((-678) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-2419 (($ $ $) 10 T ELT)) (-2420 (($ $ $ $) 9 T ELT)) (-2418 (($ $ $) 12 T ELT))) +(((-677 |#1|) (-10 -7 (-15 -2418 (|#1| |#1| |#1|)) (-15 -2419 (|#1| |#1| |#1|)) (-15 -2420 (|#1| |#1| |#1| |#1|))) (-678)) (T -677)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-2393 (($ $ (-823)) 36 T ELT)) (-2392 (($ $ (-823)) 37 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2419 (($ $ $) 33 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2420 (($ $ $ $) 34 T ELT)) (-2418 (($ $ $) 32 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 38 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 35 T ELT))) +(((-678) (-111)) (T -678)) +((-2420 (*1 *1 *1 *1 *1) (-4 *1 (-678))) (-2419 (*1 *1 *1 *1) (-4 *1 (-678))) (-2418 (*1 *1 *1 *1) (-4 *1 (-678)))) +(-13 (-21) (-652) (-10 -8 (-15 -2420 ($ $ $ $)) (-15 -2419 ($ $ $)) (-15 -2418 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-652) . T) ((-1005) . T) ((-1118) . T)) +((-3930 (((-765) $) NIL T ELT) (($ (-478)) 10 T ELT))) +(((-679 |#1|) (-10 -7 (-15 -3930 (|#1| (-478))) (-15 -3930 ((-765) |#1|))) (-680)) (T -679)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-2390 (((-3 $ #1="failed") $) 48 T ELT)) (-2393 (($ $ (-823)) 36 T ELT) (($ $ (-687)) 43 T ELT)) (-3451 (((-3 $ #1#) $) 46 T ELT)) (-2396 (((-83) $) 42 T ELT)) (-2391 (((-3 $ #1#) $) 47 T ELT)) (-2392 (($ $ (-823)) 37 T ELT) (($ $ (-687)) 44 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2419 (($ $ $) 33 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 39 T ELT)) (-3109 (((-687)) 40 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2420 (($ $ $ $) 34 T ELT)) (-2418 (($ $ $) 32 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 41 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 38 T ELT) (($ $ (-687)) 45 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 35 T ELT))) +(((-680) (-111)) (T -680)) +((-3109 (*1 *2) (-12 (-4 *1 (-680)) (-5 *2 (-687)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-680))))) +(-13 (-678) (-654) (-10 -8 (-15 -3109 ((-687)) -3936) (-15 -3930 ($ (-478))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-652) . T) ((-654) . T) ((-678) . T) ((-1005) . T) ((-1118) . T)) +((-2422 (((-578 (-2 (|:| |outval| (-140 |#1|)) (|:| |outmult| (-478)) (|:| |outvect| (-578 (-625 (-140 |#1|)))))) (-625 (-140 (-343 (-478)))) |#1|) 33 T ELT)) (-2421 (((-578 (-140 |#1|)) (-625 (-140 (-343 (-478)))) |#1|) 23 T ELT)) (-2433 (((-850 (-140 (-343 (-478)))) (-625 (-140 (-343 (-478)))) (-1079)) 20 T ELT) (((-850 (-140 (-343 (-478)))) (-625 (-140 (-343 (-478))))) 19 T ELT))) +(((-681 |#1|) (-10 -7 (-15 -2433 ((-850 (-140 (-343 (-478)))) (-625 (-140 (-343 (-478)))))) (-15 -2433 ((-850 (-140 (-343 (-478)))) (-625 (-140 (-343 (-478)))) (-1079))) (-15 -2421 ((-578 (-140 |#1|)) (-625 (-140 (-343 (-478)))) |#1|)) (-15 -2422 ((-578 (-2 (|:| |outval| (-140 |#1|)) (|:| |outmult| (-478)) (|:| |outvect| (-578 (-625 (-140 |#1|)))))) (-625 (-140 (-343 (-478)))) |#1|))) (-13 (-308) (-748))) (T -681)) +((-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-140 (-343 (-478))))) (-5 *2 (-578 (-2 (|:| |outval| (-140 *4)) (|:| |outmult| (-478)) (|:| |outvect| (-578 (-625 (-140 *4))))))) (-5 *1 (-681 *4)) (-4 *4 (-13 (-308) (-748))))) (-2421 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-140 (-343 (-478))))) (-5 *2 (-578 (-140 *4))) (-5 *1 (-681 *4)) (-4 *4 (-13 (-308) (-748))))) (-2433 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-140 (-343 (-478))))) (-5 *4 (-1079)) (-5 *2 (-850 (-140 (-343 (-478))))) (-5 *1 (-681 *5)) (-4 *5 (-13 (-308) (-748))))) (-2433 (*1 *2 *3) (-12 (-5 *3 (-625 (-140 (-343 (-478))))) (-5 *2 (-850 (-140 (-343 (-478))))) (-5 *1 (-681 *4)) (-4 *4 (-13 (-308) (-748)))))) +((-2600 (((-146 (-478)) |#1|) 27 T ELT))) +(((-682 |#1|) (-10 -7 (-15 -2600 ((-146 (-478)) |#1|))) (-340)) (T -682)) +((-2600 (*1 *2 *3) (-12 (-5 *2 (-146 (-478))) (-5 *1 (-682 *3)) (-4 *3 (-340))))) +((-2526 ((|#1| |#1| |#1|) 28 T ELT)) (-2527 ((|#1| |#1| |#1|) 27 T ELT)) (-2516 ((|#1| |#1| |#1|) 38 T ELT)) (-2524 ((|#1| |#1| |#1|) 33 T ELT)) (-2525 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2532 (((-2 (|:| -1960 |#1|) (|:| -2886 |#1|)) |#1| |#1|) 26 T ELT))) +(((-683 |#1| |#2|) (-10 -7 (-15 -2532 ((-2 (|:| -1960 |#1|) (|:| -2886 |#1|)) |#1| |#1|)) (-15 -2527 (|#1| |#1| |#1|)) (-15 -2526 (|#1| |#1| |#1|)) (-15 -2525 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2524 (|#1| |#1| |#1|)) (-15 -2516 (|#1| |#1| |#1|))) (-640 |#2|) (-308)) (T -683)) +((-2516 (*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) (-2524 (*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) (-2525 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) (-2526 (*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) (-2527 (*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) (-2532 (*1 *2 *3 *3) (-12 (-4 *4 (-308)) (-5 *2 (-2 (|:| -1960 *3) (|:| -2886 *3))) (-5 *1 (-683 *3 *4)) (-4 *3 (-640 *4))))) +((-2539 (((-627 (-1127)) $ (-1127)) 27 T ELT)) (-2540 (((-627 (-482)) $ (-482)) 26 T ELT)) (-2538 (((-687) $ (-100)) 28 T ELT)) (-2541 (((-627 (-99)) $ (-99)) 25 T ELT)) (-1986 (((-627 (-1127)) $) 12 T ELT)) (-1982 (((-627 (-1125)) $) 8 T ELT)) (-1984 (((-627 (-1124)) $) 10 T ELT)) (-1987 (((-627 (-482)) $) 13 T ELT)) (-1983 (((-627 (-480)) $) 9 T ELT)) (-1985 (((-627 (-479)) $) 11 T ELT)) (-1981 (((-687) $ (-100)) 7 T ELT)) (-1988 (((-627 (-99)) $) 14 T ELT)) (-2423 (((-83) $) 32 T ELT)) (-2424 (((-627 $) |#1| (-858)) 33 T ELT)) (-1687 (($ $) 6 T ELT))) +(((-684 |#1|) (-111) (-1005)) (T -684)) +((-2424 (*1 *2 *3 *4) (-12 (-5 *4 (-858)) (-4 *3 (-1005)) (-5 *2 (-627 *1)) (-4 *1 (-684 *3)))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1005)) (-5 *2 (-83))))) +(-13 (-506) (-10 -8 (-15 -2424 ((-627 $) |t#1| (-858))) (-15 -2423 ((-83) $)))) +(((-145) . T) ((-459) . T) ((-506) . T) ((-763) . T)) +((-3903 (((-2 (|:| -1998 (-625 (-478))) (|:| |basisDen| (-478)) (|:| |basisInv| (-625 (-478)))) (-478)) 72 T ELT)) (-3902 (((-2 (|:| -1998 (-625 (-478))) (|:| |basisDen| (-478)) (|:| |basisInv| (-625 (-478))))) 70 T ELT)) (-3741 (((-478)) 86 T ELT))) +(((-685 |#1| |#2|) (-10 -7 (-15 -3741 ((-478))) (-15 -3902 ((-2 (|:| -1998 (-625 (-478))) (|:| |basisDen| (-478)) (|:| |basisInv| (-625 (-478)))))) (-15 -3903 ((-2 (|:| -1998 (-625 (-478))) (|:| |basisDen| (-478)) (|:| |basisInv| (-625 (-478)))) (-478)))) (-1144 (-478)) (-346 (-478) |#1|)) (T -685)) +((-3903 (*1 *2 *3) (-12 (-5 *3 (-478)) (-4 *4 (-1144 *3)) (-5 *2 (-2 (|:| -1998 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) (-5 *1 (-685 *4 *5)) (-4 *5 (-346 *3 *4)))) (-3902 (*1 *2) (-12 (-4 *3 (-1144 (-478))) (-5 *2 (-2 (|:| -1998 (-625 (-478))) (|:| |basisDen| (-478)) (|:| |basisInv| (-625 (-478))))) (-5 *1 (-685 *3 *4)) (-4 *4 (-346 (-478) *3)))) (-3741 (*1 *2) (-12 (-4 *3 (-1144 *2)) (-5 *2 (-478)) (-5 *1 (-685 *3 *4)) (-4 *4 (-346 *2 *3))))) +((-2492 (((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-850 |#1|))) 18 T ELT) (((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-850 |#1|)) (-578 (-1079))) 17 T ELT)) (-3557 (((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-850 |#1|))) 20 T ELT) (((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-850 |#1|)) (-578 (-1079))) 19 T ELT))) +(((-686 |#1|) (-10 -7 (-15 -2492 ((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-850 |#1|)) (-578 (-1079)))) (-15 -2492 ((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-850 |#1|)))) (-15 -3557 ((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-850 |#1|)) (-578 (-1079)))) (-15 -3557 ((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-850 |#1|))))) (-489)) (T -686)) +((-3557 (*1 *2 *3) (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *4)))))) (-5 *1 (-686 *4)))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-578 (-1079))) (-4 *5 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *5)))))) (-5 *1 (-686 *5)))) (-2492 (*1 *2 *3) (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *4)))))) (-5 *1 (-686 *4)))) (-2492 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-578 (-1079))) (-4 *5 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *5)))))) (-5 *1 (-686 *5))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2467 (($ $ $) 10 T ELT)) (-1299 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2425 (($ $ (-478)) 11 T ELT)) (-3708 (($) NIL T CONST)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($ $) NIL T ELT)) (-2547 (($ $ $) NIL T ELT)) (-3169 (((-83) $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3127 (($ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 6 T CONST)) (-2650 (($) NIL T CONST)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-687)) NIL T ELT) (($ $ (-823)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-687) (-13 (-710) (-658) (-10 -8 (-15 -2547 ($ $ $)) (-15 -2548 ($ $ $)) (-15 -3127 ($ $ $)) (-15 -2863 ((-2 (|:| -1960 $) (|:| -2886 $)) $ $)) (-15 -3450 ((-3 $ "failed") $ $)) (-15 -2425 ($ $ (-478))) (-15 -2978 ($ $)) (-6 (-3981 "*"))))) (T -687)) +((-2547 (*1 *1 *1 *1) (-5 *1 (-687))) (-2548 (*1 *1 *1 *1) (-5 *1 (-687))) (-3127 (*1 *1 *1 *1) (-5 *1 (-687))) (-2863 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1960 (-687)) (|:| -2886 (-687)))) (-5 *1 (-687)))) (-3450 (*1 *1 *1 *1) (|partial| -5 *1 (-687))) (-2425 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-687)))) (-2978 (*1 *1 *1) (-5 *1 (-687)))) +((-478) (|%not| (|%ilt| |#1| 0))) +((-3557 (((-3 |#2| "failed") |#2| |#2| (-84) (-1079)) 37 T ELT))) +(((-688 |#1| |#2|) (-10 -7 (-15 -3557 ((-3 |#2| "failed") |#2| |#2| (-84) (-1079)))) (-13 (-254) (-943 (-478)) (-575 (-478)) (-118)) (-13 (-29 |#1|) (-1104) (-864))) (T -688)) +((-3557 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-84)) (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *1 (-688 *5 *2)) (-4 *2 (-13 (-29 *5) (-1104) (-864)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 7 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 9 T ELT))) +(((-689) (-1005)) (T -689)) +NIL +((-3930 (((-689) |#1|) 8 T ELT))) +(((-690 |#1|) (-10 -7 (-15 -3930 ((-689) |#1|))) (-1118)) (T -690)) +((-3930 (*1 *2 *3) (-12 (-5 *2 (-689)) (-5 *1 (-690 *3)) (-4 *3 (-1118))))) +((-3115 ((|#2| |#4|) 35 T ELT))) +(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3115 (|#2| |#4|))) (-385) (-1144 |#1|) (-656 |#1| |#2|) (-1144 |#3|)) (T -691)) +((-3115 (*1 *2 *3) (-12 (-4 *4 (-385)) (-4 *5 (-656 *4 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-691 *4 *2 *5 *3)) (-4 *3 (-1144 *5))))) +((-3451 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2428 (((-1174) (-1062) (-1062) |#4| |#5|) 33 T ELT)) (-2426 ((|#4| |#4| |#5|) 74 T ELT)) (-2427 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) |#4| |#5|) 79 T ELT)) (-2429 (((-578 (-2 (|:| |val| (-83)) (|:| -1587 |#5|))) |#4| |#5|) 16 T ELT))) +(((-692 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3451 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2426 (|#4| |#4| |#5|)) (-15 -2427 ((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) |#4| |#5|)) (-15 -2428 ((-1174) (-1062) (-1062) |#4| |#5|)) (-15 -2429 ((-578 (-2 (|:| |val| (-83)) (|:| -1587 |#5|))) |#4| |#5|))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|) (-975 |#1| |#2| |#3| |#4|)) (T -692)) +((-2429 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1587 *4)))) (-5 *1 (-692 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-2428 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1062)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *4 (-969 *6 *7 *8)) (-5 *2 (-1174)) (-5 *1 (-692 *6 *7 *8 *4 *5)) (-4 *5 (-975 *6 *7 *8 *4)))) (-2427 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) (-5 *1 (-692 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-2426 (*1 *2 *2 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *2 (-969 *4 *5 *6)) (-5 *1 (-692 *4 *5 *6 *2 *3)) (-4 *3 (-975 *4 *5 *6 *2)))) (-3451 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-692 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) +((-3140 (((-3 (-1074 (-1074 |#1|)) "failed") |#4|) 53 T ELT)) (-2430 (((-578 |#4|) |#4|) 22 T ELT)) (-3912 ((|#4| |#4|) 17 T ELT))) +(((-693 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2430 ((-578 |#4|) |#4|)) (-15 -3140 ((-3 (-1074 (-1074 |#1|)) "failed") |#4|)) (-15 -3912 (|#4| |#4|))) (-295) (-276 |#1|) (-1144 |#2|) (-1144 |#3|) (-823)) (T -693)) +((-3912 (*1 *2 *2) (-12 (-4 *3 (-295)) (-4 *4 (-276 *3)) (-4 *5 (-1144 *4)) (-5 *1 (-693 *3 *4 *5 *2 *6)) (-4 *2 (-1144 *5)) (-14 *6 (-823)))) (-3140 (*1 *2 *3) (|partial| -12 (-4 *4 (-295)) (-4 *5 (-276 *4)) (-4 *6 (-1144 *5)) (-5 *2 (-1074 (-1074 *4))) (-5 *1 (-693 *4 *5 *6 *3 *7)) (-4 *3 (-1144 *6)) (-14 *7 (-823)))) (-2430 (*1 *2 *3) (-12 (-4 *4 (-295)) (-4 *5 (-276 *4)) (-4 *6 (-1144 *5)) (-5 *2 (-578 *3)) (-5 *1 (-693 *4 *5 *6 *3 *7)) (-4 *3 (-1144 *6)) (-14 *7 (-823))))) +((-2431 (((-2 (|:| |deter| (-578 (-1074 |#5|))) (|:| |dterm| (-578 (-578 (-2 (|:| -3062 (-687)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-578 |#1|)) (|:| |nlead| (-578 |#5|))) (-1074 |#5|) (-578 |#1|) (-578 |#5|)) 72 T ELT)) (-2432 (((-578 (-687)) |#1|) 20 T ELT))) +(((-694 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2431 ((-2 (|:| |deter| (-578 (-1074 |#5|))) (|:| |dterm| (-578 (-578 (-2 (|:| -3062 (-687)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-578 |#1|)) (|:| |nlead| (-578 |#5|))) (-1074 |#5|) (-578 |#1|) (-578 |#5|))) (-15 -2432 ((-578 (-687)) |#1|))) (-1144 |#4|) (-710) (-749) (-254) (-854 |#4| |#2| |#3|)) (T -694)) +((-2432 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) (-5 *2 (-578 (-687))) (-5 *1 (-694 *3 *4 *5 *6 *7)) (-4 *3 (-1144 *6)) (-4 *7 (-854 *6 *4 *5)))) (-2431 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1144 *9)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *9 (-254)) (-4 *10 (-854 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-578 (-1074 *10))) (|:| |dterm| (-578 (-578 (-2 (|:| -3062 (-687)) (|:| |pcoef| *10))))) (|:| |nfacts| (-578 *6)) (|:| |nlead| (-578 *10)))) (-5 *1 (-694 *6 *7 *8 *9 *10)) (-5 *3 (-1074 *10)) (-5 *4 (-578 *6)) (-5 *5 (-578 *10))))) +((-2435 (((-578 (-2 (|:| |outval| |#1|) (|:| |outmult| (-478)) (|:| |outvect| (-578 (-625 |#1|))))) (-625 (-343 (-478))) |#1|) 31 T ELT)) (-2434 (((-578 |#1|) (-625 (-343 (-478))) |#1|) 21 T ELT)) (-2433 (((-850 (-343 (-478))) (-625 (-343 (-478))) (-1079)) 18 T ELT) (((-850 (-343 (-478))) (-625 (-343 (-478)))) 17 T ELT))) +(((-695 |#1|) (-10 -7 (-15 -2433 ((-850 (-343 (-478))) (-625 (-343 (-478))))) (-15 -2433 ((-850 (-343 (-478))) (-625 (-343 (-478))) (-1079))) (-15 -2434 ((-578 |#1|) (-625 (-343 (-478))) |#1|)) (-15 -2435 ((-578 (-2 (|:| |outval| |#1|) (|:| |outmult| (-478)) (|:| |outvect| (-578 (-625 |#1|))))) (-625 (-343 (-478))) |#1|))) (-13 (-308) (-748))) (T -695)) +((-2435 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-343 (-478)))) (-5 *2 (-578 (-2 (|:| |outval| *4) (|:| |outmult| (-478)) (|:| |outvect| (-578 (-625 *4)))))) (-5 *1 (-695 *4)) (-4 *4 (-13 (-308) (-748))))) (-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-343 (-478)))) (-5 *2 (-578 *4)) (-5 *1 (-695 *4)) (-4 *4 (-13 (-308) (-748))))) (-2433 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-343 (-478)))) (-5 *4 (-1079)) (-5 *2 (-850 (-343 (-478)))) (-5 *1 (-695 *5)) (-4 *5 (-13 (-308) (-748))))) (-2433 (*1 *2 *3) (-12 (-5 *3 (-625 (-343 (-478)))) (-5 *2 (-850 (-343 (-478)))) (-5 *1 (-695 *4)) (-4 *4 (-13 (-308) (-748)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 36 T ELT)) (-3065 (((-578 |#2|) $) NIL T ELT)) (-3067 (((-1074 $) $ |#2|) NIL T ELT) (((-1074 |#1|) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2803 (((-687) $) NIL T ELT) (((-687) $ (-578 |#2|)) NIL T ELT)) (-3781 (($ $) 30 T ELT)) (-3149 (((-83) $ $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3739 (($ $ $) 110 (|has| |#1| (-489)) ELT)) (-3131 (((-578 $) $ $) 123 (|has| |#1| (-489)) ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3759 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-385)) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-850 (-343 (-478)))) NIL (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#2| (-548 (-1079)))) ELT) (((-3 $ #1#) (-850 (-478))) NIL (OR (-12 (|has| |#1| (-38 (-478))) (|has| |#2| (-548 (-1079))) (-2544 (|has| |#1| (-38 (-343 (-478)))))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#2| (-548 (-1079))))) ELT) (((-3 $ #1#) (-850 |#1|)) NIL (OR (-12 (|has| |#2| (-548 (-1079))) (-2544 (|has| |#1| (-38 (-343 (-478))))) (-2544 (|has| |#1| (-38 (-478))))) (-12 (|has| |#1| (-38 (-478))) (|has| |#2| (-548 (-1079))) (-2544 (|has| |#1| (-38 (-343 (-478))))) (-2544 (|has| |#1| (-477)))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#2| (-548 (-1079))) (-2544 (|has| |#1| (-897 (-478)))))) ELT) (((-3 (-1028 |#1| |#2|) #1#) $) 21 T ELT)) (-3139 ((|#1| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) ((|#2| $) NIL T ELT) (($ (-850 (-343 (-478)))) NIL (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#2| (-548 (-1079)))) ELT) (($ (-850 (-478))) NIL (OR (-12 (|has| |#1| (-38 (-478))) (|has| |#2| (-548 (-1079))) (-2544 (|has| |#1| (-38 (-343 (-478)))))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#2| (-548 (-1079))))) ELT) (($ (-850 |#1|)) NIL (OR (-12 (|has| |#2| (-548 (-1079))) (-2544 (|has| |#1| (-38 (-343 (-478))))) (-2544 (|has| |#1| (-38 (-478))))) (-12 (|has| |#1| (-38 (-478))) (|has| |#2| (-548 (-1079))) (-2544 (|has| |#1| (-38 (-343 (-478))))) (-2544 (|has| |#1| (-477)))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#2| (-548 (-1079))) (-2544 (|has| |#1| (-897 (-478)))))) ELT) (((-1028 |#1| |#2|) $) NIL T ELT)) (-3740 (($ $ $ |#2|) NIL (|has| |#1| (-144)) ELT) (($ $ $) 121 (|has| |#1| (-489)) ELT)) (-3943 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3678 (((-83) $ $) NIL T ELT) (((-83) $ (-578 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3155 (((-83) $) NIL T ELT)) (-3736 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 81 T ELT)) (-3126 (($ $) 136 (|has| |#1| (-385)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-385)) ELT) (($ $ |#2|) NIL (|has| |#1| (-385)) ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-814)) ELT)) (-3137 (($ $) NIL (|has| |#1| (-489)) ELT)) (-3138 (($ $) NIL (|has| |#1| (-489)) ELT)) (-3148 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3147 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1611 (($ $ |#1| (-463 |#2|) $) NIL T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| |#1| (-789 (-323))) (|has| |#2| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| |#1| (-789 (-478))) (|has| |#2| (-789 (-478)))) ELT)) (-2396 (((-83) $) 57 T ELT)) (-2404 (((-687) $) NIL T ELT)) (-3679 (((-83) $ $) NIL T ELT) (((-83) $ (-578 $)) NIL T ELT)) (-3128 (($ $ $ $ $) 107 (|has| |#1| (-489)) ELT)) (-3163 ((|#2| $) 22 T ELT)) (-3068 (($ (-1074 |#1|) |#2|) NIL T ELT) (($ (-1074 $) |#2|) NIL T ELT)) (-2805 (((-578 $) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-463 |#2|)) NIL T ELT) (($ $ |#2| (-687)) 38 T ELT) (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT)) (-3142 (($ $ $) 63 T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ |#2|) NIL T ELT)) (-3156 (((-83) $) NIL T ELT)) (-2804 (((-463 |#2|) $) NIL T ELT) (((-687) $ |#2|) NIL T ELT) (((-578 (-687)) $ (-578 |#2|)) NIL T ELT)) (-3162 (((-687) $) 23 T ELT)) (-1612 (($ (-1 (-463 |#2|) (-463 |#2|)) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3066 (((-3 |#2| #1#) $) NIL T ELT)) (-3123 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3124 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3151 (((-578 $) $) NIL T ELT)) (-3154 (($ $) 39 T ELT)) (-3125 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3152 (((-578 $) $) 43 T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) NIL T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-3153 (($ $) 41 T ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3141 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3465 (-687))) $ $) 96 T ELT)) (-3143 (((-2 (|:| -3938 $) (|:| |gap| (-687)) (|:| -1960 $) (|:| -2886 $)) $ $) 78 T ELT) (((-2 (|:| -3938 $) (|:| |gap| (-687)) (|:| -1960 $) (|:| -2886 $)) $ $ |#2|) NIL T ELT)) (-3144 (((-2 (|:| -3938 $) (|:| |gap| (-687)) (|:| -2886 $)) $ $) NIL T ELT) (((-2 (|:| -3938 $) (|:| |gap| (-687)) (|:| -2886 $)) $ $ |#2|) NIL T ELT)) (-3146 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3145 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3173 (($ $ $) 125 (|has| |#1| (-489)) ELT)) (-3159 (((-578 $) $) 32 T ELT)) (-2807 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2806 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-2 (|:| |var| |#2|) (|:| -2387 (-687))) #1#) $) NIL T ELT)) (-3675 (((-83) $ $) NIL T ELT) (((-83) $ (-578 $)) NIL T ELT)) (-3670 (($ $ $) NIL T ELT)) (-3430 (($ $) 24 T ELT)) (-3683 (((-83) $ $) NIL T ELT)) (-3676 (((-83) $ $) NIL T ELT) (((-83) $ (-578 $)) NIL T ELT)) (-3671 (($ $ $) NIL T ELT)) (-3161 (($ $) 26 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3132 (((-2 (|:| -3127 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-489)) ELT)) (-3133 (((-2 (|:| -3127 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-489)) ELT)) (-1784 (((-83) $) 56 T ELT)) (-1783 ((|#1| $) 58 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-385)) ELT)) (-3127 ((|#1| |#1| $) 133 (|has| |#1| (-385)) ELT) (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-814)) ELT)) (-3134 (((-2 (|:| -3127 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-489)) ELT)) (-3450 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-489)) ELT)) (-3135 (($ $ |#1|) 129 (|has| |#1| (-489)) ELT) (($ $ $) NIL (|has| |#1| (-489)) ELT)) (-3136 (($ $ |#1|) 128 (|has| |#1| (-489)) ELT) (($ $ $) NIL (|has| |#1| (-489)) ELT)) (-3752 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-578 |#2|) (-578 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-578 |#2|) (-578 $)) NIL T ELT)) (-3741 (($ $ |#2|) NIL (|has| |#1| (-144)) ELT)) (-3742 (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT) (($ $ |#2| (-687)) NIL T ELT) (($ $ (-578 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3932 (((-463 |#2|) $) NIL T ELT) (((-687) $ |#2|) 45 T ELT) (((-578 (-687)) $ (-578 |#2|)) NIL T ELT)) (-3160 (($ $) NIL T ELT)) (-3158 (($ $) 35 T ELT)) (-3956 (((-793 (-323)) $) NIL (-12 (|has| |#1| (-548 (-793 (-323)))) (|has| |#2| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| |#1| (-548 (-793 (-478)))) (|has| |#2| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| |#1| (-548 (-467))) (|has| |#2| (-548 (-467)))) ELT) (($ (-850 (-343 (-478)))) NIL (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#2| (-548 (-1079)))) ELT) (($ (-850 (-478))) NIL (OR (-12 (|has| |#1| (-38 (-478))) (|has| |#2| (-548 (-1079))) (-2544 (|has| |#1| (-38 (-343 (-478)))))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#2| (-548 (-1079))))) ELT) (($ (-850 |#1|)) NIL (|has| |#2| (-548 (-1079))) ELT) (((-1062) $) NIL (-12 (|has| |#1| (-943 (-478))) (|has| |#2| (-548 (-1079)))) ELT) (((-850 |#1|) $) NIL (|has| |#2| (-548 (-1079))) ELT)) (-2801 ((|#1| $) 132 (|has| |#1| (-385)) ELT) (($ $ |#2|) NIL (|has| |#1| (-385)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-850 |#1|) $) NIL (|has| |#2| (-548 (-1079))) ELT) (((-1028 |#1| |#2|) $) 18 T ELT) (($ (-1028 |#1| |#2|)) 19 T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3801 (((-578 |#1|) $) NIL T ELT)) (-3661 ((|#1| $ (-463 |#2|)) NIL T ELT) (($ $ |#2| (-687)) 47 T ELT) (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1610 (($ $ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2644 (($) 13 T CONST)) (-3150 (((-3 (-83) #1#) $ $) NIL T ELT)) (-2650 (($) 37 T CONST)) (-3129 (($ $ $ $ (-687)) 105 (|has| |#1| (-489)) ELT)) (-3130 (($ $ $ (-687)) 104 (|has| |#1| (-489)) ELT)) (-2653 (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT) (($ $ |#2| (-687)) NIL T ELT) (($ $ (-578 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3823 (($ $ $) 85 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 70 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) +(((-696 |#1| |#2|) (-13 (-969 |#1| (-463 |#2|) |#2|) (-547 (-1028 |#1| |#2|)) (-943 (-1028 |#1| |#2|))) (-954) (-749)) (T -696)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 12 T ELT)) (-3751 (((-1168 |#1|) $ (-687)) NIL T ELT)) (-3065 (((-578 (-986)) $) NIL T ELT)) (-3749 (($ (-1074 |#1|)) NIL T ELT)) (-3067 (((-1074 $) $ (-986)) NIL T ELT) (((-1074 |#1|) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2803 (((-687) $) NIL T ELT) (((-687) $ (-578 (-986))) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2439 (((-578 $) $ $) 54 (|has| |#1| (-489)) ELT)) (-3739 (($ $ $) 50 (|has| |#1| (-489)) ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3759 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-385)) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-1595 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3745 (($ $ (-687)) NIL T ELT)) (-3744 (($ $ (-687)) NIL T ELT)) (-3735 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-385)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-986) #1#) $) NIL T ELT) (((-3 (-1074 |#1|) #1#) $) 10 T ELT)) (-3139 ((|#1| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-986) $) NIL T ELT) (((-1074 |#1|) $) NIL T ELT)) (-3740 (($ $ $ (-986)) NIL (|has| |#1| (-144)) ELT) ((|#1| $ $) 58 (|has| |#1| (-144)) ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3943 (($ $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2547 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3743 (($ $ $) NIL T ELT)) (-3737 (($ $ $) 87 (|has| |#1| (-489)) ELT)) (-3736 (((-2 (|:| -3938 |#1|) (|:| -1960 $) (|:| -2886 $)) $ $) 86 (|has| |#1| (-489)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-385)) ELT) (($ $ (-986)) NIL (|has| |#1| (-385)) ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-814)) ELT)) (-1611 (($ $ |#1| (-687) $) NIL T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-986) (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-986) (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-3756 (((-687) $ $) NIL (|has| |#1| (-489)) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2404 (((-687) $) NIL T ELT)) (-3429 (((-627 $) $) NIL (|has| |#1| (-1055)) ELT)) (-3068 (($ (-1074 |#1|) (-986)) NIL T ELT) (($ (-1074 $) (-986)) NIL T ELT)) (-3761 (($ $ (-687)) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-2805 (((-578 $) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-687)) NIL T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT)) (-3142 (($ $ $) 27 T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ (-986)) NIL T ELT) (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-2804 (((-687) $) NIL T ELT) (((-687) $ (-986)) NIL T ELT) (((-578 (-687)) $ (-578 (-986))) NIL T ELT)) (-1612 (($ (-1 (-687) (-687)) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3750 (((-1074 |#1|) $) NIL T ELT)) (-3066 (((-3 (-986) #1#) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) NIL T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3141 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3465 (-687))) $ $) 37 T ELT)) (-2441 (($ $ $) 41 T ELT)) (-2440 (($ $ $) 47 T ELT)) (-3143 (((-2 (|:| -3938 |#1|) (|:| |gap| (-687)) (|:| -1960 $) (|:| -2886 $)) $ $) 46 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3173 (($ $ $) 56 (|has| |#1| (-489)) ELT)) (-3746 (((-2 (|:| -1960 $) (|:| -2886 $)) $ (-687)) NIL T ELT)) (-2807 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2806 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-2 (|:| |var| (-986)) (|:| -2387 (-687))) #1#) $) NIL T ELT)) (-3796 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3430 (($) NIL (|has| |#1| (-1055)) CONST)) (-3226 (((-1023) $) NIL T ELT)) (-3132 (((-2 (|:| -3127 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-489)) ELT)) (-3133 (((-2 (|:| -3127 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-489)) ELT)) (-2436 (((-2 (|:| -3740 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-489)) ELT)) (-2437 (((-2 (|:| -3740 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-489)) ELT)) (-1784 (((-83) $) 13 T ELT)) (-1783 ((|#1| $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-385)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3722 (($ $ (-687) |#1| $) 26 T ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-814)) ELT)) (-3134 (((-2 (|:| -3127 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-489)) ELT)) (-2438 (((-2 (|:| -3740 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-489)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3450 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3752 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-986) |#1|) NIL T ELT) (($ $ (-578 (-986)) (-578 |#1|)) NIL T ELT) (($ $ (-986) $) NIL T ELT) (($ $ (-578 (-986)) (-578 $)) NIL T ELT)) (-1594 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3784 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-343 $) (-343 $) (-343 $)) NIL (|has| |#1| (-489)) ELT) ((|#1| (-343 $) |#1|) NIL (|has| |#1| (-308)) ELT) (((-343 $) $ (-343 $)) NIL (|has| |#1| (-489)) ELT)) (-3748 (((-3 $ #1#) $ (-687)) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3741 (($ $ (-986)) NIL (|has| |#1| (-144)) ELT) ((|#1| $) NIL (|has| |#1| (-144)) ELT)) (-3742 (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986))) NIL T ELT) (($ $ (-986)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1079)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-804 (-1079))) ELT)) (-3932 (((-687) $) NIL T ELT) (((-687) $ (-986)) NIL T ELT) (((-578 (-687)) $ (-578 (-986))) NIL T ELT)) (-3956 (((-793 (-323)) $) NIL (-12 (|has| (-986) (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-986) (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-986) (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT)) (-2801 ((|#1| $) NIL (|has| |#1| (-385)) ELT) (($ $ (-986)) NIL (|has| |#1| (-385)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3738 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT) (((-3 (-343 $) #1#) (-343 $) $) NIL (|has| |#1| (-489)) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-986)) NIL T ELT) (((-1074 |#1|) $) 7 T ELT) (($ (-1074 |#1|)) 8 T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3801 (((-578 |#1|) $) NIL T ELT)) (-3661 ((|#1| $ (-687)) NIL T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1610 (($ $ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2644 (($) 28 T CONST)) (-2650 (($) 32 T CONST)) (-2653 (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986))) NIL T ELT) (($ $ (-986)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-804 (-1079))) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) +(((-697 |#1|) (-13 (-1144 |#1|) (-547 (-1074 |#1|)) (-943 (-1074 |#1|)) (-10 -8 (-15 -3722 ($ $ (-687) |#1| $)) (-15 -3142 ($ $ $)) (-15 -3141 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3465 (-687))) $ $)) (-15 -2441 ($ $ $)) (-15 -3143 ((-2 (|:| -3938 |#1|) (|:| |gap| (-687)) (|:| -1960 $) (|:| -2886 $)) $ $)) (-15 -2440 ($ $ $)) (IF (|has| |#1| (-489)) (PROGN (-15 -2439 ((-578 $) $ $)) (-15 -3173 ($ $ $)) (-15 -3134 ((-2 (|:| -3127 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3133 ((-2 (|:| -3127 $) (|:| |coef1| $)) $ $)) (-15 -3132 ((-2 (|:| -3127 $) (|:| |coef2| $)) $ $)) (-15 -2438 ((-2 (|:| -3740 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2437 ((-2 (|:| -3740 |#1|) (|:| |coef1| $)) $ $)) (-15 -2436 ((-2 (|:| -3740 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-954)) (T -697)) +((-3722 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-687)) (-5 *1 (-697 *3)) (-4 *3 (-954)))) (-3142 (*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-954)))) (-3141 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-697 *3)) (|:| |polden| *3) (|:| -3465 (-687)))) (-5 *1 (-697 *3)) (-4 *3 (-954)))) (-2441 (*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-954)))) (-3143 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3938 *3) (|:| |gap| (-687)) (|:| -1960 (-697 *3)) (|:| -2886 (-697 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-954)))) (-2440 (*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-954)))) (-2439 (*1 *2 *1 *1) (-12 (-5 *2 (-578 (-697 *3))) (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954)))) (-3173 (*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-489)) (-4 *2 (-954)))) (-3134 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3127 (-697 *3)) (|:| |coef1| (-697 *3)) (|:| |coef2| (-697 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954)))) (-3133 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3127 (-697 *3)) (|:| |coef1| (-697 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954)))) (-3132 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3127 (-697 *3)) (|:| |coef2| (-697 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954)))) (-2438 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3740 *3) (|:| |coef1| (-697 *3)) (|:| |coef2| (-697 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954)))) (-2437 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3740 *3) (|:| |coef1| (-697 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954)))) (-2436 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3740 *3) (|:| |coef2| (-697 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954))))) +((-3942 (((-697 |#2|) (-1 |#2| |#1|) (-697 |#1|)) 13 T ELT))) +(((-698 |#1| |#2|) (-10 -7 (-15 -3942 ((-697 |#2|) (-1 |#2| |#1|) (-697 |#1|)))) (-954) (-954)) (T -698)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-697 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-5 *2 (-697 *6)) (-5 *1 (-698 *5 *6))))) +((-2443 ((|#1| (-687) |#1|) 33 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2785 ((|#1| (-687) |#1|) 23 T ELT)) (-2442 ((|#1| (-687) |#1|) 35 (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-699 |#1|) (-10 -7 (-15 -2785 (|#1| (-687) |#1|)) (IF (|has| |#1| (-38 (-343 (-478)))) (PROGN (-15 -2442 (|#1| (-687) |#1|)) (-15 -2443 (|#1| (-687) |#1|))) |%noBranch|)) (-144)) (T -699)) +((-2443 (*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-699 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-144)))) (-2442 (*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-699 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-144)))) (-2785 (*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-699 *2)) (-4 *2 (-144))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3665 (((-578 (-2 (|:| -3845 $) (|:| -1689 (-578 |#4|)))) (-578 |#4|)) 90 T ELT)) (-3666 (((-578 $) (-578 |#4|)) 91 T ELT) (((-578 $) (-578 |#4|) (-83)) 118 T ELT)) (-3065 (((-578 |#3|) $) 37 T ELT)) (-2892 (((-83) $) 30 T ELT)) (-2883 (((-83) $) 21 (|has| |#1| (-489)) ELT)) (-3677 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3672 ((|#4| |#4| $) 97 T ELT)) (-3759 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 $))) |#4| $) 133 T ELT)) (-2893 (((-2 (|:| |under| $) (|:| -3113 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3694 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3979)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3708 (($) 46 T CONST)) (-2888 (((-83) $) 26 (|has| |#1| (-489)) ELT)) (-2890 (((-83) $ $) 28 (|has| |#1| (-489)) ELT)) (-2889 (((-83) $ $) 27 (|has| |#1| (-489)) ELT)) (-2891 (((-83) $) 29 (|has| |#1| (-489)) ELT)) (-3673 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2884 (((-578 |#4|) (-578 |#4|) $) 22 (|has| |#1| (-489)) ELT)) (-2885 (((-578 |#4|) (-578 |#4|) $) 23 (|has| |#1| (-489)) ELT)) (-3140 (((-3 $ "failed") (-578 |#4|)) 40 T ELT)) (-3139 (($ (-578 |#4|)) 39 T ELT)) (-3783 (((-3 $ #1#) $) 87 T ELT)) (-3669 ((|#4| |#4| $) 94 T ELT)) (-1340 (($ $) 69 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3390 (($ |#4| $) 68 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3979)) ELT)) (-2886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-489)) ELT)) (-3678 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3667 ((|#4| |#4| $) 92 T ELT)) (-3826 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3979)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3979)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3680 (((-2 (|:| -3845 (-578 |#4|)) (|:| -1689 (-578 |#4|))) $) 110 T ELT)) (-3180 (((-83) |#4| $) 143 T ELT)) (-3178 (((-83) |#4| $) 140 T ELT)) (-3181 (((-83) |#4| $) 144 T ELT) (((-83) $) 141 T ELT)) (-2873 (((-578 |#4|) $) 53 (|has| $ (-6 -3979)) ELT)) (-3679 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3163 ((|#3| $) 38 T ELT)) (-2592 (((-578 |#4|) $) 54 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2898 (((-578 |#3|) $) 36 T ELT)) (-2897 (((-83) |#3| $) 35 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3174 (((-3 |#4| (-578 $)) |#4| |#4| $) 135 T ELT)) (-3173 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 $))) |#4| |#4| $) 134 T ELT)) (-3782 (((-3 |#4| #1#) $) 88 T ELT)) (-3175 (((-578 $) |#4| $) 136 T ELT)) (-3177 (((-3 (-83) (-578 $)) |#4| $) 139 T ELT)) (-3176 (((-578 (-2 (|:| |val| (-83)) (|:| -1587 $))) |#4| $) 138 T ELT) (((-83) |#4| $) 137 T ELT)) (-3221 (((-578 $) |#4| $) 132 T ELT) (((-578 $) (-578 |#4|) $) 131 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 130 T ELT) (((-578 $) |#4| (-578 $)) 129 T ELT)) (-3424 (($ |#4| $) 124 T ELT) (($ (-578 |#4|) $) 123 T ELT)) (-3681 (((-578 |#4|) $) 112 T ELT)) (-3675 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3670 ((|#4| |#4| $) 95 T ELT)) (-3683 (((-83) $ $) 115 T ELT)) (-2887 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-489)) ELT)) (-3676 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3671 ((|#4| |#4| $) 96 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3785 (((-3 |#4| #1#) $) 89 T ELT)) (-1341 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3663 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3753 (($ $ |#4|) 82 T ELT) (((-578 $) |#4| $) 122 T ELT) (((-578 $) |#4| (-578 $)) 121 T ELT) (((-578 $) (-578 |#4|) $) 120 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 119 T ELT)) (-1934 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 |#4|) (-578 |#4|)) 60 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-245 |#4|)) 58 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-578 (-245 |#4|))) 57 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT)) (-1210 (((-83) $ $) 42 T ELT)) (-3387 (((-83) $) 45 T ELT)) (-3549 (($) 44 T ELT)) (-3932 (((-687) $) 111 T ELT)) (-1933 (((-687) |#4| $) 55 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT) (((-687) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) 43 T ELT)) (-3956 (((-467) $) 70 (|has| |#4| (-548 (-467))) ELT)) (-3514 (($ (-578 |#4|)) 61 T ELT)) (-2894 (($ $ |#3|) 32 T ELT)) (-2896 (($ $ |#3|) 34 T ELT)) (-3668 (($ $) 93 T ELT)) (-2895 (($ $ |#3|) 33 T ELT)) (-3930 (((-765) $) 13 T ELT) (((-578 |#4|) $) 41 T ELT)) (-3662 (((-687) $) 81 (|has| |#3| (-313)) ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3682 (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3674 (((-83) $ (-1 (-83) |#4| (-578 |#4|))) 103 T ELT)) (-3172 (((-578 $) |#4| $) 128 T ELT) (((-578 $) |#4| (-578 $)) 127 T ELT) (((-578 $) (-578 |#4|) $) 126 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 125 T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3979)) ELT)) (-3664 (((-578 |#3|) $) 86 T ELT)) (-3179 (((-83) |#4| $) 142 T ELT)) (-3917 (((-83) |#3| $) 85 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3941 (((-687) $) 47 (|has| $ (-6 -3979)) ELT))) +(((-700 |#1| |#2| |#3| |#4|) (-111) (-385) (-710) (-749) (-969 |t#1| |t#2| |t#3|)) (T -700)) +NIL +(-13 (-975 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-547 (-578 |#4|)) . T) ((-547 (-765)) . T) ((-122 |#4|) . T) ((-548 (-467)) |has| |#4| (-548 (-467))) ((-256 |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ((-422 |#4|) . T) ((-447 |#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ((-882 |#1| |#2| |#3| |#4|) . T) ((-975 |#1| |#2| |#3| |#4|) . T) ((-1005) . T) ((-1113 |#1| |#2| |#3| |#4|) . T) ((-1118) . T)) +((-2446 (((-3 (-323) #1="failed") (-261 |#1|) (-823)) 62 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-3 (-323) #1#) (-261 |#1|)) 54 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-3 (-323) #1#) (-343 (-850 |#1|)) (-823)) 41 (|has| |#1| (-489)) ELT) (((-3 (-323) #1#) (-343 (-850 |#1|))) 40 (|has| |#1| (-489)) ELT) (((-3 (-323) #1#) (-850 |#1|) (-823)) 31 (|has| |#1| (-954)) ELT) (((-3 (-323) #1#) (-850 |#1|)) 30 (|has| |#1| (-954)) ELT)) (-2444 (((-323) (-261 |#1|) (-823)) 99 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-323) (-261 |#1|)) 94 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-323) (-343 (-850 |#1|)) (-823)) 91 (|has| |#1| (-489)) ELT) (((-323) (-343 (-850 |#1|))) 90 (|has| |#1| (-489)) ELT) (((-323) (-850 |#1|) (-823)) 86 (|has| |#1| (-954)) ELT) (((-323) (-850 |#1|)) 85 (|has| |#1| (-954)) ELT) (((-323) |#1| (-823)) 76 T ELT) (((-323) |#1|) 22 T ELT)) (-2447 (((-3 (-140 (-323)) #1#) (-261 (-140 |#1|)) (-823)) 71 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-3 (-140 (-323)) #1#) (-261 (-140 |#1|))) 70 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-3 (-140 (-323)) #1#) (-261 |#1|) (-823)) 63 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-3 (-140 (-323)) #1#) (-261 |#1|)) 61 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-3 (-140 (-323)) #1#) (-343 (-850 (-140 |#1|))) (-823)) 46 (|has| |#1| (-489)) ELT) (((-3 (-140 (-323)) #1#) (-343 (-850 (-140 |#1|)))) 45 (|has| |#1| (-489)) ELT) (((-3 (-140 (-323)) #1#) (-343 (-850 |#1|)) (-823)) 39 (|has| |#1| (-489)) ELT) (((-3 (-140 (-323)) #1#) (-343 (-850 |#1|))) 38 (|has| |#1| (-489)) ELT) (((-3 (-140 (-323)) #1#) (-850 |#1|) (-823)) 28 (|has| |#1| (-954)) ELT) (((-3 (-140 (-323)) #1#) (-850 |#1|)) 26 (|has| |#1| (-954)) ELT) (((-3 (-140 (-323)) #1#) (-850 (-140 |#1|)) (-823)) 18 (|has| |#1| (-144)) ELT) (((-3 (-140 (-323)) #1#) (-850 (-140 |#1|))) 15 (|has| |#1| (-144)) ELT)) (-2445 (((-140 (-323)) (-261 (-140 |#1|)) (-823)) 102 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-140 (-323)) (-261 (-140 |#1|))) 101 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-140 (-323)) (-261 |#1|) (-823)) 100 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-140 (-323)) (-261 |#1|)) 98 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-140 (-323)) (-343 (-850 (-140 |#1|))) (-823)) 93 (|has| |#1| (-489)) ELT) (((-140 (-323)) (-343 (-850 (-140 |#1|)))) 92 (|has| |#1| (-489)) ELT) (((-140 (-323)) (-343 (-850 |#1|)) (-823)) 89 (|has| |#1| (-489)) ELT) (((-140 (-323)) (-343 (-850 |#1|))) 88 (|has| |#1| (-489)) ELT) (((-140 (-323)) (-850 |#1|) (-823)) 84 (|has| |#1| (-954)) ELT) (((-140 (-323)) (-850 |#1|)) 83 (|has| |#1| (-954)) ELT) (((-140 (-323)) (-850 (-140 |#1|)) (-823)) 78 (|has| |#1| (-144)) ELT) (((-140 (-323)) (-850 (-140 |#1|))) 77 (|has| |#1| (-144)) ELT) (((-140 (-323)) (-140 |#1|) (-823)) 80 (|has| |#1| (-144)) ELT) (((-140 (-323)) (-140 |#1|)) 79 (|has| |#1| (-144)) ELT) (((-140 (-323)) |#1| (-823)) 27 T ELT) (((-140 (-323)) |#1|) 25 T ELT))) +(((-701 |#1|) (-10 -7 (-15 -2444 ((-323) |#1|)) (-15 -2444 ((-323) |#1| (-823))) (-15 -2445 ((-140 (-323)) |#1|)) (-15 -2445 ((-140 (-323)) |#1| (-823))) (IF (|has| |#1| (-144)) (PROGN (-15 -2445 ((-140 (-323)) (-140 |#1|))) (-15 -2445 ((-140 (-323)) (-140 |#1|) (-823))) (-15 -2445 ((-140 (-323)) (-850 (-140 |#1|)))) (-15 -2445 ((-140 (-323)) (-850 (-140 |#1|)) (-823)))) |%noBranch|) (IF (|has| |#1| (-954)) (PROGN (-15 -2444 ((-323) (-850 |#1|))) (-15 -2444 ((-323) (-850 |#1|) (-823))) (-15 -2445 ((-140 (-323)) (-850 |#1|))) (-15 -2445 ((-140 (-323)) (-850 |#1|) (-823)))) |%noBranch|) (IF (|has| |#1| (-489)) (PROGN (-15 -2444 ((-323) (-343 (-850 |#1|)))) (-15 -2444 ((-323) (-343 (-850 |#1|)) (-823))) (-15 -2445 ((-140 (-323)) (-343 (-850 |#1|)))) (-15 -2445 ((-140 (-323)) (-343 (-850 |#1|)) (-823))) (-15 -2445 ((-140 (-323)) (-343 (-850 (-140 |#1|))))) (-15 -2445 ((-140 (-323)) (-343 (-850 (-140 |#1|))) (-823))) (IF (|has| |#1| (-749)) (PROGN (-15 -2444 ((-323) (-261 |#1|))) (-15 -2444 ((-323) (-261 |#1|) (-823))) (-15 -2445 ((-140 (-323)) (-261 |#1|))) (-15 -2445 ((-140 (-323)) (-261 |#1|) (-823))) (-15 -2445 ((-140 (-323)) (-261 (-140 |#1|)))) (-15 -2445 ((-140 (-323)) (-261 (-140 |#1|)) (-823)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-144)) (PROGN (-15 -2447 ((-3 (-140 (-323)) #1="failed") (-850 (-140 |#1|)))) (-15 -2447 ((-3 (-140 (-323)) #1#) (-850 (-140 |#1|)) (-823)))) |%noBranch|) (IF (|has| |#1| (-954)) (PROGN (-15 -2446 ((-3 (-323) #1#) (-850 |#1|))) (-15 -2446 ((-3 (-323) #1#) (-850 |#1|) (-823))) (-15 -2447 ((-3 (-140 (-323)) #1#) (-850 |#1|))) (-15 -2447 ((-3 (-140 (-323)) #1#) (-850 |#1|) (-823)))) |%noBranch|) (IF (|has| |#1| (-489)) (PROGN (-15 -2446 ((-3 (-323) #1#) (-343 (-850 |#1|)))) (-15 -2446 ((-3 (-323) #1#) (-343 (-850 |#1|)) (-823))) (-15 -2447 ((-3 (-140 (-323)) #1#) (-343 (-850 |#1|)))) (-15 -2447 ((-3 (-140 (-323)) #1#) (-343 (-850 |#1|)) (-823))) (-15 -2447 ((-3 (-140 (-323)) #1#) (-343 (-850 (-140 |#1|))))) (-15 -2447 ((-3 (-140 (-323)) #1#) (-343 (-850 (-140 |#1|))) (-823))) (IF (|has| |#1| (-749)) (PROGN (-15 -2446 ((-3 (-323) #1#) (-261 |#1|))) (-15 -2446 ((-3 (-323) #1#) (-261 |#1|) (-823))) (-15 -2447 ((-3 (-140 (-323)) #1#) (-261 |#1|))) (-15 -2447 ((-3 (-140 (-323)) #1#) (-261 |#1|) (-823))) (-15 -2447 ((-3 (-140 (-323)) #1#) (-261 (-140 |#1|)))) (-15 -2447 ((-3 (-140 (-323)) #1#) (-261 (-140 |#1|)) (-823)))) |%noBranch|)) |%noBranch|)) (-548 (-323))) (T -701)) +((-2447 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-261 (-140 *5))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2447 (*1 *2 *3) (|partial| -12 (-5 *3 (-261 (-140 *4))) (-4 *4 (-489)) (-4 *4 (-749)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2447 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-261 *5)) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2447 (*1 *2 *3) (|partial| -12 (-5 *3 (-261 *4)) (-4 *4 (-489)) (-4 *4 (-749)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2446 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-261 *5)) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5)))) (-2446 (*1 *2 *3) (|partial| -12 (-5 *3 (-261 *4)) (-4 *4 (-489)) (-4 *4 (-749)) (-4 *4 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *4)))) (-2447 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-343 (-850 (-140 *5)))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2447 (*1 *2 *3) (|partial| -12 (-5 *3 (-343 (-850 (-140 *4)))) (-4 *4 (-489)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2447 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2447 (*1 *2 *3) (|partial| -12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2446 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5)))) (-2446 (*1 *2 *3) (|partial| -12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-4 *4 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *4)))) (-2447 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-850 *5)) (-5 *4 (-823)) (-4 *5 (-954)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2447 (*1 *2 *3) (|partial| -12 (-5 *3 (-850 *4)) (-4 *4 (-954)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2446 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-850 *5)) (-5 *4 (-823)) (-4 *5 (-954)) (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5)))) (-2446 (*1 *2 *3) (|partial| -12 (-5 *3 (-850 *4)) (-4 *4 (-954)) (-4 *4 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *4)))) (-2447 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-850 (-140 *5))) (-5 *4 (-823)) (-4 *5 (-144)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2447 (*1 *2 *3) (|partial| -12 (-5 *3 (-850 (-140 *4))) (-4 *4 (-144)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-261 (-140 *5))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-261 (-140 *4))) (-4 *4 (-489)) (-4 *4 (-749)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-261 *5)) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-261 *4)) (-4 *4 (-489)) (-4 *4 (-749)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2444 (*1 *2 *3 *4) (-12 (-5 *3 (-261 *5)) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-261 *4)) (-4 *4 (-489)) (-4 *4 (-749)) (-4 *4 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *4)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 (-140 *5)))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-343 (-850 (-140 *4)))) (-4 *4 (-489)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2444 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-4 *4 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *4)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-850 *5)) (-5 *4 (-823)) (-4 *5 (-954)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-850 *4)) (-4 *4 (-954)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2444 (*1 *2 *3 *4) (-12 (-5 *3 (-850 *5)) (-5 *4 (-823)) (-4 *5 (-954)) (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-850 *4)) (-4 *4 (-954)) (-4 *4 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *4)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-850 (-140 *5))) (-5 *4 (-823)) (-4 *5 (-144)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-850 (-140 *4))) (-4 *4 (-144)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-140 *5)) (-5 *4 (-823)) (-4 *5 (-144)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-140 *4)) (-4 *4 (-144)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *4 (-823)) (-5 *2 (-140 (-323))) (-5 *1 (-701 *3)) (-4 *3 (-548 (-323))))) (-2445 (*1 *2 *3) (-12 (-5 *2 (-140 (-323))) (-5 *1 (-701 *3)) (-4 *3 (-548 (-323))))) (-2444 (*1 *2 *3 *4) (-12 (-5 *4 (-823)) (-5 *2 (-323)) (-5 *1 (-701 *3)) (-4 *3 (-548 *2)))) (-2444 (*1 *2 *3) (-12 (-5 *2 (-323)) (-5 *1 (-701 *3)) (-4 *3 (-548 *2))))) +((-2451 (((-823) (-1062)) 90 T ELT)) (-2453 (((-3 (-323) "failed") (-1062)) 36 T ELT)) (-2452 (((-323) (-1062)) 34 T ELT)) (-2449 (((-823) (-1062)) 64 T ELT)) (-2450 (((-1062) (-823)) 74 T ELT)) (-2448 (((-1062) (-823)) 63 T ELT))) +(((-702) (-10 -7 (-15 -2448 ((-1062) (-823))) (-15 -2449 ((-823) (-1062))) (-15 -2450 ((-1062) (-823))) (-15 -2451 ((-823) (-1062))) (-15 -2452 ((-323) (-1062))) (-15 -2453 ((-3 (-323) "failed") (-1062))))) (T -702)) +((-2453 (*1 *2 *3) (|partial| -12 (-5 *3 (-1062)) (-5 *2 (-323)) (-5 *1 (-702)))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-323)) (-5 *1 (-702)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-823)) (-5 *1 (-702)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1062)) (-5 *1 (-702)))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-823)) (-5 *1 (-702)))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1062)) (-5 *1 (-702))))) +((-2456 (((-1174) (-1168 (-323)) (-478) (-323) (-2 (|:| |tryValue| (-323)) (|:| |did| (-323)) (|:| -1462 (-323))) (-323) (-1168 (-323)) (-1 (-1174) (-1168 (-323)) (-1168 (-323)) (-323)) (-1168 (-323)) (-1168 (-323)) (-1168 (-323)) (-1168 (-323)) (-1168 (-323)) (-1168 (-323)) (-1168 (-323))) 54 T ELT) (((-1174) (-1168 (-323)) (-478) (-323) (-2 (|:| |tryValue| (-323)) (|:| |did| (-323)) (|:| -1462 (-323))) (-323) (-1168 (-323)) (-1 (-1174) (-1168 (-323)) (-1168 (-323)) (-323))) 51 T ELT)) (-2457 (((-1174) (-1168 (-323)) (-478) (-323) (-323) (-478) (-1 (-1174) (-1168 (-323)) (-1168 (-323)) (-323))) 61 T ELT)) (-2455 (((-1174) (-1168 (-323)) (-478) (-323) (-323) (-323) (-323) (-478) (-1 (-1174) (-1168 (-323)) (-1168 (-323)) (-323))) 49 T ELT)) (-2454 (((-1174) (-1168 (-323)) (-478) (-323) (-323) (-1 (-1174) (-1168 (-323)) (-1168 (-323)) (-323)) (-1168 (-323)) (-1168 (-323)) (-1168 (-323)) (-1168 (-323))) 63 T ELT) (((-1174) (-1168 (-323)) (-478) (-323) (-323) (-1 (-1174) (-1168 (-323)) (-1168 (-323)) (-323))) 62 T ELT))) +(((-703) (-10 -7 (-15 -2454 ((-1174) (-1168 (-323)) (-478) (-323) (-323) (-1 (-1174) (-1168 (-323)) (-1168 (-323)) (-323)))) (-15 -2454 ((-1174) (-1168 (-323)) (-478) (-323) (-323) (-1 (-1174) (-1168 (-323)) (-1168 (-323)) (-323)) (-1168 (-323)) (-1168 (-323)) (-1168 (-323)) (-1168 (-323)))) (-15 -2455 ((-1174) (-1168 (-323)) (-478) (-323) (-323) (-323) (-323) (-478) (-1 (-1174) (-1168 (-323)) (-1168 (-323)) (-323)))) (-15 -2456 ((-1174) (-1168 (-323)) (-478) (-323) (-2 (|:| |tryValue| (-323)) (|:| |did| (-323)) (|:| -1462 (-323))) (-323) (-1168 (-323)) (-1 (-1174) (-1168 (-323)) (-1168 (-323)) (-323)))) (-15 -2456 ((-1174) (-1168 (-323)) (-478) (-323) (-2 (|:| |tryValue| (-323)) (|:| |did| (-323)) (|:| -1462 (-323))) (-323) (-1168 (-323)) (-1 (-1174) (-1168 (-323)) (-1168 (-323)) (-323)) (-1168 (-323)) (-1168 (-323)) (-1168 (-323)) (-1168 (-323)) (-1168 (-323)) (-1168 (-323)) (-1168 (-323)))) (-15 -2457 ((-1174) (-1168 (-323)) (-478) (-323) (-323) (-478) (-1 (-1174) (-1168 (-323)) (-1168 (-323)) (-323)))))) (T -703)) +((-2457 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-478)) (-5 *6 (-1 (-1174) (-1168 *5) (-1168 *5) (-323))) (-5 *3 (-1168 (-323))) (-5 *5 (-323)) (-5 *2 (-1174)) (-5 *1 (-703)))) (-2456 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-478)) (-5 *6 (-2 (|:| |tryValue| (-323)) (|:| |did| (-323)) (|:| -1462 (-323)))) (-5 *7 (-1 (-1174) (-1168 *5) (-1168 *5) (-323))) (-5 *3 (-1168 (-323))) (-5 *5 (-323)) (-5 *2 (-1174)) (-5 *1 (-703)))) (-2456 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-478)) (-5 *6 (-2 (|:| |tryValue| (-323)) (|:| |did| (-323)) (|:| -1462 (-323)))) (-5 *7 (-1 (-1174) (-1168 *5) (-1168 *5) (-323))) (-5 *3 (-1168 (-323))) (-5 *5 (-323)) (-5 *2 (-1174)) (-5 *1 (-703)))) (-2455 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-478)) (-5 *6 (-1 (-1174) (-1168 *5) (-1168 *5) (-323))) (-5 *3 (-1168 (-323))) (-5 *5 (-323)) (-5 *2 (-1174)) (-5 *1 (-703)))) (-2454 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-478)) (-5 *6 (-1 (-1174) (-1168 *5) (-1168 *5) (-323))) (-5 *3 (-1168 (-323))) (-5 *5 (-323)) (-5 *2 (-1174)) (-5 *1 (-703)))) (-2454 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-478)) (-5 *6 (-1 (-1174) (-1168 *5) (-1168 *5) (-323))) (-5 *3 (-1168 (-323))) (-5 *5 (-323)) (-5 *2 (-1174)) (-5 *1 (-703))))) +((-2466 (((-2 (|:| -3386 (-323)) (|:| -1583 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478)) 65 T ELT)) (-2463 (((-2 (|:| -3386 (-323)) (|:| -1583 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478)) 40 T ELT)) (-2465 (((-2 (|:| -3386 (-323)) (|:| -1583 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478)) 64 T ELT)) (-2462 (((-2 (|:| -3386 (-323)) (|:| -1583 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478)) 38 T ELT)) (-2464 (((-2 (|:| -3386 (-323)) (|:| -1583 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478)) 63 T ELT)) (-2461 (((-2 (|:| -3386 (-323)) (|:| -1583 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478)) 24 T ELT)) (-2460 (((-2 (|:| -3386 (-323)) (|:| -1583 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478) (-478)) 41 T ELT)) (-2459 (((-2 (|:| -3386 (-323)) (|:| -1583 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478) (-478)) 39 T ELT)) (-2458 (((-2 (|:| -3386 (-323)) (|:| -1583 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478) (-478)) 37 T ELT))) +(((-704) (-10 -7 (-15 -2458 ((-2 (|:| -3386 (-323)) (|:| -1583 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478) (-478))) (-15 -2459 ((-2 (|:| -3386 (-323)) (|:| -1583 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478) (-478))) (-15 -2460 ((-2 (|:| -3386 (-323)) (|:| -1583 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478) (-478))) (-15 -2461 ((-2 (|:| -3386 (-323)) (|:| -1583 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478))) (-15 -2462 ((-2 (|:| -3386 (-323)) (|:| -1583 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478))) (-15 -2463 ((-2 (|:| -3386 (-323)) (|:| -1583 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478))) (-15 -2464 ((-2 (|:| -3386 (-323)) (|:| -1583 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478))) (-15 -2465 ((-2 (|:| -3386 (-323)) (|:| -1583 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478))) (-15 -2466 ((-2 (|:| -3386 (-323)) (|:| -1583 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478))))) (T -704)) +((-2466 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 (-2 (|:| -3386 *4) (|:| -1583 *4) (|:| |totalpts| (-478)) (|:| |success| (-83)))) (-5 *1 (-704)) (-5 *5 (-478)))) (-2465 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 (-2 (|:| -3386 *4) (|:| -1583 *4) (|:| |totalpts| (-478)) (|:| |success| (-83)))) (-5 *1 (-704)) (-5 *5 (-478)))) (-2464 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 (-2 (|:| -3386 *4) (|:| -1583 *4) (|:| |totalpts| (-478)) (|:| |success| (-83)))) (-5 *1 (-704)) (-5 *5 (-478)))) (-2463 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 (-2 (|:| -3386 *4) (|:| -1583 *4) (|:| |totalpts| (-478)) (|:| |success| (-83)))) (-5 *1 (-704)) (-5 *5 (-478)))) (-2462 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 (-2 (|:| -3386 *4) (|:| -1583 *4) (|:| |totalpts| (-478)) (|:| |success| (-83)))) (-5 *1 (-704)) (-5 *5 (-478)))) (-2461 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 (-2 (|:| -3386 *4) (|:| -1583 *4) (|:| |totalpts| (-478)) (|:| |success| (-83)))) (-5 *1 (-704)) (-5 *5 (-478)))) (-2460 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 (-2 (|:| -3386 *4) (|:| -1583 *4) (|:| |totalpts| (-478)) (|:| |success| (-83)))) (-5 *1 (-704)) (-5 *5 (-478)))) (-2459 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 (-2 (|:| -3386 *4) (|:| -1583 *4) (|:| |totalpts| (-478)) (|:| |success| (-83)))) (-5 *1 (-704)) (-5 *5 (-478)))) (-2458 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 (-2 (|:| -3386 *4) (|:| -1583 *4) (|:| |totalpts| (-478)) (|:| |success| (-83)))) (-5 *1 (-704)) (-5 *5 (-478))))) +((-3689 (((-1114 |#1|) |#1| (-177) (-478)) 69 T ELT))) +(((-705 |#1|) (-10 -7 (-15 -3689 ((-1114 |#1|) |#1| (-177) (-478)))) (-880)) (T -705)) +((-3689 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-177)) (-5 *5 (-478)) (-5 *2 (-1114 *3)) (-5 *1 (-705 *3)) (-4 *3 (-880))))) +((-3607 (((-478) $) 17 T ELT)) (-3170 (((-83) $) 10 T ELT)) (-3367 (($ $) 19 T ELT))) +(((-706 |#1|) (-10 -7 (-15 -3367 (|#1| |#1|)) (-15 -3607 ((-478) |#1|)) (-15 -3170 ((-83) |#1|))) (-707)) (T -706)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 31 T ELT)) (-1299 (((-3 $ "failed") $ $) 34 T ELT)) (-3607 (((-478) $) 37 T ELT)) (-3708 (($) 30 T CONST)) (-3169 (((-83) $) 28 T ELT)) (-3170 (((-83) $) 38 T ELT)) (-2515 (($ $ $) 23 T ELT)) (-2841 (($ $ $) 22 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3367 (($ $) 36 T ELT)) (-2644 (($) 29 T CONST)) (-2550 (((-83) $ $) 21 T ELT)) (-2551 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 20 T ELT)) (-2669 (((-83) $ $) 18 T ELT)) (-3821 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3823 (($ $ $) 25 T ELT)) (* (($ (-823) $) 26 T ELT) (($ (-687) $) 32 T ELT) (($ (-478) $) 39 T ELT))) +(((-707) (-111)) (T -707)) +((-3170 (*1 *2 *1) (-12 (-4 *1 (-707)) (-5 *2 (-83)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-707)) (-5 *2 (-478)))) (-3367 (*1 *1 *1) (-4 *1 (-707)))) +(-13 (-714) (-21) (-10 -8 (-15 -3170 ((-83) $)) (-15 -3607 ((-478) $)) (-15 -3367 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-709) . T) ((-711) . T) ((-714) . T) ((-749) . T) ((-752) . T) ((-1005) . T) ((-1118) . T)) +((-3169 (((-83) $) 10 T ELT))) +(((-708 |#1|) (-10 -7 (-15 -3169 ((-83) |#1|))) (-709)) (T -708)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 31 T ELT)) (-3708 (($) 30 T CONST)) (-3169 (((-83) $) 28 T ELT)) (-2515 (($ $ $) 23 T ELT)) (-2841 (($ $ $) 22 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 29 T CONST)) (-2550 (((-83) $ $) 21 T ELT)) (-2551 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 20 T ELT)) (-2669 (((-83) $ $) 18 T ELT)) (-3823 (($ $ $) 25 T ELT)) (* (($ (-823) $) 26 T ELT) (($ (-687) $) 32 T ELT))) +(((-709) (-111)) (T -709)) +((-3169 (*1 *2 *1) (-12 (-4 *1 (-709)) (-5 *2 (-83))))) +(-13 (-711) (-23) (-10 -8 (-15 -3169 ((-83) $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-547 (-765)) . T) ((-711) . T) ((-749) . T) ((-752) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 31 T ELT)) (-2467 (($ $ $) 35 T ELT)) (-1299 (((-3 $ "failed") $ $) 34 T ELT)) (-3708 (($) 30 T CONST)) (-3169 (((-83) $) 28 T ELT)) (-2515 (($ $ $) 23 T ELT)) (-2841 (($ $ $) 22 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 29 T CONST)) (-2550 (((-83) $ $) 21 T ELT)) (-2551 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 20 T ELT)) (-2669 (((-83) $ $) 18 T ELT)) (-3823 (($ $ $) 25 T ELT)) (* (($ (-823) $) 26 T ELT) (($ (-687) $) 32 T ELT))) +(((-710) (-111)) (T -710)) +((-2467 (*1 *1 *1 *1) (-4 *1 (-710)))) +(-13 (-714) (-10 -8 (-15 -2467 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-709) . T) ((-711) . T) ((-714) . T) ((-749) . T) ((-752) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) 7 T ELT)) (-2515 (($ $ $) 23 T ELT)) (-2841 (($ $ $) 22 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2550 (((-83) $ $) 21 T ELT)) (-2551 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 20 T ELT)) (-2669 (((-83) $ $) 18 T ELT)) (-3823 (($ $ $) 25 T ELT)) (* (($ (-823) $) 26 T ELT))) +(((-711) (-111)) (T -711)) +NIL +(-13 (-749) (-25)) +(((-25) . T) ((-72) . T) ((-547 (-765)) . T) ((-749) . T) ((-752) . T) ((-1005) . T) ((-1118) . T)) +((-3171 (((-83) $) 42 T ELT)) (-3140 (((-3 (-478) #1="failed") $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3139 (((-478) $) NIL T ELT) (((-343 (-478)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3008 (((-3 (-343 (-478)) #1#) $) 78 T ELT)) (-3007 (((-83) $) 72 T ELT)) (-3006 (((-343 (-478)) $) 76 T ELT)) (-3115 ((|#2| $) 26 T ELT)) (-3942 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2468 (($ $) 58 T ELT)) (-3956 (((-467) $) 67 T ELT)) (-2993 (($ $) 21 T ELT)) (-3930 (((-765) $) 53 T ELT) (($ (-478)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-343 (-478))) NIL T ELT)) (-3109 (((-687)) 10 T ELT)) (-3367 ((|#2| $) 71 T ELT)) (-3037 (((-83) $ $) 30 T ELT)) (-2669 (((-83) $ $) 69 T ELT)) (-3821 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 31 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) +(((-712 |#1| |#2|) (-10 -7 (-15 -2669 ((-83) |#1| |#1|)) (-15 -3956 ((-467) |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -3008 ((-3 (-343 (-478)) #1="failed") |#1|)) (-15 -3006 ((-343 (-478)) |#1|)) (-15 -3007 ((-83) |#1|)) (-15 -3367 (|#2| |#1|)) (-15 -3115 (|#2| |#1|)) (-15 -2993 (|#1| |#1|)) (-15 -3942 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3140 ((-3 |#2| #1#) |#1|)) (-15 -3139 (|#2| |#1|)) (-15 -3139 ((-343 (-478)) |#1|)) (-15 -3140 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3930 (|#1| (-343 (-478)))) (-15 -3139 ((-478) |#1|)) (-15 -3140 ((-3 (-478) #1#) |#1|)) (-15 -3930 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3109 ((-687))) (-15 -3930 (|#1| (-478))) (-15 * (|#1| |#1| |#1|)) (-15 -3821 (|#1| |#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 -3171 ((-83) |#1|)) (-15 * (|#1| (-823) |#1|)) (-15 -3823 (|#1| |#1| |#1|)) (-15 -3930 ((-765) |#1|)) (-15 -3037 ((-83) |#1| |#1|))) (-713 |#2|) (-144)) (T -712)) +((-3109 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-687)) (-5 *1 (-712 *3 *4)) (-4 *3 (-713 *4))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3119 (((-687)) 64 (|has| |#1| (-313)) ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 (-478) #1="failed") $) 106 (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) 103 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 100 T ELT)) (-3139 (((-478) $) 105 (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) 102 (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 101 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3627 ((|#1| $) 90 T ELT)) (-3008 (((-3 (-343 (-478)) "failed") $) 77 (|has| |#1| (-477)) ELT)) (-3007 (((-83) $) 79 (|has| |#1| (-477)) ELT)) (-3006 (((-343 (-478)) $) 78 (|has| |#1| (-477)) ELT)) (-2978 (($) 67 (|has| |#1| (-313)) ELT)) (-2396 (((-83) $) 40 T ELT)) (-2473 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 81 T ELT)) (-3115 ((|#1| $) 82 T ELT)) (-2515 (($ $ $) 68 (|has| |#1| (-749)) ELT)) (-2841 (($ $ $) 69 (|has| |#1| (-749)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-1996 (((-823) $) 66 (|has| |#1| (-313)) ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 76 (|has| |#1| (-308)) ELT)) (-2386 (($ (-823)) 65 (|has| |#1| (-313)) ELT)) (-2470 ((|#1| $) 87 T ELT)) (-2471 ((|#1| $) 88 T ELT)) (-2472 ((|#1| $) 89 T ELT)) (-2990 ((|#1| $) 83 T ELT)) (-2991 ((|#1| $) 84 T ELT)) (-2992 ((|#1| $) 85 T ELT)) (-2469 ((|#1| $) 86 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3752 (($ $ (-578 |#1|) (-578 |#1|)) 98 (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) 97 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) 96 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-245 |#1|))) 95 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-1079)) (-578 |#1|)) 94 (|has| |#1| (-447 (-1079) |#1|)) ELT) (($ $ (-1079) |#1|) 93 (|has| |#1| (-447 (-1079) |#1|)) ELT)) (-3784 (($ $ |#1|) 99 (|has| |#1| (-238 |#1| |#1|)) ELT)) (-3956 (((-467) $) 74 (|has| |#1| (-548 (-467))) ELT)) (-2993 (($ $) 91 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-343 (-478))) 104 (|has| |#1| (-943 (-343 (-478)))) ELT)) (-2686 (((-627 $) $) 75 (|has| |#1| (-116)) ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-3367 ((|#1| $) 80 (|has| |#1| (-965)) ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2550 (((-83) $ $) 70 (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) 72 (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 71 (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) 73 (|has| |#1| (-749)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +(((-713 |#1|) (-111) (-144)) (T -713)) +((-2993 (*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-3627 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-2472 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-2470 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-2991 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-2990 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-2473 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)) (-4 *2 (-965)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-83)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-343 (-478))))) (-3008 (*1 *2 *1) (|partial| -12 (-4 *1 (-713 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-343 (-478))))) (-2468 (*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)) (-4 *2 (-308))))) +(-13 (-38 |t#1|) (-348 |t#1|) (-284 |t#1|) (-10 -8 (-15 -2993 ($ $)) (-15 -3627 (|t#1| $)) (-15 -2472 (|t#1| $)) (-15 -2471 (|t#1| $)) (-15 -2470 (|t#1| $)) (-15 -2469 (|t#1| $)) (-15 -2992 (|t#1| $)) (-15 -2991 (|t#1| $)) (-15 -2990 (|t#1| $)) (-15 -3115 (|t#1| $)) (-15 -2473 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-313)) (-6 (-313)) |%noBranch|) (IF (|has| |t#1| (-749)) (-6 (-749)) |%noBranch|) (IF (|has| |t#1| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-965)) (-15 -3367 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-477)) (PROGN (-15 -3007 ((-83) $)) (-15 -3006 ((-343 (-478)) $)) (-15 -3008 ((-3 (-343 (-478)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-308)) (-15 -2468 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 |#1| $) |has| |#1| (-238 |#1| |#1|)) ((-256 |#1|) |has| |#1| (-256 |#1|)) ((-313) |has| |#1| (-313)) ((-284 |#1|) . T) ((-348 |#1|) . T) ((-447 (-1079) |#1|) |has| |#1| (-447 (-1079) |#1|)) ((-447 |#1| |#1|) |has| |#1| (-256 |#1|)) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 |#1|) . T) ((-649 |#1|) . T) ((-658) . T) ((-749) |has| |#1| (-749)) ((-752) |has| |#1| (-749)) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 31 T ELT)) (-1299 (((-3 $ "failed") $ $) 34 T ELT)) (-3708 (($) 30 T CONST)) (-3169 (((-83) $) 28 T ELT)) (-2515 (($ $ $) 23 T ELT)) (-2841 (($ $ $) 22 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 29 T CONST)) (-2550 (((-83) $ $) 21 T ELT)) (-2551 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 20 T ELT)) (-2669 (((-83) $ $) 18 T ELT)) (-3823 (($ $ $) 25 T ELT)) (* (($ (-823) $) 26 T ELT) (($ (-687) $) 32 T ELT))) +(((-714) (-111)) (T -714)) +NIL +(-13 (-709) (-102)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-709) . T) ((-711) . T) ((-749) . T) ((-752) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3119 (((-687)) NIL (|has| |#1| (-313)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-902 |#1|) #1#) $) 35 T ELT) (((-3 (-478) #1#) $) NIL (OR (|has| (-902 |#1|) (-943 (-478))) (|has| |#1| (-943 (-478)))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (OR (|has| (-902 |#1|) (-943 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-3139 ((|#1| $) NIL T ELT) (((-902 |#1|) $) 33 T ELT) (((-478) $) NIL (OR (|has| (-902 |#1|) (-943 (-478))) (|has| |#1| (-943 (-478)))) ELT) (((-343 (-478)) $) NIL (OR (|has| (-902 |#1|) (-943 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3627 ((|#1| $) 16 T ELT)) (-3008 (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-477)) ELT)) (-3007 (((-83) $) NIL (|has| |#1| (-477)) ELT)) (-3006 (((-343 (-478)) $) NIL (|has| |#1| (-477)) ELT)) (-2978 (($) NIL (|has| |#1| (-313)) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2473 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-902 |#1|) (-902 |#1|)) 29 T ELT)) (-3115 ((|#1| $) NIL T ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1996 (((-823) $) NIL (|has| |#1| (-313)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2386 (($ (-823)) NIL (|has| |#1| (-313)) ELT)) (-2470 ((|#1| $) 22 T ELT)) (-2471 ((|#1| $) 20 T ELT)) (-2472 ((|#1| $) 18 T ELT)) (-2990 ((|#1| $) 26 T ELT)) (-2991 ((|#1| $) 25 T ELT)) (-2992 ((|#1| $) 24 T ELT)) (-2469 ((|#1| $) 23 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3752 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-245 |#1|))) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-1079)) (-578 |#1|)) NIL (|has| |#1| (-447 (-1079) |#1|)) ELT) (($ $ (-1079) |#1|) NIL (|has| |#1| (-447 (-1079) |#1|)) ELT)) (-3784 (($ $ |#1|) NIL (|has| |#1| (-238 |#1| |#1|)) ELT)) (-3956 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-2993 (($ $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-902 |#1|)) 30 T ELT) (($ (-343 (-478))) NIL (OR (|has| (-902 |#1|) (-943 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-3367 ((|#1| $) NIL (|has| |#1| (-965)) ELT)) (-2644 (($) 8 T CONST)) (-2650 (($) 12 T CONST)) (-2550 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-715 |#1|) (-13 (-713 |#1|) (-348 (-902 |#1|)) (-10 -8 (-15 -2473 ($ (-902 |#1|) (-902 |#1|))))) (-144)) (T -715)) +((-2473 (*1 *1 *2 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-144)) (-5 *1 (-715 *3))))) +((-3942 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) +(((-716 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3942 (|#3| (-1 |#4| |#2|) |#1|))) (-713 |#2|) (-144) (-713 |#4|) (-144)) (T -716)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-713 *6)) (-5 *1 (-716 *4 *5 *2 *6)) (-4 *4 (-713 *5))))) +((-2474 (((-2 (|:| |particular| |#2|) (|:| -1998 (-578 |#2|))) |#3| |#2| (-1079)) 19 T ELT))) +(((-717 |#1| |#2| |#3|) (-10 -7 (-15 -2474 ((-2 (|:| |particular| |#2|) (|:| -1998 (-578 |#2|))) |#3| |#2| (-1079)))) (-13 (-254) (-943 (-478)) (-575 (-478)) (-118)) (-13 (-29 |#1|) (-1104) (-864)) (-595 |#2|)) (T -717)) +((-2474 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1079)) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-4 *4 (-13 (-29 *6) (-1104) (-864))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1998 (-578 *4)))) (-5 *1 (-717 *6 *4 *3)) (-4 *3 (-595 *4))))) +((-3557 (((-3 |#2| #1="failed") |#2| (-84) (-245 |#2|) (-578 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-245 |#2|) (-84) (-245 |#2|) (-578 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -1998 (-578 |#2|))) |#2| #1#) |#2| (-84) (-1079)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -1998 (-578 |#2|))) |#2| #1#) (-245 |#2|) (-84) (-1079)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -1998 (-578 (-1168 |#2|)))) #1#) (-578 |#2|) (-578 (-84)) (-1079)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -1998 (-578 (-1168 |#2|)))) #1#) (-578 (-245 |#2|)) (-578 (-84)) (-1079)) 26 T ELT) (((-3 (-578 (-1168 |#2|)) #1#) (-625 |#2|) (-1079)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -1998 (-578 (-1168 |#2|)))) #1#) (-625 |#2|) (-1168 |#2|) (-1079)) 35 T ELT))) +(((-718 |#1| |#2|) (-10 -7 (-15 -3557 ((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -1998 (-578 (-1168 |#2|)))) #1="failed") (-625 |#2|) (-1168 |#2|) (-1079))) (-15 -3557 ((-3 (-578 (-1168 |#2|)) #1#) (-625 |#2|) (-1079))) (-15 -3557 ((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -1998 (-578 (-1168 |#2|)))) #1#) (-578 (-245 |#2|)) (-578 (-84)) (-1079))) (-15 -3557 ((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -1998 (-578 (-1168 |#2|)))) #1#) (-578 |#2|) (-578 (-84)) (-1079))) (-15 -3557 ((-3 (-2 (|:| |particular| |#2|) (|:| -1998 (-578 |#2|))) |#2| #1#) (-245 |#2|) (-84) (-1079))) (-15 -3557 ((-3 (-2 (|:| |particular| |#2|) (|:| -1998 (-578 |#2|))) |#2| #1#) |#2| (-84) (-1079))) (-15 -3557 ((-3 |#2| #1#) (-245 |#2|) (-84) (-245 |#2|) (-578 |#2|))) (-15 -3557 ((-3 |#2| #1#) |#2| (-84) (-245 |#2|) (-578 |#2|)))) (-13 (-254) (-943 (-478)) (-575 (-478)) (-118)) (-13 (-29 |#1|) (-1104) (-864))) (T -718)) +((-3557 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-84)) (-5 *4 (-245 *2)) (-5 *5 (-578 *2)) (-4 *2 (-13 (-29 *6) (-1104) (-864))) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *1 (-718 *6 *2)))) (-3557 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-245 *2)) (-5 *4 (-84)) (-5 *5 (-578 *2)) (-4 *2 (-13 (-29 *6) (-1104) (-864))) (-5 *1 (-718 *6 *2)) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))))) (-3557 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-84)) (-5 *5 (-1079)) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1998 (-578 *3))) *3 #1="failed")) (-5 *1 (-718 *6 *3)) (-4 *3 (-13 (-29 *6) (-1104) (-864))))) (-3557 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-245 *7)) (-5 *4 (-84)) (-5 *5 (-1079)) (-4 *7 (-13 (-29 *6) (-1104) (-864))) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1998 (-578 *7))) *7 #1#)) (-5 *1 (-718 *6 *7)))) (-3557 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-578 *7)) (-5 *4 (-578 (-84))) (-5 *5 (-1079)) (-4 *7 (-13 (-29 *6) (-1104) (-864))) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-2 (|:| |particular| (-1168 *7)) (|:| -1998 (-578 (-1168 *7))))) (-5 *1 (-718 *6 *7)))) (-3557 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-578 (-245 *7))) (-5 *4 (-578 (-84))) (-5 *5 (-1079)) (-4 *7 (-13 (-29 *6) (-1104) (-864))) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-2 (|:| |particular| (-1168 *7)) (|:| -1998 (-578 (-1168 *7))))) (-5 *1 (-718 *6 *7)))) (-3557 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-625 *6)) (-5 *4 (-1079)) (-4 *6 (-13 (-29 *5) (-1104) (-864))) (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-578 (-1168 *6))) (-5 *1 (-718 *5 *6)))) (-3557 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-625 *7)) (-5 *5 (-1079)) (-4 *7 (-13 (-29 *6) (-1104) (-864))) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-2 (|:| |particular| (-1168 *7)) (|:| -1998 (-578 (-1168 *7))))) (-5 *1 (-718 *6 *7)) (-5 *4 (-1168 *7))))) +((-3454 ((|#2| |#2| (-1079)) 17 T ELT)) (-2475 ((|#2| |#2| (-1079)) 56 T ELT)) (-2476 (((-1 |#2| |#2|) (-1079)) 11 T ELT))) +(((-719 |#1| |#2|) (-10 -7 (-15 -3454 (|#2| |#2| (-1079))) (-15 -2475 (|#2| |#2| (-1079))) (-15 -2476 ((-1 |#2| |#2|) (-1079)))) (-13 (-254) (-943 (-478)) (-575 (-478)) (-118)) (-13 (-29 |#1|) (-1104) (-864))) (T -719)) +((-2476 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-1 *5 *5)) (-5 *1 (-719 *4 *5)) (-4 *5 (-13 (-29 *4) (-1104) (-864))))) (-2475 (*1 *2 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *1 (-719 *4 *2)) (-4 *2 (-13 (-29 *4) (-1104) (-864))))) (-3454 (*1 *2 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *1 (-719 *4 *2)) (-4 *2 (-13 (-29 *4) (-1104) (-864)))))) +((-2477 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1998 (-578 |#4|))) (-592 |#4|) |#4|) 33 T ELT))) +(((-720 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2477 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1998 (-578 |#4|))) (-592 |#4|) |#4|))) (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478)))) (-1144 |#1|) (-1144 (-343 |#2|)) (-287 |#1| |#2| |#3|)) (T -720)) +((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *4)) (-4 *4 (-287 *5 *6 *7)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-343 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1998 (-578 *4)))) (-5 *1 (-720 *5 *6 *7 *4))))) +((-3725 (((-2 (|:| -3249 |#3|) (|:| |rh| (-578 (-343 |#2|)))) |#4| (-578 (-343 |#2|))) 53 T ELT)) (-2479 (((-578 (-2 (|:| -3757 |#2|) (|:| -3209 |#2|))) |#4| |#2|) 62 T ELT) (((-578 (-2 (|:| -3757 |#2|) (|:| -3209 |#2|))) |#4|) 61 T ELT) (((-578 (-2 (|:| -3757 |#2|) (|:| -3209 |#2|))) |#3| |#2|) 20 T ELT) (((-578 (-2 (|:| -3757 |#2|) (|:| -3209 |#2|))) |#3|) 21 T ELT)) (-2480 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2478 ((|#2| |#3| (-578 (-343 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-343 |#2|)) 105 T ELT))) +(((-721 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2478 ((-3 |#2| "failed") |#3| (-343 |#2|))) (-15 -2478 (|#2| |#3| (-578 (-343 |#2|)))) (-15 -2479 ((-578 (-2 (|:| -3757 |#2|) (|:| -3209 |#2|))) |#3|)) (-15 -2479 ((-578 (-2 (|:| -3757 |#2|) (|:| -3209 |#2|))) |#3| |#2|)) (-15 -2480 (|#2| |#3| |#1|)) (-15 -2479 ((-578 (-2 (|:| -3757 |#2|) (|:| -3209 |#2|))) |#4|)) (-15 -2479 ((-578 (-2 (|:| -3757 |#2|) (|:| -3209 |#2|))) |#4| |#2|)) (-15 -2480 (|#2| |#4| |#1|)) (-15 -3725 ((-2 (|:| -3249 |#3|) (|:| |rh| (-578 (-343 |#2|)))) |#4| (-578 (-343 |#2|))))) (-13 (-308) (-118) (-943 (-343 (-478)))) (-1144 |#1|) (-595 |#2|) (-595 (-343 |#2|))) (T -721)) +((-3725 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *6 (-1144 *5)) (-5 *2 (-2 (|:| -3249 *7) (|:| |rh| (-578 (-343 *6))))) (-5 *1 (-721 *5 *6 *7 *3)) (-5 *4 (-578 (-343 *6))) (-4 *7 (-595 *6)) (-4 *3 (-595 (-343 *6))))) (-2480 (*1 *2 *3 *4) (-12 (-4 *2 (-1144 *4)) (-5 *1 (-721 *4 *2 *5 *3)) (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *5 (-595 *2)) (-4 *3 (-595 (-343 *2))))) (-2479 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *4 (-1144 *5)) (-5 *2 (-578 (-2 (|:| -3757 *4) (|:| -3209 *4)))) (-5 *1 (-721 *5 *4 *6 *3)) (-4 *6 (-595 *4)) (-4 *3 (-595 (-343 *4))))) (-2479 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *5 (-1144 *4)) (-5 *2 (-578 (-2 (|:| -3757 *5) (|:| -3209 *5)))) (-5 *1 (-721 *4 *5 *6 *3)) (-4 *6 (-595 *5)) (-4 *3 (-595 (-343 *5))))) (-2480 (*1 *2 *3 *4) (-12 (-4 *2 (-1144 *4)) (-5 *1 (-721 *4 *2 *3 *5)) (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *3 (-595 *2)) (-4 *5 (-595 (-343 *2))))) (-2479 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *4 (-1144 *5)) (-5 *2 (-578 (-2 (|:| -3757 *4) (|:| -3209 *4)))) (-5 *1 (-721 *5 *4 *3 *6)) (-4 *3 (-595 *4)) (-4 *6 (-595 (-343 *4))))) (-2479 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *5 (-1144 *4)) (-5 *2 (-578 (-2 (|:| -3757 *5) (|:| -3209 *5)))) (-5 *1 (-721 *4 *5 *3 *6)) (-4 *3 (-595 *5)) (-4 *6 (-595 (-343 *5))))) (-2478 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-343 *2))) (-4 *2 (-1144 *5)) (-5 *1 (-721 *5 *2 *3 *6)) (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *3 (-595 *2)) (-4 *6 (-595 (-343 *2))))) (-2478 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-343 *2)) (-4 *2 (-1144 *5)) (-5 *1 (-721 *5 *2 *3 *6)) (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *3 (-595 *2)) (-4 *6 (-595 *4))))) +((-2488 (((-578 (-2 (|:| |frac| (-343 |#2|)) (|:| -3249 |#3|))) |#3| (-1 (-578 |#2|) |#2| (-1074 |#2|)) (-1 (-341 |#2|) |#2|)) 156 T ELT)) (-2489 (((-578 (-2 (|:| |poly| |#2|) (|:| -3249 |#3|))) |#3| (-1 (-578 |#1|) |#2|)) 52 T ELT)) (-2482 (((-578 (-2 (|:| |deg| (-687)) (|:| -3249 |#2|))) |#3|) 123 T ELT)) (-2481 ((|#2| |#3|) 42 T ELT)) (-2483 (((-578 (-2 (|:| -3936 |#1|) (|:| -3249 |#3|))) |#3| (-1 (-578 |#1|) |#2|)) 100 T ELT)) (-2484 ((|#3| |#3| (-343 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) +(((-722 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2481 (|#2| |#3|)) (-15 -2482 ((-578 (-2 (|:| |deg| (-687)) (|:| -3249 |#2|))) |#3|)) (-15 -2483 ((-578 (-2 (|:| -3936 |#1|) (|:| -3249 |#3|))) |#3| (-1 (-578 |#1|) |#2|))) (-15 -2489 ((-578 (-2 (|:| |poly| |#2|) (|:| -3249 |#3|))) |#3| (-1 (-578 |#1|) |#2|))) (-15 -2488 ((-578 (-2 (|:| |frac| (-343 |#2|)) (|:| -3249 |#3|))) |#3| (-1 (-578 |#2|) |#2| (-1074 |#2|)) (-1 (-341 |#2|) |#2|))) (-15 -2484 (|#3| |#3| |#2|)) (-15 -2484 (|#3| |#3| (-343 |#2|)))) (-13 (-308) (-118) (-943 (-343 (-478)))) (-1144 |#1|) (-595 |#2|) (-595 (-343 |#2|))) (T -722)) +((-2484 (*1 *2 *2 *3) (-12 (-5 *3 (-343 *5)) (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *5 (-1144 *4)) (-5 *1 (-722 *4 *5 *2 *6)) (-4 *2 (-595 *5)) (-4 *6 (-595 *3)))) (-2484 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *3 (-1144 *4)) (-5 *1 (-722 *4 *3 *2 *5)) (-4 *2 (-595 *3)) (-4 *5 (-595 (-343 *3))))) (-2488 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-578 *7) *7 (-1074 *7))) (-5 *5 (-1 (-341 *7) *7)) (-4 *7 (-1144 *6)) (-4 *6 (-13 (-308) (-118) (-943 (-343 (-478))))) (-5 *2 (-578 (-2 (|:| |frac| (-343 *7)) (|:| -3249 *3)))) (-5 *1 (-722 *6 *7 *3 *8)) (-4 *3 (-595 *7)) (-4 *8 (-595 (-343 *7))))) (-2489 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *6 (-1144 *5)) (-5 *2 (-578 (-2 (|:| |poly| *6) (|:| -3249 *3)))) (-5 *1 (-722 *5 *6 *3 *7)) (-4 *3 (-595 *6)) (-4 *7 (-595 (-343 *6))))) (-2483 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *6 (-1144 *5)) (-5 *2 (-578 (-2 (|:| -3936 *5) (|:| -3249 *3)))) (-5 *1 (-722 *5 *6 *3 *7)) (-4 *3 (-595 *6)) (-4 *7 (-595 (-343 *6))))) (-2482 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *5 (-1144 *4)) (-5 *2 (-578 (-2 (|:| |deg| (-687)) (|:| -3249 *5)))) (-5 *1 (-722 *4 *5 *3 *6)) (-4 *3 (-595 *5)) (-4 *6 (-595 (-343 *5))))) (-2481 (*1 *2 *3) (-12 (-4 *2 (-1144 *4)) (-5 *1 (-722 *4 *2 *3 *5)) (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *3 (-595 *2)) (-4 *5 (-595 (-343 *2)))))) +((-2485 (((-2 (|:| -1998 (-578 (-343 |#2|))) (|:| |mat| (-625 |#1|))) (-593 |#2| (-343 |#2|)) (-578 (-343 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-343 |#2|) #1="failed")) (|:| -1998 (-578 (-343 |#2|)))) (-593 |#2| (-343 |#2|)) (-343 |#2|)) 145 T ELT) (((-2 (|:| -1998 (-578 (-343 |#2|))) (|:| |mat| (-625 |#1|))) (-592 (-343 |#2|)) (-578 (-343 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-343 |#2|) #1#)) (|:| -1998 (-578 (-343 |#2|)))) (-592 (-343 |#2|)) (-343 |#2|)) 138 T ELT)) (-2486 ((|#2| (-593 |#2| (-343 |#2|))) 86 T ELT) ((|#2| (-592 (-343 |#2|))) 89 T ELT))) +(((-723 |#1| |#2|) (-10 -7 (-15 -2485 ((-2 (|:| |particular| (-3 (-343 |#2|) #1="failed")) (|:| -1998 (-578 (-343 |#2|)))) (-592 (-343 |#2|)) (-343 |#2|))) (-15 -2485 ((-2 (|:| -1998 (-578 (-343 |#2|))) (|:| |mat| (-625 |#1|))) (-592 (-343 |#2|)) (-578 (-343 |#2|)))) (-15 -2485 ((-2 (|:| |particular| (-3 (-343 |#2|) #1#)) (|:| -1998 (-578 (-343 |#2|)))) (-593 |#2| (-343 |#2|)) (-343 |#2|))) (-15 -2485 ((-2 (|:| -1998 (-578 (-343 |#2|))) (|:| |mat| (-625 |#1|))) (-593 |#2| (-343 |#2|)) (-578 (-343 |#2|)))) (-15 -2486 (|#2| (-592 (-343 |#2|)))) (-15 -2486 (|#2| (-593 |#2| (-343 |#2|))))) (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478)))) (-1144 |#1|)) (T -723)) +((-2486 (*1 *2 *3) (-12 (-5 *3 (-593 *2 (-343 *2))) (-4 *2 (-1144 *4)) (-5 *1 (-723 *4 *2)) (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))))) (-2486 (*1 *2 *3) (-12 (-5 *3 (-592 (-343 *2))) (-4 *2 (-1144 *4)) (-5 *1 (-723 *4 *2)) (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-593 *6 (-343 *6))) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-2 (|:| -1998 (-578 (-343 *6))) (|:| |mat| (-625 *5)))) (-5 *1 (-723 *5 *6)) (-5 *4 (-578 (-343 *6))))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-593 *6 (-343 *6))) (-5 *4 (-343 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -1998 (-578 *4)))) (-5 *1 (-723 *5 *6)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-343 *6))) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-2 (|:| -1998 (-578 (-343 *6))) (|:| |mat| (-625 *5)))) (-5 *1 (-723 *5 *6)) (-5 *4 (-578 (-343 *6))))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-343 *6))) (-5 *4 (-343 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -1998 (-578 *4)))) (-5 *1 (-723 *5 *6))))) +((-2487 (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#1|))) |#5| |#4|) 49 T ELT))) +(((-724 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2487 ((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#1|))) |#5| |#4|))) (-308) (-595 |#1|) (-1144 |#1|) (-656 |#1| |#3|) (-595 |#4|)) (T -724)) +((-2487 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *7 (-1144 *5)) (-4 *4 (-656 *5 *7)) (-5 *2 (-2 (|:| |mat| (-625 *6)) (|:| |vec| (-1168 *5)))) (-5 *1 (-724 *5 *6 *7 *4 *3)) (-4 *6 (-595 *5)) (-4 *3 (-595 *4))))) +((-2488 (((-578 (-2 (|:| |frac| (-343 |#2|)) (|:| -3249 (-593 |#2| (-343 |#2|))))) (-593 |#2| (-343 |#2|)) (-1 (-341 |#2|) |#2|)) 47 T ELT)) (-2490 (((-578 (-343 |#2|)) (-593 |#2| (-343 |#2|)) (-1 (-341 |#2|) |#2|)) 167 (|has| |#1| (-27)) ELT) (((-578 (-343 |#2|)) (-593 |#2| (-343 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-578 (-343 |#2|)) (-592 (-343 |#2|)) (-1 (-341 |#2|) |#2|)) 168 (|has| |#1| (-27)) ELT) (((-578 (-343 |#2|)) (-592 (-343 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-578 (-343 |#2|)) (-593 |#2| (-343 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-341 |#2|) |#2|)) 38 T ELT) (((-578 (-343 |#2|)) (-593 |#2| (-343 |#2|)) (-1 (-578 |#1|) |#2|)) 39 T ELT) (((-578 (-343 |#2|)) (-592 (-343 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-341 |#2|) |#2|)) 36 T ELT) (((-578 (-343 |#2|)) (-592 (-343 |#2|)) (-1 (-578 |#1|) |#2|)) 37 T ELT)) (-2489 (((-578 (-2 (|:| |poly| |#2|) (|:| -3249 (-593 |#2| (-343 |#2|))))) (-593 |#2| (-343 |#2|)) (-1 (-578 |#1|) |#2|)) 96 T ELT))) +(((-725 |#1| |#2|) (-10 -7 (-15 -2490 ((-578 (-343 |#2|)) (-592 (-343 |#2|)) (-1 (-578 |#1|) |#2|))) (-15 -2490 ((-578 (-343 |#2|)) (-592 (-343 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-341 |#2|) |#2|))) (-15 -2490 ((-578 (-343 |#2|)) (-593 |#2| (-343 |#2|)) (-1 (-578 |#1|) |#2|))) (-15 -2490 ((-578 (-343 |#2|)) (-593 |#2| (-343 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-341 |#2|) |#2|))) (-15 -2488 ((-578 (-2 (|:| |frac| (-343 |#2|)) (|:| -3249 (-593 |#2| (-343 |#2|))))) (-593 |#2| (-343 |#2|)) (-1 (-341 |#2|) |#2|))) (-15 -2489 ((-578 (-2 (|:| |poly| |#2|) (|:| -3249 (-593 |#2| (-343 |#2|))))) (-593 |#2| (-343 |#2|)) (-1 (-578 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2490 ((-578 (-343 |#2|)) (-592 (-343 |#2|)))) (-15 -2490 ((-578 (-343 |#2|)) (-592 (-343 |#2|)) (-1 (-341 |#2|) |#2|))) (-15 -2490 ((-578 (-343 |#2|)) (-593 |#2| (-343 |#2|)))) (-15 -2490 ((-578 (-343 |#2|)) (-593 |#2| (-343 |#2|)) (-1 (-341 |#2|) |#2|)))) |%noBranch|)) (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478)))) (-1144 |#1|)) (T -725)) +((-2490 (*1 *2 *3 *4) (-12 (-5 *3 (-593 *6 (-343 *6))) (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1144 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-578 (-343 *6))) (-5 *1 (-725 *5 *6)))) (-2490 (*1 *2 *3) (-12 (-5 *3 (-593 *5 (-343 *5))) (-4 *5 (-1144 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-578 (-343 *5))) (-5 *1 (-725 *4 *5)))) (-2490 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-343 *6))) (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1144 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-578 (-343 *6))) (-5 *1 (-725 *5 *6)))) (-2490 (*1 *2 *3) (-12 (-5 *3 (-592 (-343 *5))) (-4 *5 (-1144 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-578 (-343 *5))) (-5 *1 (-725 *4 *5)))) (-2489 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-4 *6 (-1144 *5)) (-5 *2 (-578 (-2 (|:| |poly| *6) (|:| -3249 (-593 *6 (-343 *6)))))) (-5 *1 (-725 *5 *6)) (-5 *3 (-593 *6 (-343 *6))))) (-2488 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-578 (-2 (|:| |frac| (-343 *6)) (|:| -3249 (-593 *6 (-343 *6)))))) (-5 *1 (-725 *5 *6)) (-5 *3 (-593 *6 (-343 *6))))) (-2490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-593 *7 (-343 *7))) (-5 *4 (-1 (-578 *6) *7)) (-5 *5 (-1 (-341 *7) *7)) (-4 *6 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-4 *7 (-1144 *6)) (-5 *2 (-578 (-343 *7))) (-5 *1 (-725 *6 *7)))) (-2490 (*1 *2 *3 *4) (-12 (-5 *3 (-593 *6 (-343 *6))) (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-4 *6 (-1144 *5)) (-5 *2 (-578 (-343 *6))) (-5 *1 (-725 *5 *6)))) (-2490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-343 *7))) (-5 *4 (-1 (-578 *6) *7)) (-5 *5 (-1 (-341 *7) *7)) (-4 *6 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-4 *7 (-1144 *6)) (-5 *2 (-578 (-343 *7))) (-5 *1 (-725 *6 *7)))) (-2490 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-343 *6))) (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-4 *6 (-1144 *5)) (-5 *2 (-578 (-343 *6))) (-5 *1 (-725 *5 *6))))) +((-2491 (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#1|))) (-625 |#2|) (-1168 |#1|)) 110 T ELT) (((-2 (|:| A (-625 |#1|)) (|:| |eqs| (-578 (-2 (|:| C (-625 |#1|)) (|:| |g| (-1168 |#1|)) (|:| -3249 |#2|) (|:| |rh| |#1|))))) (-625 |#1|) (-1168 |#1|)) 15 T ELT)) (-2492 (((-2 (|:| |particular| (-3 (-1168 |#1|) #1="failed")) (|:| -1998 (-578 (-1168 |#1|)))) (-625 |#2|) (-1168 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -1998 (-578 |#1|))) |#2| |#1|)) 116 T ELT)) (-3557 (((-3 (-2 (|:| |particular| (-1168 |#1|)) (|:| -1998 (-625 |#1|))) #1#) (-625 |#1|) (-1168 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1998 (-578 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) +(((-726 |#1| |#2|) (-10 -7 (-15 -2491 ((-2 (|:| A (-625 |#1|)) (|:| |eqs| (-578 (-2 (|:| C (-625 |#1|)) (|:| |g| (-1168 |#1|)) (|:| -3249 |#2|) (|:| |rh| |#1|))))) (-625 |#1|) (-1168 |#1|))) (-15 -2491 ((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#1|))) (-625 |#2|) (-1168 |#1|))) (-15 -3557 ((-3 (-2 (|:| |particular| (-1168 |#1|)) (|:| -1998 (-625 |#1|))) #1="failed") (-625 |#1|) (-1168 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1998 (-578 |#1|))) #1#) |#2| |#1|))) (-15 -2492 ((-2 (|:| |particular| (-3 (-1168 |#1|) #1#)) (|:| -1998 (-578 (-1168 |#1|)))) (-625 |#2|) (-1168 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -1998 (-578 |#1|))) |#2| |#1|)))) (-308) (-595 |#1|)) (T -726)) +((-2492 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1998 (-578 *6))) *7 *6)) (-4 *6 (-308)) (-4 *7 (-595 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1168 *6) "failed")) (|:| -1998 (-578 (-1168 *6))))) (-5 *1 (-726 *6 *7)) (-5 *4 (-1168 *6)))) (-3557 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1998 (-578 *6))) "failed") *7 *6)) (-4 *6 (-308)) (-4 *7 (-595 *6)) (-5 *2 (-2 (|:| |particular| (-1168 *6)) (|:| -1998 (-625 *6)))) (-5 *1 (-726 *6 *7)) (-5 *3 (-625 *6)) (-5 *4 (-1168 *6)))) (-2491 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-595 *5)) (-5 *2 (-2 (|:| |mat| (-625 *6)) (|:| |vec| (-1168 *5)))) (-5 *1 (-726 *5 *6)) (-5 *3 (-625 *6)) (-5 *4 (-1168 *5)))) (-2491 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-5 *2 (-2 (|:| A (-625 *5)) (|:| |eqs| (-578 (-2 (|:| C (-625 *5)) (|:| |g| (-1168 *5)) (|:| -3249 *6) (|:| |rh| *5)))))) (-5 *1 (-726 *5 *6)) (-5 *3 (-625 *5)) (-5 *4 (-1168 *5)) (-4 *6 (-595 *5))))) +((-2493 (((-625 |#1|) (-578 |#1|) (-687)) 14 T ELT) (((-625 |#1|) (-578 |#1|)) 15 T ELT)) (-2494 (((-3 (-1168 |#1|) #1="failed") |#2| |#1| (-578 |#1|)) 39 T ELT)) (-3324 (((-3 |#1| #1#) |#2| |#1| (-578 |#1|) (-1 |#1| |#1|)) 46 T ELT))) +(((-727 |#1| |#2|) (-10 -7 (-15 -2493 ((-625 |#1|) (-578 |#1|))) (-15 -2493 ((-625 |#1|) (-578 |#1|) (-687))) (-15 -2494 ((-3 (-1168 |#1|) #1="failed") |#2| |#1| (-578 |#1|))) (-15 -3324 ((-3 |#1| #1#) |#2| |#1| (-578 |#1|) (-1 |#1| |#1|)))) (-308) (-595 |#1|)) (T -727)) +((-3324 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-578 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-308)) (-5 *1 (-727 *2 *3)) (-4 *3 (-595 *2)))) (-2494 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-578 *4)) (-4 *4 (-308)) (-5 *2 (-1168 *4)) (-5 *1 (-727 *4 *3)) (-4 *3 (-595 *4)))) (-2493 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-687)) (-4 *5 (-308)) (-5 *2 (-625 *5)) (-5 *1 (-727 *5 *6)) (-4 *6 (-595 *5)))) (-2493 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-308)) (-5 *2 (-625 *4)) (-5 *1 (-727 *4 *5)) (-4 *5 (-595 *4))))) +((-2552 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-3171 (((-83) $) NIL (|has| |#2| (-23)) ELT)) (-3691 (($ (-823)) NIL (|has| |#2| (-954)) ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-2467 (($ $ $) NIL (|has| |#2| (-710)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-102)) ELT)) (-3119 (((-687)) NIL (|has| |#2| (-313)) ELT)) (-3772 ((|#2| $ (-478) |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (-12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1005)) ELT)) (-3139 (((-478) $) NIL (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) ELT) (((-343 (-478)) $) NIL (-12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005))) ELT) ((|#2| $) NIL (|has| |#2| (-1005)) ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) NIL (|has| |#2| (-954)) ELT) (((-625 |#2|) (-625 $)) NIL (|has| |#2| (-954)) ELT)) (-3451 (((-3 $ #1#) $) NIL (|has| |#2| (-954)) ELT)) (-2978 (($) NIL (|has| |#2| (-313)) ELT)) (-1563 ((|#2| $ (-478) |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#2| $ (-478)) NIL T ELT)) (-3169 (((-83) $) NIL (|has| |#2| (-710)) ELT)) (-2873 (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2396 (((-83) $) NIL (|has| |#2| (-954)) ELT)) (-2186 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| |#2| (-749)) ELT)) (-2592 (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2187 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#2| (-749)) ELT)) (-1936 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1996 (((-823) $) NIL (|has| |#2| (-313)) ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-1168 $) $) NIL (|has| |#2| (-954)) ELT) (((-625 |#2|) (-1168 $)) NIL (|has| |#2| (-954)) ELT)) (-3225 (((-1062) $) NIL (|has| |#2| (-1005)) ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-2386 (($ (-823)) NIL (|has| |#2| (-313)) ELT)) (-3226 (((-1023) $) NIL (|has| |#2| (-1005)) ELT)) (-3785 ((|#2| $) NIL (|has| (-478) (-749)) ELT)) (-2185 (($ $ |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2191 (((-578 |#2|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#2| $ (-478) |#2|) NIL T ELT) ((|#2| $ (-478)) NIL T ELT)) (-3820 ((|#2| $ $) NIL (|has| |#2| (-954)) ELT)) (-1455 (($ (-1168 |#2|)) NIL T ELT)) (-3895 (((-105)) NIL (|has| |#2| (-308)) ELT)) (-3742 (($ $ (-687)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1079)) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-954)) ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL (|has| |#2| (-954)) ELT)) (-1933 (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3930 (((-1168 |#2|) $) NIL T ELT) (($ (-478)) NIL (OR (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1005))) (|has| |#2| (-954))) ELT) (($ (-343 (-478))) NIL (-12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1005))) ELT) (($ |#2|) NIL (|has| |#2| (-1005)) ELT) (((-765) $) NIL (|has| |#2| (-547 (-765))) ELT)) (-3109 (((-687)) NIL (|has| |#2| (-954)) CONST)) (-1253 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2644 (($) NIL (|has| |#2| (-23)) CONST)) (-2650 (($) NIL (|has| |#2| (-954)) CONST)) (-2653 (($ $ (-687)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1079)) NIL (-12 (|has| |#2| (-804 (-1079))) (|has| |#2| (-954))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-954)) ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL (|has| |#2| (-954)) ELT)) (-2550 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-2668 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-2669 (((-83) $ $) 11 (|has| |#2| (-749)) ELT)) (-3933 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3821 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3823 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-687)) NIL (|has| |#2| (-954)) ELT) (($ $ (-823)) NIL (|has| |#2| (-954)) ELT)) (* (($ $ $) NIL (|has| |#2| (-954)) ELT) (($ $ |#2|) NIL (|has| |#2| (-658)) ELT) (($ |#2| $) NIL (|has| |#2| (-658)) ELT) (($ (-478) $) NIL (|has| |#2| (-21)) ELT) (($ (-687) $) NIL (|has| |#2| (-23)) ELT) (($ (-823) $) NIL (|has| |#2| (-25)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-728 |#1| |#2| |#3|) (-193 |#1| |#2|) (-687) (-710) (-1 (-83) (-1168 |#2|) (-1168 |#2|))) (T -728)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1475 (((-578 (-687)) $) NIL T ELT) (((-578 (-687)) $ (-1079)) NIL T ELT)) (-1509 (((-687) $) NIL T ELT) (((-687) $ (-1079)) NIL T ELT)) (-3065 (((-578 (-731 (-1079))) $) NIL T ELT)) (-3067 (((-1074 $) $ (-731 (-1079))) NIL T ELT) (((-1074 |#1|) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2803 (((-687) $) NIL T ELT) (((-687) $ (-578 (-731 (-1079)))) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3759 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-385)) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-1471 (($ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-731 (-1079)) #1#) $) NIL T ELT) (((-3 (-1079) #1#) $) NIL T ELT) (((-3 (-1028 |#1| (-1079)) #1#) $) NIL T ELT)) (-3139 ((|#1| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-731 (-1079)) $) NIL T ELT) (((-1079) $) NIL T ELT) (((-1028 |#1| (-1079)) $) NIL T ELT)) (-3740 (($ $ $ (-731 (-1079))) NIL (|has| |#1| (-144)) ELT)) (-3943 (($ $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3487 (($ $) NIL (|has| |#1| (-385)) ELT) (($ $ (-731 (-1079))) NIL (|has| |#1| (-385)) ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-814)) ELT)) (-1611 (($ $ |#1| (-463 (-731 (-1079))) $) NIL T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-731 (-1079)) (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-731 (-1079)) (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-3756 (((-687) $ (-1079)) NIL T ELT) (((-687) $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2404 (((-687) $) NIL T ELT)) (-3068 (($ (-1074 |#1|) (-731 (-1079))) NIL T ELT) (($ (-1074 $) (-731 (-1079))) NIL T ELT)) (-2805 (((-578 $) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-463 (-731 (-1079)))) NIL T ELT) (($ $ (-731 (-1079)) (-687)) NIL T ELT) (($ $ (-578 (-731 (-1079))) (-578 (-687))) NIL T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ (-731 (-1079))) NIL T ELT)) (-2804 (((-463 (-731 (-1079))) $) NIL T ELT) (((-687) $ (-731 (-1079))) NIL T ELT) (((-578 (-687)) $ (-578 (-731 (-1079)))) NIL T ELT)) (-1612 (($ (-1 (-463 (-731 (-1079))) (-463 (-731 (-1079)))) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1510 (((-1 $ (-687)) (-1079)) NIL T ELT) (((-1 $ (-687)) $) NIL (|has| |#1| (-188)) ELT)) (-3066 (((-3 (-731 (-1079)) #1#) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) NIL T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1473 (((-731 (-1079)) $) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1474 (((-83) $) NIL T ELT)) (-2807 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2806 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-2 (|:| |var| (-731 (-1079))) (|:| -2387 (-687))) #1#) $) NIL T ELT)) (-1472 (($ $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1784 (((-83) $) NIL T ELT)) (-1783 ((|#1| $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-385)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-814)) ELT)) (-3450 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-3752 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-731 (-1079)) |#1|) NIL T ELT) (($ $ (-578 (-731 (-1079))) (-578 |#1|)) NIL T ELT) (($ $ (-731 (-1079)) $) NIL T ELT) (($ $ (-578 (-731 (-1079))) (-578 $)) NIL T ELT) (($ $ (-1079) $) NIL (|has| |#1| (-188)) ELT) (($ $ (-578 (-1079)) (-578 $)) NIL (|has| |#1| (-188)) ELT) (($ $ (-1079) |#1|) NIL (|has| |#1| (-188)) ELT) (($ $ (-578 (-1079)) (-578 |#1|)) NIL (|has| |#1| (-188)) ELT)) (-3741 (($ $ (-731 (-1079))) NIL (|has| |#1| (-144)) ELT)) (-3742 (($ $ (-578 (-731 (-1079))) (-578 (-687))) NIL T ELT) (($ $ (-731 (-1079)) (-687)) NIL T ELT) (($ $ (-578 (-731 (-1079)))) NIL T ELT) (($ $ (-731 (-1079))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT)) (-1476 (((-578 (-1079)) $) NIL T ELT)) (-3932 (((-463 (-731 (-1079))) $) NIL T ELT) (((-687) $ (-731 (-1079))) NIL T ELT) (((-578 (-687)) $ (-578 (-731 (-1079)))) NIL T ELT) (((-687) $ (-1079)) NIL T ELT)) (-3956 (((-793 (-323)) $) NIL (-12 (|has| (-731 (-1079)) (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-731 (-1079)) (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-731 (-1079)) (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT)) (-2801 ((|#1| $) NIL (|has| |#1| (-385)) ELT) (($ $ (-731 (-1079))) NIL (|has| |#1| (-385)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-731 (-1079))) NIL T ELT) (($ (-1079)) NIL T ELT) (($ (-1028 |#1| (-1079))) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3801 (((-578 |#1|) $) NIL T ELT)) (-3661 ((|#1| $ (-463 (-731 (-1079)))) NIL T ELT) (($ $ (-731 (-1079)) (-687)) NIL T ELT) (($ $ (-578 (-731 (-1079))) (-578 (-687))) NIL T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1610 (($ $ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $ (-578 (-731 (-1079))) (-578 (-687))) NIL T ELT) (($ $ (-731 (-1079)) (-687)) NIL T ELT) (($ $ (-578 (-731 (-1079)))) NIL T ELT) (($ $ (-731 (-1079))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-729 |#1|) (-13 (-210 |#1| (-1079) (-731 (-1079)) (-463 (-731 (-1079)))) (-943 (-1028 |#1| (-1079)))) (-954)) (T -729)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#2| (-308)) ELT)) (-2049 (($ $) NIL (|has| |#2| (-308)) ELT)) (-2047 (((-83) $) NIL (|has| |#2| (-308)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL (|has| |#2| (-308)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#2| (-308)) ELT)) (-1595 (((-83) $ $) NIL (|has| |#2| (-308)) ELT)) (-3708 (($) NIL T CONST)) (-2548 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2547 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| |#2| (-308)) ELT)) (-3707 (((-83) $) NIL (|has| |#2| (-308)) ELT)) (-2396 (((-83) $) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#2| (-308)) ELT)) (-1878 (($ (-578 $)) NIL (|has| |#2| (-308)) ELT) (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) 20 (|has| |#2| (-308)) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#2| (-308)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#2| (-308)) ELT) (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#2| (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-3450 (((-3 $ #1#) $ $) NIL (|has| |#2| (-308)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#2| (-308)) ELT)) (-1594 (((-687) $) NIL (|has| |#2| (-308)) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-3742 (($ $) 13 T ELT) (($ $ (-687)) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-343 (-478))) NIL (|has| |#2| (-308)) ELT) (($ $) NIL (|has| |#2| (-308)) ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| |#2| (-308)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ $) 15 (|has| |#2| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-687)) NIL T ELT) (($ $ (-823)) NIL T ELT) (($ $ (-478)) 18 (|has| |#2| (-308)) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-343 (-478)) $) NIL (|has| |#2| (-308)) ELT) (($ $ (-343 (-478))) NIL (|has| |#2| (-308)) ELT))) +(((-730 |#1| |#2| |#3|) (-13 (-80 $ $) (-188) (-423 |#2|) (-10 -7 (IF (|has| |#2| (-308)) (-6 (-308)) |%noBranch|))) (-1005) (-802 |#1|) |#1|) (T -730)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-1509 (((-687) $) NIL T ELT)) (-3815 ((|#1| $) 10 T ELT)) (-3140 (((-3 |#1| "failed") $) NIL T ELT)) (-3139 ((|#1| $) NIL T ELT)) (-3756 (((-687) $) 11 T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-1510 (($ |#1| (-687)) 9 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3742 (($ $ (-687)) NIL T ELT) (($ $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2653 (($ $ (-687)) NIL T ELT) (($ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT))) +(((-731 |#1|) (-225 |#1|) (-749)) (T -731)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3918 (((-578 |#1|) $) 38 T ELT)) (-3119 (((-687) $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3923 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 28 T ELT)) (-3140 (((-3 |#1| #1#) $) NIL T ELT)) (-3139 ((|#1| $) NIL T ELT)) (-3783 (($ $) 42 T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-1737 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2285 ((|#1| $ (-478)) NIL T ELT)) (-2286 (((-687) $ (-478)) NIL T ELT)) (-3920 (($ $) 54 T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-2276 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2277 (($ (-1 (-687) (-687)) $) NIL T ELT)) (-3924 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 25 T ELT)) (-2495 (((-83) $ $) 51 T ELT)) (-3817 (((-687) $) 34 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1738 (($ $ $) NIL T ELT)) (-1739 (($ $ $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3785 ((|#1| $) 41 T ELT)) (-1766 (((-578 (-2 (|:| |gen| |#1|) (|:| -3927 (-687)))) $) NIL T ELT)) (-2863 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2549 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2650 (($) 7 T CONST)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 53 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ |#1| (-687)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-732 |#1|) (-13 (-329 |#1|) (-747) (-10 -8 (-15 -3785 (|#1| $)) (-15 -3783 ($ $)) (-15 -3920 ($ $)) (-15 -2495 ((-83) $ $)) (-15 -3924 ((-3 $ #1="failed") $ |#1|)) (-15 -3923 ((-3 $ #1#) $ |#1|)) (-15 -2549 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3817 ((-687) $)) (-15 -3918 ((-578 |#1|) $)))) (-749)) (T -732)) +((-3785 (*1 *2 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) (-3783 (*1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) (-3920 (*1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) (-2495 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-732 *3)) (-4 *3 (-749)))) (-3924 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) (-3923 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) (-2549 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-732 *3)) (|:| |rm| (-732 *3)))) (-5 *1 (-732 *3)) (-4 *3 (-749)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-732 *3)) (-4 *3 (-749)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-732 *3)) (-4 *3 (-749))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3607 (((-478) $) 65 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3169 (((-83) $) 63 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3170 (((-83) $) 64 T ELT)) (-2515 (($ $ $) 57 T ELT)) (-2841 (($ $ $) 58 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-3367 (($ $) 66 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2550 (((-83) $ $) 59 T ELT)) (-2551 (((-83) $ $) 61 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 60 T ELT)) (-2669 (((-83) $ $) 62 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-733) (-111)) (T -733)) +NIL +(-13 (-489) (-748)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-242) . T) ((-489) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-577 $) . T) ((-649 $) . T) ((-658) . T) ((-707) . T) ((-709) . T) ((-711) . T) ((-714) . T) ((-748) . T) ((-749) . T) ((-752) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3943 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2496 ((|#1| $) 10 T ELT)) (-2497 (($ |#1|) 9 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2877 (($ |#2| (-687)) NIL T ELT)) (-2804 (((-687) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3742 (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-687)) NIL (|has| |#1| (-188)) ELT)) (-3932 (((-687) $) NIL T ELT)) (-3930 (((-765) $) 17 T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-144)) ELT)) (-3661 ((|#2| $ (-687)) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-687)) NIL (|has| |#1| (-188)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-734 |#1| |#2|) (-13 (-640 |#2|) (-10 -8 (IF (|has| |#1| (-188)) (-6 (-188)) |%noBranch|) (-15 -2497 ($ |#1|)) (-15 -2496 (|#1| $)))) (-640 |#2|) (-954)) (T -734)) +((-2497 (*1 *1 *2) (-12 (-4 *3 (-954)) (-5 *1 (-734 *2 *3)) (-4 *2 (-640 *3)))) (-2496 (*1 *2 *1) (-12 (-4 *2 (-640 *3)) (-5 *1 (-734 *2 *3)) (-4 *3 (-954))))) +((-2552 (((-83) $ $) 19 T ELT)) (-3217 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3219 (($ $ $) 77 T ELT)) (-3218 (((-83) $ $) 78 T ELT)) (-3222 (($ (-578 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1557 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3979)) ELT)) (-3708 (($) 7 T CONST)) (-2354 (($ $) 66 T ELT)) (-1340 (($ $) 62 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3389 (($ |#1| $) 51 (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3979)) ELT)) (-3390 (($ |#1| $) 61 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3979)) ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-3224 (((-83) $ $) 69 T ELT)) (-2515 ((|#1| $) 83 T ELT)) (-2840 (($ $ $) 86 T ELT)) (-3502 (($ $ $) 85 T ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-2841 ((|#1| $) 84 T ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3225 (((-1062) $) 22 T ELT)) (-3221 (($ $ $) 74 T ELT)) (-1262 ((|#1| $) 43 T ELT)) (-3593 (($ |#1| $) 44 T ELT) (($ |#1| $ (-687)) 67 T ELT)) (-3226 (((-1023) $) 21 T ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1263 ((|#1| $) 45 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-2353 (((-578 (-2 (|:| |entry| |#1|) (|:| -1933 (-687)))) $) 65 T ELT)) (-3220 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1453 (($) 53 T ELT) (($ (-578 |#1|)) 52 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 63 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 54 T ELT)) (-3930 (((-765) $) 17 T ELT)) (-3223 (($ (-578 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1253 (((-83) $ $) 20 T ELT)) (-1264 (($ (-578 |#1|)) 46 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 T ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-735 |#1|) (-111) (-749)) (T -735)) +((-2515 (*1 *2 *1) (-12 (-4 *1 (-735 *2)) (-4 *2 (-749))))) +(-13 (-669 |t#1|) (-874 |t#1|) (-10 -8 (-15 -2515 (|t#1| $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-547 (-765)) . T) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-190 |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-629 |#1|) . T) ((-669 |#1|) . T) ((-874 |#1|) . T) ((-1003 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL (|has| |#1| (-21)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3607 (((-478) $) NIL (|has| |#1| (-748)) ELT)) (-3708 (($) NIL (|has| |#1| (-21)) CONST)) (-3140 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3139 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 9 T ELT)) (-3451 (((-3 $ #1#) $) 42 (|has| |#1| (-748)) ELT)) (-3008 (((-3 (-343 (-478)) #1#) $) 52 (|has| |#1| (-477)) ELT)) (-3007 (((-83) $) 46 (|has| |#1| (-477)) ELT)) (-3006 (((-343 (-478)) $) 49 (|has| |#1| (-477)) ELT)) (-3169 (((-83) $) NIL (|has| |#1| (-748)) ELT)) (-2396 (((-83) $) NIL (|has| |#1| (-748)) ELT)) (-3170 (((-83) $) NIL (|has| |#1| (-748)) ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-748)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-748)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2498 (($) 13 T ELT)) (-2508 (((-83) $) 12 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2509 (((-83) $) 11 T ELT)) (-3930 (((-765) $) 18 T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (($ |#1|) 8 T ELT) (($ (-478)) NIL (OR (|has| |#1| (-748)) (|has| |#1| (-943 (-478)))) ELT)) (-3109 (((-687)) 36 (|has| |#1| (-748)) CONST)) (-1253 (((-83) $ $) 54 T ELT)) (-3367 (($ $) NIL (|has| |#1| (-748)) ELT)) (-2644 (($) 23 (|has| |#1| (-21)) CONST)) (-2650 (($) 33 (|has| |#1| (-748)) CONST)) (-2550 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-3037 (((-83) $ $) 21 T ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-2669 (((-83) $ $) 45 (|has| |#1| (-748)) ELT)) (-3821 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3823 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-823)) NIL (|has| |#1| (-748)) ELT) (($ $ (-687)) NIL (|has| |#1| (-748)) ELT)) (* (($ $ $) 39 (|has| |#1| (-748)) ELT) (($ (-478) $) 27 (|has| |#1| (-21)) ELT) (($ (-687) $) NIL (|has| |#1| (-21)) ELT) (($ (-823) $) NIL (|has| |#1| (-21)) ELT))) +(((-736 |#1|) (-13 (-1005) (-348 |#1|) (-10 -8 (-15 -2498 ($)) (-15 -2509 ((-83) $)) (-15 -2508 ((-83) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-748)) (-6 (-748)) |%noBranch|) (IF (|has| |#1| (-477)) (PROGN (-15 -3007 ((-83) $)) (-15 -3006 ((-343 (-478)) $)) (-15 -3008 ((-3 (-343 (-478)) "failed") $))) |%noBranch|))) (-1005)) (T -736)) +((-2498 (*1 *1) (-12 (-5 *1 (-736 *2)) (-4 *2 (-1005)))) (-2509 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-736 *3)) (-4 *3 (-1005)))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-736 *3)) (-4 *3 (-1005)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-736 *3)) (-4 *3 (-477)) (-4 *3 (-1005)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-736 *3)) (-4 *3 (-477)) (-4 *3 (-1005)))) (-3008 (*1 *2 *1) (|partial| -12 (-5 *2 (-343 (-478))) (-5 *1 (-736 *3)) (-4 *3 (-477)) (-4 *3 (-1005))))) +((-3942 (((-736 |#2|) (-1 |#2| |#1|) (-736 |#1|) (-736 |#2|)) 12 T ELT) (((-736 |#2|) (-1 |#2| |#1|) (-736 |#1|)) 13 T ELT))) +(((-737 |#1| |#2|) (-10 -7 (-15 -3942 ((-736 |#2|) (-1 |#2| |#1|) (-736 |#1|))) (-15 -3942 ((-736 |#2|) (-1 |#2| |#1|) (-736 |#1|) (-736 |#2|)))) (-1005) (-1005)) (T -737)) +((-3942 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-736 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-736 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *1 (-737 *5 *6)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-736 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *2 (-736 *6)) (-5 *1 (-737 *5 *6))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-84) #1#) $) NIL T ELT)) (-3139 ((|#1| $) NIL T ELT) (((-84) $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2500 ((|#1| (-84) |#1|) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2499 (($ |#1| (-306 (-84))) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2501 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2502 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3784 ((|#1| $ |#1|) NIL T ELT)) (-2503 ((|#1| |#1|) NIL (|has| |#1| (-144)) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-84)) NIL T ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2504 (($ $) NIL (|has| |#1| (-144)) ELT) (($ $ $) NIL (|has| |#1| (-144)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ (-84) (-478)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-144)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT))) +(((-738 |#1|) (-13 (-954) (-943 |#1|) (-943 (-84)) (-238 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |#1| (-144)) (PROGN (-6 (-38 |#1|)) (-15 -2504 ($ $)) (-15 -2504 ($ $ $)) (-15 -2503 (|#1| |#1|))) |%noBranch|) (-15 -2502 ($ $ (-1 |#1| |#1|))) (-15 -2501 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-84) (-478))) (-15 ** ($ $ (-478))) (-15 -2500 (|#1| (-84) |#1|)) (-15 -2499 ($ |#1| (-306 (-84)))))) (-954)) (T -738)) +((-2504 (*1 *1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-144)) (-4 *2 (-954)))) (-2504 (*1 *1 *1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-144)) (-4 *2 (-954)))) (-2503 (*1 *2 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-144)) (-4 *2 (-954)))) (-2502 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-738 *3)))) (-2501 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-738 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-478)) (-5 *1 (-738 *4)) (-4 *4 (-954)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-738 *3)) (-4 *3 (-954)))) (-2500 (*1 *2 *3 *2) (-12 (-5 *3 (-84)) (-5 *1 (-738 *2)) (-4 *2 (-954)))) (-2499 (*1 *1 *2 *3) (-12 (-5 *3 (-306 (-84))) (-5 *1 (-738 *2)) (-4 *2 (-954))))) +((-2617 (((-83) $ |#2|) 14 T ELT)) (-3930 (((-765) $) 11 T ELT))) +(((-739 |#1| |#2|) (-10 -7 (-15 -2617 ((-83) |#1| |#2|)) (-15 -3930 ((-765) |#1|))) (-740 |#2|) (-1005)) (T -739)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3526 ((|#1| $) 19 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2617 (((-83) $ |#1|) 17 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2505 (((-55) $) 18 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(((-740 |#1|) (-111) (-1005)) (T -740)) +((-3526 (*1 *2 *1) (-12 (-4 *1 (-740 *2)) (-4 *2 (-1005)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-740 *3)) (-4 *3 (-1005)) (-5 *2 (-55)))) (-2617 (*1 *2 *1 *3) (-12 (-4 *1 (-740 *3)) (-4 *3 (-1005)) (-5 *2 (-83))))) +(-13 (-1005) (-10 -8 (-15 -3526 (|t#1| $)) (-15 -2505 ((-55) $)) (-15 -2617 ((-83) $ |t#1|)))) +(((-72) . T) ((-547 (-765)) . T) ((-1005) . T) ((-1118) . T)) +((-2506 (((-165 (-435)) (-1062)) 9 T ELT))) +(((-741) (-10 -7 (-15 -2506 ((-165 (-435)) (-1062))))) (T -741)) +((-2506 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-165 (-435))) (-5 *1 (-741))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3301 (((-1018) $) 10 T ELT)) (-3526 (((-439) $) 9 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2617 (((-83) $ (-439)) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3514 (($ (-439) (-1018)) 8 T ELT)) (-3930 (((-765) $) 25 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2505 (((-55) $) 20 T ELT)) (-3037 (((-83) $ $) 12 T ELT))) +(((-742) (-13 (-740 (-439)) (-10 -8 (-15 -3301 ((-1018) $)) (-15 -3514 ($ (-439) (-1018)))))) (T -742)) +((-3301 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-742)))) (-3514 (*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1018)) (-5 *1 (-742))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL (|has| |#1| (-21)) ELT)) (-2507 (((-1023) $) 31 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3607 (((-478) $) NIL (|has| |#1| (-748)) ELT)) (-3708 (($) NIL (|has| |#1| (-21)) CONST)) (-3140 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3139 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 9 T ELT)) (-3451 (((-3 $ #1#) $) 57 (|has| |#1| (-748)) ELT)) (-3008 (((-3 (-343 (-478)) #1#) $) 65 (|has| |#1| (-477)) ELT)) (-3007 (((-83) $) 60 (|has| |#1| (-477)) ELT)) (-3006 (((-343 (-478)) $) 63 (|has| |#1| (-477)) ELT)) (-3169 (((-83) $) NIL (|has| |#1| (-748)) ELT)) (-2511 (($) 14 T ELT)) (-2396 (((-83) $) NIL (|has| |#1| (-748)) ELT)) (-3170 (((-83) $) NIL (|has| |#1| (-748)) ELT)) (-2510 (($) 16 T ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-748)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-748)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2508 (((-83) $) 12 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2509 (((-83) $) 11 T ELT)) (-3930 (((-765) $) 24 T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (($ |#1|) 8 T ELT) (($ (-478)) NIL (OR (|has| |#1| (-748)) (|has| |#1| (-943 (-478)))) ELT)) (-3109 (((-687)) 50 (|has| |#1| (-748)) CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-3367 (($ $) NIL (|has| |#1| (-748)) ELT)) (-2644 (($) 37 (|has| |#1| (-21)) CONST)) (-2650 (($) 47 (|has| |#1| (-748)) CONST)) (-2550 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-3037 (((-83) $ $) 35 T ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-2669 (((-83) $ $) 59 (|has| |#1| (-748)) ELT)) (-3821 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3823 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-823)) NIL (|has| |#1| (-748)) ELT) (($ $ (-687)) NIL (|has| |#1| (-748)) ELT)) (* (($ $ $) 54 (|has| |#1| (-748)) ELT) (($ (-478) $) 41 (|has| |#1| (-21)) ELT) (($ (-687) $) NIL (|has| |#1| (-21)) ELT) (($ (-823) $) NIL (|has| |#1| (-21)) ELT))) +(((-743 |#1|) (-13 (-1005) (-348 |#1|) (-10 -8 (-15 -2511 ($)) (-15 -2510 ($)) (-15 -2509 ((-83) $)) (-15 -2508 ((-83) $)) (-15 -2507 ((-1023) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-748)) (-6 (-748)) |%noBranch|) (IF (|has| |#1| (-477)) (PROGN (-15 -3007 ((-83) $)) (-15 -3006 ((-343 (-478)) $)) (-15 -3008 ((-3 (-343 (-478)) "failed") $))) |%noBranch|))) (-1005)) (T -743)) +((-2511 (*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1005)))) (-2510 (*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1005)))) (-2509 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-743 *3)) (-4 *3 (-1005)))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-743 *3)) (-4 *3 (-1005)))) (-2507 (*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-743 *3)) (-4 *3 (-1005)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-743 *3)) (-4 *3 (-477)) (-4 *3 (-1005)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-743 *3)) (-4 *3 (-477)) (-4 *3 (-1005)))) (-3008 (*1 *2 *1) (|partial| -12 (-5 *2 (-343 (-478))) (-5 *1 (-743 *3)) (-4 *3 (-477)) (-4 *3 (-1005))))) +((-3942 (((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|) (-743 |#2|) (-743 |#2|)) 13 T ELT) (((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|)) 14 T ELT))) +(((-744 |#1| |#2|) (-10 -7 (-15 -3942 ((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|))) (-15 -3942 ((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|) (-743 |#2|) (-743 |#2|)))) (-1005) (-1005)) (T -744)) +((-3942 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-743 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *1 (-744 *5 *6)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *2 (-743 *6)) (-5 *1 (-744 *5 *6))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3119 (((-687)) 27 T ELT)) (-2978 (($) 30 T ELT)) (-2515 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2841 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-1996 (((-823) $) 29 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2386 (($ (-823)) 28 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2550 (((-83) $ $) 21 T ELT)) (-2551 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 20 T ELT)) (-2669 (((-83) $ $) 18 T ELT))) +(((-745) (-111)) (T -745)) +((-2515 (*1 *1) (-4 *1 (-745))) (-2841 (*1 *1) (-4 *1 (-745)))) +(-13 (-749) (-313) (-10 -8 (-15 -2515 ($) -3936) (-15 -2841 ($) -3936))) +(((-72) . T) ((-547 (-765)) . T) ((-313) . T) ((-749) . T) ((-752) . T) ((-1005) . T) ((-1118) . T)) +((-2513 (((-83) (-1168 |#2|) (-1168 |#2|)) 19 T ELT)) (-2514 (((-83) (-1168 |#2|) (-1168 |#2|)) 20 T ELT)) (-2512 (((-83) (-1168 |#2|) (-1168 |#2|)) 16 T ELT))) +(((-746 |#1| |#2|) (-10 -7 (-15 -2512 ((-83) (-1168 |#2|) (-1168 |#2|))) (-15 -2513 ((-83) (-1168 |#2|) (-1168 |#2|))) (-15 -2514 ((-83) (-1168 |#2|) (-1168 |#2|)))) (-687) (-709)) (T -746)) +((-2514 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 *5)) (-4 *5 (-709)) (-5 *2 (-83)) (-5 *1 (-746 *4 *5)) (-14 *4 (-687)))) (-2513 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 *5)) (-4 *5 (-709)) (-5 *2 (-83)) (-5 *1 (-746 *4 *5)) (-14 *4 (-687)))) (-2512 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 *5)) (-4 *5 (-709)) (-5 *2 (-83)) (-5 *1 (-746 *4 *5)) (-14 *4 (-687))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3708 (($) 29 T CONST)) (-3451 (((-3 $ "failed") $) 32 T ELT)) (-2396 (((-83) $) 30 T ELT)) (-2515 (($ $ $) 23 T ELT)) (-2841 (($ $ $) 22 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2650 (($) 28 T CONST)) (-2550 (((-83) $ $) 21 T ELT)) (-2551 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 20 T ELT)) (-2669 (((-83) $ $) 18 T ELT)) (** (($ $ (-823)) 26 T ELT) (($ $ (-687)) 31 T ELT)) (* (($ $ $) 25 T ELT))) +(((-747) (-111)) (T -747)) +NIL +(-13 (-759) (-658)) +(((-72) . T) ((-547 (-765)) . T) ((-658) . T) ((-759) . T) ((-749) . T) ((-752) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 31 T ELT)) (-1299 (((-3 $ "failed") $ $) 34 T ELT)) (-3607 (((-478) $) 37 T ELT)) (-3708 (($) 30 T CONST)) (-3451 (((-3 $ "failed") $) 49 T ELT)) (-3169 (((-83) $) 28 T ELT)) (-2396 (((-83) $) 51 T ELT)) (-3170 (((-83) $) 38 T ELT)) (-2515 (($ $ $) 23 T ELT)) (-2841 (($ $ $) 22 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 53 T ELT)) (-3109 (((-687)) 54 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-3367 (($ $) 36 T ELT)) (-2644 (($) 29 T CONST)) (-2650 (($) 52 T CONST)) (-2550 (((-83) $ $) 21 T ELT)) (-2551 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 20 T ELT)) (-2669 (((-83) $ $) 18 T ELT)) (-3821 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3823 (($ $ $) 25 T ELT)) (** (($ $ (-687)) 50 T ELT) (($ $ (-823)) 47 T ELT)) (* (($ (-823) $) 26 T ELT) (($ (-687) $) 32 T ELT) (($ (-478) $) 39 T ELT) (($ $ $) 48 T ELT))) +(((-748) (-111)) (T -748)) +NIL +(-13 (-707) (-954) (-658)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-658) . T) ((-707) . T) ((-709) . T) ((-711) . T) ((-714) . T) ((-749) . T) ((-752) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) 7 T ELT)) (-2515 (($ $ $) 23 T ELT)) (-2841 (($ $ $) 22 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2550 (((-83) $ $) 21 T ELT)) (-2551 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 20 T ELT)) (-2669 (((-83) $ $) 18 T ELT))) +(((-749) (-111)) (T -749)) +NIL +(-13 (-1005) (-752)) +(((-72) . T) ((-547 (-765)) . T) ((-752) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3930 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-765) $) 15 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 12 T ELT))) +(((-750 |#1| |#2|) (-13 (-752) (-423 |#1|) (-10 -7 (IF (|has| |#1| (-547 (-765))) (-6 (-547 (-765))) |%noBranch|))) (-1118) (-1 (-83) |#1| |#1|)) (T -750)) +NIL +((-2515 (($ $ $) 16 T ELT)) (-2841 (($ $ $) 15 T ELT)) (-1253 (((-83) $ $) 17 T ELT)) (-2550 (((-83) $ $) 12 T ELT)) (-2551 (((-83) $ $) 9 T ELT)) (-3037 (((-83) $ $) 14 T ELT)) (-2668 (((-83) $ $) 11 T ELT))) +(((-751 |#1|) (-10 -7 (-15 -2515 (|#1| |#1| |#1|)) (-15 -2841 (|#1| |#1| |#1|)) (-15 -2550 ((-83) |#1| |#1|)) (-15 -2668 ((-83) |#1| |#1|)) (-15 -2551 ((-83) |#1| |#1|)) (-15 -1253 ((-83) |#1| |#1|)) (-15 -3037 ((-83) |#1| |#1|))) (-752)) (T -751)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-2515 (($ $ $) 10 T ELT)) (-2841 (($ $ $) 11 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2550 (((-83) $ $) 12 T ELT)) (-2551 (((-83) $ $) 14 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 13 T ELT)) (-2669 (((-83) $ $) 15 T ELT))) +(((-752) (-111)) (T -752)) +((-2669 (*1 *2 *1 *1) (-12 (-4 *1 (-752)) (-5 *2 (-83)))) (-2551 (*1 *2 *1 *1) (-12 (-4 *1 (-752)) (-5 *2 (-83)))) (-2668 (*1 *2 *1 *1) (-12 (-4 *1 (-752)) (-5 *2 (-83)))) (-2550 (*1 *2 *1 *1) (-12 (-4 *1 (-752)) (-5 *2 (-83)))) (-2841 (*1 *1 *1 *1) (-4 *1 (-752))) (-2515 (*1 *1 *1 *1) (-4 *1 (-752)))) +(-13 (-72) (-10 -8 (-15 -2669 ((-83) $ $)) (-15 -2551 ((-83) $ $)) (-15 -2668 ((-83) $ $)) (-15 -2550 ((-83) $ $)) (-15 -2841 ($ $ $)) (-15 -2515 ($ $ $)))) +(((-72) . T) ((-1118) . T)) +((-2520 (($ $ $) 49 T ELT)) (-2521 (($ $ $) 48 T ELT)) (-2522 (($ $ $) 46 T ELT)) (-2518 (($ $ $) 55 T ELT)) (-2517 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 50 T ELT)) (-2519 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3140 (((-3 (-478) #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3487 (($ $) 39 T ELT)) (-2526 (($ $ $) 43 T ELT)) (-2527 (($ $ $) 42 T ELT)) (-2516 (($ $ $) 51 T ELT)) (-2524 (($ $ $) 57 T ELT)) (-2523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 45 T ELT)) (-2525 (((-3 $ #1#) $ $) 52 T ELT)) (-3450 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2801 ((|#2| $) 36 T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3801 (((-578 |#2|) $) 21 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) +(((-753 |#1| |#2|) (-10 -7 (-15 -2516 (|#1| |#1| |#1|)) (-15 -2517 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2395 |#1|)) |#1| |#1|)) (-15 -2518 (|#1| |#1| |#1|)) (-15 -2519 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2520 (|#1| |#1| |#1|)) (-15 -2521 (|#1| |#1| |#1|)) (-15 -2522 (|#1| |#1| |#1|)) (-15 -2523 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2395 |#1|)) |#1| |#1|)) (-15 -2524 (|#1| |#1| |#1|)) (-15 -2525 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2526 (|#1| |#1| |#1|)) (-15 -2527 (|#1| |#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -2801 (|#2| |#1|)) (-15 -3450 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3801 ((-578 |#2|) |#1|)) (-15 -3930 (|#1| |#2|)) (-15 -3140 ((-3 |#2| #1#) |#1|)) (-15 -3140 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3930 (|#1| (-343 (-478)))) (-15 -3140 ((-3 (-478) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3930 (|#1| (-478))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 * (|#1| (-823) |#1|)) (-15 -3930 ((-765) |#1|))) (-754 |#2|) (-954)) (T -753)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-2520 (($ $ $) 55 (|has| |#1| (-308)) ELT)) (-2521 (($ $ $) 56 (|has| |#1| (-308)) ELT)) (-2522 (($ $ $) 58 (|has| |#1| (-308)) ELT)) (-2518 (($ $ $) 53 (|has| |#1| (-308)) ELT)) (-2517 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 52 (|has| |#1| (-308)) ELT)) (-2519 (((-3 $ "failed") $ $) 54 (|has| |#1| (-308)) ELT)) (-2533 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 57 (|has| |#1| (-308)) ELT)) (-3140 (((-3 (-478) #1="failed") $) 85 (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) 82 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3139 (((-478) $) 84 (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) 81 (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 80 T ELT)) (-3943 (($ $) 74 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3487 (($ $) 65 (|has| |#1| (-385)) ELT)) (-2396 (((-83) $) 40 T ELT)) (-2877 (($ |#1| (-687)) 72 T ELT)) (-2531 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 67 (|has| |#1| (-489)) ELT)) (-2530 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 68 (|has| |#1| (-489)) ELT)) (-2804 (((-687) $) 76 T ELT)) (-2526 (($ $ $) 62 (|has| |#1| (-308)) ELT)) (-2527 (($ $ $) 63 (|has| |#1| (-308)) ELT)) (-2516 (($ $ $) 51 (|has| |#1| (-308)) ELT)) (-2524 (($ $ $) 60 (|has| |#1| (-308)) ELT)) (-2523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 59 (|has| |#1| (-308)) ELT)) (-2525 (((-3 $ "failed") $ $) 61 (|has| |#1| (-308)) ELT)) (-2532 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 64 (|has| |#1| (-308)) ELT)) (-3157 ((|#1| $) 75 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3450 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-489)) ELT)) (-3932 (((-687) $) 77 T ELT)) (-2801 ((|#1| $) 66 (|has| |#1| (-385)) ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 (-478))) 83 (|has| |#1| (-943 (-343 (-478)))) ELT) (($ |#1|) 78 T ELT)) (-3801 (((-578 |#1|) $) 71 T ELT)) (-3661 ((|#1| $ (-687)) 73 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2529 ((|#1| $ |#1| |#1|) 70 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) +(((-754 |#1|) (-111) (-954)) (T -754)) +((-3932 (*1 *2 *1) (-12 (-4 *1 (-754 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) (-2804 (*1 *2 *1) (-12 (-4 *1 (-754 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)))) (-3943 (*1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)))) (-3661 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-754 *2)) (-4 *2 (-954)))) (-2877 (*1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-754 *2)) (-4 *2 (-954)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-754 *3)) (-4 *3 (-954)) (-5 *2 (-578 *3)))) (-2529 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)))) (-3450 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-489)))) (-2530 (*1 *2 *1 *1) (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -1960 *1) (|:| -2886 *1))) (-4 *1 (-754 *3)))) (-2531 (*1 *2 *1 *1) (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -1960 *1) (|:| -2886 *1))) (-4 *1 (-754 *3)))) (-2801 (*1 *2 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-385)))) (-3487 (*1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-385)))) (-2532 (*1 *2 *1 *1) (-12 (-4 *3 (-308)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -1960 *1) (|:| -2886 *1))) (-4 *1 (-754 *3)))) (-2527 (*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2526 (*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2525 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2524 (*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2523 (*1 *2 *1 *1) (-12 (-4 *3 (-308)) (-4 *3 (-954)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2395 *1))) (-4 *1 (-754 *3)))) (-2522 (*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2533 (*1 *2 *1 *1) (-12 (-4 *3 (-308)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -1960 *1) (|:| -2886 *1))) (-4 *1 (-754 *3)))) (-2521 (*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2520 (*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2519 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2518 (*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2517 (*1 *2 *1 *1) (-12 (-4 *3 (-308)) (-4 *3 (-954)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2395 *1))) (-4 *1 (-754 *3)))) (-2516 (*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) +(-13 (-954) (-80 |t#1| |t#1|) (-348 |t#1|) (-10 -8 (-15 -3932 ((-687) $)) (-15 -2804 ((-687) $)) (-15 -3157 (|t#1| $)) (-15 -3943 ($ $)) (-15 -3661 (|t#1| $ (-687))) (-15 -2877 ($ |t#1| (-687))) (-15 -3801 ((-578 |t#1|) $)) (-15 -2529 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-144)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-489)) (PROGN (-15 -3450 ((-3 $ "failed") $ |t#1|)) (-15 -2530 ((-2 (|:| -1960 $) (|:| -2886 $)) $ $)) (-15 -2531 ((-2 (|:| -1960 $) (|:| -2886 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-385)) (PROGN (-15 -2801 (|t#1| $)) (-15 -3487 ($ $))) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-15 -2532 ((-2 (|:| -1960 $) (|:| -2886 $)) $ $)) (-15 -2527 ($ $ $)) (-15 -2526 ($ $ $)) (-15 -2525 ((-3 $ "failed") $ $)) (-15 -2524 ($ $ $)) (-15 -2523 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $)) (-15 -2522 ($ $ $)) (-15 -2533 ((-2 (|:| -1960 $) (|:| -2886 $)) $ $)) (-15 -2521 ($ $ $)) (-15 -2520 ($ $ $)) (-15 -2519 ((-3 $ "failed") $ $)) (-15 -2518 ($ $ $)) (-15 -2517 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $)) (-15 -2516 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-144)) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-550 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-348 |#1|) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 |#1|) |has| |#1| (-144)) ((-649 |#1|) |has| |#1| (-144)) ((-658) . T) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2528 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2533 (((-2 (|:| -1960 |#2|) (|:| -2886 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-308)) ELT)) (-2531 (((-2 (|:| -1960 |#2|) (|:| -2886 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-489)) ELT)) (-2530 (((-2 (|:| -1960 |#2|) (|:| -2886 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-489)) ELT)) (-2532 (((-2 (|:| -1960 |#2|) (|:| -2886 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-308)) ELT)) (-2529 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT))) +(((-755 |#1| |#2|) (-10 -7 (-15 -2528 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2529 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-489)) (PROGN (-15 -2530 ((-2 (|:| -1960 |#2|) (|:| -2886 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2531 ((-2 (|:| -1960 |#2|) (|:| -2886 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -2532 ((-2 (|:| -1960 |#2|) (|:| -2886 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2533 ((-2 (|:| -1960 |#2|) (|:| -2886 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-954) (-754 |#1|)) (T -755)) +((-2533 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-308)) (-4 *5 (-954)) (-5 *2 (-2 (|:| -1960 *3) (|:| -2886 *3))) (-5 *1 (-755 *5 *3)) (-4 *3 (-754 *5)))) (-2532 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-308)) (-4 *5 (-954)) (-5 *2 (-2 (|:| -1960 *3) (|:| -2886 *3))) (-5 *1 (-755 *5 *3)) (-4 *3 (-754 *5)))) (-2531 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-489)) (-4 *5 (-954)) (-5 *2 (-2 (|:| -1960 *3) (|:| -2886 *3))) (-5 *1 (-755 *5 *3)) (-4 *3 (-754 *5)))) (-2530 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-489)) (-4 *5 (-954)) (-5 *2 (-2 (|:| -1960 *3) (|:| -2886 *3))) (-5 *1 (-755 *5 *3)) (-4 *3 (-754 *5)))) (-2529 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-954)) (-5 *1 (-755 *2 *3)) (-4 *3 (-754 *2)))) (-2528 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-954)) (-5 *1 (-755 *5 *2)) (-4 *2 (-754 *5))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2520 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2521 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2522 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2518 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2517 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2519 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2533 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 34 (|has| |#1| (-308)) ELT)) (-3140 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3139 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT)) (-3943 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3487 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3517 (((-765) $ (-765)) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-687)) NIL T ELT)) (-2531 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 30 (|has| |#1| (-489)) ELT)) (-2530 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 28 (|has| |#1| (-489)) ELT)) (-2804 (((-687) $) NIL T ELT)) (-2526 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2524 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2525 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2532 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 32 (|has| |#1| (-308)) ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3450 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT)) (-3932 (((-687) $) NIL T ELT)) (-2801 ((|#1| $) NIL (|has| |#1| (-385)) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (($ |#1|) NIL T ELT)) (-3801 (((-578 |#1|) $) NIL T ELT)) (-3661 ((|#1| $ (-687)) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2529 ((|#1| $ |#1| |#1|) 15 T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) 23 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) 19 T ELT) (($ $ (-687)) 24 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-756 |#1| |#2| |#3|) (-13 (-754 |#1|) (-10 -8 (-15 -3517 ((-765) $ (-765))))) (-954) (-69 |#1|) (-1 |#1| |#1|)) (T -756)) +((-3517 (*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-756 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2520 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2521 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2522 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2518 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2517 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-2519 (((-3 $ #1#) $ $) NIL (|has| |#2| (-308)) ELT)) (-2533 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-3140 (((-3 (-478) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3139 (((-478) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) ((|#2| $) NIL T ELT)) (-3943 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3487 (($ $) NIL (|has| |#2| (-385)) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2877 (($ |#2| (-687)) 17 T ELT)) (-2531 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#2| (-489)) ELT)) (-2530 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#2| (-489)) ELT)) (-2804 (((-687) $) NIL T ELT)) (-2526 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2527 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2516 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2524 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-2525 (((-3 $ #1#) $ $) NIL (|has| |#2| (-308)) ELT)) (-2532 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-3157 ((|#2| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3450 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-489)) ELT)) (-3932 (((-687) $) NIL T ELT)) (-2801 ((|#2| $) NIL (|has| |#2| (-385)) ELT)) (-3930 (((-765) $) 24 T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (($ |#2|) NIL T ELT) (($ (-1165 |#1|)) 19 T ELT)) (-3801 (((-578 |#2|) $) NIL T ELT)) (-3661 ((|#2| $ (-687)) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2529 ((|#2| $ |#2| |#2|) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) 13 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-757 |#1| |#2| |#3| |#4|) (-13 (-754 |#2|) (-550 (-1165 |#1|))) (-1079) (-954) (-69 |#2|) (-1 |#2| |#2|)) (T -757)) +NIL +((-2536 ((|#1| (-687) |#1|) 45 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2535 ((|#1| (-687) (-687) |#1|) 36 T ELT) ((|#1| (-687) |#1|) 24 T ELT)) (-2534 ((|#1| (-687) |#1|) 40 T ELT)) (-2784 ((|#1| (-687) |#1|) 38 T ELT)) (-2783 ((|#1| (-687) |#1|) 37 T ELT))) +(((-758 |#1|) (-10 -7 (-15 -2783 (|#1| (-687) |#1|)) (-15 -2784 (|#1| (-687) |#1|)) (-15 -2534 (|#1| (-687) |#1|)) (-15 -2535 (|#1| (-687) |#1|)) (-15 -2535 (|#1| (-687) (-687) |#1|)) (IF (|has| |#1| (-38 (-343 (-478)))) (-15 -2536 (|#1| (-687) |#1|)) |%noBranch|)) (-144)) (T -758)) +((-2536 (*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-144)))) (-2535 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144)))) (-2535 (*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144)))) (-2534 (*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144)))) (-2784 (*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144)))) (-2783 (*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144))))) +((-2552 (((-83) $ $) 7 T ELT)) (-2515 (($ $ $) 23 T ELT)) (-2841 (($ $ $) 22 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2550 (((-83) $ $) 21 T ELT)) (-2551 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 20 T ELT)) (-2669 (((-83) $ $) 18 T ELT)) (** (($ $ (-823)) 26 T ELT)) (* (($ $ $) 25 T ELT))) +(((-759) (-111)) (T -759)) +NIL +(-13 (-749) (-1015)) +(((-72) . T) ((-547 (-765)) . T) ((-749) . T) ((-752) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3386 (((-478) $) 14 T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 20 T ELT) (($ (-478)) 13 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 9 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 11 T ELT))) +(((-760) (-13 (-749) (-10 -8 (-15 -3930 ($ (-478))) (-15 -3386 ((-478) $))))) (T -760)) +((-3930 (*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-760)))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-760))))) +((-2537 (((-1174) (-578 (-51))) 23 T ELT)) (-3444 (((-1174) (-1062) (-765)) 13 T ELT) (((-1174) (-765)) 8 T ELT) (((-1174) (-1062)) 10 T ELT))) +(((-761) (-10 -7 (-15 -3444 ((-1174) (-1062))) (-15 -3444 ((-1174) (-765))) (-15 -3444 ((-1174) (-1062) (-765))) (-15 -2537 ((-1174) (-578 (-51)))))) (T -761)) +((-2537 (*1 *2 *3) (-12 (-5 *3 (-578 (-51))) (-5 *2 (-1174)) (-5 *1 (-761)))) (-3444 (*1 *2 *3 *4) (-12 (-5 *3 (-1062)) (-5 *4 (-765)) (-5 *2 (-1174)) (-5 *1 (-761)))) (-3444 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1174)) (-5 *1 (-761)))) (-3444 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-761))))) +((-2539 (((-627 (-1127)) $ (-1127)) 15 T ELT)) (-2540 (((-627 (-482)) $ (-482)) 12 T ELT)) (-2538 (((-687) $ (-100)) 30 T ELT))) +(((-762 |#1|) (-10 -7 (-15 -2538 ((-687) |#1| (-100))) (-15 -2539 ((-627 (-1127)) |#1| (-1127))) (-15 -2540 ((-627 (-482)) |#1| (-482)))) (-763)) (T -762)) +NIL +((-2539 (((-627 (-1127)) $ (-1127)) 8 T ELT)) (-2540 (((-627 (-482)) $ (-482)) 9 T ELT)) (-2538 (((-687) $ (-100)) 7 T ELT)) (-2541 (((-627 (-99)) $ (-99)) 10 T ELT)) (-1687 (($ $) 6 T ELT))) +(((-763) (-111)) (T -763)) +((-2541 (*1 *2 *1 *3) (-12 (-4 *1 (-763)) (-5 *2 (-627 (-99))) (-5 *3 (-99)))) (-2540 (*1 *2 *1 *3) (-12 (-4 *1 (-763)) (-5 *2 (-627 (-482))) (-5 *3 (-482)))) (-2539 (*1 *2 *1 *3) (-12 (-4 *1 (-763)) (-5 *2 (-627 (-1127))) (-5 *3 (-1127)))) (-2538 (*1 *2 *1 *3) (-12 (-4 *1 (-763)) (-5 *3 (-100)) (-5 *2 (-687))))) +(-13 (-145) (-10 -8 (-15 -2541 ((-627 (-99)) $ (-99))) (-15 -2540 ((-627 (-482)) $ (-482))) (-15 -2539 ((-627 (-1127)) $ (-1127))) (-15 -2538 ((-687) $ (-100))))) +(((-145) . T)) +((-2539 (((-627 (-1127)) $ (-1127)) NIL T ELT)) (-2540 (((-627 (-482)) $ (-482)) NIL T ELT)) (-2538 (((-687) $ (-100)) NIL T ELT)) (-2541 (((-627 (-99)) $ (-99)) 22 T ELT)) (-2543 (($ (-331)) 12 T ELT) (($ (-1062)) 14 T ELT)) (-2542 (((-83) $) 19 T ELT)) (-3930 (((-765) $) 26 T ELT)) (-1687 (($ $) 23 T ELT))) +(((-764) (-13 (-763) (-547 (-765)) (-10 -8 (-15 -2543 ($ (-331))) (-15 -2543 ($ (-1062))) (-15 -2542 ((-83) $))))) (T -764)) +((-2543 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-764)))) (-2543 (*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-764)))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-764))))) +((-2552 (((-83) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2573 (($ $ $) 125 T ELT)) (-2588 (((-478) $) 31 T ELT) (((-478)) 36 T ELT)) (-2583 (($ (-478)) 53 T ELT)) (-2580 (($ $ $) 54 T ELT) (($ (-578 $)) 84 T ELT)) (-2564 (($ $ (-578 $)) 82 T ELT)) (-2585 (((-478) $) 34 T ELT)) (-2567 (($ $ $) 73 T ELT)) (-3516 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2586 (((-478) $) 33 T ELT)) (-2568 (($ $ $) 72 T ELT)) (-3519 (($ $) 114 T ELT)) (-2571 (($ $ $) 129 T ELT)) (-2554 (($ (-578 $)) 61 T ELT)) (-3524 (($ $ (-578 $)) 79 T ELT)) (-2582 (($ (-478) (-478)) 55 T ELT)) (-2595 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3120 (($ $ (-478)) 43 T ELT) (($ $) 46 T ELT)) (-2548 (($ $ $) 97 T ELT)) (-2569 (($ $ $) 132 T ELT)) (-2563 (($ $) 115 T ELT)) (-2547 (($ $ $) 98 T ELT)) (-2559 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2821 (((-1174) $) 10 T ELT)) (-2562 (($ $) 118 T ELT) (($ $ (-687)) 122 T ELT)) (-2565 (($ $ $) 75 T ELT)) (-2566 (($ $ $) 74 T ELT)) (-2579 (($ $ (-578 $)) 110 T ELT)) (-2577 (($ $ $) 113 T ELT)) (-2556 (($ (-578 $)) 59 T ELT)) (-2557 (($ $) 70 T ELT) (($ (-578 $)) 71 T ELT)) (-2560 (($ $ $) 123 T ELT)) (-2561 (($ $) 116 T ELT)) (-2572 (($ $ $) 128 T ELT)) (-3517 (($ (-478)) 21 T ELT) (($ (-1079)) 23 T ELT) (($ (-1062)) 30 T ELT) (($ (-177)) 25 T ELT)) (-2545 (($ $ $) 101 T ELT)) (-2544 (($ $) 102 T ELT)) (-2590 (((-1174) (-1062)) 15 T ELT)) (-2591 (($ (-1062)) 14 T ELT)) (-3107 (($ (-578 (-578 $))) 58 T ELT)) (-3121 (($ $ (-478)) 42 T ELT) (($ $) 45 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2575 (($ $ $) 131 T ELT)) (-3454 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2576 (((-83) $) 108 T ELT)) (-2578 (($ $ (-578 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2584 (($ (-478)) 39 T ELT)) (-2587 (((-478) $) 32 T ELT) (((-478)) 35 T ELT)) (-2581 (($ $ $) 40 T ELT) (($ (-578 $)) 83 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3450 (($ $ $) 99 T ELT)) (-3549 (($) 13 T ELT)) (-3784 (($ $ (-578 $)) 109 T ELT)) (-2589 (((-1062) (-1062)) 8 T ELT)) (-3820 (($ $) 117 T ELT) (($ $ (-687)) 121 T ELT)) (-2549 (($ $ $) 96 T ELT)) (-3742 (($ $ (-687)) 139 T ELT)) (-2555 (($ (-578 $)) 60 T ELT)) (-3930 (((-765) $) 19 T ELT)) (-3757 (($ $ (-478)) 41 T ELT) (($ $) 44 T ELT)) (-2558 (($ $) 68 T ELT) (($ (-578 $)) 69 T ELT)) (-3223 (($ $) 66 T ELT) (($ (-578 $)) 67 T ELT)) (-2574 (($ $) 124 T ELT)) (-2553 (($ (-578 $)) 65 T ELT)) (-3085 (($ $ $) 105 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2570 (($ $ $) 130 T ELT)) (-2546 (($ $ $) 100 T ELT)) (-3721 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2550 (($ $ $) 89 T ELT)) (-2551 (($ $ $) 87 T ELT)) (-3037 (((-83) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2668 (($ $ $) 88 T ELT)) (-2669 (($ $ $) 86 T ELT)) (-3933 (($ $ $) 94 T ELT)) (-3821 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3823 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) +(((-765) (-13 (-1005) (-10 -8 (-15 -2821 ((-1174) $)) (-15 -2591 ($ (-1062))) (-15 -2590 ((-1174) (-1062))) (-15 -3517 ($ (-478))) (-15 -3517 ($ (-1079))) (-15 -3517 ($ (-1062))) (-15 -3517 ($ (-177))) (-15 -3549 ($)) (-15 -2589 ((-1062) (-1062))) (-15 -2588 ((-478) $)) (-15 -2587 ((-478) $)) (-15 -2588 ((-478))) (-15 -2587 ((-478))) (-15 -2586 ((-478) $)) (-15 -2585 ((-478) $)) (-15 -2584 ($ (-478))) (-15 -2583 ($ (-478))) (-15 -2582 ($ (-478) (-478))) (-15 -3121 ($ $ (-478))) (-15 -3120 ($ $ (-478))) (-15 -3757 ($ $ (-478))) (-15 -3121 ($ $)) (-15 -3120 ($ $)) (-15 -3757 ($ $)) (-15 -2581 ($ $ $)) (-15 -2580 ($ $ $)) (-15 -2581 ($ (-578 $))) (-15 -2580 ($ (-578 $))) (-15 -2579 ($ $ (-578 $))) (-15 -2578 ($ $ (-578 $))) (-15 -2578 ($ $ $ $)) (-15 -2577 ($ $ $)) (-15 -2576 ((-83) $)) (-15 -3784 ($ $ (-578 $))) (-15 -3519 ($ $)) (-15 -2575 ($ $ $)) (-15 -2574 ($ $)) (-15 -3107 ($ (-578 (-578 $)))) (-15 -2573 ($ $ $)) (-15 -2595 ($ $)) (-15 -2595 ($ $ $)) (-15 -2572 ($ $ $)) (-15 -2571 ($ $ $)) (-15 -2570 ($ $ $)) (-15 -2569 ($ $ $)) (-15 -3742 ($ $ (-687))) (-15 -3085 ($ $ $)) (-15 -2568 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -3524 ($ $ (-578 $))) (-15 -2564 ($ $ (-578 $))) (-15 -2563 ($ $)) (-15 -3820 ($ $)) (-15 -3820 ($ $ (-687))) (-15 -2562 ($ $)) (-15 -2562 ($ $ (-687))) (-15 -2561 ($ $)) (-15 -2560 ($ $ $)) (-15 -3516 ($ $)) (-15 -3516 ($ $ $)) (-15 -3516 ($ $ $ $)) (-15 -2559 ($ $)) (-15 -2559 ($ $ $)) (-15 -2559 ($ $ $ $)) (-15 -3454 ($ $)) (-15 -3454 ($ $ $)) (-15 -3454 ($ $ $ $)) (-15 -3223 ($ $)) (-15 -3223 ($ (-578 $))) (-15 -2558 ($ $)) (-15 -2558 ($ (-578 $))) (-15 -2557 ($ $)) (-15 -2557 ($ (-578 $))) (-15 -2556 ($ (-578 $))) (-15 -2555 ($ (-578 $))) (-15 -2554 ($ (-578 $))) (-15 -2553 ($ (-578 $))) (-15 -3037 ($ $ $)) (-15 -2552 ($ $ $)) (-15 -2669 ($ $ $)) (-15 -2551 ($ $ $)) (-15 -2668 ($ $ $)) (-15 -2550 ($ $ $)) (-15 -3823 ($ $ $)) (-15 -3821 ($ $ $)) (-15 -3821 ($ $)) (-15 * ($ $ $)) (-15 -3933 ($ $ $)) (-15 ** ($ $ $)) (-15 -2549 ($ $ $)) (-15 -2548 ($ $ $)) (-15 -2547 ($ $ $)) (-15 -3450 ($ $ $)) (-15 -2546 ($ $ $)) (-15 -2545 ($ $ $)) (-15 -2544 ($ $)) (-15 -3721 ($ $ $)) (-15 -3721 ($ $))))) (T -765)) +((-2821 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-765)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-765)))) (-2590 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-765)))) (-3517 (*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-3517 (*1 *1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-765)))) (-3517 (*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-765)))) (-3517 (*1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-765)))) (-3549 (*1 *1) (-5 *1 (-765))) (-2589 (*1 *2 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-765)))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-2587 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-2588 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-2587 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-2586 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-2584 (*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-2583 (*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-2582 (*1 *1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-3121 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-3120 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-3757 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-3121 (*1 *1 *1) (-5 *1 (-765))) (-3120 (*1 *1 *1) (-5 *1 (-765))) (-3757 (*1 *1 *1) (-5 *1 (-765))) (-2581 (*1 *1 *1 *1) (-5 *1 (-765))) (-2580 (*1 *1 *1 *1) (-5 *1 (-765))) (-2581 (*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2580 (*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2579 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2578 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2578 (*1 *1 *1 *1 *1) (-5 *1 (-765))) (-2577 (*1 *1 *1 *1) (-5 *1 (-765))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-765)))) (-3784 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-3519 (*1 *1 *1) (-5 *1 (-765))) (-2575 (*1 *1 *1 *1) (-5 *1 (-765))) (-2574 (*1 *1 *1) (-5 *1 (-765))) (-3107 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-765)))) (-5 *1 (-765)))) (-2573 (*1 *1 *1 *1) (-5 *1 (-765))) (-2595 (*1 *1 *1) (-5 *1 (-765))) (-2595 (*1 *1 *1 *1) (-5 *1 (-765))) (-2572 (*1 *1 *1 *1) (-5 *1 (-765))) (-2571 (*1 *1 *1 *1) (-5 *1 (-765))) (-2570 (*1 *1 *1 *1) (-5 *1 (-765))) (-2569 (*1 *1 *1 *1) (-5 *1 (-765))) (-3742 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-765)))) (-3085 (*1 *1 *1 *1) (-5 *1 (-765))) (-2568 (*1 *1 *1 *1) (-5 *1 (-765))) (-2567 (*1 *1 *1 *1) (-5 *1 (-765))) (-2566 (*1 *1 *1 *1) (-5 *1 (-765))) (-2565 (*1 *1 *1 *1) (-5 *1 (-765))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2564 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2563 (*1 *1 *1) (-5 *1 (-765))) (-3820 (*1 *1 *1) (-5 *1 (-765))) (-3820 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-765)))) (-2562 (*1 *1 *1) (-5 *1 (-765))) (-2562 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-765)))) (-2561 (*1 *1 *1) (-5 *1 (-765))) (-2560 (*1 *1 *1 *1) (-5 *1 (-765))) (-3516 (*1 *1 *1) (-5 *1 (-765))) (-3516 (*1 *1 *1 *1) (-5 *1 (-765))) (-3516 (*1 *1 *1 *1 *1) (-5 *1 (-765))) (-2559 (*1 *1 *1) (-5 *1 (-765))) (-2559 (*1 *1 *1 *1) (-5 *1 (-765))) (-2559 (*1 *1 *1 *1 *1) (-5 *1 (-765))) (-3454 (*1 *1 *1) (-5 *1 (-765))) (-3454 (*1 *1 *1 *1) (-5 *1 (-765))) (-3454 (*1 *1 *1 *1 *1) (-5 *1 (-765))) (-3223 (*1 *1 *1) (-5 *1 (-765))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2558 (*1 *1 *1) (-5 *1 (-765))) (-2558 (*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2557 (*1 *1 *1) (-5 *1 (-765))) (-2557 (*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2556 (*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2555 (*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2554 (*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2553 (*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-3037 (*1 *1 *1 *1) (-5 *1 (-765))) (-2552 (*1 *1 *1 *1) (-5 *1 (-765))) (-2669 (*1 *1 *1 *1) (-5 *1 (-765))) (-2551 (*1 *1 *1 *1) (-5 *1 (-765))) (-2668 (*1 *1 *1 *1) (-5 *1 (-765))) (-2550 (*1 *1 *1 *1) (-5 *1 (-765))) (-3823 (*1 *1 *1 *1) (-5 *1 (-765))) (-3821 (*1 *1 *1 *1) (-5 *1 (-765))) (-3821 (*1 *1 *1) (-5 *1 (-765))) (* (*1 *1 *1 *1) (-5 *1 (-765))) (-3933 (*1 *1 *1 *1) (-5 *1 (-765))) (** (*1 *1 *1 *1) (-5 *1 (-765))) (-2549 (*1 *1 *1 *1) (-5 *1 (-765))) (-2548 (*1 *1 *1 *1) (-5 *1 (-765))) (-2547 (*1 *1 *1 *1) (-5 *1 (-765))) (-3450 (*1 *1 *1 *1) (-5 *1 (-765))) (-2546 (*1 *1 *1 *1) (-5 *1 (-765))) (-2545 (*1 *1 *1 *1) (-5 *1 (-765))) (-2544 (*1 *1 *1) (-5 *1 (-765))) (-3721 (*1 *1 *1 *1) (-5 *1 (-765))) (-3721 (*1 *1 *1) (-5 *1 (-765)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3815 (((-3 $ "failed") (-1079)) 36 T ELT)) (-3119 (((-687)) 32 T ELT)) (-2978 (($) NIL T ELT)) (-2515 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2841 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1996 (((-823) $) 29 T ELT)) (-3225 (((-1062) $) 43 T ELT)) (-2386 (($ (-823)) 28 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3956 (((-1079) $) 13 T ELT) (((-467) $) 19 T ELT) (((-793 (-323)) $) 26 T ELT) (((-793 (-478)) $) 22 T ELT)) (-3930 (((-765) $) 16 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 40 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 38 T ELT))) +(((-766 |#1|) (-13 (-745) (-548 (-1079)) (-548 (-467)) (-548 (-793 (-323))) (-548 (-793 (-478))) (-10 -8 (-15 -3815 ((-3 $ "failed") (-1079))))) (-578 (-1079))) (T -766)) +((-3815 (*1 *1 *2) (|partial| -12 (-5 *2 (-1079)) (-5 *1 (-766 *3)) (-14 *3 (-578 *2))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3526 (((-439) $) 9 T ELT)) (-2592 (((-578 (-374)) $) 13 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 21 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 16 T ELT))) +(((-767) (-13 (-1005) (-10 -8 (-15 -3526 ((-439) $)) (-15 -2592 ((-578 (-374)) $))))) (T -767)) +((-3526 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-767)))) (-2592 (*1 *2 *1) (-12 (-5 *2 (-578 (-374))) (-5 *1 (-767))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-850 |#1|)) NIL T ELT) (((-850 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT)) (-3109 (((-687)) NIL T CONST)) (-3907 (((-1174) (-687)) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-144)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT))) +(((-768 |#1| |#2| |#3| |#4|) (-13 (-954) (-423 (-850 |#1|)) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-308)) (-15 -3933 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3907 ((-1174) (-687))))) (-954) (-578 (-1079)) (-578 (-687)) (-687)) (T -768)) +((-3933 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-768 *2 *3 *4 *5)) (-4 *2 (-308)) (-4 *2 (-954)) (-14 *3 (-578 (-1079))) (-14 *4 (-578 (-687))) (-14 *5 (-687)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1174)) (-5 *1 (-768 *4 *5 *6 *7)) (-4 *4 (-954)) (-14 *5 (-578 (-1079))) (-14 *6 (-578 *3)) (-14 *7 *3)))) +((-2593 (((-3 (-146 |#3|) #1="failed") (-687) (-687) |#2| |#2|) 38 T ELT)) (-2594 (((-3 (-343 |#3|) #1#) (-687) (-687) |#2| |#2|) 29 T ELT))) +(((-769 |#1| |#2| |#3|) (-10 -7 (-15 -2594 ((-3 (-343 |#3|) #1="failed") (-687) (-687) |#2| |#2|)) (-15 -2593 ((-3 (-146 |#3|) #1#) (-687) (-687) |#2| |#2|))) (-308) (-1161 |#1|) (-1144 |#1|)) (T -769)) +((-2593 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-687)) (-4 *5 (-308)) (-5 *2 (-146 *6)) (-5 *1 (-769 *5 *4 *6)) (-4 *4 (-1161 *5)) (-4 *6 (-1144 *5)))) (-2594 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-687)) (-4 *5 (-308)) (-5 *2 (-343 *6)) (-5 *1 (-769 *5 *4 *6)) (-4 *4 (-1161 *5)) (-4 *6 (-1144 *5))))) +((-2594 (((-3 (-343 (-1137 |#2| |#1|)) #1="failed") (-687) (-687) (-1158 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-343 (-1137 |#2| |#1|)) #1#) (-687) (-687) (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) 28 T ELT))) +(((-770 |#1| |#2| |#3|) (-10 -7 (-15 -2594 ((-3 (-343 (-1137 |#2| |#1|)) #1="failed") (-687) (-687) (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|))) (-15 -2594 ((-3 (-343 (-1137 |#2| |#1|)) #1#) (-687) (-687) (-1158 |#1| |#2| |#3|)))) (-308) (-1079) |#1|) (T -770)) +((-2594 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-687)) (-5 *4 (-1158 *5 *6 *7)) (-4 *5 (-308)) (-14 *6 (-1079)) (-14 *7 *5) (-5 *2 (-343 (-1137 *6 *5))) (-5 *1 (-770 *5 *6 *7)))) (-2594 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-687)) (-5 *4 (-1158 *5 *6 *7)) (-4 *5 (-308)) (-14 *6 (-1079)) (-14 *7 *5) (-5 *2 (-343 (-1137 *6 *5))) (-5 *1 (-770 *5 *6 *7))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3021 (($ $ (-478)) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2595 (($ (-1074 (-478)) (-478)) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2596 (($ $) NIL T ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3756 (((-687) $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2598 (((-478)) NIL T ELT)) (-2597 (((-478) $) NIL T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3753 (($ $ (-478)) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-2599 (((-1058 (-478)) $) NIL T ELT)) (-2875 (($ $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3754 (((-478) $ (-478)) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-771 |#1|) (-772 |#1|) (-478)) (T -771)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3021 (($ $ (-478)) 75 T ELT)) (-1595 (((-83) $ $) 72 T ELT)) (-3708 (($) 22 T CONST)) (-2595 (($ (-1074 (-478)) (-478)) 74 T ELT)) (-2548 (($ $ $) 68 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2596 (($ $) 77 T ELT)) (-2547 (($ $ $) 69 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 63 T ELT)) (-3756 (((-687) $) 82 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-1592 (((-3 (-578 $) #1="failed") (-578 $) $) 65 T ELT)) (-2598 (((-478)) 79 T ELT)) (-2597 (((-478) $) 78 T ELT)) (-1878 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 55 T ELT)) (-3127 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3753 (($ $ (-478)) 81 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-1594 (((-687) $) 71 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 70 T ELT)) (-2599 (((-1058 (-478)) $) 83 T ELT)) (-2875 (($ $) 80 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-3754 (((-478) $ (-478)) 76 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-772 |#1|) (-111) (-478)) (T -772)) +((-2599 (*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-5 *2 (-1058 (-478))))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-5 *2 (-687)))) (-3753 (*1 *1 *1 *2) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478)))) (-2875 (*1 *1 *1) (-4 *1 (-772 *2))) (-2598 (*1 *2) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478)))) (-2597 (*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478)))) (-2596 (*1 *1 *1) (-4 *1 (-772 *2))) (-3754 (*1 *2 *1 *2) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478)))) (-3021 (*1 *1 *1 *2) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478)))) (-2595 (*1 *1 *2 *3) (-12 (-5 *2 (-1074 (-478))) (-5 *3 (-478)) (-4 *1 (-772 *4))))) +(-13 (-254) (-118) (-10 -8 (-15 -2599 ((-1058 (-478)) $)) (-15 -3756 ((-687) $)) (-15 -3753 ($ $ (-478))) (-15 -2875 ($ $)) (-15 -2598 ((-478))) (-15 -2597 ((-478) $)) (-15 -2596 ($ $)) (-15 -3754 ((-478) $ (-478))) (-15 -3021 ($ $ (-478))) (-15 -2595 ($ (-1074 (-478)) (-478))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-242) . T) ((-254) . T) ((-385) . T) ((-489) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-577 $) . T) ((-649 $) . T) ((-658) . T) ((-825) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3112 (((-771 |#1|) $) NIL (|has| (-771 |#1|) (-254)) ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-771 |#1|) (-814)) ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| (-771 |#1|) (-814)) ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3607 (((-478) $) NIL (|has| (-771 |#1|) (-733)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-771 |#1|) #1#) $) NIL T ELT) (((-3 (-1079) #1#) $) NIL (|has| (-771 |#1|) (-943 (-1079))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| (-771 |#1|) (-943 (-478))) ELT) (((-3 (-478) #1#) $) NIL (|has| (-771 |#1|) (-943 (-478))) ELT)) (-3139 (((-771 |#1|) $) NIL T ELT) (((-1079) $) NIL (|has| (-771 |#1|) (-943 (-1079))) ELT) (((-343 (-478)) $) NIL (|has| (-771 |#1|) (-943 (-478))) ELT) (((-478) $) NIL (|has| (-771 |#1|) (-943 (-478))) ELT)) (-3714 (($ $) NIL T ELT) (($ (-478) $) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| (-771 |#1|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| (-771 |#1|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-771 |#1|))) (|:| |vec| (-1168 (-771 |#1|)))) (-625 $) (-1168 $)) NIL T ELT) (((-625 (-771 |#1|)) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($) NIL (|has| (-771 |#1|) (-477)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-3169 (((-83) $) NIL (|has| (-771 |#1|) (-733)) ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| (-771 |#1|) (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| (-771 |#1|) (-789 (-323))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2980 (($ $) NIL T ELT)) (-2982 (((-771 |#1|) $) NIL T ELT)) (-3429 (((-627 $) $) NIL (|has| (-771 |#1|) (-1055)) ELT)) (-3170 (((-83) $) NIL (|has| (-771 |#1|) (-733)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2515 (($ $ $) NIL (|has| (-771 |#1|) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| (-771 |#1|) (-749)) ELT)) (-3942 (($ (-1 (-771 |#1|) (-771 |#1|)) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| (-771 |#1|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| (-771 |#1|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-771 |#1|))) (|:| |vec| (-1168 (-771 |#1|)))) (-1168 $) $) NIL T ELT) (((-625 (-771 |#1|)) (-1168 $)) NIL T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3430 (($) NIL (|has| (-771 |#1|) (-1055)) CONST)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3111 (($ $) NIL (|has| (-771 |#1|) (-254)) ELT)) (-3113 (((-771 |#1|) $) NIL (|has| (-771 |#1|) (-477)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-771 |#1|) (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-771 |#1|) (-814)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-3752 (($ $ (-578 (-771 |#1|)) (-578 (-771 |#1|))) NIL (|has| (-771 |#1|) (-256 (-771 |#1|))) ELT) (($ $ (-771 |#1|) (-771 |#1|)) NIL (|has| (-771 |#1|) (-256 (-771 |#1|))) ELT) (($ $ (-245 (-771 |#1|))) NIL (|has| (-771 |#1|) (-256 (-771 |#1|))) ELT) (($ $ (-578 (-245 (-771 |#1|)))) NIL (|has| (-771 |#1|) (-256 (-771 |#1|))) ELT) (($ $ (-578 (-1079)) (-578 (-771 |#1|))) NIL (|has| (-771 |#1|) (-447 (-1079) (-771 |#1|))) ELT) (($ $ (-1079) (-771 |#1|)) NIL (|has| (-771 |#1|) (-447 (-1079) (-771 |#1|))) ELT)) (-1594 (((-687) $) NIL T ELT)) (-3784 (($ $ (-771 |#1|)) NIL (|has| (-771 |#1|) (-238 (-771 |#1|) (-771 |#1|))) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-3742 (($ $ (-1 (-771 |#1|) (-771 |#1|))) NIL T ELT) (($ $ (-1 (-771 |#1|) (-771 |#1|)) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| (-771 |#1|) (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| (-771 |#1|) (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| (-771 |#1|) (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| (-771 |#1|) (-804 (-1079))) ELT) (($ $) NIL (|has| (-771 |#1|) (-187)) ELT) (($ $ (-687)) NIL (|has| (-771 |#1|) (-187)) ELT)) (-2979 (($ $) NIL T ELT)) (-2981 (((-771 |#1|) $) NIL T ELT)) (-3956 (((-793 (-478)) $) NIL (|has| (-771 |#1|) (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| (-771 |#1|) (-548 (-793 (-323)))) ELT) (((-467) $) NIL (|has| (-771 |#1|) (-548 (-467))) ELT) (((-323) $) NIL (|has| (-771 |#1|) (-926)) ELT) (((-177) $) NIL (|has| (-771 |#1|) (-926)) ELT)) (-2600 (((-146 (-343 (-478))) $) NIL T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| (-771 |#1|) (-814))) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-771 |#1|)) NIL T ELT) (($ (-1079)) NIL (|has| (-771 |#1|) (-943 (-1079))) ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-771 |#1|) (-814))) (|has| (-771 |#1|) (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-3114 (((-771 |#1|) $) NIL (|has| (-771 |#1|) (-477)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3754 (((-343 (-478)) $ (-478)) NIL T ELT)) (-3367 (($ $) NIL (|has| (-771 |#1|) (-733)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $ (-1 (-771 |#1|) (-771 |#1|))) NIL T ELT) (($ $ (-1 (-771 |#1|) (-771 |#1|)) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| (-771 |#1|) (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| (-771 |#1|) (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| (-771 |#1|) (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| (-771 |#1|) (-804 (-1079))) ELT) (($ $) NIL (|has| (-771 |#1|) (-187)) ELT) (($ $ (-687)) NIL (|has| (-771 |#1|) (-187)) ELT)) (-2550 (((-83) $ $) NIL (|has| (-771 |#1|) (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-771 |#1|) (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL (|has| (-771 |#1|) (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| (-771 |#1|) (-749)) ELT)) (-3933 (($ $ $) NIL T ELT) (($ (-771 |#1|) (-771 |#1|)) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ (-771 |#1|) $) NIL T ELT) (($ $ (-771 |#1|)) NIL T ELT))) +(((-773 |#1|) (-13 (-897 (-771 |#1|)) (-10 -8 (-15 -3754 ((-343 (-478)) $ (-478))) (-15 -2600 ((-146 (-343 (-478))) $)) (-15 -3714 ($ $)) (-15 -3714 ($ (-478) $)))) (-478)) (T -773)) +((-3754 (*1 *2 *1 *3) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-773 *4)) (-14 *4 *3) (-5 *3 (-478)))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-146 (-343 (-478)))) (-5 *1 (-773 *3)) (-14 *3 (-478)))) (-3714 (*1 *1 *1) (-12 (-5 *1 (-773 *2)) (-14 *2 (-478)))) (-3714 (*1 *1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-773 *3)) (-14 *3 *2)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3112 ((|#2| $) NIL (|has| |#2| (-254)) ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3607 (((-478) $) NIL (|has| |#2| (-733)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1079) #1#) $) NIL (|has| |#2| (-943 (-1079))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT)) (-3139 ((|#2| $) NIL T ELT) (((-1079) $) NIL (|has| |#2| (-943 (-1079))) ELT) (((-343 (-478)) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-478) $) NIL (|has| |#2| (-943 (-478))) ELT)) (-3714 (($ $) 35 T ELT) (($ (-478) $) 38 T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#2|) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) 64 T ELT)) (-2978 (($) NIL (|has| |#2| (-477)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-3169 (((-83) $) NIL (|has| |#2| (-733)) ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| |#2| (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| |#2| (-789 (-323))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2980 (($ $) NIL T ELT)) (-2982 ((|#2| $) NIL T ELT)) (-3429 (((-627 $) $) NIL (|has| |#2| (-1055)) ELT)) (-3170 (((-83) $) NIL (|has| |#2| (-733)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2515 (($ $ $) NIL (|has| |#2| (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#2| (-749)) ELT)) (-3942 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-1168 $) $) NIL T ELT) (((-625 |#2|) (-1168 $)) NIL T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) 60 T ELT)) (-3430 (($) NIL (|has| |#2| (-1055)) CONST)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3111 (($ $) NIL (|has| |#2| (-254)) ELT)) (-3113 ((|#2| $) NIL (|has| |#2| (-477)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-3752 (($ $ (-578 |#2|) (-578 |#2|)) NIL (|has| |#2| (-256 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-256 |#2|)) ELT) (($ $ (-245 |#2|)) NIL (|has| |#2| (-256 |#2|)) ELT) (($ $ (-578 (-245 |#2|))) NIL (|has| |#2| (-256 |#2|)) ELT) (($ $ (-578 (-1079)) (-578 |#2|)) NIL (|has| |#2| (-447 (-1079) |#2|)) ELT) (($ $ (-1079) |#2|) NIL (|has| |#2| (-447 (-1079) |#2|)) ELT)) (-1594 (((-687) $) NIL T ELT)) (-3784 (($ $ |#2|) NIL (|has| |#2| (-238 |#2| |#2|)) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-3742 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-687)) NIL (|has| |#2| (-187)) ELT)) (-2979 (($ $) NIL T ELT)) (-2981 ((|#2| $) NIL T ELT)) (-3956 (((-793 (-478)) $) NIL (|has| |#2| (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| |#2| (-548 (-793 (-323)))) ELT) (((-467) $) NIL (|has| |#2| (-548 (-467))) ELT) (((-323) $) NIL (|has| |#2| (-926)) ELT) (((-177) $) NIL (|has| |#2| (-926)) ELT)) (-2600 (((-146 (-343 (-478))) $) 78 T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-814))) ELT)) (-3930 (((-765) $) 106 T ELT) (($ (-478)) 20 T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1079)) NIL (|has| |#2| (-943 (-1079))) ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-814))) (|has| |#2| (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-3114 ((|#2| $) NIL (|has| |#2| (-477)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3754 (((-343 (-478)) $ (-478)) 71 T ELT)) (-3367 (($ $) NIL (|has| |#2| (-733)) ELT)) (-2644 (($) 15 T CONST)) (-2650 (($) 17 T CONST)) (-2653 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-687)) NIL (|has| |#2| (-187)) ELT)) (-2550 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-3037 (((-83) $ $) 46 T ELT)) (-2668 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-3933 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3821 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3823 (($ $ $) 48 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 61 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) +(((-774 |#1| |#2|) (-13 (-897 |#2|) (-10 -8 (-15 -3754 ((-343 (-478)) $ (-478))) (-15 -2600 ((-146 (-343 (-478))) $)) (-15 -3714 ($ $)) (-15 -3714 ($ (-478) $)))) (-478) (-772 |#1|)) (T -774)) +((-3754 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-343 (-478))) (-5 *1 (-774 *4 *5)) (-5 *3 (-478)) (-4 *5 (-772 *4)))) (-2600 (*1 *2 *1) (-12 (-14 *3 (-478)) (-5 *2 (-146 (-343 (-478)))) (-5 *1 (-774 *3 *4)) (-4 *4 (-772 *3)))) (-3714 (*1 *1 *1) (-12 (-14 *2 (-478)) (-5 *1 (-774 *2 *3)) (-4 *3 (-772 *2)))) (-3714 (*1 *1 *2 *1) (-12 (-5 *2 (-478)) (-14 *3 *2) (-5 *1 (-774 *3 *4)) (-4 *4 (-772 *3))))) +((-2552 (((-83) $ $) NIL (-12 (|has| |#1| (-1005)) (|has| |#2| (-1005))) ELT)) (-3780 ((|#2| $) 12 T ELT)) (-2601 (($ |#1| |#2|) 9 T ELT)) (-3225 (((-1062) $) NIL (-12 (|has| |#1| (-1005)) (|has| |#2| (-1005))) ELT)) (-3226 (((-1023) $) NIL (-12 (|has| |#1| (-1005)) (|has| |#2| (-1005))) ELT)) (-3785 ((|#1| $) 11 T ELT)) (-3514 (($ |#1| |#2|) 10 T ELT)) (-3930 (((-765) $) 18 (OR (-12 (|has| |#1| (-547 (-765))) (|has| |#2| (-547 (-765)))) (-12 (|has| |#1| (-1005)) (|has| |#2| (-1005)))) ELT)) (-1253 (((-83) $ $) NIL (-12 (|has| |#1| (-1005)) (|has| |#2| (-1005))) ELT)) (-3037 (((-83) $ $) 23 (-12 (|has| |#1| (-1005)) (|has| |#2| (-1005))) ELT))) +(((-775 |#1| |#2|) (-13 (-1118) (-10 -8 (IF (|has| |#1| (-547 (-765))) (IF (|has| |#2| (-547 (-765))) (-6 (-547 (-765))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1005)) (IF (|has| |#2| (-1005)) (-6 (-1005)) |%noBranch|) |%noBranch|) (-15 -2601 ($ |#1| |#2|)) (-15 -3514 ($ |#1| |#2|)) (-15 -3785 (|#1| $)) (-15 -3780 (|#2| $)))) (-1118) (-1118)) (T -775)) +((-2601 (*1 *1 *2 *3) (-12 (-5 *1 (-775 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-3514 (*1 *1 *2 *3) (-12 (-5 *1 (-775 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-3785 (*1 *2 *1) (-12 (-4 *2 (-1118)) (-5 *1 (-775 *2 *3)) (-4 *3 (-1118)))) (-3780 (*1 *2 *1) (-12 (-4 *2 (-1118)) (-5 *1 (-775 *3 *2)) (-4 *3 (-1118))))) +((-2552 (((-83) $ $) NIL T ELT)) (-2941 (((-478) $) 16 T ELT)) (-2603 (($ (-128)) 13 T ELT)) (-2602 (($ (-128)) 14 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2940 (((-128) $) 15 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2605 (($ (-128)) 11 T ELT)) (-2606 (($ (-128)) 10 T ELT)) (-3930 (((-765) $) 24 T ELT) (($ (-128)) 17 T ELT)) (-2604 (($ (-128)) 12 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-776) (-13 (-1005) (-550 (-128)) (-10 -8 (-15 -2606 ($ (-128))) (-15 -2605 ($ (-128))) (-15 -2604 ($ (-128))) (-15 -2603 ($ (-128))) (-15 -2602 ($ (-128))) (-15 -2940 ((-128) $)) (-15 -2941 ((-478) $))))) (T -776)) +((-2606 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776)))) (-2605 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776)))) (-2604 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776)))) (-2603 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776)))) (-2602 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-128)) (-5 *1 (-776)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-776))))) +((-3930 (((-261 (-478)) (-343 (-850 (-48)))) 23 T ELT) (((-261 (-478)) (-850 (-48))) 18 T ELT))) +(((-777) (-10 -7 (-15 -3930 ((-261 (-478)) (-850 (-48)))) (-15 -3930 ((-261 (-478)) (-343 (-850 (-48))))))) (T -777)) +((-3930 (*1 *2 *3) (-12 (-5 *3 (-343 (-850 (-48)))) (-5 *2 (-261 (-478))) (-5 *1 (-777)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-850 (-48))) (-5 *2 (-261 (-478))) (-5 *1 (-777))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 18 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-3550 (((-83) $ (|[\|\|]| (-439))) 9 T ELT) (((-83) $ (|[\|\|]| (-1062))) 13 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3556 (((-439) $) 10 T ELT) (((-1062) $) 14 T ELT)) (-3037 (((-83) $ $) 15 T ELT))) +(((-778) (-13 (-987) (-1164) (-10 -8 (-15 -3550 ((-83) $ (|[\|\|]| (-439)))) (-15 -3556 ((-439) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-1062)))) (-15 -3556 ((-1062) $))))) (T -778)) +((-3550 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-439))) (-5 *2 (-83)) (-5 *1 (-778)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-778)))) (-3550 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1062))) (-5 *2 (-83)) (-5 *1 (-778)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-1062)) (-5 *1 (-778))))) +((-3942 (((-780 |#2|) (-1 |#2| |#1|) (-780 |#1|)) 15 T ELT))) +(((-779 |#1| |#2|) (-10 -7 (-15 -3942 ((-780 |#2|) (-1 |#2| |#1|) (-780 |#1|)))) (-1118) (-1118)) (T -779)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-780 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-780 *6)) (-5 *1 (-779 *5 *6))))) +((-3355 (($ |#1| |#1|) 8 T ELT)) (-2609 ((|#1| $ (-687)) 15 T ELT))) +(((-780 |#1|) (-10 -8 (-15 -3355 ($ |#1| |#1|)) (-15 -2609 (|#1| $ (-687)))) (-1118)) (T -780)) +((-2609 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *1 (-780 *2)) (-4 *2 (-1118)))) (-3355 (*1 *1 *2 *2) (-12 (-5 *1 (-780 *2)) (-4 *2 (-1118))))) +((-3942 (((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)) 15 T ELT))) +(((-781 |#1| |#2|) (-10 -7 (-15 -3942 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)))) (-1118) (-1118)) (T -781)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6))))) +((-3355 (($ |#1| |#1| |#1|) 8 T ELT)) (-2609 ((|#1| $ (-687)) 15 T ELT))) +(((-782 |#1|) (-10 -8 (-15 -3355 ($ |#1| |#1| |#1|)) (-15 -2609 (|#1| $ (-687)))) (-1118)) (T -782)) +((-2609 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *1 (-782 *2)) (-4 *2 (-1118)))) (-3355 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1118))))) +((-2607 (((-578 (-1084)) (-1062)) 9 T ELT))) +(((-783) (-10 -7 (-15 -2607 ((-578 (-1084)) (-1062))))) (T -783)) +((-2607 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-578 (-1084))) (-5 *1 (-783))))) +((-3942 (((-785 |#2|) (-1 |#2| |#1|) (-785 |#1|)) 15 T ELT))) +(((-784 |#1| |#2|) (-10 -7 (-15 -3942 ((-785 |#2|) (-1 |#2| |#1|) (-785 |#1|)))) (-1118) (-1118)) (T -784)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-785 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-785 *6)) (-5 *1 (-784 *5 *6))))) +((-2608 (($ |#1| |#1| |#1|) 8 T ELT)) (-2609 ((|#1| $ (-687)) 15 T ELT))) +(((-785 |#1|) (-10 -8 (-15 -2608 ($ |#1| |#1| |#1|)) (-15 -2609 (|#1| $ (-687)))) (-1118)) (T -785)) +((-2609 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *1 (-785 *2)) (-4 *2 (-1118)))) (-2608 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-785 *2)) (-4 *2 (-1118))))) +((-2612 (((-1058 (-578 (-478))) (-578 (-478)) (-1058 (-578 (-478)))) 41 T ELT)) (-2611 (((-1058 (-578 (-478))) (-578 (-478)) (-578 (-478))) 31 T ELT)) (-2613 (((-1058 (-578 (-478))) (-578 (-478))) 53 T ELT) (((-1058 (-578 (-478))) (-578 (-478)) (-578 (-478))) 50 T ELT)) (-2614 (((-1058 (-578 (-478))) (-478)) 55 T ELT)) (-2610 (((-1058 (-578 (-823))) (-1058 (-578 (-823)))) 22 T ELT)) (-2993 (((-578 (-823)) (-578 (-823))) 18 T ELT))) +(((-786) (-10 -7 (-15 -2993 ((-578 (-823)) (-578 (-823)))) (-15 -2610 ((-1058 (-578 (-823))) (-1058 (-578 (-823))))) (-15 -2611 ((-1058 (-578 (-478))) (-578 (-478)) (-578 (-478)))) (-15 -2612 ((-1058 (-578 (-478))) (-578 (-478)) (-1058 (-578 (-478))))) (-15 -2613 ((-1058 (-578 (-478))) (-578 (-478)) (-578 (-478)))) (-15 -2613 ((-1058 (-578 (-478))) (-578 (-478)))) (-15 -2614 ((-1058 (-578 (-478))) (-478))))) (T -786)) +((-2614 (*1 *2 *3) (-12 (-5 *2 (-1058 (-578 (-478)))) (-5 *1 (-786)) (-5 *3 (-478)))) (-2613 (*1 *2 *3) (-12 (-5 *2 (-1058 (-578 (-478)))) (-5 *1 (-786)) (-5 *3 (-578 (-478))))) (-2613 (*1 *2 *3 *3) (-12 (-5 *2 (-1058 (-578 (-478)))) (-5 *1 (-786)) (-5 *3 (-578 (-478))))) (-2612 (*1 *2 *3 *2) (-12 (-5 *2 (-1058 (-578 (-478)))) (-5 *3 (-578 (-478))) (-5 *1 (-786)))) (-2611 (*1 *2 *3 *3) (-12 (-5 *2 (-1058 (-578 (-478)))) (-5 *1 (-786)) (-5 *3 (-578 (-478))))) (-2610 (*1 *2 *2) (-12 (-5 *2 (-1058 (-578 (-823)))) (-5 *1 (-786)))) (-2993 (*1 *2 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-786))))) +((-3956 (((-793 (-323)) $) 9 (|has| |#1| (-548 (-793 (-323)))) ELT) (((-793 (-478)) $) 8 (|has| |#1| (-548 (-793 (-478)))) ELT))) +(((-787 |#1|) (-111) (-1118)) (T -787)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-548 (-793 (-478)))) (-6 (-548 (-793 (-478)))) |%noBranch|) (IF (|has| |t#1| (-548 (-793 (-323)))) (-6 (-548 (-793 (-323)))) |%noBranch|))) +(((-548 (-793 (-323))) |has| |#1| (-548 (-793 (-323)))) ((-548 (-793 (-478))) |has| |#1| (-548 (-793 (-478))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3598 (($) 14 T ELT)) (-2616 (($ (-791 |#1| |#2|) (-791 |#1| |#3|)) 28 T ELT)) (-2615 (((-791 |#1| |#3|) $) 16 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2624 (((-83) $) 22 T ELT)) (-2623 (($) 19 T ELT)) (-3930 (((-765) $) 31 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2834 (((-791 |#1| |#2|) $) 15 T ELT)) (-3037 (((-83) $ $) 26 T ELT))) +(((-788 |#1| |#2| |#3|) (-13 (-1005) (-10 -8 (-15 -2624 ((-83) $)) (-15 -2623 ($)) (-15 -3598 ($)) (-15 -2616 ($ (-791 |#1| |#2|) (-791 |#1| |#3|))) (-15 -2834 ((-791 |#1| |#2|) $)) (-15 -2615 ((-791 |#1| |#3|) $)))) (-1005) (-1005) (-603 |#2|)) (T -788)) +((-2624 (*1 *2 *1) (-12 (-4 *4 (-1005)) (-5 *2 (-83)) (-5 *1 (-788 *3 *4 *5)) (-4 *3 (-1005)) (-4 *5 (-603 *4)))) (-2623 (*1 *1) (-12 (-4 *3 (-1005)) (-5 *1 (-788 *2 *3 *4)) (-4 *2 (-1005)) (-4 *4 (-603 *3)))) (-3598 (*1 *1) (-12 (-4 *3 (-1005)) (-5 *1 (-788 *2 *3 *4)) (-4 *2 (-1005)) (-4 *4 (-603 *3)))) (-2616 (*1 *1 *2 *3) (-12 (-5 *2 (-791 *4 *5)) (-5 *3 (-791 *4 *6)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-603 *5)) (-5 *1 (-788 *4 *5 *6)))) (-2834 (*1 *2 *1) (-12 (-4 *4 (-1005)) (-5 *2 (-791 *3 *4)) (-5 *1 (-788 *3 *4 *5)) (-4 *3 (-1005)) (-4 *5 (-603 *4)))) (-2615 (*1 *2 *1) (-12 (-4 *4 (-1005)) (-5 *2 (-791 *3 *5)) (-5 *1 (-788 *3 *4 *5)) (-4 *3 (-1005)) (-4 *5 (-603 *4))))) +((-2552 (((-83) $ $) 7 T ELT)) (-2780 (((-791 |#1| $) $ (-793 |#1|) (-791 |#1| $)) 17 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(((-789 |#1|) (-111) (-1005)) (T -789)) +((-2780 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-791 *4 *1)) (-5 *3 (-793 *4)) (-4 *1 (-789 *4)) (-4 *4 (-1005))))) +(-13 (-1005) (-10 -8 (-15 -2780 ((-791 |t#1| $) $ (-793 |t#1|) (-791 |t#1| $))))) +(((-72) . T) ((-547 (-765)) . T) ((-1005) . T) ((-1118) . T)) +((-2617 (((-83) (-578 |#2|) |#3|) 23 T ELT) (((-83) |#2| |#3|) 18 T ELT)) (-2618 (((-791 |#1| |#2|) |#2| |#3|) 45 (-12 (-2544 (|has| |#2| (-943 (-1079)))) (-2544 (|has| |#2| (-954)))) ELT) (((-578 (-245 (-850 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-954)) (-2544 (|has| |#2| (-943 (-1079))))) ELT) (((-578 (-245 |#2|)) |#2| |#3|) 36 (|has| |#2| (-943 (-1079))) ELT) (((-788 |#1| |#2| (-578 |#2|)) (-578 |#2|) |#3|) 21 T ELT))) +(((-790 |#1| |#2| |#3|) (-10 -7 (-15 -2617 ((-83) |#2| |#3|)) (-15 -2617 ((-83) (-578 |#2|) |#3|)) (-15 -2618 ((-788 |#1| |#2| (-578 |#2|)) (-578 |#2|) |#3|)) (IF (|has| |#2| (-943 (-1079))) (-15 -2618 ((-578 (-245 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-954)) (-15 -2618 ((-578 (-245 (-850 |#2|))) |#2| |#3|)) (-15 -2618 ((-791 |#1| |#2|) |#2| |#3|))))) (-1005) (-789 |#1|) (-548 (-793 |#1|))) (T -790)) +((-2618 (*1 *2 *3 *4) (-12 (-4 *5 (-1005)) (-5 *2 (-791 *5 *3)) (-5 *1 (-790 *5 *3 *4)) (-2544 (-4 *3 (-943 (-1079)))) (-2544 (-4 *3 (-954))) (-4 *3 (-789 *5)) (-4 *4 (-548 (-793 *5))))) (-2618 (*1 *2 *3 *4) (-12 (-4 *5 (-1005)) (-5 *2 (-578 (-245 (-850 *3)))) (-5 *1 (-790 *5 *3 *4)) (-4 *3 (-954)) (-2544 (-4 *3 (-943 (-1079)))) (-4 *3 (-789 *5)) (-4 *4 (-548 (-793 *5))))) (-2618 (*1 *2 *3 *4) (-12 (-4 *5 (-1005)) (-5 *2 (-578 (-245 *3))) (-5 *1 (-790 *5 *3 *4)) (-4 *3 (-943 (-1079))) (-4 *3 (-789 *5)) (-4 *4 (-548 (-793 *5))))) (-2618 (*1 *2 *3 *4) (-12 (-4 *5 (-1005)) (-4 *6 (-789 *5)) (-5 *2 (-788 *5 *6 (-578 *6))) (-5 *1 (-790 *5 *6 *4)) (-5 *3 (-578 *6)) (-4 *4 (-548 (-793 *5))))) (-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-4 *6 (-789 *5)) (-4 *5 (-1005)) (-5 *2 (-83)) (-5 *1 (-790 *5 *6 *4)) (-4 *4 (-548 (-793 *5))))) (-2617 (*1 *2 *3 *4) (-12 (-4 *5 (-1005)) (-5 *2 (-83)) (-5 *1 (-790 *5 *3 *4)) (-4 *3 (-789 *5)) (-4 *4 (-548 (-793 *5)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3217 (($ $ $) 40 T ELT)) (-2645 (((-3 (-83) #1="failed") $ (-793 |#1|)) 37 T ELT)) (-3598 (($) 12 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2620 (($ (-793 |#1|) |#2| $) 20 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2622 (((-3 |#2| #1#) (-793 |#1|) $) 51 T ELT)) (-2624 (((-83) $) 15 T ELT)) (-2623 (($) 13 T ELT)) (-3240 (((-578 (-2 (|:| -3844 (-1079)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3514 (($ (-578 (-2 (|:| -3844 (-1079)) (|:| |entry| |#2|)))) 23 T ELT)) (-3930 (((-765) $) 45 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2619 (($ (-793 |#1|) |#2| $ |#2|) 49 T ELT)) (-2621 (($ (-793 |#1|) |#2| $) 48 T ELT)) (-3037 (((-83) $ $) 42 T ELT))) +(((-791 |#1| |#2|) (-13 (-1005) (-10 -8 (-15 -2624 ((-83) $)) (-15 -2623 ($)) (-15 -3598 ($)) (-15 -3217 ($ $ $)) (-15 -2622 ((-3 |#2| #1="failed") (-793 |#1|) $)) (-15 -2621 ($ (-793 |#1|) |#2| $)) (-15 -2620 ($ (-793 |#1|) |#2| $)) (-15 -2619 ($ (-793 |#1|) |#2| $ |#2|)) (-15 -3240 ((-578 (-2 (|:| -3844 (-1079)) (|:| |entry| |#2|))) $)) (-15 -3514 ($ (-578 (-2 (|:| -3844 (-1079)) (|:| |entry| |#2|))))) (-15 -2645 ((-3 (-83) #1#) $ (-793 |#1|))))) (-1005) (-1005)) (T -791)) +((-2624 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-791 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) (-2623 (*1 *1) (-12 (-5 *1 (-791 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))) (-3598 (*1 *1) (-12 (-5 *1 (-791 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))) (-3217 (*1 *1 *1 *1) (-12 (-5 *1 (-791 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))) (-2622 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-793 *4)) (-4 *4 (-1005)) (-4 *2 (-1005)) (-5 *1 (-791 *4 *2)))) (-2621 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-793 *4)) (-4 *4 (-1005)) (-5 *1 (-791 *4 *3)) (-4 *3 (-1005)))) (-2620 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-793 *4)) (-4 *4 (-1005)) (-5 *1 (-791 *4 *3)) (-4 *3 (-1005)))) (-2619 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-793 *4)) (-4 *4 (-1005)) (-5 *1 (-791 *4 *3)) (-4 *3 (-1005)))) (-3240 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3844 (-1079)) (|:| |entry| *4)))) (-5 *1 (-791 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3844 (-1079)) (|:| |entry| *4)))) (-4 *4 (-1005)) (-5 *1 (-791 *3 *4)) (-4 *3 (-1005)))) (-2645 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-793 *4)) (-4 *4 (-1005)) (-5 *2 (-83)) (-5 *1 (-791 *4 *5)) (-4 *5 (-1005))))) +((-3942 (((-791 |#1| |#3|) (-1 |#3| |#2|) (-791 |#1| |#2|)) 22 T ELT))) +(((-792 |#1| |#2| |#3|) (-10 -7 (-15 -3942 ((-791 |#1| |#3|) (-1 |#3| |#2|) (-791 |#1| |#2|)))) (-1005) (-1005) (-1005)) (T -792)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-791 *5 *6)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-791 *5 *7)) (-5 *1 (-792 *5 *6 *7))))) +((-2552 (((-83) $ $) NIL T ELT)) (-2632 (($ $ (-578 (-51))) 74 T ELT)) (-3065 (((-578 $) $) 139 T ELT)) (-2629 (((-2 (|:| |var| (-578 (-1079))) (|:| |pred| (-51))) $) 30 T ELT)) (-3243 (((-83) $) 35 T ELT)) (-2630 (($ $ (-578 (-1079)) (-51)) 31 T ELT)) (-2633 (($ $ (-578 (-51))) 73 T ELT)) (-3140 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1079) #1#) $) 167 T ELT)) (-3139 ((|#1| $) 68 T ELT) (((-1079) $) NIL T ELT)) (-2627 (($ $) 126 T ELT)) (-2639 (((-83) $) 55 T ELT)) (-2634 (((-578 (-51)) $) 50 T ELT)) (-2631 (($ (-1079) (-83) (-83) (-83)) 75 T ELT)) (-2625 (((-3 (-578 $) #1#) (-578 $)) 82 T ELT)) (-2636 (((-83) $) 58 T ELT)) (-2637 (((-83) $) 57 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2807 (((-3 (-578 $) #1#) $) 41 T ELT)) (-2642 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2809 (((-3 (-2 (|:| |val| $) (|:| -2387 $)) #1#) $) 97 T ELT)) (-2806 (((-3 (-578 $) #1#) $) 40 T ELT)) (-2643 (((-3 (-578 $) #1#) $ (-84)) 124 T ELT) (((-3 (-2 (|:| -2497 (-84)) (|:| |arg| (-578 $))) #1#) $) 107 T ELT)) (-2641 (((-3 (-578 $) #1#) $) 42 T ELT)) (-2808 (((-3 (-2 (|:| |val| $) (|:| -2387 (-687))) #1#) $) 45 T ELT)) (-2640 (((-83) $) 34 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2628 (((-83) $) 28 T ELT)) (-2635 (((-83) $) 52 T ELT)) (-2626 (((-578 (-51)) $) 130 T ELT)) (-2638 (((-83) $) 56 T ELT)) (-3784 (($ (-84) (-578 $)) 104 T ELT)) (-3307 (((-687) $) 33 T ELT)) (-3384 (($ $) 72 T ELT)) (-3956 (($ (-578 $)) 69 T ELT)) (-3937 (((-83) $) 32 T ELT)) (-3930 (((-765) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1079)) 76 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2646 (($ $ (-51)) 129 T ELT)) (-2644 (($) 103 T CONST)) (-2650 (($) 83 T CONST)) (-3037 (((-83) $ $) 93 T ELT)) (-3933 (($ $ $) 117 T ELT)) (-3823 (($ $ $) 121 T ELT)) (** (($ $ (-687)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) +(((-793 |#1|) (-13 (-1005) (-943 |#1|) (-943 (-1079)) (-10 -8 (-15 0 ($) -3936) (-15 1 ($) -3936) (-15 -2806 ((-3 (-578 $) #1="failed") $)) (-15 -2807 ((-3 (-578 $) #1#) $)) (-15 -2643 ((-3 (-578 $) #1#) $ (-84))) (-15 -2643 ((-3 (-2 (|:| -2497 (-84)) (|:| |arg| (-578 $))) #1#) $)) (-15 -2808 ((-3 (-2 (|:| |val| $) (|:| -2387 (-687))) #1#) $)) (-15 -2642 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2641 ((-3 (-578 $) #1#) $)) (-15 -2809 ((-3 (-2 (|:| |val| $) (|:| -2387 $)) #1#) $)) (-15 -3784 ($ (-84) (-578 $))) (-15 -3823 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-687))) (-15 ** ($ $ $)) (-15 -3933 ($ $ $)) (-15 -3307 ((-687) $)) (-15 -3956 ($ (-578 $))) (-15 -3384 ($ $)) (-15 -2640 ((-83) $)) (-15 -2639 ((-83) $)) (-15 -3243 ((-83) $)) (-15 -3937 ((-83) $)) (-15 -2638 ((-83) $)) (-15 -2637 ((-83) $)) (-15 -2636 ((-83) $)) (-15 -2635 ((-83) $)) (-15 -2634 ((-578 (-51)) $)) (-15 -2633 ($ $ (-578 (-51)))) (-15 -2632 ($ $ (-578 (-51)))) (-15 -2631 ($ (-1079) (-83) (-83) (-83))) (-15 -2630 ($ $ (-578 (-1079)) (-51))) (-15 -2629 ((-2 (|:| |var| (-578 (-1079))) (|:| |pred| (-51))) $)) (-15 -2628 ((-83) $)) (-15 -2627 ($ $)) (-15 -2646 ($ $ (-51))) (-15 -2626 ((-578 (-51)) $)) (-15 -3065 ((-578 $) $)) (-15 -2625 ((-3 (-578 $) #1#) (-578 $))))) (-1005)) (T -793)) +((-2644 (*1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1005)))) (-2650 (*1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1005)))) (-2806 (*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2807 (*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2643 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-84)) (-5 *2 (-578 (-793 *4))) (-5 *1 (-793 *4)) (-4 *4 (-1005)))) (-2643 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2497 (-84)) (|:| |arg| (-578 (-793 *3))))) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2808 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-793 *3)) (|:| -2387 (-687)))) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2642 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-793 *3)) (|:| |den| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2641 (*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2809 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-793 *3)) (|:| -2387 (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-3784 (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-578 (-793 *4))) (-5 *1 (-793 *4)) (-4 *4 (-1005)))) (-3823 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1005)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1005)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1005)))) (-3933 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1005)))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-3384 (*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1005)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2638 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2637 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2636 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2635 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-578 (-51))) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2633 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-51))) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2632 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-51))) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2631 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1079)) (-5 *3 (-83)) (-5 *1 (-793 *4)) (-4 *4 (-1005)))) (-2630 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1079))) (-5 *3 (-51)) (-5 *1 (-793 *4)) (-4 *4 (-1005)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-578 (-1079))) (|:| |pred| (-51)))) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2628 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2627 (*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1005)))) (-2646 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2626 (*1 *2 *1) (-12 (-5 *2 (-578 (-51))) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) (-2625 (*1 *2 *2) (|partial| -12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1005))))) +((-3192 (((-793 |#1|) (-793 |#1|) (-578 (-1079)) (-1 (-83) (-578 |#2|))) 32 T ELT) (((-793 |#1|) (-793 |#1|) (-578 (-1 (-83) |#2|))) 46 T ELT) (((-793 |#1|) (-793 |#1|) (-1 (-83) |#2|)) 35 T ELT)) (-2645 (((-83) (-578 |#2|) (-793 |#1|)) 42 T ELT) (((-83) |#2| (-793 |#1|)) 36 T ELT)) (-3515 (((-1 (-83) |#2|) (-793 |#1|)) 16 T ELT)) (-2647 (((-578 |#2|) (-793 |#1|)) 24 T ELT)) (-2646 (((-793 |#1|) (-793 |#1|) |#2|) 20 T ELT))) +(((-794 |#1| |#2|) (-10 -7 (-15 -3192 ((-793 |#1|) (-793 |#1|) (-1 (-83) |#2|))) (-15 -3192 ((-793 |#1|) (-793 |#1|) (-578 (-1 (-83) |#2|)))) (-15 -3192 ((-793 |#1|) (-793 |#1|) (-578 (-1079)) (-1 (-83) (-578 |#2|)))) (-15 -3515 ((-1 (-83) |#2|) (-793 |#1|))) (-15 -2645 ((-83) |#2| (-793 |#1|))) (-15 -2645 ((-83) (-578 |#2|) (-793 |#1|))) (-15 -2646 ((-793 |#1|) (-793 |#1|) |#2|)) (-15 -2647 ((-578 |#2|) (-793 |#1|)))) (-1005) (-1118)) (T -794)) +((-2647 (*1 *2 *3) (-12 (-5 *3 (-793 *4)) (-4 *4 (-1005)) (-5 *2 (-578 *5)) (-5 *1 (-794 *4 *5)) (-4 *5 (-1118)))) (-2646 (*1 *2 *2 *3) (-12 (-5 *2 (-793 *4)) (-4 *4 (-1005)) (-5 *1 (-794 *4 *3)) (-4 *3 (-1118)))) (-2645 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-793 *5)) (-4 *5 (-1005)) (-4 *6 (-1118)) (-5 *2 (-83)) (-5 *1 (-794 *5 *6)))) (-2645 (*1 *2 *3 *4) (-12 (-5 *4 (-793 *5)) (-4 *5 (-1005)) (-5 *2 (-83)) (-5 *1 (-794 *5 *3)) (-4 *3 (-1118)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-793 *4)) (-4 *4 (-1005)) (-5 *2 (-1 (-83) *5)) (-5 *1 (-794 *4 *5)) (-4 *5 (-1118)))) (-3192 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-793 *5)) (-5 *3 (-578 (-1079))) (-5 *4 (-1 (-83) (-578 *6))) (-4 *5 (-1005)) (-4 *6 (-1118)) (-5 *1 (-794 *5 *6)))) (-3192 (*1 *2 *2 *3) (-12 (-5 *2 (-793 *4)) (-5 *3 (-578 (-1 (-83) *5))) (-4 *4 (-1005)) (-4 *5 (-1118)) (-5 *1 (-794 *4 *5)))) (-3192 (*1 *2 *2 *3) (-12 (-5 *2 (-793 *4)) (-5 *3 (-1 (-83) *5)) (-4 *4 (-1005)) (-4 *5 (-1118)) (-5 *1 (-794 *4 *5))))) +((-3942 (((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)) 19 T ELT))) +(((-795 |#1| |#2|) (-10 -7 (-15 -3942 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)))) (-1005) (-1005)) (T -795)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *2 (-793 *6)) (-5 *1 (-795 *5 *6))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3918 (((-578 |#1|) $) 19 T ELT)) (-2648 (((-83) $) 49 T ELT)) (-3140 (((-3 (-609 |#1|) "failed") $) 55 T ELT)) (-3139 (((-609 |#1|) $) 53 T ELT)) (-3783 (($ $) 23 T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3817 (((-687) $) 60 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3785 (((-609 |#1|) $) 21 T ELT)) (-3930 (((-765) $) 47 T ELT) (($ (-609 |#1|)) 26 T ELT) (((-732 |#1|) $) 36 T ELT) (($ |#1|) 25 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2650 (($) 9 T CONST)) (-2649 (((-578 (-609 |#1|)) $) 28 T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 12 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 66 T ELT))) +(((-796 |#1|) (-13 (-749) (-943 (-609 |#1|)) (-10 -8 (-15 1 ($) -3936) (-15 -3930 ((-732 |#1|) $)) (-15 -3930 ($ |#1|)) (-15 -3785 ((-609 |#1|) $)) (-15 -3817 ((-687) $)) (-15 -2649 ((-578 (-609 |#1|)) $)) (-15 -3783 ($ $)) (-15 -2648 ((-83) $)) (-15 -3918 ((-578 |#1|) $)))) (-749)) (T -796)) +((-2650 (*1 *1) (-12 (-5 *1 (-796 *2)) (-4 *2 (-749)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-732 *3)) (-5 *1 (-796 *3)) (-4 *3 (-749)))) (-3930 (*1 *1 *2) (-12 (-5 *1 (-796 *2)) (-4 *2 (-749)))) (-3785 (*1 *2 *1) (-12 (-5 *2 (-609 *3)) (-5 *1 (-796 *3)) (-4 *3 (-749)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-796 *3)) (-4 *3 (-749)))) (-2649 (*1 *2 *1) (-12 (-5 *2 (-578 (-609 *3))) (-5 *1 (-796 *3)) (-4 *3 (-749)))) (-3783 (*1 *1 *1) (-12 (-5 *1 (-796 *2)) (-4 *2 (-749)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-796 *3)) (-4 *3 (-749)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-796 *3)) (-4 *3 (-749))))) +((-3458 ((|#1| |#1| |#1|) 19 T ELT))) +(((-797 |#1| |#2|) (-10 -7 (-15 -3458 (|#1| |#1| |#1|))) (-1144 |#2|) (-954)) (T -797)) +((-3458 (*1 *2 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-797 *2 *3)) (-4 *2 (-1144 *3))))) +((-2653 ((|#2| $ |#3|) 10 T ELT))) +(((-798 |#1| |#2| |#3|) (-10 -7 (-15 -2653 (|#2| |#1| |#3|))) (-799 |#2| |#3|) (-1118) (-1118)) (T -798)) +NIL +((-3742 ((|#1| $ |#2|) 7 T ELT)) (-2653 ((|#1| $ |#2|) 6 T ELT))) +(((-799 |#1| |#2|) (-111) (-1118) (-1118)) (T -799)) +((-3742 (*1 *2 *1 *3) (-12 (-4 *1 (-799 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1118)))) (-2653 (*1 *2 *1 *3) (-12 (-4 *1 (-799 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1118))))) +(-13 (-1118) (-10 -8 (-15 -3742 (|t#1| $ |t#2|)) (-15 -2653 (|t#1| $ |t#2|)))) +(((-1118) . T)) +((-2652 ((|#1| |#1| (-687)) 26 T ELT)) (-2651 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3419 (((-3 (-2 (|:| -3121 |#1|) (|:| -3120 |#1|)) #1#) |#1| (-687) (-687)) 29 T ELT) (((-578 |#1|) |#1|) 38 T ELT))) +(((-800 |#1| |#2|) (-10 -7 (-15 -3419 ((-578 |#1|) |#1|)) (-15 -3419 ((-3 (-2 (|:| -3121 |#1|) (|:| -3120 |#1|)) #1="failed") |#1| (-687) (-687))) (-15 -2651 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2652 (|#1| |#1| (-687)))) (-1144 |#2|) (-308)) (T -800)) +((-2652 (*1 *2 *2 *3) (-12 (-5 *3 (-687)) (-4 *4 (-308)) (-5 *1 (-800 *2 *4)) (-4 *2 (-1144 *4)))) (-2651 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-308)) (-5 *1 (-800 *2 *3)) (-4 *2 (-1144 *3)))) (-3419 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-687)) (-4 *5 (-308)) (-5 *2 (-2 (|:| -3121 *3) (|:| -3120 *3))) (-5 *1 (-800 *3 *5)) (-4 *3 (-1144 *5)))) (-3419 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-578 *3)) (-5 *1 (-800 *3 *4)) (-4 *3 (-1144 *4))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3742 (($ $ (-578 |#2|) (-578 (-687))) 44 T ELT) (($ $ |#2| (-687)) 43 T ELT) (($ $ (-578 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2653 (($ $ (-578 |#2|) (-578 (-687))) 47 T ELT) (($ $ |#2| (-687)) 46 T ELT) (($ $ (-578 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-801 |#1| |#2|) (-111) (-954) (-1005)) (T -801)) +NIL +(-13 (-80 |t#1| |t#1|) (-804 |t#2|) (-10 -7 (IF (|has| |t#1| (-144)) (-6 (-649 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) |has| |#1| (-144)) ((-649 |#1|) |has| |#1| (-144)) ((-799 $ |#2|) . T) ((-804 |#2|) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3742 (($ $ (-578 |#1|) (-578 (-687))) 49 T ELT) (($ $ |#1| (-687)) 48 T ELT) (($ $ (-578 |#1|)) 47 T ELT) (($ $ |#1|) 45 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-578 |#1|) (-578 (-687))) 52 T ELT) (($ $ |#1| (-687)) 51 T ELT) (($ $ (-578 |#1|)) 50 T ELT) (($ $ |#1|) 46 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-802 |#1|) (-111) (-1005)) (T -802)) +NIL +(-13 (-954) (-804 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-658) . T) ((-799 $ |#1|) . T) ((-804 |#1|) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-3742 (($ $ |#2|) NIL T ELT) (($ $ (-578 |#2|)) 10 T ELT) (($ $ |#2| (-687)) 12 T ELT) (($ $ (-578 |#2|) (-578 (-687))) 15 T ELT)) (-2653 (($ $ |#2|) 16 T ELT) (($ $ (-578 |#2|)) 18 T ELT) (($ $ |#2| (-687)) 19 T ELT) (($ $ (-578 |#2|) (-578 (-687))) 21 T ELT))) +(((-803 |#1| |#2|) (-10 -7 (-15 -2653 (|#1| |#1| (-578 |#2|) (-578 (-687)))) (-15 -2653 (|#1| |#1| |#2| (-687))) (-15 -2653 (|#1| |#1| (-578 |#2|))) (-15 -3742 (|#1| |#1| (-578 |#2|) (-578 (-687)))) (-15 -3742 (|#1| |#1| |#2| (-687))) (-15 -3742 (|#1| |#1| (-578 |#2|))) (-15 -2653 (|#1| |#1| |#2|)) (-15 -3742 (|#1| |#1| |#2|))) (-804 |#2|) (-1005)) (T -803)) +NIL +((-3742 (($ $ |#1|) 7 T ELT) (($ $ (-578 |#1|)) 15 T ELT) (($ $ |#1| (-687)) 14 T ELT) (($ $ (-578 |#1|) (-578 (-687))) 13 T ELT)) (-2653 (($ $ |#1|) 6 T ELT) (($ $ (-578 |#1|)) 12 T ELT) (($ $ |#1| (-687)) 11 T ELT) (($ $ (-578 |#1|) (-578 (-687))) 10 T ELT))) +(((-804 |#1|) (-111) (-1005)) (T -804)) +((-3742 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-804 *3)) (-4 *3 (-1005)))) (-3742 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-804 *2)) (-4 *2 (-1005)))) (-3742 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 (-687))) (-4 *1 (-804 *4)) (-4 *4 (-1005)))) (-2653 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-804 *3)) (-4 *3 (-1005)))) (-2653 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-804 *2)) (-4 *2 (-1005)))) (-2653 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 (-687))) (-4 *1 (-804 *4)) (-4 *4 (-1005))))) +(-13 (-799 $ |t#1|) (-10 -8 (-15 -3742 ($ $ (-578 |t#1|))) (-15 -3742 ($ $ |t#1| (-687))) (-15 -3742 ($ $ (-578 |t#1|) (-578 (-687)))) (-15 -2653 ($ $ (-578 |t#1|))) (-15 -2653 ($ $ |t#1| (-687))) (-15 -2653 ($ $ (-578 |t#1|) (-578 (-687)))))) +(((-799 $ |#1|) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3386 ((|#1| $) 26 T ELT)) (-3009 ((|#1| $ |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-1280 (($ $ $) NIL (|has| $ (-6 -3980)) ELT)) (-1281 (($ $ $) NIL (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3980)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3980)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) NIL (|has| $ (-6 -3980)) ELT)) (-3708 (($) NIL T CONST)) (-3120 (($ $) 25 T ELT)) (-2654 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3015 (((-578 $) $) NIL T ELT)) (-3011 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3121 (($ $) 23 T ELT)) (-3014 (((-578 |#1|) $) NIL T ELT)) (-3511 (((-83) $) 20 T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3013 (((-478) $ $) NIL T ELT)) (-3617 (((-83) $) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3930 (((-1105 |#1|) $) 9 T ELT) (((-765) $) 29 (|has| |#1| (-547 (-765))) ELT)) (-3506 (((-578 $) $) NIL T ELT)) (-3012 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 21 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-805 |#1|) (-13 (-90 |#1|) (-547 (-1105 |#1|)) (-10 -8 (-15 -2654 ($ |#1|)) (-15 -2654 ($ $ $)))) (-1005)) (T -805)) +((-2654 (*1 *1 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-1005)))) (-2654 (*1 *1 *1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-1005))))) +((-2552 (((-83) $ $) NIL T ELT)) (-2670 (((-1001 |#1|) $) 60 T ELT)) (-2893 (((-578 $) (-578 $)) 103 T ELT)) (-3607 (((-478) $) 83 T ELT)) (-3708 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) NIL T ELT)) (-3756 (((-687) $) 80 T ELT)) (-2674 (((-1001 |#1|) $ |#1|) 70 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2657 (((-83) $) 88 T ELT)) (-2659 (((-687) $) 84 T ELT)) (-2515 (($ $ $) NIL (OR (|has| |#1| (-313)) (|has| |#1| (-749))) ELT)) (-2841 (($ $ $) NIL (OR (|has| |#1| (-313)) (|has| |#1| (-749))) ELT)) (-2663 (((-2 (|:| |preimage| (-578 |#1|)) (|:| |image| (-578 |#1|))) $) 55 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) 130 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2656 (((-1001 |#1|) $) 136 (|has| |#1| (-313)) ELT)) (-2658 (((-83) $) 81 T ELT)) (-3784 ((|#1| $ |#1|) 68 T ELT)) (-3932 (((-687) $) 62 T ELT)) (-2665 (($ (-578 (-578 |#1|))) 118 T ELT)) (-2660 (((-877) $) 74 T ELT)) (-2666 (($ (-578 |#1|)) 32 T ELT)) (-2993 (($ $ $) NIL T ELT)) (-2419 (($ $ $) NIL T ELT)) (-2662 (($ (-578 (-578 |#1|))) 57 T ELT)) (-2661 (($ (-578 (-578 |#1|))) 123 T ELT)) (-2655 (($ (-578 |#1|)) 132 T ELT)) (-3930 (((-765) $) 117 T ELT) (($ (-578 (-578 |#1|))) 91 T ELT) (($ (-578 |#1|)) 92 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2650 (($) 24 T CONST)) (-2550 (((-83) $ $) NIL (OR (|has| |#1| (-313)) (|has| |#1| (-749))) ELT)) (-2551 (((-83) $ $) NIL (OR (|has| |#1| (-313)) (|has| |#1| (-749))) ELT)) (-3037 (((-83) $ $) 66 T ELT)) (-2668 (((-83) $ $) NIL (OR (|has| |#1| (-313)) (|has| |#1| (-749))) ELT)) (-2669 (((-83) $ $) 90 T ELT)) (-3933 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ $ $) 33 T ELT))) +(((-806 |#1|) (-13 (-808 |#1|) (-10 -8 (-15 -2663 ((-2 (|:| |preimage| (-578 |#1|)) (|:| |image| (-578 |#1|))) $)) (-15 -2662 ($ (-578 (-578 |#1|)))) (-15 -3930 ($ (-578 (-578 |#1|)))) (-15 -3930 ($ (-578 |#1|))) (-15 -2661 ($ (-578 (-578 |#1|)))) (-15 -3932 ((-687) $)) (-15 -2660 ((-877) $)) (-15 -3756 ((-687) $)) (-15 -2659 ((-687) $)) (-15 -3607 ((-478) $)) (-15 -2658 ((-83) $)) (-15 -2657 ((-83) $)) (-15 -2893 ((-578 $) (-578 $))) (IF (|has| |#1| (-313)) (-15 -2656 ((-1001 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-477)) (-15 -2655 ($ (-578 |#1|))) (IF (|has| |#1| (-313)) (-15 -2655 ($ (-578 |#1|))) |%noBranch|)))) (-1005)) (T -806)) +((-2663 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-578 *3)) (|:| |image| (-578 *3)))) (-5 *1 (-806 *3)) (-4 *3 (-1005)))) (-2662 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1005)) (-5 *1 (-806 *3)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1005)) (-5 *1 (-806 *3)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-5 *1 (-806 *3)))) (-2661 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1005)) (-5 *1 (-806 *3)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-806 *3)) (-4 *3 (-1005)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-806 *3)) (-4 *3 (-1005)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-806 *3)) (-4 *3 (-1005)))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-806 *3)) (-4 *3 (-1005)))) (-3607 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-806 *3)) (-4 *3 (-1005)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-806 *3)) (-4 *3 (-1005)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-806 *3)) (-4 *3 (-1005)))) (-2893 (*1 *2 *2) (-12 (-5 *2 (-578 (-806 *3))) (-5 *1 (-806 *3)) (-4 *3 (-1005)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-806 *3)) (-4 *3 (-313)) (-4 *3 (-1005)))) (-2655 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-5 *1 (-806 *3))))) +((-2664 ((|#2| (-1045 |#1| |#2|)) 48 T ELT))) +(((-807 |#1| |#2|) (-10 -7 (-15 -2664 (|#2| (-1045 |#1| |#2|)))) (-823) (-13 (-954) (-10 -7 (-6 (-3981 "*"))))) (T -807)) +((-2664 (*1 *2 *3) (-12 (-5 *3 (-1045 *4 *2)) (-14 *4 (-823)) (-4 *2 (-13 (-954) (-10 -7 (-6 (-3981 "*"))))) (-5 *1 (-807 *4 *2))))) +((-2552 (((-83) $ $) 7 T ELT)) (-2670 (((-1001 |#1|) $) 42 T ELT)) (-3708 (($) 23 T CONST)) (-3451 (((-3 $ "failed") $) 20 T ELT)) (-2674 (((-1001 |#1|) $ |#1|) 41 T ELT)) (-2396 (((-83) $) 22 T ELT)) (-2515 (($ $ $) 35 (OR (|has| |#1| (-749)) (|has| |#1| (-313))) ELT)) (-2841 (($ $ $) 36 (OR (|has| |#1| (-749)) (|has| |#1| (-313))) ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 30 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3784 ((|#1| $ |#1|) 45 T ELT)) (-2665 (($ (-578 (-578 |#1|))) 43 T ELT)) (-2666 (($ (-578 |#1|)) 44 T ELT)) (-2993 (($ $ $) 27 T ELT)) (-2419 (($ $ $) 26 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2650 (($) 24 T CONST)) (-2550 (((-83) $ $) 37 (OR (|has| |#1| (-749)) (|has| |#1| (-313))) ELT)) (-2551 (((-83) $ $) 39 (OR (|has| |#1| (-749)) (|has| |#1| (-313))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 38 (OR (|has| |#1| (-749)) (|has| |#1| (-313))) ELT)) (-2669 (((-83) $ $) 40 T ELT)) (-3933 (($ $ $) 29 T ELT)) (** (($ $ (-823)) 17 T ELT) (($ $ (-687)) 21 T ELT) (($ $ (-478)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-808 |#1|) (-111) (-1005)) (T -808)) +((-2666 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-4 *1 (-808 *3)))) (-2665 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1005)) (-4 *1 (-808 *3)))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-808 *3)) (-4 *3 (-1005)) (-5 *2 (-1001 *3)))) (-2674 (*1 *2 *1 *3) (-12 (-4 *1 (-808 *3)) (-4 *3 (-1005)) (-5 *2 (-1001 *3)))) (-2669 (*1 *2 *1 *1) (-12 (-4 *1 (-808 *3)) (-4 *3 (-1005)) (-5 *2 (-83))))) +(-13 (-406) (-238 |t#1| |t#1|) (-10 -8 (-15 -2666 ($ (-578 |t#1|))) (-15 -2665 ($ (-578 (-578 |t#1|)))) (-15 -2670 ((-1001 |t#1|) $)) (-15 -2674 ((-1001 |t#1|) $ |t#1|)) (-15 -2669 ((-83) $ $)) (IF (|has| |t#1| (-749)) (-6 (-749)) |%noBranch|) (IF (|has| |t#1| (-313)) (-6 (-749)) |%noBranch|))) +(((-72) . T) ((-547 (-765)) . T) ((-238 |#1| |#1|) . T) ((-406) . T) ((-658) . T) ((-749) OR (|has| |#1| (-749)) (|has| |#1| (-313))) ((-752) OR (|has| |#1| (-749)) (|has| |#1| (-313))) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-2676 (((-578 (-578 (-687))) $) 163 T ELT)) (-2672 (((-578 (-687)) (-806 |#1|) $) 191 T ELT)) (-2671 (((-578 (-687)) (-806 |#1|) $) 192 T ELT)) (-2670 (((-1001 |#1|) $) 155 T ELT)) (-2677 (((-578 (-806 |#1|)) $) 152 T ELT)) (-2978 (((-806 |#1|) $ (-478)) 157 T ELT) (((-806 |#1|) $) 158 T ELT)) (-2675 (($ (-578 (-806 |#1|))) 165 T ELT)) (-3756 (((-687) $) 159 T ELT)) (-2673 (((-1001 (-1001 |#1|)) $) 189 T ELT)) (-2674 (((-1001 |#1|) $ |#1|) 180 T ELT) (((-1001 (-1001 |#1|)) $ (-1001 |#1|)) 201 T ELT) (((-1001 (-578 |#1|)) $ (-578 |#1|)) 204 T ELT)) (-3228 (((-83) (-806 |#1|) $) 140 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2667 (((-1174) $) 145 T ELT) (((-1174) $ (-478) (-478)) 205 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2679 (((-578 (-806 |#1|)) $) 146 T ELT)) (-3784 (((-806 |#1|) $ (-687)) 153 T ELT)) (-3932 (((-687) $) 160 T ELT)) (-3930 (((-765) $) 177 T ELT) (((-578 (-806 |#1|)) $) 28 T ELT) (($ (-578 (-806 |#1|))) 164 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2678 (((-578 |#1|) $) 162 T ELT)) (-3037 (((-83) $ $) 198 T ELT)) (-2668 (((-83) $ $) 195 T ELT)) (-2669 (((-83) $ $) 194 T ELT))) +(((-809 |#1|) (-13 (-1005) (-10 -8 (-15 -3930 ((-578 (-806 |#1|)) $)) (-15 -2679 ((-578 (-806 |#1|)) $)) (-15 -3784 ((-806 |#1|) $ (-687))) (-15 -2978 ((-806 |#1|) $ (-478))) (-15 -2978 ((-806 |#1|) $)) (-15 -3756 ((-687) $)) (-15 -3932 ((-687) $)) (-15 -2678 ((-578 |#1|) $)) (-15 -2677 ((-578 (-806 |#1|)) $)) (-15 -2676 ((-578 (-578 (-687))) $)) (-15 -3930 ($ (-578 (-806 |#1|)))) (-15 -2675 ($ (-578 (-806 |#1|)))) (-15 -2674 ((-1001 |#1|) $ |#1|)) (-15 -2673 ((-1001 (-1001 |#1|)) $)) (-15 -2674 ((-1001 (-1001 |#1|)) $ (-1001 |#1|))) (-15 -2674 ((-1001 (-578 |#1|)) $ (-578 |#1|))) (-15 -3228 ((-83) (-806 |#1|) $)) (-15 -2672 ((-578 (-687)) (-806 |#1|) $)) (-15 -2671 ((-578 (-687)) (-806 |#1|) $)) (-15 -2670 ((-1001 |#1|) $)) (-15 -2669 ((-83) $ $)) (-15 -2668 ((-83) $ $)) (-15 -2667 ((-1174) $)) (-15 -2667 ((-1174) $ (-478) (-478))))) (-1005)) (T -809)) +((-3930 (*1 *2 *1) (-12 (-5 *2 (-578 (-806 *3))) (-5 *1 (-809 *3)) (-4 *3 (-1005)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-578 (-806 *3))) (-5 *1 (-809 *3)) (-4 *3 (-1005)))) (-3784 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *2 (-806 *4)) (-5 *1 (-809 *4)) (-4 *4 (-1005)))) (-2978 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *2 (-806 *4)) (-5 *1 (-809 *4)) (-4 *4 (-1005)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-809 *3)) (-4 *3 (-1005)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-809 *3)) (-4 *3 (-1005)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-809 *3)) (-4 *3 (-1005)))) (-2678 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-809 *3)) (-4 *3 (-1005)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-578 (-806 *3))) (-5 *1 (-809 *3)) (-4 *3 (-1005)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-687)))) (-5 *1 (-809 *3)) (-4 *3 (-1005)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-578 (-806 *3))) (-4 *3 (-1005)) (-5 *1 (-809 *3)))) (-2675 (*1 *1 *2) (-12 (-5 *2 (-578 (-806 *3))) (-4 *3 (-1005)) (-5 *1 (-809 *3)))) (-2674 (*1 *2 *1 *3) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-809 *3)) (-4 *3 (-1005)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-1001 (-1001 *3))) (-5 *1 (-809 *3)) (-4 *3 (-1005)))) (-2674 (*1 *2 *1 *3) (-12 (-4 *4 (-1005)) (-5 *2 (-1001 (-1001 *4))) (-5 *1 (-809 *4)) (-5 *3 (-1001 *4)))) (-2674 (*1 *2 *1 *3) (-12 (-4 *4 (-1005)) (-5 *2 (-1001 (-578 *4))) (-5 *1 (-809 *4)) (-5 *3 (-578 *4)))) (-3228 (*1 *2 *3 *1) (-12 (-5 *3 (-806 *4)) (-4 *4 (-1005)) (-5 *2 (-83)) (-5 *1 (-809 *4)))) (-2672 (*1 *2 *3 *1) (-12 (-5 *3 (-806 *4)) (-4 *4 (-1005)) (-5 *2 (-578 (-687))) (-5 *1 (-809 *4)))) (-2671 (*1 *2 *3 *1) (-12 (-5 *3 (-806 *4)) (-4 *4 (-1005)) (-5 *2 (-578 (-687))) (-5 *1 (-809 *4)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-809 *3)) (-4 *3 (-1005)))) (-2669 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-809 *3)) (-4 *3 (-1005)))) (-2668 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-809 *3)) (-4 *3 (-1005)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-809 *3)) (-4 *3 (-1005)))) (-2667 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1174)) (-5 *1 (-809 *4)) (-4 *4 (-1005))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-3916 (((-83) $) NIL T ELT)) (-3913 (((-687)) NIL T ELT)) (-3314 (($ $ (-823)) NIL (|has| $ (-313)) ELT) (($ $) NIL T ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 $ #1#) $) NIL T ELT)) (-3139 (($ $) NIL T ELT)) (-1779 (($ (-1168 $)) NIL T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($) NIL T ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-2817 (($) NIL T ELT)) (-1667 (((-83) $) NIL T ELT)) (-1751 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-3756 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-1999 (($) NIL (|has| $ (-313)) ELT)) (-1997 (((-83) $) NIL (|has| $ (-313)) ELT)) (-3115 (($ $ (-823)) NIL (|has| $ (-313)) ELT) (($ $) NIL T ELT)) (-3429 (((-627 $) $) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2000 (((-1074 $) $ (-823)) NIL (|has| $ (-313)) ELT) (((-1074 $) $) NIL T ELT)) (-1996 (((-823) $) NIL T ELT)) (-1614 (((-1074 $) $) NIL (|has| $ (-313)) ELT)) (-1613 (((-3 (-1074 $) #1#) $ $) NIL (|has| $ (-313)) ELT) (((-1074 $) $) NIL (|has| $ (-313)) ELT)) (-1615 (($ $ (-1074 $)) NIL (|has| $ (-313)) ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3430 (($) NIL T CONST)) (-2386 (($ (-823)) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2395 (($) NIL (|has| $ (-313)) ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) NIL T ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-3914 (((-823)) NIL T ELT) (((-736 (-823))) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-1752 (((-3 (-687) #1#) $ $) NIL T ELT) (((-687) $) NIL T ELT)) (-3895 (((-105)) NIL T ELT)) (-3742 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3932 (((-823) $) NIL T ELT) (((-736 (-823)) $) NIL T ELT)) (-3168 (((-1074 $)) NIL T ELT)) (-1661 (($) NIL T ELT)) (-1616 (($) NIL (|has| $ (-313)) ELT)) (-3207 (((-625 $) (-1168 $)) NIL T ELT) (((-1168 $) $) NIL T ELT)) (-3956 (((-478) $) NIL T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT)) (-2686 (((-627 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $) (-823)) NIL T ELT) (((-1168 $)) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3917 (((-83) $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-3912 (($ $ (-687)) NIL (|has| $ (-313)) ELT) (($ $) NIL (|has| $ (-313)) ELT)) (-2653 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT))) +(((-810 |#1|) (-13 (-295) (-276 $) (-548 (-478))) (-823)) (T -810)) +NIL +((-2681 (((-3 (-578 (-1074 |#4|)) #1="failed") (-578 (-1074 |#4|)) (-1074 |#4|)) 164 T ELT)) (-2684 ((|#1|) 101 T ELT)) (-2683 (((-341 (-1074 |#4|)) (-1074 |#4|)) 173 T ELT)) (-2685 (((-341 (-1074 |#4|)) (-578 |#3|) (-1074 |#4|)) 83 T ELT)) (-2682 (((-341 (-1074 |#4|)) (-1074 |#4|)) 183 T ELT)) (-2680 (((-3 (-578 (-1074 |#4|)) #1#) (-578 (-1074 |#4|)) (-1074 |#4|) |#3|) 117 T ELT))) +(((-811 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2681 ((-3 (-578 (-1074 |#4|)) #1="failed") (-578 (-1074 |#4|)) (-1074 |#4|))) (-15 -2682 ((-341 (-1074 |#4|)) (-1074 |#4|))) (-15 -2683 ((-341 (-1074 |#4|)) (-1074 |#4|))) (-15 -2684 (|#1|)) (-15 -2680 ((-3 (-578 (-1074 |#4|)) #1#) (-578 (-1074 |#4|)) (-1074 |#4|) |#3|)) (-15 -2685 ((-341 (-1074 |#4|)) (-578 |#3|) (-1074 |#4|)))) (-814) (-710) (-749) (-854 |#1| |#2| |#3|)) (T -811)) +((-2685 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *7)) (-4 *7 (-749)) (-4 *5 (-814)) (-4 *6 (-710)) (-4 *8 (-854 *5 *6 *7)) (-5 *2 (-341 (-1074 *8))) (-5 *1 (-811 *5 *6 *7 *8)) (-5 *4 (-1074 *8)))) (-2680 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-578 (-1074 *7))) (-5 *3 (-1074 *7)) (-4 *7 (-854 *5 *6 *4)) (-4 *5 (-814)) (-4 *6 (-710)) (-4 *4 (-749)) (-5 *1 (-811 *5 *6 *4 *7)))) (-2684 (*1 *2) (-12 (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-814)) (-5 *1 (-811 *2 *3 *4 *5)) (-4 *5 (-854 *2 *3 *4)))) (-2683 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-854 *4 *5 *6)) (-5 *2 (-341 (-1074 *7))) (-5 *1 (-811 *4 *5 *6 *7)) (-5 *3 (-1074 *7)))) (-2682 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-854 *4 *5 *6)) (-5 *2 (-341 (-1074 *7))) (-5 *1 (-811 *4 *5 *6 *7)) (-5 *3 (-1074 *7)))) (-2681 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1074 *7))) (-5 *3 (-1074 *7)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-814)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-811 *4 *5 *6 *7))))) +((-2681 (((-3 (-578 (-1074 |#2|)) "failed") (-578 (-1074 |#2|)) (-1074 |#2|)) 39 T ELT)) (-2684 ((|#1|) 71 T ELT)) (-2683 (((-341 (-1074 |#2|)) (-1074 |#2|)) 125 T ELT)) (-2685 (((-341 (-1074 |#2|)) (-1074 |#2|)) 109 T ELT)) (-2682 (((-341 (-1074 |#2|)) (-1074 |#2|)) 136 T ELT))) +(((-812 |#1| |#2|) (-10 -7 (-15 -2681 ((-3 (-578 (-1074 |#2|)) "failed") (-578 (-1074 |#2|)) (-1074 |#2|))) (-15 -2682 ((-341 (-1074 |#2|)) (-1074 |#2|))) (-15 -2683 ((-341 (-1074 |#2|)) (-1074 |#2|))) (-15 -2684 (|#1|)) (-15 -2685 ((-341 (-1074 |#2|)) (-1074 |#2|)))) (-814) (-1144 |#1|)) (T -812)) +((-2685 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-1144 *4)) (-5 *2 (-341 (-1074 *5))) (-5 *1 (-812 *4 *5)) (-5 *3 (-1074 *5)))) (-2684 (*1 *2) (-12 (-4 *2 (-814)) (-5 *1 (-812 *2 *3)) (-4 *3 (-1144 *2)))) (-2683 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-1144 *4)) (-5 *2 (-341 (-1074 *5))) (-5 *1 (-812 *4 *5)) (-5 *3 (-1074 *5)))) (-2682 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-1144 *4)) (-5 *2 (-341 (-1074 *5))) (-5 *1 (-812 *4 *5)) (-5 *3 (-1074 *5)))) (-2681 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1074 *5))) (-5 *3 (-1074 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-814)) (-5 *1 (-812 *4 *5))))) +((-2688 (((-3 (-578 (-1074 $)) "failed") (-578 (-1074 $)) (-1074 $)) 46 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 18 T ELT)) (-2686 (((-627 $) $) 40 T ELT))) +(((-813 |#1|) (-10 -7 (-15 -2686 ((-627 |#1|) |#1|)) (-15 -2688 ((-3 (-578 (-1074 |#1|)) "failed") (-578 (-1074 |#1|)) (-1074 |#1|))) (-15 -2692 ((-1074 |#1|) (-1074 |#1|) (-1074 |#1|)))) (-814)) (T -813)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) 72 T ELT)) (-3759 (($ $) 63 T ELT)) (-3955 (((-341 $) $) 64 T ELT)) (-2688 (((-3 (-578 (-1074 $)) "failed") (-578 (-1074 $)) (-1074 $)) 69 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3707 (((-83) $) 65 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-1878 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 55 T ELT)) (-3127 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) 70 T ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) 71 T ELT)) (-3716 (((-341 $) $) 62 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-2687 (((-3 (-1168 $) "failed") (-625 $)) 68 (|has| $ (-116)) ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT)) (-2686 (((-627 $) $) 67 (|has| $ (-116)) ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-814) (-111)) (T -814)) +((-2692 (*1 *2 *2 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-814)))) (-2691 (*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *2 (-341 (-1074 *1))) (-5 *3 (-1074 *1)))) (-2690 (*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *2 (-341 (-1074 *1))) (-5 *3 (-1074 *1)))) (-2689 (*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *2 (-341 (-1074 *1))) (-5 *3 (-1074 *1)))) (-2688 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1074 *1))) (-5 *3 (-1074 *1)) (-4 *1 (-814)))) (-2687 (*1 *2 *3) (|partial| -12 (-5 *3 (-625 *1)) (-4 *1 (-116)) (-4 *1 (-814)) (-5 *2 (-1168 *1)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-627 *1)) (-4 *1 (-116)) (-4 *1 (-814))))) +(-13 (-1123) (-10 -8 (-15 -2691 ((-341 (-1074 $)) (-1074 $))) (-15 -2690 ((-341 (-1074 $)) (-1074 $))) (-15 -2689 ((-341 (-1074 $)) (-1074 $))) (-15 -2692 ((-1074 $) (-1074 $) (-1074 $))) (-15 -2688 ((-3 (-578 (-1074 $)) "failed") (-578 (-1074 $)) (-1074 $))) (IF (|has| $ (-116)) (PROGN (-15 -2687 ((-3 (-1168 $) "failed") (-625 $))) (-15 -2686 ((-627 $) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-242) . T) ((-385) . T) ((-489) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-577 $) . T) ((-649 $) . T) ((-658) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T) ((-1123) . T)) +((-2694 (((-3 (-2 (|:| -3756 (-687)) (|:| -2369 |#5|)) #1="failed") (-279 |#2| |#3| |#4| |#5|)) 77 T ELT)) (-2693 (((-83) (-279 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3756 (((-3 (-687) #1#) (-279 |#2| |#3| |#4| |#5|)) 15 T ELT))) +(((-815 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3756 ((-3 (-687) #1="failed") (-279 |#2| |#3| |#4| |#5|))) (-15 -2693 ((-83) (-279 |#2| |#3| |#4| |#5|))) (-15 -2694 ((-3 (-2 (|:| -3756 (-687)) (|:| -2369 |#5|)) #1#) (-279 |#2| |#3| |#4| |#5|)))) (-13 (-489) (-943 (-478))) (-357 |#1|) (-1144 |#2|) (-1144 (-343 |#3|)) (-287 |#2| |#3| |#4|)) (T -815)) +((-2694 (*1 *2 *3) (|partial| -12 (-5 *3 (-279 *5 *6 *7 *8)) (-4 *5 (-357 *4)) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-343 *6))) (-4 *8 (-287 *5 *6 *7)) (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-2 (|:| -3756 (-687)) (|:| -2369 *8))) (-5 *1 (-815 *4 *5 *6 *7 *8)))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-279 *5 *6 *7 *8)) (-4 *5 (-357 *4)) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-343 *6))) (-4 *8 (-287 *5 *6 *7)) (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-83)) (-5 *1 (-815 *4 *5 *6 *7 *8)))) (-3756 (*1 *2 *3) (|partial| -12 (-5 *3 (-279 *5 *6 *7 *8)) (-4 *5 (-357 *4)) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-343 *6))) (-4 *8 (-287 *5 *6 *7)) (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-687)) (-5 *1 (-815 *4 *5 *6 *7 *8))))) +((-2694 (((-3 (-2 (|:| -3756 (-687)) (|:| -2369 |#3|)) #1="failed") (-279 (-343 (-478)) |#1| |#2| |#3|)) 64 T ELT)) (-2693 (((-83) (-279 (-343 (-478)) |#1| |#2| |#3|)) 16 T ELT)) (-3756 (((-3 (-687) #1#) (-279 (-343 (-478)) |#1| |#2| |#3|)) 14 T ELT))) +(((-816 |#1| |#2| |#3|) (-10 -7 (-15 -3756 ((-3 (-687) #1="failed") (-279 (-343 (-478)) |#1| |#2| |#3|))) (-15 -2693 ((-83) (-279 (-343 (-478)) |#1| |#2| |#3|))) (-15 -2694 ((-3 (-2 (|:| -3756 (-687)) (|:| -2369 |#3|)) #1#) (-279 (-343 (-478)) |#1| |#2| |#3|)))) (-1144 (-343 (-478))) (-1144 (-343 |#1|)) (-287 (-343 (-478)) |#1| |#2|)) (T -816)) +((-2694 (*1 *2 *3) (|partial| -12 (-5 *3 (-279 (-343 (-478)) *4 *5 *6)) (-4 *4 (-1144 (-343 (-478)))) (-4 *5 (-1144 (-343 *4))) (-4 *6 (-287 (-343 (-478)) *4 *5)) (-5 *2 (-2 (|:| -3756 (-687)) (|:| -2369 *6))) (-5 *1 (-816 *4 *5 *6)))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-279 (-343 (-478)) *4 *5 *6)) (-4 *4 (-1144 (-343 (-478)))) (-4 *5 (-1144 (-343 *4))) (-4 *6 (-287 (-343 (-478)) *4 *5)) (-5 *2 (-83)) (-5 *1 (-816 *4 *5 *6)))) (-3756 (*1 *2 *3) (|partial| -12 (-5 *3 (-279 (-343 (-478)) *4 *5 *6)) (-4 *4 (-1144 (-343 (-478)))) (-4 *5 (-1144 (-343 *4))) (-4 *6 (-287 (-343 (-478)) *4 *5)) (-5 *2 (-687)) (-5 *1 (-816 *4 *5 *6))))) +((-2699 ((|#2| |#2|) 26 T ELT)) (-2697 (((-478) (-578 (-2 (|:| |den| (-478)) (|:| |gcdnum| (-478))))) 15 T ELT)) (-2695 (((-823) (-478)) 38 T ELT)) (-2698 (((-478) |#2|) 45 T ELT)) (-2696 (((-478) |#2|) 21 T ELT) (((-2 (|:| |den| (-478)) (|:| |gcdnum| (-478))) |#1|) 20 T ELT))) +(((-817 |#1| |#2|) (-10 -7 (-15 -2695 ((-823) (-478))) (-15 -2696 ((-2 (|:| |den| (-478)) (|:| |gcdnum| (-478))) |#1|)) (-15 -2696 ((-478) |#2|)) (-15 -2697 ((-478) (-578 (-2 (|:| |den| (-478)) (|:| |gcdnum| (-478)))))) (-15 -2698 ((-478) |#2|)) (-15 -2699 (|#2| |#2|))) (-1144 (-343 (-478))) (-1144 (-343 |#1|))) (T -817)) +((-2699 (*1 *2 *2) (-12 (-4 *3 (-1144 (-343 (-478)))) (-5 *1 (-817 *3 *2)) (-4 *2 (-1144 (-343 *3))))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-1144 (-343 *2))) (-5 *2 (-478)) (-5 *1 (-817 *4 *3)) (-4 *3 (-1144 (-343 *4))))) (-2697 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |den| (-478)) (|:| |gcdnum| (-478))))) (-4 *4 (-1144 (-343 *2))) (-5 *2 (-478)) (-5 *1 (-817 *4 *5)) (-4 *5 (-1144 (-343 *4))))) (-2696 (*1 *2 *3) (-12 (-4 *4 (-1144 (-343 *2))) (-5 *2 (-478)) (-5 *1 (-817 *4 *3)) (-4 *3 (-1144 (-343 *4))))) (-2696 (*1 *2 *3) (-12 (-4 *3 (-1144 (-343 (-478)))) (-5 *2 (-2 (|:| |den| (-478)) (|:| |gcdnum| (-478)))) (-5 *1 (-817 *3 *4)) (-4 *4 (-1144 (-343 *3))))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-478)) (-4 *4 (-1144 (-343 *3))) (-5 *2 (-823)) (-5 *1 (-817 *4 *5)) (-4 *5 (-1144 (-343 *4)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3112 ((|#1| $) 99 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2548 (($ $ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) 93 T ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-2707 (($ |#1| (-341 |#1|)) 91 T ELT)) (-2701 (((-1074 |#1|) |#1| |#1|) 52 T ELT)) (-2700 (($ $) 60 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2702 (((-478) $) 96 T ELT)) (-2703 (($ $ (-478)) 98 T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-2704 ((|#1| $) 95 T ELT)) (-2705 (((-341 |#1|) $) 94 T ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) 92 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-2706 (($ $) 49 T ELT)) (-3930 (((-765) $) 123 T ELT) (($ (-478)) 72 T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#1|) 40 T ELT) (((-343 |#1|) $) 77 T ELT) (($ (-343 (-341 |#1|))) 85 T ELT)) (-3109 (((-687)) 70 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-2644 (($) 24 T CONST)) (-2650 (($) 12 T CONST)) (-3037 (((-83) $ $) 86 T ELT)) (-3933 (($ $ $) NIL T ELT)) (-3821 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 48 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) +(((-818 |#1|) (-13 (-308) (-38 |#1|) (-10 -8 (-15 -3930 ((-343 |#1|) $)) (-15 -3930 ($ (-343 (-341 |#1|)))) (-15 -2706 ($ $)) (-15 -2705 ((-341 |#1|) $)) (-15 -2704 (|#1| $)) (-15 -2703 ($ $ (-478))) (-15 -2702 ((-478) $)) (-15 -2701 ((-1074 |#1|) |#1| |#1|)) (-15 -2700 ($ $)) (-15 -2707 ($ |#1| (-341 |#1|))) (-15 -3112 (|#1| $)))) (-254)) (T -818)) +((-3930 (*1 *2 *1) (-12 (-5 *2 (-343 *3)) (-5 *1 (-818 *3)) (-4 *3 (-254)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-343 (-341 *3))) (-4 *3 (-254)) (-5 *1 (-818 *3)))) (-2706 (*1 *1 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-254)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-341 *3)) (-5 *1 (-818 *3)) (-4 *3 (-254)))) (-2704 (*1 *2 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-254)))) (-2703 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-818 *3)) (-4 *3 (-254)))) (-2702 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-818 *3)) (-4 *3 (-254)))) (-2701 (*1 *2 *3 *3) (-12 (-5 *2 (-1074 *3)) (-5 *1 (-818 *3)) (-4 *3 (-254)))) (-2700 (*1 *1 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-254)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *3 (-341 *2)) (-4 *2 (-254)) (-5 *1 (-818 *2)))) (-3112 (*1 *2 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-254))))) +((-2707 (((-51) (-850 |#1|) (-341 (-850 |#1|)) (-1079)) 17 T ELT) (((-51) (-343 (-850 |#1|)) (-1079)) 18 T ELT))) +(((-819 |#1|) (-10 -7 (-15 -2707 ((-51) (-343 (-850 |#1|)) (-1079))) (-15 -2707 ((-51) (-850 |#1|) (-341 (-850 |#1|)) (-1079)))) (-13 (-254) (-118))) (T -819)) +((-2707 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-341 (-850 *6))) (-5 *5 (-1079)) (-5 *3 (-850 *6)) (-4 *6 (-13 (-254) (-118))) (-5 *2 (-51)) (-5 *1 (-819 *6)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-51)) (-5 *1 (-819 *5))))) +((-2708 ((|#4| (-578 |#4|)) 148 T ELT) (((-1074 |#4|) (-1074 |#4|) (-1074 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3127 (((-1074 |#4|) (-578 (-1074 |#4|))) 141 T ELT) (((-1074 |#4|) (-1074 |#4|) (-1074 |#4|)) 61 T ELT) ((|#4| (-578 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) +(((-820 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3127 (|#4| |#4| |#4|)) (-15 -3127 (|#4| (-578 |#4|))) (-15 -3127 ((-1074 |#4|) (-1074 |#4|) (-1074 |#4|))) (-15 -3127 ((-1074 |#4|) (-578 (-1074 |#4|)))) (-15 -2708 (|#4| |#4| |#4|)) (-15 -2708 ((-1074 |#4|) (-1074 |#4|) (-1074 |#4|))) (-15 -2708 (|#4| (-578 |#4|)))) (-710) (-749) (-254) (-854 |#3| |#1| |#2|)) (T -820)) +((-2708 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *6 *4 *5)) (-5 *1 (-820 *4 *5 *6 *2)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)))) (-2708 (*1 *2 *2 *2) (-12 (-5 *2 (-1074 *6)) (-4 *6 (-854 *5 *3 *4)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *5 (-254)) (-5 *1 (-820 *3 *4 *5 *6)))) (-2708 (*1 *2 *2 *2) (-12 (-4 *3 (-710)) (-4 *4 (-749)) (-4 *5 (-254)) (-5 *1 (-820 *3 *4 *5 *2)) (-4 *2 (-854 *5 *3 *4)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-578 (-1074 *7))) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) (-5 *2 (-1074 *7)) (-5 *1 (-820 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5)))) (-3127 (*1 *2 *2 *2) (-12 (-5 *2 (-1074 *6)) (-4 *6 (-854 *5 *3 *4)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *5 (-254)) (-5 *1 (-820 *3 *4 *5 *6)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *6 *4 *5)) (-5 *1 (-820 *4 *5 *6 *2)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)))) (-3127 (*1 *2 *2 *2) (-12 (-4 *3 (-710)) (-4 *4 (-749)) (-4 *5 (-254)) (-5 *1 (-820 *3 *4 *5 *2)) (-4 *2 (-854 *5 *3 *4))))) +((-2721 (((-809 (-478)) (-877)) 38 T ELT) (((-809 (-478)) (-578 (-478))) 34 T ELT)) (-2709 (((-809 (-478)) (-578 (-478))) 66 T ELT) (((-809 (-478)) (-823)) 67 T ELT)) (-2720 (((-809 (-478))) 39 T ELT)) (-2718 (((-809 (-478))) 53 T ELT) (((-809 (-478)) (-578 (-478))) 52 T ELT)) (-2717 (((-809 (-478))) 51 T ELT) (((-809 (-478)) (-578 (-478))) 50 T ELT)) (-2716 (((-809 (-478))) 49 T ELT) (((-809 (-478)) (-578 (-478))) 48 T ELT)) (-2715 (((-809 (-478))) 47 T ELT) (((-809 (-478)) (-578 (-478))) 46 T ELT)) (-2714 (((-809 (-478))) 45 T ELT) (((-809 (-478)) (-578 (-478))) 44 T ELT)) (-2719 (((-809 (-478))) 55 T ELT) (((-809 (-478)) (-578 (-478))) 54 T ELT)) (-2713 (((-809 (-478)) (-578 (-478))) 71 T ELT) (((-809 (-478)) (-823)) 73 T ELT)) (-2712 (((-809 (-478)) (-578 (-478))) 68 T ELT) (((-809 (-478)) (-823)) 69 T ELT)) (-2710 (((-809 (-478)) (-578 (-478))) 64 T ELT) (((-809 (-478)) (-823)) 65 T ELT)) (-2711 (((-809 (-478)) (-578 (-823))) 57 T ELT))) +(((-821) (-10 -7 (-15 -2709 ((-809 (-478)) (-823))) (-15 -2709 ((-809 (-478)) (-578 (-478)))) (-15 -2710 ((-809 (-478)) (-823))) (-15 -2710 ((-809 (-478)) (-578 (-478)))) (-15 -2711 ((-809 (-478)) (-578 (-823)))) (-15 -2712 ((-809 (-478)) (-823))) (-15 -2712 ((-809 (-478)) (-578 (-478)))) (-15 -2713 ((-809 (-478)) (-823))) (-15 -2713 ((-809 (-478)) (-578 (-478)))) (-15 -2714 ((-809 (-478)) (-578 (-478)))) (-15 -2714 ((-809 (-478)))) (-15 -2715 ((-809 (-478)) (-578 (-478)))) (-15 -2715 ((-809 (-478)))) (-15 -2716 ((-809 (-478)) (-578 (-478)))) (-15 -2716 ((-809 (-478)))) (-15 -2717 ((-809 (-478)) (-578 (-478)))) (-15 -2717 ((-809 (-478)))) (-15 -2718 ((-809 (-478)) (-578 (-478)))) (-15 -2718 ((-809 (-478)))) (-15 -2719 ((-809 (-478)) (-578 (-478)))) (-15 -2719 ((-809 (-478)))) (-15 -2720 ((-809 (-478)))) (-15 -2721 ((-809 (-478)) (-578 (-478)))) (-15 -2721 ((-809 (-478)) (-877))))) (T -821)) +((-2721 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2720 (*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2719 (*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2719 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2718 (*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2717 (*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2716 (*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2715 (*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2714 (*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-578 (-823))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-809 (-478))) (-5 *1 (-821))))) +((-2723 (((-578 (-850 |#1|)) (-578 (-850 |#1|)) (-578 (-1079))) 14 T ELT)) (-2722 (((-578 (-850 |#1|)) (-578 (-850 |#1|)) (-578 (-1079))) 13 T ELT))) +(((-822 |#1|) (-10 -7 (-15 -2722 ((-578 (-850 |#1|)) (-578 (-850 |#1|)) (-578 (-1079)))) (-15 -2723 ((-578 (-850 |#1|)) (-578 (-850 |#1|)) (-578 (-1079))))) (-385)) (T -822)) +((-2723 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-850 *4))) (-5 *3 (-578 (-1079))) (-4 *4 (-385)) (-5 *1 (-822 *4)))) (-2722 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-850 *4))) (-5 *3 (-578 (-1079))) (-4 *4 (-385)) (-5 *1 (-822 *4))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3451 (((-3 $ "failed") $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3127 (($ $ $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2650 (($) NIL T CONST)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-687)) NIL T ELT) (($ $ (-823)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-823) (-13 (-711) (-658) (-10 -8 (-15 -3127 ($ $ $)) (-6 (-3981 "*"))))) (T -823)) +((-3127 (*1 *1 *1 *1) (-5 *1 (-823)))) +((-687) (|%ilt| 0 |#1|)) +((-3930 (((-261 |#1|) (-410)) 16 T ELT))) +(((-824 |#1|) (-10 -7 (-15 -3930 ((-261 |#1|) (-410)))) (-489)) (T -824)) +((-3930 (*1 *2 *3) (-12 (-5 *3 (-410)) (-5 *2 (-261 *4)) (-5 *1 (-824 *4)) (-4 *4 (-489))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 63 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-1878 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 55 T ELT)) (-3127 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-825) (-111)) (T -825)) +((-2725 (*1 *2 *3) (-12 (-4 *1 (-825)) (-5 *2 (-2 (|:| -3938 (-578 *1)) (|:| -2395 *1))) (-5 *3 (-578 *1)))) (-2724 (*1 *2 *3 *1) (-12 (-4 *1 (-825)) (-5 *2 (-627 (-578 *1))) (-5 *3 (-578 *1))))) +(-13 (-385) (-10 -8 (-15 -2725 ((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $))) (-15 -2724 ((-627 (-578 $)) (-578 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-242) . T) ((-385) . T) ((-489) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-577 $) . T) ((-649 $) . T) ((-658) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-3089 (((-1074 |#2|) (-578 |#2|) (-578 |#2|)) 17 T ELT) (((-1137 |#1| |#2|) (-1137 |#1| |#2|) (-578 |#2|) (-578 |#2|)) 13 T ELT))) +(((-826 |#1| |#2|) (-10 -7 (-15 -3089 ((-1137 |#1| |#2|) (-1137 |#1| |#2|) (-578 |#2|) (-578 |#2|))) (-15 -3089 ((-1074 |#2|) (-578 |#2|) (-578 |#2|)))) (-1079) (-308)) (T -826)) +((-3089 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-308)) (-5 *2 (-1074 *5)) (-5 *1 (-826 *4 *5)) (-14 *4 (-1079)))) (-3089 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1137 *4 *5)) (-5 *3 (-578 *5)) (-14 *4 (-1079)) (-4 *5 (-308)) (-5 *1 (-826 *4 *5))))) +((-2726 ((|#2| (-578 |#1|) (-578 |#1|)) 28 T ELT))) +(((-827 |#1| |#2|) (-10 -7 (-15 -2726 (|#2| (-578 |#1|) (-578 |#1|)))) (-308) (-1144 |#1|)) (T -827)) +((-2726 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-308)) (-4 *2 (-1144 *4)) (-5 *1 (-827 *4 *2))))) +((-2728 (((-478) (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|))))))))) (-1062)) 175 T ELT)) (-2747 ((|#4| |#4|) 194 T ELT)) (-2732 (((-578 (-343 (-850 |#1|))) (-578 (-1079))) 146 T ELT)) (-2746 (((-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))) (-625 |#4|) (-578 (-343 (-850 |#1|))) (-578 (-578 |#4|)) (-687) (-687) (-478)) 88 T ELT)) (-2736 (((-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|)))))) (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|)))))) (-578 |#4|)) 69 T ELT)) (-2745 (((-625 |#4|) (-625 |#4|) (-578 |#4|)) 65 T ELT)) (-2729 (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|))))))))) (-1062)) 187 T ELT)) (-2727 (((-478) (-625 |#4|) (-823) (-1062)) 167 T ELT) (((-478) (-625 |#4|) (-578 (-1079)) (-823) (-1062)) 166 T ELT) (((-478) (-625 |#4|) (-578 |#4|) (-823) (-1062)) 165 T ELT) (((-478) (-625 |#4|) (-1062)) 154 T ELT) (((-478) (-625 |#4|) (-578 (-1079)) (-1062)) 153 T ELT) (((-478) (-625 |#4|) (-578 |#4|) (-1062)) 152 T ELT) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|))))))))) (-625 |#4|) (-823)) 151 T ELT) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|))))))))) (-625 |#4|) (-578 (-1079)) (-823)) 150 T ELT) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|))))))))) (-625 |#4|) (-578 |#4|) (-823)) 149 T ELT) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|))))))))) (-625 |#4|)) 148 T ELT) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|))))))))) (-625 |#4|) (-578 (-1079))) 147 T ELT) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|))))))))) (-625 |#4|) (-578 |#4|)) 143 T ELT)) (-2733 ((|#4| (-850 |#1|)) 80 T ELT)) (-2743 (((-83) (-578 |#4|) (-578 (-578 |#4|))) 191 T ELT)) (-2742 (((-578 (-578 (-478))) (-478) (-478)) 161 T ELT)) (-2741 (((-578 (-578 |#4|)) (-578 (-578 |#4|))) 106 T ELT)) (-2740 (((-687) (-578 (-2 (|:| -3092 (-687)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (|:| |fgb| (-578 |#4|))))) 100 T ELT)) (-2739 (((-687) (-578 (-2 (|:| -3092 (-687)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (|:| |fgb| (-578 |#4|))))) 99 T ELT)) (-2748 (((-83) (-578 (-850 |#1|))) 19 T ELT) (((-83) (-578 |#4|)) 15 T ELT)) (-2734 (((-2 (|:| |sysok| (-83)) (|:| |z0| (-578 |#4|)) (|:| |n0| (-578 |#4|))) (-578 |#4|) (-578 |#4|)) 84 T ELT)) (-2738 (((-578 |#4|) |#4|) 57 T ELT)) (-2731 (((-578 (-343 (-850 |#1|))) (-578 |#4|)) 142 T ELT) (((-625 (-343 (-850 |#1|))) (-625 |#4|)) 66 T ELT) (((-343 (-850 |#1|)) |#4|) 139 T ELT)) (-2730 (((-2 (|:| |rgl| (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|)))))))))) (|:| |rgsz| (-478))) (-625 |#4|) (-578 (-343 (-850 |#1|))) (-687) (-1062) (-478)) 112 T ELT)) (-2735 (((-578 (-2 (|:| -3092 (-687)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (|:| |fgb| (-578 |#4|)))) (-625 |#4|) (-687)) 98 T ELT)) (-2744 (((-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478))))) (-625 |#4|) (-687)) 121 T ELT)) (-2737 (((-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|)))))) (-2 (|:| |mat| (-625 (-343 (-850 |#1|)))) (|:| |vec| (-578 (-343 (-850 |#1|)))) (|:| -3092 (-687)) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478))))) 56 T ELT))) +(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2727 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|))))))))) (-625 |#4|) (-578 |#4|))) (-15 -2727 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|))))))))) (-625 |#4|) (-578 (-1079)))) (-15 -2727 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|))))))))) (-625 |#4|))) (-15 -2727 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|))))))))) (-625 |#4|) (-578 |#4|) (-823))) (-15 -2727 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|))))))))) (-625 |#4|) (-578 (-1079)) (-823))) (-15 -2727 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|))))))))) (-625 |#4|) (-823))) (-15 -2727 ((-478) (-625 |#4|) (-578 |#4|) (-1062))) (-15 -2727 ((-478) (-625 |#4|) (-578 (-1079)) (-1062))) (-15 -2727 ((-478) (-625 |#4|) (-1062))) (-15 -2727 ((-478) (-625 |#4|) (-578 |#4|) (-823) (-1062))) (-15 -2727 ((-478) (-625 |#4|) (-578 (-1079)) (-823) (-1062))) (-15 -2727 ((-478) (-625 |#4|) (-823) (-1062))) (-15 -2728 ((-478) (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|))))))))) (-1062))) (-15 -2729 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|))))))))) (-1062))) (-15 -2730 ((-2 (|:| |rgl| (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|)))))))))) (|:| |rgsz| (-478))) (-625 |#4|) (-578 (-343 (-850 |#1|))) (-687) (-1062) (-478))) (-15 -2731 ((-343 (-850 |#1|)) |#4|)) (-15 -2731 ((-625 (-343 (-850 |#1|))) (-625 |#4|))) (-15 -2731 ((-578 (-343 (-850 |#1|))) (-578 |#4|))) (-15 -2732 ((-578 (-343 (-850 |#1|))) (-578 (-1079)))) (-15 -2733 (|#4| (-850 |#1|))) (-15 -2734 ((-2 (|:| |sysok| (-83)) (|:| |z0| (-578 |#4|)) (|:| |n0| (-578 |#4|))) (-578 |#4|) (-578 |#4|))) (-15 -2735 ((-578 (-2 (|:| -3092 (-687)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (|:| |fgb| (-578 |#4|)))) (-625 |#4|) (-687))) (-15 -2736 ((-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|)))))) (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|)))))) (-578 |#4|))) (-15 -2737 ((-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|)))))) (-2 (|:| |mat| (-625 (-343 (-850 |#1|)))) (|:| |vec| (-578 (-343 (-850 |#1|)))) (|:| -3092 (-687)) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (-15 -2738 ((-578 |#4|) |#4|)) (-15 -2739 ((-687) (-578 (-2 (|:| -3092 (-687)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (|:| |fgb| (-578 |#4|)))))) (-15 -2740 ((-687) (-578 (-2 (|:| -3092 (-687)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (|:| |fgb| (-578 |#4|)))))) (-15 -2741 ((-578 (-578 |#4|)) (-578 (-578 |#4|)))) (-15 -2742 ((-578 (-578 (-478))) (-478) (-478))) (-15 -2743 ((-83) (-578 |#4|) (-578 (-578 |#4|)))) (-15 -2744 ((-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478))))) (-625 |#4|) (-687))) (-15 -2745 ((-625 |#4|) (-625 |#4|) (-578 |#4|))) (-15 -2746 ((-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 |#1|)))) (|:| -1998 (-578 (-1168 (-343 (-850 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))) (-625 |#4|) (-578 (-343 (-850 |#1|))) (-578 (-578 |#4|)) (-687) (-687) (-478))) (-15 -2747 (|#4| |#4|)) (-15 -2748 ((-83) (-578 |#4|))) (-15 -2748 ((-83) (-578 (-850 |#1|))))) (-13 (-254) (-118)) (-13 (-749) (-548 (-1079))) (-710) (-854 |#1| |#3| |#2|)) (T -828)) +((-2748 (*1 *2 *3) (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 (-83)) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-854 *4 *6 *5)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 (-83)) (-5 *1 (-828 *4 *5 *6 *7)))) (-2747 (*1 *2 *2) (-12 (-4 *3 (-13 (-254) (-118))) (-4 *4 (-13 (-749) (-548 (-1079)))) (-4 *5 (-710)) (-5 *1 (-828 *3 *4 *5 *2)) (-4 *2 (-854 *3 *5 *4)))) (-2746 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478))))) (-5 *4 (-625 *12)) (-5 *5 (-578 (-343 (-850 *9)))) (-5 *6 (-578 (-578 *12))) (-5 *7 (-687)) (-5 *8 (-478)) (-4 *9 (-13 (-254) (-118))) (-4 *12 (-854 *9 *11 *10)) (-4 *10 (-13 (-749) (-548 (-1079)))) (-4 *11 (-710)) (-5 *2 (-2 (|:| |eqzro| (-578 *12)) (|:| |neqzro| (-578 *12)) (|:| |wcond| (-578 (-850 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 *9)))) (|:| -1998 (-578 (-1168 (-343 (-850 *9))))))))) (-5 *1 (-828 *9 *10 *11 *12)))) (-2745 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *7)) (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *1 (-828 *4 *5 *6 *7)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-687)) (-4 *8 (-854 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1079)))) (-4 *7 (-710)) (-5 *2 (-578 (-2 (|:| |det| *8) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (-5 *1 (-828 *5 *6 *7 *8)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-578 *8))) (-5 *3 (-578 *8)) (-4 *8 (-854 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1079)))) (-4 *7 (-710)) (-5 *2 (-83)) (-5 *1 (-828 *5 *6 *7 *8)))) (-2742 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 (-578 (-578 (-478)))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-478)) (-4 *7 (-854 *4 *6 *5)))) (-2741 (*1 *2 *2) (-12 (-5 *2 (-578 (-578 *6))) (-4 *6 (-854 *3 *5 *4)) (-4 *3 (-13 (-254) (-118))) (-4 *4 (-13 (-749) (-548 (-1079)))) (-4 *5 (-710)) (-5 *1 (-828 *3 *4 *5 *6)))) (-2740 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3092 (-687)) (|:| |eqns| (-578 (-2 (|:| |det| *7) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (|:| |fgb| (-578 *7))))) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 (-687)) (-5 *1 (-828 *4 *5 *6 *7)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3092 (-687)) (|:| |eqns| (-578 (-2 (|:| |det| *7) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (|:| |fgb| (-578 *7))))) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 (-687)) (-5 *1 (-828 *4 *5 *6 *7)))) (-2738 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 (-578 *3)) (-5 *1 (-828 *4 *5 *6 *3)) (-4 *3 (-854 *4 *6 *5)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-625 (-343 (-850 *4)))) (|:| |vec| (-578 (-343 (-850 *4)))) (|:| -3092 (-687)) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478))))) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 (-2 (|:| |partsol| (-1168 (-343 (-850 *4)))) (|:| -1998 (-578 (-1168 (-343 (-850 *4))))))) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-854 *4 *6 *5)))) (-2736 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1168 (-343 (-850 *4)))) (|:| -1998 (-578 (-1168 (-343 (-850 *4))))))) (-5 *3 (-578 *7)) (-4 *4 (-13 (-254) (-118))) (-4 *7 (-854 *4 *6 *5)) (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *1 (-828 *4 *5 *6 *7)))) (-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-4 *8 (-854 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1079)))) (-4 *7 (-710)) (-5 *2 (-578 (-2 (|:| -3092 (-687)) (|:| |eqns| (-578 (-2 (|:| |det| *8) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (|:| |fgb| (-578 *8))))) (-5 *1 (-828 *5 *6 *7 *8)) (-5 *4 (-687)))) (-2734 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-4 *7 (-854 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-83)) (|:| |z0| (-578 *7)) (|:| |n0| (-578 *7)))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-850 *4)) (-4 *4 (-13 (-254) (-118))) (-4 *2 (-854 *4 *6 *5)) (-5 *1 (-828 *4 *5 *6 *2)) (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-578 (-1079))) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 (-578 (-343 (-850 *4)))) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-854 *4 *6 *5)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 (-578 (-343 (-850 *4)))) (-5 *1 (-828 *4 *5 *6 *7)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 (-625 (-343 (-850 *4)))) (-5 *1 (-828 *4 *5 *6 *7)))) (-2731 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 (-343 (-850 *4))) (-5 *1 (-828 *4 *5 *6 *3)) (-4 *3 (-854 *4 *6 *5)))) (-2730 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-625 *11)) (-5 *4 (-578 (-343 (-850 *8)))) (-5 *5 (-687)) (-5 *6 (-1062)) (-4 *8 (-13 (-254) (-118))) (-4 *11 (-854 *8 *10 *9)) (-4 *9 (-13 (-749) (-548 (-1079)))) (-4 *10 (-710)) (-5 *2 (-2 (|:| |rgl| (-578 (-2 (|:| |eqzro| (-578 *11)) (|:| |neqzro| (-578 *11)) (|:| |wcond| (-578 (-850 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 *8)))) (|:| -1998 (-578 (-1168 (-343 (-850 *8)))))))))) (|:| |rgsz| (-478)))) (-5 *1 (-828 *8 *9 *10 *11)) (-5 *7 (-478)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *7)) (|:| |neqzro| (-578 *7)) (|:| |wcond| (-578 (-850 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 *4)))) (|:| -1998 (-578 (-1168 (-343 (-850 *4)))))))))) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-854 *4 *6 *5)))) (-2728 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-850 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 *5)))) (|:| -1998 (-578 (-1168 (-343 (-850 *5)))))))))) (-5 *4 (-1062)) (-4 *5 (-13 (-254) (-118))) (-4 *8 (-854 *5 *7 *6)) (-4 *6 (-13 (-749) (-548 (-1079)))) (-4 *7 (-710)) (-5 *2 (-478)) (-5 *1 (-828 *5 *6 *7 *8)))) (-2727 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *9)) (-5 *4 (-823)) (-5 *5 (-1062)) (-4 *9 (-854 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-749) (-548 (-1079)))) (-4 *8 (-710)) (-5 *2 (-478)) (-5 *1 (-828 *6 *7 *8 *9)))) (-2727 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-625 *10)) (-5 *4 (-578 (-1079))) (-5 *5 (-823)) (-5 *6 (-1062)) (-4 *10 (-854 *7 *9 *8)) (-4 *7 (-13 (-254) (-118))) (-4 *8 (-13 (-749) (-548 (-1079)))) (-4 *9 (-710)) (-5 *2 (-478)) (-5 *1 (-828 *7 *8 *9 *10)))) (-2727 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-625 *10)) (-5 *4 (-578 *10)) (-5 *5 (-823)) (-5 *6 (-1062)) (-4 *10 (-854 *7 *9 *8)) (-4 *7 (-13 (-254) (-118))) (-4 *8 (-13 (-749) (-548 (-1079)))) (-4 *9 (-710)) (-5 *2 (-478)) (-5 *1 (-828 *7 *8 *9 *10)))) (-2727 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-1062)) (-4 *8 (-854 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1079)))) (-4 *7 (-710)) (-5 *2 (-478)) (-5 *1 (-828 *5 *6 *7 *8)))) (-2727 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *9)) (-5 *4 (-578 (-1079))) (-5 *5 (-1062)) (-4 *9 (-854 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-749) (-548 (-1079)))) (-4 *8 (-710)) (-5 *2 (-478)) (-5 *1 (-828 *6 *7 *8 *9)))) (-2727 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *9)) (-5 *4 (-578 *9)) (-5 *5 (-1062)) (-4 *9 (-854 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-749) (-548 (-1079)))) (-4 *8 (-710)) (-5 *2 (-478)) (-5 *1 (-828 *6 *7 *8 *9)))) (-2727 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-823)) (-4 *8 (-854 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1079)))) (-4 *7 (-710)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-850 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 *5)))) (|:| -1998 (-578 (-1168 (-343 (-850 *5)))))))))) (-5 *1 (-828 *5 *6 *7 *8)))) (-2727 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *9)) (-5 *4 (-578 (-1079))) (-5 *5 (-823)) (-4 *9 (-854 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-749) (-548 (-1079)))) (-4 *8 (-710)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *9)) (|:| |neqzro| (-578 *9)) (|:| |wcond| (-578 (-850 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 *6)))) (|:| -1998 (-578 (-1168 (-343 (-850 *6)))))))))) (-5 *1 (-828 *6 *7 *8 *9)))) (-2727 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *9)) (-5 *5 (-823)) (-4 *9 (-854 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-749) (-548 (-1079)))) (-4 *8 (-710)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *9)) (|:| |neqzro| (-578 *9)) (|:| |wcond| (-578 (-850 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 *6)))) (|:| -1998 (-578 (-1168 (-343 (-850 *6)))))))))) (-5 *1 (-828 *6 *7 *8 *9)) (-5 *4 (-578 *9)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *7)) (|:| |neqzro| (-578 *7)) (|:| |wcond| (-578 (-850 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 *4)))) (|:| -1998 (-578 (-1168 (-343 (-850 *4)))))))))) (-5 *1 (-828 *4 *5 *6 *7)))) (-2727 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-578 (-1079))) (-4 *8 (-854 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1079)))) (-4 *7 (-710)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-850 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 *5)))) (|:| -1998 (-578 (-1168 (-343 (-850 *5)))))))))) (-5 *1 (-828 *5 *6 *7 *8)))) (-2727 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-4 *8 (-854 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1079)))) (-4 *7 (-710)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-850 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-343 (-850 *5)))) (|:| -1998 (-578 (-1168 (-343 (-850 *5)))))))))) (-5 *1 (-828 *5 *6 *7 *8)) (-5 *4 (-578 *8))))) +((-3858 (($ $ (-993 (-177))) 125 T ELT) (($ $ (-993 (-177)) (-993 (-177))) 126 T ELT)) (-2880 (((-993 (-177)) $) 73 T ELT)) (-2881 (((-993 (-177)) $) 72 T ELT)) (-2772 (((-993 (-177)) $) 74 T ELT)) (-2753 (((-478) (-478)) 66 T ELT)) (-2757 (((-478) (-478)) 61 T ELT)) (-2755 (((-478) (-478)) 64 T ELT)) (-2751 (((-83) (-83)) 68 T ELT)) (-2754 (((-478)) 65 T ELT)) (-3117 (($ $ (-993 (-177))) 129 T ELT) (($ $) 130 T ELT)) (-2774 (($ (-1 (-847 (-177)) (-177)) (-993 (-177))) 148 T ELT) (($ (-1 (-847 (-177)) (-177)) (-993 (-177)) (-993 (-177)) (-993 (-177))) 149 T ELT)) (-2760 (($ (-1 (-177) (-177)) (-993 (-177))) 156 T ELT) (($ (-1 (-177) (-177))) 160 T ELT)) (-2773 (($ (-1 (-177) (-177)) (-993 (-177))) 144 T ELT) (($ (-1 (-177) (-177)) (-993 (-177)) (-993 (-177))) 145 T ELT) (($ (-578 (-1 (-177) (-177))) (-993 (-177))) 153 T ELT) (($ (-578 (-1 (-177) (-177))) (-993 (-177)) (-993 (-177))) 154 T ELT) (($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-993 (-177))) 146 T ELT) (($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-993 (-177)) (-993 (-177)) (-993 (-177))) 147 T ELT) (($ $ (-993 (-177))) 131 T ELT)) (-2759 (((-83) $) 69 T ELT)) (-2750 (((-478)) 70 T ELT)) (-2758 (((-478)) 59 T ELT)) (-2756 (((-478)) 62 T ELT)) (-2882 (((-578 (-578 (-847 (-177)))) $) 35 T ELT)) (-2749 (((-83) (-83)) 71 T ELT)) (-3930 (((-765) $) 174 T ELT)) (-2752 (((-83)) 67 T ELT))) +(((-829) (-13 (-859) (-10 -8 (-15 -2773 ($ (-1 (-177) (-177)) (-993 (-177)))) (-15 -2773 ($ (-1 (-177) (-177)) (-993 (-177)) (-993 (-177)))) (-15 -2773 ($ (-578 (-1 (-177) (-177))) (-993 (-177)))) (-15 -2773 ($ (-578 (-1 (-177) (-177))) (-993 (-177)) (-993 (-177)))) (-15 -2773 ($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-993 (-177)))) (-15 -2773 ($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-993 (-177)) (-993 (-177)) (-993 (-177)))) (-15 -2774 ($ (-1 (-847 (-177)) (-177)) (-993 (-177)))) (-15 -2774 ($ (-1 (-847 (-177)) (-177)) (-993 (-177)) (-993 (-177)) (-993 (-177)))) (-15 -2760 ($ (-1 (-177) (-177)) (-993 (-177)))) (-15 -2760 ($ (-1 (-177) (-177)))) (-15 -2773 ($ $ (-993 (-177)))) (-15 -2759 ((-83) $)) (-15 -3858 ($ $ (-993 (-177)))) (-15 -3858 ($ $ (-993 (-177)) (-993 (-177)))) (-15 -3117 ($ $ (-993 (-177)))) (-15 -3117 ($ $)) (-15 -2772 ((-993 (-177)) $)) (-15 -2758 ((-478))) (-15 -2757 ((-478) (-478))) (-15 -2756 ((-478))) (-15 -2755 ((-478) (-478))) (-15 -2754 ((-478))) (-15 -2753 ((-478) (-478))) (-15 -2752 ((-83))) (-15 -2751 ((-83) (-83))) (-15 -2750 ((-478))) (-15 -2749 ((-83) (-83)))))) (T -829)) +((-2773 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-829)))) (-2773 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-829)))) (-2773 (*1 *1 *2 *3) (-12 (-5 *2 (-578 (-1 (-177) (-177)))) (-5 *3 (-993 (-177))) (-5 *1 (-829)))) (-2773 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-1 (-177) (-177)))) (-5 *3 (-993 (-177))) (-5 *1 (-829)))) (-2773 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-829)))) (-2773 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-829)))) (-2774 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-847 (-177)) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-829)))) (-2774 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-847 (-177)) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-829)))) (-2760 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-829)))) (-2760 (*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-829)))) (-2773 (*1 *1 *1 *2) (-12 (-5 *2 (-993 (-177))) (-5 *1 (-829)))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-829)))) (-3858 (*1 *1 *1 *2) (-12 (-5 *2 (-993 (-177))) (-5 *1 (-829)))) (-3858 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-993 (-177))) (-5 *1 (-829)))) (-3117 (*1 *1 *1 *2) (-12 (-5 *2 (-993 (-177))) (-5 *1 (-829)))) (-3117 (*1 *1 *1) (-5 *1 (-829))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-993 (-177))) (-5 *1 (-829)))) (-2758 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829)))) (-2757 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829)))) (-2756 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829)))) (-2755 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829)))) (-2754 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829)))) (-2753 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829)))) (-2752 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-829)))) (-2751 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-829)))) (-2750 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829)))) (-2749 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-829))))) +((-2760 (((-829) |#1| (-1079)) 17 T ELT) (((-829) |#1| (-1079) (-993 (-177))) 21 T ELT)) (-2773 (((-829) |#1| |#1| (-1079) (-993 (-177))) 19 T ELT) (((-829) |#1| (-1079) (-993 (-177))) 15 T ELT))) +(((-830 |#1|) (-10 -7 (-15 -2773 ((-829) |#1| (-1079) (-993 (-177)))) (-15 -2773 ((-829) |#1| |#1| (-1079) (-993 (-177)))) (-15 -2760 ((-829) |#1| (-1079) (-993 (-177)))) (-15 -2760 ((-829) |#1| (-1079)))) (-548 (-467))) (T -830)) +((-2760 (*1 *2 *3 *4) (-12 (-5 *4 (-1079)) (-5 *2 (-829)) (-5 *1 (-830 *3)) (-4 *3 (-548 (-467))))) (-2760 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1079)) (-5 *5 (-993 (-177))) (-5 *2 (-829)) (-5 *1 (-830 *3)) (-4 *3 (-548 (-467))))) (-2773 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1079)) (-5 *5 (-993 (-177))) (-5 *2 (-829)) (-5 *1 (-830 *3)) (-4 *3 (-548 (-467))))) (-2773 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1079)) (-5 *5 (-993 (-177))) (-5 *2 (-829)) (-5 *1 (-830 *3)) (-4 *3 (-548 (-467)))))) +((-3858 (($ $ (-993 (-177)) (-993 (-177)) (-993 (-177))) 123 T ELT)) (-2879 (((-993 (-177)) $) 64 T ELT)) (-2880 (((-993 (-177)) $) 63 T ELT)) (-2881 (((-993 (-177)) $) 62 T ELT)) (-2771 (((-578 (-578 (-177))) $) 69 T ELT)) (-2772 (((-993 (-177)) $) 65 T ELT)) (-2765 (((-478) (-478)) 57 T ELT)) (-2769 (((-478) (-478)) 52 T ELT)) (-2767 (((-478) (-478)) 55 T ELT)) (-2763 (((-83) (-83)) 59 T ELT)) (-2766 (((-478)) 56 T ELT)) (-3117 (($ $ (-993 (-177))) 126 T ELT) (($ $) 127 T ELT)) (-2774 (($ (-1 (-847 (-177)) (-177)) (-993 (-177))) 133 T ELT) (($ (-1 (-847 (-177)) (-177)) (-993 (-177)) (-993 (-177)) (-993 (-177)) (-993 (-177))) 134 T ELT)) (-2773 (($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-993 (-177))) 140 T ELT) (($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-993 (-177)) (-993 (-177)) (-993 (-177)) (-993 (-177))) 141 T ELT) (($ $ (-993 (-177))) 129 T ELT)) (-2762 (((-478)) 60 T ELT)) (-2770 (((-478)) 50 T ELT)) (-2768 (((-478)) 53 T ELT)) (-2882 (((-578 (-578 (-847 (-177)))) $) 157 T ELT)) (-2761 (((-83) (-83)) 61 T ELT)) (-3930 (((-765) $) 155 T ELT)) (-2764 (((-83)) 58 T ELT))) +(((-831) (-13 (-880) (-10 -8 (-15 -2774 ($ (-1 (-847 (-177)) (-177)) (-993 (-177)))) (-15 -2774 ($ (-1 (-847 (-177)) (-177)) (-993 (-177)) (-993 (-177)) (-993 (-177)) (-993 (-177)))) (-15 -2773 ($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-993 (-177)))) (-15 -2773 ($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-993 (-177)) (-993 (-177)) (-993 (-177)) (-993 (-177)))) (-15 -2773 ($ $ (-993 (-177)))) (-15 -3858 ($ $ (-993 (-177)) (-993 (-177)) (-993 (-177)))) (-15 -3117 ($ $ (-993 (-177)))) (-15 -3117 ($ $)) (-15 -2772 ((-993 (-177)) $)) (-15 -2771 ((-578 (-578 (-177))) $)) (-15 -2770 ((-478))) (-15 -2769 ((-478) (-478))) (-15 -2768 ((-478))) (-15 -2767 ((-478) (-478))) (-15 -2766 ((-478))) (-15 -2765 ((-478) (-478))) (-15 -2764 ((-83))) (-15 -2763 ((-83) (-83))) (-15 -2762 ((-478))) (-15 -2761 ((-83) (-83)))))) (T -831)) +((-2774 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-847 (-177)) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-831)))) (-2774 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-847 (-177)) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-831)))) (-2773 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-831)))) (-2773 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-831)))) (-2773 (*1 *1 *1 *2) (-12 (-5 *2 (-993 (-177))) (-5 *1 (-831)))) (-3858 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-993 (-177))) (-5 *1 (-831)))) (-3117 (*1 *1 *1 *2) (-12 (-5 *2 (-993 (-177))) (-5 *1 (-831)))) (-3117 (*1 *1 *1) (-5 *1 (-831))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-993 (-177))) (-5 *1 (-831)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-177)))) (-5 *1 (-831)))) (-2770 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831)))) (-2768 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831)))) (-2767 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831)))) (-2766 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831)))) (-2765 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831)))) (-2764 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-831)))) (-2763 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-831)))) (-2762 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-831))))) +((-2775 (((-578 (-993 (-177))) (-578 (-578 (-847 (-177))))) 34 T ELT))) +(((-832) (-10 -7 (-15 -2775 ((-578 (-993 (-177))) (-578 (-578 (-847 (-177)))))))) (T -832)) +((-2775 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *2 (-578 (-993 (-177)))) (-5 *1 (-832))))) +((-2777 (((-261 (-478)) (-1079)) 16 T ELT)) (-2778 (((-261 (-478)) (-1079)) 14 T ELT)) (-3936 (((-261 (-478)) (-1079)) 12 T ELT)) (-2776 (((-261 (-478)) (-1079) (-439)) 19 T ELT))) +(((-833) (-10 -7 (-15 -2776 ((-261 (-478)) (-1079) (-439))) (-15 -3936 ((-261 (-478)) (-1079))) (-15 -2777 ((-261 (-478)) (-1079))) (-15 -2778 ((-261 (-478)) (-1079))))) (T -833)) +((-2778 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-261 (-478))) (-5 *1 (-833)))) (-2777 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-261 (-478))) (-5 *1 (-833)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-261 (-478))) (-5 *1 (-833)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *3 (-1079)) (-5 *4 (-439)) (-5 *2 (-261 (-478))) (-5 *1 (-833))))) +((-2777 ((|#2| |#2|) 28 T ELT)) (-2778 ((|#2| |#2|) 29 T ELT)) (-3936 ((|#2| |#2|) 27 T ELT)) (-2776 ((|#2| |#2| (-439)) 26 T ELT))) +(((-834 |#1| |#2|) (-10 -7 (-15 -2776 (|#2| |#2| (-439))) (-15 -3936 (|#2| |#2|)) (-15 -2777 (|#2| |#2|)) (-15 -2778 (|#2| |#2|))) (-1005) (-357 |#1|)) (T -834)) +((-2778 (*1 *2 *2) (-12 (-4 *3 (-1005)) (-5 *1 (-834 *3 *2)) (-4 *2 (-357 *3)))) (-2777 (*1 *2 *2) (-12 (-4 *3 (-1005)) (-5 *1 (-834 *3 *2)) (-4 *2 (-357 *3)))) (-3936 (*1 *2 *2) (-12 (-4 *3 (-1005)) (-5 *1 (-834 *3 *2)) (-4 *2 (-357 *3)))) (-2776 (*1 *2 *2 *3) (-12 (-5 *3 (-439)) (-4 *4 (-1005)) (-5 *1 (-834 *4 *2)) (-4 *2 (-357 *4))))) +((-2780 (((-791 |#1| |#3|) |#2| (-793 |#1|) (-791 |#1| |#3|)) 25 T ELT)) (-2779 (((-1 (-83) |#2|) (-1 (-83) |#3|)) 13 T ELT))) +(((-835 |#1| |#2| |#3|) (-10 -7 (-15 -2779 ((-1 (-83) |#2|) (-1 (-83) |#3|))) (-15 -2780 ((-791 |#1| |#3|) |#2| (-793 |#1|) (-791 |#1| |#3|)))) (-1005) (-789 |#1|) (-13 (-1005) (-943 |#2|))) (T -835)) +((-2780 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-791 *5 *6)) (-5 *4 (-793 *5)) (-4 *5 (-1005)) (-4 *6 (-13 (-1005) (-943 *3))) (-4 *3 (-789 *5)) (-5 *1 (-835 *5 *3 *6)))) (-2779 (*1 *2 *3) (-12 (-5 *3 (-1 (-83) *6)) (-4 *6 (-13 (-1005) (-943 *5))) (-4 *5 (-789 *4)) (-4 *4 (-1005)) (-5 *2 (-1 (-83) *5)) (-5 *1 (-835 *4 *5 *6))))) +((-2780 (((-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|)) 30 T ELT))) +(((-836 |#1| |#2| |#3|) (-10 -7 (-15 -2780 ((-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|)))) (-1005) (-13 (-489) (-789 |#1|)) (-13 (-357 |#2|) (-548 (-793 |#1|)) (-789 |#1|) (-943 (-545 $)))) (T -836)) +((-2780 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-791 *5 *3)) (-4 *5 (-1005)) (-4 *3 (-13 (-357 *6) (-548 *4) (-789 *5) (-943 (-545 $)))) (-5 *4 (-793 *5)) (-4 *6 (-13 (-489) (-789 *5))) (-5 *1 (-836 *5 *6 *3))))) +((-2780 (((-791 (-478) |#1|) |#1| (-793 (-478)) (-791 (-478) |#1|)) 13 T ELT))) +(((-837 |#1|) (-10 -7 (-15 -2780 ((-791 (-478) |#1|) |#1| (-793 (-478)) (-791 (-478) |#1|)))) (-477)) (T -837)) +((-2780 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-791 (-478) *3)) (-5 *4 (-793 (-478))) (-4 *3 (-477)) (-5 *1 (-837 *3))))) +((-2780 (((-791 |#1| |#2|) (-545 |#2|) (-793 |#1|) (-791 |#1| |#2|)) 57 T ELT))) +(((-838 |#1| |#2|) (-10 -7 (-15 -2780 ((-791 |#1| |#2|) (-545 |#2|) (-793 |#1|) (-791 |#1| |#2|)))) (-1005) (-13 (-1005) (-943 (-545 $)) (-548 (-793 |#1|)) (-789 |#1|))) (T -838)) +((-2780 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-791 *5 *6)) (-5 *3 (-545 *6)) (-4 *5 (-1005)) (-4 *6 (-13 (-1005) (-943 (-545 $)) (-548 *4) (-789 *5))) (-5 *4 (-793 *5)) (-5 *1 (-838 *5 *6))))) +((-2780 (((-788 |#1| |#2| |#3|) |#3| (-793 |#1|) (-788 |#1| |#2| |#3|)) 17 T ELT))) +(((-839 |#1| |#2| |#3|) (-10 -7 (-15 -2780 ((-788 |#1| |#2| |#3|) |#3| (-793 |#1|) (-788 |#1| |#2| |#3|)))) (-1005) (-789 |#1|) (-603 |#2|)) (T -839)) +((-2780 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-788 *5 *6 *3)) (-5 *4 (-793 *5)) (-4 *5 (-1005)) (-4 *6 (-789 *5)) (-4 *3 (-603 *6)) (-5 *1 (-839 *5 *6 *3))))) +((-2780 (((-791 |#1| |#5|) |#5| (-793 |#1|) (-791 |#1| |#5|)) 17 (|has| |#3| (-789 |#1|)) ELT) (((-791 |#1| |#5|) |#5| (-793 |#1|) (-791 |#1| |#5|) (-1 (-791 |#1| |#5|) |#3| (-793 |#1|) (-791 |#1| |#5|))) 16 T ELT))) +(((-840 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2780 ((-791 |#1| |#5|) |#5| (-793 |#1|) (-791 |#1| |#5|) (-1 (-791 |#1| |#5|) |#3| (-793 |#1|) (-791 |#1| |#5|)))) (IF (|has| |#3| (-789 |#1|)) (-15 -2780 ((-791 |#1| |#5|) |#5| (-793 |#1|) (-791 |#1| |#5|))) |%noBranch|)) (-1005) (-710) (-749) (-13 (-954) (-789 |#1|)) (-13 (-854 |#4| |#2| |#3|) (-548 (-793 |#1|)))) (T -840)) +((-2780 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-791 *5 *3)) (-4 *5 (-1005)) (-4 *3 (-13 (-854 *8 *6 *7) (-548 *4))) (-5 *4 (-793 *5)) (-4 *7 (-789 *5)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-13 (-954) (-789 *5))) (-5 *1 (-840 *5 *6 *7 *8 *3)))) (-2780 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-791 *6 *3) *8 (-793 *6) (-791 *6 *3))) (-4 *8 (-749)) (-5 *2 (-791 *6 *3)) (-5 *4 (-793 *6)) (-4 *6 (-1005)) (-4 *3 (-13 (-854 *9 *7 *8) (-548 *4))) (-4 *7 (-710)) (-4 *9 (-13 (-954) (-789 *6))) (-5 *1 (-840 *6 *7 *8 *9 *3))))) +((-3192 (((-261 (-478)) (-1079) (-578 (-1 (-83) |#1|))) 18 T ELT) (((-261 (-478)) (-1079) (-1 (-83) |#1|)) 15 T ELT))) +(((-841 |#1|) (-10 -7 (-15 -3192 ((-261 (-478)) (-1079) (-1 (-83) |#1|))) (-15 -3192 ((-261 (-478)) (-1079) (-578 (-1 (-83) |#1|))))) (-1118)) (T -841)) +((-3192 (*1 *2 *3 *4) (-12 (-5 *3 (-1079)) (-5 *4 (-578 (-1 (-83) *5))) (-4 *5 (-1118)) (-5 *2 (-261 (-478))) (-5 *1 (-841 *5)))) (-3192 (*1 *2 *3 *4) (-12 (-5 *3 (-1079)) (-5 *4 (-1 (-83) *5)) (-4 *5 (-1118)) (-5 *2 (-261 (-478))) (-5 *1 (-841 *5))))) +((-3192 ((|#2| |#2| (-578 (-1 (-83) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-83) |#3|)) 13 T ELT))) +(((-842 |#1| |#2| |#3|) (-10 -7 (-15 -3192 (|#2| |#2| (-1 (-83) |#3|))) (-15 -3192 (|#2| |#2| (-578 (-1 (-83) |#3|))))) (-1005) (-357 |#1|) (-1118)) (T -842)) +((-3192 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-1 (-83) *5))) (-4 *5 (-1118)) (-4 *4 (-1005)) (-5 *1 (-842 *4 *2 *5)) (-4 *2 (-357 *4)))) (-3192 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *5)) (-4 *5 (-1118)) (-4 *4 (-1005)) (-5 *1 (-842 *4 *2 *5)) (-4 *2 (-357 *4))))) +((-2780 (((-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|)) 25 T ELT))) +(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -2780 ((-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|)))) (-1005) (-13 (-489) (-789 |#1|) (-548 (-793 |#1|))) (-897 |#2|)) (T -843)) +((-2780 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-791 *5 *3)) (-4 *5 (-1005)) (-4 *3 (-897 *6)) (-4 *6 (-13 (-489) (-789 *5) (-548 *4))) (-5 *4 (-793 *5)) (-5 *1 (-843 *5 *6 *3))))) +((-2780 (((-791 |#1| (-1079)) (-1079) (-793 |#1|) (-791 |#1| (-1079))) 18 T ELT))) +(((-844 |#1|) (-10 -7 (-15 -2780 ((-791 |#1| (-1079)) (-1079) (-793 |#1|) (-791 |#1| (-1079))))) (-1005)) (T -844)) +((-2780 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-791 *5 (-1079))) (-5 *3 (-1079)) (-5 *4 (-793 *5)) (-4 *5 (-1005)) (-5 *1 (-844 *5))))) +((-2781 (((-791 |#1| |#3|) (-578 |#3|) (-578 (-793 |#1|)) (-791 |#1| |#3|) (-1 (-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|))) 34 T ELT)) (-2780 (((-791 |#1| |#3|) (-578 |#3|) (-578 (-793 |#1|)) (-1 |#3| (-578 |#3|)) (-791 |#1| |#3|) (-1 (-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|))) 33 T ELT))) +(((-845 |#1| |#2| |#3|) (-10 -7 (-15 -2780 ((-791 |#1| |#3|) (-578 |#3|) (-578 (-793 |#1|)) (-1 |#3| (-578 |#3|)) (-791 |#1| |#3|) (-1 (-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|)))) (-15 -2781 ((-791 |#1| |#3|) (-578 |#3|) (-578 (-793 |#1|)) (-791 |#1| |#3|) (-1 (-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|))))) (-1005) (-954) (-13 (-954) (-548 (-793 |#1|)) (-943 |#2|))) (T -845)) +((-2781 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-793 *6))) (-5 *5 (-1 (-791 *6 *8) *8 (-793 *6) (-791 *6 *8))) (-4 *6 (-1005)) (-4 *8 (-13 (-954) (-548 (-793 *6)) (-943 *7))) (-5 *2 (-791 *6 *8)) (-4 *7 (-954)) (-5 *1 (-845 *6 *7 *8)))) (-2780 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-578 (-793 *7))) (-5 *5 (-1 *9 (-578 *9))) (-5 *6 (-1 (-791 *7 *9) *9 (-793 *7) (-791 *7 *9))) (-4 *7 (-1005)) (-4 *9 (-13 (-954) (-548 (-793 *7)) (-943 *8))) (-5 *2 (-791 *7 *9)) (-5 *3 (-578 *9)) (-4 *8 (-954)) (-5 *1 (-845 *7 *8 *9))))) +((-2789 (((-1074 (-343 (-478))) (-478)) 80 T ELT)) (-2788 (((-1074 (-478)) (-478)) 83 T ELT)) (-3318 (((-1074 (-478)) (-478)) 77 T ELT)) (-2787 (((-478) (-1074 (-478))) 73 T ELT)) (-2786 (((-1074 (-343 (-478))) (-478)) 66 T ELT)) (-2785 (((-1074 (-478)) (-478)) 49 T ELT)) (-2784 (((-1074 (-478)) (-478)) 85 T ELT)) (-2783 (((-1074 (-478)) (-478)) 84 T ELT)) (-2782 (((-1074 (-343 (-478))) (-478)) 68 T ELT))) +(((-846) (-10 -7 (-15 -2782 ((-1074 (-343 (-478))) (-478))) (-15 -2783 ((-1074 (-478)) (-478))) (-15 -2784 ((-1074 (-478)) (-478))) (-15 -2785 ((-1074 (-478)) (-478))) (-15 -2786 ((-1074 (-343 (-478))) (-478))) (-15 -2787 ((-478) (-1074 (-478)))) (-15 -3318 ((-1074 (-478)) (-478))) (-15 -2788 ((-1074 (-478)) (-478))) (-15 -2789 ((-1074 (-343 (-478))) (-478))))) (T -846)) +((-2789 (*1 *2 *3) (-12 (-5 *2 (-1074 (-343 (-478)))) (-5 *1 (-846)) (-5 *3 (-478)))) (-2788 (*1 *2 *3) (-12 (-5 *2 (-1074 (-478))) (-5 *1 (-846)) (-5 *3 (-478)))) (-3318 (*1 *2 *3) (-12 (-5 *2 (-1074 (-478))) (-5 *1 (-846)) (-5 *3 (-478)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-1074 (-478))) (-5 *2 (-478)) (-5 *1 (-846)))) (-2786 (*1 *2 *3) (-12 (-5 *2 (-1074 (-343 (-478)))) (-5 *1 (-846)) (-5 *3 (-478)))) (-2785 (*1 *2 *3) (-12 (-5 *2 (-1074 (-478))) (-5 *1 (-846)) (-5 *3 (-478)))) (-2784 (*1 *2 *3) (-12 (-5 *2 (-1074 (-478))) (-5 *1 (-846)) (-5 *3 (-478)))) (-2783 (*1 *2 *3) (-12 (-5 *2 (-1074 (-478))) (-5 *1 (-846)) (-5 *3 (-478)))) (-2782 (*1 *2 *3) (-12 (-5 *2 (-1074 (-343 (-478)))) (-5 *1 (-846)) (-5 *3 (-478))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3822 (($ (-687)) NIL (|has| |#1| (-23)) ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-1717 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3980)) (|has| |#1| (-749))) ELT)) (-2893 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-749)) ELT)) (-3772 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3708 (($) NIL T CONST)) (-2283 (($ $) NIL (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) NIL T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3390 (($ |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) NIL T ELT)) (-3403 (((-478) (-1 (-83) |#1|) $) NIL T ELT) (((-478) |#1| $) NIL (|has| |#1| (-1005)) ELT) (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1005)) ELT)) (-3690 (($ (-578 |#1|)) 9 T ELT)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3819 (((-625 |#1|) $ $) NIL (|has| |#1| (-954)) ELT)) (-3598 (($ (-687) |#1|) NIL T ELT)) (-2186 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3502 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2187 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3816 ((|#1| $) NIL (-12 (|has| |#1| (-908)) (|has| |#1| (-954))) ELT)) (-3817 ((|#1| $) NIL (-12 (|has| |#1| (-908)) (|has| |#1| (-954))) ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-2290 (($ |#1| $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-3785 ((|#1| $) NIL (|has| (-478) (-749)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2185 (($ $ |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3753 (($ $ (-578 |#1|)) 25 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#1| $ (-478) |#1|) NIL T ELT) ((|#1| $ (-478)) 18 T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-3820 ((|#1| $ $) NIL (|has| |#1| (-954)) ELT)) (-3895 (((-823) $) 13 T ELT)) (-2291 (($ $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-3818 (($ $ $) 23 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1718 (($ $ $ (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT) (($ (-578 |#1|)) 14 T ELT)) (-3514 (($ (-578 |#1|)) NIL T ELT)) (-3786 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-578 $)) NIL T ELT)) (-3930 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3821 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3823 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-478) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-658)) ELT) (($ $ |#1|) NIL (|has| |#1| (-658)) ELT)) (-3941 (((-687) $) 11 (|has| $ (-6 -3979)) ELT))) +(((-847 |#1|) (-886 |#1|) (-954)) (T -847)) +NIL +((-2792 (((-414 |#1| |#2|) (-850 |#2|)) 22 T ELT)) (-2795 (((-203 |#1| |#2|) (-850 |#2|)) 35 T ELT)) (-2793 (((-850 |#2|) (-414 |#1| |#2|)) 27 T ELT)) (-2791 (((-203 |#1| |#2|) (-414 |#1| |#2|)) 57 T ELT)) (-2794 (((-850 |#2|) (-203 |#1| |#2|)) 32 T ELT)) (-2790 (((-414 |#1| |#2|) (-203 |#1| |#2|)) 48 T ELT))) +(((-848 |#1| |#2|) (-10 -7 (-15 -2790 ((-414 |#1| |#2|) (-203 |#1| |#2|))) (-15 -2791 ((-203 |#1| |#2|) (-414 |#1| |#2|))) (-15 -2792 ((-414 |#1| |#2|) (-850 |#2|))) (-15 -2793 ((-850 |#2|) (-414 |#1| |#2|))) (-15 -2794 ((-850 |#2|) (-203 |#1| |#2|))) (-15 -2795 ((-203 |#1| |#2|) (-850 |#2|)))) (-578 (-1079)) (-954)) (T -848)) +((-2795 (*1 *2 *3) (-12 (-5 *3 (-850 *5)) (-4 *5 (-954)) (-5 *2 (-203 *4 *5)) (-5 *1 (-848 *4 *5)) (-14 *4 (-578 (-1079))))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-203 *4 *5)) (-14 *4 (-578 (-1079))) (-4 *5 (-954)) (-5 *2 (-850 *5)) (-5 *1 (-848 *4 *5)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-414 *4 *5)) (-14 *4 (-578 (-1079))) (-4 *5 (-954)) (-5 *2 (-850 *5)) (-5 *1 (-848 *4 *5)))) (-2792 (*1 *2 *3) (-12 (-5 *3 (-850 *5)) (-4 *5 (-954)) (-5 *2 (-414 *4 *5)) (-5 *1 (-848 *4 *5)) (-14 *4 (-578 (-1079))))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-414 *4 *5)) (-14 *4 (-578 (-1079))) (-4 *5 (-954)) (-5 *2 (-203 *4 *5)) (-5 *1 (-848 *4 *5)))) (-2790 (*1 *2 *3) (-12 (-5 *3 (-203 *4 *5)) (-14 *4 (-578 (-1079))) (-4 *5 (-954)) (-5 *2 (-414 *4 *5)) (-5 *1 (-848 *4 *5))))) +((-2796 (((-578 |#2|) |#2| |#2|) 10 T ELT)) (-2799 (((-687) (-578 |#1|)) 47 (|has| |#1| (-748)) ELT)) (-2797 (((-578 |#2|) |#2|) 11 T ELT)) (-2800 (((-687) (-578 |#1|) (-478) (-478)) 52 (|has| |#1| (-748)) ELT)) (-2798 ((|#1| |#2|) 37 (|has| |#1| (-748)) ELT))) +(((-849 |#1| |#2|) (-10 -7 (-15 -2796 ((-578 |#2|) |#2| |#2|)) (-15 -2797 ((-578 |#2|) |#2|)) (IF (|has| |#1| (-748)) (PROGN (-15 -2798 (|#1| |#2|)) (-15 -2799 ((-687) (-578 |#1|))) (-15 -2800 ((-687) (-578 |#1|) (-478) (-478)))) |%noBranch|)) (-308) (-1144 |#1|)) (T -849)) +((-2800 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-478)) (-4 *5 (-748)) (-4 *5 (-308)) (-5 *2 (-687)) (-5 *1 (-849 *5 *6)) (-4 *6 (-1144 *5)))) (-2799 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-748)) (-4 *4 (-308)) (-5 *2 (-687)) (-5 *1 (-849 *4 *5)) (-4 *5 (-1144 *4)))) (-2798 (*1 *2 *3) (-12 (-4 *2 (-308)) (-4 *2 (-748)) (-5 *1 (-849 *2 *3)) (-4 *3 (-1144 *2)))) (-2797 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-578 *3)) (-5 *1 (-849 *4 *3)) (-4 *3 (-1144 *4)))) (-2796 (*1 *2 *3 *3) (-12 (-4 *4 (-308)) (-5 *2 (-578 *3)) (-5 *1 (-849 *4 *3)) (-4 *3 (-1144 *4))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3065 (((-578 (-1079)) $) 16 T ELT)) (-3067 (((-1074 $) $ (-1079)) 21 T ELT) (((-1074 |#1|) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2803 (((-687) $) NIL T ELT) (((-687) $ (-578 (-1079))) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3759 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-385)) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-1079) #1#) $) NIL T ELT)) (-3139 ((|#1| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-1079) $) NIL T ELT)) (-3740 (($ $ $ (-1079)) NIL (|has| |#1| (-144)) ELT)) (-3943 (($ $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3487 (($ $) NIL (|has| |#1| (-385)) ELT) (($ $ (-1079)) NIL (|has| |#1| (-385)) ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-814)) ELT)) (-1611 (($ $ |#1| (-463 (-1079)) $) NIL T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-1079) (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-1079) (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2404 (((-687) $) NIL T ELT)) (-3068 (($ (-1074 |#1|) (-1079)) NIL T ELT) (($ (-1074 $) (-1079)) NIL T ELT)) (-2805 (((-578 $) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-463 (-1079))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ (-1079)) NIL T ELT)) (-2804 (((-463 (-1079)) $) NIL T ELT) (((-687) $ (-1079)) NIL T ELT) (((-578 (-687)) $ (-578 (-1079))) NIL T ELT)) (-1612 (($ (-1 (-463 (-1079)) (-463 (-1079))) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3066 (((-3 (-1079) #1#) $) 19 T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) NIL T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2807 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2806 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-2 (|:| |var| (-1079)) (|:| -2387 (-687))) #1#) $) NIL T ELT)) (-3796 (($ $ (-1079)) 29 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1784 (((-83) $) NIL T ELT)) (-1783 ((|#1| $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-385)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-814)) ELT)) (-3450 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-3752 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-1079) |#1|) NIL T ELT) (($ $ (-578 (-1079)) (-578 |#1|)) NIL T ELT) (($ $ (-1079) $) NIL T ELT) (($ $ (-578 (-1079)) (-578 $)) NIL T ELT)) (-3741 (($ $ (-1079)) NIL (|has| |#1| (-144)) ELT)) (-3742 (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079))) NIL T ELT) (($ $ (-1079)) NIL T ELT)) (-3932 (((-463 (-1079)) $) NIL T ELT) (((-687) $ (-1079)) NIL T ELT) (((-578 (-687)) $ (-578 (-1079))) NIL T ELT)) (-3956 (((-793 (-323)) $) NIL (-12 (|has| (-1079) (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-1079) (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-1079) (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT)) (-2801 ((|#1| $) NIL (|has| |#1| (-385)) ELT) (($ $ (-1079)) NIL (|has| |#1| (-385)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3930 (((-765) $) 25 T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1079)) 27 T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3801 (((-578 |#1|) $) NIL T ELT)) (-3661 ((|#1| $ (-463 (-1079))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1610 (($ $ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079))) NIL T ELT) (($ $ (-1079)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-850 |#1|) (-13 (-854 |#1| (-463 (-1079)) (-1079)) (-10 -8 (IF (|has| |#1| (-38 (-343 (-478)))) (-15 -3796 ($ $ (-1079))) |%noBranch|))) (-954)) (T -850)) +((-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-850 *3)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954))))) +((-3942 (((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|)) 19 T ELT))) +(((-851 |#1| |#2|) (-10 -7 (-15 -3942 ((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|)))) (-954) (-954)) (T -851)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-850 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-5 *2 (-850 *6)) (-5 *1 (-851 *5 *6))))) +((-3067 (((-1137 |#1| (-850 |#2|)) (-850 |#2|) (-1165 |#1|)) 18 T ELT))) +(((-852 |#1| |#2|) (-10 -7 (-15 -3067 ((-1137 |#1| (-850 |#2|)) (-850 |#2|) (-1165 |#1|)))) (-1079) (-954)) (T -852)) +((-3067 (*1 *2 *3 *4) (-12 (-5 *4 (-1165 *5)) (-14 *5 (-1079)) (-4 *6 (-954)) (-5 *2 (-1137 *5 (-850 *6))) (-5 *1 (-852 *5 *6)) (-5 *3 (-850 *6))))) +((-2803 (((-687) $) 88 T ELT) (((-687) $ (-578 |#4|)) 93 T ELT)) (-3759 (($ $) 213 T ELT)) (-3955 (((-341 $) $) 205 T ELT)) (-2688 (((-3 (-578 (-1074 $)) #1="failed") (-578 (-1074 $)) (-1074 $)) 141 T ELT)) (-3140 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 (-478) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3139 ((|#2| $) NIL T ELT) (((-343 (-478)) $) NIL T ELT) (((-478) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3740 (($ $ $ |#4|) 95 T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL T ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL T ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) 131 T ELT) (((-625 |#2|) (-625 $)) 121 T ELT)) (-3487 (($ $) 220 T ELT) (($ $ |#4|) 223 T ELT)) (-2802 (((-578 $) $) 77 T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 239 T ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 232 T ELT)) (-2805 (((-578 $) $) 34 T ELT)) (-2877 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-687)) NIL T ELT) (($ $ (-578 |#4|) (-578 (-687))) 71 T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ |#4|) 202 T ELT)) (-2807 (((-3 (-578 $) #1#) $) 52 T ELT)) (-2806 (((-3 (-578 $) #1#) $) 39 T ELT)) (-2808 (((-3 (-2 (|:| |var| |#4|) (|:| -2387 (-687))) #1#) $) 57 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 134 T ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) 147 T ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) 145 T ELT)) (-3716 (((-341 $) $) 165 T ELT)) (-3752 (($ $ (-578 (-245 $))) 24 T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-578 |#4|) (-578 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-578 |#4|) (-578 $)) NIL T ELT)) (-3741 (($ $ |#4|) 97 T ELT)) (-3956 (((-793 (-323)) $) 253 T ELT) (((-793 (-478)) $) 246 T ELT) (((-467) $) 261 T ELT)) (-2801 ((|#2| $) NIL T ELT) (($ $ |#4|) 215 T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) 184 T ELT)) (-3661 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-687)) 62 T ELT) (($ $ (-578 |#4|) (-578 (-687))) 69 T ELT)) (-2686 (((-627 $) $) 194 T ELT)) (-1253 (((-83) $ $) 226 T ELT))) +(((-853 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2692 ((-1074 |#1|) (-1074 |#1|) (-1074 |#1|))) (-15 -3955 ((-341 |#1|) |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -2686 ((-627 |#1|) |#1|)) (-15 -3956 ((-467) |#1|)) (-15 -3956 ((-793 (-478)) |#1|)) (-15 -3956 ((-793 (-323)) |#1|)) (-15 -2780 ((-791 (-478) |#1|) |#1| (-793 (-478)) (-791 (-478) |#1|))) (-15 -2780 ((-791 (-323) |#1|) |#1| (-793 (-323)) (-791 (-323) |#1|))) (-15 -3716 ((-341 |#1|) |#1|)) (-15 -2690 ((-341 (-1074 |#1|)) (-1074 |#1|))) (-15 -2689 ((-341 (-1074 |#1|)) (-1074 |#1|))) (-15 -2688 ((-3 (-578 (-1074 |#1|)) #1="failed") (-578 (-1074 |#1|)) (-1074 |#1|))) (-15 -2687 ((-3 (-1168 |#1|) #1#) (-625 |#1|))) (-15 -3487 (|#1| |#1| |#4|)) (-15 -2801 (|#1| |#1| |#4|)) (-15 -3741 (|#1| |#1| |#4|)) (-15 -3740 (|#1| |#1| |#1| |#4|)) (-15 -2802 ((-578 |#1|) |#1|)) (-15 -2803 ((-687) |#1| (-578 |#4|))) (-15 -2803 ((-687) |#1|)) (-15 -2808 ((-3 (-2 (|:| |var| |#4|) (|:| -2387 (-687))) #1#) |#1|)) (-15 -2807 ((-3 (-578 |#1|) #1#) |#1|)) (-15 -2806 ((-3 (-578 |#1|) #1#) |#1|)) (-15 -2877 (|#1| |#1| (-578 |#4|) (-578 (-687)))) (-15 -2877 (|#1| |#1| |#4| (-687))) (-15 -3747 ((-2 (|:| -1960 |#1|) (|:| -2886 |#1|)) |#1| |#1| |#4|)) (-15 -2805 ((-578 |#1|) |#1|)) (-15 -3661 (|#1| |#1| (-578 |#4|) (-578 (-687)))) (-15 -3661 (|#1| |#1| |#4| (-687))) (-15 -2265 ((-625 |#2|) (-625 |#1|))) (-15 -2265 ((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 |#1|) (-1168 |#1|))) (-15 -2265 ((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 |#1|) (-1168 |#1|))) (-15 -2265 ((-625 (-478)) (-625 |#1|))) (-15 -3140 ((-3 |#4| #1#) |#1|)) (-15 -3139 (|#4| |#1|)) (-15 -3752 (|#1| |#1| (-578 |#4|) (-578 |#1|))) (-15 -3752 (|#1| |#1| |#4| |#1|)) (-15 -3752 (|#1| |#1| (-578 |#4|) (-578 |#2|))) (-15 -3752 (|#1| |#1| |#4| |#2|)) (-15 -3752 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3752 (|#1| |#1| |#1| |#1|)) (-15 -3752 (|#1| |#1| (-245 |#1|))) (-15 -3752 (|#1| |#1| (-578 (-245 |#1|)))) (-15 -2877 (|#1| |#2| |#3|)) (-15 -3661 (|#2| |#1| |#3|)) (-15 -3140 ((-3 (-478) #1#) |#1|)) (-15 -3139 ((-478) |#1|)) (-15 -3140 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3139 ((-343 (-478)) |#1|)) (-15 -3139 (|#2| |#1|)) (-15 -3140 ((-3 |#2| #1#) |#1|)) (-15 -2801 (|#2| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -1253 ((-83) |#1| |#1|))) (-854 |#2| |#3| |#4|) (-954) (-710) (-749)) (T -853)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3065 (((-578 |#3|) $) 120 T ELT)) (-3067 (((-1074 $) $ |#3|) 135 T ELT) (((-1074 |#1|) $) 134 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 97 (|has| |#1| (-489)) ELT)) (-2049 (($ $) 98 (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) 100 (|has| |#1| (-489)) ELT)) (-2803 (((-687) $) 122 T ELT) (((-687) $ (-578 |#3|)) 121 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) 110 (|has| |#1| (-814)) ELT)) (-3759 (($ $) 108 (|has| |#1| (-385)) ELT)) (-3955 (((-341 $) $) 107 (|has| |#1| (-385)) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1="failed") (-578 (-1074 $)) (-1074 $)) 113 (|has| |#1| (-814)) ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-343 (-478)) #2#) $) 175 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #2#) $) 173 (|has| |#1| (-943 (-478))) ELT) (((-3 |#3| #2#) $) 150 T ELT)) (-3139 ((|#1| $) 177 T ELT) (((-343 (-478)) $) 176 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) 174 (|has| |#1| (-943 (-478))) ELT) ((|#3| $) 151 T ELT)) (-3740 (($ $ $ |#3|) 118 (|has| |#1| (-144)) ELT)) (-3943 (($ $) 168 T ELT)) (-2265 (((-625 (-478)) (-625 $)) 146 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 145 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) 144 T ELT) (((-625 |#1|) (-625 $)) 143 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3487 (($ $) 190 (|has| |#1| (-385)) ELT) (($ $ |#3|) 115 (|has| |#1| (-385)) ELT)) (-2802 (((-578 $) $) 119 T ELT)) (-3707 (((-83) $) 106 (|has| |#1| (-814)) ELT)) (-1611 (($ $ |#1| |#2| $) 186 T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 94 (-12 (|has| |#3| (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 93 (-12 (|has| |#3| (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-2396 (((-83) $) 40 T ELT)) (-2404 (((-687) $) 183 T ELT)) (-3068 (($ (-1074 |#1|) |#3|) 127 T ELT) (($ (-1074 $) |#3|) 126 T ELT)) (-2805 (((-578 $) $) 136 T ELT)) (-3921 (((-83) $) 166 T ELT)) (-2877 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-687)) 129 T ELT) (($ $ (-578 |#3|) (-578 (-687))) 128 T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ |#3|) 130 T ELT)) (-2804 ((|#2| $) 184 T ELT) (((-687) $ |#3|) 132 T ELT) (((-578 (-687)) $ (-578 |#3|)) 131 T ELT)) (-1612 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3066 (((-3 |#3| "failed") $) 133 T ELT)) (-2266 (((-625 (-478)) (-1168 $)) 148 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) 147 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) 142 T ELT) (((-625 |#1|) (-1168 $)) 141 T ELT)) (-2878 (($ $) 163 T ELT)) (-3157 ((|#1| $) 162 T ELT)) (-1878 (($ (-578 $)) 104 (|has| |#1| (-385)) ELT) (($ $ $) 103 (|has| |#1| (-385)) ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2807 (((-3 (-578 $) "failed") $) 124 T ELT)) (-2806 (((-3 (-578 $) "failed") $) 125 T ELT)) (-2808 (((-3 (-2 (|:| |var| |#3|) (|:| -2387 (-687))) "failed") $) 123 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-1784 (((-83) $) 180 T ELT)) (-1783 ((|#1| $) 181 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 105 (|has| |#1| (-385)) ELT)) (-3127 (($ (-578 $)) 102 (|has| |#1| (-385)) ELT) (($ $ $) 101 (|has| |#1| (-385)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) 112 (|has| |#1| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) 111 (|has| |#1| (-814)) ELT)) (-3716 (((-341 $) $) 109 (|has| |#1| (-814)) ELT)) (-3450 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-489)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-489)) ELT)) (-3752 (($ $ (-578 (-245 $))) 159 T ELT) (($ $ (-245 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-578 $) (-578 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-578 |#3|) (-578 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-578 |#3|) (-578 $)) 152 T ELT)) (-3741 (($ $ |#3|) 117 (|has| |#1| (-144)) ELT)) (-3742 (($ $ (-578 |#3|) (-578 (-687))) 49 T ELT) (($ $ |#3| (-687)) 48 T ELT) (($ $ (-578 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-3932 ((|#2| $) 164 T ELT) (((-687) $ |#3|) 140 T ELT) (((-578 (-687)) $ (-578 |#3|)) 139 T ELT)) (-3956 (((-793 (-323)) $) 92 (-12 (|has| |#3| (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) 91 (-12 (|has| |#3| (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) 90 (-12 (|has| |#3| (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT)) (-2801 ((|#1| $) 189 (|has| |#1| (-385)) ELT) (($ $ |#3|) 116 (|has| |#1| (-385)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) 114 (-2546 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ $) 95 (|has| |#1| (-489)) ELT) (($ (-343 (-478))) 88 (OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ELT)) (-3801 (((-578 |#1|) $) 182 T ELT)) (-3661 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-687)) 138 T ELT) (($ $ (-578 |#3|) (-578 (-687))) 137 T ELT)) (-2686 (((-627 $) $) 89 (OR (-2546 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3109 (((-687)) 37 T CONST)) (-1610 (($ $ $ (-687)) 187 (|has| |#1| (-144)) ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 99 (|has| |#1| (-489)) ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-578 |#3|) (-578 (-687))) 52 T ELT) (($ $ |#3| (-687)) 51 T ELT) (($ $ (-578 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ |#1|) 170 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 172 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) 171 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-854 |#1| |#2| |#3|) (-111) (-954) (-710) (-749)) (T -854)) +((-3487 (*1 *1 *1) (-12 (-4 *1 (-854 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-385)))) (-3932 (*1 *2 *1 *3) (-12 (-4 *1 (-854 *4 *5 *3)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-5 *2 (-687)))) (-3932 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *1 (-854 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 (-687))))) (-3661 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-854 *4 *5 *2)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *2 (-749)))) (-3661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 (-687))) (-4 *1 (-854 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)))) (-2805 (*1 *2 *1) (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-854 *3 *4 *5)))) (-3067 (*1 *2 *1 *3) (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-5 *2 (-1074 *1)) (-4 *1 (-854 *4 *5 *3)))) (-3067 (*1 *2 *1) (-12 (-4 *1 (-854 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-1074 *3)))) (-3066 (*1 *2 *1) (|partial| -12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) (-2804 (*1 *2 *1 *3) (-12 (-4 *1 (-854 *4 *5 *3)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-5 *2 (-687)))) (-2804 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *1 (-854 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 (-687))))) (-3747 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-5 *2 (-2 (|:| -1960 *1) (|:| -2886 *1))) (-4 *1 (-854 *4 *5 *3)))) (-2877 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-854 *4 *5 *2)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *2 (-749)))) (-2877 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 (-687))) (-4 *1 (-854 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)))) (-3068 (*1 *1 *2 *3) (-12 (-5 *2 (-1074 *4)) (-4 *4 (-954)) (-4 *1 (-854 *4 *5 *3)) (-4 *5 (-710)) (-4 *3 (-749)))) (-3068 (*1 *1 *2 *3) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-854 *4 *5 *3)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)))) (-2806 (*1 *2 *1) (|partial| -12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-854 *3 *4 *5)))) (-2807 (*1 *2 *1) (|partial| -12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-854 *3 *4 *5)))) (-2808 (*1 *2 *1) (|partial| -12 (-4 *1 (-854 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-2 (|:| |var| *5) (|:| -2387 (-687)))))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-854 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-687)))) (-2803 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *1 (-854 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-687)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-854 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *5)))) (-2802 (*1 *2 *1) (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-854 *3 *4 *5)))) (-3740 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) (-4 *3 (-144)))) (-3741 (*1 *1 *1 *2) (-12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) (-4 *3 (-144)))) (-2801 (*1 *1 *1 *2) (-12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) (-4 *3 (-385)))) (-3487 (*1 *1 *1 *2) (-12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) (-4 *3 (-385)))) (-3759 (*1 *1 *1) (-12 (-4 *1 (-854 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-385)))) (-3955 (*1 *2 *1) (-12 (-4 *3 (-385)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-341 *1)) (-4 *1 (-854 *3 *4 *5))))) +(-13 (-802 |t#3|) (-273 |t#1| |t#2|) (-256 $) (-447 |t#3| |t#1|) (-447 |t#3| $) (-943 |t#3|) (-322 |t#1|) (-10 -8 (-15 -3932 ((-687) $ |t#3|)) (-15 -3932 ((-578 (-687)) $ (-578 |t#3|))) (-15 -3661 ($ $ |t#3| (-687))) (-15 -3661 ($ $ (-578 |t#3|) (-578 (-687)))) (-15 -2805 ((-578 $) $)) (-15 -3067 ((-1074 $) $ |t#3|)) (-15 -3067 ((-1074 |t#1|) $)) (-15 -3066 ((-3 |t#3| "failed") $)) (-15 -2804 ((-687) $ |t#3|)) (-15 -2804 ((-578 (-687)) $ (-578 |t#3|))) (-15 -3747 ((-2 (|:| -1960 $) (|:| -2886 $)) $ $ |t#3|)) (-15 -2877 ($ $ |t#3| (-687))) (-15 -2877 ($ $ (-578 |t#3|) (-578 (-687)))) (-15 -3068 ($ (-1074 |t#1|) |t#3|)) (-15 -3068 ($ (-1074 $) |t#3|)) (-15 -2806 ((-3 (-578 $) "failed") $)) (-15 -2807 ((-3 (-578 $) "failed") $)) (-15 -2808 ((-3 (-2 (|:| |var| |t#3|) (|:| -2387 (-687))) "failed") $)) (-15 -2803 ((-687) $)) (-15 -2803 ((-687) $ (-578 |t#3|))) (-15 -3065 ((-578 |t#3|) $)) (-15 -2802 ((-578 $) $)) (IF (|has| |t#1| (-548 (-467))) (IF (|has| |t#3| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-548 (-793 (-478)))) (IF (|has| |t#3| (-548 (-793 (-478)))) (-6 (-548 (-793 (-478)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-548 (-793 (-323)))) (IF (|has| |t#3| (-548 (-793 (-323)))) (-6 (-548 (-793 (-323)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-789 (-478))) (IF (|has| |t#3| (-789 (-478))) (-6 (-789 (-478))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-789 (-323))) (IF (|has| |t#3| (-789 (-323))) (-6 (-789 (-323))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-144)) (PROGN (-15 -3740 ($ $ $ |t#3|)) (-15 -3741 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-385)) (PROGN (-6 (-385)) (-15 -2801 ($ $ |t#3|)) (-15 -3487 ($ $)) (-15 -3487 ($ $ |t#3|)) (-15 -3955 ((-341 $) $)) (-15 -3759 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3977)) (-6 -3977) |%noBranch|) (IF (|has| |t#1| (-814)) (-6 (-814)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-550 |#3|) . T) ((-550 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-548 (-467)) -12 (|has| |#1| (-548 (-467))) (|has| |#3| (-548 (-467)))) ((-548 (-793 (-323))) -12 (|has| |#1| (-548 (-793 (-323)))) (|has| |#3| (-548 (-793 (-323))))) ((-548 (-793 (-478))) -12 (|has| |#1| (-548 (-793 (-478)))) (|has| |#3| (-548 (-793 (-478))))) ((-242) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-256 $) . T) ((-273 |#1| |#2|) . T) ((-322 |#1|) . T) ((-348 |#1|) . T) ((-385) OR (|has| |#1| (-814)) (|has| |#1| (-385))) ((-447 |#3| |#1|) . T) ((-447 |#3| $) . T) ((-447 $ $) . T) ((-489) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 (-478)) |has| |#1| (-575 (-478))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-575 (-478)) |has| |#1| (-575 (-478))) ((-575 |#1|) . T) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-658) . T) ((-799 $ |#3|) . T) ((-802 |#3|) . T) ((-804 |#3|) . T) ((-789 (-323)) -12 (|has| |#1| (-789 (-323))) (|has| |#3| (-789 (-323)))) ((-789 (-478)) -12 (|has| |#1| (-789 (-478))) (|has| |#3| (-789 (-478)))) ((-814) |has| |#1| (-814)) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-943 |#3|) . T) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T) ((-1123) |has| |#1| (-814))) +((-3065 (((-578 |#2|) |#5|) 40 T ELT)) (-3067 (((-1074 |#5|) |#5| |#2| (-1074 |#5|)) 23 T ELT) (((-343 (-1074 |#5|)) |#5| |#2|) 16 T ELT)) (-3068 ((|#5| (-343 (-1074 |#5|)) |#2|) 30 T ELT)) (-3066 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2807 (((-3 (-578 |#5|) #1#) |#5|) 64 T ELT)) (-2809 (((-3 (-2 (|:| |val| |#5|) (|:| -2387 (-478))) #1#) |#5|) 53 T ELT)) (-2806 (((-3 (-578 |#5|) #1#) |#5|) 66 T ELT)) (-2808 (((-3 (-2 (|:| |var| |#2|) (|:| -2387 (-478))) #1#) |#5|) 56 T ELT))) +(((-855 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3065 ((-578 |#2|) |#5|)) (-15 -3066 ((-3 |#2| #1="failed") |#5|)) (-15 -3067 ((-343 (-1074 |#5|)) |#5| |#2|)) (-15 -3068 (|#5| (-343 (-1074 |#5|)) |#2|)) (-15 -3067 ((-1074 |#5|) |#5| |#2| (-1074 |#5|))) (-15 -2806 ((-3 (-578 |#5|) #1#) |#5|)) (-15 -2807 ((-3 (-578 |#5|) #1#) |#5|)) (-15 -2808 ((-3 (-2 (|:| |var| |#2|) (|:| -2387 (-478))) #1#) |#5|)) (-15 -2809 ((-3 (-2 (|:| |val| |#5|) (|:| -2387 (-478))) #1#) |#5|))) (-710) (-749) (-954) (-854 |#3| |#1| |#2|) (-13 (-308) (-10 -8 (-15 -3930 ($ |#4|)) (-15 -2982 (|#4| $)) (-15 -2981 (|#4| $))))) (T -855)) +((-2809 (*1 *2 *3) (|partial| -12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2387 (-478)))) (-5 *1 (-855 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $))))))) (-2808 (*1 *2 *3) (|partial| -12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2387 (-478)))) (-5 *1 (-855 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $))))))) (-2807 (*1 *2 *3) (|partial| -12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-578 *3)) (-5 *1 (-855 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $))))))) (-2806 (*1 *2 *3) (|partial| -12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-578 *3)) (-5 *1 (-855 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $))))))) (-3067 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1074 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $))))) (-4 *7 (-854 *6 *5 *4)) (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-954)) (-5 *1 (-855 *5 *4 *6 *7 *3)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-1074 *2))) (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-954)) (-4 *2 (-13 (-308) (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $))))) (-5 *1 (-855 *5 *4 *6 *7 *2)) (-4 *7 (-854 *6 *5 *4)))) (-3067 (*1 *2 *3 *4) (-12 (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-954)) (-4 *7 (-854 *6 *5 *4)) (-5 *2 (-343 (-1074 *3))) (-5 *1 (-855 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $))))))) (-3066 (*1 *2 *3) (|partial| -12 (-4 *4 (-710)) (-4 *5 (-954)) (-4 *6 (-854 *5 *4 *2)) (-4 *2 (-749)) (-5 *1 (-855 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3930 ($ *6)) (-15 -2982 (*6 $)) (-15 -2981 (*6 $))))))) (-3065 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-578 *5)) (-5 *1 (-855 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $)))))))) +((-3942 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) +(((-856 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3942 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-710) (-749) (-954) (-854 |#3| |#1| |#2|) (-13 (-1005) (-10 -8 (-15 -3823 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-687)))))) (T -856)) +((-3942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-749)) (-4 *8 (-954)) (-4 *6 (-710)) (-4 *2 (-13 (-1005) (-10 -8 (-15 -3823 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-687)))))) (-5 *1 (-856 *6 *7 *8 *5 *2)) (-4 *5 (-854 *8 *6 *7))))) +((-2810 (((-2 (|:| -2387 (-687)) (|:| -3938 |#5|) (|:| |radicand| |#5|)) |#3| (-687)) 48 T ELT)) (-2811 (((-2 (|:| -2387 (-687)) (|:| -3938 |#5|) (|:| |radicand| |#5|)) (-343 (-478)) (-687)) 43 T ELT)) (-2813 (((-2 (|:| -2387 (-687)) (|:| -3938 |#4|) (|:| |radicand| (-578 |#4|))) |#4| (-687)) 64 T ELT)) (-2812 (((-2 (|:| -2387 (-687)) (|:| -3938 |#5|) (|:| |radicand| |#5|)) |#5| (-687)) 73 (|has| |#3| (-385)) ELT))) +(((-857 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2810 ((-2 (|:| -2387 (-687)) (|:| -3938 |#5|) (|:| |radicand| |#5|)) |#3| (-687))) (-15 -2811 ((-2 (|:| -2387 (-687)) (|:| -3938 |#5|) (|:| |radicand| |#5|)) (-343 (-478)) (-687))) (IF (|has| |#3| (-385)) (-15 -2812 ((-2 (|:| -2387 (-687)) (|:| -3938 |#5|) (|:| |radicand| |#5|)) |#5| (-687))) |%noBranch|) (-15 -2813 ((-2 (|:| -2387 (-687)) (|:| -3938 |#4|) (|:| |radicand| (-578 |#4|))) |#4| (-687)))) (-710) (-749) (-489) (-854 |#3| |#1| |#2|) (-13 (-308) (-10 -8 (-15 -3930 ($ |#4|)) (-15 -2982 (|#4| $)) (-15 -2981 (|#4| $))))) (T -857)) +((-2813 (*1 *2 *3 *4) (-12 (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-489)) (-4 *3 (-854 *7 *5 *6)) (-5 *2 (-2 (|:| -2387 (-687)) (|:| -3938 *3) (|:| |radicand| (-578 *3)))) (-5 *1 (-857 *5 *6 *7 *3 *8)) (-5 *4 (-687)) (-4 *8 (-13 (-308) (-10 -8 (-15 -3930 ($ *3)) (-15 -2982 (*3 $)) (-15 -2981 (*3 $))))))) (-2812 (*1 *2 *3 *4) (-12 (-4 *7 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-489)) (-4 *8 (-854 *7 *5 *6)) (-5 *2 (-2 (|:| -2387 (-687)) (|:| -3938 *3) (|:| |radicand| *3))) (-5 *1 (-857 *5 *6 *7 *8 *3)) (-5 *4 (-687)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3930 ($ *8)) (-15 -2982 (*8 $)) (-15 -2981 (*8 $))))))) (-2811 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-478))) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-489)) (-4 *8 (-854 *7 *5 *6)) (-5 *2 (-2 (|:| -2387 (-687)) (|:| -3938 *9) (|:| |radicand| *9))) (-5 *1 (-857 *5 *6 *7 *8 *9)) (-5 *4 (-687)) (-4 *9 (-13 (-308) (-10 -8 (-15 -3930 ($ *8)) (-15 -2982 (*8 $)) (-15 -2981 (*8 $))))))) (-2810 (*1 *2 *3 *4) (-12 (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-489)) (-4 *7 (-854 *3 *5 *6)) (-5 *2 (-2 (|:| -2387 (-687)) (|:| -3938 *8) (|:| |radicand| *8))) (-5 *1 (-857 *5 *6 *3 *7 *8)) (-5 *4 (-687)) (-4 *8 (-13 (-308) (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $)))))))) +((-2552 (((-83) $ $) NIL T ELT)) (-2814 (($ (-1023)) 8 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 15 T ELT) (((-1023) $) 12 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 11 T ELT))) +(((-858) (-13 (-1005) (-547 (-1023)) (-10 -8 (-15 -2814 ($ (-1023)))))) (T -858)) +((-2814 (*1 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-858))))) +((-2880 (((-993 (-177)) $) 8 T ELT)) (-2881 (((-993 (-177)) $) 9 T ELT)) (-2882 (((-578 (-578 (-847 (-177)))) $) 10 T ELT)) (-3930 (((-765) $) 6 T ELT))) +(((-859) (-111)) (T -859)) +((-2882 (*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-578 (-578 (-847 (-177))))))) (-2881 (*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-993 (-177))))) (-2880 (*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-993 (-177)))))) +(-13 (-547 (-765)) (-10 -8 (-15 -2882 ((-578 (-578 (-847 (-177)))) $)) (-15 -2881 ((-993 (-177)) $)) (-15 -2880 ((-993 (-177)) $)))) +(((-547 (-765)) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 79 (|has| |#1| (-489)) ELT)) (-2049 (($ $) 80 (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 34 T ELT)) (-3139 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT)) (-3943 (($ $) 31 T ELT)) (-3451 (((-3 $ #1#) $) 42 T ELT)) (-3487 (($ $) NIL (|has| |#1| (-385)) ELT)) (-1611 (($ $ |#1| |#2| $) 63 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2404 (((-687) $) 17 T ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| |#2|) NIL T ELT)) (-2804 ((|#2| $) 24 T ELT)) (-1612 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2878 (($ $) 28 T ELT)) (-3157 ((|#1| $) 26 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1784 (((-83) $) 51 T ELT)) (-1783 ((|#1| $) NIL T ELT)) (-3722 (($ $ |#2| |#1| $) 91 (-12 (|has| |#2| (-102)) (|has| |#1| (-489))) ELT)) (-3450 (((-3 $ #1#) $ $) 92 (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ |#1|) 86 (|has| |#1| (-489)) ELT)) (-3932 ((|#2| $) 22 T ELT)) (-2801 ((|#1| $) NIL (|has| |#1| (-385)) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) 46 T ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ |#1|) 41 T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-3801 (((-578 |#1|) $) NIL T ELT)) (-3661 ((|#1| $ |#2|) 37 T ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) 15 T CONST)) (-1610 (($ $ $ (-687)) 75 (|has| |#1| (-144)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) 85 (|has| |#1| (-489)) ELT)) (-2644 (($) 27 T CONST)) (-2650 (($) 12 T CONST)) (-3037 (((-83) $ $) 84 T ELT)) (-3933 (($ $ |#1|) 93 (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) 70 T ELT) (($ $ (-687)) 68 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 67 T ELT) (($ $ |#1|) 65 T ELT) (($ |#1| $) 64 T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-860 |#1| |#2|) (-13 (-273 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-489)) (IF (|has| |#2| (-102)) (-15 -3722 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3977)) (-6 -3977) |%noBranch|))) (-954) (-709)) (T -860)) +((-3722 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-860 *3 *2)) (-4 *2 (-102)) (-4 *3 (-489)) (-4 *3 (-954)) (-4 *2 (-709))))) +((-2815 (((-3 (-625 |#1|) "failed") |#2| (-823)) 18 T ELT))) +(((-861 |#1| |#2|) (-10 -7 (-15 -2815 ((-3 (-625 |#1|) "failed") |#2| (-823)))) (-489) (-595 |#1|)) (T -861)) +((-2815 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-823)) (-4 *5 (-489)) (-5 *2 (-625 *5)) (-5 *1 (-861 *5 *3)) (-4 *3 (-595 *5))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-1717 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3980)) (|has| |#1| (-749))) ELT)) (-2893 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-749)) ELT)) (-3772 ((|#1| $ (-478) |#1|) 20 (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3708 (($) NIL T CONST)) (-2283 (($ $) NIL (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) NIL T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3390 (($ |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 ((|#1| $ (-478) |#1|) 19 (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) 17 T ELT)) (-3403 (((-478) (-1 (-83) |#1|) $) NIL T ELT) (((-478) |#1| $) NIL (|has| |#1| (-1005)) ELT) (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1005)) ELT)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3598 (($ (-687) |#1|) 16 T ELT)) (-2186 (((-478) $) 11 (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3502 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2187 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-2290 (($ |#1| $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-3785 ((|#1| $) NIL (|has| (-478) (-749)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2185 (($ $ |#1|) 21 (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) 13 T ELT)) (-3784 ((|#1| $ (-478) |#1|) NIL T ELT) ((|#1| $ (-478)) 18 T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-2291 (($ $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1718 (($ $ $ (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) 22 T ELT)) (-3956 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 15 T ELT)) (-3786 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3930 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3941 (((-687) $) 8 (|has| $ (-6 -3979)) ELT))) +(((-862 |#1|) (-19 |#1|) (-1118)) (T -862)) +NIL +((-3825 (((-862 |#2|) (-1 |#2| |#1| |#2|) (-862 |#1|) |#2|) 16 T ELT)) (-3826 ((|#2| (-1 |#2| |#1| |#2|) (-862 |#1|) |#2|) 18 T ELT)) (-3942 (((-862 |#2|) (-1 |#2| |#1|) (-862 |#1|)) 13 T ELT))) +(((-863 |#1| |#2|) (-10 -7 (-15 -3825 ((-862 |#2|) (-1 |#2| |#1| |#2|) (-862 |#1|) |#2|)) (-15 -3826 (|#2| (-1 |#2| |#1| |#2|) (-862 |#1|) |#2|)) (-15 -3942 ((-862 |#2|) (-1 |#2| |#1|) (-862 |#1|)))) (-1118) (-1118)) (T -863)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-862 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-862 *6)) (-5 *1 (-863 *5 *6)))) (-3826 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-862 *5)) (-4 *5 (-1118)) (-4 *2 (-1118)) (-5 *1 (-863 *5 *2)))) (-3825 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-862 *6)) (-4 *6 (-1118)) (-4 *5 (-1118)) (-5 *2 (-862 *5)) (-5 *1 (-863 *6 *5))))) +((-2816 (($ $ (-996 $)) 7 T ELT) (($ $ (-1079)) 6 T ELT))) +(((-864) (-111)) (T -864)) +((-2816 (*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-864)))) (-2816 (*1 *1 *1 *2) (-12 (-4 *1 (-864)) (-5 *2 (-1079))))) +(-13 (-10 -8 (-15 -2816 ($ $ (-1079))) (-15 -2816 ($ $ (-996 $))))) +((-2817 (((-2 (|:| -3938 (-578 (-478))) (|:| |poly| (-578 (-1074 |#1|))) (|:| |prim| (-1074 |#1|))) (-578 (-850 |#1|)) (-578 (-1079)) (-1079)) 26 T ELT) (((-2 (|:| -3938 (-578 (-478))) (|:| |poly| (-578 (-1074 |#1|))) (|:| |prim| (-1074 |#1|))) (-578 (-850 |#1|)) (-578 (-1079))) 27 T ELT) (((-2 (|:| |coef1| (-478)) (|:| |coef2| (-478)) (|:| |prim| (-1074 |#1|))) (-850 |#1|) (-1079) (-850 |#1|) (-1079)) 49 T ELT))) +(((-865 |#1|) (-10 -7 (-15 -2817 ((-2 (|:| |coef1| (-478)) (|:| |coef2| (-478)) (|:| |prim| (-1074 |#1|))) (-850 |#1|) (-1079) (-850 |#1|) (-1079))) (-15 -2817 ((-2 (|:| -3938 (-578 (-478))) (|:| |poly| (-578 (-1074 |#1|))) (|:| |prim| (-1074 |#1|))) (-578 (-850 |#1|)) (-578 (-1079)))) (-15 -2817 ((-2 (|:| -3938 (-578 (-478))) (|:| |poly| (-578 (-1074 |#1|))) (|:| |prim| (-1074 |#1|))) (-578 (-850 |#1|)) (-578 (-1079)) (-1079)))) (-13 (-308) (-118))) (T -865)) +((-2817 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-850 *6))) (-5 *4 (-578 (-1079))) (-5 *5 (-1079)) (-4 *6 (-13 (-308) (-118))) (-5 *2 (-2 (|:| -3938 (-578 (-478))) (|:| |poly| (-578 (-1074 *6))) (|:| |prim| (-1074 *6)))) (-5 *1 (-865 *6)))) (-2817 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-578 (-1079))) (-4 *5 (-13 (-308) (-118))) (-5 *2 (-2 (|:| -3938 (-578 (-478))) (|:| |poly| (-578 (-1074 *5))) (|:| |prim| (-1074 *5)))) (-5 *1 (-865 *5)))) (-2817 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-850 *5)) (-5 *4 (-1079)) (-4 *5 (-13 (-308) (-118))) (-5 *2 (-2 (|:| |coef1| (-478)) (|:| |coef2| (-478)) (|:| |prim| (-1074 *5)))) (-5 *1 (-865 *5))))) +((-2820 (((-578 |#1|) |#1| |#1|) 47 T ELT)) (-3707 (((-83) |#1|) 44 T ELT)) (-2819 ((|#1| |#1|) 80 T ELT)) (-2818 ((|#1| |#1|) 79 T ELT))) +(((-866 |#1|) (-10 -7 (-15 -3707 ((-83) |#1|)) (-15 -2818 (|#1| |#1|)) (-15 -2819 (|#1| |#1|)) (-15 -2820 ((-578 |#1|) |#1| |#1|))) (-477)) (T -866)) +((-2820 (*1 *2 *3 *3) (-12 (-5 *2 (-578 *3)) (-5 *1 (-866 *3)) (-4 *3 (-477)))) (-2819 (*1 *2 *2) (-12 (-5 *1 (-866 *2)) (-4 *2 (-477)))) (-2818 (*1 *2 *2) (-12 (-5 *1 (-866 *2)) (-4 *2 (-477)))) (-3707 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-866 *3)) (-4 *3 (-477))))) +((-2821 (((-1174) (-765)) 9 T ELT))) +(((-867) (-10 -7 (-15 -2821 ((-1174) (-765))))) (T -867)) +((-2821 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1174)) (-5 *1 (-867))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) ELT)) (-2467 (($ $ $) 65 (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) ELT)) (-1299 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) ELT)) (-3119 (((-687)) 36 (-12 (|has| |#1| (-313)) (|has| |#2| (-313))) ELT)) (-2822 ((|#2| $) 22 T ELT)) (-2823 ((|#1| $) 21 T ELT)) (-3708 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) (-12 (|has| |#1| (-658)) (|has| |#2| (-658))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) CONST)) (-3451 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) (-12 (|has| |#1| (-658)) (|has| |#2| (-658)))) ELT)) (-2978 (($) NIL (-12 (|has| |#1| (-313)) (|has| |#2| (-313))) ELT)) (-3169 (((-83) $) NIL (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) ELT)) (-2396 (((-83) $) NIL (OR (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) (-12 (|has| |#1| (-658)) (|has| |#2| (-658)))) ELT)) (-2515 (($ $ $) NIL (OR (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) (-12 (|has| |#1| (-749)) (|has| |#2| (-749)))) ELT)) (-2841 (($ $ $) NIL (OR (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) (-12 (|has| |#1| (-749)) (|has| |#2| (-749)))) ELT)) (-2824 (($ |#1| |#2|) 20 T ELT)) (-1996 (((-823) $) NIL (-12 (|has| |#1| (-313)) (|has| |#2| (-313))) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) 39 (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) ELT)) (-2386 (($ (-823)) NIL (-12 (|has| |#1| (-313)) (|has| |#2| (-313))) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2993 (($ $ $) NIL (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) ELT)) (-2419 (($ $ $) NIL (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) ELT)) (-3930 (((-765) $) 14 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) CONST)) (-2650 (($) 25 (OR (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) (-12 (|has| |#1| (-658)) (|has| |#2| (-658)))) CONST)) (-2550 (((-83) $ $) NIL (OR (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) (-12 (|has| |#1| (-749)) (|has| |#2| (-749)))) ELT)) (-2551 (((-83) $ $) NIL (OR (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) (-12 (|has| |#1| (-749)) (|has| |#2| (-749)))) ELT)) (-3037 (((-83) $ $) 19 T ELT)) (-2668 (((-83) $ $) NIL (OR (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) (-12 (|has| |#1| (-749)) (|has| |#2| (-749)))) ELT)) (-2669 (((-83) $ $) 69 (OR (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) (-12 (|has| |#1| (-749)) (|has| |#2| (-749)))) ELT)) (-3933 (($ $ $) NIL (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) ELT)) (-3821 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3823 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) ELT)) (** (($ $ (-478)) NIL (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) ELT) (($ $ (-687)) 32 (OR (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) (-12 (|has| |#1| (-658)) (|has| |#2| (-658)))) ELT) (($ $ (-823)) NIL (OR (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) (-12 (|has| |#1| (-658)) (|has| |#2| (-658)))) ELT)) (* (($ (-478) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-687) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) ELT) (($ (-823) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) (-12 (|has| |#1| (-658)) (|has| |#2| (-658)))) ELT))) +(((-868 |#1| |#2|) (-13 (-1005) (-10 -8 (IF (|has| |#1| (-313)) (IF (|has| |#2| (-313)) (-6 (-313)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-658)) (IF (|has| |#2| (-658)) (-6 (-658)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-102)) (IF (|has| |#2| (-102)) (-6 (-102)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-406)) (IF (|has| |#2| (-406)) (-6 (-406)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-710)) (IF (|has| |#2| (-710)) (-6 (-710)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-749)) (IF (|has| |#2| (-749)) (-6 (-749)) |%noBranch|) |%noBranch|) (-15 -2824 ($ |#1| |#2|)) (-15 -2823 (|#1| $)) (-15 -2822 (|#2| $)))) (-1005) (-1005)) (T -868)) +((-2824 (*1 *1 *2 *3) (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))) (-2823 (*1 *2 *1) (-12 (-4 *2 (-1005)) (-5 *1 (-868 *2 *3)) (-4 *3 (-1005)))) (-2822 (*1 *2 *1) (-12 (-4 *2 (-1005)) (-5 *1 (-868 *3 *2)) (-4 *3 (-1005))))) +((-3386 (((-1007) $) 12 T ELT)) (-2825 (($ (-439) (-1007)) 14 T ELT)) (-3526 (((-439) $) 9 T ELT)) (-3930 (((-765) $) 24 T ELT))) +(((-869) (-13 (-547 (-765)) (-10 -8 (-15 -3526 ((-439) $)) (-15 -3386 ((-1007) $)) (-15 -2825 ($ (-439) (-1007)))))) (T -869)) +((-3526 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-869)))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-869)))) (-2825 (*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1007)) (-5 *1 (-869))))) +((-2552 (((-83) $ $) NIL T ELT)) (-2299 (($ $) NIL T ELT)) (-2839 (($) 17 T CONST)) (-2545 (($ $ $) 37 T ELT)) (-2544 (($ $) 29 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2830 (((-627 (-775 $ $)) $) 62 T ELT)) (-2832 (((-627 $) $) 52 T ELT)) (-2829 (((-627 (-775 $ $)) $) 63 T ELT)) (-2828 (((-627 (-775 $ $)) $) 64 T ELT)) (-2833 (((-627 |#1|) $) 43 T ELT)) (-2831 (((-627 (-775 $ $)) $) 61 T ELT)) (-2837 (($ $ $) 38 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2838 (($) 16 T CONST)) (-2836 (($ $ $) 39 T ELT)) (-2826 (($ $ $) 36 T ELT)) (-2827 (($ $ $) 34 T ELT)) (-3930 (((-765) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2546 (($ $ $) 35 T ELT)) (-2297 (($ $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) NIL T ELT))) +(((-870 |#1|) (-13 (-873) (-550 |#1|) (-10 -8 (-15 -2833 ((-627 |#1|) $)) (-15 -2832 ((-627 $) $)) (-15 -2831 ((-627 (-775 $ $)) $)) (-15 -2830 ((-627 (-775 $ $)) $)) (-15 -2829 ((-627 (-775 $ $)) $)) (-15 -2828 ((-627 (-775 $ $)) $)) (-15 -2827 ($ $ $)) (-15 -2826 ($ $ $)))) (-1005)) (T -870)) +((-2833 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-870 *3)) (-4 *3 (-1005)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-627 (-870 *3))) (-5 *1 (-870 *3)) (-4 *3 (-1005)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-627 (-775 (-870 *3) (-870 *3)))) (-5 *1 (-870 *3)) (-4 *3 (-1005)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-627 (-775 (-870 *3) (-870 *3)))) (-5 *1 (-870 *3)) (-4 *3 (-1005)))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-627 (-775 (-870 *3) (-870 *3)))) (-5 *1 (-870 *3)) (-4 *3 (-1005)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-627 (-775 (-870 *3) (-870 *3)))) (-5 *1 (-870 *3)) (-4 *3 (-1005)))) (-2827 (*1 *1 *1 *1) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1005)))) (-2826 (*1 *1 *1 *1) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1005))))) +((-3633 (((-870 |#1|) (-870 |#1|)) 46 T ELT)) (-2835 (((-870 |#1|) (-870 |#1|)) 22 T ELT)) (-2834 (((-1001 |#1|) (-870 |#1|)) 41 T ELT))) +(((-871 |#1|) (-13 (-1118) (-10 -7 (-15 -2835 ((-870 |#1|) (-870 |#1|))) (-15 -2834 ((-1001 |#1|) (-870 |#1|))) (-15 -3633 ((-870 |#1|) (-870 |#1|))))) (-1005)) (T -871)) +((-2835 (*1 *2 *2) (-12 (-5 *2 (-870 *3)) (-4 *3 (-1005)) (-5 *1 (-871 *3)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-870 *4)) (-4 *4 (-1005)) (-5 *2 (-1001 *4)) (-5 *1 (-871 *4)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-870 *3)) (-4 *3 (-1005)) (-5 *1 (-871 *3))))) +((-3942 (((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)) 29 T ELT))) +(((-872 |#1| |#2|) (-13 (-1118) (-10 -7 (-15 -3942 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|))))) (-1005) (-1005)) (T -872)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *2 (-870 *6)) (-5 *1 (-872 *5 *6))))) +((-2552 (((-83) $ $) 19 T ELT)) (-2299 (($ $) 8 T ELT)) (-2839 (($) 17 T CONST)) (-2545 (($ $ $) 9 T ELT)) (-2544 (($ $) 11 T ELT)) (-3225 (((-1062) $) 23 T ELT)) (-2837 (($ $ $) 15 T ELT)) (-3226 (((-1023) $) 22 T ELT)) (-2838 (($) 16 T CONST)) (-2836 (($ $ $) 14 T ELT)) (-3930 (((-765) $) 21 T ELT)) (-1253 (((-83) $ $) 20 T ELT)) (-2546 (($ $ $) 10 T ELT)) (-2297 (($ $ $) 6 T ELT)) (-3037 (((-83) $ $) 18 T ELT)) (-2298 (($ $ $) 7 T ELT))) +(((-873) (-111)) (T -873)) +((-2839 (*1 *1) (-4 *1 (-873))) (-2838 (*1 *1) (-4 *1 (-873))) (-2837 (*1 *1 *1 *1) (-4 *1 (-873))) (-2836 (*1 *1 *1 *1) (-4 *1 (-873)))) +(-13 (-82) (-1005) (-10 -8 (-15 -2839 ($) -3936) (-15 -2838 ($) -3936) (-15 -2837 ($ $ $)) (-15 -2836 ($ $ $)))) +(((-72) . T) ((-82) . T) ((-547 (-765)) . T) ((-599) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3708 (($) 7 T CONST)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-2840 (($ $ $) 47 T ELT)) (-3502 (($ $ $) 48 T ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-2841 ((|#1| $) 49 T ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-1262 ((|#1| $) 43 T ELT)) (-3593 (($ |#1| $) 44 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-1263 ((|#1| $) 45 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1264 (($ (-578 |#1|)) 46 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-874 |#1|) (-111) (-749)) (T -874)) +((-2841 (*1 *2 *1) (-12 (-4 *1 (-874 *2)) (-4 *2 (-749)))) (-3502 (*1 *1 *1 *1) (-12 (-4 *1 (-874 *2)) (-4 *2 (-749)))) (-2840 (*1 *1 *1 *1) (-12 (-4 *1 (-874 *2)) (-4 *2 (-749))))) +(-13 (-76 |t#1|) (-10 -8 (-6 -3979) (-15 -2841 (|t#1| $)) (-15 -3502 ($ $ $)) (-15 -2840 ($ $ $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1118) . T)) +((-2853 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3127 |#2|)) |#2| |#2|) 105 T ELT)) (-3739 ((|#2| |#2| |#2|) 103 T ELT)) (-2854 (((-2 (|:| |coef2| |#2|) (|:| -3127 |#2|)) |#2| |#2|) 107 T ELT)) (-2855 (((-2 (|:| |coef1| |#2|) (|:| -3127 |#2|)) |#2| |#2|) 109 T ELT)) (-2862 (((-2 (|:| |coef2| |#2|) (|:| -2860 |#1|)) |#2| |#2|) 132 (|has| |#1| (-385)) ELT)) (-2869 (((-2 (|:| |coef2| |#2|) (|:| -3740 |#1|)) |#2| |#2|) 56 T ELT)) (-2843 (((-2 (|:| |coef2| |#2|) (|:| -3740 |#1|)) |#2| |#2|) 80 T ELT)) (-2844 (((-2 (|:| |coef1| |#2|) (|:| -3740 |#1|)) |#2| |#2|) 82 T ELT)) (-2852 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2847 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-687)) 89 T ELT)) (-2857 (((-2 (|:| |coef2| |#2|) (|:| -3741 |#1|)) |#2|) 121 T ELT)) (-2850 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-687)) 92 T ELT)) (-2859 (((-578 (-687)) |#2| |#2|) 102 T ELT)) (-2867 ((|#1| |#2| |#2|) 50 T ELT)) (-2861 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2860 |#1|)) |#2| |#2|) 130 (|has| |#1| (-385)) ELT)) (-2860 ((|#1| |#2| |#2|) 128 (|has| |#1| (-385)) ELT)) (-2868 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3740 |#1|)) |#2| |#2|) 54 T ELT)) (-2842 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3740 |#1|)) |#2| |#2|) 79 T ELT)) (-3740 ((|#1| |#2| |#2|) 76 T ELT)) (-3736 (((-2 (|:| -3938 |#1|) (|:| -1960 |#2|) (|:| -2886 |#2|)) |#2| |#2|) 41 T ELT)) (-2866 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2851 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3173 ((|#2| |#2| |#2|) 93 T ELT)) (-2846 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-687)) 87 T ELT)) (-2845 ((|#2| |#2| |#2| (-687)) 85 T ELT)) (-3127 ((|#2| |#2| |#2|) 136 (|has| |#1| (-385)) ELT)) (-3450 (((-1168 |#2|) (-1168 |#2|) |#1|) 22 T ELT)) (-2863 (((-2 (|:| -1960 |#2|) (|:| -2886 |#2|)) |#2| |#2|) 46 T ELT)) (-2856 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3741 |#1|)) |#2|) 119 T ELT)) (-3741 ((|#1| |#2|) 116 T ELT)) (-2849 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-687)) 91 T ELT)) (-2848 ((|#2| |#2| |#2| (-687)) 90 T ELT)) (-2858 (((-578 |#2|) |#2| |#2|) 99 T ELT)) (-2865 ((|#2| |#2| |#1| |#1| (-687)) 62 T ELT)) (-2864 ((|#1| |#1| |#1| (-687)) 61 T ELT)) (* (((-1168 |#2|) |#1| (-1168 |#2|)) 17 T ELT))) +(((-875 |#1| |#2|) (-10 -7 (-15 -3740 (|#1| |#2| |#2|)) (-15 -2842 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3740 |#1|)) |#2| |#2|)) (-15 -2843 ((-2 (|:| |coef2| |#2|) (|:| -3740 |#1|)) |#2| |#2|)) (-15 -2844 ((-2 (|:| |coef1| |#2|) (|:| -3740 |#1|)) |#2| |#2|)) (-15 -2845 (|#2| |#2| |#2| (-687))) (-15 -2846 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-687))) (-15 -2847 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-687))) (-15 -2848 (|#2| |#2| |#2| (-687))) (-15 -2849 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-687))) (-15 -2850 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-687))) (-15 -3173 (|#2| |#2| |#2|)) (-15 -2851 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2852 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3739 (|#2| |#2| |#2|)) (-15 -2853 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3127 |#2|)) |#2| |#2|)) (-15 -2854 ((-2 (|:| |coef2| |#2|) (|:| -3127 |#2|)) |#2| |#2|)) (-15 -2855 ((-2 (|:| |coef1| |#2|) (|:| -3127 |#2|)) |#2| |#2|)) (-15 -3741 (|#1| |#2|)) (-15 -2856 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3741 |#1|)) |#2|)) (-15 -2857 ((-2 (|:| |coef2| |#2|) (|:| -3741 |#1|)) |#2|)) (-15 -2858 ((-578 |#2|) |#2| |#2|)) (-15 -2859 ((-578 (-687)) |#2| |#2|)) (IF (|has| |#1| (-385)) (PROGN (-15 -2860 (|#1| |#2| |#2|)) (-15 -2861 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2860 |#1|)) |#2| |#2|)) (-15 -2862 ((-2 (|:| |coef2| |#2|) (|:| -2860 |#1|)) |#2| |#2|)) (-15 -3127 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1168 |#2|) |#1| (-1168 |#2|))) (-15 -3450 ((-1168 |#2|) (-1168 |#2|) |#1|)) (-15 -3736 ((-2 (|:| -3938 |#1|) (|:| -1960 |#2|) (|:| -2886 |#2|)) |#2| |#2|)) (-15 -2863 ((-2 (|:| -1960 |#2|) (|:| -2886 |#2|)) |#2| |#2|)) (-15 -2864 (|#1| |#1| |#1| (-687))) (-15 -2865 (|#2| |#2| |#1| |#1| (-687))) (-15 -2866 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2867 (|#1| |#2| |#2|)) (-15 -2868 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3740 |#1|)) |#2| |#2|)) (-15 -2869 ((-2 (|:| |coef2| |#2|) (|:| -3740 |#1|)) |#2| |#2|))) (-489) (-1144 |#1|)) (T -875)) +((-2869 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3740 *4))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) (-2868 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3740 *4))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) (-2867 (*1 *2 *3 *3) (-12 (-4 *2 (-489)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1144 *2)))) (-2866 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1144 *3)))) (-2865 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-687)) (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1144 *3)))) (-2864 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-687)) (-4 *2 (-489)) (-5 *1 (-875 *2 *4)) (-4 *4 (-1144 *2)))) (-2863 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| -1960 *3) (|:| -2886 *3))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) (-3736 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| -3938 *4) (|:| -1960 *3) (|:| -2886 *3))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) (-3450 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-489)) (-5 *1 (-875 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1168 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-489)) (-5 *1 (-875 *3 *4)))) (-3127 (*1 *2 *2 *2) (-12 (-4 *3 (-385)) (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1144 *3)))) (-2862 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2860 *4))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) (-2861 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2860 *4))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) (-2860 (*1 *2 *3 *3) (-12 (-4 *2 (-489)) (-4 *2 (-385)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1144 *2)))) (-2859 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-578 (-687))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) (-2858 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-578 *3)) (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) (-2857 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3741 *4))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) (-2856 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3741 *4))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) (-3741 (*1 *2 *3) (-12 (-4 *2 (-489)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1144 *2)))) (-2855 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3127 *3))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) (-2854 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3127 *3))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) (-2853 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3127 *3))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) (-3739 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1144 *3)))) (-2852 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) (-2851 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) (-3173 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1144 *3)))) (-2850 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-687)) (-4 *5 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-875 *5 *3)) (-4 *3 (-1144 *5)))) (-2849 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-687)) (-4 *5 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-875 *5 *3)) (-4 *3 (-1144 *5)))) (-2848 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-687)) (-4 *4 (-489)) (-5 *1 (-875 *4 *2)) (-4 *2 (-1144 *4)))) (-2847 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-687)) (-4 *5 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-875 *5 *3)) (-4 *3 (-1144 *5)))) (-2846 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-687)) (-4 *5 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-875 *5 *3)) (-4 *3 (-1144 *5)))) (-2845 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-687)) (-4 *4 (-489)) (-5 *1 (-875 *4 *2)) (-4 *2 (-1144 *4)))) (-2844 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3740 *4))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) (-2843 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3740 *4))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) (-2842 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3740 *4))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) (-3740 (*1 *2 *3 *3) (-12 (-4 *2 (-489)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1144 *2))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3300 (((-1119) $) 13 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3189 (((-1038) $) 10 T ELT)) (-3930 (((-765) $) 20 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-876) (-13 (-987) (-10 -8 (-15 -3189 ((-1038) $)) (-15 -3300 ((-1119) $))))) (T -876)) +((-3189 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-876)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-876))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 40 T ELT)) (-1299 (((-3 $ "failed") $ $) 54 T ELT)) (-3708 (($) NIL T CONST)) (-2871 (((-578 (-775 (-823) (-823))) $) 67 T ELT)) (-3169 (((-83) $) NIL T ELT)) (-2870 (((-823) $) 94 T ELT)) (-2873 (((-578 (-823)) $) 17 T ELT)) (-2872 (((-1058 $) (-687)) 39 T ELT)) (-2874 (($ (-578 (-823))) 16 T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2993 (($ $) 70 T ELT)) (-3930 (((-765) $) 90 T ELT) (((-578 (-823)) $) 11 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 8 T CONST)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 44 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 42 T ELT)) (-3823 (($ $ $) 46 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) 49 T ELT)) (-3941 (((-687) $) 22 T ELT))) +(((-877) (-13 (-714) (-547 (-578 (-823))) (-10 -8 (-15 -2874 ($ (-578 (-823)))) (-15 -2873 ((-578 (-823)) $)) (-15 -3941 ((-687) $)) (-15 -2872 ((-1058 $) (-687))) (-15 -2871 ((-578 (-775 (-823) (-823))) $)) (-15 -2870 ((-823) $)) (-15 -2993 ($ $))))) (T -877)) +((-2874 (*1 *1 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-877)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-877)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-877)))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1058 (-877))) (-5 *1 (-877)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-578 (-775 (-823) (-823)))) (-5 *1 (-877)))) (-2870 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-877)))) (-2993 (*1 *1 *1) (-5 *1 (-877)))) +((-3933 (($ $ |#2|) 31 T ELT)) (-3821 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-343 (-478)) $) 27 T ELT) (($ $ (-343 (-478))) 29 T ELT))) +(((-878 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-343 (-478)))) (-15 * (|#1| (-343 (-478)) |#1|)) (-15 -3933 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3821 (|#1| |#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 * (|#1| (-823) |#1|))) (-879 |#2| |#3| |#4|) (-954) (-709) (-749)) (T -878)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3065 (((-578 |#3|) $) 92 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 68 (|has| |#1| (-489)) ELT)) (-2049 (($ $) 69 (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) 71 (|has| |#1| (-489)) ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3943 (($ $) 77 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2876 (((-83) $) 91 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3921 (((-83) $) 79 T ELT)) (-2877 (($ |#1| |#2|) 78 T ELT) (($ $ |#3| |#2|) 94 T ELT) (($ $ (-578 |#3|) (-578 |#2|)) 93 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-2878 (($ $) 82 T ELT)) (-3157 ((|#1| $) 83 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3450 (((-3 $ "failed") $ $) 67 (|has| |#1| (-489)) ELT)) (-3932 ((|#2| $) 81 T ELT)) (-2875 (($ $) 90 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 (-478))) 74 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) 66 (|has| |#1| (-489)) ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT)) (-3661 ((|#1| $ |#2|) 76 T ELT)) (-2686 (((-627 $) $) 65 (|has| |#1| (-116)) ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 70 (|has| |#1| (-489)) ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-343 (-478)) $) 73 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 72 (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-879 |#1| |#2| |#3|) (-111) (-954) (-709) (-749)) (T -879)) +((-3157 (*1 *2 *1) (-12 (-4 *1 (-879 *2 *3 *4)) (-4 *3 (-709)) (-4 *4 (-749)) (-4 *2 (-954)))) (-2878 (*1 *1 *1) (-12 (-4 *1 (-879 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-709)) (-4 *4 (-749)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-879 *3 *2 *4)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *2 (-709)))) (-2877 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-879 *4 *3 *2)) (-4 *4 (-954)) (-4 *3 (-709)) (-4 *2 (-749)))) (-2877 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 *5)) (-4 *1 (-879 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-709)) (-4 *6 (-749)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-879 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-709)) (-4 *5 (-749)) (-5 *2 (-578 *5)))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-879 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-709)) (-4 *5 (-749)) (-5 *2 (-83)))) (-2875 (*1 *1 *1) (-12 (-4 *1 (-879 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-709)) (-4 *4 (-749))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2877 ($ $ |t#3| |t#2|)) (-15 -2877 ($ $ (-578 |t#3|) (-578 |t#2|))) (-15 -2878 ($ $)) (-15 -3157 (|t#1| $)) (-15 -3932 (|t#2| $)) (-15 -3065 ((-578 |t#3|) $)) (-15 -2876 ((-83) $)) (-15 -2875 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-489)) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-550 (-478)) . T) ((-550 |#1|) |has| |#1| (-144)) ((-550 $) |has| |#1| (-489)) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-242) |has| |#1| (-489)) ((-489) |has| |#1| (-489)) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) |has| |#1| (-489)) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) |has| |#1| (-489)) ((-658) . T) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2879 (((-993 (-177)) $) 8 T ELT)) (-2880 (((-993 (-177)) $) 9 T ELT)) (-2881 (((-993 (-177)) $) 10 T ELT)) (-2882 (((-578 (-578 (-847 (-177)))) $) 11 T ELT)) (-3930 (((-765) $) 6 T ELT))) +(((-880) (-111)) (T -880)) +((-2882 (*1 *2 *1) (-12 (-4 *1 (-880)) (-5 *2 (-578 (-578 (-847 (-177))))))) (-2881 (*1 *2 *1) (-12 (-4 *1 (-880)) (-5 *2 (-993 (-177))))) (-2880 (*1 *2 *1) (-12 (-4 *1 (-880)) (-5 *2 (-993 (-177))))) (-2879 (*1 *2 *1) (-12 (-4 *1 (-880)) (-5 *2 (-993 (-177)))))) +(-13 (-547 (-765)) (-10 -8 (-15 -2882 ((-578 (-578 (-847 (-177)))) $)) (-15 -2881 ((-993 (-177)) $)) (-15 -2880 ((-993 (-177)) $)) (-15 -2879 ((-993 (-177)) $)))) +(((-547 (-765)) . T)) +((-3065 (((-578 |#4|) $) 23 T ELT)) (-2892 (((-83) $) 55 T ELT)) (-2883 (((-83) $) 54 T ELT)) (-2893 (((-2 (|:| |under| $) (|:| -3113 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2888 (((-83) $) 56 T ELT)) (-2890 (((-83) $ $) 62 T ELT)) (-2889 (((-83) $ $) 65 T ELT)) (-2891 (((-83) $) 60 T ELT)) (-2884 (((-578 |#5|) (-578 |#5|) $) 98 T ELT)) (-2885 (((-578 |#5|) (-578 |#5|) $) 95 T ELT)) (-2886 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2898 (((-578 |#4|) $) 27 T ELT)) (-2897 (((-83) |#4| $) 34 T ELT)) (-2887 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2894 (($ $ |#4|) 39 T ELT)) (-2896 (($ $ |#4|) 38 T ELT)) (-2895 (($ $ |#4|) 40 T ELT)) (-3037 (((-83) $ $) 46 T ELT))) +(((-881 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2883 ((-83) |#1|)) (-15 -2884 ((-578 |#5|) (-578 |#5|) |#1|)) (-15 -2885 ((-578 |#5|) (-578 |#5|) |#1|)) (-15 -2886 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2887 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2888 ((-83) |#1|)) (-15 -2889 ((-83) |#1| |#1|)) (-15 -2890 ((-83) |#1| |#1|)) (-15 -2891 ((-83) |#1|)) (-15 -2892 ((-83) |#1|)) (-15 -2893 ((-2 (|:| |under| |#1|) (|:| -3113 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2894 (|#1| |#1| |#4|)) (-15 -2895 (|#1| |#1| |#4|)) (-15 -2896 (|#1| |#1| |#4|)) (-15 -2897 ((-83) |#4| |#1|)) (-15 -2898 ((-578 |#4|) |#1|)) (-15 -3065 ((-578 |#4|) |#1|)) (-15 -3037 ((-83) |#1| |#1|))) (-882 |#2| |#3| |#4| |#5|) (-954) (-710) (-749) (-969 |#2| |#3| |#4|)) (T -881)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3065 (((-578 |#3|) $) 37 T ELT)) (-2892 (((-83) $) 30 T ELT)) (-2883 (((-83) $) 21 (|has| |#1| (-489)) ELT)) (-2893 (((-2 (|:| |under| $) (|:| -3113 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3694 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3979)) ELT)) (-3708 (($) 46 T CONST)) (-2888 (((-83) $) 26 (|has| |#1| (-489)) ELT)) (-2890 (((-83) $ $) 28 (|has| |#1| (-489)) ELT)) (-2889 (((-83) $ $) 27 (|has| |#1| (-489)) ELT)) (-2891 (((-83) $) 29 (|has| |#1| (-489)) ELT)) (-2884 (((-578 |#4|) (-578 |#4|) $) 22 (|has| |#1| (-489)) ELT)) (-2885 (((-578 |#4|) (-578 |#4|) $) 23 (|has| |#1| (-489)) ELT)) (-3140 (((-3 $ "failed") (-578 |#4|)) 40 T ELT)) (-3139 (($ (-578 |#4|)) 39 T ELT)) (-1340 (($ $) 69 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3390 (($ |#4| $) 68 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3979)) ELT)) (-2886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-489)) ELT)) (-3826 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3979)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3979)) ELT)) (-2873 (((-578 |#4|) $) 53 (|has| $ (-6 -3979)) ELT)) (-3163 ((|#3| $) 38 T ELT)) (-2592 (((-578 |#4|) $) 54 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2898 (((-578 |#3|) $) 36 T ELT)) (-2897 (((-83) |#3| $) 35 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2887 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-489)) ELT)) (-3226 (((-1023) $) 12 T ELT)) (-1341 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-1934 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 |#4|) (-578 |#4|)) 60 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-245 |#4|)) 58 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-578 (-245 |#4|))) 57 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT)) (-1210 (((-83) $ $) 42 T ELT)) (-3387 (((-83) $) 45 T ELT)) (-3549 (($) 44 T ELT)) (-1933 (((-687) |#4| $) 55 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT) (((-687) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) 43 T ELT)) (-3956 (((-467) $) 70 (|has| |#4| (-548 (-467))) ELT)) (-3514 (($ (-578 |#4|)) 61 T ELT)) (-2894 (($ $ |#3|) 32 T ELT)) (-2896 (($ $ |#3|) 34 T ELT)) (-2895 (($ $ |#3|) 33 T ELT)) (-3930 (((-765) $) 13 T ELT) (((-578 |#4|) $) 41 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3941 (((-687) $) 47 (|has| $ (-6 -3979)) ELT))) +(((-882 |#1| |#2| |#3| |#4|) (-111) (-954) (-710) (-749) (-969 |t#1| |t#2| |t#3|)) (T -882)) +((-3140 (*1 *1 *2) (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *1 (-882 *3 *4 *5 *6)))) (-3139 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *1 (-882 *3 *4 *5 *6)))) (-3163 (*1 *2 *1) (-12 (-4 *1 (-882 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-969 *3 *4 *2)) (-4 *2 (-749)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-578 *5)))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-578 *5)))) (-2897 (*1 *2 *3 *1) (-12 (-4 *1 (-882 *4 *5 *3 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-4 *6 (-969 *4 *5 *3)) (-5 *2 (-83)))) (-2896 (*1 *1 *1 *2) (-12 (-4 *1 (-882 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) (-4 *5 (-969 *3 *4 *2)))) (-2895 (*1 *1 *1 *2) (-12 (-4 *1 (-882 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) (-4 *5 (-969 *3 *4 *2)))) (-2894 (*1 *1 *1 *2) (-12 (-4 *1 (-882 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) (-4 *5 (-969 *3 *4 *2)))) (-2893 (*1 *2 *1 *3) (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-4 *6 (-969 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3113 *1) (|:| |upper| *1))) (-4 *1 (-882 *4 *5 *3 *6)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) (-2891 (*1 *2 *1) (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83)))) (-2890 (*1 *2 *1 *1) (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83)))) (-2889 (*1 *2 *1 *1) (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83)))) (-2888 (*1 *2 *1) (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83)))) (-2887 (*1 *2 *3 *1) (-12 (-4 *1 (-882 *4 *5 *6 *3)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-4 *4 (-489)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2886 (*1 *2 *3 *1) (-12 (-4 *1 (-882 *4 *5 *6 *3)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-4 *4 (-489)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2885 (*1 *2 *2 *1) (-12 (-5 *2 (-578 *6)) (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)))) (-2884 (*1 *2 *2 *1) (-12 (-5 *2 (-578 *6)) (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83))))) +(-13 (-1005) (-122 |t#4|) (-547 (-578 |t#4|)) (-10 -8 (-6 -3979) (-15 -3140 ((-3 $ "failed") (-578 |t#4|))) (-15 -3139 ($ (-578 |t#4|))) (-15 -3163 (|t#3| $)) (-15 -3065 ((-578 |t#3|) $)) (-15 -2898 ((-578 |t#3|) $)) (-15 -2897 ((-83) |t#3| $)) (-15 -2896 ($ $ |t#3|)) (-15 -2895 ($ $ |t#3|)) (-15 -2894 ($ $ |t#3|)) (-15 -2893 ((-2 (|:| |under| $) (|:| -3113 $) (|:| |upper| $)) $ |t#3|)) (-15 -2892 ((-83) $)) (IF (|has| |t#1| (-489)) (PROGN (-15 -2891 ((-83) $)) (-15 -2890 ((-83) $ $)) (-15 -2889 ((-83) $ $)) (-15 -2888 ((-83) $)) (-15 -2887 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2886 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2885 ((-578 |t#4|) (-578 |t#4|) $)) (-15 -2884 ((-578 |t#4|) (-578 |t#4|) $)) (-15 -2883 ((-83) $))) |%noBranch|))) +(((-34) . T) ((-72) . T) ((-547 (-578 |#4|)) . T) ((-547 (-765)) . T) ((-122 |#4|) . T) ((-548 (-467)) |has| |#4| (-548 (-467))) ((-256 |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ((-422 |#4|) . T) ((-447 |#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ((-1005) . T) ((-1118) . T)) +((-2900 (((-578 |#4|) |#4| |#4|) 137 T ELT)) (-2923 (((-578 |#4|) (-578 |#4|) (-83)) 125 (|has| |#1| (-385)) ELT) (((-578 |#4|) (-578 |#4|)) 126 (|has| |#1| (-385)) ELT)) (-2910 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|)) 44 T ELT)) (-2909 (((-83) |#4|) 43 T ELT)) (-2922 (((-578 |#4|) |#4|) 121 (|has| |#1| (-385)) ELT)) (-2905 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-1 (-83) |#4|) (-578 |#4|)) 24 T ELT)) (-2906 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-83) |#4|)) (-578 |#4|)) 30 T ELT)) (-2907 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-83) |#4|)) (-578 |#4|)) 31 T ELT)) (-2918 (((-3 (-2 (|:| |bas| (-409 |#1| |#2| |#3| |#4|)) (|:| -3308 (-578 |#4|))) "failed") (-578 |#4|)) 90 T ELT)) (-2920 (((-578 |#4|) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2921 (((-578 |#4|) (-578 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129 T ELT)) (-2899 (((-578 |#4|) (-578 |#4|)) 128 T ELT)) (-2915 (((-578 |#4|) (-578 |#4|) (-578 |#4|) (-83)) 59 T ELT) (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 61 T ELT)) (-2916 ((|#4| |#4| (-578 |#4|)) 60 T ELT)) (-2924 (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 133 (|has| |#1| (-385)) ELT)) (-2926 (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 136 (|has| |#1| (-385)) ELT)) (-2925 (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 135 (|has| |#1| (-385)) ELT)) (-2901 (((-578 |#4|) (-578 |#4|) (-578 |#4|) (-1 (-578 |#4|) (-578 |#4|))) 105 T ELT) (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 107 T ELT) (((-578 |#4|) (-578 |#4|) |#4|) 141 T ELT) (((-578 |#4|) |#4| |#4|) 138 T ELT) (((-578 |#4|) (-578 |#4|)) 106 T ELT)) (-2929 (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 118 (-12 (|has| |#1| (-118)) (|has| |#1| (-254))) ELT)) (-2908 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|)) 52 T ELT)) (-2904 (((-83) (-578 |#4|)) 79 T ELT)) (-2903 (((-83) (-578 |#4|) (-578 (-578 |#4|))) 67 T ELT)) (-2912 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|)) 37 T ELT)) (-2911 (((-83) |#4|) 36 T ELT)) (-2928 (((-578 |#4|) (-578 |#4|)) 116 (-12 (|has| |#1| (-118)) (|has| |#1| (-254))) ELT)) (-2927 (((-578 |#4|) (-578 |#4|)) 117 (-12 (|has| |#1| (-118)) (|has| |#1| (-254))) ELT)) (-2917 (((-578 |#4|) (-578 |#4|)) 83 T ELT)) (-2919 (((-578 |#4|) (-578 |#4|)) 97 T ELT)) (-2902 (((-83) (-578 |#4|) (-578 |#4|)) 65 T ELT)) (-2914 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|)) 50 T ELT)) (-2913 (((-83) |#4|) 45 T ELT))) +(((-883 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2901 ((-578 |#4|) (-578 |#4|))) (-15 -2901 ((-578 |#4|) |#4| |#4|)) (-15 -2899 ((-578 |#4|) (-578 |#4|))) (-15 -2900 ((-578 |#4|) |#4| |#4|)) (-15 -2901 ((-578 |#4|) (-578 |#4|) |#4|)) (-15 -2901 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -2901 ((-578 |#4|) (-578 |#4|) (-578 |#4|) (-1 (-578 |#4|) (-578 |#4|)))) (-15 -2902 ((-83) (-578 |#4|) (-578 |#4|))) (-15 -2903 ((-83) (-578 |#4|) (-578 (-578 |#4|)))) (-15 -2904 ((-83) (-578 |#4|))) (-15 -2905 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-1 (-83) |#4|) (-578 |#4|))) (-15 -2906 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-83) |#4|)) (-578 |#4|))) (-15 -2907 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-83) |#4|)) (-578 |#4|))) (-15 -2908 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2909 ((-83) |#4|)) (-15 -2910 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2911 ((-83) |#4|)) (-15 -2912 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2913 ((-83) |#4|)) (-15 -2914 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2915 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -2915 ((-578 |#4|) (-578 |#4|) (-578 |#4|) (-83))) (-15 -2916 (|#4| |#4| (-578 |#4|))) (-15 -2917 ((-578 |#4|) (-578 |#4|))) (-15 -2918 ((-3 (-2 (|:| |bas| (-409 |#1| |#2| |#3| |#4|)) (|:| -3308 (-578 |#4|))) "failed") (-578 |#4|))) (-15 -2919 ((-578 |#4|) (-578 |#4|))) (-15 -2920 ((-578 |#4|) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2921 ((-578 |#4|) (-578 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-385)) (PROGN (-15 -2922 ((-578 |#4|) |#4|)) (-15 -2923 ((-578 |#4|) (-578 |#4|))) (-15 -2923 ((-578 |#4|) (-578 |#4|) (-83))) (-15 -2924 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -2925 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -2926 ((-578 |#4|) (-578 |#4|) (-578 |#4|)))) |%noBranch|) (IF (|has| |#1| (-254)) (IF (|has| |#1| (-118)) (PROGN (-15 -2927 ((-578 |#4|) (-578 |#4|))) (-15 -2928 ((-578 |#4|) (-578 |#4|))) (-15 -2929 ((-578 |#4|) (-578 |#4|) (-578 |#4|)))) |%noBranch|) |%noBranch|)) (-489) (-710) (-749) (-969 |#1| |#2| |#3|)) (T -883)) +((-2929 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-254)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2928 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-254)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2927 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-254)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2926 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-385)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2925 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-385)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2924 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-385)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2923 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-83)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-883 *4 *5 *6 *7)))) (-2923 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-385)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2922 (*1 *2 *3) (-12 (-4 *4 (-385)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 *3)) (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2921 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-83) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-883 *5 *6 *7 *8)))) (-2920 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-578 *9)) (-5 *3 (-1 (-83) *9)) (-5 *4 (-1 (-83) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-969 *6 *7 *8)) (-4 *6 (-489)) (-4 *7 (-710)) (-4 *8 (-749)) (-5 *1 (-883 *6 *7 *8 *9)))) (-2919 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2918 (*1 *2 *3) (|partial| -12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-409 *4 *5 *6 *7)) (|:| -3308 (-578 *7)))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2917 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2916 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-883 *4 *5 *6 *2)))) (-2915 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-83)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-883 *4 *5 *6 *7)))) (-2915 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2914 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2913 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2912 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2911 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2910 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2909 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2908 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1 (-83) *8))) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-578 *8)))) (-2906 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1 (-83) *8))) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-578 *8)))) (-2905 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-83) *8)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-578 *8)))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-883 *4 *5 *6 *7)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-578 *8))) (-5 *3 (-578 *8)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-83)) (-5 *1 (-883 *5 *6 *7 *8)))) (-2902 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-883 *4 *5 *6 *7)))) (-2901 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-578 *7) (-578 *7))) (-5 *2 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-883 *4 *5 *6 *7)))) (-2901 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2901 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-883 *4 *5 *6 *3)))) (-2900 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 *3)) (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2899 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2901 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 *3)) (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2901 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) +((-2930 (((-2 (|:| R (-625 |#1|)) (|:| A (-625 |#1|)) (|:| |Ainv| (-625 |#1|))) (-625 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2932 (((-578 (-2 (|:| C (-625 |#1|)) (|:| |g| (-1168 |#1|)))) (-625 |#1|) (-1168 |#1|)) 45 T ELT)) (-2931 (((-625 |#1|) (-625 |#1|) (-625 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT))) +(((-884 |#1|) (-10 -7 (-15 -2930 ((-2 (|:| R (-625 |#1|)) (|:| A (-625 |#1|)) (|:| |Ainv| (-625 |#1|))) (-625 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2931 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2932 ((-578 (-2 (|:| C (-625 |#1|)) (|:| |g| (-1168 |#1|)))) (-625 |#1|) (-1168 |#1|)))) (-308)) (T -884)) +((-2932 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-5 *2 (-578 (-2 (|:| C (-625 *5)) (|:| |g| (-1168 *5))))) (-5 *1 (-884 *5)) (-5 *3 (-625 *5)) (-5 *4 (-1168 *5)))) (-2931 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-625 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-308)) (-5 *1 (-884 *5)))) (-2930 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-308)) (-5 *2 (-2 (|:| R (-625 *6)) (|:| A (-625 *6)) (|:| |Ainv| (-625 *6)))) (-5 *1 (-884 *6)) (-5 *3 (-625 *6))))) +((-3955 (((-341 |#4|) |#4|) 61 T ELT))) +(((-885 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3955 ((-341 |#4|) |#4|))) (-749) (-710) (-385) (-854 |#3| |#2| |#1|)) (T -885)) +((-3955 (*1 *2 *3) (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-385)) (-5 *2 (-341 *3)) (-5 *1 (-885 *4 *5 *6 *3)) (-4 *3 (-854 *6 *5 *4))))) +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3822 (($ (-687)) 121 (|has| |#1| (-23)) ELT)) (-2184 (((-1174) $ (-478) (-478)) 44 (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) (-1 (-83) |#1| |#1|) $) 107 T ELT) (((-83) $) 101 (|has| |#1| (-749)) ELT)) (-1717 (($ (-1 (-83) |#1| |#1|) $) 98 (|has| $ (-6 -3980)) ELT) (($ $) 97 (-12 (|has| |#1| (-749)) (|has| $ (-6 -3980))) ELT)) (-2893 (($ (-1 (-83) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-749)) ELT)) (-3772 ((|#1| $ (-478) |#1|) 56 (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) 64 (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3979)) ELT)) (-3708 (($) 7 T CONST)) (-2283 (($ $) 99 (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) 109 T ELT)) (-1340 (($ $) 84 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3390 (($ |#1| $) 83 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3979)) ELT)) (-1563 ((|#1| $ (-478) |#1|) 57 (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) 55 T ELT)) (-3403 (((-478) (-1 (-83) |#1|) $) 106 T ELT) (((-478) |#1| $) 105 (|has| |#1| (-1005)) ELT) (((-478) |#1| $ (-478)) 104 (|has| |#1| (-1005)) ELT)) (-3690 (($ (-578 |#1|)) 127 T ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-3819 (((-625 |#1|) $ $) 114 (|has| |#1| (-954)) ELT)) (-3598 (($ (-687) |#1|) 74 T ELT)) (-2186 (((-478) $) 47 (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) 91 (|has| |#1| (-749)) ELT)) (-3502 (($ (-1 (-83) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-749)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-2187 (((-478) $) 48 (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) 92 (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3816 ((|#1| $) 111 (-12 (|has| |#1| (-954)) (|has| |#1| (-908))) ELT)) (-3817 ((|#1| $) 112 (-12 (|has| |#1| (-954)) (|has| |#1| (-908))) ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-2290 (($ |#1| $ (-478)) 66 T ELT) (($ $ $ (-478)) 65 T ELT)) (-2189 (((-578 (-478)) $) 50 T ELT)) (-2190 (((-83) (-478) $) 51 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-3785 ((|#1| $) 46 (|has| (-478) (-749)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2185 (($ $ |#1|) 45 (|has| $ (-6 -3980)) ELT)) (-3753 (($ $ (-578 |#1|)) 125 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-2188 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) 52 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#1| $ (-478) |#1|) 54 T ELT) ((|#1| $ (-478)) 53 T ELT) (($ $ (-1135 (-478))) 75 T ELT)) (-3820 ((|#1| $ $) 115 (|has| |#1| (-954)) ELT)) (-3895 (((-823) $) 126 T ELT)) (-2291 (($ $ (-478)) 68 T ELT) (($ $ (-1135 (-478))) 67 T ELT)) (-3818 (($ $ $) 113 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1718 (($ $ $ (-478)) 100 (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 85 (|has| |#1| (-548 (-467))) ELT) (($ (-578 |#1|)) 128 T ELT)) (-3514 (($ (-578 |#1|)) 76 T ELT)) (-3786 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-578 $)) 70 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) 93 (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) 95 (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2668 (((-83) $ $) 94 (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) 96 (|has| |#1| (-749)) ELT)) (-3821 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3823 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-478) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-658)) ELT) (($ $ |#1|) 116 (|has| |#1| (-658)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-886 |#1|) (-111) (-954)) (T -886)) +((-3690 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-954)) (-4 *1 (-886 *3)))) (-3895 (*1 *2 *1) (-12 (-4 *1 (-886 *3)) (-4 *3 (-954)) (-5 *2 (-823)))) (-3818 (*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-954)))) (-3753 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-886 *3)) (-4 *3 (-954))))) +(-13 (-1167 |t#1|) (-552 (-578 |t#1|)) (-10 -8 (-15 -3690 ($ (-578 |t#1|))) (-15 -3895 ((-823) $)) (-15 -3818 ($ $ $)) (-15 -3753 ($ $ (-578 |t#1|))))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-749)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-749)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-552 (-578 |#1|)) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 (-478) |#1|) . T) ((-238 (-1135 (-478)) $) . T) ((-240 (-478) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-317 |#1|) . T) ((-422 |#1|) . T) ((-533 (-478) |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-749) |has| |#1| (-749)) ((-752) |has| |#1| (-749)) ((-1005) OR (|has| |#1| (-1005)) (|has| |#1| (-749))) ((-1118) . T) ((-1167 |#1|) . T)) +((-3942 (((-847 |#2|) (-1 |#2| |#1|) (-847 |#1|)) 17 T ELT))) +(((-887 |#1| |#2|) (-10 -7 (-15 -3942 ((-847 |#2|) (-1 |#2| |#1|) (-847 |#1|)))) (-954) (-954)) (T -887)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-847 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-5 *2 (-847 *6)) (-5 *1 (-887 *5 *6))))) +((-2935 ((|#1| (-847 |#1|)) 14 T ELT)) (-2934 ((|#1| (-847 |#1|)) 13 T ELT)) (-2933 ((|#1| (-847 |#1|)) 12 T ELT)) (-2937 ((|#1| (-847 |#1|)) 16 T ELT)) (-2941 ((|#1| (-847 |#1|)) 24 T ELT)) (-2936 ((|#1| (-847 |#1|)) 15 T ELT)) (-2938 ((|#1| (-847 |#1|)) 17 T ELT)) (-2940 ((|#1| (-847 |#1|)) 23 T ELT)) (-2939 ((|#1| (-847 |#1|)) 22 T ELT))) +(((-888 |#1|) (-10 -7 (-15 -2933 (|#1| (-847 |#1|))) (-15 -2934 (|#1| (-847 |#1|))) (-15 -2935 (|#1| (-847 |#1|))) (-15 -2936 (|#1| (-847 |#1|))) (-15 -2937 (|#1| (-847 |#1|))) (-15 -2938 (|#1| (-847 |#1|))) (-15 -2939 (|#1| (-847 |#1|))) (-15 -2940 (|#1| (-847 |#1|))) (-15 -2941 (|#1| (-847 |#1|)))) (-954)) (T -888)) +((-2941 (*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954)))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954)))) (-2938 (*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954)))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954)))) (-2935 (*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954)))) (-2934 (*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) +((-2959 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2947 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2957 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2945 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2961 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2949 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2942 (((-3 |#1| "failed") |#1| (-687)) 1 T ELT)) (-2944 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2943 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2950 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2960 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2948 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2958 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2946 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2953 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2951 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2955 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2956 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2954 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2952 (((-3 |#1| "failed") |#1|) 11 T ELT))) +(((-889 |#1|) (-111) (-1104)) (T -889)) +((-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2960 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2959 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2958 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2957 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2956 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2955 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2954 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2953 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2952 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2951 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2950 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2949 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2948 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2947 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2946 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2945 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2944 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2943 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104)))) (-2942 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-687)) (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(-13 (-10 -7 (-15 -2942 ((-3 |t#1| "failed") |t#1| (-687))) (-15 -2943 ((-3 |t#1| "failed") |t#1|)) (-15 -2944 ((-3 |t#1| "failed") |t#1|)) (-15 -2945 ((-3 |t#1| "failed") |t#1|)) (-15 -2946 ((-3 |t#1| "failed") |t#1|)) (-15 -2947 ((-3 |t#1| "failed") |t#1|)) (-15 -2948 ((-3 |t#1| "failed") |t#1|)) (-15 -2949 ((-3 |t#1| "failed") |t#1|)) (-15 -2950 ((-3 |t#1| "failed") |t#1|)) (-15 -2951 ((-3 |t#1| "failed") |t#1|)) (-15 -2952 ((-3 |t#1| "failed") |t#1|)) (-15 -2953 ((-3 |t#1| "failed") |t#1|)) (-15 -2954 ((-3 |t#1| "failed") |t#1|)) (-15 -2955 ((-3 |t#1| "failed") |t#1|)) (-15 -2956 ((-3 |t#1| "failed") |t#1|)) (-15 -2957 ((-3 |t#1| "failed") |t#1|)) (-15 -2958 ((-3 |t#1| "failed") |t#1|)) (-15 -2959 ((-3 |t#1| "failed") |t#1|)) (-15 -2960 ((-3 |t#1| "failed") |t#1|)) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)))) +((-2970 ((|#4| |#4| (-578 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2969 ((|#4| |#4| (-578 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3942 ((|#4| (-1 |#4| (-850 |#1|)) |#4|) 31 T ELT))) +(((-890 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2969 (|#4| |#4| |#3|)) (-15 -2969 (|#4| |#4| (-578 |#3|))) (-15 -2970 (|#4| |#4| |#3|)) (-15 -2970 (|#4| |#4| (-578 |#3|))) (-15 -3942 (|#4| (-1 |#4| (-850 |#1|)) |#4|))) (-954) (-710) (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $)) (-15 -3815 ((-3 $ "failed") (-1079))))) (-854 (-850 |#1|) |#2| |#3|)) (T -890)) +((-3942 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-850 *4))) (-4 *4 (-954)) (-4 *2 (-854 (-850 *4) *5 *6)) (-4 *5 (-710)) (-4 *6 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $)) (-15 -3815 ((-3 $ #1="failed") (-1079)))))) (-5 *1 (-890 *4 *5 *6 *2)))) (-2970 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $)) (-15 -3815 ((-3 $ #1#) (-1079)))))) (-4 *4 (-954)) (-4 *5 (-710)) (-5 *1 (-890 *4 *5 *6 *2)) (-4 *2 (-854 (-850 *4) *5 *6)))) (-2970 (*1 *2 *2 *3) (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $)) (-15 -3815 ((-3 $ #1#) (-1079)))))) (-5 *1 (-890 *4 *5 *3 *2)) (-4 *2 (-854 (-850 *4) *5 *3)))) (-2969 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $)) (-15 -3815 ((-3 $ #1#) (-1079)))))) (-4 *4 (-954)) (-4 *5 (-710)) (-5 *1 (-890 *4 *5 *6 *2)) (-4 *2 (-854 (-850 *4) *5 *6)))) (-2969 (*1 *2 *2 *3) (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $)) (-15 -3815 ((-3 $ #1#) (-1079)))))) (-5 *1 (-890 *4 *5 *3 *2)) (-4 *2 (-854 (-850 *4) *5 *3))))) +((-2971 ((|#2| |#3|) 35 T ELT)) (-3903 (((-2 (|:| -1998 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) |#2|) 79 T ELT)) (-3902 (((-2 (|:| -1998 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) 100 T ELT))) +(((-891 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3902 ((-2 (|:| -1998 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))))) (-15 -3903 ((-2 (|:| -1998 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) |#2|)) (-15 -2971 (|#2| |#3|))) (-295) (-1144 |#1|) (-1144 |#2|) (-656 |#2| |#3|)) (T -891)) +((-2971 (*1 *2 *3) (-12 (-4 *3 (-1144 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-891 *4 *2 *3 *5)) (-4 *4 (-295)) (-4 *5 (-656 *2 *3)))) (-3903 (*1 *2 *3) (-12 (-4 *4 (-295)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 *3)) (-5 *2 (-2 (|:| -1998 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) (-5 *1 (-891 *4 *3 *5 *6)) (-4 *6 (-656 *3 *5)))) (-3902 (*1 *2) (-12 (-4 *3 (-295)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| -1998 (-625 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-625 *4)))) (-5 *1 (-891 *3 *4 *5 *6)) (-4 *6 (-656 *4 *5))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3385 (((-3 (-83) #1="failed") $) 71 T ELT)) (-3633 (($ $) 36 (-12 (|has| |#1| (-118)) (|has| |#1| (-254))) ELT)) (-2975 (($ $ (-3 (-83) #1#)) 72 T ELT)) (-2976 (($ (-578 |#4|) |#4|) 25 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2972 (($ $) 69 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3387 (((-83) $) 70 T ELT)) (-3549 (($) 30 T ELT)) (-2973 ((|#4| $) 74 T ELT)) (-2974 (((-578 |#4|) $) 73 T ELT)) (-3930 (((-765) $) 68 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-892 |#1| |#2| |#3| |#4|) (-13 (-1005) (-547 (-765)) (-10 -8 (-15 -3549 ($)) (-15 -2976 ($ (-578 |#4|) |#4|)) (-15 -3385 ((-3 (-83) #1="failed") $)) (-15 -2975 ($ $ (-3 (-83) #1#))) (-15 -3387 ((-83) $)) (-15 -2974 ((-578 |#4|) $)) (-15 -2973 (|#4| $)) (-15 -2972 ($ $)) (IF (|has| |#1| (-254)) (IF (|has| |#1| (-118)) (-15 -3633 ($ $)) |%noBranch|) |%noBranch|))) (-385) (-749) (-710) (-854 |#1| |#3| |#2|)) (T -892)) +((-3549 (*1 *1) (-12 (-4 *2 (-385)) (-4 *3 (-749)) (-4 *4 (-710)) (-5 *1 (-892 *2 *3 *4 *5)) (-4 *5 (-854 *2 *4 *3)))) (-2976 (*1 *1 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-854 *4 *6 *5)) (-4 *4 (-385)) (-4 *5 (-749)) (-4 *6 (-710)) (-5 *1 (-892 *4 *5 *6 *3)))) (-3385 (*1 *2 *1) (|partial| -12 (-4 *3 (-385)) (-4 *4 (-749)) (-4 *5 (-710)) (-5 *2 (-83)) (-5 *1 (-892 *3 *4 *5 *6)) (-4 *6 (-854 *3 *5 *4)))) (-2975 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-83) "failed")) (-4 *3 (-385)) (-4 *4 (-749)) (-4 *5 (-710)) (-5 *1 (-892 *3 *4 *5 *6)) (-4 *6 (-854 *3 *5 *4)))) (-3387 (*1 *2 *1) (-12 (-4 *3 (-385)) (-4 *4 (-749)) (-4 *5 (-710)) (-5 *2 (-83)) (-5 *1 (-892 *3 *4 *5 *6)) (-4 *6 (-854 *3 *5 *4)))) (-2974 (*1 *2 *1) (-12 (-4 *3 (-385)) (-4 *4 (-749)) (-4 *5 (-710)) (-5 *2 (-578 *6)) (-5 *1 (-892 *3 *4 *5 *6)) (-4 *6 (-854 *3 *5 *4)))) (-2973 (*1 *2 *1) (-12 (-4 *2 (-854 *3 *5 *4)) (-5 *1 (-892 *3 *4 *5 *2)) (-4 *3 (-385)) (-4 *4 (-749)) (-4 *5 (-710)))) (-2972 (*1 *1 *1) (-12 (-4 *2 (-385)) (-4 *3 (-749)) (-4 *4 (-710)) (-5 *1 (-892 *2 *3 *4 *5)) (-4 *5 (-854 *2 *4 *3)))) (-3633 (*1 *1 *1) (-12 (-4 *2 (-118)) (-4 *2 (-254)) (-4 *2 (-385)) (-4 *3 (-749)) (-4 *4 (-710)) (-5 *1 (-892 *2 *3 *4 *5)) (-4 *5 (-854 *2 *4 *3))))) +((-2977 (((-892 (-343 (-478)) (-766 |#1|) (-194 |#2| (-687)) (-203 |#1| (-343 (-478)))) (-892 (-343 (-478)) (-766 |#1|) (-194 |#2| (-687)) (-203 |#1| (-343 (-478))))) 82 T ELT))) +(((-893 |#1| |#2|) (-10 -7 (-15 -2977 ((-892 (-343 (-478)) (-766 |#1|) (-194 |#2| (-687)) (-203 |#1| (-343 (-478)))) (-892 (-343 (-478)) (-766 |#1|) (-194 |#2| (-687)) (-203 |#1| (-343 (-478))))))) (-578 (-1079)) (-687)) (T -893)) +((-2977 (*1 *2 *2) (-12 (-5 *2 (-892 (-343 (-478)) (-766 *3) (-194 *4 (-687)) (-203 *3 (-343 (-478))))) (-14 *3 (-578 (-1079))) (-14 *4 (-687)) (-5 *1 (-893 *3 *4))))) +((-3252 (((-83) |#5| |#5|) 44 T ELT)) (-3255 (((-83) |#5| |#5|) 59 T ELT)) (-3260 (((-83) |#5| (-578 |#5|)) 81 T ELT) (((-83) |#5| |#5|) 68 T ELT)) (-3256 (((-83) (-578 |#4|) (-578 |#4|)) 65 T ELT)) (-3262 (((-83) (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) 70 T ELT)) (-3251 (((-1174)) 32 T ELT)) (-3250 (((-1174) (-1062) (-1062) (-1062)) 28 T ELT)) (-3261 (((-578 |#5|) (-578 |#5|)) 100 T ELT)) (-3263 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|)))) 92 T ELT)) (-3264 (((-578 (-2 (|:| -3249 (-578 |#4|)) (|:| -1587 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-83) (-83)) 122 T ELT)) (-3254 (((-83) |#5| |#5|) 53 T ELT)) (-3259 (((-3 (-83) #1="failed") |#5| |#5|) 78 T ELT)) (-3257 (((-83) (-578 |#4|) (-578 |#4|)) 64 T ELT)) (-3258 (((-83) (-578 |#4|) (-578 |#4|)) 66 T ELT)) (-3683 (((-83) (-578 |#4|) (-578 |#4|)) 67 T ELT)) (-3265 (((-3 (-2 (|:| -3249 (-578 |#4|)) (|:| -1587 |#5|) (|:| |ineq| (-578 |#4|))) #1#) (-578 |#4|) |#5| (-578 |#4|) (-83) (-83) (-83) (-83) (-83)) 117 T ELT)) (-3253 (((-578 |#5|) (-578 |#5|)) 49 T ELT))) +(((-894 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3250 ((-1174) (-1062) (-1062) (-1062))) (-15 -3251 ((-1174))) (-15 -3252 ((-83) |#5| |#5|)) (-15 -3253 ((-578 |#5|) (-578 |#5|))) (-15 -3254 ((-83) |#5| |#5|)) (-15 -3255 ((-83) |#5| |#5|)) (-15 -3256 ((-83) (-578 |#4|) (-578 |#4|))) (-15 -3257 ((-83) (-578 |#4|) (-578 |#4|))) (-15 -3258 ((-83) (-578 |#4|) (-578 |#4|))) (-15 -3683 ((-83) (-578 |#4|) (-578 |#4|))) (-15 -3259 ((-3 (-83) #1="failed") |#5| |#5|)) (-15 -3260 ((-83) |#5| |#5|)) (-15 -3260 ((-83) |#5| (-578 |#5|))) (-15 -3261 ((-578 |#5|) (-578 |#5|))) (-15 -3262 ((-83) (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|)))) (-15 -3263 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) (-15 -3264 ((-578 (-2 (|:| -3249 (-578 |#4|)) (|:| -1587 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-83) (-83))) (-15 -3265 ((-3 (-2 (|:| -3249 (-578 |#4|)) (|:| -1587 |#5|) (|:| |ineq| (-578 |#4|))) #1#) (-578 |#4|) |#5| (-578 |#4|) (-83) (-83) (-83) (-83) (-83)))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|) (-975 |#1| |#2| |#3| |#4|)) (T -894)) +((-3265 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *9 (-969 *6 *7 *8)) (-5 *2 (-2 (|:| -3249 (-578 *9)) (|:| -1587 *4) (|:| |ineq| (-578 *9)))) (-5 *1 (-894 *6 *7 *8 *9 *4)) (-5 *3 (-578 *9)) (-4 *4 (-975 *6 *7 *8 *9)))) (-3264 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-578 *10)) (-5 *5 (-83)) (-4 *10 (-975 *6 *7 *8 *9)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *9 (-969 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| -3249 (-578 *9)) (|:| -1587 *10) (|:| |ineq| (-578 *9))))) (-5 *1 (-894 *6 *7 *8 *9 *10)) (-5 *3 (-578 *9)))) (-3263 (*1 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |val| (-578 *6)) (|:| -1587 *7)))) (-4 *6 (-969 *3 *4 *5)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-894 *3 *4 *5 *6 *7)))) (-3262 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -1587 *8))) (-4 *7 (-969 *4 *5 *6)) (-4 *8 (-975 *4 *5 *6 *7)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)))) (-3261 (*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *1 (-894 *3 *4 *5 *6 *7)))) (-3260 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-894 *5 *6 *7 *8 *3)))) (-3260 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3259 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3683 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3258 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3257 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3256 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3255 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3254 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3253 (*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *1 (-894 *3 *4 *5 *6 *7)))) (-3252 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3251 (*1 *2) (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-1174)) (-5 *1 (-894 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6)))) (-3250 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1062)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-894 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7))))) +((-3815 (((-1079) $) 15 T ELT)) (-3386 (((-1062) $) 16 T ELT)) (-3209 (($ (-1079) (-1062)) 14 T ELT)) (-3930 (((-765) $) 13 T ELT))) +(((-895) (-13 (-547 (-765)) (-10 -8 (-15 -3209 ($ (-1079) (-1062))) (-15 -3815 ((-1079) $)) (-15 -3386 ((-1062) $))))) (T -895)) +((-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1079)) (-5 *3 (-1062)) (-5 *1 (-895)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-1079)) (-5 *1 (-895)))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-1062)) (-5 *1 (-895))))) +((-3140 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1079) #1#) $) 72 T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 (-478) #1#) $) 102 T ELT)) (-3139 ((|#2| $) NIL T ELT) (((-1079) $) 67 T ELT) (((-343 (-478)) $) NIL T ELT) (((-478) $) 99 T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL T ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL T ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) 121 T ELT) (((-625 |#2|) (-625 $)) 35 T ELT)) (-2978 (($) 105 T ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 82 T ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 91 T ELT)) (-2980 (($ $) 10 T ELT)) (-3429 (((-627 $) $) 27 T ELT)) (-3942 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3430 (($) 16 T ELT)) (-3111 (($ $) 61 T ELT)) (-3742 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1079)) NIL T ELT) (($ $ (-578 (-1079))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2979 (($ $) 12 T ELT)) (-3956 (((-793 (-478)) $) 77 T ELT) (((-793 (-323)) $) 86 T ELT) (((-467) $) 47 T ELT) (((-323) $) 51 T ELT) (((-177) $) 55 T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1079)) 64 T ELT)) (-3109 (((-687)) 38 T ELT)) (-2669 (((-83) $ $) 57 T ELT))) +(((-896 |#1| |#2|) (-10 -7 (-15 -2669 ((-83) |#1| |#1|)) (-15 -3742 (|#1| |#1| (-687))) (-15 -3742 (|#1| |#1|)) (-15 -3742 (|#1| |#1| (-578 (-1079)) (-578 (-687)))) (-15 -3742 (|#1| |#1| (-1079) (-687))) (-15 -3742 (|#1| |#1| (-578 (-1079)))) (-15 -3742 (|#1| |#1| (-1079))) (-15 -3430 (|#1|)) (-15 -3429 ((-627 |#1|) |#1|)) (-15 -3140 ((-3 (-478) #1="failed") |#1|)) (-15 -3139 ((-478) |#1|)) (-15 -3140 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3139 ((-343 (-478)) |#1|)) (-15 -3956 ((-177) |#1|)) (-15 -3956 ((-323) |#1|)) (-15 -3956 ((-467) |#1|)) (-15 -3930 (|#1| (-1079))) (-15 -3140 ((-3 (-1079) #1#) |#1|)) (-15 -3139 ((-1079) |#1|)) (-15 -2978 (|#1|)) (-15 -3111 (|#1| |#1|)) (-15 -2979 (|#1| |#1|)) (-15 -2980 (|#1| |#1|)) (-15 -2780 ((-791 (-323) |#1|) |#1| (-793 (-323)) (-791 (-323) |#1|))) (-15 -2780 ((-791 (-478) |#1|) |#1| (-793 (-478)) (-791 (-478) |#1|))) (-15 -3956 ((-793 (-323)) |#1|)) (-15 -3956 ((-793 (-478)) |#1|)) (-15 -2265 ((-625 |#2|) (-625 |#1|))) (-15 -2265 ((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 |#1|) (-1168 |#1|))) (-15 -2265 ((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 |#1|) (-1168 |#1|))) (-15 -2265 ((-625 (-478)) (-625 |#1|))) (-15 -3742 (|#1| |#1| (-1 |#2| |#2|) (-687))) (-15 -3742 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3942 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3140 ((-3 |#2| #1#) |#1|)) (-15 -3139 (|#2| |#1|)) (-15 -3930 (|#1| |#2|)) (-15 -3930 (|#1| (-343 (-478)))) (-15 -3930 (|#1| |#1|)) (-15 -3109 ((-687))) (-15 -3930 (|#1| (-478))) (-15 -3930 ((-765) |#1|))) (-897 |#2|) (-489)) (T -896)) +((-3109 (*1 *2) (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-896 *3 *4)) (-4 *3 (-897 *4))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3112 ((|#1| $) 170 (|has| |#1| (-254)) ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) 161 (|has| |#1| (-814)) ELT)) (-3759 (($ $) 88 T ELT)) (-3955 (((-341 $) $) 87 T ELT)) (-2688 (((-3 (-578 (-1074 $)) #1="failed") (-578 (-1074 $)) (-1074 $)) 164 (|has| |#1| (-814)) ELT)) (-1595 (((-83) $ $) 72 T ELT)) (-3607 (((-478) $) 151 (|has| |#1| (-733)) ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 |#1| #2="failed") $) 200 T ELT) (((-3 (-1079) #2#) $) 159 (|has| |#1| (-943 (-1079))) ELT) (((-3 (-343 (-478)) #2#) $) 142 (|has| |#1| (-943 (-478))) ELT) (((-3 (-478) #2#) $) 140 (|has| |#1| (-943 (-478))) ELT)) (-3139 ((|#1| $) 201 T ELT) (((-1079) $) 160 (|has| |#1| (-943 (-1079))) ELT) (((-343 (-478)) $) 143 (|has| |#1| (-943 (-478))) ELT) (((-478) $) 141 (|has| |#1| (-943 (-478))) ELT)) (-2548 (($ $ $) 68 T ELT)) (-2265 (((-625 (-478)) (-625 $)) 185 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 184 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) 183 T ELT) (((-625 |#1|) (-625 $)) 182 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2978 (($) 168 (|has| |#1| (-477)) ELT)) (-2547 (($ $ $) 69 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 63 T ELT)) (-3707 (((-83) $) 86 T ELT)) (-3169 (((-83) $) 153 (|has| |#1| (-733)) ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 177 (|has| |#1| (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 176 (|has| |#1| (-789 (-323))) ELT)) (-2396 (((-83) $) 40 T ELT)) (-2980 (($ $) 172 T ELT)) (-2982 ((|#1| $) 174 T ELT)) (-3429 (((-627 $) $) 139 (|has| |#1| (-1055)) ELT)) (-3170 (((-83) $) 152 (|has| |#1| (-733)) ELT)) (-1592 (((-3 (-578 $) #3="failed") (-578 $) $) 65 T ELT)) (-2515 (($ $ $) 144 (|has| |#1| (-749)) ELT)) (-2841 (($ $ $) 145 (|has| |#1| (-749)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 192 T ELT)) (-2266 (((-625 (-478)) (-1168 $)) 187 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) 186 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) 181 T ELT) (((-625 |#1|) (-1168 $)) 180 T ELT)) (-1878 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 85 T ELT)) (-3430 (($) 138 (|has| |#1| (-1055)) CONST)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 55 T ELT)) (-3127 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3111 (($ $) 169 (|has| |#1| (-254)) ELT)) (-3113 ((|#1| $) 166 (|has| |#1| (-477)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) 163 (|has| |#1| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) 162 (|has| |#1| (-814)) ELT)) (-3716 (((-341 $) $) 89 T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 66 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-3752 (($ $ (-578 |#1|) (-578 |#1|)) 198 (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) 197 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) 196 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-245 |#1|))) 195 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-1079)) (-578 |#1|)) 194 (|has| |#1| (-447 (-1079) |#1|)) ELT) (($ $ (-1079) |#1|) 193 (|has| |#1| (-447 (-1079) |#1|)) ELT)) (-1594 (((-687) $) 71 T ELT)) (-3784 (($ $ |#1|) 199 (|has| |#1| (-238 |#1| |#1|)) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 70 T ELT)) (-3742 (($ $ (-1 |#1| |#1|)) 191 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 190 T ELT) (($ $) 137 (|has| |#1| (-187)) ELT) (($ $ (-687)) 135 (|has| |#1| (-187)) ELT) (($ $ (-1079)) 133 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) 131 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) 130 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 129 (|has| |#1| (-804 (-1079))) ELT)) (-2979 (($ $) 171 T ELT)) (-2981 ((|#1| $) 173 T ELT)) (-3956 (((-793 (-478)) $) 179 (|has| |#1| (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) 178 (|has| |#1| (-548 (-793 (-323)))) ELT) (((-467) $) 156 (|has| |#1| (-548 (-467))) ELT) (((-323) $) 155 (|has| |#1| (-926)) ELT) (((-177) $) 154 (|has| |#1| (-926)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) 165 (-2546 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT) (($ |#1|) 204 T ELT) (($ (-1079)) 158 (|has| |#1| (-943 (-1079))) ELT)) (-2686 (((-627 $) $) 157 (OR (|has| |#1| (-116)) (-2546 (|has| $ (-116)) (|has| |#1| (-814)))) ELT)) (-3109 (((-687)) 37 T CONST)) (-3114 ((|#1| $) 167 (|has| |#1| (-477)) ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-3367 (($ $) 150 (|has| |#1| (-733)) ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-1 |#1| |#1|)) 189 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 188 T ELT) (($ $) 136 (|has| |#1| (-187)) ELT) (($ $ (-687)) 134 (|has| |#1| (-187)) ELT) (($ $ (-1079)) 132 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) 128 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) 127 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 126 (|has| |#1| (-804 (-1079))) ELT)) (-2550 (((-83) $ $) 146 (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) 148 (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 147 (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) 149 (|has| |#1| (-749)) ELT)) (-3933 (($ $ $) 80 T ELT) (($ |#1| |#1|) 175 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT) (($ |#1| $) 203 T ELT) (($ $ |#1|) 202 T ELT))) +(((-897 |#1|) (-111) (-489)) (T -897)) +((-3933 (*1 *1 *2 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)))) (-2980 (*1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)))) (-2979 (*1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)) (-4 *2 (-254)))) (-3111 (*1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)) (-4 *2 (-254)))) (-2978 (*1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-477)) (-4 *2 (-489)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)) (-4 *2 (-477)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)) (-4 *2 (-477))))) +(-13 (-308) (-38 |t#1|) (-943 |t#1|) (-284 |t#1|) (-182 |t#1|) (-322 |t#1|) (-787 |t#1|) (-336 |t#1|) (-10 -8 (-15 -3933 ($ |t#1| |t#1|)) (-15 -2982 (|t#1| $)) (-15 -2981 (|t#1| $)) (-15 -2980 ($ $)) (-15 -2979 ($ $)) (IF (|has| |t#1| (-1055)) (-6 (-1055)) |%noBranch|) (IF (|has| |t#1| (-943 (-478))) (PROGN (-6 (-943 (-478))) (-6 (-943 (-343 (-478))))) |%noBranch|) (IF (|has| |t#1| (-749)) (-6 (-749)) |%noBranch|) (IF (|has| |t#1| (-733)) (-6 (-733)) |%noBranch|) (IF (|has| |t#1| (-926)) (-6 (-926)) |%noBranch|) (IF (|has| |t#1| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-943 (-1079))) (-6 (-943 (-1079))) |%noBranch|) (IF (|has| |t#1| (-254)) (PROGN (-15 -3112 (|t#1| $)) (-15 -3111 ($ $))) |%noBranch|) (IF (|has| |t#1| (-477)) (PROGN (-15 -2978 ($)) (-15 -3114 (|t#1| $)) (-15 -3113 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-814)) (-6 (-814)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 (-1079)) |has| |#1| (-943 (-1079))) ((-550 |#1|) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-548 (-177)) |has| |#1| (-926)) ((-548 (-323)) |has| |#1| (-926)) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-548 (-793 (-323))) |has| |#1| (-548 (-793 (-323)))) ((-548 (-793 (-478))) |has| |#1| (-548 (-793 (-478)))) ((-184 $) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-182 |#1|) . T) ((-188) |has| |#1| (-188)) ((-187) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-222 |#1|) . T) ((-198) . T) ((-238 |#1| $) |has| |#1| (-238 |#1| |#1|)) ((-242) . T) ((-254) . T) ((-256 |#1|) |has| |#1| (-256 |#1|)) ((-308) . T) ((-284 |#1|) . T) ((-322 |#1|) . T) ((-336 |#1|) . T) ((-385) . T) ((-447 (-1079) |#1|) |has| |#1| (-447 (-1079) |#1|)) ((-447 |#1| |#1|) |has| |#1| (-256 |#1|)) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 (-478)) |has| |#1| (-575 (-478))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 |#1|) . T) ((-577 $) . T) ((-575 (-478)) |has| |#1| (-575 (-478))) ((-575 |#1|) . T) ((-649 (-343 (-478))) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-658) . T) ((-707) |has| |#1| (-733)) ((-709) |has| |#1| (-733)) ((-711) |has| |#1| (-733)) ((-714) |has| |#1| (-733)) ((-733) |has| |#1| (-733)) ((-748) |has| |#1| (-733)) ((-749) OR (|has| |#1| (-749)) (|has| |#1| (-733))) ((-752) OR (|has| |#1| (-749)) (|has| |#1| (-733))) ((-799 $ (-1079)) OR (|has| |#1| (-804 (-1079))) (|has| |#1| (-802 (-1079)))) ((-802 (-1079)) |has| |#1| (-802 (-1079))) ((-804 (-1079)) OR (|has| |#1| (-804 (-1079))) (|has| |#1| (-802 (-1079)))) ((-789 (-323)) |has| |#1| (-789 (-323))) ((-789 (-478)) |has| |#1| (-789 (-478))) ((-787 |#1|) . T) ((-814) |has| |#1| (-814)) ((-825) . T) ((-926) |has| |#1| (-926)) ((-943 (-343 (-478))) |has| |#1| (-943 (-478))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 (-1079)) |has| |#1| (-943 (-1079))) ((-943 |#1|) . T) ((-956 (-343 (-478))) . T) ((-956 |#1|) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 |#1|) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1055) |has| |#1| (-1055)) ((-1118) . T) ((-1123) . T)) +((-3942 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) +(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3942 (|#4| (-1 |#2| |#1|) |#3|))) (-489) (-489) (-897 |#1|) (-897 |#2|)) (T -898)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-489)) (-4 *6 (-489)) (-4 *2 (-897 *6)) (-5 *1 (-898 *5 *6 *4 *2)) (-4 *4 (-897 *5))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ "failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2983 (($ (-1045 |#1| |#2|)) 11 T ELT)) (-3107 (((-1045 |#1| |#2|) $) 12 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3784 ((|#2| $ (-194 |#1| |#2|)) 16 T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT))) +(((-899 |#1| |#2|) (-13 (-21) (-238 (-194 |#1| |#2|) |#2|) (-10 -8 (-15 -2983 ($ (-1045 |#1| |#2|))) (-15 -3107 ((-1045 |#1| |#2|) $)))) (-823) (-308)) (T -899)) +((-2983 (*1 *1 *2) (-12 (-5 *2 (-1045 *3 *4)) (-14 *3 (-823)) (-4 *4 (-308)) (-5 *1 (-899 *3 *4)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-1045 *3 *4)) (-5 *1 (-899 *3 *4)) (-14 *3 (-823)) (-4 *4 (-308))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3189 (((-1038) $) 9 T ELT)) (-3930 (((-765) $) 15 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-900) (-13 (-987) (-10 -8 (-15 -3189 ((-1038) $))))) (T -900)) +((-3189 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-900))))) +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3708 (($) 7 T CONST)) (-2986 (($ $) 50 T ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3817 (((-687) $) 49 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-1262 ((|#1| $) 43 T ELT)) (-3593 (($ |#1| $) 44 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-2985 ((|#1| $) 48 T ELT)) (-1263 ((|#1| $) 45 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-2988 ((|#1| |#1| $) 52 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-2987 ((|#1| $) 51 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1264 (($ (-578 |#1|)) 46 T ELT)) (-2984 ((|#1| $) 47 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-901 |#1|) (-111) (-1118)) (T -901)) +((-2988 (*1 *2 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1118)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1118)))) (-2986 (*1 *1 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1118)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-901 *3)) (-4 *3 (-1118)) (-5 *2 (-687)))) (-2985 (*1 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1118)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1118))))) +(-13 (-76 |t#1|) (-10 -8 (-6 -3979) (-15 -2988 (|t#1| |t#1| $)) (-15 -2987 (|t#1| $)) (-15 -2986 ($ $)) (-15 -3817 ((-687) $)) (-15 -2985 (|t#1| $)) (-15 -2984 (|t#1| $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3139 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3627 ((|#1| $) 12 T ELT)) (-3008 (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-477)) ELT)) (-3007 (((-83) $) NIL (|has| |#1| (-477)) ELT)) (-3006 (((-343 (-478)) $) NIL (|has| |#1| (-477)) ELT)) (-2989 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-3115 ((|#1| $) NIL T ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) NIL T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2990 ((|#1| $) 15 T ELT)) (-2991 ((|#1| $) 14 T ELT)) (-2992 ((|#1| $) 13 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3752 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-245 |#1|))) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-1079)) (-578 |#1|)) NIL (|has| |#1| (-447 (-1079) |#1|)) ELT) (($ $ (-1079) |#1|) NIL (|has| |#1| (-447 (-1079) |#1|)) ELT)) (-3784 (($ $ |#1|) NIL (|has| |#1| (-238 |#1| |#1|)) ELT)) (-3742 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT) (($ $ (-1079)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-804 (-1079))) ELT)) (-3956 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-2993 (($ $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-308)) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-3367 ((|#1| $) NIL (|has| |#1| (-965)) ELT)) (-2644 (($) 8 T CONST)) (-2650 (($) 10 T CONST)) (-2653 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT) (($ $ (-1079)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-804 (-1079))) ELT)) (-2550 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-308)) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-308)) ELT))) +(((-902 |#1|) (-904 |#1|) (-144)) (T -902)) +NIL +((-3171 (((-83) $) 43 T ELT)) (-3140 (((-3 (-478) #1="failed") $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3139 (((-478) $) NIL T ELT) (((-343 (-478)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3008 (((-3 (-343 (-478)) #1#) $) 78 T ELT)) (-3007 (((-83) $) 72 T ELT)) (-3006 (((-343 (-478)) $) 76 T ELT)) (-2396 (((-83) $) 42 T ELT)) (-3115 ((|#2| $) 22 T ELT)) (-3942 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2468 (($ $) 58 T ELT)) (-3742 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1079)) NIL T ELT) (($ $ (-578 (-1079))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3956 (((-467) $) 67 T ELT)) (-2993 (($ $) 17 T ELT)) (-3930 (((-765) $) 53 T ELT) (($ (-478)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-343 (-478))) NIL T ELT)) (-3109 (((-687)) 10 T ELT)) (-3367 ((|#2| $) 71 T ELT)) (-3037 (((-83) $ $) 26 T ELT)) (-2669 (((-83) $ $) 69 T ELT)) (-3821 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3823 (($ $ $) 27 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT))) +(((-903 |#1| |#2|) (-10 -7 (-15 -3930 (|#1| (-343 (-478)))) (-15 -3742 (|#1| |#1| (-687))) (-15 -3742 (|#1| |#1|)) (-15 -3742 (|#1| |#1| (-578 (-1079)) (-578 (-687)))) (-15 -3742 (|#1| |#1| (-1079) (-687))) (-15 -3742 (|#1| |#1| (-578 (-1079)))) (-15 -3742 (|#1| |#1| (-1079))) (-15 -2669 ((-83) |#1| |#1|)) (-15 * (|#1| (-343 (-478)) |#1|)) (-15 * (|#1| |#1| (-343 (-478)))) (-15 -2468 (|#1| |#1|)) (-15 -3956 ((-467) |#1|)) (-15 -3008 ((-3 (-343 (-478)) #1="failed") |#1|)) (-15 -3006 ((-343 (-478)) |#1|)) (-15 -3007 ((-83) |#1|)) (-15 -3367 (|#2| |#1|)) (-15 -3115 (|#2| |#1|)) (-15 -2993 (|#1| |#1|)) (-15 -3942 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3742 (|#1| |#1| (-1 |#2| |#2|) (-687))) (-15 -3742 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3140 ((-3 |#2| #1#) |#1|)) (-15 -3139 (|#2| |#1|)) (-15 -3139 ((-343 (-478)) |#1|)) (-15 -3140 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3139 ((-478) |#1|)) (-15 -3140 ((-3 (-478) #1#) |#1|)) (-15 -3930 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3109 ((-687))) (-15 -3930 (|#1| (-478))) (-15 -2396 ((-83) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3821 (|#1| |#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 -3171 ((-83) |#1|)) (-15 * (|#1| (-823) |#1|)) (-15 -3823 (|#1| |#1| |#1|)) (-15 -3930 ((-765) |#1|)) (-15 -3037 ((-83) |#1| |#1|))) (-904 |#2|) (-144)) (T -903)) +((-3109 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-687)) (-5 *1 (-903 *3 *4)) (-4 *3 (-904 *4))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 (-478) #1="failed") $) 140 (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) 138 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 135 T ELT)) (-3139 (((-478) $) 139 (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) 137 (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 136 T ELT)) (-2265 (((-625 (-478)) (-625 $)) 120 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 119 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) 118 T ELT) (((-625 |#1|) (-625 $)) 117 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3627 ((|#1| $) 108 T ELT)) (-3008 (((-3 (-343 (-478)) "failed") $) 104 (|has| |#1| (-477)) ELT)) (-3007 (((-83) $) 106 (|has| |#1| (-477)) ELT)) (-3006 (((-343 (-478)) $) 105 (|has| |#1| (-477)) ELT)) (-2989 (($ |#1| |#1| |#1| |#1|) 109 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3115 ((|#1| $) 110 T ELT)) (-2515 (($ $ $) 92 (|has| |#1| (-749)) ELT)) (-2841 (($ $ $) 93 (|has| |#1| (-749)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 123 T ELT)) (-2266 (((-625 (-478)) (-1168 $)) 122 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) 121 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) 116 T ELT) (((-625 |#1|) (-1168 $)) 115 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 101 (|has| |#1| (-308)) ELT)) (-2990 ((|#1| $) 111 T ELT)) (-2991 ((|#1| $) 112 T ELT)) (-2992 ((|#1| $) 113 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3752 (($ $ (-578 |#1|) (-578 |#1|)) 129 (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) 128 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) 127 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-245 |#1|))) 126 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-1079)) (-578 |#1|)) 125 (|has| |#1| (-447 (-1079) |#1|)) ELT) (($ $ (-1079) |#1|) 124 (|has| |#1| (-447 (-1079) |#1|)) ELT)) (-3784 (($ $ |#1|) 130 (|has| |#1| (-238 |#1| |#1|)) ELT)) (-3742 (($ $ (-1 |#1| |#1|)) 134 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 133 T ELT) (($ $) 91 (|has| |#1| (-187)) ELT) (($ $ (-687)) 89 (|has| |#1| (-187)) ELT) (($ $ (-1079)) 87 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) 85 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) 84 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 83 (|has| |#1| (-804 (-1079))) ELT)) (-3956 (((-467) $) 102 (|has| |#1| (-548 (-467))) ELT)) (-2993 (($ $) 114 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-343 (-478))) 79 (OR (|has| |#1| (-308)) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-2686 (((-627 $) $) 103 (|has| |#1| (-116)) ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-3367 ((|#1| $) 107 (|has| |#1| (-965)) ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-1 |#1| |#1|)) 132 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 131 T ELT) (($ $) 90 (|has| |#1| (-187)) ELT) (($ $ (-687)) 88 (|has| |#1| (-187)) ELT) (($ $ (-1079)) 86 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) 82 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) 81 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 80 (|has| |#1| (-804 (-1079))) ELT)) (-2550 (((-83) $ $) 94 (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) 96 (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 95 (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) 97 (|has| |#1| (-749)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 100 (|has| |#1| (-308)) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ $ (-343 (-478))) 99 (|has| |#1| (-308)) ELT) (($ (-343 (-478)) $) 98 (|has| |#1| (-308)) ELT))) +(((-904 |#1|) (-111) (-144)) (T -904)) +((-2993 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)))) (-2991 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)))) (-2990 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)))) (-2989 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)))) (-3627 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)) (-4 *2 (-965)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-904 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-83)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-904 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-343 (-478))))) (-3008 (*1 *2 *1) (|partial| -12 (-4 *1 (-904 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-343 (-478)))))) +(-13 (-38 |t#1|) (-348 |t#1|) (-182 |t#1|) (-284 |t#1|) (-322 |t#1|) (-10 -8 (-15 -2993 ($ $)) (-15 -2992 (|t#1| $)) (-15 -2991 (|t#1| $)) (-15 -2990 (|t#1| $)) (-15 -3115 (|t#1| $)) (-15 -2989 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3627 (|t#1| $)) (IF (|has| |t#1| (-242)) (-6 (-242)) |%noBranch|) (IF (|has| |t#1| (-749)) (-6 (-749)) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-198)) |%noBranch|) (IF (|has| |t#1| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-965)) (-15 -3367 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-477)) (PROGN (-15 -3007 ((-83) $)) (-15 -3006 ((-343 (-478)) $)) (-15 -3008 ((-3 (-343 (-478)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-308)) ((-38 |#1|) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-308)) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-308)) (|has| |#1| (-242))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-308))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-184 $) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-182 |#1|) . T) ((-188) |has| |#1| (-188)) ((-187) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-222 |#1|) . T) ((-198) |has| |#1| (-308)) ((-238 |#1| $) |has| |#1| (-238 |#1| |#1|)) ((-242) OR (|has| |#1| (-308)) (|has| |#1| (-242))) ((-256 |#1|) |has| |#1| (-256 |#1|)) ((-284 |#1|) . T) ((-322 |#1|) . T) ((-348 |#1|) . T) ((-447 (-1079) |#1|) |has| |#1| (-447 (-1079) |#1|)) ((-447 |#1| |#1|) |has| |#1| (-256 |#1|)) ((-583 (-343 (-478))) |has| |#1| (-308)) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-308)) ((-585 (-478)) |has| |#1| (-575 (-478))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-308)) ((-577 |#1|) . T) ((-575 (-478)) |has| |#1| (-575 (-478))) ((-575 |#1|) . T) ((-649 (-343 (-478))) |has| |#1| (-308)) ((-649 |#1|) . T) ((-658) . T) ((-749) |has| |#1| (-749)) ((-752) |has| |#1| (-749)) ((-799 $ (-1079)) OR (|has| |#1| (-804 (-1079))) (|has| |#1| (-802 (-1079)))) ((-802 (-1079)) |has| |#1| (-802 (-1079))) ((-804 (-1079)) OR (|has| |#1| (-804 (-1079))) (|has| |#1| (-802 (-1079)))) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-956 (-343 (-478))) |has| |#1| (-308)) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-308)) (|has| |#1| (-242))) ((-961 (-343 (-478))) |has| |#1| (-308)) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-308)) (|has| |#1| (-242))) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-3942 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) +(((-905 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3942 (|#3| (-1 |#4| |#2|) |#1|))) (-904 |#2|) (-144) (-904 |#4|) (-144)) (T -905)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-904 *6)) (-5 *1 (-905 *4 *5 *2 *6)) (-4 *4 (-904 *5))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3708 (($) NIL T CONST)) (-2986 (($ $) 23 T ELT)) (-2994 (($ (-578 |#1|)) 33 T ELT)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3817 (((-687) $) 26 T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-1262 ((|#1| $) 28 T ELT)) (-3593 (($ |#1| $) 17 T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-2985 ((|#1| $) 27 T ELT)) (-1263 ((|#1| $) 22 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2988 ((|#1| |#1| $) 16 T ELT)) (-3387 (((-83) $) 18 T ELT)) (-3549 (($) NIL T ELT)) (-2987 ((|#1| $) 21 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3930 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1264 (($ (-578 |#1|)) NIL T ELT)) (-2984 ((|#1| $) 30 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-906 |#1|) (-13 (-901 |#1|) (-10 -8 (-15 -2994 ($ (-578 |#1|))))) (-1005)) (T -906)) +((-2994 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-5 *1 (-906 *3))))) +((-3021 (($ $) 12 T ELT)) (-2995 (($ $ (-478)) 13 T ELT))) +(((-907 |#1|) (-10 -7 (-15 -3021 (|#1| |#1|)) (-15 -2995 (|#1| |#1| (-478)))) (-908)) (T -907)) +NIL +((-3021 (($ $) 6 T ELT)) (-2995 (($ $ (-478)) 7 T ELT)) (** (($ $ (-343 (-478))) 8 T ELT))) +(((-908) (-111)) (T -908)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-908)) (-5 *2 (-343 (-478))))) (-2995 (*1 *1 *1 *2) (-12 (-4 *1 (-908)) (-5 *2 (-478)))) (-3021 (*1 *1 *1) (-4 *1 (-908)))) +(-13 (-10 -8 (-15 -3021 ($ $)) (-15 -2995 ($ $ (-478))) (-15 ** ($ $ (-343 (-478)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1634 (((-2 (|:| |num| (-1168 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2049 (($ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2047 (((-83) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1769 (((-625 (-343 |#2|)) (-1168 $)) NIL T ELT) (((-625 (-343 |#2|))) NIL T ELT)) (-3314 (((-343 |#2|) $) NIL T ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3955 (((-341 $) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1595 (((-83) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3119 (((-687)) NIL (|has| (-343 |#2|) (-313)) ELT)) (-1648 (((-83)) NIL T ELT)) (-1647 (((-83) |#1|) 162 T ELT) (((-83) |#2|) 166 T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL (|has| (-343 |#2|) (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| (-343 |#2|) (-943 (-343 (-478)))) ELT) (((-3 (-343 |#2|) #1#) $) NIL T ELT)) (-3139 (((-478) $) NIL (|has| (-343 |#2|) (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| (-343 |#2|) (-943 (-343 (-478)))) ELT) (((-343 |#2|) $) NIL T ELT)) (-1779 (($ (-1168 (-343 |#2|)) (-1168 $)) NIL T ELT) (($ (-1168 (-343 |#2|))) 79 T ELT) (($ (-1168 |#2|) |#2|) NIL T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-343 |#2|) (-295)) ELT)) (-2548 (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1768 (((-625 (-343 |#2|)) $ (-1168 $)) NIL T ELT) (((-625 (-343 |#2|)) $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-343 |#2|))) (|:| |vec| (-1168 (-343 |#2|)))) (-625 $) (-1168 $)) NIL T ELT) (((-625 (-343 |#2|)) (-625 $)) NIL T ELT)) (-1639 (((-1168 $) (-1168 $)) NIL T ELT)) (-3826 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-343 |#3|)) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-1626 (((-578 (-578 |#1|))) NIL (|has| |#1| (-313)) ELT)) (-1651 (((-83) |#1| |#1|) NIL T ELT)) (-3092 (((-823)) NIL T ELT)) (-2978 (($) NIL (|has| (-343 |#2|) (-313)) ELT)) (-1646 (((-83)) NIL T ELT)) (-1645 (((-83) |#1|) 61 T ELT) (((-83) |#2|) 164 T ELT)) (-2547 (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3487 (($ $) NIL T ELT)) (-2817 (($) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1667 (((-83) $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1751 (($ $ (-687)) NIL (|has| (-343 |#2|) (-295)) ELT) (($ $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-3707 (((-83) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3756 (((-823) $) NIL (|has| (-343 |#2|) (-295)) ELT) (((-736 (-823)) $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-2396 (((-83) $) NIL T ELT)) (-3361 (((-687)) NIL T ELT)) (-1640 (((-1168 $) (-1168 $)) NIL T ELT)) (-3115 (((-343 |#2|) $) NIL T ELT)) (-1627 (((-578 (-850 |#1|)) (-1079)) NIL (|has| |#1| (-308)) ELT)) (-3429 (((-627 $) $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2000 ((|#3| $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1996 (((-823) $) NIL (|has| (-343 |#2|) (-313)) ELT)) (-3063 ((|#3| $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-343 |#2|))) (|:| |vec| (-1168 (-343 |#2|)))) (-1168 $) $) NIL T ELT) (((-625 (-343 |#2|)) (-1168 $)) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1635 (((-625 (-343 |#2|))) 57 T ELT)) (-1637 (((-625 (-343 |#2|))) 56 T ELT)) (-2468 (($ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1632 (($ (-1168 |#2|) |#2|) 80 T ELT)) (-1636 (((-625 (-343 |#2|))) 55 T ELT)) (-1638 (((-625 (-343 |#2|))) 54 T ELT)) (-1631 (((-2 (|:| |num| (-625 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1633 (((-2 (|:| |num| (-1168 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1644 (((-1168 $)) 51 T ELT)) (-3902 (((-1168 $)) 50 T ELT)) (-1643 (((-83) $) NIL T ELT)) (-1642 (((-83) $) NIL T ELT) (((-83) $ |#1|) NIL T ELT) (((-83) $ |#2|) NIL T ELT)) (-3430 (($) NIL (|has| (-343 |#2|) (-295)) CONST)) (-2386 (($ (-823)) NIL (|has| (-343 |#2|) (-313)) ELT)) (-1629 (((-3 |#2| #1#)) 70 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1653 (((-687)) NIL T ELT)) (-2395 (($) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3127 (($ (-578 $)) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) NIL (|has| (-343 |#2|) (-295)) ELT)) (-3716 (((-341 $) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-343 |#2|) (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3450 (((-3 $ #1#) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1594 (((-687) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3784 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1630 (((-3 |#2| #1#)) 68 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3741 (((-343 |#2|) (-1168 $)) NIL T ELT) (((-343 |#2|)) 47 T ELT)) (-1752 (((-687) $) NIL (|has| (-343 |#2|) (-295)) ELT) (((-3 (-687) #1#) $ $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-3742 (($ $ (-1 (-343 |#2|) (-343 |#2|))) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-1 (-343 |#2|) (-343 |#2|)) (-687)) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079))))) ELT) (($ $ (-1079) (-687)) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079))))) ELT) (($ $ (-578 (-1079))) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079))))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079))))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT) (($ $) NIL (OR (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT)) (-2394 (((-625 (-343 |#2|)) (-1168 $) (-1 (-343 |#2|) (-343 |#2|))) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3168 ((|#3|) 58 T ELT)) (-1661 (($) NIL (|has| (-343 |#2|) (-295)) ELT)) (-3207 (((-1168 (-343 |#2|)) $ (-1168 $)) NIL T ELT) (((-625 (-343 |#2|)) (-1168 $) (-1168 $)) NIL T ELT) (((-1168 (-343 |#2|)) $) 81 T ELT) (((-625 (-343 |#2|)) (-1168 $)) NIL T ELT)) (-3956 (((-1168 (-343 |#2|)) $) NIL T ELT) (($ (-1168 (-343 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1641 (((-1168 $) (-1168 $)) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-343 |#2|)) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2686 (($ $) NIL (|has| (-343 |#2|) (-295)) ELT) (((-627 $) $) NIL (|has| (-343 |#2|) (-116)) ELT)) (-2433 ((|#3| $) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1650 (((-83)) 65 T ELT)) (-1649 (((-83) |#1|) 167 T ELT) (((-83) |#2|) 168 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $)) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1628 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1652 (((-83)) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $ (-1 (-343 |#2|) (-343 |#2|))) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-1 (-343 |#2|) (-343 |#2|)) (-687)) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079))))) ELT) (($ $ (-1079) (-687)) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079))))) ELT) (($ $ (-578 (-1079))) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079))))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1079)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1079))))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT) (($ $) NIL (OR (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| (-343 |#2|) (-308)) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 |#2|)) NIL T ELT) (($ (-343 |#2|) $) NIL T ELT) (($ (-343 (-478)) $) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-343 (-478))) NIL (|has| (-343 |#2|) (-308)) ELT))) +(((-909 |#1| |#2| |#3| |#4| |#5|) (-287 |#1| |#2| |#3|) (-1123) (-1144 |#1|) (-1144 (-343 |#2|)) (-343 |#2|) (-687)) (T -909)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3001 (((-578 (-478)) $) 73 T ELT)) (-2997 (($ (-578 (-478))) 81 T ELT)) (-3112 (((-478) $) 48 (|has| (-478) (-254)) ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-478) (-814)) ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| (-478) (-814)) ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3607 (((-478) $) NIL (|has| (-478) (-733)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) 60 T ELT) (((-3 (-1079) #1#) $) NIL (|has| (-478) (-943 (-1079))) ELT) (((-3 (-343 (-478)) #1#) $) 57 (|has| (-478) (-943 (-478))) ELT) (((-3 (-478) #1#) $) 60 (|has| (-478) (-943 (-478))) ELT)) (-3139 (((-478) $) NIL T ELT) (((-1079) $) NIL (|has| (-478) (-943 (-1079))) ELT) (((-343 (-478)) $) NIL (|has| (-478) (-943 (-478))) ELT) (((-478) $) NIL (|has| (-478) (-943 (-478))) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL T ELT) (((-625 (-478)) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2978 (($) NIL (|has| (-478) (-477)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-2999 (((-578 (-478)) $) 79 T ELT)) (-3169 (((-83) $) NIL (|has| (-478) (-733)) ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| (-478) (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| (-478) (-789 (-323))) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2980 (($ $) NIL T ELT)) (-2982 (((-478) $) 45 T ELT)) (-3429 (((-627 $) $) NIL (|has| (-478) (-1055)) ELT)) (-3170 (((-83) $) NIL (|has| (-478) (-733)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2515 (($ $ $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| (-478) (-749)) ELT)) (-3942 (($ (-1 (-478) (-478)) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL T ELT) (((-625 (-478)) (-1168 $)) NIL T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL T ELT)) (-3430 (($) NIL (|has| (-478) (-1055)) CONST)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3111 (($ $) NIL (|has| (-478) (-254)) ELT) (((-343 (-478)) $) 50 T ELT)) (-3000 (((-1058 (-478)) $) 78 T ELT)) (-2996 (($ (-578 (-478)) (-578 (-478))) 82 T ELT)) (-3113 (((-478) $) 64 (|has| (-478) (-477)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-478) (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| (-478) (-814)) ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-3752 (($ $ (-578 (-478)) (-578 (-478))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-478) (-478)) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-245 (-478))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-578 (-245 (-478)))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-578 (-1079)) (-578 (-478))) NIL (|has| (-478) (-447 (-1079) (-478))) ELT) (($ $ (-1079) (-478)) NIL (|has| (-478) (-447 (-1079) (-478))) ELT)) (-1594 (((-687) $) NIL T ELT)) (-3784 (($ $ (-478)) NIL (|has| (-478) (-238 (-478) (-478))) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-3742 (($ $ (-1 (-478) (-478))) NIL T ELT) (($ $ (-1 (-478) (-478)) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $) 15 (|has| (-478) (-187)) ELT) (($ $ (-687)) NIL (|has| (-478) (-187)) ELT)) (-2979 (($ $) NIL T ELT)) (-2981 (((-478) $) 47 T ELT)) (-2998 (((-578 (-478)) $) 80 T ELT)) (-3956 (((-793 (-478)) $) NIL (|has| (-478) (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| (-478) (-548 (-793 (-323)))) ELT) (((-467) $) NIL (|has| (-478) (-548 (-467))) ELT) (((-323) $) NIL (|has| (-478) (-926)) ELT) (((-177) $) NIL (|has| (-478) (-926)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| (-478) (-814))) ELT)) (-3930 (((-765) $) 108 T ELT) (($ (-478)) 51 T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) 27 T ELT) (($ (-478)) 51 T ELT) (($ (-1079)) NIL (|has| (-478) (-943 (-1079))) ELT) (((-343 (-478)) $) 25 T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-478) (-814))) (|has| (-478) (-116))) ELT)) (-3109 (((-687)) 13 T CONST)) (-3114 (((-478) $) 62 (|has| (-478) (-477)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3367 (($ $) NIL (|has| (-478) (-733)) ELT)) (-2644 (($) 14 T CONST)) (-2650 (($) 17 T CONST)) (-2653 (($ $ (-1 (-478) (-478))) NIL T ELT) (($ $ (-1 (-478) (-478)) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| (-478) (-804 (-1079))) ELT) (($ $) NIL (|has| (-478) (-187)) ELT) (($ $ (-687)) NIL (|has| (-478) (-187)) ELT)) (-2550 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-3037 (((-83) $ $) 21 T ELT)) (-2668 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-2669 (((-83) $ $) 40 (|has| (-478) (-749)) ELT)) (-3933 (($ $ $) 36 T ELT) (($ (-478) (-478)) 38 T ELT)) (-3821 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3823 (($ $ $) 28 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ (-478) $) 32 T ELT) (($ $ (-478)) NIL T ELT))) +(((-910 |#1|) (-13 (-897 (-478)) (-547 (-343 (-478))) (-10 -8 (-15 -3111 ((-343 (-478)) $)) (-15 -3001 ((-578 (-478)) $)) (-15 -3000 ((-1058 (-478)) $)) (-15 -2999 ((-578 (-478)) $)) (-15 -2998 ((-578 (-478)) $)) (-15 -2997 ($ (-578 (-478)))) (-15 -2996 ($ (-578 (-478)) (-578 (-478)))))) (-478)) (T -910)) +((-3111 (*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-1058 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478)))) (-2999 (*1 *2 *1) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478)))) (-2997 (*1 *1 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478)))) (-2996 (*1 *1 *2 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478))))) +((-3002 (((-51) (-343 (-478)) (-478)) 9 T ELT))) +(((-911) (-10 -7 (-15 -3002 ((-51) (-343 (-478)) (-478))))) (T -911)) +((-3002 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-478))) (-5 *4 (-478)) (-5 *2 (-51)) (-5 *1 (-911))))) +((-3119 (((-478)) 21 T ELT)) (-3005 (((-478)) 26 T ELT)) (-3004 (((-1174) (-478)) 24 T ELT)) (-3003 (((-478) (-478)) 27 T ELT) (((-478)) 20 T ELT))) +(((-912) (-10 -7 (-15 -3003 ((-478))) (-15 -3119 ((-478))) (-15 -3003 ((-478) (-478))) (-15 -3004 ((-1174) (-478))) (-15 -3005 ((-478))))) (T -912)) +((-3005 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-912)))) (-3004 (*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1174)) (-5 *1 (-912)))) (-3003 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-912)))) (-3119 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-912)))) (-3003 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-912))))) +((-3717 (((-341 |#1|) |#1|) 43 T ELT)) (-3716 (((-341 |#1|) |#1|) 41 T ELT))) +(((-913 |#1|) (-10 -7 (-15 -3716 ((-341 |#1|) |#1|)) (-15 -3717 ((-341 |#1|) |#1|))) (-1144 (-343 (-478)))) (T -913)) +((-3717 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1144 (-343 (-478)))))) (-3716 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1144 (-343 (-478))))))) +((-3008 (((-3 (-343 (-478)) "failed") |#1|) 15 T ELT)) (-3007 (((-83) |#1|) 14 T ELT)) (-3006 (((-343 (-478)) |#1|) 10 T ELT))) +(((-914 |#1|) (-10 -7 (-15 -3006 ((-343 (-478)) |#1|)) (-15 -3007 ((-83) |#1|)) (-15 -3008 ((-3 (-343 (-478)) "failed") |#1|))) (-943 (-343 (-478)))) (T -914)) +((-3008 (*1 *2 *3) (|partial| -12 (-5 *2 (-343 (-478))) (-5 *1 (-914 *3)) (-4 *3 (-943 *2)))) (-3007 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-914 *3)) (-4 *3 (-943 (-343 (-478)))))) (-3006 (*1 *2 *3) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-914 *3)) (-4 *3 (-943 *2))))) +((-3772 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3784 ((|#2| $ #1#) 10 T ELT)) (-3012 (((-83) $ $) 18 T ELT))) +(((-915 |#1| |#2|) (-10 -7 (-15 -3772 (|#2| |#1| #1="value" |#2|)) (-15 -3012 ((-83) |#1| |#1|)) (-15 -3784 (|#2| |#1| #1#))) (-916 |#2|) (-1118)) (T -915)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3386 ((|#1| $) 52 T ELT)) (-3009 ((|#1| $ |#1|) 43 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) 45 (|has| $ (-6 -3980)) ELT)) (-3708 (($) 7 T CONST)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-3015 (((-578 $) $) 54 T ELT)) (-3011 (((-83) $ $) 46 (|has| |#1| (-1005)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3014 (((-578 |#1|) $) 49 T ELT)) (-3511 (((-83) $) 53 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#1| $ "value") 51 T ELT)) (-3013 (((-478) $ $) 48 T ELT)) (-3617 (((-83) $) 50 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-3506 (((-578 $) $) 55 T ELT)) (-3012 (((-83) $ $) 47 (|has| |#1| (-1005)) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-916 |#1|) (-111) (-1118)) (T -916)) +((-3506 (*1 *2 *1) (-12 (-4 *3 (-1118)) (-5 *2 (-578 *1)) (-4 *1 (-916 *3)))) (-3015 (*1 *2 *1) (-12 (-4 *3 (-1118)) (-5 *2 (-578 *1)) (-4 *1 (-916 *3)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1118)) (-5 *2 (-83)))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-1118)))) (-3784 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-916 *2)) (-4 *2 (-1118)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1118)) (-5 *2 (-83)))) (-3014 (*1 *2 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1118)) (-5 *2 (-578 *3)))) (-3013 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1118)) (-5 *2 (-478)))) (-3012 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1118)) (-4 *3 (-1005)) (-5 *2 (-83)))) (-3011 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1118)) (-4 *3 (-1005)) (-5 *2 (-83)))) (-3010 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *1)) (|has| *1 (-6 -3980)) (-4 *1 (-916 *3)) (-4 *3 (-1118)))) (-3772 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -3980)) (-4 *1 (-916 *2)) (-4 *2 (-1118)))) (-3009 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-916 *2)) (-4 *2 (-1118))))) +(-13 (-422 |t#1|) (-10 -8 (-15 -3506 ((-578 $) $)) (-15 -3015 ((-578 $) $)) (-15 -3511 ((-83) $)) (-15 -3386 (|t#1| $)) (-15 -3784 (|t#1| $ "value")) (-15 -3617 ((-83) $)) (-15 -3014 ((-578 |t#1|) $)) (-15 -3013 ((-478) $ $)) (IF (|has| |t#1| (-1005)) (PROGN (-15 -3012 ((-83) $ $)) (-15 -3011 ((-83) $ $))) |%noBranch|) (IF (|has| $ (-6 -3980)) (PROGN (-15 -3010 ($ $ (-578 $))) (-15 -3772 (|t#1| $ "value" |t#1|)) (-15 -3009 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1118) . T)) +((-3021 (($ $) 9 T ELT) (($ $ (-823)) 49 T ELT) (($ (-343 (-478))) 13 T ELT) (($ (-478)) 15 T ELT)) (-3166 (((-3 $ #1="failed") (-1074 $) (-823) (-765)) 24 T ELT) (((-3 $ #1#) (-1074 $) (-823)) 32 T ELT)) (-2995 (($ $ (-478)) 58 T ELT)) (-3109 (((-687)) 18 T ELT)) (-3167 (((-578 $) (-1074 $)) NIL T ELT) (((-578 $) (-1074 (-343 (-478)))) 63 T ELT) (((-578 $) (-1074 (-478))) 68 T ELT) (((-578 $) (-850 $)) 72 T ELT) (((-578 $) (-850 (-343 (-478)))) 76 T ELT) (((-578 $) (-850 (-478))) 80 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT) (($ $ (-343 (-478))) 53 T ELT))) +(((-917 |#1|) (-10 -7 (-15 -3021 (|#1| (-478))) (-15 -3021 (|#1| (-343 (-478)))) (-15 -3021 (|#1| |#1| (-823))) (-15 -3167 ((-578 |#1|) (-850 (-478)))) (-15 -3167 ((-578 |#1|) (-850 (-343 (-478))))) (-15 -3167 ((-578 |#1|) (-850 |#1|))) (-15 -3167 ((-578 |#1|) (-1074 (-478)))) (-15 -3167 ((-578 |#1|) (-1074 (-343 (-478))))) (-15 -3167 ((-578 |#1|) (-1074 |#1|))) (-15 -3166 ((-3 |#1| #1="failed") (-1074 |#1|) (-823))) (-15 -3166 ((-3 |#1| #1#) (-1074 |#1|) (-823) (-765))) (-15 ** (|#1| |#1| (-343 (-478)))) (-15 -2995 (|#1| |#1| (-478))) (-15 -3021 (|#1| |#1|)) (-15 ** (|#1| |#1| (-478))) (-15 -3109 ((-687))) (-15 ** (|#1| |#1| (-687))) (-15 ** (|#1| |#1| (-823)))) (-918)) (T -917)) +((-3109 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-917 *3)) (-4 *3 (-918))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 108 T ELT)) (-2049 (($ $) 109 T ELT)) (-2047 (((-83) $) 111 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3759 (($ $) 128 T ELT)) (-3955 (((-341 $) $) 129 T ELT)) (-3021 (($ $) 92 T ELT) (($ $ (-823)) 78 T ELT) (($ (-343 (-478))) 77 T ELT) (($ (-478)) 76 T ELT)) (-1595 (((-83) $ $) 119 T ELT)) (-3607 (((-478) $) 145 T ELT)) (-3708 (($) 22 T CONST)) (-3166 (((-3 $ "failed") (-1074 $) (-823) (-765)) 86 T ELT) (((-3 $ "failed") (-1074 $) (-823)) 85 T ELT)) (-3140 (((-3 (-478) #1="failed") $) 105 (|has| (-343 (-478)) (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) 103 (|has| (-343 (-478)) (-943 (-343 (-478)))) ELT) (((-3 (-343 (-478)) #1#) $) 100 T ELT)) (-3139 (((-478) $) 104 (|has| (-343 (-478)) (-943 (-478))) ELT) (((-343 (-478)) $) 102 (|has| (-343 (-478)) (-943 (-343 (-478)))) ELT) (((-343 (-478)) $) 101 T ELT)) (-3017 (($ $ (-765)) 75 T ELT)) (-3016 (($ $ (-765)) 74 T ELT)) (-2548 (($ $ $) 123 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2547 (($ $ $) 122 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 117 T ELT)) (-3707 (((-83) $) 130 T ELT)) (-3169 (((-83) $) 143 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-2995 (($ $ (-478)) 91 T ELT)) (-3170 (((-83) $) 144 T ELT)) (-1592 (((-3 (-578 $) #2="failed") (-578 $) $) 126 T ELT)) (-2515 (($ $ $) 137 T ELT)) (-2841 (($ $ $) 138 T ELT)) (-3018 (((-3 (-1074 $) "failed") $) 87 T ELT)) (-3020 (((-3 (-765) "failed") $) 89 T ELT)) (-3019 (((-3 (-1074 $) "failed") $) 88 T ELT)) (-1878 (($ (-578 $)) 115 T ELT) (($ $ $) 114 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 131 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 116 T ELT)) (-3127 (($ (-578 $)) 113 T ELT) (($ $ $) 112 T ELT)) (-3716 (((-341 $) $) 127 T ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 125 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 124 T ELT)) (-3450 (((-3 $ "failed") $ $) 107 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 118 T ELT)) (-1594 (((-687) $) 120 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 121 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 (-478))) 135 T ELT) (($ $) 106 T ELT) (($ (-343 (-478))) 99 T ELT) (($ (-478)) 98 T ELT) (($ (-343 (-478))) 95 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 110 T ELT)) (-3754 (((-343 (-478)) $ $) 73 T ELT)) (-3167 (((-578 $) (-1074 $)) 84 T ELT) (((-578 $) (-1074 (-343 (-478)))) 83 T ELT) (((-578 $) (-1074 (-478))) 82 T ELT) (((-578 $) (-850 $)) 81 T ELT) (((-578 $) (-850 (-343 (-478)))) 80 T ELT) (((-578 $) (-850 (-478))) 79 T ELT)) (-3367 (($ $) 146 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2550 (((-83) $ $) 139 T ELT)) (-2551 (((-83) $ $) 141 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 140 T ELT)) (-2669 (((-83) $ $) 142 T ELT)) (-3933 (($ $ $) 136 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 132 T ELT) (($ $ (-343 (-478))) 90 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-343 (-478)) $) 134 T ELT) (($ $ (-343 (-478))) 133 T ELT) (($ (-478) $) 97 T ELT) (($ $ (-478)) 96 T ELT) (($ (-343 (-478)) $) 94 T ELT) (($ $ (-343 (-478))) 93 T ELT))) +(((-918) (-111)) (T -918)) +((-3021 (*1 *1 *1) (-4 *1 (-918))) (-3020 (*1 *2 *1) (|partial| -12 (-4 *1 (-918)) (-5 *2 (-765)))) (-3019 (*1 *2 *1) (|partial| -12 (-5 *2 (-1074 *1)) (-4 *1 (-918)))) (-3018 (*1 *2 *1) (|partial| -12 (-5 *2 (-1074 *1)) (-4 *1 (-918)))) (-3166 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1074 *1)) (-5 *3 (-823)) (-5 *4 (-765)) (-4 *1 (-918)))) (-3166 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1074 *1)) (-5 *3 (-823)) (-4 *1 (-918)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-1074 *1)) (-4 *1 (-918)) (-5 *2 (-578 *1)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-1074 (-343 (-478)))) (-5 *2 (-578 *1)) (-4 *1 (-918)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-1074 (-478))) (-5 *2 (-578 *1)) (-4 *1 (-918)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-850 *1)) (-4 *1 (-918)) (-5 *2 (-578 *1)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-850 (-343 (-478)))) (-5 *2 (-578 *1)) (-4 *1 (-918)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-850 (-478))) (-5 *2 (-578 *1)) (-4 *1 (-918)))) (-3021 (*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-823)))) (-3021 (*1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-4 *1 (-918)))) (-3021 (*1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-918)))) (-3017 (*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-765)))) (-3016 (*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-765)))) (-3754 (*1 *2 *1 *1) (-12 (-4 *1 (-918)) (-5 *2 (-343 (-478)))))) +(-13 (-118) (-748) (-144) (-308) (-348 (-343 (-478))) (-38 (-478)) (-38 (-343 (-478))) (-908) (-10 -8 (-15 -3020 ((-3 (-765) "failed") $)) (-15 -3019 ((-3 (-1074 $) "failed") $)) (-15 -3018 ((-3 (-1074 $) "failed") $)) (-15 -3166 ((-3 $ "failed") (-1074 $) (-823) (-765))) (-15 -3166 ((-3 $ "failed") (-1074 $) (-823))) (-15 -3167 ((-578 $) (-1074 $))) (-15 -3167 ((-578 $) (-1074 (-343 (-478))))) (-15 -3167 ((-578 $) (-1074 (-478)))) (-15 -3167 ((-578 $) (-850 $))) (-15 -3167 ((-578 $) (-850 (-343 (-478))))) (-15 -3167 ((-578 $) (-850 (-478)))) (-15 -3021 ($ $ (-823))) (-15 -3021 ($ $)) (-15 -3021 ($ (-343 (-478)))) (-15 -3021 ($ (-478))) (-15 -3017 ($ $ (-765))) (-15 -3016 ($ $ (-765))) (-15 -3754 ((-343 (-478)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 (-478)) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 (-478) (-478)) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-348 (-343 (-478))) . T) ((-385) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 (-478)) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 (-478)) . T) ((-577 $) . T) ((-649 (-343 (-478))) . T) ((-649 (-478)) . T) ((-649 $) . T) ((-658) . T) ((-707) . T) ((-709) . T) ((-711) . T) ((-714) . T) ((-748) . T) ((-749) . T) ((-752) . T) ((-825) . T) ((-908) . T) ((-943 (-343 (-478))) . T) ((-943 (-478)) |has| (-343 (-478)) (-943 (-478))) ((-956 (-343 (-478))) . T) ((-956 (-478)) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 (-478)) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T) ((-1123) . T)) +((-3022 (((-2 (|:| |ans| |#2|) (|:| -3120 |#2|) (|:| |sol?| (-83))) (-478) |#2| |#2| (-1079) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -2122 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) +(((-919 |#1| |#2|) (-10 -7 (-15 -3022 ((-2 (|:| |ans| |#2|) (|:| -3120 |#2|) (|:| |sol?| (-83))) (-478) |#2| |#2| (-1079) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -2122 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-385) (-118) (-943 (-478)) (-575 (-478))) (-13 (-1104) (-27) (-357 |#1|))) (T -919)) +((-3022 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1079)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-578 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2122 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1104) (-27) (-357 *8))) (-4 *8 (-13 (-385) (-118) (-943 *3) (-575 *3))) (-5 *3 (-478)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3120 *4) (|:| |sol?| (-83)))) (-5 *1 (-919 *8 *4))))) +((-3023 (((-3 (-578 |#2|) #1="failed") (-478) |#2| |#2| |#2| (-1079) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -2122 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) +(((-920 |#1| |#2|) (-10 -7 (-15 -3023 ((-3 (-578 |#2|) #1="failed") (-478) |#2| |#2| |#2| (-1079) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -2122 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-385) (-118) (-943 (-478)) (-575 (-478))) (-13 (-1104) (-27) (-357 |#1|))) (T -920)) +((-3023 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1079)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-578 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2122 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1104) (-27) (-357 *8))) (-4 *8 (-13 (-385) (-118) (-943 *3) (-575 *3))) (-5 *3 (-478)) (-5 *2 (-578 *4)) (-5 *1 (-920 *8 *4))))) +((-3026 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-83)))) (|:| -3249 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-478)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-478) (-1 |#2| |#2|)) 39 T ELT)) (-3024 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-343 |#2|)) (|:| |c| (-343 |#2|)) (|:| -3077 |#2|)) "failed") (-343 |#2|) (-343 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3025 (((-2 (|:| |ans| (-343 |#2|)) (|:| |nosol| (-83))) (-343 |#2|) (-343 |#2|)) 76 T ELT))) +(((-921 |#1| |#2|) (-10 -7 (-15 -3024 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-343 |#2|)) (|:| |c| (-343 |#2|)) (|:| -3077 |#2|)) "failed") (-343 |#2|) (-343 |#2|) (-1 |#2| |#2|))) (-15 -3025 ((-2 (|:| |ans| (-343 |#2|)) (|:| |nosol| (-83))) (-343 |#2|) (-343 |#2|))) (-15 -3026 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-83)))) (|:| -3249 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-478)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-478) (-1 |#2| |#2|)))) (-13 (-308) (-118) (-943 (-478))) (-1144 |#1|)) (T -921)) +((-3026 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1144 *6)) (-4 *6 (-13 (-308) (-118) (-943 *4))) (-5 *4 (-478)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-83)))) (|:| -3249 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-921 *6 *3)))) (-3025 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-118) (-943 (-478)))) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| |ans| (-343 *5)) (|:| |nosol| (-83)))) (-5 *1 (-921 *4 *5)) (-5 *3 (-343 *5)))) (-3024 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-308) (-118) (-943 (-478)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-343 *6)) (|:| |c| (-343 *6)) (|:| -3077 *6))) (-5 *1 (-921 *5 *6)) (-5 *3 (-343 *6))))) +((-3027 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-343 |#2|)) (|:| |h| |#2|) (|:| |c1| (-343 |#2|)) (|:| |c2| (-343 |#2|)) (|:| -3077 |#2|)) #1="failed") (-343 |#2|) (-343 |#2|) (-343 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3028 (((-3 (-578 (-343 |#2|)) #1#) (-343 |#2|) (-343 |#2|) (-343 |#2|)) 34 T ELT))) +(((-922 |#1| |#2|) (-10 -7 (-15 -3027 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-343 |#2|)) (|:| |h| |#2|) (|:| |c1| (-343 |#2|)) (|:| |c2| (-343 |#2|)) (|:| -3077 |#2|)) #1="failed") (-343 |#2|) (-343 |#2|) (-343 |#2|) (-1 |#2| |#2|))) (-15 -3028 ((-3 (-578 (-343 |#2|)) #1#) (-343 |#2|) (-343 |#2|) (-343 |#2|)))) (-13 (-308) (-118) (-943 (-478))) (-1144 |#1|)) (T -922)) +((-3028 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-308) (-118) (-943 (-478)))) (-4 *5 (-1144 *4)) (-5 *2 (-578 (-343 *5))) (-5 *1 (-922 *4 *5)) (-5 *3 (-343 *5)))) (-3027 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-308) (-118) (-943 (-478)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-343 *6)) (|:| |h| *6) (|:| |c1| (-343 *6)) (|:| |c2| (-343 *6)) (|:| -3077 *6))) (-5 *1 (-922 *5 *6)) (-5 *3 (-343 *6))))) +((-3029 (((-1 |#1|) (-578 (-2 (|:| -3386 |#1|) (|:| -1509 (-478))))) 34 T ELT)) (-3084 (((-1 |#1|) (-1001 |#1|)) 42 T ELT)) (-3030 (((-1 |#1|) (-1168 |#1|) (-1168 (-478)) (-478)) 31 T ELT))) +(((-923 |#1|) (-10 -7 (-15 -3084 ((-1 |#1|) (-1001 |#1|))) (-15 -3029 ((-1 |#1|) (-578 (-2 (|:| -3386 |#1|) (|:| -1509 (-478)))))) (-15 -3030 ((-1 |#1|) (-1168 |#1|) (-1168 (-478)) (-478)))) (-1005)) (T -923)) +((-3030 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1168 *6)) (-5 *4 (-1168 (-478))) (-5 *5 (-478)) (-4 *6 (-1005)) (-5 *2 (-1 *6)) (-5 *1 (-923 *6)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3386 *4) (|:| -1509 (-478))))) (-4 *4 (-1005)) (-5 *2 (-1 *4)) (-5 *1 (-923 *4)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-1001 *4)) (-4 *4 (-1005)) (-5 *2 (-1 *4)) (-5 *1 (-923 *4))))) +((-3756 (((-687) (-279 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) +(((-924 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3756 ((-687) (-279 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-308) (-1144 |#1|) (-1144 (-343 |#2|)) (-287 |#1| |#2| |#3|) (-13 (-313) (-308))) (T -924)) +((-3756 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-279 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-308)) (-4 *7 (-1144 *6)) (-4 *4 (-1144 (-343 *7))) (-4 *8 (-287 *6 *7 *4)) (-4 *9 (-13 (-313) (-308))) (-5 *2 (-687)) (-5 *1 (-924 *6 *7 *4 *8 *9))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3579 (((-1038) $) 9 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-3216 (((-1038) $) 11 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-925) (-13 (-987) (-10 -8 (-15 -3579 ((-1038) $)) (-15 -3216 ((-1038) $))))) (T -925)) +((-3579 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-925)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-925))))) +((-3956 (((-177) $) 6 T ELT) (((-323) $) 9 T ELT))) +(((-926) (-111)) (T -926)) +NIL +(-13 (-548 (-177)) (-548 (-323))) +(((-548 (-177)) . T) ((-548 (-323)) . T)) +((-3117 (((-3 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) "failed") |#1| (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) 32 T ELT) (((-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) |#1| (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) (-343 (-478))) 29 T ELT)) (-3033 (((-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) |#1| (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) (-343 (-478))) 34 T ELT) (((-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) |#1| (-343 (-478))) 30 T ELT) (((-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) |#1| (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) 33 T ELT) (((-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) |#1|) 28 T ELT)) (-3032 (((-578 (-343 (-478))) (-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))))) 20 T ELT)) (-3031 (((-343 (-478)) (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) 17 T ELT))) +(((-927 |#1|) (-10 -7 (-15 -3033 ((-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) |#1|)) (-15 -3033 ((-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) |#1| (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))))) (-15 -3033 ((-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) |#1| (-343 (-478)))) (-15 -3033 ((-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) |#1| (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) (-343 (-478)))) (-15 -3117 ((-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) |#1| (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) (-343 (-478)))) (-15 -3117 ((-3 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) "failed") |#1| (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))))) (-15 -3031 ((-343 (-478)) (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))))) (-15 -3032 ((-578 (-343 (-478))) (-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))))))) (-1144 (-478))) (T -927)) +((-3032 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))))) (-5 *2 (-578 (-343 (-478)))) (-5 *1 (-927 *4)) (-4 *4 (-1144 (-478))))) (-3031 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) (-5 *2 (-343 (-478))) (-5 *1 (-927 *4)) (-4 *4 (-1144 (-478))))) (-3117 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) (-5 *1 (-927 *3)) (-4 *3 (-1144 (-478))))) (-3117 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) (-5 *4 (-343 (-478))) (-5 *1 (-927 *3)) (-4 *3 (-1144 (-478))))) (-3033 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-343 (-478))) (-5 *2 (-578 (-2 (|:| -3121 *5) (|:| -3120 *5)))) (-5 *1 (-927 *3)) (-4 *3 (-1144 (-478))) (-5 *4 (-2 (|:| -3121 *5) (|:| -3120 *5))))) (-3033 (*1 *2 *3 *4) (-12 (-5 *2 (-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))))) (-5 *1 (-927 *3)) (-4 *3 (-1144 (-478))) (-5 *4 (-343 (-478))))) (-3033 (*1 *2 *3 *4) (-12 (-5 *2 (-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))))) (-5 *1 (-927 *3)) (-4 *3 (-1144 (-478))) (-5 *4 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))))) (-3033 (*1 *2 *3) (-12 (-5 *2 (-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))))) (-5 *1 (-927 *3)) (-4 *3 (-1144 (-478)))))) +((-3117 (((-3 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) "failed") |#1| (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) 35 T ELT) (((-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) |#1| (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) (-343 (-478))) 32 T ELT)) (-3033 (((-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) |#1| (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) (-343 (-478))) 30 T ELT) (((-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) |#1| (-343 (-478))) 26 T ELT) (((-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) |#1| (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) 28 T ELT) (((-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) |#1|) 24 T ELT))) +(((-928 |#1|) (-10 -7 (-15 -3033 ((-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) |#1|)) (-15 -3033 ((-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) |#1| (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))))) (-15 -3033 ((-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) |#1| (-343 (-478)))) (-15 -3033 ((-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) |#1| (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) (-343 (-478)))) (-15 -3117 ((-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) |#1| (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) (-343 (-478)))) (-15 -3117 ((-3 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) "failed") |#1| (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))) (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))))) (-1144 (-343 (-478)))) (T -928)) +((-3117 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) (-5 *1 (-928 *3)) (-4 *3 (-1144 (-343 (-478)))))) (-3117 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) (-5 *4 (-343 (-478))) (-5 *1 (-928 *3)) (-4 *3 (-1144 *4)))) (-3033 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-343 (-478))) (-5 *2 (-578 (-2 (|:| -3121 *5) (|:| -3120 *5)))) (-5 *1 (-928 *3)) (-4 *3 (-1144 *5)) (-5 *4 (-2 (|:| -3121 *5) (|:| -3120 *5))))) (-3033 (*1 *2 *3 *4) (-12 (-5 *4 (-343 (-478))) (-5 *2 (-578 (-2 (|:| -3121 *4) (|:| -3120 *4)))) (-5 *1 (-928 *3)) (-4 *3 (-1144 *4)))) (-3033 (*1 *2 *3 *4) (-12 (-5 *2 (-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))))) (-5 *1 (-928 *3)) (-4 *3 (-1144 (-343 (-478)))) (-5 *4 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))))) (-3033 (*1 *2 *3) (-12 (-5 *2 (-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))))) (-5 *1 (-928 *3)) (-4 *3 (-1144 (-343 (-478))))))) +((-3557 (((-578 (-323)) (-850 (-478)) (-323)) 28 T ELT) (((-578 (-323)) (-850 (-343 (-478))) (-323)) 27 T ELT)) (-3953 (((-578 (-578 (-323))) (-578 (-850 (-478))) (-578 (-1079)) (-323)) 37 T ELT))) +(((-929) (-10 -7 (-15 -3557 ((-578 (-323)) (-850 (-343 (-478))) (-323))) (-15 -3557 ((-578 (-323)) (-850 (-478)) (-323))) (-15 -3953 ((-578 (-578 (-323))) (-578 (-850 (-478))) (-578 (-1079)) (-323))))) (T -929)) +((-3953 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-850 (-478)))) (-5 *4 (-578 (-1079))) (-5 *2 (-578 (-578 (-323)))) (-5 *1 (-929)) (-5 *5 (-323)))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-850 (-478))) (-5 *2 (-578 (-323))) (-5 *1 (-929)) (-5 *4 (-323)))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-850 (-343 (-478)))) (-5 *2 (-578 (-323))) (-5 *1 (-929)) (-5 *4 (-323))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 75 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-3021 (($ $) NIL T ELT) (($ $ (-823)) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-478)) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3607 (((-478) $) 70 T ELT)) (-3708 (($) NIL T CONST)) (-3166 (((-3 $ #1#) (-1074 $) (-823) (-765)) NIL T ELT) (((-3 $ #1#) (-1074 $) (-823)) 55 T ELT)) (-3140 (((-3 (-343 (-478)) #1#) $) NIL (|has| (-343 (-478)) (-943 (-343 (-478)))) ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 116 T ELT) (((-3 (-478) #1#) $) NIL (OR (|has| (-343 (-478)) (-943 (-478))) (|has| |#1| (-943 (-478)))) ELT)) (-3139 (((-343 (-478)) $) 17 (|has| (-343 (-478)) (-943 (-343 (-478)))) ELT) (((-343 (-478)) $) 17 T ELT) ((|#1| $) 117 T ELT) (((-478) $) NIL (OR (|has| (-343 (-478)) (-943 (-478))) (|has| |#1| (-943 (-478)))) ELT)) (-3017 (($ $ (-765)) 47 T ELT)) (-3016 (($ $ (-765)) 48 T ELT)) (-2548 (($ $ $) NIL T ELT)) (-3165 (((-343 (-478)) $ $) 21 T ELT)) (-3451 (((-3 $ #1#) $) 88 T ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-3169 (((-83) $) 66 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2995 (($ $ (-478)) NIL T ELT)) (-3170 (((-83) $) 69 T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3018 (((-3 (-1074 $) #1#) $) 83 T ELT)) (-3020 (((-3 (-765) #1#) $) 82 T ELT)) (-3019 (((-3 (-1074 $) #1#) $) 80 T ELT)) (-3034 (((-3 (-966 $ (-1074 $)) #1#) $) 78 T ELT)) (-1878 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) 89 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-3930 (((-765) $) 87 T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ $) 63 T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#1|) 119 T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-3754 (((-343 (-478)) $ $) 27 T ELT)) (-3167 (((-578 $) (-1074 $)) 61 T ELT) (((-578 $) (-1074 (-343 (-478)))) NIL T ELT) (((-578 $) (-1074 (-478))) NIL T ELT) (((-578 $) (-850 $)) NIL T ELT) (((-578 $) (-850 (-343 (-478)))) NIL T ELT) (((-578 $) (-850 (-478))) NIL T ELT)) (-3035 (($ (-966 $ (-1074 $)) (-765)) 46 T ELT)) (-3367 (($ $) 22 T ELT)) (-2644 (($) 32 T CONST)) (-2650 (($) 39 T CONST)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 76 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 24 T ELT)) (-3933 (($ $ $) 37 T ELT)) (-3821 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3823 (($ $ $) 112 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 98 T ELT) (($ $ $) 104 T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-478) $) 98 T ELT) (($ $ (-478)) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ |#1| $) 102 T ELT) (($ $ |#1|) NIL T ELT))) +(((-930 |#1|) (-13 (-918) (-348 |#1|) (-38 |#1|) (-10 -8 (-15 -3035 ($ (-966 $ (-1074 $)) (-765))) (-15 -3034 ((-3 (-966 $ (-1074 $)) "failed") $)) (-15 -3165 ((-343 (-478)) $ $)))) (-13 (-748) (-308) (-926))) (T -930)) +((-3035 (*1 *1 *2 *3) (-12 (-5 *2 (-966 (-930 *4) (-1074 (-930 *4)))) (-5 *3 (-765)) (-5 *1 (-930 *4)) (-4 *4 (-13 (-748) (-308) (-926))))) (-3034 (*1 *2 *1) (|partial| -12 (-5 *2 (-966 (-930 *3) (-1074 (-930 *3)))) (-5 *1 (-930 *3)) (-4 *3 (-13 (-748) (-308) (-926))))) (-3165 (*1 *2 *1 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-930 *3)) (-4 *3 (-13 (-748) (-308) (-926)))))) +((-3036 (((-2 (|:| -3249 |#2|) (|:| -2497 (-578 |#1|))) |#2| (-578 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) +(((-931 |#1| |#2|) (-10 -7 (-15 -3036 (|#2| |#2| |#1|)) (-15 -3036 ((-2 (|:| -3249 |#2|) (|:| -2497 (-578 |#1|))) |#2| (-578 |#1|)))) (-308) (-595 |#1|)) (T -931)) +((-3036 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-5 *2 (-2 (|:| -3249 *3) (|:| -2497 (-578 *5)))) (-5 *1 (-931 *5 *3)) (-5 *4 (-578 *5)) (-4 *3 (-595 *5)))) (-3036 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-931 *3 *2)) (-4 *2 (-595 *3))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-3038 ((|#1| $ |#1|) 14 T ELT)) (-3772 ((|#1| $ |#1|) 12 T ELT)) (-3040 (($ |#1|) 10 T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-3784 ((|#1| $) 11 T ELT)) (-3039 ((|#1| $) 13 T ELT)) (-3930 (((-765) $) 19 (|has| |#1| (-1005)) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-3037 (((-83) $ $) 9 T ELT))) +(((-932 |#1|) (-13 (-1118) (-10 -8 (-15 -3040 ($ |#1|)) (-15 -3784 (|#1| $)) (-15 -3772 (|#1| $ |#1|)) (-15 -3039 (|#1| $)) (-15 -3038 (|#1| $ |#1|)) (-15 -3037 ((-83) $ $)) (IF (|has| |#1| (-1005)) (-6 (-1005)) |%noBranch|))) (-1118)) (T -932)) +((-3040 (*1 *1 *2) (-12 (-5 *1 (-932 *2)) (-4 *2 (-1118)))) (-3784 (*1 *2 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-1118)))) (-3772 (*1 *2 *1 *2) (-12 (-5 *1 (-932 *2)) (-4 *2 (-1118)))) (-3039 (*1 *2 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-1118)))) (-3038 (*1 *2 *1 *2) (-12 (-5 *1 (-932 *2)) (-4 *2 (-1118)))) (-3037 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-932 *3)) (-4 *3 (-1118))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3665 (((-578 (-2 (|:| -3845 $) (|:| -1689 (-578 |#4|)))) (-578 |#4|)) NIL T ELT)) (-3666 (((-578 $) (-578 |#4|)) 117 T ELT) (((-578 $) (-578 |#4|) (-83)) 118 T ELT) (((-578 $) (-578 |#4|) (-83) (-83)) 116 T ELT) (((-578 $) (-578 |#4|) (-83) (-83) (-83) (-83)) 119 T ELT)) (-3065 (((-578 |#3|) $) NIL T ELT)) (-2892 (((-83) $) NIL T ELT)) (-2883 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3677 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3672 ((|#4| |#4| $) NIL T ELT)) (-3759 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 $))) |#4| $) 111 T ELT)) (-2893 (((-2 (|:| |under| $) (|:| -3113 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3694 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT) (((-3 |#4| #1="failed") $ |#3|) 66 T ELT)) (-3708 (($) NIL T CONST)) (-2888 (((-83) $) 29 (|has| |#1| (-489)) ELT)) (-2890 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2889 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2891 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3673 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-2884 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-489)) ELT)) (-2885 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-489)) ELT)) (-3140 (((-3 $ #1#) (-578 |#4|)) NIL T ELT)) (-3139 (($ (-578 |#4|)) NIL T ELT)) (-3783 (((-3 $ #1#) $) 45 T ELT)) (-3669 ((|#4| |#4| $) 69 T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT)) (-3390 (($ |#4| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 84 (|has| |#1| (-489)) ELT)) (-3678 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3667 ((|#4| |#4| $) NIL T ELT)) (-3826 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3979)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3979)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3680 (((-2 (|:| -3845 (-578 |#4|)) (|:| -1689 (-578 |#4|))) $) NIL T ELT)) (-3180 (((-83) |#4| $) NIL T ELT)) (-3178 (((-83) |#4| $) NIL T ELT)) (-3181 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3422 (((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-83) (-83)) 132 T ELT)) (-2873 (((-578 |#4|) $) 18 (|has| $ (-6 -3979)) ELT)) (-3679 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3163 ((|#3| $) 38 T ELT)) (-2592 (((-578 |#4|) $) 19 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#4| $) 27 (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT)) (-1936 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2898 (((-578 |#3|) $) NIL T ELT)) (-2897 (((-83) |#3| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3174 (((-3 |#4| (-578 $)) |#4| |#4| $) NIL T ELT)) (-3173 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 $))) |#4| |#4| $) 109 T ELT)) (-3782 (((-3 |#4| #1#) $) 42 T ELT)) (-3175 (((-578 $) |#4| $) 92 T ELT)) (-3177 (((-3 (-83) (-578 $)) |#4| $) NIL T ELT)) (-3176 (((-578 (-2 (|:| |val| (-83)) (|:| -1587 $))) |#4| $) 102 T ELT) (((-83) |#4| $) 64 T ELT)) (-3221 (((-578 $) |#4| $) 114 T ELT) (((-578 $) (-578 |#4|) $) NIL T ELT) (((-578 $) (-578 |#4|) (-578 $)) 115 T ELT) (((-578 $) |#4| (-578 $)) NIL T ELT)) (-3423 (((-578 $) (-578 |#4|) (-83) (-83) (-83)) 127 T ELT)) (-3424 (($ |#4| $) 81 T ELT) (($ (-578 |#4|) $) 82 T ELT) (((-578 $) |#4| $ (-83) (-83) (-83) (-83) (-83)) 78 T ELT)) (-3681 (((-578 |#4|) $) NIL T ELT)) (-3675 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3670 ((|#4| |#4| $) NIL T ELT)) (-3683 (((-83) $ $) NIL T ELT)) (-2887 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-489)) ELT)) (-3676 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3671 ((|#4| |#4| $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3785 (((-3 |#4| #1#) $) 40 T ELT)) (-1341 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-3663 (((-3 $ #1#) $ |#4|) 59 T ELT)) (-3753 (($ $ |#4|) NIL T ELT) (((-578 $) |#4| $) 94 T ELT) (((-578 $) |#4| (-578 $)) NIL T ELT) (((-578 $) (-578 |#4|) $) NIL T ELT) (((-578 $) (-578 |#4|) (-578 $)) 88 T ELT)) (-1934 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-245 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-578 (-245 |#4|))) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) 17 T ELT)) (-3549 (($) 14 T ELT)) (-3932 (((-687) $) NIL T ELT)) (-1933 (((-687) |#4| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT) (((-687) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) 13 T ELT)) (-3956 (((-467) $) NIL (|has| |#4| (-548 (-467))) ELT)) (-3514 (($ (-578 |#4|)) 22 T ELT)) (-2894 (($ $ |#3|) 52 T ELT)) (-2896 (($ $ |#3|) 54 T ELT)) (-3668 (($ $) NIL T ELT)) (-2895 (($ $ |#3|) NIL T ELT)) (-3930 (((-765) $) 35 T ELT) (((-578 |#4|) $) 46 T ELT)) (-3662 (((-687) $) NIL (|has| |#3| (-313)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3682 (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3674 (((-83) $ (-1 (-83) |#4| (-578 |#4|))) NIL T ELT)) (-3172 (((-578 $) |#4| $) 91 T ELT) (((-578 $) |#4| (-578 $)) NIL T ELT) (((-578 $) (-578 |#4|) $) NIL T ELT) (((-578 $) (-578 |#4|) (-578 $)) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3664 (((-578 |#3|) $) NIL T ELT)) (-3179 (((-83) |#4| $) NIL T ELT)) (-3917 (((-83) |#3| $) 65 T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-933 |#1| |#2| |#3| |#4|) (-13 (-975 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3424 ((-578 $) |#4| $ (-83) (-83) (-83) (-83) (-83))) (-15 -3666 ((-578 $) (-578 |#4|) (-83) (-83))) (-15 -3666 ((-578 $) (-578 |#4|) (-83) (-83) (-83) (-83))) (-15 -3423 ((-578 $) (-578 |#4|) (-83) (-83) (-83))) (-15 -3422 ((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-83) (-83))))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|)) (T -933)) +((-3424 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-933 *5 *6 *7 *3))) (-5 *1 (-933 *5 *6 *7 *3)) (-4 *3 (-969 *5 *6 *7)))) (-3666 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-933 *5 *6 *7 *8))) (-5 *1 (-933 *5 *6 *7 *8)))) (-3666 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-933 *5 *6 *7 *8))) (-5 *1 (-933 *5 *6 *7 *8)))) (-3423 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-933 *5 *6 *7 *8))) (-5 *1 (-933 *5 *6 *7 *8)))) (-3422 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-578 *8)) (|:| |towers| (-578 (-933 *5 *6 *7 *8))))) (-5 *1 (-933 *5 *6 *7 *8)) (-5 *3 (-578 *8))))) +((-3041 (((-578 (-2 (|:| |radval| (-261 (-478))) (|:| |radmult| (-478)) (|:| |radvect| (-578 (-625 (-261 (-478))))))) (-625 (-343 (-850 (-478))))) 67 T ELT)) (-3042 (((-578 (-625 (-261 (-478)))) (-261 (-478)) (-625 (-343 (-850 (-478))))) 52 T ELT)) (-3043 (((-578 (-261 (-478))) (-625 (-343 (-850 (-478))))) 45 T ELT)) (-3047 (((-578 (-625 (-261 (-478)))) (-625 (-343 (-850 (-478))))) 85 T ELT)) (-3045 (((-625 (-261 (-478))) (-625 (-261 (-478)))) 38 T ELT)) (-3046 (((-578 (-625 (-261 (-478)))) (-578 (-625 (-261 (-478))))) 74 T ELT)) (-3044 (((-3 (-625 (-261 (-478))) "failed") (-625 (-343 (-850 (-478))))) 82 T ELT))) +(((-934) (-10 -7 (-15 -3041 ((-578 (-2 (|:| |radval| (-261 (-478))) (|:| |radmult| (-478)) (|:| |radvect| (-578 (-625 (-261 (-478))))))) (-625 (-343 (-850 (-478)))))) (-15 -3042 ((-578 (-625 (-261 (-478)))) (-261 (-478)) (-625 (-343 (-850 (-478)))))) (-15 -3043 ((-578 (-261 (-478))) (-625 (-343 (-850 (-478)))))) (-15 -3044 ((-3 (-625 (-261 (-478))) "failed") (-625 (-343 (-850 (-478)))))) (-15 -3045 ((-625 (-261 (-478))) (-625 (-261 (-478))))) (-15 -3046 ((-578 (-625 (-261 (-478)))) (-578 (-625 (-261 (-478)))))) (-15 -3047 ((-578 (-625 (-261 (-478)))) (-625 (-343 (-850 (-478)))))))) (T -934)) +((-3047 (*1 *2 *3) (-12 (-5 *3 (-625 (-343 (-850 (-478))))) (-5 *2 (-578 (-625 (-261 (-478))))) (-5 *1 (-934)))) (-3046 (*1 *2 *2) (-12 (-5 *2 (-578 (-625 (-261 (-478))))) (-5 *1 (-934)))) (-3045 (*1 *2 *2) (-12 (-5 *2 (-625 (-261 (-478)))) (-5 *1 (-934)))) (-3044 (*1 *2 *3) (|partial| -12 (-5 *3 (-625 (-343 (-850 (-478))))) (-5 *2 (-625 (-261 (-478)))) (-5 *1 (-934)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-625 (-343 (-850 (-478))))) (-5 *2 (-578 (-261 (-478)))) (-5 *1 (-934)))) (-3042 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-343 (-850 (-478))))) (-5 *2 (-578 (-625 (-261 (-478))))) (-5 *1 (-934)) (-5 *3 (-261 (-478))))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-625 (-343 (-850 (-478))))) (-5 *2 (-578 (-2 (|:| |radval| (-261 (-478))) (|:| |radmult| (-478)) (|:| |radvect| (-578 (-625 (-261 (-478)))))))) (-5 *1 (-934))))) +((-3051 (((-578 (-625 |#1|)) (-578 (-625 |#1|))) 70 T ELT) (((-625 |#1|) (-625 |#1|)) 69 T ELT) (((-578 (-625 |#1|)) (-578 (-625 |#1|)) (-578 (-625 |#1|))) 68 T ELT) (((-625 |#1|) (-625 |#1|) (-625 |#1|)) 65 T ELT)) (-3050 (((-578 (-625 |#1|)) (-578 (-625 |#1|)) (-823)) 63 T ELT) (((-625 |#1|) (-625 |#1|) (-823)) 62 T ELT)) (-3052 (((-578 (-625 (-478))) (-578 (-578 (-478)))) 81 T ELT) (((-578 (-625 (-478))) (-578 (-806 (-478))) (-478)) 80 T ELT) (((-625 (-478)) (-578 (-478))) 77 T ELT) (((-625 (-478)) (-806 (-478)) (-478)) 75 T ELT)) (-3049 (((-625 (-850 |#1|)) (-687)) 95 T ELT)) (-3048 (((-578 (-625 |#1|)) (-578 (-625 |#1|)) (-823)) 49 (|has| |#1| (-6 (-3981 #1="*"))) ELT) (((-625 |#1|) (-625 |#1|) (-823)) 47 (|has| |#1| (-6 (-3981 #1#))) ELT))) +(((-935 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3981 #1="*"))) (-15 -3048 ((-625 |#1|) (-625 |#1|) (-823))) |%noBranch|) (IF (|has| |#1| (-6 (-3981 #1#))) (-15 -3048 ((-578 (-625 |#1|)) (-578 (-625 |#1|)) (-823))) |%noBranch|) (-15 -3049 ((-625 (-850 |#1|)) (-687))) (-15 -3050 ((-625 |#1|) (-625 |#1|) (-823))) (-15 -3050 ((-578 (-625 |#1|)) (-578 (-625 |#1|)) (-823))) (-15 -3051 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -3051 ((-578 (-625 |#1|)) (-578 (-625 |#1|)) (-578 (-625 |#1|)))) (-15 -3051 ((-625 |#1|) (-625 |#1|))) (-15 -3051 ((-578 (-625 |#1|)) (-578 (-625 |#1|)))) (-15 -3052 ((-625 (-478)) (-806 (-478)) (-478))) (-15 -3052 ((-625 (-478)) (-578 (-478)))) (-15 -3052 ((-578 (-625 (-478))) (-578 (-806 (-478))) (-478))) (-15 -3052 ((-578 (-625 (-478))) (-578 (-578 (-478)))))) (-954)) (T -935)) +((-3052 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-478)))) (-5 *2 (-578 (-625 (-478)))) (-5 *1 (-935 *4)) (-4 *4 (-954)))) (-3052 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-806 (-478)))) (-5 *4 (-478)) (-5 *2 (-578 (-625 *4))) (-5 *1 (-935 *5)) (-4 *5 (-954)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-625 (-478))) (-5 *1 (-935 *4)) (-4 *4 (-954)))) (-3052 (*1 *2 *3 *4) (-12 (-5 *3 (-806 (-478))) (-5 *4 (-478)) (-5 *2 (-625 *4)) (-5 *1 (-935 *5)) (-4 *5 (-954)))) (-3051 (*1 *2 *2) (-12 (-5 *2 (-578 (-625 *3))) (-4 *3 (-954)) (-5 *1 (-935 *3)))) (-3051 (*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-935 *3)))) (-3051 (*1 *2 *2 *2) (-12 (-5 *2 (-578 (-625 *3))) (-4 *3 (-954)) (-5 *1 (-935 *3)))) (-3051 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-935 *3)))) (-3050 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-625 *4))) (-5 *3 (-823)) (-4 *4 (-954)) (-5 *1 (-935 *4)))) (-3050 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-823)) (-4 *4 (-954)) (-5 *1 (-935 *4)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-625 (-850 *4))) (-5 *1 (-935 *4)) (-4 *4 (-954)))) (-3048 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-625 *4))) (-5 *3 (-823)) (|has| *4 (-6 (-3981 "*"))) (-4 *4 (-954)) (-5 *1 (-935 *4)))) (-3048 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-823)) (|has| *4 (-6 (-3981 "*"))) (-4 *4 (-954)) (-5 *1 (-935 *4))))) +((-3056 (((-625 |#1|) (-578 (-625 |#1|)) (-1168 |#1|)) 69 (|has| |#1| (-254)) ELT)) (-3402 (((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-1168 (-1168 |#1|))) 109 (|has| |#1| (-308)) ELT) (((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-1168 |#1|)) 116 (|has| |#1| (-308)) ELT)) (-3060 (((-1168 |#1|) (-578 (-1168 |#1|)) (-478)) 135 (-12 (|has| |#1| (-308)) (|has| |#1| (-313))) ELT)) (-3059 (((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-823)) 123 (-12 (|has| |#1| (-308)) (|has| |#1| (-313))) ELT) (((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-83)) 122 (-12 (|has| |#1| (-308)) (|has| |#1| (-313))) ELT) (((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|))) 121 (-12 (|has| |#1| (-308)) (|has| |#1| (-313))) ELT) (((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-83) (-478) (-478)) 120 (-12 (|has| |#1| (-308)) (|has| |#1| (-313))) ELT)) (-3058 (((-83) (-578 (-625 |#1|))) 102 (|has| |#1| (-308)) ELT) (((-83) (-578 (-625 |#1|)) (-478)) 105 (|has| |#1| (-308)) ELT)) (-3055 (((-1168 (-1168 |#1|)) (-578 (-625 |#1|)) (-1168 |#1|)) 66 (|has| |#1| (-254)) ELT)) (-3054 (((-625 |#1|) (-578 (-625 |#1|)) (-625 |#1|)) 46 T ELT)) (-3053 (((-625 |#1|) (-1168 (-1168 |#1|))) 39 T ELT)) (-3057 (((-625 |#1|) (-578 (-625 |#1|)) (-578 (-625 |#1|)) (-478)) 93 (|has| |#1| (-308)) ELT) (((-625 |#1|) (-578 (-625 |#1|)) (-578 (-625 |#1|))) 92 (|has| |#1| (-308)) ELT) (((-625 |#1|) (-578 (-625 |#1|)) (-578 (-625 |#1|)) (-83) (-478)) 100 (|has| |#1| (-308)) ELT))) +(((-936 |#1|) (-10 -7 (-15 -3053 ((-625 |#1|) (-1168 (-1168 |#1|)))) (-15 -3054 ((-625 |#1|) (-578 (-625 |#1|)) (-625 |#1|))) (IF (|has| |#1| (-254)) (PROGN (-15 -3055 ((-1168 (-1168 |#1|)) (-578 (-625 |#1|)) (-1168 |#1|))) (-15 -3056 ((-625 |#1|) (-578 (-625 |#1|)) (-1168 |#1|)))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -3057 ((-625 |#1|) (-578 (-625 |#1|)) (-578 (-625 |#1|)) (-83) (-478))) (-15 -3057 ((-625 |#1|) (-578 (-625 |#1|)) (-578 (-625 |#1|)))) (-15 -3057 ((-625 |#1|) (-578 (-625 |#1|)) (-578 (-625 |#1|)) (-478))) (-15 -3058 ((-83) (-578 (-625 |#1|)) (-478))) (-15 -3058 ((-83) (-578 (-625 |#1|)))) (-15 -3402 ((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-1168 |#1|))) (-15 -3402 ((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-1168 (-1168 |#1|))))) |%noBranch|) (IF (|has| |#1| (-313)) (IF (|has| |#1| (-308)) (PROGN (-15 -3059 ((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-83) (-478) (-478))) (-15 -3059 ((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)))) (-15 -3059 ((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-83))) (-15 -3059 ((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-823))) (-15 -3060 ((-1168 |#1|) (-578 (-1168 |#1|)) (-478)))) |%noBranch|) |%noBranch|)) (-954)) (T -936)) +((-3060 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1168 *5))) (-5 *4 (-478)) (-5 *2 (-1168 *5)) (-5 *1 (-936 *5)) (-4 *5 (-308)) (-4 *5 (-313)) (-4 *5 (-954)))) (-3059 (*1 *2 *3 *4) (-12 (-5 *4 (-823)) (-4 *5 (-308)) (-4 *5 (-313)) (-4 *5 (-954)) (-5 *2 (-578 (-578 (-625 *5)))) (-5 *1 (-936 *5)) (-5 *3 (-578 (-625 *5))))) (-3059 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-308)) (-4 *5 (-313)) (-4 *5 (-954)) (-5 *2 (-578 (-578 (-625 *5)))) (-5 *1 (-936 *5)) (-5 *3 (-578 (-625 *5))))) (-3059 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *4 (-313)) (-4 *4 (-954)) (-5 *2 (-578 (-578 (-625 *4)))) (-5 *1 (-936 *4)) (-5 *3 (-578 (-625 *4))))) (-3059 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-83)) (-5 *5 (-478)) (-4 *6 (-308)) (-4 *6 (-313)) (-4 *6 (-954)) (-5 *2 (-578 (-578 (-625 *6)))) (-5 *1 (-936 *6)) (-5 *3 (-578 (-625 *6))))) (-3402 (*1 *2 *3 *4) (-12 (-5 *4 (-1168 (-1168 *5))) (-4 *5 (-308)) (-4 *5 (-954)) (-5 *2 (-578 (-578 (-625 *5)))) (-5 *1 (-936 *5)) (-5 *3 (-578 (-625 *5))))) (-3402 (*1 *2 *3 *4) (-12 (-5 *4 (-1168 *5)) (-4 *5 (-308)) (-4 *5 (-954)) (-5 *2 (-578 (-578 (-625 *5)))) (-5 *1 (-936 *5)) (-5 *3 (-578 (-625 *5))))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-578 (-625 *4))) (-4 *4 (-308)) (-4 *4 (-954)) (-5 *2 (-83)) (-5 *1 (-936 *4)))) (-3058 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-625 *5))) (-5 *4 (-478)) (-4 *5 (-308)) (-4 *5 (-954)) (-5 *2 (-83)) (-5 *1 (-936 *5)))) (-3057 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-578 (-625 *5))) (-5 *4 (-478)) (-5 *2 (-625 *5)) (-5 *1 (-936 *5)) (-4 *5 (-308)) (-4 *5 (-954)))) (-3057 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-625 *4))) (-5 *2 (-625 *4)) (-5 *1 (-936 *4)) (-4 *4 (-308)) (-4 *4 (-954)))) (-3057 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-578 (-625 *6))) (-5 *4 (-83)) (-5 *5 (-478)) (-5 *2 (-625 *6)) (-5 *1 (-936 *6)) (-4 *6 (-308)) (-4 *6 (-954)))) (-3056 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-625 *5))) (-5 *4 (-1168 *5)) (-4 *5 (-254)) (-4 *5 (-954)) (-5 *2 (-625 *5)) (-5 *1 (-936 *5)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-625 *5))) (-4 *5 (-254)) (-4 *5 (-954)) (-5 *2 (-1168 (-1168 *5))) (-5 *1 (-936 *5)) (-5 *4 (-1168 *5)))) (-3054 (*1 *2 *3 *2) (-12 (-5 *3 (-578 (-625 *4))) (-5 *2 (-625 *4)) (-4 *4 (-954)) (-5 *1 (-936 *4)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-1168 (-1168 *4))) (-4 *4 (-954)) (-5 *2 (-625 *4)) (-5 *1 (-936 *4))))) +((-3061 ((|#1| (-823) |#1|) 18 T ELT))) +(((-937 |#1|) (-10 -7 (-15 -3061 (|#1| (-823) |#1|))) (-13 (-1005) (-10 -8 (-15 -3823 ($ $ $))))) (T -937)) +((-3061 (*1 *2 *3 *2) (-12 (-5 *3 (-823)) (-5 *1 (-937 *2)) (-4 *2 (-13 (-1005) (-10 -8 (-15 -3823 ($ $ $)))))))) +((-3062 ((|#1| |#1| (-823)) 18 T ELT))) +(((-938 |#1|) (-10 -7 (-15 -3062 (|#1| |#1| (-823)))) (-13 (-1005) (-10 -8 (-15 * ($ $ $))))) (T -938)) +((-3062 (*1 *2 *2 *3) (-12 (-5 *3 (-823)) (-5 *1 (-938 *2)) (-4 *2 (-13 (-1005) (-10 -8 (-15 * ($ $ $)))))))) +((-3930 ((|#1| (-258)) 11 T ELT) (((-1174) |#1|) 9 T ELT))) +(((-939 |#1|) (-10 -7 (-15 -3930 ((-1174) |#1|)) (-15 -3930 (|#1| (-258)))) (-1118)) (T -939)) +((-3930 (*1 *2 *3) (-12 (-5 *3 (-258)) (-5 *1 (-939 *2)) (-4 *2 (-1118)))) (-3930 (*1 *2 *3) (-12 (-5 *2 (-1174)) (-5 *1 (-939 *3)) (-4 *3 (-1118))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3826 (($ |#4|) 25 T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-3063 ((|#4| $) 27 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 46 T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 26 T ELT)) (-3109 (((-687)) 43 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 21 T CONST)) (-2650 (($) 23 T CONST)) (-3037 (((-83) $ $) 40 T ELT)) (-3821 (($ $) 31 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 29 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 36 T ELT) (($ $ $) 33 T ELT) (($ |#1| $) 38 T ELT) (($ $ |#1|) NIL T ELT))) +(((-940 |#1| |#2| |#3| |#4| |#5|) (-13 (-144) (-38 |#1|) (-10 -8 (-15 -3826 ($ |#4|)) (-15 -3930 ($ |#4|)) (-15 -3063 (|#4| $)))) (-308) (-710) (-749) (-854 |#1| |#2| |#3|) (-578 |#4|)) (T -940)) +((-3826 (*1 *1 *2) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-940 *3 *4 *5 *2 *6)) (-4 *2 (-854 *3 *4 *5)) (-14 *6 (-578 *2)))) (-3930 (*1 *1 *2) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-940 *3 *4 *5 *2 *6)) (-4 *2 (-854 *3 *4 *5)) (-14 *6 (-578 *2)))) (-3063 (*1 *2 *1) (-12 (-4 *2 (-854 *3 *4 *5)) (-5 *1 (-940 *3 *4 *5 *2 *6)) (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-14 *6 (-578 *2))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3189 (((-1038) $) 9 T ELT)) (-3930 (((-765) $) 15 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-941) (-13 (-987) (-10 -8 (-15 -3189 ((-1038) $))))) (T -941)) +((-3189 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-941))))) +((-3139 ((|#2| $) 10 T ELT))) +(((-942 |#1| |#2|) (-10 -7 (-15 -3139 (|#2| |#1|))) (-943 |#2|) (-1118)) (T -942)) +NIL +((-3140 (((-3 |#1| "failed") $) 9 T ELT)) (-3139 ((|#1| $) 8 T ELT)) (-3930 (($ |#1|) 6 T ELT))) +(((-943 |#1|) (-111) (-1118)) (T -943)) +((-3140 (*1 *2 *1) (|partial| -12 (-4 *1 (-943 *2)) (-4 *2 (-1118)))) (-3139 (*1 *2 *1) (-12 (-4 *1 (-943 *2)) (-4 *2 (-1118))))) +(-13 (-550 |t#1|) (-10 -8 (-15 -3140 ((-3 |t#1| "failed") $)) (-15 -3139 (|t#1| $)))) +(((-550 |#1|) . T)) +((-3064 (((-578 (-578 (-245 (-343 (-850 |#2|))))) (-578 (-850 |#2|)) (-578 (-1079))) 38 T ELT))) +(((-944 |#1| |#2|) (-10 -7 (-15 -3064 ((-578 (-578 (-245 (-343 (-850 |#2|))))) (-578 (-850 |#2|)) (-578 (-1079))))) (-489) (-13 (-489) (-943 |#1|))) (T -944)) +((-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-850 *6))) (-5 *4 (-578 (-1079))) (-4 *6 (-13 (-489) (-943 *5))) (-4 *5 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *6)))))) (-5 *1 (-944 *5 *6))))) +((-3065 (((-578 (-1079)) (-343 (-850 |#1|))) 17 T ELT)) (-3067 (((-343 (-1074 (-343 (-850 |#1|)))) (-343 (-850 |#1|)) (-1079)) 24 T ELT)) (-3068 (((-343 (-850 |#1|)) (-343 (-1074 (-343 (-850 |#1|)))) (-1079)) 26 T ELT)) (-3066 (((-3 (-1079) "failed") (-343 (-850 |#1|))) 20 T ELT)) (-3752 (((-343 (-850 |#1|)) (-343 (-850 |#1|)) (-578 (-245 (-343 (-850 |#1|))))) 32 T ELT) (((-343 (-850 |#1|)) (-343 (-850 |#1|)) (-245 (-343 (-850 |#1|)))) 33 T ELT) (((-343 (-850 |#1|)) (-343 (-850 |#1|)) (-578 (-1079)) (-578 (-343 (-850 |#1|)))) 28 T ELT) (((-343 (-850 |#1|)) (-343 (-850 |#1|)) (-1079) (-343 (-850 |#1|))) 29 T ELT)) (-3930 (((-343 (-850 |#1|)) |#1|) 11 T ELT))) +(((-945 |#1|) (-10 -7 (-15 -3065 ((-578 (-1079)) (-343 (-850 |#1|)))) (-15 -3066 ((-3 (-1079) "failed") (-343 (-850 |#1|)))) (-15 -3067 ((-343 (-1074 (-343 (-850 |#1|)))) (-343 (-850 |#1|)) (-1079))) (-15 -3068 ((-343 (-850 |#1|)) (-343 (-1074 (-343 (-850 |#1|)))) (-1079))) (-15 -3752 ((-343 (-850 |#1|)) (-343 (-850 |#1|)) (-1079) (-343 (-850 |#1|)))) (-15 -3752 ((-343 (-850 |#1|)) (-343 (-850 |#1|)) (-578 (-1079)) (-578 (-343 (-850 |#1|))))) (-15 -3752 ((-343 (-850 |#1|)) (-343 (-850 |#1|)) (-245 (-343 (-850 |#1|))))) (-15 -3752 ((-343 (-850 |#1|)) (-343 (-850 |#1|)) (-578 (-245 (-343 (-850 |#1|)))))) (-15 -3930 ((-343 (-850 |#1|)) |#1|))) (-489)) (T -945)) +((-3930 (*1 *2 *3) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-945 *3)) (-4 *3 (-489)))) (-3752 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-245 (-343 (-850 *4))))) (-5 *2 (-343 (-850 *4))) (-4 *4 (-489)) (-5 *1 (-945 *4)))) (-3752 (*1 *2 *2 *3) (-12 (-5 *3 (-245 (-343 (-850 *4)))) (-5 *2 (-343 (-850 *4))) (-4 *4 (-489)) (-5 *1 (-945 *4)))) (-3752 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-578 (-1079))) (-5 *4 (-578 (-343 (-850 *5)))) (-5 *2 (-343 (-850 *5))) (-4 *5 (-489)) (-5 *1 (-945 *5)))) (-3752 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-343 (-850 *4))) (-5 *3 (-1079)) (-4 *4 (-489)) (-5 *1 (-945 *4)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-1074 (-343 (-850 *5))))) (-5 *4 (-1079)) (-5 *2 (-343 (-850 *5))) (-5 *1 (-945 *5)) (-4 *5 (-489)))) (-3067 (*1 *2 *3 *4) (-12 (-5 *4 (-1079)) (-4 *5 (-489)) (-5 *2 (-343 (-1074 (-343 (-850 *5))))) (-5 *1 (-945 *5)) (-5 *3 (-343 (-850 *5))))) (-3066 (*1 *2 *3) (|partial| -12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-5 *2 (-1079)) (-5 *1 (-945 *4)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-5 *2 (-578 (-1079))) (-5 *1 (-945 *4))))) +((-3069 (((-323)) 17 T ELT)) (-3084 (((-1 (-323)) (-323) (-323)) 22 T ELT)) (-3077 (((-1 (-323)) (-687)) 48 T ELT)) (-3070 (((-323)) 37 T ELT)) (-3073 (((-1 (-323)) (-323) (-323)) 38 T ELT)) (-3071 (((-323)) 29 T ELT)) (-3074 (((-1 (-323)) (-323)) 30 T ELT)) (-3072 (((-323) (-687)) 43 T ELT)) (-3075 (((-1 (-323)) (-687)) 44 T ELT)) (-3076 (((-1 (-323)) (-687) (-687)) 47 T ELT)) (-3368 (((-1 (-323)) (-687) (-687)) 45 T ELT))) +(((-946) (-10 -7 (-15 -3069 ((-323))) (-15 -3070 ((-323))) (-15 -3071 ((-323))) (-15 -3072 ((-323) (-687))) (-15 -3084 ((-1 (-323)) (-323) (-323))) (-15 -3073 ((-1 (-323)) (-323) (-323))) (-15 -3074 ((-1 (-323)) (-323))) (-15 -3075 ((-1 (-323)) (-687))) (-15 -3368 ((-1 (-323)) (-687) (-687))) (-15 -3076 ((-1 (-323)) (-687) (-687))) (-15 -3077 ((-1 (-323)) (-687))))) (T -946)) +((-3077 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-323))) (-5 *1 (-946)))) (-3076 (*1 *2 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-323))) (-5 *1 (-946)))) (-3368 (*1 *2 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-323))) (-5 *1 (-946)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-323))) (-5 *1 (-946)))) (-3074 (*1 *2 *3) (-12 (-5 *2 (-1 (-323))) (-5 *1 (-946)) (-5 *3 (-323)))) (-3073 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-323))) (-5 *1 (-946)) (-5 *3 (-323)))) (-3084 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-323))) (-5 *1 (-946)) (-5 *3 (-323)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-323)) (-5 *1 (-946)))) (-3071 (*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-946)))) (-3070 (*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-946)))) (-3069 (*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-946))))) +((-3716 (((-341 |#1|) |#1|) 33 T ELT))) +(((-947 |#1|) (-10 -7 (-15 -3716 ((-341 |#1|) |#1|))) (-1144 (-343 (-850 (-478))))) (T -947)) +((-3716 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-947 *3)) (-4 *3 (-1144 (-343 (-850 (-478)))))))) +((-3078 (((-343 (-341 (-850 |#1|))) (-343 (-850 |#1|))) 14 T ELT))) +(((-948 |#1|) (-10 -7 (-15 -3078 ((-343 (-341 (-850 |#1|))) (-343 (-850 |#1|))))) (-254)) (T -948)) +((-3078 (*1 *2 *3) (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-254)) (-5 *2 (-343 (-341 (-850 *4)))) (-5 *1 (-948 *4))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3708 (($) 22 T CONST)) (-3082 ((|#1| $) 28 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3081 ((|#1| $) 27 T ELT)) (-3079 ((|#1|) 25 T CONST)) (-3930 (((-765) $) 13 T ELT)) (-3080 ((|#1| $) 26 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT))) +(((-949 |#1|) (-111) (-23)) (T -949)) +((-3082 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-23)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-23)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-23)))) (-3079 (*1 *2) (-12 (-4 *1 (-949 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3082 (|t#1| $)) (-15 -3081 (|t#1| $)) (-15 -3080 (|t#1| $)) (-15 -3079 (|t#1|) -3936))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-547 (-765)) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3083 (($) 30 T CONST)) (-3708 (($) 22 T CONST)) (-3082 ((|#1| $) 28 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3081 ((|#1| $) 27 T ELT)) (-3079 ((|#1|) 25 T CONST)) (-3930 (((-765) $) 13 T ELT)) (-3080 ((|#1| $) 26 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT))) +(((-950 |#1|) (-111) (-23)) (T -950)) +((-3083 (*1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-23))))) +(-13 (-949 |t#1|) (-10 -8 (-15 -3083 ($) -3936))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-547 (-765)) . T) ((-949 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3665 (((-578 (-2 (|:| -3845 $) (|:| -1689 (-578 (-696 |#1| (-766 |#2|)))))) (-578 (-696 |#1| (-766 |#2|)))) NIL T ELT)) (-3666 (((-578 $) (-578 (-696 |#1| (-766 |#2|)))) NIL T ELT) (((-578 $) (-578 (-696 |#1| (-766 |#2|))) (-83)) NIL T ELT) (((-578 $) (-578 (-696 |#1| (-766 |#2|))) (-83) (-83)) NIL T ELT)) (-3065 (((-578 (-766 |#2|)) $) NIL T ELT)) (-2892 (((-83) $) NIL T ELT)) (-2883 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3677 (((-83) (-696 |#1| (-766 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-3672 (((-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3759 (((-578 (-2 (|:| |val| (-696 |#1| (-766 |#2|))) (|:| -1587 $))) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-2893 (((-2 (|:| |under| $) (|:| -3113 $) (|:| |upper| $)) $ (-766 |#2|)) NIL T ELT)) (-3694 (($ (-1 (-83) (-696 |#1| (-766 |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-3 (-696 |#1| (-766 |#2|)) #1="failed") $ (-766 |#2|)) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2888 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2890 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2889 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2891 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3673 (((-578 (-696 |#1| (-766 |#2|))) (-578 (-696 |#1| (-766 |#2|))) $ (-1 (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) (-1 (-83) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)))) NIL T ELT)) (-2884 (((-578 (-696 |#1| (-766 |#2|))) (-578 (-696 |#1| (-766 |#2|))) $) NIL (|has| |#1| (-489)) ELT)) (-2885 (((-578 (-696 |#1| (-766 |#2|))) (-578 (-696 |#1| (-766 |#2|))) $) NIL (|has| |#1| (-489)) ELT)) (-3140 (((-3 $ #1#) (-578 (-696 |#1| (-766 |#2|)))) NIL T ELT)) (-3139 (($ (-578 (-696 |#1| (-766 |#2|)))) NIL T ELT)) (-3783 (((-3 $ #1#) $) NIL T ELT)) (-3669 (((-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-696 |#1| (-766 |#2|)) (-1005))) ELT)) (-3390 (($ (-696 |#1| (-766 |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-696 |#1| (-766 |#2|)) (-1005))) ELT) (($ (-1 (-83) (-696 |#1| (-766 |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-2886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-696 |#1| (-766 |#2|))) (|:| |den| |#1|)) (-696 |#1| (-766 |#2|)) $) NIL (|has| |#1| (-489)) ELT)) (-3678 (((-83) (-696 |#1| (-766 |#2|)) $ (-1 (-83) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)))) NIL T ELT)) (-3667 (((-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3826 (((-696 |#1| (-766 |#2|)) (-1 (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) $ (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) NIL (-12 (|has| $ (-6 -3979)) (|has| (-696 |#1| (-766 |#2|)) (-1005))) ELT) (((-696 |#1| (-766 |#2|)) (-1 (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) $ (-696 |#1| (-766 |#2|))) NIL (|has| $ (-6 -3979)) ELT) (((-696 |#1| (-766 |#2|)) (-1 (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) $ (-1 (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) (-1 (-83) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)))) NIL T ELT)) (-3680 (((-2 (|:| -3845 (-578 (-696 |#1| (-766 |#2|)))) (|:| -1689 (-578 (-696 |#1| (-766 |#2|))))) $) NIL T ELT)) (-3180 (((-83) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3178 (((-83) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3181 (((-83) (-696 |#1| (-766 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-2873 (((-578 (-696 |#1| (-766 |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3679 (((-83) (-696 |#1| (-766 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-3163 (((-766 |#2|) $) NIL T ELT)) (-2592 (((-578 (-696 |#1| (-766 |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-696 |#1| (-766 |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-696 |#1| (-766 |#2|)) (-1005))) ELT)) (-1936 (($ (-1 (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) $) NIL T ELT)) (-2898 (((-578 (-766 |#2|)) $) NIL T ELT)) (-2897 (((-83) (-766 |#2|) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3174 (((-3 (-696 |#1| (-766 |#2|)) (-578 $)) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3173 (((-578 (-2 (|:| |val| (-696 |#1| (-766 |#2|))) (|:| -1587 $))) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3782 (((-3 (-696 |#1| (-766 |#2|)) #1#) $) NIL T ELT)) (-3175 (((-578 $) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3177 (((-3 (-83) (-578 $)) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3176 (((-578 (-2 (|:| |val| (-83)) (|:| -1587 $))) (-696 |#1| (-766 |#2|)) $) NIL T ELT) (((-83) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3221 (((-578 $) (-696 |#1| (-766 |#2|)) $) NIL T ELT) (((-578 $) (-578 (-696 |#1| (-766 |#2|))) $) NIL T ELT) (((-578 $) (-578 (-696 |#1| (-766 |#2|))) (-578 $)) NIL T ELT) (((-578 $) (-696 |#1| (-766 |#2|)) (-578 $)) NIL T ELT)) (-3424 (($ (-696 |#1| (-766 |#2|)) $) NIL T ELT) (($ (-578 (-696 |#1| (-766 |#2|))) $) NIL T ELT)) (-3681 (((-578 (-696 |#1| (-766 |#2|))) $) NIL T ELT)) (-3675 (((-83) (-696 |#1| (-766 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-3670 (((-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3683 (((-83) $ $) NIL T ELT)) (-2887 (((-2 (|:| |num| (-696 |#1| (-766 |#2|))) (|:| |den| |#1|)) (-696 |#1| (-766 |#2|)) $) NIL (|has| |#1| (-489)) ELT)) (-3676 (((-83) (-696 |#1| (-766 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-3671 (((-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3785 (((-3 (-696 |#1| (-766 |#2|)) #1#) $) NIL T ELT)) (-1341 (((-3 (-696 |#1| (-766 |#2|)) #1#) (-1 (-83) (-696 |#1| (-766 |#2|))) $) NIL T ELT)) (-3663 (((-3 $ #1#) $ (-696 |#1| (-766 |#2|))) NIL T ELT)) (-3753 (($ $ (-696 |#1| (-766 |#2|))) NIL T ELT) (((-578 $) (-696 |#1| (-766 |#2|)) $) NIL T ELT) (((-578 $) (-696 |#1| (-766 |#2|)) (-578 $)) NIL T ELT) (((-578 $) (-578 (-696 |#1| (-766 |#2|))) $) NIL T ELT) (((-578 $) (-578 (-696 |#1| (-766 |#2|))) (-578 $)) NIL T ELT)) (-1934 (((-83) (-1 (-83) (-696 |#1| (-766 |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-696 |#1| (-766 |#2|))) (-578 (-696 |#1| (-766 |#2|)))) NIL (-12 (|has| (-696 |#1| (-766 |#2|)) (-256 (-696 |#1| (-766 |#2|)))) (|has| (-696 |#1| (-766 |#2|)) (-1005))) ELT) (($ $ (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) NIL (-12 (|has| (-696 |#1| (-766 |#2|)) (-256 (-696 |#1| (-766 |#2|)))) (|has| (-696 |#1| (-766 |#2|)) (-1005))) ELT) (($ $ (-245 (-696 |#1| (-766 |#2|)))) NIL (-12 (|has| (-696 |#1| (-766 |#2|)) (-256 (-696 |#1| (-766 |#2|)))) (|has| (-696 |#1| (-766 |#2|)) (-1005))) ELT) (($ $ (-578 (-245 (-696 |#1| (-766 |#2|))))) NIL (-12 (|has| (-696 |#1| (-766 |#2|)) (-256 (-696 |#1| (-766 |#2|)))) (|has| (-696 |#1| (-766 |#2|)) (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3932 (((-687) $) NIL T ELT)) (-1933 (((-687) (-696 |#1| (-766 |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-696 |#1| (-766 |#2|)) (-1005))) ELT) (((-687) (-1 (-83) (-696 |#1| (-766 |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| (-696 |#1| (-766 |#2|)) (-548 (-467))) ELT)) (-3514 (($ (-578 (-696 |#1| (-766 |#2|)))) NIL T ELT)) (-2894 (($ $ (-766 |#2|)) NIL T ELT)) (-2896 (($ $ (-766 |#2|)) NIL T ELT)) (-3668 (($ $) NIL T ELT)) (-2895 (($ $ (-766 |#2|)) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (((-578 (-696 |#1| (-766 |#2|))) $) NIL T ELT)) (-3662 (((-687) $) NIL (|has| (-766 |#2|) (-313)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3682 (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 (-696 |#1| (-766 |#2|))))) #1#) (-578 (-696 |#1| (-766 |#2|))) (-1 (-83) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 (-696 |#1| (-766 |#2|))))) #1#) (-578 (-696 |#1| (-766 |#2|))) (-1 (-83) (-696 |#1| (-766 |#2|))) (-1 (-83) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)))) NIL T ELT)) (-3674 (((-83) $ (-1 (-83) (-696 |#1| (-766 |#2|)) (-578 (-696 |#1| (-766 |#2|))))) NIL T ELT)) (-3172 (((-578 $) (-696 |#1| (-766 |#2|)) $) NIL T ELT) (((-578 $) (-696 |#1| (-766 |#2|)) (-578 $)) NIL T ELT) (((-578 $) (-578 (-696 |#1| (-766 |#2|))) $) NIL T ELT) (((-578 $) (-578 (-696 |#1| (-766 |#2|))) (-578 $)) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-696 |#1| (-766 |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3664 (((-578 (-766 |#2|)) $) NIL T ELT)) (-3179 (((-83) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3917 (((-83) (-766 |#2|) $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-951 |#1| |#2|) (-13 (-975 |#1| (-463 (-766 |#2|)) (-766 |#2|) (-696 |#1| (-766 |#2|))) (-10 -8 (-15 -3666 ((-578 $) (-578 (-696 |#1| (-766 |#2|))) (-83) (-83))))) (-385) (-578 (-1079))) (T -951)) +((-3666 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) (-14 *6 (-578 (-1079))) (-5 *2 (-578 (-951 *5 *6))) (-5 *1 (-951 *5 *6))))) +((-3084 (((-1 (-478)) (-993 (-478))) 32 T ELT)) (-3088 (((-478) (-478) (-478) (-478) (-478)) 29 T ELT)) (-3086 (((-1 (-478)) |RationalNumber|) NIL T ELT)) (-3087 (((-1 (-478)) |RationalNumber|) NIL T ELT)) (-3085 (((-1 (-478)) (-478) |RationalNumber|) NIL T ELT))) +(((-952) (-10 -7 (-15 -3084 ((-1 (-478)) (-993 (-478)))) (-15 -3085 ((-1 (-478)) (-478) |RationalNumber|)) (-15 -3086 ((-1 (-478)) |RationalNumber|)) (-15 -3087 ((-1 (-478)) |RationalNumber|)) (-15 -3088 ((-478) (-478) (-478) (-478) (-478))))) (T -952)) +((-3088 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-952)))) (-3087 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-478))) (-5 *1 (-952)))) (-3086 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-478))) (-5 *1 (-952)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-478))) (-5 *1 (-952)) (-5 *3 (-478)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-993 (-478))) (-5 *2 (-1 (-478))) (-5 *1 (-952))))) +((-3930 (((-765) $) NIL T ELT) (($ (-478)) 10 T ELT))) +(((-953 |#1|) (-10 -7 (-15 -3930 (|#1| (-478))) (-15 -3930 ((-765) |#1|))) (-954)) (T -953)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-954) (-111)) (T -954)) +((-3109 (*1 *2) (-12 (-4 *1 (-954)) (-5 *2 (-687))))) +(-13 (-962) (-658) (-585 $) (-550 (-478)) (-10 -7 (-15 -3109 ((-687)) -3936) (-6 -3976))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-658) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-3089 (((-343 (-850 |#2|)) (-578 |#2|) (-578 |#2|) (-687) (-687)) 55 T ELT))) +(((-955 |#1| |#2|) (-10 -7 (-15 -3089 ((-343 (-850 |#2|)) (-578 |#2|) (-578 |#2|) (-687) (-687)))) (-1079) (-308)) (T -955)) +((-3089 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-687)) (-4 *6 (-308)) (-5 *2 (-343 (-850 *6))) (-5 *1 (-955 *5 *6)) (-14 *5 (-1079))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) +(((-956 |#1|) (-111) (-1015)) (T -956)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-1015))))) +(-13 (-1005) (-10 -8 (-15 * ($ $ |t#1|)))) +(((-72) . T) ((-547 (-765)) . T) ((-1005) . T) ((-1118) . T)) +((-3104 (((-83) $) 38 T ELT)) (-3106 (((-83) $) 17 T ELT)) (-3098 (((-687) $) 13 T ELT)) (-3097 (((-687) $) 14 T ELT)) (-3105 (((-83) $) 30 T ELT)) (-3103 (((-83) $) 40 T ELT))) +(((-957 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3097 ((-687) |#1|)) (-15 -3098 ((-687) |#1|)) (-15 -3103 ((-83) |#1|)) (-15 -3104 ((-83) |#1|)) (-15 -3105 ((-83) |#1|)) (-15 -3106 ((-83) |#1|))) (-958 |#2| |#3| |#4| |#5| |#6|) (-687) (-687) (-954) (-193 |#3| |#4|) (-193 |#2| |#4|)) (T -957)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3104 (((-83) $) 61 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3106 (((-83) $) 63 T ELT)) (-3708 (($) 22 T CONST)) (-3093 (($ $) 44 (|has| |#3| (-254)) ELT)) (-3095 ((|#4| $ (-478)) 49 T ELT)) (-3092 (((-687) $) 43 (|has| |#3| (-489)) ELT)) (-3096 ((|#3| $ (-478) (-478)) 51 T ELT)) (-2873 (((-578 |#3|) $) 75 (|has| $ (-6 -3979)) ELT)) (-3091 (((-687) $) 42 (|has| |#3| (-489)) ELT)) (-3090 (((-578 |#5|) $) 41 (|has| |#3| (-489)) ELT)) (-3098 (((-687) $) 55 T ELT)) (-3097 (((-687) $) 54 T ELT)) (-3102 (((-478) $) 59 T ELT)) (-3100 (((-478) $) 57 T ELT)) (-2592 (((-578 |#3|) $) 76 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#3| $) 78 (-12 (|has| |#3| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3101 (((-478) $) 58 T ELT)) (-3099 (((-478) $) 56 T ELT)) (-3107 (($ (-578 (-578 |#3|))) 64 T ELT)) (-1936 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 47 T ELT)) (-3578 (((-578 (-578 |#3|)) $) 53 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3450 (((-3 $ "failed") $ |#3|) 46 (|has| |#3| (-489)) ELT)) (-1934 (((-83) (-1 (-83) |#3|) $) 73 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 |#3|) (-578 |#3|)) 82 (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005))) ELT) (($ $ |#3| |#3|) 81 (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005))) ELT) (($ $ (-245 |#3|)) 80 (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005))) ELT) (($ $ (-578 (-245 |#3|))) 79 (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005))) ELT)) (-1210 (((-83) $ $) 65 T ELT)) (-3387 (((-83) $) 68 T ELT)) (-3549 (($) 67 T ELT)) (-3784 ((|#3| $ (-478) (-478)) 52 T ELT) ((|#3| $ (-478) (-478) |#3|) 50 T ELT)) (-3105 (((-83) $) 62 T ELT)) (-1933 (((-687) |#3| $) 77 (-12 (|has| |#3| (-1005)) (|has| $ (-6 -3979))) ELT) (((-687) (-1 (-83) |#3|) $) 74 (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) 66 T ELT)) (-3094 ((|#5| $ (-478)) 48 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-1935 (((-83) (-1 (-83) |#3|) $) 72 (|has| $ (-6 -3979)) ELT)) (-3103 (((-83) $) 60 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ |#3|) 45 (|has| |#3| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#3| $) 32 T ELT) (($ $ |#3|) 36 T ELT)) (-3941 (((-687) $) 69 (|has| $ (-6 -3979)) ELT))) +(((-958 |#1| |#2| |#3| |#4| |#5|) (-111) (-687) (-687) (-954) (-193 |t#2| |t#3|) (-193 |t#1| |t#3|)) (T -958)) +((-3942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)))) (-3107 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *5))) (-4 *5 (-954)) (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-83)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-83)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-83)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-83)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-478)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-478)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-478)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-478)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-687)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-687)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-578 (-578 *5))))) (-3784 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *2 *6 *7)) (-4 *6 (-193 *5 *2)) (-4 *7 (-193 *4 *2)) (-4 *2 (-954)))) (-3096 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *2 *6 *7)) (-4 *6 (-193 *5 *2)) (-4 *7 (-193 *4 *2)) (-4 *2 (-954)))) (-3784 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *2 *6 *7)) (-4 *2 (-954)) (-4 *6 (-193 *5 *2)) (-4 *7 (-193 *4 *2)))) (-3095 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *6 *2 *7)) (-4 *6 (-954)) (-4 *7 (-193 *4 *6)) (-4 *2 (-193 *5 *6)))) (-3094 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *6 *7 *2)) (-4 *6 (-954)) (-4 *7 (-193 *5 *6)) (-4 *2 (-193 *4 *6)))) (-3942 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)))) (-3450 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-958 *3 *4 *2 *5 *6)) (-4 *2 (-954)) (-4 *5 (-193 *4 *2)) (-4 *6 (-193 *3 *2)) (-4 *2 (-489)))) (-3933 (*1 *1 *1 *2) (-12 (-4 *1 (-958 *3 *4 *2 *5 *6)) (-4 *2 (-954)) (-4 *5 (-193 *4 *2)) (-4 *6 (-193 *3 *2)) (-4 *2 (-308)))) (-3093 (*1 *1 *1) (-12 (-4 *1 (-958 *2 *3 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-193 *3 *4)) (-4 *6 (-193 *2 *4)) (-4 *4 (-254)))) (-3092 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-4 *5 (-489)) (-5 *2 (-687)))) (-3091 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-4 *5 (-489)) (-5 *2 (-687)))) (-3090 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-4 *5 (-489)) (-5 *2 (-578 *7))))) +(-13 (-80 |t#3| |t#3|) (-422 |t#3|) (-10 -8 (-6 -3979) (IF (|has| |t#3| (-144)) (-6 (-649 |t#3|)) |%noBranch|) (-15 -3107 ($ (-578 (-578 |t#3|)))) (-15 -3106 ((-83) $)) (-15 -3105 ((-83) $)) (-15 -3104 ((-83) $)) (-15 -3103 ((-83) $)) (-15 -3102 ((-478) $)) (-15 -3101 ((-478) $)) (-15 -3100 ((-478) $)) (-15 -3099 ((-478) $)) (-15 -3098 ((-687) $)) (-15 -3097 ((-687) $)) (-15 -3578 ((-578 (-578 |t#3|)) $)) (-15 -3784 (|t#3| $ (-478) (-478))) (-15 -3096 (|t#3| $ (-478) (-478))) (-15 -3784 (|t#3| $ (-478) (-478) |t#3|)) (-15 -3095 (|t#4| $ (-478))) (-15 -3094 (|t#5| $ (-478))) (-15 -3942 ($ (-1 |t#3| |t#3|) $)) (-15 -3942 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-489)) (-15 -3450 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-308)) (-15 -3933 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-254)) (-15 -3093 ($ $)) |%noBranch|) (IF (|has| |t#3| (-489)) (PROGN (-15 -3092 ((-687) $)) (-15 -3091 ((-687) $)) (-15 -3090 ((-578 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-80 |#3| |#3|) . T) ((-102) . T) ((-547 (-765)) . T) ((-256 |#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005))) ((-422 |#3|) . T) ((-447 |#3| |#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005))) ((-583 (-478)) . T) ((-583 |#3|) . T) ((-585 |#3|) . T) ((-577 |#3|) |has| |#3| (-144)) ((-649 |#3|) |has| |#3| (-144)) ((-956 |#3|) . T) ((-961 |#3|) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3104 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-83) $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3093 (($ $) 47 (|has| |#3| (-254)) ELT)) (-3095 (((-194 |#2| |#3|) $ (-478)) 36 T ELT)) (-3108 (($ (-625 |#3|)) 45 T ELT)) (-3092 (((-687) $) 49 (|has| |#3| (-489)) ELT)) (-3096 ((|#3| $ (-478) (-478)) NIL T ELT)) (-2873 (((-578 |#3|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3091 (((-687) $) 51 (|has| |#3| (-489)) ELT)) (-3090 (((-578 (-194 |#1| |#3|)) $) 55 (|has| |#3| (-489)) ELT)) (-3098 (((-687) $) NIL T ELT)) (-3097 (((-687) $) NIL T ELT)) (-3102 (((-478) $) NIL T ELT)) (-3100 (((-478) $) NIL T ELT)) (-2592 (((-578 |#3|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#3| (-1005))) ELT)) (-3101 (((-478) $) NIL T ELT)) (-3099 (((-478) $) NIL T ELT)) (-3107 (($ (-578 (-578 |#3|))) 31 T ELT)) (-1936 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3578 (((-578 (-578 |#3|)) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3450 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-489)) ELT)) (-1934 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 |#3|) (-578 |#3|)) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005))) ELT) (($ $ (-245 |#3|)) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005))) ELT) (($ $ (-578 (-245 |#3|))) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#3| $ (-478) (-478)) NIL T ELT) ((|#3| $ (-478) (-478) |#3|) NIL T ELT)) (-3895 (((-105)) 59 (|has| |#3| (-308)) ELT)) (-3105 (((-83) $) NIL T ELT)) (-1933 (((-687) |#3| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#3| (-1005))) ELT) (((-687) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) 66 (|has| |#3| (-548 (-467))) ELT)) (-3094 (((-194 |#1| |#3|) $ (-478)) 40 T ELT)) (-3930 (((-765) $) 19 T ELT) (((-625 |#3|) $) 42 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3103 (((-83) $) NIL T ELT)) (-2644 (($) 16 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#3|) NIL (|has| |#3| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-959 |#1| |#2| |#3|) (-13 (-958 |#1| |#2| |#3| (-194 |#2| |#3|) (-194 |#1| |#3|)) (-547 (-625 |#3|)) (-10 -8 (IF (|has| |#3| (-308)) (-6 (-1176 |#3|)) |%noBranch|) (IF (|has| |#3| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|) (-15 -3108 ($ (-625 |#3|))))) (-687) (-687) (-954)) (T -959)) +((-3108 (*1 *1 *2) (-12 (-5 *2 (-625 *5)) (-4 *5 (-954)) (-5 *1 (-959 *3 *4 *5)) (-14 *3 (-687)) (-14 *4 (-687))))) +((-3826 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3942 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) +(((-960 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3942 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3826 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-687) (-687) (-954) (-193 |#2| |#3|) (-193 |#1| |#3|) (-958 |#1| |#2| |#3| |#4| |#5|) (-954) (-193 |#2| |#7|) (-193 |#1| |#7|) (-958 |#1| |#2| |#7| |#8| |#9|)) (T -960)) +((-3826 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-954)) (-4 *2 (-954)) (-14 *5 (-687)) (-14 *6 (-687)) (-4 *8 (-193 *6 *7)) (-4 *9 (-193 *5 *7)) (-4 *10 (-193 *6 *2)) (-4 *11 (-193 *5 *2)) (-5 *1 (-960 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-958 *5 *6 *7 *8 *9)) (-4 *12 (-958 *5 *6 *2 *10 *11)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-954)) (-4 *10 (-954)) (-14 *5 (-687)) (-14 *6 (-687)) (-4 *8 (-193 *6 *7)) (-4 *9 (-193 *5 *7)) (-4 *2 (-958 *5 *6 *10 *11 *12)) (-5 *1 (-960 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-958 *5 *6 *7 *8 *9)) (-4 *11 (-193 *6 *10)) (-4 *12 (-193 *5 *10))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ |#1|) 32 T ELT))) +(((-961 |#1|) (-111) (-962)) (T -961)) +NIL +(-13 (-21) (-956 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-956 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-962) (-111)) (T -962)) +NIL +(-13 (-21) (-1015)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-3815 (((-1079) $) 11 T ELT)) (-3720 ((|#1| $) 12 T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-3209 (($ (-1079) |#1|) 10 T ELT)) (-3930 (((-765) $) 22 (|has| |#1| (-1005)) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-3037 (((-83) $ $) 17 (|has| |#1| (-1005)) ELT))) +(((-963 |#1| |#2|) (-13 (-1118) (-10 -8 (-15 -3209 ($ (-1079) |#1|)) (-15 -3815 ((-1079) $)) (-15 -3720 (|#1| $)) (IF (|has| |#1| (-1005)) (-6 (-1005)) |%noBranch|))) (-998 |#2|) (-1118)) (T -963)) +((-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1079)) (-4 *4 (-1118)) (-5 *1 (-963 *3 *4)) (-4 *3 (-998 *4)))) (-3815 (*1 *2 *1) (-12 (-4 *4 (-1118)) (-5 *2 (-1079)) (-5 *1 (-963 *3 *4)) (-4 *3 (-998 *4)))) (-3720 (*1 *2 *1) (-12 (-4 *2 (-998 *3)) (-5 *1 (-963 *2 *3)) (-4 *3 (-1118))))) +((-3755 (($ $) 17 T ELT)) (-3110 (($ $) 25 T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 54 T ELT)) (-3115 (($ $) 27 T ELT)) (-3111 (($ $) 12 T ELT)) (-3113 (($ $) 40 T ELT)) (-3956 (((-323) $) NIL T ELT) (((-177) $) NIL T ELT) (((-793 (-323)) $) 36 T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) 31 T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) 31 T ELT)) (-3109 (((-687)) 9 T ELT)) (-3114 (($ $) 44 T ELT))) +(((-964 |#1|) (-10 -7 (-15 -3110 (|#1| |#1|)) (-15 -3755 (|#1| |#1|)) (-15 -3111 (|#1| |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -3114 (|#1| |#1|)) (-15 -3115 (|#1| |#1|)) (-15 -2780 ((-791 (-323) |#1|) |#1| (-793 (-323)) (-791 (-323) |#1|))) (-15 -3956 ((-793 (-323)) |#1|)) (-15 -3930 (|#1| (-343 (-478)))) (-15 -3930 (|#1| (-478))) (-15 -3956 ((-177) |#1|)) (-15 -3956 ((-323) |#1|)) (-15 -3930 (|#1| (-343 (-478)))) (-15 -3930 (|#1| |#1|)) (-15 -3109 ((-687))) (-15 -3930 (|#1| (-478))) (-15 -3930 ((-765) |#1|))) (-965)) (T -964)) +((-3109 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-964 *3)) (-4 *3 (-965))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3112 (((-478) $) 105 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-3755 (($ $) 103 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3759 (($ $) 88 T ELT)) (-3955 (((-341 $) $) 87 T ELT)) (-3021 (($ $) 113 T ELT)) (-1595 (((-83) $ $) 72 T ELT)) (-3607 (((-478) $) 130 T ELT)) (-3708 (($) 22 T CONST)) (-3110 (($ $) 102 T ELT)) (-3140 (((-3 (-478) #1="failed") $) 118 T ELT) (((-3 (-343 (-478)) #1#) $) 115 T ELT)) (-3139 (((-478) $) 119 T ELT) (((-343 (-478)) $) 116 T ELT)) (-2548 (($ $ $) 68 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2547 (($ $ $) 69 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 63 T ELT)) (-3707 (((-83) $) 86 T ELT)) (-3169 (((-83) $) 128 T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 109 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-2995 (($ $ (-478)) 112 T ELT)) (-3115 (($ $) 108 T ELT)) (-3170 (((-83) $) 129 T ELT)) (-1592 (((-3 (-578 $) #2="failed") (-578 $) $) 65 T ELT)) (-2515 (($ $ $) 122 T ELT)) (-2841 (($ $ $) 123 T ELT)) (-1878 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 85 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 55 T ELT)) (-3127 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3111 (($ $) 104 T ELT)) (-3113 (($ $) 106 T ELT)) (-3716 (((-341 $) $) 89 T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-1594 (((-687) $) 71 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 70 T ELT)) (-3956 (((-323) $) 121 T ELT) (((-177) $) 120 T ELT) (((-793 (-323)) $) 110 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT) (($ (-478)) 117 T ELT) (($ (-343 (-478))) 114 T ELT)) (-3109 (((-687)) 37 T CONST)) (-3114 (($ $) 107 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-3367 (($ $) 131 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2550 (((-83) $ $) 124 T ELT)) (-2551 (((-83) $ $) 126 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 125 T ELT)) (-2669 (((-83) $ $) 127 T ELT)) (-3933 (($ $ $) 80 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT) (($ $ (-343 (-478))) 111 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT))) +(((-965) (-111)) (T -965)) +((-3115 (*1 *1 *1) (-4 *1 (-965))) (-3114 (*1 *1 *1) (-4 *1 (-965))) (-3113 (*1 *1 *1) (-4 *1 (-965))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-965)) (-5 *2 (-478)))) (-3111 (*1 *1 *1) (-4 *1 (-965))) (-3755 (*1 *1 *1) (-4 *1 (-965))) (-3110 (*1 *1 *1) (-4 *1 (-965)))) +(-13 (-308) (-748) (-926) (-943 (-478)) (-943 (-343 (-478))) (-908) (-548 (-793 (-323))) (-789 (-323)) (-118) (-10 -8 (-15 -3115 ($ $)) (-15 -3114 ($ $)) (-15 -3113 ($ $)) (-15 -3112 ((-478) $)) (-15 -3111 ($ $)) (-15 -3755 ($ $)) (-15 -3110 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-548 (-177)) . T) ((-548 (-323)) . T) ((-548 (-793 (-323))) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-385) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 $) . T) ((-649 (-343 (-478))) . T) ((-649 $) . T) ((-658) . T) ((-707) . T) ((-709) . T) ((-711) . T) ((-714) . T) ((-748) . T) ((-749) . T) ((-752) . T) ((-789 (-323)) . T) ((-825) . T) ((-908) . T) ((-926) . T) ((-943 (-343 (-478))) . T) ((-943 (-478)) . T) ((-956 (-343 (-478))) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T) ((-1123) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) |#2| $) 26 T ELT)) (-3119 ((|#1| $) 10 T ELT)) (-3607 (((-478) |#2| $) 119 T ELT)) (-3166 (((-3 $ #1="failed") |#2| (-823)) 76 T ELT)) (-3120 ((|#1| $) 31 T ELT)) (-3165 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3117 (($ $) 28 T ELT)) (-3451 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3169 (((-83) |#2| $) NIL T ELT)) (-3170 (((-83) |#2| $) NIL T ELT)) (-3116 (((-83) |#2| $) 27 T ELT)) (-3118 ((|#1| $) 120 T ELT)) (-3121 ((|#1| $) 30 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3168 ((|#2| $) 104 T ELT)) (-3930 (((-765) $) 95 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3754 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3167 (((-578 $) |#2|) 78 T ELT)) (-3037 (((-83) $ $) 99 T ELT))) +(((-966 |#1| |#2|) (-13 (-972 |#1| |#2|) (-10 -8 (-15 -3121 (|#1| $)) (-15 -3120 (|#1| $)) (-15 -3119 (|#1| $)) (-15 -3118 (|#1| $)) (-15 -3117 ($ $)) (-15 -3116 ((-83) |#2| $)) (-15 -3165 (|#1| |#2| $ |#1|)))) (-13 (-748) (-308)) (-1144 |#1|)) (T -966)) +((-3165 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1144 *2)))) (-3121 (*1 *2 *1) (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1144 *2)))) (-3120 (*1 *2 *1) (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1144 *2)))) (-3119 (*1 *2 *1) (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1144 *2)))) (-3118 (*1 *2 *1) (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1144 *2)))) (-3117 (*1 *1 *1) (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1144 *2)))) (-3116 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-748) (-308))) (-5 *2 (-83)) (-5 *1 (-966 *4 *3)) (-4 *3 (-1144 *4))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-2033 (($ $ $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2028 (($ $ $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3607 (((-478) $) NIL T ELT)) (-2425 (($ $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3122 (($ (-1079)) 10 T ELT) (($ (-478)) 7 T ELT)) (-3140 (((-3 (-478) #1#) $) NIL T ELT)) (-3139 (((-478) $) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2265 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL T ELT) (((-625 (-478)) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3008 (((-3 (-343 (-478)) #1#) $) NIL T ELT)) (-3007 (((-83) $) NIL T ELT)) (-3006 (((-343 (-478)) $) NIL T ELT)) (-2978 (($) NIL T ELT) (($ $) NIL T ELT)) (-2547 (($ $ $) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-2026 (($ $ $ $) NIL T ELT)) (-2034 (($ $ $) NIL T ELT)) (-3169 (((-83) $) NIL T ELT)) (-1356 (($ $ $) NIL T ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2657 (((-83) $) NIL T ELT)) (-3429 (((-627 $) $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2027 (($ $ $ $) NIL T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-2030 (($ $) NIL T ELT)) (-3817 (($ $) NIL T ELT)) (-2266 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL T ELT) (((-625 (-478)) (-1168 $)) NIL T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2025 (($ $ $) NIL T ELT)) (-3430 (($) NIL T CONST)) (-2032 (($ $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1354 (($ $) NIL T ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-2658 (((-83) $) NIL T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-3742 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2031 (($ $) NIL T ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-478) $) 16 T ELT) (((-467) $) NIL T ELT) (((-793 (-478)) $) NIL T ELT) (((-323) $) NIL T ELT) (((-177) $) NIL T ELT) (($ (-1079)) 9 T ELT)) (-3930 (((-765) $) 23 T ELT) (($ (-478)) 6 T ELT) (($ $) NIL T ELT) (($ (-478)) 6 T ELT)) (-3109 (((-687)) NIL T CONST)) (-2035 (((-83) $ $) NIL T ELT)) (-3085 (($ $ $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2678 (($) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-2029 (($ $ $ $) NIL T ELT)) (-3367 (($ $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-3821 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-478) $) NIL T ELT))) +(((-967) (-13 (-477) (-552 (-1079)) (-10 -8 (-6 -3966) (-6 -3971) (-6 -3967) (-15 -3122 ($ (-1079))) (-15 -3122 ($ (-478)))))) (T -967)) +((-3122 (*1 *1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-967)))) (-3122 (*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-967))))) +((-3781 (($ $) 46 T ELT)) (-3149 (((-83) $ $) 82 T ELT)) (-3140 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 (-478) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-850 (-343 (-478)))) 247 T ELT) (((-3 $ #1#) (-850 (-478))) 246 T ELT) (((-3 $ #1#) (-850 |#2|)) 249 T ELT)) (-3139 ((|#2| $) NIL T ELT) (((-343 (-478)) $) NIL T ELT) (((-478) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-850 (-343 (-478)))) 235 T ELT) (($ (-850 (-478))) 231 T ELT) (($ (-850 |#2|)) 255 T ELT)) (-3943 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3678 (((-83) $ $) 131 T ELT) (((-83) $ (-578 $)) 135 T ELT)) (-3155 (((-83) $) 60 T ELT)) (-3736 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 125 T ELT)) (-3126 (($ $) 160 T ELT)) (-3137 (($ $) 156 T ELT)) (-3138 (($ $) 155 T ELT)) (-3148 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3147 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3679 (((-83) $ $) 143 T ELT) (((-83) $ (-578 $)) 144 T ELT)) (-3163 ((|#4| $) 32 T ELT)) (-3142 (($ $ $) 128 T ELT)) (-3156 (((-83) $) 59 T ELT)) (-3162 (((-687) $) 35 T ELT)) (-3123 (($ $) 174 T ELT)) (-3124 (($ $) 171 T ELT)) (-3151 (((-578 $) $) 72 T ELT)) (-3154 (($ $) 62 T ELT)) (-3125 (($ $) 167 T ELT)) (-3152 (((-578 $) $) 69 T ELT)) (-3153 (($ $) 64 T ELT)) (-3157 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3141 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3465 (-687))) $ $) 130 T ELT)) (-3143 (((-2 (|:| -3938 $) (|:| |gap| (-687)) (|:| -1960 $) (|:| -2886 $)) $ $) 126 T ELT) (((-2 (|:| -3938 $) (|:| |gap| (-687)) (|:| -1960 $) (|:| -2886 $)) $ $ |#4|) 127 T ELT)) (-3144 (((-2 (|:| -3938 $) (|:| |gap| (-687)) (|:| -2886 $)) $ $) 121 T ELT) (((-2 (|:| -3938 $) (|:| |gap| (-687)) (|:| -2886 $)) $ $ |#4|) 123 T ELT)) (-3146 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3145 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3159 (((-578 $) $) 54 T ELT)) (-3675 (((-83) $ $) 140 T ELT) (((-83) $ (-578 $)) 141 T ELT)) (-3670 (($ $ $) 116 T ELT)) (-3430 (($ $) 37 T ELT)) (-3683 (((-83) $ $) 80 T ELT)) (-3676 (((-83) $ $) 136 T ELT) (((-83) $ (-578 $)) 138 T ELT)) (-3671 (($ $ $) 112 T ELT)) (-3161 (($ $) 41 T ELT)) (-3127 ((|#2| |#2| $) 164 T ELT) (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3135 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3136 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3160 (($ $) 49 T ELT)) (-3158 (($ $) 55 T ELT)) (-3956 (((-793 (-323)) $) NIL T ELT) (((-793 (-478)) $) NIL T ELT) (((-467) $) NIL T ELT) (($ (-850 (-343 (-478)))) 237 T ELT) (($ (-850 (-478))) 233 T ELT) (($ (-850 |#2|)) 248 T ELT) (((-1062) $) 278 T ELT) (((-850 |#2|) $) 184 T ELT)) (-3930 (((-765) $) 29 T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-850 |#2|) $) 185 T ELT) (($ (-343 (-478))) NIL T ELT) (($ $) NIL T ELT)) (-3150 (((-3 (-83) #1#) $ $) 79 T ELT))) +(((-968 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3930 (|#1| |#1|)) (-15 -3127 (|#1| |#1| |#1|)) (-15 -3127 (|#1| (-578 |#1|))) (-15 -3930 (|#1| (-343 (-478)))) (-15 -3930 ((-850 |#2|) |#1|)) (-15 -3956 ((-850 |#2|) |#1|)) (-15 -3956 ((-1062) |#1|)) (-15 -3123 (|#1| |#1|)) (-15 -3124 (|#1| |#1|)) (-15 -3125 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -3127 (|#2| |#2| |#1|)) (-15 -3135 (|#1| |#1| |#1|)) (-15 -3136 (|#1| |#1| |#1|)) (-15 -3135 (|#1| |#1| |#2|)) (-15 -3136 (|#1| |#1| |#2|)) (-15 -3137 (|#1| |#1|)) (-15 -3138 (|#1| |#1|)) (-15 -3956 (|#1| (-850 |#2|))) (-15 -3139 (|#1| (-850 |#2|))) (-15 -3140 ((-3 |#1| #1="failed") (-850 |#2|))) (-15 -3956 (|#1| (-850 (-478)))) (-15 -3139 (|#1| (-850 (-478)))) (-15 -3140 ((-3 |#1| #1#) (-850 (-478)))) (-15 -3956 (|#1| (-850 (-343 (-478))))) (-15 -3139 (|#1| (-850 (-343 (-478))))) (-15 -3140 ((-3 |#1| #1#) (-850 (-343 (-478))))) (-15 -3670 (|#1| |#1| |#1|)) (-15 -3671 (|#1| |#1| |#1|)) (-15 -3141 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3465 (-687))) |#1| |#1|)) (-15 -3142 (|#1| |#1| |#1|)) (-15 -3736 ((-2 (|:| -1960 |#1|) (|:| -2886 |#1|)) |#1| |#1|)) (-15 -3143 ((-2 (|:| -3938 |#1|) (|:| |gap| (-687)) (|:| -1960 |#1|) (|:| -2886 |#1|)) |#1| |#1| |#4|)) (-15 -3143 ((-2 (|:| -3938 |#1|) (|:| |gap| (-687)) (|:| -1960 |#1|) (|:| -2886 |#1|)) |#1| |#1|)) (-15 -3144 ((-2 (|:| -3938 |#1|) (|:| |gap| (-687)) (|:| -2886 |#1|)) |#1| |#1| |#4|)) (-15 -3144 ((-2 (|:| -3938 |#1|) (|:| |gap| (-687)) (|:| -2886 |#1|)) |#1| |#1|)) (-15 -3145 (|#1| |#1| |#1| |#4|)) (-15 -3146 (|#1| |#1| |#1| |#4|)) (-15 -3145 (|#1| |#1| |#1|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -3147 (|#1| |#1| |#1| |#4|)) (-15 -3148 (|#1| |#1| |#1| |#4|)) (-15 -3147 (|#1| |#1| |#1|)) (-15 -3148 (|#1| |#1| |#1|)) (-15 -3679 ((-83) |#1| (-578 |#1|))) (-15 -3679 ((-83) |#1| |#1|)) (-15 -3675 ((-83) |#1| (-578 |#1|))) (-15 -3675 ((-83) |#1| |#1|)) (-15 -3676 ((-83) |#1| (-578 |#1|))) (-15 -3676 ((-83) |#1| |#1|)) (-15 -3678 ((-83) |#1| (-578 |#1|))) (-15 -3678 ((-83) |#1| |#1|)) (-15 -3149 ((-83) |#1| |#1|)) (-15 -3683 ((-83) |#1| |#1|)) (-15 -3150 ((-3 (-83) #1#) |#1| |#1|)) (-15 -3151 ((-578 |#1|) |#1|)) (-15 -3152 ((-578 |#1|) |#1|)) (-15 -3153 (|#1| |#1|)) (-15 -3154 (|#1| |#1|)) (-15 -3155 ((-83) |#1|)) (-15 -3156 ((-83) |#1|)) (-15 -3943 (|#1| |#1| |#4|)) (-15 -3157 (|#1| |#1| |#4|)) (-15 -3158 (|#1| |#1|)) (-15 -3159 ((-578 |#1|) |#1|)) (-15 -3160 (|#1| |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -3161 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -3162 ((-687) |#1|)) (-15 -3163 (|#4| |#1|)) (-15 -3956 ((-467) |#1|)) (-15 -3956 ((-793 (-478)) |#1|)) (-15 -3956 ((-793 (-323)) |#1|)) (-15 -3930 (|#1| |#4|)) (-15 -3140 ((-3 |#4| #1#) |#1|)) (-15 -3139 (|#4| |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3943 (|#1| |#1|)) (-15 -3140 ((-3 (-478) #1#) |#1|)) (-15 -3139 ((-478) |#1|)) (-15 -3140 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3139 ((-343 (-478)) |#1|)) (-15 -3139 (|#2| |#1|)) (-15 -3140 ((-3 |#2| #1#) |#1|)) (-15 -3930 (|#1| |#2|)) (-15 -3930 (|#1| (-478))) (-15 -3930 ((-765) |#1|))) (-969 |#2| |#3| |#4|) (-954) (-710) (-749)) (T -968)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3065 (((-578 |#3|) $) 120 T ELT)) (-3067 (((-1074 $) $ |#3|) 135 T ELT) (((-1074 |#1|) $) 134 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 97 (|has| |#1| (-489)) ELT)) (-2049 (($ $) 98 (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) 100 (|has| |#1| (-489)) ELT)) (-2803 (((-687) $) 122 T ELT) (((-687) $ (-578 |#3|)) 121 T ELT)) (-3781 (($ $) 290 T ELT)) (-3149 (((-83) $ $) 276 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3739 (($ $ $) 235 (|has| |#1| (-489)) ELT)) (-3131 (((-578 $) $ $) 230 (|has| |#1| (-489)) ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) 110 (|has| |#1| (-814)) ELT)) (-3759 (($ $) 108 (|has| |#1| (-385)) ELT)) (-3955 (((-341 $) $) 107 (|has| |#1| (-385)) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1="failed") (-578 (-1074 $)) (-1074 $)) 113 (|has| |#1| (-814)) ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-343 (-478)) #2#) $) 175 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #2#) $) 173 (|has| |#1| (-943 (-478))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 $ "failed") (-850 (-343 (-478)))) 250 (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#3| (-548 (-1079)))) ELT) (((-3 $ "failed") (-850 (-478))) 247 (OR (-12 (-2544 (|has| |#1| (-38 (-343 (-478))))) (|has| |#1| (-38 (-478))) (|has| |#3| (-548 (-1079)))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#3| (-548 (-1079))))) ELT) (((-3 $ "failed") (-850 |#1|)) 244 (OR (-12 (-2544 (|has| |#1| (-38 (-343 (-478))))) (-2544 (|has| |#1| (-38 (-478)))) (|has| |#3| (-548 (-1079)))) (-12 (-2544 (|has| |#1| (-477))) (-2544 (|has| |#1| (-38 (-343 (-478))))) (|has| |#1| (-38 (-478))) (|has| |#3| (-548 (-1079)))) (-12 (-2544 (|has| |#1| (-897 (-478)))) (|has| |#1| (-38 (-343 (-478)))) (|has| |#3| (-548 (-1079))))) ELT)) (-3139 ((|#1| $) 177 T ELT) (((-343 (-478)) $) 176 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) 174 (|has| |#1| (-943 (-478))) ELT) ((|#3| $) 151 T ELT) (($ (-850 (-343 (-478)))) 249 (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#3| (-548 (-1079)))) ELT) (($ (-850 (-478))) 246 (OR (-12 (-2544 (|has| |#1| (-38 (-343 (-478))))) (|has| |#1| (-38 (-478))) (|has| |#3| (-548 (-1079)))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#3| (-548 (-1079))))) ELT) (($ (-850 |#1|)) 243 (OR (-12 (-2544 (|has| |#1| (-38 (-343 (-478))))) (-2544 (|has| |#1| (-38 (-478)))) (|has| |#3| (-548 (-1079)))) (-12 (-2544 (|has| |#1| (-477))) (-2544 (|has| |#1| (-38 (-343 (-478))))) (|has| |#1| (-38 (-478))) (|has| |#3| (-548 (-1079)))) (-12 (-2544 (|has| |#1| (-897 (-478)))) (|has| |#1| (-38 (-343 (-478)))) (|has| |#3| (-548 (-1079))))) ELT)) (-3740 (($ $ $ |#3|) 118 (|has| |#1| (-144)) ELT) (($ $ $) 231 (|has| |#1| (-489)) ELT)) (-3943 (($ $) 168 T ELT) (($ $ |#3|) 285 T ELT)) (-2265 (((-625 (-478)) (-625 $)) 146 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 145 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) 144 T ELT) (((-625 |#1|) (-625 $)) 143 T ELT)) (-3678 (((-83) $ $) 275 T ELT) (((-83) $ (-578 $)) 274 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3155 (((-83) $) 283 T ELT)) (-3736 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 255 T ELT)) (-3126 (($ $) 224 (|has| |#1| (-385)) ELT)) (-3487 (($ $) 190 (|has| |#1| (-385)) ELT) (($ $ |#3|) 115 (|has| |#1| (-385)) ELT)) (-2802 (((-578 $) $) 119 T ELT)) (-3707 (((-83) $) 106 (|has| |#1| (-814)) ELT)) (-3137 (($ $) 240 (|has| |#1| (-489)) ELT)) (-3138 (($ $) 241 (|has| |#1| (-489)) ELT)) (-3148 (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (-3147 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-1611 (($ $ |#1| |#2| $) 186 T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 94 (-12 (|has| |#3| (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 93 (-12 (|has| |#3| (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-2396 (((-83) $) 40 T ELT)) (-2404 (((-687) $) 183 T ELT)) (-3679 (((-83) $ $) 269 T ELT) (((-83) $ (-578 $)) 268 T ELT)) (-3128 (($ $ $ $ $) 226 (|has| |#1| (-489)) ELT)) (-3163 ((|#3| $) 294 T ELT)) (-3068 (($ (-1074 |#1|) |#3|) 127 T ELT) (($ (-1074 $) |#3|) 126 T ELT)) (-2805 (((-578 $) $) 136 T ELT)) (-3921 (((-83) $) 166 T ELT)) (-2877 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-687)) 129 T ELT) (($ $ (-578 |#3|) (-578 (-687))) 128 T ELT)) (-3142 (($ $ $) 254 T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ |#3|) 130 T ELT)) (-3156 (((-83) $) 284 T ELT)) (-2804 ((|#2| $) 184 T ELT) (((-687) $ |#3|) 132 T ELT) (((-578 (-687)) $ (-578 |#3|)) 131 T ELT)) (-3162 (((-687) $) 293 T ELT)) (-1612 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3066 (((-3 |#3| #3="failed") $) 133 T ELT)) (-3123 (($ $) 221 (|has| |#1| (-385)) ELT)) (-3124 (($ $) 222 (|has| |#1| (-385)) ELT)) (-3151 (((-578 $) $) 279 T ELT)) (-3154 (($ $) 282 T ELT)) (-3125 (($ $) 223 (|has| |#1| (-385)) ELT)) (-3152 (((-578 $) $) 280 T ELT)) (-2266 (((-625 (-478)) (-1168 $)) 148 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) 147 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) 142 T ELT) (((-625 |#1|) (-1168 $)) 141 T ELT)) (-3153 (($ $) 281 T ELT)) (-2878 (($ $) 163 T ELT)) (-3157 ((|#1| $) 162 T ELT) (($ $ |#3|) 286 T ELT)) (-1878 (($ (-578 $)) 104 (|has| |#1| (-385)) ELT) (($ $ $) 103 (|has| |#1| (-385)) ELT)) (-3141 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3465 (-687))) $ $) 253 T ELT)) (-3143 (((-2 (|:| -3938 $) (|:| |gap| (-687)) (|:| -1960 $) (|:| -2886 $)) $ $) 257 T ELT) (((-2 (|:| -3938 $) (|:| |gap| (-687)) (|:| -1960 $) (|:| -2886 $)) $ $ |#3|) 256 T ELT)) (-3144 (((-2 (|:| -3938 $) (|:| |gap| (-687)) (|:| -2886 $)) $ $) 259 T ELT) (((-2 (|:| -3938 $) (|:| |gap| (-687)) (|:| -2886 $)) $ $ |#3|) 258 T ELT)) (-3146 (($ $ $) 263 T ELT) (($ $ $ |#3|) 261 T ELT)) (-3145 (($ $ $) 262 T ELT) (($ $ $ |#3|) 260 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3173 (($ $ $) 229 (|has| |#1| (-489)) ELT)) (-3159 (((-578 $) $) 288 T ELT)) (-2807 (((-3 (-578 $) #3#) $) 124 T ELT)) (-2806 (((-3 (-578 $) #3#) $) 125 T ELT)) (-2808 (((-3 (-2 (|:| |var| |#3|) (|:| -2387 (-687))) #3#) $) 123 T ELT)) (-3675 (((-83) $ $) 271 T ELT) (((-83) $ (-578 $)) 270 T ELT)) (-3670 (($ $ $) 251 T ELT)) (-3430 (($ $) 292 T ELT)) (-3683 (((-83) $ $) 277 T ELT)) (-3676 (((-83) $ $) 273 T ELT) (((-83) $ (-578 $)) 272 T ELT)) (-3671 (($ $ $) 252 T ELT)) (-3161 (($ $) 291 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3132 (((-2 (|:| -3127 $) (|:| |coef2| $)) $ $) 232 (|has| |#1| (-489)) ELT)) (-3133 (((-2 (|:| -3127 $) (|:| |coef1| $)) $ $) 233 (|has| |#1| (-489)) ELT)) (-1784 (((-83) $) 180 T ELT)) (-1783 ((|#1| $) 181 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 105 (|has| |#1| (-385)) ELT)) (-3127 ((|#1| |#1| $) 225 (|has| |#1| (-385)) ELT) (($ (-578 $)) 102 (|has| |#1| (-385)) ELT) (($ $ $) 101 (|has| |#1| (-385)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) 112 (|has| |#1| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) 111 (|has| |#1| (-814)) ELT)) (-3716 (((-341 $) $) 109 (|has| |#1| (-814)) ELT)) (-3134 (((-2 (|:| -3127 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 234 (|has| |#1| (-489)) ELT)) (-3450 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-489)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-489)) ELT)) (-3135 (($ $ |#1|) 238 (|has| |#1| (-489)) ELT) (($ $ $) 236 (|has| |#1| (-489)) ELT)) (-3136 (($ $ |#1|) 239 (|has| |#1| (-489)) ELT) (($ $ $) 237 (|has| |#1| (-489)) ELT)) (-3752 (($ $ (-578 (-245 $))) 159 T ELT) (($ $ (-245 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-578 $) (-578 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-578 |#3|) (-578 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-578 |#3|) (-578 $)) 152 T ELT)) (-3741 (($ $ |#3|) 117 (|has| |#1| (-144)) ELT)) (-3742 (($ $ (-578 |#3|) (-578 (-687))) 49 T ELT) (($ $ |#3| (-687)) 48 T ELT) (($ $ (-578 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-3932 ((|#2| $) 164 T ELT) (((-687) $ |#3|) 140 T ELT) (((-578 (-687)) $ (-578 |#3|)) 139 T ELT)) (-3160 (($ $) 289 T ELT)) (-3158 (($ $) 287 T ELT)) (-3956 (((-793 (-323)) $) 92 (-12 (|has| |#3| (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) 91 (-12 (|has| |#3| (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) 90 (-12 (|has| |#3| (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT) (($ (-850 (-343 (-478)))) 248 (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#3| (-548 (-1079)))) ELT) (($ (-850 (-478))) 245 (OR (-12 (-2544 (|has| |#1| (-38 (-343 (-478))))) (|has| |#1| (-38 (-478))) (|has| |#3| (-548 (-1079)))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#3| (-548 (-1079))))) ELT) (($ (-850 |#1|)) 242 (|has| |#3| (-548 (-1079))) ELT) (((-1062) $) 220 (-12 (|has| |#1| (-943 (-478))) (|has| |#3| (-548 (-1079)))) ELT) (((-850 |#1|) $) 219 (|has| |#3| (-548 (-1079))) ELT)) (-2801 ((|#1| $) 189 (|has| |#1| (-385)) ELT) (($ $ |#3|) 116 (|has| |#1| (-385)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) 114 (-2546 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (((-850 |#1|) $) 218 (|has| |#3| (-548 (-1079))) ELT) (($ (-343 (-478))) 88 (OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ELT) (($ $) 95 (|has| |#1| (-489)) ELT)) (-3801 (((-578 |#1|) $) 182 T ELT)) (-3661 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-687)) 138 T ELT) (($ $ (-578 |#3|) (-578 (-687))) 137 T ELT)) (-2686 (((-627 $) $) 89 (OR (-2546 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3109 (((-687)) 37 T CONST)) (-1610 (($ $ $ (-687)) 187 (|has| |#1| (-144)) ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 99 (|has| |#1| (-489)) ELT)) (-2644 (($) 23 T CONST)) (-3150 (((-3 (-83) "failed") $ $) 278 T ELT)) (-2650 (($) 39 T CONST)) (-3129 (($ $ $ $ (-687)) 227 (|has| |#1| (-489)) ELT)) (-3130 (($ $ $ (-687)) 228 (|has| |#1| (-489)) ELT)) (-2653 (($ $ (-578 |#3|) (-578 (-687))) 52 T ELT) (($ $ |#3| (-687)) 51 T ELT) (($ $ (-578 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ |#1|) 170 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 172 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) 171 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-969 |#1| |#2| |#3|) (-111) (-954) (-710) (-749)) (T -969)) +((-3163 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-687)))) (-3430 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3161 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3781 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3160 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3159 (*1 *2 *1) (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-969 *3 *4 *5)))) (-3158 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3157 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) (-3943 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)))) (-3155 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)))) (-3154 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3153 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3152 (*1 *2 *1) (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-969 *3 *4 *5)))) (-3151 (*1 *2 *1) (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-969 *3 *4 *5)))) (-3150 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)))) (-3683 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)))) (-3149 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)))) (-3678 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)))) (-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)))) (-3676 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)))) (-3676 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)))) (-3675 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)))) (-3675 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)))) (-3679 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)))) (-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)))) (-3148 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3147 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3148 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) (-3147 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) (-3146 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3145 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3146 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) (-3145 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) (-3144 (*1 *2 *1 *1) (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-2 (|:| -3938 *1) (|:| |gap| (-687)) (|:| -2886 *1))) (-4 *1 (-969 *3 *4 *5)))) (-3144 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-5 *2 (-2 (|:| -3938 *1) (|:| |gap| (-687)) (|:| -2886 *1))) (-4 *1 (-969 *4 *5 *3)))) (-3143 (*1 *2 *1 *1) (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-2 (|:| -3938 *1) (|:| |gap| (-687)) (|:| -1960 *1) (|:| -2886 *1))) (-4 *1 (-969 *3 *4 *5)))) (-3143 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-5 *2 (-2 (|:| -3938 *1) (|:| |gap| (-687)) (|:| -1960 *1) (|:| -2886 *1))) (-4 *1 (-969 *4 *5 *3)))) (-3736 (*1 *2 *1 *1) (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-2 (|:| -1960 *1) (|:| -2886 *1))) (-4 *1 (-969 *3 *4 *5)))) (-3142 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3141 (*1 *2 *1 *1) (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3465 (-687)))) (-4 *1 (-969 *3 *4 *5)))) (-3671 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3670 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3140 (*1 *1 *2) (|partial| -12 (-5 *2 (-850 (-343 (-478)))) (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1079))) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)))) (-3139 (*1 *1 *2) (-12 (-5 *2 (-850 (-343 (-478)))) (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1079))) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-850 (-343 (-478)))) (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1079))) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)))) (-3140 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) (-12 (-2544 (-4 *3 (-38 (-343 (-478))))) (-4 *3 (-38 (-478))) (-4 *5 (-548 (-1079)))) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749))) (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1079)))) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749))))) (-3139 (*1 *1 *2) (OR (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) (-12 (-2544 (-4 *3 (-38 (-343 (-478))))) (-4 *3 (-38 (-478))) (-4 *5 (-548 (-1079)))) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749))) (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1079)))) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749))))) (-3956 (*1 *1 *2) (OR (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) (-12 (-2544 (-4 *3 (-38 (-343 (-478))))) (-4 *3 (-38 (-478))) (-4 *5 (-548 (-1079)))) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749))) (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1079)))) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749))))) (-3140 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-850 *3)) (-12 (-2544 (-4 *3 (-38 (-343 (-478))))) (-2544 (-4 *3 (-38 (-478)))) (-4 *5 (-548 (-1079)))) (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))) (-12 (-5 *2 (-850 *3)) (-12 (-2544 (-4 *3 (-477))) (-2544 (-4 *3 (-38 (-343 (-478))))) (-4 *3 (-38 (-478))) (-4 *5 (-548 (-1079)))) (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))) (-12 (-5 *2 (-850 *3)) (-12 (-2544 (-4 *3 (-897 (-478)))) (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1079)))) (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))))) (-3139 (*1 *1 *2) (OR (-12 (-5 *2 (-850 *3)) (-12 (-2544 (-4 *3 (-38 (-343 (-478))))) (-2544 (-4 *3 (-38 (-478)))) (-4 *5 (-548 (-1079)))) (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))) (-12 (-5 *2 (-850 *3)) (-12 (-2544 (-4 *3 (-477))) (-2544 (-4 *3 (-38 (-343 (-478))))) (-4 *3 (-38 (-478))) (-4 *5 (-548 (-1079)))) (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))) (-12 (-5 *2 (-850 *3)) (-12 (-2544 (-4 *3 (-897 (-478)))) (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1079)))) (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-850 *3)) (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *5 (-548 (-1079))) (-4 *4 (-710)) (-4 *5 (-749)))) (-3138 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3137 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3136 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3135 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3136 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3135 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3739 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3134 (*1 *2 *1 *1) (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-2 (|:| -3127 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-969 *3 *4 *5)))) (-3133 (*1 *2 *1 *1) (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-2 (|:| -3127 *1) (|:| |coef1| *1))) (-4 *1 (-969 *3 *4 *5)))) (-3132 (*1 *2 *1 *1) (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-2 (|:| -3127 *1) (|:| |coef2| *1))) (-4 *1 (-969 *3 *4 *5)))) (-3740 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3131 (*1 *2 *1 *1) (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-969 *3 *4 *5)))) (-3173 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3130 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *3 (-489)))) (-3129 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *3 (-489)))) (-3128 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3127 (*1 *2 *2 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-385)))) (-3126 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-385)))) (-3125 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-385)))) (-3124 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-385)))) (-3123 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-385))))) +(-13 (-854 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3163 (|t#3| $)) (-15 -3162 ((-687) $)) (-15 -3430 ($ $)) (-15 -3161 ($ $)) (-15 -3781 ($ $)) (-15 -3160 ($ $)) (-15 -3159 ((-578 $) $)) (-15 -3158 ($ $)) (-15 -3157 ($ $ |t#3|)) (-15 -3943 ($ $ |t#3|)) (-15 -3156 ((-83) $)) (-15 -3155 ((-83) $)) (-15 -3154 ($ $)) (-15 -3153 ($ $)) (-15 -3152 ((-578 $) $)) (-15 -3151 ((-578 $) $)) (-15 -3150 ((-3 (-83) "failed") $ $)) (-15 -3683 ((-83) $ $)) (-15 -3149 ((-83) $ $)) (-15 -3678 ((-83) $ $)) (-15 -3678 ((-83) $ (-578 $))) (-15 -3676 ((-83) $ $)) (-15 -3676 ((-83) $ (-578 $))) (-15 -3675 ((-83) $ $)) (-15 -3675 ((-83) $ (-578 $))) (-15 -3679 ((-83) $ $)) (-15 -3679 ((-83) $ (-578 $))) (-15 -3148 ($ $ $)) (-15 -3147 ($ $ $)) (-15 -3148 ($ $ $ |t#3|)) (-15 -3147 ($ $ $ |t#3|)) (-15 -3146 ($ $ $)) (-15 -3145 ($ $ $)) (-15 -3146 ($ $ $ |t#3|)) (-15 -3145 ($ $ $ |t#3|)) (-15 -3144 ((-2 (|:| -3938 $) (|:| |gap| (-687)) (|:| -2886 $)) $ $)) (-15 -3144 ((-2 (|:| -3938 $) (|:| |gap| (-687)) (|:| -2886 $)) $ $ |t#3|)) (-15 -3143 ((-2 (|:| -3938 $) (|:| |gap| (-687)) (|:| -1960 $) (|:| -2886 $)) $ $)) (-15 -3143 ((-2 (|:| -3938 $) (|:| |gap| (-687)) (|:| -1960 $) (|:| -2886 $)) $ $ |t#3|)) (-15 -3736 ((-2 (|:| -1960 $) (|:| -2886 $)) $ $)) (-15 -3142 ($ $ $)) (-15 -3141 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3465 (-687))) $ $)) (-15 -3671 ($ $ $)) (-15 -3670 ($ $ $)) (IF (|has| |t#3| (-548 (-1079))) (PROGN (-6 (-547 (-850 |t#1|))) (-6 (-548 (-850 |t#1|))) (IF (|has| |t#1| (-38 (-343 (-478)))) (PROGN (-15 -3140 ((-3 $ "failed") (-850 (-343 (-478))))) (-15 -3139 ($ (-850 (-343 (-478))))) (-15 -3956 ($ (-850 (-343 (-478))))) (-15 -3140 ((-3 $ "failed") (-850 (-478)))) (-15 -3139 ($ (-850 (-478)))) (-15 -3956 ($ (-850 (-478)))) (IF (|has| |t#1| (-897 (-478))) |%noBranch| (PROGN (-15 -3140 ((-3 $ "failed") (-850 |t#1|))) (-15 -3139 ($ (-850 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-478))) (IF (|has| |t#1| (-38 (-343 (-478)))) |%noBranch| (PROGN (-15 -3140 ((-3 $ "failed") (-850 (-478)))) (-15 -3139 ($ (-850 (-478)))) (-15 -3956 ($ (-850 (-478)))) (IF (|has| |t#1| (-477)) |%noBranch| (PROGN (-15 -3140 ((-3 $ "failed") (-850 |t#1|))) (-15 -3139 ($ (-850 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-478))) |%noBranch| (IF (|has| |t#1| (-38 (-343 (-478)))) |%noBranch| (PROGN (-15 -3140 ((-3 $ "failed") (-850 |t#1|))) (-15 -3139 ($ (-850 |t#1|)))))) (-15 -3956 ($ (-850 |t#1|))) (IF (|has| |t#1| (-943 (-478))) (-6 (-548 (-1062))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-489)) (PROGN (-15 -3138 ($ $)) (-15 -3137 ($ $)) (-15 -3136 ($ $ |t#1|)) (-15 -3135 ($ $ |t#1|)) (-15 -3136 ($ $ $)) (-15 -3135 ($ $ $)) (-15 -3739 ($ $ $)) (-15 -3134 ((-2 (|:| -3127 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3133 ((-2 (|:| -3127 $) (|:| |coef1| $)) $ $)) (-15 -3132 ((-2 (|:| -3127 $) (|:| |coef2| $)) $ $)) (-15 -3740 ($ $ $)) (-15 -3131 ((-578 $) $ $)) (-15 -3173 ($ $ $)) (-15 -3130 ($ $ $ (-687))) (-15 -3129 ($ $ $ $ (-687))) (-15 -3128 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-385)) (PROGN (-15 -3127 (|t#1| |t#1| $)) (-15 -3126 ($ $)) (-15 -3125 ($ $)) (-15 -3124 ($ $)) (-15 -3123 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-550 |#3|) . T) ((-550 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-547 (-765)) . T) ((-547 (-850 |#1|)) |has| |#3| (-548 (-1079))) ((-144) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-548 (-467)) -12 (|has| |#1| (-548 (-467))) (|has| |#3| (-548 (-467)))) ((-548 (-793 (-323))) -12 (|has| |#1| (-548 (-793 (-323)))) (|has| |#3| (-548 (-793 (-323))))) ((-548 (-793 (-478))) -12 (|has| |#1| (-548 (-793 (-478)))) (|has| |#3| (-548 (-793 (-478))))) ((-548 (-850 |#1|)) |has| |#3| (-548 (-1079))) ((-548 (-1062)) -12 (|has| |#1| (-943 (-478))) (|has| |#3| (-548 (-1079)))) ((-242) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-256 $) . T) ((-273 |#1| |#2|) . T) ((-322 |#1|) . T) ((-348 |#1|) . T) ((-385) OR (|has| |#1| (-814)) (|has| |#1| (-385))) ((-447 |#3| |#1|) . T) ((-447 |#3| $) . T) ((-447 $ $) . T) ((-489) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 (-478)) |has| |#1| (-575 (-478))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-575 (-478)) |has| |#1| (-575 (-478))) ((-575 |#1|) . T) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-658) . T) ((-799 $ |#3|) . T) ((-802 |#3|) . T) ((-804 |#3|) . T) ((-789 (-323)) -12 (|has| |#1| (-789 (-323))) (|has| |#3| (-789 (-323)))) ((-789 (-478)) -12 (|has| |#1| (-789 (-478))) (|has| |#3| (-789 (-478)))) ((-854 |#1| |#2| |#3|) . T) ((-814) |has| |#1| (-814)) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-943 |#3|) . T) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T) ((-1123) |has| |#1| (-814))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3164 (((-578 (-1038)) $) 18 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 27 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-3216 (((-1038) $) 20 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-970) (-13 (-987) (-10 -8 (-15 -3164 ((-578 (-1038)) $)) (-15 -3216 ((-1038) $))))) (T -970)) +((-3164 (*1 *2 *1) (-12 (-5 *2 (-578 (-1038))) (-5 *1 (-970)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-970))))) +((-3171 (((-83) |#3| $) 15 T ELT)) (-3166 (((-3 $ #1="failed") |#3| (-823)) 29 T ELT)) (-3451 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3169 (((-83) |#3| $) 19 T ELT)) (-3170 (((-83) |#3| $) 17 T ELT))) +(((-971 |#1| |#2| |#3|) (-10 -7 (-15 -3166 ((-3 |#1| #1="failed") |#3| (-823))) (-15 -3451 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3169 ((-83) |#3| |#1|)) (-15 -3170 ((-83) |#3| |#1|)) (-15 -3171 ((-83) |#3| |#1|))) (-972 |#2| |#3|) (-13 (-748) (-308)) (-1144 |#2|)) (T -971)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) |#2| $) 25 T ELT)) (-3607 (((-478) |#2| $) 26 T ELT)) (-3166 (((-3 $ "failed") |#2| (-823)) 19 T ELT)) (-3165 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3451 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3169 (((-83) |#2| $) 23 T ELT)) (-3170 (((-83) |#2| $) 24 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3168 ((|#2| $) 21 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3754 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3167 (((-578 $) |#2|) 20 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(((-972 |#1| |#2|) (-111) (-13 (-748) (-308)) (-1144 |t#1|)) (T -972)) +((-3607 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *3)) (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1144 *4)) (-5 *2 (-478)))) (-3171 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *3)) (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1144 *4)) (-5 *2 (-83)))) (-3170 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *3)) (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1144 *4)) (-5 *2 (-83)))) (-3169 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *3)) (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1144 *4)) (-5 *2 (-83)))) (-3451 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-972 *3 *2)) (-4 *3 (-13 (-748) (-308))) (-4 *2 (-1144 *3)))) (-3168 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *2)) (-4 *3 (-13 (-748) (-308))) (-4 *2 (-1144 *3)))) (-3167 (*1 *2 *3) (-12 (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1144 *4)) (-5 *2 (-578 *1)) (-4 *1 (-972 *4 *3)))) (-3166 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-823)) (-4 *4 (-13 (-748) (-308))) (-4 *1 (-972 *4 *2)) (-4 *2 (-1144 *4)))) (-3754 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-972 *2 *3)) (-4 *2 (-13 (-748) (-308))) (-4 *3 (-1144 *2)))) (-3165 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-972 *2 *3)) (-4 *2 (-13 (-748) (-308))) (-4 *3 (-1144 *2))))) +(-13 (-1005) (-10 -8 (-15 -3607 ((-478) |t#2| $)) (-15 -3171 ((-83) |t#2| $)) (-15 -3170 ((-83) |t#2| $)) (-15 -3169 ((-83) |t#2| $)) (-15 -3451 ((-3 |t#2| "failed") |t#2| $)) (-15 -3168 (|t#2| $)) (-15 -3167 ((-578 $) |t#2|)) (-15 -3166 ((-3 $ "failed") |t#2| (-823))) (-15 -3754 (|t#1| |t#2| $ |t#1|)) (-15 -3165 (|t#1| |t#2| $ |t#1|)))) +(((-72) . T) ((-547 (-765)) . T) ((-1005) . T) ((-1118) . T)) +((-3420 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) (-687)) 114 T ELT)) (-3417 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5| (-687)) 63 T ELT)) (-3421 (((-1174) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) (-687)) 99 T ELT)) (-3415 (((-687) (-578 |#4|) (-578 |#5|)) 30 T ELT)) (-3418 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5| (-687)) 65 T ELT) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5| (-687) (-83)) 67 T ELT)) (-3419 (((-578 |#5|) (-578 |#4|) (-578 |#5|) (-83) (-83) (-83) (-83) (-83)) 86 T ELT) (((-578 |#5|) (-578 |#4|) (-578 |#5|) (-83) (-83)) 87 T ELT)) (-3956 (((-1062) (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) 92 T ELT)) (-3416 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5| (-83)) 62 T ELT)) (-3414 (((-687) (-578 |#4|) (-578 |#5|)) 21 T ELT))) +(((-973 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3414 ((-687) (-578 |#4|) (-578 |#5|))) (-15 -3415 ((-687) (-578 |#4|) (-578 |#5|))) (-15 -3416 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5| (-83))) (-15 -3417 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5| (-687))) (-15 -3417 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5|)) (-15 -3418 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5| (-687) (-83))) (-15 -3418 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5| (-687))) (-15 -3418 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5|)) (-15 -3419 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-83) (-83))) (-15 -3419 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-83) (-83) (-83) (-83) (-83))) (-15 -3420 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) (-687))) (-15 -3956 ((-1062) (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|)))) (-15 -3421 ((-1174) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) (-687)))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|) (-975 |#1| |#2| |#3| |#4|)) (T -973)) +((-3421 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -1587 *9)))) (-5 *4 (-687)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-1174)) (-5 *1 (-973 *5 *6 *7 *8 *9)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -1587 *8))) (-4 *7 (-969 *4 *5 *6)) (-4 *8 (-975 *4 *5 *6 *7)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-1062)) (-5 *1 (-973 *4 *5 *6 *7 *8)))) (-3420 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-578 *11)) (|:| |todo| (-578 (-2 (|:| |val| *3) (|:| -1587 *11)))))) (-5 *6 (-687)) (-5 *2 (-578 (-2 (|:| |val| (-578 *10)) (|:| -1587 *11)))) (-5 *3 (-578 *10)) (-5 *4 (-578 *11)) (-4 *10 (-969 *7 *8 *9)) (-4 *11 (-975 *7 *8 *9 *10)) (-4 *7 (-385)) (-4 *8 (-710)) (-4 *9 (-749)) (-5 *1 (-973 *7 *8 *9 *10 *11)))) (-3419 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-973 *5 *6 *7 *8 *9)))) (-3419 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-973 *5 *6 *7 *8 *9)))) (-3418 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) (-5 *1 (-973 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3418 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-687)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *3 (-969 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) (-5 *1 (-973 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) (-3418 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-687)) (-5 *6 (-83)) (-4 *7 (-385)) (-4 *8 (-710)) (-4 *9 (-749)) (-4 *3 (-969 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) (-5 *1 (-973 *7 *8 *9 *3 *4)) (-4 *4 (-975 *7 *8 *9 *3)))) (-3417 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) (-5 *1 (-973 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3417 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-687)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *3 (-969 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) (-5 *1 (-973 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) (-3416 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *3 (-969 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) (-5 *1 (-973 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) (-3415 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-687)) (-5 *1 (-973 *5 *6 *7 *8 *9)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-687)) (-5 *1 (-973 *5 *6 *7 *8 *9))))) +((-3180 (((-83) |#5| $) 26 T ELT)) (-3178 (((-83) |#5| $) 29 T ELT)) (-3181 (((-83) |#5| $) 18 T ELT) (((-83) $) 52 T ELT)) (-3221 (((-578 $) |#5| $) NIL T ELT) (((-578 $) (-578 |#5|) $) 94 T ELT) (((-578 $) (-578 |#5|) (-578 $)) 92 T ELT) (((-578 $) |#5| (-578 $)) 95 T ELT)) (-3753 (($ $ |#5|) NIL T ELT) (((-578 $) |#5| $) NIL T ELT) (((-578 $) |#5| (-578 $)) 73 T ELT) (((-578 $) (-578 |#5|) $) 75 T ELT) (((-578 $) (-578 |#5|) (-578 $)) 77 T ELT)) (-3172 (((-578 $) |#5| $) NIL T ELT) (((-578 $) |#5| (-578 $)) 64 T ELT) (((-578 $) (-578 |#5|) $) 69 T ELT) (((-578 $) (-578 |#5|) (-578 $)) 71 T ELT)) (-3179 (((-83) |#5| $) 32 T ELT))) +(((-974 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3753 ((-578 |#1|) (-578 |#5|) (-578 |#1|))) (-15 -3753 ((-578 |#1|) (-578 |#5|) |#1|)) (-15 -3753 ((-578 |#1|) |#5| (-578 |#1|))) (-15 -3753 ((-578 |#1|) |#5| |#1|)) (-15 -3172 ((-578 |#1|) (-578 |#5|) (-578 |#1|))) (-15 -3172 ((-578 |#1|) (-578 |#5|) |#1|)) (-15 -3172 ((-578 |#1|) |#5| (-578 |#1|))) (-15 -3172 ((-578 |#1|) |#5| |#1|)) (-15 -3221 ((-578 |#1|) |#5| (-578 |#1|))) (-15 -3221 ((-578 |#1|) (-578 |#5|) (-578 |#1|))) (-15 -3221 ((-578 |#1|) (-578 |#5|) |#1|)) (-15 -3221 ((-578 |#1|) |#5| |#1|)) (-15 -3178 ((-83) |#5| |#1|)) (-15 -3181 ((-83) |#1|)) (-15 -3179 ((-83) |#5| |#1|)) (-15 -3180 ((-83) |#5| |#1|)) (-15 -3181 ((-83) |#5| |#1|)) (-15 -3753 (|#1| |#1| |#5|))) (-975 |#2| |#3| |#4| |#5|) (-385) (-710) (-749) (-969 |#2| |#3| |#4|)) (T -974)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3665 (((-578 (-2 (|:| -3845 $) (|:| -1689 (-578 |#4|)))) (-578 |#4|)) 90 T ELT)) (-3666 (((-578 $) (-578 |#4|)) 91 T ELT) (((-578 $) (-578 |#4|) (-83)) 118 T ELT)) (-3065 (((-578 |#3|) $) 37 T ELT)) (-2892 (((-83) $) 30 T ELT)) (-2883 (((-83) $) 21 (|has| |#1| (-489)) ELT)) (-3677 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3672 ((|#4| |#4| $) 97 T ELT)) (-3759 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 $))) |#4| $) 133 T ELT)) (-2893 (((-2 (|:| |under| $) (|:| -3113 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3694 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3979)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3708 (($) 46 T CONST)) (-2888 (((-83) $) 26 (|has| |#1| (-489)) ELT)) (-2890 (((-83) $ $) 28 (|has| |#1| (-489)) ELT)) (-2889 (((-83) $ $) 27 (|has| |#1| (-489)) ELT)) (-2891 (((-83) $) 29 (|has| |#1| (-489)) ELT)) (-3673 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2884 (((-578 |#4|) (-578 |#4|) $) 22 (|has| |#1| (-489)) ELT)) (-2885 (((-578 |#4|) (-578 |#4|) $) 23 (|has| |#1| (-489)) ELT)) (-3140 (((-3 $ "failed") (-578 |#4|)) 40 T ELT)) (-3139 (($ (-578 |#4|)) 39 T ELT)) (-3783 (((-3 $ #1#) $) 87 T ELT)) (-3669 ((|#4| |#4| $) 94 T ELT)) (-1340 (($ $) 69 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3390 (($ |#4| $) 68 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3979)) ELT)) (-2886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-489)) ELT)) (-3678 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3667 ((|#4| |#4| $) 92 T ELT)) (-3826 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3979)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3979)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3680 (((-2 (|:| -3845 (-578 |#4|)) (|:| -1689 (-578 |#4|))) $) 110 T ELT)) (-3180 (((-83) |#4| $) 143 T ELT)) (-3178 (((-83) |#4| $) 140 T ELT)) (-3181 (((-83) |#4| $) 144 T ELT) (((-83) $) 141 T ELT)) (-2873 (((-578 |#4|) $) 53 (|has| $ (-6 -3979)) ELT)) (-3679 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3163 ((|#3| $) 38 T ELT)) (-2592 (((-578 |#4|) $) 54 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2898 (((-578 |#3|) $) 36 T ELT)) (-2897 (((-83) |#3| $) 35 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3174 (((-3 |#4| (-578 $)) |#4| |#4| $) 135 T ELT)) (-3173 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 $))) |#4| |#4| $) 134 T ELT)) (-3782 (((-3 |#4| #1#) $) 88 T ELT)) (-3175 (((-578 $) |#4| $) 136 T ELT)) (-3177 (((-3 (-83) (-578 $)) |#4| $) 139 T ELT)) (-3176 (((-578 (-2 (|:| |val| (-83)) (|:| -1587 $))) |#4| $) 138 T ELT) (((-83) |#4| $) 137 T ELT)) (-3221 (((-578 $) |#4| $) 132 T ELT) (((-578 $) (-578 |#4|) $) 131 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 130 T ELT) (((-578 $) |#4| (-578 $)) 129 T ELT)) (-3424 (($ |#4| $) 124 T ELT) (($ (-578 |#4|) $) 123 T ELT)) (-3681 (((-578 |#4|) $) 112 T ELT)) (-3675 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3670 ((|#4| |#4| $) 95 T ELT)) (-3683 (((-83) $ $) 115 T ELT)) (-2887 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-489)) ELT)) (-3676 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3671 ((|#4| |#4| $) 96 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3785 (((-3 |#4| #1#) $) 89 T ELT)) (-1341 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3663 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3753 (($ $ |#4|) 82 T ELT) (((-578 $) |#4| $) 122 T ELT) (((-578 $) |#4| (-578 $)) 121 T ELT) (((-578 $) (-578 |#4|) $) 120 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 119 T ELT)) (-1934 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 |#4|) (-578 |#4|)) 60 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-245 |#4|)) 58 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-578 (-245 |#4|))) 57 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT)) (-1210 (((-83) $ $) 42 T ELT)) (-3387 (((-83) $) 45 T ELT)) (-3549 (($) 44 T ELT)) (-3932 (((-687) $) 111 T ELT)) (-1933 (((-687) |#4| $) 55 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT) (((-687) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) 43 T ELT)) (-3956 (((-467) $) 70 (|has| |#4| (-548 (-467))) ELT)) (-3514 (($ (-578 |#4|)) 61 T ELT)) (-2894 (($ $ |#3|) 32 T ELT)) (-2896 (($ $ |#3|) 34 T ELT)) (-3668 (($ $) 93 T ELT)) (-2895 (($ $ |#3|) 33 T ELT)) (-3930 (((-765) $) 13 T ELT) (((-578 |#4|) $) 41 T ELT)) (-3662 (((-687) $) 81 (|has| |#3| (-313)) ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3682 (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3674 (((-83) $ (-1 (-83) |#4| (-578 |#4|))) 103 T ELT)) (-3172 (((-578 $) |#4| $) 128 T ELT) (((-578 $) |#4| (-578 $)) 127 T ELT) (((-578 $) (-578 |#4|) $) 126 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 125 T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3979)) ELT)) (-3664 (((-578 |#3|) $) 86 T ELT)) (-3179 (((-83) |#4| $) 142 T ELT)) (-3917 (((-83) |#3| $) 85 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3941 (((-687) $) 47 (|has| $ (-6 -3979)) ELT))) +(((-975 |#1| |#2| |#3| |#4|) (-111) (-385) (-710) (-749) (-969 |t#1| |t#2| |t#3|)) (T -975)) +((-3181 (*1 *2 *3 *1) (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3180 (*1 *2 *3 *1) (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3179 (*1 *2 *3 *1) (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) (-3178 (*1 *2 *3 *1) (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3177 (*1 *2 *3 *1) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-3 (-83) (-578 *1))) (-4 *1 (-975 *4 *5 *6 *3)))) (-3176 (*1 *2 *3 *1) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1587 *1)))) (-4 *1 (-975 *4 *5 *6 *3)))) (-3176 (*1 *2 *3 *1) (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3175 (*1 *2 *3 *1) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)))) (-3174 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-3 *3 (-578 *1))) (-4 *1 (-975 *4 *5 *6 *3)))) (-3173 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *1)))) (-4 *1 (-975 *4 *5 *6 *3)))) (-3759 (*1 *2 *3 *1) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *1)))) (-4 *1 (-975 *4 *5 *6 *3)))) (-3221 (*1 *2 *3 *1) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)))) (-3221 (*1 *2 *3 *1) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *7)))) (-3221 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-975 *4 *5 *6 *7)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)))) (-3221 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)))) (-3172 (*1 *2 *3 *1) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)))) (-3172 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)))) (-3172 (*1 *2 *3 *1) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *7)))) (-3172 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-975 *4 *5 *6 *7)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)))) (-3424 (*1 *1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5 *2)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3424 (*1 *1 *2 *1) (-12 (-5 *2 (-578 *6)) (-4 *1 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)))) (-3753 (*1 *2 *3 *1) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)))) (-3753 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)))) (-3753 (*1 *2 *3 *1) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *7)))) (-3753 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-975 *4 *5 *6 *7)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-975 *5 *6 *7 *8))))) +(-13 (-1113 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3181 ((-83) |t#4| $)) (-15 -3180 ((-83) |t#4| $)) (-15 -3179 ((-83) |t#4| $)) (-15 -3181 ((-83) $)) (-15 -3178 ((-83) |t#4| $)) (-15 -3177 ((-3 (-83) (-578 $)) |t#4| $)) (-15 -3176 ((-578 (-2 (|:| |val| (-83)) (|:| -1587 $))) |t#4| $)) (-15 -3176 ((-83) |t#4| $)) (-15 -3175 ((-578 $) |t#4| $)) (-15 -3174 ((-3 |t#4| (-578 $)) |t#4| |t#4| $)) (-15 -3173 ((-578 (-2 (|:| |val| |t#4|) (|:| -1587 $))) |t#4| |t#4| $)) (-15 -3759 ((-578 (-2 (|:| |val| |t#4|) (|:| -1587 $))) |t#4| $)) (-15 -3221 ((-578 $) |t#4| $)) (-15 -3221 ((-578 $) (-578 |t#4|) $)) (-15 -3221 ((-578 $) (-578 |t#4|) (-578 $))) (-15 -3221 ((-578 $) |t#4| (-578 $))) (-15 -3172 ((-578 $) |t#4| $)) (-15 -3172 ((-578 $) |t#4| (-578 $))) (-15 -3172 ((-578 $) (-578 |t#4|) $)) (-15 -3172 ((-578 $) (-578 |t#4|) (-578 $))) (-15 -3424 ($ |t#4| $)) (-15 -3424 ($ (-578 |t#4|) $)) (-15 -3753 ((-578 $) |t#4| $)) (-15 -3753 ((-578 $) |t#4| (-578 $))) (-15 -3753 ((-578 $) (-578 |t#4|) $)) (-15 -3753 ((-578 $) (-578 |t#4|) (-578 $))) (-15 -3666 ((-578 $) (-578 |t#4|) (-83))))) +(((-34) . T) ((-72) . T) ((-547 (-578 |#4|)) . T) ((-547 (-765)) . T) ((-122 |#4|) . T) ((-548 (-467)) |has| |#4| (-548 (-467))) ((-256 |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ((-422 |#4|) . T) ((-447 |#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ((-882 |#1| |#2| |#3| |#4|) . T) ((-1005) . T) ((-1113 |#1| |#2| |#3| |#4|) . T) ((-1118) . T)) +((-3188 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) |#4| |#5|) 86 T ELT)) (-3185 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3187 (((-578 |#5|) |#4| |#5|) 74 T ELT)) (-3186 (((-578 (-2 (|:| |val| (-83)) (|:| -1587 |#5|))) |#4| |#5|) 47 T ELT) (((-83) |#4| |#5|) 55 T ELT)) (-3269 (((-1174)) 36 T ELT)) (-3267 (((-1174)) 25 T ELT)) (-3268 (((-1174) (-1062) (-1062) (-1062)) 32 T ELT)) (-3266 (((-1174) (-1062) (-1062) (-1062)) 21 T ELT)) (-3182 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3183 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) |#3| (-83)) 117 T ELT) (((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) |#4| |#4| |#5| (-83) (-83)) 52 T ELT)) (-3184 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) |#4| |#4| |#5|) 112 T ELT))) +(((-976 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3266 ((-1174) (-1062) (-1062) (-1062))) (-15 -3267 ((-1174))) (-15 -3268 ((-1174) (-1062) (-1062) (-1062))) (-15 -3269 ((-1174))) (-15 -3182 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) |#4| |#4| |#5|)) (-15 -3183 ((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) |#4| |#4| |#5| (-83) (-83))) (-15 -3183 ((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) |#3| (-83))) (-15 -3184 ((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) |#4| |#4| |#5|)) (-15 -3185 ((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) |#4| |#4| |#5|)) (-15 -3186 ((-83) |#4| |#5|)) (-15 -3186 ((-578 (-2 (|:| |val| (-83)) (|:| -1587 |#5|))) |#4| |#5|)) (-15 -3187 ((-578 |#5|) |#4| |#5|)) (-15 -3188 ((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) |#4| |#5|))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|) (-975 |#1| |#2| |#3| |#4|)) (T -976)) +((-3188 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3187 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3186 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1587 *4)))) (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3186 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3185 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3184 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3183 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -1587 *9)))) (-5 *5 (-83)) (-4 *8 (-969 *6 *7 *4)) (-4 *9 (-975 *6 *7 *4 *8)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *4 (-749)) (-5 *2 (-578 (-2 (|:| |val| *8) (|:| -1587 *9)))) (-5 *1 (-976 *6 *7 *4 *8 *9)))) (-3183 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *3 (-969 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) (-5 *1 (-976 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) (-3182 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))) (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3269 (*1 *2) (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-1174)) (-5 *1 (-976 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6)))) (-3268 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1062)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-976 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3267 (*1 *2) (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-1174)) (-5 *1 (-976 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6)))) (-3266 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1062)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-976 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3300 (((-1119) $) 13 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3189 (((-1038) $) 10 T ELT)) (-3930 (((-765) $) 20 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-977) (-13 (-987) (-10 -8 (-15 -3189 ((-1038) $)) (-15 -3300 ((-1119) $))))) (T -977)) +((-3189 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-977)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-977))))) +((-3249 (((-83) $ $) 7 T ELT))) +(((-978) (-13 (-1118) (-10 -8 (-15 -3249 ((-83) $ $))))) (T -978)) +((-3249 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-978))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3192 (($ $ (-578 (-1079)) (-1 (-83) (-578 |#3|))) 34 T ELT)) (-3193 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-578 (-1079))) 21 T ELT)) (-3512 ((|#3| $) 13 T ELT)) (-3140 (((-3 (-245 |#3|) "failed") $) 60 T ELT)) (-3139 (((-245 |#3|) $) NIL T ELT)) (-3190 (((-578 (-1079)) $) 16 T ELT)) (-3191 (((-793 |#1|) $) 11 T ELT)) (-3513 ((|#3| $) 12 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3784 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-823)) 41 T ELT)) (-3930 (((-765) $) 89 T ELT) (($ (-245 |#3|)) 22 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 38 T ELT))) +(((-979 |#1| |#2| |#3|) (-13 (-1005) (-238 |#3| |#3|) (-943 (-245 |#3|)) (-10 -8 (-15 -3193 ($ |#3| |#3|)) (-15 -3193 ($ |#3| |#3| (-578 (-1079)))) (-15 -3192 ($ $ (-578 (-1079)) (-1 (-83) (-578 |#3|)))) (-15 -3191 ((-793 |#1|) $)) (-15 -3513 (|#3| $)) (-15 -3512 (|#3| $)) (-15 -3784 (|#3| $ |#3| (-823))) (-15 -3190 ((-578 (-1079)) $)))) (-1005) (-13 (-954) (-789 |#1|) (-548 (-793 |#1|))) (-13 (-357 |#2|) (-789 |#1|) (-548 (-793 |#1|)))) (T -979)) +((-3193 (*1 *1 *2 *2) (-12 (-4 *3 (-1005)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))) (-5 *1 (-979 *3 *4 *2)) (-4 *2 (-13 (-357 *4) (-789 *3) (-548 (-793 *3)))))) (-3193 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-578 (-1079))) (-4 *4 (-1005)) (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-979 *4 *5 *2)) (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))))) (-3192 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1079))) (-5 *3 (-1 (-83) (-578 *6))) (-4 *6 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))) (-4 *4 (-1005)) (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-979 *4 *5 *6)))) (-3191 (*1 *2 *1) (-12 (-4 *3 (-1005)) (-4 *4 (-13 (-954) (-789 *3) (-548 *2))) (-5 *2 (-793 *3)) (-5 *1 (-979 *3 *4 *5)) (-4 *5 (-13 (-357 *4) (-789 *3) (-548 *2))))) (-3513 (*1 *2 *1) (-12 (-4 *3 (-1005)) (-4 *2 (-13 (-357 *4) (-789 *3) (-548 (-793 *3)))) (-5 *1 (-979 *3 *4 *2)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))))) (-3512 (*1 *2 *1) (-12 (-4 *3 (-1005)) (-4 *2 (-13 (-357 *4) (-789 *3) (-548 (-793 *3)))) (-5 *1 (-979 *3 *4 *2)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))))) (-3784 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-823)) (-4 *4 (-1005)) (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-979 *4 *5 *2)) (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))))) (-3190 (*1 *2 *1) (-12 (-4 *3 (-1005)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))) (-5 *2 (-578 (-1079))) (-5 *1 (-979 *3 *4 *5)) (-4 *5 (-13 (-357 *4) (-789 *3) (-548 (-793 *3))))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3526 (((-1079) $) 8 T ELT)) (-3225 (((-1062) $) 17 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 11 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 14 T ELT))) +(((-980 |#1|) (-13 (-1005) (-10 -8 (-15 -3526 ((-1079) $)))) (-1079)) (T -980)) +((-3526 (*1 *2 *1) (-12 (-5 *2 (-1079)) (-5 *1 (-980 *3)) (-14 *3 *2)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3195 (($ (-578 (-979 |#1| |#2| |#3|))) 14 T ELT)) (-3194 (((-578 (-979 |#1| |#2| |#3|)) $) 21 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3784 ((|#3| $ |#3|) 24 T ELT) ((|#3| $ |#3| (-823)) 27 T ELT)) (-3930 (((-765) $) 17 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 20 T ELT))) +(((-981 |#1| |#2| |#3|) (-13 (-1005) (-238 |#3| |#3|) (-10 -8 (-15 -3195 ($ (-578 (-979 |#1| |#2| |#3|)))) (-15 -3194 ((-578 (-979 |#1| |#2| |#3|)) $)) (-15 -3784 (|#3| $ |#3| (-823))))) (-1005) (-13 (-954) (-789 |#1|) (-548 (-793 |#1|))) (-13 (-357 |#2|) (-789 |#1|) (-548 (-793 |#1|)))) (T -981)) +((-3195 (*1 *1 *2) (-12 (-5 *2 (-578 (-979 *3 *4 *5))) (-4 *3 (-1005)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))) (-4 *5 (-13 (-357 *4) (-789 *3) (-548 (-793 *3)))) (-5 *1 (-981 *3 *4 *5)))) (-3194 (*1 *2 *1) (-12 (-4 *3 (-1005)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))) (-5 *2 (-578 (-979 *3 *4 *5))) (-5 *1 (-981 *3 *4 *5)) (-4 *5 (-13 (-357 *4) (-789 *3) (-548 (-793 *3)))))) (-3784 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-823)) (-4 *4 (-1005)) (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-981 *4 *5 *2)) (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4))))))) +((-3196 (((-578 (-2 (|:| -1734 (-1074 |#1|)) (|:| -3207 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83) (-83)) 88 T ELT) (((-578 (-2 (|:| -1734 (-1074 |#1|)) (|:| -3207 (-578 (-850 |#1|))))) (-578 (-850 |#1|))) 92 T ELT) (((-578 (-2 (|:| -1734 (-1074 |#1|)) (|:| -3207 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83)) 90 T ELT))) +(((-982 |#1| |#2|) (-10 -7 (-15 -3196 ((-578 (-2 (|:| -1734 (-1074 |#1|)) (|:| -3207 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83))) (-15 -3196 ((-578 (-2 (|:| -1734 (-1074 |#1|)) (|:| -3207 (-578 (-850 |#1|))))) (-578 (-850 |#1|)))) (-15 -3196 ((-578 (-2 (|:| -1734 (-1074 |#1|)) (|:| -3207 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83) (-83)))) (-13 (-254) (-118)) (-578 (-1079))) (T -982)) +((-3196 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-2 (|:| -1734 (-1074 *5)) (|:| -3207 (-578 (-850 *5)))))) (-5 *1 (-982 *5 *6)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1079))))) (-3196 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-5 *2 (-578 (-2 (|:| -1734 (-1074 *4)) (|:| -3207 (-578 (-850 *4)))))) (-5 *1 (-982 *4 *5)) (-5 *3 (-578 (-850 *4))) (-14 *5 (-578 (-1079))))) (-3196 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-2 (|:| -1734 (-1074 *5)) (|:| -3207 (-578 (-850 *5)))))) (-5 *1 (-982 *5 *6)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1079)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 136 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-308)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-1769 (((-625 |#1|) (-1168 $)) NIL T ELT) (((-625 |#1|)) 121 T ELT)) (-3314 ((|#1| $) 125 T ELT)) (-1662 (((-1091 (-823) (-687)) (-478)) NIL (|has| |#1| (-295)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1595 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3119 (((-687)) 43 (|has| |#1| (-313)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3139 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT)) (-1779 (($ (-1168 |#1|) (-1168 $)) NIL T ELT) (($ (-1168 |#1|)) 46 T ELT)) (-1660 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-295)) ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-1768 (((-625 |#1|) $ (-1168 $)) NIL T ELT) (((-625 |#1|) $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) 113 T ELT) (((-625 |#1|) (-625 $)) 108 T ELT)) (-3826 (($ |#2|) 65 T ELT) (((-3 $ #1#) (-343 |#2|)) NIL (|has| |#1| (-308)) ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3092 (((-823)) 84 T ELT)) (-2978 (($) 47 (|has| |#1| (-313)) ELT)) (-2547 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-2817 (($) NIL (|has| |#1| (-295)) ELT)) (-1667 (((-83) $) NIL (|has| |#1| (-295)) ELT)) (-1751 (($ $ (-687)) NIL (|has| |#1| (-295)) ELT) (($ $) NIL (|has| |#1| (-295)) ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-3756 (((-823) $) NIL (|has| |#1| (-295)) ELT) (((-736 (-823)) $) NIL (|has| |#1| (-295)) ELT)) (-2396 (((-83) $) NIL T ELT)) (-3115 ((|#1| $) NIL T ELT)) (-3429 (((-627 $) $) NIL (|has| |#1| (-295)) ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-2000 ((|#2| $) 91 (|has| |#1| (-308)) ELT)) (-1996 (((-823) $) 145 (|has| |#1| (-313)) ELT)) (-3063 ((|#2| $) 62 T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) NIL T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3430 (($) NIL (|has| |#1| (-295)) CONST)) (-2386 (($ (-823)) 135 (|has| |#1| (-313)) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2395 (($) 127 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-308)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-1663 (((-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478))))) NIL (|has| |#1| (-295)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3450 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-1594 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3741 ((|#1| (-1168 $)) NIL T ELT) ((|#1|) 117 T ELT)) (-1752 (((-687) $) NIL (|has| |#1| (-295)) ELT) (((-3 (-687) #1#) $ $) NIL (|has| |#1| (-295)) ELT)) (-3742 (($ $ (-687)) NIL (OR (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-1079)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL (|has| |#1| (-308)) ELT)) (-2394 (((-625 |#1|) (-1168 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-308)) ELT)) (-3168 ((|#2|) 81 T ELT)) (-1661 (($) NIL (|has| |#1| (-295)) ELT)) (-3207 (((-1168 |#1|) $ (-1168 $)) 96 T ELT) (((-625 |#1|) (-1168 $) (-1168 $)) NIL T ELT) (((-1168 |#1|) $) 75 T ELT) (((-625 |#1|) (-1168 $)) 92 T ELT)) (-3956 (((-1168 |#1|) $) NIL T ELT) (($ (-1168 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (|has| |#1| (-295)) ELT)) (-3930 (((-765) $) 61 T ELT) (($ (-478)) 56 T ELT) (($ |#1|) 58 T ELT) (($ $) NIL (|has| |#1| (-308)) ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-308)) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-2686 (($ $) NIL (|has| |#1| (-295)) ELT) (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-2433 ((|#2| $) 89 T ELT)) (-3109 (((-687)) 83 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-1998 (((-1168 $)) 88 T ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-2644 (($) 32 T CONST)) (-2650 (($) 19 T CONST)) (-2653 (($ $ (-687)) NIL (OR (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-1079)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1079)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL (|has| |#1| (-308)) ELT)) (-3037 (((-83) $ $) 67 T ELT)) (-3933 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) 71 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 69 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 54 T ELT) (($ $ $) 73 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 51 T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-308)) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-308)) ELT))) +(((-983 |#1| |#2| |#3|) (-656 |#1| |#2|) (-144) (-1144 |#1|) |#2|) (T -983)) +NIL +((-3716 (((-341 |#3|) |#3|) 18 T ELT))) +(((-984 |#1| |#2| |#3|) (-10 -7 (-15 -3716 ((-341 |#3|) |#3|))) (-1144 (-343 (-478))) (-13 (-308) (-118) (-656 (-343 (-478)) |#1|)) (-1144 |#2|)) (T -984)) +((-3716 (*1 *2 *3) (-12 (-4 *4 (-1144 (-343 (-478)))) (-4 *5 (-13 (-308) (-118) (-656 (-343 (-478)) *4))) (-5 *2 (-341 *3)) (-5 *1 (-984 *4 *5 *3)) (-4 *3 (-1144 *5))))) +((-3716 (((-341 |#3|) |#3|) 19 T ELT))) +(((-985 |#1| |#2| |#3|) (-10 -7 (-15 -3716 ((-341 |#3|) |#3|))) (-1144 (-343 (-850 (-478)))) (-13 (-308) (-118) (-656 (-343 (-850 (-478))) |#1|)) (-1144 |#2|)) (T -985)) +((-3716 (*1 *2 *3) (-12 (-4 *4 (-1144 (-343 (-850 (-478))))) (-4 *5 (-13 (-308) (-118) (-656 (-343 (-850 (-478))) *4))) (-5 *2 (-341 *3)) (-5 *1 (-985 *4 *5 *3)) (-4 *3 (-1144 *5))))) +((-2552 (((-83) $ $) NIL T ELT)) (-2515 (($ $ $) 16 T ELT)) (-2841 (($ $ $) 17 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3197 (($) 6 T ELT)) (-3956 (((-1079) $) 20 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 15 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 9 T ELT))) +(((-986) (-13 (-749) (-548 (-1079)) (-10 -8 (-15 -3197 ($))))) (T -986)) +((-3197 (*1 *1) (-5 *1 (-986)))) +((-2552 (((-83) $ $) 7 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-1084)) 20 T ELT) (((-1084) $) 19 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(((-987) (-111)) (T -987)) NIL (-13 (-64)) -(((-64) . T) ((-73) . T) ((-571 (-1122)) . T) ((-568 (-797)) . T) ((-568 (-1122)) . T) ((-444 (-1122)) . T) ((-1041) . T) ((-1157) . T)) -((-3355 ((|#1| |#1| (-1 (-499) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3353 (((-1213)) 21 T ELT)) (-3354 (((-599 |#1|)) 13 T ELT))) -(((-1024 |#1|) (-10 -7 (-15 -3353 ((-1213))) (-15 -3354 ((-599 |#1|))) (-15 -3355 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3355 (|#1| |#1| (-1 (-499) |#1| |#1|)))) (-105)) (T -1024)) -((-3355 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-499) *2 *2)) (-4 *2 (-105)) (-5 *1 (-1024 *2)))) (-3355 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-1024 *2)))) (-3354 (*1 *2) (-12 (-5 *2 (-599 *3)) (-5 *1 (-1024 *3)) (-4 *3 (-105)))) (-3353 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1024 *3)) (-4 *3 (-105))))) -((-3358 (($ (-80) $) 20 T ELT)) (-3359 (((-649 (-80)) (-460) $) 19 T ELT)) (-3713 (($) 7 T ELT)) (-3357 (($) 21 T ELT)) (-3356 (($) 22 T ELT)) (-3360 (((-599 (-149)) $) 10 T ELT)) (-4096 (((-797) $) 25 T ELT))) -(((-1025) (-13 (-568 (-797)) (-10 -8 (-15 -3713 ($)) (-15 -3360 ((-599 (-149)) $)) (-15 -3359 ((-649 (-80)) (-460) $)) (-15 -3358 ($ (-80) $)) (-15 -3357 ($)) (-15 -3356 ($))))) (T -1025)) -((-3713 (*1 *1) (-5 *1 (-1025))) (-3360 (*1 *2 *1) (-12 (-5 *2 (-599 (-149))) (-5 *1 (-1025)))) (-3359 (*1 *2 *3 *1) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-80))) (-5 *1 (-1025)))) (-3358 (*1 *1 *2 *1) (-12 (-5 *2 (-80)) (-5 *1 (-1025)))) (-3357 (*1 *1) (-5 *1 (-1025))) (-3356 (*1 *1) (-5 *1 (-1025)))) -((-3361 (((-1207 (-647 |#1|)) (-599 (-647 |#1|))) 45 T ELT) (((-1207 (-647 (-884 |#1|))) (-599 (-1117)) (-647 (-884 |#1|))) 75 T ELT) (((-1207 (-647 (-361 (-884 |#1|)))) (-599 (-1117)) (-647 (-361 (-884 |#1|)))) 92 T ELT)) (-3362 (((-1207 |#1|) (-647 |#1|) (-599 (-647 |#1|))) 39 T ELT))) -(((-1026 |#1|) (-10 -7 (-15 -3361 ((-1207 (-647 (-361 (-884 |#1|)))) (-599 (-1117)) (-647 (-361 (-884 |#1|))))) (-15 -3361 ((-1207 (-647 (-884 |#1|))) (-599 (-1117)) (-647 (-884 |#1|)))) (-15 -3361 ((-1207 (-647 |#1|)) (-599 (-647 |#1|)))) (-15 -3362 ((-1207 |#1|) (-647 |#1|) (-599 (-647 |#1|))))) (-318)) (T -1026)) -((-3362 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-647 *5))) (-5 *3 (-647 *5)) (-4 *5 (-318)) (-5 *2 (-1207 *5)) (-5 *1 (-1026 *5)))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-599 (-647 *4))) (-4 *4 (-318)) (-5 *2 (-1207 (-647 *4))) (-5 *1 (-1026 *4)))) (-3361 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-1117))) (-4 *5 (-318)) (-5 *2 (-1207 (-647 (-884 *5)))) (-5 *1 (-1026 *5)) (-5 *4 (-647 (-884 *5))))) (-3361 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-1117))) (-4 *5 (-318)) (-5 *2 (-1207 (-647 (-361 (-884 *5))))) (-5 *1 (-1026 *5)) (-5 *4 (-647 (-361 (-884 *5))))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1521 (((-599 (-714)) $) NIL T ELT) (((-599 (-714)) $ (-1117)) NIL T ELT)) (-1555 (((-714) $) NIL T ELT) (((-714) $ (-1117)) NIL T ELT)) (-3204 (((-599 (-1028 (-1117))) $) NIL T ELT)) (-3206 (((-1111 $) $ (-1028 (-1117))) NIL T ELT) (((-1111 |#1|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-1028 (-1117)))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-1517 (($ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-1028 (-1117)) #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL T ELT) (((-3 (-1065 |#1| (-1117)) #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-1028 (-1117)) $) NIL T ELT) (((-1117) $) NIL T ELT) (((-1065 |#1| (-1117)) $) NIL T ELT)) (-3906 (($ $ $ (-1028 (-1117))) NIL (|has| |#1| (-146)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT) (($ $ (-1028 (-1117))) NIL (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| (-484 (-1028 (-1117))) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-1028 (-1117)) (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-1028 (-1117)) (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-3922 (((-714) $ (-1117)) NIL T ELT) (((-714) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3207 (($ (-1111 |#1|) (-1028 (-1117))) NIL T ELT) (($ (-1111 $) (-1028 (-1117))) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-484 (-1028 (-1117)))) NIL T ELT) (($ $ (-1028 (-1117)) (-714)) NIL T ELT) (($ $ (-599 (-1028 (-1117))) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-1028 (-1117))) NIL T ELT)) (-2941 (((-484 (-1028 (-1117))) $) NIL T ELT) (((-714) $ (-1028 (-1117))) NIL T ELT) (((-599 (-714)) $ (-599 (-1028 (-1117)))) NIL T ELT)) (-1695 (($ (-1 (-484 (-1028 (-1117))) (-484 (-1028 (-1117)))) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1556 (((-1 $ (-714)) (-1117)) NIL T ELT) (((-1 $ (-714)) $) NIL (|has| |#1| (-190)) ELT)) (-3205 (((-3 (-1028 (-1117)) #1#) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1519 (((-1028 (-1117)) $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1520 (((-85) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-1028 (-1117))) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-1518 (($ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-848)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-1028 (-1117)) |#1|) NIL T ELT) (($ $ (-599 (-1028 (-1117))) (-599 |#1|)) NIL T ELT) (($ $ (-1028 (-1117)) $) NIL T ELT) (($ $ (-599 (-1028 (-1117))) (-599 $)) NIL T ELT) (($ $ (-1117) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-599 (-1117)) (-599 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1117) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3907 (($ $ (-1028 (-1117))) NIL (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 (-1028 (-1117))) (-599 (-714))) NIL T ELT) (($ $ (-1028 (-1117)) (-714)) NIL T ELT) (($ $ (-599 (-1028 (-1117)))) NIL T ELT) (($ $ (-1028 (-1117))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT)) (-1522 (((-599 (-1117)) $) NIL T ELT)) (-4098 (((-484 (-1028 (-1117))) $) NIL T ELT) (((-714) $ (-1028 (-1117))) NIL T ELT) (((-599 (-714)) $ (-599 (-1028 (-1117)))) NIL T ELT) (((-714) $ (-1117)) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-1028 (-1117)) (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-1028 (-1117)) (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-1028 (-1117)) (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT) (($ $ (-1028 (-1117))) NIL (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1028 (-1117))) NIL T ELT) (($ (-1117)) NIL T ELT) (($ (-1065 |#1| (-1117))) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-484 (-1028 (-1117)))) NIL T ELT) (($ $ (-1028 (-1117)) (-714)) NIL T ELT) (($ $ (-599 (-1028 (-1117))) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-599 (-1028 (-1117))) (-599 (-714))) NIL T ELT) (($ $ (-1028 (-1117)) (-714)) NIL T ELT) (($ $ (-599 (-1028 (-1117)))) NIL T ELT) (($ $ (-1028 (-1117))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1027 |#1|) (-13 (-212 |#1| (-1117) (-1028 (-1117)) (-484 (-1028 (-1117)))) (-978 (-1065 |#1| (-1117)))) (-989)) (T -1027)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-1555 (((-714) $) NIL T ELT)) (-3981 ((|#1| $) 10 T ELT)) (-3295 (((-3 |#1| "failed") $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-3922 (((-714) $) 11 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-1556 (($ |#1| (-714)) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3908 (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2790 (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 16 T ELT))) -(((-1028 |#1|) (-227 |#1|) (-781)) (T -1028)) -NIL -((-2687 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3886 (($ |#1| |#1|) 16 T ELT)) (-4108 (((-599 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-780)) ELT)) (-3367 ((|#1| $) 12 T ELT)) (-3369 ((|#1| $) 11 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3365 (((-499) $) 15 T ELT)) (-3366 ((|#1| $) 14 T ELT)) (-3368 ((|#1| $) 13 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-4113 (((-599 |#1|) $) 42 (|has| |#1| (-780)) ELT) (((-599 |#1|) (-599 $)) 41 (|has| |#1| (-780)) ELT)) (-4122 (($ |#1|) 29 T ELT)) (-4096 (((-797) $) 28 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3887 (($ |#1| |#1|) 10 T ELT)) (-3370 (($ $ (-499)) 17 T ELT)) (-3174 (((-85) $ $) 22 (|has| |#1| (-1041)) ELT))) -(((-1029 |#1|) (-13 (-1034 |#1|) (-10 -7 (IF (|has| |#1| (-1041)) (-6 (-1041)) |%noBranch|) (IF (|has| |#1| (-780)) (-6 (-1035 |#1| (-599 |#1|))) |%noBranch|))) (-1157)) (T -1029)) -NIL -((-4108 (((-599 |#2|) (-1 |#2| |#1|) (-1029 |#1|)) 27 (|has| |#1| (-780)) ELT) (((-1029 |#2|) (-1 |#2| |#1|) (-1029 |#1|)) 14 T ELT))) -(((-1030 |#1| |#2|) (-10 -7 (-15 -4108 ((-1029 |#2|) (-1 |#2| |#1|) (-1029 |#1|))) (IF (|has| |#1| (-780)) (-15 -4108 ((-599 |#2|) (-1 |#2| |#1|) (-1029 |#1|))) |%noBranch|)) (-1157) (-1157)) (T -1030)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1029 *5)) (-4 *5 (-780)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-599 *6)) (-5 *1 (-1030 *5 *6)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1029 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-1029 *6)) (-5 *1 (-1030 *5 *6))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 16 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3363 (((-599 (-1075)) $) 10 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-1031) (-13 (-1023) (-10 -8 (-15 -3363 ((-599 (-1075)) $))))) (T -1031)) -((-3363 (*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-1031))))) -((-2687 (((-85) $ $) NIL (|has| (-1029 |#1|) (-1041)) ELT)) (-3981 (((-1117) $) NIL T ELT)) (-3886 (((-1029 |#1|) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| (-1029 |#1|) (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| (-1029 |#1|) (-1041)) ELT)) (-3364 (($ (-1117) (-1029 |#1|)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| (-1029 |#1|) (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| (-1029 |#1|) (-1041)) ELT)) (-3174 (((-85) $ $) NIL (|has| (-1029 |#1|) (-1041)) ELT))) -(((-1032 |#1|) (-13 (-1157) (-10 -8 (-15 -3364 ($ (-1117) (-1029 |#1|))) (-15 -3981 ((-1117) $)) (-15 -3886 ((-1029 |#1|) $)) (IF (|has| (-1029 |#1|) (-1041)) (-6 (-1041)) |%noBranch|))) (-1157)) (T -1032)) -((-3364 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1029 *4)) (-4 *4 (-1157)) (-5 *1 (-1032 *4)))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1032 *3)) (-4 *3 (-1157)))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-1029 *3)) (-5 *1 (-1032 *3)) (-4 *3 (-1157))))) -((-4108 (((-1032 |#2|) (-1 |#2| |#1|) (-1032 |#1|)) 19 T ELT))) -(((-1033 |#1| |#2|) (-10 -7 (-15 -4108 ((-1032 |#2|) (-1 |#2| |#1|) (-1032 |#1|)))) (-1157) (-1157)) (T -1033)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1032 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-1032 *6)) (-5 *1 (-1033 *5 *6))))) -((-3886 (($ |#1| |#1|) 8 T ELT)) (-3367 ((|#1| $) 11 T ELT)) (-3369 ((|#1| $) 13 T ELT)) (-3365 (((-499) $) 9 T ELT)) (-3366 ((|#1| $) 10 T ELT)) (-3368 ((|#1| $) 12 T ELT)) (-4122 (($ |#1|) 6 T ELT)) (-3887 (($ |#1| |#1|) 15 T ELT)) (-3370 (($ $ (-499)) 14 T ELT))) -(((-1034 |#1|) (-113) (-1157)) (T -1034)) -((-3887 (*1 *1 *2 *2) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157)))) (-3370 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-1034 *3)) (-4 *3 (-1157)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157)))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-1157)) (-5 *2 (-499)))) (-3886 (*1 *1 *2 *2) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157))))) -(-13 (-573 |t#1|) (-10 -8 (-15 -3887 ($ |t#1| |t#1|)) (-15 -3370 ($ $ (-499))) (-15 -3369 (|t#1| $)) (-15 -3368 (|t#1| $)) (-15 -3367 (|t#1| $)) (-15 -3366 (|t#1| $)) (-15 -3365 ((-499) $)) (-15 -3886 ($ |t#1| |t#1|)))) -(((-573 |#1|) . T)) -((-3886 (($ |#1| |#1|) 8 T ELT)) (-4108 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3367 ((|#1| $) 11 T ELT)) (-3369 ((|#1| $) 13 T ELT)) (-3365 (((-499) $) 9 T ELT)) (-3366 ((|#1| $) 10 T ELT)) (-3368 ((|#1| $) 12 T ELT)) (-4113 ((|#2| (-599 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-4122 (($ |#1|) 6 T ELT)) (-3887 (($ |#1| |#1|) 15 T ELT)) (-3370 (($ $ (-499)) 14 T ELT))) -(((-1035 |#1| |#2|) (-113) (-780) (-1090 |t#1|)) (T -1035)) -((-4113 (*1 *2 *3) (-12 (-5 *3 (-599 *1)) (-4 *1 (-1035 *4 *2)) (-4 *4 (-780)) (-4 *2 (-1090 *4)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-780)) (-4 *2 (-1090 *3)))) (-4108 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1035 *4 *2)) (-4 *4 (-780)) (-4 *2 (-1090 *4))))) -(-13 (-1034 |t#1|) (-10 -8 (-15 -4113 (|t#2| (-599 $))) (-15 -4113 (|t#2| $)) (-15 -4108 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-573 |#1|) . T) ((-1034 |#1|) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3948 (((-1075) $) 12 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 18 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-599 (-1075)) $) 10 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-1036) (-13 (-1023) (-10 -8 (-15 -3371 ((-599 (-1075)) $)) (-15 -3948 ((-1075) $))))) (T -1036)) -((-3371 (*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-1036)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1036))))) -((-2687 (((-85) $ $) NIL T ELT)) (-1900 (($) NIL (|has| |#1| (-323)) ELT)) (-3372 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 83 T ELT)) (-3374 (($ $ $) 80 T ELT)) (-3373 (((-85) $ $) 82 T ELT)) (-3258 (((-714)) NIL (|has| |#1| (-323)) ELT)) (-3377 (($ (-599 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1603 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3545 (($ |#1| $) 74 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4145)) ELT)) (-3115 (($) NIL (|has| |#1| (-323)) ELT)) (-3010 (((-599 |#1|) $) 19 (|has| $ (-6 -4145)) ELT)) (-3379 (((-85) $ $) NIL T ELT)) (-2650 ((|#1| $) 55 (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 73 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2978 ((|#1| $) 53 (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2111 (((-857) $) NIL (|has| |#1| (-323)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3376 (($ $ $) 78 T ELT)) (-1308 ((|#1| $) 25 T ELT)) (-3757 (($ |#1| $) 69 T ELT)) (-2518 (($ (-857)) NIL (|has| |#1| (-323)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 31 T ELT)) (-1309 ((|#1| $) 27 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 21 T ELT)) (-3713 (($) 11 T ELT)) (-3375 (($ $ |#1|) NIL T ELT) (($ $ $) 79 T ELT)) (-1499 (($) NIL T ELT) (($ (-599 |#1|)) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) 16 T ELT)) (-4122 (((-488) $) 50 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 62 T ELT)) (-1901 (($ $) NIL (|has| |#1| (-323)) ELT)) (-4096 (((-797) $) NIL T ELT)) (-1902 (((-714) $) NIL T ELT)) (-3378 (($ (-599 |#1|)) NIL T ELT) (($) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-1310 (($ (-599 |#1|)) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 52 T ELT)) (-4107 (((-714) $) 10 (|has| $ (-6 -4145)) ELT))) -(((-1037 |#1|) (-380 |#1|) (-1041)) (T -1037)) -NIL -((-3372 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3374 (($ $ $) 10 T ELT)) (-3375 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) -(((-1038 |#1| |#2|) (-10 -7 (-15 -3372 (|#1| |#2| |#1|)) (-15 -3372 (|#1| |#1| |#2|)) (-15 -3372 (|#1| |#1| |#1|)) (-15 -3374 (|#1| |#1| |#1|)) (-15 -3375 (|#1| |#1| |#2|)) (-15 -3375 (|#1| |#1| |#1|))) (-1039 |#2|) (-1041)) (T -1038)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3372 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3374 (($ $ $) 24 T ELT)) (-3373 (((-85) $ $) 23 T ELT)) (-3377 (($) 29 T ELT) (($ (-599 |#1|)) 28 T ELT)) (-3860 (($ (-1 (-85) |#1|) $) 57 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 37 T CONST)) (-1386 (($ $) 60 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#1| $) 59 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 56 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#1|) $) 44 (|has| $ (-6 -4145)) ELT)) (-3379 (((-85) $ $) 32 T ELT)) (-2727 (((-599 |#1|) $) 45 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 47 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3376 (($ $ $) 27 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 53 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 42 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) 51 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 49 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 (-247 |#1|))) 48 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 33 T ELT)) (-3543 (((-85) $) 36 T ELT)) (-3713 (($) 35 T ELT)) (-3375 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-2048 (((-714) |#1| $) 46 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#1|) $) 43 (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 34 T ELT)) (-4122 (((-488) $) 61 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 52 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-3378 (($) 31 T ELT) (($ (-599 |#1|)) 30 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 41 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4107 (((-714) $) 38 (|has| $ (-6 -4145)) ELT))) -(((-1039 |#1|) (-113) (-1041)) (T -1039)) -((-3379 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-1041)) (-5 *2 (-85)))) (-3378 (*1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) (-3378 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-4 *1 (-1039 *3)))) (-3377 (*1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) (-3377 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-4 *1 (-1039 *3)))) (-3376 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) (-3375 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) (-3375 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) (-3374 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) (-3373 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-1041)) (-5 *2 (-85)))) (-3372 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) (-3372 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) (-3372 (*1 *1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041))))) -(-13 (-1041) (-124 |t#1|) (-10 -8 (-6 -4135) (-15 -3379 ((-85) $ $)) (-15 -3378 ($)) (-15 -3378 ($ (-599 |t#1|))) (-15 -3377 ($)) (-15 -3377 ($ (-599 |t#1|))) (-15 -3376 ($ $ $)) (-15 -3375 ($ $ $)) (-15 -3375 ($ $ |t#1|)) (-15 -3374 ($ $ $)) (-15 -3373 ((-85) $ $)) (-15 -3372 ($ $ $)) (-15 -3372 ($ $ |t#1|)) (-15 -3372 ($ |t#1| $)))) -(((-34) . T) ((-73) . T) ((-568 (-797)) . T) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) . T) ((-1157) . T)) -((-3380 (((-1099) $) 10 T ELT)) (-3381 (((-1060) $) 8 T ELT))) -(((-1040 |#1|) (-10 -7 (-15 -3380 ((-1099) |#1|)) (-15 -3381 ((-1060) |#1|))) (-1041)) (T -1040)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-1041) (-113)) (T -1041)) -((-3381 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1060)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1099))))) -(-13 (-73) (-568 (-797)) (-10 -8 (-15 -3381 ((-1060) $)) (-15 -3380 ((-1099) $)))) -(((-73) . T) ((-568 (-797)) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) 36 T ELT)) (-3385 (($ (-599 (-857))) 70 T ELT)) (-3387 (((-3 $ #1="failed") $ (-857) (-857)) 81 T ELT)) (-3115 (($) 40 T ELT)) (-3383 (((-85) (-857) $) 42 T ELT)) (-2111 (((-857) $) 64 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) 39 T ELT)) (-3388 (((-3 $ #1#) $ (-857)) 77 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3384 (((-1207 $)) 47 T ELT)) (-3386 (((-599 (-857)) $) 27 T ELT)) (-3382 (((-714) $ (-857) (-857)) 78 T ELT)) (-4096 (((-797) $) 32 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 24 T ELT))) -(((-1042 |#1| |#2|) (-13 (-323) (-10 -8 (-15 -3388 ((-3 $ #1="failed") $ (-857))) (-15 -3387 ((-3 $ #1#) $ (-857) (-857))) (-15 -3386 ((-599 (-857)) $)) (-15 -3385 ($ (-599 (-857)))) (-15 -3384 ((-1207 $))) (-15 -3383 ((-85) (-857) $)) (-15 -3382 ((-714) $ (-857) (-857))))) (-857) (-857)) (T -1042)) -((-3388 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-857)) (-5 *1 (-1042 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3387 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-857)) (-5 *1 (-1042 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1042 *3 *4)) (-14 *3 (-857)) (-14 *4 (-857)))) (-3385 (*1 *1 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1042 *3 *4)) (-14 *3 (-857)) (-14 *4 (-857)))) (-3384 (*1 *2) (-12 (-5 *2 (-1207 (-1042 *3 *4))) (-5 *1 (-1042 *3 *4)) (-14 *3 (-857)) (-14 *4 (-857)))) (-3383 (*1 *2 *3 *1) (-12 (-5 *3 (-857)) (-5 *2 (-85)) (-5 *1 (-1042 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3382 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-857)) (-5 *2 (-714)) (-5 *1 (-1042 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3398 (((-85) $) NIL T ELT)) (-3394 (((-1117) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3683 (((-1099) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3393 (((-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3396 (((-85) $) NIL T ELT)) (-3392 (((-179) $) NIL T ELT)) (-3391 (((-797) $) NIL T ELT)) (-3404 (((-85) $ $) NIL T ELT)) (-3950 (($ $ (-499)) NIL T ELT) (($ $ (-599 (-499))) NIL T ELT)) (-3395 (((-599 $) $) NIL T ELT)) (-4122 (($ (-1099)) NIL T ELT) (($ (-1117)) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-179)) NIL T ELT) (($ (-797)) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-3389 (($ $) NIL T ELT)) (-3390 (($ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4107 (((-499) $) NIL T ELT))) -(((-1043) (-1044 (-1099) (-1117) (-499) (-179) (-797))) (T -1043)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3398 (((-85) $) 36 T ELT)) (-3394 ((|#2| $) 31 T ELT)) (-3399 (((-85) $) 37 T ELT)) (-3683 ((|#1| $) 32 T ELT)) (-3401 (((-85) $) 39 T ELT)) (-3403 (((-85) $) 41 T ELT)) (-3400 (((-85) $) 38 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3397 (((-85) $) 35 T ELT)) (-3393 ((|#3| $) 30 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3396 (((-85) $) 34 T ELT)) (-3392 ((|#4| $) 29 T ELT)) (-3391 ((|#5| $) 28 T ELT)) (-3404 (((-85) $ $) 42 T ELT)) (-3950 (($ $ (-499)) 44 T ELT) (($ $ (-599 (-499))) 43 T ELT)) (-3395 (((-599 $) $) 33 T ELT)) (-4122 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-599 $)) 45 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-3389 (($ $) 26 T ELT)) (-3390 (($ $) 27 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3402 (((-85) $) 40 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4107 (((-499) $) 25 T ELT))) -(((-1044 |#1| |#2| |#3| |#4| |#5|) (-113) (-1041) (-1041) (-1041) (-1041) (-1041)) (T -1044)) -((-3404 (*1 *2 *1 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85)))) (-3403 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85)))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85)))) (-3396 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85)))) (-3395 (*1 *2 *1) (-12 (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-599 *1)) (-4 *1 (-1044 *3 *4 *5 *6 *7)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1044 *2 *3 *4 *5 *6)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041)))) (-3394 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *2 *4 *5 *6)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041)))) (-3393 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *2 *5 *6)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041)))) (-3392 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *2 *6)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *2)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041)))) (-3390 (*1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4 *5 *6)) (-4 *2 (-1041)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)))) (-3389 (*1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4 *5 *6)) (-4 *2 (-1041)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)))) (-4107 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-499))))) -(-13 (-1041) (-573 |t#1|) (-573 |t#2|) (-573 |t#3|) (-573 |t#4|) (-573 |t#4|) (-573 |t#5|) (-573 (-599 $)) (-240 (-499) $) (-240 (-599 (-499)) $) (-10 -8 (-15 -3404 ((-85) $ $)) (-15 -3403 ((-85) $)) (-15 -3402 ((-85) $)) (-15 -3401 ((-85) $)) (-15 -3400 ((-85) $)) (-15 -3399 ((-85) $)) (-15 -3398 ((-85) $)) (-15 -3397 ((-85) $)) (-15 -3396 ((-85) $)) (-15 -3395 ((-599 $) $)) (-15 -3683 (|t#1| $)) (-15 -3394 (|t#2| $)) (-15 -3393 (|t#3| $)) (-15 -3392 (|t#4| $)) (-15 -3391 (|t#5| $)) (-15 -3390 ($ $)) (-15 -3389 ($ $)) (-15 -4107 ((-499) $)))) -(((-73) . T) ((-568 (-797)) . T) ((-573 (-599 $)) . T) ((-573 |#1|) . T) ((-573 |#2|) . T) ((-573 |#3|) . T) ((-573 |#4|) . T) ((-573 |#5|) . T) ((-240 (-499) $) . T) ((-240 (-599 (-499)) $) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3398 (((-85) $) 45 T ELT)) (-3394 ((|#2| $) 48 T ELT)) (-3399 (((-85) $) 20 T ELT)) (-3683 ((|#1| $) 21 T ELT)) (-3401 (((-85) $) 42 T ELT)) (-3403 (((-85) $) 14 T ELT)) (-3400 (((-85) $) 44 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3397 (((-85) $) 46 T ELT)) (-3393 ((|#3| $) 50 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3396 (((-85) $) 47 T ELT)) (-3392 ((|#4| $) 49 T ELT)) (-3391 ((|#5| $) 51 T ELT)) (-3404 (((-85) $ $) 41 T ELT)) (-3950 (($ $ (-499)) 62 T ELT) (($ $ (-599 (-499))) 64 T ELT)) (-3395 (((-599 $) $) 27 T ELT)) (-4122 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-599 $)) 52 T ELT)) (-4096 (((-797) $) 28 T ELT)) (-3389 (($ $) 26 T ELT)) (-3390 (($ $) 58 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 23 T ELT)) (-3174 (((-85) $ $) 40 T ELT)) (-4107 (((-499) $) 60 T ELT))) -(((-1045 |#1| |#2| |#3| |#4| |#5|) (-1044 |#1| |#2| |#3| |#4| |#5|) (-1041) (-1041) (-1041) (-1041) (-1041)) (T -1045)) -NIL -((-3520 (((-1213) $) 22 T ELT)) (-3405 (($ (-1117) (-388) |#2|) 11 T ELT)) (-4096 (((-797) $) 16 T ELT))) -(((-1046 |#1| |#2|) (-13 (-350) (-10 -8 (-15 -3405 ($ (-1117) (-388) |#2|)))) (-1041) (-375 |#1|)) (T -1046)) -((-3405 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-388)) (-4 *5 (-1041)) (-5 *1 (-1046 *5 *4)) (-4 *4 (-375 *5))))) -((-3408 (((-85) |#5| |#5|) 44 T ELT)) (-3411 (((-85) |#5| |#5|) 59 T ELT)) (-3416 (((-85) |#5| (-599 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3412 (((-85) (-599 |#4|) (-599 |#4|)) 65 T ELT)) (-3418 (((-85) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) 70 T ELT)) (-3407 (((-1213)) 32 T ELT)) (-3406 (((-1213) (-1099) (-1099) (-1099)) 28 T ELT)) (-3417 (((-599 |#5|) (-599 |#5|)) 101 T ELT)) (-3419 (((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)))) 93 T ELT)) (-3420 (((-599 (-2 (|:| -3404 (-599 |#4|)) (|:| -1633 |#5|) (|:| |ineq| (-599 |#4|)))) (-599 |#4|) (-599 |#5|) (-85) (-85)) 123 T ELT)) (-3410 (((-85) |#5| |#5|) 53 T ELT)) (-3415 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3413 (((-85) (-599 |#4|) (-599 |#4|)) 64 T ELT)) (-3414 (((-85) (-599 |#4|) (-599 |#4|)) 66 T ELT)) (-3849 (((-85) (-599 |#4|) (-599 |#4|)) 67 T ELT)) (-3421 (((-3 (-2 (|:| -3404 (-599 |#4|)) (|:| -1633 |#5|) (|:| |ineq| (-599 |#4|))) #1#) (-599 |#4|) |#5| (-599 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3409 (((-599 |#5|) (-599 |#5|)) 49 T ELT))) -(((-1047 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3406 ((-1213) (-1099) (-1099) (-1099))) (-15 -3407 ((-1213))) (-15 -3408 ((-85) |#5| |#5|)) (-15 -3409 ((-599 |#5|) (-599 |#5|))) (-15 -3410 ((-85) |#5| |#5|)) (-15 -3411 ((-85) |#5| |#5|)) (-15 -3412 ((-85) (-599 |#4|) (-599 |#4|))) (-15 -3413 ((-85) (-599 |#4|) (-599 |#4|))) (-15 -3414 ((-85) (-599 |#4|) (-599 |#4|))) (-15 -3849 ((-85) (-599 |#4|) (-599 |#4|))) (-15 -3415 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3416 ((-85) |#5| |#5|)) (-15 -3416 ((-85) |#5| (-599 |#5|))) (-15 -3417 ((-599 |#5|) (-599 |#5|))) (-15 -3418 ((-85) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)))) (-15 -3419 ((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) (-15 -3420 ((-599 (-2 (|:| -3404 (-599 |#4|)) (|:| -1633 |#5|) (|:| |ineq| (-599 |#4|)))) (-599 |#4|) (-599 |#5|) (-85) (-85))) (-15 -3421 ((-3 (-2 (|:| -3404 (-599 |#4|)) (|:| -1633 |#5|) (|:| |ineq| (-599 |#4|))) #1#) (-599 |#4|) |#5| (-599 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|) (-1011 |#1| |#2| |#3| |#4|)) (T -1047)) -((-3421 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *9 (-1005 *6 *7 *8)) (-5 *2 (-2 (|:| -3404 (-599 *9)) (|:| -1633 *4) (|:| |ineq| (-599 *9)))) (-5 *1 (-1047 *6 *7 *8 *9 *4)) (-5 *3 (-599 *9)) (-4 *4 (-1011 *6 *7 *8 *9)))) (-3420 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-599 *10)) (-5 *5 (-85)) (-4 *10 (-1011 *6 *7 *8 *9)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *9 (-1005 *6 *7 *8)) (-5 *2 (-599 (-2 (|:| -3404 (-599 *9)) (|:| -1633 *10) (|:| |ineq| (-599 *9))))) (-5 *1 (-1047 *6 *7 *8 *9 *10)) (-5 *3 (-599 *9)))) (-3419 (*1 *2 *2) (-12 (-5 *2 (-599 (-2 (|:| |val| (-599 *6)) (|:| -1633 *7)))) (-4 *6 (-1005 *3 *4 *5)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-1047 *3 *4 *5 *6 *7)))) (-3418 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-599 *7)) (|:| -1633 *8))) (-4 *7 (-1005 *4 *5 *6)) (-4 *8 (-1011 *4 *5 *6 *7)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8)))) (-3417 (*1 *2 *2) (-12 (-5 *2 (-599 *7)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *1 (-1047 *3 *4 *5 *6 *7)))) (-3416 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1047 *5 *6 *7 *8 *3)))) (-3416 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3415 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3849 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3414 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3413 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3412 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3411 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3410 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3409 (*1 *2 *2) (-12 (-5 *2 (-599 *7)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *1 (-1047 *3 *4 *5 *6 *7)))) (-3408 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3407 (*1 *2) (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-1213)) (-5 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6)))) (-3406 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7))))) -((-3436 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#5|) 106 T ELT)) (-3426 (((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3429 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3431 (((-599 |#5|) |#4| |#5|) 122 T ELT)) (-3433 (((-599 |#5|) |#4| |#5|) 129 T ELT)) (-3435 (((-599 |#5|) |#4| |#5|) 130 T ELT)) (-3430 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|) 107 T ELT)) (-3432 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|) 128 T ELT)) (-3434 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3427 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) |#3| (-85)) 91 T ELT) (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3428 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3425 (((-1213)) 36 T ELT)) (-3423 (((-1213)) 25 T ELT)) (-3424 (((-1213) (-1099) (-1099) (-1099)) 32 T ELT)) (-3422 (((-1213) (-1099) (-1099) (-1099)) 21 T ELT))) -(((-1048 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3422 ((-1213) (-1099) (-1099) (-1099))) (-15 -3423 ((-1213))) (-15 -3424 ((-1213) (-1099) (-1099) (-1099))) (-15 -3425 ((-1213))) (-15 -3426 ((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) |#4| |#4| |#5|)) (-15 -3427 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3427 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) |#3| (-85))) (-15 -3428 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5|)) (-15 -3429 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5|)) (-15 -3434 ((-85) |#4| |#5|)) (-15 -3430 ((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|)) (-15 -3431 ((-599 |#5|) |#4| |#5|)) (-15 -3432 ((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|)) (-15 -3433 ((-599 |#5|) |#4| |#5|)) (-15 -3434 ((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|)) (-15 -3435 ((-599 |#5|) |#4| |#5|)) (-15 -3436 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#5|))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|) (-1011 |#1| |#2| |#3| |#4|)) (T -1048)) -((-3436 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3435 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 *4)) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3434 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3433 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 *4)) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3432 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3431 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 *4)) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3430 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3434 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3429 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3428 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3427 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-2 (|:| |val| (-599 *8)) (|:| -1633 *9)))) (-5 *5 (-85)) (-4 *8 (-1005 *6 *7 *4)) (-4 *9 (-1011 *6 *7 *4 *8)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *4 (-781)) (-5 *2 (-599 (-2 (|:| |val| *8) (|:| -1633 *9)))) (-5 *1 (-1048 *6 *7 *4 *8 *9)))) (-3427 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *3 (-1005 *6 *7 *8)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1048 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) (-3426 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3425 (*1 *2) (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-1213)) (-5 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6)))) (-3424 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1048 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3423 (*1 *2) (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-1213)) (-5 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6)))) (-3422 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1048 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |#4|)))) (-599 |#4|)) 90 T ELT)) (-3832 (((-599 $) (-599 |#4|)) 91 T ELT) (((-599 $) (-599 |#4|) (-85)) 118 T ELT)) (-3204 (((-599 |#3|) $) 37 T ELT)) (-3029 (((-85) $) 30 T ELT)) (-3020 (((-85) $) 21 (|has| |#1| (-510)) ELT)) (-3843 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3838 ((|#4| |#4| $) 97 T ELT)) (-3925 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| $) 133 T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3860 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -4145)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3874 (($) 46 T CONST)) (-3025 (((-85) $) 26 (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) 28 (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) 27 (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) 29 (|has| |#1| (-510)) ELT)) (-3839 (((-599 |#4|) (-599 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) 22 (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) 23 (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ "failed") (-599 |#4|)) 40 T ELT)) (-3294 (($ (-599 |#4|)) 39 T ELT)) (-3949 (((-3 $ #1#) $) 87 T ELT)) (-3835 ((|#4| |#4| $) 94 T ELT)) (-1386 (($ $) 69 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#4| $) 68 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-510)) ELT)) (-3844 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3833 ((|#4| |#4| $) 92 T ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4145)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#4|)) (|:| -1795 (-599 |#4|))) $) 110 T ELT)) (-3335 (((-85) |#4| $) 143 T ELT)) (-3333 (((-85) |#4| $) 140 T ELT)) (-3336 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-3010 (((-599 |#4|) $) 53 (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3318 ((|#3| $) 38 T ELT)) (-2727 (((-599 |#4|) $) 54 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3035 (((-599 |#3|) $) 36 T ELT)) (-3034 (((-85) |#3| $) 35 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3329 (((-3 |#4| (-599 $)) |#4| |#4| $) 135 T ELT)) (-3328 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| |#4| $) 134 T ELT)) (-3948 (((-3 |#4| #1#) $) 88 T ELT)) (-3330 (((-599 $) |#4| $) 136 T ELT)) (-3332 (((-3 (-85) (-599 $)) |#4| $) 139 T ELT)) (-3331 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3376 (((-599 $) |#4| $) 132 T ELT) (((-599 $) (-599 |#4|) $) 131 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 130 T ELT) (((-599 $) |#4| (-599 $)) 129 T ELT)) (-3580 (($ |#4| $) 124 T ELT) (($ (-599 |#4|) $) 123 T ELT)) (-3847 (((-599 |#4|) $) 112 T ELT)) (-3841 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3836 ((|#4| |#4| $) 95 T ELT)) (-3849 (((-85) $ $) 115 T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-510)) ELT)) (-3842 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3837 ((|#4| |#4| $) 96 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3951 (((-3 |#4| #1#) $) 89 T ELT)) (-1387 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3829 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3919 (($ $ |#4|) 82 T ELT) (((-599 $) |#4| $) 122 T ELT) (((-599 $) |#4| (-599 $)) 121 T ELT) (((-599 $) (-599 |#4|) $) 120 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 119 T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) 60 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) 58 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) 57 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) 42 T ELT)) (-3543 (((-85) $) 45 T ELT)) (-3713 (($) 44 T ELT)) (-4098 (((-714) $) 111 T ELT)) (-2048 (((-714) |#4| $) 55 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 43 T ELT)) (-4122 (((-488) $) 70 (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) 61 T ELT)) (-3031 (($ $ |#3|) 32 T ELT)) (-3033 (($ $ |#3|) 34 T ELT)) (-3834 (($ $) 93 T ELT)) (-3032 (($ $ |#3|) 33 T ELT)) (-4096 (((-797) $) 13 T ELT) (((-599 |#4|) $) 41 T ELT)) (-3828 (((-714) $) 81 (|has| |#3| (-323)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3840 (((-85) $ (-1 (-85) |#4| (-599 |#4|))) 103 T ELT)) (-3327 (((-599 $) |#4| $) 128 T ELT) (((-599 $) |#4| (-599 $)) 127 T ELT) (((-599 $) (-599 |#4|) $) 126 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 125 T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 |#3|) $) 86 T ELT)) (-3334 (((-85) |#4| $) 142 T ELT)) (-4083 (((-85) |#3| $) 85 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4107 (((-714) $) 47 (|has| $ (-6 -4145)) ELT))) -(((-1049 |#1| |#2| |#3| |#4|) (-113) (-406) (-738) (-781) (-1005 |t#1| |t#2| |t#3|)) (T -1049)) -NIL -(-13 (-1011 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-73) . T) ((-568 (-599 |#4|)) . T) ((-568 (-797)) . T) ((-124 |#4|) . T) ((-569 (-488)) |has| |#4| (-569 (-488))) ((-263 |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-443 |#4|) . T) ((-468 |#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1011 |#1| |#2| |#3| |#4|) . T) ((-1041) . T) ((-1152 |#1| |#2| |#3| |#4|) . T) ((-1157) . T)) -((-3447 (((-599 (-499)) (-499) (-499) (-499)) 40 T ELT)) (-3446 (((-599 (-499)) (-499) (-499) (-499)) 30 T ELT)) (-3445 (((-599 (-499)) (-499) (-499) (-499)) 35 T ELT)) (-3444 (((-499) (-499) (-499)) 22 T ELT)) (-3443 (((-1207 (-499)) (-599 (-499)) (-1207 (-499)) (-499)) 79 T ELT) (((-1207 (-499)) (-1207 (-499)) (-1207 (-499)) (-499)) 74 T ELT)) (-3442 (((-599 (-499)) (-599 (-857)) (-599 (-499)) (-85)) 56 T ELT)) (-3441 (((-647 (-499)) (-599 (-499)) (-599 (-499)) (-647 (-499))) 78 T ELT)) (-3440 (((-647 (-499)) (-599 (-857)) (-599 (-499))) 61 T ELT)) (-3439 (((-599 (-647 (-499))) (-599 (-857))) 67 T ELT)) (-3438 (((-599 (-499)) (-599 (-499)) (-599 (-499)) (-647 (-499))) 82 T ELT)) (-3437 (((-647 (-499)) (-599 (-499)) (-599 (-499)) (-599 (-499))) 92 T ELT))) -(((-1050) (-10 -7 (-15 -3437 ((-647 (-499)) (-599 (-499)) (-599 (-499)) (-599 (-499)))) (-15 -3438 ((-599 (-499)) (-599 (-499)) (-599 (-499)) (-647 (-499)))) (-15 -3439 ((-599 (-647 (-499))) (-599 (-857)))) (-15 -3440 ((-647 (-499)) (-599 (-857)) (-599 (-499)))) (-15 -3441 ((-647 (-499)) (-599 (-499)) (-599 (-499)) (-647 (-499)))) (-15 -3442 ((-599 (-499)) (-599 (-857)) (-599 (-499)) (-85))) (-15 -3443 ((-1207 (-499)) (-1207 (-499)) (-1207 (-499)) (-499))) (-15 -3443 ((-1207 (-499)) (-599 (-499)) (-1207 (-499)) (-499))) (-15 -3444 ((-499) (-499) (-499))) (-15 -3445 ((-599 (-499)) (-499) (-499) (-499))) (-15 -3446 ((-599 (-499)) (-499) (-499) (-499))) (-15 -3447 ((-599 (-499)) (-499) (-499) (-499))))) (T -1050)) -((-3447 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-1050)) (-5 *3 (-499)))) (-3446 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-1050)) (-5 *3 (-499)))) (-3445 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-1050)) (-5 *3 (-499)))) (-3444 (*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-1050)))) (-3443 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1207 (-499))) (-5 *3 (-599 (-499))) (-5 *4 (-499)) (-5 *1 (-1050)))) (-3443 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1207 (-499))) (-5 *3 (-499)) (-5 *1 (-1050)))) (-3442 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-599 (-499))) (-5 *3 (-599 (-857))) (-5 *4 (-85)) (-5 *1 (-1050)))) (-3441 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-647 (-499))) (-5 *3 (-599 (-499))) (-5 *1 (-1050)))) (-3440 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-857))) (-5 *4 (-599 (-499))) (-5 *2 (-647 (-499))) (-5 *1 (-1050)))) (-3439 (*1 *2 *3) (-12 (-5 *3 (-599 (-857))) (-5 *2 (-599 (-647 (-499)))) (-5 *1 (-1050)))) (-3438 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-599 (-499))) (-5 *3 (-647 (-499))) (-5 *1 (-1050)))) (-3437 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-647 (-499))) (-5 *1 (-1050))))) -((** (($ $ (-857)) 10 T ELT))) -(((-1051 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-857)))) (-1052)) (T -1051)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (** (($ $ (-857)) 17 T ELT)) (* (($ $ $) 18 T ELT))) -(((-1052) (-113)) (T -1052)) -((* (*1 *1 *1 *1) (-4 *1 (-1052))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-857))))) -(-13 (-1041) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-857))))) -(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL (|has| |#3| (-73)) ELT)) (-3326 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3857 (($ (-857)) NIL (|has| |#3| (-989)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-2600 (($ $ $) NIL (|has| |#3| (-738)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3258 (((-714)) NIL (|has| |#3| (-323)) ELT)) (-3938 ((|#3| $ (-499) |#3|) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (-12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1041)) ELT)) (-3294 (((-499) $) NIL (-12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) ELT) (((-361 (-499)) $) NIL (-12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041))) ELT) ((|#3| $) NIL (|has| |#3| (-1041)) ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (-12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989))) ELT) (((-2 (|:| -1673 (-647 |#3|)) (|:| |vec| (-1207 |#3|))) (-647 $) (-1207 $)) NIL (|has| |#3| (-989)) ELT) (((-647 |#3|) (-647 $)) NIL (|has| |#3| (-989)) ELT)) (-3607 (((-3 $ #1#) $) NIL (|has| |#3| (-989)) ELT)) (-3115 (($) NIL (|has| |#3| (-323)) ELT)) (-1609 ((|#3| $ (-499) |#3|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#3| $ (-499)) 12 T ELT)) (-3324 (((-85) $) NIL (|has| |#3| (-738)) ELT)) (-3010 (((-599 |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) NIL (|has| |#3| (-989)) ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#3| (-781)) ELT)) (-2727 (((-599 |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#3| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#3| (-781)) ELT)) (-2051 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| |#3| (-323)) ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (-12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989))) ELT) (((-2 (|:| -1673 (-647 |#3|)) (|:| |vec| (-1207 |#3|))) (-1207 $) $) NIL (|has| |#3| (-989)) ELT) (((-647 |#3|) (-1207 $)) NIL (|has| |#3| (-989)) ELT)) (-3380 (((-1099) $) NIL (|has| |#3| (-1041)) ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-2518 (($ (-857)) NIL (|has| |#3| (-323)) ELT)) (-3381 (((-1060) $) NIL (|has| |#3| (-1041)) ELT)) (-3951 ((|#3| $) NIL (|has| (-499) (-781)) ELT)) (-2300 (($ $ |#3|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#3|))) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ (-247 |#3|)) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ (-599 |#3|) (-599 |#3|)) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#3| (-1041))) ELT)) (-2306 (((-599 |#3|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#3| $ (-499) |#3|) NIL T ELT) ((|#3| $ (-499)) NIL T ELT)) (-3986 ((|#3| $ $) NIL (|has| |#3| (-989)) ELT)) (-1501 (($ (-1207 |#3|)) NIL T ELT)) (-4061 (((-107)) NIL (|has| |#3| (-318)) ELT)) (-3908 (($ $ (-714)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-989))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-989)) ELT) (($ $ (-1 |#3| |#3|) (-714)) NIL (|has| |#3| (-989)) ELT)) (-2048 (((-714) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#3| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#3| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-1207 |#3|) $) NIL T ELT) (($ (-499)) NIL (-3677 (-12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) (|has| |#3| (-989))) ELT) (($ (-361 (-499))) NIL (-12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041))) ELT) (($ |#3|) NIL (|has| |#3| (-1041)) ELT) (((-797) $) NIL (|has| |#3| (-568 (-797))) ELT)) (-3248 (((-714)) NIL (|has| |#3| (-989)) CONST)) (-1297 (((-85) $ $) NIL (|has| |#3| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2779 (($) NIL (|has| |#3| (-23)) CONST)) (-2785 (($) NIL (|has| |#3| (-989)) CONST)) (-2790 (($ $ (-714)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-989))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-989)) ELT) (($ $ (-1 |#3| |#3|) (-714)) NIL (|has| |#3| (-989)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#3| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#3| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#3| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#3| (-781)) ELT)) (-2806 (((-85) $ $) 24 (|has| |#3| (-781)) ELT)) (-4099 (($ $ |#3|) NIL (|has| |#3| (-318)) ELT)) (-3987 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3989 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-714)) NIL (|has| |#3| (-989)) ELT) (($ $ (-857)) NIL (|has| |#3| (-989)) ELT)) (* (($ $ $) NIL (|has| |#3| (-989)) ELT) (($ $ |#3|) NIL (|has| |#3| (-684)) ELT) (($ |#3| $) NIL (|has| |#3| (-684)) ELT) (($ (-499) $) NIL (|has| |#3| (-21)) ELT) (($ (-714) $) NIL (|has| |#3| (-23)) ELT) (($ (-857) $) NIL (|has| |#3| (-25)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-1053 |#1| |#2| |#3|) (-195 |#1| |#3|) (-714) (-714) (-738)) (T -1053)) -NIL -((-3448 (((-599 (-1176 |#2| |#1|)) (-1176 |#2| |#1|) (-1176 |#2| |#1|)) 50 T ELT)) (-3454 (((-499) (-1176 |#2| |#1|)) 96 (|has| |#1| (-406)) ELT)) (-3452 (((-499) (-1176 |#2| |#1|)) 79 T ELT)) (-3449 (((-599 (-1176 |#2| |#1|)) (-1176 |#2| |#1|) (-1176 |#2| |#1|)) 58 T ELT)) (-3453 (((-499) (-1176 |#2| |#1|) (-1176 |#2| |#1|)) 95 (|has| |#1| (-406)) ELT)) (-3450 (((-599 |#1|) (-1176 |#2| |#1|) (-1176 |#2| |#1|)) 61 T ELT)) (-3451 (((-499) (-1176 |#2| |#1|) (-1176 |#2| |#1|)) 78 T ELT))) -(((-1054 |#1| |#2|) (-10 -7 (-15 -3448 ((-599 (-1176 |#2| |#1|)) (-1176 |#2| |#1|) (-1176 |#2| |#1|))) (-15 -3449 ((-599 (-1176 |#2| |#1|)) (-1176 |#2| |#1|) (-1176 |#2| |#1|))) (-15 -3450 ((-599 |#1|) (-1176 |#2| |#1|) (-1176 |#2| |#1|))) (-15 -3451 ((-499) (-1176 |#2| |#1|) (-1176 |#2| |#1|))) (-15 -3452 ((-499) (-1176 |#2| |#1|))) (IF (|has| |#1| (-406)) (PROGN (-15 -3453 ((-499) (-1176 |#2| |#1|) (-1176 |#2| |#1|))) (-15 -3454 ((-499) (-1176 |#2| |#1|)))) |%noBranch|)) (-763) (-1117)) (T -1054)) -((-3454 (*1 *2 *3) (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-406)) (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-499)) (-5 *1 (-1054 *4 *5)))) (-3453 (*1 *2 *3 *3) (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-406)) (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-499)) (-5 *1 (-1054 *4 *5)))) (-3452 (*1 *2 *3) (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-499)) (-5 *1 (-1054 *4 *5)))) (-3451 (*1 *2 *3 *3) (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-499)) (-5 *1 (-1054 *4 *5)))) (-3450 (*1 *2 *3 *3) (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-599 *4)) (-5 *1 (-1054 *4 *5)))) (-3449 (*1 *2 *3 *3) (-12 (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-599 (-1176 *5 *4))) (-5 *1 (-1054 *4 *5)) (-5 *3 (-1176 *5 *4)))) (-3448 (*1 *2 *3 *3) (-12 (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-599 (-1176 *5 *4))) (-5 *1 (-1054 *4 *5)) (-5 *3 (-1176 *5 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3456 (((-1122) $) 12 T ELT)) (-3455 (((-599 (-1122)) $) 14 T ELT)) (-3457 (($ (-599 (-1122)) (-1122)) 10 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 29 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 17 T ELT))) -(((-1055) (-13 (-1041) (-10 -8 (-15 -3457 ($ (-599 (-1122)) (-1122))) (-15 -3456 ((-1122) $)) (-15 -3455 ((-599 (-1122)) $))))) (T -1055)) -((-3457 (*1 *1 *2 *3) (-12 (-5 *2 (-599 (-1122))) (-5 *3 (-1122)) (-5 *1 (-1055)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1055)))) (-3455 (*1 *2 *1) (-12 (-5 *2 (-599 (-1122))) (-5 *1 (-1055))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3458 (($ (-460) (-1055)) 13 T ELT)) (-3457 (((-1055) $) 19 T ELT)) (-3690 (((-460) $) 16 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 26 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-1056) (-13 (-1023) (-10 -8 (-15 -3458 ($ (-460) (-1055))) (-15 -3690 ((-460) $)) (-15 -3457 ((-1055) $))))) (T -1056)) -((-3458 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-1055)) (-5 *1 (-1056)))) (-3690 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-1056)))) (-3457 (*1 *2 *1) (-12 (-5 *2 (-1055)) (-5 *1 (-1056))))) -((-3773 (((-3 (-499) #1="failed") |#2| (-1117) |#2| (-1099)) 19 T ELT) (((-3 (-499) #1#) |#2| (-1117) (-775 |#2|)) 17 T ELT) (((-3 (-499) #1#) |#2|) 60 T ELT))) -(((-1057 |#1| |#2|) (-10 -7 (-15 -3773 ((-3 (-499) #1="failed") |#2|)) (-15 -3773 ((-3 (-499) #1#) |#2| (-1117) (-775 |#2|))) (-15 -3773 ((-3 (-499) #1#) |#2| (-1117) |#2| (-1099)))) (-13 (-510) (-978 (-499)) (-596 (-499)) (-406)) (-13 (-27) (-1143) (-375 |#1|))) (T -1057)) -((-3773 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-1099)) (-4 *6 (-13 (-510) (-978 *2) (-596 *2) (-406))) (-5 *2 (-499)) (-5 *1 (-1057 *6 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))))) (-3773 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-775 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-510) (-978 *2) (-596 *2) (-406))) (-5 *2 (-499)) (-5 *1 (-1057 *6 *3)))) (-3773 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-510) (-978 *2) (-596 *2) (-406))) (-5 *2 (-499)) (-5 *1 (-1057 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4)))))) -((-3773 (((-3 (-499) #1="failed") (-361 (-884 |#1|)) (-1117) (-361 (-884 |#1|)) (-1099)) 38 T ELT) (((-3 (-499) #1#) (-361 (-884 |#1|)) (-1117) (-775 (-361 (-884 |#1|)))) 33 T ELT) (((-3 (-499) #1#) (-361 (-884 |#1|))) 14 T ELT))) -(((-1058 |#1|) (-10 -7 (-15 -3773 ((-3 (-499) #1="failed") (-361 (-884 |#1|)))) (-15 -3773 ((-3 (-499) #1#) (-361 (-884 |#1|)) (-1117) (-775 (-361 (-884 |#1|))))) (-15 -3773 ((-3 (-499) #1#) (-361 (-884 |#1|)) (-1117) (-361 (-884 |#1|)) (-1099)))) (-406)) (T -1058)) -((-3773 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-361 (-884 *6))) (-5 *4 (-1117)) (-5 *5 (-1099)) (-4 *6 (-406)) (-5 *2 (-499)) (-5 *1 (-1058 *6)))) (-3773 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-775 (-361 (-884 *6)))) (-5 *3 (-361 (-884 *6))) (-4 *6 (-406)) (-5 *2 (-499)) (-5 *1 (-1058 *6)))) (-3773 (*1 *2 *3) (|partial| -12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-406)) (-5 *2 (-499)) (-5 *1 (-1058 *4))))) -((-3799 (((-268 (-499)) (-48)) 12 T ELT))) -(((-1059) (-10 -7 (-15 -3799 ((-268 (-499)) (-48))))) (T -1059)) -((-3799 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-268 (-499))) (-5 *1 (-1059))))) -((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) 22 T ELT)) (-3326 (((-85) $) 52 T ELT)) (-3462 (($ $ $) 31 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 79 T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-2148 (($ $ $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2143 (($ $ $ $) 62 T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) 64 T ELT)) (-3773 (((-499) $) NIL T ELT)) (-2557 (($ $ $) 59 T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL T ELT)) (-2683 (($ $ $) 45 T ELT)) (-2380 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 73 T ELT) (((-647 (-499)) (-647 $)) 8 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) NIL T ELT)) (-3144 (((-85) $) NIL T ELT)) (-3143 (((-361 (-499)) $) NIL T ELT)) (-3115 (($) 77 T ELT) (($ $) 76 T ELT)) (-2682 (($ $ $) 44 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2141 (($ $ $ $) NIL T ELT)) (-2149 (($ $ $) 74 T ELT)) (-3324 (((-85) $) 80 T ELT)) (-1402 (($ $ $) NIL T ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL T ELT)) (-2680 (($ $ $) 30 T ELT)) (-2528 (((-85) $) 53 T ELT)) (-2794 (((-85) $) 50 T ELT)) (-2679 (($ $) 23 T ELT)) (-3585 (((-649 $) $) NIL T ELT)) (-3325 (((-85) $) 63 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2142 (($ $ $ $) 60 T ELT)) (-2650 (($ $ $) 55 T ELT) (($) 19 T CONST)) (-2978 (($ $ $) 54 T ELT) (($) 18 T CONST)) (-2145 (($ $) NIL T ELT)) (-2111 (((-857) $) 69 T ELT)) (-3983 (($ $) 58 T ELT)) (-2381 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT) (((-647 (-499)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2140 (($ $ $) NIL T ELT)) (-3586 (($) NIL T CONST)) (-2518 (($ (-857)) 68 T ELT)) (-2147 (($ $) 36 T ELT)) (-3381 (((-1060) $) 57 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) 48 T ELT) (($ (-599 $)) NIL T ELT)) (-1400 (($ $) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2795 (((-85) $) 51 T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 47 T ELT)) (-3908 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-2146 (($ $) 37 T ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-499) $) 12 T ELT) (((-488) $) NIL T ELT) (((-825 (-499)) $) NIL T ELT) (((-333) $) NIL T ELT) (((-179) $) NIL T ELT)) (-4096 (((-797) $) 11 T ELT) (($ (-499)) 75 T ELT) (($ $) NIL T ELT) (($ (-499)) 75 T ELT)) (-3248 (((-714)) NIL T CONST)) (-2150 (((-85) $ $) NIL T ELT)) (-3224 (($ $ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2815 (($) 17 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2681 (($ $ $) 28 T ELT)) (-2144 (($ $ $ $) 61 T ELT)) (-3523 (($ $) 49 T ELT)) (-2411 (($ $ $) 25 T ELT)) (-2779 (($) 15 T CONST)) (-3459 (($ $ $) 29 T ELT)) (-2785 (($) 16 T CONST)) (-3461 (($ $) 26 T ELT)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3460 (($ $ $) 27 T ELT)) (-2685 (((-85) $ $) 35 T ELT)) (-2686 (((-85) $ $) 33 T ELT)) (-3174 (((-85) $ $) 21 T ELT)) (-2805 (((-85) $ $) 34 T ELT)) (-2806 (((-85) $ $) 32 T ELT)) (-2412 (($ $ $) 24 T ELT)) (-3987 (($ $) 38 T ELT) (($ $ $) 40 T ELT)) (-3989 (($ $ $) 39 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 43 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 14 T ELT) (($ $ $) 41 T ELT) (($ (-499) $) 14 T ELT))) -(((-1060) (-13 (-498) (-777) (-84) (-10 -8 (-6 -4132) (-6 -4137) (-6 -4133) (-15 -3462 ($ $ $)) (-15 -3461 ($ $)) (-15 -3460 ($ $ $)) (-15 -3459 ($ $ $))))) (T -1060)) -((-3462 (*1 *1 *1 *1) (-5 *1 (-1060))) (-3461 (*1 *1 *1) (-5 *1 (-1060))) (-3460 (*1 *1 *1 *1) (-5 *1 (-1060))) (-3459 (*1 *1 *1 *1) (-5 *1 (-1060)))) -((-499) (|%ismall?| |#1|)) -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3464 ((|#1| $) 48 T ELT)) (-3874 (($) 7 T CONST)) (-3466 ((|#1| |#1| $) 50 T ELT)) (-3465 ((|#1| $) 49 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3463 (((-714) $) 47 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-1061 |#1|) (-113) (-1157)) (T -1061)) -((-3466 (*1 *2 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1157)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1157)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1157)))) (-3463 (*1 *2 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1157)) (-5 *2 (-714))))) -(-13 (-78 |t#1|) (-10 -8 (-6 -4145) (-15 -3466 (|t#1| |t#1| $)) (-15 -3465 (|t#1| $)) (-15 -3464 (|t#1| $)) (-15 -3463 ((-714) $)))) -(((-34) . T) ((-78 |#1|) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) -((-3470 ((|#3| $) 87 T ELT)) (-3295 (((-3 (-499) #1="failed") $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3294 (((-499) $) NIL T ELT) (((-361 (-499)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 |#3|)) (|:| |vec| (-1207 |#3|))) (-647 $) (-1207 $)) 84 T ELT) (((-647 |#3|) (-647 $)) 76 T ELT)) (-3908 (($ $ (-1 |#3| |#3|) (-714)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT)) (-3469 ((|#3| $) 89 T ELT)) (-3471 ((|#4| $) 43 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 24 T ELT) (($ $ (-499)) 95 T ELT))) -(((-1062 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1|)) (-15 ** (|#1| |#1| (-499))) (-15 -3469 (|#3| |#1|)) (-15 -3470 (|#3| |#1|)) (-15 -3471 (|#4| |#1|)) (-15 -2380 ((-647 |#3|) (-647 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 |#3|)) (|:| |vec| (-1207 |#3|))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-647 (-499)) (-647 |#1|))) (-15 -4096 (|#1| |#3|)) (-15 -3295 ((-3 |#3| #1="failed") |#1|)) (-15 -3294 (|#3| |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -3908 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3908 (|#1| |#1| (-1 |#3| |#3|) (-714))) (-15 -4096 (|#1| (-499))) (-15 ** (|#1| |#1| (-714))) (-15 ** (|#1| |#1| (-857))) (-15 -4096 ((-797) |#1|))) (-1063 |#2| |#3| |#4| |#5|) (-714) (-989) (-195 |#2| |#3|) (-195 |#2| |#3|)) (T -1062)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3470 ((|#2| $) 87 T ELT)) (-3243 (((-85) $) 128 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3245 (((-85) $) 126 T ELT)) (-3473 (($ |#2|) 90 T ELT)) (-3874 (($) 22 T CONST)) (-3232 (($ $) 145 (|has| |#2| (-261)) ELT)) (-3234 ((|#3| $ (-499)) 140 T ELT)) (-3295 (((-3 (-499) #1="failed") $) 106 (|has| |#2| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) 103 (|has| |#2| (-978 (-361 (-499)))) ELT) (((-3 |#2| #1#) $) 100 T ELT)) (-3294 (((-499) $) 105 (|has| |#2| (-978 (-499))) ELT) (((-361 (-499)) $) 102 (|has| |#2| (-978 (-361 (-499)))) ELT) ((|#2| $) 101 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 96 (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 95 (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) 94 T ELT) (((-647 |#2|) (-647 $)) 93 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3231 (((-714) $) 146 (|has| |#2| (-510)) ELT)) (-3235 ((|#2| $ (-499) (-499)) 138 T ELT)) (-3010 (((-599 |#2|) $) 114 (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) 40 T ELT)) (-3230 (((-714) $) 147 (|has| |#2| (-510)) ELT)) (-3229 (((-599 |#4|) $) 148 (|has| |#2| (-510)) ELT)) (-3237 (((-714) $) 134 T ELT)) (-3236 (((-714) $) 135 T ELT)) (-3467 ((|#2| $) 82 (|has| |#2| (-6 (-4147 #2="*"))) ELT)) (-3241 (((-499) $) 130 T ELT)) (-3239 (((-499) $) 132 T ELT)) (-2727 (((-599 |#2|) $) 113 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#2| $) 111 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3240 (((-499) $) 131 T ELT)) (-3238 (((-499) $) 133 T ELT)) (-3246 (($ (-599 (-599 |#2|))) 125 T ELT)) (-2051 (($ (-1 |#2| |#2|) $) 118 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#2| |#2| |#2|) $ $) 142 T ELT) (($ (-1 |#2| |#2|) $) 119 T ELT)) (-3742 (((-599 (-599 |#2|)) $) 136 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 98 (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 97 (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) 92 T ELT) (((-647 |#2|) (-1207 $)) 91 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3738 (((-3 $ "failed") $) 81 (|has| |#2| (-318)) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3606 (((-3 $ "failed") $ |#2|) 143 (|has| |#2| (-510)) ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) 116 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#2|))) 110 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) 109 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) 108 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) 107 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) 124 T ELT)) (-3543 (((-85) $) 121 T ELT)) (-3713 (($) 122 T ELT)) (-3950 ((|#2| $ (-499) (-499) |#2|) 139 T ELT) ((|#2| $ (-499) (-499)) 137 T ELT)) (-3908 (($ $ (-1 |#2| |#2|) (-714)) 62 T ELT) (($ $ (-1 |#2| |#2|)) 61 T ELT) (($ $) 52 (|has| |#2| (-189)) ELT) (($ $ (-714)) 50 (|has| |#2| (-189)) ELT) (($ $ (-1117)) 60 (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 58 (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 57 (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 56 (|has| |#2| (-838 (-1117))) ELT)) (-3469 ((|#2| $) 86 T ELT)) (-3472 (($ (-599 |#2|)) 89 T ELT)) (-3244 (((-85) $) 127 T ELT)) (-3471 ((|#3| $) 88 T ELT)) (-3468 ((|#2| $) 83 (|has| |#2| (-6 (-4147 #2#))) ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) 115 (|has| $ (-6 -4145)) ELT) (((-714) |#2| $) 112 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 123 T ELT)) (-3233 ((|#4| $ (-499)) 141 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 (-499))) 104 (|has| |#2| (-978 (-361 (-499)))) ELT) (($ |#2|) 99 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) 117 (|has| $ (-6 -4145)) ELT)) (-3242 (((-85) $) 129 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1 |#2| |#2|) (-714)) 64 T ELT) (($ $ (-1 |#2| |#2|)) 63 T ELT) (($ $) 51 (|has| |#2| (-189)) ELT) (($ $ (-714)) 49 (|has| |#2| (-189)) ELT) (($ $ (-1117)) 59 (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 55 (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 54 (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 53 (|has| |#2| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#2|) 144 (|has| |#2| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 80 (|has| |#2| (-318)) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#2|) 150 T ELT) (($ |#2| $) 149 T ELT) ((|#4| $ |#4|) 85 T ELT) ((|#3| |#3| $) 84 T ELT)) (-4107 (((-714) $) 120 (|has| $ (-6 -4145)) ELT))) -(((-1063 |#1| |#2| |#3| |#4|) (-113) (-714) (-989) (-195 |t#1| |t#2|) (-195 |t#1| |t#2|)) (T -1063)) -((-3473 (*1 *1 *2) (-12 (-4 *2 (-989)) (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)))) (-3472 (*1 *1 *2) (-12 (-5 *2 (-599 *4)) (-4 *4 (-989)) (-4 *1 (-1063 *3 *4 *5 *6)) (-4 *5 (-195 *3 *4)) (-4 *6 (-195 *3 *4)))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-1063 *3 *4 *2 *5)) (-4 *4 (-989)) (-4 *5 (-195 *3 *4)) (-4 *2 (-195 *3 *4)))) (-3470 (*1 *2 *1) (-12 (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) (-4 *2 (-989)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) (-4 *2 (-989)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1063 *3 *4 *5 *2)) (-4 *4 (-989)) (-4 *5 (-195 *3 *4)) (-4 *2 (-195 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1063 *3 *4 *2 *5)) (-4 *4 (-989)) (-4 *2 (-195 *3 *4)) (-4 *5 (-195 *3 *4)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) (|has| *2 (-6 (-4147 #1="*"))) (-4 *2 (-989)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) (|has| *2 (-6 (-4147 #1#))) (-4 *2 (-989)))) (-3738 (*1 *1 *1) (|partial| -12 (-4 *1 (-1063 *2 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-195 *2 *3)) (-4 *5 (-195 *2 *3)) (-4 *3 (-318)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-1063 *3 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-195 *3 *4)) (-4 *6 (-195 *3 *4)) (-4 *4 (-318))))) -(-13 (-184 |t#2|) (-82 |t#2| |t#2|) (-993 |t#1| |t#1| |t#2| |t#3| |t#4|) (-366 |t#2|) (-332 |t#2|) (-10 -8 (IF (|has| |t#2| (-146)) (-6 (-675 |t#2|)) |%noBranch|) (-15 -3473 ($ |t#2|)) (-15 -3472 ($ (-599 |t#2|))) (-15 -3471 (|t#3| $)) (-15 -3470 (|t#2| $)) (-15 -3469 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4147 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3468 (|t#2| $)) (-15 -3467 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-318)) (PROGN (-15 -3738 ((-3 $ "failed") $)) (-15 ** ($ $ (-499)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4147 #1="*"))) ((-73) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-571 (-361 (-499))) |has| |#2| (-978 (-361 (-499)))) ((-571 (-499)) . T) ((-571 |#2|) . T) ((-568 (-797)) . T) ((-186 $) -3677 (|has| |#2| (-189)) (|has| |#2| (-190))) ((-184 |#2|) . T) ((-190) |has| |#2| (-190)) ((-189) -3677 (|has| |#2| (-189)) (|has| |#2| (-190))) ((-224 |#2|) . T) ((-263 |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-332 |#2|) . T) ((-366 |#2|) . T) ((-443 |#2|) . T) ((-468 |#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-604 (-499)) . T) ((-604 |#2|) . T) ((-604 $) . T) ((-606 (-499)) |has| |#2| (-596 (-499))) ((-606 |#2|) . T) ((-606 $) . T) ((-598 |#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-6 (-4147 #1#)))) ((-596 (-499)) |has| |#2| (-596 (-499))) ((-596 |#2|) . T) ((-675 |#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-6 (-4147 #1#)))) ((-684) . T) ((-831 $ (-1117)) -3677 (|has| |#2| (-838 (-1117))) (|has| |#2| (-836 (-1117)))) ((-836 (-1117)) |has| |#2| (-836 (-1117))) ((-838 (-1117)) -3677 (|has| |#2| (-838 (-1117))) (|has| |#2| (-836 (-1117)))) ((-993 |#1| |#1| |#2| |#3| |#4|) . T) ((-978 (-361 (-499))) |has| |#2| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#2| (-978 (-499))) ((-978 |#2|) . T) ((-991 |#2|) . T) ((-996 |#2|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-3476 ((|#4| |#4|) 81 T ELT)) (-3474 ((|#4| |#4|) 76 T ELT)) (-3478 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2113 (-599 |#3|))) |#4| |#3|) 91 T ELT)) (-3477 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3475 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) -(((-1064 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3474 (|#4| |#4|)) (-15 -3475 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3476 (|#4| |#4|)) (-15 -3477 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3478 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2113 (-599 |#3|))) |#4| |#3|))) (-261) (-327 |#1|) (-327 |#1|) (-644 |#1| |#2| |#3|)) (T -1064)) -((-3478 (*1 *2 *3 *4) (-12 (-4 *5 (-261)) (-4 *6 (-327 *5)) (-4 *4 (-327 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2113 (-599 *4)))) (-5 *1 (-1064 *5 *6 *4 *3)) (-4 *3 (-644 *5 *6 *4)))) (-3477 (*1 *2 *3) (-12 (-4 *4 (-261)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1064 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) (-3476 (*1 *2 *2) (-12 (-4 *3 (-261)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-1064 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) (-3475 (*1 *2 *3) (-12 (-4 *4 (-261)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1064 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-261)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-1064 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 18 T ELT)) (-3204 (((-599 |#2|) $) 174 T ELT)) (-3206 (((-1111 $) $ |#2|) 60 T ELT) (((-1111 |#1|) $) 49 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 116 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 118 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 120 (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 |#2|)) 214 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3294 ((|#1| $) 165 T ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) ((|#2| $) NIL T ELT)) (-3906 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-4109 (($ $) 218 T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) 90 T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT) (($ $ |#2|) NIL (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| (-484 |#2|) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| |#1| (-821 (-333))) (|has| |#2| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| |#1| (-821 (-499))) (|has| |#2| (-821 (-499)))) ELT)) (-2528 (((-85) $) 20 T ELT)) (-2536 (((-714) $) 30 T ELT)) (-3207 (($ (-1111 |#1|) |#2|) 54 T ELT) (($ (-1111 $) |#2|) 71 T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) 38 T ELT)) (-3014 (($ |#1| (-484 |#2|)) 78 T ELT) (($ $ |#2| (-714)) 58 T ELT) (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ |#2|) NIL T ELT)) (-2941 (((-484 |#2|) $) 205 T ELT) (((-714) $ |#2|) 206 T ELT) (((-599 (-714)) $ (-599 |#2|)) 207 T ELT)) (-1695 (($ (-1 (-484 |#2|) (-484 |#2|)) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3205 (((-3 |#2| #1#) $) 177 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3015 (($ $) 217 T ELT)) (-3312 ((|#1| $) 43 T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| |#2|) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) 39 T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 148 (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) 153 (|has| |#1| (-406)) ELT) (($ $ $) 138 (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-848)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-599 |#2|) (-599 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-599 |#2|) (-599 $)) 194 T ELT)) (-3907 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT) (($ $ |#2| (-714)) NIL T ELT) (($ $ (-599 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-4098 (((-484 |#2|) $) 201 T ELT) (((-714) $ |#2|) 196 T ELT) (((-599 (-714)) $ (-599 |#2|)) 199 T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| |#1| (-569 (-825 (-333)))) (|has| |#2| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| |#1| (-569 (-825 (-499)))) (|has| |#2| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| |#1| (-569 (-488))) (|has| |#2| (-569 (-488)))) ELT)) (-2938 ((|#1| $) 134 (|has| |#1| (-406)) ELT) (($ $ |#2|) 137 (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) 159 T ELT) (($ (-499)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-3967 (((-599 |#1|) $) 162 T ELT)) (-3827 ((|#1| $ (-484 |#2|)) 80 T ELT) (($ $ |#2| (-714)) NIL T ELT) (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) 87 T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) 123 (|has| |#1| (-510)) ELT)) (-2779 (($) 12 T CONST)) (-2785 (($) 14 T CONST)) (-2790 (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT) (($ $ |#2| (-714)) NIL T ELT) (($ $ (-599 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3174 (((-85) $ $) 106 T ELT)) (-4099 (($ $ |#1|) 132 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3989 (($ $ $) 55 T ELT)) (** (($ $ (-857)) 110 T ELT) (($ $ (-714)) 109 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1065 |#1| |#2|) (-888 |#1| (-484 |#2|) |#2|) (-989) (-781)) (T -1065)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 |#2|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3632 (($ $) 152 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 128 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3630 (($ $) 148 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 124 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3634 (($ $) 156 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 132 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3964 (((-884 |#1|) $ (-714)) NIL T ELT) (((-884 |#1|) $ (-714) (-714)) NIL T ELT)) (-3013 (((-85) $) NIL T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-714) $ |#2|) NIL T ELT) (((-714) $ |#2| (-714)) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ $ (-599 |#2|) (-599 (-484 |#2|))) NIL T ELT) (($ $ |#2| (-484 |#2|)) NIL T ELT) (($ |#1| (-484 |#2|)) NIL T ELT) (($ $ |#2| (-714)) 63 T ELT) (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4092 (($ $) 122 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3962 (($ $ |#2|) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3826 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3919 (($ $ (-714)) 16 T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-4093 (($ $) 120 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (($ $ |#2| $) 106 T ELT) (($ $ (-599 |#2|) (-599 $)) 99 T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT)) (-3908 (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT) (($ $ |#2| (-714)) NIL T ELT) (($ $ (-599 |#2|)) NIL T ELT) (($ $ |#2|) 109 T ELT)) (-4098 (((-484 |#2|) $) NIL T ELT)) (-3479 (((-1 (-1095 |#3|) |#3|) (-599 |#2|) (-599 (-1095 |#3|))) 87 T ELT)) (-3635 (($ $) 158 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 134 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 154 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 130 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 150 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 126 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) 18 T ELT)) (-4096 (((-797) $) 198 T ELT) (($ (-499)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3827 ((|#1| $ (-484 |#2|)) NIL T ELT) (($ $ |#2| (-714)) NIL T ELT) (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT) ((|#3| $ (-714)) 43 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) 164 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 140 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) 160 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 136 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 168 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 144 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3641 (($ $) 170 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 146 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 166 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 142 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 162 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 138 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 52 T CONST)) (-2785 (($) 62 T CONST)) (-2790 (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT) (($ $ |#2| (-714)) NIL T ELT) (($ $ (-599 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) 200 (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 66 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 112 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-361 (-499))) 117 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) 115 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) -(((-1066 |#1| |#2| |#3|) (-13 (-698 |#1| |#2|) (-10 -8 (-15 -3827 (|#3| $ (-714))) (-15 -4096 ($ |#2|)) (-15 -4096 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3479 ((-1 (-1095 |#3|) |#3|) (-599 |#2|) (-599 (-1095 |#3|)))) (IF (|has| |#1| (-38 (-361 (-499)))) (PROGN (-15 -3962 ($ $ |#2| |#1|)) (-15 -3826 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-989) (-781) (-888 |#1| (-484 |#2|) |#2|)) (T -1066)) -((-3827 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *2 (-888 *4 (-484 *5) *5)) (-5 *1 (-1066 *4 *5 *2)) (-4 *4 (-989)) (-4 *5 (-781)))) (-4096 (*1 *1 *2) (-12 (-4 *3 (-989)) (-4 *2 (-781)) (-5 *1 (-1066 *3 *2 *4)) (-4 *4 (-888 *3 (-484 *2) *2)))) (-4096 (*1 *1 *2) (-12 (-4 *3 (-989)) (-4 *4 (-781)) (-5 *1 (-1066 *3 *4 *2)) (-4 *2 (-888 *3 (-484 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-989)) (-4 *4 (-781)) (-5 *1 (-1066 *3 *4 *2)) (-4 *2 (-888 *3 (-484 *4) *4)))) (-3479 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6)) (-5 *4 (-599 (-1095 *7))) (-4 *6 (-781)) (-4 *7 (-888 *5 (-484 *6) *6)) (-4 *5 (-989)) (-5 *2 (-1 (-1095 *7) *7)) (-5 *1 (-1066 *5 *6 *7)))) (-3962 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-4 *2 (-781)) (-5 *1 (-1066 *3 *2 *4)) (-4 *4 (-888 *3 (-484 *2) *2)))) (-3826 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1066 *4 *3 *5))) (-4 *4 (-38 (-361 (-499)))) (-4 *4 (-989)) (-4 *3 (-781)) (-5 *1 (-1066 *4 *3 *5)) (-4 *5 (-888 *4 (-484 *3) *3))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |#4|)))) (-599 |#4|)) 90 T ELT)) (-3832 (((-599 $) (-599 |#4|)) 91 T ELT) (((-599 $) (-599 |#4|) (-85)) 118 T ELT)) (-3204 (((-599 |#3|) $) 37 T ELT)) (-3029 (((-85) $) 30 T ELT)) (-3020 (((-85) $) 21 (|has| |#1| (-510)) ELT)) (-3843 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3838 ((|#4| |#4| $) 97 T ELT)) (-3925 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| $) 133 T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3860 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -4145)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3874 (($) 46 T CONST)) (-3025 (((-85) $) 26 (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) 28 (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) 27 (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) 29 (|has| |#1| (-510)) ELT)) (-3839 (((-599 |#4|) (-599 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) 22 (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) 23 (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ "failed") (-599 |#4|)) 40 T ELT)) (-3294 (($ (-599 |#4|)) 39 T ELT)) (-3949 (((-3 $ #1#) $) 87 T ELT)) (-3835 ((|#4| |#4| $) 94 T ELT)) (-1386 (($ $) 69 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#4| $) 68 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-510)) ELT)) (-3844 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3833 ((|#4| |#4| $) 92 T ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4145)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#4|)) (|:| -1795 (-599 |#4|))) $) 110 T ELT)) (-3335 (((-85) |#4| $) 143 T ELT)) (-3333 (((-85) |#4| $) 140 T ELT)) (-3336 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-3010 (((-599 |#4|) $) 53 (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3318 ((|#3| $) 38 T ELT)) (-2727 (((-599 |#4|) $) 54 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3035 (((-599 |#3|) $) 36 T ELT)) (-3034 (((-85) |#3| $) 35 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3329 (((-3 |#4| (-599 $)) |#4| |#4| $) 135 T ELT)) (-3328 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| |#4| $) 134 T ELT)) (-3948 (((-3 |#4| #1#) $) 88 T ELT)) (-3330 (((-599 $) |#4| $) 136 T ELT)) (-3332 (((-3 (-85) (-599 $)) |#4| $) 139 T ELT)) (-3331 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3376 (((-599 $) |#4| $) 132 T ELT) (((-599 $) (-599 |#4|) $) 131 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 130 T ELT) (((-599 $) |#4| (-599 $)) 129 T ELT)) (-3580 (($ |#4| $) 124 T ELT) (($ (-599 |#4|) $) 123 T ELT)) (-3847 (((-599 |#4|) $) 112 T ELT)) (-3841 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3836 ((|#4| |#4| $) 95 T ELT)) (-3849 (((-85) $ $) 115 T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-510)) ELT)) (-3842 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3837 ((|#4| |#4| $) 96 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3951 (((-3 |#4| #1#) $) 89 T ELT)) (-1387 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3829 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3919 (($ $ |#4|) 82 T ELT) (((-599 $) |#4| $) 122 T ELT) (((-599 $) |#4| (-599 $)) 121 T ELT) (((-599 $) (-599 |#4|) $) 120 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 119 T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) 60 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) 58 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) 57 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) 42 T ELT)) (-3543 (((-85) $) 45 T ELT)) (-3713 (($) 44 T ELT)) (-4098 (((-714) $) 111 T ELT)) (-2048 (((-714) |#4| $) 55 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 43 T ELT)) (-4122 (((-488) $) 70 (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) 61 T ELT)) (-3031 (($ $ |#3|) 32 T ELT)) (-3033 (($ $ |#3|) 34 T ELT)) (-3834 (($ $) 93 T ELT)) (-3032 (($ $ |#3|) 33 T ELT)) (-4096 (((-797) $) 13 T ELT) (((-599 |#4|) $) 41 T ELT)) (-3828 (((-714) $) 81 (|has| |#3| (-323)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3840 (((-85) $ (-1 (-85) |#4| (-599 |#4|))) 103 T ELT)) (-3327 (((-599 $) |#4| $) 128 T ELT) (((-599 $) |#4| (-599 $)) 127 T ELT) (((-599 $) (-599 |#4|) $) 126 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 125 T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 |#3|) $) 86 T ELT)) (-3334 (((-85) |#4| $) 142 T ELT)) (-4083 (((-85) |#3| $) 85 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4107 (((-714) $) 47 (|has| $ (-6 -4145)) ELT))) -(((-1067 |#1| |#2| |#3| |#4|) (-113) (-406) (-738) (-781) (-1005 |t#1| |t#2| |t#3|)) (T -1067)) -NIL -(-13 (-1049 |t#1| |t#2| |t#3| |t#4|) (-727 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-73) . T) ((-568 (-599 |#4|)) . T) ((-568 (-797)) . T) ((-124 |#4|) . T) ((-569 (-488)) |has| |#4| (-569 (-488))) ((-263 |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-443 |#4|) . T) ((-468 |#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-727 |#1| |#2| |#3| |#4|) . T) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1011 |#1| |#2| |#3| |#4|) . T) ((-1041) . T) ((-1049 |#1| |#2| |#3| |#4|) . T) ((-1152 |#1| |#2| |#3| |#4|) . T) ((-1157) . T)) -((-3721 (((-599 |#2|) |#1|) 15 T ELT)) (-3485 (((-599 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-599 |#2|) |#1|) 61 T ELT)) (-3483 (((-599 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-599 |#2|) |#1|) 59 T ELT)) (-3480 ((|#2| |#1|) 54 T ELT)) (-3481 (((-2 (|:| |solns| (-599 |#2|)) (|:| |maps| (-599 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3482 (((-599 |#2|) |#2| |#2|) 42 T ELT) (((-599 |#2|) |#1|) 58 T ELT)) (-3484 (((-599 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-599 |#2|) |#1|) 60 T ELT)) (-3489 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3487 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3486 ((|#2| |#2| |#2|) 50 T ELT)) (-3488 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) -(((-1068 |#1| |#2|) (-10 -7 (-15 -3721 ((-599 |#2|) |#1|)) (-15 -3480 (|#2| |#1|)) (-15 -3481 ((-2 (|:| |solns| (-599 |#2|)) (|:| |maps| (-599 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3482 ((-599 |#2|) |#1|)) (-15 -3483 ((-599 |#2|) |#1|)) (-15 -3484 ((-599 |#2|) |#1|)) (-15 -3485 ((-599 |#2|) |#1|)) (-15 -3482 ((-599 |#2|) |#2| |#2|)) (-15 -3483 ((-599 |#2|) |#2| |#2| |#2|)) (-15 -3484 ((-599 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3485 ((-599 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3486 (|#2| |#2| |#2|)) (-15 -3487 (|#2| |#2| |#2| |#2|)) (-15 -3488 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3489 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1183 |#2|) (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (T -1068)) -((-3489 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2)))) (-3488 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2)))) (-3487 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2)))) (-3486 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2)))) (-3485 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-599 *3)) (-5 *1 (-1068 *4 *3)) (-4 *4 (-1183 *3)))) (-3484 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-599 *3)) (-5 *1 (-1068 *4 *3)) (-4 *4 (-1183 *3)))) (-3483 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-599 *3)) (-5 *1 (-1068 *4 *3)) (-4 *4 (-1183 *3)))) (-3482 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-599 *3)) (-5 *1 (-1068 *4 *3)) (-4 *4 (-1183 *3)))) (-3485 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4)))) (-3483 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4)))) (-3482 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4)))) (-3481 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-2 (|:| |solns| (-599 *5)) (|:| |maps| (-599 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1068 *3 *5)) (-4 *3 (-1183 *5)))) (-3480 (*1 *2 *3) (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2)))) (-3721 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4))))) -((-3490 (((-599 (-599 (-247 (-268 |#1|)))) (-599 (-247 (-361 (-884 |#1|))))) 118 T ELT) (((-599 (-599 (-247 (-268 |#1|)))) (-599 (-247 (-361 (-884 |#1|)))) (-599 (-1117))) 117 T ELT) (((-599 (-599 (-247 (-268 |#1|)))) (-599 (-361 (-884 |#1|)))) 115 T ELT) (((-599 (-599 (-247 (-268 |#1|)))) (-599 (-361 (-884 |#1|))) (-599 (-1117))) 113 T ELT) (((-599 (-247 (-268 |#1|))) (-247 (-361 (-884 |#1|)))) 97 T ELT) (((-599 (-247 (-268 |#1|))) (-247 (-361 (-884 |#1|))) (-1117)) 98 T ELT) (((-599 (-247 (-268 |#1|))) (-361 (-884 |#1|))) 92 T ELT) (((-599 (-247 (-268 |#1|))) (-361 (-884 |#1|)) (-1117)) 82 T ELT)) (-3491 (((-599 (-599 (-268 |#1|))) (-599 (-361 (-884 |#1|))) (-599 (-1117))) 111 T ELT) (((-599 (-268 |#1|)) (-361 (-884 |#1|)) (-1117)) 54 T ELT)) (-3492 (((-1106 (-599 (-268 |#1|)) (-599 (-247 (-268 |#1|)))) (-361 (-884 |#1|)) (-1117)) 122 T ELT) (((-1106 (-599 (-268 |#1|)) (-599 (-247 (-268 |#1|)))) (-247 (-361 (-884 |#1|))) (-1117)) 121 T ELT))) -(((-1069 |#1|) (-10 -7 (-15 -3490 ((-599 (-247 (-268 |#1|))) (-361 (-884 |#1|)) (-1117))) (-15 -3490 ((-599 (-247 (-268 |#1|))) (-361 (-884 |#1|)))) (-15 -3490 ((-599 (-247 (-268 |#1|))) (-247 (-361 (-884 |#1|))) (-1117))) (-15 -3490 ((-599 (-247 (-268 |#1|))) (-247 (-361 (-884 |#1|))))) (-15 -3490 ((-599 (-599 (-247 (-268 |#1|)))) (-599 (-361 (-884 |#1|))) (-599 (-1117)))) (-15 -3490 ((-599 (-599 (-247 (-268 |#1|)))) (-599 (-361 (-884 |#1|))))) (-15 -3490 ((-599 (-599 (-247 (-268 |#1|)))) (-599 (-247 (-361 (-884 |#1|)))) (-599 (-1117)))) (-15 -3490 ((-599 (-599 (-247 (-268 |#1|)))) (-599 (-247 (-361 (-884 |#1|)))))) (-15 -3491 ((-599 (-268 |#1|)) (-361 (-884 |#1|)) (-1117))) (-15 -3491 ((-599 (-599 (-268 |#1|))) (-599 (-361 (-884 |#1|))) (-599 (-1117)))) (-15 -3492 ((-1106 (-599 (-268 |#1|)) (-599 (-247 (-268 |#1|)))) (-247 (-361 (-884 |#1|))) (-1117))) (-15 -3492 ((-1106 (-599 (-268 |#1|)) (-599 (-247 (-268 |#1|)))) (-361 (-884 |#1|)) (-1117)))) (-13 (-261) (-120))) (T -1069)) -((-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-1106 (-599 (-268 *5)) (-599 (-247 (-268 *5))))) (-5 *1 (-1069 *5)))) (-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-247 (-361 (-884 *5)))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-1106 (-599 (-268 *5)) (-599 (-247 (-268 *5))))) (-5 *1 (-1069 *5)))) (-3491 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-361 (-884 *5)))) (-5 *4 (-599 (-1117))) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-599 (-268 *5)))) (-5 *1 (-1069 *5)))) (-3491 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-268 *5))) (-5 *1 (-1069 *5)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-599 (-247 (-361 (-884 *4))))) (-4 *4 (-13 (-261) (-120))) (-5 *2 (-599 (-599 (-247 (-268 *4))))) (-5 *1 (-1069 *4)))) (-3490 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-247 (-361 (-884 *5))))) (-5 *4 (-599 (-1117))) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-599 (-247 (-268 *5))))) (-5 *1 (-1069 *5)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-599 (-361 (-884 *4)))) (-4 *4 (-13 (-261) (-120))) (-5 *2 (-599 (-599 (-247 (-268 *4))))) (-5 *1 (-1069 *4)))) (-3490 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-361 (-884 *5)))) (-5 *4 (-599 (-1117))) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-599 (-247 (-268 *5))))) (-5 *1 (-1069 *5)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-247 (-361 (-884 *4)))) (-4 *4 (-13 (-261) (-120))) (-5 *2 (-599 (-247 (-268 *4)))) (-5 *1 (-1069 *4)))) (-3490 (*1 *2 *3 *4) (-12 (-5 *3 (-247 (-361 (-884 *5)))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-247 (-268 *5)))) (-5 *1 (-1069 *5)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-13 (-261) (-120))) (-5 *2 (-599 (-247 (-268 *4)))) (-5 *1 (-1069 *4)))) (-3490 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-247 (-268 *5)))) (-5 *1 (-1069 *5))))) -((-3494 (((-361 (-1111 (-268 |#1|))) (-1207 (-268 |#1|)) (-361 (-1111 (-268 |#1|))) (-499)) 36 T ELT)) (-3493 (((-361 (-1111 (-268 |#1|))) (-361 (-1111 (-268 |#1|))) (-361 (-1111 (-268 |#1|))) (-361 (-1111 (-268 |#1|)))) 48 T ELT))) -(((-1070 |#1|) (-10 -7 (-15 -3493 ((-361 (-1111 (-268 |#1|))) (-361 (-1111 (-268 |#1|))) (-361 (-1111 (-268 |#1|))) (-361 (-1111 (-268 |#1|))))) (-15 -3494 ((-361 (-1111 (-268 |#1|))) (-1207 (-268 |#1|)) (-361 (-1111 (-268 |#1|))) (-499)))) (-510)) (T -1070)) -((-3494 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-361 (-1111 (-268 *5)))) (-5 *3 (-1207 (-268 *5))) (-5 *4 (-499)) (-4 *5 (-510)) (-5 *1 (-1070 *5)))) (-3493 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-361 (-1111 (-268 *3)))) (-4 *3 (-510)) (-5 *1 (-1070 *3))))) -((-3721 (((-599 (-599 (-247 (-268 |#1|)))) (-599 (-247 (-268 |#1|))) (-599 (-1117))) 244 T ELT) (((-599 (-247 (-268 |#1|))) (-268 |#1|) (-1117)) 23 T ELT) (((-599 (-247 (-268 |#1|))) (-247 (-268 |#1|)) (-1117)) 29 T ELT) (((-599 (-247 (-268 |#1|))) (-247 (-268 |#1|))) 28 T ELT) (((-599 (-247 (-268 |#1|))) (-268 |#1|)) 24 T ELT))) -(((-1071 |#1|) (-10 -7 (-15 -3721 ((-599 (-247 (-268 |#1|))) (-268 |#1|))) (-15 -3721 ((-599 (-247 (-268 |#1|))) (-247 (-268 |#1|)))) (-15 -3721 ((-599 (-247 (-268 |#1|))) (-247 (-268 |#1|)) (-1117))) (-15 -3721 ((-599 (-247 (-268 |#1|))) (-268 |#1|) (-1117))) (-15 -3721 ((-599 (-599 (-247 (-268 |#1|)))) (-599 (-247 (-268 |#1|))) (-599 (-1117))))) (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (T -1071)) -((-3721 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-1117))) (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-599 (-599 (-247 (-268 *5))))) (-5 *1 (-1071 *5)) (-5 *3 (-599 (-247 (-268 *5)))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-599 (-247 (-268 *5)))) (-5 *1 (-1071 *5)) (-5 *3 (-268 *5)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-599 (-247 (-268 *5)))) (-5 *1 (-1071 *5)) (-5 *3 (-247 (-268 *5))))) (-3721 (*1 *2 *3) (-12 (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-599 (-247 (-268 *4)))) (-5 *1 (-1071 *4)) (-5 *3 (-247 (-268 *4))))) (-3721 (*1 *2 *3) (-12 (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-599 (-247 (-268 *4)))) (-5 *1 (-1071 *4)) (-5 *3 (-268 *4))))) -((-3496 ((|#2| |#2|) 28 (|has| |#1| (-781)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3495 ((|#2| |#2|) 27 (|has| |#1| (-781)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT))) -(((-1072 |#1| |#2|) (-10 -7 (-15 -3495 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3496 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-781)) (PROGN (-15 -3495 (|#2| |#2|)) (-15 -3496 (|#2| |#2|))) |%noBranch|)) (-1157) (-13 (-554 (-499) |#1|) (-10 -7 (-6 -4145) (-6 -4146)))) (T -1072)) -((-3496 (*1 *2 *2) (-12 (-4 *3 (-781)) (-4 *3 (-1157)) (-5 *1 (-1072 *3 *2)) (-4 *2 (-13 (-554 (-499) *3) (-10 -7 (-6 -4145) (-6 -4146)))))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-781)) (-4 *3 (-1157)) (-5 *1 (-1072 *3 *2)) (-4 *2 (-13 (-554 (-499) *3) (-10 -7 (-6 -4145) (-6 -4146)))))) (-3496 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-1072 *4 *2)) (-4 *2 (-13 (-554 (-499) *4) (-10 -7 (-6 -4145) (-6 -4146)))))) (-3495 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-1072 *4 *2)) (-4 *2 (-13 (-554 (-499) *4) (-10 -7 (-6 -4145) (-6 -4146))))))) -((-2687 (((-85) $ $) NIL T ELT)) (-4038 (((-1105 3 |#1|) $) 141 T ELT)) (-3506 (((-85) $) 101 T ELT)) (-3507 (($ $ (-599 (-881 |#1|))) 44 T ELT) (($ $ (-599 (-599 |#1|))) 104 T ELT) (($ (-599 (-881 |#1|))) 103 T ELT) (((-599 (-881 |#1|)) $) 102 T ELT)) (-3512 (((-85) $) 72 T ELT)) (-3856 (($ $ (-881 |#1|)) 76 T ELT) (($ $ (-599 |#1|)) 81 T ELT) (($ $ (-714)) 83 T ELT) (($ (-881 |#1|)) 77 T ELT) (((-881 |#1|) $) 75 T ELT)) (-3498 (((-2 (|:| -4000 (-714)) (|:| |curves| (-714)) (|:| |polygons| (-714)) (|:| |constructs| (-714))) $) 139 T ELT)) (-3516 (((-714) $) 53 T ELT)) (-3517 (((-714) $) 52 T ELT)) (-4037 (($ $ (-714) (-881 |#1|)) 67 T ELT)) (-3504 (((-85) $) 111 T ELT)) (-3505 (($ $ (-599 (-599 (-881 |#1|))) (-599 (-145)) (-145)) 118 T ELT) (($ $ (-599 (-599 (-599 |#1|))) (-599 (-145)) (-145)) 120 T ELT) (($ $ (-599 (-599 (-881 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-599 (-599 (-599 |#1|))) (-85) (-85)) 127 T ELT) (($ (-599 (-599 (-881 |#1|)))) 116 T ELT) (($ (-599 (-599 (-881 |#1|))) (-85) (-85)) 117 T ELT) (((-599 (-599 (-881 |#1|))) $) 114 T ELT)) (-3658 (($ (-599 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3499 (((-599 (-145)) $) 133 T ELT)) (-3503 (((-599 (-881 |#1|)) $) 130 T ELT)) (-3500 (((-599 (-599 (-145))) $) 132 T ELT)) (-3501 (((-599 (-599 (-599 (-881 |#1|)))) $) NIL T ELT)) (-3502 (((-599 (-599 (-599 (-714)))) $) 131 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3513 (((-714) $ (-599 (-881 |#1|))) 65 T ELT)) (-3510 (((-85) $) 84 T ELT)) (-3511 (($ $ (-599 (-881 |#1|))) 86 T ELT) (($ $ (-599 (-599 |#1|))) 92 T ELT) (($ (-599 (-881 |#1|))) 87 T ELT) (((-599 (-881 |#1|)) $) 85 T ELT)) (-3518 (($) 48 T ELT) (($ (-1105 3 |#1|)) 49 T ELT)) (-3540 (($ $) 63 T ELT)) (-3514 (((-599 $) $) 62 T ELT)) (-3904 (($ (-599 $)) 59 T ELT)) (-3515 (((-599 $) $) 61 T ELT)) (-4096 (((-797) $) 146 T ELT)) (-3508 (((-85) $) 94 T ELT)) (-3509 (($ $ (-599 (-881 |#1|))) 96 T ELT) (($ $ (-599 (-599 |#1|))) 99 T ELT) (($ (-599 (-881 |#1|))) 97 T ELT) (((-599 (-881 |#1|)) $) 95 T ELT)) (-3497 (($ $) 140 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-1073 |#1|) (-1074 |#1|) (-989)) (T -1073)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-4038 (((-1105 3 |#1|) $) 17 T ELT)) (-3506 (((-85) $) 33 T ELT)) (-3507 (($ $ (-599 (-881 |#1|))) 37 T ELT) (($ $ (-599 (-599 |#1|))) 36 T ELT) (($ (-599 (-881 |#1|))) 35 T ELT) (((-599 (-881 |#1|)) $) 34 T ELT)) (-3512 (((-85) $) 48 T ELT)) (-3856 (($ $ (-881 |#1|)) 53 T ELT) (($ $ (-599 |#1|)) 52 T ELT) (($ $ (-714)) 51 T ELT) (($ (-881 |#1|)) 50 T ELT) (((-881 |#1|) $) 49 T ELT)) (-3498 (((-2 (|:| -4000 (-714)) (|:| |curves| (-714)) (|:| |polygons| (-714)) (|:| |constructs| (-714))) $) 19 T ELT)) (-3516 (((-714) $) 62 T ELT)) (-3517 (((-714) $) 63 T ELT)) (-4037 (($ $ (-714) (-881 |#1|)) 54 T ELT)) (-3504 (((-85) $) 25 T ELT)) (-3505 (($ $ (-599 (-599 (-881 |#1|))) (-599 (-145)) (-145)) 32 T ELT) (($ $ (-599 (-599 (-599 |#1|))) (-599 (-145)) (-145)) 31 T ELT) (($ $ (-599 (-599 (-881 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-599 (-599 (-599 |#1|))) (-85) (-85)) 29 T ELT) (($ (-599 (-599 (-881 |#1|)))) 28 T ELT) (($ (-599 (-599 (-881 |#1|))) (-85) (-85)) 27 T ELT) (((-599 (-599 (-881 |#1|))) $) 26 T ELT)) (-3658 (($ (-599 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3499 (((-599 (-145)) $) 20 T ELT)) (-3503 (((-599 (-881 |#1|)) $) 24 T ELT)) (-3500 (((-599 (-599 (-145))) $) 21 T ELT)) (-3501 (((-599 (-599 (-599 (-881 |#1|)))) $) 22 T ELT)) (-3502 (((-599 (-599 (-599 (-714)))) $) 23 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3513 (((-714) $ (-599 (-881 |#1|))) 55 T ELT)) (-3510 (((-85) $) 43 T ELT)) (-3511 (($ $ (-599 (-881 |#1|))) 47 T ELT) (($ $ (-599 (-599 |#1|))) 46 T ELT) (($ (-599 (-881 |#1|))) 45 T ELT) (((-599 (-881 |#1|)) $) 44 T ELT)) (-3518 (($) 65 T ELT) (($ (-1105 3 |#1|)) 64 T ELT)) (-3540 (($ $) 56 T ELT)) (-3514 (((-599 $) $) 57 T ELT)) (-3904 (($ (-599 $)) 59 T ELT)) (-3515 (((-599 $) $) 58 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-3508 (((-85) $) 38 T ELT)) (-3509 (($ $ (-599 (-881 |#1|))) 42 T ELT) (($ $ (-599 (-599 |#1|))) 41 T ELT) (($ (-599 (-881 |#1|))) 40 T ELT) (((-599 (-881 |#1|)) $) 39 T ELT)) (-3497 (($ $) 18 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-1074 |#1|) (-113) (-989)) (T -1074)) -((-4096 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-797)))) (-3518 (*1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-989)))) (-3518 (*1 *1 *2) (-12 (-5 *2 (-1105 3 *3)) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) (-3516 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) (-3658 (*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3658 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-989)))) (-3904 (*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3515 (*1 *2 *1) (-12 (-4 *3 (-989)) (-5 *2 (-599 *1)) (-4 *1 (-1074 *3)))) (-3514 (*1 *2 *1) (-12 (-4 *3 (-989)) (-5 *2 (-599 *1)) (-4 *1 (-1074 *3)))) (-3540 (*1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-989)))) (-3513 (*1 *2 *1 *3) (-12 (-5 *3 (-599 (-881 *4))) (-4 *1 (-1074 *4)) (-4 *4 (-989)) (-5 *2 (-714)))) (-4037 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-714)) (-5 *3 (-881 *4)) (-4 *1 (-1074 *4)) (-4 *4 (-989)))) (-3856 (*1 *1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3856 (*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3856 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3856 (*1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) (-3856 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-881 *3)))) (-3512 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85)))) (-3511 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-881 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3511 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3511 (*1 *1 *2) (-12 (-5 *2 (-599 (-881 *3))) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-881 *3))))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85)))) (-3509 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-881 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3509 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3509 (*1 *1 *2) (-12 (-5 *2 (-599 (-881 *3))) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-881 *3))))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85)))) (-3507 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-881 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3507 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-599 (-881 *3))) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-881 *3))))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85)))) (-3505 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-599 (-599 (-881 *5)))) (-5 *3 (-599 (-145))) (-5 *4 (-145)) (-4 *1 (-1074 *5)) (-4 *5 (-989)))) (-3505 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-599 (-599 (-599 *5)))) (-5 *3 (-599 (-145))) (-5 *4 (-145)) (-4 *1 (-1074 *5)) (-4 *5 (-989)))) (-3505 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-599 (-599 (-881 *4)))) (-5 *3 (-85)) (-4 *1 (-1074 *4)) (-4 *4 (-989)))) (-3505 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-599 (-599 (-599 *4)))) (-5 *3 (-85)) (-4 *1 (-1074 *4)) (-4 *4 (-989)))) (-3505 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 (-881 *3)))) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) (-3505 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-599 (-599 (-881 *4)))) (-5 *3 (-85)) (-4 *4 (-989)) (-4 *1 (-1074 *4)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-599 (-881 *3)))))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-881 *3))))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-599 (-599 (-714))))))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-599 (-599 (-881 *3))))))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-599 (-145)))))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-145))))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -4000 (-714)) (|:| |curves| (-714)) (|:| |polygons| (-714)) (|:| |constructs| (-714)))))) (-3497 (*1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-989)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-1105 3 *3))))) -(-13 (-1041) (-10 -8 (-15 -3518 ($)) (-15 -3518 ($ (-1105 3 |t#1|))) (-15 -3517 ((-714) $)) (-15 -3516 ((-714) $)) (-15 -3658 ($ (-599 $))) (-15 -3658 ($ $ $)) (-15 -3904 ($ (-599 $))) (-15 -3515 ((-599 $) $)) (-15 -3514 ((-599 $) $)) (-15 -3540 ($ $)) (-15 -3513 ((-714) $ (-599 (-881 |t#1|)))) (-15 -4037 ($ $ (-714) (-881 |t#1|))) (-15 -3856 ($ $ (-881 |t#1|))) (-15 -3856 ($ $ (-599 |t#1|))) (-15 -3856 ($ $ (-714))) (-15 -3856 ($ (-881 |t#1|))) (-15 -3856 ((-881 |t#1|) $)) (-15 -3512 ((-85) $)) (-15 -3511 ($ $ (-599 (-881 |t#1|)))) (-15 -3511 ($ $ (-599 (-599 |t#1|)))) (-15 -3511 ($ (-599 (-881 |t#1|)))) (-15 -3511 ((-599 (-881 |t#1|)) $)) (-15 -3510 ((-85) $)) (-15 -3509 ($ $ (-599 (-881 |t#1|)))) (-15 -3509 ($ $ (-599 (-599 |t#1|)))) (-15 -3509 ($ (-599 (-881 |t#1|)))) (-15 -3509 ((-599 (-881 |t#1|)) $)) (-15 -3508 ((-85) $)) (-15 -3507 ($ $ (-599 (-881 |t#1|)))) (-15 -3507 ($ $ (-599 (-599 |t#1|)))) (-15 -3507 ($ (-599 (-881 |t#1|)))) (-15 -3507 ((-599 (-881 |t#1|)) $)) (-15 -3506 ((-85) $)) (-15 -3505 ($ $ (-599 (-599 (-881 |t#1|))) (-599 (-145)) (-145))) (-15 -3505 ($ $ (-599 (-599 (-599 |t#1|))) (-599 (-145)) (-145))) (-15 -3505 ($ $ (-599 (-599 (-881 |t#1|))) (-85) (-85))) (-15 -3505 ($ $ (-599 (-599 (-599 |t#1|))) (-85) (-85))) (-15 -3505 ($ (-599 (-599 (-881 |t#1|))))) (-15 -3505 ($ (-599 (-599 (-881 |t#1|))) (-85) (-85))) (-15 -3505 ((-599 (-599 (-881 |t#1|))) $)) (-15 -3504 ((-85) $)) (-15 -3503 ((-599 (-881 |t#1|)) $)) (-15 -3502 ((-599 (-599 (-599 (-714)))) $)) (-15 -3501 ((-599 (-599 (-599 (-881 |t#1|)))) $)) (-15 -3500 ((-599 (-599 (-145))) $)) (-15 -3499 ((-599 (-145)) $)) (-15 -3498 ((-2 (|:| -4000 (-714)) (|:| |curves| (-714)) (|:| |polygons| (-714)) (|:| |constructs| (-714))) $)) (-15 -3497 ($ $)) (-15 -4038 ((-1105 3 |t#1|) $)) (-15 -4096 ((-797) $)))) -(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 184 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) 7 T ELT)) (-3714 (((-85) $ (|[\|\|]| (-477))) 19 T ELT) (((-85) $ (|[\|\|]| (-172))) 23 T ELT) (((-85) $ (|[\|\|]| (-634))) 27 T ELT) (((-85) $ (|[\|\|]| (-1218))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-555))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1056))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-639))) 55 T ELT) (((-85) $ (|[\|\|]| (-471))) 59 T ELT) (((-85) $ (|[\|\|]| (-1006))) 63 T ELT) (((-85) $ (|[\|\|]| (-1219))) 67 T ELT) (((-85) $ (|[\|\|]| (-478))) 71 T ELT) (((-85) $ (|[\|\|]| (-1093))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-629))) 83 T ELT) (((-85) $ (|[\|\|]| (-266))) 87 T ELT) (((-85) $ (|[\|\|]| (-976))) 91 T ELT) (((-85) $ (|[\|\|]| (-154))) 95 T ELT) (((-85) $ (|[\|\|]| (-910))) 99 T ELT) (((-85) $ (|[\|\|]| (-1013))) 103 T ELT) (((-85) $ (|[\|\|]| (-1031))) 107 T ELT) (((-85) $ (|[\|\|]| (-1036))) 111 T ELT) (((-85) $ (|[\|\|]| (-581))) 115 T ELT) (((-85) $ (|[\|\|]| (-1107))) 119 T ELT) (((-85) $ (|[\|\|]| (-129))) 123 T ELT) (((-85) $ (|[\|\|]| (-110))) 127 T ELT) (((-85) $ (|[\|\|]| (-432))) 131 T ELT) (((-85) $ (|[\|\|]| (-543))) 135 T ELT) (((-85) $ (|[\|\|]| (-460))) 139 T ELT) (((-85) $ (|[\|\|]| (-1099))) 143 T ELT) (((-85) $ (|[\|\|]| (-499))) 147 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3720 (((-477) $) 20 T ELT) (((-172) $) 24 T ELT) (((-634) $) 28 T ELT) (((-1218) $) 32 T ELT) (((-111) $) 36 T ELT) (((-555) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1056) $) 48 T ELT) (((-67) $) 52 T ELT) (((-639) $) 56 T ELT) (((-471) $) 60 T ELT) (((-1006) $) 64 T ELT) (((-1219) $) 68 T ELT) (((-478) $) 72 T ELT) (((-1093) $) 76 T ELT) (((-127) $) 80 T ELT) (((-629) $) 84 T ELT) (((-266) $) 88 T ELT) (((-976) $) 92 T ELT) (((-154) $) 96 T ELT) (((-910) $) 100 T ELT) (((-1013) $) 104 T ELT) (((-1031) $) 108 T ELT) (((-1036) $) 112 T ELT) (((-581) $) 116 T ELT) (((-1107) $) 120 T ELT) (((-129) $) 124 T ELT) (((-110) $) 128 T ELT) (((-432) $) 132 T ELT) (((-543) $) 136 T ELT) (((-460) $) 140 T ELT) (((-1099) $) 144 T ELT) (((-499) $) 148 T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-1075) (-1077)) (T -1075)) -NIL -((-3519 (((-599 (-1122)) (-1099)) 9 T ELT))) -(((-1076) (-10 -7 (-15 -3519 ((-599 (-1122)) (-1099))))) (T -1076)) -((-3519 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-599 (-1122))) (-5 *1 (-1076))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-1122)) 20 T ELT) (((-1122) $) 19 T ELT)) (-3714 (((-85) $ (|[\|\|]| (-477))) 88 T ELT) (((-85) $ (|[\|\|]| (-172))) 86 T ELT) (((-85) $ (|[\|\|]| (-634))) 84 T ELT) (((-85) $ (|[\|\|]| (-1218))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-555))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1056))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-639))) 70 T ELT) (((-85) $ (|[\|\|]| (-471))) 68 T ELT) (((-85) $ (|[\|\|]| (-1006))) 66 T ELT) (((-85) $ (|[\|\|]| (-1219))) 64 T ELT) (((-85) $ (|[\|\|]| (-478))) 62 T ELT) (((-85) $ (|[\|\|]| (-1093))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-629))) 56 T ELT) (((-85) $ (|[\|\|]| (-266))) 54 T ELT) (((-85) $ (|[\|\|]| (-976))) 52 T ELT) (((-85) $ (|[\|\|]| (-154))) 50 T ELT) (((-85) $ (|[\|\|]| (-910))) 48 T ELT) (((-85) $ (|[\|\|]| (-1013))) 46 T ELT) (((-85) $ (|[\|\|]| (-1031))) 44 T ELT) (((-85) $ (|[\|\|]| (-1036))) 42 T ELT) (((-85) $ (|[\|\|]| (-581))) 40 T ELT) (((-85) $ (|[\|\|]| (-1107))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-432))) 32 T ELT) (((-85) $ (|[\|\|]| (-543))) 30 T ELT) (((-85) $ (|[\|\|]| (-460))) 28 T ELT) (((-85) $ (|[\|\|]| (-1099))) 26 T ELT) (((-85) $ (|[\|\|]| (-499))) 24 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3720 (((-477) $) 87 T ELT) (((-172) $) 85 T ELT) (((-634) $) 83 T ELT) (((-1218) $) 81 T ELT) (((-111) $) 79 T ELT) (((-555) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1056) $) 73 T ELT) (((-67) $) 71 T ELT) (((-639) $) 69 T ELT) (((-471) $) 67 T ELT) (((-1006) $) 65 T ELT) (((-1219) $) 63 T ELT) (((-478) $) 61 T ELT) (((-1093) $) 59 T ELT) (((-127) $) 57 T ELT) (((-629) $) 55 T ELT) (((-266) $) 53 T ELT) (((-976) $) 51 T ELT) (((-154) $) 49 T ELT) (((-910) $) 47 T ELT) (((-1013) $) 45 T ELT) (((-1031) $) 43 T ELT) (((-1036) $) 41 T ELT) (((-581) $) 39 T ELT) (((-1107) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-432) $) 31 T ELT) (((-543) $) 29 T ELT) (((-460) $) 27 T ELT) (((-1099) $) 25 T ELT) (((-499) $) 23 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-1077) (-113)) (T -1077)) -((-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-477))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-477)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-172)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-634))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-634)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1218))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1218)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-111)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-555))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-555)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-106)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1056))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1056)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-67)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-639))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-639)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-471))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-471)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1006))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1006)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1219))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1219)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-478)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1093))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1093)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-127)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-629))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-629)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-266))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-266)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-976))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-976)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-154)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-910))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-910)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1013))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1013)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1031))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1031)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1036))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1036)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-581))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-581)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1107))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1107)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-129)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-110)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-432))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-432)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-543))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-543)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-460))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-460)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1099)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-499))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-499))))) -(-13 (-1023) (-1203) (-10 -8 (-15 -3714 ((-85) $ (|[\|\|]| (-477)))) (-15 -3720 ((-477) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-172)))) (-15 -3720 ((-172) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-634)))) (-15 -3720 ((-634) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1218)))) (-15 -3720 ((-1218) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-111)))) (-15 -3720 ((-111) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-555)))) (-15 -3720 ((-555) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-106)))) (-15 -3720 ((-106) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1056)))) (-15 -3720 ((-1056) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-67)))) (-15 -3720 ((-67) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-639)))) (-15 -3720 ((-639) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-471)))) (-15 -3720 ((-471) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1006)))) (-15 -3720 ((-1006) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1219)))) (-15 -3720 ((-1219) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-478)))) (-15 -3720 ((-478) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1093)))) (-15 -3720 ((-1093) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-127)))) (-15 -3720 ((-127) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-629)))) (-15 -3720 ((-629) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-266)))) (-15 -3720 ((-266) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-976)))) (-15 -3720 ((-976) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-154)))) (-15 -3720 ((-154) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-910)))) (-15 -3720 ((-910) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1013)))) (-15 -3720 ((-1013) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1031)))) (-15 -3720 ((-1031) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1036)))) (-15 -3720 ((-1036) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-581)))) (-15 -3720 ((-581) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1107)))) (-15 -3720 ((-1107) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-129)))) (-15 -3720 ((-129) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-110)))) (-15 -3720 ((-110) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-432)))) (-15 -3720 ((-432) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-543)))) (-15 -3720 ((-543) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-460)))) (-15 -3720 ((-460) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1099)))) (-15 -3720 ((-1099) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-499)))) (-15 -3720 ((-499) $)))) -(((-64) . T) ((-73) . T) ((-571 (-1122)) . T) ((-568 (-797)) . T) ((-568 (-1122)) . T) ((-444 (-1122)) . T) ((-1041) . T) ((-1023) . T) ((-1157) . T) ((-1203) . T)) -((-3522 (((-1213) (-599 (-797))) 22 T ELT) (((-1213) (-797)) 21 T ELT)) (-3521 (((-1213) (-599 (-797))) 20 T ELT) (((-1213) (-797)) 19 T ELT)) (-3520 (((-1213) (-599 (-797))) 18 T ELT) (((-1213) (-797)) 10 T ELT) (((-1213) (-1099) (-797)) 16 T ELT))) -(((-1078) (-10 -7 (-15 -3520 ((-1213) (-1099) (-797))) (-15 -3520 ((-1213) (-797))) (-15 -3521 ((-1213) (-797))) (-15 -3522 ((-1213) (-797))) (-15 -3520 ((-1213) (-599 (-797)))) (-15 -3521 ((-1213) (-599 (-797)))) (-15 -3522 ((-1213) (-599 (-797)))))) (T -1078)) -((-3522 (*1 *2 *3) (-12 (-5 *3 (-599 (-797))) (-5 *2 (-1213)) (-5 *1 (-1078)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-599 (-797))) (-5 *2 (-1213)) (-5 *1 (-1078)))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-599 (-797))) (-5 *2 (-1213)) (-5 *1 (-1078)))) (-3522 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-1078)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-1078)))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-1078)))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-797)) (-5 *2 (-1213)) (-5 *1 (-1078))))) -((-3526 (($ $ $) 10 T ELT)) (-3525 (($ $) 9 T ELT)) (-3529 (($ $ $) 13 T ELT)) (-3531 (($ $ $) 15 T ELT)) (-3528 (($ $ $) 12 T ELT)) (-3530 (($ $ $) 14 T ELT)) (-3533 (($ $) 17 T ELT)) (-3532 (($ $) 16 T ELT)) (-3523 (($ $) 6 T ELT)) (-3527 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3524 (($ $ $) 8 T ELT))) -(((-1079) (-113)) (T -1079)) -((-3533 (*1 *1 *1) (-4 *1 (-1079))) (-3532 (*1 *1 *1) (-4 *1 (-1079))) (-3531 (*1 *1 *1 *1) (-4 *1 (-1079))) (-3530 (*1 *1 *1 *1) (-4 *1 (-1079))) (-3529 (*1 *1 *1 *1) (-4 *1 (-1079))) (-3528 (*1 *1 *1 *1) (-4 *1 (-1079))) (-3527 (*1 *1 *1 *1) (-4 *1 (-1079))) (-3526 (*1 *1 *1 *1) (-4 *1 (-1079))) (-3525 (*1 *1 *1) (-4 *1 (-1079))) (-3524 (*1 *1 *1 *1) (-4 *1 (-1079))) (-3527 (*1 *1 *1) (-4 *1 (-1079))) (-3523 (*1 *1 *1) (-4 *1 (-1079)))) -(-13 (-10 -8 (-15 -3523 ($ $)) (-15 -3527 ($ $)) (-15 -3524 ($ $ $)) (-15 -3525 ($ $)) (-15 -3526 ($ $ $)) (-15 -3527 ($ $ $)) (-15 -3528 ($ $ $)) (-15 -3529 ($ $ $)) (-15 -3530 ($ $ $)) (-15 -3531 ($ $ $)) (-15 -3532 ($ $)) (-15 -3533 ($ $)))) -((-2687 (((-85) $ $) 44 T ELT)) (-3542 ((|#1| $) 17 T ELT)) (-3534 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3541 (((-85) $) 19 T ELT)) (-3539 (($ $ |#1|) 30 T ELT)) (-3537 (($ $ (-85)) 32 T ELT)) (-3536 (($ $) 33 T ELT)) (-3538 (($ $ |#2|) 31 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3535 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3543 (((-85) $) 16 T ELT)) (-3713 (($) 13 T ELT)) (-3540 (($ $) 29 T ELT)) (-3670 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1633 |#2|))) 23 T ELT) (((-599 $) (-599 (-2 (|:| |val| |#1|) (|:| -1633 |#2|)))) 26 T ELT) (((-599 $) |#1| (-599 |#2|)) 28 T ELT)) (-4072 ((|#2| $) 18 T ELT)) (-4096 (((-797) $) 53 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 42 T ELT))) -(((-1080 |#1| |#2|) (-13 (-1041) (-10 -8 (-15 -3713 ($)) (-15 -3543 ((-85) $)) (-15 -3542 (|#1| $)) (-15 -4072 (|#2| $)) (-15 -3541 ((-85) $)) (-15 -3670 ($ |#1| |#2| (-85))) (-15 -3670 ($ |#1| |#2|)) (-15 -3670 ($ (-2 (|:| |val| |#1|) (|:| -1633 |#2|)))) (-15 -3670 ((-599 $) (-599 (-2 (|:| |val| |#1|) (|:| -1633 |#2|))))) (-15 -3670 ((-599 $) |#1| (-599 |#2|))) (-15 -3540 ($ $)) (-15 -3539 ($ $ |#1|)) (-15 -3538 ($ $ |#2|)) (-15 -3537 ($ $ (-85))) (-15 -3536 ($ $)) (-15 -3535 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3534 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1041) (-34)) (-13 (-1041) (-34))) (T -1080)) -((-3713 (*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))))) (-3542 (*1 *2 *1) (-12 (-4 *2 (-13 (-1041) (-34))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-13 (-1041) (-34))))) (-4072 (*1 *2 *1) (-12 (-4 *2 (-13 (-1041) (-34))) (-5 *1 (-1080 *3 *2)) (-4 *3 (-13 (-1041) (-34))))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))))) (-3670 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) (-3670 (*1 *1 *2 *3) (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) (-3670 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1633 *4))) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1080 *3 *4)))) (-3670 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| |val| *4) (|:| -1633 *5)))) (-4 *4 (-13 (-1041) (-34))) (-4 *5 (-13 (-1041) (-34))) (-5 *2 (-599 (-1080 *4 *5))) (-5 *1 (-1080 *4 *5)))) (-3670 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *5)) (-4 *5 (-13 (-1041) (-34))) (-5 *2 (-599 (-1080 *3 *5))) (-5 *1 (-1080 *3 *5)) (-4 *3 (-13 (-1041) (-34))))) (-3540 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) (-3539 (*1 *1 *1 *2) (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) (-3538 (*1 *1 *1 *2) (-12 (-5 *1 (-1080 *3 *2)) (-4 *3 (-13 (-1041) (-34))) (-4 *2 (-13 (-1041) (-34))))) (-3537 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))))) (-3536 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) (-3535 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1041) (-34))) (-4 *6 (-13 (-1041) (-34))) (-5 *2 (-85)) (-5 *1 (-1080 *5 *6)))) (-3534 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1041) (-34))) (-5 *2 (-85)) (-5 *1 (-1080 *4 *5)) (-4 *4 (-13 (-1041) (-34)))))) -((-2687 (((-85) $ $) NIL (|has| (-1080 |#1| |#2|) (-73)) ELT)) (-3542 (((-1080 |#1| |#2|) $) 27 T ELT)) (-3551 (($ $) 91 T ELT)) (-3547 (((-85) (-1080 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3544 (($ $ $ (-599 (-1080 |#1| |#2|))) 108 T ELT) (($ $ $ (-599 (-1080 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3146 (((-1080 |#1| |#2|) $ (-1080 |#1| |#2|)) 46 (|has| $ (-6 -4146)) ELT)) (-3938 (((-1080 |#1| |#2|) $ #1="value" (-1080 |#1| |#2|)) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 44 (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3549 (((-599 (-2 (|:| |val| |#1|) (|:| -1633 |#2|))) $) 95 T ELT)) (-3545 (($ (-1080 |#1| |#2|) $) 42 T ELT)) (-3546 (($ (-1080 |#1| |#2|) $) 34 T ELT)) (-3010 (((-599 (-1080 |#1| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 54 T ELT)) (-3548 (((-85) (-1080 |#1| |#2|) $) 97 T ELT)) (-3148 (((-85) $ $) NIL (|has| (-1080 |#1| |#2|) (-1041)) ELT)) (-2727 (((-599 (-1080 |#1| |#2|)) $) 58 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-1080 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-1080 |#1| |#2|) (-1041))) ELT)) (-2051 (($ (-1 (-1080 |#1| |#2|) (-1080 |#1| |#2|)) $) 50 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-1080 |#1| |#2|) (-1080 |#1| |#2|)) $) 49 T ELT)) (-3151 (((-599 (-1080 |#1| |#2|)) $) 56 T ELT)) (-3667 (((-85) $) 45 T ELT)) (-3380 (((-1099) $) NIL (|has| (-1080 |#1| |#2|) (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| (-1080 |#1| |#2|) (-1041)) ELT)) (-3552 (((-3 $ "failed") $) 89 T ELT)) (-2049 (((-85) (-1 (-85) (-1080 |#1| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-1080 |#1| |#2|)))) NIL (-12 (|has| (-1080 |#1| |#2|) (-263 (-1080 |#1| |#2|))) (|has| (-1080 |#1| |#2|) (-1041))) ELT) (($ $ (-247 (-1080 |#1| |#2|))) NIL (-12 (|has| (-1080 |#1| |#2|) (-263 (-1080 |#1| |#2|))) (|has| (-1080 |#1| |#2|) (-1041))) ELT) (($ $ (-1080 |#1| |#2|) (-1080 |#1| |#2|)) NIL (-12 (|has| (-1080 |#1| |#2|) (-263 (-1080 |#1| |#2|))) (|has| (-1080 |#1| |#2|) (-1041))) ELT) (($ $ (-599 (-1080 |#1| |#2|)) (-599 (-1080 |#1| |#2|))) NIL (-12 (|has| (-1080 |#1| |#2|) (-263 (-1080 |#1| |#2|))) (|has| (-1080 |#1| |#2|) (-1041))) ELT)) (-1248 (((-85) $ $) 53 T ELT)) (-3543 (((-85) $) 24 T ELT)) (-3713 (($) 26 T ELT)) (-3950 (((-1080 |#1| |#2|) $ #1#) NIL T ELT)) (-3150 (((-499) $ $) NIL T ELT)) (-3783 (((-85) $) 47 T ELT)) (-2048 (((-714) (-1 (-85) (-1080 |#1| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-1080 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-1080 |#1| |#2|) (-1041))) ELT)) (-3540 (($ $) 52 T ELT)) (-3670 (($ (-1080 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-599 $)) 13 T ELT) (($ |#1| |#2| (-599 (-1080 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-599 |#2|)) 18 T ELT)) (-3550 (((-599 |#2|) $) 96 T ELT)) (-4096 (((-797) $) 87 (|has| (-1080 |#1| |#2|) (-568 (-797))) ELT)) (-3662 (((-599 $) $) 31 T ELT)) (-3149 (((-85) $ $) NIL (|has| (-1080 |#1| |#2|) (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| (-1080 |#1| |#2|) (-73)) ELT)) (-2050 (((-85) (-1 (-85) (-1080 |#1| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 70 (|has| (-1080 |#1| |#2|) (-73)) ELT)) (-4107 (((-714) $) 64 (|has| $ (-6 -4145)) ELT))) -(((-1081 |#1| |#2|) (-13 (-950 (-1080 |#1| |#2|)) (-10 -8 (-6 -4146) (-6 -4145) (-15 -3552 ((-3 $ "failed") $)) (-15 -3551 ($ $)) (-15 -3670 ($ (-1080 |#1| |#2|))) (-15 -3670 ($ |#1| |#2| (-599 $))) (-15 -3670 ($ |#1| |#2| (-599 (-1080 |#1| |#2|)))) (-15 -3670 ($ |#1| |#2| |#1| (-599 |#2|))) (-15 -3550 ((-599 |#2|) $)) (-15 -3549 ((-599 (-2 (|:| |val| |#1|) (|:| -1633 |#2|))) $)) (-15 -3548 ((-85) (-1080 |#1| |#2|) $)) (-15 -3547 ((-85) (-1080 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3546 ($ (-1080 |#1| |#2|) $)) (-15 -3545 ($ (-1080 |#1| |#2|) $)) (-15 -3544 ($ $ $ (-599 (-1080 |#1| |#2|)))) (-15 -3544 ($ $ $ (-599 (-1080 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1041) (-34)) (-13 (-1041) (-34))) (T -1081)) -((-3552 (*1 *1 *1) (|partial| -12 (-5 *1 (-1081 *2 *3)) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) (-3551 (*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) (-3670 (*1 *1 *2) (-12 (-5 *2 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1081 *3 *4)))) (-3670 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-599 (-1081 *2 *3))) (-5 *1 (-1081 *2 *3)) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) (-3670 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-599 (-1080 *2 *3))) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))) (-5 *1 (-1081 *2 *3)))) (-3670 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-13 (-1041) (-34))) (-5 *1 (-1081 *2 *3)) (-4 *2 (-13 (-1041) (-34))))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-599 *4)) (-5 *1 (-1081 *3 *4)) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1081 *3 *4)) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))))) (-3548 (*1 *2 *3 *1) (-12 (-5 *3 (-1080 *4 *5)) (-4 *4 (-13 (-1041) (-34))) (-4 *5 (-13 (-1041) (-34))) (-5 *2 (-85)) (-5 *1 (-1081 *4 *5)))) (-3547 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1080 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1041) (-34))) (-4 *6 (-13 (-1041) (-34))) (-5 *2 (-85)) (-5 *1 (-1081 *5 *6)))) (-3546 (*1 *1 *2 *1) (-12 (-5 *2 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1081 *3 *4)))) (-3545 (*1 *1 *2 *1) (-12 (-5 *2 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1081 *3 *4)))) (-3544 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-599 (-1080 *3 *4))) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1081 *3 *4)))) (-3544 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-1080 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1041) (-34))) (-4 *5 (-13 (-1041) (-34))) (-5 *1 (-1081 *4 *5))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3554 (($ $) NIL T ELT)) (-3470 ((|#2| $) NIL T ELT)) (-3243 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3553 (($ (-647 |#2|)) 56 T ELT)) (-3245 (((-85) $) NIL T ELT)) (-3473 (($ |#2|) 14 T ELT)) (-3874 (($) NIL T CONST)) (-3232 (($ $) 69 (|has| |#2| (-261)) ELT)) (-3234 (((-196 |#1| |#2|) $ (-499)) 42 T ELT)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) ((|#2| $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#2|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) 83 T ELT)) (-3231 (((-714) $) 71 (|has| |#2| (-510)) ELT)) (-3235 ((|#2| $ (-499) (-499)) NIL T ELT)) (-3010 (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3230 (((-714) $) 73 (|has| |#2| (-510)) ELT)) (-3229 (((-599 (-196 |#1| |#2|)) $) 77 (|has| |#2| (-510)) ELT)) (-3237 (((-714) $) NIL T ELT)) (-3764 (($ |#2|) 25 T ELT)) (-3236 (((-714) $) NIL T ELT)) (-3467 ((|#2| $) 67 (|has| |#2| (-6 (-4147 #2="*"))) ELT)) (-3241 (((-499) $) NIL T ELT)) (-3239 (((-499) $) NIL T ELT)) (-2727 (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-3240 (((-499) $) NIL T ELT)) (-3238 (((-499) $) NIL T ELT)) (-3246 (($ (-599 (-599 |#2|))) 37 T ELT)) (-2051 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3742 (((-599 (-599 |#2|)) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3738 (((-3 $ #1#) $) 80 (|has| |#2| (-318)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3606 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-510)) ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ (-499) (-499) |#2|) NIL T ELT) ((|#2| $ (-499) (-499)) NIL T ELT)) (-3908 (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-714)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT)) (-3469 ((|#2| $) NIL T ELT)) (-3472 (($ (-599 |#2|)) 50 T ELT)) (-3244 (((-85) $) NIL T ELT)) (-3471 (((-196 |#1| |#2|) $) NIL T ELT)) (-3468 ((|#2| $) 65 (|has| |#2| (-6 (-4147 #2#))) ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) 90 (|has| |#2| (-569 (-488))) ELT)) (-3233 (((-196 |#1| |#2|) $ (-499)) 44 T ELT)) (-4096 (((-797) $) 47 T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (($ |#2|) NIL T ELT) (((-647 |#2|) $) 52 T ELT)) (-3248 (((-714)) 23 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3242 (((-85) $) NIL T ELT)) (-2779 (($) 16 T CONST)) (-2785 (($) 21 T CONST)) (-2790 (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-714)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 63 T ELT) (($ $ (-499)) 82 (|has| |#2| (-318)) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-196 |#1| |#2|) $ (-196 |#1| |#2|)) 59 T ELT) (((-196 |#1| |#2|) (-196 |#1| |#2|) $) 61 T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-1082 |#1| |#2|) (-13 (-1063 |#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) (-568 (-647 |#2|)) (-10 -8 (-15 -3764 ($ |#2|)) (-15 -3554 ($ $)) (-15 -3553 ($ (-647 |#2|))) (IF (|has| |#2| (-6 (-4147 #1="*"))) (-6 -4134) |%noBranch|) (IF (|has| |#2| (-6 (-4147 #1#))) (IF (|has| |#2| (-6 -4142)) (-6 -4142) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|))) (-714) (-989)) (T -1082)) -((-3764 (*1 *1 *2) (-12 (-5 *1 (-1082 *3 *2)) (-14 *3 (-714)) (-4 *2 (-989)))) (-3554 (*1 *1 *1) (-12 (-5 *1 (-1082 *2 *3)) (-14 *2 (-714)) (-4 *3 (-989)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-647 *4)) (-4 *4 (-989)) (-5 *1 (-1082 *3 *4)) (-14 *3 (-714))))) -((-3567 (($ $) 19 T ELT)) (-3557 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3565 (((-85) $ $) 24 T ELT)) (-3569 (($ $) 17 T ELT)) (-3950 (((-117) $ (-499) (-117)) NIL T ELT) (((-117) $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT) (($ $ $) 31 T ELT)) (-4096 (($ (-117)) 29 T ELT) (((-797) $) NIL T ELT))) -(((-1083 |#1|) (-10 -7 (-15 -4096 ((-797) |#1|)) (-15 -3950 (|#1| |#1| |#1|)) (-15 -3557 (|#1| |#1| (-114))) (-15 -3557 (|#1| |#1| (-117))) (-15 -4096 (|#1| (-117))) (-15 -3565 ((-85) |#1| |#1|)) (-15 -3567 (|#1| |#1|)) (-15 -3569 (|#1| |#1|)) (-15 -3950 (|#1| |#1| (-1174 (-499)))) (-15 -3950 ((-117) |#1| (-499))) (-15 -3950 ((-117) |#1| (-499) (-117)))) (-1084)) (T -1083)) -NIL -((-2687 (((-85) $ $) 19 (|has| (-117) (-73)) ELT)) (-3566 (($ $) 129 T ELT)) (-3567 (($ $) 130 T ELT)) (-3557 (($ $ (-117)) 117 T ELT) (($ $ (-114)) 116 T ELT)) (-2299 (((-1213) $ (-499) (-499)) 44 (|has| $ (-6 -4146)) ELT)) (-3564 (((-85) $ $) 127 T ELT)) (-3563 (((-85) $ $ (-499)) 126 T ELT)) (-3558 (((-599 $) $ (-117)) 119 T ELT) (((-599 $) $ (-114)) 118 T ELT)) (-1825 (((-85) (-1 (-85) (-117) (-117)) $) 107 T ELT) (((-85) $) 101 (|has| (-117) (-781)) ELT)) (-1823 (($ (-1 (-85) (-117) (-117)) $) 98 (|has| $ (-6 -4146)) ELT) (($ $) 97 (-12 (|has| (-117) (-781)) (|has| $ (-6 -4146))) ELT)) (-3030 (($ (-1 (-85) (-117) (-117)) $) 108 T ELT) (($ $) 102 (|has| (-117) (-781)) ELT)) (-3938 (((-117) $ (-499) (-117)) 56 (|has| $ (-6 -4146)) ELT) (((-117) $ (-1174 (-499)) (-117)) 64 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) (-117)) $) 81 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-3555 (($ $ (-117)) 113 T ELT) (($ $ (-114)) 112 T ELT)) (-2397 (($ $) 99 (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) 109 T ELT)) (-3560 (($ $ (-1174 (-499)) $) 123 T ELT)) (-1386 (($ $) 84 (-12 (|has| (-117) (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ (-117) $) 83 (-12 (|has| (-117) (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) (-117)) $) 80 (|has| $ (-6 -4145)) ELT)) (-3992 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 82 (-12 (|has| (-117) (-1041)) (|has| $ (-6 -4145))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 79 (|has| $ (-6 -4145)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) 78 (|has| $ (-6 -4145)) ELT)) (-1609 (((-117) $ (-499) (-117)) 57 (|has| $ (-6 -4146)) ELT)) (-3235 (((-117) $ (-499)) 55 T ELT)) (-3565 (((-85) $ $) 128 T ELT)) (-3559 (((-499) (-1 (-85) (-117)) $) 106 T ELT) (((-499) (-117) $) 105 (|has| (-117) (-1041)) ELT) (((-499) (-117) $ (-499)) 104 (|has| (-117) (-1041)) ELT) (((-499) $ $ (-499)) 122 T ELT) (((-499) (-114) $ (-499)) 121 T ELT)) (-3010 (((-599 (-117)) $) 30 (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) (-117)) 74 T ELT)) (-2301 (((-499) $) 47 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) 91 (|has| (-117) (-781)) ELT)) (-3658 (($ (-1 (-85) (-117) (-117)) $ $) 110 T ELT) (($ $ $) 103 (|has| (-117) (-781)) ELT)) (-2727 (((-599 (-117)) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-117) $) 27 (-12 (|has| (-117) (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 48 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) 92 (|has| (-117) (-781)) ELT)) (-3561 (((-85) $ $ (-117)) 124 T ELT)) (-3562 (((-714) $ $ (-117)) 125 T ELT)) (-2051 (($ (-1 (-117) (-117)) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-117) (-117)) $) 35 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 69 T ELT)) (-3568 (($ $) 131 T ELT)) (-3569 (($ $) 132 T ELT)) (-3556 (($ $ (-117)) 115 T ELT) (($ $ (-114)) 114 T ELT)) (-3380 (((-1099) $) 22 (|has| (-117) (-1041)) ELT)) (-2404 (($ (-117) $ (-499)) 66 T ELT) (($ $ $ (-499)) 65 T ELT)) (-2304 (((-599 (-499)) $) 50 T ELT)) (-2305 (((-85) (-499) $) 51 T ELT)) (-3381 (((-1060) $) 21 (|has| (-117) (-1041)) ELT)) (-3951 (((-117) $) 46 (|has| (-499) (-781)) ELT)) (-1387 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 77 T ELT)) (-2300 (($ $ (-117)) 45 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) (-117)) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-117)))) 26 (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT) (($ $ (-247 (-117))) 25 (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT) (($ $ (-117) (-117)) 24 (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT) (($ $ (-599 (-117)) (-599 (-117))) 23 (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) (-117) $) 49 (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT)) (-2306 (((-599 (-117)) $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 (((-117) $ (-499) (-117)) 54 T ELT) (((-117) $ (-499)) 53 T ELT) (($ $ (-1174 (-499))) 75 T ELT) (($ $ $) 111 T ELT)) (-2405 (($ $ (-499)) 68 T ELT) (($ $ (-1174 (-499))) 67 T ELT)) (-2048 (((-714) (-1 (-85) (-117)) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) (-117) $) 28 (-12 (|has| (-117) (-1041)) (|has| $ (-6 -4145))) ELT)) (-1824 (($ $ $ (-499)) 100 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 85 (|has| (-117) (-569 (-488))) ELT)) (-3670 (($ (-599 (-117))) 76 T ELT)) (-3952 (($ $ (-117)) 73 T ELT) (($ (-117) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-599 $)) 70 T ELT)) (-4096 (($ (-117)) 120 T ELT) (((-797) $) 17 (|has| (-117) (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| (-117) (-73)) ELT)) (-2050 (((-85) (-1 (-85) (-117)) $) 33 (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) 93 (|has| (-117) (-781)) ELT)) (-2686 (((-85) $ $) 95 (|has| (-117) (-781)) ELT)) (-3174 (((-85) $ $) 18 (|has| (-117) (-73)) ELT)) (-2805 (((-85) $ $) 94 (|has| (-117) (-781)) ELT)) (-2806 (((-85) $ $) 96 (|has| (-117) (-781)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-1084) (-113)) (T -1084)) -((-3569 (*1 *1 *1) (-4 *1 (-1084))) (-3568 (*1 *1 *1) (-4 *1 (-1084))) (-3567 (*1 *1 *1) (-4 *1 (-1084))) (-3566 (*1 *1 *1) (-4 *1 (-1084))) (-3565 (*1 *2 *1 *1) (-12 (-4 *1 (-1084)) (-5 *2 (-85)))) (-3564 (*1 *2 *1 *1) (-12 (-4 *1 (-1084)) (-5 *2 (-85)))) (-3563 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1084)) (-5 *3 (-499)) (-5 *2 (-85)))) (-3562 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1084)) (-5 *3 (-117)) (-5 *2 (-714)))) (-3561 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1084)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3560 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1084)) (-5 *2 (-1174 (-499))))) (-3559 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-499)))) (-3559 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-499)) (-5 *3 (-114)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1084)))) (-3558 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-599 *1)) (-4 *1 (-1084)))) (-3558 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-599 *1)) (-4 *1 (-1084)))) (-3557 (*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-117)))) (-3557 (*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-114)))) (-3556 (*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-117)))) (-3556 (*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-114)))) (-3555 (*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-117)))) (-3555 (*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-114)))) (-3950 (*1 *1 *1 *1) (-4 *1 (-1084)))) -(-13 (-19 (-117)) (-10 -8 (-15 -3569 ($ $)) (-15 -3568 ($ $)) (-15 -3567 ($ $)) (-15 -3566 ($ $)) (-15 -3565 ((-85) $ $)) (-15 -3564 ((-85) $ $)) (-15 -3563 ((-85) $ $ (-499))) (-15 -3562 ((-714) $ $ (-117))) (-15 -3561 ((-85) $ $ (-117))) (-15 -3560 ($ $ (-1174 (-499)) $)) (-15 -3559 ((-499) $ $ (-499))) (-15 -3559 ((-499) (-114) $ (-499))) (-15 -4096 ($ (-117))) (-15 -3558 ((-599 $) $ (-117))) (-15 -3558 ((-599 $) $ (-114))) (-15 -3557 ($ $ (-117))) (-15 -3557 ($ $ (-114))) (-15 -3556 ($ $ (-117))) (-15 -3556 ($ $ (-114))) (-15 -3555 ($ $ (-117))) (-15 -3555 ($ $ (-114))) (-15 -3950 ($ $ $)))) -(((-34) . T) ((-73) -3677 (|has| (-117) (-1041)) (|has| (-117) (-781)) (|has| (-117) (-73))) ((-568 (-797)) -3677 (|has| (-117) (-1041)) (|has| (-117) (-781)) (|has| (-117) (-568 (-797)))) ((-124 (-117)) . T) ((-569 (-488)) |has| (-117) (-569 (-488))) ((-240 (-499) (-117)) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) (-117)) . T) ((-263 (-117)) -12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ((-327 (-117)) . T) ((-443 (-117)) . T) ((-554 (-499) (-117)) . T) ((-468 (-117) (-117)) -12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ((-609 (-117)) . T) ((-19 (-117)) . T) ((-781) |has| (-117) (-781)) ((-784) |has| (-117) (-781)) ((-1041) -3677 (|has| (-117) (-1041)) (|has| (-117) (-781))) ((-1157) . T)) -((-3576 (((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-599 |#4|) (-599 |#5|) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) (-714)) 112 T ELT)) (-3573 (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714)) 61 T ELT)) (-3577 (((-1213) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-714)) 97 T ELT)) (-3571 (((-714) (-599 |#4|) (-599 |#5|)) 30 T ELT)) (-3574 (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714)) 63 T ELT) (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714) (-85)) 65 T ELT)) (-3575 (((-599 |#5|) (-599 |#4|) (-599 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-599 |#5|) (-599 |#4|) (-599 |#5|) (-85) (-85)) 85 T ELT)) (-4122 (((-1099) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) 90 T ELT)) (-3572 (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|) 60 T ELT)) (-3570 (((-714) (-599 |#4|) (-599 |#5|)) 21 T ELT))) -(((-1085 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3570 ((-714) (-599 |#4|) (-599 |#5|))) (-15 -3571 ((-714) (-599 |#4|) (-599 |#5|))) (-15 -3572 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|)) (-15 -3573 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714))) (-15 -3573 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|)) (-15 -3574 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714) (-85))) (-15 -3574 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714))) (-15 -3574 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|)) (-15 -3575 ((-599 |#5|) (-599 |#4|) (-599 |#5|) (-85) (-85))) (-15 -3575 ((-599 |#5|) (-599 |#4|) (-599 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3576 ((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-599 |#4|) (-599 |#5|) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) (-714))) (-15 -4122 ((-1099) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)))) (-15 -3577 ((-1213) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-714)))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|) (-1049 |#1| |#2| |#3| |#4|)) (T -1085)) -((-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-2 (|:| |val| (-599 *8)) (|:| -1633 *9)))) (-5 *4 (-714)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-1213)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-599 *7)) (|:| -1633 *8))) (-4 *7 (-1005 *4 *5 *6)) (-4 *8 (-1049 *4 *5 *6 *7)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-1099)) (-5 *1 (-1085 *4 *5 *6 *7 *8)))) (-3576 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-599 *11)) (|:| |todo| (-599 (-2 (|:| |val| *3) (|:| -1633 *11)))))) (-5 *6 (-714)) (-5 *2 (-599 (-2 (|:| |val| (-599 *10)) (|:| -1633 *11)))) (-5 *3 (-599 *10)) (-5 *4 (-599 *11)) (-4 *10 (-1005 *7 *8 *9)) (-4 *11 (-1049 *7 *8 *9 *10)) (-4 *7 (-406)) (-4 *8 (-738)) (-4 *9 (-781)) (-5 *1 (-1085 *7 *8 *9 *10 *11)))) (-3575 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-599 *9)) (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) (-3575 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-599 *9)) (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) (-3574 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1049 *5 *6 *7 *3)))) (-3574 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-714)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *3 (-1005 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1049 *6 *7 *8 *3)))) (-3574 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-714)) (-5 *6 (-85)) (-4 *7 (-406)) (-4 *8 (-738)) (-4 *9 (-781)) (-4 *3 (-1005 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1085 *7 *8 *9 *3 *4)) (-4 *4 (-1049 *7 *8 *9 *3)))) (-3573 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1049 *5 *6 *7 *3)))) (-3573 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-714)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *3 (-1005 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1049 *6 *7 *8 *3)))) (-3572 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1049 *5 *6 *7 *3)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *9)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-714)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) (-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *9)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-714)) (-5 *1 (-1085 *5 *6 *7 *8 *9))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |#4|)))) (-599 |#4|)) NIL T ELT)) (-3832 (((-599 $) (-599 |#4|)) 121 T ELT) (((-599 $) (-599 |#4|) (-85)) 122 T ELT) (((-599 $) (-599 |#4|) (-85) (-85)) 120 T ELT) (((-599 $) (-599 |#4|) (-85) (-85) (-85) (-85)) 123 T ELT)) (-3204 (((-599 |#3|) $) NIL T ELT)) (-3029 (((-85) $) NIL T ELT)) (-3020 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3843 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3838 ((|#4| |#4| $) NIL T ELT)) (-3925 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| $) 94 T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3860 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#4| #1="failed") $ |#3|) 73 T ELT)) (-3874 (($) NIL T CONST)) (-3025 (((-85) $) 29 (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3839 (((-599 |#4|) (-599 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) NIL (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) NIL (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ #1#) (-599 |#4|)) NIL T ELT)) (-3294 (($ (-599 |#4|)) NIL T ELT)) (-3949 (((-3 $ #1#) $) 45 T ELT)) (-3835 ((|#4| |#4| $) 76 T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-3546 (($ |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 88 (|has| |#1| (-510)) ELT)) (-3844 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3833 ((|#4| |#4| $) NIL T ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4145)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#4|)) (|:| -1795 (-599 |#4|))) $) NIL T ELT)) (-3335 (((-85) |#4| $) NIL T ELT)) (-3333 (((-85) |#4| $) NIL T ELT)) (-3336 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3578 (((-2 (|:| |val| (-599 |#4|)) (|:| |towers| (-599 $))) (-599 |#4|) (-85) (-85)) 136 T ELT)) (-3010 (((-599 |#4|) $) 18 (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3318 ((|#3| $) 38 T ELT)) (-2727 (((-599 |#4|) $) 19 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3035 (((-599 |#3|) $) NIL T ELT)) (-3034 (((-85) |#3| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3329 (((-3 |#4| (-599 $)) |#4| |#4| $) NIL T ELT)) (-3328 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| |#4| $) 114 T ELT)) (-3948 (((-3 |#4| #1#) $) 42 T ELT)) (-3330 (((-599 $) |#4| $) 99 T ELT)) (-3332 (((-3 (-85) (-599 $)) |#4| $) NIL T ELT)) (-3331 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 $))) |#4| $) 109 T ELT) (((-85) |#4| $) 65 T ELT)) (-3376 (((-599 $) |#4| $) 118 T ELT) (((-599 $) (-599 |#4|) $) NIL T ELT) (((-599 $) (-599 |#4|) (-599 $)) 119 T ELT) (((-599 $) |#4| (-599 $)) NIL T ELT)) (-3579 (((-599 $) (-599 |#4|) (-85) (-85) (-85)) 131 T ELT)) (-3580 (($ |#4| $) 85 T ELT) (($ (-599 |#4|) $) 86 T ELT) (((-599 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 84 T ELT)) (-3847 (((-599 |#4|) $) NIL T ELT)) (-3841 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3836 ((|#4| |#4| $) NIL T ELT)) (-3849 (((-85) $ $) NIL T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-510)) ELT)) (-3842 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3837 ((|#4| |#4| $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 (((-3 |#4| #1#) $) 40 T ELT)) (-1387 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3829 (((-3 $ #1#) $ |#4|) 59 T ELT)) (-3919 (($ $ |#4|) NIL T ELT) (((-599 $) |#4| $) 101 T ELT) (((-599 $) |#4| (-599 $)) NIL T ELT) (((-599 $) (-599 |#4|) $) NIL T ELT) (((-599 $) (-599 |#4|) (-599 $)) 96 T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 17 T ELT)) (-3713 (($) 14 T ELT)) (-4098 (((-714) $) NIL T ELT)) (-2048 (((-714) |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (((-714) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 13 T ELT)) (-4122 (((-488) $) NIL (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) 22 T ELT)) (-3031 (($ $ |#3|) 52 T ELT)) (-3033 (($ $ |#3|) 54 T ELT)) (-3834 (($ $) NIL T ELT)) (-3032 (($ $ |#3|) NIL T ELT)) (-4096 (((-797) $) 35 T ELT) (((-599 |#4|) $) 46 T ELT)) (-3828 (((-714) $) NIL (|has| |#3| (-323)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3840 (((-85) $ (-1 (-85) |#4| (-599 |#4|))) NIL T ELT)) (-3327 (((-599 $) |#4| $) 66 T ELT) (((-599 $) |#4| (-599 $)) NIL T ELT) (((-599 $) (-599 |#4|) $) NIL T ELT) (((-599 $) (-599 |#4|) (-599 $)) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 |#3|) $) NIL T ELT)) (-3334 (((-85) |#4| $) NIL T ELT)) (-4083 (((-85) |#3| $) 72 T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-1086 |#1| |#2| |#3| |#4|) (-13 (-1049 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3580 ((-599 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3832 ((-599 $) (-599 |#4|) (-85) (-85))) (-15 -3832 ((-599 $) (-599 |#4|) (-85) (-85) (-85) (-85))) (-15 -3579 ((-599 $) (-599 |#4|) (-85) (-85) (-85))) (-15 -3578 ((-2 (|:| |val| (-599 |#4|)) (|:| |towers| (-599 $))) (-599 |#4|) (-85) (-85))))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|)) (T -1086)) -((-3580 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-1086 *5 *6 *7 *3))) (-5 *1 (-1086 *5 *6 *7 *3)) (-4 *3 (-1005 *5 *6 *7)))) (-3832 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-1086 *5 *6 *7 *8))) (-5 *1 (-1086 *5 *6 *7 *8)))) (-3832 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-1086 *5 *6 *7 *8))) (-5 *1 (-1086 *5 *6 *7 *8)))) (-3579 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-1086 *5 *6 *7 *8))) (-5 *1 (-1086 *5 *6 *7 *8)))) (-3578 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-599 *8)) (|:| |towers| (-599 (-1086 *5 *6 *7 *8))))) (-5 *1 (-1086 *5 *6 *7 *8)) (-5 *3 (-599 *8))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 31 T ELT)) (-2528 (((-85) $) 29 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 28 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-714)) 30 T ELT) (($ $ (-857)) 27 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ $ $) 26 T ELT))) -(((-1087) (-113)) (T -1087)) -NIL -(-13 (-23) (-684)) -(((-23) . T) ((-25) . T) ((-73) . T) ((-568 (-797)) . T) ((-684) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3464 ((|#1| $) 37 T ELT)) (-3581 (($ (-599 |#1|)) 45 T ELT)) (-3874 (($) NIL T CONST)) (-3466 ((|#1| |#1| $) 40 T ELT)) (-3465 ((|#1| $) 35 T ELT)) (-3010 (((-599 |#1|) $) 18 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 38 T ELT)) (-3757 (($ |#1| $) 41 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-1309 ((|#1| $) 36 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 32 T ELT)) (-3713 (($) 43 T ELT)) (-3463 (((-714) $) 30 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) 27 T ELT)) (-4096 (((-797) $) 14 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 17 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 31 (|has| $ (-6 -4145)) ELT))) -(((-1088 |#1|) (-13 (-1061 |#1|) (-10 -8 (-15 -3581 ($ (-599 |#1|))))) (-1157)) (T -1088)) -((-3581 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-1088 *3))))) -((-3938 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1174 (-499)) |#2|) 53 T ELT) ((|#2| $ (-499) |#2|) 50 T ELT)) (-3583 (((-85) $) 12 T ELT)) (-2051 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3951 ((|#2| $) NIL T ELT) (($ $ (-714)) 17 T ELT)) (-2300 (($ $ |#2|) 49 T ELT)) (-3584 (((-85) $) 11 T ELT)) (-3950 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1174 (-499))) 36 T ELT) ((|#2| $ (-499)) 25 T ELT) ((|#2| $ (-499) |#2|) NIL T ELT)) (-3941 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3952 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-599 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) -(((-1089 |#1| |#2|) (-10 -7 (-15 -3583 ((-85) |#1|)) (-15 -3584 ((-85) |#1|)) (-15 -3938 (|#2| |#1| (-499) |#2|)) (-15 -3950 (|#2| |#1| (-499) |#2|)) (-15 -3950 (|#2| |#1| (-499))) (-15 -2300 (|#1| |#1| |#2|)) (-15 -3950 (|#1| |#1| (-1174 (-499)))) (-15 -3952 (|#1| |#1| |#2|)) (-15 -3952 (|#1| (-599 |#1|))) (-15 -3938 (|#2| |#1| (-1174 (-499)) |#2|)) (-15 -3938 (|#2| |#1| #1="last" |#2|)) (-15 -3938 (|#1| |#1| #2="rest" |#1|)) (-15 -3938 (|#2| |#1| #3="first" |#2|)) (-15 -3941 (|#1| |#1| |#2|)) (-15 -3941 (|#1| |#1| |#1|)) (-15 -3950 (|#2| |#1| #1#)) (-15 -3950 (|#1| |#1| #2#)) (-15 -3951 (|#1| |#1| (-714))) (-15 -3950 (|#2| |#1| #3#)) (-15 -3951 (|#2| |#1|)) (-15 -3952 (|#1| |#2| |#1|)) (-15 -3952 (|#1| |#1| |#1|)) (-15 -3938 (|#2| |#1| #4="value" |#2|)) (-15 -3950 (|#2| |#1| #4#)) (-15 -2051 (|#1| (-1 |#2| |#2|) |#1|))) (-1090 |#2|) (-1157)) (T -1089)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 52 T ELT)) (-3945 ((|#1| $) 71 T ELT)) (-3947 (($ $) 73 T ELT)) (-2299 (((-1213) $ (-499) (-499)) 107 (|has| $ (-6 -4146)) ELT)) (-3935 (($ $ (-499)) 58 (|has| $ (-6 -4146)) ELT)) (-3582 (((-85) $ (-714)) 90 T ELT)) (-3146 ((|#1| $ |#1|) 43 (|has| $ (-6 -4146)) ELT)) (-3937 (($ $ $) 62 (|has| $ (-6 -4146)) ELT)) (-3936 ((|#1| $ |#1|) 60 (|has| $ (-6 -4146)) ELT)) (-3939 ((|#1| $ |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4146)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4146)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4146)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 127 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-499) |#1|) 96 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 45 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -4145)) ELT)) (-3946 ((|#1| $) 72 T ELT)) (-3874 (($) 7 T CONST)) (-3949 (($ $) 79 T ELT) (($ $ (-714)) 77 T ELT)) (-1386 (($ $) 109 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -4145)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-1609 ((|#1| $ (-499) |#1|) 95 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 97 T ELT)) (-3583 (((-85) $) 93 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 54 T ELT)) (-3148 (((-85) $ $) 46 (|has| |#1| (-1041)) ELT)) (-3764 (($ (-714) |#1|) 119 T ELT)) (-3869 (((-85) $ (-714)) 91 T ELT)) (-2301 (((-499) $) 105 (|has| (-499) (-781)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 104 (|has| (-499) (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3866 (((-85) $ (-714)) 92 T ELT)) (-3151 (((-599 |#1|) $) 49 T ELT)) (-3667 (((-85) $) 53 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3948 ((|#1| $) 76 T ELT) (($ $ (-714)) 74 T ELT)) (-2404 (($ $ $ (-499)) 126 T ELT) (($ |#1| $ (-499)) 125 T ELT)) (-2304 (((-599 (-499)) $) 102 T ELT)) (-2305 (((-85) (-499) $) 101 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 82 T ELT) (($ $ (-714)) 80 T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2300 (($ $ |#1|) 106 (|has| $ (-6 -4146)) ELT)) (-3584 (((-85) $) 94 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) 100 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1174 (-499))) 118 T ELT) ((|#1| $ (-499)) 99 T ELT) ((|#1| $ (-499) |#1|) 98 T ELT)) (-3150 (((-499) $ $) 48 T ELT)) (-2405 (($ $ (-1174 (-499))) 124 T ELT) (($ $ (-499)) 123 T ELT)) (-3783 (((-85) $) 50 T ELT)) (-3942 (($ $) 68 T ELT)) (-3940 (($ $) 65 (|has| $ (-6 -4146)) ELT)) (-3943 (((-714) $) 69 T ELT)) (-3944 (($ $) 70 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 108 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 117 T ELT)) (-3941 (($ $ $) 67 (|has| $ (-6 -4146)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4146)) ELT)) (-3952 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-599 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) 55 T ELT)) (-3149 (((-85) $ $) 47 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-1090 |#1|) (-113) (-1157)) (T -1090)) -((-3584 (*1 *2 *1) (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1157)) (-5 *2 (-85)))) (-3583 (*1 *2 *1) (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1157)) (-5 *2 (-85)))) (-3866 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-1090 *4)) (-4 *4 (-1157)) (-5 *2 (-85)))) (-3869 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-1090 *4)) (-4 *4 (-1157)) (-5 *2 (-85)))) (-3582 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-1090 *4)) (-4 *4 (-1157)) (-5 *2 (-85))))) -(-13 (-1196 |t#1|) (-609 |t#1|) (-10 -8 (-15 -3584 ((-85) $)) (-15 -3583 ((-85) $)) (-15 -3866 ((-85) $ (-714))) (-15 -3869 ((-85) $ (-714))) (-15 -3582 ((-85) $ (-714))))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 (-499) |#1|) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-554 (-499) |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-609 |#1|) . T) ((-950 |#1|) . T) ((-1041) |has| |#1| (-1041)) ((-1157) . T) ((-1196 |#1|) . T)) -((-2687 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2299 (((-1213) $ |#1| |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2301 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2302 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-2333 (((-599 |#1|) $) NIL T ELT)) (-2334 (((-85) |#1| $) NIL T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2304 (((-599 |#1|) $) NIL T ELT)) (-2305 (((-85) |#1| $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-3951 ((|#2| $) NIL (|has| |#1| (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-568 (-797)))) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-1091 |#1| |#2| |#3|) (-1134 |#1| |#2|) (-1041) (-1041) |#2|) (T -1091)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3585 (((-649 $) $) 17 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3586 (($) 18 T CONST)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) -(((-1092) (-113)) (T -1092)) -((-3586 (*1 *1) (-4 *1 (-1092))) (-3585 (*1 *2 *1) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1092))))) -(-13 (-1041) (-10 -8 (-15 -3586 ($) -4102) (-15 -3585 ((-649 $) $)))) -(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3588 (((-649 (-1075)) $) 27 T ELT)) (-3587 (((-1075) $) 15 T ELT)) (-3589 (((-1075) $) 17 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3590 (((-460) $) 13 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 37 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-1093) (-13 (-1023) (-10 -8 (-15 -3590 ((-460) $)) (-15 -3589 ((-1075) $)) (-15 -3588 ((-649 (-1075)) $)) (-15 -3587 ((-1075) $))))) (T -1093)) -((-3590 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-1093)))) (-3589 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1093)))) (-3588 (*1 *2 *1) (-12 (-5 *2 (-649 (-1075))) (-5 *1 (-1093)))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1093))))) -((-3593 (((-1095 |#1|) (-1095 |#1|)) 17 T ELT)) (-3591 (((-1095 |#1|) (-1095 |#1|)) 13 T ELT)) (-3594 (((-1095 |#1|) (-1095 |#1|) (-499) (-499)) 20 T ELT)) (-3592 (((-1095 |#1|) (-1095 |#1|)) 15 T ELT))) -(((-1094 |#1|) (-10 -7 (-15 -3591 ((-1095 |#1|) (-1095 |#1|))) (-15 -3592 ((-1095 |#1|) (-1095 |#1|))) (-15 -3593 ((-1095 |#1|) (-1095 |#1|))) (-15 -3594 ((-1095 |#1|) (-1095 |#1|) (-499) (-499)))) (-13 (-510) (-120))) (T -1094)) -((-3594 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1095 *4)) (-5 *3 (-499)) (-4 *4 (-13 (-510) (-120))) (-5 *1 (-1094 *4)))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-13 (-510) (-120))) (-5 *1 (-1094 *3)))) (-3592 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-13 (-510) (-120))) (-5 *1 (-1094 *3)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-13 (-510) (-120))) (-5 *1 (-1094 *3))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) NIL T ELT)) (-3945 ((|#1| $) NIL T ELT)) (-3947 (($ $) 62 T ELT)) (-2299 (((-1213) $ (-499) (-499)) 95 (|has| $ (-6 -4146)) ELT)) (-3935 (($ $ (-499)) 124 (|has| $ (-6 -4146)) ELT)) (-3582 (((-85) $ (-714)) NIL T ELT)) (-3599 (((-797) $) 51 (|has| |#1| (-1041)) ELT)) (-3598 (((-85)) 50 (|has| |#1| (-1041)) ELT)) (-3146 ((|#1| $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3937 (($ $ $) 111 (|has| $ (-6 -4146)) ELT) (($ $ (-499) $) 138 T ELT)) (-3936 ((|#1| $ |#1|) 121 (|has| $ (-6 -4146)) ELT)) (-3939 ((|#1| $ |#1|) 116 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ #2="first" |#1|) 118 (|has| $ (-6 -4146)) ELT) (($ $ #3="rest" $) 120 (|has| $ (-6 -4146)) ELT) ((|#1| $ #4="last" |#1|) 123 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 108 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-499) |#1|) 74 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) NIL (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 77 T ELT)) (-3946 ((|#1| $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2423 (($ $) 11 T ELT)) (-3949 (($ $) 35 T ELT) (($ $ (-714)) 107 T ELT)) (-3604 (((-85) (-599 |#1|) $) 130 (|has| |#1| (-1041)) ELT)) (-3605 (($ (-599 |#1|)) 126 T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) 76 T ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1609 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) NIL T ELT)) (-3583 (((-85) $) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3600 (((-1213) (-499) $) 136 (|has| |#1| (-1041)) ELT)) (-2422 (((-714) $) 133 T ELT)) (-3152 (((-599 $) $) NIL T ELT)) (-3148 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3764 (($ (-714) |#1|) NIL T ELT)) (-3869 (((-85) $ (-714)) NIL T ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 82 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 86 T ELT)) (-3866 (((-85) $ (-714)) NIL T ELT)) (-3151 (((-599 |#1|) $) NIL T ELT)) (-3667 (((-85) $) NIL T ELT)) (-2425 (($ $) 109 T ELT)) (-2426 (((-85) $) 10 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3948 ((|#1| $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-2404 (($ $ $ (-499)) NIL T ELT) (($ |#1| $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) 92 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3597 (($ (-1 |#1|)) 140 T ELT) (($ (-1 |#1| |#1|) |#1|) 141 T ELT)) (-2424 ((|#1| $) 7 T ELT)) (-3951 ((|#1| $) 34 T ELT) (($ $ (-714)) 60 T ELT)) (-3603 (((-2 (|:| |cycle?| (-85)) (|:| -2714 (-714)) (|:| |period| (-714))) (-714) $) 29 T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-3596 (($ (-1 (-85) |#1|) $) 142 T ELT)) (-3595 (($ (-1 (-85) |#1|) $) 143 T ELT)) (-2300 (($ $ |#1|) 87 (|has| $ (-6 -4146)) ELT)) (-3919 (($ $ (-499)) 40 T ELT)) (-3584 (((-85) $) 90 T ELT)) (-2427 (((-85) $) 9 T ELT)) (-2428 (((-85) $) 132 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 25 T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) 14 T ELT)) (-3713 (($) 55 T ELT)) (-3950 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT) ((|#1| $ (-499)) 72 T ELT) ((|#1| $ (-499) |#1|) NIL T ELT)) (-3150 (((-499) $ $) 59 T ELT)) (-2405 (($ $ (-1174 (-499))) NIL T ELT) (($ $ (-499)) NIL T ELT)) (-3602 (($ (-1 $)) 58 T ELT)) (-3783 (((-85) $) 88 T ELT)) (-3942 (($ $) 89 T ELT)) (-3940 (($ $) 112 (|has| $ (-6 -4146)) ELT)) (-3943 (((-714) $) NIL T ELT)) (-3944 (($ $) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) 54 T ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 70 T ELT)) (-3601 (($ |#1| $) 110 T ELT)) (-3941 (($ $ $) 114 (|has| $ (-6 -4146)) ELT) (($ $ |#1|) 115 (|has| $ (-6 -4146)) ELT)) (-3952 (($ $ $) 97 T ELT) (($ |#1| $) 56 T ELT) (($ (-599 $)) 102 T ELT) (($ $ |#1|) 96 T ELT)) (-3012 (($ $) 61 T ELT)) (-4096 (($ (-599 |#1|)) 125 T ELT) (((-797) $) 52 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) NIL T ELT)) (-3149 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 128 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-1095 |#1|) (-13 (-632 |#1|) (-571 (-599 |#1|)) (-10 -8 (-6 -4146) (-15 -3605 ($ (-599 |#1|))) (IF (|has| |#1| (-1041)) (-15 -3604 ((-85) (-599 |#1|) $)) |%noBranch|) (-15 -3603 ((-2 (|:| |cycle?| (-85)) (|:| -2714 (-714)) (|:| |period| (-714))) (-714) $)) (-15 -3602 ($ (-1 $))) (-15 -3601 ($ |#1| $)) (IF (|has| |#1| (-1041)) (PROGN (-15 -3600 ((-1213) (-499) $)) (-15 -3599 ((-797) $)) (-15 -3598 ((-85)))) |%noBranch|) (-15 -3937 ($ $ (-499) $)) (-15 -3597 ($ (-1 |#1|))) (-15 -3597 ($ (-1 |#1| |#1|) |#1|)) (-15 -3596 ($ (-1 (-85) |#1|) $)) (-15 -3595 ($ (-1 (-85) |#1|) $)))) (-1157)) (T -1095)) -((-3605 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3)))) (-3604 (*1 *2 *3 *1) (-12 (-5 *3 (-599 *4)) (-4 *4 (-1041)) (-4 *4 (-1157)) (-5 *2 (-85)) (-5 *1 (-1095 *4)))) (-3603 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2714 (-714)) (|:| |period| (-714)))) (-5 *1 (-1095 *4)) (-4 *4 (-1157)) (-5 *3 (-714)))) (-3602 (*1 *1 *2) (-12 (-5 *2 (-1 (-1095 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1157)))) (-3601 (*1 *1 *2 *1) (-12 (-5 *1 (-1095 *2)) (-4 *2 (-1157)))) (-3600 (*1 *2 *3 *1) (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-1095 *4)) (-4 *4 (-1041)) (-4 *4 (-1157)))) (-3599 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1095 *3)) (-4 *3 (-1041)) (-4 *3 (-1157)))) (-3598 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1095 *3)) (-4 *3 (-1041)) (-4 *3 (-1157)))) (-3937 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1095 *3)) (-4 *3 (-1157)))) (-3597 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3)))) (-3597 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3)))) (-3596 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3)))) (-3595 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3))))) -((-3952 (((-1095 |#1|) (-1095 (-1095 |#1|))) 15 T ELT))) -(((-1096 |#1|) (-10 -7 (-15 -3952 ((-1095 |#1|) (-1095 (-1095 |#1|))))) (-1157)) (T -1096)) -((-3952 (*1 *2 *3) (-12 (-5 *3 (-1095 (-1095 *4))) (-5 *2 (-1095 *4)) (-5 *1 (-1096 *4)) (-4 *4 (-1157))))) -((-3991 (((-1095 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1095 |#1|)) 25 T ELT)) (-3992 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1095 |#1|)) 26 T ELT)) (-4108 (((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|)) 16 T ELT))) -(((-1097 |#1| |#2|) (-10 -7 (-15 -4108 ((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|))) (-15 -3991 ((-1095 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1095 |#1|))) (-15 -3992 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1095 |#1|)))) (-1157) (-1157)) (T -1097)) -((-3992 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1095 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) (-5 *1 (-1097 *5 *2)))) (-3991 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1095 *6)) (-4 *6 (-1157)) (-4 *3 (-1157)) (-5 *2 (-1095 *3)) (-5 *1 (-1097 *6 *3)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-1095 *6)) (-5 *1 (-1097 *5 *6))))) -((-4108 (((-1095 |#3|) (-1 |#3| |#1| |#2|) (-1095 |#1|) (-1095 |#2|)) 21 T ELT))) -(((-1098 |#1| |#2| |#3|) (-10 -7 (-15 -4108 ((-1095 |#3|) (-1 |#3| |#1| |#2|) (-1095 |#1|) (-1095 |#2|)))) (-1157) (-1157) (-1157)) (T -1098)) -((-4108 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1095 *6)) (-5 *5 (-1095 *7)) (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-1095 *8)) (-5 *1 (-1098 *6 *7 *8))))) -((-2687 (((-85) $ $) NIL (|has| (-117) (-73)) ELT)) (-3566 (($ $) 42 T ELT)) (-3567 (($ $) NIL T ELT)) (-3557 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3564 (((-85) $ $) 68 T ELT)) (-3563 (((-85) $ $ (-499)) 63 T ELT)) (-3683 (($ (-499)) 7 T ELT) (($ (-179)) 9 T ELT) (($ (-460)) 11 T ELT)) (-3558 (((-599 $) $ (-117)) 77 T ELT) (((-599 $) $ (-114)) 78 T ELT)) (-1825 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-781)) ELT)) (-1823 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| (-117) (-781))) ELT)) (-3030 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-781)) ELT)) (-3938 (((-117) $ (-499) (-117)) 60 (|has| $ (-6 -4146)) ELT) (((-117) $ (-1174 (-499)) (-117)) NIL (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-3555 (($ $ (-117)) 81 T ELT) (($ $ (-114)) 82 T ELT)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-3560 (($ $ (-1174 (-499)) $) 58 T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT)) (-3546 (($ (-117) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -4145)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 (((-117) $ (-499) (-117)) NIL (|has| $ (-6 -4146)) ELT)) (-3235 (((-117) $ (-499)) NIL T ELT)) (-3565 (((-85) $ $) 92 T ELT)) (-3559 (((-499) (-1 (-85) (-117)) $) NIL T ELT) (((-499) (-117) $) NIL (|has| (-117) (-1041)) ELT) (((-499) (-117) $ (-499)) 65 (|has| (-117) (-1041)) ELT) (((-499) $ $ (-499)) 64 T ELT) (((-499) (-114) $ (-499)) 67 T ELT)) (-3010 (((-599 (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) (-117)) 14 T ELT)) (-2301 (((-499) $) 36 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| (-117) (-781)) ELT)) (-3658 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-781)) ELT)) (-2727 (((-599 (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT)) (-2302 (((-499) $) 51 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-117) (-781)) ELT)) (-3561 (((-85) $ $ (-117)) 93 T ELT)) (-3562 (((-714) $ $ (-117)) 89 T ELT)) (-2051 (($ (-1 (-117) (-117)) $) 41 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3568 (($ $) 45 T ELT)) (-3569 (($ $) NIL T ELT)) (-3556 (($ $ (-117)) 79 T ELT) (($ $ (-114)) 80 T ELT)) (-3380 (((-1099) $) 47 (|has| (-117) (-1041)) ELT)) (-2404 (($ (-117) $ (-499)) NIL T ELT) (($ $ $ (-499)) 31 T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) 88 (|has| (-117) (-1041)) ELT)) (-3951 (((-117) $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2300 (($ $ (-117)) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-117)))) NIL (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT) (($ $ (-247 (-117))) NIL (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT) (($ $ (-599 (-117)) (-599 (-117))) NIL (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT)) (-2306 (((-599 (-117)) $) NIL T ELT)) (-3543 (((-85) $) 19 T ELT)) (-3713 (($) 16 T ELT)) (-3950 (((-117) $ (-499) (-117)) NIL T ELT) (((-117) $ (-499)) 70 T ELT) (($ $ (-1174 (-499))) 29 T ELT) (($ $ $) NIL T ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-117) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT)) (-1824 (($ $ $ (-499)) 84 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 24 T ELT)) (-4122 (((-488) $) NIL (|has| (-117) (-569 (-488))) ELT)) (-3670 (($ (-599 (-117))) NIL T ELT)) (-3952 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-599 $)) 85 T ELT)) (-4096 (($ (-117)) NIL T ELT) (((-797) $) 35 (|has| (-117) (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| (-117) (-73)) ELT)) (-2050 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-117) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-117) (-781)) ELT)) (-3174 (((-85) $ $) 21 (|has| (-117) (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| (-117) (-781)) ELT)) (-2806 (((-85) $ $) 22 (|has| (-117) (-781)) ELT)) (-4107 (((-714) $) 20 (|has| $ (-6 -4145)) ELT))) -(((-1099) (-13 (-1084) (-10 -8 (-15 -3683 ($ (-499))) (-15 -3683 ($ (-179))) (-15 -3683 ($ (-460)))))) (T -1099)) -((-3683 (*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-1099)))) (-3683 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1099)))) (-3683 (*1 *1 *2) (-12 (-5 *2 (-460)) (-5 *1 (-1099))))) -((-2687 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-73)) (|has| |#1| (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL T ELT)) (-2299 (((-1213) $ (-1099) (-1099)) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ (-1099) |#1|) NIL T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#1| #1="failed") (-1099) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#1| #1#) (-1099) $) NIL T ELT)) (-3546 (($ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-1099) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-1099)) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2301 (((-1099) $) NIL (|has| (-1099) (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-1099) $) NIL (|has| (-1099) (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041)) (|has| |#1| (-1041))) ELT)) (-2333 (((-599 (-1099)) $) NIL T ELT)) (-2334 (((-85) (-1099) $) NIL T ELT)) (-1308 (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2304 (((-599 (-1099)) $) NIL T ELT)) (-2305 (((-85) (-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041)) (|has| |#1| (-1041))) ELT)) (-3951 ((|#1| $) NIL (|has| (-1099) (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2300 (($ $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-1099)) NIL T ELT) ((|#1| $ (-1099) |#1|) NIL T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-568 (-797))) (|has| |#1| (-568 (-797)))) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-73)) (|has| |#1| (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-73)) (|has| |#1| (-73))) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-1100 |#1|) (-13 (-1134 (-1099) |#1|) (-10 -7 (-6 -4145))) (-1041)) (T -1100)) -NIL -((-3955 (((-1095 |#1|) (-1095 |#1|)) 83 T ELT)) (-3607 (((-3 (-1095 |#1|) #1="failed") (-1095 |#1|)) 39 T ELT)) (-3618 (((-1095 |#1|) (-361 (-499)) (-1095 |#1|)) 132 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3621 (((-1095 |#1|) |#1| (-1095 |#1|)) 137 (|has| |#1| (-318)) ELT)) (-3958 (((-1095 |#1|) (-1095 |#1|)) 97 T ELT)) (-3609 (((-1095 (-499)) (-499)) 63 T ELT)) (-3617 (((-1095 |#1|) (-1095 (-1095 |#1|))) 117 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3954 (((-1095 |#1|) (-499) (-499) (-1095 |#1|)) 103 T ELT)) (-4088 (((-1095 |#1|) |#1| (-499)) 51 T ELT)) (-3611 (((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) 66 T ELT)) (-3619 (((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) 135 (|has| |#1| (-318)) ELT)) (-3616 (((-1095 |#1|) |#1| (-1 (-1095 |#1|))) 116 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3620 (((-1095 |#1|) (-1 |#1| (-499)) |#1| (-1 (-1095 |#1|))) 136 (|has| |#1| (-318)) ELT)) (-3959 (((-1095 |#1|) (-1095 |#1|)) 96 T ELT)) (-3960 (((-1095 |#1|) (-1095 |#1|)) 82 T ELT)) (-3953 (((-1095 |#1|) (-499) (-499) (-1095 |#1|)) 104 T ELT)) (-3962 (((-1095 |#1|) |#1| (-1095 |#1|)) 113 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3608 (((-1095 (-499)) (-499)) 62 T ELT)) (-3610 (((-1095 |#1|) |#1|) 65 T ELT)) (-3956 (((-1095 |#1|) (-1095 |#1|) (-499) (-499)) 100 T ELT)) (-3613 (((-1095 |#1|) (-1 |#1| (-499)) (-1095 |#1|)) 72 T ELT)) (-3606 (((-3 (-1095 |#1|) #1#) (-1095 |#1|) (-1095 |#1|)) 37 T ELT)) (-3957 (((-1095 |#1|) (-1095 |#1|)) 98 T ELT)) (-3918 (((-1095 |#1|) (-1095 |#1|) |#1|) 77 T ELT)) (-3612 (((-1095 |#1|) (-1095 |#1|)) 68 T ELT)) (-3614 (((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) 78 T ELT)) (-4096 (((-1095 |#1|) |#1|) 73 T ELT)) (-3615 (((-1095 |#1|) (-1095 (-1095 |#1|))) 88 T ELT)) (-4099 (((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) 38 T ELT)) (-3987 (((-1095 |#1|) (-1095 |#1|)) 21 T ELT) (((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) 23 T ELT)) (-3989 (((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) 17 T ELT)) (* (((-1095 |#1|) (-1095 |#1|) |#1|) 29 T ELT) (((-1095 |#1|) |#1| (-1095 |#1|)) 26 T ELT) (((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) 27 T ELT))) -(((-1101 |#1|) (-10 -7 (-15 -3989 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3987 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3987 ((-1095 |#1|) (-1095 |#1|))) (-15 * ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 * ((-1095 |#1|) |#1| (-1095 |#1|))) (-15 * ((-1095 |#1|) (-1095 |#1|) |#1|)) (-15 -3606 ((-3 (-1095 |#1|) #1="failed") (-1095 |#1|) (-1095 |#1|))) (-15 -4099 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3607 ((-3 (-1095 |#1|) #1#) (-1095 |#1|))) (-15 -4088 ((-1095 |#1|) |#1| (-499))) (-15 -3608 ((-1095 (-499)) (-499))) (-15 -3609 ((-1095 (-499)) (-499))) (-15 -3610 ((-1095 |#1|) |#1|)) (-15 -3611 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3612 ((-1095 |#1|) (-1095 |#1|))) (-15 -3613 ((-1095 |#1|) (-1 |#1| (-499)) (-1095 |#1|))) (-15 -4096 ((-1095 |#1|) |#1|)) (-15 -3918 ((-1095 |#1|) (-1095 |#1|) |#1|)) (-15 -3614 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3960 ((-1095 |#1|) (-1095 |#1|))) (-15 -3955 ((-1095 |#1|) (-1095 |#1|))) (-15 -3615 ((-1095 |#1|) (-1095 (-1095 |#1|)))) (-15 -3959 ((-1095 |#1|) (-1095 |#1|))) (-15 -3958 ((-1095 |#1|) (-1095 |#1|))) (-15 -3957 ((-1095 |#1|) (-1095 |#1|))) (-15 -3956 ((-1095 |#1|) (-1095 |#1|) (-499) (-499))) (-15 -3954 ((-1095 |#1|) (-499) (-499) (-1095 |#1|))) (-15 -3953 ((-1095 |#1|) (-499) (-499) (-1095 |#1|))) (IF (|has| |#1| (-38 (-361 (-499)))) (PROGN (-15 -3962 ((-1095 |#1|) |#1| (-1095 |#1|))) (-15 -3616 ((-1095 |#1|) |#1| (-1 (-1095 |#1|)))) (-15 -3617 ((-1095 |#1|) (-1095 (-1095 |#1|)))) (-15 -3618 ((-1095 |#1|) (-361 (-499)) (-1095 |#1|)))) |%noBranch|) (IF (|has| |#1| (-318)) (PROGN (-15 -3619 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3620 ((-1095 |#1|) (-1 |#1| (-499)) |#1| (-1 (-1095 |#1|)))) (-15 -3621 ((-1095 |#1|) |#1| (-1095 |#1|)))) |%noBranch|)) (-989)) (T -1101)) -((-3621 (*1 *2 *3 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-318)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3620 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-499))) (-5 *5 (-1 (-1095 *4))) (-4 *4 (-318)) (-4 *4 (-989)) (-5 *2 (-1095 *4)) (-5 *1 (-1101 *4)))) (-3619 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-318)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3618 (*1 *2 *3 *2) (-12 (-5 *2 (-1095 *4)) (-4 *4 (-38 *3)) (-4 *4 (-989)) (-5 *3 (-361 (-499))) (-5 *1 (-1101 *4)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-1095 (-1095 *4))) (-5 *2 (-1095 *4)) (-5 *1 (-1101 *4)) (-4 *4 (-38 (-361 (-499)))) (-4 *4 (-989)))) (-3616 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1095 *3))) (-5 *2 (-1095 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)))) (-3962 (*1 *2 *3 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3953 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1095 *4)) (-5 *3 (-499)) (-4 *4 (-989)) (-5 *1 (-1101 *4)))) (-3954 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1095 *4)) (-5 *3 (-499)) (-4 *4 (-989)) (-5 *1 (-1101 *4)))) (-3956 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1095 *4)) (-5 *3 (-499)) (-4 *4 (-989)) (-5 *1 (-1101 *4)))) (-3957 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3958 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-1095 (-1095 *4))) (-5 *2 (-1095 *4)) (-5 *1 (-1101 *4)) (-4 *4 (-989)))) (-3955 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3614 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3918 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-4096 (*1 *2 *3) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-989)))) (-3613 (*1 *2 *3 *2) (-12 (-5 *2 (-1095 *4)) (-5 *3 (-1 *4 (-499))) (-4 *4 (-989)) (-5 *1 (-1101 *4)))) (-3612 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3611 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3610 (*1 *2 *3) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-989)))) (-3609 (*1 *2 *3) (-12 (-5 *2 (-1095 (-499))) (-5 *1 (-1101 *4)) (-4 *4 (-989)) (-5 *3 (-499)))) (-3608 (*1 *2 *3) (-12 (-5 *2 (-1095 (-499))) (-5 *1 (-1101 *4)) (-4 *4 (-989)) (-5 *3 (-499)))) (-4088 (*1 *2 *3 *4) (-12 (-5 *4 (-499)) (-5 *2 (-1095 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-989)))) (-3607 (*1 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-4099 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3606 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3987 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3987 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3989 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3))))) -((-3632 (((-1095 |#1|) (-1095 |#1|)) 102 T ELT)) (-3789 (((-1095 |#1|) (-1095 |#1|)) 61 T ELT)) (-3623 (((-2 (|:| -3630 (-1095 |#1|)) (|:| -3631 (-1095 |#1|))) (-1095 |#1|)) 98 T ELT)) (-3630 (((-1095 |#1|) (-1095 |#1|)) 99 T ELT)) (-3622 (((-2 (|:| -3788 (-1095 |#1|)) (|:| -3784 (-1095 |#1|))) (-1095 |#1|)) 54 T ELT)) (-3788 (((-1095 |#1|) (-1095 |#1|)) 55 T ELT)) (-3634 (((-1095 |#1|) (-1095 |#1|)) 104 T ELT)) (-3787 (((-1095 |#1|) (-1095 |#1|)) 68 T ELT)) (-4092 (((-1095 |#1|) (-1095 |#1|)) 40 T ELT)) (-4093 (((-1095 |#1|) (-1095 |#1|)) 37 T ELT)) (-3635 (((-1095 |#1|) (-1095 |#1|)) 105 T ELT)) (-3786 (((-1095 |#1|) (-1095 |#1|)) 69 T ELT)) (-3633 (((-1095 |#1|) (-1095 |#1|)) 103 T ELT)) (-3785 (((-1095 |#1|) (-1095 |#1|)) 64 T ELT)) (-3631 (((-1095 |#1|) (-1095 |#1|)) 100 T ELT)) (-3784 (((-1095 |#1|) (-1095 |#1|)) 56 T ELT)) (-3638 (((-1095 |#1|) (-1095 |#1|)) 113 T ELT)) (-3626 (((-1095 |#1|) (-1095 |#1|)) 88 T ELT)) (-3636 (((-1095 |#1|) (-1095 |#1|)) 107 T ELT)) (-3624 (((-1095 |#1|) (-1095 |#1|)) 84 T ELT)) (-3640 (((-1095 |#1|) (-1095 |#1|)) 117 T ELT)) (-3628 (((-1095 |#1|) (-1095 |#1|)) 92 T ELT)) (-3641 (((-1095 |#1|) (-1095 |#1|)) 119 T ELT)) (-3629 (((-1095 |#1|) (-1095 |#1|)) 94 T ELT)) (-3639 (((-1095 |#1|) (-1095 |#1|)) 115 T ELT)) (-3627 (((-1095 |#1|) (-1095 |#1|)) 90 T ELT)) (-3637 (((-1095 |#1|) (-1095 |#1|)) 109 T ELT)) (-3625 (((-1095 |#1|) (-1095 |#1|)) 86 T ELT)) (** (((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) 41 T ELT))) -(((-1102 |#1|) (-10 -7 (-15 -4093 ((-1095 |#1|) (-1095 |#1|))) (-15 -4092 ((-1095 |#1|) (-1095 |#1|))) (-15 ** ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3622 ((-2 (|:| -3788 (-1095 |#1|)) (|:| -3784 (-1095 |#1|))) (-1095 |#1|))) (-15 -3788 ((-1095 |#1|) (-1095 |#1|))) (-15 -3784 ((-1095 |#1|) (-1095 |#1|))) (-15 -3789 ((-1095 |#1|) (-1095 |#1|))) (-15 -3785 ((-1095 |#1|) (-1095 |#1|))) (-15 -3787 ((-1095 |#1|) (-1095 |#1|))) (-15 -3786 ((-1095 |#1|) (-1095 |#1|))) (-15 -3624 ((-1095 |#1|) (-1095 |#1|))) (-15 -3625 ((-1095 |#1|) (-1095 |#1|))) (-15 -3626 ((-1095 |#1|) (-1095 |#1|))) (-15 -3627 ((-1095 |#1|) (-1095 |#1|))) (-15 -3628 ((-1095 |#1|) (-1095 |#1|))) (-15 -3629 ((-1095 |#1|) (-1095 |#1|))) (-15 -3623 ((-2 (|:| -3630 (-1095 |#1|)) (|:| -3631 (-1095 |#1|))) (-1095 |#1|))) (-15 -3630 ((-1095 |#1|) (-1095 |#1|))) (-15 -3631 ((-1095 |#1|) (-1095 |#1|))) (-15 -3632 ((-1095 |#1|) (-1095 |#1|))) (-15 -3633 ((-1095 |#1|) (-1095 |#1|))) (-15 -3634 ((-1095 |#1|) (-1095 |#1|))) (-15 -3635 ((-1095 |#1|) (-1095 |#1|))) (-15 -3636 ((-1095 |#1|) (-1095 |#1|))) (-15 -3637 ((-1095 |#1|) (-1095 |#1|))) (-15 -3638 ((-1095 |#1|) (-1095 |#1|))) (-15 -3639 ((-1095 |#1|) (-1095 |#1|))) (-15 -3640 ((-1095 |#1|) (-1095 |#1|))) (-15 -3641 ((-1095 |#1|) (-1095 |#1|)))) (-38 (-361 (-499)))) (T -1102)) -((-3641 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3630 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3623 (*1 *2 *3) (-12 (-4 *4 (-38 (-361 (-499)))) (-5 *2 (-2 (|:| -3630 (-1095 *4)) (|:| -3631 (-1095 *4)))) (-5 *1 (-1102 *4)) (-5 *3 (-1095 *4)))) (-3629 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3627 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3626 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3625 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3624 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3786 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3784 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3788 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-38 (-361 (-499)))) (-5 *2 (-2 (|:| -3788 (-1095 *4)) (|:| -3784 (-1095 *4)))) (-5 *1 (-1102 *4)) (-5 *3 (-1095 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-4092 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-4093 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3))))) -((-3632 (((-1095 |#1|) (-1095 |#1|)) 60 T ELT)) (-3789 (((-1095 |#1|) (-1095 |#1|)) 42 T ELT)) (-3630 (((-1095 |#1|) (-1095 |#1|)) 56 T ELT)) (-3788 (((-1095 |#1|) (-1095 |#1|)) 38 T ELT)) (-3634 (((-1095 |#1|) (-1095 |#1|)) 63 T ELT)) (-3787 (((-1095 |#1|) (-1095 |#1|)) 45 T ELT)) (-4092 (((-1095 |#1|) (-1095 |#1|)) 34 T ELT)) (-4093 (((-1095 |#1|) (-1095 |#1|)) 29 T ELT)) (-3635 (((-1095 |#1|) (-1095 |#1|)) 64 T ELT)) (-3786 (((-1095 |#1|) (-1095 |#1|)) 46 T ELT)) (-3633 (((-1095 |#1|) (-1095 |#1|)) 61 T ELT)) (-3785 (((-1095 |#1|) (-1095 |#1|)) 43 T ELT)) (-3631 (((-1095 |#1|) (-1095 |#1|)) 58 T ELT)) (-3784 (((-1095 |#1|) (-1095 |#1|)) 40 T ELT)) (-3638 (((-1095 |#1|) (-1095 |#1|)) 68 T ELT)) (-3626 (((-1095 |#1|) (-1095 |#1|)) 50 T ELT)) (-3636 (((-1095 |#1|) (-1095 |#1|)) 66 T ELT)) (-3624 (((-1095 |#1|) (-1095 |#1|)) 48 T ELT)) (-3640 (((-1095 |#1|) (-1095 |#1|)) 71 T ELT)) (-3628 (((-1095 |#1|) (-1095 |#1|)) 53 T ELT)) (-3641 (((-1095 |#1|) (-1095 |#1|)) 72 T ELT)) (-3629 (((-1095 |#1|) (-1095 |#1|)) 54 T ELT)) (-3639 (((-1095 |#1|) (-1095 |#1|)) 70 T ELT)) (-3627 (((-1095 |#1|) (-1095 |#1|)) 52 T ELT)) (-3637 (((-1095 |#1|) (-1095 |#1|)) 69 T ELT)) (-3625 (((-1095 |#1|) (-1095 |#1|)) 51 T ELT)) (** (((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) 36 T ELT))) -(((-1103 |#1|) (-10 -7 (-15 -4093 ((-1095 |#1|) (-1095 |#1|))) (-15 -4092 ((-1095 |#1|) (-1095 |#1|))) (-15 ** ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3788 ((-1095 |#1|) (-1095 |#1|))) (-15 -3784 ((-1095 |#1|) (-1095 |#1|))) (-15 -3789 ((-1095 |#1|) (-1095 |#1|))) (-15 -3785 ((-1095 |#1|) (-1095 |#1|))) (-15 -3787 ((-1095 |#1|) (-1095 |#1|))) (-15 -3786 ((-1095 |#1|) (-1095 |#1|))) (-15 -3624 ((-1095 |#1|) (-1095 |#1|))) (-15 -3625 ((-1095 |#1|) (-1095 |#1|))) (-15 -3626 ((-1095 |#1|) (-1095 |#1|))) (-15 -3627 ((-1095 |#1|) (-1095 |#1|))) (-15 -3628 ((-1095 |#1|) (-1095 |#1|))) (-15 -3629 ((-1095 |#1|) (-1095 |#1|))) (-15 -3630 ((-1095 |#1|) (-1095 |#1|))) (-15 -3631 ((-1095 |#1|) (-1095 |#1|))) (-15 -3632 ((-1095 |#1|) (-1095 |#1|))) (-15 -3633 ((-1095 |#1|) (-1095 |#1|))) (-15 -3634 ((-1095 |#1|) (-1095 |#1|))) (-15 -3635 ((-1095 |#1|) (-1095 |#1|))) (-15 -3636 ((-1095 |#1|) (-1095 |#1|))) (-15 -3637 ((-1095 |#1|) (-1095 |#1|))) (-15 -3638 ((-1095 |#1|) (-1095 |#1|))) (-15 -3639 ((-1095 |#1|) (-1095 |#1|))) (-15 -3640 ((-1095 |#1|) (-1095 |#1|))) (-15 -3641 ((-1095 |#1|) (-1095 |#1|)))) (-38 (-361 (-499)))) (T -1103)) -((-3641 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3630 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3629 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3627 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3626 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3625 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3624 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3786 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3784 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3788 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-4092 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-4093 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) -((-3642 (((-896 |#2|) |#2| |#2|) 51 T ELT)) (-3643 ((|#2| |#2| |#1|) 19 (|has| |#1| (-261)) ELT))) -(((-1104 |#1| |#2|) (-10 -7 (-15 -3642 ((-896 |#2|) |#2| |#2|)) (IF (|has| |#1| (-261)) (-15 -3643 (|#2| |#2| |#1|)) |%noBranch|)) (-510) (-1183 |#1|)) (T -1104)) -((-3643 (*1 *2 *2 *3) (-12 (-4 *3 (-261)) (-4 *3 (-510)) (-5 *1 (-1104 *3 *2)) (-4 *2 (-1183 *3)))) (-3642 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-896 *3)) (-5 *1 (-1104 *4 *3)) (-4 *3 (-1183 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3651 (($ $ (-599 (-714))) 79 T ELT)) (-4038 (($) 33 T ELT)) (-3660 (($ $) 51 T ELT)) (-3901 (((-599 $) $) 60 T ELT)) (-3666 (((-85) $) 19 T ELT)) (-3644 (((-599 (-881 |#2|)) $) 86 T ELT)) (-3645 (($ $) 80 T ELT)) (-3661 (((-714) $) 47 T ELT)) (-3764 (($) 32 T ELT)) (-3654 (($ $ (-599 (-714)) (-881 |#2|)) 72 T ELT) (($ $ (-599 (-714)) (-714)) 73 T ELT) (($ $ (-714) (-881 |#2|)) 75 T ELT)) (-3658 (($ $ $) 57 T ELT) (($ (-599 $)) 59 T ELT)) (-3646 (((-714) $) 87 T ELT)) (-3667 (((-85) $) 15 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3665 (((-85) $) 22 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3647 (((-145) $) 85 T ELT)) (-3650 (((-881 |#2|) $) 81 T ELT)) (-3649 (((-714) $) 82 T ELT)) (-3648 (((-85) $) 84 T ELT)) (-3652 (($ $ (-599 (-714)) (-145)) 78 T ELT)) (-3659 (($ $) 52 T ELT)) (-4096 (((-797) $) 99 T ELT)) (-3653 (($ $ (-599 (-714)) (-85)) 77 T ELT)) (-3662 (((-599 $) $) 11 T ELT)) (-3663 (($ $ (-714)) 46 T ELT)) (-3664 (($ $) 43 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3655 (($ $ $ (-881 |#2|) (-714)) 68 T ELT)) (-3656 (($ $ (-881 |#2|)) 67 T ELT)) (-3657 (($ $ (-599 (-714)) (-881 |#2|)) 66 T ELT) (($ $ (-599 (-714)) (-714)) 70 T ELT) (((-714) $ (-881 |#2|)) 71 T ELT)) (-3174 (((-85) $ $) 92 T ELT))) -(((-1105 |#1| |#2|) (-13 (-1041) (-10 -8 (-15 -3667 ((-85) $)) (-15 -3666 ((-85) $)) (-15 -3665 ((-85) $)) (-15 -3764 ($)) (-15 -4038 ($)) (-15 -3664 ($ $)) (-15 -3663 ($ $ (-714))) (-15 -3662 ((-599 $) $)) (-15 -3661 ((-714) $)) (-15 -3660 ($ $)) (-15 -3659 ($ $)) (-15 -3658 ($ $ $)) (-15 -3658 ($ (-599 $))) (-15 -3901 ((-599 $) $)) (-15 -3657 ($ $ (-599 (-714)) (-881 |#2|))) (-15 -3656 ($ $ (-881 |#2|))) (-15 -3655 ($ $ $ (-881 |#2|) (-714))) (-15 -3654 ($ $ (-599 (-714)) (-881 |#2|))) (-15 -3657 ($ $ (-599 (-714)) (-714))) (-15 -3654 ($ $ (-599 (-714)) (-714))) (-15 -3657 ((-714) $ (-881 |#2|))) (-15 -3654 ($ $ (-714) (-881 |#2|))) (-15 -3653 ($ $ (-599 (-714)) (-85))) (-15 -3652 ($ $ (-599 (-714)) (-145))) (-15 -3651 ($ $ (-599 (-714)))) (-15 -3650 ((-881 |#2|) $)) (-15 -3649 ((-714) $)) (-15 -3648 ((-85) $)) (-15 -3647 ((-145) $)) (-15 -3646 ((-714) $)) (-15 -3645 ($ $)) (-15 -3644 ((-599 (-881 |#2|)) $)))) (-857) (-989)) (T -1105)) -((-3667 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3665 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3764 (*1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989)))) (-4038 (*1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989)))) (-3664 (*1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989)))) (-3663 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-599 (-1105 *3 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3660 (*1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989)))) (-3659 (*1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989)))) (-3658 (*1 *1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989)))) (-3658 (*1 *1 *2) (-12 (-5 *2 (-599 (-1105 *3 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3901 (*1 *2 *1) (-12 (-5 *2 (-599 (-1105 *3 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3657 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-714))) (-5 *3 (-881 *5)) (-4 *5 (-989)) (-5 *1 (-1105 *4 *5)) (-14 *4 (-857)))) (-3656 (*1 *1 *1 *2) (-12 (-5 *2 (-881 *4)) (-4 *4 (-989)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)))) (-3655 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-881 *5)) (-5 *3 (-714)) (-4 *5 (-989)) (-5 *1 (-1105 *4 *5)) (-14 *4 (-857)))) (-3654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-714))) (-5 *3 (-881 *5)) (-4 *5 (-989)) (-5 *1 (-1105 *4 *5)) (-14 *4 (-857)))) (-3657 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-714))) (-5 *3 (-714)) (-5 *1 (-1105 *4 *5)) (-14 *4 (-857)) (-4 *5 (-989)))) (-3654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-714))) (-5 *3 (-714)) (-5 *1 (-1105 *4 *5)) (-14 *4 (-857)) (-4 *5 (-989)))) (-3657 (*1 *2 *1 *3) (-12 (-5 *3 (-881 *5)) (-4 *5 (-989)) (-5 *2 (-714)) (-5 *1 (-1105 *4 *5)) (-14 *4 (-857)))) (-3654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-714)) (-5 *3 (-881 *5)) (-4 *5 (-989)) (-5 *1 (-1105 *4 *5)) (-14 *4 (-857)))) (-3653 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-714))) (-5 *3 (-85)) (-5 *1 (-1105 *4 *5)) (-14 *4 (-857)) (-4 *5 (-989)))) (-3652 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-714))) (-5 *3 (-145)) (-5 *1 (-1105 *4 *5)) (-14 *4 (-857)) (-4 *5 (-989)))) (-3651 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-714))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3650 (*1 *2 *1) (-12 (-5 *2 (-881 *4)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3648 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3647 (*1 *2 *1) (-12 (-5 *2 (-145)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3646 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3645 (*1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989)))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-599 (-881 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3668 ((|#2| $) 11 T ELT)) (-3669 ((|#1| $) 10 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3670 (($ |#1| |#2|) 9 T ELT)) (-4096 (((-797) $) 16 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-1106 |#1| |#2|) (-13 (-1041) (-10 -8 (-15 -3670 ($ |#1| |#2|)) (-15 -3669 (|#1| $)) (-15 -3668 (|#2| $)))) (-1041) (-1041)) (T -1106)) -((-3670 (*1 *1 *2 *3) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) (-3669 (*1 *2 *1) (-12 (-4 *2 (-1041)) (-5 *1 (-1106 *2 *3)) (-4 *3 (-1041)))) (-3668 (*1 *2 *1) (-12 (-4 *2 (-1041)) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1041))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3671 (((-1075) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 15 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-1107) (-13 (-1023) (-10 -8 (-15 -3671 ((-1075) $))))) (T -1107)) -((-3671 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1107))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 (((-1115 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-261)) (|has| |#1| (-318))) ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) 11 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-2164 (($ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-2162 (((-85) $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-3921 (($ $ (-499)) NIL T ELT) (($ $ (-499) (-499)) 75 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) $) NIL T ELT)) (-3881 (((-1115 |#1| |#2| |#3|) $) 42 T ELT)) (-3878 (((-3 (-1115 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3879 (((-1115 |#1| |#2| |#3|) $) 33 T ELT)) (-3632 (($ $) 116 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 92 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1#) $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-3925 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3630 (($ $) 112 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 88 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3773 (((-499) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) ELT)) (-3968 (($ (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|)))) NIL T ELT)) (-3634 (($ $) 120 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 96 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-1115 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1117) #1#) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-978 (-1117))) (|has| |#1| (-318))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) ELT) (((-3 (-499) #1#) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) ELT)) (-3294 (((-1115 |#1| |#2| |#3|) $) 140 T ELT) (((-1117) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-978 (-1117))) (|has| |#1| (-318))) ELT) (((-361 (-499)) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) ELT) (((-499) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) ELT)) (-3880 (($ $) 37 T ELT) (($ (-499) $) 38 T ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-1115 |#1| |#2| |#3|)) (-647 $)) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-1115 |#1| |#2| |#3|))) (|:| |vec| (-1207 (-1115 |#1| |#2| |#3|)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-596 (-499))) (|has| |#1| (-318))) ELT) (((-647 (-499)) (-647 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-596 (-499))) (|has| |#1| (-318))) ELT)) (-3607 (((-3 $ #1#) $) 54 T ELT)) (-3877 (((-361 (-884 |#1|)) $ (-499)) 74 (|has| |#1| (-510)) ELT) (((-361 (-884 |#1|)) $ (-499) (-499)) 76 (|has| |#1| (-510)) ELT)) (-3115 (($) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-498)) (|has| |#1| (-318))) ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3324 (((-85) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) ELT)) (-3013 (((-85) $) 28 T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-821 (-333))) (|has| |#1| (-318))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-821 (-499))) (|has| |#1| (-318))) ELT)) (-3922 (((-499) $) NIL T ELT) (((-499) $ (-499)) 26 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3119 (((-1115 |#1| |#2| |#3|) $) 44 (|has| |#1| (-318)) ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3585 (((-649 $) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-1092)) (|has| |#1| (-318))) ELT)) (-3325 (((-85) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) ELT)) (-3927 (($ $ (-857)) NIL T ELT)) (-3965 (($ (-1 |#1| (-499)) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-499)) 19 T ELT) (($ $ (-1022) (-499)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-499))) NIL T ELT)) (-2650 (($ $ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-2978 (($ $ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-318)) ELT)) (-4092 (($ $) 81 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2381 (((-647 (-1115 |#1| |#2| |#3|)) (-1207 $)) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-1115 |#1| |#2| |#3|))) (|:| |vec| (-1207 (-1115 |#1| |#2| |#3|)))) (-1207 $) $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-596 (-499))) (|has| |#1| (-318))) ELT) (((-647 (-499)) (-1207 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-596 (-499))) (|has| |#1| (-318))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3929 (($ (-499) (-1115 |#1| |#2| |#3|)) 36 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3962 (($ $) 79 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT) (($ $ (-1204 |#2|)) 80 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3586 (($) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-1092)) (|has| |#1| (-318))) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3250 (($ $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-261)) (|has| |#1| (-318))) ELT)) (-3252 (((-1115 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-498)) (|has| |#1| (-318))) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-499)) 158 T ELT)) (-3606 (((-3 $ #1#) $ $) 55 (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4093 (($ $) 82 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-499)))) ELT) (($ $ (-1117) (-1115 |#1| |#2| |#3|)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-468 (-1117) (-1115 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-599 (-1117)) (-599 (-1115 |#1| |#2| |#3|))) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-468 (-1117) (-1115 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-599 (-247 (-1115 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-263 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-247 (-1115 |#1| |#2| |#3|))) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-263 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-263 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-599 (-1115 |#1| |#2| |#3|)) (-599 (-1115 |#1| |#2| |#3|))) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-263 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-499)) NIL T ELT) (($ $ $) 61 (|has| (-499) (-1052)) ELT) (($ $ (-1115 |#1| |#2| |#3|)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-240 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) (-714)) NIL (|has| |#1| (-318)) ELT) (($ $ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|))) NIL (|has| |#1| (-318)) ELT) (($ $ (-1204 |#2|)) 57 T ELT) (($ $) 56 (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-190)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-190)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT)) (-3116 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3118 (((-1115 |#1| |#2| |#3|) $) 46 (|has| |#1| (-318)) ELT)) (-4098 (((-499) $) 43 T ELT)) (-3635 (($ $) 122 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 98 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 118 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 94 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 114 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 90 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-4122 (((-488) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-569 (-488))) (|has| |#1| (-318))) ELT) (((-333) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-960)) (|has| |#1| (-318))) ELT) (((-179) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-960)) (|has| |#1| (-318))) ELT) (((-825 (-333)) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-569 (-825 (-333)))) (|has| |#1| (-318))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-569 (-825 (-499)))) (|has| |#1| (-318))) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-3012 (($ $) NIL T ELT)) (-4096 (((-797) $) 162 T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1115 |#1| |#2| |#3|)) 30 T ELT) (($ (-1204 |#2|)) 25 T ELT) (($ (-1117)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-978 (-1117))) (|has| |#1| (-318))) ELT) (($ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT) (($ (-361 (-499))) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) (|has| |#1| (-38 (-361 (-499))))) ELT)) (-3827 ((|#1| $ (-499)) 77 T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-118)) (|has| |#1| (-318))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-3923 ((|#1| $) 12 T ELT)) (-3253 (((-1115 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-498)) (|has| |#1| (-318))) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) 128 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 104 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-3636 (($ $) 124 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 100 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 132 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 108 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-499)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-499)))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) 134 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 110 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 130 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 106 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 126 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 102 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3523 (($ $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) ELT)) (-2779 (($) 21 T CONST)) (-2785 (($) 16 T CONST)) (-2790 (($ $ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) (-714)) NIL (|has| |#1| (-318)) ELT) (($ $ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|))) NIL (|has| |#1| (-318)) ELT) (($ $ (-1204 |#2|)) NIL T ELT) (($ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-190)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-190)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT)) (-2685 (((-85) $ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-2686 (((-85) $ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-2806 (((-85) $ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT) (($ $ $) 49 (|has| |#1| (-318)) ELT) (($ (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) 50 (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 23 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 60 T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 137 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1115 |#1| |#2| |#3|)) 48 (|has| |#1| (-318)) ELT) (($ (-1115 |#1| |#2| |#3|) $) 47 (|has| |#1| (-318)) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-1108 |#1| |#2| |#3|) (-13 (-1171 |#1| (-1115 |#1| |#2| |#3|)) (-831 $ (-1204 |#2|)) (-10 -8 (-15 -4096 ($ (-1204 |#2|))) (IF (|has| |#1| (-38 (-361 (-499)))) (-15 -3962 ($ $ (-1204 |#2|))) |%noBranch|))) (-989) (-1117) |#1|) (T -1108)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) (-4 *3 (-989)) (-14 *5 *3))) (-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3)))) -((-3672 ((|#2| |#2| (-1032 |#2|)) 26 T ELT) ((|#2| |#2| (-1117)) 28 T ELT))) -(((-1109 |#1| |#2|) (-10 -7 (-15 -3672 (|#2| |#2| (-1117))) (-15 -3672 (|#2| |#2| (-1032 |#2|)))) (-13 (-510) (-978 (-499)) (-596 (-499))) (-13 (-375 |#1|) (-133) (-27) (-1143))) (T -1109)) -((-3672 (*1 *2 *2 *3) (-12 (-5 *3 (-1032 *2)) (-4 *2 (-13 (-375 *4) (-133) (-27) (-1143))) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1109 *4 *2)))) (-3672 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-375 *4) (-133) (-27) (-1143)))))) -((-3672 (((-3 (-361 (-884 |#1|)) (-268 |#1|)) (-361 (-884 |#1|)) (-1032 (-361 (-884 |#1|)))) 31 T ELT) (((-361 (-884 |#1|)) (-884 |#1|) (-1032 (-884 |#1|))) 44 T ELT) (((-3 (-361 (-884 |#1|)) (-268 |#1|)) (-361 (-884 |#1|)) (-1117)) 33 T ELT) (((-361 (-884 |#1|)) (-884 |#1|) (-1117)) 36 T ELT))) -(((-1110 |#1|) (-10 -7 (-15 -3672 ((-361 (-884 |#1|)) (-884 |#1|) (-1117))) (-15 -3672 ((-3 (-361 (-884 |#1|)) (-268 |#1|)) (-361 (-884 |#1|)) (-1117))) (-15 -3672 ((-361 (-884 |#1|)) (-884 |#1|) (-1032 (-884 |#1|)))) (-15 -3672 ((-3 (-361 (-884 |#1|)) (-268 |#1|)) (-361 (-884 |#1|)) (-1032 (-361 (-884 |#1|)))))) (-13 (-510) (-978 (-499)))) (T -1110)) -((-3672 (*1 *2 *3 *4) (-12 (-5 *4 (-1032 (-361 (-884 *5)))) (-5 *3 (-361 (-884 *5))) (-4 *5 (-13 (-510) (-978 (-499)))) (-5 *2 (-3 *3 (-268 *5))) (-5 *1 (-1110 *5)))) (-3672 (*1 *2 *3 *4) (-12 (-5 *4 (-1032 (-884 *5))) (-5 *3 (-884 *5)) (-4 *5 (-13 (-510) (-978 (-499)))) (-5 *2 (-361 *3)) (-5 *1 (-1110 *5)))) (-3672 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)))) (-5 *2 (-3 (-361 (-884 *5)) (-268 *5))) (-5 *1 (-1110 *5)) (-5 *3 (-361 (-884 *5))))) (-3672 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)))) (-5 *2 (-361 (-884 *5))) (-5 *1 (-1110 *5)) (-5 *3 (-884 *5))))) -((-2687 (((-85) $ $) 172 T ELT)) (-3326 (((-85) $) 43 T ELT)) (-3917 (((-1207 |#1|) $ (-714)) NIL T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3915 (($ (-1111 |#1|)) NIL T ELT)) (-3206 (((-1111 $) $ (-1022)) 82 T ELT) (((-1111 |#1|) $) 71 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) 165 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-1022))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3905 (($ $ $) 159 (|has| |#1| (-510)) ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 96 (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) 116 (|has| |#1| (-848)) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3911 (($ $ (-714)) 61 T ELT)) (-3910 (($ $ (-714)) 63 T ELT)) (-3901 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-406)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-1022) #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-1022) $) NIL T ELT)) (-3906 (($ $ $ (-1022)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 161 (|has| |#1| (-146)) ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) 80 T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3909 (($ $ $) 132 T ELT)) (-3903 (($ $ $) NIL (|has| |#1| (-510)) ELT)) (-3902 (((-2 (|:| -4104 |#1|) (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3643 (($ $) 166 (|has| |#1| (-406)) ELT) (($ $ (-1022)) NIL (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| (-714) $) 69 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-1022) (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-1022) (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-3673 (((-797) $ (-797)) 149 T ELT)) (-3922 (((-714) $ $) NIL (|has| |#1| (-510)) ELT)) (-2528 (((-85) $) 48 T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-1092)) ELT)) (-3207 (($ (-1111 |#1|) (-1022)) 73 T ELT) (($ (-1111 $) (-1022)) 90 T ELT)) (-3927 (($ $ (-714)) 51 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-714)) 88 T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-1022)) NIL T ELT) (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 154 T ELT)) (-2941 (((-714) $) NIL T ELT) (((-714) $ (-1022)) NIL T ELT) (((-599 (-714)) $ (-599 (-1022))) NIL T ELT)) (-1695 (($ (-1 (-714) (-714)) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3916 (((-1111 |#1|) $) NIL T ELT)) (-3205 (((-3 (-1022) #1#) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) 76 T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3912 (((-2 (|:| -2075 $) (|:| -3023 $)) $ (-714)) 60 T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-1022)) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3962 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3586 (($) NIL (|has| |#1| (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) 50 T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 104 (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) 168 (|has| |#1| (-406)) ELT)) (-3888 (($ $ (-714) |#1| $) 124 T ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 102 (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 101 (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) 109 (|has| |#1| (-848)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) 164 (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) 125 (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-1022) |#1|) NIL T ELT) (($ $ (-599 (-1022)) (-599 |#1|)) NIL T ELT) (($ $ (-1022) $) NIL T ELT) (($ $ (-599 (-1022)) (-599 $)) NIL T ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ |#1|) 151 T ELT) (($ $ $) 152 T ELT) (((-361 $) (-361 $) (-361 $)) NIL (|has| |#1| (-510)) ELT) ((|#1| (-361 $) |#1|) NIL (|has| |#1| (-318)) ELT) (((-361 $) $ (-361 $)) NIL (|has| |#1| (-510)) ELT)) (-3914 (((-3 $ #1#) $ (-714)) 54 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 173 (|has| |#1| (-318)) ELT)) (-3907 (($ $ (-1022)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) 157 (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022))) NIL T ELT) (($ $ (-1022)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-4098 (((-714) $) 78 T ELT) (((-714) $ (-1022)) NIL T ELT) (((-599 (-714)) $ (-599 (-1022))) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-1022) (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-1022) (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-1022) (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT)) (-2938 ((|#1| $) 163 (|has| |#1| (-406)) ELT) (($ $ (-1022)) NIL (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-3904 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT) (((-3 (-361 $) #1#) (-361 $) $) NIL (|has| |#1| (-510)) ELT)) (-4096 (((-797) $) 150 T ELT) (($ (-499)) NIL T ELT) (($ |#1|) 77 T ELT) (($ (-1022)) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-714)) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) 41 (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) 17 T CONST)) (-2785 (($) 19 T CONST)) (-2790 (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022))) NIL T ELT) (($ $ (-1022)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) 121 T ELT)) (-4099 (($ $ |#1|) 174 (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 91 T ELT)) (** (($ $ (-857)) 14 T ELT) (($ $ (-714)) 12 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 130 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1111 |#1|) (-13 (-1183 |#1|) (-10 -8 (-15 -3673 ((-797) $ (-797))) (-15 -3888 ($ $ (-714) |#1| $)))) (-989)) (T -1111)) -((-3673 (*1 *2 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1111 *3)) (-4 *3 (-989)))) (-3888 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-714)) (-5 *1 (-1111 *3)) (-4 *3 (-989))))) -((-4108 (((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|)) 13 T ELT))) -(((-1112 |#1| |#2|) (-10 -7 (-15 -4108 ((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|)))) (-989) (-989)) (T -1112)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-5 *2 (-1111 *6)) (-5 *1 (-1112 *5 *6))))) -((-4121 (((-359 (-1111 (-361 |#4|))) (-1111 (-361 |#4|))) 51 T ELT)) (-3882 (((-359 (-1111 (-361 |#4|))) (-1111 (-361 |#4|))) 52 T ELT))) -(((-1113 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-359 (-1111 (-361 |#4|))) (-1111 (-361 |#4|)))) (-15 -4121 ((-359 (-1111 (-361 |#4|))) (-1111 (-361 |#4|))))) (-738) (-781) (-406) (-888 |#3| |#1| |#2|)) (T -1113)) -((-4121 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-406)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-359 (-1111 (-361 *7)))) (-5 *1 (-1113 *4 *5 *6 *7)) (-5 *3 (-1111 (-361 *7))))) (-3882 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-406)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-359 (-1111 (-361 *7)))) (-5 *1 (-1113 *4 *5 *6 *7)) (-5 *3 (-1111 (-361 *7)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) 11 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-361 (-499))) NIL T ELT) (($ $ (-361 (-499)) (-361 (-499))) NIL T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|))) $) NIL T ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-714) (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|)))) NIL T ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-1108 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1115 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3294 (((-1108 |#1| |#2| |#3|) $) NIL T ELT) (((-1115 |#1| |#2| |#3|) $) NIL T ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3931 (((-361 (-499)) $) 59 T ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3932 (($ (-361 (-499)) (-1108 |#1| |#2| |#3|)) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3013 (((-85) $) NIL T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-361 (-499)) $) NIL T ELT) (((-361 (-499)) $ (-361 (-499))) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-361 (-499))) 20 T ELT) (($ $ (-1022) (-361 (-499))) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-361 (-499)))) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4092 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3930 (((-1108 |#1| |#2| |#3|) $) 41 T ELT)) (-3928 (((-3 (-1108 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3929 (((-1108 |#1| |#2| |#3|) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3962 (($ $) 39 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT) (($ $ (-1204 |#2|)) 40 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-361 (-499))) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4093 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-361 (-499))) NIL T ELT) (($ $ $) NIL (|has| (-361 (-499)) (-1052)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-1204 |#2|)) 38 T ELT)) (-4098 (((-361 (-499)) $) NIL T ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) NIL T ELT)) (-4096 (((-797) $) 62 T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1108 |#1| |#2| |#3|)) 30 T ELT) (($ (-1115 |#1| |#2| |#3|)) 31 T ELT) (($ (-1204 |#2|)) 26 T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-361 (-499))) NIL T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-3923 ((|#1| $) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-361 (-499))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 22 T CONST)) (-2785 (($) 16 T CONST)) (-2790 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-1204 |#2|)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 24 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-1114 |#1| |#2| |#3|) (-13 (-1192 |#1| (-1108 |#1| |#2| |#3|)) (-831 $ (-1204 |#2|)) (-978 (-1115 |#1| |#2| |#3|)) (-571 (-1204 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-361 (-499)))) (-15 -3962 ($ $ (-1204 |#2|))) |%noBranch|))) (-989) (-1117) |#1|) (T -1114)) -((-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1114 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 129 T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) 119 T ELT)) (-3961 (((-1176 |#2| |#1|) $ (-714)) 69 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-714)) 85 T ELT) (($ $ (-714) (-714)) 82 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-714)) (|:| |c| |#1|))) $) 105 T ELT)) (-3632 (($ $) 173 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 149 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3630 (($ $) 169 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 145 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-1095 (-2 (|:| |k| (-714)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1095 |#1|)) 113 T ELT)) (-3634 (($ $) 177 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 153 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) 25 T ELT)) (-3966 (($ $) 28 T ELT)) (-3964 (((-884 |#1|) $ (-714)) 81 T ELT) (((-884 |#1|) $ (-714) (-714)) 83 T ELT)) (-3013 (((-85) $) 124 T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-714) $) 126 T ELT) (((-714) $ (-714)) 128 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) NIL T ELT)) (-3965 (($ (-1 |#1| (-499)) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-714)) 13 T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4092 (($ $) 135 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3962 (($ $) 133 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT) (($ $ (-1204 |#2|)) 134 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3919 (($ $ (-714)) 15 T ELT)) (-3606 (((-3 $ #1#) $ $) 26 (|has| |#1| (-510)) ELT)) (-4093 (($ $) 137 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-714)))) ELT)) (-3950 ((|#1| $ (-714)) 122 T ELT) (($ $ $) 132 (|has| (-714) (-1052)) ELT)) (-3908 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-1204 |#2|)) 31 T ELT)) (-4098 (((-714) $) NIL T ELT)) (-3635 (($ $) 179 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 155 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 175 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 151 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 171 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 147 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) NIL T ELT)) (-4096 (((-797) $) 206 T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ |#1|) 130 (|has| |#1| (-146)) ELT) (($ (-1176 |#2| |#1|)) 55 T ELT) (($ (-1204 |#2|)) 36 T ELT)) (-3967 (((-1095 |#1|) $) 101 T ELT)) (-3827 ((|#1| $ (-714)) 121 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-3923 ((|#1| $) 58 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) 185 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 161 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) 181 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 157 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 189 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 165 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-714)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-714)))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) 191 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 167 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 187 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 163 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 183 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 159 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 17 T CONST)) (-2785 (($) 20 T CONST)) (-2790 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-1204 |#2|)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3989 (($ $ $) 35 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-318)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 141 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-1115 |#1| |#2| |#3|) (-13 (-1200 |#1|) (-831 $ (-1204 |#2|)) (-10 -8 (-15 -4096 ($ (-1176 |#2| |#1|))) (-15 -3961 ((-1176 |#2| |#1|) $ (-714))) (-15 -4096 ($ (-1204 |#2|))) (IF (|has| |#1| (-38 (-361 (-499)))) (-15 -3962 ($ $ (-1204 |#2|))) |%noBranch|))) (-989) (-1117) |#1|) (T -1115)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-1176 *4 *3)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3) (-5 *1 (-1115 *3 *4 *5)))) (-3961 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1176 *5 *4)) (-5 *1 (-1115 *4 *5 *6)) (-4 *4 (-989)) (-14 *5 (-1117)) (-14 *6 *4))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) (-4 *3 (-989)) (-14 *5 *3))) (-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3)))) -((-4096 (((-797) $) 33 T ELT) (($ (-1117)) 35 T ELT)) (-3677 (($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $))) 46 T ELT)) (-3674 (($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $))) 39 T ELT) (($ $) 40 T ELT)) (-3681 (($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $))) 41 T ELT)) (-3679 (($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $))) 43 T ELT)) (-3680 (($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $))) 42 T ELT)) (-3678 (($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $))) 44 T ELT)) (-3676 (($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $))) 47 T ELT)) (-12 (($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $))) 45 T ELT))) -(((-1116) (-13 (-568 (-797)) (-10 -8 (-15 -4096 ($ (-1117))) (-15 -3681 ($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)))) (-15 -3680 ($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)))) (-15 -3679 ($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)))) (-15 -3678 ($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)))) (-15 -3677 ($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)))) (-15 -3676 ($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)))) (-15 -3674 ($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)))) (-15 -3674 ($ $))))) (T -1116)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1116)))) (-3681 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-3680 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-3679 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-3678 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-3677 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-3676 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-3674 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-3674 (*1 *1 *1) (-5 *1 (-1116)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3685 (($ $ (-599 (-797))) 48 T ELT)) (-3686 (($ $ (-599 (-797))) 46 T ELT)) (-3683 (((-1099) $) 88 T ELT)) (-3688 (((-2 (|:| -2703 (-599 (-797))) (|:| -2600 (-599 (-797))) (|:| |presup| (-599 (-797))) (|:| -2701 (-599 (-797))) (|:| |args| (-599 (-797)))) $) 95 T ELT)) (-3689 (((-85) $) 86 T ELT)) (-3687 (($ $ (-599 (-599 (-797)))) 45 T ELT) (($ $ (-2 (|:| -2703 (-599 (-797))) (|:| -2600 (-599 (-797))) (|:| |presup| (-599 (-797))) (|:| -2701 (-599 (-797))) (|:| |args| (-599 (-797))))) 85 T ELT)) (-3874 (($) 151 T CONST)) (-3295 (((-3 (-460) "failed") $) 155 T ELT)) (-3294 (((-460) $) NIL T ELT)) (-3691 (((-1213)) 123 T ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 55 T ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 62 T ELT)) (-3764 (($) 109 T ELT) (($ $) 118 T ELT)) (-3690 (($ $) 87 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3682 (((-599 $) $) 124 T ELT)) (-3380 (((-1099) $) 101 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3950 (($ $ (-599 (-797))) 47 T ELT)) (-4122 (((-488) $) 33 T ELT) (((-1117) $) 34 T ELT) (((-825 (-499)) $) 66 T ELT) (((-825 (-333)) $) 64 T ELT)) (-4096 (((-797) $) 41 T ELT) (($ (-1099)) 35 T ELT) (($ (-460)) 153 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3684 (($ $ (-599 (-797))) 49 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 37 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 38 T ELT))) -(((-1117) (-13 (-781) (-569 (-488)) (-569 (-1117)) (-571 (-1099)) (-978 (-460)) (-569 (-825 (-499))) (-569 (-825 (-333))) (-821 (-499)) (-821 (-333)) (-10 -8 (-15 -3764 ($)) (-15 -3764 ($ $)) (-15 -3691 ((-1213))) (-15 -3690 ($ $)) (-15 -3689 ((-85) $)) (-15 -3688 ((-2 (|:| -2703 (-599 (-797))) (|:| -2600 (-599 (-797))) (|:| |presup| (-599 (-797))) (|:| -2701 (-599 (-797))) (|:| |args| (-599 (-797)))) $)) (-15 -3687 ($ $ (-599 (-599 (-797))))) (-15 -3687 ($ $ (-2 (|:| -2703 (-599 (-797))) (|:| -2600 (-599 (-797))) (|:| |presup| (-599 (-797))) (|:| -2701 (-599 (-797))) (|:| |args| (-599 (-797)))))) (-15 -3686 ($ $ (-599 (-797)))) (-15 -3685 ($ $ (-599 (-797)))) (-15 -3684 ($ $ (-599 (-797)))) (-15 -3950 ($ $ (-599 (-797)))) (-15 -3683 ((-1099) $)) (-15 -3682 ((-599 $) $)) (-15 -3874 ($) -4102)))) (T -1117)) -((-3764 (*1 *1) (-5 *1 (-1117))) (-3764 (*1 *1 *1) (-5 *1 (-1117))) (-3691 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1117)))) (-3690 (*1 *1 *1) (-5 *1 (-1117))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117)))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2703 (-599 (-797))) (|:| -2600 (-599 (-797))) (|:| |presup| (-599 (-797))) (|:| -2701 (-599 (-797))) (|:| |args| (-599 (-797))))) (-5 *1 (-1117)))) (-3687 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-599 (-797)))) (-5 *1 (-1117)))) (-3687 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2703 (-599 (-797))) (|:| -2600 (-599 (-797))) (|:| |presup| (-599 (-797))) (|:| -2701 (-599 (-797))) (|:| |args| (-599 (-797))))) (-5 *1 (-1117)))) (-3686 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-1117)))) (-3685 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-1117)))) (-3684 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-1117)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-1117)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1117)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-1117)))) (-3874 (*1 *1) (-5 *1 (-1117)))) -((-3692 (((-1207 |#1|) |#1| (-857)) 18 T ELT) (((-1207 |#1|) (-599 |#1|)) 25 T ELT))) -(((-1118 |#1|) (-10 -7 (-15 -3692 ((-1207 |#1|) (-599 |#1|))) (-15 -3692 ((-1207 |#1|) |#1| (-857)))) (-989)) (T -1118)) -((-3692 (*1 *2 *3 *4) (-12 (-5 *4 (-857)) (-5 *2 (-1207 *3)) (-5 *1 (-1118 *3)) (-4 *3 (-989)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-599 *4)) (-4 *4 (-989)) (-5 *2 (-1207 *4)) (-5 *1 (-1118 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT)) (-1694 (($ $ |#1| (-911) $) NIL T ELT)) (-2528 (((-85) $) 17 T ELT)) (-2536 (((-714) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-911)) NIL T ELT)) (-2941 (((-911) $) NIL T ELT)) (-1695 (($ (-1 (-911) (-911)) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-3888 (($ $ (-911) |#1| $) NIL (-12 (|has| (-911) (-104)) (|has| |#1| (-510))) ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT)) (-4098 (((-911) $) NIL T ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ |#1|) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-911)) NIL T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) 10 T CONST)) (-2785 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 21 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 22 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 16 T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-1119 |#1|) (-13 (-280 |#1| (-911)) (-10 -8 (IF (|has| |#1| (-510)) (IF (|has| (-911) (-104)) (-15 -3888 ($ $ (-911) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4143)) (-6 -4143) |%noBranch|))) (-989)) (T -1119)) -((-3888 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-911)) (-4 *2 (-104)) (-5 *1 (-1119 *3)) (-4 *3 (-510)) (-4 *3 (-989))))) -((-3693 (((-1121) (-1117) $) 25 T ELT)) (-3703 (($) 29 T ELT)) (-3695 (((-3 (|:| |fst| (-388)) (|:| -4060 #1="void")) (-1117) $) 22 T ELT)) (-3697 (((-1213) (-1117) (-3 (|:| |fst| (-388)) (|:| -4060 #1#)) $) 41 T ELT) (((-1213) (-1117) (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) 42 T ELT) (((-1213) (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) 43 T ELT)) (-3705 (((-1213) (-1117)) 58 T ELT)) (-3696 (((-1213) (-1117) $) 55 T ELT) (((-1213) (-1117)) 56 T ELT) (((-1213)) 57 T ELT)) (-3701 (((-1213) (-1117)) 37 T ELT)) (-3699 (((-1117)) 36 T ELT)) (-3713 (($) 34 T ELT)) (-3712 (((-390) (-1117) (-390) (-1117) $) 45 T ELT) (((-390) (-599 (-1117)) (-390) (-1117) $) 49 T ELT) (((-390) (-1117) (-390)) 46 T ELT) (((-390) (-1117) (-390) (-1117)) 50 T ELT)) (-3700 (((-1117)) 35 T ELT)) (-4096 (((-797) $) 28 T ELT)) (-3702 (((-1213)) 30 T ELT) (((-1213) (-1117)) 33 T ELT)) (-3694 (((-599 (-1117)) (-1117) $) 24 T ELT)) (-3698 (((-1213) (-1117) (-599 (-1117)) $) 38 T ELT) (((-1213) (-1117) (-599 (-1117))) 39 T ELT) (((-1213) (-599 (-1117))) 40 T ELT))) -(((-1120) (-13 (-568 (-797)) (-10 -8 (-15 -3703 ($)) (-15 -3702 ((-1213))) (-15 -3702 ((-1213) (-1117))) (-15 -3712 ((-390) (-1117) (-390) (-1117) $)) (-15 -3712 ((-390) (-599 (-1117)) (-390) (-1117) $)) (-15 -3712 ((-390) (-1117) (-390))) (-15 -3712 ((-390) (-1117) (-390) (-1117))) (-15 -3701 ((-1213) (-1117))) (-15 -3700 ((-1117))) (-15 -3699 ((-1117))) (-15 -3698 ((-1213) (-1117) (-599 (-1117)) $)) (-15 -3698 ((-1213) (-1117) (-599 (-1117)))) (-15 -3698 ((-1213) (-599 (-1117)))) (-15 -3697 ((-1213) (-1117) (-3 (|:| |fst| (-388)) (|:| -4060 #1="void")) $)) (-15 -3697 ((-1213) (-1117) (-3 (|:| |fst| (-388)) (|:| -4060 #1#)))) (-15 -3697 ((-1213) (-3 (|:| |fst| (-388)) (|:| -4060 #1#)))) (-15 -3696 ((-1213) (-1117) $)) (-15 -3696 ((-1213) (-1117))) (-15 -3696 ((-1213))) (-15 -3705 ((-1213) (-1117))) (-15 -3713 ($)) (-15 -3695 ((-3 (|:| |fst| (-388)) (|:| -4060 #1#)) (-1117) $)) (-15 -3694 ((-599 (-1117)) (-1117) $)) (-15 -3693 ((-1121) (-1117) $))))) (T -1120)) -((-3703 (*1 *1) (-5 *1 (-1120))) (-3702 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3712 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-390)) (-5 *3 (-1117)) (-5 *1 (-1120)))) (-3712 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-390)) (-5 *3 (-599 (-1117))) (-5 *4 (-1117)) (-5 *1 (-1120)))) (-3712 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1117)) (-5 *1 (-1120)))) (-3712 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-390)) (-5 *3 (-1117)) (-5 *1 (-1120)))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3700 (*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1120)))) (-3699 (*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1120)))) (-3698 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-599 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3698 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3698 (*1 *2 *3) (-12 (-5 *3 (-599 (-1117))) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3697 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1117)) (-5 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1="void"))) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3697 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3697 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3696 (*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3696 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3705 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3713 (*1 *1) (-5 *1 (-1120))) (-3695 (*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-5 *1 (-1120)))) (-3694 (*1 *2 *3 *1) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-1120)) (-5 *3 (-1117)))) (-3693 (*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-1121)) (-5 *1 (-1120))))) -((-3707 (((-599 (-599 (-3 (|:| -3690 (-1117)) (|:| -3363 (-599 (-3 (|:| S (-1117)) (|:| P (-884 (-499))))))))) $) 66 T ELT)) (-3709 (((-599 (-3 (|:| -3690 (-1117)) (|:| -3363 (-599 (-3 (|:| S (-1117)) (|:| P (-884 (-499)))))))) (-388) $) 47 T ELT)) (-3704 (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-390))))) 17 T ELT)) (-3705 (((-1213) $) 73 T ELT)) (-3710 (((-599 (-1117)) $) 22 T ELT)) (-3706 (((-1043) $) 60 T ELT)) (-3711 (((-390) (-1117) $) 27 T ELT)) (-3708 (((-599 (-1117)) $) 30 T ELT)) (-3713 (($) 19 T ELT)) (-3712 (((-390) (-599 (-1117)) (-390) $) 25 T ELT) (((-390) (-1117) (-390) $) 24 T ELT)) (-4096 (((-797) $) 9 T ELT) (((-1129 (-1117) (-390)) $) 13 T ELT))) -(((-1121) (-13 (-568 (-797)) (-10 -8 (-15 -4096 ((-1129 (-1117) (-390)) $)) (-15 -3713 ($)) (-15 -3712 ((-390) (-599 (-1117)) (-390) $)) (-15 -3712 ((-390) (-1117) (-390) $)) (-15 -3711 ((-390) (-1117) $)) (-15 -3710 ((-599 (-1117)) $)) (-15 -3709 ((-599 (-3 (|:| -3690 (-1117)) (|:| -3363 (-599 (-3 (|:| S (-1117)) (|:| P (-884 (-499)))))))) (-388) $)) (-15 -3708 ((-599 (-1117)) $)) (-15 -3707 ((-599 (-599 (-3 (|:| -3690 (-1117)) (|:| -3363 (-599 (-3 (|:| S (-1117)) (|:| P (-884 (-499))))))))) $)) (-15 -3706 ((-1043) $)) (-15 -3705 ((-1213) $)) (-15 -3704 ($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-390))))))))) (T -1121)) -((-4096 (*1 *2 *1) (-12 (-5 *2 (-1129 (-1117) (-390))) (-5 *1 (-1121)))) (-3713 (*1 *1) (-5 *1 (-1121))) (-3712 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-390)) (-5 *3 (-599 (-1117))) (-5 *1 (-1121)))) (-3712 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-390)) (-5 *3 (-1117)) (-5 *1 (-1121)))) (-3711 (*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-390)) (-5 *1 (-1121)))) (-3710 (*1 *2 *1) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-1121)))) (-3709 (*1 *2 *3 *1) (-12 (-5 *3 (-388)) (-5 *2 (-599 (-3 (|:| -3690 (-1117)) (|:| -3363 (-599 (-3 (|:| S (-1117)) (|:| P (-884 (-499))))))))) (-5 *1 (-1121)))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-1121)))) (-3707 (*1 *2 *1) (-12 (-5 *2 (-599 (-599 (-3 (|:| -3690 (-1117)) (|:| -3363 (-599 (-3 (|:| S (-1117)) (|:| P (-884 (-499)))))))))) (-5 *1 (-1121)))) (-3706 (*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-1121)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1121)))) (-3704 (*1 *1 *2) (-12 (-5 *2 (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-390))))) (-5 *1 (-1121))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3295 (((-3 (-499) #1="failed") $) 29 T ELT) (((-3 (-179) #1#) $) 35 T ELT) (((-3 (-460) #1#) $) 43 T ELT) (((-3 (-1099) #1#) $) 47 T ELT)) (-3294 (((-499) $) 30 T ELT) (((-179) $) 36 T ELT) (((-460) $) 40 T ELT) (((-1099) $) 48 T ELT)) (-3718 (((-85) $) 53 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3717 (((-3 (-499) (-179) (-460) (-1099) $) $) 56 T ELT)) (-3716 (((-599 $) $) 58 T ELT)) (-4122 (((-1043) $) 24 T ELT) (($ (-1043)) 25 T ELT)) (-3715 (((-85) $) 57 T ELT)) (-4096 (((-797) $) 23 T ELT) (($ (-499)) 26 T ELT) (($ (-179)) 32 T ELT) (($ (-460)) 38 T ELT) (($ (-1099)) 44 T ELT) (((-488) $) 60 T ELT) (((-499) $) 31 T ELT) (((-179) $) 37 T ELT) (((-460) $) 41 T ELT) (((-1099) $) 49 T ELT)) (-3714 (((-85) $ (|[\|\|]| (-499))) 10 T ELT) (((-85) $ (|[\|\|]| (-179))) 13 T ELT) (((-85) $ (|[\|\|]| (-460))) 19 T ELT) (((-85) $ (|[\|\|]| (-1099))) 16 T ELT)) (-3719 (($ (-460) (-599 $)) 51 T ELT) (($ $ (-599 $)) 52 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3720 (((-499) $) 27 T ELT) (((-179) $) 33 T ELT) (((-460) $) 39 T ELT) (((-1099) $) 45 T ELT)) (-3174 (((-85) $ $) 7 T ELT))) -(((-1122) (-13 (-1203) (-1041) (-978 (-499)) (-978 (-179)) (-978 (-460)) (-978 (-1099)) (-568 (-488)) (-10 -8 (-15 -4122 ((-1043) $)) (-15 -4122 ($ (-1043))) (-15 -4096 ((-499) $)) (-15 -3720 ((-499) $)) (-15 -4096 ((-179) $)) (-15 -3720 ((-179) $)) (-15 -4096 ((-460) $)) (-15 -3720 ((-460) $)) (-15 -4096 ((-1099) $)) (-15 -3720 ((-1099) $)) (-15 -3719 ($ (-460) (-599 $))) (-15 -3719 ($ $ (-599 $))) (-15 -3718 ((-85) $)) (-15 -3717 ((-3 (-499) (-179) (-460) (-1099) $) $)) (-15 -3716 ((-599 $) $)) (-15 -3715 ((-85) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-499)))) (-15 -3714 ((-85) $ (|[\|\|]| (-179)))) (-15 -3714 ((-85) $ (|[\|\|]| (-460)))) (-15 -3714 ((-85) $ (|[\|\|]| (-1099))))))) (T -1122)) -((-4122 (*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-1122)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-1043)) (-5 *1 (-1122)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1122)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1122)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1122)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1122)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-1122)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-1122)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1122)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1122)))) (-3719 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-599 (-1122))) (-5 *1 (-1122)))) (-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-1122))) (-5 *1 (-1122)))) (-3718 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1122)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-3 (-499) (-179) (-460) (-1099) (-1122))) (-5 *1 (-1122)))) (-3716 (*1 *2 *1) (-12 (-5 *2 (-599 (-1122))) (-5 *1 (-1122)))) (-3715 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1122)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-499))) (-5 *2 (-85)) (-5 *1 (-1122)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1122)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-460))) (-5 *2 (-85)) (-5 *1 (-1122)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-85)) (-5 *1 (-1122))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) 21 T ELT)) (-3874 (($) 10 T CONST)) (-3115 (($) 25 T ELT)) (-2650 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2978 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2111 (((-857) $) 23 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) 22 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT))) -(((-1123 |#1|) (-13 (-777) (-10 -8 (-15 -3874 ($) -4102))) (-857)) (T -1123)) -((-3874 (*1 *1) (-12 (-5 *1 (-1123 *2)) (-14 *2 (-857))))) -((-499) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) 24 T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) 18 T CONST)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2978 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-3875 (($ $ $) 20 T ELT)) (-3876 (($ $ $) 19 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2411 (($ $ $) 22 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) 21 T ELT))) -(((-1124 |#1|) (-13 (-777) (-620) (-10 -8 (-15 -3876 ($ $ $)) (-15 -3875 ($ $ $)) (-15 -3874 ($) -4102))) (-857)) (T -1124)) -((-3876 (*1 *1 *1 *1) (-12 (-5 *1 (-1124 *2)) (-14 *2 (-857)))) (-3875 (*1 *1 *1 *1) (-12 (-5 *1 (-1124 *2)) (-14 *2 (-857)))) (-3874 (*1 *1) (-12 (-5 *1 (-1124 *2)) (-14 *2 (-857))))) -((-714) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 9 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 7 T ELT))) -(((-1125) (-1041)) (T -1125)) -NIL -((-3722 (((-599 (-599 (-884 |#1|))) (-599 (-361 (-884 |#1|))) (-599 (-1117))) 69 T ELT)) (-3721 (((-599 (-247 (-361 (-884 |#1|)))) (-247 (-361 (-884 |#1|)))) 81 T ELT) (((-599 (-247 (-361 (-884 |#1|)))) (-361 (-884 |#1|))) 77 T ELT) (((-599 (-247 (-361 (-884 |#1|)))) (-247 (-361 (-884 |#1|))) (-1117)) 82 T ELT) (((-599 (-247 (-361 (-884 |#1|)))) (-361 (-884 |#1|)) (-1117)) 76 T ELT) (((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-247 (-361 (-884 |#1|))))) 107 T ELT) (((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-361 (-884 |#1|)))) 106 T ELT) (((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-247 (-361 (-884 |#1|)))) (-599 (-1117))) 108 T ELT) (((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-361 (-884 |#1|))) (-599 (-1117))) 105 T ELT))) -(((-1126 |#1|) (-10 -7 (-15 -3721 ((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-361 (-884 |#1|))) (-599 (-1117)))) (-15 -3721 ((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-247 (-361 (-884 |#1|)))) (-599 (-1117)))) (-15 -3721 ((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-361 (-884 |#1|))))) (-15 -3721 ((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-247 (-361 (-884 |#1|)))))) (-15 -3721 ((-599 (-247 (-361 (-884 |#1|)))) (-361 (-884 |#1|)) (-1117))) (-15 -3721 ((-599 (-247 (-361 (-884 |#1|)))) (-247 (-361 (-884 |#1|))) (-1117))) (-15 -3721 ((-599 (-247 (-361 (-884 |#1|)))) (-361 (-884 |#1|)))) (-15 -3721 ((-599 (-247 (-361 (-884 |#1|)))) (-247 (-361 (-884 |#1|))))) (-15 -3722 ((-599 (-599 (-884 |#1|))) (-599 (-361 (-884 |#1|))) (-599 (-1117))))) (-510)) (T -1126)) -((-3722 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-361 (-884 *5)))) (-5 *4 (-599 (-1117))) (-4 *5 (-510)) (-5 *2 (-599 (-599 (-884 *5)))) (-5 *1 (-1126 *5)))) (-3721 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-599 (-247 (-361 (-884 *4))))) (-5 *1 (-1126 *4)) (-5 *3 (-247 (-361 (-884 *4)))))) (-3721 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-599 (-247 (-361 (-884 *4))))) (-5 *1 (-1126 *4)) (-5 *3 (-361 (-884 *4))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-510)) (-5 *2 (-599 (-247 (-361 (-884 *5))))) (-5 *1 (-1126 *5)) (-5 *3 (-247 (-361 (-884 *5)))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-510)) (-5 *2 (-599 (-247 (-361 (-884 *5))))) (-5 *1 (-1126 *5)) (-5 *3 (-361 (-884 *5))))) (-3721 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *4)))))) (-5 *1 (-1126 *4)) (-5 *3 (-599 (-247 (-361 (-884 *4))))))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-599 (-361 (-884 *4)))) (-4 *4 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *4)))))) (-5 *1 (-1126 *4)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-1117))) (-4 *5 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *5)))))) (-5 *1 (-1126 *5)) (-5 *3 (-599 (-247 (-361 (-884 *5))))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-361 (-884 *5)))) (-5 *4 (-599 (-1117))) (-4 *5 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *5)))))) (-5 *1 (-1126 *5))))) -((-3727 (((-1099)) 7 T ELT)) (-3724 (((-1099)) 11 T CONST)) (-3723 (((-1213) (-1099)) 13 T ELT)) (-3726 (((-1099)) 8 T CONST)) (-3725 (((-103)) 10 T CONST))) -(((-1127) (-13 (-1157) (-10 -7 (-15 -3727 ((-1099))) (-15 -3726 ((-1099)) -4102) (-15 -3725 ((-103)) -4102) (-15 -3724 ((-1099)) -4102) (-15 -3723 ((-1213) (-1099)))))) (T -1127)) -((-3727 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1127)))) (-3726 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1127)))) (-3725 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1127)))) (-3724 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1127)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1127))))) -((-3731 (((-599 (-599 |#1|)) (-599 (-599 |#1|)) (-599 (-599 (-599 |#1|)))) 56 T ELT)) (-3734 (((-599 (-599 (-599 |#1|))) (-599 (-599 |#1|))) 38 T ELT)) (-3735 (((-1130 (-599 |#1|)) (-599 |#1|)) 49 T ELT)) (-3737 (((-599 (-599 |#1|)) (-599 |#1|)) 45 T ELT)) (-3740 (((-2 (|:| |f1| (-599 |#1|)) (|:| |f2| (-599 (-599 (-599 |#1|)))) (|:| |f3| (-599 (-599 |#1|))) (|:| |f4| (-599 (-599 (-599 |#1|))))) (-599 (-599 (-599 |#1|)))) 53 T ELT)) (-3739 (((-2 (|:| |f1| (-599 |#1|)) (|:| |f2| (-599 (-599 (-599 |#1|)))) (|:| |f3| (-599 (-599 |#1|))) (|:| |f4| (-599 (-599 (-599 |#1|))))) (-599 |#1|) (-599 (-599 (-599 |#1|))) (-599 (-599 |#1|)) (-599 (-599 (-599 |#1|))) (-599 (-599 (-599 |#1|))) (-599 (-599 (-599 |#1|)))) 52 T ELT)) (-3736 (((-599 (-599 |#1|)) (-599 (-599 |#1|))) 43 T ELT)) (-3738 (((-599 |#1|) (-599 |#1|)) 46 T ELT)) (-3730 (((-599 (-599 (-599 |#1|))) (-599 |#1|) (-599 (-599 (-599 |#1|)))) 32 T ELT)) (-3729 (((-599 (-599 (-599 |#1|))) (-1 (-85) |#1| |#1|) (-599 |#1|) (-599 (-599 (-599 |#1|)))) 29 T ELT)) (-3728 (((-2 (|:| |fs| (-85)) (|:| |sd| (-599 |#1|)) (|:| |td| (-599 (-599 |#1|)))) (-1 (-85) |#1| |#1|) (-599 |#1|) (-599 (-599 |#1|))) 24 T ELT)) (-3732 (((-599 (-599 |#1|)) (-599 (-599 (-599 |#1|)))) 58 T ELT)) (-3733 (((-599 (-599 |#1|)) (-1130 (-599 |#1|))) 60 T ELT))) -(((-1128 |#1|) (-10 -7 (-15 -3728 ((-2 (|:| |fs| (-85)) (|:| |sd| (-599 |#1|)) (|:| |td| (-599 (-599 |#1|)))) (-1 (-85) |#1| |#1|) (-599 |#1|) (-599 (-599 |#1|)))) (-15 -3729 ((-599 (-599 (-599 |#1|))) (-1 (-85) |#1| |#1|) (-599 |#1|) (-599 (-599 (-599 |#1|))))) (-15 -3730 ((-599 (-599 (-599 |#1|))) (-599 |#1|) (-599 (-599 (-599 |#1|))))) (-15 -3731 ((-599 (-599 |#1|)) (-599 (-599 |#1|)) (-599 (-599 (-599 |#1|))))) (-15 -3732 ((-599 (-599 |#1|)) (-599 (-599 (-599 |#1|))))) (-15 -3733 ((-599 (-599 |#1|)) (-1130 (-599 |#1|)))) (-15 -3734 ((-599 (-599 (-599 |#1|))) (-599 (-599 |#1|)))) (-15 -3735 ((-1130 (-599 |#1|)) (-599 |#1|))) (-15 -3736 ((-599 (-599 |#1|)) (-599 (-599 |#1|)))) (-15 -3737 ((-599 (-599 |#1|)) (-599 |#1|))) (-15 -3738 ((-599 |#1|) (-599 |#1|))) (-15 -3739 ((-2 (|:| |f1| (-599 |#1|)) (|:| |f2| (-599 (-599 (-599 |#1|)))) (|:| |f3| (-599 (-599 |#1|))) (|:| |f4| (-599 (-599 (-599 |#1|))))) (-599 |#1|) (-599 (-599 (-599 |#1|))) (-599 (-599 |#1|)) (-599 (-599 (-599 |#1|))) (-599 (-599 (-599 |#1|))) (-599 (-599 (-599 |#1|))))) (-15 -3740 ((-2 (|:| |f1| (-599 |#1|)) (|:| |f2| (-599 (-599 (-599 |#1|)))) (|:| |f3| (-599 (-599 |#1|))) (|:| |f4| (-599 (-599 (-599 |#1|))))) (-599 (-599 (-599 |#1|)))))) (-781)) (T -1128)) -((-3740 (*1 *2 *3) (-12 (-4 *4 (-781)) (-5 *2 (-2 (|:| |f1| (-599 *4)) (|:| |f2| (-599 (-599 (-599 *4)))) (|:| |f3| (-599 (-599 *4))) (|:| |f4| (-599 (-599 (-599 *4)))))) (-5 *1 (-1128 *4)) (-5 *3 (-599 (-599 (-599 *4)))))) (-3739 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-781)) (-5 *3 (-599 *6)) (-5 *5 (-599 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-599 *5)) (|:| |f3| *5) (|:| |f4| (-599 *5)))) (-5 *1 (-1128 *6)) (-5 *4 (-599 *5)))) (-3738 (*1 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-1128 *3)))) (-3737 (*1 *2 *3) (-12 (-4 *4 (-781)) (-5 *2 (-599 (-599 *4))) (-5 *1 (-1128 *4)) (-5 *3 (-599 *4)))) (-3736 (*1 *2 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-781)) (-5 *1 (-1128 *3)))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-781)) (-5 *2 (-1130 (-599 *4))) (-5 *1 (-1128 *4)) (-5 *3 (-599 *4)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-781)) (-5 *2 (-599 (-599 (-599 *4)))) (-5 *1 (-1128 *4)) (-5 *3 (-599 (-599 *4))))) (-3733 (*1 *2 *3) (-12 (-5 *3 (-1130 (-599 *4))) (-4 *4 (-781)) (-5 *2 (-599 (-599 *4))) (-5 *1 (-1128 *4)))) (-3732 (*1 *2 *3) (-12 (-5 *3 (-599 (-599 (-599 *4)))) (-5 *2 (-599 (-599 *4))) (-5 *1 (-1128 *4)) (-4 *4 (-781)))) (-3731 (*1 *2 *2 *3) (-12 (-5 *3 (-599 (-599 (-599 *4)))) (-5 *2 (-599 (-599 *4))) (-4 *4 (-781)) (-5 *1 (-1128 *4)))) (-3730 (*1 *2 *3 *2) (-12 (-5 *2 (-599 (-599 (-599 *4)))) (-5 *3 (-599 *4)) (-4 *4 (-781)) (-5 *1 (-1128 *4)))) (-3729 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-599 (-599 (-599 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-599 *5)) (-4 *5 (-781)) (-5 *1 (-1128 *5)))) (-3728 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-781)) (-5 *4 (-599 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-599 *4)))) (-5 *1 (-1128 *6)) (-5 *5 (-599 *4))))) -((-2687 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2299 (((-1213) $ |#1| |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2301 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2302 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-2333 (((-599 |#1|) $) NIL T ELT)) (-2334 (((-85) |#1| $) NIL T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2304 (((-599 |#1|) $) NIL T ELT)) (-2305 (((-85) |#1| $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-3951 ((|#2| $) NIL (|has| |#1| (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-568 (-797)))) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-1129 |#1| |#2|) (-13 (-1134 |#1| |#2|) (-10 -7 (-6 -4145))) (-1041) (-1041)) (T -1129)) -NIL -((-3741 (($ (-599 (-599 |#1|))) 10 T ELT)) (-3742 (((-599 (-599 |#1|)) $) 11 T ELT)) (-4096 (((-797) $) 33 T ELT))) -(((-1130 |#1|) (-10 -8 (-15 -3741 ($ (-599 (-599 |#1|)))) (-15 -3742 ((-599 (-599 |#1|)) $)) (-15 -4096 ((-797) $))) (-1041)) (T -1130)) -((-4096 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1130 *3)) (-4 *3 (-1041)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-599 (-599 *3))) (-5 *1 (-1130 *3)) (-4 *3 (-1041)))) (-3741 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-5 *1 (-1130 *3))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3743 (($ |#1| (-55)) 10 T ELT)) (-3690 ((|#1| $) 12 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2752 (((-85) $ |#1|) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2639 (((-55) $) 14 T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-1131 |#1|) (-13 (-770 |#1|) (-10 -8 (-15 -3743 ($ |#1| (-55))))) (-1041)) (T -1131)) -((-3743 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1131 *2)) (-4 *2 (-1041))))) -((-3744 ((|#1| (-599 |#1|)) 46 T ELT)) (-3746 ((|#1| |#1| (-499)) 24 T ELT)) (-3745 (((-1111 |#1|) |#1| (-857)) 20 T ELT))) -(((-1132 |#1|) (-10 -7 (-15 -3744 (|#1| (-599 |#1|))) (-15 -3745 ((-1111 |#1|) |#1| (-857))) (-15 -3746 (|#1| |#1| (-499)))) (-318)) (T -1132)) -((-3746 (*1 *2 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-1132 *2)) (-4 *2 (-318)))) (-3745 (*1 *2 *3 *4) (-12 (-5 *4 (-857)) (-5 *2 (-1111 *3)) (-5 *1 (-1132 *3)) (-4 *3 (-318)))) (-3744 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-5 *1 (-1132 *2)) (-4 *2 (-318))))) -((-3747 (($) 10 T ELT) (($ (-599 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3545 (($ (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) $) 67 T ELT) (($ (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) $) 39 T ELT) (((-599 |#3|) $) 41 T ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1308 (((-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) $) 60 T ELT)) (-3757 (($ (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2304 (((-599 |#2|) $) 19 T ELT)) (-2305 (((-85) |#2| $) 65 T ELT)) (-1387 (((-3 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) $) 64 T ELT)) (-1309 (((-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) $) 69 T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 73 T ELT)) (-2306 (((-599 |#3|) $) 43 T ELT)) (-3950 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-714) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-714) |#3| $) NIL T ELT) (((-714) (-1 (-85) |#3|) $) 79 T ELT)) (-4096 (((-797) $) 27 T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 71 T ELT)) (-3174 (((-85) $ $) 51 T ELT))) -(((-1133 |#1| |#2| |#3|) (-10 -7 (-15 -3174 ((-85) |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -4108 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3747 (|#1| (-599 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))))) (-15 -3747 (|#1|)) (-15 -4108 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2051 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2050 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -2049 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -2048 ((-714) (-1 (-85) |#3|) |#1|)) (-15 -3010 ((-599 |#3|) |#1|)) (-15 -2048 ((-714) |#3| |#1|)) (-15 -3950 (|#3| |#1| |#2| |#3|)) (-15 -3950 (|#3| |#1| |#2|)) (-15 -2306 ((-599 |#3|) |#1|)) (-15 -2305 ((-85) |#2| |#1|)) (-15 -2304 ((-599 |#2|) |#1|)) (-15 -3545 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3545 (|#1| (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3545 (|#1| (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1387 ((-3 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1308 ((-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3757 (|#1| (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1309 ((-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -2048 ((-714) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3010 ((-599 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2048 ((-714) (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2049 ((-85) (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2050 ((-85) (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2051 (|#1| (-1 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -4108 (|#1| (-1 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) |#1|))) (-1134 |#2| |#3|) (-1041) (-1041)) (T -1133)) -NIL -((-2687 (((-85) $ $) 19 (-3677 (|has| |#2| (-73)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73))) ELT)) (-3747 (($) 77 T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2299 (((-1213) $ |#1| |#1|) 104 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) 78 T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#2| #1="failed") |#1| $) 65 T ELT)) (-3874 (($) 7 T CONST)) (-1386 (($ $) 62 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -4145)) ELT) (((-3 |#2| #1#) |#1| $) 66 T ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -4145)) ELT)) (-1609 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) 93 T ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) 84 (|has| $ (-6 -4145)) ELT)) (-2301 ((|#1| $) 101 (|has| |#1| (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) 85 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (((-85) |#2| $) 87 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 ((|#1| $) 100 (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -4146)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT)) (-3380 (((-1099) $) 22 (-3677 (|has| |#2| (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-2333 (((-599 |#1|) $) 67 T ELT)) (-2334 (((-85) |#1| $) 68 T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2304 (((-599 |#1|) $) 98 T ELT)) (-2305 (((-85) |#1| $) 97 T ELT)) (-3381 (((-1060) $) 21 (-3677 (|has| |#2| (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3951 ((|#2| $) 102 (|has| |#1| (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2300 (($ $ |#2|) 103 (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) 82 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) 91 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) 89 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-247 |#2|))) 88 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#2| $) 99 (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) 96 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT)) (-1499 (($) 53 T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) |#2| $) 86 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#2|) $) 83 (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 63 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-4096 (((-797) $) 17 (-3677 (|has| |#2| (-568 (-797))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797)))) ELT)) (-1297 (((-85) $ $) 20 (-3677 (|has| |#2| (-73)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) 81 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (-3677 (|has| |#2| (-73)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73))) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-1134 |#1| |#2|) (-113) (-1041) (-1041)) (T -1134)) -((-3938 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041)))) (-3747 (*1 *1) (-12 (-4 *1 (-1134 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) (-3747 (*1 *1 *2) (-12 (-5 *2 (-599 (-2 (|:| -4010 *3) (|:| |entry| *4)))) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *1 (-1134 *3 *4)))) (-4108 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1134 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) -(-13 (-565 |t#1| |t#2|) (-554 |t#1| |t#2|) (-10 -8 (-15 -3938 (|t#2| $ |t#1| |t#2|)) (-15 -3747 ($)) (-15 -3747 ($ (-599 (-2 (|:| -4010 |t#1|) (|:| |entry| |t#2|))))) (-15 -4108 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-78 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-73) -3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-1041)) (|has| |#2| (-73))) ((-568 (-797)) -3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-1041)) (|has| |#2| (-568 (-797)))) ((-124 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-569 (-488)) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ((-183 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-192 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-240 |#1| |#2|) . T) ((-242 |#1| |#2|) . T) ((-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ((-263 |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-443 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-443 |#2|) . T) ((-554 |#1| |#2|) . T) ((-468 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ((-468 |#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-565 |#1| |#2|) . T) ((-1041) -3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ((-1157) . T)) -((-3753 (((-85)) 29 T ELT)) (-3750 (((-1213) (-1099)) 31 T ELT)) (-3754 (((-85)) 41 T ELT)) (-3751 (((-1213)) 39 T ELT)) (-3749 (((-1213) (-1099) (-1099)) 30 T ELT)) (-3755 (((-85)) 42 T ELT)) (-3757 (((-1213) |#1| |#2|) 53 T ELT)) (-3748 (((-1213)) 26 T ELT)) (-3756 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3752 (((-1213)) 40 T ELT))) -(((-1135 |#1| |#2|) (-10 -7 (-15 -3748 ((-1213))) (-15 -3749 ((-1213) (-1099) (-1099))) (-15 -3750 ((-1213) (-1099))) (-15 -3751 ((-1213))) (-15 -3752 ((-1213))) (-15 -3753 ((-85))) (-15 -3754 ((-85))) (-15 -3755 ((-85))) (-15 -3756 ((-3 |#2| "failed") |#1|)) (-15 -3757 ((-1213) |#1| |#2|))) (-1041) (-1041)) (T -1135)) -((-3757 (*1 *2 *3 *4) (-12 (-5 *2 (-1213)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) (-3756 (*1 *2 *3) (|partial| -12 (-4 *2 (-1041)) (-5 *1 (-1135 *3 *2)) (-4 *3 (-1041)))) (-3755 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) (-3754 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) (-3753 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) (-3752 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) (-3751 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1135 *4 *5)) (-4 *4 (-1041)) (-4 *5 (-1041)))) (-3749 (*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1135 *4 *5)) (-4 *4 (-1041)) (-4 *5 (-1041)))) (-3748 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) -((-3759 (((-1099) (-1099)) 22 T ELT)) (-3758 (((-51) (-1099)) 25 T ELT))) -(((-1136) (-10 -7 (-15 -3758 ((-51) (-1099))) (-15 -3759 ((-1099) (-1099))))) (T -1136)) -((-3759 (*1 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1136)))) (-3758 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-51)) (-5 *1 (-1136))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3765 (((-599 (-1099)) $) 39 T ELT)) (-3761 (((-599 (-1099)) $ (-599 (-1099))) 42 T ELT)) (-3760 (((-599 (-1099)) $ (-599 (-1099))) 41 T ELT)) (-3762 (((-599 (-1099)) $ (-599 (-1099))) 43 T ELT)) (-3763 (((-599 (-1099)) $) 38 T ELT)) (-3764 (($) 28 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3766 (((-599 (-1099)) $) 40 T ELT)) (-3767 (((-1213) $ (-499)) 35 T ELT) (((-1213) $) 36 T ELT)) (-4122 (($ (-797) (-499)) 33 T ELT) (($ (-797) (-499) (-797)) NIL T ELT)) (-4096 (((-797) $) 49 T ELT) (($ (-797)) 32 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-1137) (-13 (-1041) (-571 (-797)) (-10 -8 (-15 -4122 ($ (-797) (-499))) (-15 -4122 ($ (-797) (-499) (-797))) (-15 -3767 ((-1213) $ (-499))) (-15 -3767 ((-1213) $)) (-15 -3766 ((-599 (-1099)) $)) (-15 -3765 ((-599 (-1099)) $)) (-15 -3764 ($)) (-15 -3763 ((-599 (-1099)) $)) (-15 -3762 ((-599 (-1099)) $ (-599 (-1099)))) (-15 -3761 ((-599 (-1099)) $ (-599 (-1099)))) (-15 -3760 ((-599 (-1099)) $ (-599 (-1099))))))) (T -1137)) -((-4122 (*1 *1 *2 *3) (-12 (-5 *2 (-797)) (-5 *3 (-499)) (-5 *1 (-1137)))) (-4122 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-499)) (-5 *1 (-1137)))) (-3767 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-1137)))) (-3767 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1137)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137)))) (-3765 (*1 *2 *1) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137)))) (-3764 (*1 *1) (-5 *1 (-1137))) (-3763 (*1 *2 *1) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137)))) (-3762 (*1 *2 *1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137)))) (-3761 (*1 *2 *1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137)))) (-3760 (*1 *2 *1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137))))) -((-4096 (((-1137) |#1|) 11 T ELT))) -(((-1138 |#1|) (-10 -7 (-15 -4096 ((-1137) |#1|))) (-1041)) (T -1138)) -((-4096 (*1 *2 *3) (-12 (-5 *2 (-1137)) (-5 *1 (-1138 *3)) (-4 *3 (-1041))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3772 (((-1099) $ (-1099)) 21 T ELT) (((-1099) $) 20 T ELT)) (-1790 (((-1099) $ (-1099)) 19 T ELT)) (-1794 (($ $ (-1099)) NIL T ELT)) (-3770 (((-3 (-1099) #1="failed") $) 11 T ELT)) (-3771 (((-1099) $) 8 T ELT)) (-3769 (((-3 (-1099) #1#) $) 12 T ELT)) (-1791 (((-1099) $) 9 T ELT)) (-1795 (($ (-344)) NIL T ELT) (($ (-344) (-1099)) NIL T ELT)) (-3690 (((-344) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1792 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3768 (((-85) $) 25 T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1793 (($ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-1139) (-13 (-320 (-344) (-1099)) (-10 -8 (-15 -3772 ((-1099) $ (-1099))) (-15 -3772 ((-1099) $)) (-15 -3771 ((-1099) $)) (-15 -3770 ((-3 (-1099) #1="failed") $)) (-15 -3769 ((-3 (-1099) #1#) $)) (-15 -3768 ((-85) $))))) (T -1139)) -((-3772 (*1 *2 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1139)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1139)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1139)))) (-3770 (*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-1139)))) (-3769 (*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-1139)))) (-3768 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1139))))) -((-3773 (((-3 (-499) #1="failed") |#1|) 19 T ELT)) (-3774 (((-3 (-499) #1#) |#1|) 14 T ELT)) (-3775 (((-499) (-1099)) 33 T ELT))) -(((-1140 |#1|) (-10 -7 (-15 -3773 ((-3 (-499) #1="failed") |#1|)) (-15 -3774 ((-3 (-499) #1#) |#1|)) (-15 -3775 ((-499) (-1099)))) (-989)) (T -1140)) -((-3775 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-499)) (-5 *1 (-1140 *4)) (-4 *4 (-989)))) (-3774 (*1 *2 *3) (|partial| -12 (-5 *2 (-499)) (-5 *1 (-1140 *3)) (-4 *3 (-989)))) (-3773 (*1 *2 *3) (|partial| -12 (-5 *2 (-499)) (-5 *1 (-1140 *3)) (-4 *3 (-989))))) -((-3776 (((-1073 (-179))) 9 T ELT))) -(((-1141) (-10 -7 (-15 -3776 ((-1073 (-179)))))) (T -1141)) -((-3776 (*1 *2) (-12 (-5 *2 (-1073 (-179))) (-5 *1 (-1141))))) -((-3777 (($) 12 T ELT)) (-3638 (($ $) 36 T ELT)) (-3636 (($ $) 34 T ELT)) (-3624 (($ $) 26 T ELT)) (-3640 (($ $) 18 T ELT)) (-3641 (($ $) 16 T ELT)) (-3639 (($ $) 20 T ELT)) (-3627 (($ $) 31 T ELT)) (-3637 (($ $) 35 T ELT)) (-3625 (($ $) 30 T ELT))) -(((-1142 |#1|) (-10 -7 (-15 -3777 (|#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3624 (|#1| |#1|)) (-15 -3627 (|#1| |#1|)) (-15 -3625 (|#1| |#1|))) (-1143)) (T -1142)) -NIL -((-3632 (($ $) 26 T ELT)) (-3789 (($ $) 11 T ELT)) (-3630 (($ $) 27 T ELT)) (-3788 (($ $) 10 T ELT)) (-3634 (($ $) 28 T ELT)) (-3787 (($ $) 9 T ELT)) (-3777 (($) 16 T ELT)) (-4092 (($ $) 19 T ELT)) (-4093 (($ $) 18 T ELT)) (-3635 (($ $) 29 T ELT)) (-3786 (($ $) 8 T ELT)) (-3633 (($ $) 30 T ELT)) (-3785 (($ $) 7 T ELT)) (-3631 (($ $) 31 T ELT)) (-3784 (($ $) 6 T ELT)) (-3638 (($ $) 20 T ELT)) (-3626 (($ $) 32 T ELT)) (-3636 (($ $) 21 T ELT)) (-3624 (($ $) 33 T ELT)) (-3640 (($ $) 22 T ELT)) (-3628 (($ $) 34 T ELT)) (-3641 (($ $) 23 T ELT)) (-3629 (($ $) 35 T ELT)) (-3639 (($ $) 24 T ELT)) (-3627 (($ $) 36 T ELT)) (-3637 (($ $) 25 T ELT)) (-3625 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) -(((-1143) (-113)) (T -1143)) -((-3777 (*1 *1) (-4 *1 (-1143)))) -(-13 (-1146) (-66) (-447) (-35) (-238) (-10 -8 (-15 -3777 ($)))) -(((-35) . T) ((-66) . T) ((-238) . T) ((-447) . T) ((-1146) . T)) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 19 T ELT)) (-3782 (($ |#1| (-599 $)) 28 T ELT) (($ (-599 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3146 ((|#1| $ |#1|) 14 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 13 (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3010 (((-599 |#1|) $) 70 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 59 T ELT)) (-3148 (((-85) $ $) 50 (|has| |#1| (-1041)) ELT)) (-2727 (((-599 |#1|) $) 71 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 69 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3151 (((-599 |#1|) $) 55 T ELT)) (-3667 (((-85) $) 53 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 67 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 102 T ELT)) (-3543 (((-85) $) 9 T ELT)) (-3713 (($) 10 T ELT)) (-3950 ((|#1| $ #1#) NIL T ELT)) (-3150 (((-499) $ $) 48 T ELT)) (-3778 (((-599 $) $) 84 T ELT)) (-3779 (((-85) $ $) 105 T ELT)) (-3780 (((-599 $) $) 100 T ELT)) (-3781 (($ $) 101 T ELT)) (-3783 (((-85) $) 77 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 25 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 17 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) 83 T ELT)) (-4096 (((-797) $) 86 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) 12 T ELT)) (-3149 (((-85) $ $) 39 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 66 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 37 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 81 (|has| $ (-6 -4145)) ELT))) -(((-1144 |#1|) (-13 (-950 |#1|) (-10 -8 (-6 -4145) (-6 -4146) (-15 -3782 ($ |#1| (-599 $))) (-15 -3782 ($ (-599 |#1|))) (-15 -3782 ($ |#1|)) (-15 -3783 ((-85) $)) (-15 -3781 ($ $)) (-15 -3780 ((-599 $) $)) (-15 -3779 ((-85) $ $)) (-15 -3778 ((-599 $) $)))) (-1041)) (T -1144)) -((-3783 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1144 *3)) (-4 *3 (-1041)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *3 (-599 (-1144 *2))) (-5 *1 (-1144 *2)) (-4 *2 (-1041)))) (-3782 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-1144 *3)))) (-3782 (*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1041)))) (-3781 (*1 *1 *1) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1041)))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-599 (-1144 *3))) (-5 *1 (-1144 *3)) (-4 *3 (-1041)))) (-3779 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1144 *3)) (-4 *3 (-1041)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-599 (-1144 *3))) (-5 *1 (-1144 *3)) (-4 *3 (-1041))))) -((-3789 (($ $) 15 T ELT)) (-3787 (($ $) 12 T ELT)) (-3786 (($ $) 10 T ELT)) (-3785 (($ $) 17 T ELT))) -(((-1145 |#1|) (-10 -7 (-15 -3785 (|#1| |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3789 (|#1| |#1|))) (-1146)) (T -1145)) -NIL -((-3789 (($ $) 11 T ELT)) (-3788 (($ $) 10 T ELT)) (-3787 (($ $) 9 T ELT)) (-3786 (($ $) 8 T ELT)) (-3785 (($ $) 7 T ELT)) (-3784 (($ $) 6 T ELT))) -(((-1146) (-113)) (T -1146)) -((-3789 (*1 *1 *1) (-4 *1 (-1146))) (-3788 (*1 *1 *1) (-4 *1 (-1146))) (-3787 (*1 *1 *1) (-4 *1 (-1146))) (-3786 (*1 *1 *1) (-4 *1 (-1146))) (-3785 (*1 *1 *1) (-4 *1 (-1146))) (-3784 (*1 *1 *1) (-4 *1 (-1146)))) -(-13 (-10 -8 (-15 -3784 ($ $)) (-15 -3785 ($ $)) (-15 -3786 ($ $)) (-15 -3787 ($ $)) (-15 -3788 ($ $)) (-15 -3789 ($ $)))) -((-3792 ((|#2| |#2|) 95 T ELT)) (-3795 (((-85) |#2|) 29 T ELT)) (-3793 ((|#2| |#2|) 33 T ELT)) (-3794 ((|#2| |#2|) 35 T ELT)) (-3790 ((|#2| |#2| (-1117)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3796 (((-142 |#2|) |#2|) 31 T ELT)) (-3791 ((|#2| |#2| (-1117)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) -(((-1147 |#1| |#2|) (-10 -7 (-15 -3790 (|#2| |#2|)) (-15 -3790 (|#2| |#2| (-1117))) (-15 -3791 (|#2| |#2|)) (-15 -3791 (|#2| |#2| (-1117))) (-15 -3792 (|#2| |#2|)) (-15 -3793 (|#2| |#2|)) (-15 -3794 (|#2| |#2|)) (-15 -3795 ((-85) |#2|)) (-15 -3796 ((-142 |#2|) |#2|))) (-13 (-406) (-978 (-499)) (-596 (-499))) (-13 (-27) (-1143) (-375 |#1|))) (T -1147)) -((-3796 (*1 *2 *3) (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-142 *3)) (-5 *1 (-1147 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) (-3795 (*1 *2 *3) (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-85)) (-5 *1 (-1147 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) (-3794 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *3))))) (-3793 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *3))))) (-3792 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *3))))) (-3791 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4))))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *3))))) (-3790 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4))))) (-3790 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *3)))))) -((-3797 ((|#4| |#4| |#1|) 31 T ELT)) (-3798 ((|#4| |#4| |#1|) 32 T ELT))) -(((-1148 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3797 (|#4| |#4| |#1|)) (-15 -3798 (|#4| |#4| |#1|))) (-510) (-327 |#1|) (-327 |#1|) (-644 |#1| |#2| |#3|)) (T -1148)) -((-3798 (*1 *2 *2 *3) (-12 (-4 *3 (-510)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-1148 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) (-3797 (*1 *2 *2 *3) (-12 (-4 *3 (-510)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-1148 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) -((-3816 ((|#2| |#2|) 148 T ELT)) (-3818 ((|#2| |#2|) 145 T ELT)) (-3815 ((|#2| |#2|) 136 T ELT)) (-3817 ((|#2| |#2|) 133 T ELT)) (-3814 ((|#2| |#2|) 141 T ELT)) (-3813 ((|#2| |#2|) 129 T ELT)) (-3802 ((|#2| |#2|) 44 T ELT)) (-3801 ((|#2| |#2|) 105 T ELT)) (-3799 ((|#2| |#2|) 88 T ELT)) (-3812 ((|#2| |#2|) 143 T ELT)) (-3811 ((|#2| |#2|) 131 T ELT)) (-3824 ((|#2| |#2|) 153 T ELT)) (-3822 ((|#2| |#2|) 151 T ELT)) (-3823 ((|#2| |#2|) 152 T ELT)) (-3821 ((|#2| |#2|) 150 T ELT)) (-3800 ((|#2| |#2|) 163 T ELT)) (-3825 ((|#2| |#2|) 30 (-12 (|has| |#2| (-569 (-825 |#1|))) (|has| |#2| (-821 |#1|)) (|has| |#1| (-569 (-825 |#1|))) (|has| |#1| (-821 |#1|))) ELT)) (-3803 ((|#2| |#2|) 89 T ELT)) (-3804 ((|#2| |#2|) 154 T ELT)) (-4113 ((|#2| |#2|) 155 T ELT)) (-3810 ((|#2| |#2|) 142 T ELT)) (-3809 ((|#2| |#2|) 130 T ELT)) (-3808 ((|#2| |#2|) 149 T ELT)) (-3820 ((|#2| |#2|) 147 T ELT)) (-3807 ((|#2| |#2|) 137 T ELT)) (-3819 ((|#2| |#2|) 135 T ELT)) (-3806 ((|#2| |#2|) 139 T ELT)) (-3805 ((|#2| |#2|) 127 T ELT))) -(((-1149 |#1| |#2|) (-10 -7 (-15 -4113 (|#2| |#2|)) (-15 -3799 (|#2| |#2|)) (-15 -3800 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -3804 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -3806 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3808 (|#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -3810 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3812 (|#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -3814 (|#2| |#2|)) (-15 -3815 (|#2| |#2|)) (-15 -3816 (|#2| |#2|)) (-15 -3817 (|#2| |#2|)) (-15 -3818 (|#2| |#2|)) (-15 -3819 (|#2| |#2|)) (-15 -3820 (|#2| |#2|)) (-15 -3821 (|#2| |#2|)) (-15 -3822 (|#2| |#2|)) (-15 -3823 (|#2| |#2|)) (-15 -3824 (|#2| |#2|)) (IF (|has| |#1| (-821 |#1|)) (IF (|has| |#1| (-569 (-825 |#1|))) (IF (|has| |#2| (-569 (-825 |#1|))) (IF (|has| |#2| (-821 |#1|)) (-15 -3825 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-406) (-13 (-375 |#1|) (-1143))) (T -1149)) -((-3825 (*1 *2 *2) (-12 (-4 *3 (-569 (-825 *3))) (-4 *3 (-821 *3)) (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-569 (-825 *3))) (-4 *2 (-821 *3)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3824 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3823 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3822 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3821 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3820 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3819 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3818 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3817 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3816 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3815 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3813 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3812 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3810 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3806 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3804 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3803 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3799 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-4113 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-1117)) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3964 (((-884 |#1|) $ (-714)) 17 T ELT) (((-884 |#1|) $ (-714) (-714)) NIL T ELT)) (-3013 (((-85) $) NIL T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-714) $ (-1117)) NIL T ELT) (((-714) $ (-1117) (-714)) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ $ (-599 (-1117)) (-599 (-484 (-1117)))) NIL T ELT) (($ $ (-1117) (-484 (-1117))) NIL T ELT) (($ |#1| (-484 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4092 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3962 (($ $ (-1117)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117) |#1|) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3826 (($ (-1 $) (-1117) |#1|) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3919 (($ $ (-714)) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-4093 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (($ $ (-1117) $) NIL T ELT) (($ $ (-599 (-1117)) (-599 $)) NIL T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT)) (-3908 (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) NIL T ELT)) (-4098 (((-484 (-1117)) $) NIL T ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-1117)) NIL T ELT) (($ (-884 |#1|)) NIL T ELT)) (-3827 ((|#1| $ (-484 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (((-884 |#1|) $ (-714)) NIL T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1150 |#1|) (-13 (-698 |#1| (-1117)) (-10 -8 (-15 -3827 ((-884 |#1|) $ (-714))) (-15 -4096 ($ (-1117))) (-15 -4096 ($ (-884 |#1|))) (IF (|has| |#1| (-38 (-361 (-499)))) (PROGN (-15 -3962 ($ $ (-1117) |#1|)) (-15 -3826 ($ (-1 $) (-1117) |#1|))) |%noBranch|))) (-989)) (T -1150)) -((-3827 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *2 (-884 *4)) (-5 *1 (-1150 *4)) (-4 *4 (-989)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1150 *3)) (-4 *3 (-989)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-989)) (-5 *1 (-1150 *3)))) (-3962 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *1 (-1150 *3)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)))) (-3826 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1150 *4))) (-5 *3 (-1117)) (-5 *1 (-1150 *4)) (-4 *4 (-38 (-361 (-499)))) (-4 *4 (-989))))) -((-3843 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3838 ((|#5| |#5| $) 83 T ELT)) (-3860 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3839 (((-599 |#5|) (-599 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3295 (((-3 $ #1#) (-599 |#5|)) 134 T ELT)) (-3949 (((-3 $ #1#) $) 119 T ELT)) (-3835 ((|#5| |#5| $) 101 T ELT)) (-3844 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3833 ((|#5| |#5| $) 105 T ELT)) (-3992 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#5|)) (|:| -1795 (-599 |#5|))) $) 63 T ELT)) (-3845 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3318 ((|#4| $) 115 T ELT)) (-3948 (((-3 |#5| #1#) $) 117 T ELT)) (-3847 (((-599 |#5|) $) 55 T ELT)) (-3841 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3836 ((|#5| |#5| $) 89 T ELT)) (-3849 (((-85) $ $) 29 T ELT)) (-3842 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3837 ((|#5| |#5| $) 86 T ELT)) (-3951 (((-3 |#5| #1#) $) 116 T ELT)) (-3919 (($ $ |#5|) 135 T ELT)) (-4098 (((-714) $) 60 T ELT)) (-3670 (($ (-599 |#5|)) 132 T ELT)) (-3031 (($ $ |#4|) 130 T ELT)) (-3033 (($ $ |#4|) 128 T ELT)) (-3834 (($ $) 127 T ELT)) (-4096 (((-797) $) NIL T ELT) (((-599 |#5|) $) 120 T ELT)) (-3828 (((-714) $) 139 T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#5|))) #1#) (-599 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#5|))) #1#) (-599 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3840 (((-85) $ (-1 (-85) |#5| (-599 |#5|))) 107 T ELT)) (-3830 (((-599 |#4|) $) 122 T ELT)) (-4083 (((-85) |#4| $) 125 T ELT)) (-3174 (((-85) $ $) 20 T ELT))) -(((-1151 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3828 ((-714) |#1|)) (-15 -3919 (|#1| |#1| |#5|)) (-15 -3860 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -4083 ((-85) |#4| |#1|)) (-15 -3830 ((-599 |#4|) |#1|)) (-15 -3949 ((-3 |#1| #1#) |#1|)) (-15 -3948 ((-3 |#5| #1#) |#1|)) (-15 -3951 ((-3 |#5| #1#) |#1|)) (-15 -3833 (|#5| |#5| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3835 (|#5| |#5| |#1|)) (-15 -3836 (|#5| |#5| |#1|)) (-15 -3837 (|#5| |#5| |#1|)) (-15 -3838 (|#5| |#5| |#1|)) (-15 -3839 ((-599 |#5|) (-599 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3992 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3841 ((-85) |#1|)) (-15 -3842 ((-85) |#1|)) (-15 -3843 ((-85) |#1|)) (-15 -3840 ((-85) |#1| (-1 (-85) |#5| (-599 |#5|)))) (-15 -3841 ((-85) |#5| |#1|)) (-15 -3842 ((-85) |#5| |#1|)) (-15 -3843 ((-85) |#5| |#1|)) (-15 -3844 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3845 ((-85) |#1|)) (-15 -3845 ((-85) |#5| |#1|)) (-15 -3846 ((-2 (|:| -4011 (-599 |#5|)) (|:| -1795 (-599 |#5|))) |#1|)) (-15 -4098 ((-714) |#1|)) (-15 -3847 ((-599 |#5|) |#1|)) (-15 -3848 ((-3 (-2 (|:| |bas| |#1|) (|:| -3464 (-599 |#5|))) #1#) (-599 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3848 ((-3 (-2 (|:| |bas| |#1|) (|:| -3464 (-599 |#5|))) #1#) (-599 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3849 ((-85) |#1| |#1|)) (-15 -3031 (|#1| |#1| |#4|)) (-15 -3033 (|#1| |#1| |#4|)) (-15 -3318 (|#4| |#1|)) (-15 -3295 ((-3 |#1| #1#) (-599 |#5|))) (-15 -4096 ((-599 |#5|) |#1|)) (-15 -3670 (|#1| (-599 |#5|))) (-15 -3992 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3992 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3860 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3992 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4096 ((-797) |#1|)) (-15 -3174 ((-85) |#1| |#1|))) (-1152 |#2| |#3| |#4| |#5|) (-510) (-738) (-781) (-1005 |#2| |#3| |#4|)) (T -1151)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |#4|)))) (-599 |#4|)) 90 T ELT)) (-3832 (((-599 $) (-599 |#4|)) 91 T ELT)) (-3204 (((-599 |#3|) $) 37 T ELT)) (-3029 (((-85) $) 30 T ELT)) (-3020 (((-85) $) 21 (|has| |#1| (-510)) ELT)) (-3843 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3838 ((|#4| |#4| $) 97 T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3860 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -4145)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-3874 (($) 46 T CONST)) (-3025 (((-85) $) 26 (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) 28 (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) 27 (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) 29 (|has| |#1| (-510)) ELT)) (-3839 (((-599 |#4|) (-599 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) 22 (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) 23 (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ "failed") (-599 |#4|)) 40 T ELT)) (-3294 (($ (-599 |#4|)) 39 T ELT)) (-3949 (((-3 $ "failed") $) 87 T ELT)) (-3835 ((|#4| |#4| $) 94 T ELT)) (-1386 (($ $) 69 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#4| $) 68 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-510)) ELT)) (-3844 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3833 ((|#4| |#4| $) 92 T ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4145)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#4|)) (|:| -1795 (-599 |#4|))) $) 110 T ELT)) (-3010 (((-599 |#4|) $) 53 (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3318 ((|#3| $) 38 T ELT)) (-2727 (((-599 |#4|) $) 54 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3035 (((-599 |#3|) $) 36 T ELT)) (-3034 (((-85) |#3| $) 35 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3948 (((-3 |#4| "failed") $) 88 T ELT)) (-3847 (((-599 |#4|) $) 112 T ELT)) (-3841 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3836 ((|#4| |#4| $) 95 T ELT)) (-3849 (((-85) $ $) 115 T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-510)) ELT)) (-3842 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3837 ((|#4| |#4| $) 96 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3951 (((-3 |#4| "failed") $) 89 T ELT)) (-1387 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3829 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-3919 (($ $ |#4|) 82 T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) 60 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) 58 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) 57 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) 42 T ELT)) (-3543 (((-85) $) 45 T ELT)) (-3713 (($) 44 T ELT)) (-4098 (((-714) $) 111 T ELT)) (-2048 (((-714) |#4| $) 55 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 43 T ELT)) (-4122 (((-488) $) 70 (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) 61 T ELT)) (-3031 (($ $ |#3|) 32 T ELT)) (-3033 (($ $ |#3|) 34 T ELT)) (-3834 (($ $) 93 T ELT)) (-3032 (($ $ |#3|) 33 T ELT)) (-4096 (((-797) $) 13 T ELT) (((-599 |#4|) $) 41 T ELT)) (-3828 (((-714) $) 81 (|has| |#3| (-323)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) "failed") (-599 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) "failed") (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3840 (((-85) $ (-1 (-85) |#4| (-599 |#4|))) 103 T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 |#3|) $) 86 T ELT)) (-4083 (((-85) |#3| $) 85 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4107 (((-714) $) 47 (|has| $ (-6 -4145)) ELT))) -(((-1152 |#1| |#2| |#3| |#4|) (-113) (-510) (-738) (-781) (-1005 |t#1| |t#2| |t#3|)) (T -1152)) -((-3849 (*1 *2 *1 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) (-3848 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3464 (-599 *8)))) (-5 *3 (-599 *8)) (-4 *1 (-1152 *5 *6 *7 *8)))) (-3848 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-1005 *6 *7 *8)) (-4 *6 (-510)) (-4 *7 (-738)) (-4 *8 (-781)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3464 (-599 *9)))) (-5 *3 (-599 *9)) (-4 *1 (-1152 *6 *7 *8 *9)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-599 *6)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-714)))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-2 (|:| -4011 (-599 *6)) (|:| -1795 (-599 *6)))))) (-3845 (*1 *2 *3 *1) (-12 (-4 *1 (-1152 *4 *5 *6 *3)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) (-3844 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1152 *5 *6 *7 *3)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-85)))) (-3843 (*1 *2 *3 *1) (-12 (-4 *1 (-1152 *4 *5 *6 *3)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3842 (*1 *2 *3 *1) (-12 (-4 *1 (-1152 *4 *5 *6 *3)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3841 (*1 *2 *3 *1) (-12 (-4 *1 (-1152 *4 *5 *6 *3)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3840 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-599 *7))) (-4 *1 (-1152 *4 *5 *6 *7)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3843 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) (-3842 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) (-3992 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1152 *5 *6 *7 *2)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *2 (-1005 *5 *6 *7)))) (-3839 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-599 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1152 *5 *6 *7 *8)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-1005 *5 *6 *7)))) (-3838 (*1 *2 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3837 (*1 *2 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3836 (*1 *2 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3835 (*1 *2 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3834 (*1 *1 *1) (-12 (-4 *1 (-1152 *2 *3 *4 *5)) (-4 *2 (-510)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *5 (-1005 *2 *3 *4)))) (-3833 (*1 *2 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3832 (*1 *2 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1152 *4 *5 *6 *7)))) (-3831 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-599 (-2 (|:| -4011 *1) (|:| -1795 (-599 *7))))) (-5 *3 (-599 *7)) (-4 *1 (-1152 *4 *5 *6 *7)))) (-3951 (*1 *2 *1) (|partial| -12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3948 (*1 *2 *1) (|partial| -12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3949 (*1 *1 *1) (|partial| -12 (-4 *1 (-1152 *2 *3 *4 *5)) (-4 *2 (-510)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *5 (-1005 *2 *3 *4)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-599 *5)))) (-4083 (*1 *2 *3 *1) (-12 (-4 *1 (-1152 *4 *5 *3 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *3 (-781)) (-4 *6 (-1005 *4 *5 *3)) (-5 *2 (-85)))) (-3860 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1152 *4 *5 *3 *2)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *3 (-781)) (-4 *2 (-1005 *4 *5 *3)))) (-3829 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3919 (*1 *1 *1 *2) (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3828 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *5 (-323)) (-5 *2 (-714))))) -(-13 (-916 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4145) (-6 -4146) (-15 -3849 ((-85) $ $)) (-15 -3848 ((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |t#4|))) "failed") (-599 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3848 ((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |t#4|))) "failed") (-599 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3847 ((-599 |t#4|) $)) (-15 -4098 ((-714) $)) (-15 -3846 ((-2 (|:| -4011 (-599 |t#4|)) (|:| -1795 (-599 |t#4|))) $)) (-15 -3845 ((-85) |t#4| $)) (-15 -3845 ((-85) $)) (-15 -3844 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3843 ((-85) |t#4| $)) (-15 -3842 ((-85) |t#4| $)) (-15 -3841 ((-85) |t#4| $)) (-15 -3840 ((-85) $ (-1 (-85) |t#4| (-599 |t#4|)))) (-15 -3843 ((-85) $)) (-15 -3842 ((-85) $)) (-15 -3841 ((-85) $)) (-15 -3992 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3839 ((-599 |t#4|) (-599 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3838 (|t#4| |t#4| $)) (-15 -3837 (|t#4| |t#4| $)) (-15 -3836 (|t#4| |t#4| $)) (-15 -3835 (|t#4| |t#4| $)) (-15 -3834 ($ $)) (-15 -3833 (|t#4| |t#4| $)) (-15 -3832 ((-599 $) (-599 |t#4|))) (-15 -3831 ((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |t#4|)))) (-599 |t#4|))) (-15 -3951 ((-3 |t#4| "failed") $)) (-15 -3948 ((-3 |t#4| "failed") $)) (-15 -3949 ((-3 $ "failed") $)) (-15 -3830 ((-599 |t#3|) $)) (-15 -4083 ((-85) |t#3| $)) (-15 -3860 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3829 ((-3 $ "failed") $ |t#4|)) (-15 -3919 ($ $ |t#4|)) (IF (|has| |t#3| (-323)) (-15 -3828 ((-714) $)) |%noBranch|))) -(((-34) . T) ((-73) . T) ((-568 (-599 |#4|)) . T) ((-568 (-797)) . T) ((-124 |#4|) . T) ((-569 (-488)) |has| |#4| (-569 (-488))) ((-263 |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-443 |#4|) . T) ((-468 |#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1041) . T) ((-1157) . T)) -((-3855 (($ |#1| (-599 (-599 (-881 (-179)))) (-85)) 19 T ELT)) (-3854 (((-85) $ (-85)) 18 T ELT)) (-3853 (((-85) $) 17 T ELT)) (-3851 (((-599 (-599 (-881 (-179)))) $) 13 T ELT)) (-3850 ((|#1| $) 8 T ELT)) (-3852 (((-85) $) 15 T ELT))) -(((-1153 |#1|) (-10 -8 (-15 -3850 (|#1| $)) (-15 -3851 ((-599 (-599 (-881 (-179)))) $)) (-15 -3852 ((-85) $)) (-15 -3853 ((-85) $)) (-15 -3854 ((-85) $ (-85))) (-15 -3855 ($ |#1| (-599 (-599 (-881 (-179)))) (-85)))) (-914)) (T -1153)) -((-3855 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-85)) (-5 *1 (-1153 *2)) (-4 *2 (-914)))) (-3854 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1153 *3)) (-4 *3 (-914)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1153 *3)) (-4 *3 (-914)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1153 *3)) (-4 *3 (-914)))) (-3851 (*1 *2 *1) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *1 (-1153 *3)) (-4 *3 (-914)))) (-3850 (*1 *2 *1) (-12 (-5 *1 (-1153 *2)) (-4 *2 (-914))))) -((-3857 (((-881 (-179)) (-881 (-179))) 31 T ELT)) (-3856 (((-881 (-179)) (-179) (-179) (-179) (-179)) 10 T ELT)) (-3859 (((-599 (-881 (-179))) (-881 (-179)) (-881 (-179)) (-881 (-179)) (-179) (-599 (-599 (-179)))) 57 T ELT)) (-3986 (((-179) (-881 (-179)) (-881 (-179))) 27 T ELT)) (-3984 (((-881 (-179)) (-881 (-179)) (-881 (-179))) 28 T ELT)) (-3858 (((-599 (-599 (-179))) (-499)) 45 T ELT)) (-3987 (((-881 (-179)) (-881 (-179)) (-881 (-179))) 26 T ELT)) (-3989 (((-881 (-179)) (-881 (-179)) (-881 (-179))) 24 T ELT)) (* (((-881 (-179)) (-179) (-881 (-179))) 22 T ELT))) -(((-1154) (-10 -7 (-15 -3856 ((-881 (-179)) (-179) (-179) (-179) (-179))) (-15 * ((-881 (-179)) (-179) (-881 (-179)))) (-15 -3989 ((-881 (-179)) (-881 (-179)) (-881 (-179)))) (-15 -3987 ((-881 (-179)) (-881 (-179)) (-881 (-179)))) (-15 -3986 ((-179) (-881 (-179)) (-881 (-179)))) (-15 -3984 ((-881 (-179)) (-881 (-179)) (-881 (-179)))) (-15 -3857 ((-881 (-179)) (-881 (-179)))) (-15 -3858 ((-599 (-599 (-179))) (-499))) (-15 -3859 ((-599 (-881 (-179))) (-881 (-179)) (-881 (-179)) (-881 (-179)) (-179) (-599 (-599 (-179))))))) (T -1154)) -((-3859 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-599 (-599 (-179)))) (-5 *4 (-179)) (-5 *2 (-599 (-881 *4))) (-5 *1 (-1154)) (-5 *3 (-881 *4)))) (-3858 (*1 *2 *3) (-12 (-5 *3 (-499)) (-5 *2 (-599 (-599 (-179)))) (-5 *1 (-1154)))) (-3857 (*1 *2 *2) (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154)))) (-3984 (*1 *2 *2 *2) (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154)))) (-3986 (*1 *2 *3 *3) (-12 (-5 *3 (-881 (-179))) (-5 *2 (-179)) (-5 *1 (-1154)))) (-3987 (*1 *2 *2 *2) (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154)))) (-3989 (*1 *2 *2 *2) (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-881 (-179))) (-5 *3 (-179)) (-5 *1 (-1154)))) (-3856 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154)) (-5 *3 (-179))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3860 ((|#1| $ (-714)) 18 T ELT)) (-3983 (((-714) $) 13 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-4096 (((-896 |#1|) $) 12 T ELT) (($ (-896 |#1|)) 11 T ELT) (((-797) $) 29 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3174 (((-85) $ $) 22 (|has| |#1| (-1041)) ELT))) -(((-1155 |#1|) (-13 (-444 (-896 |#1|)) (-10 -8 (-15 -3860 (|#1| $ (-714))) (-15 -3983 ((-714) $)) (IF (|has| |#1| (-568 (-797))) (-6 (-568 (-797))) |%noBranch|) (IF (|has| |#1| (-1041)) (-6 (-1041)) |%noBranch|))) (-1157)) (T -1155)) -((-3860 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *1 (-1155 *2)) (-4 *2 (-1157)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-1155 *3)) (-4 *3 (-1157))))) -((-3863 (((-359 (-1111 (-1111 |#1|))) (-1111 (-1111 |#1|)) (-499)) 92 T ELT)) (-3861 (((-359 (-1111 (-1111 |#1|))) (-1111 (-1111 |#1|))) 84 T ELT)) (-3862 (((-359 (-1111 (-1111 |#1|))) (-1111 (-1111 |#1|))) 68 T ELT))) -(((-1156 |#1|) (-10 -7 (-15 -3861 ((-359 (-1111 (-1111 |#1|))) (-1111 (-1111 |#1|)))) (-15 -3862 ((-359 (-1111 (-1111 |#1|))) (-1111 (-1111 |#1|)))) (-15 -3863 ((-359 (-1111 (-1111 |#1|))) (-1111 (-1111 |#1|)) (-499)))) (-305)) (T -1156)) -((-3863 (*1 *2 *3 *4) (-12 (-5 *4 (-499)) (-4 *5 (-305)) (-5 *2 (-359 (-1111 (-1111 *5)))) (-5 *1 (-1156 *5)) (-5 *3 (-1111 (-1111 *5))))) (-3862 (*1 *2 *3) (-12 (-4 *4 (-305)) (-5 *2 (-359 (-1111 (-1111 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-1111 (-1111 *4))))) (-3861 (*1 *2 *3) (-12 (-4 *4 (-305)) (-5 *2 (-359 (-1111 (-1111 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-1111 (-1111 *4)))))) -NIL -(((-1157) (-113)) (T -1157)) -NIL -(-13 (-10 -7 (-6 -2388))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 9 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-1158) (-1023)) (T -1158)) -NIL -((-3867 (((-85)) 18 T ELT)) (-3864 (((-1213) (-599 |#1|) (-599 |#1|)) 22 T ELT) (((-1213) (-599 |#1|)) 23 T ELT)) (-3869 (((-85) |#1| |#1|) 37 (|has| |#1| (-781)) ELT)) (-3866 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3868 ((|#1| (-599 |#1|)) 38 (|has| |#1| (-781)) ELT) ((|#1| (-599 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3865 (((-2 (|:| -3367 (-599 |#1|)) (|:| -3366 (-599 |#1|)))) 20 T ELT))) -(((-1159 |#1|) (-10 -7 (-15 -3864 ((-1213) (-599 |#1|))) (-15 -3864 ((-1213) (-599 |#1|) (-599 |#1|))) (-15 -3865 ((-2 (|:| -3367 (-599 |#1|)) (|:| -3366 (-599 |#1|))))) (-15 -3866 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3866 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3868 (|#1| (-599 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3867 ((-85))) (IF (|has| |#1| (-781)) (PROGN (-15 -3868 (|#1| (-599 |#1|))) (-15 -3869 ((-85) |#1| |#1|))) |%noBranch|)) (-1041)) (T -1159)) -((-3869 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1159 *3)) (-4 *3 (-781)) (-4 *3 (-1041)))) (-3868 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-1041)) (-4 *2 (-781)) (-5 *1 (-1159 *2)))) (-3867 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1159 *3)) (-4 *3 (-1041)))) (-3868 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1159 *2)) (-4 *2 (-1041)))) (-3866 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1041)) (-5 *2 (-85)) (-5 *1 (-1159 *3)))) (-3866 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1159 *3)) (-4 *3 (-1041)))) (-3865 (*1 *2) (-12 (-5 *2 (-2 (|:| -3367 (-599 *3)) (|:| -3366 (-599 *3)))) (-5 *1 (-1159 *3)) (-4 *3 (-1041)))) (-3864 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *4)) (-4 *4 (-1041)) (-5 *2 (-1213)) (-5 *1 (-1159 *4)))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-599 *4)) (-4 *4 (-1041)) (-5 *2 (-1213)) (-5 *1 (-1159 *4))))) -((-3870 (((-1213) (-599 (-1117)) (-599 (-1117))) 14 T ELT) (((-1213) (-599 (-1117))) 12 T ELT)) (-3872 (((-1213)) 16 T ELT)) (-3871 (((-2 (|:| -3366 (-599 (-1117))) (|:| -3367 (-599 (-1117))))) 20 T ELT))) -(((-1160) (-10 -7 (-15 -3870 ((-1213) (-599 (-1117)))) (-15 -3870 ((-1213) (-599 (-1117)) (-599 (-1117)))) (-15 -3871 ((-2 (|:| -3366 (-599 (-1117))) (|:| -3367 (-599 (-1117)))))) (-15 -3872 ((-1213))))) (T -1160)) -((-3872 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1160)))) (-3871 (*1 *2) (-12 (-5 *2 (-2 (|:| -3366 (-599 (-1117))) (|:| -3367 (-599 (-1117))))) (-5 *1 (-1160)))) (-3870 (*1 *2 *3 *3) (-12 (-5 *3 (-599 (-1117))) (-5 *2 (-1213)) (-5 *1 (-1160)))) (-3870 (*1 *2 *3) (-12 (-5 *3 (-599 (-1117))) (-5 *2 (-1213)) (-5 *1 (-1160))))) -((-3925 (($ $) 17 T ELT)) (-3873 (((-85) $) 27 T ELT))) -(((-1161 |#1|) (-10 -7 (-15 -3925 (|#1| |#1|)) (-15 -3873 ((-85) |#1|))) (-1162)) (T -1161)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 63 T ELT)) (-4121 (((-359 $) $) 64 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3873 (((-85) $) 65 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3882 (((-359 $) $) 62 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-1162) (-113)) (T -1162)) -((-3873 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-85)))) (-4121 (*1 *2 *1) (-12 (-5 *2 (-359 *1)) (-4 *1 (-1162)))) (-3925 (*1 *1 *1) (-4 *1 (-1162))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-359 *1)) (-4 *1 (-1162))))) -(-13 (-406) (-10 -8 (-15 -3873 ((-85) $)) (-15 -4121 ((-359 $) $)) (-15 -3925 ($ $)) (-15 -3882 ((-359 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-244) . T) ((-406) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-3875 (($ $ $) NIL T ELT)) (-3876 (($ $ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2411 (($ $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) NIL T ELT))) -(((-1163) (-13 (-777) (-620) (-10 -8 (-15 -3876 ($ $ $)) (-15 -3875 ($ $ $)) (-15 -3874 ($) -4102)))) (T -1163)) -((-3876 (*1 *1 *1 *1) (-5 *1 (-1163))) (-3875 (*1 *1 *1 *1) (-5 *1 (-1163))) (-3874 (*1 *1) (-5 *1 (-1163)))) -((-714) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-3875 (($ $ $) NIL T ELT)) (-3876 (($ $ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2411 (($ $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) NIL T ELT))) -(((-1164) (-13 (-777) (-620) (-10 -8 (-15 -3876 ($ $ $)) (-15 -3875 ($ $ $)) (-15 -3874 ($) -4102)))) (T -1164)) -((-3876 (*1 *1 *1 *1) (-5 *1 (-1164))) (-3875 (*1 *1 *1 *1) (-5 *1 (-1164))) (-3874 (*1 *1) (-5 *1 (-1164)))) -((-714) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-3875 (($ $ $) NIL T ELT)) (-3876 (($ $ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2411 (($ $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) NIL T ELT))) -(((-1165) (-13 (-777) (-620) (-10 -8 (-15 -3876 ($ $ $)) (-15 -3875 ($ $ $)) (-15 -3874 ($) -4102)))) (T -1165)) -((-3876 (*1 *1 *1 *1) (-5 *1 (-1165))) (-3875 (*1 *1 *1 *1) (-5 *1 (-1165))) (-3874 (*1 *1) (-5 *1 (-1165)))) -((-714) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-3875 (($ $ $) NIL T ELT)) (-3876 (($ $ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2411 (($ $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) NIL T ELT))) -(((-1166) (-13 (-777) (-620) (-10 -8 (-15 -3876 ($ $ $)) (-15 -3875 ($ $ $)) (-15 -3874 ($) -4102)))) (T -1166)) -((-3876 (*1 *1 *1 *1) (-5 *1 (-1166))) (-3875 (*1 *1 *1 *1) (-5 *1 (-1166))) (-3874 (*1 *1) (-5 *1 (-1166)))) -((-714) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 (((-1197 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-261)) (|has| |#1| (-318))) ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) 10 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-2164 (($ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-2162 (((-85) $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-3921 (($ $ (-499)) NIL T ELT) (($ $ (-499) (-499)) NIL T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) $) NIL T ELT)) (-3881 (((-1197 |#1| |#2| |#3|) $) NIL T ELT)) (-3878 (((-3 (-1197 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3879 (((-1197 |#1| |#2| |#3|) $) NIL T ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1#) $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-3925 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3773 (((-499) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) ELT)) (-3968 (($ (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|)))) NIL T ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-1197 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-978 (-1117))) (|has| |#1| (-318))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) ELT) (((-3 (-499) #1#) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) ELT)) (-3294 (((-1197 |#1| |#2| |#3|) $) NIL T ELT) (((-1117) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-978 (-1117))) (|has| |#1| (-318))) ELT) (((-361 (-499)) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) ELT) (((-499) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) ELT)) (-3880 (($ $) NIL T ELT) (($ (-499) $) NIL T ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-1197 |#1| |#2| |#3|)) (-647 $)) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-1197 |#1| |#2| |#3|))) (|:| |vec| (-1207 (-1197 |#1| |#2| |#3|)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-596 (-499))) (|has| |#1| (-318))) ELT) (((-647 (-499)) (-647 $)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-596 (-499))) (|has| |#1| (-318))) ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3877 (((-361 (-884 |#1|)) $ (-499)) NIL (|has| |#1| (-510)) ELT) (((-361 (-884 |#1|)) $ (-499) (-499)) NIL (|has| |#1| (-510)) ELT)) (-3115 (($) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-498)) (|has| |#1| (-318))) ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3324 (((-85) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) ELT)) (-3013 (((-85) $) NIL T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-821 (-333))) (|has| |#1| (-318))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-821 (-499))) (|has| |#1| (-318))) ELT)) (-3922 (((-499) $) NIL T ELT) (((-499) $ (-499)) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3119 (((-1197 |#1| |#2| |#3|) $) NIL (|has| |#1| (-318)) ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3585 (((-649 $) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-1092)) (|has| |#1| (-318))) ELT)) (-3325 (((-85) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) ELT)) (-3927 (($ $ (-857)) NIL T ELT)) (-3965 (($ (-1 |#1| (-499)) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-499)) 18 T ELT) (($ $ (-1022) (-499)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-499))) NIL T ELT)) (-2650 (($ $ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-2978 (($ $ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-318)) ELT)) (-4092 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2381 (((-647 (-1197 |#1| |#2| |#3|)) (-1207 $)) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-1197 |#1| |#2| |#3|))) (|:| |vec| (-1207 (-1197 |#1| |#2| |#3|)))) (-1207 $) $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-596 (-499))) (|has| |#1| (-318))) ELT) (((-647 (-499)) (-1207 $)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-596 (-499))) (|has| |#1| (-318))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3929 (($ (-499) (-1197 |#1| |#2| |#3|)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3962 (($ $) 27 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT) (($ $ (-1204 |#2|)) 28 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3586 (($) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-1092)) (|has| |#1| (-318))) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3250 (($ $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-261)) (|has| |#1| (-318))) ELT)) (-3252 (((-1197 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-498)) (|has| |#1| (-318))) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-499)) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4093 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-499)))) ELT) (($ $ (-1117) (-1197 |#1| |#2| |#3|)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-468 (-1117) (-1197 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-599 (-1117)) (-599 (-1197 |#1| |#2| |#3|))) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-468 (-1117) (-1197 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-599 (-247 (-1197 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-263 (-1197 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-247 (-1197 |#1| |#2| |#3|))) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-263 (-1197 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-263 (-1197 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-599 (-1197 |#1| |#2| |#3|)) (-599 (-1197 |#1| |#2| |#3|))) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-263 (-1197 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-499)) NIL T ELT) (($ $ $) NIL (|has| (-499) (-1052)) ELT) (($ $ (-1197 |#1| |#2| |#3|)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-240 (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1 (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|)) (-714)) NIL (|has| |#1| (-318)) ELT) (($ $ (-1 (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|))) NIL (|has| |#1| (-318)) ELT) (($ $ (-1204 |#2|)) 26 T ELT) (($ $) 25 (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-190)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-190)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT)) (-3116 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3118 (((-1197 |#1| |#2| |#3|) $) NIL (|has| |#1| (-318)) ELT)) (-4098 (((-499) $) NIL T ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-4122 (((-488) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-569 (-488))) (|has| |#1| (-318))) ELT) (((-333) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-960)) (|has| |#1| (-318))) ELT) (((-179) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-960)) (|has| |#1| (-318))) ELT) (((-825 (-333)) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-569 (-825 (-333)))) (|has| |#1| (-318))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-569 (-825 (-499)))) (|has| |#1| (-318))) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-3012 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1197 |#1| |#2| |#3|)) NIL T ELT) (($ (-1204 |#2|)) 24 T ELT) (($ (-1117)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-978 (-1117))) (|has| |#1| (-318))) ELT) (($ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT) (($ (-361 (-499))) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) (|has| |#1| (-38 (-361 (-499))))) ELT)) (-3827 ((|#1| $ (-499)) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-118)) (|has| |#1| (-318))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-3923 ((|#1| $) 11 T ELT)) (-3253 (((-1197 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-498)) (|has| |#1| (-318))) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-499)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-499)))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3523 (($ $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) ELT)) (-2779 (($) 20 T CONST)) (-2785 (($) 15 T CONST)) (-2790 (($ $ (-1 (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|)) (-714)) NIL (|has| |#1| (-318)) ELT) (($ $ (-1 (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|))) NIL (|has| |#1| (-318)) ELT) (($ $ (-1204 |#2|)) NIL T ELT) (($ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-190)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-190)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT)) (-2685 (((-85) $ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-2686 (((-85) $ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-2806 (((-85) $ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT) (($ (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|)) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 22 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1197 |#1| |#2| |#3|)) NIL (|has| |#1| (-318)) ELT) (($ (-1197 |#1| |#2| |#3|) $) NIL (|has| |#1| (-318)) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-1167 |#1| |#2| |#3|) (-13 (-1171 |#1| (-1197 |#1| |#2| |#3|)) (-831 $ (-1204 |#2|)) (-10 -8 (-15 -4096 ($ (-1204 |#2|))) (IF (|has| |#1| (-38 (-361 (-499)))) (-15 -3962 ($ $ (-1204 |#2|))) |%noBranch|))) (-989) (-1117) |#1|) (T -1167)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-989)) (-14 *5 *3))) (-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3)))) -((-4108 (((-1167 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1167 |#1| |#3| |#5|)) 23 T ELT))) -(((-1168 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4108 ((-1167 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1167 |#1| |#3| |#5|)))) (-989) (-989) (-1117) (-1117) |#1| |#2|) (T -1168)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1167 *5 *7 *9)) (-4 *5 (-989)) (-4 *6 (-989)) (-14 *7 (-1117)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1167 *6 *8 *10)) (-5 *1 (-1168 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1117))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 (-1022)) $) 92 T ELT)) (-3981 (((-1117) $) 126 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 68 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 69 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 71 (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-499)) 121 T ELT) (($ $ (-499) (-499)) 120 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) $) 127 T ELT)) (-3632 (($ $) 160 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 143 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 187 (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) 188 (|has| |#1| (-318)) ELT)) (-3158 (($ $) 142 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1678 (((-85) $ $) 178 (|has| |#1| (-318)) ELT)) (-3630 (($ $) 159 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 144 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|)))) 198 T ELT)) (-3634 (($ $) 158 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 145 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) 22 T CONST)) (-2683 (($ $ $) 182 (|has| |#1| (-318)) ELT)) (-4109 (($ $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3877 (((-361 (-884 |#1|)) $ (-499)) 196 (|has| |#1| (-510)) ELT) (((-361 (-884 |#1|)) $ (-499) (-499)) 195 (|has| |#1| (-510)) ELT)) (-2682 (($ $ $) 181 (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 176 (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) 189 (|has| |#1| (-318)) ELT)) (-3013 (((-85) $) 91 T ELT)) (-3777 (($) 170 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-499) $) 123 T ELT) (((-499) $ (-499)) 122 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 141 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) 124 T ELT)) (-3965 (($ (-1 |#1| (-499)) $) 197 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 185 (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) 79 T ELT)) (-3014 (($ |#1| (-499)) 78 T ELT) (($ $ (-1022) (-499)) 94 T ELT) (($ $ (-599 (-1022)) (-599 (-499))) 93 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4092 (($ $) 167 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) 82 T ELT)) (-3312 ((|#1| $) 83 T ELT)) (-1993 (($ (-599 $)) 174 (|has| |#1| (-318)) ELT) (($ $ $) 173 (|has| |#1| (-318)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 190 (|has| |#1| (-318)) ELT)) (-3962 (($ $) 194 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) 193 (-3677 (-12 (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143)) (|has| |#1| (-38 (-361 (-499))))) (-12 (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-38 (-361 (-499)))))) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 175 (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) 172 (|has| |#1| (-318)) ELT) (($ $ $) 171 (|has| |#1| (-318)) ELT)) (-3882 (((-359 $) $) 186 (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 183 (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-499)) 118 T ELT)) (-3606 (((-3 $ "failed") $ $) 67 (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 177 (|has| |#1| (-318)) ELT)) (-4093 (($ $) 168 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-499)))) ELT)) (-1677 (((-714) $) 179 (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-499)) 128 T ELT) (($ $ $) 104 (|has| (-499) (-1052)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 180 (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1117)) 116 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-599 (-1117))) 114 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117) (-714)) 113 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 112 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-499) |#1|))) ELT) (($ $ (-714)) 106 (|has| |#1| (-15 * (|#1| (-499) |#1|))) ELT)) (-4098 (((-499) $) 81 T ELT)) (-3635 (($ $) 157 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 146 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 156 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 147 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 155 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 148 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) 90 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-146)) ELT) (($ (-361 (-499))) 74 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) 66 (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-499)) 76 T ELT)) (-2823 (((-649 $) $) 65 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-3923 ((|#1| $) 125 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3638 (($ $) 166 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 154 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) 70 (|has| |#1| (-510)) ELT)) (-3636 (($ $) 165 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 153 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 164 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 152 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-499)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-499)))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) 163 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 151 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 162 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 150 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 161 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 149 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1117)) 115 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-599 (-1117))) 111 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117) (-714)) 110 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 109 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-499) |#1|))) ELT) (($ $ (-714)) 105 (|has| |#1| (-15 * (|#1| (-499) |#1|))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 75 (|has| |#1| (-318)) ELT) (($ $ $) 192 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 191 (|has| |#1| (-318)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 140 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-361 (-499)) $) 73 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 72 (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-1169 |#1|) (-113) (-989)) (T -1169)) -((-3968 (*1 *1 *2) (-12 (-5 *2 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *3)))) (-4 *3 (-989)) (-4 *1 (-1169 *3)))) (-3965 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-499))) (-4 *1 (-1169 *3)) (-4 *3 (-989)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-1169 *4)) (-4 *4 (-989)) (-4 *4 (-510)) (-5 *2 (-361 (-884 *4))))) (-3877 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-499)) (-4 *1 (-1169 *4)) (-4 *4 (-989)) (-4 *4 (-510)) (-5 *2 (-361 (-884 *4))))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-989)) (-4 *2 (-38 (-361 (-499)))))) (-3962 (*1 *1 *1 *2) (-3677 (-12 (-5 *2 (-1117)) (-4 *1 (-1169 *3)) (-4 *3 (-989)) (-12 (-4 *3 (-29 (-499))) (-4 *3 (-898)) (-4 *3 (-1143)) (-4 *3 (-38 (-361 (-499)))))) (-12 (-5 *2 (-1117)) (-4 *1 (-1169 *3)) (-4 *3 (-989)) (-12 (|has| *3 (-15 -3204 ((-599 *2) *3))) (|has| *3 (-15 -3962 (*3 *3 *2))) (-4 *3 (-38 (-361 (-499))))))))) -(-13 (-1186 |t#1| (-499)) (-10 -8 (-15 -3968 ($ (-1095 (-2 (|:| |k| (-499)) (|:| |c| |t#1|))))) (-15 -3965 ($ (-1 |t#1| (-499)) $)) (IF (|has| |t#1| (-510)) (PROGN (-15 -3877 ((-361 (-884 |t#1|)) $ (-499))) (-15 -3877 ((-361 (-884 |t#1|)) $ (-499) (-499)))) |%noBranch|) (IF (|has| |t#1| (-38 (-361 (-499)))) (PROGN (-15 -3962 ($ $)) (IF (|has| |t#1| (-15 -3962 (|t#1| |t#1| (-1117)))) (IF (|has| |t#1| (-15 -3204 ((-599 (-1117)) |t#1|))) (-15 -3962 ($ $ (-1117))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1143)) (IF (|has| |t#1| (-898)) (IF (|has| |t#1| (-29 (-499))) (-15 -3962 ($ $ (-1117))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-942)) (-6 (-1143))) |%noBranch|) (IF (|has| |t#1| (-318)) (-6 (-318)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-499)) . T) ((-25) . T) ((-38 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-35) |has| |#1| (-38 (-361 (-499)))) ((-66) |has| |#1| (-38 (-361 (-499)))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-571 (-499)) . T) ((-571 |#1|) |has| |#1| (-146)) ((-571 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-499) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-499) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-499) |#1|))) ((-200) |has| |#1| (-318)) ((-238) |has| |#1| (-38 (-361 (-499)))) ((-240 (-499) |#1|) . T) ((-240 $ $) |has| (-499) (-1052)) ((-244) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-261) |has| |#1| (-318)) ((-318) |has| |#1| (-318)) ((-406) |has| |#1| (-318)) ((-447) |has| |#1| (-38 (-361 (-499)))) ((-510) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-604 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-675 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-684) . T) ((-831 $ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ((-836 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ((-838 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ((-913 |#1| (-499) (-1022)) . T) ((-859) |has| |#1| (-318)) ((-942) |has| |#1| (-38 (-361 (-499)))) ((-991 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-996 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1143) |has| |#1| (-38 (-361 (-499)))) ((-1146) |has| |#1| (-38 (-361 (-499)))) ((-1157) . T) ((-1162) |has| |#1| (-318)) ((-1186 |#1| (-499)) . T)) -((-3326 (((-85) $) 12 T ELT)) (-3295 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1117) #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 (-499) #1#) $) NIL T ELT)) (-3294 ((|#3| $) 14 T ELT) (((-1117) $) NIL T ELT) (((-361 (-499)) $) NIL T ELT) (((-499) $) NIL T ELT))) -(((-1170 |#1| |#2| |#3|) (-10 -7 (-15 -3295 ((-3 (-499) #1="failed") |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3295 ((-3 (-1117) #1#) |#1|)) (-15 -3294 ((-1117) |#1|)) (-15 -3295 ((-3 |#3| #1#) |#1|)) (-15 -3294 (|#3| |#1|)) (-15 -3326 ((-85) |#1|))) (-1171 |#2| |#3|) (-989) (-1200 |#2|)) (T -1170)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3251 ((|#2| $) 263 (-2681 (|has| |#2| (-261)) (|has| |#1| (-318))) ELT)) (-3204 (((-599 (-1022)) $) 92 T ELT)) (-3981 (((-1117) $) 126 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 68 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 69 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 71 (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-499)) 121 T ELT) (($ $ (-499) (-499)) 120 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) $) 127 T ELT)) (-3881 ((|#2| $) 299 T ELT)) (-3878 (((-3 |#2| "failed") $) 295 T ELT)) (-3879 ((|#2| $) 296 T ELT)) (-3632 (($ $) 160 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 143 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 272 (-2681 (|has| |#2| (-848)) (|has| |#1| (-318))) ELT)) (-3925 (($ $) 187 (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) 188 (|has| |#1| (-318)) ELT)) (-3158 (($ $) 142 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1="failed") (-599 (-1111 $)) (-1111 $)) 269 (-2681 (|has| |#2| (-848)) (|has| |#1| (-318))) ELT)) (-1678 (((-85) $ $) 178 (|has| |#1| (-318)) ELT)) (-3630 (($ $) 159 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 144 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3773 (((-499) $) 281 (-2681 (|has| |#2| (-763)) (|has| |#1| (-318))) ELT)) (-3968 (($ (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|)))) 198 T ELT)) (-3634 (($ $) 158 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 145 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#2| #2="failed") $) 302 T ELT) (((-3 (-499) #2#) $) 292 (-2681 (|has| |#2| (-978 (-499))) (|has| |#1| (-318))) ELT) (((-3 (-361 (-499)) #2#) $) 290 (-2681 (|has| |#2| (-978 (-499))) (|has| |#1| (-318))) ELT) (((-3 (-1117) #2#) $) 274 (-2681 (|has| |#2| (-978 (-1117))) (|has| |#1| (-318))) ELT)) (-3294 ((|#2| $) 303 T ELT) (((-499) $) 291 (-2681 (|has| |#2| (-978 (-499))) (|has| |#1| (-318))) ELT) (((-361 (-499)) $) 289 (-2681 (|has| |#2| (-978 (-499))) (|has| |#1| (-318))) ELT) (((-1117) $) 273 (-2681 (|has| |#2| (-978 (-1117))) (|has| |#1| (-318))) ELT)) (-3880 (($ $) 298 T ELT) (($ (-499) $) 297 T ELT)) (-2683 (($ $ $) 182 (|has| |#1| (-318)) ELT)) (-4109 (($ $) 77 T ELT)) (-2380 (((-647 |#2|) (-647 $)) 251 (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) 250 (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 249 (-2681 (|has| |#2| (-596 (-499))) (|has| |#1| (-318))) ELT) (((-647 (-499)) (-647 $)) 248 (-2681 (|has| |#2| (-596 (-499))) (|has| |#1| (-318))) ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3877 (((-361 (-884 |#1|)) $ (-499)) 196 (|has| |#1| (-510)) ELT) (((-361 (-884 |#1|)) $ (-499) (-499)) 195 (|has| |#1| (-510)) ELT)) (-3115 (($) 265 (-2681 (|has| |#2| (-498)) (|has| |#1| (-318))) ELT)) (-2682 (($ $ $) 181 (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 176 (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) 189 (|has| |#1| (-318)) ELT)) (-3324 (((-85) $) 279 (-2681 (|has| |#2| (-763)) (|has| |#1| (-318))) ELT)) (-3013 (((-85) $) 91 T ELT)) (-3777 (($) 170 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 257 (-2681 (|has| |#2| (-821 (-333))) (|has| |#1| (-318))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 256 (-2681 (|has| |#2| (-821 (-499))) (|has| |#1| (-318))) ELT)) (-3922 (((-499) $) 123 T ELT) (((-499) $ (-499)) 122 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3117 (($ $) 261 (|has| |#1| (-318)) ELT)) (-3119 ((|#2| $) 259 (|has| |#1| (-318)) ELT)) (-3132 (($ $ (-499)) 141 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3585 (((-649 $) $) 293 (-2681 (|has| |#2| (-1092)) (|has| |#1| (-318))) ELT)) (-3325 (((-85) $) 280 (-2681 (|has| |#2| (-763)) (|has| |#1| (-318))) ELT)) (-3927 (($ $ (-857)) 124 T ELT)) (-3965 (($ (-1 |#1| (-499)) $) 197 T ELT)) (-1675 (((-3 (-599 $) #3="failed") (-599 $) $) 185 (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) 79 T ELT)) (-3014 (($ |#1| (-499)) 78 T ELT) (($ $ (-1022) (-499)) 94 T ELT) (($ $ (-599 (-1022)) (-599 (-499))) 93 T ELT)) (-2650 (($ $ $) 288 (-2681 (|has| |#2| (-781)) (|has| |#1| (-318))) ELT)) (-2978 (($ $ $) 287 (-2681 (|has| |#2| (-781)) (|has| |#1| (-318))) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#2| |#2|) $) 241 (|has| |#1| (-318)) ELT)) (-4092 (($ $) 167 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2381 (((-647 |#2|) (-1207 $)) 253 (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) 252 (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 247 (-2681 (|has| |#2| (-596 (-499))) (|has| |#1| (-318))) ELT) (((-647 (-499)) (-1207 $)) 246 (-2681 (|has| |#2| (-596 (-499))) (|has| |#1| (-318))) ELT)) (-3015 (($ $) 82 T ELT)) (-3312 ((|#1| $) 83 T ELT)) (-1993 (($ (-599 $)) 174 (|has| |#1| (-318)) ELT) (($ $ $) 173 (|has| |#1| (-318)) ELT)) (-3929 (($ (-499) |#2|) 300 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 190 (|has| |#1| (-318)) ELT)) (-3962 (($ $) 194 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) 193 (-3677 (-12 (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143)) (|has| |#1| (-38 (-361 (-499))))) (-12 (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-38 (-361 (-499)))))) ELT)) (-3586 (($) 294 (-2681 (|has| |#2| (-1092)) (|has| |#1| (-318))) CONST)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 175 (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) 172 (|has| |#1| (-318)) ELT) (($ $ $) 171 (|has| |#1| (-318)) ELT)) (-3250 (($ $) 264 (-2681 (|has| |#2| (-261)) (|has| |#1| (-318))) ELT)) (-3252 ((|#2| $) 267 (-2681 (|has| |#2| (-498)) (|has| |#1| (-318))) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 270 (-2681 (|has| |#2| (-848)) (|has| |#1| (-318))) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 271 (-2681 (|has| |#2| (-848)) (|has| |#1| (-318))) ELT)) (-3882 (((-359 $) $) 186 (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 184 (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 183 (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-499)) 118 T ELT)) (-3606 (((-3 $ "failed") $ $) 67 (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 177 (|has| |#1| (-318)) ELT)) (-4093 (($ $) 168 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-499)))) ELT) (($ $ (-1117) |#2|) 240 (-2681 (|has| |#2| (-468 (-1117) |#2|)) (|has| |#1| (-318))) ELT) (($ $ (-599 (-1117)) (-599 |#2|)) 239 (-2681 (|has| |#2| (-468 (-1117) |#2|)) (|has| |#1| (-318))) ELT) (($ $ (-599 (-247 |#2|))) 238 (-2681 (|has| |#2| (-263 |#2|)) (|has| |#1| (-318))) ELT) (($ $ (-247 |#2|)) 237 (-2681 (|has| |#2| (-263 |#2|)) (|has| |#1| (-318))) ELT) (($ $ |#2| |#2|) 236 (-2681 (|has| |#2| (-263 |#2|)) (|has| |#1| (-318))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) 235 (-2681 (|has| |#2| (-263 |#2|)) (|has| |#1| (-318))) ELT)) (-1677 (((-714) $) 179 (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-499)) 128 T ELT) (($ $ $) 104 (|has| (-499) (-1052)) ELT) (($ $ |#2|) 234 (-2681 (|has| |#2| (-240 |#2| |#2|)) (|has| |#1| (-318))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 180 (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1 |#2| |#2|) (-714)) 243 (|has| |#1| (-318)) ELT) (($ $ (-1 |#2| |#2|)) 242 (|has| |#1| (-318)) ELT) (($ $) 108 (-3677 (-2681 (|has| |#2| (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-714)) 106 (-3677 (-2681 (|has| |#2| (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117)) 116 (-3677 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117))) 114 (-3677 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-1117) (-714)) 113 (-3677 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 112 (-3677 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT)) (-3116 (($ $) 262 (|has| |#1| (-318)) ELT)) (-3118 ((|#2| $) 260 (|has| |#1| (-318)) ELT)) (-4098 (((-499) $) 81 T ELT)) (-3635 (($ $) 157 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 146 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 156 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 147 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 155 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 148 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-4122 (((-179) $) 278 (-2681 (|has| |#2| (-960)) (|has| |#1| (-318))) ELT) (((-333) $) 277 (-2681 (|has| |#2| (-960)) (|has| |#1| (-318))) ELT) (((-488) $) 276 (-2681 (|has| |#2| (-569 (-488))) (|has| |#1| (-318))) ELT) (((-825 (-333)) $) 255 (-2681 (|has| |#2| (-569 (-825 (-333)))) (|has| |#1| (-318))) ELT) (((-825 (-499)) $) 254 (-2681 (|has| |#2| (-569 (-825 (-499)))) (|has| |#1| (-318))) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) 268 (-2681 (-2681 (|has| $ (-118)) (|has| |#2| (-848))) (|has| |#1| (-318))) ELT)) (-3012 (($ $) 90 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-146)) ELT) (($ |#2|) 301 T ELT) (($ (-1117)) 275 (-2681 (|has| |#2| (-978 (-1117))) (|has| |#1| (-318))) ELT) (($ (-361 (-499))) 74 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) 66 (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-499)) 76 T ELT)) (-2823 (((-649 $) $) 65 (-3677 (-2681 (-3677 (|has| |#2| (-118)) (-2681 (|has| $ (-118)) (|has| |#2| (-848)))) (|has| |#1| (-318))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) 37 T CONST)) (-3923 ((|#1| $) 125 T ELT)) (-3253 ((|#2| $) 266 (-2681 (|has| |#2| (-498)) (|has| |#1| (-318))) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3638 (($ $) 166 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 154 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) 70 (|has| |#1| (-510)) ELT)) (-3636 (($ $) 165 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 153 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 164 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 152 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-499)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-499)))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) 163 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 151 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 162 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 150 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 161 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 149 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3523 (($ $) 282 (-2681 (|has| |#2| (-763)) (|has| |#1| (-318))) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1 |#2| |#2|) (-714)) 245 (|has| |#1| (-318)) ELT) (($ $ (-1 |#2| |#2|)) 244 (|has| |#1| (-318)) ELT) (($ $) 107 (-3677 (-2681 (|has| |#2| (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-714)) 105 (-3677 (-2681 (|has| |#2| (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117)) 115 (-3677 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117))) 111 (-3677 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-1117) (-714)) 110 (-3677 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 109 (-3677 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT)) (-2685 (((-85) $ $) 286 (-2681 (|has| |#2| (-781)) (|has| |#1| (-318))) ELT)) (-2686 (((-85) $ $) 284 (-2681 (|has| |#2| (-781)) (|has| |#1| (-318))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 285 (-2681 (|has| |#2| (-781)) (|has| |#1| (-318))) ELT)) (-2806 (((-85) $ $) 283 (-2681 (|has| |#2| (-781)) (|has| |#1| (-318))) ELT)) (-4099 (($ $ |#1|) 75 (|has| |#1| (-318)) ELT) (($ $ $) 192 (|has| |#1| (-318)) ELT) (($ |#2| |#2|) 258 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 191 (|has| |#1| (-318)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 140 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ $ |#2|) 233 (|has| |#1| (-318)) ELT) (($ |#2| $) 232 (|has| |#1| (-318)) ELT) (($ (-361 (-499)) $) 73 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 72 (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-1171 |#1| |#2|) (-113) (-989) (-1200 |t#1|)) (T -1171)) -((-4098 (*1 *2 *1) (-12 (-4 *1 (-1171 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1200 *3)) (-5 *2 (-499)))) (-3929 (*1 *1 *2 *3) (-12 (-5 *2 (-499)) (-4 *4 (-989)) (-4 *1 (-1171 *4 *3)) (-4 *3 (-1200 *4)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1200 *3)))) (-3880 (*1 *1 *1) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-989)) (-4 *3 (-1200 *2)))) (-3880 (*1 *1 *2 *1) (-12 (-5 *2 (-499)) (-4 *1 (-1171 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1200 *3)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1200 *3)))) (-3878 (*1 *2 *1) (|partial| -12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1200 *3))))) -(-13 (-1169 |t#1|) (-978 |t#2|) (-571 |t#2|) (-10 -8 (-15 -3929 ($ (-499) |t#2|)) (-15 -4098 ((-499) $)) (-15 -3881 (|t#2| $)) (-15 -3880 ($ $)) (-15 -3880 ($ (-499) $)) (-15 -3879 (|t#2| $)) (-15 -3878 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-318)) (-6 (-931 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-499)) . T) ((-25) . T) ((-38 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 |#2|) |has| |#1| (-318)) ((-38 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-35) |has| |#1| (-38 (-361 (-499)))) ((-66) |has| |#1| (-38 (-361 (-499)))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-318)) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-104) . T) ((-118) -3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) -3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-571 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-571 (-499)) . T) ((-571 (-1117)) -12 (|has| |#1| (-318)) (|has| |#2| (-978 (-1117)))) ((-571 |#1|) |has| |#1| (-146)) ((-571 |#2|) . T) ((-571 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-569 (-179)) -12 (|has| |#1| (-318)) (|has| |#2| (-960))) ((-569 (-333)) -12 (|has| |#1| (-318)) (|has| |#2| (-960))) ((-569 (-488)) -12 (|has| |#1| (-318)) (|has| |#2| (-569 (-488)))) ((-569 (-825 (-333))) -12 (|has| |#1| (-318)) (|has| |#2| (-569 (-825 (-333))))) ((-569 (-825 (-499))) -12 (|has| |#1| (-318)) (|has| |#2| (-569 (-825 (-499))))) ((-186 $) -3677 (|has| |#1| (-15 * (|#1| (-499) |#1|))) (-12 (|has| |#1| (-318)) (|has| |#2| (-189))) (-12 (|has| |#1| (-318)) (|has| |#2| (-190)))) ((-184 |#2|) |has| |#1| (-318)) ((-190) -3677 (|has| |#1| (-15 * (|#1| (-499) |#1|))) (-12 (|has| |#1| (-318)) (|has| |#2| (-190)))) ((-189) -3677 (|has| |#1| (-15 * (|#1| (-499) |#1|))) (-12 (|has| |#1| (-318)) (|has| |#2| (-189))) (-12 (|has| |#1| (-318)) (|has| |#2| (-190)))) ((-224 |#2|) |has| |#1| (-318)) ((-200) |has| |#1| (-318)) ((-238) |has| |#1| (-38 (-361 (-499)))) ((-240 (-499) |#1|) . T) ((-240 |#2| $) -12 (|has| |#1| (-318)) (|has| |#2| (-240 |#2| |#2|))) ((-240 $ $) |has| (-499) (-1052)) ((-244) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-261) |has| |#1| (-318)) ((-263 |#2|) -12 (|has| |#1| (-318)) (|has| |#2| (-263 |#2|))) ((-318) |has| |#1| (-318)) ((-293 |#2|) |has| |#1| (-318)) ((-332 |#2|) |has| |#1| (-318)) ((-354 |#2|) |has| |#1| (-318)) ((-406) |has| |#1| (-318)) ((-447) |has| |#1| (-38 (-361 (-499)))) ((-468 (-1117) |#2|) -12 (|has| |#1| (-318)) (|has| |#2| (-468 (-1117) |#2|))) ((-468 |#2| |#2|) -12 (|has| |#1| (-318)) (|has| |#2| (-263 |#2|))) ((-510) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-604 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 |#2|) |has| |#1| (-318)) ((-604 $) . T) ((-606 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-606 (-499)) -12 (|has| |#1| (-318)) (|has| |#2| (-596 (-499)))) ((-606 |#1|) . T) ((-606 |#2|) |has| |#1| (-318)) ((-606 $) . T) ((-598 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-598 |#1|) |has| |#1| (-146)) ((-598 |#2|) |has| |#1| (-318)) ((-598 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-596 (-499)) -12 (|has| |#1| (-318)) (|has| |#2| (-596 (-499)))) ((-596 |#2|) |has| |#1| (-318)) ((-675 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-675 |#1|) |has| |#1| (-146)) ((-675 |#2|) |has| |#1| (-318)) ((-675 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-684) . T) ((-735) -12 (|has| |#1| (-318)) (|has| |#2| (-763))) ((-737) -12 (|has| |#1| (-318)) (|has| |#2| (-763))) ((-739) -12 (|has| |#1| (-318)) (|has| |#2| (-763))) ((-742) -12 (|has| |#1| (-318)) (|has| |#2| (-763))) ((-763) -12 (|has| |#1| (-318)) (|has| |#2| (-763))) ((-780) -12 (|has| |#1| (-318)) (|has| |#2| (-763))) ((-781) -3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-781))) (-12 (|has| |#1| (-318)) (|has| |#2| (-763)))) ((-784) -3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-781))) (-12 (|has| |#1| (-318)) (|has| |#2| (-763)))) ((-831 $ (-1117)) -3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-836 (-1117))))) ((-836 (-1117)) -3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-836 (-1117))))) ((-838 (-1117)) -3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-836 (-1117))))) ((-821 (-333)) -12 (|has| |#1| (-318)) (|has| |#2| (-821 (-333)))) ((-821 (-499)) -12 (|has| |#1| (-318)) (|has| |#2| (-821 (-499)))) ((-819 |#2|) |has| |#1| (-318)) ((-848) -12 (|has| |#1| (-318)) (|has| |#2| (-848))) ((-913 |#1| (-499) (-1022)) . T) ((-859) |has| |#1| (-318)) ((-931 |#2|) |has| |#1| (-318)) ((-942) |has| |#1| (-38 (-361 (-499)))) ((-960) -12 (|has| |#1| (-318)) (|has| |#2| (-960))) ((-978 (-361 (-499))) -12 (|has| |#1| (-318)) (|has| |#2| (-978 (-499)))) ((-978 (-499)) -12 (|has| |#1| (-318)) (|has| |#2| (-978 (-499)))) ((-978 (-1117)) -12 (|has| |#1| (-318)) (|has| |#2| (-978 (-1117)))) ((-978 |#2|) . T) ((-991 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-991 |#1|) . T) ((-991 |#2|) |has| |#1| (-318)) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-996 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-996 |#1|) . T) ((-996 |#2|) |has| |#1| (-318)) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1092) -12 (|has| |#1| (-318)) (|has| |#2| (-1092))) ((-1143) |has| |#1| (-38 (-361 (-499)))) ((-1146) |has| |#1| (-38 (-361 (-499)))) ((-1157) . T) ((-1162) |has| |#1| (-318)) ((-1169 |#1|) . T) ((-1186 |#1| (-499)) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 83 T ELT)) (-3251 ((|#2| $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-261))) ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) 102 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-499)) 111 T ELT) (($ $ (-499) (-499)) 114 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) $) 51 T ELT)) (-3881 ((|#2| $) 11 T ELT)) (-3878 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3879 ((|#2| $) 36 T ELT)) (-3632 (($ $) 208 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 184 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1#) $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-848))) ELT)) (-3925 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-848))) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3630 (($ $) 204 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 180 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3773 (((-499) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-763))) ELT)) (-3968 (($ (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|)))) 59 T ELT)) (-3634 (($ $) 212 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 188 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-499) #1#) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-978 (-499)))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-978 (-499)))) ELT) (((-3 (-1117) #1#) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-978 (-1117)))) ELT)) (-3294 ((|#2| $) 158 T ELT) (((-499) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-978 (-499)))) ELT) (((-361 (-499)) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-978 (-499)))) ELT) (((-1117) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-978 (-1117)))) ELT)) (-3880 (($ $) 65 T ELT) (($ (-499) $) 28 T ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 |#2|) (-647 $)) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-596 (-499)))) ELT) (((-647 (-499)) (-647 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-596 (-499)))) ELT)) (-3607 (((-3 $ #1#) $) 90 T ELT)) (-3877 (((-361 (-884 |#1|)) $ (-499)) 126 (|has| |#1| (-510)) ELT) (((-361 (-884 |#1|)) $ (-499) (-499)) 128 (|has| |#1| (-510)) ELT)) (-3115 (($) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-498))) ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3324 (((-85) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-763))) ELT)) (-3013 (((-85) $) 76 T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-821 (-499)))) ELT)) (-3922 (((-499) $) 107 T ELT) (((-499) $ (-499)) 109 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3119 ((|#2| $) 167 (|has| |#1| (-318)) ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3585 (((-649 $) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-1092))) ELT)) (-3325 (((-85) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-763))) ELT)) (-3927 (($ $ (-857)) 150 T ELT)) (-3965 (($ (-1 |#1| (-499)) $) 146 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-499)) 20 T ELT) (($ $ (-1022) (-499)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-499))) NIL T ELT)) (-2650 (($ $ $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-781))) ELT)) (-2978 (($ $ $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-781))) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-318)) ELT)) (-4092 (($ $) 178 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2381 (((-647 |#2|) (-1207 $)) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-596 (-499)))) ELT) (((-647 (-499)) (-1207 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-596 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3929 (($ (-499) |#2|) 10 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 161 (|has| |#1| (-318)) ELT)) (-3962 (($ $) 230 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) 235 (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT)) (-3586 (($) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-1092))) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3250 (($ $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-261))) ELT)) (-3252 ((|#2| $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-498))) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-848))) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-848))) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-499)) 140 T ELT)) (-3606 (((-3 $ #1#) $ $) 130 (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4093 (($ $) 176 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-499)))) ELT) (($ $ (-1117) |#2|) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-468 (-1117) |#2|))) ELT) (($ $ (-599 (-1117)) (-599 |#2|)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-468 (-1117) |#2|))) ELT) (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-263 |#2|))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-263 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-263 |#2|))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-263 |#2|))) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-499)) 105 T ELT) (($ $ $) 92 (|has| (-499) (-1052)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-240 |#2| |#2|))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1 |#2| |#2|) (-714)) NIL (|has| |#1| (-318)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-318)) ELT) (($ $) 151 (-3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117)) 155 (-3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117))))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117))))) ELT)) (-3116 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3118 ((|#2| $) 168 (|has| |#1| (-318)) ELT)) (-4098 (((-499) $) 12 T ELT)) (-3635 (($ $) 214 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 190 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 210 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 186 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 206 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 182 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-4122 (((-179) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-960))) ELT) (((-333) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-960))) ELT) (((-488) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-569 (-488)))) ELT) (((-825 (-333)) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-569 (-825 (-499))))) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-318)) (|has| |#2| (-848))) ELT)) (-3012 (($ $) 138 T ELT)) (-4096 (((-797) $) 268 T ELT) (($ (-499)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-146)) ELT) (($ |#2|) 21 T ELT) (($ (-1117)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-978 (-1117)))) ELT) (($ (-361 (-499))) 171 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-499)) 87 T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-318)) (|has| |#2| (-848))) (|has| |#1| (-118)) (-12 (|has| |#1| (-318)) (|has| |#2| (-118)))) ELT)) (-3248 (((-714)) 157 T CONST)) (-3923 ((|#1| $) 104 T ELT)) (-3253 ((|#2| $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-498))) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) 220 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 196 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) 216 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 192 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 224 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 200 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-499)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-499)))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) 226 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 202 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 222 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 198 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 218 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 194 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3523 (($ $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-763))) ELT)) (-2779 (($) 13 T CONST)) (-2785 (($) 18 T CONST)) (-2790 (($ $ (-1 |#2| |#2|) (-714)) NIL (|has| |#1| (-318)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117))))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117))))) ELT)) (-2685 (((-85) $ $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-781))) ELT)) (-2686 (((-85) $ $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-781))) ELT)) (-3174 (((-85) $ $) 74 T ELT)) (-2805 (((-85) $ $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-781))) ELT)) (-2806 (((-85) $ $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-781))) ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT) (($ $ $) 165 (|has| |#1| (-318)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3989 (($ $ $) 78 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 86 T ELT) (($ $ (-499)) 162 (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 174 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-318)) ELT) (($ |#2| $) 163 (|has| |#1| (-318)) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-1172 |#1| |#2|) (-1171 |#1| |#2|) (-989) (-1200 |#1|)) (T -1172)) -NIL -((-3884 (((-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| |#1|) (|:| -2513 (-499)))))) |#1| (-85)) 13 T ELT)) (-3883 (((-359 |#1|) |#1|) 26 T ELT)) (-3882 (((-359 |#1|) |#1|) 24 T ELT))) -(((-1173 |#1|) (-10 -7 (-15 -3882 ((-359 |#1|) |#1|)) (-15 -3883 ((-359 |#1|) |#1|)) (-15 -3884 ((-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| |#1|) (|:| -2513 (-499)))))) |#1| (-85)))) (-1183 (-499))) (T -1173)) -((-3884 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| *3) (|:| -2513 (-499))))))) (-5 *1 (-1173 *3)) (-4 *3 (-1183 (-499))))) (-3883 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-1183 (-499))))) (-3882 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-1183 (-499)))))) -((-2687 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3886 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-4108 (((-1095 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-780)) ELT)) (-3367 ((|#1| $) 15 T ELT)) (-3369 ((|#1| $) 12 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3365 (((-499) $) 19 T ELT)) (-3366 ((|#1| $) 18 T ELT)) (-3368 ((|#1| $) 13 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3885 (((-85) $) 17 T ELT)) (-4113 (((-1095 |#1|) $) 41 (|has| |#1| (-780)) ELT) (((-1095 |#1|) (-599 $)) 40 (|has| |#1| (-780)) ELT)) (-4122 (($ |#1|) 26 T ELT)) (-4096 (($ (-1029 |#1|)) 25 T ELT) (((-797) $) 37 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3887 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3370 (($ $ (-499)) 14 T ELT)) (-3174 (((-85) $ $) 30 (|has| |#1| (-1041)) ELT))) -(((-1174 |#1|) (-13 (-1034 |#1|) (-10 -8 (-15 -3887 ($ |#1|)) (-15 -3886 ($ |#1|)) (-15 -4096 ($ (-1029 |#1|))) (-15 -3885 ((-85) $)) (IF (|has| |#1| (-1041)) (-6 (-1041)) |%noBranch|) (IF (|has| |#1| (-780)) (-6 (-1035 |#1| (-1095 |#1|))) |%noBranch|))) (-1157)) (T -1174)) -((-3887 (*1 *1 *2) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-1157)))) (-3886 (*1 *1 *2) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-1157)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1029 *3)) (-4 *3 (-1157)) (-5 *1 (-1174 *3)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1174 *3)) (-4 *3 (-1157))))) -((-4108 (((-1095 |#2|) (-1 |#2| |#1|) (-1174 |#1|)) 23 (|has| |#1| (-780)) ELT) (((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|)) 17 T ELT))) -(((-1175 |#1| |#2|) (-10 -7 (-15 -4108 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|))) (IF (|has| |#1| (-780)) (-15 -4108 ((-1095 |#2|) (-1 |#2| |#1|) (-1174 |#1|))) |%noBranch|)) (-1157) (-1157)) (T -1175)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-780)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-1095 *6)) (-5 *1 (-1175 *5 *6)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-1174 *6)) (-5 *1 (-1175 *5 *6))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3917 (((-1207 |#2|) $ (-714)) NIL T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3915 (($ (-1111 |#2|)) NIL T ELT)) (-3206 (((-1111 $) $ (-1022)) NIL T ELT) (((-1111 |#2|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#2| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#2| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#2| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-1022))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3905 (($ $ $) NIL (|has| |#2| (-510)) ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#2| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#2| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-1678 (((-85) $ $) NIL (|has| |#2| (-318)) ELT)) (-3911 (($ $ (-714)) NIL T ELT)) (-3910 (($ $ (-714)) NIL T ELT)) (-3901 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-406)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-3 (-1022) #1#) $) NIL T ELT)) (-3294 ((|#2| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-1022) $) NIL T ELT)) (-3906 (($ $ $ (-1022)) NIL (|has| |#2| (-146)) ELT) ((|#2| $ $) NIL (|has| |#2| (-146)) ELT)) (-2683 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#2|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-3909 (($ $ $) NIL T ELT)) (-3903 (($ $ $) NIL (|has| |#2| (-510)) ELT)) (-3902 (((-2 (|:| -4104 |#2|) (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#2| (-510)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#2| (-318)) ELT)) (-3643 (($ $) NIL (|has| |#2| (-406)) ELT) (($ $ (-1022)) NIL (|has| |#2| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#2| (-848)) ELT)) (-1694 (($ $ |#2| (-714) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-1022) (-821 (-333))) (|has| |#2| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-1022) (-821 (-499))) (|has| |#2| (-821 (-499)))) ELT)) (-3922 (((-714) $ $) NIL (|has| |#2| (-510)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| |#2| (-1092)) ELT)) (-3207 (($ (-1111 |#2|) (-1022)) NIL T ELT) (($ (-1111 $) (-1022)) NIL T ELT)) (-3927 (($ $ (-714)) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#2| (-318)) ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#2| (-714)) 18 T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-1022)) NIL T ELT) (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-2941 (((-714) $) NIL T ELT) (((-714) $ (-1022)) NIL T ELT) (((-599 (-714)) $ (-599 (-1022))) NIL T ELT)) (-1695 (($ (-1 (-714) (-714)) $) NIL T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3916 (((-1111 |#2|) $) NIL T ELT)) (-3205 (((-3 (-1022) #1#) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#2| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) NIL (|has| |#2| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3912 (((-2 (|:| -2075 $) (|:| -3023 $)) $ (-714)) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-1022)) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3962 (($ $) NIL (|has| |#2| (-38 (-361 (-499)))) ELT)) (-3586 (($) NIL (|has| |#2| (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#2| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#2| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) NIL (|has| |#2| (-406)) ELT)) (-3888 (($ $ (-714) |#2| $) NIL T ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#2| (-848)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#2| (-318)) ELT)) (-3606 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#2| (-318)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-1022) |#2|) NIL T ELT) (($ $ (-599 (-1022)) (-599 |#2|)) NIL T ELT) (($ $ (-1022) $) NIL T ELT) (($ $ (-599 (-1022)) (-599 $)) NIL T ELT)) (-1677 (((-714) $) NIL (|has| |#2| (-318)) ELT)) (-3950 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-361 $) (-361 $) (-361 $)) NIL (|has| |#2| (-510)) ELT) ((|#2| (-361 $) |#2|) NIL (|has| |#2| (-318)) ELT) (((-361 $) $ (-361 $)) NIL (|has| |#2| (-510)) ELT)) (-3914 (((-3 $ #1#) $ (-714)) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#2| (-318)) ELT)) (-3907 (($ $ (-1022)) NIL (|has| |#2| (-146)) ELT) ((|#2| $) NIL (|has| |#2| (-146)) ELT)) (-3908 (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022))) NIL T ELT) (($ $ (-1022)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT)) (-4098 (((-714) $) NIL T ELT) (((-714) $ (-1022)) NIL T ELT) (((-599 (-714)) $ (-599 (-1022))) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-1022) (-569 (-825 (-333)))) (|has| |#2| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-1022) (-569 (-825 (-499)))) (|has| |#2| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-1022) (-569 (-488))) (|has| |#2| (-569 (-488)))) ELT)) (-2938 ((|#2| $) NIL (|has| |#2| (-406)) ELT) (($ $ (-1022)) NIL (|has| |#2| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-848))) ELT)) (-3904 (((-3 $ #1#) $ $) NIL (|has| |#2| (-510)) ELT) (((-3 (-361 $) #1#) (-361 $) $) NIL (|has| |#2| (-510)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1022)) NIL T ELT) (($ (-1204 |#1|)) 20 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#2| (-510)) ELT)) (-3967 (((-599 |#2|) $) NIL T ELT)) (-3827 ((|#2| $ (-714)) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#2| (-848))) (|has| |#2| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#2| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#2| (-510)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) 14 T CONST)) (-2790 (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022))) NIL T ELT) (($ $ (-1022)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-1176 |#1| |#2|) (-13 (-1183 |#2|) (-571 (-1204 |#1|)) (-10 -8 (-15 -3888 ($ $ (-714) |#2| $)))) (-1117) (-989)) (T -1176)) -((-3888 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-714)) (-5 *1 (-1176 *4 *3)) (-14 *4 (-1117)) (-4 *3 (-989))))) -((-4108 (((-1176 |#3| |#4|) (-1 |#4| |#2|) (-1176 |#1| |#2|)) 15 T ELT))) -(((-1177 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 ((-1176 |#3| |#4|) (-1 |#4| |#2|) (-1176 |#1| |#2|)))) (-1117) (-989) (-1117) (-989)) (T -1177)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1176 *5 *6)) (-14 *5 (-1117)) (-4 *6 (-989)) (-4 *8 (-989)) (-5 *2 (-1176 *7 *8)) (-5 *1 (-1177 *5 *6 *7 *8)) (-14 *7 (-1117))))) -((-3891 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3889 ((|#1| |#3|) 13 T ELT)) (-3890 ((|#3| |#3|) 19 T ELT))) -(((-1178 |#1| |#2| |#3|) (-10 -7 (-15 -3889 (|#1| |#3|)) (-15 -3890 (|#3| |#3|)) (-15 -3891 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-510) (-931 |#1|) (-1183 |#2|)) (T -1178)) -((-3891 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-931 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1178 *4 *5 *3)) (-4 *3 (-1183 *5)))) (-3890 (*1 *2 *2) (-12 (-4 *3 (-510)) (-4 *4 (-931 *3)) (-5 *1 (-1178 *3 *4 *2)) (-4 *2 (-1183 *4)))) (-3889 (*1 *2 *3) (-12 (-4 *4 (-931 *2)) (-4 *2 (-510)) (-5 *1 (-1178 *2 *4 *3)) (-4 *3 (-1183 *4))))) -((-3893 (((-3 |#2| #1="failed") |#2| (-714) |#1|) 35 T ELT)) (-3892 (((-3 |#2| #1#) |#2| (-714)) 36 T ELT)) (-3895 (((-3 (-2 (|:| -3260 |#2|) (|:| -3259 |#2|)) #1#) |#2|) 50 T ELT)) (-3896 (((-599 |#2|) |#2|) 52 T ELT)) (-3894 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) -(((-1179 |#1| |#2|) (-10 -7 (-15 -3892 ((-3 |#2| #1="failed") |#2| (-714))) (-15 -3893 ((-3 |#2| #1#) |#2| (-714) |#1|)) (-15 -3894 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3895 ((-3 (-2 (|:| -3260 |#2|) (|:| -3259 |#2|)) #1#) |#2|)) (-15 -3896 ((-599 |#2|) |#2|))) (-13 (-510) (-120)) (-1183 |#1|)) (T -1179)) -((-3896 (*1 *2 *3) (-12 (-4 *4 (-13 (-510) (-120))) (-5 *2 (-599 *3)) (-5 *1 (-1179 *4 *3)) (-4 *3 (-1183 *4)))) (-3895 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-510) (-120))) (-5 *2 (-2 (|:| -3260 *3) (|:| -3259 *3))) (-5 *1 (-1179 *4 *3)) (-4 *3 (-1183 *4)))) (-3894 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-510) (-120))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-1183 *3)))) (-3893 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-714)) (-4 *4 (-13 (-510) (-120))) (-5 *1 (-1179 *4 *2)) (-4 *2 (-1183 *4)))) (-3892 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-714)) (-4 *4 (-13 (-510) (-120))) (-5 *1 (-1179 *4 *2)) (-4 *2 (-1183 *4))))) -((-3897 (((-3 (-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) "failed") |#2| |#2|) 30 T ELT))) -(((-1180 |#1| |#2|) (-10 -7 (-15 -3897 ((-3 (-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) "failed") |#2| |#2|))) (-510) (-1183 |#1|)) (T -1180)) -((-3897 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-510)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-1180 *4 *3)) (-4 *3 (-1183 *4))))) -((-3898 ((|#2| |#2| |#2|) 22 T ELT)) (-3899 ((|#2| |#2| |#2|) 36 T ELT)) (-3900 ((|#2| |#2| |#2| (-714) (-714)) 44 T ELT))) -(((-1181 |#1| |#2|) (-10 -7 (-15 -3898 (|#2| |#2| |#2|)) (-15 -3899 (|#2| |#2| |#2|)) (-15 -3900 (|#2| |#2| |#2| (-714) (-714)))) (-989) (-1183 |#1|)) (T -1181)) -((-3900 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-714)) (-4 *4 (-989)) (-5 *1 (-1181 *4 *2)) (-4 *2 (-1183 *4)))) (-3899 (*1 *2 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-1181 *3 *2)) (-4 *2 (-1183 *3)))) (-3898 (*1 *2 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-1181 *3 *2)) (-4 *2 (-1183 *3))))) -((-3917 (((-1207 |#2|) $ (-714)) 129 T ELT)) (-3204 (((-599 (-1022)) $) 16 T ELT)) (-3915 (($ (-1111 |#2|)) 80 T ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-1022))) 21 T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 216 T ELT)) (-3925 (($ $) 206 T ELT)) (-4121 (((-359 $) $) 204 T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1="failed") (-599 (-1111 $)) (-1111 $)) 95 T ELT)) (-3911 (($ $ (-714)) 84 T ELT)) (-3910 (($ $ (-714)) 86 T ELT)) (-3901 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3295 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-1022) #1#) $) NIL T ELT)) (-3294 ((|#2| $) 130 T ELT) (((-361 (-499)) $) NIL T ELT) (((-499) $) NIL T ELT) (((-1022) $) NIL T ELT)) (-3903 (($ $ $) 182 T ELT)) (-3902 (((-2 (|:| -4104 |#2|) (|:| -2075 $) (|:| -3023 $)) $ $) 184 T ELT)) (-3922 (((-714) $ $) 201 T ELT)) (-3585 (((-649 $) $) 149 T ELT)) (-3014 (($ |#2| (-714)) NIL T ELT) (($ $ (-1022) (-714)) 59 T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-2941 (((-714) $) NIL T ELT) (((-714) $ (-1022)) 54 T ELT) (((-599 (-714)) $ (-599 (-1022))) 55 T ELT)) (-3916 (((-1111 |#2|) $) 72 T ELT)) (-3205 (((-3 (-1022) #1#) $) 52 T ELT)) (-3912 (((-2 (|:| -2075 $) (|:| -3023 $)) $ (-714)) 83 T ELT)) (-3962 (($ $) 231 T ELT)) (-3586 (($) 134 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 213 T ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 101 T ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 99 T ELT)) (-3882 (((-359 $) $) 120 T ELT)) (-3918 (($ $ (-599 (-247 $))) 51 T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-1022) |#2|) 39 T ELT) (($ $ (-599 (-1022)) (-599 |#2|)) 36 T ELT) (($ $ (-1022) $) 32 T ELT) (($ $ (-599 (-1022)) (-599 $)) 30 T ELT)) (-1677 (((-714) $) 219 T ELT)) (-3950 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-361 $) (-361 $) (-361 $)) 176 T ELT) ((|#2| (-361 $) |#2|) 218 T ELT) (((-361 $) $ (-361 $)) 200 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 224 T ELT)) (-3908 (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022))) NIL T ELT) (($ $ (-1022)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT)) (-4098 (((-714) $) NIL T ELT) (((-714) $ (-1022)) 17 T ELT) (((-599 (-714)) $ (-599 (-1022))) 23 T ELT)) (-2938 ((|#2| $) NIL T ELT) (($ $ (-1022)) 151 T ELT)) (-3904 (((-3 $ #1#) $ $) 192 T ELT) (((-3 (-361 $) #1#) (-361 $) $) 188 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1022)) 64 T ELT) (($ (-361 (-499))) NIL T ELT) (($ $) NIL T ELT))) -(((-1182 |#1| |#2|) (-10 -7 (-15 -4096 (|#1| |#1|)) (-15 -2829 ((-1111 |#1|) (-1111 |#1|) (-1111 |#1|))) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -4121 ((-359 |#1|) |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -3586 (|#1|)) (-15 -3585 ((-649 |#1|) |#1|)) (-15 -3950 ((-361 |#1|) |#1| (-361 |#1|))) (-15 -1677 ((-714) |#1|)) (-15 -3000 ((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|)) (-15 -3962 (|#1| |#1|)) (-15 -3950 (|#2| (-361 |#1|) |#2|)) (-15 -3901 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3902 ((-2 (|:| -4104 |#2|) (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|)) (-15 -3903 (|#1| |#1| |#1|)) (-15 -3904 ((-3 (-361 |#1|) #1="failed") (-361 |#1|) |#1|)) (-15 -3904 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3922 ((-714) |#1| |#1|)) (-15 -3950 ((-361 |#1|) (-361 |#1|) (-361 |#1|))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3910 (|#1| |#1| (-714))) (-15 -3911 (|#1| |#1| (-714))) (-15 -3912 ((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| (-714))) (-15 -3915 (|#1| (-1111 |#2|))) (-15 -3916 ((-1111 |#2|) |#1|)) (-15 -3917 ((-1207 |#2|) |#1| (-714))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|) (-714))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1|)) (-15 -3950 (|#1| |#1| |#1|)) (-15 -3950 (|#2| |#1| |#2|)) (-15 -3882 ((-359 |#1|) |#1|)) (-15 -2828 ((-359 (-1111 |#1|)) (-1111 |#1|))) (-15 -2827 ((-359 (-1111 |#1|)) (-1111 |#1|))) (-15 -2826 ((-359 (-1111 |#1|)) (-1111 |#1|))) (-15 -2825 ((-3 (-599 (-1111 |#1|)) #1#) (-599 (-1111 |#1|)) (-1111 |#1|))) (-15 -2938 (|#1| |#1| (-1022))) (-15 -3204 ((-599 (-1022)) |#1|)) (-15 -2940 ((-714) |#1| (-599 (-1022)))) (-15 -2940 ((-714) |#1|)) (-15 -3014 (|#1| |#1| (-599 (-1022)) (-599 (-714)))) (-15 -3014 (|#1| |#1| (-1022) (-714))) (-15 -2941 ((-599 (-714)) |#1| (-599 (-1022)))) (-15 -2941 ((-714) |#1| (-1022))) (-15 -3205 ((-3 (-1022) #1#) |#1|)) (-15 -4098 ((-599 (-714)) |#1| (-599 (-1022)))) (-15 -4098 ((-714) |#1| (-1022))) (-15 -4096 (|#1| (-1022))) (-15 -3295 ((-3 (-1022) #1#) |#1|)) (-15 -3294 ((-1022) |#1|)) (-15 -3918 (|#1| |#1| (-599 (-1022)) (-599 |#1|))) (-15 -3918 (|#1| |#1| (-1022) |#1|)) (-15 -3918 (|#1| |#1| (-599 (-1022)) (-599 |#2|))) (-15 -3918 (|#1| |#1| (-1022) |#2|)) (-15 -3918 (|#1| |#1| (-599 |#1|) (-599 |#1|))) (-15 -3918 (|#1| |#1| |#1| |#1|)) (-15 -3918 (|#1| |#1| (-247 |#1|))) (-15 -3918 (|#1| |#1| (-599 (-247 |#1|)))) (-15 -4098 ((-714) |#1|)) (-15 -3014 (|#1| |#2| (-714))) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -4096 (|#1| |#2|)) (-15 -2941 ((-714) |#1|)) (-15 -2938 (|#2| |#1|)) (-15 -3908 (|#1| |#1| (-1022))) (-15 -3908 (|#1| |#1| (-599 (-1022)))) (-15 -3908 (|#1| |#1| (-1022) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1022)) (-599 (-714)))) (-15 -4096 (|#1| (-499))) (-15 -4096 ((-797) |#1|))) (-1183 |#2|) (-989)) (T -1182)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3917 (((-1207 |#1|) $ (-714)) 268 T ELT)) (-3204 (((-599 (-1022)) $) 120 T ELT)) (-3915 (($ (-1111 |#1|)) 266 T ELT)) (-3206 (((-1111 $) $ (-1022)) 135 T ELT) (((-1111 |#1|) $) 134 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 97 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 98 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 100 (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) 122 T ELT) (((-714) $ (-599 (-1022))) 121 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3905 (($ $ $) 253 (|has| |#1| (-510)) ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 110 (|has| |#1| (-848)) ELT)) (-3925 (($ $) 108 (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) 107 (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1="failed") (-599 (-1111 $)) (-1111 $)) 113 (|has| |#1| (-848)) ELT)) (-1678 (((-85) $ $) 238 (|has| |#1| (-318)) ELT)) (-3911 (($ $ (-714)) 261 T ELT)) (-3910 (($ $ (-714)) 260 T ELT)) (-3901 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 248 (|has| |#1| (-406)) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-361 (-499)) #2#) $) 175 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #2#) $) 173 (|has| |#1| (-978 (-499))) ELT) (((-3 (-1022) #2#) $) 150 T ELT)) (-3294 ((|#1| $) 177 T ELT) (((-361 (-499)) $) 176 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) 174 (|has| |#1| (-978 (-499))) ELT) (((-1022) $) 151 T ELT)) (-3906 (($ $ $ (-1022)) 118 (|has| |#1| (-146)) ELT) ((|#1| $ $) 256 (|has| |#1| (-146)) ELT)) (-2683 (($ $ $) 242 (|has| |#1| (-318)) ELT)) (-4109 (($ $) 168 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 146 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 145 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 144 T ELT) (((-647 |#1|) (-647 $)) 143 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 241 (|has| |#1| (-318)) ELT)) (-3909 (($ $ $) 259 T ELT)) (-3903 (($ $ $) 250 (|has| |#1| (-510)) ELT)) (-3902 (((-2 (|:| -4104 |#1|) (|:| -2075 $) (|:| -3023 $)) $ $) 249 (|has| |#1| (-510)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 236 (|has| |#1| (-318)) ELT)) (-3643 (($ $) 190 (|has| |#1| (-406)) ELT) (($ $ (-1022)) 115 (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) 119 T ELT)) (-3873 (((-85) $) 106 (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| (-714) $) 186 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 94 (-12 (|has| (-1022) (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 93 (-12 (|has| (-1022) (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-3922 (((-714) $ $) 254 (|has| |#1| (-510)) ELT)) (-2528 (((-85) $) 40 T ELT)) (-2536 (((-714) $) 183 T ELT)) (-3585 (((-649 $) $) 234 (|has| |#1| (-1092)) ELT)) (-3207 (($ (-1111 |#1|) (-1022)) 127 T ELT) (($ (-1111 $) (-1022)) 126 T ELT)) (-3927 (($ $ (-714)) 265 T ELT)) (-1675 (((-3 (-599 $) #3="failed") (-599 $) $) 245 (|has| |#1| (-318)) ELT)) (-2942 (((-599 $) $) 136 T ELT)) (-4087 (((-85) $) 166 T ELT)) (-3014 (($ |#1| (-714)) 167 T ELT) (($ $ (-1022) (-714)) 129 T ELT) (($ $ (-599 (-1022)) (-599 (-714))) 128 T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-1022)) 130 T ELT) (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 263 T ELT)) (-2941 (((-714) $) 184 T ELT) (((-714) $ (-1022)) 132 T ELT) (((-599 (-714)) $ (-599 (-1022))) 131 T ELT)) (-1695 (($ (-1 (-714) (-714)) $) 185 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3916 (((-1111 |#1|) $) 267 T ELT)) (-3205 (((-3 (-1022) #4="failed") $) 133 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 148 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 147 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 142 T ELT) (((-647 |#1|) (-1207 $)) 141 T ELT)) (-3015 (($ $) 163 T ELT)) (-3312 ((|#1| $) 162 T ELT)) (-1993 (($ (-599 $)) 104 (|has| |#1| (-406)) ELT) (($ $ $) 103 (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3912 (((-2 (|:| -2075 $) (|:| -3023 $)) $ (-714)) 262 T ELT)) (-2944 (((-3 (-599 $) #4#) $) 124 T ELT)) (-2943 (((-3 (-599 $) #4#) $) 125 T ELT)) (-2945 (((-3 (-2 (|:| |var| (-1022)) (|:| -2519 (-714))) #4#) $) 123 T ELT)) (-3962 (($ $) 246 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3586 (($) 233 (|has| |#1| (-1092)) CONST)) (-3381 (((-1060) $) 12 T ELT)) (-1895 (((-85) $) 180 T ELT)) (-1894 ((|#1| $) 181 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 105 (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) 102 (|has| |#1| (-406)) ELT) (($ $ $) 101 (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 112 (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 111 (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) 109 (|has| |#1| (-848)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 244 (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 243 (|has| |#1| (-318)) ELT)) (-3606 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-510)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 237 (|has| |#1| (-318)) ELT)) (-3918 (($ $ (-599 (-247 $))) 159 T ELT) (($ $ (-247 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-599 $) (-599 $)) 156 T ELT) (($ $ (-1022) |#1|) 155 T ELT) (($ $ (-599 (-1022)) (-599 |#1|)) 154 T ELT) (($ $ (-1022) $) 153 T ELT) (($ $ (-599 (-1022)) (-599 $)) 152 T ELT)) (-1677 (((-714) $) 239 (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ |#1|) 278 T ELT) (($ $ $) 277 T ELT) (((-361 $) (-361 $) (-361 $)) 255 (|has| |#1| (-510)) ELT) ((|#1| (-361 $) |#1|) 247 (|has| |#1| (-318)) ELT) (((-361 $) $ (-361 $)) 235 (|has| |#1| (-510)) ELT)) (-3914 (((-3 $ "failed") $ (-714)) 264 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 240 (|has| |#1| (-318)) ELT)) (-3907 (($ $ (-1022)) 117 (|has| |#1| (-146)) ELT) ((|#1| $) 257 (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 (-1022)) (-599 (-714))) 49 T ELT) (($ $ (-1022) (-714)) 48 T ELT) (($ $ (-599 (-1022))) 47 T ELT) (($ $ (-1022)) 45 T ELT) (($ $) 276 T ELT) (($ $ (-714)) 274 T ELT) (($ $ (-1 |#1| |#1|)) 272 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 271 T ELT) (($ $ (-1 |#1| |#1|) $) 258 T ELT) (($ $ (-1117)) 232 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 230 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 229 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 228 (|has| |#1| (-838 (-1117))) ELT)) (-4098 (((-714) $) 164 T ELT) (((-714) $ (-1022)) 140 T ELT) (((-599 (-714)) $ (-599 (-1022))) 139 T ELT)) (-4122 (((-825 (-333)) $) 92 (-12 (|has| (-1022) (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) 91 (-12 (|has| (-1022) (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) 90 (-12 (|has| (-1022) (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT)) (-2938 ((|#1| $) 189 (|has| |#1| (-406)) ELT) (($ $ (-1022)) 116 (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) 114 (-2681 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-3904 (((-3 $ "failed") $ $) 252 (|has| |#1| (-510)) ELT) (((-3 (-361 $) "failed") (-361 $) $) 251 (|has| |#1| (-510)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 179 T ELT) (($ (-1022)) 149 T ELT) (($ (-361 (-499))) 88 (-3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ELT) (($ $) 95 (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) 182 T ELT)) (-3827 ((|#1| $ (-714)) 169 T ELT) (($ $ (-1022) (-714)) 138 T ELT) (($ $ (-599 (-1022)) (-599 (-714))) 137 T ELT)) (-2823 (((-649 $) $) 89 (-3677 (-2681 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) 37 T CONST)) (-1693 (($ $ $ (-714)) 187 (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 99 (|has| |#1| (-510)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-599 (-1022)) (-599 (-714))) 52 T ELT) (($ $ (-1022) (-714)) 51 T ELT) (($ $ (-599 (-1022))) 50 T ELT) (($ $ (-1022)) 46 T ELT) (($ $) 275 T ELT) (($ $ (-714)) 273 T ELT) (($ $ (-1 |#1| |#1|)) 270 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 269 T ELT) (($ $ (-1117)) 231 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 227 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 226 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 225 (|has| |#1| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 170 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 172 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) 171 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-1183 |#1|) (-113) (-989)) (T -1183)) -((-3917 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-1183 *4)) (-4 *4 (-989)) (-5 *2 (-1207 *4)))) (-3916 (*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-989)) (-5 *2 (-1111 *3)))) (-3915 (*1 *1 *2) (-12 (-5 *2 (-1111 *3)) (-4 *3 (-989)) (-4 *1 (-1183 *3)))) (-3927 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1183 *3)) (-4 *3 (-989)))) (-3914 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-714)) (-4 *1 (-1183 *3)) (-4 *3 (-989)))) (-3913 (*1 *2 *1 *1) (-12 (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-1183 *3)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *4 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-1183 *4)))) (-3911 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1183 *3)) (-4 *3 (-989)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1183 *3)) (-4 *3 (-989)))) (-3909 (*1 *1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)))) (-3908 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1183 *3)) (-4 *3 (-989)))) (-3907 (*1 *2 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-146)))) (-3906 (*1 *2 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-146)))) (-3950 (*1 *2 *2 *2) (-12 (-5 *2 (-361 *1)) (-4 *1 (-1183 *3)) (-4 *3 (-989)) (-4 *3 (-510)))) (-3922 (*1 *2 *1 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-989)) (-4 *3 (-510)) (-5 *2 (-714)))) (-3905 (*1 *1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-510)))) (-3904 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-510)))) (-3904 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-361 *1)) (-4 *1 (-1183 *3)) (-4 *3 (-989)) (-4 *3 (-510)))) (-3903 (*1 *1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-510)))) (-3902 (*1 *2 *1 *1) (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -4104 *3) (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-1183 *3)))) (-3901 (*1 *2 *1 *1) (-12 (-4 *3 (-406)) (-4 *3 (-989)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1183 *3)))) (-3950 (*1 *2 *3 *2) (-12 (-5 *3 (-361 *1)) (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-38 (-361 (-499))))))) -(-13 (-888 |t#1| (-714) (-1022)) (-240 |t#1| |t#1|) (-240 $ $) (-190) (-184 |t#1|) (-10 -8 (-15 -3917 ((-1207 |t#1|) $ (-714))) (-15 -3916 ((-1111 |t#1|) $)) (-15 -3915 ($ (-1111 |t#1|))) (-15 -3927 ($ $ (-714))) (-15 -3914 ((-3 $ "failed") $ (-714))) (-15 -3913 ((-2 (|:| -2075 $) (|:| -3023 $)) $ $)) (-15 -3912 ((-2 (|:| -2075 $) (|:| -3023 $)) $ (-714))) (-15 -3911 ($ $ (-714))) (-15 -3910 ($ $ (-714))) (-15 -3909 ($ $ $)) (-15 -3908 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1092)) (-6 (-1092)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3907 (|t#1| $)) (-15 -3906 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-6 (-240 (-361 $) (-361 $))) (-15 -3950 ((-361 $) (-361 $) (-361 $))) (-15 -3922 ((-714) $ $)) (-15 -3905 ($ $ $)) (-15 -3904 ((-3 $ "failed") $ $)) (-15 -3904 ((-3 (-361 $) "failed") (-361 $) $)) (-15 -3903 ($ $ $)) (-15 -3902 ((-2 (|:| -4104 |t#1|) (|:| -2075 $) (|:| -3023 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-406)) (-15 -3901 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-318)) (PROGN (-6 (-261)) (-6 -4141) (-15 -3950 (|t#1| (-361 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-361 (-499)))) (-15 -3962 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-714)) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ((-571 (-499)) . T) ((-571 (-1022)) . T) ((-571 |#1|) . T) ((-571 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318))) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-569 (-488)) -12 (|has| |#1| (-569 (-488))) (|has| (-1022) (-569 (-488)))) ((-569 (-825 (-333))) -12 (|has| |#1| (-569 (-825 (-333)))) (|has| (-1022) (-569 (-825 (-333))))) ((-569 (-825 (-499))) -12 (|has| |#1| (-569 (-825 (-499)))) (|has| (-1022) (-569 (-825 (-499))))) ((-186 $) . T) ((-184 |#1|) . T) ((-190) . T) ((-189) . T) ((-224 |#1|) . T) ((-240 (-361 $) (-361 $)) |has| |#1| (-510)) ((-240 |#1| |#1|) . T) ((-240 $ $) . T) ((-244) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318))) ((-261) |has| |#1| (-318)) ((-263 $) . T) ((-280 |#1| (-714)) . T) ((-332 |#1|) . T) ((-366 |#1|) . T) ((-406) -3677 (|has| |#1| (-848)) (|has| |#1| (-406)) (|has| |#1| (-318))) ((-468 (-1022) |#1|) . T) ((-468 (-1022) $) . T) ((-468 $ $) . T) ((-510) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318))) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 (-499)) |has| |#1| (-596 (-499))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318))) ((-596 (-499)) |has| |#1| (-596 (-499))) ((-596 |#1|) . T) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318))) ((-684) . T) ((-831 $ (-1022)) . T) ((-831 $ (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-836 (-1022)) . T) ((-836 (-1117)) |has| |#1| (-836 (-1117))) ((-838 (-1022)) . T) ((-838 (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-821 (-333)) -12 (|has| |#1| (-821 (-333))) (|has| (-1022) (-821 (-333)))) ((-821 (-499)) -12 (|has| |#1| (-821 (-499))) (|has| (-1022) (-821 (-499)))) ((-888 |#1| (-714) (-1022)) . T) ((-848) |has| |#1| (-848)) ((-859) |has| |#1| (-318)) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 (-1022)) . T) ((-978 |#1|) . T) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1092) |has| |#1| (-1092)) ((-1157) . T) ((-1162) |has| |#1| (-848))) -((-4108 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) -(((-1184 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 (|#4| (-1 |#3| |#1|) |#2|))) (-989) (-1183 |#1|) (-989) (-1183 |#3|)) (T -1184)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-4 *2 (-1183 *6)) (-5 *1 (-1184 *5 *4 *6 *2)) (-4 *4 (-1183 *5))))) -((-3204 (((-599 (-1022)) $) 34 T ELT)) (-4109 (($ $) 31 T ELT)) (-3014 (($ |#2| |#3|) NIL T ELT) (($ $ (-1022) |#3|) 28 T ELT) (($ $ (-599 (-1022)) (-599 |#3|)) 27 T ELT)) (-3015 (($ $) 14 T ELT)) (-3312 ((|#2| $) 12 T ELT)) (-4098 ((|#3| $) 10 T ELT))) -(((-1185 |#1| |#2| |#3|) (-10 -7 (-15 -3204 ((-599 (-1022)) |#1|)) (-15 -3014 (|#1| |#1| (-599 (-1022)) (-599 |#3|))) (-15 -3014 (|#1| |#1| (-1022) |#3|)) (-15 -4109 (|#1| |#1|)) (-15 -3014 (|#1| |#2| |#3|)) (-15 -4098 (|#3| |#1|)) (-15 -3015 (|#1| |#1|)) (-15 -3312 (|#2| |#1|))) (-1186 |#2| |#3|) (-989) (-737)) (T -1185)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 (-1022)) $) 92 T ELT)) (-3981 (((-1117) $) 126 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 68 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 69 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 71 (|has| |#1| (-510)) ELT)) (-3921 (($ $ |#2|) 121 T ELT) (($ $ |#2| |#2|) 120 T ELT)) (-3924 (((-1095 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 127 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-4109 (($ $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3013 (((-85) $) 91 T ELT)) (-3922 ((|#2| $) 123 T ELT) ((|#2| $ |#2|) 122 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3927 (($ $ (-857)) 124 T ELT)) (-4087 (((-85) $) 79 T ELT)) (-3014 (($ |#1| |#2|) 78 T ELT) (($ $ (-1022) |#2|) 94 T ELT) (($ $ (-599 (-1022)) (-599 |#2|)) 93 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3015 (($ $) 82 T ELT)) (-3312 ((|#1| $) 83 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3919 (($ $ |#2|) 118 T ELT)) (-3606 (((-3 $ "failed") $ $) 67 (|has| |#1| (-510)) ELT)) (-3918 (((-1095 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3950 ((|#1| $ |#2|) 128 T ELT) (($ $ $) 104 (|has| |#2| (-1052)) ELT)) (-3908 (($ $ (-1117)) 116 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-599 (-1117))) 114 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1117) (-714)) 113 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 112 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-714)) 106 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-4098 ((|#2| $) 81 T ELT)) (-3012 (($ $) 90 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 (-499))) 74 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) 66 (|has| |#1| (-510)) ELT) (($ |#1|) 64 (|has| |#1| (-146)) ELT)) (-3827 ((|#1| $ |#2|) 76 T ELT)) (-2823 (((-649 $) $) 65 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-3923 ((|#1| $) 125 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 70 (|has| |#1| (-510)) ELT)) (-3920 ((|#1| $ |#2|) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1117)) 115 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-599 (-1117))) 111 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1117) (-714)) 110 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 109 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-714)) 105 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 75 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-361 (-499)) $) 73 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 72 (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-1186 |#1| |#2|) (-113) (-989) (-737)) (T -1186)) -((-3924 (*1 *2 *1) (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-1095 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3981 (*1 *2 *1) (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-1117)))) (-3923 (*1 *2 *1) (-12 (-4 *1 (-1186 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989)))) (-3927 (*1 *1 *1 *2) (-12 (-5 *2 (-857)) (-4 *1 (-1186 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) (-3922 (*1 *2 *1 *2) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) (-3921 (*1 *1 *1 *2) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) (-3921 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) (-3920 (*1 *2 *1 *3) (-12 (-4 *1 (-1186 *2 *3)) (-4 *3 (-737)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4096 (*2 (-1117)))) (-4 *2 (-989)))) (-3919 (*1 *1 *1 *2) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) (-3918 (*1 *2 *1 *3) (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1095 *3))))) -(-13 (-913 |t#1| |t#2| (-1022)) (-240 |t#2| |t#1|) (-10 -8 (-15 -3924 ((-1095 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3981 ((-1117) $)) (-15 -3923 (|t#1| $)) (-15 -3927 ($ $ (-857))) (-15 -3922 (|t#2| $)) (-15 -3922 (|t#2| $ |t#2|)) (-15 -3921 ($ $ |t#2|)) (-15 -3921 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4096 (|t#1| (-1117)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3920 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3919 ($ $ |t#2|)) (IF (|has| |t#2| (-1052)) (-6 (-240 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-190)) (IF (|has| |t#1| (-836 (-1117))) (-6 (-836 (-1117))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3918 ((-1095 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-510)) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-571 (-499)) . T) ((-571 |#1|) |has| |#1| (-146)) ((-571 $) |has| |#1| (-510)) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-190) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-240 |#2| |#1|) . T) ((-240 $ $) |has| |#2| (-1052)) ((-244) |has| |#1| (-510)) ((-510) |has| |#1| (-510)) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) |has| |#1| (-510)) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) |has| |#1| (-510)) ((-684) . T) ((-831 $ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-836 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-838 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-913 |#1| |#2| (-1022)) . T) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-3925 ((|#2| |#2|) 12 T ELT)) (-4121 (((-359 |#2|) |#2|) 14 T ELT)) (-3926 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-499))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-499)))) 30 T ELT))) -(((-1187 |#1| |#2|) (-10 -7 (-15 -4121 ((-359 |#2|) |#2|)) (-15 -3925 (|#2| |#2|)) (-15 -3926 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-499))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-499)))))) (-510) (-13 (-1183 |#1|) (-510) (-10 -8 (-15 -3282 ($ $ $))))) (T -1187)) -((-3926 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-499)))) (-4 *4 (-13 (-1183 *3) (-510) (-10 -8 (-15 -3282 ($ $ $))))) (-4 *3 (-510)) (-5 *1 (-1187 *3 *4)))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-1183 *3) (-510) (-10 -8 (-15 -3282 ($ $ $))))))) (-4121 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-359 *3)) (-5 *1 (-1187 *4 *3)) (-4 *3 (-13 (-1183 *4) (-510) (-10 -8 (-15 -3282 ($ $ $)))))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) 11 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-361 (-499))) NIL T ELT) (($ $ (-361 (-499)) (-361 (-499))) NIL T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|))) $) NIL T ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-714) (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|)))) NIL T ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-1167 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1197 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3294 (((-1167 |#1| |#2| |#3|) $) NIL T ELT) (((-1197 |#1| |#2| |#3|) $) NIL T ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3931 (((-361 (-499)) $) 68 T ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3932 (($ (-361 (-499)) (-1167 |#1| |#2| |#3|)) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3013 (((-85) $) NIL T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-361 (-499)) $) NIL T ELT) (((-361 (-499)) $ (-361 (-499))) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-361 (-499))) 30 T ELT) (($ $ (-1022) (-361 (-499))) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-361 (-499)))) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4092 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3930 (((-1167 |#1| |#2| |#3|) $) 71 T ELT)) (-3928 (((-3 (-1167 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3929 (((-1167 |#1| |#2| |#3|) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3962 (($ $) 39 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT) (($ $ (-1204 |#2|)) 40 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-361 (-499))) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4093 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-361 (-499))) NIL T ELT) (($ $ $) NIL (|has| (-361 (-499)) (-1052)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-1204 |#2|)) 38 T ELT)) (-4098 (((-361 (-499)) $) NIL T ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) NIL T ELT)) (-4096 (((-797) $) 107 T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1167 |#1| |#2| |#3|)) 16 T ELT) (($ (-1197 |#1| |#2| |#3|)) 17 T ELT) (($ (-1204 |#2|)) 36 T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-361 (-499))) NIL T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-3923 ((|#1| $) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-361 (-499))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 32 T CONST)) (-2785 (($) 26 T CONST)) (-2790 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-1204 |#2|)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 34 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-1188 |#1| |#2| |#3|) (-13 (-1192 |#1| (-1167 |#1| |#2| |#3|)) (-831 $ (-1204 |#2|)) (-978 (-1197 |#1| |#2| |#3|)) (-571 (-1204 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-361 (-499)))) (-15 -3962 ($ $ (-1204 |#2|))) |%noBranch|))) (-989) (-1117) |#1|) (T -1188)) -((-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1188 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3)))) -((-4108 (((-1188 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1188 |#1| |#3| |#5|)) 24 T ELT))) -(((-1189 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4108 ((-1188 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1188 |#1| |#3| |#5|)))) (-989) (-989) (-1117) (-1117) |#1| |#2|) (T -1189)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1188 *5 *7 *9)) (-4 *5 (-989)) (-4 *6 (-989)) (-14 *7 (-1117)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1188 *6 *8 *10)) (-5 *1 (-1189 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1117))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 (-1022)) $) 92 T ELT)) (-3981 (((-1117) $) 126 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 68 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 69 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 71 (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-361 (-499))) 121 T ELT) (($ $ (-361 (-499)) (-361 (-499))) 120 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|))) $) 127 T ELT)) (-3632 (($ $) 160 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 143 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 187 (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) 188 (|has| |#1| (-318)) ELT)) (-3158 (($ $) 142 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1678 (((-85) $ $) 178 (|has| |#1| (-318)) ELT)) (-3630 (($ $) 159 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 144 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-714) (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|)))) 196 T ELT)) (-3634 (($ $) 158 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 145 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) 22 T CONST)) (-2683 (($ $ $) 182 (|has| |#1| (-318)) ELT)) (-4109 (($ $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 181 (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 176 (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) 189 (|has| |#1| (-318)) ELT)) (-3013 (((-85) $) 91 T ELT)) (-3777 (($) 170 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-361 (-499)) $) 123 T ELT) (((-361 (-499)) $ (-361 (-499))) 122 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 141 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) 124 T ELT) (($ $ (-361 (-499))) 195 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 185 (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) 79 T ELT)) (-3014 (($ |#1| (-361 (-499))) 78 T ELT) (($ $ (-1022) (-361 (-499))) 94 T ELT) (($ $ (-599 (-1022)) (-599 (-361 (-499)))) 93 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4092 (($ $) 167 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) 82 T ELT)) (-3312 ((|#1| $) 83 T ELT)) (-1993 (($ (-599 $)) 174 (|has| |#1| (-318)) ELT) (($ $ $) 173 (|has| |#1| (-318)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 190 (|has| |#1| (-318)) ELT)) (-3962 (($ $) 194 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) 193 (-3677 (-12 (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143)) (|has| |#1| (-38 (-361 (-499))))) (-12 (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-38 (-361 (-499)))))) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 175 (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) 172 (|has| |#1| (-318)) ELT) (($ $ $) 171 (|has| |#1| (-318)) ELT)) (-3882 (((-359 $) $) 186 (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 183 (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-361 (-499))) 118 T ELT)) (-3606 (((-3 $ "failed") $ $) 67 (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 177 (|has| |#1| (-318)) ELT)) (-4093 (($ $) 168 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) ELT)) (-1677 (((-714) $) 179 (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-361 (-499))) 128 T ELT) (($ $ $) 104 (|has| (-361 (-499)) (-1052)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 180 (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1117)) 116 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) 114 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) 113 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 112 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) 106 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT)) (-4098 (((-361 (-499)) $) 81 T ELT)) (-3635 (($ $) 157 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 146 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 156 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 147 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 155 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 148 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) 90 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-146)) ELT) (($ (-361 (-499))) 74 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) 66 (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-361 (-499))) 76 T ELT)) (-2823 (((-649 $) $) 65 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-3923 ((|#1| $) 125 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3638 (($ $) 166 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 154 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) 70 (|has| |#1| (-510)) ELT)) (-3636 (($ $) 165 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 153 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 164 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 152 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-361 (-499))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) 163 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 151 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 162 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 150 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 161 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 149 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1117)) 115 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) 111 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) 110 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 109 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) 105 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 75 (|has| |#1| (-318)) ELT) (($ $ $) 192 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 191 (|has| |#1| (-318)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 140 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-361 (-499)) $) 73 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 72 (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-1190 |#1|) (-113) (-989)) (T -1190)) -((-3968 (*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-5 *3 (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| *4)))) (-4 *4 (-989)) (-4 *1 (-1190 *4)))) (-3927 (*1 *1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-4 *1 (-1190 *3)) (-4 *3 (-989)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-1190 *2)) (-4 *2 (-989)) (-4 *2 (-38 (-361 (-499)))))) (-3962 (*1 *1 *1 *2) (-3677 (-12 (-5 *2 (-1117)) (-4 *1 (-1190 *3)) (-4 *3 (-989)) (-12 (-4 *3 (-29 (-499))) (-4 *3 (-898)) (-4 *3 (-1143)) (-4 *3 (-38 (-361 (-499)))))) (-12 (-5 *2 (-1117)) (-4 *1 (-1190 *3)) (-4 *3 (-989)) (-12 (|has| *3 (-15 -3204 ((-599 *2) *3))) (|has| *3 (-15 -3962 (*3 *3 *2))) (-4 *3 (-38 (-361 (-499))))))))) -(-13 (-1186 |t#1| (-361 (-499))) (-10 -8 (-15 -3968 ($ (-714) (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |t#1|))))) (-15 -3927 ($ $ (-361 (-499)))) (IF (|has| |t#1| (-38 (-361 (-499)))) (PROGN (-15 -3962 ($ $)) (IF (|has| |t#1| (-15 -3962 (|t#1| |t#1| (-1117)))) (IF (|has| |t#1| (-15 -3204 ((-599 (-1117)) |t#1|))) (-15 -3962 ($ $ (-1117))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1143)) (IF (|has| |t#1| (-898)) (IF (|has| |t#1| (-29 (-499))) (-15 -3962 ($ $ (-1117))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-942)) (-6 (-1143))) |%noBranch|) (IF (|has| |t#1| (-318)) (-6 (-318)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-361 (-499))) . T) ((-25) . T) ((-38 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-35) |has| |#1| (-38 (-361 (-499)))) ((-66) |has| |#1| (-38 (-361 (-499)))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-571 (-499)) . T) ((-571 |#1|) |has| |#1| (-146)) ((-571 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ((-200) |has| |#1| (-318)) ((-238) |has| |#1| (-38 (-361 (-499)))) ((-240 (-361 (-499)) |#1|) . T) ((-240 $ $) |has| (-361 (-499)) (-1052)) ((-244) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-261) |has| |#1| (-318)) ((-318) |has| |#1| (-318)) ((-406) |has| |#1| (-318)) ((-447) |has| |#1| (-38 (-361 (-499)))) ((-510) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-604 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-675 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-684) . T) ((-831 $ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ((-836 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ((-838 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ((-913 |#1| (-361 (-499)) (-1022)) . T) ((-859) |has| |#1| (-318)) ((-942) |has| |#1| (-38 (-361 (-499)))) ((-991 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-996 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1143) |has| |#1| (-38 (-361 (-499)))) ((-1146) |has| |#1| (-38 (-361 (-499)))) ((-1157) . T) ((-1162) |has| |#1| (-318)) ((-1186 |#1| (-361 (-499))) . T)) -((-3326 (((-85) $) 12 T ELT)) (-3295 (((-3 |#3| "failed") $) 17 T ELT)) (-3294 ((|#3| $) 14 T ELT))) -(((-1191 |#1| |#2| |#3|) (-10 -7 (-15 -3295 ((-3 |#3| "failed") |#1|)) (-15 -3294 (|#3| |#1|)) (-15 -3326 ((-85) |#1|))) (-1192 |#2| |#3|) (-989) (-1169 |#2|)) (T -1191)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 (-1022)) $) 92 T ELT)) (-3981 (((-1117) $) 126 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 68 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 69 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 71 (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-361 (-499))) 121 T ELT) (($ $ (-361 (-499)) (-361 (-499))) 120 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|))) $) 127 T ELT)) (-3632 (($ $) 160 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 143 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 187 (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) 188 (|has| |#1| (-318)) ELT)) (-3158 (($ $) 142 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1678 (((-85) $ $) 178 (|has| |#1| (-318)) ELT)) (-3630 (($ $) 159 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 144 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-714) (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|)))) 196 T ELT)) (-3634 (($ $) 158 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 145 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#2| "failed") $) 209 T ELT)) (-3294 ((|#2| $) 210 T ELT)) (-2683 (($ $ $) 182 (|has| |#1| (-318)) ELT)) (-4109 (($ $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3931 (((-361 (-499)) $) 206 T ELT)) (-2682 (($ $ $) 181 (|has| |#1| (-318)) ELT)) (-3932 (($ (-361 (-499)) |#2|) 207 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 176 (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) 189 (|has| |#1| (-318)) ELT)) (-3013 (((-85) $) 91 T ELT)) (-3777 (($) 170 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-361 (-499)) $) 123 T ELT) (((-361 (-499)) $ (-361 (-499))) 122 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 141 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) 124 T ELT) (($ $ (-361 (-499))) 195 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 185 (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) 79 T ELT)) (-3014 (($ |#1| (-361 (-499))) 78 T ELT) (($ $ (-1022) (-361 (-499))) 94 T ELT) (($ $ (-599 (-1022)) (-599 (-361 (-499)))) 93 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4092 (($ $) 167 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) 82 T ELT)) (-3312 ((|#1| $) 83 T ELT)) (-1993 (($ (-599 $)) 174 (|has| |#1| (-318)) ELT) (($ $ $) 173 (|has| |#1| (-318)) ELT)) (-3930 ((|#2| $) 205 T ELT)) (-3928 (((-3 |#2| "failed") $) 203 T ELT)) (-3929 ((|#2| $) 204 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 190 (|has| |#1| (-318)) ELT)) (-3962 (($ $) 194 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) 193 (-3677 (-12 (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143)) (|has| |#1| (-38 (-361 (-499))))) (-12 (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-38 (-361 (-499)))))) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 175 (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) 172 (|has| |#1| (-318)) ELT) (($ $ $) 171 (|has| |#1| (-318)) ELT)) (-3882 (((-359 $) $) 186 (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 183 (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-361 (-499))) 118 T ELT)) (-3606 (((-3 $ "failed") $ $) 67 (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 177 (|has| |#1| (-318)) ELT)) (-4093 (($ $) 168 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) ELT)) (-1677 (((-714) $) 179 (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-361 (-499))) 128 T ELT) (($ $ $) 104 (|has| (-361 (-499)) (-1052)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 180 (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1117)) 116 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) 114 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) 113 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 112 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) 106 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT)) (-4098 (((-361 (-499)) $) 81 T ELT)) (-3635 (($ $) 157 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 146 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 156 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 147 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 155 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 148 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) 90 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-146)) ELT) (($ |#2|) 208 T ELT) (($ (-361 (-499))) 74 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) 66 (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-361 (-499))) 76 T ELT)) (-2823 (((-649 $) $) 65 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-3923 ((|#1| $) 125 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3638 (($ $) 166 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 154 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) 70 (|has| |#1| (-510)) ELT)) (-3636 (($ $) 165 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 153 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 164 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 152 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-361 (-499))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) 163 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 151 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 162 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 150 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 161 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 149 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1117)) 115 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) 111 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) 110 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 109 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) 105 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 75 (|has| |#1| (-318)) ELT) (($ $ $) 192 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 191 (|has| |#1| (-318)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 140 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-361 (-499)) $) 73 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 72 (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-1192 |#1| |#2|) (-113) (-989) (-1169 |t#1|)) (T -1192)) -((-4098 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1169 *3)) (-5 *2 (-361 (-499))))) (-3932 (*1 *1 *2 *3) (-12 (-5 *2 (-361 (-499))) (-4 *4 (-989)) (-4 *1 (-1192 *4 *3)) (-4 *3 (-1169 *4)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1169 *3)) (-5 *2 (-361 (-499))))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1169 *3)))) (-3929 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1169 *3)))) (-3928 (*1 *2 *1) (|partial| -12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1169 *3))))) -(-13 (-1190 |t#1|) (-978 |t#2|) (-571 |t#2|) (-10 -8 (-15 -3932 ($ (-361 (-499)) |t#2|)) (-15 -3931 ((-361 (-499)) $)) (-15 -3930 (|t#2| $)) (-15 -4098 ((-361 (-499)) $)) (-15 -3929 (|t#2| $)) (-15 -3928 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-361 (-499))) . T) ((-25) . T) ((-38 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-35) |has| |#1| (-38 (-361 (-499)))) ((-66) |has| |#1| (-38 (-361 (-499)))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-571 (-499)) . T) ((-571 |#1|) |has| |#1| (-146)) ((-571 |#2|) . T) ((-571 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ((-200) |has| |#1| (-318)) ((-238) |has| |#1| (-38 (-361 (-499)))) ((-240 (-361 (-499)) |#1|) . T) ((-240 $ $) |has| (-361 (-499)) (-1052)) ((-244) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-261) |has| |#1| (-318)) ((-318) |has| |#1| (-318)) ((-406) |has| |#1| (-318)) ((-447) |has| |#1| (-38 (-361 (-499)))) ((-510) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-604 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-675 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-684) . T) ((-831 $ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ((-836 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ((-838 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ((-913 |#1| (-361 (-499)) (-1022)) . T) ((-859) |has| |#1| (-318)) ((-942) |has| |#1| (-38 (-361 (-499)))) ((-978 |#2|) . T) ((-991 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-996 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1143) |has| |#1| (-38 (-361 (-499)))) ((-1146) |has| |#1| (-38 (-361 (-499)))) ((-1157) . T) ((-1162) |has| |#1| (-318)) ((-1186 |#1| (-361 (-499))) . T) ((-1190 |#1|) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) 104 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-361 (-499))) 116 T ELT) (($ $ (-361 (-499)) (-361 (-499))) 118 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|))) $) 54 T ELT)) (-3632 (($ $) 192 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 168 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3630 (($ $) 188 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 164 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-714) (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|)))) 65 T ELT)) (-3634 (($ $) 196 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 172 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) NIL T ELT)) (-3294 ((|#2| $) NIL T ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) 85 T ELT)) (-3931 (((-361 (-499)) $) 13 T ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3932 (($ (-361 (-499)) |#2|) 11 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3013 (((-85) $) 74 T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-361 (-499)) $) 113 T ELT) (((-361 (-499)) $ (-361 (-499))) 114 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) 130 T ELT) (($ $ (-361 (-499))) 128 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-361 (-499))) 33 T ELT) (($ $ (-1022) (-361 (-499))) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-361 (-499)))) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-4092 (($ $) 162 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3930 ((|#2| $) 12 T ELT)) (-3928 (((-3 |#2| #1#) $) 44 T ELT)) (-3929 ((|#2| $) 45 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 101 (|has| |#1| (-318)) ELT)) (-3962 (($ $) 146 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) 151 (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-361 (-499))) 122 T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4093 (($ $) 160 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-361 (-499))) 108 T ELT) (($ $ $) 94 (|has| (-361 (-499)) (-1052)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1117)) 138 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT)) (-4098 (((-361 (-499)) $) 16 T ELT)) (-3635 (($ $) 198 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 174 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 194 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 170 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 190 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 166 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) 120 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-146)) ELT) (($ |#2|) 34 T ELT) (($ (-361 (-499))) 139 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-361 (-499))) 107 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 127 T CONST)) (-3923 ((|#1| $) 106 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) 204 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 180 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) 200 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 176 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 208 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 184 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-361 (-499))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) 210 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 186 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 206 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 182 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 202 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 178 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 21 T CONST)) (-2785 (($) 17 T CONST)) (-2790 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT)) (-3174 (((-85) $ $) 72 T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT) (($ $ $) 100 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3989 (($ $ $) 76 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 82 T ELT) (($ $ (-499)) 157 (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 158 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-1193 |#1| |#2|) (-1192 |#1| |#2|) (-989) (-1169 |#1|)) (T -1193)) -NIL -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 37 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| (-1188 |#2| |#3| |#4|) (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-1188 |#2| |#3| |#4|) (-978 (-361 (-499)))) ELT) (((-3 (-1188 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3294 (((-499) $) NIL (|has| (-1188 |#2| |#3| |#4|) (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| (-1188 |#2| |#3| |#4|) (-978 (-361 (-499)))) ELT) (((-1188 |#2| |#3| |#4|) $) NIL T ELT)) (-4109 (($ $) 41 T ELT)) (-3607 (((-3 $ #1#) $) 27 T ELT)) (-3643 (($ $) NIL (|has| (-1188 |#2| |#3| |#4|) (-406)) ELT)) (-1694 (($ $ (-1188 |#2| |#3| |#4|) (-273 |#2| |#3| |#4|) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) 11 T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ (-1188 |#2| |#3| |#4|) (-273 |#2| |#3| |#4|)) 25 T ELT)) (-2941 (((-273 |#2| |#3| |#4|) $) NIL T ELT)) (-1695 (($ (-1 (-273 |#2| |#3| |#4|) (-273 |#2| |#3| |#4|)) $) NIL T ELT)) (-4108 (($ (-1 (-1188 |#2| |#3| |#4|) (-1188 |#2| |#3| |#4|)) $) NIL T ELT)) (-3934 (((-3 (-775 |#2|) #1#) $) 91 T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 (((-1188 |#2| |#3| |#4|) $) 20 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 (((-1188 |#2| |#3| |#4|) $) NIL T ELT)) (-3606 (((-3 $ #1#) $ (-1188 |#2| |#3| |#4|)) NIL (|has| (-1188 |#2| |#3| |#4|) (-510)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3933 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1188 |#2| |#3| |#4|)) (|:| |%expon| (-273 |#2| |#3| |#4|)) (|:| |%expTerms| (-599 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#2|)))))) (|:| |%type| (-1099))) #1#) $) 74 T ELT)) (-4098 (((-273 |#2| |#3| |#4|) $) 17 T ELT)) (-2938 (((-1188 |#2| |#3| |#4|) $) NIL (|has| (-1188 |#2| |#3| |#4|) (-406)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-1188 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| (-1188 |#2| |#3| |#4|) (-978 (-361 (-499)))) (|has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499))))) ELT)) (-3967 (((-599 (-1188 |#2| |#3| |#4|)) $) NIL T ELT)) (-3827 (((-1188 |#2| |#3| |#4|) $ (-273 |#2| |#3| |#4|)) NIL T ELT)) (-2823 (((-649 $) $) NIL (|has| (-1188 |#2| |#3| |#4|) (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| (-1188 |#2| |#3| |#4|) (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ (-1188 |#2| |#3| |#4|)) NIL (|has| (-1188 |#2| |#3| |#4|) (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1188 |#2| |#3| |#4|)) NIL T ELT) (($ (-1188 |#2| |#3| |#4|) $) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499)))) ELT))) -(((-1194 |#1| |#2| |#3| |#4|) (-13 (-280 (-1188 |#2| |#3| |#4|) (-273 |#2| |#3| |#4|)) (-510) (-10 -8 (-15 -3934 ((-3 (-775 |#2|) #1="failed") $)) (-15 -3933 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1188 |#2| |#3| |#4|)) (|:| |%expon| (-273 |#2| |#3| |#4|)) (|:| |%expTerms| (-599 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#2|)))))) (|:| |%type| (-1099))) #1#) $)))) (-13 (-978 (-499)) (-596 (-499)) (-406)) (-13 (-27) (-1143) (-375 |#1|)) (-1117) |#2|) (T -1194)) -((-3934 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-978 (-499)) (-596 (-499)) (-406))) (-5 *2 (-775 *4)) (-5 *1 (-1194 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1143) (-375 *3))) (-14 *5 (-1117)) (-14 *6 *4))) (-3933 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-978 (-499)) (-596 (-499)) (-406))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1188 *4 *5 *6)) (|:| |%expon| (-273 *4 *5 *6)) (|:| |%expTerms| (-599 (-2 (|:| |k| (-361 (-499))) (|:| |c| *4)))))) (|:| |%type| (-1099)))) (-5 *1 (-1194 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1143) (-375 *3))) (-14 *5 (-1117)) (-14 *6 *4)))) -((-3542 ((|#2| $) 34 T ELT)) (-3945 ((|#2| $) 18 T ELT)) (-3947 (($ $) 44 T ELT)) (-3935 (($ $ (-499)) 79 T ELT)) (-3146 ((|#2| $ |#2|) 76 T ELT)) (-3936 ((|#2| $ |#2|) 72 T ELT)) (-3938 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3147 (($ $ (-599 $)) 75 T ELT)) (-3946 ((|#2| $) 17 T ELT)) (-3949 (($ $) NIL T ELT) (($ $ (-714)) 52 T ELT)) (-3152 (((-599 $) $) 31 T ELT)) (-3148 (((-85) $ $) 63 T ELT)) (-3667 (((-85) $) 33 T ELT)) (-3948 ((|#2| $) 25 T ELT) (($ $ (-714)) 58 T ELT)) (-3950 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3783 (((-85) $) 23 T ELT)) (-3942 (($ $) 47 T ELT)) (-3940 (($ $) 80 T ELT)) (-3943 (((-714) $) 51 T ELT)) (-3944 (($ $) 50 T ELT)) (-3952 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3662 (((-599 $) $) 32 T ELT)) (-3174 (((-85) $ $) 61 T ELT)) (-4107 (((-714) $) 43 T ELT))) -(((-1195 |#1| |#2|) (-10 -7 (-15 -3174 ((-85) |#1| |#1|)) (-15 -3935 (|#1| |#1| (-499))) (-15 -3938 (|#2| |#1| #1="last" |#2|)) (-15 -3936 (|#2| |#1| |#2|)) (-15 -3938 (|#1| |#1| #2="rest" |#1|)) (-15 -3938 (|#2| |#1| #3="first" |#2|)) (-15 -3940 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -3943 ((-714) |#1|)) (-15 -3944 (|#1| |#1|)) (-15 -3945 (|#2| |#1|)) (-15 -3946 (|#2| |#1|)) (-15 -3947 (|#1| |#1|)) (-15 -3948 (|#1| |#1| (-714))) (-15 -3950 (|#2| |#1| #1#)) (-15 -3948 (|#2| |#1|)) (-15 -3949 (|#1| |#1| (-714))) (-15 -3950 (|#1| |#1| #2#)) (-15 -3949 (|#1| |#1|)) (-15 -3950 (|#2| |#1| #3#)) (-15 -3952 (|#1| |#2| |#1|)) (-15 -3952 (|#1| |#1| |#1|)) (-15 -3146 (|#2| |#1| |#2|)) (-15 -3938 (|#2| |#1| #4="value" |#2|)) (-15 -3147 (|#1| |#1| (-599 |#1|))) (-15 -3148 ((-85) |#1| |#1|)) (-15 -3783 ((-85) |#1|)) (-15 -3950 (|#2| |#1| #4#)) (-15 -3542 (|#2| |#1|)) (-15 -3667 ((-85) |#1|)) (-15 -3152 ((-599 |#1|) |#1|)) (-15 -3662 ((-599 |#1|) |#1|)) (-15 -4107 ((-714) |#1|))) (-1196 |#2|) (-1157)) (T -1195)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 52 T ELT)) (-3945 ((|#1| $) 71 T ELT)) (-3947 (($ $) 73 T ELT)) (-3935 (($ $ (-499)) 58 (|has| $ (-6 -4146)) ELT)) (-3146 ((|#1| $ |#1|) 43 (|has| $ (-6 -4146)) ELT)) (-3937 (($ $ $) 62 (|has| $ (-6 -4146)) ELT)) (-3936 ((|#1| $ |#1|) 60 (|has| $ (-6 -4146)) ELT)) (-3939 ((|#1| $ |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4146)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -4146)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -4146)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 45 (|has| $ (-6 -4146)) ELT)) (-3946 ((|#1| $) 72 T ELT)) (-3874 (($) 7 T CONST)) (-3949 (($ $) 79 T ELT) (($ $ (-714)) 77 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 54 T ELT)) (-3148 (((-85) $ $) 46 (|has| |#1| (-1041)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3151 (((-599 |#1|) $) 49 T ELT)) (-3667 (((-85) $) 53 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3948 ((|#1| $) 76 T ELT) (($ $ (-714)) 74 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 82 T ELT) (($ $ (-714)) 80 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3150 (((-499) $ $) 48 T ELT)) (-3783 (((-85) $) 50 T ELT)) (-3942 (($ $) 68 T ELT)) (-3940 (($ $) 65 (|has| $ (-6 -4146)) ELT)) (-3943 (((-714) $) 69 T ELT)) (-3944 (($ $) 70 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-3941 (($ $ $) 67 (|has| $ (-6 -4146)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4146)) ELT)) (-3952 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) 55 T ELT)) (-3149 (((-85) $ $) 47 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-1196 |#1|) (-113) (-1157)) (T -1196)) -((-3952 (*1 *1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3952 (*1 *1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3951 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1196 *3)) (-4 *3 (-1157)))) (-3949 (*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1196 *3)) (-4 *3 (-1157)))) (-3949 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1196 *3)) (-4 *3 (-1157)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3948 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1196 *3)) (-4 *3 (-1157)))) (-3947 (*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3944 (*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-1157)) (-5 *2 (-714)))) (-3942 (*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3941 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3941 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3940 (*1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3939 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3938 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3937 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3938 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4146)) (-4 *1 (-1196 *3)) (-4 *3 (-1157)))) (-3936 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3938 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3935 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (|has| *1 (-6 -4146)) (-4 *1 (-1196 *3)) (-4 *3 (-1157))))) -(-13 (-950 |t#1|) (-10 -8 (-15 -3952 ($ $ $)) (-15 -3952 ($ |t#1| $)) (-15 -3951 (|t#1| $)) (-15 -3950 (|t#1| $ "first")) (-15 -3951 ($ $ (-714))) (-15 -3949 ($ $)) (-15 -3950 ($ $ "rest")) (-15 -3949 ($ $ (-714))) (-15 -3948 (|t#1| $)) (-15 -3950 (|t#1| $ "last")) (-15 -3948 ($ $ (-714))) (-15 -3947 ($ $)) (-15 -3946 (|t#1| $)) (-15 -3945 (|t#1| $)) (-15 -3944 ($ $)) (-15 -3943 ((-714) $)) (-15 -3942 ($ $)) (IF (|has| $ (-6 -4146)) (PROGN (-15 -3941 ($ $ $)) (-15 -3941 ($ $ |t#1|)) (-15 -3940 ($ $)) (-15 -3939 (|t#1| $ |t#1|)) (-15 -3938 (|t#1| $ "first" |t#1|)) (-15 -3937 ($ $ $)) (-15 -3938 ($ $ "rest" $)) (-15 -3936 (|t#1| $ |t#1|)) (-15 -3938 (|t#1| $ "last" |t#1|)) (-15 -3935 ($ $ (-499)))) |%noBranch|))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-950 |#1|) . T) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) 90 T ELT)) (-3961 (((-1176 |#2| |#1|) $ (-714)) 73 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 143 (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-714)) 128 T ELT) (($ $ (-714) (-714)) 131 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-714)) (|:| |c| |#1|))) $) 43 T ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-1095 (-2 (|:| |k| (-714)) (|:| |c| |#1|)))) 52 T ELT) (($ (-1095 |#1|)) NIL T ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-3955 (($ $) 135 T ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3966 (($ $) 141 T ELT)) (-3964 (((-884 |#1|) $ (-714)) 63 T ELT) (((-884 |#1|) $ (-714) (-714)) 65 T ELT)) (-3013 (((-85) $) NIL T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-714) $) NIL T ELT) (((-714) $ (-714)) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3958 (($ $) 118 T ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3954 (($ (-499) (-499) $) 137 T ELT)) (-3927 (($ $ (-857)) 140 T ELT)) (-3965 (($ (-1 |#1| (-499)) $) 112 T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-714)) 16 T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 99 T ELT)) (-4092 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3959 (($ $) 116 T ELT)) (-3960 (($ $) 114 T ELT)) (-3953 (($ (-499) (-499) $) 139 T ELT)) (-3962 (($ $) 151 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) 157 (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT) (($ $ (-1204 |#2|)) 152 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3956 (($ $ (-499) (-499)) 122 T ELT)) (-3919 (($ $ (-714)) 124 T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-4093 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3957 (($ $) 120 T ELT)) (-3918 (((-1095 |#1|) $ |#1|) 101 (|has| |#1| (-15 ** (|#1| |#1| (-714)))) ELT)) (-3950 ((|#1| $ (-714)) 96 T ELT) (($ $ $) 133 (|has| (-714) (-1052)) ELT)) (-3908 (($ $ (-1117)) 109 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $) 103 (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-1204 |#2|)) 104 T ELT)) (-4098 (((-714) $) NIL T ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) 126 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) 26 T ELT) (($ (-361 (-499))) 149 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ |#1|) 25 (|has| |#1| (-146)) ELT) (($ (-1176 |#2| |#1|)) 81 T ELT) (($ (-1204 |#2|)) 22 T ELT)) (-3967 (((-1095 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-714)) 95 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-3923 ((|#1| $) 91 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-714)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-714)))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 18 T CONST)) (-2785 (($) 13 T CONST)) (-2790 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-1204 |#2|)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) 108 T ELT)) (-3989 (($ $ $) 20 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ |#1|) 146 (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 107 T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-1197 |#1| |#2| |#3|) (-13 (-1200 |#1|) (-831 $ (-1204 |#2|)) (-10 -8 (-15 -4096 ($ (-1176 |#2| |#1|))) (-15 -3961 ((-1176 |#2| |#1|) $ (-714))) (-15 -4096 ($ (-1204 |#2|))) (-15 -3960 ($ $)) (-15 -3959 ($ $)) (-15 -3958 ($ $)) (-15 -3957 ($ $)) (-15 -3956 ($ $ (-499) (-499))) (-15 -3955 ($ $)) (-15 -3954 ($ (-499) (-499) $)) (-15 -3953 ($ (-499) (-499) $)) (IF (|has| |#1| (-38 (-361 (-499)))) (-15 -3962 ($ $ (-1204 |#2|))) |%noBranch|))) (-989) (-1117) |#1|) (T -1197)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-1176 *4 *3)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3) (-5 *1 (-1197 *3 *4 *5)))) (-3961 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1176 *5 *4)) (-5 *1 (-1197 *4 *5 *6)) (-4 *4 (-989)) (-14 *5 (-1117)) (-14 *6 *4))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-989)) (-14 *5 *3))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2))) (-3959 (*1 *1 *1) (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2))) (-3958 (*1 *1 *1) (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2))) (-3957 (*1 *1 *1) (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2))) (-3956 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3))) (-3955 (*1 *1 *1) (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2))) (-3954 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3))) (-3953 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3))) (-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3)))) -((-4108 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) -(((-1198 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 (|#4| (-1 |#2| |#1|) |#3|))) (-989) (-989) (-1200 |#1|) (-1200 |#2|)) (T -1198)) -((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-4 *2 (-1200 *6)) (-5 *1 (-1198 *5 *6 *4 *2)) (-4 *4 (-1200 *5))))) -((-3326 (((-85) $) 17 T ELT)) (-3632 (($ $) 105 T ELT)) (-3789 (($ $) 81 T ELT)) (-3630 (($ $) 101 T ELT)) (-3788 (($ $) 77 T ELT)) (-3634 (($ $) 109 T ELT)) (-3787 (($ $) 85 T ELT)) (-4092 (($ $) 75 T ELT)) (-4093 (($ $) 73 T ELT)) (-3635 (($ $) 111 T ELT)) (-3786 (($ $) 87 T ELT)) (-3633 (($ $) 107 T ELT)) (-3785 (($ $) 83 T ELT)) (-3631 (($ $) 103 T ELT)) (-3784 (($ $) 79 T ELT)) (-4096 (((-797) $) 61 T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3638 (($ $) 117 T ELT)) (-3626 (($ $) 93 T ELT)) (-3636 (($ $) 113 T ELT)) (-3624 (($ $) 89 T ELT)) (-3640 (($ $) 121 T ELT)) (-3628 (($ $) 97 T ELT)) (-3641 (($ $) 123 T ELT)) (-3629 (($ $) 99 T ELT)) (-3639 (($ $) 119 T ELT)) (-3627 (($ $) 95 T ELT)) (-3637 (($ $) 115 T ELT)) (-3625 (($ $) 91 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-361 (-499))) 71 T ELT))) -(((-1199 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-361 (-499)))) (-15 -3789 (|#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -3784 (|#1| |#1|)) (-15 -3625 (|#1| |#1|)) (-15 -3627 (|#1| |#1|)) (-15 -3629 (|#1| |#1|)) (-15 -3628 (|#1| |#1|)) (-15 -3624 (|#1| |#1|)) (-15 -3626 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3633 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -4092 (|#1| |#1|)) (-15 -4093 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4096 (|#1| |#2|)) (-15 -4096 (|#1| |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -4096 (|#1| (-499))) (-15 ** (|#1| |#1| (-714))) (-15 ** (|#1| |#1| (-857))) (-15 -3326 ((-85) |#1|)) (-15 -4096 ((-797) |#1|))) (-1200 |#2|) (-989)) (T -1199)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 (-1022)) $) 92 T ELT)) (-3981 (((-1117) $) 126 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 68 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 69 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 71 (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-714)) 121 T ELT) (($ $ (-714) (-714)) 120 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-714)) (|:| |c| |#1|))) $) 127 T ELT)) (-3632 (($ $) 160 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 143 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3158 (($ $) 142 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3630 (($ $) 159 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 144 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-1095 (-2 (|:| |k| (-714)) (|:| |c| |#1|)))) 180 T ELT) (($ (-1095 |#1|)) 178 T ELT)) (-3634 (($ $) 158 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 145 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) 22 T CONST)) (-4109 (($ $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3966 (($ $) 177 T ELT)) (-3964 (((-884 |#1|) $ (-714)) 175 T ELT) (((-884 |#1|) $ (-714) (-714)) 174 T ELT)) (-3013 (((-85) $) 91 T ELT)) (-3777 (($) 170 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-714) $) 123 T ELT) (((-714) $ (-714)) 122 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 141 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) 124 T ELT)) (-3965 (($ (-1 |#1| (-499)) $) 176 T ELT)) (-4087 (((-85) $) 79 T ELT)) (-3014 (($ |#1| (-714)) 78 T ELT) (($ $ (-1022) (-714)) 94 T ELT) (($ $ (-599 (-1022)) (-599 (-714))) 93 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4092 (($ $) 167 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) 82 T ELT)) (-3312 ((|#1| $) 83 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3962 (($ $) 172 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) 171 (-3677 (-12 (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143)) (|has| |#1| (-38 (-361 (-499))))) (-12 (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-38 (-361 (-499)))))) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3919 (($ $ (-714)) 118 T ELT)) (-3606 (((-3 $ "failed") $ $) 67 (|has| |#1| (-510)) ELT)) (-4093 (($ $) 168 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-714)))) ELT)) (-3950 ((|#1| $ (-714)) 128 T ELT) (($ $ $) 104 (|has| (-714) (-1052)) ELT)) (-3908 (($ $ (-1117)) 116 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117))) 114 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-1117) (-714)) 113 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 112 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-714)) 106 (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT)) (-4098 (((-714) $) 81 T ELT)) (-3635 (($ $) 157 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 146 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 156 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 147 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 155 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 148 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) 90 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 (-499))) 74 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) 66 (|has| |#1| (-510)) ELT) (($ |#1|) 64 (|has| |#1| (-146)) ELT)) (-3967 (((-1095 |#1|) $) 179 T ELT)) (-3827 ((|#1| $ (-714)) 76 T ELT)) (-2823 (((-649 $) $) 65 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-3923 ((|#1| $) 125 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3638 (($ $) 166 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 154 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) 70 (|has| |#1| (-510)) ELT)) (-3636 (($ $) 165 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 153 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 164 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 152 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-714)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-714)))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) 163 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 151 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 162 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 150 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 161 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 149 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1117)) 115 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117))) 111 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-1117) (-714)) 110 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 109 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-714)) 105 (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 75 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ |#1|) 173 (|has| |#1| (-318)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 140 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-361 (-499)) $) 73 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 72 (|has| |#1| (-38 (-361 (-499)))) ELT))) -(((-1200 |#1|) (-113) (-989)) (T -1200)) -((-3968 (*1 *1 *2) (-12 (-5 *2 (-1095 (-2 (|:| |k| (-714)) (|:| |c| *3)))) (-4 *3 (-989)) (-4 *1 (-1200 *3)))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-989)) (-5 *2 (-1095 *3)))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-4 *1 (-1200 *3)))) (-3966 (*1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-989)))) (-3965 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-499))) (-4 *1 (-1200 *3)) (-4 *3 (-989)))) (-3964 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-1200 *4)) (-4 *4 (-989)) (-5 *2 (-884 *4)))) (-3964 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-4 *1 (-1200 *4)) (-4 *4 (-989)) (-5 *2 (-884 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-989)) (-4 *2 (-38 (-361 (-499)))))) (-3962 (*1 *1 *1 *2) (-3677 (-12 (-5 *2 (-1117)) (-4 *1 (-1200 *3)) (-4 *3 (-989)) (-12 (-4 *3 (-29 (-499))) (-4 *3 (-898)) (-4 *3 (-1143)) (-4 *3 (-38 (-361 (-499)))))) (-12 (-5 *2 (-1117)) (-4 *1 (-1200 *3)) (-4 *3 (-989)) (-12 (|has| *3 (-15 -3204 ((-599 *2) *3))) (|has| *3 (-15 -3962 (*3 *3 *2))) (-4 *3 (-38 (-361 (-499))))))))) -(-13 (-1186 |t#1| (-714)) (-10 -8 (-15 -3968 ($ (-1095 (-2 (|:| |k| (-714)) (|:| |c| |t#1|))))) (-15 -3967 ((-1095 |t#1|) $)) (-15 -3968 ($ (-1095 |t#1|))) (-15 -3966 ($ $)) (-15 -3965 ($ (-1 |t#1| (-499)) $)) (-15 -3964 ((-884 |t#1|) $ (-714))) (-15 -3964 ((-884 |t#1|) $ (-714) (-714))) (IF (|has| |t#1| (-318)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-361 (-499)))) (PROGN (-15 -3962 ($ $)) (IF (|has| |t#1| (-15 -3962 (|t#1| |t#1| (-1117)))) (IF (|has| |t#1| (-15 -3204 ((-599 (-1117)) |t#1|))) (-15 -3962 ($ $ (-1117))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1143)) (IF (|has| |t#1| (-898)) (IF (|has| |t#1| (-29 (-499))) (-15 -3962 ($ $ (-1117))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-942)) (-6 (-1143))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-714)) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-510)) ((-35) |has| |#1| (-38 (-361 (-499)))) ((-66) |has| |#1| (-38 (-361 (-499)))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-571 (-499)) . T) ((-571 |#1|) |has| |#1| (-146)) ((-571 $) |has| |#1| (-510)) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-714) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-714) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-714) |#1|))) ((-238) |has| |#1| (-38 (-361 (-499)))) ((-240 (-714) |#1|) . T) ((-240 $ $) |has| (-714) (-1052)) ((-244) |has| |#1| (-510)) ((-447) |has| |#1| (-38 (-361 (-499)))) ((-510) |has| |#1| (-510)) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) |has| |#1| (-510)) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) |has| |#1| (-510)) ((-684) . T) ((-831 $ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ((-836 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ((-838 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ((-913 |#1| (-714) (-1022)) . T) ((-942) |has| |#1| (-38 (-361 (-499)))) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1143) |has| |#1| (-38 (-361 (-499)))) ((-1146) |has| |#1| (-38 (-361 (-499)))) ((-1157) . T) ((-1186 |#1| (-714)) . T)) -((-3971 (((-1 (-1095 |#1|) (-599 (-1095 |#1|))) (-1 |#2| (-599 |#2|))) 24 T ELT)) (-3970 (((-1 (-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3969 (((-1 (-1095 |#1|) (-1095 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3974 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3973 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3975 ((|#2| (-1 |#2| (-599 |#2|)) (-599 |#1|)) 60 T ELT)) (-3976 (((-599 |#2|) (-599 |#1|) (-599 (-1 |#2| (-599 |#2|)))) 66 T ELT)) (-3972 ((|#2| |#2| |#2|) 43 T ELT))) -(((-1201 |#1| |#2|) (-10 -7 (-15 -3969 ((-1 (-1095 |#1|) (-1095 |#1|)) (-1 |#2| |#2|))) (-15 -3970 ((-1 (-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3971 ((-1 (-1095 |#1|) (-599 (-1095 |#1|))) (-1 |#2| (-599 |#2|)))) (-15 -3972 (|#2| |#2| |#2|)) (-15 -3973 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3974 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3975 (|#2| (-1 |#2| (-599 |#2|)) (-599 |#1|))) (-15 -3976 ((-599 |#2|) (-599 |#1|) (-599 (-1 |#2| (-599 |#2|)))))) (-38 (-361 (-499))) (-1200 |#1|)) (T -1201)) -((-3976 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 (-1 *6 (-599 *6)))) (-4 *5 (-38 (-361 (-499)))) (-4 *6 (-1200 *5)) (-5 *2 (-599 *6)) (-5 *1 (-1201 *5 *6)))) (-3975 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-599 *2))) (-5 *4 (-599 *5)) (-4 *5 (-38 (-361 (-499)))) (-4 *2 (-1200 *5)) (-5 *1 (-1201 *5 *2)))) (-3974 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-1201 *4 *2)) (-4 *4 (-38 (-361 (-499)))))) (-3973 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-1201 *4 *2)) (-4 *4 (-38 (-361 (-499)))))) (-3972 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1201 *3 *2)) (-4 *2 (-1200 *3)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-599 *5))) (-4 *5 (-1200 *4)) (-4 *4 (-38 (-361 (-499)))) (-5 *2 (-1 (-1095 *4) (-599 (-1095 *4)))) (-5 *1 (-1201 *4 *5)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-38 (-361 (-499)))) (-5 *2 (-1 (-1095 *4) (-1095 *4) (-1095 *4))) (-5 *1 (-1201 *4 *5)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-38 (-361 (-499)))) (-5 *2 (-1 (-1095 *4) (-1095 *4))) (-5 *1 (-1201 *4 *5))))) -((-3978 ((|#2| |#4| (-714)) 31 T ELT)) (-3977 ((|#4| |#2|) 26 T ELT)) (-3980 ((|#4| (-361 |#2|)) 49 (|has| |#1| (-510)) ELT)) (-3979 (((-1 |#4| (-599 |#4|)) |#3|) 43 T ELT))) -(((-1202 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3977 (|#4| |#2|)) (-15 -3978 (|#2| |#4| (-714))) (-15 -3979 ((-1 |#4| (-599 |#4|)) |#3|)) (IF (|has| |#1| (-510)) (-15 -3980 (|#4| (-361 |#2|))) |%noBranch|)) (-989) (-1183 |#1|) (-616 |#2|) (-1200 |#1|)) (T -1202)) -((-3980 (*1 *2 *3) (-12 (-5 *3 (-361 *5)) (-4 *5 (-1183 *4)) (-4 *4 (-510)) (-4 *4 (-989)) (-4 *2 (-1200 *4)) (-5 *1 (-1202 *4 *5 *6 *2)) (-4 *6 (-616 *5)))) (-3979 (*1 *2 *3) (-12 (-4 *4 (-989)) (-4 *5 (-1183 *4)) (-5 *2 (-1 *6 (-599 *6))) (-5 *1 (-1202 *4 *5 *3 *6)) (-4 *3 (-616 *5)) (-4 *6 (-1200 *4)))) (-3978 (*1 *2 *3 *4) (-12 (-5 *4 (-714)) (-4 *5 (-989)) (-4 *2 (-1183 *5)) (-5 *1 (-1202 *5 *2 *6 *3)) (-4 *6 (-616 *2)) (-4 *3 (-1200 *5)))) (-3977 (*1 *2 *3) (-12 (-4 *4 (-989)) (-4 *3 (-1183 *4)) (-4 *2 (-1200 *4)) (-5 *1 (-1202 *4 *3 *5 *2)) (-4 *5 (-616 *3))))) -NIL -(((-1203) (-113)) (T -1203)) -NIL -(-13 (-10 -7 (-6 -2388))) -((-2687 (((-85) $ $) NIL T ELT)) (-3981 (((-1117)) 12 T ELT)) (-3380 (((-1099) $) 18 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 11 T ELT) (((-1117) $) 8 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 15 T ELT))) -(((-1204 |#1|) (-13 (-1041) (-568 (-1117)) (-10 -8 (-15 -4096 ((-1117) $)) (-15 -3981 ((-1117))))) (-1117)) (T -1204)) -((-4096 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1204 *3)) (-14 *3 *2))) (-3981 (*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1204 *3)) (-14 *3 *2)))) -((-3988 (($ (-714)) 19 T ELT)) (-3985 (((-647 |#2|) $ $) 41 T ELT)) (-3982 ((|#2| $) 51 T ELT)) (-3983 ((|#2| $) 50 T ELT)) (-3986 ((|#2| $ $) 36 T ELT)) (-3984 (($ $ $) 47 T ELT)) (-3987 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3989 (($ $ $) 15 T ELT)) (* (($ (-499) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) -(((-1205 |#1| |#2|) (-10 -7 (-15 -3982 (|#2| |#1|)) (-15 -3983 (|#2| |#1|)) (-15 -3984 (|#1| |#1| |#1|)) (-15 -3985 ((-647 |#2|) |#1| |#1|)) (-15 -3986 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1|)) (-15 -3988 (|#1| (-714))) (-15 -3989 (|#1| |#1| |#1|))) (-1206 |#2|) (-1157)) (T -1205)) -NIL -((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3988 (($ (-714)) 121 (|has| |#1| (-23)) ELT)) (-2299 (((-1213) $ (-499) (-499)) 44 (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -4146)) ELT) (($ $) 97 (-12 (|has| |#1| (-781)) (|has| $ (-6 -4146))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) 56 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-2397 (($ $) 99 (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) 109 T ELT)) (-1386 (($ $) 84 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#1| $) 83 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) 57 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 55 T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) 106 T ELT) (((-499) |#1| $) 105 (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) 104 (|has| |#1| (-1041)) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3985 (((-647 |#1|) $ $) 114 (|has| |#1| (-989)) ELT)) (-3764 (($ (-714) |#1|) 74 T ELT)) (-2301 (((-499) $) 47 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) 91 (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 48 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) 92 (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3982 ((|#1| $) 111 (-12 (|has| |#1| (-989)) (|has| |#1| (-942))) ELT)) (-3983 ((|#1| $) 112 (-12 (|has| |#1| (-989)) (|has| |#1| (-942))) ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) 66 T ELT) (($ $ $ (-499)) 65 T ELT)) (-2304 (((-599 (-499)) $) 50 T ELT)) (-2305 (((-85) (-499) $) 51 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 46 (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2300 (($ $ |#1|) 45 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ (-499) |#1|) 54 T ELT) ((|#1| $ (-499)) 53 T ELT) (($ $ (-1174 (-499))) 75 T ELT)) (-3986 ((|#1| $ $) 115 (|has| |#1| (-989)) ELT)) (-2405 (($ $ (-499)) 68 T ELT) (($ $ (-1174 (-499))) 67 T ELT)) (-3984 (($ $ $) 113 (|has| |#1| (-989)) ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-1824 (($ $ $ (-499)) 100 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 85 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 76 T ELT)) (-3952 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-599 $)) 70 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) 93 (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) 95 (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) 94 (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 96 (|has| |#1| (-781)) ELT)) (-3987 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3989 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-499) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-684)) ELT) (($ $ |#1|) 116 (|has| |#1| (-684)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) -(((-1206 |#1|) (-113) (-1157)) (T -1206)) -((-3989 (*1 *1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-25)))) (-3988 (*1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1206 *3)) (-4 *3 (-23)) (-4 *3 (-1157)))) (-3987 (*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-21)))) (-3987 (*1 *1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-499)) (-4 *1 (-1206 *3)) (-4 *3 (-1157)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-684)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-684)))) (-3986 (*1 *2 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-989)))) (-3985 (*1 *2 *1 *1) (-12 (-4 *1 (-1206 *3)) (-4 *3 (-1157)) (-4 *3 (-989)) (-5 *2 (-647 *3)))) (-3984 (*1 *1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-989)))) (-3983 (*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-942)) (-4 *2 (-989)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-942)) (-4 *2 (-989))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3989 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3988 ($ (-714))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3987 ($ $)) (-15 -3987 ($ $ $)) (-15 * ($ (-499) $))) |%noBranch|) (IF (|has| |t#1| (-684)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-989)) (PROGN (-15 -3986 (|t#1| $ $)) (-15 -3985 ((-647 |t#1|) $ $)) (-15 -3984 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-942)) (IF (|has| |t#1| (-989)) (PROGN (-15 -3983 (|t#1| $)) (-15 -3982 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 (-499) |#1|) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-327 |#1|) . T) ((-443 |#1|) . T) ((-554 (-499) |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-609 |#1|) . T) ((-19 |#1|) . T) ((-781) |has| |#1| (-781)) ((-784) |has| |#1| (-781)) ((-1041) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781))) ((-1157) . T)) -((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3988 (($ (-714)) NIL (|has| |#1| (-23)) ELT)) (-3990 (($ (-599 |#1|)) 11 T ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) NIL T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) NIL T ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT)) (-3010 (((-599 |#1|) $) 16 (|has| $ (-6 -4145)) ELT)) (-3985 (((-647 |#1|) $ $) NIL (|has| |#1| (-989)) ELT)) (-3764 (($ (-714) |#1|) NIL T ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) 12 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3982 ((|#1| $) NIL (-12 (|has| |#1| (-942)) (|has| |#1| (-989))) ELT)) (-3983 ((|#1| $) NIL (-12 (|has| |#1| (-942)) (|has| |#1| (-989))) ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) |#1|) NIL T ELT) ((|#1| $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-3986 ((|#1| $ $) NIL (|has| |#1| (-989)) ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-3984 (($ $ $) NIL (|has| |#1| (-989)) ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) 20 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 10 T ELT)) (-3952 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3987 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3989 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-499) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-684)) ELT) (($ $ |#1|) NIL (|has| |#1| (-684)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-1207 |#1|) (-13 (-1206 |#1|) (-10 -8 (-15 -3990 ($ (-599 |#1|))))) (-1157)) (T -1207)) -((-3990 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-1207 *3))))) -((-3991 (((-1207 |#2|) (-1 |#2| |#1| |#2|) (-1207 |#1|) |#2|) 13 T ELT)) (-3992 ((|#2| (-1 |#2| |#1| |#2|) (-1207 |#1|) |#2|) 15 T ELT)) (-4108 (((-3 (-1207 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1207 |#1|)) 30 T ELT) (((-1207 |#2|) (-1 |#2| |#1|) (-1207 |#1|)) 18 T ELT))) -(((-1208 |#1| |#2|) (-10 -7 (-15 -3991 ((-1207 |#2|) (-1 |#2| |#1| |#2|) (-1207 |#1|) |#2|)) (-15 -3992 (|#2| (-1 |#2| |#1| |#2|) (-1207 |#1|) |#2|)) (-15 -4108 ((-1207 |#2|) (-1 |#2| |#1|) (-1207 |#1|))) (-15 -4108 ((-3 (-1207 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1207 |#1|)))) (-1157) (-1157)) (T -1208)) -((-4108 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1207 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-1207 *6)) (-5 *1 (-1208 *5 *6)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1207 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-1207 *6)) (-5 *1 (-1208 *5 *6)))) (-3992 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1207 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) (-5 *1 (-1208 *5 *2)))) (-3991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1207 *6)) (-4 *6 (-1157)) (-4 *5 (-1157)) (-5 *2 (-1207 *5)) (-5 *1 (-1208 *6 *5))))) -((-3993 (((-422) (-599 (-599 (-881 (-179)))) (-599 (-220))) 22 T ELT) (((-422) (-599 (-599 (-881 (-179))))) 21 T ELT) (((-422) (-599 (-599 (-881 (-179)))) (-808) (-808) (-857) (-599 (-220))) 20 T ELT)) (-3994 (((-1210) (-599 (-599 (-881 (-179)))) (-599 (-220))) 30 T ELT) (((-1210) (-599 (-599 (-881 (-179)))) (-808) (-808) (-857) (-599 (-220))) 29 T ELT)) (-4096 (((-1210) (-422)) 46 T ELT))) -(((-1209) (-10 -7 (-15 -3993 ((-422) (-599 (-599 (-881 (-179)))) (-808) (-808) (-857) (-599 (-220)))) (-15 -3993 ((-422) (-599 (-599 (-881 (-179)))))) (-15 -3993 ((-422) (-599 (-599 (-881 (-179)))) (-599 (-220)))) (-15 -3994 ((-1210) (-599 (-599 (-881 (-179)))) (-808) (-808) (-857) (-599 (-220)))) (-15 -3994 ((-1210) (-599 (-599 (-881 (-179)))) (-599 (-220)))) (-15 -4096 ((-1210) (-422))))) (T -1209)) -((-4096 (*1 *2 *3) (-12 (-5 *3 (-422)) (-5 *2 (-1210)) (-5 *1 (-1209)))) (-3994 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-599 (-220))) (-5 *2 (-1210)) (-5 *1 (-1209)))) (-3994 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-808)) (-5 *5 (-857)) (-5 *6 (-599 (-220))) (-5 *2 (-1210)) (-5 *1 (-1209)))) (-3993 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-599 (-220))) (-5 *2 (-422)) (-5 *1 (-1209)))) (-3993 (*1 *2 *3) (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *2 (-422)) (-5 *1 (-1209)))) (-3993 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-808)) (-5 *5 (-857)) (-5 *6 (-599 (-220))) (-5 *2 (-422)) (-5 *1 (-1209))))) -((-2687 (((-85) $ $) NIL T ELT)) (-4012 (((-1099) $ (-1099)) 107 T ELT) (((-1099) $ (-1099) (-1099)) 105 T ELT) (((-1099) $ (-1099) (-599 (-1099))) 104 T ELT)) (-4008 (($) 69 T ELT)) (-3995 (((-1213) $ (-422) (-857)) 54 T ELT)) (-4001 (((-1213) $ (-857) (-1099)) 89 T ELT) (((-1213) $ (-857) (-808)) 90 T ELT)) (-4023 (((-1213) $ (-857) (-333) (-333)) 57 T ELT)) (-4033 (((-1213) $ (-1099)) 84 T ELT)) (-3996 (((-1213) $ (-857) (-1099)) 94 T ELT)) (-3997 (((-1213) $ (-857) (-333) (-333)) 58 T ELT)) (-4034 (((-1213) $ (-857) (-857)) 55 T ELT)) (-4014 (((-1213) $) 85 T ELT)) (-3999 (((-1213) $ (-857) (-1099)) 93 T ELT)) (-4003 (((-1213) $ (-422) (-857)) 41 T ELT)) (-4000 (((-1213) $ (-857) (-1099)) 92 T ELT)) (-4036 (((-599 (-220)) $) 29 T ELT) (($ $ (-599 (-220))) 30 T ELT)) (-4035 (((-1213) $ (-714) (-714)) 52 T ELT)) (-4007 (($ $) 70 T ELT) (($ (-422) (-599 (-220))) 71 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-4010 (((-499) $) 48 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4004 (((-1207 (-3 (-422) "undefined")) $) 47 T ELT)) (-4005 (((-1207 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -4000 (-499)) (|:| -3998 (-499)) (|:| |spline| (-499)) (|:| -4029 (-499)) (|:| |axesColor| (-808)) (|:| -4001 (-499)) (|:| |unitsColor| (-808)) (|:| |showing| (-499)))) $) 46 T ELT)) (-4006 (((-1213) $ (-857) (-179) (-179) (-179) (-179) (-499) (-499) (-499) (-499) (-808) (-499) (-808) (-499)) 83 T ELT)) (-4009 (((-599 (-881 (-179))) $) NIL T ELT)) (-4002 (((-422) $ (-857)) 43 T ELT)) (-4032 (((-1213) $ (-714) (-714) (-857) (-857)) 50 T ELT)) (-4030 (((-1213) $ (-1099)) 95 T ELT)) (-3998 (((-1213) $ (-857) (-1099)) 91 T ELT)) (-4096 (((-797) $) 102 T ELT)) (-4011 (((-1213) $) 96 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-4029 (((-1213) $ (-857) (-1099)) 87 T ELT) (((-1213) $ (-857) (-808)) 88 T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-1210) (-13 (-1041) (-10 -8 (-15 -4009 ((-599 (-881 (-179))) $)) (-15 -4008 ($)) (-15 -4007 ($ $)) (-15 -4036 ((-599 (-220)) $)) (-15 -4036 ($ $ (-599 (-220)))) (-15 -4007 ($ (-422) (-599 (-220)))) (-15 -4006 ((-1213) $ (-857) (-179) (-179) (-179) (-179) (-499) (-499) (-499) (-499) (-808) (-499) (-808) (-499))) (-15 -4005 ((-1207 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -4000 (-499)) (|:| -3998 (-499)) (|:| |spline| (-499)) (|:| -4029 (-499)) (|:| |axesColor| (-808)) (|:| -4001 (-499)) (|:| |unitsColor| (-808)) (|:| |showing| (-499)))) $)) (-15 -4004 ((-1207 (-3 (-422) "undefined")) $)) (-15 -4033 ((-1213) $ (-1099))) (-15 -4003 ((-1213) $ (-422) (-857))) (-15 -4002 ((-422) $ (-857))) (-15 -4029 ((-1213) $ (-857) (-1099))) (-15 -4029 ((-1213) $ (-857) (-808))) (-15 -4001 ((-1213) $ (-857) (-1099))) (-15 -4001 ((-1213) $ (-857) (-808))) (-15 -4000 ((-1213) $ (-857) (-1099))) (-15 -3999 ((-1213) $ (-857) (-1099))) (-15 -3998 ((-1213) $ (-857) (-1099))) (-15 -4030 ((-1213) $ (-1099))) (-15 -4011 ((-1213) $)) (-15 -4032 ((-1213) $ (-714) (-714) (-857) (-857))) (-15 -3997 ((-1213) $ (-857) (-333) (-333))) (-15 -4023 ((-1213) $ (-857) (-333) (-333))) (-15 -3996 ((-1213) $ (-857) (-1099))) (-15 -4035 ((-1213) $ (-714) (-714))) (-15 -3995 ((-1213) $ (-422) (-857))) (-15 -4034 ((-1213) $ (-857) (-857))) (-15 -4012 ((-1099) $ (-1099))) (-15 -4012 ((-1099) $ (-1099) (-1099))) (-15 -4012 ((-1099) $ (-1099) (-599 (-1099)))) (-15 -4014 ((-1213) $)) (-15 -4010 ((-499) $)) (-15 -4096 ((-797) $))))) (T -1210)) -((-4096 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1210)))) (-4009 (*1 *2 *1) (-12 (-5 *2 (-599 (-881 (-179)))) (-5 *1 (-1210)))) (-4008 (*1 *1) (-5 *1 (-1210))) (-4007 (*1 *1 *1) (-5 *1 (-1210))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-599 (-220))) (-5 *1 (-1210)))) (-4036 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-220))) (-5 *1 (-1210)))) (-4007 (*1 *1 *2 *3) (-12 (-5 *2 (-422)) (-5 *3 (-599 (-220))) (-5 *1 (-1210)))) (-4006 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-857)) (-5 *4 (-179)) (-5 *5 (-499)) (-5 *6 (-808)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-1207 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -4000 (-499)) (|:| -3998 (-499)) (|:| |spline| (-499)) (|:| -4029 (-499)) (|:| |axesColor| (-808)) (|:| -4001 (-499)) (|:| |unitsColor| (-808)) (|:| |showing| (-499))))) (-5 *1 (-1210)))) (-4004 (*1 *2 *1) (-12 (-5 *2 (-1207 (-3 (-422) "undefined"))) (-5 *1 (-1210)))) (-4033 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4003 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-422)) (-5 *4 (-857)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4002 (*1 *2 *1 *3) (-12 (-5 *3 (-857)) (-5 *2 (-422)) (-5 *1 (-1210)))) (-4029 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4029 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-808)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4001 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4001 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-808)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4000 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-3999 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-3998 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4030 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4011 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4032 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-714)) (-5 *4 (-857)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-3997 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-857)) (-5 *4 (-333)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4023 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-857)) (-5 *4 (-333)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-3996 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4035 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-3995 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-422)) (-5 *4 (-857)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4034 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4012 (*1 *2 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1210)))) (-4012 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1210)))) (-4012 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-1099)) (-5 *1 (-1210)))) (-4014 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4010 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1210))))) -((-2687 (((-85) $ $) NIL T ELT)) (-4024 (((-1213) $ (-333)) 169 T ELT) (((-1213) $ (-333) (-333) (-333)) 170 T ELT)) (-4012 (((-1099) $ (-1099)) 178 T ELT) (((-1099) $ (-1099) (-1099)) 176 T ELT) (((-1099) $ (-1099) (-599 (-1099))) 175 T ELT)) (-4040 (($) 67 T ELT)) (-4031 (((-1213) $ (-333) (-333) (-333) (-333) (-333)) 141 T ELT) (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $) 139 T ELT) (((-1213) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 140 T ELT) (((-1213) $ (-499) (-499) (-333) (-333) (-333)) 144 T ELT) (((-1213) $ (-333) (-333)) 145 T ELT) (((-1213) $ (-333) (-333) (-333)) 152 T ELT)) (-4043 (((-333)) 122 T ELT) (((-333) (-333)) 123 T ELT)) (-4045 (((-333)) 117 T ELT) (((-333) (-333)) 119 T ELT)) (-4044 (((-333)) 120 T ELT) (((-333) (-333)) 121 T ELT)) (-4041 (((-333)) 126 T ELT) (((-333) (-333)) 127 T ELT)) (-4042 (((-333)) 124 T ELT) (((-333) (-333)) 125 T ELT)) (-4023 (((-1213) $ (-333) (-333)) 171 T ELT)) (-4033 (((-1213) $ (-1099)) 153 T ELT)) (-4038 (((-1073 (-179)) $) 68 T ELT) (($ $ (-1073 (-179))) 69 T ELT)) (-4019 (((-1213) $ (-1099)) 187 T ELT)) (-4018 (((-1213) $ (-1099)) 188 T ELT)) (-4025 (((-1213) $ (-333) (-333)) 151 T ELT) (((-1213) $ (-499) (-499)) 168 T ELT)) (-4034 (((-1213) $ (-857) (-857)) 160 T ELT)) (-4014 (((-1213) $) 137 T ELT)) (-4022 (((-1213) $ (-1099)) 186 T ELT)) (-4027 (((-1213) $ (-1099)) 134 T ELT)) (-4036 (((-599 (-220)) $) 70 T ELT) (($ $ (-599 (-220))) 71 T ELT)) (-4035 (((-1213) $ (-714) (-714)) 159 T ELT)) (-4037 (((-1213) $ (-714) (-881 (-179))) 193 T ELT)) (-4039 (($ $) 73 T ELT) (($ (-1073 (-179)) (-1099)) 74 T ELT) (($ (-1073 (-179)) (-599 (-220))) 75 T ELT)) (-4016 (((-1213) $ (-333) (-333) (-333)) 131 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-4010 (((-499) $) 128 T ELT)) (-4015 (((-1213) $ (-333)) 173 T ELT)) (-4020 (((-1213) $ (-333)) 191 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4021 (((-1213) $ (-333)) 190 T ELT)) (-4026 (((-1213) $ (-1099)) 136 T ELT)) (-4032 (((-1213) $ (-714) (-714) (-857) (-857)) 158 T ELT)) (-4028 (((-1213) $ (-1099)) 133 T ELT)) (-4030 (((-1213) $ (-1099)) 135 T ELT)) (-4013 (((-1213) $ (-130) (-130)) 157 T ELT)) (-4096 (((-797) $) 166 T ELT)) (-4011 (((-1213) $) 138 T ELT)) (-4017 (((-1213) $ (-1099)) 189 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-4029 (((-1213) $ (-1099)) 132 T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-1211) (-13 (-1041) (-10 -8 (-15 -4045 ((-333))) (-15 -4045 ((-333) (-333))) (-15 -4044 ((-333))) (-15 -4044 ((-333) (-333))) (-15 -4043 ((-333))) (-15 -4043 ((-333) (-333))) (-15 -4042 ((-333))) (-15 -4042 ((-333) (-333))) (-15 -4041 ((-333))) (-15 -4041 ((-333) (-333))) (-15 -4040 ($)) (-15 -4039 ($ $)) (-15 -4039 ($ (-1073 (-179)) (-1099))) (-15 -4039 ($ (-1073 (-179)) (-599 (-220)))) (-15 -4038 ((-1073 (-179)) $)) (-15 -4038 ($ $ (-1073 (-179)))) (-15 -4037 ((-1213) $ (-714) (-881 (-179)))) (-15 -4036 ((-599 (-220)) $)) (-15 -4036 ($ $ (-599 (-220)))) (-15 -4035 ((-1213) $ (-714) (-714))) (-15 -4034 ((-1213) $ (-857) (-857))) (-15 -4033 ((-1213) $ (-1099))) (-15 -4032 ((-1213) $ (-714) (-714) (-857) (-857))) (-15 -4031 ((-1213) $ (-333) (-333) (-333) (-333) (-333))) (-15 -4031 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $)) (-15 -4031 ((-1213) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -4031 ((-1213) $ (-499) (-499) (-333) (-333) (-333))) (-15 -4031 ((-1213) $ (-333) (-333))) (-15 -4031 ((-1213) $ (-333) (-333) (-333))) (-15 -4030 ((-1213) $ (-1099))) (-15 -4029 ((-1213) $ (-1099))) (-15 -4028 ((-1213) $ (-1099))) (-15 -4027 ((-1213) $ (-1099))) (-15 -4026 ((-1213) $ (-1099))) (-15 -4025 ((-1213) $ (-333) (-333))) (-15 -4025 ((-1213) $ (-499) (-499))) (-15 -4024 ((-1213) $ (-333))) (-15 -4024 ((-1213) $ (-333) (-333) (-333))) (-15 -4023 ((-1213) $ (-333) (-333))) (-15 -4022 ((-1213) $ (-1099))) (-15 -4021 ((-1213) $ (-333))) (-15 -4020 ((-1213) $ (-333))) (-15 -4019 ((-1213) $ (-1099))) (-15 -4018 ((-1213) $ (-1099))) (-15 -4017 ((-1213) $ (-1099))) (-15 -4016 ((-1213) $ (-333) (-333) (-333))) (-15 -4015 ((-1213) $ (-333))) (-15 -4014 ((-1213) $)) (-15 -4013 ((-1213) $ (-130) (-130))) (-15 -4012 ((-1099) $ (-1099))) (-15 -4012 ((-1099) $ (-1099) (-1099))) (-15 -4012 ((-1099) $ (-1099) (-599 (-1099)))) (-15 -4011 ((-1213) $)) (-15 -4010 ((-499) $))))) (T -1211)) -((-4045 (*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4045 (*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4044 (*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4044 (*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4043 (*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4043 (*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4042 (*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4042 (*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4041 (*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4041 (*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4040 (*1 *1) (-5 *1 (-1211))) (-4039 (*1 *1 *1) (-5 *1 (-1211))) (-4039 (*1 *1 *2 *3) (-12 (-5 *2 (-1073 (-179))) (-5 *3 (-1099)) (-5 *1 (-1211)))) (-4039 (*1 *1 *2 *3) (-12 (-5 *2 (-1073 (-179))) (-5 *3 (-599 (-220))) (-5 *1 (-1211)))) (-4038 (*1 *2 *1) (-12 (-5 *2 (-1073 (-179))) (-5 *1 (-1211)))) (-4038 (*1 *1 *1 *2) (-12 (-5 *2 (-1073 (-179))) (-5 *1 (-1211)))) (-4037 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-714)) (-5 *4 (-881 (-179))) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-599 (-220))) (-5 *1 (-1211)))) (-4036 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-220))) (-5 *1 (-1211)))) (-4035 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4034 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4033 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4032 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-714)) (-5 *4 (-857)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4031 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-1211)))) (-4031 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4031 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-499)) (-5 *4 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4031 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4031 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4030 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4029 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4028 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4027 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4026 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4025 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4025 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4024 (*1 *2 *1 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4024 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4023 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4022 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4021 (*1 *2 *1 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4020 (*1 *2 *1 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4019 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4018 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4017 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4016 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4014 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4013 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4012 (*1 *2 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1211)))) (-4012 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1211)))) (-4012 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-1099)) (-5 *1 (-1211)))) (-4011 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4010 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1211))))) -((-4054 (((-599 (-1099)) (-599 (-1099))) 103 T ELT) (((-599 (-1099))) 96 T ELT)) (-4055 (((-599 (-1099))) 94 T ELT)) (-4052 (((-599 (-857)) (-599 (-857))) 69 T ELT) (((-599 (-857))) 64 T ELT)) (-4051 (((-599 (-714)) (-599 (-714))) 61 T ELT) (((-599 (-714))) 55 T ELT)) (-4053 (((-1213)) 71 T ELT)) (-4057 (((-857) (-857)) 87 T ELT) (((-857)) 86 T ELT)) (-4056 (((-857) (-857)) 85 T ELT) (((-857)) 84 T ELT)) (-4049 (((-808) (-808)) 81 T ELT) (((-808)) 80 T ELT)) (-4059 (((-179)) 91 T ELT) (((-179) (-333)) 93 T ELT)) (-4058 (((-857)) 88 T ELT) (((-857) (-857)) 89 T ELT)) (-4050 (((-857) (-857)) 83 T ELT) (((-857)) 82 T ELT)) (-4046 (((-808) (-808)) 75 T ELT) (((-808)) 73 T ELT)) (-4047 (((-808) (-808)) 77 T ELT) (((-808)) 76 T ELT)) (-4048 (((-808) (-808)) 79 T ELT) (((-808)) 78 T ELT))) -(((-1212) (-10 -7 (-15 -4046 ((-808))) (-15 -4046 ((-808) (-808))) (-15 -4047 ((-808))) (-15 -4047 ((-808) (-808))) (-15 -4048 ((-808))) (-15 -4048 ((-808) (-808))) (-15 -4049 ((-808))) (-15 -4049 ((-808) (-808))) (-15 -4050 ((-857))) (-15 -4050 ((-857) (-857))) (-15 -4051 ((-599 (-714)))) (-15 -4051 ((-599 (-714)) (-599 (-714)))) (-15 -4052 ((-599 (-857)))) (-15 -4052 ((-599 (-857)) (-599 (-857)))) (-15 -4053 ((-1213))) (-15 -4054 ((-599 (-1099)))) (-15 -4054 ((-599 (-1099)) (-599 (-1099)))) (-15 -4055 ((-599 (-1099)))) (-15 -4056 ((-857))) (-15 -4057 ((-857))) (-15 -4056 ((-857) (-857))) (-15 -4057 ((-857) (-857))) (-15 -4058 ((-857) (-857))) (-15 -4058 ((-857))) (-15 -4059 ((-179) (-333))) (-15 -4059 ((-179))))) (T -1212)) -((-4059 (*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1212)))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-333)) (-5 *2 (-179)) (-5 *1 (-1212)))) (-4058 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) (-4058 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) (-4057 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) (-4056 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) (-4057 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) (-4056 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) (-4055 (*1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1212)))) (-4054 (*1 *2 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1212)))) (-4054 (*1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1212)))) (-4053 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1212)))) (-4052 (*1 *2 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1212)))) (-4052 (*1 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1212)))) (-4051 (*1 *2 *2) (-12 (-5 *2 (-599 (-714))) (-5 *1 (-1212)))) (-4051 (*1 *2) (-12 (-5 *2 (-599 (-714))) (-5 *1 (-1212)))) (-4050 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) (-4050 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) (-4049 (*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) (-4049 (*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) (-4048 (*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) (-4048 (*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) (-4047 (*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) (-4047 (*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) (-4046 (*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) (-4046 (*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212))))) -((-4060 (($) 6 T ELT)) (-4096 (((-797) $) 9 T ELT))) -(((-1213) (-13 (-568 (-797)) (-10 -8 (-15 -4060 ($))))) (T -1213)) -((-4060 (*1 *1) (-5 *1 (-1213)))) -((-4099 (($ $ |#2|) 10 T ELT))) -(((-1214 |#1| |#2|) (-10 -7 (-15 -4099 (|#1| |#1| |#2|))) (-1215 |#2|) (-318)) (T -1214)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4061 (((-107)) 38 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 39 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-1215 |#1|) (-113) (-318)) (T -1215)) -((-4099 (*1 *1 *1 *2) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-318)))) (-4061 (*1 *2) (-12 (-4 *1 (-1215 *3)) (-4 *3 (-318)) (-5 *2 (-107))))) -(-13 (-675 |t#1|) (-10 -8 (-15 -4099 ($ $ |t#1|)) (-15 -4061 ((-107))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) . T) ((-675 |#1|) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) -((-4066 (((-599 (-1150 |#1|)) (-1117) (-1150 |#1|)) 83 T ELT)) (-4064 (((-1095 (-1095 (-884 |#1|))) (-1117) (-1095 (-884 |#1|))) 63 T ELT)) (-4067 (((-1 (-1095 (-1150 |#1|)) (-1095 (-1150 |#1|))) (-714) (-1150 |#1|) (-1095 (-1150 |#1|))) 74 T ELT)) (-4062 (((-1 (-1095 (-884 |#1|)) (-1095 (-884 |#1|))) (-714)) 65 T ELT)) (-4065 (((-1 (-1111 (-884 |#1|)) (-884 |#1|)) (-1117)) 32 T ELT)) (-4063 (((-1 (-1095 (-884 |#1|)) (-1095 (-884 |#1|))) (-714)) 64 T ELT))) -(((-1216 |#1|) (-10 -7 (-15 -4062 ((-1 (-1095 (-884 |#1|)) (-1095 (-884 |#1|))) (-714))) (-15 -4063 ((-1 (-1095 (-884 |#1|)) (-1095 (-884 |#1|))) (-714))) (-15 -4064 ((-1095 (-1095 (-884 |#1|))) (-1117) (-1095 (-884 |#1|)))) (-15 -4065 ((-1 (-1111 (-884 |#1|)) (-884 |#1|)) (-1117))) (-15 -4066 ((-599 (-1150 |#1|)) (-1117) (-1150 |#1|))) (-15 -4067 ((-1 (-1095 (-1150 |#1|)) (-1095 (-1150 |#1|))) (-714) (-1150 |#1|) (-1095 (-1150 |#1|))))) (-318)) (T -1216)) -((-4067 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-714)) (-4 *6 (-318)) (-5 *4 (-1150 *6)) (-5 *2 (-1 (-1095 *4) (-1095 *4))) (-5 *1 (-1216 *6)) (-5 *5 (-1095 *4)))) (-4066 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-4 *5 (-318)) (-5 *2 (-599 (-1150 *5))) (-5 *1 (-1216 *5)) (-5 *4 (-1150 *5)))) (-4065 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1 (-1111 (-884 *4)) (-884 *4))) (-5 *1 (-1216 *4)) (-4 *4 (-318)))) (-4064 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-4 *5 (-318)) (-5 *2 (-1095 (-1095 (-884 *5)))) (-5 *1 (-1216 *5)) (-5 *4 (-1095 (-884 *5))))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-1095 (-884 *4)) (-1095 (-884 *4)))) (-5 *1 (-1216 *4)) (-4 *4 (-318)))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-1095 (-884 *4)) (-1095 (-884 *4)))) (-5 *1 (-1216 *4)) (-4 *4 (-318))))) -((-4069 (((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))) |#2|) 80 T ELT)) (-4068 (((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|)))) 79 T ELT))) -(((-1217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4068 ((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))))) (-15 -4069 ((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))) |#2|))) (-305) (-1183 |#1|) (-1183 |#2|) (-364 |#2| |#3|)) (T -1217)) -((-4069 (*1 *2 *3) (-12 (-4 *4 (-305)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 *3)) (-5 *2 (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) (-5 *1 (-1217 *4 *3 *5 *6)) (-4 *6 (-364 *3 *5)))) (-4068 (*1 *2) (-12 (-4 *3 (-305)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 *4)) (-5 *2 (-2 (|:| -2113 (-647 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-647 *4)))) (-5 *1 (-1217 *3 *4 *5 *6)) (-4 *6 (-364 *4 *5))))) -((-2687 (((-85) $ $) NIL T ELT)) (-4070 (((-1075) $) 11 T ELT)) (-4071 (((-1075) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 17 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-1218) (-13 (-1023) (-10 -8 (-15 -4071 ((-1075) $)) (-15 -4070 ((-1075) $))))) (T -1218)) -((-4071 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1218)))) (-4070 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1218))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4072 (((-1075) $) 9 T ELT)) (-4096 (((-797) $) 15 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) -(((-1219) (-13 (-1023) (-10 -8 (-15 -4072 ((-1075) $))))) (T -1219)) -((-4072 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1219))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 58 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 81 T ELT) (($ (-499)) NIL T ELT) (($ |#4|) 65 T ELT) ((|#4| $) 70 T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3248 (((-714)) NIL T CONST)) (-4073 (((-1213) (-714)) 16 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 36 T CONST)) (-2785 (($) 84 T CONST)) (-3174 (((-85) $ $) 87 T ELT)) (-4099 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) 89 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 63 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 91 T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-1220 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-989) (-444 |#4|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-318)) (-15 -4099 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4073 ((-1213) (-714))))) (-989) (-781) (-738) (-888 |#1| |#3| |#2|) (-599 |#2|) (-599 (-714)) (-714)) (T -1220)) -((-4099 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-318)) (-4 *2 (-989)) (-4 *3 (-781)) (-4 *4 (-738)) (-14 *6 (-599 *3)) (-5 *1 (-1220 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-888 *2 *4 *3)) (-14 *7 (-599 (-714))) (-14 *8 (-714)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-714)) (-4 *4 (-989)) (-4 *5 (-781)) (-4 *6 (-738)) (-14 *8 (-599 *5)) (-5 *2 (-1213)) (-5 *1 (-1220 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-888 *4 *6 *5)) (-14 *9 (-599 *3)) (-14 *10 *3)))) -((-2687 (((-85) $ $) NIL T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |#4|)))) (-599 |#4|)) NIL T ELT)) (-3832 (((-599 $) (-599 |#4|)) 96 T ELT)) (-3204 (((-599 |#3|) $) NIL T ELT)) (-3029 (((-85) $) NIL T ELT)) (-3020 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3843 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3838 ((|#4| |#4| $) NIL T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3860 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3025 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3839 (((-599 |#4|) (-599 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) 28 (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) NIL (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ #1#) (-599 |#4|)) NIL T ELT)) (-3294 (($ (-599 |#4|)) NIL T ELT)) (-3949 (((-3 $ #1#) $) 78 T ELT)) (-3835 ((|#4| |#4| $) 83 T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-3546 (($ |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-510)) ELT)) (-3844 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3833 ((|#4| |#4| $) NIL T ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4145)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#4|)) (|:| -1795 (-599 |#4|))) $) NIL T ELT)) (-3010 (((-599 |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3318 ((|#3| $) 84 T ELT)) (-2727 (((-599 |#4|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-4076 (((-3 $ #1#) (-599 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-599 |#4|)) 38 T ELT)) (-2051 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-3035 (((-599 |#3|) $) NIL T ELT)) (-3034 (((-85) |#3| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3948 (((-3 |#4| #1#) $) NIL T ELT)) (-3847 (((-599 |#4|) $) 54 T ELT)) (-3841 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3836 ((|#4| |#4| $) 82 T ELT)) (-3849 (((-85) $ $) 93 T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-510)) ELT)) (-3842 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3837 ((|#4| |#4| $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 (((-3 |#4| #1#) $) 77 T ELT)) (-1387 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3829 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3919 (($ $ |#4|) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 75 T ELT)) (-3713 (($) 46 T ELT)) (-4098 (((-714) $) NIL T ELT)) (-2048 (((-714) |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (((-714) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) NIL T ELT)) (-3031 (($ $ |#3|) NIL T ELT)) (-3033 (($ $ |#3|) NIL T ELT)) (-3834 (($ $) NIL T ELT)) (-3032 (($ $ |#3|) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (((-599 |#4|) $) 63 T ELT)) (-3828 (((-714) $) NIL (|has| |#3| (-323)) ELT)) (-4075 (((-3 $ #1#) (-599 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44 T ELT) (((-3 $ #1#) (-599 |#4|)) 45 T ELT)) (-4074 (((-599 $) (-599 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73 T ELT) (((-599 $) (-599 |#4|)) 74 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3840 (((-85) $ (-1 (-85) |#4| (-599 |#4|))) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 |#3|) $) NIL T ELT)) (-4083 (((-85) |#3| $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) -(((-1221 |#1| |#2| |#3| |#4|) (-13 (-1152 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4076 ((-3 $ #1="failed") (-599 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4076 ((-3 $ #1#) (-599 |#4|))) (-15 -4075 ((-3 $ #1#) (-599 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4075 ((-3 $ #1#) (-599 |#4|))) (-15 -4074 ((-599 $) (-599 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4074 ((-599 $) (-599 |#4|))))) (-510) (-738) (-781) (-1005 |#1| |#2| |#3|)) (T -1221)) -((-4076 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-599 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1221 *5 *6 *7 *8)))) (-4076 (*1 *1 *2) (|partial| -12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-1221 *3 *4 *5 *6)))) (-4075 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-599 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1221 *5 *6 *7 *8)))) (-4075 (*1 *1 *2) (|partial| -12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-1221 *3 *4 *5 *6)))) (-4074 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1005 *6 *7 *8)) (-4 *6 (-510)) (-4 *7 (-738)) (-4 *8 (-781)) (-5 *2 (-599 (-1221 *6 *7 *8 *9))) (-5 *1 (-1221 *6 *7 *8 *9)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 (-1221 *4 *5 *6 *7))) (-5 *1 (-1221 *4 *5 *6 *7))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 50 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) -(((-1222 |#1|) (-113) (-989)) (T -1222)) -NIL -(-13 (-989) (-82 |t#1| |t#1|) (-571 |t#1|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 |#1|) |has| |#1| (-146)) ((-675 |#1|) |has| |#1| (-146)) ((-684) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) -((-2687 (((-85) $ $) 67 T ELT)) (-3326 (((-85) $) NIL T ELT)) (-4084 (((-599 |#1|) $) 52 T ELT)) (-4097 (($ $ (-714)) 46 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4085 (($ $ (-714)) 24 (|has| |#2| (-146)) ELT) (($ $ $) 25 (|has| |#2| (-146)) ELT)) (-3874 (($) NIL T CONST)) (-4089 (($ $ $) 70 T ELT) (($ $ (-762 |#1|)) 56 T ELT) (($ $ |#1|) 60 T ELT)) (-3295 (((-3 (-762 |#1|) #1#) $) NIL T ELT)) (-3294 (((-762 |#1|) $) NIL T ELT)) (-4109 (($ $) 39 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-4101 (((-85) $) NIL T ELT)) (-4100 (($ $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-4088 (($ (-762 |#1|) |#2|) 38 T ELT)) (-4086 (($ $) 40 T ELT)) (-4091 (((-2 (|:| |k| (-762 |#1|)) (|:| |c| |#2|)) $) 12 T ELT)) (-4105 (((-762 |#1|) $) NIL T ELT)) (-4106 (((-762 |#1|) $) 41 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4090 (($ $ $) 69 T ELT) (($ $ (-762 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-1842 (((-2 (|:| |k| (-762 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3015 (((-762 |#1|) $) 35 T ELT)) (-3312 ((|#2| $) 37 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4098 (((-714) $) 43 T ELT)) (-4103 (((-85) $) 47 T ELT)) (-4102 ((|#2| $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-762 |#1|)) 30 T ELT) (($ |#1|) 31 T ELT) (($ |#2|) NIL T ELT) (($ (-499)) NIL T ELT)) (-3967 (((-599 |#2|) $) NIL T ELT)) (-3827 ((|#2| $ (-762 |#1|)) NIL T ELT)) (-4104 ((|#2| $ $) 76 T ELT) ((|#2| $ (-762 |#1|)) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 13 T CONST)) (-2785 (($) 19 T CONST)) (-2784 (((-599 (-2 (|:| |k| (-762 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3174 (((-85) $ $) 44 T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 28 T ELT)) (** (($ $ (-714)) NIL T ELT) (($ $ (-857)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 68 T ELT) (($ |#2| (-762 |#1|)) NIL T ELT) (($ |#1| $) 33 T ELT) (($ $ $) NIL T ELT))) -(((-1223 |#1| |#2|) (-13 (-339 |#2| (-762 |#1|)) (-1230 |#1| |#2|)) (-781) (-989)) (T -1223)) -NIL -((-4092 ((|#3| |#3| (-714)) 28 T ELT)) (-4093 ((|#3| |#3| (-714)) 34 T ELT)) (-4077 ((|#3| |#3| |#3| (-714)) 35 T ELT))) -(((-1224 |#1| |#2| |#3|) (-10 -7 (-15 -4093 (|#3| |#3| (-714))) (-15 -4092 (|#3| |#3| (-714))) (-15 -4077 (|#3| |#3| |#3| (-714)))) (-13 (-989) (-675 (-361 (-499)))) (-781) (-1230 |#2| |#1|)) (T -1224)) -((-4077 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-714)) (-4 *4 (-13 (-989) (-675 (-361 (-499))))) (-4 *5 (-781)) (-5 *1 (-1224 *4 *5 *2)) (-4 *2 (-1230 *5 *4)))) (-4092 (*1 *2 *2 *3) (-12 (-5 *3 (-714)) (-4 *4 (-13 (-989) (-675 (-361 (-499))))) (-4 *5 (-781)) (-5 *1 (-1224 *4 *5 *2)) (-4 *2 (-1230 *5 *4)))) (-4093 (*1 *2 *2 *3) (-12 (-5 *3 (-714)) (-4 *4 (-13 (-989) (-675 (-361 (-499))))) (-4 *5 (-781)) (-5 *1 (-1224 *4 *5 *2)) (-4 *2 (-1230 *5 *4))))) -((-4082 (((-85) $) 15 T ELT)) (-4083 (((-85) $) 14 T ELT)) (-4078 (($ $) 19 T ELT) (($ $ (-714)) 21 T ELT))) -(((-1225 |#1| |#2|) (-10 -7 (-15 -4078 (|#1| |#1| (-714))) (-15 -4078 (|#1| |#1|)) (-15 -4082 ((-85) |#1|)) (-15 -4083 ((-85) |#1|))) (-1226 |#2|) (-318)) (T -1225)) -NIL -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-4082 (((-85) $) 111 T ELT)) (-4079 (((-714)) 107 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#1| "failed") $) 118 T ELT)) (-3294 ((|#1| $) 119 T ELT)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-1864 (($ $ (-714)) 104 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT) (($ $) 103 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3873 (((-85) $) 86 T ELT)) (-3922 (((-766 (-857)) $) 101 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-2528 (((-85) $) 40 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 65 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 85 T ELT)) (-4081 (((-85) $) 110 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-4080 (((-766 (-857))) 108 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-1865 (((-3 (-714) "failed") $ $) 102 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-4061 (((-107)) 116 T ELT)) (-4098 (((-766 (-857)) $) 109 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT) (($ |#1|) 117 T ELT)) (-2823 (((-649 $) $) 100 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-4083 (((-85) $) 112 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-4078 (($ $) 106 (|has| |#1| (-323)) ELT) (($ $ (-714)) 105 (|has| |#1| (-323)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) -(((-1226 |#1|) (-113) (-318)) (T -1226)) -((-4083 (*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-85)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-85)))) (-4081 (*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-85)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-766 (-857))))) (-4080 (*1 *2) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-766 (-857))))) (-4079 (*1 *2) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-714)))) (-4078 (*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-318)) (-4 *2 (-323)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-4 *3 (-323))))) -(-13 (-318) (-978 |t#1|) (-1215 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-356)) |%noBranch|) (-15 -4083 ((-85) $)) (-15 -4082 ((-85) $)) (-15 -4081 ((-85) $)) (-15 -4098 ((-766 (-857)) $)) (-15 -4080 ((-766 (-857)))) (-15 -4079 ((-714))) (IF (|has| |t#1| (-323)) (PROGN (-6 (-356)) (-15 -4078 ($ $)) (-15 -4078 ($ $ (-714)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) -3677 (|has| |#1| (-323)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-200) . T) ((-244) . T) ((-261) . T) ((-318) . T) ((-356) -3677 (|has| |#1| (-323)) (|has| |#1| (-118))) ((-406) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 |#1|) . T) ((-598 $) . T) ((-675 (-361 (-499))) . T) ((-675 |#1|) . T) ((-675 $) . T) ((-684) . T) ((-859) . T) ((-978 |#1|) . T) ((-991 (-361 (-499))) . T) ((-991 |#1|) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 |#1|) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) . T) ((-1215 |#1|) . T)) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-4084 (((-599 |#1|) $) 52 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-4085 (($ $ $) 55 (|has| |#2| (-146)) ELT) (($ $ (-714)) 54 (|has| |#2| (-146)) ELT)) (-3874 (($) 22 T CONST)) (-4089 (($ $ |#1|) 66 T ELT) (($ $ (-762 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3295 (((-3 (-762 |#1|) "failed") $) 76 T ELT)) (-3294 (((-762 |#1|) $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-4101 (((-85) $) 57 T ELT)) (-4100 (($ $) 56 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-4087 (((-85) $) 62 T ELT)) (-4088 (($ (-762 |#1|) |#2|) 63 T ELT)) (-4086 (($ $) 61 T ELT)) (-4091 (((-2 (|:| |k| (-762 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-4105 (((-762 |#1|) $) 73 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-4090 (($ $ |#1|) 69 T ELT) (($ $ (-762 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4103 (((-85) $) 59 T ELT)) (-4102 ((|#2| $) 58 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-762 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-4104 ((|#2| $ (-762 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) -(((-1227 |#1| |#2|) (-113) (-781) (-989)) (T -1227)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1227 *3 *2)) (-4 *3 (-781)) (-4 *2 (-989)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) (-4105 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-762 *3)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-2 (|:| |k| (-762 *3)) (|:| |c| *4))))) (-4104 (*1 *2 *1 *3) (-12 (-5 *3 (-762 *4)) (-4 *1 (-1227 *4 *2)) (-4 *4 (-781)) (-4 *2 (-989)))) (-4104 (*1 *2 *1 *1) (-12 (-4 *1 (-1227 *3 *2)) (-4 *3 (-781)) (-4 *2 (-989)))) (-4090 (*1 *1 *1 *2) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) (-4090 (*1 *1 *1 *2) (-12 (-5 *2 (-762 *3)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)))) (-4090 (*1 *1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) (-4089 (*1 *1 *1 *2) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) (-4089 (*1 *1 *1 *2) (-12 (-5 *2 (-762 *3)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)))) (-4089 (*1 *1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) (-4088 (*1 *1 *2 *3) (-12 (-5 *2 (-762 *4)) (-4 *4 (-781)) (-4 *1 (-1227 *4 *3)) (-4 *3 (-989)))) (-4087 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-85)))) (-4086 (*1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) (-4096 (*1 *1 *2) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) (-4103 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-85)))) (-4102 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *2)) (-4 *3 (-781)) (-4 *2 (-989)))) (-4101 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-85)))) (-4100 (*1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) (-4085 (*1 *1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)) (-4 *3 (-146)))) (-4085 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-4 *4 (-146)))) (-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-599 *3))))) -(-13 (-989) (-1222 |t#2|) (-978 (-762 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4105 ((-762 |t#1|) $)) (-15 -4091 ((-2 (|:| |k| (-762 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4104 (|t#2| $ (-762 |t#1|))) (-15 -4104 (|t#2| $ $)) (-15 -4090 ($ $ |t#1|)) (-15 -4090 ($ $ (-762 |t#1|))) (-15 -4090 ($ $ $)) (-15 -4089 ($ $ |t#1|)) (-15 -4089 ($ $ (-762 |t#1|))) (-15 -4089 ($ $ $)) (-15 -4088 ($ (-762 |t#1|) |t#2|)) (-15 -4087 ((-85) $)) (-15 -4086 ($ $)) (-15 -4096 ($ |t#1|)) (-15 -4103 ((-85) $)) (-15 -4102 (|t#2| $)) (-15 -4101 ((-85) $)) (-15 -4100 ($ $)) (IF (|has| |t#2| (-146)) (PROGN (-15 -4085 ($ $ $)) (-15 -4085 ($ $ (-714)))) |%noBranch|) (-15 -4108 ($ (-1 |t#2| |t#2|) $)) (-15 -4084 ((-599 |t#1|) $)) (IF (|has| |t#2| (-6 -4138)) (-6 -4138) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-73) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 (-762 |#1|)) . T) ((-571 |#2|) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#2|) . T) ((-604 $) . T) ((-606 |#2|) . T) ((-606 $) . T) ((-598 |#2|) |has| |#2| (-146)) ((-675 |#2|) |has| |#2| (-146)) ((-684) . T) ((-978 (-762 |#1|)) . T) ((-991 |#2|) . T) ((-996 |#2|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1222 |#2|) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-4084 (((-599 |#1|) $) 97 T ELT)) (-4097 (($ $ (-714)) 101 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4085 (($ $ $) NIL (|has| |#2| (-146)) ELT) (($ $ (-714)) NIL (|has| |#2| (-146)) ELT)) (-3874 (($) NIL T CONST)) (-4089 (($ $ |#1|) NIL T ELT) (($ $ (-762 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3295 (((-3 (-762 |#1|) #1#) $) NIL T ELT) (((-3 (-828 |#1|) #1#) $) NIL T ELT)) (-3294 (((-762 |#1|) $) NIL T ELT) (((-828 |#1|) $) NIL T ELT)) (-4109 (($ $) 100 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-4101 (((-85) $) 89 T ELT)) (-4100 (($ $) 92 T ELT)) (-4094 (($ $ $ (-714)) 102 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-4088 (($ (-762 |#1|) |#2|) NIL T ELT) (($ (-828 |#1|) |#2|) 28 T ELT)) (-4086 (($ $) 118 T ELT)) (-4091 (((-2 (|:| |k| (-762 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4105 (((-762 |#1|) $) NIL T ELT)) (-4106 (((-762 |#1|) $) NIL T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4090 (($ $ |#1|) NIL T ELT) (($ $ (-762 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-4092 (($ $ (-714)) 111 (|has| |#2| (-675 (-361 (-499)))) ELT)) (-1842 (((-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3015 (((-828 |#1|) $) 82 T ELT)) (-3312 ((|#2| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4093 (($ $ (-714)) 108 (|has| |#2| (-675 (-361 (-499)))) ELT)) (-4098 (((-714) $) 98 T ELT)) (-4103 (((-85) $) 83 T ELT)) (-4102 ((|#2| $) 87 T ELT)) (-4096 (((-797) $) 68 T ELT) (($ (-499)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-762 |#1|)) NIL T ELT) (($ |#1|) 70 T ELT) (($ (-828 |#1|)) NIL T ELT) (($ (-622 |#1| |#2|)) 47 T ELT) (((-1223 |#1| |#2|) $) 75 T ELT) (((-1232 |#1| |#2|) $) 80 T ELT)) (-3967 (((-599 |#2|) $) NIL T ELT)) (-3827 ((|#2| $ (-828 |#1|)) NIL T ELT)) (-4104 ((|#2| $ (-762 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 21 T CONST)) (-2785 (($) 27 T CONST)) (-2784 (((-599 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-4095 (((-3 (-622 |#1| |#2|) #1#) $) 117 T ELT)) (-3174 (((-85) $ $) 76 T ELT)) (-3987 (($ $) 110 T ELT) (($ $ $) 109 T ELT)) (-3989 (($ $ $) 20 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-828 |#1|)) NIL T ELT))) -(((-1228 |#1| |#2|) (-13 (-1230 |#1| |#2|) (-339 |#2| (-828 |#1|)) (-10 -8 (-15 -4096 ($ (-622 |#1| |#2|))) (-15 -4096 ((-1223 |#1| |#2|) $)) (-15 -4096 ((-1232 |#1| |#2|) $)) (-15 -4095 ((-3 (-622 |#1| |#2|) "failed") $)) (-15 -4094 ($ $ $ (-714))) (IF (|has| |#2| (-675 (-361 (-499)))) (PROGN (-15 -4093 ($ $ (-714))) (-15 -4092 ($ $ (-714)))) |%noBranch|))) (-781) (-146)) (T -1228)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-622 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) (-5 *1 (-1228 *3 *4)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-1223 *3 *4)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-1232 *3 *4)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)))) (-4095 (*1 *2 *1) (|partial| -12 (-5 *2 (-622 *3 *4)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)))) (-4094 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)))) (-4093 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-1228 *3 *4)) (-4 *4 (-675 (-361 (-499)))) (-4 *3 (-781)) (-4 *4 (-146)))) (-4092 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-1228 *3 *4)) (-4 *4 (-675 (-361 (-499)))) (-4 *3 (-781)) (-4 *4 (-146))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-4084 (((-599 (-1117)) $) NIL T ELT)) (-4112 (($ (-1223 (-1117) |#1|)) NIL T ELT)) (-4097 (($ $ (-714)) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4085 (($ $ $) NIL (|has| |#1| (-146)) ELT) (($ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-3874 (($) NIL T CONST)) (-4089 (($ $ (-1117)) NIL T ELT) (($ $ (-762 (-1117))) NIL T ELT) (($ $ $) NIL T ELT)) (-3295 (((-3 (-762 (-1117)) #1#) $) NIL T ELT)) (-3294 (((-762 (-1117)) $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-4101 (((-85) $) NIL T ELT)) (-4100 (($ $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-4088 (($ (-762 (-1117)) |#1|) NIL T ELT)) (-4086 (($ $) NIL T ELT)) (-4091 (((-2 (|:| |k| (-762 (-1117))) (|:| |c| |#1|)) $) NIL T ELT)) (-4105 (((-762 (-1117)) $) NIL T ELT)) (-4106 (((-762 (-1117)) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4090 (($ $ (-1117)) NIL T ELT) (($ $ (-762 (-1117))) NIL T ELT) (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4113 (((-1223 (-1117) |#1|) $) NIL T ELT)) (-4098 (((-714) $) NIL T ELT)) (-4103 (((-85) $) NIL T ELT)) (-4102 ((|#1| $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-762 (-1117))) NIL T ELT) (($ (-1117)) NIL T ELT)) (-4104 ((|#1| $ (-762 (-1117))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-4111 (((-599 (-2 (|:| |k| (-1117)) (|:| |c| $))) $) NIL T ELT)) (-2785 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1117) $) NIL T ELT))) -(((-1229 |#1|) (-13 (-1230 (-1117) |#1|) (-10 -8 (-15 -4113 ((-1223 (-1117) |#1|) $)) (-15 -4112 ($ (-1223 (-1117) |#1|))) (-15 -4111 ((-599 (-2 (|:| |k| (-1117)) (|:| |c| $))) $)))) (-989)) (T -1229)) -((-4113 (*1 *2 *1) (-12 (-5 *2 (-1223 (-1117) *3)) (-5 *1 (-1229 *3)) (-4 *3 (-989)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-1223 (-1117) *3)) (-4 *3 (-989)) (-5 *1 (-1229 *3)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |k| (-1117)) (|:| |c| (-1229 *3))))) (-5 *1 (-1229 *3)) (-4 *3 (-989))))) -((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-4084 (((-599 |#1|) $) 52 T ELT)) (-4097 (($ $ (-714)) 86 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-4085 (($ $ $) 55 (|has| |#2| (-146)) ELT) (($ $ (-714)) 54 (|has| |#2| (-146)) ELT)) (-3874 (($) 22 T CONST)) (-4089 (($ $ |#1|) 66 T ELT) (($ $ (-762 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3295 (((-3 (-762 |#1|) "failed") $) 76 T ELT)) (-3294 (((-762 |#1|) $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-4101 (((-85) $) 57 T ELT)) (-4100 (($ $) 56 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-4087 (((-85) $) 62 T ELT)) (-4088 (($ (-762 |#1|) |#2|) 63 T ELT)) (-4086 (($ $) 61 T ELT)) (-4091 (((-2 (|:| |k| (-762 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-4105 (((-762 |#1|) $) 73 T ELT)) (-4106 (((-762 |#1|) $) 88 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-4090 (($ $ |#1|) 69 T ELT) (($ $ (-762 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4098 (((-714) $) 87 T ELT)) (-4103 (((-85) $) 59 T ELT)) (-4102 ((|#2| $) 58 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-762 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-4104 ((|#2| $ (-762 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) -(((-1230 |#1| |#2|) (-113) (-781) (-989)) (T -1230)) -((-4106 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-762 *3)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-714)))) (-4097 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1230 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989))))) -(-13 (-1227 |t#1| |t#2|) (-10 -8 (-15 -4106 ((-762 |t#1|) $)) (-15 -4098 ((-714) $)) (-15 -4097 ($ $ (-714))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-73) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 (-762 |#1|)) . T) ((-571 |#2|) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#2|) . T) ((-604 $) . T) ((-606 |#2|) . T) ((-606 $) . T) ((-598 |#2|) |has| |#2| (-146)) ((-675 |#2|) |has| |#2| (-146)) ((-684) . T) ((-978 (-762 |#1|)) . T) ((-991 |#2|) . T) ((-996 |#2|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1222 |#2|) . T) ((-1227 |#1| |#2|) . T)) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) NIL T ELT)) (-3294 ((|#2| $) NIL T ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) 42 T ELT)) (-4101 (((-85) $) 36 T ELT)) (-4100 (($ $) 37 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-4088 (($ |#2| |#1|) NIL T ELT)) (-4105 ((|#2| $) 24 T ELT)) (-4106 ((|#2| $) 22 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1842 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-3015 ((|#2| $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4103 (((-85) $) 32 T ELT)) (-4102 ((|#1| $) 33 T ELT)) (-4096 (((-797) $) 65 T ELT) (($ (-499)) 46 T ELT) (($ |#1|) 41 T ELT) (($ |#2|) NIL T ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ |#2|) NIL T ELT)) (-4104 ((|#1| $ |#2|) 28 T ELT)) (-3248 (((-714)) 14 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 29 T CONST)) (-2785 (($) 11 T CONST)) (-2784 (((-599 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3174 (((-85) $ $) 30 T ELT)) (-4099 (($ $ |#1|) 67 (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 50 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 52 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 51 T ELT) (($ |#1| $) 47 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-4107 (((-714) $) 16 T ELT))) -(((-1231 |#1| |#2|) (-13 (-989) (-1222 |#1|) (-339 |#1| |#2|) (-571 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4107 ((-714) $)) (-15 -4106 (|#2| $)) (-15 -4105 (|#2| $)) (-15 -4109 ($ $)) (-15 -4104 (|#1| $ |#2|)) (-15 -4103 ((-85) $)) (-15 -4102 (|#1| $)) (-15 -4101 ((-85) $)) (-15 -4100 ($ $)) (-15 -4108 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-318)) (-15 -4099 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4138)) (-6 -4138) |%noBranch|) (IF (|has| |#1| (-6 -4142)) (-6 -4142) |%noBranch|) (IF (|has| |#1| (-6 -4143)) (-6 -4143) |%noBranch|))) (-989) (-779)) (T -1231)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-989)) (-4 *3 (-779)))) (-4109 (*1 *1 *1) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-989)) (-4 *3 (-779)))) (-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-1231 *3 *4)) (-4 *4 (-779)))) (-4107 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-989)) (-4 *4 (-779)))) (-4106 (*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-1231 *3 *2)) (-4 *3 (-989)))) (-4105 (*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-1231 *3 *2)) (-4 *3 (-989)))) (-4104 (*1 *2 *1 *3) (-12 (-4 *2 (-989)) (-5 *1 (-1231 *2 *3)) (-4 *3 (-779)))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-989)) (-4 *4 (-779)))) (-4102 (*1 *2 *1) (-12 (-4 *2 (-989)) (-5 *1 (-1231 *2 *3)) (-4 *3 (-779)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-989)) (-4 *4 (-779)))) (-4100 (*1 *1 *1) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-989)) (-4 *3 (-779)))) (-4099 (*1 *1 *1 *2) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-318)) (-4 *2 (-989)) (-4 *3 (-779))))) -((-2687 (((-85) $ $) 27 T ELT)) (-3326 (((-85) $) NIL T ELT)) (-4084 (((-599 |#1|) $) 132 T ELT)) (-4112 (($ (-1223 |#1| |#2|)) 50 T ELT)) (-4097 (($ $ (-714)) 38 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4085 (($ $ $) 54 (|has| |#2| (-146)) ELT) (($ $ (-714)) 52 (|has| |#2| (-146)) ELT)) (-3874 (($) NIL T CONST)) (-4089 (($ $ |#1|) 114 T ELT) (($ $ (-762 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3295 (((-3 (-762 |#1|) #1#) $) NIL T ELT)) (-3294 (((-762 |#1|) $) NIL T ELT)) (-3607 (((-3 $ #1#) $) 122 T ELT)) (-4101 (((-85) $) 117 T ELT)) (-4100 (($ $) 118 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-4088 (($ (-762 |#1|) |#2|) 20 T ELT)) (-4086 (($ $) NIL T ELT)) (-4091 (((-2 (|:| |k| (-762 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4105 (((-762 |#1|) $) 123 T ELT)) (-4106 (((-762 |#1|) $) 126 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-4090 (($ $ |#1|) 112 T ELT) (($ $ (-762 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4113 (((-1223 |#1| |#2|) $) 94 T ELT)) (-4098 (((-714) $) 129 T ELT)) (-4103 (((-85) $) 81 T ELT)) (-4102 ((|#2| $) 32 T ELT)) (-4096 (((-797) $) 73 T ELT) (($ (-499)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-762 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-4104 ((|#2| $ (-762 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3248 (((-714)) 120 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 15 T CONST)) (-4111 (((-599 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2785 (($) 33 T CONST)) (-3174 (((-85) $ $) 14 T ELT)) (-3987 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3989 (($ $ $) 61 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 55 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) 53 T ELT) (($ (-499) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) -(((-1232 |#1| |#2|) (-13 (-1230 |#1| |#2|) (-10 -8 (-15 -4113 ((-1223 |#1| |#2|) $)) (-15 -4112 ($ (-1223 |#1| |#2|))) (-15 -4111 ((-599 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-781) (-989)) (T -1232)) -((-4113 (*1 *2 *1) (-12 (-5 *2 (-1223 *3 *4)) (-5 *1 (-1232 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-1223 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *1 (-1232 *3 *4)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |k| *3) (|:| |c| (-1232 *3 *4))))) (-5 *1 (-1232 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989))))) -((-2687 (((-85) $ $) NIL T ELT)) (-4115 (($ (-599 (-857))) 10 T ELT)) (-4114 (((-911) $) 12 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 25 T ELT) (($ (-911)) 14 T ELT) (((-911) $) 13 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 17 T ELT))) -(((-1233) (-13 (-1041) (-444 (-911)) (-10 -8 (-15 -4115 ($ (-599 (-857)))) (-15 -4114 ((-911) $))))) (T -1233)) -((-4115 (*1 *1 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1233)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-1233))))) -((-4116 (((-599 (-1095 |#1|)) (-1 (-599 (-1095 |#1|)) (-599 (-1095 |#1|))) (-499)) 16 T ELT) (((-1095 |#1|) (-1 (-1095 |#1|) (-1095 |#1|))) 13 T ELT))) -(((-1234 |#1|) (-10 -7 (-15 -4116 ((-1095 |#1|) (-1 (-1095 |#1|) (-1095 |#1|)))) (-15 -4116 ((-599 (-1095 |#1|)) (-1 (-599 (-1095 |#1|)) (-599 (-1095 |#1|))) (-499)))) (-1157)) (T -1234)) -((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-599 (-1095 *5)) (-599 (-1095 *5)))) (-5 *4 (-499)) (-5 *2 (-599 (-1095 *5))) (-5 *1 (-1234 *5)) (-4 *5 (-1157)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-1 (-1095 *4) (-1095 *4))) (-5 *2 (-1095 *4)) (-5 *1 (-1234 *4)) (-4 *4 (-1157))))) -((-4118 (((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|))) 174 T ELT) (((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85)) 173 T ELT) (((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85) (-85)) 172 T ELT) (((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-986 |#1| |#2|)) 156 T ELT)) (-4117 (((-599 (-986 |#1| |#2|)) (-599 (-884 |#1|))) 85 T ELT) (((-599 (-986 |#1| |#2|)) (-599 (-884 |#1|)) (-85)) 84 T ELT) (((-599 (-986 |#1| |#2|)) (-599 (-884 |#1|)) (-85) (-85)) 83 T ELT)) (-4121 (((-599 (-1086 |#1| (-484 (-798 |#3|)) (-798 |#3|) (-723 |#1| (-798 |#3|)))) (-986 |#1| |#2|)) 73 T ELT)) (-4119 (((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|))) 140 T ELT) (((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85)) 139 T ELT) (((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85) (-85)) 138 T ELT) (((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-599 (-599 (-964 (-361 |#1|)))) (-986 |#1| |#2|)) 132 T ELT)) (-4120 (((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|))) 145 T ELT) (((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85)) 144 T ELT) (((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85) (-85)) 143 T ELT) (((-599 (-599 (-964 (-361 |#1|)))) (-986 |#1| |#2|)) 142 T ELT)) (-4122 (((-599 (-723 |#1| (-798 |#3|))) (-1086 |#1| (-484 (-798 |#3|)) (-798 |#3|) (-723 |#1| (-798 |#3|)))) 111 T ELT) (((-1111 (-964 (-361 |#1|))) (-1111 |#1|)) 102 T ELT) (((-884 (-964 (-361 |#1|))) (-723 |#1| (-798 |#3|))) 109 T ELT) (((-884 (-964 (-361 |#1|))) (-884 |#1|)) 107 T ELT) (((-723 |#1| (-798 |#3|)) (-723 |#1| (-798 |#2|))) 33 T ELT))) -(((-1235 |#1| |#2| |#3|) (-10 -7 (-15 -4117 ((-599 (-986 |#1| |#2|)) (-599 (-884 |#1|)) (-85) (-85))) (-15 -4117 ((-599 (-986 |#1| |#2|)) (-599 (-884 |#1|)) (-85))) (-15 -4117 ((-599 (-986 |#1| |#2|)) (-599 (-884 |#1|)))) (-15 -4118 ((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-986 |#1| |#2|))) (-15 -4118 ((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85) (-85) (-85))) (-15 -4118 ((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85) (-85))) (-15 -4118 ((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85))) (-15 -4118 ((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)))) (-15 -4119 ((-599 (-599 (-964 (-361 |#1|)))) (-986 |#1| |#2|))) (-15 -4119 ((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85) (-85) (-85))) (-15 -4119 ((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85) (-85))) (-15 -4119 ((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85))) (-15 -4119 ((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)))) (-15 -4120 ((-599 (-599 (-964 (-361 |#1|)))) (-986 |#1| |#2|))) (-15 -4120 ((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85) (-85))) (-15 -4120 ((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85))) (-15 -4120 ((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)))) (-15 -4121 ((-599 (-1086 |#1| (-484 (-798 |#3|)) (-798 |#3|) (-723 |#1| (-798 |#3|)))) (-986 |#1| |#2|))) (-15 -4122 ((-723 |#1| (-798 |#3|)) (-723 |#1| (-798 |#2|)))) (-15 -4122 ((-884 (-964 (-361 |#1|))) (-884 |#1|))) (-15 -4122 ((-884 (-964 (-361 |#1|))) (-723 |#1| (-798 |#3|)))) (-15 -4122 ((-1111 (-964 (-361 |#1|))) (-1111 |#1|))) (-15 -4122 ((-599 (-723 |#1| (-798 |#3|))) (-1086 |#1| (-484 (-798 |#3|)) (-798 |#3|) (-723 |#1| (-798 |#3|)))))) (-13 (-780) (-261) (-120) (-960)) (-599 (-1117)) (-599 (-1117))) (T -1235)) -((-4122 (*1 *2 *3) (-12 (-5 *3 (-1086 *4 (-484 (-798 *6)) (-798 *6) (-723 *4 (-798 *6)))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-14 *6 (-599 (-1117))) (-5 *2 (-599 (-723 *4 (-798 *6)))) (-5 *1 (-1235 *4 *5 *6)) (-14 *5 (-599 (-1117))))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-1111 *4)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-1111 (-964 (-361 *4)))) (-5 *1 (-1235 *4 *5 *6)) (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117))))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-723 *4 (-798 *6))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-14 *6 (-599 (-1117))) (-5 *2 (-884 (-964 (-361 *4)))) (-5 *1 (-1235 *4 *5 *6)) (-14 *5 (-599 (-1117))))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-884 *4)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-884 (-964 (-361 *4)))) (-5 *1 (-1235 *4 *5 *6)) (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117))))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-723 *4 (-798 *5))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-14 *5 (-599 (-1117))) (-5 *2 (-723 *4 (-798 *6))) (-5 *1 (-1235 *4 *5 *6)) (-14 *6 (-599 (-1117))))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-986 *4 *5)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-14 *5 (-599 (-1117))) (-5 *2 (-599 (-1086 *4 (-484 (-798 *6)) (-798 *6) (-723 *4 (-798 *6))))) (-5 *1 (-1235 *4 *5 *6)) (-14 *6 (-599 (-1117))))) (-4120 (*1 *2 *3) (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-599 (-964 (-361 *4))))) (-5 *1 (-1235 *4 *5 *6)) (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117))))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) (-4120 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) (-4120 (*1 *2 *3) (-12 (-5 *3 (-986 *4 *5)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-14 *5 (-599 (-1117))) (-5 *2 (-599 (-599 (-964 (-361 *4))))) (-5 *1 (-1235 *4 *5 *6)) (-14 *6 (-599 (-1117))))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-599 (-964 (-361 *4))))) (-5 *1 (-1235 *4 *5 *6)) (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117))))) (-4119 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) (-4119 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) (-4119 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-986 *4 *5)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-14 *5 (-599 (-1117))) (-5 *2 (-599 (-599 (-964 (-361 *4))))) (-5 *1 (-1235 *4 *5 *6)) (-14 *6 (-599 (-1117))))) (-4118 (*1 *2 *3) (-12 (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-2 (|:| -1840 (-1111 *4)) (|:| -3362 (-599 (-884 *4)))))) (-5 *1 (-1235 *4 *5 *6)) (-5 *3 (-599 (-884 *4))) (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117))))) (-4118 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) (-5 *1 (-1235 *5 *6 *7)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) (-4118 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) (-5 *1 (-1235 *5 *6 *7)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) (-4118 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) (-5 *1 (-1235 *5 *6 *7)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) (-4118 (*1 *2 *3) (-12 (-5 *3 (-986 *4 *5)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-14 *5 (-599 (-1117))) (-5 *2 (-599 (-2 (|:| -1840 (-1111 *4)) (|:| -3362 (-599 (-884 *4)))))) (-5 *1 (-1235 *4 *5 *6)) (-14 *6 (-599 (-1117))))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-986 *4 *5))) (-5 *1 (-1235 *4 *5 *6)) (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117))))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-986 *5 *6))) (-5 *1 (-1235 *5 *6 *7)) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) (-4117 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-986 *5 *6))) (-5 *1 (-1235 *5 *6 *7)) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117)))))) -((-4125 (((-3 (-1207 (-361 (-499))) #1="failed") (-1207 |#1|) |#1|) 21 T ELT)) (-4123 (((-85) (-1207 |#1|)) 12 T ELT)) (-4124 (((-3 (-1207 (-499)) #1#) (-1207 |#1|)) 16 T ELT))) -(((-1236 |#1|) (-10 -7 (-15 -4123 ((-85) (-1207 |#1|))) (-15 -4124 ((-3 (-1207 (-499)) #1="failed") (-1207 |#1|))) (-15 -4125 ((-3 (-1207 (-361 (-499))) #1#) (-1207 |#1|) |#1|))) (-13 (-989) (-596 (-499)))) (T -1236)) -((-4125 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 (-499)))) (-5 *2 (-1207 (-361 (-499)))) (-5 *1 (-1236 *4)))) (-4124 (*1 *2 *3) (|partial| -12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 (-499)))) (-5 *2 (-1207 (-499))) (-5 *1 (-1236 *4)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 (-499)))) (-5 *2 (-85)) (-5 *1 (-1236 *4))))) -((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 12 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3258 (((-714)) 9 T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ #1#) $) 57 T ELT)) (-3115 (($) 46 T ELT)) (-2528 (((-85) $) 38 T ELT)) (-3585 (((-649 $) $) 36 T ELT)) (-2111 (((-857) $) 14 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3586 (($) 26 T CONST)) (-2518 (($ (-857)) 47 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4122 (((-499) $) 16 T ELT)) (-4096 (((-797) $) 21 T ELT) (($ (-499)) 18 T ELT)) (-3248 (((-714)) 10 T CONST)) (-1297 (((-85) $ $) 59 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 25 T CONST)) (-3174 (((-85) $ $) 31 T ELT)) (-3987 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3989 (($ $ $) 29 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 52 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 41 T ELT) (($ $ $) 40 T ELT))) -(((-1237 |#1|) (-13 (-146) (-323) (-569 (-499)) (-1092)) (-857)) (T -1237)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 2928061 2928066 2928071 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2928046 2928051 2928056 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2928031 2928036 2928041 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2928016 2928021 2928026 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1237 2927059 2927934 2928011 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1236 2926274 2926453 2926672 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1235 2917433 2919302 2921236 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1234 2916821 2916974 2917163 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1233 2916283 2916586 2916699 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1232 2913907 2915745 2915948 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1231 2910735 2912324 2912895 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1230 2908080 2909748 2909802 "XPOLYC" 2910087 XPOLYC (NIL T T) -9 NIL 2910200 NIL) (-1229 2905663 2907584 2907787 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1228 2901976 2904522 2904910 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1227 2896911 2898482 2898536 "XFALG" 2900681 XFALG (NIL T T) -9 NIL 2901465 NIL) (-1226 2892134 2894820 2894862 "XF" 2895480 XF (NIL T) -9 NIL 2895876 NIL) (-1225 2891852 2891962 2892129 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1224 2891079 2891201 2891405 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1223 2888885 2890979 2891074 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1222 2887554 2888287 2888329 "XALG" 2888334 XALG (NIL T) -9 NIL 2888443 NIL) (-1221 2881104 2885957 2886436 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1220 2879411 2880349 2880670 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1219 2879010 2879281 2879351 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1218 2878497 2878799 2878893 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1217 2877574 2877784 2878079 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1216 2875870 2876333 2876795 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1215 2874802 2875356 2875398 "VSPACE" 2875534 VSPACE (NIL T) -9 NIL 2875608 NIL) (-1214 2874673 2874706 2874797 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1213 2874516 2874570 2874638 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1212 2871499 2872294 2873031 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1211 2862597 2865198 2867371 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1210 2856174 2858065 2859644 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1209 2854658 2855053 2855459 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1208 2853485 2853766 2854082 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1207 2848599 2853312 2853404 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1206 2841704 2846312 2846355 "VECTCAT" 2847343 VECTCAT (NIL T) -9 NIL 2847927 NIL) (-1205 2840983 2841309 2841699 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1204 2840477 2840719 2840839 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1203 2840410 2840415 2840445 "UTYPE" 2840450 UTYPE (NIL) -9 NIL NIL NIL) (-1202 2839397 2839573 2839834 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1201 2837248 2837756 2838280 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1200 2827196 2833110 2833152 "UTSCAT" 2834253 UTSCAT (NIL T) -9 NIL 2835010 NIL) (-1199 2825261 2826204 2827191 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1198 2824935 2824984 2825115 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1197 2816703 2823131 2823610 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1196 2810704 2813517 2813560 "URAGG" 2815630 URAGG (NIL T) -9 NIL 2816352 NIL) (-1195 2808719 2809681 2810699 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1194 2804487 2807695 2808157 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1193 2796974 2804411 2804482 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1192 2785649 2793080 2793141 "UPXSCCA" 2793709 UPXSCCA (NIL T T) -9 NIL 2793941 NIL) (-1191 2785370 2785472 2785644 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1190 2773943 2781099 2781141 "UPXSCAT" 2781784 UPXSCAT (NIL T) -9 NIL 2782392 NIL) (-1189 2773456 2773541 2773718 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1188 2765200 2773047 2773309 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1187 2764095 2764365 2764715 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1186 2756869 2760295 2760349 "UPSCAT" 2761418 UPSCAT (NIL T T) -9 NIL 2762183 NIL) (-1185 2756283 2756538 2756864 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1184 2755957 2756006 2756137 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1183 2740076 2749011 2749053 "UPOLYC" 2751131 UPOLYC (NIL T) -9 NIL 2752352 NIL) (-1182 2734097 2736964 2740071 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1181 2733533 2733658 2733821 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1180 2733167 2733254 2733393 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1179 2731980 2732247 2732551 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1178 2731313 2731443 2731628 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1177 2730905 2730980 2731127 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1176 2721687 2730671 2730799 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1175 2721049 2721186 2721391 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1174 2719650 2720497 2720773 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1173 2718879 2719076 2719301 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1172 2705708 2718803 2718874 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1171 2685512 2698733 2698794 "ULSCCAT" 2699425 ULSCCAT (NIL T T) -9 NIL 2699712 NIL) (-1170 2684847 2685133 2685507 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1169 2673240 2680318 2680360 "ULSCAT" 2681216 ULSCAT (NIL T) -9 NIL 2681946 NIL) (-1168 2672753 2672838 2673015 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1167 2654850 2672252 2672493 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1166 2653884 2654577 2654691 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2654802) (-1165 2652917 2653610 2653724 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2653835) (-1164 2651950 2652643 2652757 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2652868) (-1163 2650983 2651676 2651790 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2651901) (-1162 2649078 2650237 2650267 "UFD" 2650478 UFD (NIL) -9 NIL 2650591 NIL) (-1161 2648922 2648979 2649073 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1160 2648174 2648381 2648597 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1159 2646394 2646847 2647312 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1158 2646118 2646358 2646389 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1157 2646051 2646056 2646086 "TYPE" 2646091 TYPE (NIL) -9 NIL NIL NIL) (-1156 2645210 2645430 2645670 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1155 2644388 2644819 2645054 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1154 2642542 2643115 2643654 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1153 2641576 2641812 2642048 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1152 2629906 2634374 2634471 "TSETCAT" 2639721 TSETCAT (NIL T T T T) -9 NIL 2641233 NIL) (-1151 2626242 2628058 2629901 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1150 2620698 2625468 2625750 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1149 2616035 2617048 2617977 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1148 2615532 2615607 2615770 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1147 2613608 2613898 2614253 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1146 2613092 2613241 2613271 "TRIGCAT" 2613484 TRIGCAT (NIL) -9 NIL NIL NIL) (-1145 2612843 2612946 2613087 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1144 2609839 2611952 2612230 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1143 2608945 2609641 2609671 "TRANFUN" 2609706 TRANFUN (NIL) -9 NIL 2609772 NIL) (-1142 2608409 2608660 2608940 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1141 2608246 2608284 2608345 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1140 2607703 2607834 2607985 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1139 2606444 2607101 2607337 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1138 2606256 2606293 2606365 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1137 2604470 2605116 2605545 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1136 2604174 2604249 2604339 "TEMUTL" NIL TEMUTL (NIL) -7 NIL NIL NIL) (-1135 2602554 2602891 2603213 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1134 2593597 2600358 2600414 "TBAGG" 2600816 TBAGG (NIL T T) -9 NIL 2601029 NIL) (-1133 2590128 2591820 2593592 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1132 2589605 2589730 2589875 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1131 2589115 2589435 2589525 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1130 2588612 2588729 2588867 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1129 2581681 2588514 2588607 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1128 2577434 2578729 2579974 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1127 2576803 2576962 2577143 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1126 2573957 2574710 2575493 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1125 2573731 2573921 2573952 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1124 2572685 2573370 2573496 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2573682) (-1123 2571949 2572497 2572576 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2572636) (-1122 2568772 2569931 2570631 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1121 2566456 2567138 2567772 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1120 2562534 2563580 2564557 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1119 2559694 2562189 2562418 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1118 2559290 2559377 2559499 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1117 2555914 2557388 2558207 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1116 2551085 2552840 2554560 "SWITCH" NIL SWITCH (NIL) -8 NIL NIL NIL) (-1115 2544103 2550282 2550575 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1114 2535847 2543694 2543956 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1113 2535126 2535265 2535482 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1112 2534810 2534875 2534986 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1111 2525551 2534522 2534647 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1110 2524281 2524579 2524934 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1109 2523686 2523764 2523955 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1108 2505818 2523185 2523426 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1107 2505417 2505688 2505758 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1106 2504753 2505034 2505174 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1105 2499355 2500614 2501567 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1104 2498887 2498987 2499151 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1103 2493998 2495280 2496427 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1102 2488456 2489927 2491238 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1101 2481371 2483435 2485226 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1100 2474183 2481283 2481366 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1099 2468877 2473897 2474012 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1098 2468464 2468547 2468691 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1097 2467615 2467816 2468051 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1096 2467355 2467413 2467506 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1095 2460093 2465560 2466166 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1094 2459269 2459474 2459705 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1093 2458513 2458884 2459032 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1092 2458013 2458255 2458285 "STEP" 2458379 STEP (NIL) -9 NIL 2458450 NIL) (-1091 2451098 2457931 2458008 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1090 2445319 2449902 2449945 "STAGG" 2450372 STAGG (NIL T) -9 NIL 2450546 NIL) (-1089 2443698 2444446 2445314 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1088 2441855 2443525 2443617 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1087 2441178 2441686 2441716 "SRING" 2441721 SRING (NIL) -9 NIL 2441741 NIL) (-1086 2433793 2439710 2440150 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1085 2427553 2428992 2430497 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1084 2419981 2424892 2424922 "SRAGG" 2426221 SRAGG (NIL) -9 NIL 2426825 NIL) (-1083 2419278 2419598 2419976 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1082 2413397 2418600 2419023 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1081 2407610 2410779 2411501 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1080 2404039 2404858 2405495 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1079 2403014 2403319 2403349 "SPFCAT" 2403793 SPFCAT (NIL) -9 NIL NIL NIL) (-1078 2401951 2402203 2402467 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1077 2392707 2394985 2395015 "SPADXPT" 2399656 SPADXPT (NIL) -9 NIL 2401785 NIL) (-1076 2392509 2392555 2392624 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1075 2390161 2392473 2392504 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1074 2381847 2383936 2383978 "SPACEC" 2388293 SPACEC (NIL T) -9 NIL 2390098 NIL) (-1073 2379676 2381794 2381842 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1072 2378609 2378798 2379087 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1071 2377013 2377346 2377757 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1070 2376278 2376512 2376773 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1069 2372458 2373418 2374413 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1068 2368816 2369515 2370244 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1067 2362612 2368166 2368263 "SNTSCAT" 2368268 SNTSCAT (NIL T T T T) -9 NIL 2368338 NIL) (-1066 2356497 2361253 2361643 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1065 2350327 2356416 2356492 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1064 2348759 2349090 2349488 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1063 2340437 2345351 2345453 "SMATCAT" 2346796 SMATCAT (NIL NIL T T T) -9 NIL 2347344 NIL) (-1062 2338278 2339262 2340432 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1061 2335876 2337490 2337533 "SKAGG" 2337794 SKAGG (NIL T) -9 NIL 2337928 NIL) (-1060 2331738 2335527 2335696 "SINT" NIL SINT (NIL) -8 NIL NIL 2335848) (-1059 2331548 2331592 2331658 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1058 2330623 2330855 2331123 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1057 2329627 2329789 2330065 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1056 2328972 2329312 2329436 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1055 2328318 2328625 2328765 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1054 2326429 2326921 2327427 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1053 2319965 2326348 2326424 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1052 2319480 2319717 2319747 "SGROUP" 2319840 SGROUP (NIL) -9 NIL 2319902 NIL) (-1051 2319370 2319402 2319475 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1050 2316793 2317562 2318284 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1049 2310687 2316241 2316338 "SFRTCAT" 2316343 SFRTCAT (NIL T T T T) -9 NIL 2316382 NIL) (-1048 2305043 2306156 2307285 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1047 2299181 2300342 2301508 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1046 2298842 2298949 2299060 "SFORT" NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1045 2297814 2298716 2298837 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1044 2293434 2294329 2294424 "SEXCAT" 2297037 SEXCAT (NIL T T T T T) -9 NIL 2297588 NIL) (-1043 2292407 2293361 2293429 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1042 2290798 2291383 2291685 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1041 2290333 2290518 2290548 "SETCAT" 2290665 SETCAT (NIL) -9 NIL 2290749 NIL) (-1040 2290165 2290229 2290328 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1039 2286400 2288631 2288674 "SETAGG" 2289542 SETAGG (NIL T) -9 NIL 2289880 NIL) (-1038 2286006 2286158 2286395 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1037 2282960 2285953 2286001 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1036 2282425 2282735 2282836 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1035 2281552 2281918 2281979 "SEGXCAT" 2282265 SEGXCAT (NIL T T) -9 NIL 2282385 NIL) (-1034 2280477 2280745 2280788 "SEGCAT" 2281310 SEGCAT (NIL T) -9 NIL 2281531 NIL) (-1033 2280157 2280222 2280335 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1032 2279223 2279693 2279901 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1031 2278800 2279079 2279156 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1030 2278165 2278301 2278505 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1029 2277231 2277978 2278160 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1028 2276484 2277179 2277226 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1027 2268027 2276351 2276479 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1026 2266881 2267171 2267490 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1025 2266179 2266391 2266581 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-1024 2265523 2265680 2265858 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1023 2265106 2265337 2265367 "SASTCAT" 2265372 SASTCAT (NIL) -9 NIL 2265385 NIL) (-1022 2264570 2264995 2265071 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-1021 2264170 2264211 2264384 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1020 2263798 2263839 2263998 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1019 2256926 2263713 2263793 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1018 2255571 2255900 2256298 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1017 2254321 2254684 2254988 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1016 2253942 2254163 2254246 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1015 2251392 2252026 2252481 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1014 2251228 2251261 2251331 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-1013 2250714 2251017 2251111 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-1012 2246299 2247167 2248082 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1011 2235073 2240627 2240724 "RSETCAT" 2244834 RSETCAT (NIL T T T T) -9 NIL 2245922 NIL) (-1010 2233607 2234249 2235068 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1009 2227338 2228783 2230294 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1008 2225220 2225777 2225851 "RRCC" 2226934 RRCC (NIL T T) -9 NIL 2227275 NIL) (-1007 2224742 2224941 2225215 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-1006 2224207 2224517 2224618 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-1005 2196695 2207364 2207430 "RPOLCAT" 2218000 RPOLCAT (NIL T T T) -9 NIL 2221145 NIL) (-1004 2190791 2193614 2196690 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-1003 2181719 2189462 2189944 "ROUTINE" NIL ROUTINE (NIL) -8 NIL NIL NIL) (-1002 2177946 2181463 2181603 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-1001 2176264 2177003 2177262 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1000 2171986 2174736 2174766 "RNS" 2175035 RNS (NIL) -9 NIL 2175287 NIL) (-999 2170895 2171380 2171912 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-998 2170013 2170414 2170614 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-997 2169313 2169813 2169841 "RNG" 2169846 RNG (NIL) -9 NIL 2169867 NIL) (-996 2168618 2169092 2169132 "RMODULE" 2169137 RMODULE (NIL T) -9 NIL 2169163 NIL) (-995 2167557 2167663 2167993 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-994 2164435 2167147 2167440 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-993 2157127 2159588 2159700 "RMATCAT" 2163005 RMATCAT (NIL NIL NIL T T T) -9 NIL 2163982 NIL) (-992 2156644 2156823 2157122 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-991 2156224 2156435 2156476 "RLINSET" 2156537 RLINSET (NIL T) -9 NIL 2156581 NIL) (-990 2155869 2155950 2156076 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-989 2154804 2155473 2155501 "RING" 2155556 RING (NIL) -9 NIL 2155647 NIL) (-988 2154649 2154705 2154799 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-987 2153703 2153970 2154226 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-986 2144689 2153330 2153532 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-985 2143957 2144437 2144476 "RGBCSPC" 2144533 RGBCSPC (NIL T) -9 NIL 2144584 NIL) (-984 2143034 2143489 2143528 "RGBCMDL" 2143756 RGBCMDL (NIL T) -9 NIL 2143870 NIL) (-983 2142746 2142815 2142916 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-982 2142509 2142550 2142645 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-981 2140933 2141363 2141743 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-980 2138520 2139188 2139856 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-979 2138070 2138168 2138328 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-978 2137692 2137790 2137831 "RETRACT" 2137962 RETRACT (NIL T) -9 NIL 2138049 NIL) (-977 2137572 2137603 2137687 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-976 2137174 2137445 2137513 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-975 2129653 2136942 2137063 "RESULT" NIL RESULT (NIL) -8 NIL NIL NIL) (-974 2128197 2129024 2129221 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-973 2127888 2127949 2128045 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-972 2127631 2127672 2127777 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-971 2127366 2127407 2127516 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-970 2122436 2123888 2125103 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-969 2119535 2120293 2121101 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-968 2117504 2118126 2118726 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-967 2110131 2116048 2116486 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-966 2109068 2109504 2109751 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-965 2108553 2108668 2108833 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-964 2104198 2107952 2108175 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-963 2103430 2103629 2103842 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-962 2100720 2101558 2102440 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-961 2097302 2098338 2099397 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-960 2097138 2097191 2097219 "REAL" 2097224 REAL (NIL) -9 NIL 2097259 NIL) (-959 2096628 2096931 2097023 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-958 2096108 2096186 2096391 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-957 2095341 2095533 2095744 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-956 2094229 2094526 2094893 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-955 2092496 2092966 2093499 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-954 2091418 2091695 2092082 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-953 2090245 2090554 2090973 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-952 2083684 2087131 2087159 "RCFIELD" 2088436 RCFIELD (NIL) -9 NIL 2089166 NIL) (-951 2082310 2082920 2083611 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-950 2078516 2080408 2080449 "RCAGG" 2081516 RCAGG (NIL T) -9 NIL 2081977 NIL) (-949 2078243 2078353 2078511 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-948 2077688 2077817 2077978 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-947 2077305 2077384 2077503 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-946 2076720 2076870 2077020 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-945 2076502 2076552 2076623 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-944 2069005 2075620 2075928 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-943 2058732 2068872 2069000 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-942 2058366 2058459 2058487 "RADCAT" 2058644 RADCAT (NIL) -9 NIL NIL NIL) (-941 2058204 2058264 2058361 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-940 2056304 2058035 2058124 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-939 2055985 2056034 2056161 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-938 2048330 2052353 2052393 "QUATCAT" 2053172 QUATCAT (NIL T) -9 NIL 2053937 NIL) (-937 2045588 2046866 2048236 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-936 2041488 2045538 2045583 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-935 2038881 2040548 2040589 "QUAGG" 2040964 QUAGG (NIL T) -9 NIL 2041138 NIL) (-934 2038483 2038754 2038822 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-933 2037521 2038119 2038282 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-932 2037202 2037251 2037378 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-931 2026894 2033004 2033044 "QFCAT" 2033702 QFCAT (NIL T) -9 NIL 2034695 NIL) (-930 2023794 2025229 2026800 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-929 2023340 2023474 2023604 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-928 2017498 2018659 2019823 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-927 2016917 2017097 2017329 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-926 2014739 2015267 2015690 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-925 2013638 2013880 2014197 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-924 2011999 2012197 2012550 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-923 2007755 2008971 2009012 "PTRANFN" 2010896 PTRANFN (NIL T) -9 NIL NIL NIL) (-922 2006402 2006747 2007068 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-921 2006095 2006158 2006265 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-920 2000171 2004894 2004934 "PTCAT" 2005226 PTCAT (NIL T) -9 NIL 2005379 NIL) (-919 1999864 1999905 2000029 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-918 1998743 1999059 1999393 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-917 1987584 1990145 1992455 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-916 1980482 1983378 1983473 "PSETCAT" 1986467 PSETCAT (NIL T T T T) -9 NIL 1987274 NIL) (-915 1978931 1979665 1980477 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-914 1978250 1978445 1978473 "PSCURVE" 1978741 PSCURVE (NIL) -9 NIL 1978908 NIL) (-913 1973928 1975686 1975750 "PSCAT" 1976585 PSCAT (NIL T T T) -9 NIL 1976824 NIL) (-912 1973242 1973524 1973923 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-911 1971672 1972554 1972817 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-910 1971162 1971465 1971557 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-909 1962182 1964604 1966792 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-908 1959931 1961508 1961548 "PRQAGG" 1961731 PRQAGG (NIL T) -9 NIL 1961832 NIL) (-907 1959116 1959562 1959590 "PROPLOG" 1959729 PROPLOG (NIL) -9 NIL 1959843 NIL) (-906 1958791 1958854 1958977 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-905 1958227 1958366 1958538 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-904 1956475 1957238 1957535 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-903 1956028 1956159 1956287 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-902 1950627 1954968 1955788 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-901 1950456 1950494 1950553 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-900 1949895 1950035 1950186 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-899 1948363 1948782 1949248 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-898 1948080 1948141 1948169 "PRIMCAT" 1948293 PRIMCAT (NIL) -9 NIL NIL NIL) (-897 1947251 1947447 1947675 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-896 1943129 1947201 1947246 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-895 1942828 1942890 1943001 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-894 1940025 1942477 1942710 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-893 1939476 1939633 1939661 "PPCURVE" 1939866 PPCURVE (NIL) -9 NIL 1940002 NIL) (-892 1939089 1939334 1939417 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-891 1936845 1937266 1937858 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-890 1936288 1936352 1936585 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-889 1933008 1933494 1934105 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-888 1918648 1924718 1924782 "POLYCAT" 1928267 POLYCAT (NIL T T T) -9 NIL 1930144 NIL) (-887 1914158 1916305 1918643 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-886 1913815 1913889 1914008 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-885 1913508 1913571 1913678 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-884 1906929 1913241 1913400 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-883 1905816 1906079 1906355 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-882 1904420 1904733 1905063 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-881 1899582 1904370 1904415 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-880 1898070 1898481 1898856 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-879 1896827 1897136 1897532 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-878 1896498 1896582 1896699 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-877 1896077 1896152 1896326 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-876 1895563 1895659 1895819 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-875 1895035 1895155 1895309 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-874 1893930 1894148 1894525 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-873 1893541 1893626 1893778 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-872 1893092 1893174 1893355 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-871 1892784 1892865 1892978 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-870 1892297 1892372 1892580 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-869 1891645 1891773 1891975 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-868 1891007 1891141 1891304 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-867 1890311 1890493 1890674 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-866 1890034 1890108 1890202 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-865 1886602 1887791 1888707 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-864 1885686 1885887 1886122 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-863 1881251 1882635 1883777 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-862 1861172 1866059 1870906 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-861 1860912 1860965 1861068 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-860 1860353 1860487 1860667 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-859 1858450 1859609 1859637 "PID" 1859834 PID (NIL) -9 NIL 1859961 NIL) (-858 1858238 1858281 1858356 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-857 1857425 1858085 1858172 "PI" NIL PI (NIL) -8 NIL NIL 1858212) (-856 1856877 1857028 1857204 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-855 1853205 1854163 1855068 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-854 1851569 1851858 1852224 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-853 1851011 1851126 1851287 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-852 1847616 1849880 1850233 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-851 1846222 1846502 1846827 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-850 1844987 1845241 1845589 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-849 1843697 1843924 1844276 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-848 1840795 1842293 1842321 "PFECAT" 1842914 PFECAT (NIL) -9 NIL 1843291 NIL) (-847 1840418 1840583 1840790 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-846 1839242 1839524 1839825 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-845 1837424 1837811 1838241 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-844 1833458 1837350 1837419 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-843 1829361 1830508 1831375 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-842 1827284 1828388 1828429 "PERMCAT" 1828828 PERMCAT (NIL T) -9 NIL 1829125 NIL) (-841 1826980 1827027 1827150 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-840 1823414 1825110 1825755 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-839 1820879 1823169 1823290 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-838 1819760 1820023 1820064 "PDSPC" 1820597 PDSPC (NIL T) -9 NIL 1820842 NIL) (-837 1819127 1819393 1819755 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-836 1817850 1818781 1818822 "PDRING" 1818827 PDRING (NIL T) -9 NIL 1818854 NIL) (-835 1816603 1817361 1817414 "PDMOD" 1817419 PDMOD (NIL T T) -9 NIL 1817522 NIL) (-834 1814421 1815244 1815912 "PDEPROB" NIL PDEPROB (NIL) -8 NIL NIL NIL) (-833 1813514 1813726 1813975 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-832 1811038 1811925 1811953 "PDECAT" 1812739 PDECAT (NIL) -9 NIL 1813451 NIL) (-831 1810655 1810722 1810776 "PDDOM" 1810941 PDDOM (NIL T T) -9 NIL 1811021 NIL) (-830 1810507 1810543 1810650 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-829 1810293 1810332 1810421 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-828 1808615 1809368 1809663 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-827 1808304 1808367 1808476 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-826 1806442 1806872 1807323 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-825 1800070 1801899 1803183 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-824 1799701 1799774 1799906 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-823 1797403 1798083 1798564 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-822 1795607 1796035 1796438 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-821 1795065 1795313 1795354 "PATMAB" 1795461 PATMAB (NIL T) -9 NIL 1795544 NIL) (-820 1793712 1794116 1794373 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-819 1793250 1793381 1793422 "PATAB" 1793427 PATAB (NIL T) -9 NIL 1793599 NIL) (-818 1791793 1792230 1792653 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-817 1791471 1791546 1791648 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-816 1791160 1791223 1791332 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-815 1790965 1791011 1791078 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-814 1790643 1790718 1790820 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-813 1790332 1790395 1790504 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-812 1790023 1790093 1790190 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-811 1789712 1789775 1789884 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-810 1788872 1789251 1789431 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-809 1788479 1788577 1788696 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-808 1787447 1787872 1788091 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-807 1786109 1786766 1787126 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-806 1779260 1785513 1785707 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-805 1771742 1778758 1778942 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-804 1768555 1770408 1770448 "PADICCT" 1771029 PADICCT (NIL NIL) -9 NIL 1771311 NIL) (-803 1766609 1768505 1768550 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-802 1765771 1765981 1766247 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-801 1765113 1765256 1765460 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-800 1763558 1764521 1764799 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-799 1763083 1763341 1763438 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-798 1762142 1762820 1762992 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-797 1752564 1755433 1757632 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-796 1751956 1752270 1752396 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-795 1751233 1751428 1751456 "OUTBCON" 1751774 OUTBCON (NIL) -9 NIL 1751940 NIL) (-794 1750941 1751071 1751228 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-793 1750322 1750467 1750628 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-792 1749694 1750120 1750209 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-791 1749121 1749536 1749564 "OSGROUP" 1749569 OSGROUP (NIL) -9 NIL 1749591 NIL) (-790 1748085 1748346 1748631 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-789 1745418 1747960 1748080 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-788 1742623 1745169 1745295 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-787 1740641 1741169 1741729 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-786 1734071 1736549 1736589 "OREPCAT" 1738910 OREPCAT (NIL T) -9 NIL 1740012 NIL) (-785 1732097 1733031 1734066 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-784 1731306 1731577 1731605 "ORDTYPE" 1731910 ORDTYPE (NIL) -9 NIL 1732068 NIL) (-783 1730840 1731051 1731301 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-782 1730302 1730678 1730835 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-781 1729808 1730171 1730199 "ORDSET" 1730204 ORDSET (NIL) -9 NIL 1730226 NIL) (-780 1728474 1729434 1729462 "ORDRING" 1729467 ORDRING (NIL) -9 NIL 1729495 NIL) (-779 1727734 1728291 1728319 "ORDMON" 1728324 ORDMON (NIL) -9 NIL 1728345 NIL) (-778 1727038 1727200 1727392 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-777 1726261 1726769 1726797 "ORDFIN" 1726862 ORDFIN (NIL) -9 NIL 1726936 NIL) (-776 1725655 1725794 1725980 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-775 1722426 1724623 1725029 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-774 1719744 1720711 1721525 "OPTPROB" NIL OPTPROB (NIL) -8 NIL NIL NIL) (-773 1717367 1718188 1718216 "OPTCAT" 1719033 OPTCAT (NIL) -9 NIL 1719681 NIL) (-772 1716774 1717129 1717234 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-771 1716582 1716627 1716693 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-770 1715895 1716171 1716212 "OPERCAT" 1716423 OPERCAT (NIL T) -9 NIL 1716519 NIL) (-769 1715707 1715774 1715890 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-768 1713137 1714509 1715005 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-767 1712558 1712685 1712859 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-766 1709555 1711697 1712063 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-765 1706198 1708997 1709037 "OMSAGG" 1709098 OMSAGG (NIL T) -9 NIL 1709162 NIL) (-764 1704674 1705869 1706037 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-763 1702971 1704150 1704178 "OINTDOM" 1704183 OINTDOM (NIL) -9 NIL 1704204 NIL) (-762 1700401 1701973 1702302 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-761 1699655 1700351 1700396 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-760 1696921 1699496 1699650 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-759 1688516 1696792 1696916 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-758 1682023 1688407 1688511 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-757 1680995 1681232 1681505 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-756 1678629 1679299 1680003 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-755 1674406 1675366 1676389 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-754 1673914 1674002 1674196 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-753 1671363 1671945 1672618 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-752 1668758 1669266 1669862 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-751 1667122 1667763 1668249 "ODEPROB" NIL ODEPROB (NIL) -8 NIL NIL NIL) (-750 1664119 1664658 1665304 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-749 1663474 1663582 1663840 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-748 1662632 1662757 1662978 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-747 1658916 1659712 1660625 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-746 1658356 1658451 1658673 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-745 1656426 1657131 1657159 "ODECAT" 1657763 ODECAT (NIL) -9 NIL 1658293 NIL) (-744 1656107 1656156 1656283 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-743 1652758 1655906 1656025 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-742 1651961 1652552 1652580 "OCAMON" 1652585 OCAMON (NIL) -9 NIL 1652606 NIL) (-741 1646261 1649011 1649051 "OC" 1650147 OC (NIL T) -9 NIL 1651004 NIL) (-740 1644269 1645193 1646167 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-739 1643697 1644115 1644143 "OASGP" 1644148 OASGP (NIL) -9 NIL 1644168 NIL) (-738 1642803 1643421 1643449 "OAMONS" 1643489 OAMONS (NIL) -9 NIL 1643532 NIL) (-737 1641991 1642541 1642569 "OAMON" 1642626 OAMON (NIL) -9 NIL 1642677 NIL) (-736 1641887 1641919 1641986 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-735 1640681 1641424 1641452 "OAGROUP" 1641598 OAGROUP (NIL) -9 NIL 1641690 NIL) (-734 1640472 1640559 1640676 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-733 1640212 1640268 1640356 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-732 1635274 1636837 1638364 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-731 1631969 1633003 1634038 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-730 1629270 1630201 1630229 "NUMINT" 1631148 NUMINT (NIL) -9 NIL 1631906 NIL) (-729 1628380 1628613 1628831 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-728 1617238 1620269 1622717 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-727 1611134 1616688 1616783 "NTSCAT" 1616788 NTSCAT (NIL T T T T) -9 NIL 1616827 NIL) (-726 1610475 1610654 1610847 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-725 1610168 1610231 1610338 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-724 1597853 1607788 1608598 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-723 1586904 1597717 1597848 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-722 1585624 1585949 1586306 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-721 1584460 1584724 1585082 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-720 1583627 1583760 1583976 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-719 1581933 1582252 1582660 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-718 1581646 1581680 1581804 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-717 1581465 1581500 1581569 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-716 1581241 1581431 1581460 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-715 1580805 1580872 1581049 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-714 1579123 1580168 1580423 "NNI" NIL NNI (NIL) -8 NIL NIL 1580770) (-713 1577851 1578188 1578552 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-712 1574914 1575966 1576865 "NIPROB" NIL NIPROB (NIL) -8 NIL NIL NIL) (-711 1573891 1574143 1574445 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-710 1572978 1573543 1573584 "NETCLT" 1573755 NETCLT (NIL T) -9 NIL 1573836 NIL) (-709 1571882 1572149 1572430 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-708 1571681 1571724 1571799 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-707 1570212 1570600 1571020 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-706 1568888 1569823 1569851 "NASRING" 1569961 NASRING (NIL) -9 NIL 1570041 NIL) (-705 1568733 1568789 1568883 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-704 1567705 1568352 1568380 "NARNG" 1568497 NARNG (NIL) -9 NIL 1568588 NIL) (-703 1567481 1567566 1567700 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-702 1566290 1567013 1567053 "NAALG" 1567132 NAALG (NIL T) -9 NIL 1567193 NIL) (-701 1566160 1566195 1566285 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-700 1561139 1562324 1563510 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-699 1560534 1560621 1560805 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-698 1552623 1557052 1557104 "MTSCAT" 1558164 MTSCAT (NIL T T) -9 NIL 1558678 NIL) (-697 1552389 1552449 1552541 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-696 1552215 1552254 1552314 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-695 1549089 1551778 1551819 "MSETAGG" 1551824 MSETAGG (NIL T) -9 NIL 1551858 NIL) (-694 1545226 1548135 1548453 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-693 1541564 1543323 1544063 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-692 1541201 1541274 1541403 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-691 1540854 1540895 1541039 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-690 1538719 1539056 1539487 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-689 1532175 1538618 1538714 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-688 1531700 1531741 1531949 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-687 1531259 1531308 1531491 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-686 1530533 1530626 1530845 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-685 1529150 1529511 1529901 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-684 1528302 1528681 1528709 "MONOID" 1528927 MONOID (NIL) -9 NIL 1529073 NIL) (-683 1527969 1528117 1528297 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-682 1516896 1523719 1523778 "MONOGEN" 1524452 MONOGEN (NIL T T) -9 NIL 1524908 NIL) (-681 1514908 1515794 1516777 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-680 1513632 1514176 1514204 "MONADWU" 1514595 MONADWU (NIL) -9 NIL 1514832 NIL) (-679 1513180 1513380 1513627 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-678 1512469 1512770 1512798 "MONAD" 1513005 MONAD (NIL) -9 NIL 1513117 NIL) (-677 1512236 1512332 1512464 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-676 1510626 1511396 1511675 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-675 1509803 1510299 1510339 "MODULE" 1510344 MODULE (NIL T) -9 NIL 1510382 NIL) (-674 1509482 1509608 1509798 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-673 1507257 1508079 1508393 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-672 1504500 1505853 1506366 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-671 1503134 1503708 1503984 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-670 1492371 1501799 1502212 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-669 1489391 1491371 1491640 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-668 1488475 1488842 1489032 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-667 1488044 1488093 1488272 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-666 1485957 1486891 1486931 "MLO" 1487348 MLO (NIL T) -9 NIL 1487588 NIL) (-665 1483838 1484365 1484960 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-664 1483306 1483402 1483556 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-663 1482976 1483052 1483175 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-662 1482188 1482374 1482602 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-661 1481681 1481797 1481953 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-660 1481053 1481167 1481352 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-659 1477212 1480723 1480859 "MINT" NIL MINT (NIL) -8 NIL NIL NIL) (-658 1476239 1476512 1476789 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-657 1471424 1475161 1475564 "MFLOAT" NIL MFLOAT (NIL) -8 NIL NIL NIL) (-656 1470857 1470945 1471116 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-655 1468015 1468894 1469773 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-654 1466682 1467030 1467383 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-653 1463345 1465812 1465853 "MDAGG" 1466110 MDAGG (NIL T) -9 NIL 1466255 NIL) (-652 1451340 1462825 1463032 "MCMPLX" NIL MCMPLX (NIL) -8 NIL NIL NIL) (-651 1450614 1450778 1450978 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-650 1448732 1449044 1449424 "MCALCFN" NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-649 1447810 1448096 1448326 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-648 1445907 1446484 1447045 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-647 1441677 1445497 1445744 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-646 1438024 1438795 1439529 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-645 1436777 1436946 1437275 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-644 1426296 1429885 1429961 "MATCAT" 1434949 MATCAT (NIL T T T) -9 NIL 1436417 NIL) (-643 1423577 1424883 1426291 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-642 1421978 1422338 1422722 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-641 1421111 1421308 1421530 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-640 1419862 1420188 1420515 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-639 1419023 1419425 1419602 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-638 1418692 1418756 1418879 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-637 1418340 1418413 1418527 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-636 1417875 1417990 1418132 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-635 1416084 1416852 1417153 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-634 1415577 1415879 1415970 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-633 1412383 1414248 1414708 "M3D" NIL M3D (NIL T) -8 NIL NIL NIL) (-632 1405898 1410704 1410745 "LZSTAGG" 1411522 LZSTAGG (NIL T) -9 NIL 1411812 NIL) (-631 1403017 1404451 1405893 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-630 1400404 1401370 1401853 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-629 1399984 1400263 1400338 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-628 1392212 1399845 1399979 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-627 1391575 1391720 1391948 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-626 1389059 1389757 1390469 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-625 1387171 1387494 1387942 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-624 1380343 1386261 1386302 "LSAGG" 1386364 LSAGG (NIL T) -9 NIL 1386442 NIL) (-623 1378037 1379136 1380338 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-622 1375549 1377386 1377635 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-621 1375216 1375307 1375430 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-620 1374899 1374978 1375006 "LOGIC" 1375117 LOGIC (NIL) -9 NIL 1375199 NIL) (-619 1374794 1374823 1374894 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-618 1374113 1374271 1374464 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-617 1372898 1373147 1373498 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-616 1368810 1371545 1371585 "LODOCAT" 1372017 LODOCAT (NIL T) -9 NIL 1372228 NIL) (-615 1368603 1368679 1368805 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-614 1365667 1368480 1368598 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-613 1362829 1365617 1365662 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-612 1359980 1362759 1362824 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-611 1359033 1359208 1359510 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-610 1357197 1358295 1358548 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-609 1352298 1355362 1355403 "LNAGG" 1356265 LNAGG (NIL T) -9 NIL 1356700 NIL) (-608 1351685 1351952 1352293 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-607 1348257 1349198 1349835 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-606 1347562 1348036 1348076 "LMODULE" 1348081 LMODULE (NIL T) -9 NIL 1348107 NIL) (-605 1344741 1347299 1347421 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-604 1344321 1344532 1344573 "LLINSET" 1344634 LLINSET (NIL T) -9 NIL 1344678 NIL) (-603 1343996 1344256 1344316 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-602 1343595 1343675 1343814 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-601 1342046 1342394 1342793 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-600 1341217 1341413 1341641 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-599 1334264 1340473 1340727 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-598 1333853 1334086 1334127 "LINSET" 1334132 LINSET (NIL T) -9 NIL 1334165 NIL) (-597 1332786 1333476 1333643 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-596 1331095 1331819 1331859 "LINEXP" 1332345 LINEXP (NIL T) -9 NIL 1332618 NIL) (-595 1329804 1330704 1330885 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-594 1328631 1328903 1329205 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-593 1327844 1328433 1328543 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-592 1325394 1326116 1326866 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-591 1324024 1324321 1324712 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-590 1322860 1323431 1323471 "LIECAT" 1323611 LIECAT (NIL T) -9 NIL 1323762 NIL) (-589 1322734 1322767 1322855 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-588 1316989 1322424 1322652 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-587 1309320 1316665 1316821 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-586 1305772 1306721 1307656 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-585 1304396 1305304 1305332 "LFCAT" 1305539 LFCAT (NIL) -9 NIL 1305678 NIL) (-584 1302635 1302965 1303310 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-583 1300152 1300817 1301498 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-582 1297164 1298142 1298645 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-581 1296655 1296957 1297049 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-580 1295362 1295686 1296086 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-579 1294622 1294707 1294935 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-578 1289689 1293190 1293726 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-577 1289314 1289364 1289524 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-576 1288173 1288884 1288924 "LALG" 1288985 LALG (NIL T) -9 NIL 1289043 NIL) (-575 1287956 1288033 1288168 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-574 1285873 1287224 1287475 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-573 1285702 1285732 1285773 "KVTFROM" 1285835 KVTFROM (NIL T) -9 NIL NIL NIL) (-572 1284636 1285240 1285422 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-571 1284465 1284495 1284536 "KRCFROM" 1284598 KRCFROM (NIL T) -9 NIL NIL NIL) (-570 1283567 1283764 1284059 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-569 1283396 1283426 1283467 "KONVERT" 1283529 KONVERT (NIL T) -9 NIL NIL NIL) (-568 1283225 1283255 1283296 "KOERCE" 1283358 KOERCE (NIL T) -9 NIL NIL NIL) (-567 1282795 1282888 1283020 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-566 1280848 1281742 1282114 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-565 1274031 1279046 1279100 "KDAGG" 1279476 KDAGG (NIL T T) -9 NIL 1279683 NIL) (-564 1273679 1273821 1274026 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-563 1266509 1273460 1273617 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-562 1266159 1266441 1266504 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-561 1265127 1265628 1265877 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-560 1264251 1264702 1264907 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-559 1263115 1263607 1263907 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-558 1262395 1262796 1262957 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-557 1262105 1262341 1262390 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-556 1256359 1261795 1262023 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-555 1255776 1256109 1256230 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-554 1251944 1253959 1254013 "IXAGG" 1254940 IXAGG (NIL T T) -9 NIL 1255397 NIL) (-553 1251150 1251521 1251939 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-552 1246404 1251086 1251145 "IVECTOR" NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-551 1245371 1245646 1245909 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-550 1244033 1244240 1244533 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-549 1242984 1243206 1243489 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-548 1242659 1242722 1242845 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-547 1241921 1242293 1242467 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-546 1239961 1241197 1241471 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-545 1229570 1235278 1236435 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-544 1228815 1228967 1229203 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-543 1228306 1228608 1228700 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-542 1227596 1227687 1227901 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-541 1226728 1226953 1227193 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-540 1225141 1225522 1225950 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-539 1224926 1224970 1225046 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-538 1223776 1224073 1224368 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-537 1223049 1223400 1223551 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-536 1222252 1222383 1222596 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-535 1220407 1220904 1221448 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-534 1217520 1218756 1219445 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-533 1217345 1217385 1217445 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-532 1213407 1217271 1217340 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-531 1211474 1213346 1213402 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-530 1210845 1211144 1211274 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-529 1210298 1210586 1210718 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-528 1209379 1210004 1210130 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-527 1208789 1209283 1209311 "IOBCON" 1209316 IOBCON (NIL) -9 NIL 1209337 NIL) (-526 1208360 1208424 1208606 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-525 1200404 1202775 1205100 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-524 1197515 1198298 1199162 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-523 1197192 1197289 1197406 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-522 1194698 1197128 1197187 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-521 1192810 1193339 1193906 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-520 1192312 1192426 1192566 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-519 1190696 1191102 1191564 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-518 1188475 1189069 1189680 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-517 1185848 1186458 1187178 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-516 1185252 1185410 1185618 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-515 1184771 1184857 1185045 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-514 1182976 1183497 1183954 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-513 1176058 1177711 1179440 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-512 1175424 1175586 1175759 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-511 1173297 1173761 1174305 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-510 1171511 1172399 1172427 "INTDOM" 1172726 INTDOM (NIL) -9 NIL 1172931 NIL) (-509 1171064 1171266 1171506 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-508 1166962 1169369 1169423 "INTCAT" 1170219 INTCAT (NIL T) -9 NIL 1170535 NIL) (-507 1166527 1166647 1166774 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-506 1165367 1165539 1165845 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-505 1164940 1165036 1165193 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-504 1157962 1164795 1164935 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-503 1157260 1157815 1157880 "INT8" NIL INT8 (NIL) -8 NIL NIL 1157914) (-502 1156557 1157112 1157177 "INT64" NIL INT64 (NIL) -8 NIL NIL 1157211) (-501 1155854 1156409 1156474 "INT32" NIL INT32 (NIL) -8 NIL NIL 1156508) (-500 1155151 1155706 1155771 "INT16" NIL INT16 (NIL) -8 NIL NIL 1155805) (-499 1151676 1155070 1155146 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-498 1145824 1149242 1149270 "INS" 1150200 INS (NIL) -9 NIL 1150859 NIL) (-497 1143902 1144816 1145751 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-496 1142961 1143184 1143459 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-495 1142175 1142316 1142513 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-494 1141165 1141306 1141543 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-493 1140317 1140481 1140741 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-492 1139597 1139712 1139900 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-491 1138336 1138605 1138929 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-490 1137616 1137757 1137940 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-489 1137279 1137351 1137449 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-488 1134365 1135851 1136366 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-487 1133964 1134071 1134185 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-486 1133120 1133765 1133866 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-485 1131970 1132238 1132559 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-484 1131042 1131900 1131965 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-483 1130667 1130747 1130864 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-482 1129581 1130126 1130330 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-481 1125676 1126731 1127674 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-480 1124530 1124853 1124881 "INBCON" 1125394 INBCON (NIL) -9 NIL 1125660 NIL) (-479 1123984 1124249 1124525 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-478 1123477 1123779 1123870 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-477 1122933 1123242 1123348 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-476 1119033 1122825 1122928 "IMATRIX" NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-475 1117873 1118012 1118327 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-474 1116297 1116564 1116901 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-473 1114113 1116179 1116292 "IIARRAY2" NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-472 1109005 1114044 1114108 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-471 1108385 1108718 1108834 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-470 1103192 1107823 1108009 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-469 1102254 1103114 1103187 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-468 1101826 1101903 1101957 "IEVALAB" 1102164 IEVALAB (NIL T T) -9 NIL NIL NIL) (-467 1101581 1101661 1101821 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-466 1100654 1101501 1101576 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-465 1099796 1100574 1100649 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-464 1099199 1099730 1099791 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-463 1097691 1098215 1098266 "IDPC" 1098772 IDPC (NIL T T) -9 NIL 1099052 NIL) (-462 1097057 1097613 1097686 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-461 1096306 1096979 1097052 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-460 1095999 1096212 1096272 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-459 1093070 1093951 1094843 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-458 1086696 1087973 1089012 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-457 1085958 1086088 1086287 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-456 1085132 1085630 1085768 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-455 1083521 1083852 1084243 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-454 1078954 1083223 1083335 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-453 1076212 1076836 1077531 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-452 1074438 1074918 1075451 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-451 1072202 1074330 1074433 "IARRAY2" NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-450 1068071 1072140 1072197 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-449 1061714 1067035 1067503 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-448 1061282 1061345 1061518 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-447 1060774 1060923 1060951 "HYPCAT" 1061158 HYPCAT (NIL) -9 NIL NIL NIL) (-446 1060430 1060583 1060769 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-445 1060043 1060288 1060371 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-444 1059876 1059925 1059966 "HOMOTOP" 1059971 HOMOTOP (NIL T) -9 NIL 1060004 NIL) (-443 1056450 1057824 1057865 "HOAGG" 1058840 HOAGG (NIL T) -9 NIL 1059561 NIL) (-442 1055456 1055926 1056445 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-441 1048717 1055181 1055329 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-440 1047652 1047910 1048173 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-439 1046619 1047517 1047647 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-438 1044813 1046452 1046540 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-437 1044127 1044479 1044613 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-436 1037677 1044060 1044122 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-435 1030874 1037413 1037564 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-434 1030327 1030484 1030647 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-433 1023392 1030218 1030322 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-432 1022883 1023185 1023277 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-431 1020497 1022670 1022849 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-430 1015889 1020379 1020492 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-429 1008957 1015786 1015884 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-428 1000952 1008326 1008581 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-427 999988 1000497 1000525 "GROUP" 1000728 GROUP (NIL) -9 NIL 1000862 NIL) (-426 999531 999732 999983 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-425 998203 998542 998929 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-424 997035 997392 997443 "GRMOD" 997972 GRMOD (NIL T T) -9 NIL 998140 NIL) (-423 996854 996902 997030 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-422 992977 994188 995188 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-421 991699 992023 992338 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-420 991252 991380 991521 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-419 990335 990834 990885 "GRALG" 991038 GRALG (NIL T T) -9 NIL 991130 NIL) (-418 990070 990167 990330 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-417 986785 989750 989927 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-416 986198 986261 986518 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-415 982084 982948 983473 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-414 981259 981461 981699 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-413 976262 977189 978208 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-412 976010 976067 976156 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-411 975492 975581 975746 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-410 975001 975042 975255 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-409 973802 974085 974389 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-408 967136 973492 973653 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-407 956949 961926 963030 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-406 955089 956130 956158 "GCDDOM" 956413 GCDDOM (NIL) -9 NIL 956570 NIL) (-405 954712 954869 955084 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-404 945505 947975 950363 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-403 943640 943965 944383 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-402 942581 942770 943037 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-401 941452 941659 941963 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-400 940915 941057 941205 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-399 939527 939875 940188 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-398 938072 938393 938715 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-397 935698 936054 936459 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-396 928950 930611 932189 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-395 926236 926996 927024 "FVFUN" 928180 FVFUN (NIL) -9 NIL 928900 NIL) (-394 925466 925684 925712 "FVC" 926003 FVC (NIL) -9 NIL 926186 NIL) (-393 925118 925339 925407 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-392 924742 924963 925044 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-391 923605 924226 924429 "FTEM" NIL FTEM (NIL) -8 NIL NIL NIL) (-390 921702 922385 922845 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-389 920295 920602 920994 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-388 918950 919309 919633 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-387 918253 918377 918564 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-386 917227 917493 917840 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-385 914885 915415 915897 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-384 914468 914528 914697 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-383 912832 913682 913985 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-382 911980 912114 912337 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-381 911151 911312 911539 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-380 907146 910097 910138 "FSAGG" 910508 FSAGG (NIL T) -9 NIL 910767 NIL) (-379 905500 906259 907051 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-378 903456 903752 904296 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-377 902503 902685 902985 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-376 902184 902233 902360 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-375 882492 891918 891959 "FS" 895829 FS (NIL T) -9 NIL 898107 NIL) (-374 874731 878222 882195 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-373 874265 874392 874544 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-372 868831 871958 871998 "FRNAALG" 873318 FRNAALG (NIL T) -9 NIL 873916 NIL) (-371 865572 866823 868081 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-370 865253 865302 865429 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-369 863740 864297 864591 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-368 863026 863119 863406 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-367 860860 861626 861942 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-366 859969 860412 860453 "FRETRCT" 860458 FRETRCT (NIL T) -9 NIL 860629 NIL) (-365 859342 859620 859964 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-364 856174 857632 857691 "FRAMALG" 858573 FRAMALG (NIL T T) -9 NIL 858865 NIL) (-363 854770 855321 855951 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-362 854463 854526 854633 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-361 848165 854268 854458 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-360 847858 847921 848028 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-359 840229 844737 846065 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-358 834093 837534 837562 "FPS" 838681 FPS (NIL) -9 NIL 839238 NIL) (-357 833650 833783 833947 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-356 830549 832529 832557 "FPC" 832782 FPC (NIL) -9 NIL 832924 NIL) (-355 830395 830447 830544 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-354 829157 829884 829925 "FPATMAB" 829930 FPATMAB (NIL T) -9 NIL 830082 NIL) (-353 827587 828183 828530 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-352 823486 824086 824768 "FORTRAN" NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-351 821060 821724 821752 "FORTFN" 822812 FORTFN (NIL) -9 NIL 823436 NIL) (-350 820812 820874 820902 "FORTCAT" 820961 FORTCAT (NIL) -9 NIL 821023 NIL) (-349 819017 819547 820086 "FORT" NIL FORT (NIL) -7 NIL NIL NIL) (-348 818592 818650 818823 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-347 817825 818025 818218 "FOP" NIL FOP (NIL) -7 NIL NIL NIL) (-346 816360 817223 817397 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-345 814987 815492 815520 "FNCAT" 815977 FNCAT (NIL) -9 NIL 816234 NIL) (-344 814444 814954 814982 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-343 812789 813951 813979 "FMTC" 813984 FMTC (NIL) -9 NIL 814019 NIL) (-342 811376 812738 812784 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-341 807976 809334 809375 "FMONCAT" 810592 FMONCAT (NIL T) -9 NIL 811196 NIL) (-340 805298 806046 806074 "FMFUN" 807218 FMFUN (NIL) -9 NIL 807926 NIL) (-339 802199 803246 803299 "FMCAT" 804480 FMCAT (NIL T T) -9 NIL 804972 NIL) (-338 801432 801649 801677 "FMC" 801967 FMC (NIL) -9 NIL 802149 NIL) (-337 800164 801255 801354 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-336 799292 800012 800159 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-335 797479 797931 798425 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-334 795414 795950 796528 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-333 788864 793751 794365 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-332 787388 788458 788498 "FLINEXP" 788503 FLINEXP (NIL T) -9 NIL 788596 NIL) (-331 786797 787056 787383 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-330 786012 786171 786392 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-329 782938 783986 784038 "FLALG" 785265 FLALG (NIL T T) -9 NIL 785732 NIL) (-328 782109 782270 782497 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-327 775521 779531 779572 "FLAGG" 780827 FLAGG (NIL T) -9 NIL 781472 NIL) (-326 774629 775033 775516 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-325 771278 772480 772539 "FINRALG" 773667 FINRALG (NIL T T) -9 NIL 774175 NIL) (-324 770669 770934 771273 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-323 769979 770275 770303 "FINITE" 770499 FINITE (NIL) -9 NIL 770606 NIL) (-322 761983 764543 764583 "FINAALG" 768235 FINAALG (NIL T) -9 NIL 769673 NIL) (-321 758250 759495 760618 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-320 756814 757233 757287 "FILECAT" 757971 FILECAT (NIL T T) -9 NIL 758187 NIL) (-319 756165 756639 756742 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-318 753501 755317 755345 "FIELD" 755385 FIELD (NIL) -9 NIL 755465 NIL) (-317 752526 752987 753496 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-316 750530 751476 751822 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-315 749773 749954 750173 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-314 745092 749711 749768 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-313 744754 744821 744956 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-312 744294 744336 744545 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-311 740974 741851 742628 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-310 736307 740906 740969 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-309 731035 735796 735986 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-308 725565 730316 730574 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-307 719821 725016 725227 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-306 718844 719054 719369 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-305 714373 717015 717043 "FFIELDC" 717662 FFIELDC (NIL) -9 NIL 718037 NIL) (-304 713450 713888 714368 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-303 713065 713123 713247 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-302 711209 711732 712249 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-301 706352 711008 711109 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-300 701499 706141 706248 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-299 696214 701290 701398 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-298 695668 695717 695952 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-297 674208 685219 685305 "FFCAT" 690455 FFCAT (NIL T T T) -9 NIL 691891 NIL) (-296 670448 671674 672980 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-295 665340 670379 670443 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-294 655297 659512 660694 "FEXPR" NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-293 654225 654694 654735 "FEVALAB" 654819 FEVALAB (NIL T) -9 NIL 655080 NIL) (-292 653630 653882 654220 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-291 650500 651380 651495 "FDIVCAT" 653062 FDIVCAT (NIL T T T T) -9 NIL 653498 NIL) (-290 650294 650326 650495 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-289 649601 649694 649971 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-288 648119 649085 649288 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-287 647212 647596 647798 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-286 646137 646426 646715 "FCPAK1" NIL FCPAK1 (NIL) -7 NIL NIL NIL) (-285 645259 645748 645888 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-284 632106 635935 639469 "FC" NIL FC (NIL) -8 NIL NIL NIL) (-283 623760 628356 628396 "FAXF" 630197 FAXF (NIL T) -9 NIL 630887 NIL) (-282 621676 622480 623295 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-281 616540 621198 621372 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-280 611071 613432 613484 "FAMR" 614495 FAMR (NIL T T) -9 NIL 614954 NIL) (-279 610270 610635 611066 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-278 609323 610212 610265 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-277 606960 607808 607861 "FAMONC" 608802 FAMONC (NIL T T) -9 NIL 609187 NIL) (-276 605548 606818 606955 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-275 603628 603989 604391 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-274 602905 603102 603324 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-273 594823 602352 602551 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-272 592842 593412 593998 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-271 589744 590386 591106 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-270 584901 585608 586413 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-269 584590 584653 584762 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-268 569489 583639 584065 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-267 560077 568809 569097 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-266 559571 559872 559963 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-265 559347 559537 559566 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-264 559036 559104 559217 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-263 558553 558695 558736 "EVALAB" 558906 EVALAB (NIL T) -9 NIL 559010 NIL) (-262 558181 558327 558548 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-261 555312 556845 556873 "EUCDOM" 557427 EUCDOM (NIL) -9 NIL 557776 NIL) (-260 554239 554732 555307 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-259 553932 553995 554102 "ESTOOLS2" NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-258 553725 553773 553853 "ESTOOLS1" NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-257 543803 546773 549512 "ESTOOLS" NIL ESTOOLS (NIL) -7 NIL NIL NIL) (-256 543583 543620 543701 "ESCONT1" NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-255 540654 541480 542259 "ESCONT" NIL ESCONT (NIL) -7 NIL NIL NIL) (-254 540379 540435 540535 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-253 540067 540131 540240 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-252 533850 535750 535778 "ES" 538520 ES (NIL) -9 NIL 539904 NIL) (-251 530365 531897 533689 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-250 529713 529866 530042 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-249 522784 529617 529708 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-248 522473 522536 522645 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-247 516184 519219 520652 "EQ" NIL -3676 (NIL T) -8 NIL NIL NIL) (-246 512487 513583 514676 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-245 511313 511664 511970 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-244 510286 510955 510983 "ENTIRER" 510988 ENTIRER (NIL) -9 NIL 511032 NIL) (-243 506983 508716 509065 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-242 506087 506298 506352 "ELTAGG" 506732 ELTAGG (NIL T T) -9 NIL 506943 NIL) (-241 505867 505941 506082 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-240 505625 505660 505714 "ELTAB" 505798 ELTAB (NIL T T) -9 NIL 505850 NIL) (-239 504876 505046 505245 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-238 504600 504674 504702 "ELEMFUN" 504807 ELEMFUN (NIL) -9 NIL NIL NIL) (-237 504500 504527 504595 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-236 499052 502547 502588 "ELAGG" 503525 ELAGG (NIL T) -9 NIL 503985 NIL) (-235 497850 498388 499047 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-234 497268 497435 497591 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-233 496181 496500 496779 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-232 489574 491572 492399 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-231 483553 485549 486359 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-230 481367 481773 482244 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-229 472367 474280 475821 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-228 471481 471981 472130 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-227 470191 470865 470905 "DVARCAT" 471188 DVARCAT (NIL T) -9 NIL 471328 NIL) (-226 469610 469874 470186 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-225 461735 469478 469605 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-224 460085 460876 460917 "DSEXT" 461280 DSEXT (NIL T) -9 NIL 461574 NIL) (-223 458890 459414 460080 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-222 458614 458679 458777 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-221 454765 455981 457112 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-220 450411 451766 452830 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-219 449086 449447 449833 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-218 448772 448831 448949 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-217 447747 448045 448335 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-216 447332 447407 447557 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-215 439745 441857 443972 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-214 435262 436281 437360 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-213 431863 433932 433973 "DQAGG" 434602 DQAGG (NIL T) -9 NIL 434875 NIL) (-212 418443 426024 426106 "DPOLCAT" 427943 DPOLCAT (NIL T T T T) -9 NIL 428486 NIL) (-211 414851 416499 418438 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-210 407899 414749 414846 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-209 400856 407728 407894 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-208 400450 400709 400798 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-207 399864 400312 400392 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-206 399150 399475 399626 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-205 392347 398886 399037 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-204 390133 391419 391459 "DMEXT" 391464 DMEXT (NIL T) -9 NIL 391639 NIL) (-203 389789 389851 389995 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-202 383114 389274 389464 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-201 379786 381943 381984 "DLAGG" 382534 DLAGG (NIL T) -9 NIL 382763 NIL) (-200 378225 379034 379062 "DIVRING" 379154 DIVRING (NIL) -9 NIL 379237 NIL) (-199 377676 377920 378220 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-198 376104 376521 376927 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-197 375141 375362 375627 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-196 368711 375073 375136 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-195 357101 363465 363518 "DIRPCAT" 363774 DIRPCAT (NIL NIL T) -9 NIL 364647 NIL) (-194 355115 355883 356764 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-193 354562 354728 354914 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-192 351114 353454 353495 "DIOPS" 353927 DIOPS (NIL T) -9 NIL 354153 NIL) (-191 350774 350918 351109 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-190 349690 350457 350485 "DIFRING" 350490 DIFRING (NIL) -9 NIL 350511 NIL) (-189 349338 349436 349464 "DIFFSPC" 349583 DIFFSPC (NIL) -9 NIL 349658 NIL) (-188 349079 349181 349333 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 348025 348619 348659 "DIFFMOD" 348664 DIFFMOD (NIL T) -9 NIL 348761 NIL) (-186 347721 347778 347819 "DIFFDOM" 347940 DIFFDOM (NIL T) -9 NIL 348008 NIL) (-185 347602 347632 347716 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 345351 346810 346850 "DIFEXT" 346855 DIFEXT (NIL T) -9 NIL 347007 NIL) (-183 342518 344858 344899 "DIAGG" 344904 DIAGG (NIL T) -9 NIL 344924 NIL) (-182 342074 342264 342513 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 337286 341264 341541 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 333744 334797 335807 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 328357 332898 333225 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 326923 327215 327590 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 324107 325295 325691 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 321827 323938 324027 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 321210 321355 321537 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 318528 319252 320052 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 316637 317095 317657 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 316019 316352 316467 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 309280 315744 315892 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 307200 307710 308214 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 306839 306888 307039 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 306098 306660 306751 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 304122 304564 304924 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 303414 303703 303849 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 302865 303011 303163 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 300227 301020 301747 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 299666 299812 299983 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 297738 298049 298416 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 297295 297550 297651 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 296508 296891 296919 "CTORCAT" 297100 CTORCAT (NIL) -9 NIL 297212 NIL) (-159 296211 296345 296503 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 295704 295961 296069 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 295120 295551 295624 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 294579 294696 294849 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 290973 291729 292484 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 290463 290766 290858 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 289682 289891 290119 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 289186 289291 289495 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 288939 288973 289079 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 285878 286640 287358 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 285397 285539 285678 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 281354 283860 284352 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 281228 281255 281283 "CONDUIT" 281320 CONDUIT (NIL) -9 NIL NIL NIL) (-146 280195 280864 280892 "COMRING" 280897 COMRING (NIL) -9 NIL 280947 NIL) (-145 279360 279727 279905 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 279056 279097 279225 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 278749 278812 278919 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 267578 278699 278744 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 267039 267178 267338 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 266792 266833 266931 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 248131 260411 260451 "COMPCAT" 261454 COMPCAT (NIL T) -9 NIL 262798 NIL) (-138 240677 244188 247775 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 240436 240470 240572 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 240266 240305 240363 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 239846 240125 240200 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 239423 239664 239751 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 238618 238866 238894 "COMBOPC" 239232 COMBOPC (NIL) -9 NIL 239407 NIL) (-132 237682 237934 238176 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 234614 235298 235921 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 233494 233945 234180 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 232985 233287 233379 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 232672 232725 232850 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 232142 232451 232550 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 228662 229732 230812 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 227021 227942 228180 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 223139 225147 225188 "CLAGG" 226114 CLAGG (NIL T) -9 NIL 226647 NIL) (-123 222032 222559 223134 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 221661 221752 221892 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 219598 220105 220653 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 218647 219316 219344 "CHARZ" 219349 CHARZ (NIL) -9 NIL 219363 NIL) (-119 218441 218487 218565 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 217368 218069 218097 "CHARNZ" 218158 CHARNZ (NIL) -9 NIL 218206 NIL) (-117 214846 215943 216466 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 214554 214633 214661 "CFCAT" 214772 CFCAT (NIL) -9 NIL NIL NIL) (-115 213897 214026 214208 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 209886 213310 213590 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 209264 209451 209628 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 208792 209211 209259 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 208264 208573 208671 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 207755 208057 208149 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 207004 207164 207385 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 203104 204361 205069 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 201502 202501 202752 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 201082 201361 201436 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 200528 200781 200809 "CACHSET" 200941 CACHSET (NIL) -9 NIL 201019 NIL) (-104 199923 200307 200335 "CABMON" 200385 CABMON (NIL) -9 NIL 200441 NIL) (-103 199453 199717 199827 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 194676 199110 199282 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 193645 194350 194485 "BYTE" NIL BYTE (NIL) -8 NIL NIL 194648) (-100 191116 193412 193518 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 188547 190859 190978 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 185793 187997 188036 "BTCAT" 188103 BTCAT (NIL T) -9 NIL 188179 NIL) (-97 185544 185642 185788 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 180666 184787 184813 "BTAGG" 184924 BTAGG (NIL) -9 NIL 185032 NIL) (-95 180297 180458 180661 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 177359 179767 179979 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 176629 176781 176959 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 173168 175341 175380 "BRAGG" 176021 BRAGG (NIL T) -9 NIL 176278 NIL) (-91 172123 172618 173163 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 164718 171628 171809 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 162774 164670 164713 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 162507 162543 162654 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 160746 161179 161627 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 156712 158128 159018 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 155588 156479 156601 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 155186 155343 155369 "BOOLE" 155477 BOOLE (NIL) -9 NIL 155558 NIL) (-83 155091 155118 155181 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 154272 154768 154818 "BMODULE" 154823 BMODULE (NIL T T) -9 NIL 154887 NIL) (-81 149889 154129 154198 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 149411 149554 149692 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-79 142678 149141 149286 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-78 140418 141913 141952 "BGAGG" 142208 BGAGG (NIL T) -9 NIL 142345 NIL) (-77 140287 140325 140413 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-76 139502 139860 140063 "BFUNCT" NIL BFUNCT (NIL) -8 NIL NIL NIL) (-75 138353 138554 138839 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-74 134991 137511 137838 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-73 134588 134681 134707 "BASTYPE" 134878 BASTYPE (NIL) -9 NIL 134974 NIL) (-72 134358 134454 134583 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-71 133873 133961 134111 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-70 132772 133447 133632 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-69 132498 132503 132529 "ATTREG" 132534 ATTREG (NIL) -9 NIL NIL NIL) (-68 130997 131529 131881 "ATTRBUT" NIL ATTRBUT (NIL) -8 NIL NIL NIL) (-67 130602 130873 130939 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 130102 130251 130277 "ATRIG" 130478 ATRIG (NIL) -9 NIL NIL NIL) (-65 129957 130010 130097 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 129539 129770 129796 "ASTCAT" 129801 ASTCAT (NIL) -9 NIL 129831 NIL) (-63 129338 129415 129534 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 127497 129171 129259 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 126304 126617 126982 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 124104 126208 126299 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 123295 123486 123707 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 118882 123026 123140 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 113054 115086 115161 "ARR2CAT" 117791 ARR2CAT (NIL T T T) -9 NIL 118549 NIL) (-56 111431 112201 113049 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 110799 111170 111292 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 109725 109895 110193 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 109426 109480 109598 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 108809 108955 109111 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 108214 108504 108624 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 105846 106943 107266 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 105371 105631 105727 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 99130 104433 104875 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 94740 96341 96391 "AMR" 97129 AMR (NIL T T) -9 NIL 97726 NIL) (-46 94094 94374 94735 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 77256 94028 94089 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73691 76932 77101 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70701 71361 71968 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 70080 70193 70377 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 66491 67117 67709 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 56005 66184 66334 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55322 55476 55654 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54123 54856 54894 "ALGEBRA" 54899 ALGEBRA (NIL T) -9 NIL 54939 NIL) (-37 53909 53986 54118 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 33885 51118 51170 "ALAGG" 51308 ALAGG (NIL T T) -9 NIL 51473 NIL) (-35 33385 33534 33560 "AHYP" 33761 AHYP (NIL) -9 NIL NIL NIL) (-34 32693 32874 32900 "AGG" 33181 AGG (NIL) -9 NIL 33368 NIL) (-33 32490 32575 32688 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30628 31089 31489 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30123 30425 30515 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29493 29788 29944 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17115 26347 26385 "ACFS" 26992 ACFS (NIL T) -9 NIL 27231 NIL) (-28 15738 16348 17110 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11381 13695 13721 "ACF" 14600 ACF (NIL) -9 NIL 15012 NIL) (-26 10477 10883 11376 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 9991 10231 10257 "ABELSG" 10349 ABELSG (NIL) -9 NIL 10414 NIL) (-24 9889 9920 9986 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9165 9508 9534 "ABELMON" 9703 ABELMON (NIL) -9 NIL 9814 NIL) (-22 8916 9023 9160 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8171 8623 8649 "ABELGRP" 8721 ABELGRP (NIL) -9 NIL 8796 NIL) (-20 7785 7950 8166 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 7046 7085 "A1AGG" 7090 A1AGG (NIL T) -9 NIL 7130 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file +(((-64) . T) ((-72) . T) ((-550 (-1084)) . T) ((-547 (-765)) . T) ((-547 (-1084)) . T) ((-423 (-1084)) . T) ((-1005) . T) ((-1118) . T)) +((-3200 ((|#1| |#1| (-1 (-478) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-83) |#1|)) 33 T ELT)) (-3198 (((-1174)) 21 T ELT)) (-3199 (((-578 |#1|)) 13 T ELT))) +(((-988 |#1|) (-10 -7 (-15 -3198 ((-1174))) (-15 -3199 ((-578 |#1|))) (-15 -3200 (|#1| |#1| (-1 (-83) |#1|))) (-15 -3200 (|#1| |#1| (-1 (-478) |#1| |#1|)))) (-103)) (T -988)) +((-3200 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-478) *2 *2)) (-4 *2 (-103)) (-5 *1 (-988 *2)))) (-3200 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *2)) (-4 *2 (-103)) (-5 *1 (-988 *2)))) (-3199 (*1 *2) (-12 (-5 *2 (-578 *3)) (-5 *1 (-988 *3)) (-4 *3 (-103)))) (-3198 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-988 *3)) (-4 *3 (-103))))) +((-3203 (($ (-78) $) 20 T ELT)) (-3204 (((-627 (-78)) (-439) $) 19 T ELT)) (-3549 (($) 7 T ELT)) (-3202 (($) 21 T ELT)) (-3201 (($) 22 T ELT)) (-3205 (((-578 (-147)) $) 10 T ELT)) (-3930 (((-765) $) 25 T ELT))) +(((-989) (-13 (-547 (-765)) (-10 -8 (-15 -3549 ($)) (-15 -3205 ((-578 (-147)) $)) (-15 -3204 ((-627 (-78)) (-439) $)) (-15 -3203 ($ (-78) $)) (-15 -3202 ($)) (-15 -3201 ($))))) (T -989)) +((-3549 (*1 *1) (-5 *1 (-989))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-578 (-147))) (-5 *1 (-989)))) (-3204 (*1 *2 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-78))) (-5 *1 (-989)))) (-3203 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-989)))) (-3202 (*1 *1) (-5 *1 (-989))) (-3201 (*1 *1) (-5 *1 (-989)))) +((-3206 (((-1168 (-625 |#1|)) (-578 (-625 |#1|))) 45 T ELT) (((-1168 (-625 (-850 |#1|))) (-578 (-1079)) (-625 (-850 |#1|))) 75 T ELT) (((-1168 (-625 (-343 (-850 |#1|)))) (-578 (-1079)) (-625 (-343 (-850 |#1|)))) 92 T ELT)) (-3207 (((-1168 |#1|) (-625 |#1|) (-578 (-625 |#1|))) 39 T ELT))) +(((-990 |#1|) (-10 -7 (-15 -3206 ((-1168 (-625 (-343 (-850 |#1|)))) (-578 (-1079)) (-625 (-343 (-850 |#1|))))) (-15 -3206 ((-1168 (-625 (-850 |#1|))) (-578 (-1079)) (-625 (-850 |#1|)))) (-15 -3206 ((-1168 (-625 |#1|)) (-578 (-625 |#1|)))) (-15 -3207 ((-1168 |#1|) (-625 |#1|) (-578 (-625 |#1|))))) (-308)) (T -990)) +((-3207 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-625 *5))) (-5 *3 (-625 *5)) (-4 *5 (-308)) (-5 *2 (-1168 *5)) (-5 *1 (-990 *5)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-578 (-625 *4))) (-4 *4 (-308)) (-5 *2 (-1168 (-625 *4))) (-5 *1 (-990 *4)))) (-3206 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1079))) (-4 *5 (-308)) (-5 *2 (-1168 (-625 (-850 *5)))) (-5 *1 (-990 *5)) (-5 *4 (-625 (-850 *5))))) (-3206 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1079))) (-4 *5 (-308)) (-5 *2 (-1168 (-625 (-343 (-850 *5))))) (-5 *1 (-990 *5)) (-5 *4 (-625 (-343 (-850 *5))))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1475 (((-578 (-687)) $) NIL T ELT) (((-578 (-687)) $ (-1079)) NIL T ELT)) (-1509 (((-687) $) NIL T ELT) (((-687) $ (-1079)) NIL T ELT)) (-3065 (((-578 (-992 (-1079))) $) NIL T ELT)) (-3067 (((-1074 $) $ (-992 (-1079))) NIL T ELT) (((-1074 |#1|) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2803 (((-687) $) NIL T ELT) (((-687) $ (-578 (-992 (-1079)))) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3759 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-385)) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-1471 (($ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-992 (-1079)) #1#) $) NIL T ELT) (((-3 (-1079) #1#) $) NIL T ELT) (((-3 (-1028 |#1| (-1079)) #1#) $) NIL T ELT)) (-3139 ((|#1| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-992 (-1079)) $) NIL T ELT) (((-1079) $) NIL T ELT) (((-1028 |#1| (-1079)) $) NIL T ELT)) (-3740 (($ $ $ (-992 (-1079))) NIL (|has| |#1| (-144)) ELT)) (-3943 (($ $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3487 (($ $) NIL (|has| |#1| (-385)) ELT) (($ $ (-992 (-1079))) NIL (|has| |#1| (-385)) ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-814)) ELT)) (-1611 (($ $ |#1| (-463 (-992 (-1079))) $) NIL T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-992 (-1079)) (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-992 (-1079)) (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-3756 (((-687) $ (-1079)) NIL T ELT) (((-687) $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2404 (((-687) $) NIL T ELT)) (-3068 (($ (-1074 |#1|) (-992 (-1079))) NIL T ELT) (($ (-1074 $) (-992 (-1079))) NIL T ELT)) (-2805 (((-578 $) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-463 (-992 (-1079)))) NIL T ELT) (($ $ (-992 (-1079)) (-687)) NIL T ELT) (($ $ (-578 (-992 (-1079))) (-578 (-687))) NIL T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ (-992 (-1079))) NIL T ELT)) (-2804 (((-463 (-992 (-1079))) $) NIL T ELT) (((-687) $ (-992 (-1079))) NIL T ELT) (((-578 (-687)) $ (-578 (-992 (-1079)))) NIL T ELT)) (-1612 (($ (-1 (-463 (-992 (-1079))) (-463 (-992 (-1079)))) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1510 (((-1 $ (-687)) (-1079)) NIL T ELT) (((-1 $ (-687)) $) NIL (|has| |#1| (-188)) ELT)) (-3066 (((-3 (-992 (-1079)) #1#) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) NIL T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1473 (((-992 (-1079)) $) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1474 (((-83) $) NIL T ELT)) (-2807 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2806 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-2 (|:| |var| (-992 (-1079))) (|:| -2387 (-687))) #1#) $) NIL T ELT)) (-1472 (($ $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1784 (((-83) $) NIL T ELT)) (-1783 ((|#1| $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-385)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-814)) ELT)) (-3450 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-3752 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-992 (-1079)) |#1|) NIL T ELT) (($ $ (-578 (-992 (-1079))) (-578 |#1|)) NIL T ELT) (($ $ (-992 (-1079)) $) NIL T ELT) (($ $ (-578 (-992 (-1079))) (-578 $)) NIL T ELT) (($ $ (-1079) $) NIL (|has| |#1| (-188)) ELT) (($ $ (-578 (-1079)) (-578 $)) NIL (|has| |#1| (-188)) ELT) (($ $ (-1079) |#1|) NIL (|has| |#1| (-188)) ELT) (($ $ (-578 (-1079)) (-578 |#1|)) NIL (|has| |#1| (-188)) ELT)) (-3741 (($ $ (-992 (-1079))) NIL (|has| |#1| (-144)) ELT)) (-3742 (($ $ (-578 (-992 (-1079))) (-578 (-687))) NIL T ELT) (($ $ (-992 (-1079)) (-687)) NIL T ELT) (($ $ (-578 (-992 (-1079)))) NIL T ELT) (($ $ (-992 (-1079))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT)) (-1476 (((-578 (-1079)) $) NIL T ELT)) (-3932 (((-463 (-992 (-1079))) $) NIL T ELT) (((-687) $ (-992 (-1079))) NIL T ELT) (((-578 (-687)) $ (-578 (-992 (-1079)))) NIL T ELT) (((-687) $ (-1079)) NIL T ELT)) (-3956 (((-793 (-323)) $) NIL (-12 (|has| (-992 (-1079)) (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-992 (-1079)) (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-992 (-1079)) (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT)) (-2801 ((|#1| $) NIL (|has| |#1| (-385)) ELT) (($ $ (-992 (-1079))) NIL (|has| |#1| (-385)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-992 (-1079))) NIL T ELT) (($ (-1079)) NIL T ELT) (($ (-1028 |#1| (-1079))) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3801 (((-578 |#1|) $) NIL T ELT)) (-3661 ((|#1| $ (-463 (-992 (-1079)))) NIL T ELT) (($ $ (-992 (-1079)) (-687)) NIL T ELT) (($ $ (-578 (-992 (-1079))) (-578 (-687))) NIL T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1610 (($ $ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $ (-578 (-992 (-1079))) (-578 (-687))) NIL T ELT) (($ $ (-992 (-1079)) (-687)) NIL T ELT) (($ $ (-578 (-992 (-1079)))) NIL T ELT) (($ $ (-992 (-1079))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-991 |#1|) (-13 (-210 |#1| (-1079) (-992 (-1079)) (-463 (-992 (-1079)))) (-943 (-1028 |#1| (-1079)))) (-954)) (T -991)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-1509 (((-687) $) NIL T ELT)) (-3815 ((|#1| $) 10 T ELT)) (-3140 (((-3 |#1| "failed") $) NIL T ELT)) (-3139 ((|#1| $) NIL T ELT)) (-3756 (((-687) $) 11 T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-1510 (($ |#1| (-687)) 9 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3742 (($ $ (-687)) NIL T ELT) (($ $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2653 (($ $ (-687)) NIL T ELT) (($ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 16 T ELT))) +(((-992 |#1|) (-225 |#1|) (-749)) (T -992)) +NIL +((-2552 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-3720 (($ |#1| |#1|) 16 T ELT)) (-3942 (((-578 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-748)) ELT)) (-3212 ((|#1| $) 12 T ELT)) (-3214 ((|#1| $) 11 T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3210 (((-478) $) 15 T ELT)) (-3211 ((|#1| $) 14 T ELT)) (-3213 ((|#1| $) 13 T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-3947 (((-578 |#1|) $) 42 (|has| |#1| (-748)) ELT) (((-578 |#1|) (-578 $)) 41 (|has| |#1| (-748)) ELT)) (-3956 (($ |#1|) 29 T ELT)) (-3930 (((-765) $) 28 (|has| |#1| (-1005)) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-3721 (($ |#1| |#1|) 10 T ELT)) (-3215 (($ $ (-478)) 17 T ELT)) (-3037 (((-83) $ $) 22 (|has| |#1| (-1005)) ELT))) +(((-993 |#1|) (-13 (-998 |#1|) (-10 -7 (IF (|has| |#1| (-1005)) (-6 (-1005)) |%noBranch|) (IF (|has| |#1| (-748)) (-6 (-999 |#1| (-578 |#1|))) |%noBranch|))) (-1118)) (T -993)) +NIL +((-3942 (((-578 |#2|) (-1 |#2| |#1|) (-993 |#1|)) 27 (|has| |#1| (-748)) ELT) (((-993 |#2|) (-1 |#2| |#1|) (-993 |#1|)) 14 T ELT))) +(((-994 |#1| |#2|) (-10 -7 (-15 -3942 ((-993 |#2|) (-1 |#2| |#1|) (-993 |#1|))) (IF (|has| |#1| (-748)) (-15 -3942 ((-578 |#2|) (-1 |#2| |#1|) (-993 |#1|))) |%noBranch|)) (-1118) (-1118)) (T -994)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-993 *5)) (-4 *5 (-748)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-578 *6)) (-5 *1 (-994 *5 *6)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-993 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-993 *6)) (-5 *1 (-994 *5 *6))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 16 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-3208 (((-578 (-1038)) $) 10 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-995) (-13 (-987) (-10 -8 (-15 -3208 ((-578 (-1038)) $))))) (T -995)) +((-3208 (*1 *2 *1) (-12 (-5 *2 (-578 (-1038))) (-5 *1 (-995))))) +((-2552 (((-83) $ $) NIL (|has| (-993 |#1|) (-1005)) ELT)) (-3815 (((-1079) $) NIL T ELT)) (-3720 (((-993 |#1|) $) NIL T ELT)) (-3225 (((-1062) $) NIL (|has| (-993 |#1|) (-1005)) ELT)) (-3226 (((-1023) $) NIL (|has| (-993 |#1|) (-1005)) ELT)) (-3209 (($ (-1079) (-993 |#1|)) NIL T ELT)) (-3930 (((-765) $) NIL (|has| (-993 |#1|) (-1005)) ELT)) (-1253 (((-83) $ $) NIL (|has| (-993 |#1|) (-1005)) ELT)) (-3037 (((-83) $ $) NIL (|has| (-993 |#1|) (-1005)) ELT))) +(((-996 |#1|) (-13 (-1118) (-10 -8 (-15 -3209 ($ (-1079) (-993 |#1|))) (-15 -3815 ((-1079) $)) (-15 -3720 ((-993 |#1|) $)) (IF (|has| (-993 |#1|) (-1005)) (-6 (-1005)) |%noBranch|))) (-1118)) (T -996)) +((-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1079)) (-5 *3 (-993 *4)) (-4 *4 (-1118)) (-5 *1 (-996 *4)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-1079)) (-5 *1 (-996 *3)) (-4 *3 (-1118)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-993 *3)) (-5 *1 (-996 *3)) (-4 *3 (-1118))))) +((-3942 (((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|)) 19 T ELT))) +(((-997 |#1| |#2|) (-10 -7 (-15 -3942 ((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|)))) (-1118) (-1118)) (T -997)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-996 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-996 *6)) (-5 *1 (-997 *5 *6))))) +((-3720 (($ |#1| |#1|) 8 T ELT)) (-3212 ((|#1| $) 11 T ELT)) (-3214 ((|#1| $) 13 T ELT)) (-3210 (((-478) $) 9 T ELT)) (-3211 ((|#1| $) 10 T ELT)) (-3213 ((|#1| $) 12 T ELT)) (-3956 (($ |#1|) 6 T ELT)) (-3721 (($ |#1| |#1|) 15 T ELT)) (-3215 (($ $ (-478)) 14 T ELT))) +(((-998 |#1|) (-111) (-1118)) (T -998)) +((-3721 (*1 *1 *2 *2) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1118)))) (-3215 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-998 *3)) (-4 *3 (-1118)))) (-3214 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1118)))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1118)))) (-3212 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1118)))) (-3211 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1118)))) (-3210 (*1 *2 *1) (-12 (-4 *1 (-998 *3)) (-4 *3 (-1118)) (-5 *2 (-478)))) (-3720 (*1 *1 *2 *2) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1118))))) +(-13 (-552 |t#1|) (-10 -8 (-15 -3721 ($ |t#1| |t#1|)) (-15 -3215 ($ $ (-478))) (-15 -3214 (|t#1| $)) (-15 -3213 (|t#1| $)) (-15 -3212 (|t#1| $)) (-15 -3211 (|t#1| $)) (-15 -3210 ((-478) $)) (-15 -3720 ($ |t#1| |t#1|)))) +(((-552 |#1|) . T)) +((-3720 (($ |#1| |#1|) 8 T ELT)) (-3942 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3212 ((|#1| $) 11 T ELT)) (-3214 ((|#1| $) 13 T ELT)) (-3210 (((-478) $) 9 T ELT)) (-3211 ((|#1| $) 10 T ELT)) (-3213 ((|#1| $) 12 T ELT)) (-3947 ((|#2| (-578 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3956 (($ |#1|) 6 T ELT)) (-3721 (($ |#1| |#1|) 15 T ELT)) (-3215 (($ $ (-478)) 14 T ELT))) +(((-999 |#1| |#2|) (-111) (-748) (-1053 |t#1|)) (T -999)) +((-3947 (*1 *2 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-999 *4 *2)) (-4 *4 (-748)) (-4 *2 (-1053 *4)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-999 *3 *2)) (-4 *3 (-748)) (-4 *2 (-1053 *3)))) (-3942 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-999 *4 *2)) (-4 *4 (-748)) (-4 *2 (-1053 *4))))) +(-13 (-998 |t#1|) (-10 -8 (-15 -3947 (|t#2| (-578 $))) (-15 -3947 (|t#2| $)) (-15 -3942 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-552 |#1|) . T) ((-998 |#1|) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3782 (((-1038) $) 12 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 18 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-3216 (((-578 (-1038)) $) 10 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-1000) (-13 (-987) (-10 -8 (-15 -3216 ((-578 (-1038)) $)) (-15 -3782 ((-1038) $))))) (T -1000)) +((-3216 (*1 *2 *1) (-12 (-5 *2 (-578 (-1038))) (-5 *1 (-1000)))) (-3782 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-1000))))) +((-2552 (((-83) $ $) NIL T ELT)) (-1789 (($) NIL (|has| |#1| (-313)) ELT)) (-3217 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 83 T ELT)) (-3219 (($ $ $) 80 T ELT)) (-3218 (((-83) $ $) 82 T ELT)) (-3119 (((-687)) NIL (|has| |#1| (-313)) ELT)) (-3222 (($ (-578 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1557 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3708 (($) NIL T CONST)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3389 (($ |#1| $) 74 (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3390 (($ |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -3979)) ELT)) (-2978 (($) NIL (|has| |#1| (-313)) ELT)) (-2873 (((-578 |#1|) $) 19 (|has| $ (-6 -3979)) ELT)) (-3224 (((-83) $ $) NIL T ELT)) (-2515 ((|#1| $) 55 (|has| |#1| (-749)) ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 73 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2841 ((|#1| $) 53 (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-1996 (((-823) $) NIL (|has| |#1| (-313)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3221 (($ $ $) 78 T ELT)) (-1262 ((|#1| $) 25 T ELT)) (-3593 (($ |#1| $) 69 T ELT)) (-2386 (($ (-823)) NIL (|has| |#1| (-313)) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 31 T ELT)) (-1263 ((|#1| $) 27 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) 21 T ELT)) (-3549 (($) 11 T ELT)) (-3220 (($ $ |#1|) NIL T ELT) (($ $ $) 79 T ELT)) (-1453 (($) NIL T ELT) (($ (-578 |#1|)) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) 16 T ELT)) (-3956 (((-467) $) 50 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 62 T ELT)) (-1790 (($ $) NIL (|has| |#1| (-313)) ELT)) (-3930 (((-765) $) NIL T ELT)) (-1791 (((-687) $) NIL T ELT)) (-3223 (($ (-578 |#1|)) NIL T ELT) (($) 12 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-1264 (($ (-578 |#1|)) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 52 T ELT)) (-3941 (((-687) $) 10 (|has| $ (-6 -3979)) ELT))) +(((-1001 |#1|) (-362 |#1|) (-1005)) (T -1001)) +NIL +((-3217 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3219 (($ $ $) 10 T ELT)) (-3220 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) +(((-1002 |#1| |#2|) (-10 -7 (-15 -3217 (|#1| |#2| |#1|)) (-15 -3217 (|#1| |#1| |#2|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -3219 (|#1| |#1| |#1|)) (-15 -3220 (|#1| |#1| |#2|)) (-15 -3220 (|#1| |#1| |#1|))) (-1003 |#2|) (-1005)) (T -1002)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3217 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3219 (($ $ $) 24 T ELT)) (-3218 (((-83) $ $) 23 T ELT)) (-3222 (($) 29 T ELT) (($ (-578 |#1|)) 28 T ELT)) (-3694 (($ (-1 (-83) |#1|) $) 57 (|has| $ (-6 -3979)) ELT)) (-3708 (($) 37 T CONST)) (-1340 (($ $) 60 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3390 (($ |#1| $) 59 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#1|) $) 56 (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -3979)) ELT)) (-2873 (((-578 |#1|) $) 44 (|has| $ (-6 -3979)) ELT)) (-3224 (((-83) $ $) 32 T ELT)) (-2592 (((-578 |#1|) $) 45 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 47 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3221 (($ $ $) 27 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 53 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 42 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 |#1|) (-578 |#1|)) 51 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 49 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 (-245 |#1|))) 48 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 33 T ELT)) (-3387 (((-83) $) 36 T ELT)) (-3549 (($) 35 T ELT)) (-3220 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-1933 (((-687) |#1| $) 46 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) (((-687) (-1 (-83) |#1|) $) 43 (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) 34 T ELT)) (-3956 (((-467) $) 61 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 52 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-3223 (($) 31 T ELT) (($ (-578 |#1|)) 30 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 41 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3941 (((-687) $) 38 (|has| $ (-6 -3979)) ELT))) +(((-1003 |#1|) (-111) (-1005)) (T -1003)) +((-3224 (*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1005)) (-5 *2 (-83)))) (-3223 (*1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-4 *1 (-1003 *3)))) (-3222 (*1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-4 *1 (-1003 *3)))) (-3221 (*1 *1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) (-3220 (*1 *1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) (-3220 (*1 *1 *1 *2) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) (-3219 (*1 *1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) (-3218 (*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1005)) (-5 *2 (-83)))) (-3217 (*1 *1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) (-3217 (*1 *1 *1 *2) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) (-3217 (*1 *1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005))))) +(-13 (-1005) (-122 |t#1|) (-10 -8 (-6 -3969) (-15 -3224 ((-83) $ $)) (-15 -3223 ($)) (-15 -3223 ($ (-578 |t#1|))) (-15 -3222 ($)) (-15 -3222 ($ (-578 |t#1|))) (-15 -3221 ($ $ $)) (-15 -3220 ($ $ $)) (-15 -3220 ($ $ |t#1|)) (-15 -3219 ($ $ $)) (-15 -3218 ((-83) $ $)) (-15 -3217 ($ $ $)) (-15 -3217 ($ $ |t#1|)) (-15 -3217 ($ |t#1| $)))) +(((-34) . T) ((-72) . T) ((-547 (-765)) . T) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-1005) . T) ((-1118) . T)) +((-3225 (((-1062) $) 10 T ELT)) (-3226 (((-1023) $) 8 T ELT))) +(((-1004 |#1|) (-10 -7 (-15 -3225 ((-1062) |#1|)) (-15 -3226 ((-1023) |#1|))) (-1005)) (T -1004)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(((-1005) (-111)) (T -1005)) +((-3226 (*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1023)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1062))))) +(-13 (-72) (-547 (-765)) (-10 -8 (-15 -3226 ((-1023) $)) (-15 -3225 ((-1062) $)))) +(((-72) . T) ((-547 (-765)) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) 36 T ELT)) (-3230 (($ (-578 (-823))) 70 T ELT)) (-3232 (((-3 $ #1="failed") $ (-823) (-823)) 81 T ELT)) (-2978 (($) 40 T ELT)) (-3228 (((-83) (-823) $) 42 T ELT)) (-1996 (((-823) $) 64 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2386 (($ (-823)) 39 T ELT)) (-3233 (((-3 $ #1#) $ (-823)) 77 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3229 (((-1168 $)) 47 T ELT)) (-3231 (((-578 (-823)) $) 27 T ELT)) (-3227 (((-687) $ (-823) (-823)) 78 T ELT)) (-3930 (((-765) $) 32 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 24 T ELT))) +(((-1006 |#1| |#2|) (-13 (-313) (-10 -8 (-15 -3233 ((-3 $ #1="failed") $ (-823))) (-15 -3232 ((-3 $ #1#) $ (-823) (-823))) (-15 -3231 ((-578 (-823)) $)) (-15 -3230 ($ (-578 (-823)))) (-15 -3229 ((-1168 $))) (-15 -3228 ((-83) (-823) $)) (-15 -3227 ((-687) $ (-823) (-823))))) (-823) (-823)) (T -1006)) +((-3233 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-823)) (-5 *1 (-1006 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3232 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-823)) (-5 *1 (-1006 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1006 *3 *4)) (-14 *3 (-823)) (-14 *4 (-823)))) (-3230 (*1 *1 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1006 *3 *4)) (-14 *3 (-823)) (-14 *4 (-823)))) (-3229 (*1 *2) (-12 (-5 *2 (-1168 (-1006 *3 *4))) (-5 *1 (-1006 *3 *4)) (-14 *3 (-823)) (-14 *4 (-823)))) (-3228 (*1 *2 *3 *1) (-12 (-5 *3 (-823)) (-5 *2 (-83)) (-5 *1 (-1006 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3227 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-823)) (-5 *2 (-687)) (-5 *1 (-1006 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3243 (((-83) $) NIL T ELT)) (-3239 (((-1079) $) NIL T ELT)) (-3244 (((-83) $) NIL T ELT)) (-3519 (((-1062) $) NIL T ELT)) (-3246 (((-83) $) NIL T ELT)) (-3248 (((-83) $) NIL T ELT)) (-3245 (((-83) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3242 (((-83) $) NIL T ELT)) (-3238 (((-478) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3241 (((-83) $) NIL T ELT)) (-3237 (((-177) $) NIL T ELT)) (-3236 (((-765) $) NIL T ELT)) (-3249 (((-83) $ $) NIL T ELT)) (-3784 (($ $ (-478)) NIL T ELT) (($ $ (-578 (-478))) NIL T ELT)) (-3240 (((-578 $) $) NIL T ELT)) (-3956 (($ (-1062)) NIL T ELT) (($ (-1079)) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-177)) NIL T ELT) (($ (-765)) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-3234 (($ $) NIL T ELT)) (-3235 (($ $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3247 (((-83) $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3941 (((-478) $) NIL T ELT))) +(((-1007) (-1008 (-1062) (-1079) (-478) (-177) (-765))) (T -1007)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3243 (((-83) $) 36 T ELT)) (-3239 ((|#2| $) 31 T ELT)) (-3244 (((-83) $) 37 T ELT)) (-3519 ((|#1| $) 32 T ELT)) (-3246 (((-83) $) 39 T ELT)) (-3248 (((-83) $) 41 T ELT)) (-3245 (((-83) $) 38 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3242 (((-83) $) 35 T ELT)) (-3238 ((|#3| $) 30 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3241 (((-83) $) 34 T ELT)) (-3237 ((|#4| $) 29 T ELT)) (-3236 ((|#5| $) 28 T ELT)) (-3249 (((-83) $ $) 42 T ELT)) (-3784 (($ $ (-478)) 44 T ELT) (($ $ (-578 (-478))) 43 T ELT)) (-3240 (((-578 $) $) 33 T ELT)) (-3956 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-578 $)) 45 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-3234 (($ $) 26 T ELT)) (-3235 (($ $) 27 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3247 (((-83) $) 40 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3941 (((-478) $) 25 T ELT))) +(((-1008 |#1| |#2| |#3| |#4| |#5|) (-111) (-1005) (-1005) (-1005) (-1005) (-1005)) (T -1008)) +((-3249 (*1 *2 *1 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-83)))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-83)))) (-3247 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-83)))) (-3246 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-83)))) (-3245 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-83)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-83)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-83)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-83)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-83)))) (-3240 (*1 *2 *1) (-12 (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-578 *1)) (-4 *1 (-1008 *3 *4 *5 *6 *7)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-1008 *2 *3 *4 *5 *6)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *2 *4 *5 *6)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005)))) (-3238 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *2 *5 *6)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005)))) (-3236 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *2)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005)))) (-3235 (*1 *1 *1) (-12 (-4 *1 (-1008 *2 *3 *4 *5 *6)) (-4 *2 (-1005)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)))) (-3234 (*1 *1 *1) (-12 (-4 *1 (-1008 *2 *3 *4 *5 *6)) (-4 *2 (-1005)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-478))))) +(-13 (-1005) (-552 |t#1|) (-552 |t#2|) (-552 |t#3|) (-552 |t#4|) (-552 |t#4|) (-552 |t#5|) (-552 (-578 $)) (-238 (-478) $) (-238 (-578 (-478)) $) (-10 -8 (-15 -3249 ((-83) $ $)) (-15 -3248 ((-83) $)) (-15 -3247 ((-83) $)) (-15 -3246 ((-83) $)) (-15 -3245 ((-83) $)) (-15 -3244 ((-83) $)) (-15 -3243 ((-83) $)) (-15 -3242 ((-83) $)) (-15 -3241 ((-83) $)) (-15 -3240 ((-578 $) $)) (-15 -3519 (|t#1| $)) (-15 -3239 (|t#2| $)) (-15 -3238 (|t#3| $)) (-15 -3237 (|t#4| $)) (-15 -3236 (|t#5| $)) (-15 -3235 ($ $)) (-15 -3234 ($ $)) (-15 -3941 ((-478) $)))) +(((-72) . T) ((-547 (-765)) . T) ((-552 (-578 $)) . T) ((-552 |#1|) . T) ((-552 |#2|) . T) ((-552 |#3|) . T) ((-552 |#4|) . T) ((-552 |#5|) . T) ((-238 (-478) $) . T) ((-238 (-578 (-478)) $) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3243 (((-83) $) 45 T ELT)) (-3239 ((|#2| $) 48 T ELT)) (-3244 (((-83) $) 20 T ELT)) (-3519 ((|#1| $) 21 T ELT)) (-3246 (((-83) $) 42 T ELT)) (-3248 (((-83) $) 14 T ELT)) (-3245 (((-83) $) 44 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3242 (((-83) $) 46 T ELT)) (-3238 ((|#3| $) 50 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3241 (((-83) $) 47 T ELT)) (-3237 ((|#4| $) 49 T ELT)) (-3236 ((|#5| $) 51 T ELT)) (-3249 (((-83) $ $) 41 T ELT)) (-3784 (($ $ (-478)) 62 T ELT) (($ $ (-578 (-478))) 64 T ELT)) (-3240 (((-578 $) $) 27 T ELT)) (-3956 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-578 $)) 52 T ELT)) (-3930 (((-765) $) 28 T ELT)) (-3234 (($ $) 26 T ELT)) (-3235 (($ $) 58 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3247 (((-83) $) 23 T ELT)) (-3037 (((-83) $ $) 40 T ELT)) (-3941 (((-478) $) 60 T ELT))) +(((-1009 |#1| |#2| |#3| |#4| |#5|) (-1008 |#1| |#2| |#3| |#4| |#5|) (-1005) (-1005) (-1005) (-1005) (-1005)) (T -1009)) +NIL +((-3252 (((-83) |#5| |#5|) 44 T ELT)) (-3255 (((-83) |#5| |#5|) 59 T ELT)) (-3260 (((-83) |#5| (-578 |#5|)) 82 T ELT) (((-83) |#5| |#5|) 68 T ELT)) (-3256 (((-83) (-578 |#4|) (-578 |#4|)) 65 T ELT)) (-3262 (((-83) (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) 70 T ELT)) (-3251 (((-1174)) 32 T ELT)) (-3250 (((-1174) (-1062) (-1062) (-1062)) 28 T ELT)) (-3261 (((-578 |#5|) (-578 |#5|)) 101 T ELT)) (-3263 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|)))) 93 T ELT)) (-3264 (((-578 (-2 (|:| -3249 (-578 |#4|)) (|:| -1587 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-83) (-83)) 123 T ELT)) (-3254 (((-83) |#5| |#5|) 53 T ELT)) (-3259 (((-3 (-83) #1="failed") |#5| |#5|) 78 T ELT)) (-3257 (((-83) (-578 |#4|) (-578 |#4|)) 64 T ELT)) (-3258 (((-83) (-578 |#4|) (-578 |#4|)) 66 T ELT)) (-3683 (((-83) (-578 |#4|) (-578 |#4|)) 67 T ELT)) (-3265 (((-3 (-2 (|:| -3249 (-578 |#4|)) (|:| -1587 |#5|) (|:| |ineq| (-578 |#4|))) #1#) (-578 |#4|) |#5| (-578 |#4|) (-83) (-83) (-83) (-83) (-83)) 118 T ELT)) (-3253 (((-578 |#5|) (-578 |#5|)) 49 T ELT))) +(((-1010 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3250 ((-1174) (-1062) (-1062) (-1062))) (-15 -3251 ((-1174))) (-15 -3252 ((-83) |#5| |#5|)) (-15 -3253 ((-578 |#5|) (-578 |#5|))) (-15 -3254 ((-83) |#5| |#5|)) (-15 -3255 ((-83) |#5| |#5|)) (-15 -3256 ((-83) (-578 |#4|) (-578 |#4|))) (-15 -3257 ((-83) (-578 |#4|) (-578 |#4|))) (-15 -3258 ((-83) (-578 |#4|) (-578 |#4|))) (-15 -3683 ((-83) (-578 |#4|) (-578 |#4|))) (-15 -3259 ((-3 (-83) #1="failed") |#5| |#5|)) (-15 -3260 ((-83) |#5| |#5|)) (-15 -3260 ((-83) |#5| (-578 |#5|))) (-15 -3261 ((-578 |#5|) (-578 |#5|))) (-15 -3262 ((-83) (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|)))) (-15 -3263 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) (-15 -3264 ((-578 (-2 (|:| -3249 (-578 |#4|)) (|:| -1587 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-83) (-83))) (-15 -3265 ((-3 (-2 (|:| -3249 (-578 |#4|)) (|:| -1587 |#5|) (|:| |ineq| (-578 |#4|))) #1#) (-578 |#4|) |#5| (-578 |#4|) (-83) (-83) (-83) (-83) (-83)))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|) (-975 |#1| |#2| |#3| |#4|)) (T -1010)) +((-3265 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *9 (-969 *6 *7 *8)) (-5 *2 (-2 (|:| -3249 (-578 *9)) (|:| -1587 *4) (|:| |ineq| (-578 *9)))) (-5 *1 (-1010 *6 *7 *8 *9 *4)) (-5 *3 (-578 *9)) (-4 *4 (-975 *6 *7 *8 *9)))) (-3264 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-578 *10)) (-5 *5 (-83)) (-4 *10 (-975 *6 *7 *8 *9)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *9 (-969 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| -3249 (-578 *9)) (|:| -1587 *10) (|:| |ineq| (-578 *9))))) (-5 *1 (-1010 *6 *7 *8 *9 *10)) (-5 *3 (-578 *9)))) (-3263 (*1 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |val| (-578 *6)) (|:| -1587 *7)))) (-4 *6 (-969 *3 *4 *5)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-3262 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -1587 *8))) (-4 *7 (-969 *4 *5 *6)) (-4 *8 (-975 *4 *5 *6 *7)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *8)))) (-3261 (*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-3260 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-1010 *5 *6 *7 *8 *3)))) (-3260 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3259 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3683 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3258 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3257 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3256 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3255 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3254 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3253 (*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-3252 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3251 (*1 *2) (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-1174)) (-5 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6)))) (-3250 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1062)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7))))) +((-3280 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) |#4| |#5|) 106 T ELT)) (-3270 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3273 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3275 (((-578 |#5|) |#4| |#5|) 122 T ELT)) (-3277 (((-578 |#5|) |#4| |#5|) 129 T ELT)) (-3279 (((-578 |#5|) |#4| |#5|) 130 T ELT)) (-3274 (((-578 (-2 (|:| |val| (-83)) (|:| -1587 |#5|))) |#4| |#5|) 107 T ELT)) (-3276 (((-578 (-2 (|:| |val| (-83)) (|:| -1587 |#5|))) |#4| |#5|) 128 T ELT)) (-3278 (((-578 (-2 (|:| |val| (-83)) (|:| -1587 |#5|))) |#4| |#5|) 47 T ELT) (((-83) |#4| |#5|) 55 T ELT)) (-3271 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) |#3| (-83)) 91 T ELT) (((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) |#4| |#4| |#5| (-83) (-83)) 52 T ELT)) (-3272 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3269 (((-1174)) 36 T ELT)) (-3267 (((-1174)) 25 T ELT)) (-3268 (((-1174) (-1062) (-1062) (-1062)) 32 T ELT)) (-3266 (((-1174) (-1062) (-1062) (-1062)) 21 T ELT))) +(((-1011 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3266 ((-1174) (-1062) (-1062) (-1062))) (-15 -3267 ((-1174))) (-15 -3268 ((-1174) (-1062) (-1062) (-1062))) (-15 -3269 ((-1174))) (-15 -3270 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) |#4| |#4| |#5|)) (-15 -3271 ((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) |#4| |#4| |#5| (-83) (-83))) (-15 -3271 ((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) |#3| (-83))) (-15 -3272 ((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) |#4| |#4| |#5|)) (-15 -3273 ((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) |#4| |#4| |#5|)) (-15 -3278 ((-83) |#4| |#5|)) (-15 -3274 ((-578 (-2 (|:| |val| (-83)) (|:| -1587 |#5|))) |#4| |#5|)) (-15 -3275 ((-578 |#5|) |#4| |#5|)) (-15 -3276 ((-578 (-2 (|:| |val| (-83)) (|:| -1587 |#5|))) |#4| |#5|)) (-15 -3277 ((-578 |#5|) |#4| |#5|)) (-15 -3278 ((-578 (-2 (|:| |val| (-83)) (|:| -1587 |#5|))) |#4| |#5|)) (-15 -3279 ((-578 |#5|) |#4| |#5|)) (-15 -3280 ((-578 (-2 (|:| |val| |#4|) (|:| -1587 |#5|))) |#4| |#5|))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|) (-975 |#1| |#2| |#3| |#4|)) (T -1011)) +((-3280 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3279 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3278 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1587 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3277 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3276 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1587 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3275 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3274 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1587 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3278 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3273 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3272 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3271 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -1587 *9)))) (-5 *5 (-83)) (-4 *8 (-969 *6 *7 *4)) (-4 *9 (-975 *6 *7 *4 *8)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *4 (-749)) (-5 *2 (-578 (-2 (|:| |val| *8) (|:| -1587 *9)))) (-5 *1 (-1011 *6 *7 *4 *8 *9)))) (-3271 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *3 (-969 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) (-5 *1 (-1011 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) (-3270 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3269 (*1 *2) (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-1174)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6)))) (-3268 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1062)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3267 (*1 *2) (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-1174)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6)))) (-3266 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1062)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3665 (((-578 (-2 (|:| -3845 $) (|:| -1689 (-578 |#4|)))) (-578 |#4|)) 90 T ELT)) (-3666 (((-578 $) (-578 |#4|)) 91 T ELT) (((-578 $) (-578 |#4|) (-83)) 118 T ELT)) (-3065 (((-578 |#3|) $) 37 T ELT)) (-2892 (((-83) $) 30 T ELT)) (-2883 (((-83) $) 21 (|has| |#1| (-489)) ELT)) (-3677 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3672 ((|#4| |#4| $) 97 T ELT)) (-3759 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 $))) |#4| $) 133 T ELT)) (-2893 (((-2 (|:| |under| $) (|:| -3113 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3694 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3979)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3708 (($) 46 T CONST)) (-2888 (((-83) $) 26 (|has| |#1| (-489)) ELT)) (-2890 (((-83) $ $) 28 (|has| |#1| (-489)) ELT)) (-2889 (((-83) $ $) 27 (|has| |#1| (-489)) ELT)) (-2891 (((-83) $) 29 (|has| |#1| (-489)) ELT)) (-3673 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2884 (((-578 |#4|) (-578 |#4|) $) 22 (|has| |#1| (-489)) ELT)) (-2885 (((-578 |#4|) (-578 |#4|) $) 23 (|has| |#1| (-489)) ELT)) (-3140 (((-3 $ "failed") (-578 |#4|)) 40 T ELT)) (-3139 (($ (-578 |#4|)) 39 T ELT)) (-3783 (((-3 $ #1#) $) 87 T ELT)) (-3669 ((|#4| |#4| $) 94 T ELT)) (-1340 (($ $) 69 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3390 (($ |#4| $) 68 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3979)) ELT)) (-2886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-489)) ELT)) (-3678 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3667 ((|#4| |#4| $) 92 T ELT)) (-3826 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3979)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3979)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3680 (((-2 (|:| -3845 (-578 |#4|)) (|:| -1689 (-578 |#4|))) $) 110 T ELT)) (-3180 (((-83) |#4| $) 143 T ELT)) (-3178 (((-83) |#4| $) 140 T ELT)) (-3181 (((-83) |#4| $) 144 T ELT) (((-83) $) 141 T ELT)) (-2873 (((-578 |#4|) $) 53 (|has| $ (-6 -3979)) ELT)) (-3679 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3163 ((|#3| $) 38 T ELT)) (-2592 (((-578 |#4|) $) 54 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2898 (((-578 |#3|) $) 36 T ELT)) (-2897 (((-83) |#3| $) 35 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3174 (((-3 |#4| (-578 $)) |#4| |#4| $) 135 T ELT)) (-3173 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 $))) |#4| |#4| $) 134 T ELT)) (-3782 (((-3 |#4| #1#) $) 88 T ELT)) (-3175 (((-578 $) |#4| $) 136 T ELT)) (-3177 (((-3 (-83) (-578 $)) |#4| $) 139 T ELT)) (-3176 (((-578 (-2 (|:| |val| (-83)) (|:| -1587 $))) |#4| $) 138 T ELT) (((-83) |#4| $) 137 T ELT)) (-3221 (((-578 $) |#4| $) 132 T ELT) (((-578 $) (-578 |#4|) $) 131 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 130 T ELT) (((-578 $) |#4| (-578 $)) 129 T ELT)) (-3424 (($ |#4| $) 124 T ELT) (($ (-578 |#4|) $) 123 T ELT)) (-3681 (((-578 |#4|) $) 112 T ELT)) (-3675 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3670 ((|#4| |#4| $) 95 T ELT)) (-3683 (((-83) $ $) 115 T ELT)) (-2887 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-489)) ELT)) (-3676 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3671 ((|#4| |#4| $) 96 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3785 (((-3 |#4| #1#) $) 89 T ELT)) (-1341 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3663 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3753 (($ $ |#4|) 82 T ELT) (((-578 $) |#4| $) 122 T ELT) (((-578 $) |#4| (-578 $)) 121 T ELT) (((-578 $) (-578 |#4|) $) 120 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 119 T ELT)) (-1934 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 |#4|) (-578 |#4|)) 60 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-245 |#4|)) 58 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-578 (-245 |#4|))) 57 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT)) (-1210 (((-83) $ $) 42 T ELT)) (-3387 (((-83) $) 45 T ELT)) (-3549 (($) 44 T ELT)) (-3932 (((-687) $) 111 T ELT)) (-1933 (((-687) |#4| $) 55 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT) (((-687) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) 43 T ELT)) (-3956 (((-467) $) 70 (|has| |#4| (-548 (-467))) ELT)) (-3514 (($ (-578 |#4|)) 61 T ELT)) (-2894 (($ $ |#3|) 32 T ELT)) (-2896 (($ $ |#3|) 34 T ELT)) (-3668 (($ $) 93 T ELT)) (-2895 (($ $ |#3|) 33 T ELT)) (-3930 (((-765) $) 13 T ELT) (((-578 |#4|) $) 41 T ELT)) (-3662 (((-687) $) 81 (|has| |#3| (-313)) ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3682 (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3674 (((-83) $ (-1 (-83) |#4| (-578 |#4|))) 103 T ELT)) (-3172 (((-578 $) |#4| $) 128 T ELT) (((-578 $) |#4| (-578 $)) 127 T ELT) (((-578 $) (-578 |#4|) $) 126 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 125 T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3979)) ELT)) (-3664 (((-578 |#3|) $) 86 T ELT)) (-3179 (((-83) |#4| $) 142 T ELT)) (-3917 (((-83) |#3| $) 85 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3941 (((-687) $) 47 (|has| $ (-6 -3979)) ELT))) +(((-1012 |#1| |#2| |#3| |#4|) (-111) (-385) (-710) (-749) (-969 |t#1| |t#2| |t#3|)) (T -1012)) +NIL +(-13 (-975 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-547 (-578 |#4|)) . T) ((-547 (-765)) . T) ((-122 |#4|) . T) ((-548 (-467)) |has| |#4| (-548 (-467))) ((-256 |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ((-422 |#4|) . T) ((-447 |#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ((-882 |#1| |#2| |#3| |#4|) . T) ((-975 |#1| |#2| |#3| |#4|) . T) ((-1005) . T) ((-1113 |#1| |#2| |#3| |#4|) . T) ((-1118) . T)) +((-3291 (((-578 (-478)) (-478) (-478) (-478)) 40 T ELT)) (-3290 (((-578 (-478)) (-478) (-478) (-478)) 30 T ELT)) (-3289 (((-578 (-478)) (-478) (-478) (-478)) 35 T ELT)) (-3288 (((-478) (-478) (-478)) 22 T ELT)) (-3287 (((-1168 (-478)) (-578 (-478)) (-1168 (-478)) (-478)) 79 T ELT) (((-1168 (-478)) (-1168 (-478)) (-1168 (-478)) (-478)) 74 T ELT)) (-3286 (((-578 (-478)) (-578 (-823)) (-578 (-478)) (-83)) 56 T ELT)) (-3285 (((-625 (-478)) (-578 (-478)) (-578 (-478)) (-625 (-478))) 78 T ELT)) (-3284 (((-625 (-478)) (-578 (-823)) (-578 (-478))) 61 T ELT)) (-3283 (((-578 (-625 (-478))) (-578 (-823))) 67 T ELT)) (-3282 (((-578 (-478)) (-578 (-478)) (-578 (-478)) (-625 (-478))) 82 T ELT)) (-3281 (((-625 (-478)) (-578 (-478)) (-578 (-478)) (-578 (-478))) 92 T ELT))) +(((-1013) (-10 -7 (-15 -3281 ((-625 (-478)) (-578 (-478)) (-578 (-478)) (-578 (-478)))) (-15 -3282 ((-578 (-478)) (-578 (-478)) (-578 (-478)) (-625 (-478)))) (-15 -3283 ((-578 (-625 (-478))) (-578 (-823)))) (-15 -3284 ((-625 (-478)) (-578 (-823)) (-578 (-478)))) (-15 -3285 ((-625 (-478)) (-578 (-478)) (-578 (-478)) (-625 (-478)))) (-15 -3286 ((-578 (-478)) (-578 (-823)) (-578 (-478)) (-83))) (-15 -3287 ((-1168 (-478)) (-1168 (-478)) (-1168 (-478)) (-478))) (-15 -3287 ((-1168 (-478)) (-578 (-478)) (-1168 (-478)) (-478))) (-15 -3288 ((-478) (-478) (-478))) (-15 -3289 ((-578 (-478)) (-478) (-478) (-478))) (-15 -3290 ((-578 (-478)) (-478) (-478) (-478))) (-15 -3291 ((-578 (-478)) (-478) (-478) (-478))))) (T -1013)) +((-3291 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-1013)) (-5 *3 (-478)))) (-3290 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-1013)) (-5 *3 (-478)))) (-3289 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-1013)) (-5 *3 (-478)))) (-3288 (*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-1013)))) (-3287 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1168 (-478))) (-5 *3 (-578 (-478))) (-5 *4 (-478)) (-5 *1 (-1013)))) (-3287 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1168 (-478))) (-5 *3 (-478)) (-5 *1 (-1013)))) (-3286 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-578 (-478))) (-5 *3 (-578 (-823))) (-5 *4 (-83)) (-5 *1 (-1013)))) (-3285 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-625 (-478))) (-5 *3 (-578 (-478))) (-5 *1 (-1013)))) (-3284 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-823))) (-5 *4 (-578 (-478))) (-5 *2 (-625 (-478))) (-5 *1 (-1013)))) (-3283 (*1 *2 *3) (-12 (-5 *3 (-578 (-823))) (-5 *2 (-578 (-625 (-478)))) (-5 *1 (-1013)))) (-3282 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-578 (-478))) (-5 *3 (-625 (-478))) (-5 *1 (-1013)))) (-3281 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-625 (-478))) (-5 *1 (-1013))))) +((** (($ $ (-823)) 10 T ELT))) +(((-1014 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-823)))) (-1015)) (T -1014)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (** (($ $ (-823)) 17 T ELT)) (* (($ $ $) 18 T ELT))) +(((-1015) (-111)) (T -1015)) +((* (*1 *1 *1 *1) (-4 *1 (-1015))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-823))))) +(-13 (-1005) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-823))))) +(((-72) . T) ((-547 (-765)) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL (|has| |#3| (-72)) ELT)) (-3171 (((-83) $) NIL (|has| |#3| (-23)) ELT)) (-3691 (($ (-823)) NIL (|has| |#3| (-954)) ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-2467 (($ $ $) NIL (|has| |#3| (-710)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-102)) ELT)) (-3119 (((-687)) NIL (|has| |#3| (-313)) ELT)) (-3772 ((|#3| $ (-478) |#3|) NIL (|has| $ (-6 -3980)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL (-12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1005))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (-12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1005))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1005)) ELT)) (-3139 (((-478) $) NIL (-12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1005))) ELT) (((-343 (-478)) $) NIL (-12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1005))) ELT) ((|#3| $) NIL (|has| |#3| (-1005)) ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (-12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (-12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954))) ELT) (((-2 (|:| |mat| (-625 |#3|)) (|:| |vec| (-1168 |#3|))) (-625 $) (-1168 $)) NIL (|has| |#3| (-954)) ELT) (((-625 |#3|) (-625 $)) NIL (|has| |#3| (-954)) ELT)) (-3451 (((-3 $ #1#) $) NIL (|has| |#3| (-954)) ELT)) (-2978 (($) NIL (|has| |#3| (-313)) ELT)) (-1563 ((|#3| $ (-478) |#3|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#3| $ (-478)) 12 T ELT)) (-3169 (((-83) $) NIL (|has| |#3| (-710)) ELT)) (-2873 (((-578 |#3|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2396 (((-83) $) NIL (|has| |#3| (-954)) ELT)) (-2186 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| |#3| (-749)) ELT)) (-2592 (((-578 |#3|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#3| (-1005))) ELT)) (-2187 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#3| (-749)) ELT)) (-1936 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-1996 (((-823) $) NIL (|has| |#3| (-313)) ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (-12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (-12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954))) ELT) (((-2 (|:| |mat| (-625 |#3|)) (|:| |vec| (-1168 |#3|))) (-1168 $) $) NIL (|has| |#3| (-954)) ELT) (((-625 |#3|) (-1168 $)) NIL (|has| |#3| (-954)) ELT)) (-3225 (((-1062) $) NIL (|has| |#3| (-1005)) ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-2386 (($ (-823)) NIL (|has| |#3| (-313)) ELT)) (-3226 (((-1023) $) NIL (|has| |#3| (-1005)) ELT)) (-3785 ((|#3| $) NIL (|has| (-478) (-749)) ELT)) (-2185 (($ $ |#3|) NIL (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#3|))) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005))) ELT) (($ $ (-245 |#3|)) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005))) ELT) (($ $ (-578 |#3|) (-578 |#3|)) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#3| (-1005))) ELT)) (-2191 (((-578 |#3|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#3| $ (-478) |#3|) NIL T ELT) ((|#3| $ (-478)) NIL T ELT)) (-3820 ((|#3| $ $) NIL (|has| |#3| (-954)) ELT)) (-1455 (($ (-1168 |#3|)) NIL T ELT)) (-3895 (((-105)) NIL (|has| |#3| (-308)) ELT)) (-3742 (($ $ (-687)) NIL (-12 (|has| |#3| (-187)) (|has| |#3| (-954))) ELT) (($ $) NIL (-12 (|has| |#3| (-187)) (|has| |#3| (-954))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954))) ELT) (($ $ (-1079)) NIL (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-954)) ELT) (($ $ (-1 |#3| |#3|) (-687)) NIL (|has| |#3| (-954)) ELT)) (-1933 (((-687) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#3| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#3| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3930 (((-1168 |#3|) $) NIL T ELT) (($ (-478)) NIL (OR (-12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1005))) (|has| |#3| (-954))) ELT) (($ (-343 (-478))) NIL (-12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1005))) ELT) (($ |#3|) NIL (|has| |#3| (-1005)) ELT) (((-765) $) NIL (|has| |#3| (-547 (-765))) ELT)) (-3109 (((-687)) NIL (|has| |#3| (-954)) CONST)) (-1253 (((-83) $ $) NIL (|has| |#3| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2644 (($) NIL (|has| |#3| (-23)) CONST)) (-2650 (($) NIL (|has| |#3| (-954)) CONST)) (-2653 (($ $ (-687)) NIL (-12 (|has| |#3| (-187)) (|has| |#3| (-954))) ELT) (($ $) NIL (-12 (|has| |#3| (-187)) (|has| |#3| (-954))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954))) ELT) (($ $ (-1079)) NIL (-12 (|has| |#3| (-804 (-1079))) (|has| |#3| (-954))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-954)) ELT) (($ $ (-1 |#3| |#3|) (-687)) NIL (|has| |#3| (-954)) ELT)) (-2550 (((-83) $ $) NIL (|has| |#3| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#3| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#3| (-72)) ELT)) (-2668 (((-83) $ $) NIL (|has| |#3| (-749)) ELT)) (-2669 (((-83) $ $) 24 (|has| |#3| (-749)) ELT)) (-3933 (($ $ |#3|) NIL (|has| |#3| (-308)) ELT)) (-3821 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3823 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-687)) NIL (|has| |#3| (-954)) ELT) (($ $ (-823)) NIL (|has| |#3| (-954)) ELT)) (* (($ $ $) NIL (|has| |#3| (-954)) ELT) (($ $ |#3|) NIL (|has| |#3| (-658)) ELT) (($ |#3| $) NIL (|has| |#3| (-658)) ELT) (($ (-478) $) NIL (|has| |#3| (-21)) ELT) (($ (-687) $) NIL (|has| |#3| (-23)) ELT) (($ (-823) $) NIL (|has| |#3| (-25)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-1016 |#1| |#2| |#3|) (-193 |#1| |#3|) (-687) (-687) (-710)) (T -1016)) +NIL +((-3292 (((-578 (-1137 |#2| |#1|)) (-1137 |#2| |#1|) (-1137 |#2| |#1|)) 50 T ELT)) (-3298 (((-478) (-1137 |#2| |#1|)) 96 (|has| |#1| (-385)) ELT)) (-3296 (((-478) (-1137 |#2| |#1|)) 79 T ELT)) (-3293 (((-578 (-1137 |#2| |#1|)) (-1137 |#2| |#1|) (-1137 |#2| |#1|)) 58 T ELT)) (-3297 (((-478) (-1137 |#2| |#1|) (-1137 |#2| |#1|)) 95 (|has| |#1| (-385)) ELT)) (-3294 (((-578 |#1|) (-1137 |#2| |#1|) (-1137 |#2| |#1|)) 61 T ELT)) (-3295 (((-478) (-1137 |#2| |#1|) (-1137 |#2| |#1|)) 78 T ELT))) +(((-1017 |#1| |#2|) (-10 -7 (-15 -3292 ((-578 (-1137 |#2| |#1|)) (-1137 |#2| |#1|) (-1137 |#2| |#1|))) (-15 -3293 ((-578 (-1137 |#2| |#1|)) (-1137 |#2| |#1|) (-1137 |#2| |#1|))) (-15 -3294 ((-578 |#1|) (-1137 |#2| |#1|) (-1137 |#2| |#1|))) (-15 -3295 ((-478) (-1137 |#2| |#1|) (-1137 |#2| |#1|))) (-15 -3296 ((-478) (-1137 |#2| |#1|))) (IF (|has| |#1| (-385)) (PROGN (-15 -3297 ((-478) (-1137 |#2| |#1|) (-1137 |#2| |#1|))) (-15 -3298 ((-478) (-1137 |#2| |#1|)))) |%noBranch|)) (-733) (-1079)) (T -1017)) +((-3298 (*1 *2 *3) (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-385)) (-4 *4 (-733)) (-14 *5 (-1079)) (-5 *2 (-478)) (-5 *1 (-1017 *4 *5)))) (-3297 (*1 *2 *3 *3) (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-385)) (-4 *4 (-733)) (-14 *5 (-1079)) (-5 *2 (-478)) (-5 *1 (-1017 *4 *5)))) (-3296 (*1 *2 *3) (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-733)) (-14 *5 (-1079)) (-5 *2 (-478)) (-5 *1 (-1017 *4 *5)))) (-3295 (*1 *2 *3 *3) (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-733)) (-14 *5 (-1079)) (-5 *2 (-478)) (-5 *1 (-1017 *4 *5)))) (-3294 (*1 *2 *3 *3) (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-733)) (-14 *5 (-1079)) (-5 *2 (-578 *4)) (-5 *1 (-1017 *4 *5)))) (-3293 (*1 *2 *3 *3) (-12 (-4 *4 (-733)) (-14 *5 (-1079)) (-5 *2 (-578 (-1137 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1137 *5 *4)))) (-3292 (*1 *2 *3 *3) (-12 (-4 *4 (-733)) (-14 *5 (-1079)) (-5 *2 (-578 (-1137 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1137 *5 *4))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3300 (((-1084) $) 12 T ELT)) (-3299 (((-578 (-1084)) $) 14 T ELT)) (-3301 (($ (-578 (-1084)) (-1084)) 10 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 29 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 17 T ELT))) +(((-1018) (-13 (-1005) (-10 -8 (-15 -3301 ($ (-578 (-1084)) (-1084))) (-15 -3300 ((-1084) $)) (-15 -3299 ((-578 (-1084)) $))))) (T -1018)) +((-3301 (*1 *1 *2 *3) (-12 (-5 *2 (-578 (-1084))) (-5 *3 (-1084)) (-5 *1 (-1018)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1018)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-578 (-1084))) (-5 *1 (-1018))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3302 (($ (-439) (-1018)) 13 T ELT)) (-3301 (((-1018) $) 19 T ELT)) (-3526 (((-439) $) 16 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 26 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-1019) (-13 (-987) (-10 -8 (-15 -3302 ($ (-439) (-1018))) (-15 -3526 ((-439) $)) (-15 -3301 ((-1018) $))))) (T -1019)) +((-3302 (*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1018)) (-5 *1 (-1019)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-1019)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-1019))))) +((-3607 (((-3 (-478) #1="failed") |#2| (-1079) |#2| (-1062)) 19 T ELT) (((-3 (-478) #1#) |#2| (-1079) (-743 |#2|)) 17 T ELT) (((-3 (-478) #1#) |#2|) 60 T ELT))) +(((-1020 |#1| |#2|) (-10 -7 (-15 -3607 ((-3 (-478) #1="failed") |#2|)) (-15 -3607 ((-3 (-478) #1#) |#2| (-1079) (-743 |#2|))) (-15 -3607 ((-3 (-478) #1#) |#2| (-1079) |#2| (-1062)))) (-13 (-489) (-943 (-478)) (-575 (-478)) (-385)) (-13 (-27) (-1104) (-357 |#1|))) (T -1020)) +((-3607 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1079)) (-5 *5 (-1062)) (-4 *6 (-13 (-489) (-943 *2) (-575 *2) (-385))) (-5 *2 (-478)) (-5 *1 (-1020 *6 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *6))))) (-3607 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1079)) (-5 *5 (-743 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *6))) (-4 *6 (-13 (-489) (-943 *2) (-575 *2) (-385))) (-5 *2 (-478)) (-5 *1 (-1020 *6 *3)))) (-3607 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-489) (-943 *2) (-575 *2) (-385))) (-5 *2 (-478)) (-5 *1 (-1020 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *4)))))) +((-3607 (((-3 (-478) #1="failed") (-343 (-850 |#1|)) (-1079) (-343 (-850 |#1|)) (-1062)) 38 T ELT) (((-3 (-478) #1#) (-343 (-850 |#1|)) (-1079) (-743 (-343 (-850 |#1|)))) 33 T ELT) (((-3 (-478) #1#) (-343 (-850 |#1|))) 14 T ELT))) +(((-1021 |#1|) (-10 -7 (-15 -3607 ((-3 (-478) #1="failed") (-343 (-850 |#1|)))) (-15 -3607 ((-3 (-478) #1#) (-343 (-850 |#1|)) (-1079) (-743 (-343 (-850 |#1|))))) (-15 -3607 ((-3 (-478) #1#) (-343 (-850 |#1|)) (-1079) (-343 (-850 |#1|)) (-1062)))) (-385)) (T -1021)) +((-3607 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-343 (-850 *6))) (-5 *4 (-1079)) (-5 *5 (-1062)) (-4 *6 (-385)) (-5 *2 (-478)) (-5 *1 (-1021 *6)))) (-3607 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1079)) (-5 *5 (-743 (-343 (-850 *6)))) (-5 *3 (-343 (-850 *6))) (-4 *6 (-385)) (-5 *2 (-478)) (-5 *1 (-1021 *6)))) (-3607 (*1 *2 *3) (|partial| -12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-385)) (-5 *2 (-478)) (-5 *1 (-1021 *4))))) +((-3633 (((-261 (-478)) (-48)) 12 T ELT))) +(((-1022) (-10 -7 (-15 -3633 ((-261 (-478)) (-48))))) (T -1022)) +((-3633 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-261 (-478))) (-5 *1 (-1022))))) +((-2552 (((-83) $ $) NIL T ELT)) (-2299 (($ $) 22 T ELT)) (-3171 (((-83) $) 52 T ELT)) (-3306 (($ $ $) 31 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 79 T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-2033 (($ $ $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2028 (($ $ $ $) 62 T ELT)) (-3759 (($ $) NIL T ELT)) (-3955 (((-341 $) $) NIL T ELT)) (-1595 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) 64 T ELT)) (-3607 (((-478) $) NIL T ELT)) (-2425 (($ $ $) 59 T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL T ELT)) (-3139 (((-478) $) NIL T ELT)) (-2548 (($ $ $) 45 T ELT)) (-2265 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 73 T ELT) (((-625 (-478)) (-625 $)) 8 T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3008 (((-3 (-343 (-478)) #1#) $) NIL T ELT)) (-3007 (((-83) $) NIL T ELT)) (-3006 (((-343 (-478)) $) NIL T ELT)) (-2978 (($) 77 T ELT) (($ $) 76 T ELT)) (-2547 (($ $ $) 44 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL T ELT)) (-3707 (((-83) $) NIL T ELT)) (-2026 (($ $ $ $) NIL T ELT)) (-2034 (($ $ $) 74 T ELT)) (-3169 (((-83) $) 80 T ELT)) (-1356 (($ $ $) NIL T ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL T ELT)) (-2545 (($ $ $) 30 T ELT)) (-2396 (((-83) $) 53 T ELT)) (-2657 (((-83) $) 50 T ELT)) (-2544 (($ $) 23 T ELT)) (-3429 (((-627 $) $) NIL T ELT)) (-3170 (((-83) $) 63 T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2027 (($ $ $ $) 60 T ELT)) (-2515 (($ $ $) 55 T ELT) (($) 19 T CONST)) (-2841 (($ $ $) 54 T ELT) (($) 18 T CONST)) (-2030 (($ $) NIL T ELT)) (-1996 (((-823) $) 69 T ELT)) (-3817 (($ $) 58 T ELT)) (-2266 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL T ELT) (((-625 (-478)) (-1168 $)) NIL T ELT)) (-1878 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2025 (($ $ $) NIL T ELT)) (-3430 (($) NIL T CONST)) (-2386 (($ (-823)) 68 T ELT)) (-2032 (($ $) 36 T ELT)) (-3226 (((-1023) $) 57 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL T ELT)) (-3127 (($ $ $) 48 T ELT) (($ (-578 $)) NIL T ELT)) (-1354 (($ $) NIL T ELT)) (-3716 (((-341 $) $) NIL T ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-2658 (((-83) $) 51 T ELT)) (-1594 (((-687) $) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 47 T ELT)) (-3742 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2031 (($ $) 37 T ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-478) $) 12 T ELT) (((-467) $) NIL T ELT) (((-793 (-478)) $) NIL T ELT) (((-323) $) NIL T ELT) (((-177) $) NIL T ELT)) (-3930 (((-765) $) 11 T ELT) (($ (-478)) 75 T ELT) (($ $) NIL T ELT) (($ (-478)) 75 T ELT)) (-3109 (((-687)) NIL T CONST)) (-2035 (((-83) $ $) NIL T ELT)) (-3085 (($ $ $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2678 (($) 17 T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-2546 (($ $ $) 28 T ELT)) (-2029 (($ $ $ $) 61 T ELT)) (-3367 (($ $) 49 T ELT)) (-2297 (($ $ $) 25 T ELT)) (-2644 (($) 15 T CONST)) (-3303 (($ $ $) 29 T ELT)) (-2650 (($) 16 T CONST)) (-3305 (($ $) 26 T ELT)) (-2653 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3304 (($ $ $) 27 T ELT)) (-2550 (((-83) $ $) 35 T ELT)) (-2551 (((-83) $ $) 33 T ELT)) (-3037 (((-83) $ $) 21 T ELT)) (-2668 (((-83) $ $) 34 T ELT)) (-2669 (((-83) $ $) 32 T ELT)) (-2298 (($ $ $) 24 T ELT)) (-3821 (($ $) 38 T ELT) (($ $ $) 40 T ELT)) (-3823 (($ $ $) 39 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 43 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 14 T ELT) (($ $ $) 41 T ELT) (($ (-478) $) 14 T ELT))) +(((-1023) (-13 (-477) (-745) (-82) (-10 -8 (-6 -3966) (-6 -3971) (-6 -3967) (-15 -3306 ($ $ $)) (-15 -3305 ($ $)) (-15 -3304 ($ $ $)) (-15 -3303 ($ $ $))))) (T -1023)) +((-3306 (*1 *1 *1 *1) (-5 *1 (-1023))) (-3305 (*1 *1 *1) (-5 *1 (-1023))) (-3304 (*1 *1 *1 *1) (-5 *1 (-1023))) (-3303 (*1 *1 *1 *1) (-5 *1 (-1023)))) +((-478) (|%ismall?| |#1|)) +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3308 ((|#1| $) 48 T ELT)) (-3708 (($) 7 T CONST)) (-3310 ((|#1| |#1| $) 50 T ELT)) (-3309 ((|#1| $) 49 T ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-1262 ((|#1| $) 43 T ELT)) (-3593 (($ |#1| $) 44 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-1263 ((|#1| $) 45 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3307 (((-687) $) 47 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1264 (($ (-578 |#1|)) 46 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-1024 |#1|) (-111) (-1118)) (T -1024)) +((-3310 (*1 *2 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1118)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1118)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1118)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-1024 *3)) (-4 *3 (-1118)) (-5 *2 (-687))))) +(-13 (-76 |t#1|) (-10 -8 (-6 -3979) (-15 -3310 (|t#1| |t#1| $)) (-15 -3309 (|t#1| $)) (-15 -3308 (|t#1| $)) (-15 -3307 ((-687) $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-1005) |has| |#1| (-1005)) ((-1118) . T)) +((-3314 ((|#3| $) 87 T ELT)) (-3140 (((-3 (-478) #1="failed") $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3139 (((-478) $) NIL T ELT) (((-343 (-478)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL T ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL T ELT) (((-2 (|:| |mat| (-625 |#3|)) (|:| |vec| (-1168 |#3|))) (-625 $) (-1168 $)) 84 T ELT) (((-625 |#3|) (-625 $)) 76 T ELT)) (-3742 (($ $ (-1 |#3| |#3|) (-687)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1079)) NIL T ELT) (($ $ (-578 (-1079))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT)) (-3313 ((|#3| $) 89 T ELT)) (-3315 ((|#4| $) 43 T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 24 T ELT) (($ $ (-478)) 95 T ELT))) +(((-1025 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3742 (|#1| |#1| (-578 (-1079)) (-578 (-687)))) (-15 -3742 (|#1| |#1| (-1079) (-687))) (-15 -3742 (|#1| |#1| (-578 (-1079)))) (-15 -3742 (|#1| |#1| (-1079))) (-15 -3742 (|#1| |#1| (-687))) (-15 -3742 (|#1| |#1|)) (-15 ** (|#1| |#1| (-478))) (-15 -3313 (|#3| |#1|)) (-15 -3314 (|#3| |#1|)) (-15 -3315 (|#4| |#1|)) (-15 -2265 ((-625 |#3|) (-625 |#1|))) (-15 -2265 ((-2 (|:| |mat| (-625 |#3|)) (|:| |vec| (-1168 |#3|))) (-625 |#1|) (-1168 |#1|))) (-15 -2265 ((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 |#1|) (-1168 |#1|))) (-15 -2265 ((-625 (-478)) (-625 |#1|))) (-15 -3930 (|#1| |#3|)) (-15 -3140 ((-3 |#3| #1="failed") |#1|)) (-15 -3139 (|#3| |#1|)) (-15 -3139 ((-343 (-478)) |#1|)) (-15 -3140 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3930 (|#1| (-343 (-478)))) (-15 -3139 ((-478) |#1|)) (-15 -3140 ((-3 (-478) #1#) |#1|)) (-15 -3742 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3742 (|#1| |#1| (-1 |#3| |#3|) (-687))) (-15 -3930 (|#1| (-478))) (-15 ** (|#1| |#1| (-687))) (-15 ** (|#1| |#1| (-823))) (-15 -3930 ((-765) |#1|))) (-1026 |#2| |#3| |#4| |#5|) (-687) (-954) (-193 |#2| |#3|) (-193 |#2| |#3|)) (T -1025)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3314 ((|#2| $) 87 T ELT)) (-3104 (((-83) $) 128 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3106 (((-83) $) 126 T ELT)) (-3317 (($ |#2|) 90 T ELT)) (-3708 (($) 22 T CONST)) (-3093 (($ $) 145 (|has| |#2| (-254)) ELT)) (-3095 ((|#3| $ (-478)) 140 T ELT)) (-3140 (((-3 (-478) #1="failed") $) 106 (|has| |#2| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) 103 (|has| |#2| (-943 (-343 (-478)))) ELT) (((-3 |#2| #1#) $) 100 T ELT)) (-3139 (((-478) $) 105 (|has| |#2| (-943 (-478))) ELT) (((-343 (-478)) $) 102 (|has| |#2| (-943 (-343 (-478)))) ELT) ((|#2| $) 101 T ELT)) (-2265 (((-625 (-478)) (-625 $)) 96 (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 95 (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) 94 T ELT) (((-625 |#2|) (-625 $)) 93 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3092 (((-687) $) 146 (|has| |#2| (-489)) ELT)) (-3096 ((|#2| $ (-478) (-478)) 138 T ELT)) (-2873 (((-578 |#2|) $) 114 (|has| $ (-6 -3979)) ELT)) (-2396 (((-83) $) 40 T ELT)) (-3091 (((-687) $) 147 (|has| |#2| (-489)) ELT)) (-3090 (((-578 |#4|) $) 148 (|has| |#2| (-489)) ELT)) (-3098 (((-687) $) 134 T ELT)) (-3097 (((-687) $) 135 T ELT)) (-3311 ((|#2| $) 82 (|has| |#2| (-6 (-3981 #2="*"))) ELT)) (-3102 (((-478) $) 130 T ELT)) (-3100 (((-478) $) 132 T ELT)) (-2592 (((-578 |#2|) $) 113 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#2| $) 111 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3101 (((-478) $) 131 T ELT)) (-3099 (((-478) $) 133 T ELT)) (-3107 (($ (-578 (-578 |#2|))) 125 T ELT)) (-1936 (($ (-1 |#2| |#2|) $) 118 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#2| |#2| |#2|) $ $) 142 T ELT) (($ (-1 |#2| |#2|) $) 119 T ELT)) (-3578 (((-578 (-578 |#2|)) $) 136 T ELT)) (-2266 (((-625 (-478)) (-1168 $)) 98 (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) 97 (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-1168 $) $) 92 T ELT) (((-625 |#2|) (-1168 $)) 91 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3574 (((-3 $ "failed") $) 81 (|has| |#2| (-308)) ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3450 (((-3 $ "failed") $ |#2|) 143 (|has| |#2| (-489)) ELT)) (-1934 (((-83) (-1 (-83) |#2|) $) 116 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#2|))) 110 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-245 |#2|)) 109 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ |#2| |#2|) 108 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) 107 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT)) (-1210 (((-83) $ $) 124 T ELT)) (-3387 (((-83) $) 121 T ELT)) (-3549 (($) 122 T ELT)) (-3784 ((|#2| $ (-478) (-478) |#2|) 139 T ELT) ((|#2| $ (-478) (-478)) 137 T ELT)) (-3742 (($ $ (-1 |#2| |#2|) (-687)) 62 T ELT) (($ $ (-1 |#2| |#2|)) 61 T ELT) (($ $) 52 (|has| |#2| (-187)) ELT) (($ $ (-687)) 50 (|has| |#2| (-187)) ELT) (($ $ (-1079)) 60 (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) 58 (|has| |#2| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) 57 (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 56 (|has| |#2| (-804 (-1079))) ELT)) (-3313 ((|#2| $) 86 T ELT)) (-3316 (($ (-578 |#2|)) 89 T ELT)) (-3105 (((-83) $) 127 T ELT)) (-3315 ((|#3| $) 88 T ELT)) (-3312 ((|#2| $) 83 (|has| |#2| (-6 (-3981 #2#))) ELT)) (-1933 (((-687) (-1 (-83) |#2|) $) 115 (|has| $ (-6 -3979)) ELT) (((-687) |#2| $) 112 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 123 T ELT)) (-3094 ((|#4| $ (-478)) 141 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 (-478))) 104 (|has| |#2| (-943 (-343 (-478)))) ELT) (($ |#2|) 99 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) 117 (|has| $ (-6 -3979)) ELT)) (-3103 (((-83) $) 129 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-1 |#2| |#2|) (-687)) 64 T ELT) (($ $ (-1 |#2| |#2|)) 63 T ELT) (($ $) 51 (|has| |#2| (-187)) ELT) (($ $ (-687)) 49 (|has| |#2| (-187)) ELT) (($ $ (-1079)) 59 (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) 55 (|has| |#2| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) 54 (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 53 (|has| |#2| (-804 (-1079))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ |#2|) 144 (|has| |#2| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 80 (|has| |#2| (-308)) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#2|) 150 T ELT) (($ |#2| $) 149 T ELT) ((|#4| $ |#4|) 85 T ELT) ((|#3| |#3| $) 84 T ELT)) (-3941 (((-687) $) 120 (|has| $ (-6 -3979)) ELT))) +(((-1026 |#1| |#2| |#3| |#4|) (-111) (-687) (-954) (-193 |t#1| |t#2|) (-193 |t#1| |t#2|)) (T -1026)) +((-3317 (*1 *1 *2) (-12 (-4 *2 (-954)) (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)))) (-3316 (*1 *1 *2) (-12 (-5 *2 (-578 *4)) (-4 *4 (-954)) (-4 *1 (-1026 *3 *4 *5 *6)) (-4 *5 (-193 *3 *4)) (-4 *6 (-193 *3 *4)))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *2 *5)) (-4 *4 (-954)) (-4 *5 (-193 *3 *4)) (-4 *2 (-193 *3 *4)))) (-3314 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) (-4 *2 (-954)))) (-3313 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) (-4 *2 (-954)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1026 *3 *4 *5 *2)) (-4 *4 (-954)) (-4 *5 (-193 *3 *4)) (-4 *2 (-193 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *2 *5)) (-4 *4 (-954)) (-4 *2 (-193 *3 *4)) (-4 *5 (-193 *3 *4)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) (|has| *2 (-6 (-3981 #1="*"))) (-4 *2 (-954)))) (-3311 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) (|has| *2 (-6 (-3981 #1#))) (-4 *2 (-954)))) (-3574 (*1 *1 *1) (|partial| -12 (-4 *1 (-1026 *2 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-193 *2 *3)) (-4 *5 (-193 *2 *3)) (-4 *3 (-308)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-1026 *3 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-193 *3 *4)) (-4 *6 (-193 *3 *4)) (-4 *4 (-308))))) +(-13 (-182 |t#2|) (-80 |t#2| |t#2|) (-958 |t#1| |t#1| |t#2| |t#3| |t#4|) (-348 |t#2|) (-322 |t#2|) (-10 -8 (IF (|has| |t#2| (-144)) (-6 (-649 |t#2|)) |%noBranch|) (-15 -3317 ($ |t#2|)) (-15 -3316 ($ (-578 |t#2|))) (-15 -3315 (|t#3| $)) (-15 -3314 (|t#2| $)) (-15 -3313 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3981 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3312 (|t#2| $)) (-15 -3311 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-308)) (PROGN (-15 -3574 ((-3 $ "failed") $)) (-15 ** ($ $ (-478)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-3981 #1="*"))) ((-72) . T) ((-80 |#2| |#2|) . T) ((-102) . T) ((-550 (-343 (-478))) |has| |#2| (-943 (-343 (-478)))) ((-550 (-478)) . T) ((-550 |#2|) . T) ((-547 (-765)) . T) ((-184 $) OR (|has| |#2| (-187)) (|has| |#2| (-188))) ((-182 |#2|) . T) ((-188) |has| |#2| (-188)) ((-187) OR (|has| |#2| (-187)) (|has| |#2| (-188))) ((-222 |#2|) . T) ((-256 |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ((-322 |#2|) . T) ((-348 |#2|) . T) ((-422 |#2|) . T) ((-447 |#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ((-583 (-478)) . T) ((-583 |#2|) . T) ((-583 $) . T) ((-585 (-478)) |has| |#2| (-575 (-478))) ((-585 |#2|) . T) ((-585 $) . T) ((-577 |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-6 (-3981 #1#)))) ((-575 (-478)) |has| |#2| (-575 (-478))) ((-575 |#2|) . T) ((-649 |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-6 (-3981 #1#)))) ((-658) . T) ((-799 $ (-1079)) OR (|has| |#2| (-804 (-1079))) (|has| |#2| (-802 (-1079)))) ((-802 (-1079)) |has| |#2| (-802 (-1079))) ((-804 (-1079)) OR (|has| |#2| (-804 (-1079))) (|has| |#2| (-802 (-1079)))) ((-958 |#1| |#1| |#2| |#3| |#4|) . T) ((-943 (-343 (-478))) |has| |#2| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#2| (-943 (-478))) ((-943 |#2|) . T) ((-956 |#2|) . T) ((-961 |#2|) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-3320 ((|#4| |#4|) 81 T ELT)) (-3318 ((|#4| |#4|) 76 T ELT)) (-3322 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1998 (-578 |#3|))) |#4| |#3|) 91 T ELT)) (-3321 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3319 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) +(((-1027 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3318 (|#4| |#4|)) (-15 -3319 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3320 (|#4| |#4|)) (-15 -3321 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3322 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1998 (-578 |#3|))) |#4| |#3|))) (-254) (-317 |#1|) (-317 |#1|) (-622 |#1| |#2| |#3|)) (T -1027)) +((-3322 (*1 *2 *3 *4) (-12 (-4 *5 (-254)) (-4 *6 (-317 *5)) (-4 *4 (-317 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1998 (-578 *4)))) (-5 *1 (-1027 *5 *6 *4 *3)) (-4 *3 (-622 *5 *6 *4)))) (-3321 (*1 *2 *3) (-12 (-4 *4 (-254)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1027 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) (-3320 (*1 *2 *2) (-12 (-4 *3 (-254)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-1027 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) (-3319 (*1 *2 *3) (-12 (-4 *4 (-254)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1027 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) (-3318 (*1 *2 *2) (-12 (-4 *3 (-254)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-1027 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 18 T ELT)) (-3065 (((-578 |#2|) $) 174 T ELT)) (-3067 (((-1074 $) $ |#2|) 60 T ELT) (((-1074 |#1|) $) 49 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 116 (|has| |#1| (-489)) ELT)) (-2049 (($ $) 118 (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) 120 (|has| |#1| (-489)) ELT)) (-2803 (((-687) $) NIL T ELT) (((-687) $ (-578 |#2|)) 214 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3759 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-385)) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3139 ((|#1| $) 165 T ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) ((|#2| $) NIL T ELT)) (-3740 (($ $ $ |#2|) NIL (|has| |#1| (-144)) ELT)) (-3943 (($ $) 218 T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) 90 T ELT)) (-3487 (($ $) NIL (|has| |#1| (-385)) ELT) (($ $ |#2|) NIL (|has| |#1| (-385)) ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-814)) ELT)) (-1611 (($ $ |#1| (-463 |#2|) $) NIL T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| |#1| (-789 (-323))) (|has| |#2| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| |#1| (-789 (-478))) (|has| |#2| (-789 (-478)))) ELT)) (-2396 (((-83) $) 20 T ELT)) (-2404 (((-687) $) 30 T ELT)) (-3068 (($ (-1074 |#1|) |#2|) 54 T ELT) (($ (-1074 $) |#2|) 71 T ELT)) (-2805 (((-578 $) $) NIL T ELT)) (-3921 (((-83) $) 38 T ELT)) (-2877 (($ |#1| (-463 |#2|)) 78 T ELT) (($ $ |#2| (-687)) 58 T ELT) (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ |#2|) NIL T ELT)) (-2804 (((-463 |#2|) $) 205 T ELT) (((-687) $ |#2|) 206 T ELT) (((-578 (-687)) $ (-578 |#2|)) 207 T ELT)) (-1612 (($ (-1 (-463 |#2|) (-463 |#2|)) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3066 (((-3 |#2| #1#) $) 177 T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) NIL T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-2878 (($ $) 217 T ELT)) (-3157 ((|#1| $) 43 T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2807 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2806 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-2 (|:| |var| |#2|) (|:| -2387 (-687))) #1#) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1784 (((-83) $) 39 T ELT)) (-1783 ((|#1| $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 148 (|has| |#1| (-385)) ELT)) (-3127 (($ (-578 $)) 153 (|has| |#1| (-385)) ELT) (($ $ $) 138 (|has| |#1| (-385)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#1| (-814)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-814)) ELT)) (-3450 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-489)) ELT)) (-3752 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-578 |#2|) (-578 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-578 |#2|) (-578 $)) 194 T ELT)) (-3741 (($ $ |#2|) NIL (|has| |#1| (-144)) ELT)) (-3742 (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT) (($ $ |#2| (-687)) NIL T ELT) (($ $ (-578 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3932 (((-463 |#2|) $) 201 T ELT) (((-687) $ |#2|) 196 T ELT) (((-578 (-687)) $ (-578 |#2|)) 199 T ELT)) (-3956 (((-793 (-323)) $) NIL (-12 (|has| |#1| (-548 (-793 (-323)))) (|has| |#2| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| |#1| (-548 (-793 (-478)))) (|has| |#2| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| |#1| (-548 (-467))) (|has| |#2| (-548 (-467)))) ELT)) (-2801 ((|#1| $) 134 (|has| |#1| (-385)) ELT) (($ $ |#2|) 137 (|has| |#1| (-385)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3930 (((-765) $) 159 T ELT) (($ (-478)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-3801 (((-578 |#1|) $) 162 T ELT)) (-3661 ((|#1| $ (-463 |#2|)) 80 T ELT) (($ $ |#2| (-687)) NIL T ELT) (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3109 (((-687)) 87 T CONST)) (-1610 (($ $ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) 123 (|has| |#1| (-489)) ELT)) (-2644 (($) 12 T CONST)) (-2650 (($) 14 T CONST)) (-2653 (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT) (($ $ |#2| (-687)) NIL T ELT) (($ $ (-578 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3037 (((-83) $ $) 106 T ELT)) (-3933 (($ $ |#1|) 132 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3823 (($ $ $) 55 T ELT)) (** (($ $ (-823)) 110 T ELT) (($ $ (-687)) 109 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1028 |#1| |#2|) (-854 |#1| (-463 |#2|) |#2|) (-954) (-749)) (T -1028)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3065 (((-578 |#2|) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3476 (($ $) 152 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3623 (($ $) 128 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3021 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) 148 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3622 (($ $) 124 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3478 (($ $) 156 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3621 (($ $) 132 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3708 (($) NIL T CONST)) (-3943 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3798 (((-850 |#1|) $ (-687)) NIL T ELT) (((-850 |#1|) $ (-687) (-687)) NIL T ELT)) (-2876 (((-83) $) NIL T ELT)) (-3611 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3756 (((-687) $ |#2|) NIL T ELT) (((-687) $ |#2| (-687)) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2995 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ $ (-578 |#2|) (-578 (-463 |#2|))) NIL T ELT) (($ $ |#2| (-463 |#2|)) NIL T ELT) (($ |#1| (-463 |#2|)) NIL T ELT) (($ $ |#2| (-687)) 63 T ELT) (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3926 (($ $) 122 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3796 (($ $ |#2|) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3660 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3753 (($ $ (-687)) 16 T ELT)) (-3450 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-3927 (($ $) 120 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3752 (($ $ |#2| $) 106 T ELT) (($ $ (-578 |#2|) (-578 $)) 99 T ELT) (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT)) (-3742 (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT) (($ $ |#2| (-687)) NIL T ELT) (($ $ (-578 |#2|)) NIL T ELT) (($ $ |#2|) 109 T ELT)) (-3932 (((-463 |#2|) $) NIL T ELT)) (-3323 (((-1 (-1058 |#3|) |#3|) (-578 |#2|) (-578 (-1058 |#3|))) 87 T ELT)) (-3479 (($ $) 158 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3620 (($ $) 134 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 154 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3619 (($ $) 130 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3475 (($ $) 150 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3618 (($ $) 126 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) 18 T ELT)) (-3930 (((-765) $) 198 T ELT) (($ (-478)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-144)) ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3661 ((|#1| $ (-463 |#2|)) NIL T ELT) (($ $ |#2| (-687)) NIL T ELT) (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT) ((|#3| $ (-687)) 43 T ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-3482 (($ $) 164 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 140 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3480 (($ $) 160 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 136 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3484 (($ $) 168 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3472 (($ $) 144 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3485 (($ $) 170 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3473 (($ $) 146 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3483 (($ $) 166 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) 142 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3481 (($ $) 162 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3469 (($ $) 138 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2644 (($) 52 T CONST)) (-2650 (($) 62 T CONST)) (-2653 (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT) (($ $ |#2| (-687)) NIL T ELT) (($ $ (-578 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#1|) 200 (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 66 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 112 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-343 (-478))) 117 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) 115 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) +(((-1029 |#1| |#2| |#3|) (-13 (-672 |#1| |#2|) (-10 -8 (-15 -3661 (|#3| $ (-687))) (-15 -3930 ($ |#2|)) (-15 -3930 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3323 ((-1 (-1058 |#3|) |#3|) (-578 |#2|) (-578 (-1058 |#3|)))) (IF (|has| |#1| (-38 (-343 (-478)))) (PROGN (-15 -3796 ($ $ |#2| |#1|)) (-15 -3660 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-954) (-749) (-854 |#1| (-463 |#2|) |#2|)) (T -1029)) +((-3661 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *2 (-854 *4 (-463 *5) *5)) (-5 *1 (-1029 *4 *5 *2)) (-4 *4 (-954)) (-4 *5 (-749)))) (-3930 (*1 *1 *2) (-12 (-4 *3 (-954)) (-4 *2 (-749)) (-5 *1 (-1029 *3 *2 *4)) (-4 *4 (-854 *3 (-463 *2) *2)))) (-3930 (*1 *1 *2) (-12 (-4 *3 (-954)) (-4 *4 (-749)) (-5 *1 (-1029 *3 *4 *2)) (-4 *2 (-854 *3 (-463 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-954)) (-4 *4 (-749)) (-5 *1 (-1029 *3 *4 *2)) (-4 *2 (-854 *3 (-463 *4) *4)))) (-3323 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-1058 *7))) (-4 *6 (-749)) (-4 *7 (-854 *5 (-463 *6) *6)) (-4 *5 (-954)) (-5 *2 (-1 (-1058 *7) *7)) (-5 *1 (-1029 *5 *6 *7)))) (-3796 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-4 *2 (-749)) (-5 *1 (-1029 *3 *2 *4)) (-4 *4 (-854 *3 (-463 *2) *2)))) (-3660 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1029 *4 *3 *5))) (-4 *4 (-38 (-343 (-478)))) (-4 *4 (-954)) (-4 *3 (-749)) (-5 *1 (-1029 *4 *3 *5)) (-4 *5 (-854 *4 (-463 *3) *3))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3665 (((-578 (-2 (|:| -3845 $) (|:| -1689 (-578 |#4|)))) (-578 |#4|)) 90 T ELT)) (-3666 (((-578 $) (-578 |#4|)) 91 T ELT) (((-578 $) (-578 |#4|) (-83)) 118 T ELT)) (-3065 (((-578 |#3|) $) 37 T ELT)) (-2892 (((-83) $) 30 T ELT)) (-2883 (((-83) $) 21 (|has| |#1| (-489)) ELT)) (-3677 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3672 ((|#4| |#4| $) 97 T ELT)) (-3759 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 $))) |#4| $) 133 T ELT)) (-2893 (((-2 (|:| |under| $) (|:| -3113 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3694 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3979)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3708 (($) 46 T CONST)) (-2888 (((-83) $) 26 (|has| |#1| (-489)) ELT)) (-2890 (((-83) $ $) 28 (|has| |#1| (-489)) ELT)) (-2889 (((-83) $ $) 27 (|has| |#1| (-489)) ELT)) (-2891 (((-83) $) 29 (|has| |#1| (-489)) ELT)) (-3673 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2884 (((-578 |#4|) (-578 |#4|) $) 22 (|has| |#1| (-489)) ELT)) (-2885 (((-578 |#4|) (-578 |#4|) $) 23 (|has| |#1| (-489)) ELT)) (-3140 (((-3 $ "failed") (-578 |#4|)) 40 T ELT)) (-3139 (($ (-578 |#4|)) 39 T ELT)) (-3783 (((-3 $ #1#) $) 87 T ELT)) (-3669 ((|#4| |#4| $) 94 T ELT)) (-1340 (($ $) 69 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3390 (($ |#4| $) 68 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3979)) ELT)) (-2886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-489)) ELT)) (-3678 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3667 ((|#4| |#4| $) 92 T ELT)) (-3826 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3979)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3979)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3680 (((-2 (|:| -3845 (-578 |#4|)) (|:| -1689 (-578 |#4|))) $) 110 T ELT)) (-3180 (((-83) |#4| $) 143 T ELT)) (-3178 (((-83) |#4| $) 140 T ELT)) (-3181 (((-83) |#4| $) 144 T ELT) (((-83) $) 141 T ELT)) (-2873 (((-578 |#4|) $) 53 (|has| $ (-6 -3979)) ELT)) (-3679 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3163 ((|#3| $) 38 T ELT)) (-2592 (((-578 |#4|) $) 54 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2898 (((-578 |#3|) $) 36 T ELT)) (-2897 (((-83) |#3| $) 35 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3174 (((-3 |#4| (-578 $)) |#4| |#4| $) 135 T ELT)) (-3173 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 $))) |#4| |#4| $) 134 T ELT)) (-3782 (((-3 |#4| #1#) $) 88 T ELT)) (-3175 (((-578 $) |#4| $) 136 T ELT)) (-3177 (((-3 (-83) (-578 $)) |#4| $) 139 T ELT)) (-3176 (((-578 (-2 (|:| |val| (-83)) (|:| -1587 $))) |#4| $) 138 T ELT) (((-83) |#4| $) 137 T ELT)) (-3221 (((-578 $) |#4| $) 132 T ELT) (((-578 $) (-578 |#4|) $) 131 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 130 T ELT) (((-578 $) |#4| (-578 $)) 129 T ELT)) (-3424 (($ |#4| $) 124 T ELT) (($ (-578 |#4|) $) 123 T ELT)) (-3681 (((-578 |#4|) $) 112 T ELT)) (-3675 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3670 ((|#4| |#4| $) 95 T ELT)) (-3683 (((-83) $ $) 115 T ELT)) (-2887 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-489)) ELT)) (-3676 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3671 ((|#4| |#4| $) 96 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3785 (((-3 |#4| #1#) $) 89 T ELT)) (-1341 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3663 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3753 (($ $ |#4|) 82 T ELT) (((-578 $) |#4| $) 122 T ELT) (((-578 $) |#4| (-578 $)) 121 T ELT) (((-578 $) (-578 |#4|) $) 120 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 119 T ELT)) (-1934 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 |#4|) (-578 |#4|)) 60 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-245 |#4|)) 58 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-578 (-245 |#4|))) 57 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT)) (-1210 (((-83) $ $) 42 T ELT)) (-3387 (((-83) $) 45 T ELT)) (-3549 (($) 44 T ELT)) (-3932 (((-687) $) 111 T ELT)) (-1933 (((-687) |#4| $) 55 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT) (((-687) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) 43 T ELT)) (-3956 (((-467) $) 70 (|has| |#4| (-548 (-467))) ELT)) (-3514 (($ (-578 |#4|)) 61 T ELT)) (-2894 (($ $ |#3|) 32 T ELT)) (-2896 (($ $ |#3|) 34 T ELT)) (-3668 (($ $) 93 T ELT)) (-2895 (($ $ |#3|) 33 T ELT)) (-3930 (((-765) $) 13 T ELT) (((-578 |#4|) $) 41 T ELT)) (-3662 (((-687) $) 81 (|has| |#3| (-313)) ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3682 (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3674 (((-83) $ (-1 (-83) |#4| (-578 |#4|))) 103 T ELT)) (-3172 (((-578 $) |#4| $) 128 T ELT) (((-578 $) |#4| (-578 $)) 127 T ELT) (((-578 $) (-578 |#4|) $) 126 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 125 T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3979)) ELT)) (-3664 (((-578 |#3|) $) 86 T ELT)) (-3179 (((-83) |#4| $) 142 T ELT)) (-3917 (((-83) |#3| $) 85 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3941 (((-687) $) 47 (|has| $ (-6 -3979)) ELT))) +(((-1030 |#1| |#2| |#3| |#4|) (-111) (-385) (-710) (-749) (-969 |t#1| |t#2| |t#3|)) (T -1030)) +NIL +(-13 (-1012 |t#1| |t#2| |t#3| |t#4|) (-700 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-547 (-578 |#4|)) . T) ((-547 (-765)) . T) ((-122 |#4|) . T) ((-548 (-467)) |has| |#4| (-548 (-467))) ((-256 |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ((-422 |#4|) . T) ((-447 |#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ((-700 |#1| |#2| |#3| |#4|) . T) ((-882 |#1| |#2| |#3| |#4|) . T) ((-975 |#1| |#2| |#3| |#4|) . T) ((-1005) . T) ((-1012 |#1| |#2| |#3| |#4|) . T) ((-1113 |#1| |#2| |#3| |#4|) . T) ((-1118) . T)) +((-3557 (((-578 |#2|) |#1|) 15 T ELT)) (-3329 (((-578 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-578 |#2|) |#1|) 61 T ELT)) (-3327 (((-578 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-578 |#2|) |#1|) 59 T ELT)) (-3324 ((|#2| |#1|) 54 T ELT)) (-3325 (((-2 (|:| |solns| (-578 |#2|)) (|:| |maps| (-578 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3326 (((-578 |#2|) |#2| |#2|) 42 T ELT) (((-578 |#2|) |#1|) 58 T ELT)) (-3328 (((-578 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-578 |#2|) |#1|) 60 T ELT)) (-3333 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3331 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3330 ((|#2| |#2| |#2|) 50 T ELT)) (-3332 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) +(((-1031 |#1| |#2|) (-10 -7 (-15 -3557 ((-578 |#2|) |#1|)) (-15 -3324 (|#2| |#1|)) (-15 -3325 ((-2 (|:| |solns| (-578 |#2|)) (|:| |maps| (-578 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3326 ((-578 |#2|) |#1|)) (-15 -3327 ((-578 |#2|) |#1|)) (-15 -3328 ((-578 |#2|) |#1|)) (-15 -3329 ((-578 |#2|) |#1|)) (-15 -3326 ((-578 |#2|) |#2| |#2|)) (-15 -3327 ((-578 |#2|) |#2| |#2| |#2|)) (-15 -3328 ((-578 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3329 ((-578 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3330 (|#2| |#2| |#2|)) (-15 -3331 (|#2| |#2| |#2| |#2|)) (-15 -3332 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3333 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1144 |#2|) (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (T -1031)) +((-3333 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *1 (-1031 *3 *2)) (-4 *3 (-1144 *2)))) (-3332 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *1 (-1031 *3 *2)) (-4 *3 (-1144 *2)))) (-3331 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *1 (-1031 *3 *2)) (-4 *3 (-1144 *2)))) (-3330 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *1 (-1031 *3 *2)) (-4 *3 (-1144 *2)))) (-3329 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-578 *3)) (-5 *1 (-1031 *4 *3)) (-4 *4 (-1144 *3)))) (-3328 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-578 *3)) (-5 *1 (-1031 *4 *3)) (-4 *4 (-1144 *3)))) (-3327 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-578 *3)) (-5 *1 (-1031 *4 *3)) (-4 *4 (-1144 *3)))) (-3326 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-578 *3)) (-5 *1 (-1031 *4 *3)) (-4 *4 (-1144 *3)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-578 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1144 *4)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-578 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1144 *4)))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-578 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1144 *4)))) (-3326 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-578 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1144 *4)))) (-3325 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-2 (|:| |solns| (-578 *5)) (|:| |maps| (-578 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1031 *3 *5)) (-4 *3 (-1144 *5)))) (-3324 (*1 *2 *3) (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *1 (-1031 *3 *2)) (-4 *3 (-1144 *2)))) (-3557 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-578 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1144 *4))))) +((-3334 (((-578 (-578 (-245 (-261 |#1|)))) (-578 (-245 (-343 (-850 |#1|))))) 118 T ELT) (((-578 (-578 (-245 (-261 |#1|)))) (-578 (-245 (-343 (-850 |#1|)))) (-578 (-1079))) 117 T ELT) (((-578 (-578 (-245 (-261 |#1|)))) (-578 (-343 (-850 |#1|)))) 115 T ELT) (((-578 (-578 (-245 (-261 |#1|)))) (-578 (-343 (-850 |#1|))) (-578 (-1079))) 113 T ELT) (((-578 (-245 (-261 |#1|))) (-245 (-343 (-850 |#1|)))) 97 T ELT) (((-578 (-245 (-261 |#1|))) (-245 (-343 (-850 |#1|))) (-1079)) 98 T ELT) (((-578 (-245 (-261 |#1|))) (-343 (-850 |#1|))) 92 T ELT) (((-578 (-245 (-261 |#1|))) (-343 (-850 |#1|)) (-1079)) 82 T ELT)) (-3335 (((-578 (-578 (-261 |#1|))) (-578 (-343 (-850 |#1|))) (-578 (-1079))) 111 T ELT) (((-578 (-261 |#1|)) (-343 (-850 |#1|)) (-1079)) 54 T ELT)) (-3336 (((-1069 (-578 (-261 |#1|)) (-578 (-245 (-261 |#1|)))) (-343 (-850 |#1|)) (-1079)) 122 T ELT) (((-1069 (-578 (-261 |#1|)) (-578 (-245 (-261 |#1|)))) (-245 (-343 (-850 |#1|))) (-1079)) 121 T ELT))) +(((-1032 |#1|) (-10 -7 (-15 -3334 ((-578 (-245 (-261 |#1|))) (-343 (-850 |#1|)) (-1079))) (-15 -3334 ((-578 (-245 (-261 |#1|))) (-343 (-850 |#1|)))) (-15 -3334 ((-578 (-245 (-261 |#1|))) (-245 (-343 (-850 |#1|))) (-1079))) (-15 -3334 ((-578 (-245 (-261 |#1|))) (-245 (-343 (-850 |#1|))))) (-15 -3334 ((-578 (-578 (-245 (-261 |#1|)))) (-578 (-343 (-850 |#1|))) (-578 (-1079)))) (-15 -3334 ((-578 (-578 (-245 (-261 |#1|)))) (-578 (-343 (-850 |#1|))))) (-15 -3334 ((-578 (-578 (-245 (-261 |#1|)))) (-578 (-245 (-343 (-850 |#1|)))) (-578 (-1079)))) (-15 -3334 ((-578 (-578 (-245 (-261 |#1|)))) (-578 (-245 (-343 (-850 |#1|)))))) (-15 -3335 ((-578 (-261 |#1|)) (-343 (-850 |#1|)) (-1079))) (-15 -3335 ((-578 (-578 (-261 |#1|))) (-578 (-343 (-850 |#1|))) (-578 (-1079)))) (-15 -3336 ((-1069 (-578 (-261 |#1|)) (-578 (-245 (-261 |#1|)))) (-245 (-343 (-850 |#1|))) (-1079))) (-15 -3336 ((-1069 (-578 (-261 |#1|)) (-578 (-245 (-261 |#1|)))) (-343 (-850 |#1|)) (-1079)))) (-13 (-254) (-118))) (T -1032)) +((-3336 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-1069 (-578 (-261 *5)) (-578 (-245 (-261 *5))))) (-5 *1 (-1032 *5)))) (-3336 (*1 *2 *3 *4) (-12 (-5 *3 (-245 (-343 (-850 *5)))) (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-1069 (-578 (-261 *5)) (-578 (-245 (-261 *5))))) (-5 *1 (-1032 *5)))) (-3335 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-343 (-850 *5)))) (-5 *4 (-578 (-1079))) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-578 (-261 *5)))) (-5 *1 (-1032 *5)))) (-3335 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-261 *5))) (-5 *1 (-1032 *5)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-578 (-245 (-343 (-850 *4))))) (-4 *4 (-13 (-254) (-118))) (-5 *2 (-578 (-578 (-245 (-261 *4))))) (-5 *1 (-1032 *4)))) (-3334 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-245 (-343 (-850 *5))))) (-5 *4 (-578 (-1079))) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-578 (-245 (-261 *5))))) (-5 *1 (-1032 *5)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-578 (-343 (-850 *4)))) (-4 *4 (-13 (-254) (-118))) (-5 *2 (-578 (-578 (-245 (-261 *4))))) (-5 *1 (-1032 *4)))) (-3334 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-343 (-850 *5)))) (-5 *4 (-578 (-1079))) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-578 (-245 (-261 *5))))) (-5 *1 (-1032 *5)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-245 (-343 (-850 *4)))) (-4 *4 (-13 (-254) (-118))) (-5 *2 (-578 (-245 (-261 *4)))) (-5 *1 (-1032 *4)))) (-3334 (*1 *2 *3 *4) (-12 (-5 *3 (-245 (-343 (-850 *5)))) (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-245 (-261 *5)))) (-5 *1 (-1032 *5)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-13 (-254) (-118))) (-5 *2 (-578 (-245 (-261 *4)))) (-5 *1 (-1032 *4)))) (-3334 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-245 (-261 *5)))) (-5 *1 (-1032 *5))))) +((-3338 (((-343 (-1074 (-261 |#1|))) (-1168 (-261 |#1|)) (-343 (-1074 (-261 |#1|))) (-478)) 36 T ELT)) (-3337 (((-343 (-1074 (-261 |#1|))) (-343 (-1074 (-261 |#1|))) (-343 (-1074 (-261 |#1|))) (-343 (-1074 (-261 |#1|)))) 48 T ELT))) +(((-1033 |#1|) (-10 -7 (-15 -3337 ((-343 (-1074 (-261 |#1|))) (-343 (-1074 (-261 |#1|))) (-343 (-1074 (-261 |#1|))) (-343 (-1074 (-261 |#1|))))) (-15 -3338 ((-343 (-1074 (-261 |#1|))) (-1168 (-261 |#1|)) (-343 (-1074 (-261 |#1|))) (-478)))) (-489)) (T -1033)) +((-3338 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-343 (-1074 (-261 *5)))) (-5 *3 (-1168 (-261 *5))) (-5 *4 (-478)) (-4 *5 (-489)) (-5 *1 (-1033 *5)))) (-3337 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-343 (-1074 (-261 *3)))) (-4 *3 (-489)) (-5 *1 (-1033 *3))))) +((-3557 (((-578 (-578 (-245 (-261 |#1|)))) (-578 (-245 (-261 |#1|))) (-578 (-1079))) 244 T ELT) (((-578 (-245 (-261 |#1|))) (-261 |#1|) (-1079)) 23 T ELT) (((-578 (-245 (-261 |#1|))) (-245 (-261 |#1|)) (-1079)) 29 T ELT) (((-578 (-245 (-261 |#1|))) (-245 (-261 |#1|))) 28 T ELT) (((-578 (-245 (-261 |#1|))) (-261 |#1|)) 24 T ELT))) +(((-1034 |#1|) (-10 -7 (-15 -3557 ((-578 (-245 (-261 |#1|))) (-261 |#1|))) (-15 -3557 ((-578 (-245 (-261 |#1|))) (-245 (-261 |#1|)))) (-15 -3557 ((-578 (-245 (-261 |#1|))) (-245 (-261 |#1|)) (-1079))) (-15 -3557 ((-578 (-245 (-261 |#1|))) (-261 |#1|) (-1079))) (-15 -3557 ((-578 (-578 (-245 (-261 |#1|)))) (-578 (-245 (-261 |#1|))) (-578 (-1079))))) (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (T -1034)) +((-3557 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1079))) (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-578 (-578 (-245 (-261 *5))))) (-5 *1 (-1034 *5)) (-5 *3 (-578 (-245 (-261 *5)))))) (-3557 (*1 *2 *3 *4) (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-578 (-245 (-261 *5)))) (-5 *1 (-1034 *5)) (-5 *3 (-261 *5)))) (-3557 (*1 *2 *3 *4) (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-578 (-245 (-261 *5)))) (-5 *1 (-1034 *5)) (-5 *3 (-245 (-261 *5))))) (-3557 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-578 (-245 (-261 *4)))) (-5 *1 (-1034 *4)) (-5 *3 (-245 (-261 *4))))) (-3557 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-578 (-245 (-261 *4)))) (-5 *1 (-1034 *4)) (-5 *3 (-261 *4))))) +((-3340 ((|#2| |#2|) 28 (|has| |#1| (-749)) ELT) ((|#2| |#2| (-1 (-83) |#1| |#1|)) 25 T ELT)) (-3339 ((|#2| |#2|) 27 (|has| |#1| (-749)) ELT) ((|#2| |#2| (-1 (-83) |#1| |#1|)) 22 T ELT))) +(((-1035 |#1| |#2|) (-10 -7 (-15 -3339 (|#2| |#2| (-1 (-83) |#1| |#1|))) (-15 -3340 (|#2| |#2| (-1 (-83) |#1| |#1|))) (IF (|has| |#1| (-749)) (PROGN (-15 -3339 (|#2| |#2|)) (-15 -3340 (|#2| |#2|))) |%noBranch|)) (-1118) (-13 (-533 (-478) |#1|) (-10 -7 (-6 -3979) (-6 -3980)))) (T -1035)) +((-3340 (*1 *2 *2) (-12 (-4 *3 (-749)) (-4 *3 (-1118)) (-5 *1 (-1035 *3 *2)) (-4 *2 (-13 (-533 (-478) *3) (-10 -7 (-6 -3979) (-6 -3980)))))) (-3339 (*1 *2 *2) (-12 (-4 *3 (-749)) (-4 *3 (-1118)) (-5 *1 (-1035 *3 *2)) (-4 *2 (-13 (-533 (-478) *3) (-10 -7 (-6 -3979) (-6 -3980)))))) (-3340 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-1035 *4 *2)) (-4 *2 (-13 (-533 (-478) *4) (-10 -7 (-6 -3979) (-6 -3980)))))) (-3339 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-1035 *4 *2)) (-4 *2 (-13 (-533 (-478) *4) (-10 -7 (-6 -3979) (-6 -3980))))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3872 (((-1068 3 |#1|) $) 141 T ELT)) (-3350 (((-83) $) 101 T ELT)) (-3351 (($ $ (-578 (-847 |#1|))) 44 T ELT) (($ $ (-578 (-578 |#1|))) 104 T ELT) (($ (-578 (-847 |#1|))) 103 T ELT) (((-578 (-847 |#1|)) $) 102 T ELT)) (-3356 (((-83) $) 72 T ELT)) (-3690 (($ $ (-847 |#1|)) 76 T ELT) (($ $ (-578 |#1|)) 81 T ELT) (($ $ (-687)) 83 T ELT) (($ (-847 |#1|)) 77 T ELT) (((-847 |#1|) $) 75 T ELT)) (-3342 (((-2 (|:| -3834 (-687)) (|:| |curves| (-687)) (|:| |polygons| (-687)) (|:| |constructs| (-687))) $) 139 T ELT)) (-3360 (((-687) $) 53 T ELT)) (-3361 (((-687) $) 52 T ELT)) (-3871 (($ $ (-687) (-847 |#1|)) 67 T ELT)) (-3348 (((-83) $) 111 T ELT)) (-3349 (($ $ (-578 (-578 (-847 |#1|))) (-578 (-143)) (-143)) 118 T ELT) (($ $ (-578 (-578 (-578 |#1|))) (-578 (-143)) (-143)) 120 T ELT) (($ $ (-578 (-578 (-847 |#1|))) (-83) (-83)) 115 T ELT) (($ $ (-578 (-578 (-578 |#1|))) (-83) (-83)) 127 T ELT) (($ (-578 (-578 (-847 |#1|)))) 116 T ELT) (($ (-578 (-578 (-847 |#1|))) (-83) (-83)) 117 T ELT) (((-578 (-578 (-847 |#1|))) $) 114 T ELT)) (-3502 (($ (-578 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3343 (((-578 (-143)) $) 133 T ELT)) (-3347 (((-578 (-847 |#1|)) $) 130 T ELT)) (-3344 (((-578 (-578 (-143))) $) 132 T ELT)) (-3345 (((-578 (-578 (-578 (-847 |#1|)))) $) NIL T ELT)) (-3346 (((-578 (-578 (-578 (-687)))) $) 131 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3357 (((-687) $ (-578 (-847 |#1|))) 65 T ELT)) (-3354 (((-83) $) 84 T ELT)) (-3355 (($ $ (-578 (-847 |#1|))) 86 T ELT) (($ $ (-578 (-578 |#1|))) 92 T ELT) (($ (-578 (-847 |#1|))) 87 T ELT) (((-578 (-847 |#1|)) $) 85 T ELT)) (-3362 (($) 48 T ELT) (($ (-1068 3 |#1|)) 49 T ELT)) (-3384 (($ $) 63 T ELT)) (-3358 (((-578 $) $) 62 T ELT)) (-3738 (($ (-578 $)) 59 T ELT)) (-3359 (((-578 $) $) 61 T ELT)) (-3930 (((-765) $) 146 T ELT)) (-3352 (((-83) $) 94 T ELT)) (-3353 (($ $ (-578 (-847 |#1|))) 96 T ELT) (($ $ (-578 (-578 |#1|))) 99 T ELT) (($ (-578 (-847 |#1|))) 97 T ELT) (((-578 (-847 |#1|)) $) 95 T ELT)) (-3341 (($ $) 140 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-1036 |#1|) (-1037 |#1|) (-954)) (T -1036)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3872 (((-1068 3 |#1|) $) 17 T ELT)) (-3350 (((-83) $) 33 T ELT)) (-3351 (($ $ (-578 (-847 |#1|))) 37 T ELT) (($ $ (-578 (-578 |#1|))) 36 T ELT) (($ (-578 (-847 |#1|))) 35 T ELT) (((-578 (-847 |#1|)) $) 34 T ELT)) (-3356 (((-83) $) 48 T ELT)) (-3690 (($ $ (-847 |#1|)) 53 T ELT) (($ $ (-578 |#1|)) 52 T ELT) (($ $ (-687)) 51 T ELT) (($ (-847 |#1|)) 50 T ELT) (((-847 |#1|) $) 49 T ELT)) (-3342 (((-2 (|:| -3834 (-687)) (|:| |curves| (-687)) (|:| |polygons| (-687)) (|:| |constructs| (-687))) $) 19 T ELT)) (-3360 (((-687) $) 62 T ELT)) (-3361 (((-687) $) 63 T ELT)) (-3871 (($ $ (-687) (-847 |#1|)) 54 T ELT)) (-3348 (((-83) $) 25 T ELT)) (-3349 (($ $ (-578 (-578 (-847 |#1|))) (-578 (-143)) (-143)) 32 T ELT) (($ $ (-578 (-578 (-578 |#1|))) (-578 (-143)) (-143)) 31 T ELT) (($ $ (-578 (-578 (-847 |#1|))) (-83) (-83)) 30 T ELT) (($ $ (-578 (-578 (-578 |#1|))) (-83) (-83)) 29 T ELT) (($ (-578 (-578 (-847 |#1|)))) 28 T ELT) (($ (-578 (-578 (-847 |#1|))) (-83) (-83)) 27 T ELT) (((-578 (-578 (-847 |#1|))) $) 26 T ELT)) (-3502 (($ (-578 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3343 (((-578 (-143)) $) 20 T ELT)) (-3347 (((-578 (-847 |#1|)) $) 24 T ELT)) (-3344 (((-578 (-578 (-143))) $) 21 T ELT)) (-3345 (((-578 (-578 (-578 (-847 |#1|)))) $) 22 T ELT)) (-3346 (((-578 (-578 (-578 (-687)))) $) 23 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3357 (((-687) $ (-578 (-847 |#1|))) 55 T ELT)) (-3354 (((-83) $) 43 T ELT)) (-3355 (($ $ (-578 (-847 |#1|))) 47 T ELT) (($ $ (-578 (-578 |#1|))) 46 T ELT) (($ (-578 (-847 |#1|))) 45 T ELT) (((-578 (-847 |#1|)) $) 44 T ELT)) (-3362 (($) 65 T ELT) (($ (-1068 3 |#1|)) 64 T ELT)) (-3384 (($ $) 56 T ELT)) (-3358 (((-578 $) $) 57 T ELT)) (-3738 (($ (-578 $)) 59 T ELT)) (-3359 (((-578 $) $) 58 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-3352 (((-83) $) 38 T ELT)) (-3353 (($ $ (-578 (-847 |#1|))) 42 T ELT) (($ $ (-578 (-578 |#1|))) 41 T ELT) (($ (-578 (-847 |#1|))) 40 T ELT) (((-578 (-847 |#1|)) $) 39 T ELT)) (-3341 (($ $) 18 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(((-1037 |#1|) (-111) (-954)) (T -1037)) +((-3930 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-765)))) (-3362 (*1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-954)))) (-3362 (*1 *1 *2) (-12 (-5 *2 (-1068 3 *3)) (-4 *3 (-954)) (-4 *1 (-1037 *3)))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) (-3502 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-954)))) (-3738 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) (-3359 (*1 *2 *1) (-12 (-4 *3 (-954)) (-5 *2 (-578 *1)) (-4 *1 (-1037 *3)))) (-3358 (*1 *2 *1) (-12 (-4 *3 (-954)) (-5 *2 (-578 *1)) (-4 *1 (-1037 *3)))) (-3384 (*1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-954)))) (-3357 (*1 *2 *1 *3) (-12 (-5 *3 (-578 (-847 *4))) (-4 *1 (-1037 *4)) (-4 *4 (-954)) (-5 *2 (-687)))) (-3871 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-687)) (-5 *3 (-847 *4)) (-4 *1 (-1037 *4)) (-4 *4 (-954)))) (-3690 (*1 *1 *1 *2) (-12 (-5 *2 (-847 *3)) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) (-3690 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) (-3690 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) (-3690 (*1 *1 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-954)) (-4 *1 (-1037 *3)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-847 *3)))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-83)))) (-3355 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-847 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) (-3355 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) (-3355 (*1 *1 *2) (-12 (-5 *2 (-578 (-847 *3))) (-4 *3 (-954)) (-4 *1 (-1037 *3)))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-847 *3))))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-83)))) (-3353 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-847 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) (-3353 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) (-3353 (*1 *1 *2) (-12 (-5 *2 (-578 (-847 *3))) (-4 *3 (-954)) (-4 *1 (-1037 *3)))) (-3353 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-847 *3))))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-83)))) (-3351 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-847 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) (-3351 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) (-3351 (*1 *1 *2) (-12 (-5 *2 (-578 (-847 *3))) (-4 *3 (-954)) (-4 *1 (-1037 *3)))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-847 *3))))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-83)))) (-3349 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-578 (-847 *5)))) (-5 *3 (-578 (-143))) (-5 *4 (-143)) (-4 *1 (-1037 *5)) (-4 *5 (-954)))) (-3349 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-578 (-578 *5)))) (-5 *3 (-578 (-143))) (-5 *4 (-143)) (-4 *1 (-1037 *5)) (-4 *5 (-954)))) (-3349 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-578 (-847 *4)))) (-5 *3 (-83)) (-4 *1 (-1037 *4)) (-4 *4 (-954)))) (-3349 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-578 (-578 *4)))) (-5 *3 (-83)) (-4 *1 (-1037 *4)) (-4 *4 (-954)))) (-3349 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-847 *3)))) (-4 *3 (-954)) (-4 *1 (-1037 *3)))) (-3349 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-578 (-847 *4)))) (-5 *3 (-83)) (-4 *4 (-954)) (-4 *1 (-1037 *4)))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-578 (-847 *3)))))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-83)))) (-3347 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-847 *3))))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-578 (-578 (-687))))))) (-3345 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-578 (-578 (-847 *3))))))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-578 (-143)))))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-143))))) (-3342 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -3834 (-687)) (|:| |curves| (-687)) (|:| |polygons| (-687)) (|:| |constructs| (-687)))))) (-3341 (*1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-954)))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-1068 3 *3))))) +(-13 (-1005) (-10 -8 (-15 -3362 ($)) (-15 -3362 ($ (-1068 3 |t#1|))) (-15 -3361 ((-687) $)) (-15 -3360 ((-687) $)) (-15 -3502 ($ (-578 $))) (-15 -3502 ($ $ $)) (-15 -3738 ($ (-578 $))) (-15 -3359 ((-578 $) $)) (-15 -3358 ((-578 $) $)) (-15 -3384 ($ $)) (-15 -3357 ((-687) $ (-578 (-847 |t#1|)))) (-15 -3871 ($ $ (-687) (-847 |t#1|))) (-15 -3690 ($ $ (-847 |t#1|))) (-15 -3690 ($ $ (-578 |t#1|))) (-15 -3690 ($ $ (-687))) (-15 -3690 ($ (-847 |t#1|))) (-15 -3690 ((-847 |t#1|) $)) (-15 -3356 ((-83) $)) (-15 -3355 ($ $ (-578 (-847 |t#1|)))) (-15 -3355 ($ $ (-578 (-578 |t#1|)))) (-15 -3355 ($ (-578 (-847 |t#1|)))) (-15 -3355 ((-578 (-847 |t#1|)) $)) (-15 -3354 ((-83) $)) (-15 -3353 ($ $ (-578 (-847 |t#1|)))) (-15 -3353 ($ $ (-578 (-578 |t#1|)))) (-15 -3353 ($ (-578 (-847 |t#1|)))) (-15 -3353 ((-578 (-847 |t#1|)) $)) (-15 -3352 ((-83) $)) (-15 -3351 ($ $ (-578 (-847 |t#1|)))) (-15 -3351 ($ $ (-578 (-578 |t#1|)))) (-15 -3351 ($ (-578 (-847 |t#1|)))) (-15 -3351 ((-578 (-847 |t#1|)) $)) (-15 -3350 ((-83) $)) (-15 -3349 ($ $ (-578 (-578 (-847 |t#1|))) (-578 (-143)) (-143))) (-15 -3349 ($ $ (-578 (-578 (-578 |t#1|))) (-578 (-143)) (-143))) (-15 -3349 ($ $ (-578 (-578 (-847 |t#1|))) (-83) (-83))) (-15 -3349 ($ $ (-578 (-578 (-578 |t#1|))) (-83) (-83))) (-15 -3349 ($ (-578 (-578 (-847 |t#1|))))) (-15 -3349 ($ (-578 (-578 (-847 |t#1|))) (-83) (-83))) (-15 -3349 ((-578 (-578 (-847 |t#1|))) $)) (-15 -3348 ((-83) $)) (-15 -3347 ((-578 (-847 |t#1|)) $)) (-15 -3346 ((-578 (-578 (-578 (-687)))) $)) (-15 -3345 ((-578 (-578 (-578 (-847 |t#1|)))) $)) (-15 -3344 ((-578 (-578 (-143))) $)) (-15 -3343 ((-578 (-143)) $)) (-15 -3342 ((-2 (|:| -3834 (-687)) (|:| |curves| (-687)) (|:| |polygons| (-687)) (|:| |constructs| (-687))) $)) (-15 -3341 ($ $)) (-15 -3872 ((-1068 3 |t#1|) $)) (-15 -3930 ((-765) $)))) +(((-72) . T) ((-547 (-765)) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 184 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) 7 T ELT)) (-3550 (((-83) $ (|[\|\|]| (-456))) 19 T ELT) (((-83) $ (|[\|\|]| (-170))) 23 T ELT) (((-83) $ (|[\|\|]| (-612))) 27 T ELT) (((-83) $ (|[\|\|]| (-1179))) 31 T ELT) (((-83) $ (|[\|\|]| (-109))) 35 T ELT) (((-83) $ (|[\|\|]| (-534))) 39 T ELT) (((-83) $ (|[\|\|]| (-104))) 43 T ELT) (((-83) $ (|[\|\|]| (-1019))) 47 T ELT) (((-83) $ (|[\|\|]| (-67))) 51 T ELT) (((-83) $ (|[\|\|]| (-617))) 55 T ELT) (((-83) $ (|[\|\|]| (-450))) 59 T ELT) (((-83) $ (|[\|\|]| (-970))) 63 T ELT) (((-83) $ (|[\|\|]| (-1180))) 67 T ELT) (((-83) $ (|[\|\|]| (-457))) 71 T ELT) (((-83) $ (|[\|\|]| (-1056))) 75 T ELT) (((-83) $ (|[\|\|]| (-125))) 79 T ELT) (((-83) $ (|[\|\|]| (-608))) 83 T ELT) (((-83) $ (|[\|\|]| (-259))) 87 T ELT) (((-83) $ (|[\|\|]| (-941))) 91 T ELT) (((-83) $ (|[\|\|]| (-152))) 95 T ELT) (((-83) $ (|[\|\|]| (-876))) 99 T ELT) (((-83) $ (|[\|\|]| (-977))) 103 T ELT) (((-83) $ (|[\|\|]| (-995))) 107 T ELT) (((-83) $ (|[\|\|]| (-1000))) 111 T ELT) (((-83) $ (|[\|\|]| (-560))) 115 T ELT) (((-83) $ (|[\|\|]| (-1070))) 119 T ELT) (((-83) $ (|[\|\|]| (-127))) 123 T ELT) (((-83) $ (|[\|\|]| (-108))) 127 T ELT) (((-83) $ (|[\|\|]| (-411))) 131 T ELT) (((-83) $ (|[\|\|]| (-522))) 135 T ELT) (((-83) $ (|[\|\|]| (-439))) 139 T ELT) (((-83) $ (|[\|\|]| (-1062))) 143 T ELT) (((-83) $ (|[\|\|]| (-478))) 147 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3556 (((-456) $) 20 T ELT) (((-170) $) 24 T ELT) (((-612) $) 28 T ELT) (((-1179) $) 32 T ELT) (((-109) $) 36 T ELT) (((-534) $) 40 T ELT) (((-104) $) 44 T ELT) (((-1019) $) 48 T ELT) (((-67) $) 52 T ELT) (((-617) $) 56 T ELT) (((-450) $) 60 T ELT) (((-970) $) 64 T ELT) (((-1180) $) 68 T ELT) (((-457) $) 72 T ELT) (((-1056) $) 76 T ELT) (((-125) $) 80 T ELT) (((-608) $) 84 T ELT) (((-259) $) 88 T ELT) (((-941) $) 92 T ELT) (((-152) $) 96 T ELT) (((-876) $) 100 T ELT) (((-977) $) 104 T ELT) (((-995) $) 108 T ELT) (((-1000) $) 112 T ELT) (((-560) $) 116 T ELT) (((-1070) $) 120 T ELT) (((-127) $) 124 T ELT) (((-108) $) 128 T ELT) (((-411) $) 132 T ELT) (((-522) $) 136 T ELT) (((-439) $) 140 T ELT) (((-1062) $) 144 T ELT) (((-478) $) 148 T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-1038) (-1040)) (T -1038)) +NIL +((-3363 (((-578 (-1084)) (-1062)) 9 T ELT))) +(((-1039) (-10 -7 (-15 -3363 ((-578 (-1084)) (-1062))))) (T -1039)) +((-3363 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-578 (-1084))) (-5 *1 (-1039))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-1084)) 20 T ELT) (((-1084) $) 19 T ELT)) (-3550 (((-83) $ (|[\|\|]| (-456))) 88 T ELT) (((-83) $ (|[\|\|]| (-170))) 86 T ELT) (((-83) $ (|[\|\|]| (-612))) 84 T ELT) (((-83) $ (|[\|\|]| (-1179))) 82 T ELT) (((-83) $ (|[\|\|]| (-109))) 80 T ELT) (((-83) $ (|[\|\|]| (-534))) 78 T ELT) (((-83) $ (|[\|\|]| (-104))) 76 T ELT) (((-83) $ (|[\|\|]| (-1019))) 74 T ELT) (((-83) $ (|[\|\|]| (-67))) 72 T ELT) (((-83) $ (|[\|\|]| (-617))) 70 T ELT) (((-83) $ (|[\|\|]| (-450))) 68 T ELT) (((-83) $ (|[\|\|]| (-970))) 66 T ELT) (((-83) $ (|[\|\|]| (-1180))) 64 T ELT) (((-83) $ (|[\|\|]| (-457))) 62 T ELT) (((-83) $ (|[\|\|]| (-1056))) 60 T ELT) (((-83) $ (|[\|\|]| (-125))) 58 T ELT) (((-83) $ (|[\|\|]| (-608))) 56 T ELT) (((-83) $ (|[\|\|]| (-259))) 54 T ELT) (((-83) $ (|[\|\|]| (-941))) 52 T ELT) (((-83) $ (|[\|\|]| (-152))) 50 T ELT) (((-83) $ (|[\|\|]| (-876))) 48 T ELT) (((-83) $ (|[\|\|]| (-977))) 46 T ELT) (((-83) $ (|[\|\|]| (-995))) 44 T ELT) (((-83) $ (|[\|\|]| (-1000))) 42 T ELT) (((-83) $ (|[\|\|]| (-560))) 40 T ELT) (((-83) $ (|[\|\|]| (-1070))) 38 T ELT) (((-83) $ (|[\|\|]| (-127))) 36 T ELT) (((-83) $ (|[\|\|]| (-108))) 34 T ELT) (((-83) $ (|[\|\|]| (-411))) 32 T ELT) (((-83) $ (|[\|\|]| (-522))) 30 T ELT) (((-83) $ (|[\|\|]| (-439))) 28 T ELT) (((-83) $ (|[\|\|]| (-1062))) 26 T ELT) (((-83) $ (|[\|\|]| (-478))) 24 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3556 (((-456) $) 87 T ELT) (((-170) $) 85 T ELT) (((-612) $) 83 T ELT) (((-1179) $) 81 T ELT) (((-109) $) 79 T ELT) (((-534) $) 77 T ELT) (((-104) $) 75 T ELT) (((-1019) $) 73 T ELT) (((-67) $) 71 T ELT) (((-617) $) 69 T ELT) (((-450) $) 67 T ELT) (((-970) $) 65 T ELT) (((-1180) $) 63 T ELT) (((-457) $) 61 T ELT) (((-1056) $) 59 T ELT) (((-125) $) 57 T ELT) (((-608) $) 55 T ELT) (((-259) $) 53 T ELT) (((-941) $) 51 T ELT) (((-152) $) 49 T ELT) (((-876) $) 47 T ELT) (((-977) $) 45 T ELT) (((-995) $) 43 T ELT) (((-1000) $) 41 T ELT) (((-560) $) 39 T ELT) (((-1070) $) 37 T ELT) (((-127) $) 35 T ELT) (((-108) $) 33 T ELT) (((-411) $) 31 T ELT) (((-522) $) 29 T ELT) (((-439) $) 27 T ELT) (((-1062) $) 25 T ELT) (((-478) $) 23 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(((-1040) (-111)) (T -1040)) +((-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-456))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-456)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-170))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-170)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-612))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-612)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-1179)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-109))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-109)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-534)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-104))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-104)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-1019))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-1019)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-67)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-617)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-450))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-450)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-970))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-970)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-1180)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-457))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-457)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-1056))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-1056)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-125))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-125)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-608))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-608)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-259))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-259)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-941))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-941)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-152)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-876))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-876)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-977))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-977)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-995))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-995)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-1000))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-1000)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-560))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-560)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-1070))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-1070)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-127)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-108))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-108)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-411))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-411)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-522)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-439))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-439)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-1062))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-1062)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-83)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-478))))) +(-13 (-987) (-1164) (-10 -8 (-15 -3550 ((-83) $ (|[\|\|]| (-456)))) (-15 -3556 ((-456) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-170)))) (-15 -3556 ((-170) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-612)))) (-15 -3556 ((-612) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-1179)))) (-15 -3556 ((-1179) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-109)))) (-15 -3556 ((-109) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-534)))) (-15 -3556 ((-534) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-104)))) (-15 -3556 ((-104) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-1019)))) (-15 -3556 ((-1019) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-67)))) (-15 -3556 ((-67) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-617)))) (-15 -3556 ((-617) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-450)))) (-15 -3556 ((-450) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-970)))) (-15 -3556 ((-970) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-1180)))) (-15 -3556 ((-1180) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-457)))) (-15 -3556 ((-457) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-1056)))) (-15 -3556 ((-1056) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-125)))) (-15 -3556 ((-125) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-608)))) (-15 -3556 ((-608) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-259)))) (-15 -3556 ((-259) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-941)))) (-15 -3556 ((-941) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-152)))) (-15 -3556 ((-152) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-876)))) (-15 -3556 ((-876) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-977)))) (-15 -3556 ((-977) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-995)))) (-15 -3556 ((-995) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-1000)))) (-15 -3556 ((-1000) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-560)))) (-15 -3556 ((-560) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-1070)))) (-15 -3556 ((-1070) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-127)))) (-15 -3556 ((-127) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-108)))) (-15 -3556 ((-108) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-411)))) (-15 -3556 ((-411) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-522)))) (-15 -3556 ((-522) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-439)))) (-15 -3556 ((-439) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-1062)))) (-15 -3556 ((-1062) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-478)))) (-15 -3556 ((-478) $)))) +(((-64) . T) ((-72) . T) ((-550 (-1084)) . T) ((-547 (-765)) . T) ((-547 (-1084)) . T) ((-423 (-1084)) . T) ((-1005) . T) ((-987) . T) ((-1118) . T) ((-1164) . T)) +((-3366 (((-1174) (-578 (-765))) 22 T ELT) (((-1174) (-765)) 21 T ELT)) (-3365 (((-1174) (-578 (-765))) 20 T ELT) (((-1174) (-765)) 19 T ELT)) (-3364 (((-1174) (-578 (-765))) 18 T ELT) (((-1174) (-765)) 10 T ELT) (((-1174) (-1062) (-765)) 16 T ELT))) +(((-1041) (-10 -7 (-15 -3364 ((-1174) (-1062) (-765))) (-15 -3364 ((-1174) (-765))) (-15 -3365 ((-1174) (-765))) (-15 -3366 ((-1174) (-765))) (-15 -3364 ((-1174) (-578 (-765)))) (-15 -3365 ((-1174) (-578 (-765)))) (-15 -3366 ((-1174) (-578 (-765)))))) (T -1041)) +((-3366 (*1 *2 *3) (-12 (-5 *3 (-578 (-765))) (-5 *2 (-1174)) (-5 *1 (-1041)))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-578 (-765))) (-5 *2 (-1174)) (-5 *1 (-1041)))) (-3364 (*1 *2 *3) (-12 (-5 *3 (-578 (-765))) (-5 *2 (-1174)) (-5 *1 (-1041)))) (-3366 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1174)) (-5 *1 (-1041)))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1174)) (-5 *1 (-1041)))) (-3364 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1174)) (-5 *1 (-1041)))) (-3364 (*1 *2 *3 *4) (-12 (-5 *3 (-1062)) (-5 *4 (-765)) (-5 *2 (-1174)) (-5 *1 (-1041))))) +((-3370 (($ $ $) 10 T ELT)) (-3369 (($ $) 9 T ELT)) (-3373 (($ $ $) 13 T ELT)) (-3375 (($ $ $) 15 T ELT)) (-3372 (($ $ $) 12 T ELT)) (-3374 (($ $ $) 14 T ELT)) (-3377 (($ $) 17 T ELT)) (-3376 (($ $) 16 T ELT)) (-3367 (($ $) 6 T ELT)) (-3371 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3368 (($ $ $) 8 T ELT))) +(((-1042) (-111)) (T -1042)) +((-3377 (*1 *1 *1) (-4 *1 (-1042))) (-3376 (*1 *1 *1) (-4 *1 (-1042))) (-3375 (*1 *1 *1 *1) (-4 *1 (-1042))) (-3374 (*1 *1 *1 *1) (-4 *1 (-1042))) (-3373 (*1 *1 *1 *1) (-4 *1 (-1042))) (-3372 (*1 *1 *1 *1) (-4 *1 (-1042))) (-3371 (*1 *1 *1 *1) (-4 *1 (-1042))) (-3370 (*1 *1 *1 *1) (-4 *1 (-1042))) (-3369 (*1 *1 *1) (-4 *1 (-1042))) (-3368 (*1 *1 *1 *1) (-4 *1 (-1042))) (-3371 (*1 *1 *1) (-4 *1 (-1042))) (-3367 (*1 *1 *1) (-4 *1 (-1042)))) +(-13 (-10 -8 (-15 -3367 ($ $)) (-15 -3371 ($ $)) (-15 -3368 ($ $ $)) (-15 -3369 ($ $)) (-15 -3370 ($ $ $)) (-15 -3371 ($ $ $)) (-15 -3372 ($ $ $)) (-15 -3373 ($ $ $)) (-15 -3374 ($ $ $)) (-15 -3375 ($ $ $)) (-15 -3376 ($ $)) (-15 -3377 ($ $)))) +((-2552 (((-83) $ $) 44 T ELT)) (-3386 ((|#1| $) 17 T ELT)) (-3378 (((-83) $ $ (-1 (-83) |#2| |#2|)) 39 T ELT)) (-3385 (((-83) $) 19 T ELT)) (-3383 (($ $ |#1|) 30 T ELT)) (-3381 (($ $ (-83)) 32 T ELT)) (-3380 (($ $) 33 T ELT)) (-3382 (($ $ |#2|) 31 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3379 (((-83) $ $ (-1 (-83) |#1| |#1|) (-1 (-83) |#2| |#2|)) 38 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3387 (((-83) $) 16 T ELT)) (-3549 (($) 13 T ELT)) (-3384 (($ $) 29 T ELT)) (-3514 (($ |#1| |#2| (-83)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1587 |#2|))) 23 T ELT) (((-578 $) (-578 (-2 (|:| |val| |#1|) (|:| -1587 |#2|)))) 26 T ELT) (((-578 $) |#1| (-578 |#2|)) 28 T ELT)) (-3906 ((|#2| $) 18 T ELT)) (-3930 (((-765) $) 53 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 42 T ELT))) +(((-1043 |#1| |#2|) (-13 (-1005) (-10 -8 (-15 -3549 ($)) (-15 -3387 ((-83) $)) (-15 -3386 (|#1| $)) (-15 -3906 (|#2| $)) (-15 -3385 ((-83) $)) (-15 -3514 ($ |#1| |#2| (-83))) (-15 -3514 ($ |#1| |#2|)) (-15 -3514 ($ (-2 (|:| |val| |#1|) (|:| -1587 |#2|)))) (-15 -3514 ((-578 $) (-578 (-2 (|:| |val| |#1|) (|:| -1587 |#2|))))) (-15 -3514 ((-578 $) |#1| (-578 |#2|))) (-15 -3384 ($ $)) (-15 -3383 ($ $ |#1|)) (-15 -3382 ($ $ |#2|)) (-15 -3381 ($ $ (-83))) (-15 -3380 ($ $)) (-15 -3379 ((-83) $ $ (-1 (-83) |#1| |#1|) (-1 (-83) |#2| |#2|))) (-15 -3378 ((-83) $ $ (-1 (-83) |#2| |#2|))))) (-13 (-1005) (-34)) (-13 (-1005) (-34))) (T -1043)) +((-3549 (*1 *1) (-12 (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1005) (-34))) (-4 *3 (-13 (-1005) (-34))))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-13 (-1005) (-34))) (-4 *4 (-13 (-1005) (-34))))) (-3386 (*1 *2 *1) (-12 (-4 *2 (-13 (-1005) (-34))) (-5 *1 (-1043 *2 *3)) (-4 *3 (-13 (-1005) (-34))))) (-3906 (*1 *2 *1) (-12 (-4 *2 (-13 (-1005) (-34))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-13 (-1005) (-34))))) (-3385 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-13 (-1005) (-34))) (-4 *4 (-13 (-1005) (-34))))) (-3514 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-83)) (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1005) (-34))) (-4 *3 (-13 (-1005) (-34))))) (-3514 (*1 *1 *2 *3) (-12 (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1005) (-34))) (-4 *3 (-13 (-1005) (-34))))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1587 *4))) (-4 *3 (-13 (-1005) (-34))) (-4 *4 (-13 (-1005) (-34))) (-5 *1 (-1043 *3 *4)))) (-3514 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |val| *4) (|:| -1587 *5)))) (-4 *4 (-13 (-1005) (-34))) (-4 *5 (-13 (-1005) (-34))) (-5 *2 (-578 (-1043 *4 *5))) (-5 *1 (-1043 *4 *5)))) (-3514 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *5)) (-4 *5 (-13 (-1005) (-34))) (-5 *2 (-578 (-1043 *3 *5))) (-5 *1 (-1043 *3 *5)) (-4 *3 (-13 (-1005) (-34))))) (-3384 (*1 *1 *1) (-12 (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1005) (-34))) (-4 *3 (-13 (-1005) (-34))))) (-3383 (*1 *1 *1 *2) (-12 (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1005) (-34))) (-4 *3 (-13 (-1005) (-34))))) (-3382 (*1 *1 *1 *2) (-12 (-5 *1 (-1043 *3 *2)) (-4 *3 (-13 (-1005) (-34))) (-4 *2 (-13 (-1005) (-34))))) (-3381 (*1 *1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-13 (-1005) (-34))) (-4 *4 (-13 (-1005) (-34))))) (-3380 (*1 *1 *1) (-12 (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1005) (-34))) (-4 *3 (-13 (-1005) (-34))))) (-3379 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-83) *5 *5)) (-5 *4 (-1 (-83) *6 *6)) (-4 *5 (-13 (-1005) (-34))) (-4 *6 (-13 (-1005) (-34))) (-5 *2 (-83)) (-5 *1 (-1043 *5 *6)))) (-3378 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-83) *5 *5)) (-4 *5 (-13 (-1005) (-34))) (-5 *2 (-83)) (-5 *1 (-1043 *4 *5)) (-4 *4 (-13 (-1005) (-34)))))) +((-2552 (((-83) $ $) NIL (|has| (-1043 |#1| |#2|) (-72)) ELT)) (-3386 (((-1043 |#1| |#2|) $) 27 T ELT)) (-3395 (($ $) 91 T ELT)) (-3391 (((-83) (-1043 |#1| |#2|) $ (-1 (-83) |#2| |#2|)) 100 T ELT)) (-3388 (($ $ $ (-578 (-1043 |#1| |#2|))) 108 T ELT) (($ $ $ (-578 (-1043 |#1| |#2|)) (-1 (-83) |#2| |#2|)) 109 T ELT)) (-3009 (((-1043 |#1| |#2|) $ (-1043 |#1| |#2|)) 46 (|has| $ (-6 -3980)) ELT)) (-3772 (((-1043 |#1| |#2|) $ #1="value" (-1043 |#1| |#2|)) NIL (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) 44 (|has| $ (-6 -3980)) ELT)) (-3708 (($) NIL T CONST)) (-3393 (((-578 (-2 (|:| |val| |#1|) (|:| -1587 |#2|))) $) 95 T ELT)) (-3389 (($ (-1043 |#1| |#2|) $) 42 T ELT)) (-3390 (($ (-1043 |#1| |#2|) $) 34 T ELT)) (-2873 (((-578 (-1043 |#1| |#2|)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3015 (((-578 $) $) 54 T ELT)) (-3392 (((-83) (-1043 |#1| |#2|) $) 97 T ELT)) (-3011 (((-83) $ $) NIL (|has| (-1043 |#1| |#2|) (-1005)) ELT)) (-2592 (((-578 (-1043 |#1| |#2|)) $) 58 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-1043 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-1043 |#1| |#2|) (-1005))) ELT)) (-1936 (($ (-1 (-1043 |#1| |#2|) (-1043 |#1| |#2|)) $) 50 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-1043 |#1| |#2|) (-1043 |#1| |#2|)) $) 49 T ELT)) (-3014 (((-578 (-1043 |#1| |#2|)) $) 56 T ELT)) (-3511 (((-83) $) 45 T ELT)) (-3225 (((-1062) $) NIL (|has| (-1043 |#1| |#2|) (-1005)) ELT)) (-3226 (((-1023) $) NIL (|has| (-1043 |#1| |#2|) (-1005)) ELT)) (-3396 (((-3 $ "failed") $) 89 T ELT)) (-1934 (((-83) (-1 (-83) (-1043 |#1| |#2|)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 (-1043 |#1| |#2|)))) NIL (-12 (|has| (-1043 |#1| |#2|) (-256 (-1043 |#1| |#2|))) (|has| (-1043 |#1| |#2|) (-1005))) ELT) (($ $ (-245 (-1043 |#1| |#2|))) NIL (-12 (|has| (-1043 |#1| |#2|) (-256 (-1043 |#1| |#2|))) (|has| (-1043 |#1| |#2|) (-1005))) ELT) (($ $ (-1043 |#1| |#2|) (-1043 |#1| |#2|)) NIL (-12 (|has| (-1043 |#1| |#2|) (-256 (-1043 |#1| |#2|))) (|has| (-1043 |#1| |#2|) (-1005))) ELT) (($ $ (-578 (-1043 |#1| |#2|)) (-578 (-1043 |#1| |#2|))) NIL (-12 (|has| (-1043 |#1| |#2|) (-256 (-1043 |#1| |#2|))) (|has| (-1043 |#1| |#2|) (-1005))) ELT)) (-1210 (((-83) $ $) 53 T ELT)) (-3387 (((-83) $) 24 T ELT)) (-3549 (($) 26 T ELT)) (-3784 (((-1043 |#1| |#2|) $ #1#) NIL T ELT)) (-3013 (((-478) $ $) NIL T ELT)) (-3617 (((-83) $) 47 T ELT)) (-1933 (((-687) (-1 (-83) (-1043 |#1| |#2|)) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) (-1043 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-1043 |#1| |#2|) (-1005))) ELT)) (-3384 (($ $) 52 T ELT)) (-3514 (($ (-1043 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-578 $)) 13 T ELT) (($ |#1| |#2| (-578 (-1043 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-578 |#2|)) 18 T ELT)) (-3394 (((-578 |#2|) $) 96 T ELT)) (-3930 (((-765) $) 87 (|has| (-1043 |#1| |#2|) (-547 (-765))) ELT)) (-3506 (((-578 $) $) 31 T ELT)) (-3012 (((-83) $ $) NIL (|has| (-1043 |#1| |#2|) (-1005)) ELT)) (-1253 (((-83) $ $) NIL (|has| (-1043 |#1| |#2|) (-72)) ELT)) (-1935 (((-83) (-1 (-83) (-1043 |#1| |#2|)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 70 (|has| (-1043 |#1| |#2|) (-72)) ELT)) (-3941 (((-687) $) 64 (|has| $ (-6 -3979)) ELT))) +(((-1044 |#1| |#2|) (-13 (-916 (-1043 |#1| |#2|)) (-10 -8 (-6 -3980) (-6 -3979) (-15 -3396 ((-3 $ "failed") $)) (-15 -3395 ($ $)) (-15 -3514 ($ (-1043 |#1| |#2|))) (-15 -3514 ($ |#1| |#2| (-578 $))) (-15 -3514 ($ |#1| |#2| (-578 (-1043 |#1| |#2|)))) (-15 -3514 ($ |#1| |#2| |#1| (-578 |#2|))) (-15 -3394 ((-578 |#2|) $)) (-15 -3393 ((-578 (-2 (|:| |val| |#1|) (|:| -1587 |#2|))) $)) (-15 -3392 ((-83) (-1043 |#1| |#2|) $)) (-15 -3391 ((-83) (-1043 |#1| |#2|) $ (-1 (-83) |#2| |#2|))) (-15 -3390 ($ (-1043 |#1| |#2|) $)) (-15 -3389 ($ (-1043 |#1| |#2|) $)) (-15 -3388 ($ $ $ (-578 (-1043 |#1| |#2|)))) (-15 -3388 ($ $ $ (-578 (-1043 |#1| |#2|)) (-1 (-83) |#2| |#2|))))) (-13 (-1005) (-34)) (-13 (-1005) (-34))) (T -1044)) +((-3396 (*1 *1 *1) (|partial| -12 (-5 *1 (-1044 *2 *3)) (-4 *2 (-13 (-1005) (-34))) (-4 *3 (-13 (-1005) (-34))))) (-3395 (*1 *1 *1) (-12 (-5 *1 (-1044 *2 *3)) (-4 *2 (-13 (-1005) (-34))) (-4 *3 (-13 (-1005) (-34))))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-1043 *3 *4)) (-4 *3 (-13 (-1005) (-34))) (-4 *4 (-13 (-1005) (-34))) (-5 *1 (-1044 *3 *4)))) (-3514 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-578 (-1044 *2 *3))) (-5 *1 (-1044 *2 *3)) (-4 *2 (-13 (-1005) (-34))) (-4 *3 (-13 (-1005) (-34))))) (-3514 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-578 (-1043 *2 *3))) (-4 *2 (-13 (-1005) (-34))) (-4 *3 (-13 (-1005) (-34))) (-5 *1 (-1044 *2 *3)))) (-3514 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-13 (-1005) (-34))) (-5 *1 (-1044 *2 *3)) (-4 *2 (-13 (-1005) (-34))))) (-3394 (*1 *2 *1) (-12 (-5 *2 (-578 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-13 (-1005) (-34))) (-4 *4 (-13 (-1005) (-34))))) (-3393 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) (-5 *1 (-1044 *3 *4)) (-4 *3 (-13 (-1005) (-34))) (-4 *4 (-13 (-1005) (-34))))) (-3392 (*1 *2 *3 *1) (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-1005) (-34))) (-4 *5 (-13 (-1005) (-34))) (-5 *2 (-83)) (-5 *1 (-1044 *4 *5)))) (-3391 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1043 *5 *6)) (-5 *4 (-1 (-83) *6 *6)) (-4 *5 (-13 (-1005) (-34))) (-4 *6 (-13 (-1005) (-34))) (-5 *2 (-83)) (-5 *1 (-1044 *5 *6)))) (-3390 (*1 *1 *2 *1) (-12 (-5 *2 (-1043 *3 *4)) (-4 *3 (-13 (-1005) (-34))) (-4 *4 (-13 (-1005) (-34))) (-5 *1 (-1044 *3 *4)))) (-3389 (*1 *1 *2 *1) (-12 (-5 *2 (-1043 *3 *4)) (-4 *3 (-13 (-1005) (-34))) (-4 *4 (-13 (-1005) (-34))) (-5 *1 (-1044 *3 *4)))) (-3388 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-578 (-1043 *3 *4))) (-4 *3 (-13 (-1005) (-34))) (-4 *4 (-13 (-1005) (-34))) (-5 *1 (-1044 *3 *4)))) (-3388 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1043 *4 *5))) (-5 *3 (-1 (-83) *5 *5)) (-4 *4 (-13 (-1005) (-34))) (-4 *5 (-13 (-1005) (-34))) (-5 *1 (-1044 *4 *5))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3398 (($ $) NIL T ELT)) (-3314 ((|#2| $) NIL T ELT)) (-3104 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3397 (($ (-625 |#2|)) 56 T ELT)) (-3106 (((-83) $) NIL T ELT)) (-3317 (($ |#2|) 14 T ELT)) (-3708 (($) NIL T CONST)) (-3093 (($ $) 69 (|has| |#2| (-254)) ELT)) (-3095 (((-194 |#1| |#2|) $ (-478)) 42 T ELT)) (-3140 (((-3 (-478) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3139 (((-478) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) ((|#2| $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#2|) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) 83 T ELT)) (-3092 (((-687) $) 71 (|has| |#2| (-489)) ELT)) (-3096 ((|#2| $ (-478) (-478)) NIL T ELT)) (-2873 (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2396 (((-83) $) NIL T ELT)) (-3091 (((-687) $) 73 (|has| |#2| (-489)) ELT)) (-3090 (((-578 (-194 |#1| |#2|)) $) 77 (|has| |#2| (-489)) ELT)) (-3098 (((-687) $) NIL T ELT)) (-3598 (($ |#2|) 25 T ELT)) (-3097 (((-687) $) NIL T ELT)) (-3311 ((|#2| $) 67 (|has| |#2| (-6 (-3981 #2="*"))) ELT)) (-3102 (((-478) $) NIL T ELT)) (-3100 (((-478) $) NIL T ELT)) (-2592 (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-3101 (((-478) $) NIL T ELT)) (-3099 (((-478) $) NIL T ELT)) (-3107 (($ (-578 (-578 |#2|))) 37 T ELT)) (-1936 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3578 (((-578 (-578 |#2|)) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-1168 $) $) NIL T ELT) (((-625 |#2|) (-1168 $)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3574 (((-3 $ #1#) $) 80 (|has| |#2| (-308)) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3450 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-489)) ELT)) (-1934 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#2| $ (-478) (-478) |#2|) NIL T ELT) ((|#2| $ (-478) (-478)) NIL T ELT)) (-3742 (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-687)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1079)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#2| (-804 (-1079))) ELT)) (-3313 ((|#2| $) NIL T ELT)) (-3316 (($ (-578 |#2|)) 50 T ELT)) (-3105 (((-83) $) NIL T ELT)) (-3315 (((-194 |#1| |#2|) $) NIL T ELT)) (-3312 ((|#2| $) 65 (|has| |#2| (-6 (-3981 #2#))) ELT)) (-1933 (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) 90 (|has| |#2| (-548 (-467))) ELT)) (-3094 (((-194 |#1| |#2|) $ (-478)) 44 T ELT)) (-3930 (((-765) $) 47 T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (($ |#2|) NIL T ELT) (((-625 |#2|) $) 52 T ELT)) (-3109 (((-687)) 23 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3103 (((-83) $) NIL T ELT)) (-2644 (($) 16 T CONST)) (-2650 (($) 21 T CONST)) (-2653 (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-687)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1079)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#2| (-804 (-1079))) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 63 T ELT) (($ $ (-478)) 82 (|has| |#2| (-308)) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-194 |#1| |#2|) $ (-194 |#1| |#2|)) 59 T ELT) (((-194 |#1| |#2|) (-194 |#1| |#2|) $) 61 T ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-1045 |#1| |#2|) (-13 (-1026 |#1| |#2| (-194 |#1| |#2|) (-194 |#1| |#2|)) (-547 (-625 |#2|)) (-10 -8 (-15 -3598 ($ |#2|)) (-15 -3398 ($ $)) (-15 -3397 ($ (-625 |#2|))) (IF (|has| |#2| (-6 (-3981 #1="*"))) (-6 -3968) |%noBranch|) (IF (|has| |#2| (-6 (-3981 #1#))) (IF (|has| |#2| (-6 -3976)) (-6 -3976) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|))) (-687) (-954)) (T -1045)) +((-3598 (*1 *1 *2) (-12 (-5 *1 (-1045 *3 *2)) (-14 *3 (-687)) (-4 *2 (-954)))) (-3398 (*1 *1 *1) (-12 (-5 *1 (-1045 *2 *3)) (-14 *2 (-687)) (-4 *3 (-954)))) (-3397 (*1 *1 *2) (-12 (-5 *2 (-625 *4)) (-4 *4 (-954)) (-5 *1 (-1045 *3 *4)) (-14 *3 (-687))))) +((-3411 (($ $) 19 T ELT)) (-3401 (($ $ (-115)) 10 T ELT) (($ $ (-112)) 14 T ELT)) (-3409 (((-83) $ $) 24 T ELT)) (-3413 (($ $) 17 T ELT)) (-3784 (((-115) $ (-478) (-115)) NIL T ELT) (((-115) $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT) (($ $ $) 31 T ELT)) (-3930 (($ (-115)) 29 T ELT) (((-765) $) NIL T ELT))) +(((-1046 |#1|) (-10 -7 (-15 -3930 ((-765) |#1|)) (-15 -3784 (|#1| |#1| |#1|)) (-15 -3401 (|#1| |#1| (-112))) (-15 -3401 (|#1| |#1| (-115))) (-15 -3930 (|#1| (-115))) (-15 -3409 ((-83) |#1| |#1|)) (-15 -3411 (|#1| |#1|)) (-15 -3413 (|#1| |#1|)) (-15 -3784 (|#1| |#1| (-1135 (-478)))) (-15 -3784 ((-115) |#1| (-478))) (-15 -3784 ((-115) |#1| (-478) (-115)))) (-1047)) (T -1046)) +NIL +((-2552 (((-83) $ $) 19 (|has| (-115) (-72)) ELT)) (-3410 (($ $) 129 T ELT)) (-3411 (($ $) 130 T ELT)) (-3401 (($ $ (-115)) 117 T ELT) (($ $ (-112)) 116 T ELT)) (-2184 (((-1174) $ (-478) (-478)) 44 (|has| $ (-6 -3980)) ELT)) (-3408 (((-83) $ $) 127 T ELT)) (-3407 (((-83) $ $ (-478)) 126 T ELT)) (-3402 (((-578 $) $ (-115)) 119 T ELT) (((-578 $) $ (-112)) 118 T ELT)) (-1719 (((-83) (-1 (-83) (-115) (-115)) $) 107 T ELT) (((-83) $) 101 (|has| (-115) (-749)) ELT)) (-1717 (($ (-1 (-83) (-115) (-115)) $) 98 (|has| $ (-6 -3980)) ELT) (($ $) 97 (-12 (|has| (-115) (-749)) (|has| $ (-6 -3980))) ELT)) (-2893 (($ (-1 (-83) (-115) (-115)) $) 108 T ELT) (($ $) 102 (|has| (-115) (-749)) ELT)) (-3772 (((-115) $ (-478) (-115)) 56 (|has| $ (-6 -3980)) ELT) (((-115) $ (-1135 (-478)) (-115)) 64 (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) (-115)) $) 81 (|has| $ (-6 -3979)) ELT)) (-3708 (($) 7 T CONST)) (-3399 (($ $ (-115)) 113 T ELT) (($ $ (-112)) 112 T ELT)) (-2283 (($ $) 99 (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) 109 T ELT)) (-3404 (($ $ (-1135 (-478)) $) 123 T ELT)) (-1340 (($ $) 84 (-12 (|has| (-115) (-1005)) (|has| $ (-6 -3979))) ELT)) (-3390 (($ (-115) $) 83 (-12 (|has| (-115) (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) (-115)) $) 80 (|has| $ (-6 -3979)) ELT)) (-3826 (((-115) (-1 (-115) (-115) (-115)) $ (-115) (-115)) 82 (-12 (|has| (-115) (-1005)) (|has| $ (-6 -3979))) ELT) (((-115) (-1 (-115) (-115) (-115)) $ (-115)) 79 (|has| $ (-6 -3979)) ELT) (((-115) (-1 (-115) (-115) (-115)) $) 78 (|has| $ (-6 -3979)) ELT)) (-1563 (((-115) $ (-478) (-115)) 57 (|has| $ (-6 -3980)) ELT)) (-3096 (((-115) $ (-478)) 55 T ELT)) (-3409 (((-83) $ $) 128 T ELT)) (-3403 (((-478) (-1 (-83) (-115)) $) 106 T ELT) (((-478) (-115) $) 105 (|has| (-115) (-1005)) ELT) (((-478) (-115) $ (-478)) 104 (|has| (-115) (-1005)) ELT) (((-478) $ $ (-478)) 122 T ELT) (((-478) (-112) $ (-478)) 121 T ELT)) (-2873 (((-578 (-115)) $) 30 (|has| $ (-6 -3979)) ELT)) (-3598 (($ (-687) (-115)) 74 T ELT)) (-2186 (((-478) $) 47 (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) 91 (|has| (-115) (-749)) ELT)) (-3502 (($ (-1 (-83) (-115) (-115)) $ $) 110 T ELT) (($ $ $) 103 (|has| (-115) (-749)) ELT)) (-2592 (((-578 (-115)) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-115) $) 27 (-12 (|has| (-115) (-1005)) (|has| $ (-6 -3979))) ELT)) (-2187 (((-478) $) 48 (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) 92 (|has| (-115) (-749)) ELT)) (-3405 (((-83) $ $ (-115)) 124 T ELT)) (-3406 (((-687) $ $ (-115)) 125 T ELT)) (-1936 (($ (-1 (-115) (-115)) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-115) (-115)) $) 35 T ELT) (($ (-1 (-115) (-115) (-115)) $ $) 69 T ELT)) (-3412 (($ $) 131 T ELT)) (-3413 (($ $) 132 T ELT)) (-3400 (($ $ (-115)) 115 T ELT) (($ $ (-112)) 114 T ELT)) (-3225 (((-1062) $) 22 (|has| (-115) (-1005)) ELT)) (-2290 (($ (-115) $ (-478)) 66 T ELT) (($ $ $ (-478)) 65 T ELT)) (-2189 (((-578 (-478)) $) 50 T ELT)) (-2190 (((-83) (-478) $) 51 T ELT)) (-3226 (((-1023) $) 21 (|has| (-115) (-1005)) ELT)) (-3785 (((-115) $) 46 (|has| (-478) (-749)) ELT)) (-1341 (((-3 (-115) "failed") (-1 (-83) (-115)) $) 77 T ELT)) (-2185 (($ $ (-115)) 45 (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) (-115)) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 (-115)))) 26 (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1005))) ELT) (($ $ (-245 (-115))) 25 (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1005))) ELT) (($ $ (-115) (-115)) 24 (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1005))) ELT) (($ $ (-578 (-115)) (-578 (-115))) 23 (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-2188 (((-83) (-115) $) 49 (-12 (|has| $ (-6 -3979)) (|has| (-115) (-1005))) ELT)) (-2191 (((-578 (-115)) $) 52 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 (((-115) $ (-478) (-115)) 54 T ELT) (((-115) $ (-478)) 53 T ELT) (($ $ (-1135 (-478))) 75 T ELT) (($ $ $) 111 T ELT)) (-2291 (($ $ (-478)) 68 T ELT) (($ $ (-1135 (-478))) 67 T ELT)) (-1933 (((-687) (-1 (-83) (-115)) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) (-115) $) 28 (-12 (|has| (-115) (-1005)) (|has| $ (-6 -3979))) ELT)) (-1718 (($ $ $ (-478)) 100 (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 85 (|has| (-115) (-548 (-467))) ELT)) (-3514 (($ (-578 (-115))) 76 T ELT)) (-3786 (($ $ (-115)) 73 T ELT) (($ (-115) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-578 $)) 70 T ELT)) (-3930 (($ (-115)) 120 T ELT) (((-765) $) 17 (|has| (-115) (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| (-115) (-72)) ELT)) (-1935 (((-83) (-1 (-83) (-115)) $) 33 (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) 93 (|has| (-115) (-749)) ELT)) (-2551 (((-83) $ $) 95 (|has| (-115) (-749)) ELT)) (-3037 (((-83) $ $) 18 (|has| (-115) (-72)) ELT)) (-2668 (((-83) $ $) 94 (|has| (-115) (-749)) ELT)) (-2669 (((-83) $ $) 96 (|has| (-115) (-749)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-1047) (-111)) (T -1047)) +((-3413 (*1 *1 *1) (-4 *1 (-1047))) (-3412 (*1 *1 *1) (-4 *1 (-1047))) (-3411 (*1 *1 *1) (-4 *1 (-1047))) (-3410 (*1 *1 *1) (-4 *1 (-1047))) (-3409 (*1 *2 *1 *1) (-12 (-4 *1 (-1047)) (-5 *2 (-83)))) (-3408 (*1 *2 *1 *1) (-12 (-4 *1 (-1047)) (-5 *2 (-83)))) (-3407 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1047)) (-5 *3 (-478)) (-5 *2 (-83)))) (-3406 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1047)) (-5 *3 (-115)) (-5 *2 (-687)))) (-3405 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1047)) (-5 *3 (-115)) (-5 *2 (-83)))) (-3404 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1047)) (-5 *2 (-1135 (-478))))) (-3403 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-478)))) (-3403 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-478)) (-5 *3 (-112)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-115)) (-4 *1 (-1047)))) (-3402 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-578 *1)) (-4 *1 (-1047)))) (-3402 (*1 *2 *1 *3) (-12 (-5 *3 (-112)) (-5 *2 (-578 *1)) (-4 *1 (-1047)))) (-3401 (*1 *1 *1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-115)))) (-3401 (*1 *1 *1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-112)))) (-3400 (*1 *1 *1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-115)))) (-3400 (*1 *1 *1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-112)))) (-3399 (*1 *1 *1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-115)))) (-3399 (*1 *1 *1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-112)))) (-3784 (*1 *1 *1 *1) (-4 *1 (-1047)))) +(-13 (-19 (-115)) (-10 -8 (-15 -3413 ($ $)) (-15 -3412 ($ $)) (-15 -3411 ($ $)) (-15 -3410 ($ $)) (-15 -3409 ((-83) $ $)) (-15 -3408 ((-83) $ $)) (-15 -3407 ((-83) $ $ (-478))) (-15 -3406 ((-687) $ $ (-115))) (-15 -3405 ((-83) $ $ (-115))) (-15 -3404 ($ $ (-1135 (-478)) $)) (-15 -3403 ((-478) $ $ (-478))) (-15 -3403 ((-478) (-112) $ (-478))) (-15 -3930 ($ (-115))) (-15 -3402 ((-578 $) $ (-115))) (-15 -3402 ((-578 $) $ (-112))) (-15 -3401 ($ $ (-115))) (-15 -3401 ($ $ (-112))) (-15 -3400 ($ $ (-115))) (-15 -3400 ($ $ (-112))) (-15 -3399 ($ $ (-115))) (-15 -3399 ($ $ (-112))) (-15 -3784 ($ $ $)))) +(((-34) . T) ((-72) OR (|has| (-115) (-1005)) (|has| (-115) (-749)) (|has| (-115) (-72))) ((-547 (-765)) OR (|has| (-115) (-1005)) (|has| (-115) (-749)) (|has| (-115) (-547 (-765)))) ((-122 (-115)) . T) ((-548 (-467)) |has| (-115) (-548 (-467))) ((-238 (-478) (-115)) . T) ((-238 (-1135 (-478)) $) . T) ((-240 (-478) (-115)) . T) ((-256 (-115)) -12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1005))) ((-317 (-115)) . T) ((-422 (-115)) . T) ((-533 (-478) (-115)) . T) ((-447 (-115) (-115)) -12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1005))) ((-588 (-115)) . T) ((-19 (-115)) . T) ((-749) |has| (-115) (-749)) ((-752) |has| (-115) (-749)) ((-1005) OR (|has| (-115) (-1005)) (|has| (-115) (-749))) ((-1118) . T)) +((-3420 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) (-687)) 112 T ELT)) (-3417 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5| (-687)) 61 T ELT)) (-3421 (((-1174) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) (-687)) 97 T ELT)) (-3415 (((-687) (-578 |#4|) (-578 |#5|)) 30 T ELT)) (-3418 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5| (-687)) 63 T ELT) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5| (-687) (-83)) 65 T ELT)) (-3419 (((-578 |#5|) (-578 |#4|) (-578 |#5|) (-83) (-83) (-83) (-83) (-83)) 84 T ELT) (((-578 |#5|) (-578 |#4|) (-578 |#5|) (-83) (-83)) 85 T ELT)) (-3956 (((-1062) (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) 90 T ELT)) (-3416 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5|) 60 T ELT)) (-3414 (((-687) (-578 |#4|) (-578 |#5|)) 21 T ELT))) +(((-1048 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3414 ((-687) (-578 |#4|) (-578 |#5|))) (-15 -3415 ((-687) (-578 |#4|) (-578 |#5|))) (-15 -3416 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5|)) (-15 -3417 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5| (-687))) (-15 -3417 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5|)) (-15 -3418 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5| (-687) (-83))) (-15 -3418 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5| (-687))) (-15 -3418 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) |#4| |#5|)) (-15 -3419 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-83) (-83))) (-15 -3419 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-83) (-83) (-83) (-83) (-83))) (-15 -3420 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))))) (-687))) (-15 -3956 ((-1062) (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|)))) (-15 -3421 ((-1174) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1587 |#5|))) (-687)))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|) (-1012 |#1| |#2| |#3| |#4|)) (T -1048)) +((-3421 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -1587 *9)))) (-5 *4 (-687)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-1174)) (-5 *1 (-1048 *5 *6 *7 *8 *9)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -1587 *8))) (-4 *7 (-969 *4 *5 *6)) (-4 *8 (-1012 *4 *5 *6 *7)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-1062)) (-5 *1 (-1048 *4 *5 *6 *7 *8)))) (-3420 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-578 *11)) (|:| |todo| (-578 (-2 (|:| |val| *3) (|:| -1587 *11)))))) (-5 *6 (-687)) (-5 *2 (-578 (-2 (|:| |val| (-578 *10)) (|:| -1587 *11)))) (-5 *3 (-578 *10)) (-5 *4 (-578 *11)) (-4 *10 (-969 *7 *8 *9)) (-4 *11 (-1012 *7 *8 *9 *10)) (-4 *7 (-385)) (-4 *8 (-710)) (-4 *9 (-749)) (-5 *1 (-1048 *7 *8 *9 *10 *11)))) (-3419 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-1048 *5 *6 *7 *8 *9)))) (-3419 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-1048 *5 *6 *7 *8 *9)))) (-3418 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))) (-3418 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-687)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *3 (-969 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) (-5 *1 (-1048 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) (-3418 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-687)) (-5 *6 (-83)) (-4 *7 (-385)) (-4 *8 (-710)) (-4 *9 (-749)) (-4 *3 (-969 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) (-5 *1 (-1048 *7 *8 *9 *3 *4)) (-4 *4 (-1012 *7 *8 *9 *3)))) (-3417 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))) (-3417 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-687)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *3 (-969 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) (-5 *1 (-1048 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) (-3416 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))) (-3415 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-687)) (-5 *1 (-1048 *5 *6 *7 *8 *9)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-687)) (-5 *1 (-1048 *5 *6 *7 *8 *9))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3665 (((-578 (-2 (|:| -3845 $) (|:| -1689 (-578 |#4|)))) (-578 |#4|)) NIL T ELT)) (-3666 (((-578 $) (-578 |#4|)) 121 T ELT) (((-578 $) (-578 |#4|) (-83)) 122 T ELT) (((-578 $) (-578 |#4|) (-83) (-83)) 120 T ELT) (((-578 $) (-578 |#4|) (-83) (-83) (-83) (-83)) 123 T ELT)) (-3065 (((-578 |#3|) $) NIL T ELT)) (-2892 (((-83) $) NIL T ELT)) (-2883 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3677 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3672 ((|#4| |#4| $) NIL T ELT)) (-3759 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 $))) |#4| $) 94 T ELT)) (-2893 (((-2 (|:| |under| $) (|:| -3113 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3694 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT) (((-3 |#4| #1="failed") $ |#3|) 73 T ELT)) (-3708 (($) NIL T CONST)) (-2888 (((-83) $) 29 (|has| |#1| (-489)) ELT)) (-2890 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2889 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2891 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3673 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-2884 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-489)) ELT)) (-2885 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-489)) ELT)) (-3140 (((-3 $ #1#) (-578 |#4|)) NIL T ELT)) (-3139 (($ (-578 |#4|)) NIL T ELT)) (-3783 (((-3 $ #1#) $) 45 T ELT)) (-3669 ((|#4| |#4| $) 76 T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT)) (-3390 (($ |#4| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 88 (|has| |#1| (-489)) ELT)) (-3678 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3667 ((|#4| |#4| $) NIL T ELT)) (-3826 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3979)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3979)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3680 (((-2 (|:| -3845 (-578 |#4|)) (|:| -1689 (-578 |#4|))) $) NIL T ELT)) (-3180 (((-83) |#4| $) NIL T ELT)) (-3178 (((-83) |#4| $) NIL T ELT)) (-3181 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3422 (((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-83) (-83)) 136 T ELT)) (-2873 (((-578 |#4|) $) 18 (|has| $ (-6 -3979)) ELT)) (-3679 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3163 ((|#3| $) 38 T ELT)) (-2592 (((-578 |#4|) $) 19 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#4| $) 27 (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT)) (-1936 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2898 (((-578 |#3|) $) NIL T ELT)) (-2897 (((-83) |#3| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3174 (((-3 |#4| (-578 $)) |#4| |#4| $) NIL T ELT)) (-3173 (((-578 (-2 (|:| |val| |#4|) (|:| -1587 $))) |#4| |#4| $) 114 T ELT)) (-3782 (((-3 |#4| #1#) $) 42 T ELT)) (-3175 (((-578 $) |#4| $) 99 T ELT)) (-3177 (((-3 (-83) (-578 $)) |#4| $) NIL T ELT)) (-3176 (((-578 (-2 (|:| |val| (-83)) (|:| -1587 $))) |#4| $) 109 T ELT) (((-83) |#4| $) 65 T ELT)) (-3221 (((-578 $) |#4| $) 118 T ELT) (((-578 $) (-578 |#4|) $) NIL T ELT) (((-578 $) (-578 |#4|) (-578 $)) 119 T ELT) (((-578 $) |#4| (-578 $)) NIL T ELT)) (-3423 (((-578 $) (-578 |#4|) (-83) (-83) (-83)) 131 T ELT)) (-3424 (($ |#4| $) 85 T ELT) (($ (-578 |#4|) $) 86 T ELT) (((-578 $) |#4| $ (-83) (-83) (-83) (-83) (-83)) 84 T ELT)) (-3681 (((-578 |#4|) $) NIL T ELT)) (-3675 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3670 ((|#4| |#4| $) NIL T ELT)) (-3683 (((-83) $ $) NIL T ELT)) (-2887 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-489)) ELT)) (-3676 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3671 ((|#4| |#4| $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3785 (((-3 |#4| #1#) $) 40 T ELT)) (-1341 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-3663 (((-3 $ #1#) $ |#4|) 59 T ELT)) (-3753 (($ $ |#4|) NIL T ELT) (((-578 $) |#4| $) 101 T ELT) (((-578 $) |#4| (-578 $)) NIL T ELT) (((-578 $) (-578 |#4|) $) NIL T ELT) (((-578 $) (-578 |#4|) (-578 $)) 96 T ELT)) (-1934 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-245 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-578 (-245 |#4|))) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) 17 T ELT)) (-3549 (($) 14 T ELT)) (-3932 (((-687) $) NIL T ELT)) (-1933 (((-687) |#4| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT) (((-687) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) 13 T ELT)) (-3956 (((-467) $) NIL (|has| |#4| (-548 (-467))) ELT)) (-3514 (($ (-578 |#4|)) 22 T ELT)) (-2894 (($ $ |#3|) 52 T ELT)) (-2896 (($ $ |#3|) 54 T ELT)) (-3668 (($ $) NIL T ELT)) (-2895 (($ $ |#3|) NIL T ELT)) (-3930 (((-765) $) 35 T ELT) (((-578 |#4|) $) 46 T ELT)) (-3662 (((-687) $) NIL (|has| |#3| (-313)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3682 (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3674 (((-83) $ (-1 (-83) |#4| (-578 |#4|))) NIL T ELT)) (-3172 (((-578 $) |#4| $) 66 T ELT) (((-578 $) |#4| (-578 $)) NIL T ELT) (((-578 $) (-578 |#4|) $) NIL T ELT) (((-578 $) (-578 |#4|) (-578 $)) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3664 (((-578 |#3|) $) NIL T ELT)) (-3179 (((-83) |#4| $) NIL T ELT)) (-3917 (((-83) |#3| $) 72 T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-1049 |#1| |#2| |#3| |#4|) (-13 (-1012 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3424 ((-578 $) |#4| $ (-83) (-83) (-83) (-83) (-83))) (-15 -3666 ((-578 $) (-578 |#4|) (-83) (-83))) (-15 -3666 ((-578 $) (-578 |#4|) (-83) (-83) (-83) (-83))) (-15 -3423 ((-578 $) (-578 |#4|) (-83) (-83) (-83))) (-15 -3422 ((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-83) (-83))))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|)) (T -1049)) +((-3424 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-1049 *5 *6 *7 *3))) (-5 *1 (-1049 *5 *6 *7 *3)) (-4 *3 (-969 *5 *6 *7)))) (-3666 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-1049 *5 *6 *7 *8))) (-5 *1 (-1049 *5 *6 *7 *8)))) (-3666 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-1049 *5 *6 *7 *8))) (-5 *1 (-1049 *5 *6 *7 *8)))) (-3423 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-1049 *5 *6 *7 *8))) (-5 *1 (-1049 *5 *6 *7 *8)))) (-3422 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-578 *8)) (|:| |towers| (-578 (-1049 *5 *6 *7 *8))))) (-5 *1 (-1049 *5 *6 *7 *8)) (-5 *3 (-578 *8))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 31 T ELT)) (-2396 (((-83) $) 29 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 28 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-687)) 30 T ELT) (($ $ (-823)) 27 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ $ $) 26 T ELT))) +(((-1050) (-111)) (T -1050)) +NIL +(-13 (-23) (-658)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-547 (-765)) . T) ((-658) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3308 ((|#1| $) 37 T ELT)) (-3425 (($ (-578 |#1|)) 45 T ELT)) (-3708 (($) NIL T CONST)) (-3310 ((|#1| |#1| $) 40 T ELT)) (-3309 ((|#1| $) 35 T ELT)) (-2873 (((-578 |#1|) $) 18 (|has| $ (-6 -3979)) ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-1262 ((|#1| $) 38 T ELT)) (-3593 (($ |#1| $) 41 T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-1263 ((|#1| $) 36 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) 32 T ELT)) (-3549 (($) 43 T ELT)) (-3307 (((-687) $) 30 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) 27 T ELT)) (-3930 (((-765) $) 14 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1264 (($ (-578 |#1|)) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 17 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 31 (|has| $ (-6 -3979)) ELT))) +(((-1051 |#1|) (-13 (-1024 |#1|) (-10 -8 (-15 -3425 ($ (-578 |#1|))))) (-1118)) (T -1051)) +((-3425 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1118)) (-5 *1 (-1051 *3))))) +((-3772 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1135 (-478)) |#2|) 53 T ELT) ((|#2| $ (-478) |#2|) 50 T ELT)) (-3427 (((-83) $) 12 T ELT)) (-1936 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3785 ((|#2| $) NIL T ELT) (($ $ (-687)) 17 T ELT)) (-2185 (($ $ |#2|) 49 T ELT)) (-3428 (((-83) $) 11 T ELT)) (-3784 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1135 (-478))) 36 T ELT) ((|#2| $ (-478)) 25 T ELT) ((|#2| $ (-478) |#2|) NIL T ELT)) (-3775 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3786 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-578 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) +(((-1052 |#1| |#2|) (-10 -7 (-15 -3427 ((-83) |#1|)) (-15 -3428 ((-83) |#1|)) (-15 -3772 (|#2| |#1| (-478) |#2|)) (-15 -3784 (|#2| |#1| (-478) |#2|)) (-15 -3784 (|#2| |#1| (-478))) (-15 -2185 (|#1| |#1| |#2|)) (-15 -3784 (|#1| |#1| (-1135 (-478)))) (-15 -3786 (|#1| |#1| |#2|)) (-15 -3786 (|#1| (-578 |#1|))) (-15 -3772 (|#2| |#1| (-1135 (-478)) |#2|)) (-15 -3772 (|#2| |#1| #1="last" |#2|)) (-15 -3772 (|#1| |#1| #2="rest" |#1|)) (-15 -3772 (|#2| |#1| #3="first" |#2|)) (-15 -3775 (|#1| |#1| |#2|)) (-15 -3775 (|#1| |#1| |#1|)) (-15 -3784 (|#2| |#1| #1#)) (-15 -3784 (|#1| |#1| #2#)) (-15 -3785 (|#1| |#1| (-687))) (-15 -3784 (|#2| |#1| #3#)) (-15 -3785 (|#2| |#1|)) (-15 -3786 (|#1| |#2| |#1|)) (-15 -3786 (|#1| |#1| |#1|)) (-15 -3772 (|#2| |#1| #4="value" |#2|)) (-15 -3784 (|#2| |#1| #4#)) (-15 -1936 (|#1| (-1 |#2| |#2|) |#1|))) (-1053 |#2|) (-1118)) (T -1052)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3386 ((|#1| $) 52 T ELT)) (-3779 ((|#1| $) 71 T ELT)) (-3781 (($ $) 73 T ELT)) (-2184 (((-1174) $ (-478) (-478)) 107 (|has| $ (-6 -3980)) ELT)) (-3769 (($ $ (-478)) 58 (|has| $ (-6 -3980)) ELT)) (-3426 (((-83) $ (-687)) 90 T ELT)) (-3009 ((|#1| $ |#1|) 43 (|has| $ (-6 -3980)) ELT)) (-3771 (($ $ $) 62 (|has| $ (-6 -3980)) ELT)) (-3770 ((|#1| $ |#1|) 60 (|has| $ (-6 -3980)) ELT)) (-3773 ((|#1| $ |#1|) 64 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3980)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3980)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3980)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) 127 (|has| $ (-6 -3980)) ELT) ((|#1| $ (-478) |#1|) 96 (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) 45 (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) 112 (|has| $ (-6 -3979)) ELT)) (-3780 ((|#1| $) 72 T ELT)) (-3708 (($) 7 T CONST)) (-3783 (($ $) 79 T ELT) (($ $ (-687)) 77 T ELT)) (-1340 (($ $) 109 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3390 (($ (-1 (-83) |#1|) $) 113 (|has| $ (-6 -3979)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1563 ((|#1| $ (-478) |#1|) 95 (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) 97 T ELT)) (-3427 (((-83) $) 93 T ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-3015 (((-578 $) $) 54 T ELT)) (-3011 (((-83) $ $) 46 (|has| |#1| (-1005)) ELT)) (-3598 (($ (-687) |#1|) 119 T ELT)) (-3703 (((-83) $ (-687)) 91 T ELT)) (-2186 (((-478) $) 105 (|has| (-478) (-749)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-2187 (((-478) $) 104 (|has| (-478) (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3700 (((-83) $ (-687)) 92 T ELT)) (-3014 (((-578 |#1|) $) 49 T ELT)) (-3511 (((-83) $) 53 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-3782 ((|#1| $) 76 T ELT) (($ $ (-687)) 74 T ELT)) (-2290 (($ $ $ (-478)) 126 T ELT) (($ |#1| $ (-478)) 125 T ELT)) (-2189 (((-578 (-478)) $) 102 T ELT)) (-2190 (((-83) (-478) $) 101 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-3785 ((|#1| $) 82 T ELT) (($ $ (-687)) 80 T ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 116 T ELT)) (-2185 (($ $ |#1|) 106 (|has| $ (-6 -3980)) ELT)) (-3428 (((-83) $) 94 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-2188 (((-83) |#1| $) 103 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) 100 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1135 (-478))) 118 T ELT) ((|#1| $ (-478)) 99 T ELT) ((|#1| $ (-478) |#1|) 98 T ELT)) (-3013 (((-478) $ $) 48 T ELT)) (-2291 (($ $ (-1135 (-478))) 124 T ELT) (($ $ (-478)) 123 T ELT)) (-3617 (((-83) $) 50 T ELT)) (-3776 (($ $) 68 T ELT)) (-3774 (($ $) 65 (|has| $ (-6 -3980)) ELT)) (-3777 (((-687) $) 69 T ELT)) (-3778 (($ $) 70 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 108 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 117 T ELT)) (-3775 (($ $ $) 67 (|has| $ (-6 -3980)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3980)) ELT)) (-3786 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-578 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-3506 (((-578 $) $) 55 T ELT)) (-3012 (((-83) $ $) 47 (|has| |#1| (-1005)) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-1053 |#1|) (-111) (-1118)) (T -1053)) +((-3428 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-1118)) (-5 *2 (-83)))) (-3427 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-1118)) (-5 *2 (-83)))) (-3700 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-1053 *4)) (-4 *4 (-1118)) (-5 *2 (-83)))) (-3703 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-1053 *4)) (-4 *4 (-1118)) (-5 *2 (-83)))) (-3426 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-1053 *4)) (-4 *4 (-1118)) (-5 *2 (-83))))) +(-13 (-1157 |t#1|) (-588 |t#1|) (-10 -8 (-15 -3428 ((-83) $)) (-15 -3427 ((-83) $)) (-15 -3700 ((-83) $ (-687))) (-15 -3703 ((-83) $ (-687))) (-15 -3426 ((-83) $ (-687))))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 (-478) |#1|) . T) ((-238 (-1135 (-478)) $) . T) ((-240 (-478) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-533 (-478) |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-588 |#1|) . T) ((-916 |#1|) . T) ((-1005) |has| |#1| (-1005)) ((-1118) . T) ((-1157 |#1|) . T)) +((-2552 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3583 (($) NIL T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2184 (((-1174) $ |#1| |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3772 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1557 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-2217 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT)) (-3389 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3390 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#2| $ |#1|) NIL T ELT)) (-2873 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2186 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-2592 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2187 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3980)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| |#2| (-1005))) ELT)) (-2218 (((-578 |#1|) $) NIL T ELT)) (-2219 (((-83) |#1| $) NIL T ELT)) (-1262 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3593 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2189 (((-578 |#1|) $) NIL T ELT)) (-2190 (((-83) |#1| $) NIL T ELT)) (-3226 (((-1023) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| |#2| (-1005))) ELT)) (-3785 ((|#2| $) NIL (|has| |#1| (-749)) ELT)) (-1341 (((-3 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2185 (($ $ |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-1263 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1934 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2191 (((-578 |#2|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1453 (($) NIL T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1933 (((-687) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT) (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ELT)) (-3514 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3930 (((-765) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-547 (-765)))) ELT)) (-1253 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1264 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-1054 |#1| |#2| |#3|) (-1096 |#1| |#2|) (-1005) (-1005) |#2|) (T -1054)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3429 (((-627 $) $) 17 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3430 (($) 18 T CONST)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(((-1055) (-111)) (T -1055)) +((-3430 (*1 *1) (-4 *1 (-1055))) (-3429 (*1 *2 *1) (-12 (-5 *2 (-627 *1)) (-4 *1 (-1055))))) +(-13 (-1005) (-10 -8 (-15 -3430 ($) -3936) (-15 -3429 ((-627 $) $)))) +(((-72) . T) ((-547 (-765)) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3432 (((-627 (-1038)) $) 27 T ELT)) (-3431 (((-1038) $) 15 T ELT)) (-3433 (((-1038) $) 17 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3434 (((-439) $) 13 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 37 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-1056) (-13 (-987) (-10 -8 (-15 -3434 ((-439) $)) (-15 -3433 ((-1038) $)) (-15 -3432 ((-627 (-1038)) $)) (-15 -3431 ((-1038) $))))) (T -1056)) +((-3434 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-1056)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-1056)))) (-3432 (*1 *2 *1) (-12 (-5 *2 (-627 (-1038))) (-5 *1 (-1056)))) (-3431 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-1056))))) +((-3437 (((-1058 |#1|) (-1058 |#1|)) 17 T ELT)) (-3435 (((-1058 |#1|) (-1058 |#1|)) 13 T ELT)) (-3438 (((-1058 |#1|) (-1058 |#1|) (-478) (-478)) 20 T ELT)) (-3436 (((-1058 |#1|) (-1058 |#1|)) 15 T ELT))) +(((-1057 |#1|) (-10 -7 (-15 -3435 ((-1058 |#1|) (-1058 |#1|))) (-15 -3436 ((-1058 |#1|) (-1058 |#1|))) (-15 -3437 ((-1058 |#1|) (-1058 |#1|))) (-15 -3438 ((-1058 |#1|) (-1058 |#1|) (-478) (-478)))) (-13 (-489) (-118))) (T -1057)) +((-3438 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1058 *4)) (-5 *3 (-478)) (-4 *4 (-13 (-489) (-118))) (-5 *1 (-1057 *4)))) (-3437 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-13 (-489) (-118))) (-5 *1 (-1057 *3)))) (-3436 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-13 (-489) (-118))) (-5 *1 (-1057 *3)))) (-3435 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-13 (-489) (-118))) (-5 *1 (-1057 *3))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3386 ((|#1| $) NIL T ELT)) (-3779 ((|#1| $) NIL T ELT)) (-3781 (($ $) 62 T ELT)) (-2184 (((-1174) $ (-478) (-478)) 95 (|has| $ (-6 -3980)) ELT)) (-3769 (($ $ (-478)) 124 (|has| $ (-6 -3980)) ELT)) (-3426 (((-83) $ (-687)) NIL T ELT)) (-3443 (((-765) $) 51 (|has| |#1| (-1005)) ELT)) (-3442 (((-83)) 50 (|has| |#1| (-1005)) ELT)) (-3009 ((|#1| $ |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3771 (($ $ $) 111 (|has| $ (-6 -3980)) ELT) (($ $ (-478) $) 138 T ELT)) (-3770 ((|#1| $ |#1|) 121 (|has| $ (-6 -3980)) ELT)) (-3773 ((|#1| $ |#1|) 116 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3980)) ELT) ((|#1| $ #2="first" |#1|) 118 (|has| $ (-6 -3980)) ELT) (($ $ #3="rest" $) 120 (|has| $ (-6 -3980)) ELT) ((|#1| $ #4="last" |#1|) 123 (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) 108 (|has| $ (-6 -3980)) ELT) ((|#1| $ (-478) |#1|) 74 (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) NIL (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) 77 T ELT)) (-3780 ((|#1| $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2309 (($ $) 11 T ELT)) (-3783 (($ $) 35 T ELT) (($ $ (-687)) 107 T ELT)) (-3448 (((-83) (-578 |#1|) $) 130 (|has| |#1| (-1005)) ELT)) (-3449 (($ (-578 |#1|)) 126 T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3390 (($ |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) (($ (-1 (-83) |#1|) $) 76 T ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1563 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) NIL T ELT)) (-3427 (((-83) $) NIL T ELT)) (-2873 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3444 (((-1174) (-478) $) 136 (|has| |#1| (-1005)) ELT)) (-2308 (((-687) $) 133 T ELT)) (-3015 (((-578 $) $) NIL T ELT)) (-3011 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-3598 (($ (-687) |#1|) NIL T ELT)) (-3703 (((-83) $ (-687)) NIL T ELT)) (-2186 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2187 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 82 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 86 T ELT)) (-3700 (((-83) $ (-687)) NIL T ELT)) (-3014 (((-578 |#1|) $) NIL T ELT)) (-3511 (((-83) $) NIL T ELT)) (-2311 (($ $) 109 T ELT)) (-2312 (((-83) $) 10 T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3782 ((|#1| $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2290 (($ $ $ (-478)) NIL T ELT) (($ |#1| $ (-478)) NIL T ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) 92 T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-3441 (($ (-1 |#1|)) 140 T ELT) (($ (-1 |#1| |#1|) |#1|) 141 T ELT)) (-2310 ((|#1| $) 7 T ELT)) (-3785 ((|#1| $) 34 T ELT) (($ $ (-687)) 60 T ELT)) (-3447 (((-2 (|:| |cycle?| (-83)) (|:| -2579 (-687)) (|:| |period| (-687))) (-687) $) 29 T ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-3440 (($ (-1 (-83) |#1|) $) 142 T ELT)) (-3439 (($ (-1 (-83) |#1|) $) 143 T ELT)) (-2185 (($ $ |#1|) 87 (|has| $ (-6 -3980)) ELT)) (-3753 (($ $ (-478)) 40 T ELT)) (-3428 (((-83) $) 90 T ELT)) (-2313 (((-83) $) 9 T ELT)) (-2314 (((-83) $) 132 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 25 T ELT)) (-2188 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) NIL T ELT)) (-3387 (((-83) $) 14 T ELT)) (-3549 (($) 55 T ELT)) (-3784 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT) ((|#1| $ (-478)) 72 T ELT) ((|#1| $ (-478) |#1|) NIL T ELT)) (-3013 (((-478) $ $) 59 T ELT)) (-2291 (($ $ (-1135 (-478))) NIL T ELT) (($ $ (-478)) NIL T ELT)) (-3446 (($ (-1 $)) 58 T ELT)) (-3617 (((-83) $) 88 T ELT)) (-3776 (($ $) 89 T ELT)) (-3774 (($ $) 112 (|has| $ (-6 -3980)) ELT)) (-3777 (((-687) $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) 54 T ELT)) (-3956 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 70 T ELT)) (-3445 (($ |#1| $) 110 T ELT)) (-3775 (($ $ $) 114 (|has| $ (-6 -3980)) ELT) (($ $ |#1|) 115 (|has| $ (-6 -3980)) ELT)) (-3786 (($ $ $) 97 T ELT) (($ |#1| $) 56 T ELT) (($ (-578 $)) 102 T ELT) (($ $ |#1|) 96 T ELT)) (-2875 (($ $) 61 T ELT)) (-3930 (($ (-578 |#1|)) 125 T ELT) (((-765) $) 52 (|has| |#1| (-547 (-765))) ELT)) (-3506 (((-578 $) $) NIL T ELT)) (-3012 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 128 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-1058 |#1|) (-13 (-611 |#1|) (-550 (-578 |#1|)) (-10 -8 (-6 -3980) (-15 -3449 ($ (-578 |#1|))) (IF (|has| |#1| (-1005)) (-15 -3448 ((-83) (-578 |#1|) $)) |%noBranch|) (-15 -3447 ((-2 (|:| |cycle?| (-83)) (|:| -2579 (-687)) (|:| |period| (-687))) (-687) $)) (-15 -3446 ($ (-1 $))) (-15 -3445 ($ |#1| $)) (IF (|has| |#1| (-1005)) (PROGN (-15 -3444 ((-1174) (-478) $)) (-15 -3443 ((-765) $)) (-15 -3442 ((-83)))) |%noBranch|) (-15 -3771 ($ $ (-478) $)) (-15 -3441 ($ (-1 |#1|))) (-15 -3441 ($ (-1 |#1| |#1|) |#1|)) (-15 -3440 ($ (-1 (-83) |#1|) $)) (-15 -3439 ($ (-1 (-83) |#1|) $)))) (-1118)) (T -1058)) +((-3449 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1118)) (-5 *1 (-1058 *3)))) (-3448 (*1 *2 *3 *1) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1005)) (-4 *4 (-1118)) (-5 *2 (-83)) (-5 *1 (-1058 *4)))) (-3447 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-83)) (|:| -2579 (-687)) (|:| |period| (-687)))) (-5 *1 (-1058 *4)) (-4 *4 (-1118)) (-5 *3 (-687)))) (-3446 (*1 *1 *2) (-12 (-5 *2 (-1 (-1058 *3))) (-5 *1 (-1058 *3)) (-4 *3 (-1118)))) (-3445 (*1 *1 *2 *1) (-12 (-5 *1 (-1058 *2)) (-4 *2 (-1118)))) (-3444 (*1 *2 *3 *1) (-12 (-5 *3 (-478)) (-5 *2 (-1174)) (-5 *1 (-1058 *4)) (-4 *4 (-1005)) (-4 *4 (-1118)))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1058 *3)) (-4 *3 (-1005)) (-4 *3 (-1118)))) (-3442 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1058 *3)) (-4 *3 (-1005)) (-4 *3 (-1118)))) (-3771 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1058 *3)) (-4 *3 (-1118)))) (-3441 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1118)) (-5 *1 (-1058 *3)))) (-3441 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-1058 *3)))) (-3440 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1118)) (-5 *1 (-1058 *3)))) (-3439 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1118)) (-5 *1 (-1058 *3))))) +((-3786 (((-1058 |#1|) (-1058 (-1058 |#1|))) 15 T ELT))) +(((-1059 |#1|) (-10 -7 (-15 -3786 ((-1058 |#1|) (-1058 (-1058 |#1|))))) (-1118)) (T -1059)) +((-3786 (*1 *2 *3) (-12 (-5 *3 (-1058 (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1059 *4)) (-4 *4 (-1118))))) +((-3825 (((-1058 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1058 |#1|)) 25 T ELT)) (-3826 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1058 |#1|)) 26 T ELT)) (-3942 (((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|)) 16 T ELT))) +(((-1060 |#1| |#2|) (-10 -7 (-15 -3942 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) (-15 -3825 ((-1058 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1058 |#1|))) (-15 -3826 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1058 |#1|)))) (-1118) (-1118)) (T -1060)) +((-3826 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1058 *5)) (-4 *5 (-1118)) (-4 *2 (-1118)) (-5 *1 (-1060 *5 *2)))) (-3825 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1058 *6)) (-4 *6 (-1118)) (-4 *3 (-1118)) (-5 *2 (-1058 *3)) (-5 *1 (-1060 *6 *3)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1058 *6)) (-5 *1 (-1060 *5 *6))))) +((-3942 (((-1058 |#3|) (-1 |#3| |#1| |#2|) (-1058 |#1|) (-1058 |#2|)) 21 T ELT))) +(((-1061 |#1| |#2| |#3|) (-10 -7 (-15 -3942 ((-1058 |#3|) (-1 |#3| |#1| |#2|) (-1058 |#1|) (-1058 |#2|)))) (-1118) (-1118) (-1118)) (T -1061)) +((-3942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1058 *6)) (-5 *5 (-1058 *7)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-1058 *8)) (-5 *1 (-1061 *6 *7 *8))))) +((-2552 (((-83) $ $) NIL (|has| (-115) (-72)) ELT)) (-3410 (($ $) 42 T ELT)) (-3411 (($ $) NIL T ELT)) (-3401 (($ $ (-115)) NIL T ELT) (($ $ (-112)) NIL T ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-3408 (((-83) $ $) 68 T ELT)) (-3407 (((-83) $ $ (-478)) 63 T ELT)) (-3519 (($ (-478)) 7 T ELT) (($ (-177)) 9 T ELT) (($ (-439)) 11 T ELT)) (-3402 (((-578 $) $ (-115)) 77 T ELT) (((-578 $) $ (-112)) 78 T ELT)) (-1719 (((-83) (-1 (-83) (-115) (-115)) $) NIL T ELT) (((-83) $) NIL (|has| (-115) (-749)) ELT)) (-1717 (($ (-1 (-83) (-115) (-115)) $) NIL (|has| $ (-6 -3980)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3980)) (|has| (-115) (-749))) ELT)) (-2893 (($ (-1 (-83) (-115) (-115)) $) NIL T ELT) (($ $) NIL (|has| (-115) (-749)) ELT)) (-3772 (((-115) $ (-478) (-115)) 60 (|has| $ (-6 -3980)) ELT) (((-115) $ (-1135 (-478)) (-115)) NIL (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3708 (($) NIL T CONST)) (-3399 (($ $ (-115)) 81 T ELT) (($ $ (-112)) 82 T ELT)) (-2283 (($ $) NIL (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) NIL T ELT)) (-3404 (($ $ (-1135 (-478)) $) 58 T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-115) (-1005))) ELT)) (-3390 (($ (-115) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-115) (-1005))) ELT) (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 (((-115) (-1 (-115) (-115) (-115)) $ (-115) (-115)) NIL (-12 (|has| $ (-6 -3979)) (|has| (-115) (-1005))) ELT) (((-115) (-1 (-115) (-115) (-115)) $ (-115)) NIL (|has| $ (-6 -3979)) ELT) (((-115) (-1 (-115) (-115) (-115)) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 (((-115) $ (-478) (-115)) NIL (|has| $ (-6 -3980)) ELT)) (-3096 (((-115) $ (-478)) NIL T ELT)) (-3409 (((-83) $ $) 92 T ELT)) (-3403 (((-478) (-1 (-83) (-115)) $) NIL T ELT) (((-478) (-115) $) NIL (|has| (-115) (-1005)) ELT) (((-478) (-115) $ (-478)) 65 (|has| (-115) (-1005)) ELT) (((-478) $ $ (-478)) 64 T ELT) (((-478) (-112) $ (-478)) 67 T ELT)) (-2873 (((-578 (-115)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3598 (($ (-687) (-115)) 14 T ELT)) (-2186 (((-478) $) 36 (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| (-115) (-749)) ELT)) (-3502 (($ (-1 (-83) (-115) (-115)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-115) (-749)) ELT)) (-2592 (((-578 (-115)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-115) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-115) (-1005))) ELT)) (-2187 (((-478) $) 51 (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| (-115) (-749)) ELT)) (-3405 (((-83) $ $ (-115)) 93 T ELT)) (-3406 (((-687) $ $ (-115)) 89 T ELT)) (-1936 (($ (-1 (-115) (-115)) $) 41 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-115) (-115)) $) NIL T ELT) (($ (-1 (-115) (-115) (-115)) $ $) NIL T ELT)) (-3412 (($ $) 45 T ELT)) (-3413 (($ $) NIL T ELT)) (-3400 (($ $ (-115)) 79 T ELT) (($ $ (-112)) 80 T ELT)) (-3225 (((-1062) $) 47 (|has| (-115) (-1005)) ELT)) (-2290 (($ (-115) $ (-478)) NIL T ELT) (($ $ $ (-478)) 31 T ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-3226 (((-1023) $) 88 (|has| (-115) (-1005)) ELT)) (-3785 (((-115) $) NIL (|has| (-478) (-749)) ELT)) (-1341 (((-3 (-115) "failed") (-1 (-83) (-115)) $) NIL T ELT)) (-2185 (($ $ (-115)) NIL (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 (-115)))) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1005))) ELT) (($ $ (-245 (-115))) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1005))) ELT) (($ $ (-115) (-115)) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1005))) ELT) (($ $ (-578 (-115)) (-578 (-115))) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) (-115) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-115) (-1005))) ELT)) (-2191 (((-578 (-115)) $) NIL T ELT)) (-3387 (((-83) $) 19 T ELT)) (-3549 (($) 16 T ELT)) (-3784 (((-115) $ (-478) (-115)) NIL T ELT) (((-115) $ (-478)) 70 T ELT) (($ $ (-1135 (-478))) 29 T ELT) (($ $ $) NIL T ELT)) (-2291 (($ $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-1933 (((-687) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) (-115) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-115) (-1005))) ELT)) (-1718 (($ $ $ (-478)) 84 (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) 24 T ELT)) (-3956 (((-467) $) NIL (|has| (-115) (-548 (-467))) ELT)) (-3514 (($ (-578 (-115))) NIL T ELT)) (-3786 (($ $ (-115)) NIL T ELT) (($ (-115) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-578 $)) 85 T ELT)) (-3930 (($ (-115)) NIL T ELT) (((-765) $) 35 (|has| (-115) (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| (-115) (-72)) ELT)) (-1935 (((-83) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) NIL (|has| (-115) (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-115) (-749)) ELT)) (-3037 (((-83) $ $) 21 (|has| (-115) (-72)) ELT)) (-2668 (((-83) $ $) NIL (|has| (-115) (-749)) ELT)) (-2669 (((-83) $ $) 22 (|has| (-115) (-749)) ELT)) (-3941 (((-687) $) 20 (|has| $ (-6 -3979)) ELT))) +(((-1062) (-13 (-1047) (-10 -8 (-15 -3519 ($ (-478))) (-15 -3519 ($ (-177))) (-15 -3519 ($ (-439)))))) (T -1062)) +((-3519 (*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-1062)))) (-3519 (*1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-1062)))) (-3519 (*1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-1062))))) +((-2552 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3583 (($) NIL T ELT) (($ (-578 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) NIL T ELT)) (-2184 (((-1174) $ (-1062) (-1062)) NIL (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ (-1062) |#1|) NIL T ELT)) (-1557 (($ (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-2217 (((-3 |#1| #1="failed") (-1062) $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005))) ELT)) (-3389 (($ (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-3 |#1| #1#) (-1062) $) NIL T ELT)) (-3390 (($ (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005))) ELT) (($ (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 (((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $ (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005))) ELT) (((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $ (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 ((|#1| $ (-1062) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-1062)) NIL T ELT)) (-2873 (((-578 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2186 (((-1062) $) NIL (|has| (-1062) (-749)) ELT)) (-2592 (((-578 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005))) ELT) (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2187 (((-1062) $) NIL (|has| (-1062) (-749)) ELT)) (-1936 (($ (-1 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3980)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL (OR (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005)) (|has| |#1| (-1005))) ELT)) (-2218 (((-578 (-1062)) $) NIL T ELT)) (-2219 (((-83) (-1062) $) NIL T ELT)) (-1262 (((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3593 (($ (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2189 (((-578 (-1062)) $) NIL T ELT)) (-2190 (((-83) (-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL (OR (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005)) (|has| |#1| (-1005))) ELT)) (-3785 ((|#1| $) NIL (|has| (-1062) (-749)) ELT)) (-1341 (((-3 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) #1#) (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2185 (($ $ |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-1263 (((-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1934 (((-83) (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005))) ELT) (($ $ (-245 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005))) ELT) (($ $ (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005))) ELT) (($ $ (-578 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) (-578 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#1| $ (-1062)) NIL T ELT) ((|#1| $ (-1062) |#1|) NIL T ELT)) (-1453 (($) NIL T ELT) (($ (-578 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) NIL T ELT)) (-1933 (((-687) (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-1005))) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-548 (-467))) ELT)) (-3514 (($ (-578 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) NIL T ELT)) (-3930 (((-765) $) NIL (OR (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-547 (-765))) (|has| |#1| (-547 (-765)))) ELT)) (-1253 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1264 (($ (-578 (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)))) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 (-1062)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-1063 |#1|) (-13 (-1096 (-1062) |#1|) (-10 -7 (-6 -3979))) (-1005)) (T -1063)) +NIL +((-3789 (((-1058 |#1|) (-1058 |#1|)) 83 T ELT)) (-3451 (((-3 (-1058 |#1|) #1="failed") (-1058 |#1|)) 39 T ELT)) (-3462 (((-1058 |#1|) (-343 (-478)) (-1058 |#1|)) 132 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (((-1058 |#1|) |#1| (-1058 |#1|)) 137 (|has| |#1| (-308)) ELT)) (-3792 (((-1058 |#1|) (-1058 |#1|)) 97 T ELT)) (-3453 (((-1058 (-478)) (-478)) 63 T ELT)) (-3461 (((-1058 |#1|) (-1058 (-1058 |#1|))) 117 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3788 (((-1058 |#1|) (-478) (-478) (-1058 |#1|)) 103 T ELT)) (-3922 (((-1058 |#1|) |#1| (-478)) 51 T ELT)) (-3455 (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 66 T ELT)) (-3463 (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 135 (|has| |#1| (-308)) ELT)) (-3460 (((-1058 |#1|) |#1| (-1 (-1058 |#1|))) 116 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (((-1058 |#1|) (-1 |#1| (-478)) |#1| (-1 (-1058 |#1|))) 136 (|has| |#1| (-308)) ELT)) (-3793 (((-1058 |#1|) (-1058 |#1|)) 96 T ELT)) (-3794 (((-1058 |#1|) (-1058 |#1|)) 82 T ELT)) (-3787 (((-1058 |#1|) (-478) (-478) (-1058 |#1|)) 104 T ELT)) (-3796 (((-1058 |#1|) |#1| (-1058 |#1|)) 113 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3452 (((-1058 (-478)) (-478)) 62 T ELT)) (-3454 (((-1058 |#1|) |#1|) 65 T ELT)) (-3790 (((-1058 |#1|) (-1058 |#1|) (-478) (-478)) 100 T ELT)) (-3457 (((-1058 |#1|) (-1 |#1| (-478)) (-1058 |#1|)) 72 T ELT)) (-3450 (((-3 (-1058 |#1|) #1#) (-1058 |#1|) (-1058 |#1|)) 37 T ELT)) (-3791 (((-1058 |#1|) (-1058 |#1|)) 98 T ELT)) (-3752 (((-1058 |#1|) (-1058 |#1|) |#1|) 77 T ELT)) (-3456 (((-1058 |#1|) (-1058 |#1|)) 68 T ELT)) (-3458 (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 78 T ELT)) (-3930 (((-1058 |#1|) |#1|) 73 T ELT)) (-3459 (((-1058 |#1|) (-1058 (-1058 |#1|))) 88 T ELT)) (-3933 (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 38 T ELT)) (-3821 (((-1058 |#1|) (-1058 |#1|)) 21 T ELT) (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 23 T ELT)) (-3823 (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 17 T ELT)) (* (((-1058 |#1|) (-1058 |#1|) |#1|) 29 T ELT) (((-1058 |#1|) |#1| (-1058 |#1|)) 26 T ELT) (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 27 T ELT))) +(((-1064 |#1|) (-10 -7 (-15 -3823 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3821 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3821 ((-1058 |#1|) (-1058 |#1|))) (-15 * ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 * ((-1058 |#1|) |#1| (-1058 |#1|))) (-15 * ((-1058 |#1|) (-1058 |#1|) |#1|)) (-15 -3450 ((-3 (-1058 |#1|) #1="failed") (-1058 |#1|) (-1058 |#1|))) (-15 -3933 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3451 ((-3 (-1058 |#1|) #1#) (-1058 |#1|))) (-15 -3922 ((-1058 |#1|) |#1| (-478))) (-15 -3452 ((-1058 (-478)) (-478))) (-15 -3453 ((-1058 (-478)) (-478))) (-15 -3454 ((-1058 |#1|) |#1|)) (-15 -3455 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3456 ((-1058 |#1|) (-1058 |#1|))) (-15 -3457 ((-1058 |#1|) (-1 |#1| (-478)) (-1058 |#1|))) (-15 -3930 ((-1058 |#1|) |#1|)) (-15 -3752 ((-1058 |#1|) (-1058 |#1|) |#1|)) (-15 -3458 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3794 ((-1058 |#1|) (-1058 |#1|))) (-15 -3789 ((-1058 |#1|) (-1058 |#1|))) (-15 -3459 ((-1058 |#1|) (-1058 (-1058 |#1|)))) (-15 -3793 ((-1058 |#1|) (-1058 |#1|))) (-15 -3792 ((-1058 |#1|) (-1058 |#1|))) (-15 -3791 ((-1058 |#1|) (-1058 |#1|))) (-15 -3790 ((-1058 |#1|) (-1058 |#1|) (-478) (-478))) (-15 -3788 ((-1058 |#1|) (-478) (-478) (-1058 |#1|))) (-15 -3787 ((-1058 |#1|) (-478) (-478) (-1058 |#1|))) (IF (|has| |#1| (-38 (-343 (-478)))) (PROGN (-15 -3796 ((-1058 |#1|) |#1| (-1058 |#1|))) (-15 -3460 ((-1058 |#1|) |#1| (-1 (-1058 |#1|)))) (-15 -3461 ((-1058 |#1|) (-1058 (-1058 |#1|)))) (-15 -3462 ((-1058 |#1|) (-343 (-478)) (-1058 |#1|)))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -3463 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3464 ((-1058 |#1|) (-1 |#1| (-478)) |#1| (-1 (-1058 |#1|)))) (-15 -3465 ((-1058 |#1|) |#1| (-1058 |#1|)))) |%noBranch|)) (-954)) (T -1064)) +((-3465 (*1 *2 *3 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-308)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (-3464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-478))) (-5 *5 (-1 (-1058 *4))) (-4 *4 (-308)) (-4 *4 (-954)) (-5 *2 (-1058 *4)) (-5 *1 (-1064 *4)))) (-3463 (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-308)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (-3462 (*1 *2 *3 *2) (-12 (-5 *2 (-1058 *4)) (-4 *4 (-38 *3)) (-4 *4 (-954)) (-5 *3 (-343 (-478))) (-5 *1 (-1064 *4)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-1058 (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1064 *4)) (-4 *4 (-38 (-343 (-478)))) (-4 *4 (-954)))) (-3460 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1058 *3))) (-5 *2 (-1058 *3)) (-5 *1 (-1064 *3)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)))) (-3796 (*1 *2 *3 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (-3787 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1058 *4)) (-5 *3 (-478)) (-4 *4 (-954)) (-5 *1 (-1064 *4)))) (-3788 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1058 *4)) (-5 *3 (-478)) (-4 *4 (-954)) (-5 *1 (-1064 *4)))) (-3790 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1058 *4)) (-5 *3 (-478)) (-4 *4 (-954)) (-5 *1 (-1064 *4)))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (-3792 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (-3793 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-1058 (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1064 *4)) (-4 *4 (-954)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (-3794 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (-3458 (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (-3752 (*1 *2 *2 *3) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (-3930 (*1 *2 *3) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1064 *3)) (-4 *3 (-954)))) (-3457 (*1 *2 *3 *2) (-12 (-5 *2 (-1058 *4)) (-5 *3 (-1 *4 (-478))) (-4 *4 (-954)) (-5 *1 (-1064 *4)))) (-3456 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (-3455 (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (-3454 (*1 *2 *3) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1064 *3)) (-4 *3 (-954)))) (-3453 (*1 *2 *3) (-12 (-5 *2 (-1058 (-478))) (-5 *1 (-1064 *4)) (-4 *4 (-954)) (-5 *3 (-478)))) (-3452 (*1 *2 *3) (-12 (-5 *2 (-1058 (-478))) (-5 *1 (-1064 *4)) (-4 *4 (-954)) (-5 *3 (-478)))) (-3922 (*1 *2 *3 *4) (-12 (-5 *4 (-478)) (-5 *2 (-1058 *3)) (-5 *1 (-1064 *3)) (-4 *3 (-954)))) (-3451 (*1 *2 *2) (|partial| -12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (-3933 (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (-3450 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (-3821 (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) (-3823 (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3))))) +((-3476 (((-1058 |#1|) (-1058 |#1|)) 102 T ELT)) (-3623 (((-1058 |#1|) (-1058 |#1|)) 61 T ELT)) (-3467 (((-2 (|:| -3474 (-1058 |#1|)) (|:| -3475 (-1058 |#1|))) (-1058 |#1|)) 98 T ELT)) (-3474 (((-1058 |#1|) (-1058 |#1|)) 99 T ELT)) (-3466 (((-2 (|:| -3622 (-1058 |#1|)) (|:| -3618 (-1058 |#1|))) (-1058 |#1|)) 54 T ELT)) (-3622 (((-1058 |#1|) (-1058 |#1|)) 55 T ELT)) (-3478 (((-1058 |#1|) (-1058 |#1|)) 104 T ELT)) (-3621 (((-1058 |#1|) (-1058 |#1|)) 68 T ELT)) (-3926 (((-1058 |#1|) (-1058 |#1|)) 40 T ELT)) (-3927 (((-1058 |#1|) (-1058 |#1|)) 37 T ELT)) (-3479 (((-1058 |#1|) (-1058 |#1|)) 105 T ELT)) (-3620 (((-1058 |#1|) (-1058 |#1|)) 69 T ELT)) (-3477 (((-1058 |#1|) (-1058 |#1|)) 103 T ELT)) (-3619 (((-1058 |#1|) (-1058 |#1|)) 64 T ELT)) (-3475 (((-1058 |#1|) (-1058 |#1|)) 100 T ELT)) (-3618 (((-1058 |#1|) (-1058 |#1|)) 56 T ELT)) (-3482 (((-1058 |#1|) (-1058 |#1|)) 113 T ELT)) (-3470 (((-1058 |#1|) (-1058 |#1|)) 88 T ELT)) (-3480 (((-1058 |#1|) (-1058 |#1|)) 107 T ELT)) (-3468 (((-1058 |#1|) (-1058 |#1|)) 84 T ELT)) (-3484 (((-1058 |#1|) (-1058 |#1|)) 117 T ELT)) (-3472 (((-1058 |#1|) (-1058 |#1|)) 92 T ELT)) (-3485 (((-1058 |#1|) (-1058 |#1|)) 119 T ELT)) (-3473 (((-1058 |#1|) (-1058 |#1|)) 94 T ELT)) (-3483 (((-1058 |#1|) (-1058 |#1|)) 115 T ELT)) (-3471 (((-1058 |#1|) (-1058 |#1|)) 90 T ELT)) (-3481 (((-1058 |#1|) (-1058 |#1|)) 109 T ELT)) (-3469 (((-1058 |#1|) (-1058 |#1|)) 86 T ELT)) (** (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 41 T ELT))) +(((-1065 |#1|) (-10 -7 (-15 -3927 ((-1058 |#1|) (-1058 |#1|))) (-15 -3926 ((-1058 |#1|) (-1058 |#1|))) (-15 ** ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3466 ((-2 (|:| -3622 (-1058 |#1|)) (|:| -3618 (-1058 |#1|))) (-1058 |#1|))) (-15 -3622 ((-1058 |#1|) (-1058 |#1|))) (-15 -3618 ((-1058 |#1|) (-1058 |#1|))) (-15 -3623 ((-1058 |#1|) (-1058 |#1|))) (-15 -3619 ((-1058 |#1|) (-1058 |#1|))) (-15 -3621 ((-1058 |#1|) (-1058 |#1|))) (-15 -3620 ((-1058 |#1|) (-1058 |#1|))) (-15 -3468 ((-1058 |#1|) (-1058 |#1|))) (-15 -3469 ((-1058 |#1|) (-1058 |#1|))) (-15 -3470 ((-1058 |#1|) (-1058 |#1|))) (-15 -3471 ((-1058 |#1|) (-1058 |#1|))) (-15 -3472 ((-1058 |#1|) (-1058 |#1|))) (-15 -3473 ((-1058 |#1|) (-1058 |#1|))) (-15 -3467 ((-2 (|:| -3474 (-1058 |#1|)) (|:| -3475 (-1058 |#1|))) (-1058 |#1|))) (-15 -3474 ((-1058 |#1|) (-1058 |#1|))) (-15 -3475 ((-1058 |#1|) (-1058 |#1|))) (-15 -3476 ((-1058 |#1|) (-1058 |#1|))) (-15 -3477 ((-1058 |#1|) (-1058 |#1|))) (-15 -3478 ((-1058 |#1|) (-1058 |#1|))) (-15 -3479 ((-1058 |#1|) (-1058 |#1|))) (-15 -3480 ((-1058 |#1|) (-1058 |#1|))) (-15 -3481 ((-1058 |#1|) (-1058 |#1|))) (-15 -3482 ((-1058 |#1|) (-1058 |#1|))) (-15 -3483 ((-1058 |#1|) (-1058 |#1|))) (-15 -3484 ((-1058 |#1|) (-1058 |#1|))) (-15 -3485 ((-1058 |#1|) (-1058 |#1|)))) (-38 (-343 (-478)))) (T -1065)) +((-3485 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3478 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3477 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3476 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3467 (*1 *2 *3) (-12 (-4 *4 (-38 (-343 (-478)))) (-5 *2 (-2 (|:| -3474 (-1058 *4)) (|:| -3475 (-1058 *4)))) (-5 *1 (-1065 *4)) (-5 *3 (-1058 *4)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3470 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3468 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3620 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3621 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3619 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3623 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3618 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3622 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3466 (*1 *2 *3) (-12 (-4 *4 (-38 (-343 (-478)))) (-5 *2 (-2 (|:| -3622 (-1058 *4)) (|:| -3618 (-1058 *4)))) (-5 *1 (-1065 *4)) (-5 *3 (-1058 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3926 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) (-3927 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3))))) +((-3476 (((-1058 |#1|) (-1058 |#1|)) 60 T ELT)) (-3623 (((-1058 |#1|) (-1058 |#1|)) 42 T ELT)) (-3474 (((-1058 |#1|) (-1058 |#1|)) 56 T ELT)) (-3622 (((-1058 |#1|) (-1058 |#1|)) 38 T ELT)) (-3478 (((-1058 |#1|) (-1058 |#1|)) 63 T ELT)) (-3621 (((-1058 |#1|) (-1058 |#1|)) 45 T ELT)) (-3926 (((-1058 |#1|) (-1058 |#1|)) 34 T ELT)) (-3927 (((-1058 |#1|) (-1058 |#1|)) 29 T ELT)) (-3479 (((-1058 |#1|) (-1058 |#1|)) 64 T ELT)) (-3620 (((-1058 |#1|) (-1058 |#1|)) 46 T ELT)) (-3477 (((-1058 |#1|) (-1058 |#1|)) 61 T ELT)) (-3619 (((-1058 |#1|) (-1058 |#1|)) 43 T ELT)) (-3475 (((-1058 |#1|) (-1058 |#1|)) 58 T ELT)) (-3618 (((-1058 |#1|) (-1058 |#1|)) 40 T ELT)) (-3482 (((-1058 |#1|) (-1058 |#1|)) 68 T ELT)) (-3470 (((-1058 |#1|) (-1058 |#1|)) 50 T ELT)) (-3480 (((-1058 |#1|) (-1058 |#1|)) 66 T ELT)) (-3468 (((-1058 |#1|) (-1058 |#1|)) 48 T ELT)) (-3484 (((-1058 |#1|) (-1058 |#1|)) 71 T ELT)) (-3472 (((-1058 |#1|) (-1058 |#1|)) 53 T ELT)) (-3485 (((-1058 |#1|) (-1058 |#1|)) 72 T ELT)) (-3473 (((-1058 |#1|) (-1058 |#1|)) 54 T ELT)) (-3483 (((-1058 |#1|) (-1058 |#1|)) 70 T ELT)) (-3471 (((-1058 |#1|) (-1058 |#1|)) 52 T ELT)) (-3481 (((-1058 |#1|) (-1058 |#1|)) 69 T ELT)) (-3469 (((-1058 |#1|) (-1058 |#1|)) 51 T ELT)) (** (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 36 T ELT))) +(((-1066 |#1|) (-10 -7 (-15 -3927 ((-1058 |#1|) (-1058 |#1|))) (-15 -3926 ((-1058 |#1|) (-1058 |#1|))) (-15 ** ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3622 ((-1058 |#1|) (-1058 |#1|))) (-15 -3618 ((-1058 |#1|) (-1058 |#1|))) (-15 -3623 ((-1058 |#1|) (-1058 |#1|))) (-15 -3619 ((-1058 |#1|) (-1058 |#1|))) (-15 -3621 ((-1058 |#1|) (-1058 |#1|))) (-15 -3620 ((-1058 |#1|) (-1058 |#1|))) (-15 -3468 ((-1058 |#1|) (-1058 |#1|))) (-15 -3469 ((-1058 |#1|) (-1058 |#1|))) (-15 -3470 ((-1058 |#1|) (-1058 |#1|))) (-15 -3471 ((-1058 |#1|) (-1058 |#1|))) (-15 -3472 ((-1058 |#1|) (-1058 |#1|))) (-15 -3473 ((-1058 |#1|) (-1058 |#1|))) (-15 -3474 ((-1058 |#1|) (-1058 |#1|))) (-15 -3475 ((-1058 |#1|) (-1058 |#1|))) (-15 -3476 ((-1058 |#1|) (-1058 |#1|))) (-15 -3477 ((-1058 |#1|) (-1058 |#1|))) (-15 -3478 ((-1058 |#1|) (-1058 |#1|))) (-15 -3479 ((-1058 |#1|) (-1058 |#1|))) (-15 -3480 ((-1058 |#1|) (-1058 |#1|))) (-15 -3481 ((-1058 |#1|) (-1058 |#1|))) (-15 -3482 ((-1058 |#1|) (-1058 |#1|))) (-15 -3483 ((-1058 |#1|) (-1058 |#1|))) (-15 -3484 ((-1058 |#1|) (-1058 |#1|))) (-15 -3485 ((-1058 |#1|) (-1058 |#1|)))) (-38 (-343 (-478)))) (T -1066)) +((-3485 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3478 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3477 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3476 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3470 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3468 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3620 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3621 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3619 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3623 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3618 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3622 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3926 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) (-3927 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) +((-3486 (((-862 |#2|) |#2| |#2|) 51 T ELT)) (-3487 ((|#2| |#2| |#1|) 19 (|has| |#1| (-254)) ELT))) +(((-1067 |#1| |#2|) (-10 -7 (-15 -3486 ((-862 |#2|) |#2| |#2|)) (IF (|has| |#1| (-254)) (-15 -3487 (|#2| |#2| |#1|)) |%noBranch|)) (-489) (-1144 |#1|)) (T -1067)) +((-3487 (*1 *2 *2 *3) (-12 (-4 *3 (-254)) (-4 *3 (-489)) (-5 *1 (-1067 *3 *2)) (-4 *2 (-1144 *3)))) (-3486 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-862 *3)) (-5 *1 (-1067 *4 *3)) (-4 *3 (-1144 *4))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3495 (($ $ (-578 (-687))) 79 T ELT)) (-3872 (($) 33 T ELT)) (-3504 (($ $) 51 T ELT)) (-3735 (((-578 $) $) 60 T ELT)) (-3510 (((-83) $) 19 T ELT)) (-3488 (((-578 (-847 |#2|)) $) 86 T ELT)) (-3489 (($ $) 80 T ELT)) (-3505 (((-687) $) 47 T ELT)) (-3598 (($) 32 T ELT)) (-3498 (($ $ (-578 (-687)) (-847 |#2|)) 72 T ELT) (($ $ (-578 (-687)) (-687)) 73 T ELT) (($ $ (-687) (-847 |#2|)) 75 T ELT)) (-3502 (($ $ $) 57 T ELT) (($ (-578 $)) 59 T ELT)) (-3490 (((-687) $) 87 T ELT)) (-3511 (((-83) $) 15 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3509 (((-83) $) 22 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3491 (((-143) $) 85 T ELT)) (-3494 (((-847 |#2|) $) 81 T ELT)) (-3493 (((-687) $) 82 T ELT)) (-3492 (((-83) $) 84 T ELT)) (-3496 (($ $ (-578 (-687)) (-143)) 78 T ELT)) (-3503 (($ $) 52 T ELT)) (-3930 (((-765) $) 99 T ELT)) (-3497 (($ $ (-578 (-687)) (-83)) 77 T ELT)) (-3506 (((-578 $) $) 11 T ELT)) (-3507 (($ $ (-687)) 46 T ELT)) (-3508 (($ $) 43 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3499 (($ $ $ (-847 |#2|) (-687)) 68 T ELT)) (-3500 (($ $ (-847 |#2|)) 67 T ELT)) (-3501 (($ $ (-578 (-687)) (-847 |#2|)) 66 T ELT) (($ $ (-578 (-687)) (-687)) 70 T ELT) (((-687) $ (-847 |#2|)) 71 T ELT)) (-3037 (((-83) $ $) 92 T ELT))) +(((-1068 |#1| |#2|) (-13 (-1005) (-10 -8 (-15 -3511 ((-83) $)) (-15 -3510 ((-83) $)) (-15 -3509 ((-83) $)) (-15 -3598 ($)) (-15 -3872 ($)) (-15 -3508 ($ $)) (-15 -3507 ($ $ (-687))) (-15 -3506 ((-578 $) $)) (-15 -3505 ((-687) $)) (-15 -3504 ($ $)) (-15 -3503 ($ $)) (-15 -3502 ($ $ $)) (-15 -3502 ($ (-578 $))) (-15 -3735 ((-578 $) $)) (-15 -3501 ($ $ (-578 (-687)) (-847 |#2|))) (-15 -3500 ($ $ (-847 |#2|))) (-15 -3499 ($ $ $ (-847 |#2|) (-687))) (-15 -3498 ($ $ (-578 (-687)) (-847 |#2|))) (-15 -3501 ($ $ (-578 (-687)) (-687))) (-15 -3498 ($ $ (-578 (-687)) (-687))) (-15 -3501 ((-687) $ (-847 |#2|))) (-15 -3498 ($ $ (-687) (-847 |#2|))) (-15 -3497 ($ $ (-578 (-687)) (-83))) (-15 -3496 ($ $ (-578 (-687)) (-143))) (-15 -3495 ($ $ (-578 (-687)))) (-15 -3494 ((-847 |#2|) $)) (-15 -3493 ((-687) $)) (-15 -3492 ((-83) $)) (-15 -3491 ((-143) $)) (-15 -3490 ((-687) $)) (-15 -3489 ($ $)) (-15 -3488 ((-578 (-847 |#2|)) $)))) (-823) (-954)) (T -1068)) +((-3511 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3598 (*1 *1) (-12 (-5 *1 (-1068 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954)))) (-3872 (*1 *1) (-12 (-5 *1 (-1068 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954)))) (-3508 (*1 *1 *1) (-12 (-5 *1 (-1068 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954)))) (-3507 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-578 (-1068 *3 *4))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3504 (*1 *1 *1) (-12 (-5 *1 (-1068 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954)))) (-3503 (*1 *1 *1) (-12 (-5 *1 (-1068 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954)))) (-3502 (*1 *1 *1 *1) (-12 (-5 *1 (-1068 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-578 (-1068 *3 *4))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-578 (-1068 *3 *4))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3501 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-687))) (-5 *3 (-847 *5)) (-4 *5 (-954)) (-5 *1 (-1068 *4 *5)) (-14 *4 (-823)))) (-3500 (*1 *1 *1 *2) (-12 (-5 *2 (-847 *4)) (-4 *4 (-954)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)))) (-3499 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-847 *5)) (-5 *3 (-687)) (-4 *5 (-954)) (-5 *1 (-1068 *4 *5)) (-14 *4 (-823)))) (-3498 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-687))) (-5 *3 (-847 *5)) (-4 *5 (-954)) (-5 *1 (-1068 *4 *5)) (-14 *4 (-823)))) (-3501 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-687))) (-5 *3 (-687)) (-5 *1 (-1068 *4 *5)) (-14 *4 (-823)) (-4 *5 (-954)))) (-3498 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-687))) (-5 *3 (-687)) (-5 *1 (-1068 *4 *5)) (-14 *4 (-823)) (-4 *5 (-954)))) (-3501 (*1 *2 *1 *3) (-12 (-5 *3 (-847 *5)) (-4 *5 (-954)) (-5 *2 (-687)) (-5 *1 (-1068 *4 *5)) (-14 *4 (-823)))) (-3498 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-687)) (-5 *3 (-847 *5)) (-4 *5 (-954)) (-5 *1 (-1068 *4 *5)) (-14 *4 (-823)))) (-3497 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-687))) (-5 *3 (-83)) (-5 *1 (-1068 *4 *5)) (-14 *4 (-823)) (-4 *5 (-954)))) (-3496 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-687))) (-5 *3 (-143)) (-5 *1 (-1068 *4 *5)) (-14 *4 (-823)) (-4 *5 (-954)))) (-3495 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-687))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3494 (*1 *2 *1) (-12 (-5 *2 (-847 *4)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-143)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3489 (*1 *1 *1) (-12 (-5 *1 (-1068 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954)))) (-3488 (*1 *2 *1) (-12 (-5 *2 (-578 (-847 *4))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3512 ((|#2| $) 11 T ELT)) (-3513 ((|#1| $) 10 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3514 (($ |#1| |#2|) 9 T ELT)) (-3930 (((-765) $) 16 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-1069 |#1| |#2|) (-13 (-1005) (-10 -8 (-15 -3514 ($ |#1| |#2|)) (-15 -3513 (|#1| $)) (-15 -3512 (|#2| $)))) (-1005) (-1005)) (T -1069)) +((-3514 (*1 *1 *2 *3) (-12 (-5 *1 (-1069 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))) (-3513 (*1 *2 *1) (-12 (-4 *2 (-1005)) (-5 *1 (-1069 *2 *3)) (-4 *3 (-1005)))) (-3512 (*1 *2 *1) (-12 (-4 *2 (-1005)) (-5 *1 (-1069 *3 *2)) (-4 *3 (-1005))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3515 (((-1038) $) 9 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 15 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-1070) (-13 (-987) (-10 -8 (-15 -3515 ((-1038) $))))) (T -1070)) +((-3515 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-1070))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3112 (((-1078 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-254)) (|has| |#1| (-308))) ELT)) (-3065 (((-578 (-986)) $) NIL T ELT)) (-3815 (((-1079) $) 11 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-2049 (($ $) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-2047 (((-83) $) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-3755 (($ $ (-478)) NIL T ELT) (($ $ (-478) (-478)) 75 T ELT)) (-3758 (((-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) $) NIL T ELT)) (-3715 (((-1078 |#1| |#2| |#3|) $) 42 T ELT)) (-3712 (((-3 (-1078 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3713 (((-1078 |#1| |#2| |#3|) $) 33 T ELT)) (-3476 (($ $) 116 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3623 (($ $) 92 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1299 (((-3 $ #1#) $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-3759 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-3021 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-1595 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3474 (($ $) 112 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3622 (($ $) 88 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3607 (((-478) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) ELT)) (-3802 (($ (-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|)))) NIL T ELT)) (-3478 (($ $) 120 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3621 (($ $) 96 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-1078 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1079) #1#) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-943 (-1079))) (|has| |#1| (-308))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) ELT) (((-3 (-478) #1#) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) ELT)) (-3139 (((-1078 |#1| |#2| |#3|) $) 140 T ELT) (((-1079) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-943 (-1079))) (|has| |#1| (-308))) ELT) (((-343 (-478)) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) ELT) (((-478) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) ELT)) (-3714 (($ $) 37 T ELT) (($ (-478) $) 38 T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3943 (($ $) NIL T ELT)) (-2265 (((-625 (-1078 |#1| |#2| |#3|)) (-625 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-1078 |#1| |#2| |#3|))) (|:| |vec| (-1168 (-1078 |#1| |#2| |#3|)))) (-625 $) (-1168 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-575 (-478))) (|has| |#1| (-308))) ELT) (((-625 (-478)) (-625 $)) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-575 (-478))) (|has| |#1| (-308))) ELT)) (-3451 (((-3 $ #1#) $) 54 T ELT)) (-3711 (((-343 (-850 |#1|)) $ (-478)) 74 (|has| |#1| (-489)) ELT) (((-343 (-850 |#1|)) $ (-478) (-478)) 76 (|has| |#1| (-489)) ELT)) (-2978 (($) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-477)) (|has| |#1| (-308))) ELT)) (-2547 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-3169 (((-83) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) ELT)) (-2876 (((-83) $) 28 T ELT)) (-3611 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-789 (-323))) (|has| |#1| (-308))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-789 (-478))) (|has| |#1| (-308))) ELT)) (-3756 (((-478) $) NIL T ELT) (((-478) $ (-478)) 26 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2980 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2982 (((-1078 |#1| |#2| |#3|) $) 44 (|has| |#1| (-308)) ELT)) (-2995 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3429 (((-627 $) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-1055)) (|has| |#1| (-308))) ELT)) (-3170 (((-83) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) ELT)) (-3761 (($ $ (-823)) NIL T ELT)) (-3799 (($ (-1 |#1| (-478)) $) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-478)) 19 T ELT) (($ $ (-986) (-478)) NIL T ELT) (($ $ (-578 (-986)) (-578 (-478))) NIL T ELT)) (-2515 (($ $ $) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-2841 (($ $ $) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1078 |#1| |#2| |#3|) (-1078 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-308)) ELT)) (-3926 (($ $) 81 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2266 (((-625 (-1078 |#1| |#2| |#3|)) (-1168 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-1078 |#1| |#2| |#3|))) (|:| |vec| (-1168 (-1078 |#1| |#2| |#3|)))) (-1168 $) $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-575 (-478))) (|has| |#1| (-308))) ELT) (((-625 (-478)) (-1168 $)) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-575 (-478))) (|has| |#1| (-308))) ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3763 (($ (-478) (-1078 |#1| |#2| |#3|)) 36 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3796 (($ $) 79 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1104))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3796 (|#1| |#1| (-1079)))) (|has| |#1| (-15 -3065 ((-578 (-1079)) |#1|))))) ELT) (($ $ (-1165 |#2|)) 80 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3430 (($) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-1055)) (|has| |#1| (-308))) CONST)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-308)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3111 (($ $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-254)) (|has| |#1| (-308))) ELT)) (-3113 (((-1078 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-477)) (|has| |#1| (-308))) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3753 (($ $ (-478)) 158 T ELT)) (-3450 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3927 (($ $) 82 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3752 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-478)))) ELT) (($ $ (-1079) (-1078 |#1| |#2| |#3|)) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-447 (-1079) (-1078 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-578 (-1079)) (-578 (-1078 |#1| |#2| |#3|))) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-447 (-1079) (-1078 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-578 (-245 (-1078 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-256 (-1078 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-245 (-1078 |#1| |#2| |#3|))) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-256 (-1078 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-1078 |#1| |#2| |#3|) (-1078 |#1| |#2| |#3|)) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-256 (-1078 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-578 (-1078 |#1| |#2| |#3|)) (-578 (-1078 |#1| |#2| |#3|))) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-256 (-1078 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT)) (-1594 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3784 ((|#1| $ (-478)) NIL T ELT) (($ $ $) 61 (|has| (-478) (-1015)) ELT) (($ $ (-1078 |#1| |#2| |#3|)) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-238 (-1078 |#1| |#2| |#3|) (-1078 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3742 (($ $ (-1 (-1078 |#1| |#2| |#3|) (-1078 |#1| |#2| |#3|)) (-687)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 (-1078 |#1| |#2| |#3|) (-1078 |#1| |#2| |#3|))) NIL (|has| |#1| (-308)) ELT) (($ $ (-1165 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-802 (-1079))) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1079))) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-802 (-1079))) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-1079) (-687)) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-802 (-1079))) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-802 (-1079))) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT)) (-2979 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2981 (((-1078 |#1| |#2| |#3|) $) 46 (|has| |#1| (-308)) ELT)) (-3932 (((-478) $) 43 T ELT)) (-3479 (($ $) 122 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3620 (($ $) 98 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 118 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3619 (($ $) 94 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3475 (($ $) 114 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3618 (($ $) 90 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3956 (((-467) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-548 (-467))) (|has| |#1| (-308))) ELT) (((-323) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-926)) (|has| |#1| (-308))) ELT) (((-177) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-926)) (|has| |#1| (-308))) ELT) (((-793 (-323)) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-548 (-793 (-323)))) (|has| |#1| (-308))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-548 (-793 (-478)))) (|has| |#1| (-308))) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| (-1078 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-2875 (($ $) NIL T ELT)) (-3930 (((-765) $) 162 T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1078 |#1| |#2| |#3|)) 30 T ELT) (($ (-1165 |#2|)) 25 T ELT) (($ (-1079)) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-943 (-1079))) (|has| |#1| (-308))) ELT) (($ $) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT) (($ (-343 (-478))) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) (|has| |#1| (-38 (-343 (-478))))) ELT)) (-3661 ((|#1| $ (-478)) 77 T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-1078 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-116)) (|has| |#1| (-308))) (|has| |#1| (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-3757 ((|#1| $) 12 T ELT)) (-3114 (((-1078 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-477)) (|has| |#1| (-308))) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3482 (($ $) 128 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 104 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2048 (((-83) $ $) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-3480 (($ $) 124 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 100 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3484 (($ $) 132 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3472 (($ $) 108 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3754 ((|#1| $ (-478)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-478)))) (|has| |#1| (-15 -3930 (|#1| (-1079))))) ELT)) (-3485 (($ $) 134 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3473 (($ $) 110 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3483 (($ $) 130 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) 106 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3481 (($ $) 126 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3469 (($ $) 102 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3367 (($ $) NIL (-12 (|has| (-1078 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) ELT)) (-2644 (($) 21 T CONST)) (-2650 (($) 16 T CONST)) (-2653 (($ $ (-1 (-1078 |#1| |#2| |#3|) (-1078 |#1| |#2| |#3|)) (-687)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 (-1078 |#1| |#2| |#3|) (-1078 |#1| |#2| |#3|))) NIL (|has| |#1| (-308)) ELT) (($ $ (-1165 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-802 (-1079))) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1079))) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-802 (-1079))) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-1079) (-687)) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-802 (-1079))) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-802 (-1079))) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT)) (-2550 (((-83) $ $) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-2551 (((-83) $ $) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-2669 (((-83) $ $) NIL (OR (-12 (|has| (-1078 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1078 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) 49 (|has| |#1| (-308)) ELT) (($ (-1078 |#1| |#2| |#3|) (-1078 |#1| |#2| |#3|)) 50 (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 23 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 60 T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 137 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1078 |#1| |#2| |#3|)) 48 (|has| |#1| (-308)) ELT) (($ (-1078 |#1| |#2| |#3|) $) 47 (|has| |#1| (-308)) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-1071 |#1| |#2| |#3|) (-13 (-1132 |#1| (-1078 |#1| |#2| |#3|)) (-799 $ (-1165 |#2|)) (-10 -8 (-15 -3930 ($ (-1165 |#2|))) (IF (|has| |#1| (-38 (-343 (-478)))) (-15 -3796 ($ $ (-1165 |#2|))) |%noBranch|))) (-954) (-1079) |#1|) (T -1071)) +((-3930 (*1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-954)) (-14 *5 *3))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3)))) +((-3516 ((|#2| |#2| (-996 |#2|)) 26 T ELT) ((|#2| |#2| (-1079)) 28 T ELT))) +(((-1072 |#1| |#2|) (-10 -7 (-15 -3516 (|#2| |#2| (-1079))) (-15 -3516 (|#2| |#2| (-996 |#2|)))) (-13 (-489) (-943 (-478)) (-575 (-478))) (-13 (-357 |#1|) (-131) (-27) (-1104))) (T -1072)) +((-3516 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-357 *4) (-131) (-27) (-1104))) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1072 *4 *2)))) (-3516 (*1 *2 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1072 *4 *2)) (-4 *2 (-13 (-357 *4) (-131) (-27) (-1104)))))) +((-3516 (((-3 (-343 (-850 |#1|)) (-261 |#1|)) (-343 (-850 |#1|)) (-996 (-343 (-850 |#1|)))) 31 T ELT) (((-343 (-850 |#1|)) (-850 |#1|) (-996 (-850 |#1|))) 44 T ELT) (((-3 (-343 (-850 |#1|)) (-261 |#1|)) (-343 (-850 |#1|)) (-1079)) 33 T ELT) (((-343 (-850 |#1|)) (-850 |#1|) (-1079)) 36 T ELT))) +(((-1073 |#1|) (-10 -7 (-15 -3516 ((-343 (-850 |#1|)) (-850 |#1|) (-1079))) (-15 -3516 ((-3 (-343 (-850 |#1|)) (-261 |#1|)) (-343 (-850 |#1|)) (-1079))) (-15 -3516 ((-343 (-850 |#1|)) (-850 |#1|) (-996 (-850 |#1|)))) (-15 -3516 ((-3 (-343 (-850 |#1|)) (-261 |#1|)) (-343 (-850 |#1|)) (-996 (-343 (-850 |#1|)))))) (-13 (-489) (-943 (-478)))) (T -1073)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-343 (-850 *5)))) (-5 *3 (-343 (-850 *5))) (-4 *5 (-13 (-489) (-943 (-478)))) (-5 *2 (-3 *3 (-261 *5))) (-5 *1 (-1073 *5)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-850 *5))) (-5 *3 (-850 *5)) (-4 *5 (-13 (-489) (-943 (-478)))) (-5 *2 (-343 *3)) (-5 *1 (-1073 *5)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-489) (-943 (-478)))) (-5 *2 (-3 (-343 (-850 *5)) (-261 *5))) (-5 *1 (-1073 *5)) (-5 *3 (-343 (-850 *5))))) (-3516 (*1 *2 *3 *4) (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-489) (-943 (-478)))) (-5 *2 (-343 (-850 *5))) (-5 *1 (-1073 *5)) (-5 *3 (-850 *5))))) +((-2552 (((-83) $ $) 172 T ELT)) (-3171 (((-83) $) 43 T ELT)) (-3751 (((-1168 |#1|) $ (-687)) NIL T ELT)) (-3065 (((-578 (-986)) $) NIL T ELT)) (-3749 (($ (-1074 |#1|)) NIL T ELT)) (-3067 (((-1074 $) $ (-986)) 82 T ELT) (((-1074 |#1|) $) 71 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) 165 (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2803 (((-687) $) NIL T ELT) (((-687) $ (-578 (-986))) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3739 (($ $ $) 159 (|has| |#1| (-489)) ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) 96 (|has| |#1| (-814)) ELT)) (-3759 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-385)) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) 116 (|has| |#1| (-814)) ELT)) (-1595 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3745 (($ $ (-687)) 61 T ELT)) (-3744 (($ $ (-687)) 63 T ELT)) (-3735 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-385)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-986) #1#) $) NIL T ELT)) (-3139 ((|#1| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-986) $) NIL T ELT)) (-3740 (($ $ $ (-986)) NIL (|has| |#1| (-144)) ELT) ((|#1| $ $) 161 (|has| |#1| (-144)) ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3943 (($ $) 80 T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2547 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3743 (($ $ $) 132 T ELT)) (-3737 (($ $ $) NIL (|has| |#1| (-489)) ELT)) (-3736 (((-2 (|:| -3938 |#1|) (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3487 (($ $) 166 (|has| |#1| (-385)) ELT) (($ $ (-986)) NIL (|has| |#1| (-385)) ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-814)) ELT)) (-1611 (($ $ |#1| (-687) $) 69 T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-986) (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-986) (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-3517 (((-765) $ (-765)) 149 T ELT)) (-3756 (((-687) $ $) NIL (|has| |#1| (-489)) ELT)) (-2396 (((-83) $) 48 T ELT)) (-2404 (((-687) $) NIL T ELT)) (-3429 (((-627 $) $) NIL (|has| |#1| (-1055)) ELT)) (-3068 (($ (-1074 |#1|) (-986)) 73 T ELT) (($ (-1074 $) (-986)) 90 T ELT)) (-3761 (($ $ (-687)) 51 T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-2805 (((-578 $) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-687)) 88 T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ (-986)) NIL T ELT) (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 154 T ELT)) (-2804 (((-687) $) NIL T ELT) (((-687) $ (-986)) NIL T ELT) (((-578 (-687)) $ (-578 (-986))) NIL T ELT)) (-1612 (($ (-1 (-687) (-687)) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3750 (((-1074 |#1|) $) NIL T ELT)) (-3066 (((-3 (-986) #1#) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) NIL T ELT) (((-625 |#1|) (-1168 $)) NIL T ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) 76 T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3746 (((-2 (|:| -1960 $) (|:| -2886 $)) $ (-687)) 60 T ELT)) (-2807 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2806 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-2 (|:| |var| (-986)) (|:| -2387 (-687))) #1#) $) NIL T ELT)) (-3796 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3430 (($) NIL (|has| |#1| (-1055)) CONST)) (-3226 (((-1023) $) NIL T ELT)) (-1784 (((-83) $) 50 T ELT)) (-1783 ((|#1| $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 104 (|has| |#1| (-385)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) 168 (|has| |#1| (-385)) ELT)) (-3722 (($ $ (-687) |#1| $) 124 T ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) 102 (|has| |#1| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) 101 (|has| |#1| (-814)) ELT)) (-3716 (((-341 $) $) 109 (|has| |#1| (-814)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3450 (((-3 $ #1#) $ |#1|) 164 (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) 125 (|has| |#1| (-489)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3752 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-986) |#1|) NIL T ELT) (($ $ (-578 (-986)) (-578 |#1|)) NIL T ELT) (($ $ (-986) $) NIL T ELT) (($ $ (-578 (-986)) (-578 $)) NIL T ELT)) (-1594 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3784 ((|#1| $ |#1|) 151 T ELT) (($ $ $) 152 T ELT) (((-343 $) (-343 $) (-343 $)) NIL (|has| |#1| (-489)) ELT) ((|#1| (-343 $) |#1|) NIL (|has| |#1| (-308)) ELT) (((-343 $) $ (-343 $)) NIL (|has| |#1| (-489)) ELT)) (-3748 (((-3 $ #1#) $ (-687)) 54 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 173 (|has| |#1| (-308)) ELT)) (-3741 (($ $ (-986)) NIL (|has| |#1| (-144)) ELT) ((|#1| $) 157 (|has| |#1| (-144)) ELT)) (-3742 (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986))) NIL T ELT) (($ $ (-986)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1079)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-804 (-1079))) ELT)) (-3932 (((-687) $) 78 T ELT) (((-687) $ (-986)) NIL T ELT) (((-578 (-687)) $ (-578 (-986))) NIL T ELT)) (-3956 (((-793 (-323)) $) NIL (-12 (|has| (-986) (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-986) (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-986) (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT)) (-2801 ((|#1| $) 163 (|has| |#1| (-385)) ELT) (($ $ (-986)) NIL (|has| |#1| (-385)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3738 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT) (((-3 (-343 $) #1#) (-343 $) $) NIL (|has| |#1| (-489)) ELT)) (-3930 (((-765) $) 150 T ELT) (($ (-478)) NIL T ELT) (($ |#1|) 77 T ELT) (($ (-986)) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3801 (((-578 |#1|) $) NIL T ELT)) (-3661 ((|#1| $ (-687)) NIL T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1610 (($ $ $ (-687)) 41 (|has| |#1| (-144)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2644 (($) 17 T CONST)) (-2650 (($) 19 T CONST)) (-2653 (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986))) NIL T ELT) (($ $ (-986)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#1| (-804 (-1079))) ELT)) (-3037 (((-83) $ $) 121 T ELT)) (-3933 (($ $ |#1|) 174 (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 91 T ELT)) (** (($ $ (-823)) 14 T ELT) (($ $ (-687)) 12 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 130 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1074 |#1|) (-13 (-1144 |#1|) (-10 -8 (-15 -3517 ((-765) $ (-765))) (-15 -3722 ($ $ (-687) |#1| $)))) (-954)) (T -1074)) +((-3517 (*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1074 *3)) (-4 *3 (-954)))) (-3722 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-687)) (-5 *1 (-1074 *3)) (-4 *3 (-954))))) +((-3942 (((-1074 |#2|) (-1 |#2| |#1|) (-1074 |#1|)) 13 T ELT))) +(((-1075 |#1| |#2|) (-10 -7 (-15 -3942 ((-1074 |#2|) (-1 |#2| |#1|) (-1074 |#1|)))) (-954) (-954)) (T -1075)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1074 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-5 *2 (-1074 *6)) (-5 *1 (-1075 *5 *6))))) +((-3955 (((-341 (-1074 (-343 |#4|))) (-1074 (-343 |#4|))) 51 T ELT)) (-3716 (((-341 (-1074 (-343 |#4|))) (-1074 (-343 |#4|))) 52 T ELT))) +(((-1076 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3716 ((-341 (-1074 (-343 |#4|))) (-1074 (-343 |#4|)))) (-15 -3955 ((-341 (-1074 (-343 |#4|))) (-1074 (-343 |#4|))))) (-710) (-749) (-385) (-854 |#3| |#1| |#2|)) (T -1076)) +((-3955 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-385)) (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-341 (-1074 (-343 *7)))) (-5 *1 (-1076 *4 *5 *6 *7)) (-5 *3 (-1074 (-343 *7))))) (-3716 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-385)) (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-341 (-1074 (-343 *7)))) (-5 *1 (-1076 *4 *5 *6 *7)) (-5 *3 (-1074 (-343 *7)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3065 (((-578 (-986)) $) NIL T ELT)) (-3815 (((-1079) $) 11 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3755 (($ $ (-343 (-478))) NIL T ELT) (($ $ (-343 (-478)) (-343 (-478))) NIL T ELT)) (-3758 (((-1058 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|))) $) NIL T ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3623 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-3021 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1595 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3622 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3802 (($ (-687) (-1058 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|)))) NIL T ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-1071 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1078 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3139 (((-1071 |#1| |#2| |#3|) $) NIL T ELT) (((-1078 |#1| |#2| |#3|) $) NIL T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3943 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3765 (((-343 (-478)) $) 59 T ELT)) (-2547 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3766 (($ (-343 (-478)) (-1071 |#1| |#2| |#3|)) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-2876 (((-83) $) NIL T ELT)) (-3611 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3756 (((-343 (-478)) $) NIL T ELT) (((-343 (-478)) $ (-343 (-478))) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2995 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3761 (($ $ (-823)) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-343 (-478))) 20 T ELT) (($ $ (-986) (-343 (-478))) NIL T ELT) (($ $ (-578 (-986)) (-578 (-343 (-478)))) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3926 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3764 (((-1071 |#1| |#2| |#3|) $) 41 T ELT)) (-3762 (((-3 (-1071 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3763 (((-1071 |#1| |#2| |#3|) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3796 (($ $) 39 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1104))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3796 (|#1| |#1| (-1079)))) (|has| |#1| (-15 -3065 ((-578 (-1079)) |#1|))))) ELT) (($ $ (-1165 |#2|)) 40 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-308)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3753 (($ $ (-343 (-478))) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3927 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3752 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) ELT)) (-1594 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3784 ((|#1| $ (-343 (-478))) NIL T ELT) (($ $ $) NIL (|has| (-343 (-478)) (-1015)) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3742 (($ $ (-1079)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-1165 |#2|)) 38 T ELT)) (-3932 (((-343 (-478)) $) NIL T ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) NIL T ELT)) (-3930 (((-765) $) 62 T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1071 |#1| |#2| |#3|)) 30 T ELT) (($ (-1078 |#1| |#2| |#3|)) 31 T ELT) (($ (-1165 |#2|)) 26 T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3661 ((|#1| $ (-343 (-478))) NIL T ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) NIL T CONST)) (-3757 ((|#1| $) 12 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3754 ((|#1| $ (-343 (-478))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) (|has| |#1| (-15 -3930 (|#1| (-1079))))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2644 (($) 22 T CONST)) (-2650 (($) 16 T CONST)) (-2653 (($ $ (-1079)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-1165 |#2|)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 24 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-1077 |#1| |#2| |#3|) (-13 (-1153 |#1| (-1071 |#1| |#2| |#3|)) (-799 $ (-1165 |#2|)) (-943 (-1078 |#1| |#2| |#3|)) (-550 (-1165 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-343 (-478)))) (-15 -3796 ($ $ (-1165 |#2|))) |%noBranch|))) (-954) (-1079) |#1|) (T -1077)) +((-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1077 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 129 T ELT)) (-3065 (((-578 (-986)) $) NIL T ELT)) (-3815 (((-1079) $) 119 T ELT)) (-3795 (((-1137 |#2| |#1|) $ (-687)) 69 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3755 (($ $ (-687)) 85 T ELT) (($ $ (-687) (-687)) 82 T ELT)) (-3758 (((-1058 (-2 (|:| |k| (-687)) (|:| |c| |#1|))) $) 105 T ELT)) (-3476 (($ $) 173 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3623 (($ $) 149 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3021 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) 169 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3622 (($ $) 145 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3802 (($ (-1058 (-2 (|:| |k| (-687)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1058 |#1|)) 113 T ELT)) (-3478 (($ $) 177 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3621 (($ $) 153 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3708 (($) NIL T CONST)) (-3943 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) 25 T ELT)) (-3800 (($ $) 28 T ELT)) (-3798 (((-850 |#1|) $ (-687)) 81 T ELT) (((-850 |#1|) $ (-687) (-687)) 83 T ELT)) (-2876 (((-83) $) 124 T ELT)) (-3611 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3756 (((-687) $) 126 T ELT) (((-687) $ (-687)) 128 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2995 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3761 (($ $ (-823)) NIL T ELT)) (-3799 (($ (-1 |#1| (-478)) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-687)) 13 T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3926 (($ $) 135 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3796 (($ $) 133 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1104))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3796 (|#1| |#1| (-1079)))) (|has| |#1| (-15 -3065 ((-578 (-1079)) |#1|))))) ELT) (($ $ (-1165 |#2|)) 134 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3753 (($ $ (-687)) 15 T ELT)) (-3450 (((-3 $ #1#) $ $) 26 (|has| |#1| (-489)) ELT)) (-3927 (($ $) 137 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3752 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-687)))) ELT)) (-3784 ((|#1| $ (-687)) 122 T ELT) (($ $ $) 132 (|has| (-687) (-1015)) ELT)) (-3742 (($ $ (-1079)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-1165 |#2|)) 31 T ELT)) (-3932 (((-687) $) NIL T ELT)) (-3479 (($ $) 179 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3620 (($ $) 155 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 175 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3619 (($ $) 151 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3475 (($ $) 171 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3618 (($ $) 147 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) NIL T ELT)) (-3930 (((-765) $) 206 T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ |#1|) 130 (|has| |#1| (-144)) ELT) (($ (-1137 |#2| |#1|)) 55 T ELT) (($ (-1165 |#2|)) 36 T ELT)) (-3801 (((-1058 |#1|) $) 101 T ELT)) (-3661 ((|#1| $ (-687)) 121 T ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) NIL T CONST)) (-3757 ((|#1| $) 58 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3482 (($ $) 185 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 161 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3480 (($ $) 181 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 157 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3484 (($ $) 189 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3472 (($ $) 165 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3754 ((|#1| $ (-687)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-687)))) (|has| |#1| (-15 -3930 (|#1| (-1079))))) ELT)) (-3485 (($ $) 191 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3473 (($ $) 167 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3483 (($ $) 187 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) 163 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3481 (($ $) 183 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3469 (($ $) 159 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2644 (($) 17 T CONST)) (-2650 (($) 20 T CONST)) (-2653 (($ $ (-1079)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-1165 |#2|)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3823 (($ $ $) 35 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-308)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 141 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-1078 |#1| |#2| |#3|) (-13 (-1161 |#1|) (-799 $ (-1165 |#2|)) (-10 -8 (-15 -3930 ($ (-1137 |#2| |#1|))) (-15 -3795 ((-1137 |#2| |#1|) $ (-687))) (-15 -3930 ($ (-1165 |#2|))) (IF (|has| |#1| (-38 (-343 (-478)))) (-15 -3796 ($ $ (-1165 |#2|))) |%noBranch|))) (-954) (-1079) |#1|) (T -1078)) +((-3930 (*1 *1 *2) (-12 (-5 *2 (-1137 *4 *3)) (-4 *3 (-954)) (-14 *4 (-1079)) (-14 *5 *3) (-5 *1 (-1078 *3 *4 *5)))) (-3795 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1137 *5 *4)) (-5 *1 (-1078 *4 *5 *6)) (-4 *4 (-954)) (-14 *5 (-1079)) (-14 *6 *4))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1078 *3 *4 *5)) (-4 *3 (-954)) (-14 *5 *3))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1078 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3521 (($ $ (-578 (-765))) 48 T ELT)) (-3522 (($ $ (-578 (-765))) 46 T ELT)) (-3519 (((-1062) $) 88 T ELT)) (-3524 (((-2 (|:| -2568 (-578 (-765))) (|:| -2467 (-578 (-765))) (|:| |presup| (-578 (-765))) (|:| -2566 (-578 (-765))) (|:| |args| (-578 (-765)))) $) 95 T ELT)) (-3525 (((-83) $) 86 T ELT)) (-3523 (($ $ (-578 (-578 (-765)))) 45 T ELT) (($ $ (-2 (|:| -2568 (-578 (-765))) (|:| -2467 (-578 (-765))) (|:| |presup| (-578 (-765))) (|:| -2566 (-578 (-765))) (|:| |args| (-578 (-765))))) 85 T ELT)) (-3708 (($) 151 T CONST)) (-3140 (((-3 (-439) "failed") $) 155 T ELT)) (-3139 (((-439) $) NIL T ELT)) (-3527 (((-1174)) 123 T ELT)) (-2780 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 55 T ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 62 T ELT)) (-3598 (($) 109 T ELT) (($ $) 118 T ELT)) (-3526 (($ $) 87 T ELT)) (-2515 (($ $ $) NIL T ELT)) (-2841 (($ $ $) NIL T ELT)) (-3518 (((-578 $) $) 124 T ELT)) (-3225 (((-1062) $) 101 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3784 (($ $ (-578 (-765))) 47 T ELT)) (-3956 (((-467) $) 33 T ELT) (((-1079) $) 34 T ELT) (((-793 (-478)) $) 66 T ELT) (((-793 (-323)) $) 64 T ELT)) (-3930 (((-765) $) 41 T ELT) (($ (-1062)) 35 T ELT) (($ (-439)) 153 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3520 (($ $ (-578 (-765))) 49 T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 37 T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) 38 T ELT))) +(((-1079) (-13 (-749) (-548 (-467)) (-548 (-1079)) (-550 (-1062)) (-943 (-439)) (-548 (-793 (-478))) (-548 (-793 (-323))) (-789 (-478)) (-789 (-323)) (-10 -8 (-15 -3598 ($)) (-15 -3598 ($ $)) (-15 -3527 ((-1174))) (-15 -3526 ($ $)) (-15 -3525 ((-83) $)) (-15 -3524 ((-2 (|:| -2568 (-578 (-765))) (|:| -2467 (-578 (-765))) (|:| |presup| (-578 (-765))) (|:| -2566 (-578 (-765))) (|:| |args| (-578 (-765)))) $)) (-15 -3523 ($ $ (-578 (-578 (-765))))) (-15 -3523 ($ $ (-2 (|:| -2568 (-578 (-765))) (|:| -2467 (-578 (-765))) (|:| |presup| (-578 (-765))) (|:| -2566 (-578 (-765))) (|:| |args| (-578 (-765)))))) (-15 -3522 ($ $ (-578 (-765)))) (-15 -3521 ($ $ (-578 (-765)))) (-15 -3520 ($ $ (-578 (-765)))) (-15 -3784 ($ $ (-578 (-765)))) (-15 -3519 ((-1062) $)) (-15 -3518 ((-578 $) $)) (-15 -3708 ($) -3936)))) (T -1079)) +((-3598 (*1 *1) (-5 *1 (-1079))) (-3598 (*1 *1 *1) (-5 *1 (-1079))) (-3527 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1079)))) (-3526 (*1 *1 *1) (-5 *1 (-1079))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1079)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2568 (-578 (-765))) (|:| -2467 (-578 (-765))) (|:| |presup| (-578 (-765))) (|:| -2566 (-578 (-765))) (|:| |args| (-578 (-765))))) (-5 *1 (-1079)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 (-765)))) (-5 *1 (-1079)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2568 (-578 (-765))) (|:| -2467 (-578 (-765))) (|:| |presup| (-578 (-765))) (|:| -2566 (-578 (-765))) (|:| |args| (-578 (-765))))) (-5 *1 (-1079)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-1079)))) (-3521 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-1079)))) (-3520 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-1079)))) (-3784 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-1079)))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-1062)) (-5 *1 (-1079)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-578 (-1079))) (-5 *1 (-1079)))) (-3708 (*1 *1) (-5 *1 (-1079)))) +((-3528 (((-1168 |#1|) |#1| (-823)) 18 T ELT) (((-1168 |#1|) (-578 |#1|)) 25 T ELT))) +(((-1080 |#1|) (-10 -7 (-15 -3528 ((-1168 |#1|) (-578 |#1|))) (-15 -3528 ((-1168 |#1|) |#1| (-823)))) (-954)) (T -1080)) +((-3528 (*1 *2 *3 *4) (-12 (-5 *4 (-823)) (-5 *2 (-1168 *3)) (-5 *1 (-1080 *3)) (-4 *3 (-954)))) (-3528 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-954)) (-5 *2 (-1168 *4)) (-5 *1 (-1080 *4))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3139 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT)) (-3943 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3487 (($ $) NIL (|has| |#1| (-385)) ELT)) (-1611 (($ $ |#1| (-877) $) NIL T ELT)) (-2396 (((-83) $) 17 T ELT)) (-2404 (((-687) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-877)) NIL T ELT)) (-2804 (((-877) $) NIL T ELT)) (-1612 (($ (-1 (-877) (-877)) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1784 (((-83) $) NIL T ELT)) (-1783 ((|#1| $) NIL T ELT)) (-3722 (($ $ (-877) |#1| $) NIL (-12 (|has| (-877) (-102)) (|has| |#1| (-489))) ELT)) (-3450 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT)) (-3932 (((-877) $) NIL T ELT)) (-2801 ((|#1| $) NIL (|has| |#1| (-385)) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ |#1|) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-3801 (((-578 |#1|) $) NIL T ELT)) (-3661 ((|#1| $ (-877)) NIL T ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) NIL T CONST)) (-1610 (($ $ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2644 (($) 10 T CONST)) (-2650 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 21 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 22 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 16 T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-1081 |#1|) (-13 (-273 |#1| (-877)) (-10 -8 (IF (|has| |#1| (-489)) (IF (|has| (-877) (-102)) (-15 -3722 ($ $ (-877) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3977)) (-6 -3977) |%noBranch|))) (-954)) (T -1081)) +((-3722 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-877)) (-4 *2 (-102)) (-5 *1 (-1081 *3)) (-4 *3 (-489)) (-4 *3 (-954))))) +((-3529 (((-1083) (-1079) $) 25 T ELT)) (-3539 (($) 29 T ELT)) (-3531 (((-3 (|:| |fst| (-370)) (|:| -3894 #1="void")) (-1079) $) 22 T ELT)) (-3533 (((-1174) (-1079) (-3 (|:| |fst| (-370)) (|:| -3894 #1#)) $) 41 T ELT) (((-1174) (-1079) (-3 (|:| |fst| (-370)) (|:| -3894 #1#))) 42 T ELT) (((-1174) (-3 (|:| |fst| (-370)) (|:| -3894 #1#))) 43 T ELT)) (-3541 (((-1174) (-1079)) 58 T ELT)) (-3532 (((-1174) (-1079) $) 55 T ELT) (((-1174) (-1079)) 56 T ELT) (((-1174)) 57 T ELT)) (-3537 (((-1174) (-1079)) 37 T ELT)) (-3535 (((-1079)) 36 T ELT)) (-3549 (($) 34 T ELT)) (-3548 (((-372) (-1079) (-372) (-1079) $) 45 T ELT) (((-372) (-578 (-1079)) (-372) (-1079) $) 49 T ELT) (((-372) (-1079) (-372)) 46 T ELT) (((-372) (-1079) (-372) (-1079)) 50 T ELT)) (-3536 (((-1079)) 35 T ELT)) (-3930 (((-765) $) 28 T ELT)) (-3538 (((-1174)) 30 T ELT) (((-1174) (-1079)) 33 T ELT)) (-3530 (((-578 (-1079)) (-1079) $) 24 T ELT)) (-3534 (((-1174) (-1079) (-578 (-1079)) $) 38 T ELT) (((-1174) (-1079) (-578 (-1079))) 39 T ELT) (((-1174) (-578 (-1079))) 40 T ELT))) +(((-1082) (-13 (-547 (-765)) (-10 -8 (-15 -3539 ($)) (-15 -3538 ((-1174))) (-15 -3538 ((-1174) (-1079))) (-15 -3548 ((-372) (-1079) (-372) (-1079) $)) (-15 -3548 ((-372) (-578 (-1079)) (-372) (-1079) $)) (-15 -3548 ((-372) (-1079) (-372))) (-15 -3548 ((-372) (-1079) (-372) (-1079))) (-15 -3537 ((-1174) (-1079))) (-15 -3536 ((-1079))) (-15 -3535 ((-1079))) (-15 -3534 ((-1174) (-1079) (-578 (-1079)) $)) (-15 -3534 ((-1174) (-1079) (-578 (-1079)))) (-15 -3534 ((-1174) (-578 (-1079)))) (-15 -3533 ((-1174) (-1079) (-3 (|:| |fst| (-370)) (|:| -3894 #1="void")) $)) (-15 -3533 ((-1174) (-1079) (-3 (|:| |fst| (-370)) (|:| -3894 #1#)))) (-15 -3533 ((-1174) (-3 (|:| |fst| (-370)) (|:| -3894 #1#)))) (-15 -3532 ((-1174) (-1079) $)) (-15 -3532 ((-1174) (-1079))) (-15 -3532 ((-1174))) (-15 -3541 ((-1174) (-1079))) (-15 -3549 ($)) (-15 -3531 ((-3 (|:| |fst| (-370)) (|:| -3894 #1#)) (-1079) $)) (-15 -3530 ((-578 (-1079)) (-1079) $)) (-15 -3529 ((-1083) (-1079) $))))) (T -1082)) +((-3539 (*1 *1) (-5 *1 (-1082))) (-3538 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1082)))) (-3538 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-1174)) (-5 *1 (-1082)))) (-3548 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-372)) (-5 *3 (-1079)) (-5 *1 (-1082)))) (-3548 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-372)) (-5 *3 (-578 (-1079))) (-5 *4 (-1079)) (-5 *1 (-1082)))) (-3548 (*1 *2 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1079)) (-5 *1 (-1082)))) (-3548 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-372)) (-5 *3 (-1079)) (-5 *1 (-1082)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-1174)) (-5 *1 (-1082)))) (-3536 (*1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-1082)))) (-3535 (*1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-1082)))) (-3534 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-578 (-1079))) (-5 *3 (-1079)) (-5 *2 (-1174)) (-5 *1 (-1082)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1079))) (-5 *3 (-1079)) (-5 *2 (-1174)) (-5 *1 (-1082)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-578 (-1079))) (-5 *2 (-1174)) (-5 *1 (-1082)))) (-3533 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1079)) (-5 *4 (-3 (|:| |fst| (-370)) (|:| -3894 #1="void"))) (-5 *2 (-1174)) (-5 *1 (-1082)))) (-3533 (*1 *2 *3 *4) (-12 (-5 *3 (-1079)) (-5 *4 (-3 (|:| |fst| (-370)) (|:| -3894 #1#))) (-5 *2 (-1174)) (-5 *1 (-1082)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-370)) (|:| -3894 #1#))) (-5 *2 (-1174)) (-5 *1 (-1082)))) (-3532 (*1 *2 *3 *1) (-12 (-5 *3 (-1079)) (-5 *2 (-1174)) (-5 *1 (-1082)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-1174)) (-5 *1 (-1082)))) (-3532 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1082)))) (-3541 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-1174)) (-5 *1 (-1082)))) (-3549 (*1 *1) (-5 *1 (-1082))) (-3531 (*1 *2 *3 *1) (-12 (-5 *3 (-1079)) (-5 *2 (-3 (|:| |fst| (-370)) (|:| -3894 #1#))) (-5 *1 (-1082)))) (-3530 (*1 *2 *3 *1) (-12 (-5 *2 (-578 (-1079))) (-5 *1 (-1082)) (-5 *3 (-1079)))) (-3529 (*1 *2 *3 *1) (-12 (-5 *3 (-1079)) (-5 *2 (-1083)) (-5 *1 (-1082))))) +((-3543 (((-578 (-578 (-3 (|:| -3526 (-1079)) (|:| -3208 (-578 (-3 (|:| S (-1079)) (|:| P (-850 (-478))))))))) $) 66 T ELT)) (-3545 (((-578 (-3 (|:| -3526 (-1079)) (|:| -3208 (-578 (-3 (|:| S (-1079)) (|:| P (-850 (-478)))))))) (-370) $) 47 T ELT)) (-3540 (($ (-578 (-2 (|:| -3844 (-1079)) (|:| |entry| (-372))))) 17 T ELT)) (-3541 (((-1174) $) 73 T ELT)) (-3546 (((-578 (-1079)) $) 22 T ELT)) (-3542 (((-1007) $) 60 T ELT)) (-3547 (((-372) (-1079) $) 27 T ELT)) (-3544 (((-578 (-1079)) $) 30 T ELT)) (-3549 (($) 19 T ELT)) (-3548 (((-372) (-578 (-1079)) (-372) $) 25 T ELT) (((-372) (-1079) (-372) $) 24 T ELT)) (-3930 (((-765) $) 9 T ELT) (((-1091 (-1079) (-372)) $) 13 T ELT))) +(((-1083) (-13 (-547 (-765)) (-10 -8 (-15 -3930 ((-1091 (-1079) (-372)) $)) (-15 -3549 ($)) (-15 -3548 ((-372) (-578 (-1079)) (-372) $)) (-15 -3548 ((-372) (-1079) (-372) $)) (-15 -3547 ((-372) (-1079) $)) (-15 -3546 ((-578 (-1079)) $)) (-15 -3545 ((-578 (-3 (|:| -3526 (-1079)) (|:| -3208 (-578 (-3 (|:| S (-1079)) (|:| P (-850 (-478)))))))) (-370) $)) (-15 -3544 ((-578 (-1079)) $)) (-15 -3543 ((-578 (-578 (-3 (|:| -3526 (-1079)) (|:| -3208 (-578 (-3 (|:| S (-1079)) (|:| P (-850 (-478))))))))) $)) (-15 -3542 ((-1007) $)) (-15 -3541 ((-1174) $)) (-15 -3540 ($ (-578 (-2 (|:| -3844 (-1079)) (|:| |entry| (-372))))))))) (T -1083)) +((-3930 (*1 *2 *1) (-12 (-5 *2 (-1091 (-1079) (-372))) (-5 *1 (-1083)))) (-3549 (*1 *1) (-5 *1 (-1083))) (-3548 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-372)) (-5 *3 (-578 (-1079))) (-5 *1 (-1083)))) (-3548 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-372)) (-5 *3 (-1079)) (-5 *1 (-1083)))) (-3547 (*1 *2 *3 *1) (-12 (-5 *3 (-1079)) (-5 *2 (-372)) (-5 *1 (-1083)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-578 (-1079))) (-5 *1 (-1083)))) (-3545 (*1 *2 *3 *1) (-12 (-5 *3 (-370)) (-5 *2 (-578 (-3 (|:| -3526 (-1079)) (|:| -3208 (-578 (-3 (|:| S (-1079)) (|:| P (-850 (-478))))))))) (-5 *1 (-1083)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-578 (-1079))) (-5 *1 (-1083)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-3 (|:| -3526 (-1079)) (|:| -3208 (-578 (-3 (|:| S (-1079)) (|:| P (-850 (-478)))))))))) (-5 *1 (-1083)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1083)))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1083)))) (-3540 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3844 (-1079)) (|:| |entry| (-372))))) (-5 *1 (-1083))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3140 (((-3 (-478) #1="failed") $) 29 T ELT) (((-3 (-177) #1#) $) 35 T ELT) (((-3 (-439) #1#) $) 43 T ELT) (((-3 (-1062) #1#) $) 47 T ELT)) (-3139 (((-478) $) 30 T ELT) (((-177) $) 36 T ELT) (((-439) $) 40 T ELT) (((-1062) $) 48 T ELT)) (-3554 (((-83) $) 53 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3553 (((-3 (-478) (-177) (-439) (-1062) $) $) 56 T ELT)) (-3552 (((-578 $) $) 58 T ELT)) (-3956 (((-1007) $) 24 T ELT) (($ (-1007)) 25 T ELT)) (-3551 (((-83) $) 57 T ELT)) (-3930 (((-765) $) 23 T ELT) (($ (-478)) 26 T ELT) (($ (-177)) 32 T ELT) (($ (-439)) 38 T ELT) (($ (-1062)) 44 T ELT) (((-467) $) 60 T ELT) (((-478) $) 31 T ELT) (((-177) $) 37 T ELT) (((-439) $) 41 T ELT) (((-1062) $) 49 T ELT)) (-3550 (((-83) $ (|[\|\|]| (-478))) 10 T ELT) (((-83) $ (|[\|\|]| (-177))) 13 T ELT) (((-83) $ (|[\|\|]| (-439))) 19 T ELT) (((-83) $ (|[\|\|]| (-1062))) 16 T ELT)) (-3555 (($ (-439) (-578 $)) 51 T ELT) (($ $ (-578 $)) 52 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3556 (((-478) $) 27 T ELT) (((-177) $) 33 T ELT) (((-439) $) 39 T ELT) (((-1062) $) 45 T ELT)) (-3037 (((-83) $ $) 7 T ELT))) +(((-1084) (-13 (-1164) (-1005) (-943 (-478)) (-943 (-177)) (-943 (-439)) (-943 (-1062)) (-547 (-467)) (-10 -8 (-15 -3956 ((-1007) $)) (-15 -3956 ($ (-1007))) (-15 -3930 ((-478) $)) (-15 -3556 ((-478) $)) (-15 -3930 ((-177) $)) (-15 -3556 ((-177) $)) (-15 -3930 ((-439) $)) (-15 -3556 ((-439) $)) (-15 -3930 ((-1062) $)) (-15 -3556 ((-1062) $)) (-15 -3555 ($ (-439) (-578 $))) (-15 -3555 ($ $ (-578 $))) (-15 -3554 ((-83) $)) (-15 -3553 ((-3 (-478) (-177) (-439) (-1062) $) $)) (-15 -3552 ((-578 $) $)) (-15 -3551 ((-83) $)) (-15 -3550 ((-83) $ (|[\|\|]| (-478)))) (-15 -3550 ((-83) $ (|[\|\|]| (-177)))) (-15 -3550 ((-83) $ (|[\|\|]| (-439)))) (-15 -3550 ((-83) $ (|[\|\|]| (-1062))))))) (T -1084)) +((-3956 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1084)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-1084)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1084)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1084)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-1084)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-1084)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-1084)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-1084)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-1062)) (-5 *1 (-1084)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-1062)) (-5 *1 (-1084)))) (-3555 (*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-578 (-1084))) (-5 *1 (-1084)))) (-3555 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-1084))) (-5 *1 (-1084)))) (-3554 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1084)))) (-3553 (*1 *2 *1) (-12 (-5 *2 (-3 (-478) (-177) (-439) (-1062) (-1084))) (-5 *1 (-1084)))) (-3552 (*1 *2 *1) (-12 (-5 *2 (-578 (-1084))) (-5 *1 (-1084)))) (-3551 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1084)))) (-3550 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-83)) (-5 *1 (-1084)))) (-3550 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-177))) (-5 *2 (-83)) (-5 *1 (-1084)))) (-3550 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-439))) (-5 *2 (-83)) (-5 *1 (-1084)))) (-3550 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1062))) (-5 *2 (-83)) (-5 *1 (-1084))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3119 (((-687)) 21 T ELT)) (-3708 (($) 10 T CONST)) (-2978 (($) 25 T ELT)) (-2515 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2841 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-1996 (((-823) $) 23 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2386 (($ (-823)) 22 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT))) +(((-1085 |#1|) (-13 (-745) (-10 -8 (-15 -3708 ($) -3936))) (-823)) (T -1085)) +((-3708 (*1 *1) (-12 (-5 *1 (-1085 *2)) (-14 *2 (-823))))) +((-478) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2552 (((-83) $ $) NIL T ELT)) (-2299 (($ $) 24 T ELT)) (-3119 (((-687)) NIL T ELT)) (-3708 (($) 18 T CONST)) (-2978 (($) NIL T ELT)) (-2515 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2841 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-1996 (((-823) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2386 (($ (-823)) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-3709 (($ $ $) 20 T ELT)) (-3710 (($ $ $) 19 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2297 (($ $ $) 22 T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) 21 T ELT))) +(((-1086 |#1|) (-13 (-745) (-599) (-10 -8 (-15 -3710 ($ $ $)) (-15 -3709 ($ $ $)) (-15 -3708 ($) -3936))) (-823)) (T -1086)) +((-3710 (*1 *1 *1 *1) (-12 (-5 *1 (-1086 *2)) (-14 *2 (-823)))) (-3709 (*1 *1 *1 *1) (-12 (-5 *1 (-1086 *2)) (-14 *2 (-823)))) (-3708 (*1 *1) (-12 (-5 *1 (-1086 *2)) (-14 *2 (-823))))) +((-687) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 9 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 7 T ELT))) +(((-1087) (-1005)) (T -1087)) +NIL +((-3558 (((-578 (-578 (-850 |#1|))) (-578 (-343 (-850 |#1|))) (-578 (-1079))) 69 T ELT)) (-3557 (((-578 (-245 (-343 (-850 |#1|)))) (-245 (-343 (-850 |#1|)))) 81 T ELT) (((-578 (-245 (-343 (-850 |#1|)))) (-343 (-850 |#1|))) 77 T ELT) (((-578 (-245 (-343 (-850 |#1|)))) (-245 (-343 (-850 |#1|))) (-1079)) 82 T ELT) (((-578 (-245 (-343 (-850 |#1|)))) (-343 (-850 |#1|)) (-1079)) 76 T ELT) (((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-245 (-343 (-850 |#1|))))) 107 T ELT) (((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-343 (-850 |#1|)))) 106 T ELT) (((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-245 (-343 (-850 |#1|)))) (-578 (-1079))) 108 T ELT) (((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-343 (-850 |#1|))) (-578 (-1079))) 105 T ELT))) +(((-1088 |#1|) (-10 -7 (-15 -3557 ((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-343 (-850 |#1|))) (-578 (-1079)))) (-15 -3557 ((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-245 (-343 (-850 |#1|)))) (-578 (-1079)))) (-15 -3557 ((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-343 (-850 |#1|))))) (-15 -3557 ((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-245 (-343 (-850 |#1|)))))) (-15 -3557 ((-578 (-245 (-343 (-850 |#1|)))) (-343 (-850 |#1|)) (-1079))) (-15 -3557 ((-578 (-245 (-343 (-850 |#1|)))) (-245 (-343 (-850 |#1|))) (-1079))) (-15 -3557 ((-578 (-245 (-343 (-850 |#1|)))) (-343 (-850 |#1|)))) (-15 -3557 ((-578 (-245 (-343 (-850 |#1|)))) (-245 (-343 (-850 |#1|))))) (-15 -3558 ((-578 (-578 (-850 |#1|))) (-578 (-343 (-850 |#1|))) (-578 (-1079))))) (-489)) (T -1088)) +((-3558 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-343 (-850 *5)))) (-5 *4 (-578 (-1079))) (-4 *5 (-489)) (-5 *2 (-578 (-578 (-850 *5)))) (-5 *1 (-1088 *5)))) (-3557 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-578 (-245 (-343 (-850 *4))))) (-5 *1 (-1088 *4)) (-5 *3 (-245 (-343 (-850 *4)))))) (-3557 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-578 (-245 (-343 (-850 *4))))) (-5 *1 (-1088 *4)) (-5 *3 (-343 (-850 *4))))) (-3557 (*1 *2 *3 *4) (-12 (-5 *4 (-1079)) (-4 *5 (-489)) (-5 *2 (-578 (-245 (-343 (-850 *5))))) (-5 *1 (-1088 *5)) (-5 *3 (-245 (-343 (-850 *5)))))) (-3557 (*1 *2 *3 *4) (-12 (-5 *4 (-1079)) (-4 *5 (-489)) (-5 *2 (-578 (-245 (-343 (-850 *5))))) (-5 *1 (-1088 *5)) (-5 *3 (-343 (-850 *5))))) (-3557 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *4)))))) (-5 *1 (-1088 *4)) (-5 *3 (-578 (-245 (-343 (-850 *4))))))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-578 (-343 (-850 *4)))) (-4 *4 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *4)))))) (-5 *1 (-1088 *4)))) (-3557 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1079))) (-4 *5 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *5)))))) (-5 *1 (-1088 *5)) (-5 *3 (-578 (-245 (-343 (-850 *5))))))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-343 (-850 *5)))) (-5 *4 (-578 (-1079))) (-4 *5 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *5)))))) (-5 *1 (-1088 *5))))) +((-3563 (((-1062)) 7 T ELT)) (-3560 (((-1062)) 11 T CONST)) (-3559 (((-1174) (-1062)) 13 T ELT)) (-3562 (((-1062)) 8 T CONST)) (-3561 (((-101)) 10 T CONST))) +(((-1089) (-13 (-1118) (-10 -7 (-15 -3563 ((-1062))) (-15 -3562 ((-1062)) -3936) (-15 -3561 ((-101)) -3936) (-15 -3560 ((-1062)) -3936) (-15 -3559 ((-1174) (-1062)))))) (T -1089)) +((-3563 (*1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-1089)))) (-3562 (*1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-1089)))) (-3561 (*1 *2) (-12 (-5 *2 (-101)) (-5 *1 (-1089)))) (-3560 (*1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-1089)))) (-3559 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1089))))) +((-3567 (((-578 (-578 |#1|)) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|)))) 56 T ELT)) (-3570 (((-578 (-578 (-578 |#1|))) (-578 (-578 |#1|))) 38 T ELT)) (-3571 (((-1092 (-578 |#1|)) (-578 |#1|)) 49 T ELT)) (-3573 (((-578 (-578 |#1|)) (-578 |#1|)) 45 T ELT)) (-3576 (((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 (-578 (-578 |#1|)))) 53 T ELT)) (-3575 (((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 |#1|) (-578 (-578 (-578 |#1|))) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|)))) 52 T ELT)) (-3572 (((-578 (-578 |#1|)) (-578 (-578 |#1|))) 43 T ELT)) (-3574 (((-578 |#1|) (-578 |#1|)) 46 T ELT)) (-3566 (((-578 (-578 (-578 |#1|))) (-578 |#1|) (-578 (-578 (-578 |#1|)))) 32 T ELT)) (-3565 (((-578 (-578 (-578 |#1|))) (-1 (-83) |#1| |#1|) (-578 |#1|) (-578 (-578 (-578 |#1|)))) 29 T ELT)) (-3564 (((-2 (|:| |fs| (-83)) (|:| |sd| (-578 |#1|)) (|:| |td| (-578 (-578 |#1|)))) (-1 (-83) |#1| |#1|) (-578 |#1|) (-578 (-578 |#1|))) 24 T ELT)) (-3568 (((-578 (-578 |#1|)) (-578 (-578 (-578 |#1|)))) 58 T ELT)) (-3569 (((-578 (-578 |#1|)) (-1092 (-578 |#1|))) 60 T ELT))) +(((-1090 |#1|) (-10 -7 (-15 -3564 ((-2 (|:| |fs| (-83)) (|:| |sd| (-578 |#1|)) (|:| |td| (-578 (-578 |#1|)))) (-1 (-83) |#1| |#1|) (-578 |#1|) (-578 (-578 |#1|)))) (-15 -3565 ((-578 (-578 (-578 |#1|))) (-1 (-83) |#1| |#1|) (-578 |#1|) (-578 (-578 (-578 |#1|))))) (-15 -3566 ((-578 (-578 (-578 |#1|))) (-578 |#1|) (-578 (-578 (-578 |#1|))))) (-15 -3567 ((-578 (-578 |#1|)) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))))) (-15 -3568 ((-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))))) (-15 -3569 ((-578 (-578 |#1|)) (-1092 (-578 |#1|)))) (-15 -3570 ((-578 (-578 (-578 |#1|))) (-578 (-578 |#1|)))) (-15 -3571 ((-1092 (-578 |#1|)) (-578 |#1|))) (-15 -3572 ((-578 (-578 |#1|)) (-578 (-578 |#1|)))) (-15 -3573 ((-578 (-578 |#1|)) (-578 |#1|))) (-15 -3574 ((-578 |#1|) (-578 |#1|))) (-15 -3575 ((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 |#1|) (-578 (-578 (-578 |#1|))) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|))))) (-15 -3576 ((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 (-578 (-578 |#1|)))))) (-749)) (T -1090)) +((-3576 (*1 *2 *3) (-12 (-4 *4 (-749)) (-5 *2 (-2 (|:| |f1| (-578 *4)) (|:| |f2| (-578 (-578 (-578 *4)))) (|:| |f3| (-578 (-578 *4))) (|:| |f4| (-578 (-578 (-578 *4)))))) (-5 *1 (-1090 *4)) (-5 *3 (-578 (-578 (-578 *4)))))) (-3575 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-749)) (-5 *3 (-578 *6)) (-5 *5 (-578 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-578 *5)) (|:| |f3| *5) (|:| |f4| (-578 *5)))) (-5 *1 (-1090 *6)) (-5 *4 (-578 *5)))) (-3574 (*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-1090 *3)))) (-3573 (*1 *2 *3) (-12 (-4 *4 (-749)) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1090 *4)) (-5 *3 (-578 *4)))) (-3572 (*1 *2 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-749)) (-5 *1 (-1090 *3)))) (-3571 (*1 *2 *3) (-12 (-4 *4 (-749)) (-5 *2 (-1092 (-578 *4))) (-5 *1 (-1090 *4)) (-5 *3 (-578 *4)))) (-3570 (*1 *2 *3) (-12 (-4 *4 (-749)) (-5 *2 (-578 (-578 (-578 *4)))) (-5 *1 (-1090 *4)) (-5 *3 (-578 (-578 *4))))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-1092 (-578 *4))) (-4 *4 (-749)) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1090 *4)))) (-3568 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-578 *4)))) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1090 *4)) (-4 *4 (-749)))) (-3567 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-578 (-578 *4)))) (-5 *2 (-578 (-578 *4))) (-4 *4 (-749)) (-5 *1 (-1090 *4)))) (-3566 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-578 (-578 *4)))) (-5 *3 (-578 *4)) (-4 *4 (-749)) (-5 *1 (-1090 *4)))) (-3565 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-578 (-578 (-578 *5)))) (-5 *3 (-1 (-83) *5 *5)) (-5 *4 (-578 *5)) (-4 *5 (-749)) (-5 *1 (-1090 *5)))) (-3564 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-83) *6 *6)) (-4 *6 (-749)) (-5 *4 (-578 *6)) (-5 *2 (-2 (|:| |fs| (-83)) (|:| |sd| *4) (|:| |td| (-578 *4)))) (-5 *1 (-1090 *6)) (-5 *5 (-578 *4))))) +((-2552 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3583 (($) NIL T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2184 (((-1174) $ |#1| |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3772 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1557 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-2217 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT)) (-3389 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3390 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#2| $ |#1|) NIL T ELT)) (-2873 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2186 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-2592 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2187 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3980)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| |#2| (-1005))) ELT)) (-2218 (((-578 |#1|) $) NIL T ELT)) (-2219 (((-83) |#1| $) NIL T ELT)) (-1262 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3593 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2189 (((-578 |#1|) $) NIL T ELT)) (-2190 (((-83) |#1| $) NIL T ELT)) (-3226 (((-1023) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| |#2| (-1005))) ELT)) (-3785 ((|#2| $) NIL (|has| |#1| (-749)) ELT)) (-1341 (((-3 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2185 (($ $ |#2|) NIL (|has| $ (-6 -3980)) ELT)) (-1263 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1934 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2191 (((-578 |#2|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1453 (($) NIL T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1933 (((-687) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3979)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT) (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ELT)) (-3514 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3930 (((-765) $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-547 (-765)))) ELT)) (-1253 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1264 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-1091 |#1| |#2|) (-13 (-1096 |#1| |#2|) (-10 -7 (-6 -3979))) (-1005) (-1005)) (T -1091)) +NIL +((-3577 (($ (-578 (-578 |#1|))) 10 T ELT)) (-3578 (((-578 (-578 |#1|)) $) 11 T ELT)) (-3930 (((-765) $) 33 T ELT))) +(((-1092 |#1|) (-10 -8 (-15 -3577 ($ (-578 (-578 |#1|)))) (-15 -3578 ((-578 (-578 |#1|)) $)) (-15 -3930 ((-765) $))) (-1005)) (T -1092)) +((-3930 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1092 *3)) (-4 *3 (-1005)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 *3))) (-5 *1 (-1092 *3)) (-4 *3 (-1005)))) (-3577 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1005)) (-5 *1 (-1092 *3))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3579 (($ |#1| (-55)) 10 T ELT)) (-3526 ((|#1| $) 12 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2617 (((-83) $ |#1|) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2505 (((-55) $) 14 T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-1093 |#1|) (-13 (-740 |#1|) (-10 -8 (-15 -3579 ($ |#1| (-55))))) (-1005)) (T -1093)) +((-3579 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1093 *2)) (-4 *2 (-1005))))) +((-3580 ((|#1| (-578 |#1|)) 46 T ELT)) (-3582 ((|#1| |#1| (-478)) 24 T ELT)) (-3581 (((-1074 |#1|) |#1| (-823)) 20 T ELT))) +(((-1094 |#1|) (-10 -7 (-15 -3580 (|#1| (-578 |#1|))) (-15 -3581 ((-1074 |#1|) |#1| (-823))) (-15 -3582 (|#1| |#1| (-478)))) (-308)) (T -1094)) +((-3582 (*1 *2 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-1094 *2)) (-4 *2 (-308)))) (-3581 (*1 *2 *3 *4) (-12 (-5 *4 (-823)) (-5 *2 (-1074 *3)) (-5 *1 (-1094 *3)) (-4 *3 (-308)))) (-3580 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-1094 *2)) (-4 *2 (-308))))) +((-3583 (($) 10 T ELT) (($ (-578 (-2 (|:| -3844 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3389 (($ (-2 (|:| -3844 |#2|) (|:| |entry| |#3|)) $) 67 T ELT) (($ (-1 (-83) (-2 (|:| -3844 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2873 (((-578 (-2 (|:| -3844 |#2|) (|:| |entry| |#3|))) $) 39 T ELT) (((-578 |#3|) $) 41 T ELT)) (-1936 (($ (-1 (-2 (|:| -3844 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3844 |#2|) (|:| |entry| |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-3942 (($ (-1 (-2 (|:| -3844 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3844 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1262 (((-2 (|:| -3844 |#2|) (|:| |entry| |#3|)) $) 60 T ELT)) (-3593 (($ (-2 (|:| -3844 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2189 (((-578 |#2|) $) 19 T ELT)) (-2190 (((-83) |#2| $) 65 T ELT)) (-1341 (((-3 (-2 (|:| -3844 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-83) (-2 (|:| -3844 |#2|) (|:| |entry| |#3|))) $) 64 T ELT)) (-1263 (((-2 (|:| -3844 |#2|) (|:| |entry| |#3|)) $) 69 T ELT)) (-1934 (((-83) (-1 (-83) (-2 (|:| -3844 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-83) (-1 (-83) |#3|) $) 73 T ELT)) (-2191 (((-578 |#3|) $) 43 T ELT)) (-3784 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-1933 (((-687) (-1 (-83) (-2 (|:| -3844 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-687) (-2 (|:| -3844 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-687) |#3| $) NIL T ELT) (((-687) (-1 (-83) |#3|) $) 79 T ELT)) (-3930 (((-765) $) 27 T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3844 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-83) (-1 (-83) |#3|) $) 71 T ELT)) (-3037 (((-83) $ $) 51 T ELT))) +(((-1095 |#1| |#2| |#3|) (-10 -7 (-15 -3037 ((-83) |#1| |#1|)) (-15 -3930 ((-765) |#1|)) (-15 -3942 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3583 (|#1| (-578 (-2 (|:| -3844 |#2|) (|:| |entry| |#3|))))) (-15 -3583 (|#1|)) (-15 -3942 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1936 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1935 ((-83) (-1 (-83) |#3|) |#1|)) (-15 -1934 ((-83) (-1 (-83) |#3|) |#1|)) (-15 -1933 ((-687) (-1 (-83) |#3|) |#1|)) (-15 -2873 ((-578 |#3|) |#1|)) (-15 -1933 ((-687) |#3| |#1|)) (-15 -3784 (|#3| |#1| |#2| |#3|)) (-15 -3784 (|#3| |#1| |#2|)) (-15 -2191 ((-578 |#3|) |#1|)) (-15 -2190 ((-83) |#2| |#1|)) (-15 -2189 ((-578 |#2|) |#1|)) (-15 -3389 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3389 (|#1| (-1 (-83) (-2 (|:| -3844 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3389 (|#1| (-2 (|:| -3844 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1341 ((-3 (-2 (|:| -3844 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-83) (-2 (|:| -3844 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1262 ((-2 (|:| -3844 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3593 (|#1| (-2 (|:| -3844 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1263 ((-2 (|:| -3844 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1933 ((-687) (-2 (|:| -3844 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -2873 ((-578 (-2 (|:| -3844 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1933 ((-687) (-1 (-83) (-2 (|:| -3844 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1934 ((-83) (-1 (-83) (-2 (|:| -3844 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1935 ((-83) (-1 (-83) (-2 (|:| -3844 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1936 (|#1| (-1 (-2 (|:| -3844 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3844 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3942 (|#1| (-1 (-2 (|:| -3844 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3844 |#2|) (|:| |entry| |#3|))) |#1|))) (-1096 |#2| |#3|) (-1005) (-1005)) (T -1095)) +NIL +((-2552 (((-83) $ $) 19 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3583 (($) 77 T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2184 (((-1174) $ |#1| |#1|) 104 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#2| $ |#1| |#2|) 78 T ELT)) (-1557 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3979)) ELT)) (-3694 (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3979)) ELT)) (-2217 (((-3 |#2| #1="failed") |#1| $) 65 T ELT)) (-3708 (($) 7 T CONST)) (-1340 (($ $) 62 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) ELT)) (-3389 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3979)) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3979)) ELT) (((-3 |#2| #1#) |#1| $) 66 T ELT)) (-3390 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3979)) ELT)) (-3826 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3979)) ELT) (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3979)) ELT)) (-1563 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3980)) ELT)) (-3096 ((|#2| $ |#1|) 93 T ELT)) (-2873 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3979)) ELT) (((-578 |#2|) $) 84 (|has| $ (-6 -3979)) ELT)) (-2186 ((|#1| $) 101 (|has| |#1| (-749)) ELT)) (-2592 (((-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3979)) ELT) (((-578 |#2|) $) 85 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) ELT) (((-83) |#2| $) 87 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -3979))) ELT)) (-2187 ((|#1| $) 100 (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3980)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT)) (-3225 (((-1062) $) 22 (OR (|has| |#2| (-1005)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT)) (-2218 (((-578 |#1|) $) 67 T ELT)) (-2219 (((-83) |#1| $) 68 T ELT)) (-1262 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3593 (($ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2189 (((-578 |#1|) $) 98 T ELT)) (-2190 (((-83) |#1| $) 97 T ELT)) (-3226 (((-1023) $) 21 (OR (|has| |#2| (-1005)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT)) (-3785 ((|#2| $) 102 (|has| |#1| (-749)) ELT)) (-1341 (((-3 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2185 (($ $ |#2|) 103 (|has| $ (-6 -3980)) ELT)) (-1263 (((-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1934 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#2|) $) 82 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-245 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) 91 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-245 |#2|)) 89 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT) (($ $ (-578 (-245 |#2|))) 88 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-2188 (((-83) |#2| $) 99 (-12 (|has| $ (-6 -3979)) (|has| |#2| (-1005))) ELT)) (-2191 (((-578 |#2|) $) 96 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT)) (-1453 (($) 53 T ELT) (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1933 (((-687) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| $ (-6 -3979))) ELT) (((-687) |#2| $) 86 (-12 (|has| |#2| (-1005)) (|has| $ (-6 -3979))) ELT) (((-687) (-1 (-83) |#2|) $) 83 (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 63 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ELT)) (-3514 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3930 (((-765) $) 17 (OR (|has| |#2| (-547 (-765))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-547 (-765)))) ELT)) (-1253 (((-83) $ $) 20 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1264 (($ (-578 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3979)) ELT) (((-83) (-1 (-83) |#2|) $) 81 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-1096 |#1| |#2|) (-111) (-1005) (-1005)) (T -1096)) +((-3772 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1096 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005)))) (-3583 (*1 *1) (-12 (-4 *1 (-1096 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))) (-3583 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3844 *3) (|:| |entry| *4)))) (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *1 (-1096 *3 *4)))) (-3942 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1096 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005))))) +(-13 (-544 |t#1| |t#2|) (-533 |t#1| |t#2|) (-10 -8 (-15 -3772 (|t#2| $ |t#1| |t#2|)) (-15 -3583 ($)) (-15 -3583 ($ (-578 (-2 (|:| -3844 |t#1|) (|:| |entry| |t#2|))))) (-15 -3942 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-76 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1005)) (|has| |#2| (-72))) ((-547 (-765)) OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-1005)) (|has| |#2| (-547 (-765)))) ((-122 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-548 (-467)) |has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ((-181 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-190 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-238 |#1| |#2|) . T) ((-240 |#1| |#2|) . T) ((-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ((-256 |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ((-422 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) . T) ((-422 |#2|) . T) ((-533 |#1| |#2|) . T) ((-447 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3844 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005))) ((-447 |#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1005))) ((-544 |#1| |#2|) . T) ((-1005) OR (|has| (-2 (|:| -3844 |#1|) (|:| |entry| |#2|)) (-1005)) (|has| |#2| (-1005))) ((-1118) . T)) +((-3589 (((-83)) 29 T ELT)) (-3586 (((-1174) (-1062)) 31 T ELT)) (-3590 (((-83)) 41 T ELT)) (-3587 (((-1174)) 39 T ELT)) (-3585 (((-1174) (-1062) (-1062)) 30 T ELT)) (-3591 (((-83)) 42 T ELT)) (-3593 (((-1174) |#1| |#2|) 53 T ELT)) (-3584 (((-1174)) 26 T ELT)) (-3592 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3588 (((-1174)) 40 T ELT))) +(((-1097 |#1| |#2|) (-10 -7 (-15 -3584 ((-1174))) (-15 -3585 ((-1174) (-1062) (-1062))) (-15 -3586 ((-1174) (-1062))) (-15 -3587 ((-1174))) (-15 -3588 ((-1174))) (-15 -3589 ((-83))) (-15 -3590 ((-83))) (-15 -3591 ((-83))) (-15 -3592 ((-3 |#2| "failed") |#1|)) (-15 -3593 ((-1174) |#1| |#2|))) (-1005) (-1005)) (T -1097)) +((-3593 (*1 *2 *3 *4) (-12 (-5 *2 (-1174)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) (-3592 (*1 *2 *3) (|partial| -12 (-4 *2 (-1005)) (-5 *1 (-1097 *3 *2)) (-4 *3 (-1005)))) (-3591 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) (-3590 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) (-3589 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) (-3588 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) (-3587 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) (-3586 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1097 *4 *5)) (-4 *4 (-1005)) (-4 *5 (-1005)))) (-3585 (*1 *2 *3 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1097 *4 *5)) (-4 *4 (-1005)) (-4 *5 (-1005)))) (-3584 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3599 (((-578 (-1062)) $) 39 T ELT)) (-3595 (((-578 (-1062)) $ (-578 (-1062))) 42 T ELT)) (-3594 (((-578 (-1062)) $ (-578 (-1062))) 41 T ELT)) (-3596 (((-578 (-1062)) $ (-578 (-1062))) 43 T ELT)) (-3597 (((-578 (-1062)) $) 38 T ELT)) (-3598 (($) 28 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3600 (((-578 (-1062)) $) 40 T ELT)) (-3601 (((-1174) $ (-478)) 35 T ELT) (((-1174) $) 36 T ELT)) (-3956 (($ (-765) (-478)) 33 T ELT) (($ (-765) (-478) (-765)) NIL T ELT)) (-3930 (((-765) $) 49 T ELT) (($ (-765)) 32 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-1098) (-13 (-1005) (-550 (-765)) (-10 -8 (-15 -3956 ($ (-765) (-478))) (-15 -3956 ($ (-765) (-478) (-765))) (-15 -3601 ((-1174) $ (-478))) (-15 -3601 ((-1174) $)) (-15 -3600 ((-578 (-1062)) $)) (-15 -3599 ((-578 (-1062)) $)) (-15 -3598 ($)) (-15 -3597 ((-578 (-1062)) $)) (-15 -3596 ((-578 (-1062)) $ (-578 (-1062)))) (-15 -3595 ((-578 (-1062)) $ (-578 (-1062)))) (-15 -3594 ((-578 (-1062)) $ (-578 (-1062))))))) (T -1098)) +((-3956 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-478)) (-5 *1 (-1098)))) (-3956 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-765)) (-5 *3 (-478)) (-5 *1 (-1098)))) (-3601 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1174)) (-5 *1 (-1098)))) (-3601 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1098)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-1098)))) (-3599 (*1 *2 *1) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-1098)))) (-3598 (*1 *1) (-5 *1 (-1098))) (-3597 (*1 *2 *1) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-1098)))) (-3596 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-1098)))) (-3595 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-1098)))) (-3594 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-1098))))) +((-3930 (((-1098) |#1|) 11 T ELT))) +(((-1099 |#1|) (-10 -7 (-15 -3930 ((-1098) |#1|))) (-1005)) (T -1099)) +((-3930 (*1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *1 (-1099 *3)) (-4 *3 (-1005))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3606 (((-1062) $ (-1062)) 21 T ELT) (((-1062) $) 20 T ELT)) (-1684 (((-1062) $ (-1062)) 19 T ELT)) (-1688 (($ $ (-1062)) NIL T ELT)) (-3604 (((-3 (-1062) #1="failed") $) 11 T ELT)) (-3605 (((-1062) $) 8 T ELT)) (-3603 (((-3 (-1062) #1#) $) 12 T ELT)) (-1685 (((-1062) $) 9 T ELT)) (-1689 (($ (-331)) NIL T ELT) (($ (-331) (-1062)) NIL T ELT)) (-3526 (((-331) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-1686 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3602 (((-83) $) 25 T ELT)) (-3930 (((-765) $) NIL T ELT)) (-1687 (($ $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-1100) (-13 (-310 (-331) (-1062)) (-10 -8 (-15 -3606 ((-1062) $ (-1062))) (-15 -3606 ((-1062) $)) (-15 -3605 ((-1062) $)) (-15 -3604 ((-3 (-1062) #1="failed") $)) (-15 -3603 ((-3 (-1062) #1#) $)) (-15 -3602 ((-83) $))))) (T -1100)) +((-3606 (*1 *2 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-1100)))) (-3606 (*1 *2 *1) (-12 (-5 *2 (-1062)) (-5 *1 (-1100)))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-1062)) (-5 *1 (-1100)))) (-3604 (*1 *2 *1) (|partial| -12 (-5 *2 (-1062)) (-5 *1 (-1100)))) (-3603 (*1 *2 *1) (|partial| -12 (-5 *2 (-1062)) (-5 *1 (-1100)))) (-3602 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1100))))) +((-3607 (((-3 (-478) #1="failed") |#1|) 19 T ELT)) (-3608 (((-3 (-478) #1#) |#1|) 14 T ELT)) (-3609 (((-478) (-1062)) 33 T ELT))) +(((-1101 |#1|) (-10 -7 (-15 -3607 ((-3 (-478) #1="failed") |#1|)) (-15 -3608 ((-3 (-478) #1#) |#1|)) (-15 -3609 ((-478) (-1062)))) (-954)) (T -1101)) +((-3609 (*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-478)) (-5 *1 (-1101 *4)) (-4 *4 (-954)))) (-3608 (*1 *2 *3) (|partial| -12 (-5 *2 (-478)) (-5 *1 (-1101 *3)) (-4 *3 (-954)))) (-3607 (*1 *2 *3) (|partial| -12 (-5 *2 (-478)) (-5 *1 (-1101 *3)) (-4 *3 (-954))))) +((-3610 (((-1036 (-177))) 9 T ELT))) +(((-1102) (-10 -7 (-15 -3610 ((-1036 (-177)))))) (T -1102)) +((-3610 (*1 *2) (-12 (-5 *2 (-1036 (-177))) (-5 *1 (-1102))))) +((-3611 (($) 12 T ELT)) (-3482 (($ $) 36 T ELT)) (-3480 (($ $) 34 T ELT)) (-3468 (($ $) 26 T ELT)) (-3484 (($ $) 18 T ELT)) (-3485 (($ $) 16 T ELT)) (-3483 (($ $) 20 T ELT)) (-3471 (($ $) 31 T ELT)) (-3481 (($ $) 35 T ELT)) (-3469 (($ $) 30 T ELT))) +(((-1103 |#1|) (-10 -7 (-15 -3611 (|#1|)) (-15 -3482 (|#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3481 (|#1| |#1|)) (-15 -3468 (|#1| |#1|)) (-15 -3471 (|#1| |#1|)) (-15 -3469 (|#1| |#1|))) (-1104)) (T -1103)) +NIL +((-3476 (($ $) 26 T ELT)) (-3623 (($ $) 11 T ELT)) (-3474 (($ $) 27 T ELT)) (-3622 (($ $) 10 T ELT)) (-3478 (($ $) 28 T ELT)) (-3621 (($ $) 9 T ELT)) (-3611 (($) 16 T ELT)) (-3926 (($ $) 19 T ELT)) (-3927 (($ $) 18 T ELT)) (-3479 (($ $) 29 T ELT)) (-3620 (($ $) 8 T ELT)) (-3477 (($ $) 30 T ELT)) (-3619 (($ $) 7 T ELT)) (-3475 (($ $) 31 T ELT)) (-3618 (($ $) 6 T ELT)) (-3482 (($ $) 20 T ELT)) (-3470 (($ $) 32 T ELT)) (-3480 (($ $) 21 T ELT)) (-3468 (($ $) 33 T ELT)) (-3484 (($ $) 22 T ELT)) (-3472 (($ $) 34 T ELT)) (-3485 (($ $) 23 T ELT)) (-3473 (($ $) 35 T ELT)) (-3483 (($ $) 24 T ELT)) (-3471 (($ $) 36 T ELT)) (-3481 (($ $) 25 T ELT)) (-3469 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) +(((-1104) (-111)) (T -1104)) +((-3611 (*1 *1) (-4 *1 (-1104)))) +(-13 (-1107) (-66) (-426) (-35) (-236) (-10 -8 (-15 -3611 ($)))) +(((-35) . T) ((-66) . T) ((-236) . T) ((-426) . T) ((-1107) . T)) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3386 ((|#1| $) 19 T ELT)) (-3616 (($ |#1| (-578 $)) 28 T ELT) (($ (-578 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3009 ((|#1| $ |#1|) 14 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) 13 (|has| $ (-6 -3980)) ELT)) (-3708 (($) NIL T CONST)) (-2873 (((-578 |#1|) $) 70 (|has| $ (-6 -3979)) ELT)) (-3015 (((-578 $) $) 59 T ELT)) (-3011 (((-83) $ $) 50 (|has| |#1| (-1005)) ELT)) (-2592 (((-578 |#1|) $) 71 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 69 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3014 (((-578 |#1|) $) 55 T ELT)) (-3511 (((-83) $) 53 T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 67 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 102 T ELT)) (-3387 (((-83) $) 9 T ELT)) (-3549 (($) 10 T ELT)) (-3784 ((|#1| $ #1#) NIL T ELT)) (-3013 (((-478) $ $) 48 T ELT)) (-3612 (((-578 $) $) 84 T ELT)) (-3613 (((-83) $ $) 105 T ELT)) (-3614 (((-578 $) $) 100 T ELT)) (-3615 (($ $) 101 T ELT)) (-3617 (((-83) $) 77 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 25 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 17 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3384 (($ $) 83 T ELT)) (-3930 (((-765) $) 86 (|has| |#1| (-547 (-765))) ELT)) (-3506 (((-578 $) $) 12 T ELT)) (-3012 (((-83) $ $) 39 (|has| |#1| (-1005)) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 66 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 37 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 81 (|has| $ (-6 -3979)) ELT))) +(((-1105 |#1|) (-13 (-916 |#1|) (-10 -8 (-6 -3979) (-6 -3980) (-15 -3616 ($ |#1| (-578 $))) (-15 -3616 ($ (-578 |#1|))) (-15 -3616 ($ |#1|)) (-15 -3617 ((-83) $)) (-15 -3615 ($ $)) (-15 -3614 ((-578 $) $)) (-15 -3613 ((-83) $ $)) (-15 -3612 ((-578 $) $)))) (-1005)) (T -1105)) +((-3617 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1105 *3)) (-4 *3 (-1005)))) (-3616 (*1 *1 *2 *3) (-12 (-5 *3 (-578 (-1105 *2))) (-5 *1 (-1105 *2)) (-4 *2 (-1005)))) (-3616 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-5 *1 (-1105 *3)))) (-3616 (*1 *1 *2) (-12 (-5 *1 (-1105 *2)) (-4 *2 (-1005)))) (-3615 (*1 *1 *1) (-12 (-5 *1 (-1105 *2)) (-4 *2 (-1005)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-578 (-1105 *3))) (-5 *1 (-1105 *3)) (-4 *3 (-1005)))) (-3613 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1105 *3)) (-4 *3 (-1005)))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-578 (-1105 *3))) (-5 *1 (-1105 *3)) (-4 *3 (-1005))))) +((-3623 (($ $) 15 T ELT)) (-3621 (($ $) 12 T ELT)) (-3620 (($ $) 10 T ELT)) (-3619 (($ $) 17 T ELT))) +(((-1106 |#1|) (-10 -7 (-15 -3619 (|#1| |#1|)) (-15 -3620 (|#1| |#1|)) (-15 -3621 (|#1| |#1|)) (-15 -3623 (|#1| |#1|))) (-1107)) (T -1106)) +NIL +((-3623 (($ $) 11 T ELT)) (-3622 (($ $) 10 T ELT)) (-3621 (($ $) 9 T ELT)) (-3620 (($ $) 8 T ELT)) (-3619 (($ $) 7 T ELT)) (-3618 (($ $) 6 T ELT))) +(((-1107) (-111)) (T -1107)) +((-3623 (*1 *1 *1) (-4 *1 (-1107))) (-3622 (*1 *1 *1) (-4 *1 (-1107))) (-3621 (*1 *1 *1) (-4 *1 (-1107))) (-3620 (*1 *1 *1) (-4 *1 (-1107))) (-3619 (*1 *1 *1) (-4 *1 (-1107))) (-3618 (*1 *1 *1) (-4 *1 (-1107)))) +(-13 (-10 -8 (-15 -3618 ($ $)) (-15 -3619 ($ $)) (-15 -3620 ($ $)) (-15 -3621 ($ $)) (-15 -3622 ($ $)) (-15 -3623 ($ $)))) +((-3626 ((|#2| |#2|) 95 T ELT)) (-3629 (((-83) |#2|) 29 T ELT)) (-3627 ((|#2| |#2|) 33 T ELT)) (-3628 ((|#2| |#2|) 35 T ELT)) (-3624 ((|#2| |#2| (-1079)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3630 (((-140 |#2|) |#2|) 31 T ELT)) (-3625 ((|#2| |#2| (-1079)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) +(((-1108 |#1| |#2|) (-10 -7 (-15 -3624 (|#2| |#2|)) (-15 -3624 (|#2| |#2| (-1079))) (-15 -3625 (|#2| |#2|)) (-15 -3625 (|#2| |#2| (-1079))) (-15 -3626 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -3628 (|#2| |#2|)) (-15 -3629 ((-83) |#2|)) (-15 -3630 ((-140 |#2|) |#2|))) (-13 (-385) (-943 (-478)) (-575 (-478))) (-13 (-27) (-1104) (-357 |#1|))) (T -1108)) +((-3630 (*1 *2 *3) (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-140 *3)) (-5 *1 (-1108 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *4))))) (-3629 (*1 *2 *3) (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-83)) (-5 *1 (-1108 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *4))))) (-3628 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *3))))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *3))))) (-3626 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *3))))) (-3625 (*1 *2 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1108 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *4))))) (-3625 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *3))))) (-3624 (*1 *2 *2 *3) (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1108 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *4))))) (-3624 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *3)))))) +((-3631 ((|#4| |#4| |#1|) 31 T ELT)) (-3632 ((|#4| |#4| |#1|) 32 T ELT))) +(((-1109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3631 (|#4| |#4| |#1|)) (-15 -3632 (|#4| |#4| |#1|))) (-489) (-317 |#1|) (-317 |#1|) (-622 |#1| |#2| |#3|)) (T -1109)) +((-3632 (*1 *2 *2 *3) (-12 (-4 *3 (-489)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-1109 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) (-3631 (*1 *2 *2 *3) (-12 (-4 *3 (-489)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-1109 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) +((-3650 ((|#2| |#2|) 148 T ELT)) (-3652 ((|#2| |#2|) 145 T ELT)) (-3649 ((|#2| |#2|) 136 T ELT)) (-3651 ((|#2| |#2|) 133 T ELT)) (-3648 ((|#2| |#2|) 141 T ELT)) (-3647 ((|#2| |#2|) 129 T ELT)) (-3636 ((|#2| |#2|) 44 T ELT)) (-3635 ((|#2| |#2|) 105 T ELT)) (-3633 ((|#2| |#2|) 88 T ELT)) (-3646 ((|#2| |#2|) 143 T ELT)) (-3645 ((|#2| |#2|) 131 T ELT)) (-3658 ((|#2| |#2|) 153 T ELT)) (-3656 ((|#2| |#2|) 151 T ELT)) (-3657 ((|#2| |#2|) 152 T ELT)) (-3655 ((|#2| |#2|) 150 T ELT)) (-3634 ((|#2| |#2|) 163 T ELT)) (-3659 ((|#2| |#2|) 30 (-12 (|has| |#2| (-548 (-793 |#1|))) (|has| |#2| (-789 |#1|)) (|has| |#1| (-548 (-793 |#1|))) (|has| |#1| (-789 |#1|))) ELT)) (-3637 ((|#2| |#2|) 89 T ELT)) (-3638 ((|#2| |#2|) 154 T ELT)) (-3947 ((|#2| |#2|) 155 T ELT)) (-3644 ((|#2| |#2|) 142 T ELT)) (-3643 ((|#2| |#2|) 130 T ELT)) (-3642 ((|#2| |#2|) 149 T ELT)) (-3654 ((|#2| |#2|) 147 T ELT)) (-3641 ((|#2| |#2|) 137 T ELT)) (-3653 ((|#2| |#2|) 135 T ELT)) (-3640 ((|#2| |#2|) 139 T ELT)) (-3639 ((|#2| |#2|) 127 T ELT))) +(((-1110 |#1| |#2|) (-10 -7 (-15 -3947 (|#2| |#2|)) (-15 -3633 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3642 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3644 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3646 (|#2| |#2|)) (-15 -3647 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (IF (|has| |#1| (-789 |#1|)) (IF (|has| |#1| (-548 (-793 |#1|))) (IF (|has| |#2| (-548 (-793 |#1|))) (IF (|has| |#2| (-789 |#1|)) (-15 -3659 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-385) (-13 (-357 |#1|) (-1104))) (T -1110)) +((-3659 (*1 *2 *2) (-12 (-4 *3 (-548 (-793 *3))) (-4 *3 (-789 *3)) (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-548 (-793 *3))) (-4 *2 (-789 *3)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3647 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) (-3947 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3065 (((-578 (-1079)) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3623 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3021 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3622 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3708 (($) NIL T CONST)) (-3943 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3798 (((-850 |#1|) $ (-687)) 17 T ELT) (((-850 |#1|) $ (-687) (-687)) NIL T ELT)) (-2876 (((-83) $) NIL T ELT)) (-3611 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3756 (((-687) $ (-1079)) NIL T ELT) (((-687) $ (-1079) (-687)) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2995 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ $ (-578 (-1079)) (-578 (-463 (-1079)))) NIL T ELT) (($ $ (-1079) (-463 (-1079))) NIL T ELT) (($ |#1| (-463 (-1079))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3926 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3796 (($ $ (-1079)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1079) |#1|) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3660 (($ (-1 $) (-1079) |#1|) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3753 (($ $ (-687)) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-3927 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3752 (($ $ (-1079) $) NIL T ELT) (($ $ (-578 (-1079)) (-578 $)) NIL T ELT) (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT)) (-3742 (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079))) NIL T ELT) (($ $ (-1079)) NIL T ELT)) (-3932 (((-463 (-1079)) $) NIL T ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-1079)) NIL T ELT) (($ (-850 |#1|)) NIL T ELT)) (-3661 ((|#1| $ (-463 (-1079))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT) (((-850 |#1|) $ (-687)) NIL T ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-2653 (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079))) NIL T ELT) (($ $ (-1079)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1111 |#1|) (-13 (-672 |#1| (-1079)) (-10 -8 (-15 -3661 ((-850 |#1|) $ (-687))) (-15 -3930 ($ (-1079))) (-15 -3930 ($ (-850 |#1|))) (IF (|has| |#1| (-38 (-343 (-478)))) (PROGN (-15 -3796 ($ $ (-1079) |#1|)) (-15 -3660 ($ (-1 $) (-1079) |#1|))) |%noBranch|))) (-954)) (T -1111)) +((-3661 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *2 (-850 *4)) (-5 *1 (-1111 *4)) (-4 *4 (-954)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-1111 *3)) (-4 *3 (-954)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-850 *3)) (-4 *3 (-954)) (-5 *1 (-1111 *3)))) (-3796 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1079)) (-5 *1 (-1111 *3)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)))) (-3660 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1111 *4))) (-5 *3 (-1079)) (-5 *1 (-1111 *4)) (-4 *4 (-38 (-343 (-478)))) (-4 *4 (-954))))) +((-3677 (((-83) |#5| $) 68 T ELT) (((-83) $) 109 T ELT)) (-3672 ((|#5| |#5| $) 83 T ELT)) (-3694 (($ (-1 (-83) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3673 (((-578 |#5|) (-578 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-83) |#5| |#5|)) 81 T ELT)) (-3140 (((-3 $ #1#) (-578 |#5|)) 134 T ELT)) (-3783 (((-3 $ #1#) $) 119 T ELT)) (-3669 ((|#5| |#5| $) 101 T ELT)) (-3678 (((-83) |#5| $ (-1 (-83) |#5| |#5|)) 36 T ELT)) (-3667 ((|#5| |#5| $) 105 T ELT)) (-3826 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-83) |#5| |#5|)) 77 T ELT)) (-3680 (((-2 (|:| -3845 (-578 |#5|)) (|:| -1689 (-578 |#5|))) $) 63 T ELT)) (-3679 (((-83) |#5| $) 66 T ELT) (((-83) $) 110 T ELT)) (-3163 ((|#4| $) 115 T ELT)) (-3782 (((-3 |#5| #1#) $) 117 T ELT)) (-3681 (((-578 |#5|) $) 55 T ELT)) (-3675 (((-83) |#5| $) 75 T ELT) (((-83) $) 114 T ELT)) (-3670 ((|#5| |#5| $) 89 T ELT)) (-3683 (((-83) $ $) 29 T ELT)) (-3676 (((-83) |#5| $) 71 T ELT) (((-83) $) 112 T ELT)) (-3671 ((|#5| |#5| $) 86 T ELT)) (-3785 (((-3 |#5| #1#) $) 116 T ELT)) (-3753 (($ $ |#5|) 135 T ELT)) (-3932 (((-687) $) 60 T ELT)) (-3514 (($ (-578 |#5|)) 132 T ELT)) (-2894 (($ $ |#4|) 130 T ELT)) (-2896 (($ $ |#4|) 128 T ELT)) (-3668 (($ $) 127 T ELT)) (-3930 (((-765) $) NIL T ELT) (((-578 |#5|) $) 120 T ELT)) (-3662 (((-687) $) 139 T ELT)) (-3682 (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#5|))) #1#) (-578 |#5|) (-1 (-83) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#5|))) #1#) (-578 |#5|) (-1 (-83) |#5|) (-1 (-83) |#5| |#5|)) 51 T ELT)) (-3674 (((-83) $ (-1 (-83) |#5| (-578 |#5|))) 107 T ELT)) (-3664 (((-578 |#4|) $) 122 T ELT)) (-3917 (((-83) |#4| $) 125 T ELT)) (-3037 (((-83) $ $) 20 T ELT))) +(((-1112 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3662 ((-687) |#1|)) (-15 -3753 (|#1| |#1| |#5|)) (-15 -3694 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3917 ((-83) |#4| |#1|)) (-15 -3664 ((-578 |#4|) |#1|)) (-15 -3783 ((-3 |#1| #1#) |#1|)) (-15 -3782 ((-3 |#5| #1#) |#1|)) (-15 -3785 ((-3 |#5| #1#) |#1|)) (-15 -3667 (|#5| |#5| |#1|)) (-15 -3668 (|#1| |#1|)) (-15 -3669 (|#5| |#5| |#1|)) (-15 -3670 (|#5| |#5| |#1|)) (-15 -3671 (|#5| |#5| |#1|)) (-15 -3672 (|#5| |#5| |#1|)) (-15 -3673 ((-578 |#5|) (-578 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-83) |#5| |#5|))) (-15 -3826 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-83) |#5| |#5|))) (-15 -3675 ((-83) |#1|)) (-15 -3676 ((-83) |#1|)) (-15 -3677 ((-83) |#1|)) (-15 -3674 ((-83) |#1| (-1 (-83) |#5| (-578 |#5|)))) (-15 -3675 ((-83) |#5| |#1|)) (-15 -3676 ((-83) |#5| |#1|)) (-15 -3677 ((-83) |#5| |#1|)) (-15 -3678 ((-83) |#5| |#1| (-1 (-83) |#5| |#5|))) (-15 -3679 ((-83) |#1|)) (-15 -3679 ((-83) |#5| |#1|)) (-15 -3680 ((-2 (|:| -3845 (-578 |#5|)) (|:| -1689 (-578 |#5|))) |#1|)) (-15 -3932 ((-687) |#1|)) (-15 -3681 ((-578 |#5|) |#1|)) (-15 -3682 ((-3 (-2 (|:| |bas| |#1|) (|:| -3308 (-578 |#5|))) #1#) (-578 |#5|) (-1 (-83) |#5|) (-1 (-83) |#5| |#5|))) (-15 -3682 ((-3 (-2 (|:| |bas| |#1|) (|:| -3308 (-578 |#5|))) #1#) (-578 |#5|) (-1 (-83) |#5| |#5|))) (-15 -3683 ((-83) |#1| |#1|)) (-15 -2894 (|#1| |#1| |#4|)) (-15 -2896 (|#1| |#1| |#4|)) (-15 -3163 (|#4| |#1|)) (-15 -3140 ((-3 |#1| #1#) (-578 |#5|))) (-15 -3930 ((-578 |#5|) |#1|)) (-15 -3514 (|#1| (-578 |#5|))) (-15 -3826 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3826 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3694 (|#1| (-1 (-83) |#5|) |#1|)) (-15 -3826 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3930 ((-765) |#1|)) (-15 -3037 ((-83) |#1| |#1|))) (-1113 |#2| |#3| |#4| |#5|) (-489) (-710) (-749) (-969 |#2| |#3| |#4|)) (T -1112)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3665 (((-578 (-2 (|:| -3845 $) (|:| -1689 (-578 |#4|)))) (-578 |#4|)) 90 T ELT)) (-3666 (((-578 $) (-578 |#4|)) 91 T ELT)) (-3065 (((-578 |#3|) $) 37 T ELT)) (-2892 (((-83) $) 30 T ELT)) (-2883 (((-83) $) 21 (|has| |#1| (-489)) ELT)) (-3677 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3672 ((|#4| |#4| $) 97 T ELT)) (-2893 (((-2 (|:| |under| $) (|:| -3113 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3694 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3979)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-3708 (($) 46 T CONST)) (-2888 (((-83) $) 26 (|has| |#1| (-489)) ELT)) (-2890 (((-83) $ $) 28 (|has| |#1| (-489)) ELT)) (-2889 (((-83) $ $) 27 (|has| |#1| (-489)) ELT)) (-2891 (((-83) $) 29 (|has| |#1| (-489)) ELT)) (-3673 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2884 (((-578 |#4|) (-578 |#4|) $) 22 (|has| |#1| (-489)) ELT)) (-2885 (((-578 |#4|) (-578 |#4|) $) 23 (|has| |#1| (-489)) ELT)) (-3140 (((-3 $ "failed") (-578 |#4|)) 40 T ELT)) (-3139 (($ (-578 |#4|)) 39 T ELT)) (-3783 (((-3 $ "failed") $) 87 T ELT)) (-3669 ((|#4| |#4| $) 94 T ELT)) (-1340 (($ $) 69 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3390 (($ |#4| $) 68 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3979)) ELT)) (-2886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-489)) ELT)) (-3678 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3667 ((|#4| |#4| $) 92 T ELT)) (-3826 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3979)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3979)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3680 (((-2 (|:| -3845 (-578 |#4|)) (|:| -1689 (-578 |#4|))) $) 110 T ELT)) (-2873 (((-578 |#4|) $) 53 (|has| $ (-6 -3979)) ELT)) (-3679 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3163 ((|#3| $) 38 T ELT)) (-2592 (((-578 |#4|) $) 54 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2898 (((-578 |#3|) $) 36 T ELT)) (-2897 (((-83) |#3| $) 35 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3782 (((-3 |#4| "failed") $) 88 T ELT)) (-3681 (((-578 |#4|) $) 112 T ELT)) (-3675 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3670 ((|#4| |#4| $) 95 T ELT)) (-3683 (((-83) $ $) 115 T ELT)) (-2887 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-489)) ELT)) (-3676 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3671 ((|#4| |#4| $) 96 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3785 (((-3 |#4| "failed") $) 89 T ELT)) (-1341 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3663 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-3753 (($ $ |#4|) 82 T ELT)) (-1934 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 |#4|) (-578 |#4|)) 60 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-245 |#4|)) 58 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-578 (-245 |#4|))) 57 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT)) (-1210 (((-83) $ $) 42 T ELT)) (-3387 (((-83) $) 45 T ELT)) (-3549 (($) 44 T ELT)) (-3932 (((-687) $) 111 T ELT)) (-1933 (((-687) |#4| $) 55 (-12 (|has| |#4| (-1005)) (|has| $ (-6 -3979))) ELT) (((-687) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) 43 T ELT)) (-3956 (((-467) $) 70 (|has| |#4| (-548 (-467))) ELT)) (-3514 (($ (-578 |#4|)) 61 T ELT)) (-2894 (($ $ |#3|) 32 T ELT)) (-2896 (($ $ |#3|) 34 T ELT)) (-3668 (($ $) 93 T ELT)) (-2895 (($ $ |#3|) 33 T ELT)) (-3930 (((-765) $) 13 T ELT) (((-578 |#4|) $) 41 T ELT)) (-3662 (((-687) $) 81 (|has| |#3| (-313)) ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3682 (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3674 (((-83) $ (-1 (-83) |#4| (-578 |#4|))) 103 T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3979)) ELT)) (-3664 (((-578 |#3|) $) 86 T ELT)) (-3917 (((-83) |#3| $) 85 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3941 (((-687) $) 47 (|has| $ (-6 -3979)) ELT))) +(((-1113 |#1| |#2| |#3| |#4|) (-111) (-489) (-710) (-749) (-969 |t#1| |t#2| |t#3|)) (T -1113)) +((-3683 (*1 *2 *1 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) (-3682 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-83) *8 *8)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3308 (-578 *8)))) (-5 *3 (-578 *8)) (-4 *1 (-1113 *5 *6 *7 *8)))) (-3682 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-83) *9)) (-5 *5 (-1 (-83) *9 *9)) (-4 *9 (-969 *6 *7 *8)) (-4 *6 (-489)) (-4 *7 (-710)) (-4 *8 (-749)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3308 (-578 *9)))) (-5 *3 (-578 *9)) (-4 *1 (-1113 *6 *7 *8 *9)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-578 *6)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-687)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-2 (|:| -3845 (-578 *6)) (|:| -1689 (-578 *6)))))) (-3679 (*1 *2 *3 *1) (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) (-3678 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-83) *3 *3)) (-4 *1 (-1113 *5 *6 *7 *3)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-83)))) (-3677 (*1 *2 *3 *1) (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3676 (*1 *2 *3 *1) (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3675 (*1 *2 *3 *1) (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3674 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-83) *7 (-578 *7))) (-4 *1 (-1113 *4 *5 *6 *7)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) (-3675 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) (-3826 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-83) *2 *2)) (-4 *1 (-1113 *5 *6 *7 *2)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *2 (-969 *5 *6 *7)))) (-3673 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-578 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-83) *8 *8)) (-4 *1 (-1113 *5 *6 *7 *8)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-969 *5 *6 *7)))) (-3672 (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3671 (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3670 (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3669 (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3668 (*1 *1 *1) (-12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *2 (-489)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *5 (-969 *2 *3 *4)))) (-3667 (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3666 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-1113 *4 *5 *6 *7)))) (-3665 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| -3845 *1) (|:| -1689 (-578 *7))))) (-5 *3 (-578 *7)) (-4 *1 (-1113 *4 *5 *6 *7)))) (-3785 (*1 *2 *1) (|partial| -12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3782 (*1 *2 *1) (|partial| -12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3783 (*1 *1 *1) (|partial| -12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *2 (-489)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *5 (-969 *2 *3 *4)))) (-3664 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-578 *5)))) (-3917 (*1 *2 *3 *1) (-12 (-4 *1 (-1113 *4 *5 *3 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *3 (-749)) (-4 *6 (-969 *4 *5 *3)) (-5 *2 (-83)))) (-3694 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1113 *4 *5 *3 *2)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *3 (-749)) (-4 *2 (-969 *4 *5 *3)))) (-3663 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3753 (*1 *1 *1 *2) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *5 (-313)) (-5 *2 (-687))))) +(-13 (-882 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -3979) (-6 -3980) (-15 -3683 ((-83) $ $)) (-15 -3682 ((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |t#4|))) "failed") (-578 |t#4|) (-1 (-83) |t#4| |t#4|))) (-15 -3682 ((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |t#4|))) "failed") (-578 |t#4|) (-1 (-83) |t#4|) (-1 (-83) |t#4| |t#4|))) (-15 -3681 ((-578 |t#4|) $)) (-15 -3932 ((-687) $)) (-15 -3680 ((-2 (|:| -3845 (-578 |t#4|)) (|:| -1689 (-578 |t#4|))) $)) (-15 -3679 ((-83) |t#4| $)) (-15 -3679 ((-83) $)) (-15 -3678 ((-83) |t#4| $ (-1 (-83) |t#4| |t#4|))) (-15 -3677 ((-83) |t#4| $)) (-15 -3676 ((-83) |t#4| $)) (-15 -3675 ((-83) |t#4| $)) (-15 -3674 ((-83) $ (-1 (-83) |t#4| (-578 |t#4|)))) (-15 -3677 ((-83) $)) (-15 -3676 ((-83) $)) (-15 -3675 ((-83) $)) (-15 -3826 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-83) |t#4| |t#4|))) (-15 -3673 ((-578 |t#4|) (-578 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-83) |t#4| |t#4|))) (-15 -3672 (|t#4| |t#4| $)) (-15 -3671 (|t#4| |t#4| $)) (-15 -3670 (|t#4| |t#4| $)) (-15 -3669 (|t#4| |t#4| $)) (-15 -3668 ($ $)) (-15 -3667 (|t#4| |t#4| $)) (-15 -3666 ((-578 $) (-578 |t#4|))) (-15 -3665 ((-578 (-2 (|:| -3845 $) (|:| -1689 (-578 |t#4|)))) (-578 |t#4|))) (-15 -3785 ((-3 |t#4| "failed") $)) (-15 -3782 ((-3 |t#4| "failed") $)) (-15 -3783 ((-3 $ "failed") $)) (-15 -3664 ((-578 |t#3|) $)) (-15 -3917 ((-83) |t#3| $)) (-15 -3694 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3663 ((-3 $ "failed") $ |t#4|)) (-15 -3753 ($ $ |t#4|)) (IF (|has| |t#3| (-313)) (-15 -3662 ((-687) $)) |%noBranch|))) +(((-34) . T) ((-72) . T) ((-547 (-578 |#4|)) . T) ((-547 (-765)) . T) ((-122 |#4|) . T) ((-548 (-467)) |has| |#4| (-548 (-467))) ((-256 |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ((-422 |#4|) . T) ((-447 |#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ((-882 |#1| |#2| |#3| |#4|) . T) ((-1005) . T) ((-1118) . T)) +((-3689 (($ |#1| (-578 (-578 (-847 (-177)))) (-83)) 19 T ELT)) (-3688 (((-83) $ (-83)) 18 T ELT)) (-3687 (((-83) $) 17 T ELT)) (-3685 (((-578 (-578 (-847 (-177)))) $) 13 T ELT)) (-3684 ((|#1| $) 8 T ELT)) (-3686 (((-83) $) 15 T ELT))) +(((-1114 |#1|) (-10 -8 (-15 -3684 (|#1| $)) (-15 -3685 ((-578 (-578 (-847 (-177)))) $)) (-15 -3686 ((-83) $)) (-15 -3687 ((-83) $)) (-15 -3688 ((-83) $ (-83))) (-15 -3689 ($ |#1| (-578 (-578 (-847 (-177)))) (-83)))) (-880)) (T -1114)) +((-3689 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-83)) (-5 *1 (-1114 *2)) (-4 *2 (-880)))) (-3688 (*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1114 *3)) (-4 *3 (-880)))) (-3687 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1114 *3)) (-4 *3 (-880)))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1114 *3)) (-4 *3 (-880)))) (-3685 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *1 (-1114 *3)) (-4 *3 (-880)))) (-3684 (*1 *2 *1) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-880))))) +((-3691 (((-847 (-177)) (-847 (-177))) 31 T ELT)) (-3690 (((-847 (-177)) (-177) (-177) (-177) (-177)) 10 T ELT)) (-3693 (((-578 (-847 (-177))) (-847 (-177)) (-847 (-177)) (-847 (-177)) (-177) (-578 (-578 (-177)))) 57 T ELT)) (-3820 (((-177) (-847 (-177)) (-847 (-177))) 27 T ELT)) (-3818 (((-847 (-177)) (-847 (-177)) (-847 (-177))) 28 T ELT)) (-3692 (((-578 (-578 (-177))) (-478)) 45 T ELT)) (-3821 (((-847 (-177)) (-847 (-177)) (-847 (-177))) 26 T ELT)) (-3823 (((-847 (-177)) (-847 (-177)) (-847 (-177))) 24 T ELT)) (* (((-847 (-177)) (-177) (-847 (-177))) 22 T ELT))) +(((-1115) (-10 -7 (-15 -3690 ((-847 (-177)) (-177) (-177) (-177) (-177))) (-15 * ((-847 (-177)) (-177) (-847 (-177)))) (-15 -3823 ((-847 (-177)) (-847 (-177)) (-847 (-177)))) (-15 -3821 ((-847 (-177)) (-847 (-177)) (-847 (-177)))) (-15 -3820 ((-177) (-847 (-177)) (-847 (-177)))) (-15 -3818 ((-847 (-177)) (-847 (-177)) (-847 (-177)))) (-15 -3691 ((-847 (-177)) (-847 (-177)))) (-15 -3692 ((-578 (-578 (-177))) (-478))) (-15 -3693 ((-578 (-847 (-177))) (-847 (-177)) (-847 (-177)) (-847 (-177)) (-177) (-578 (-578 (-177))))))) (T -1115)) +((-3693 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-578 (-578 (-177)))) (-5 *4 (-177)) (-5 *2 (-578 (-847 *4))) (-5 *1 (-1115)) (-5 *3 (-847 *4)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-578 (-578 (-177)))) (-5 *1 (-1115)))) (-3691 (*1 *2 *2) (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1115)))) (-3818 (*1 *2 *2 *2) (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1115)))) (-3820 (*1 *2 *3 *3) (-12 (-5 *3 (-847 (-177))) (-5 *2 (-177)) (-5 *1 (-1115)))) (-3821 (*1 *2 *2 *2) (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1115)))) (-3823 (*1 *2 *2 *2) (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1115)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-847 (-177))) (-5 *3 (-177)) (-5 *1 (-1115)))) (-3690 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1115)) (-5 *3 (-177))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-3694 ((|#1| $ (-687)) 18 T ELT)) (-3817 (((-687) $) 13 T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-3930 (((-862 |#1|) $) 12 T ELT) (($ (-862 |#1|)) 11 T ELT) (((-765) $) 29 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-3037 (((-83) $ $) 22 (|has| |#1| (-1005)) ELT))) +(((-1116 |#1|) (-13 (-423 (-862 |#1|)) (-10 -8 (-15 -3694 (|#1| $ (-687))) (-15 -3817 ((-687) $)) (IF (|has| |#1| (-547 (-765))) (-6 (-547 (-765))) |%noBranch|) (IF (|has| |#1| (-1005)) (-6 (-1005)) |%noBranch|))) (-1118)) (T -1116)) +((-3694 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *1 (-1116 *2)) (-4 *2 (-1118)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-1116 *3)) (-4 *3 (-1118))))) +((-3697 (((-341 (-1074 (-1074 |#1|))) (-1074 (-1074 |#1|)) (-478)) 92 T ELT)) (-3695 (((-341 (-1074 (-1074 |#1|))) (-1074 (-1074 |#1|))) 84 T ELT)) (-3696 (((-341 (-1074 (-1074 |#1|))) (-1074 (-1074 |#1|))) 68 T ELT))) +(((-1117 |#1|) (-10 -7 (-15 -3695 ((-341 (-1074 (-1074 |#1|))) (-1074 (-1074 |#1|)))) (-15 -3696 ((-341 (-1074 (-1074 |#1|))) (-1074 (-1074 |#1|)))) (-15 -3697 ((-341 (-1074 (-1074 |#1|))) (-1074 (-1074 |#1|)) (-478)))) (-295)) (T -1117)) +((-3697 (*1 *2 *3 *4) (-12 (-5 *4 (-478)) (-4 *5 (-295)) (-5 *2 (-341 (-1074 (-1074 *5)))) (-5 *1 (-1117 *5)) (-5 *3 (-1074 (-1074 *5))))) (-3696 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-341 (-1074 (-1074 *4)))) (-5 *1 (-1117 *4)) (-5 *3 (-1074 (-1074 *4))))) (-3695 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-341 (-1074 (-1074 *4)))) (-5 *1 (-1117 *4)) (-5 *3 (-1074 (-1074 *4)))))) +NIL +(((-1118) (-111)) (T -1118)) +NIL +(-13 (-10 -7 (-6 -2273))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 9 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-1119) (-987)) (T -1119)) +NIL +((-3701 (((-83)) 18 T ELT)) (-3698 (((-1174) (-578 |#1|) (-578 |#1|)) 22 T ELT) (((-1174) (-578 |#1|)) 23 T ELT)) (-3703 (((-83) |#1| |#1|) 37 (|has| |#1| (-749)) ELT)) (-3700 (((-83) |#1| |#1| (-1 (-83) |#1| |#1|)) 29 T ELT) (((-3 (-83) "failed") |#1| |#1|) 27 T ELT)) (-3702 ((|#1| (-578 |#1|)) 38 (|has| |#1| (-749)) ELT) ((|#1| (-578 |#1|) (-1 (-83) |#1| |#1|)) 32 T ELT)) (-3699 (((-2 (|:| -3212 (-578 |#1|)) (|:| -3211 (-578 |#1|)))) 20 T ELT))) +(((-1120 |#1|) (-10 -7 (-15 -3698 ((-1174) (-578 |#1|))) (-15 -3698 ((-1174) (-578 |#1|) (-578 |#1|))) (-15 -3699 ((-2 (|:| -3212 (-578 |#1|)) (|:| -3211 (-578 |#1|))))) (-15 -3700 ((-3 (-83) "failed") |#1| |#1|)) (-15 -3700 ((-83) |#1| |#1| (-1 (-83) |#1| |#1|))) (-15 -3702 (|#1| (-578 |#1|) (-1 (-83) |#1| |#1|))) (-15 -3701 ((-83))) (IF (|has| |#1| (-749)) (PROGN (-15 -3702 (|#1| (-578 |#1|))) (-15 -3703 ((-83) |#1| |#1|))) |%noBranch|)) (-1005)) (T -1120)) +((-3703 (*1 *2 *3 *3) (-12 (-5 *2 (-83)) (-5 *1 (-1120 *3)) (-4 *3 (-749)) (-4 *3 (-1005)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-1005)) (-4 *2 (-749)) (-5 *1 (-1120 *2)))) (-3701 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1120 *3)) (-4 *3 (-1005)))) (-3702 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *2)) (-5 *4 (-1 (-83) *2 *2)) (-5 *1 (-1120 *2)) (-4 *2 (-1005)))) (-3700 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-83) *3 *3)) (-4 *3 (-1005)) (-5 *2 (-83)) (-5 *1 (-1120 *3)))) (-3700 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-83)) (-5 *1 (-1120 *3)) (-4 *3 (-1005)))) (-3699 (*1 *2) (-12 (-5 *2 (-2 (|:| -3212 (-578 *3)) (|:| -3211 (-578 *3)))) (-5 *1 (-1120 *3)) (-4 *3 (-1005)))) (-3698 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1005)) (-5 *2 (-1174)) (-5 *1 (-1120 *4)))) (-3698 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1005)) (-5 *2 (-1174)) (-5 *1 (-1120 *4))))) +((-3704 (((-1174) (-578 (-1079)) (-578 (-1079))) 14 T ELT) (((-1174) (-578 (-1079))) 12 T ELT)) (-3706 (((-1174)) 16 T ELT)) (-3705 (((-2 (|:| -3211 (-578 (-1079))) (|:| -3212 (-578 (-1079))))) 20 T ELT))) +(((-1121) (-10 -7 (-15 -3704 ((-1174) (-578 (-1079)))) (-15 -3704 ((-1174) (-578 (-1079)) (-578 (-1079)))) (-15 -3705 ((-2 (|:| -3211 (-578 (-1079))) (|:| -3212 (-578 (-1079)))))) (-15 -3706 ((-1174))))) (T -1121)) +((-3706 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1121)))) (-3705 (*1 *2) (-12 (-5 *2 (-2 (|:| -3211 (-578 (-1079))) (|:| -3212 (-578 (-1079))))) (-5 *1 (-1121)))) (-3704 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-1079))) (-5 *2 (-1174)) (-5 *1 (-1121)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-578 (-1079))) (-5 *2 (-1174)) (-5 *1 (-1121))))) +((-3759 (($ $) 17 T ELT)) (-3707 (((-83) $) 27 T ELT))) +(((-1122 |#1|) (-10 -7 (-15 -3759 (|#1| |#1|)) (-15 -3707 ((-83) |#1|))) (-1123)) (T -1122)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3759 (($ $) 63 T ELT)) (-3955 (((-341 $) $) 64 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3707 (((-83) $) 65 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-1878 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 55 T ELT)) (-3127 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3716 (((-341 $) $) 62 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-1123) (-111)) (T -1123)) +((-3707 (*1 *2 *1) (-12 (-4 *1 (-1123)) (-5 *2 (-83)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-341 *1)) (-4 *1 (-1123)))) (-3759 (*1 *1 *1) (-4 *1 (-1123))) (-3716 (*1 *2 *1) (-12 (-5 *2 (-341 *1)) (-4 *1 (-1123))))) +(-13 (-385) (-10 -8 (-15 -3707 ((-83) $)) (-15 -3955 ((-341 $) $)) (-15 -3759 ($ $)) (-15 -3716 ((-341 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-242) . T) ((-385) . T) ((-489) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-577 $) . T) ((-649 $) . T) ((-658) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-2299 (($ $) NIL T ELT)) (-3119 (((-687)) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2978 (($) NIL T ELT)) (-2515 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2841 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1996 (((-823) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2386 (($ (-823)) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-3709 (($ $ $) NIL T ELT)) (-3710 (($ $ $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2297 (($ $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) NIL T ELT))) +(((-1124) (-13 (-745) (-599) (-10 -8 (-15 -3710 ($ $ $)) (-15 -3709 ($ $ $)) (-15 -3708 ($) -3936)))) (T -1124)) +((-3710 (*1 *1 *1 *1) (-5 *1 (-1124))) (-3709 (*1 *1 *1 *1) (-5 *1 (-1124))) (-3708 (*1 *1) (-5 *1 (-1124)))) +((-687) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2552 (((-83) $ $) NIL T ELT)) (-2299 (($ $) NIL T ELT)) (-3119 (((-687)) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2978 (($) NIL T ELT)) (-2515 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2841 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1996 (((-823) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2386 (($ (-823)) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-3709 (($ $ $) NIL T ELT)) (-3710 (($ $ $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2297 (($ $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) NIL T ELT))) +(((-1125) (-13 (-745) (-599) (-10 -8 (-15 -3710 ($ $ $)) (-15 -3709 ($ $ $)) (-15 -3708 ($) -3936)))) (T -1125)) +((-3710 (*1 *1 *1 *1) (-5 *1 (-1125))) (-3709 (*1 *1 *1 *1) (-5 *1 (-1125))) (-3708 (*1 *1) (-5 *1 (-1125)))) +((-687) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2552 (((-83) $ $) NIL T ELT)) (-2299 (($ $) NIL T ELT)) (-3119 (((-687)) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2978 (($) NIL T ELT)) (-2515 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2841 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1996 (((-823) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2386 (($ (-823)) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-3709 (($ $ $) NIL T ELT)) (-3710 (($ $ $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2297 (($ $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) NIL T ELT))) +(((-1126) (-13 (-745) (-599) (-10 -8 (-15 -3710 ($ $ $)) (-15 -3709 ($ $ $)) (-15 -3708 ($) -3936)))) (T -1126)) +((-3710 (*1 *1 *1 *1) (-5 *1 (-1126))) (-3709 (*1 *1 *1 *1) (-5 *1 (-1126))) (-3708 (*1 *1) (-5 *1 (-1126)))) +((-687) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2552 (((-83) $ $) NIL T ELT)) (-2299 (($ $) NIL T ELT)) (-3119 (((-687)) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2978 (($) NIL T ELT)) (-2515 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2841 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1996 (((-823) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2386 (($ (-823)) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT)) (-3709 (($ $ $) NIL T ELT)) (-3710 (($ $ $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2297 (($ $ $) NIL T ELT)) (-2550 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) NIL T ELT))) +(((-1127) (-13 (-745) (-599) (-10 -8 (-15 -3710 ($ $ $)) (-15 -3709 ($ $ $)) (-15 -3708 ($) -3936)))) (T -1127)) +((-3710 (*1 *1 *1 *1) (-5 *1 (-1127))) (-3709 (*1 *1 *1 *1) (-5 *1 (-1127))) (-3708 (*1 *1) (-5 *1 (-1127)))) +((-687) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3112 (((-1158 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-254)) (|has| |#1| (-308))) ELT)) (-3065 (((-578 (-986)) $) NIL T ELT)) (-3815 (((-1079) $) 10 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-2049 (($ $) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-2047 (((-83) $) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-3755 (($ $ (-478)) NIL T ELT) (($ $ (-478) (-478)) NIL T ELT)) (-3758 (((-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) $) NIL T ELT)) (-3715 (((-1158 |#1| |#2| |#3|) $) NIL T ELT)) (-3712 (((-3 (-1158 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3713 (((-1158 |#1| |#2| |#3|) $) NIL T ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3623 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1299 (((-3 $ #1#) $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-3759 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-3021 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-1595 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3622 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3607 (((-478) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) ELT)) (-3802 (($ (-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|)))) NIL T ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-1158 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1079) #1#) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-943 (-1079))) (|has| |#1| (-308))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) ELT) (((-3 (-478) #1#) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) ELT)) (-3139 (((-1158 |#1| |#2| |#3|) $) NIL T ELT) (((-1079) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-943 (-1079))) (|has| |#1| (-308))) ELT) (((-343 (-478)) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) ELT) (((-478) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) ELT)) (-3714 (($ $) NIL T ELT) (($ (-478) $) NIL T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3943 (($ $) NIL T ELT)) (-2265 (((-625 (-1158 |#1| |#2| |#3|)) (-625 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-1158 |#1| |#2| |#3|))) (|:| |vec| (-1168 (-1158 |#1| |#2| |#3|)))) (-625 $) (-1168 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-575 (-478))) (|has| |#1| (-308))) ELT) (((-625 (-478)) (-625 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-575 (-478))) (|has| |#1| (-308))) ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3711 (((-343 (-850 |#1|)) $ (-478)) NIL (|has| |#1| (-489)) ELT) (((-343 (-850 |#1|)) $ (-478) (-478)) NIL (|has| |#1| (-489)) ELT)) (-2978 (($) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-477)) (|has| |#1| (-308))) ELT)) (-2547 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-3169 (((-83) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) ELT)) (-2876 (((-83) $) NIL T ELT)) (-3611 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-789 (-323))) (|has| |#1| (-308))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-789 (-478))) (|has| |#1| (-308))) ELT)) (-3756 (((-478) $) NIL T ELT) (((-478) $ (-478)) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2980 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2982 (((-1158 |#1| |#2| |#3|) $) NIL (|has| |#1| (-308)) ELT)) (-2995 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3429 (((-627 $) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-1055)) (|has| |#1| (-308))) ELT)) (-3170 (((-83) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) ELT)) (-3761 (($ $ (-823)) NIL T ELT)) (-3799 (($ (-1 |#1| (-478)) $) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-478)) 18 T ELT) (($ $ (-986) (-478)) NIL T ELT) (($ $ (-578 (-986)) (-578 (-478))) NIL T ELT)) (-2515 (($ $ $) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-2841 (($ $ $) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-308)) ELT)) (-3926 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2266 (((-625 (-1158 |#1| |#2| |#3|)) (-1168 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-1158 |#1| |#2| |#3|))) (|:| |vec| (-1168 (-1158 |#1| |#2| |#3|)))) (-1168 $) $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-575 (-478))) (|has| |#1| (-308))) ELT) (((-625 (-478)) (-1168 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-575 (-478))) (|has| |#1| (-308))) ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3763 (($ (-478) (-1158 |#1| |#2| |#3|)) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3796 (($ $) 27 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1104))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3796 (|#1| |#1| (-1079)))) (|has| |#1| (-15 -3065 ((-578 (-1079)) |#1|))))) ELT) (($ $ (-1165 |#2|)) 28 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3430 (($) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-1055)) (|has| |#1| (-308))) CONST)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-308)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3111 (($ $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-254)) (|has| |#1| (-308))) ELT)) (-3113 (((-1158 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-477)) (|has| |#1| (-308))) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3753 (($ $ (-478)) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3927 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3752 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-478)))) ELT) (($ $ (-1079) (-1158 |#1| |#2| |#3|)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-447 (-1079) (-1158 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-578 (-1079)) (-578 (-1158 |#1| |#2| |#3|))) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-447 (-1079) (-1158 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-578 (-245 (-1158 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-256 (-1158 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-245 (-1158 |#1| |#2| |#3|))) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-256 (-1158 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-256 (-1158 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-578 (-1158 |#1| |#2| |#3|)) (-578 (-1158 |#1| |#2| |#3|))) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-256 (-1158 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT)) (-1594 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3784 ((|#1| $ (-478)) NIL T ELT) (($ $ $) NIL (|has| (-478) (-1015)) ELT) (($ $ (-1158 |#1| |#2| |#3|)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-238 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3742 (($ $ (-1 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) (-687)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|))) NIL (|has| |#1| (-308)) ELT) (($ $ (-1165 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-802 (-1079))) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1079))) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-802 (-1079))) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-1079) (-687)) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-802 (-1079))) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-802 (-1079))) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT)) (-2979 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2981 (((-1158 |#1| |#2| |#3|) $) NIL (|has| |#1| (-308)) ELT)) (-3932 (((-478) $) NIL T ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3956 (((-467) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-548 (-467))) (|has| |#1| (-308))) ELT) (((-323) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-926)) (|has| |#1| (-308))) ELT) (((-177) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-926)) (|has| |#1| (-308))) ELT) (((-793 (-323)) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-548 (-793 (-323)))) (|has| |#1| (-308))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-548 (-793 (-478)))) (|has| |#1| (-308))) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| (-1158 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-2875 (($ $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1158 |#1| |#2| |#3|)) NIL T ELT) (($ (-1165 |#2|)) 24 T ELT) (($ (-1079)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-943 (-1079))) (|has| |#1| (-308))) ELT) (($ $) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT) (($ (-343 (-478))) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) (|has| |#1| (-38 (-343 (-478))))) ELT)) (-3661 ((|#1| $ (-478)) NIL T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-1158 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-116)) (|has| |#1| (-308))) (|has| |#1| (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-3757 ((|#1| $) 11 T ELT)) (-3114 (((-1158 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-477)) (|has| |#1| (-308))) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2048 (((-83) $ $) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3754 ((|#1| $ (-478)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-478)))) (|has| |#1| (-15 -3930 (|#1| (-1079))))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3367 (($ $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) ELT)) (-2644 (($) 20 T CONST)) (-2650 (($) 15 T CONST)) (-2653 (($ $ (-1 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) (-687)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|))) NIL (|has| |#1| (-308)) ELT) (($ $ (-1165 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-802 (-1079))) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1079))) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-802 (-1079))) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-1079) (-687)) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-802 (-1079))) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-802 (-1079))) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT)) (-2550 (((-83) $ $) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-2551 (((-83) $ $) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2668 (((-83) $ $) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-2669 (((-83) $ $) NIL (OR (-12 (|has| (-1158 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT) (($ (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 22 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1158 |#1| |#2| |#3|)) NIL (|has| |#1| (-308)) ELT) (($ (-1158 |#1| |#2| |#3|) $) NIL (|has| |#1| (-308)) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-1128 |#1| |#2| |#3|) (-13 (-1132 |#1| (-1158 |#1| |#2| |#3|)) (-799 $ (-1165 |#2|)) (-10 -8 (-15 -3930 ($ (-1165 |#2|))) (IF (|has| |#1| (-38 (-343 (-478)))) (-15 -3796 ($ $ (-1165 |#2|))) |%noBranch|))) (-954) (-1079) |#1|) (T -1128)) +((-3930 (*1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1128 *3 *4 *5)) (-4 *3 (-954)) (-14 *5 *3))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1128 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3)))) +((-3942 (((-1128 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1128 |#1| |#3| |#5|)) 23 T ELT))) +(((-1129 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3942 ((-1128 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1128 |#1| |#3| |#5|)))) (-954) (-954) (-1079) (-1079) |#1| |#2|) (T -1129)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1128 *5 *7 *9)) (-4 *5 (-954)) (-4 *6 (-954)) (-14 *7 (-1079)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1128 *6 *8 *10)) (-5 *1 (-1129 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1079))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3065 (((-578 (-986)) $) 92 T ELT)) (-3815 (((-1079) $) 126 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 68 (|has| |#1| (-489)) ELT)) (-2049 (($ $) 69 (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) 71 (|has| |#1| (-489)) ELT)) (-3755 (($ $ (-478)) 121 T ELT) (($ $ (-478) (-478)) 120 T ELT)) (-3758 (((-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) $) 127 T ELT)) (-3476 (($ $) 160 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3623 (($ $) 143 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3759 (($ $) 187 (|has| |#1| (-308)) ELT)) (-3955 (((-341 $) $) 188 (|has| |#1| (-308)) ELT)) (-3021 (($ $) 142 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1595 (((-83) $ $) 178 (|has| |#1| (-308)) ELT)) (-3474 (($ $) 159 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3622 (($ $) 144 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3802 (($ (-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|)))) 198 T ELT)) (-3478 (($ $) 158 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3621 (($ $) 145 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3708 (($) 22 T CONST)) (-2548 (($ $ $) 182 (|has| |#1| (-308)) ELT)) (-3943 (($ $) 77 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3711 (((-343 (-850 |#1|)) $ (-478)) 196 (|has| |#1| (-489)) ELT) (((-343 (-850 |#1|)) $ (-478) (-478)) 195 (|has| |#1| (-489)) ELT)) (-2547 (($ $ $) 181 (|has| |#1| (-308)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 176 (|has| |#1| (-308)) ELT)) (-3707 (((-83) $) 189 (|has| |#1| (-308)) ELT)) (-2876 (((-83) $) 91 T ELT)) (-3611 (($) 170 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3756 (((-478) $) 123 T ELT) (((-478) $ (-478)) 122 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-2995 (($ $ (-478)) 141 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3761 (($ $ (-823)) 124 T ELT)) (-3799 (($ (-1 |#1| (-478)) $) 197 T ELT)) (-1592 (((-3 (-578 $) #1="failed") (-578 $) $) 185 (|has| |#1| (-308)) ELT)) (-3921 (((-83) $) 79 T ELT)) (-2877 (($ |#1| (-478)) 78 T ELT) (($ $ (-986) (-478)) 94 T ELT) (($ $ (-578 (-986)) (-578 (-478))) 93 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3926 (($ $) 167 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2878 (($ $) 82 T ELT)) (-3157 ((|#1| $) 83 T ELT)) (-1878 (($ (-578 $)) 174 (|has| |#1| (-308)) ELT) (($ $ $) 173 (|has| |#1| (-308)) ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 190 (|has| |#1| (-308)) ELT)) (-3796 (($ $) 194 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1079)) 193 (OR (-12 (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1104)) (|has| |#1| (-38 (-343 (-478))))) (-12 (|has| |#1| (-15 -3065 ((-578 (-1079)) |#1|))) (|has| |#1| (-15 -3796 (|#1| |#1| (-1079)))) (|has| |#1| (-38 (-343 (-478)))))) ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 175 (|has| |#1| (-308)) ELT)) (-3127 (($ (-578 $)) 172 (|has| |#1| (-308)) ELT) (($ $ $) 171 (|has| |#1| (-308)) ELT)) (-3716 (((-341 $) $) 186 (|has| |#1| (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 183 (|has| |#1| (-308)) ELT)) (-3753 (($ $ (-478)) 118 T ELT)) (-3450 (((-3 $ "failed") $ $) 67 (|has| |#1| (-489)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 177 (|has| |#1| (-308)) ELT)) (-3927 (($ $) 168 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3752 (((-1058 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-478)))) ELT)) (-1594 (((-687) $) 179 (|has| |#1| (-308)) ELT)) (-3784 ((|#1| $ (-478)) 128 T ELT) (($ $ $) 104 (|has| (-478) (-1015)) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 180 (|has| |#1| (-308)) ELT)) (-3742 (($ $ (-1079)) 116 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-578 (-1079))) 114 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1079) (-687)) 113 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 112 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-478) |#1|))) ELT) (($ $ (-687)) 106 (|has| |#1| (-15 * (|#1| (-478) |#1|))) ELT)) (-3932 (((-478) $) 81 T ELT)) (-3479 (($ $) 157 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3620 (($ $) 146 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 156 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3619 (($ $) 147 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3475 (($ $) 155 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3618 (($ $) 148 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) 90 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT) (($ (-343 (-478))) 74 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) 66 (|has| |#1| (-489)) ELT)) (-3661 ((|#1| $ (-478)) 76 T ELT)) (-2686 (((-627 $) $) 65 (|has| |#1| (-116)) ELT)) (-3109 (((-687)) 37 T CONST)) (-3757 ((|#1| $) 125 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3482 (($ $) 166 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 154 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2048 (((-83) $ $) 70 (|has| |#1| (-489)) ELT)) (-3480 (($ $) 165 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 153 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3484 (($ $) 164 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3472 (($ $) 152 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3754 ((|#1| $ (-478)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-478)))) (|has| |#1| (-15 -3930 (|#1| (-1079))))) ELT)) (-3485 (($ $) 163 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3473 (($ $) 151 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3483 (($ $) 162 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) 150 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3481 (($ $) 161 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3469 (($ $) 149 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-1079)) 115 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-578 (-1079))) 111 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1079) (-687)) 110 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 109 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-478) |#1|))) ELT) (($ $ (-687)) 105 (|has| |#1| (-15 * (|#1| (-478) |#1|))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT) (($ $ $) 192 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 191 (|has| |#1| (-308)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 140 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-343 (-478)) $) 73 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 72 (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-1130 |#1|) (-111) (-954)) (T -1130)) +((-3802 (*1 *1 *2) (-12 (-5 *2 (-1058 (-2 (|:| |k| (-478)) (|:| |c| *3)))) (-4 *3 (-954)) (-4 *1 (-1130 *3)))) (-3799 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-478))) (-4 *1 (-1130 *3)) (-4 *3 (-954)))) (-3711 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-1130 *4)) (-4 *4 (-954)) (-4 *4 (-489)) (-5 *2 (-343 (-850 *4))))) (-3711 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-478)) (-4 *1 (-1130 *4)) (-4 *4 (-954)) (-4 *4 (-489)) (-5 *2 (-343 (-850 *4))))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-954)) (-4 *2 (-38 (-343 (-478)))))) (-3796 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1079)) (-4 *1 (-1130 *3)) (-4 *3 (-954)) (-12 (-4 *3 (-29 (-478))) (-4 *3 (-864)) (-4 *3 (-1104)) (-4 *3 (-38 (-343 (-478)))))) (-12 (-5 *2 (-1079)) (-4 *1 (-1130 *3)) (-4 *3 (-954)) (-12 (|has| *3 (-15 -3065 ((-578 *2) *3))) (|has| *3 (-15 -3796 (*3 *3 *2))) (-4 *3 (-38 (-343 (-478))))))))) +(-13 (-1147 |t#1| (-478)) (-10 -8 (-15 -3802 ($ (-1058 (-2 (|:| |k| (-478)) (|:| |c| |t#1|))))) (-15 -3799 ($ (-1 |t#1| (-478)) $)) (IF (|has| |t#1| (-489)) (PROGN (-15 -3711 ((-343 (-850 |t#1|)) $ (-478))) (-15 -3711 ((-343 (-850 |t#1|)) $ (-478) (-478)))) |%noBranch|) (IF (|has| |t#1| (-38 (-343 (-478)))) (PROGN (-15 -3796 ($ $)) (IF (|has| |t#1| (-15 -3796 (|t#1| |t#1| (-1079)))) (IF (|has| |t#1| (-15 -3065 ((-578 (-1079)) |t#1|))) (-15 -3796 ($ $ (-1079))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1104)) (IF (|has| |t#1| (-864)) (IF (|has| |t#1| (-29 (-478))) (-15 -3796 ($ $ (-1079))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-908)) (-6 (-1104))) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-478)) . T) ((-25) . T) ((-38 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-35) |has| |#1| (-38 (-343 (-478)))) ((-66) |has| |#1| (-38 (-343 (-478)))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-550 (-478)) . T) ((-550 |#1|) |has| |#1| (-144)) ((-550 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| (-478) |#1|))) ((-188) |has| |#1| (-15 * (|#1| (-478) |#1|))) ((-187) |has| |#1| (-15 * (|#1| (-478) |#1|))) ((-198) |has| |#1| (-308)) ((-236) |has| |#1| (-38 (-343 (-478)))) ((-238 (-478) |#1|) . T) ((-238 $ $) |has| (-478) (-1015)) ((-242) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-254) |has| |#1| (-308)) ((-308) |has| |#1| (-308)) ((-385) |has| |#1| (-308)) ((-426) |has| |#1| (-38 (-343 (-478)))) ((-489) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-583 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-649 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-658) . T) ((-799 $ (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ((-802 (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ((-804 (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ((-879 |#1| (-478) (-986)) . T) ((-825) |has| |#1| (-308)) ((-908) |has| |#1| (-38 (-343 (-478)))) ((-956 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-961 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1104) |has| |#1| (-38 (-343 (-478)))) ((-1107) |has| |#1| (-38 (-343 (-478)))) ((-1118) . T) ((-1123) |has| |#1| (-308)) ((-1147 |#1| (-478)) . T)) +((-3171 (((-83) $) 12 T ELT)) (-3140 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1079) #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 (-478) #1#) $) NIL T ELT)) (-3139 ((|#3| $) 14 T ELT) (((-1079) $) NIL T ELT) (((-343 (-478)) $) NIL T ELT) (((-478) $) NIL T ELT))) +(((-1131 |#1| |#2| |#3|) (-10 -7 (-15 -3140 ((-3 (-478) #1="failed") |#1|)) (-15 -3139 ((-478) |#1|)) (-15 -3140 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3139 ((-343 (-478)) |#1|)) (-15 -3140 ((-3 (-1079) #1#) |#1|)) (-15 -3139 ((-1079) |#1|)) (-15 -3140 ((-3 |#3| #1#) |#1|)) (-15 -3139 (|#3| |#1|)) (-15 -3171 ((-83) |#1|))) (-1132 |#2| |#3|) (-954) (-1161 |#2|)) (T -1131)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3112 ((|#2| $) 263 (-2546 (|has| |#2| (-254)) (|has| |#1| (-308))) ELT)) (-3065 (((-578 (-986)) $) 92 T ELT)) (-3815 (((-1079) $) 126 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 68 (|has| |#1| (-489)) ELT)) (-2049 (($ $) 69 (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) 71 (|has| |#1| (-489)) ELT)) (-3755 (($ $ (-478)) 121 T ELT) (($ $ (-478) (-478)) 120 T ELT)) (-3758 (((-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) $) 127 T ELT)) (-3715 ((|#2| $) 299 T ELT)) (-3712 (((-3 |#2| "failed") $) 295 T ELT)) (-3713 ((|#2| $) 296 T ELT)) (-3476 (($ $) 160 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3623 (($ $) 143 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) 272 (-2546 (|has| |#2| (-814)) (|has| |#1| (-308))) ELT)) (-3759 (($ $) 187 (|has| |#1| (-308)) ELT)) (-3955 (((-341 $) $) 188 (|has| |#1| (-308)) ELT)) (-3021 (($ $) 142 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1="failed") (-578 (-1074 $)) (-1074 $)) 269 (-2546 (|has| |#2| (-814)) (|has| |#1| (-308))) ELT)) (-1595 (((-83) $ $) 178 (|has| |#1| (-308)) ELT)) (-3474 (($ $) 159 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3622 (($ $) 144 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3607 (((-478) $) 281 (-2546 (|has| |#2| (-733)) (|has| |#1| (-308))) ELT)) (-3802 (($ (-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|)))) 198 T ELT)) (-3478 (($ $) 158 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3621 (($ $) 145 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 |#2| #2="failed") $) 302 T ELT) (((-3 (-478) #2#) $) 292 (-2546 (|has| |#2| (-943 (-478))) (|has| |#1| (-308))) ELT) (((-3 (-343 (-478)) #2#) $) 290 (-2546 (|has| |#2| (-943 (-478))) (|has| |#1| (-308))) ELT) (((-3 (-1079) #2#) $) 274 (-2546 (|has| |#2| (-943 (-1079))) (|has| |#1| (-308))) ELT)) (-3139 ((|#2| $) 303 T ELT) (((-478) $) 291 (-2546 (|has| |#2| (-943 (-478))) (|has| |#1| (-308))) ELT) (((-343 (-478)) $) 289 (-2546 (|has| |#2| (-943 (-478))) (|has| |#1| (-308))) ELT) (((-1079) $) 273 (-2546 (|has| |#2| (-943 (-1079))) (|has| |#1| (-308))) ELT)) (-3714 (($ $) 298 T ELT) (($ (-478) $) 297 T ELT)) (-2548 (($ $ $) 182 (|has| |#1| (-308)) ELT)) (-3943 (($ $) 77 T ELT)) (-2265 (((-625 |#2|) (-625 $)) 251 (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) 250 (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 249 (-2546 (|has| |#2| (-575 (-478))) (|has| |#1| (-308))) ELT) (((-625 (-478)) (-625 $)) 248 (-2546 (|has| |#2| (-575 (-478))) (|has| |#1| (-308))) ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3711 (((-343 (-850 |#1|)) $ (-478)) 196 (|has| |#1| (-489)) ELT) (((-343 (-850 |#1|)) $ (-478) (-478)) 195 (|has| |#1| (-489)) ELT)) (-2978 (($) 265 (-2546 (|has| |#2| (-477)) (|has| |#1| (-308))) ELT)) (-2547 (($ $ $) 181 (|has| |#1| (-308)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 176 (|has| |#1| (-308)) ELT)) (-3707 (((-83) $) 189 (|has| |#1| (-308)) ELT)) (-3169 (((-83) $) 279 (-2546 (|has| |#2| (-733)) (|has| |#1| (-308))) ELT)) (-2876 (((-83) $) 91 T ELT)) (-3611 (($) 170 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 257 (-2546 (|has| |#2| (-789 (-323))) (|has| |#1| (-308))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 256 (-2546 (|has| |#2| (-789 (-478))) (|has| |#1| (-308))) ELT)) (-3756 (((-478) $) 123 T ELT) (((-478) $ (-478)) 122 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-2980 (($ $) 261 (|has| |#1| (-308)) ELT)) (-2982 ((|#2| $) 259 (|has| |#1| (-308)) ELT)) (-2995 (($ $ (-478)) 141 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3429 (((-627 $) $) 293 (-2546 (|has| |#2| (-1055)) (|has| |#1| (-308))) ELT)) (-3170 (((-83) $) 280 (-2546 (|has| |#2| (-733)) (|has| |#1| (-308))) ELT)) (-3761 (($ $ (-823)) 124 T ELT)) (-3799 (($ (-1 |#1| (-478)) $) 197 T ELT)) (-1592 (((-3 (-578 $) #3="failed") (-578 $) $) 185 (|has| |#1| (-308)) ELT)) (-3921 (((-83) $) 79 T ELT)) (-2877 (($ |#1| (-478)) 78 T ELT) (($ $ (-986) (-478)) 94 T ELT) (($ $ (-578 (-986)) (-578 (-478))) 93 T ELT)) (-2515 (($ $ $) 288 (-2546 (|has| |#2| (-749)) (|has| |#1| (-308))) ELT)) (-2841 (($ $ $) 287 (-2546 (|has| |#2| (-749)) (|has| |#1| (-308))) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#2| |#2|) $) 241 (|has| |#1| (-308)) ELT)) (-3926 (($ $) 167 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2266 (((-625 |#2|) (-1168 $)) 253 (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-1168 $) $) 252 (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) 247 (-2546 (|has| |#2| (-575 (-478))) (|has| |#1| (-308))) ELT) (((-625 (-478)) (-1168 $)) 246 (-2546 (|has| |#2| (-575 (-478))) (|has| |#1| (-308))) ELT)) (-2878 (($ $) 82 T ELT)) (-3157 ((|#1| $) 83 T ELT)) (-1878 (($ (-578 $)) 174 (|has| |#1| (-308)) ELT) (($ $ $) 173 (|has| |#1| (-308)) ELT)) (-3763 (($ (-478) |#2|) 300 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 190 (|has| |#1| (-308)) ELT)) (-3796 (($ $) 194 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1079)) 193 (OR (-12 (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1104)) (|has| |#1| (-38 (-343 (-478))))) (-12 (|has| |#1| (-15 -3065 ((-578 (-1079)) |#1|))) (|has| |#1| (-15 -3796 (|#1| |#1| (-1079)))) (|has| |#1| (-38 (-343 (-478)))))) ELT)) (-3430 (($) 294 (-2546 (|has| |#2| (-1055)) (|has| |#1| (-308))) CONST)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 175 (|has| |#1| (-308)) ELT)) (-3127 (($ (-578 $)) 172 (|has| |#1| (-308)) ELT) (($ $ $) 171 (|has| |#1| (-308)) ELT)) (-3111 (($ $) 264 (-2546 (|has| |#2| (-254)) (|has| |#1| (-308))) ELT)) (-3113 ((|#2| $) 267 (-2546 (|has| |#2| (-477)) (|has| |#1| (-308))) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) 270 (-2546 (|has| |#2| (-814)) (|has| |#1| (-308))) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) 271 (-2546 (|has| |#2| (-814)) (|has| |#1| (-308))) ELT)) (-3716 (((-341 $) $) 186 (|has| |#1| (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 184 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 183 (|has| |#1| (-308)) ELT)) (-3753 (($ $ (-478)) 118 T ELT)) (-3450 (((-3 $ "failed") $ $) 67 (|has| |#1| (-489)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 177 (|has| |#1| (-308)) ELT)) (-3927 (($ $) 168 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3752 (((-1058 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-478)))) ELT) (($ $ (-1079) |#2|) 240 (-2546 (|has| |#2| (-447 (-1079) |#2|)) (|has| |#1| (-308))) ELT) (($ $ (-578 (-1079)) (-578 |#2|)) 239 (-2546 (|has| |#2| (-447 (-1079) |#2|)) (|has| |#1| (-308))) ELT) (($ $ (-578 (-245 |#2|))) 238 (-2546 (|has| |#2| (-256 |#2|)) (|has| |#1| (-308))) ELT) (($ $ (-245 |#2|)) 237 (-2546 (|has| |#2| (-256 |#2|)) (|has| |#1| (-308))) ELT) (($ $ |#2| |#2|) 236 (-2546 (|has| |#2| (-256 |#2|)) (|has| |#1| (-308))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) 235 (-2546 (|has| |#2| (-256 |#2|)) (|has| |#1| (-308))) ELT)) (-1594 (((-687) $) 179 (|has| |#1| (-308)) ELT)) (-3784 ((|#1| $ (-478)) 128 T ELT) (($ $ $) 104 (|has| (-478) (-1015)) ELT) (($ $ |#2|) 234 (-2546 (|has| |#2| (-238 |#2| |#2|)) (|has| |#1| (-308))) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 180 (|has| |#1| (-308)) ELT)) (-3742 (($ $ (-1 |#2| |#2|) (-687)) 243 (|has| |#1| (-308)) ELT) (($ $ (-1 |#2| |#2|)) 242 (|has| |#1| (-308)) ELT) (($ $) 108 (OR (-2546 (|has| |#2| (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-687)) 106 (OR (-2546 (|has| |#2| (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1079)) 116 (OR (-2546 (|has| |#2| (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1079))) 114 (OR (-2546 (|has| |#2| (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-1079) (-687)) 113 (OR (-2546 (|has| |#2| (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 112 (OR (-2546 (|has| |#2| (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT)) (-2979 (($ $) 262 (|has| |#1| (-308)) ELT)) (-2981 ((|#2| $) 260 (|has| |#1| (-308)) ELT)) (-3932 (((-478) $) 81 T ELT)) (-3479 (($ $) 157 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3620 (($ $) 146 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 156 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3619 (($ $) 147 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3475 (($ $) 155 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3618 (($ $) 148 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3956 (((-177) $) 278 (-2546 (|has| |#2| (-926)) (|has| |#1| (-308))) ELT) (((-323) $) 277 (-2546 (|has| |#2| (-926)) (|has| |#1| (-308))) ELT) (((-467) $) 276 (-2546 (|has| |#2| (-548 (-467))) (|has| |#1| (-308))) ELT) (((-793 (-323)) $) 255 (-2546 (|has| |#2| (-548 (-793 (-323)))) (|has| |#1| (-308))) ELT) (((-793 (-478)) $) 254 (-2546 (|has| |#2| (-548 (-793 (-478)))) (|has| |#1| (-308))) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) 268 (-2546 (-2546 (|has| $ (-116)) (|has| |#2| (-814))) (|has| |#1| (-308))) ELT)) (-2875 (($ $) 90 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT) (($ |#2|) 301 T ELT) (($ (-1079)) 275 (-2546 (|has| |#2| (-943 (-1079))) (|has| |#1| (-308))) ELT) (($ (-343 (-478))) 74 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) 66 (|has| |#1| (-489)) ELT)) (-3661 ((|#1| $ (-478)) 76 T ELT)) (-2686 (((-627 $) $) 65 (OR (-2546 (OR (|has| |#2| (-116)) (-2546 (|has| $ (-116)) (|has| |#2| (-814)))) (|has| |#1| (-308))) (|has| |#1| (-116))) ELT)) (-3109 (((-687)) 37 T CONST)) (-3757 ((|#1| $) 125 T ELT)) (-3114 ((|#2| $) 266 (-2546 (|has| |#2| (-477)) (|has| |#1| (-308))) ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3482 (($ $) 166 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 154 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2048 (((-83) $ $) 70 (|has| |#1| (-489)) ELT)) (-3480 (($ $) 165 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 153 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3484 (($ $) 164 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3472 (($ $) 152 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3754 ((|#1| $ (-478)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-478)))) (|has| |#1| (-15 -3930 (|#1| (-1079))))) ELT)) (-3485 (($ $) 163 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3473 (($ $) 151 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3483 (($ $) 162 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) 150 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3481 (($ $) 161 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3469 (($ $) 149 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3367 (($ $) 282 (-2546 (|has| |#2| (-733)) (|has| |#1| (-308))) ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-1 |#2| |#2|) (-687)) 245 (|has| |#1| (-308)) ELT) (($ $ (-1 |#2| |#2|)) 244 (|has| |#1| (-308)) ELT) (($ $) 107 (OR (-2546 (|has| |#2| (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-687)) 105 (OR (-2546 (|has| |#2| (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1079)) 115 (OR (-2546 (|has| |#2| (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1079))) 111 (OR (-2546 (|has| |#2| (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-1079) (-687)) 110 (OR (-2546 (|has| |#2| (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 109 (OR (-2546 (|has| |#2| (-804 (-1079))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT)) (-2550 (((-83) $ $) 286 (-2546 (|has| |#2| (-749)) (|has| |#1| (-308))) ELT)) (-2551 (((-83) $ $) 284 (-2546 (|has| |#2| (-749)) (|has| |#1| (-308))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2668 (((-83) $ $) 285 (-2546 (|has| |#2| (-749)) (|has| |#1| (-308))) ELT)) (-2669 (((-83) $ $) 283 (-2546 (|has| |#2| (-749)) (|has| |#1| (-308))) ELT)) (-3933 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT) (($ $ $) 192 (|has| |#1| (-308)) ELT) (($ |#2| |#2|) 258 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 191 (|has| |#1| (-308)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 140 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ $ |#2|) 233 (|has| |#1| (-308)) ELT) (($ |#2| $) 232 (|has| |#1| (-308)) ELT) (($ (-343 (-478)) $) 73 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 72 (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-1132 |#1| |#2|) (-111) (-954) (-1161 |t#1|)) (T -1132)) +((-3932 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1161 *3)) (-5 *2 (-478)))) (-3763 (*1 *1 *2 *3) (-12 (-5 *2 (-478)) (-4 *4 (-954)) (-4 *1 (-1132 *4 *3)) (-4 *3 (-1161 *4)))) (-3715 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1161 *3)))) (-3714 (*1 *1 *1) (-12 (-4 *1 (-1132 *2 *3)) (-4 *2 (-954)) (-4 *3 (-1161 *2)))) (-3714 (*1 *1 *2 *1) (-12 (-5 *2 (-478)) (-4 *1 (-1132 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1161 *3)))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1161 *3)))) (-3712 (*1 *2 *1) (|partial| -12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1161 *3))))) +(-13 (-1130 |t#1|) (-943 |t#2|) (-550 |t#2|) (-10 -8 (-15 -3763 ($ (-478) |t#2|)) (-15 -3932 ((-478) $)) (-15 -3715 (|t#2| $)) (-15 -3714 ($ $)) (-15 -3714 ($ (-478) $)) (-15 -3713 (|t#2| $)) (-15 -3712 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-308)) (-6 (-897 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-478)) . T) ((-25) . T) ((-38 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-38 |#1|) |has| |#1| (-144)) ((-38 |#2|) |has| |#1| (-308)) ((-38 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-35) |has| |#1| (-38 (-343 (-478)))) ((-66) |has| |#1| (-38 (-343 (-478)))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-80 |#1| |#1|) . T) ((-80 |#2| |#2|) |has| |#1| (-308)) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-102) . T) ((-116) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-116))) (|has| |#1| (-116))) ((-118) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-550 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-550 (-478)) . T) ((-550 (-1079)) -12 (|has| |#1| (-308)) (|has| |#2| (-943 (-1079)))) ((-550 |#1|) |has| |#1| (-144)) ((-550 |#2|) . T) ((-550 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-548 (-177)) -12 (|has| |#1| (-308)) (|has| |#2| (-926))) ((-548 (-323)) -12 (|has| |#1| (-308)) (|has| |#2| (-926))) ((-548 (-467)) -12 (|has| |#1| (-308)) (|has| |#2| (-548 (-467)))) ((-548 (-793 (-323))) -12 (|has| |#1| (-308)) (|has| |#2| (-548 (-793 (-323))))) ((-548 (-793 (-478))) -12 (|has| |#1| (-308)) (|has| |#2| (-548 (-793 (-478))))) ((-184 $) OR (|has| |#1| (-15 * (|#1| (-478) |#1|))) (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (-12 (|has| |#1| (-308)) (|has| |#2| (-188)))) ((-182 |#2|) |has| |#1| (-308)) ((-188) OR (|has| |#1| (-15 * (|#1| (-478) |#1|))) (-12 (|has| |#1| (-308)) (|has| |#2| (-188)))) ((-187) OR (|has| |#1| (-15 * (|#1| (-478) |#1|))) (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (-12 (|has| |#1| (-308)) (|has| |#2| (-188)))) ((-222 |#2|) |has| |#1| (-308)) ((-198) |has| |#1| (-308)) ((-236) |has| |#1| (-38 (-343 (-478)))) ((-238 (-478) |#1|) . T) ((-238 |#2| $) -12 (|has| |#1| (-308)) (|has| |#2| (-238 |#2| |#2|))) ((-238 $ $) |has| (-478) (-1015)) ((-242) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-254) |has| |#1| (-308)) ((-256 |#2|) -12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) ((-308) |has| |#1| (-308)) ((-284 |#2|) |has| |#1| (-308)) ((-322 |#2|) |has| |#1| (-308)) ((-336 |#2|) |has| |#1| (-308)) ((-385) |has| |#1| (-308)) ((-426) |has| |#1| (-38 (-343 (-478)))) ((-447 (-1079) |#2|) -12 (|has| |#1| (-308)) (|has| |#2| (-447 (-1079) |#2|))) ((-447 |#2| |#2|) -12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) ((-489) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-583 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 |#2|) |has| |#1| (-308)) ((-583 $) . T) ((-585 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-585 (-478)) -12 (|has| |#1| (-308)) (|has| |#2| (-575 (-478)))) ((-585 |#1|) . T) ((-585 |#2|) |has| |#1| (-308)) ((-585 $) . T) ((-577 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-577 |#1|) |has| |#1| (-144)) ((-577 |#2|) |has| |#1| (-308)) ((-577 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-575 (-478)) -12 (|has| |#1| (-308)) (|has| |#2| (-575 (-478)))) ((-575 |#2|) |has| |#1| (-308)) ((-649 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-649 |#1|) |has| |#1| (-144)) ((-649 |#2|) |has| |#1| (-308)) ((-649 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-658) . T) ((-707) -12 (|has| |#1| (-308)) (|has| |#2| (-733))) ((-709) -12 (|has| |#1| (-308)) (|has| |#2| (-733))) ((-711) -12 (|has| |#1| (-308)) (|has| |#2| (-733))) ((-714) -12 (|has| |#1| (-308)) (|has| |#2| (-733))) ((-733) -12 (|has| |#1| (-308)) (|has| |#2| (-733))) ((-748) -12 (|has| |#1| (-308)) (|has| |#2| (-733))) ((-749) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-749))) (-12 (|has| |#1| (-308)) (|has| |#2| (-733)))) ((-752) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-749))) (-12 (|has| |#1| (-308)) (|has| |#2| (-733)))) ((-799 $ (-1079)) OR (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1079)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-802 (-1079))))) ((-802 (-1079)) OR (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-802 (-1079))))) ((-804 (-1079)) OR (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1079)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-802 (-1079))))) ((-789 (-323)) -12 (|has| |#1| (-308)) (|has| |#2| (-789 (-323)))) ((-789 (-478)) -12 (|has| |#1| (-308)) (|has| |#2| (-789 (-478)))) ((-787 |#2|) |has| |#1| (-308)) ((-814) -12 (|has| |#1| (-308)) (|has| |#2| (-814))) ((-879 |#1| (-478) (-986)) . T) ((-825) |has| |#1| (-308)) ((-897 |#2|) |has| |#1| (-308)) ((-908) |has| |#1| (-38 (-343 (-478)))) ((-926) -12 (|has| |#1| (-308)) (|has| |#2| (-926))) ((-943 (-343 (-478))) -12 (|has| |#1| (-308)) (|has| |#2| (-943 (-478)))) ((-943 (-478)) -12 (|has| |#1| (-308)) (|has| |#2| (-943 (-478)))) ((-943 (-1079)) -12 (|has| |#1| (-308)) (|has| |#2| (-943 (-1079)))) ((-943 |#2|) . T) ((-956 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-956 |#1|) . T) ((-956 |#2|) |has| |#1| (-308)) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-961 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-961 |#1|) . T) ((-961 |#2|) |has| |#1| (-308)) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1055) -12 (|has| |#1| (-308)) (|has| |#2| (-1055))) ((-1104) |has| |#1| (-38 (-343 (-478)))) ((-1107) |has| |#1| (-38 (-343 (-478)))) ((-1118) . T) ((-1123) |has| |#1| (-308)) ((-1130 |#1|) . T) ((-1147 |#1| (-478)) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 83 T ELT)) (-3112 ((|#2| $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-254))) ELT)) (-3065 (((-578 (-986)) $) NIL T ELT)) (-3815 (((-1079) $) 102 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3755 (($ $ (-478)) 111 T ELT) (($ $ (-478) (-478)) 114 T ELT)) (-3758 (((-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) $) 51 T ELT)) (-3715 ((|#2| $) 11 T ELT)) (-3712 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3713 ((|#2| $) 36 T ELT)) (-3476 (($ $) 208 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3623 (($ $) 184 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1299 (((-3 $ #1#) $ $) NIL T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-814))) ELT)) (-3759 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-3021 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-814))) ELT)) (-1595 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3474 (($ $) 204 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3622 (($ $) 180 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3607 (((-478) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-733))) ELT)) (-3802 (($ (-1058 (-2 (|:| |k| (-478)) (|:| |c| |#1|)))) 59 T ELT)) (-3478 (($ $) 212 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3621 (($ $) 188 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-478) #1#) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-943 (-478)))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-943 (-478)))) ELT) (((-3 (-1079) #1#) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-943 (-1079)))) ELT)) (-3139 ((|#2| $) 158 T ELT) (((-478) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-943 (-478)))) ELT) (((-343 (-478)) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-943 (-478)))) ELT) (((-1079) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-943 (-1079)))) ELT)) (-3714 (($ $) 65 T ELT) (($ (-478) $) 28 T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3943 (($ $) NIL T ELT)) (-2265 (((-625 |#2|) (-625 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-575 (-478)))) ELT) (((-625 (-478)) (-625 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-575 (-478)))) ELT)) (-3451 (((-3 $ #1#) $) 90 T ELT)) (-3711 (((-343 (-850 |#1|)) $ (-478)) 126 (|has| |#1| (-489)) ELT) (((-343 (-850 |#1|)) $ (-478) (-478)) 128 (|has| |#1| (-489)) ELT)) (-2978 (($) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-477))) ELT)) (-2547 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-3169 (((-83) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-733))) ELT)) (-2876 (((-83) $) 76 T ELT)) (-3611 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-789 (-478)))) ELT)) (-3756 (((-478) $) 107 T ELT) (((-478) $ (-478)) 109 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2980 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2982 ((|#2| $) 167 (|has| |#1| (-308)) ELT)) (-2995 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3429 (((-627 $) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-1055))) ELT)) (-3170 (((-83) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-733))) ELT)) (-3761 (($ $ (-823)) 150 T ELT)) (-3799 (($ (-1 |#1| (-478)) $) 146 T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-478)) 20 T ELT) (($ $ (-986) (-478)) NIL T ELT) (($ $ (-578 (-986)) (-578 (-478))) NIL T ELT)) (-2515 (($ $ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-749))) ELT)) (-2841 (($ $ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-749))) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-308)) ELT)) (-3926 (($ $) 178 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2266 (((-625 |#2|) (-1168 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-1168 $) $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-575 (-478)))) ELT) (((-625 (-478)) (-1168 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-575 (-478)))) ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3763 (($ (-478) |#2|) 10 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) 161 (|has| |#1| (-308)) ELT)) (-3796 (($ $) 230 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1079)) 235 (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1104))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3796 (|#1| |#1| (-1079)))) (|has| |#1| (-15 -3065 ((-578 (-1079)) |#1|))))) ELT)) (-3430 (($) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-1055))) CONST)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-308)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3111 (($ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-254))) ELT)) (-3113 ((|#2| $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-477))) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-814))) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-814))) ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3753 (($ $ (-478)) 140 T ELT)) (-3450 (((-3 $ #1#) $ $) 130 (|has| |#1| (-489)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3927 (($ $) 176 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3752 (((-1058 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-478)))) ELT) (($ $ (-1079) |#2|) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-447 (-1079) |#2|))) ELT) (($ $ (-578 (-1079)) (-578 |#2|)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-447 (-1079) |#2|))) ELT) (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) ELT)) (-1594 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3784 ((|#1| $ (-478)) 105 T ELT) (($ $ $) 92 (|has| (-478) (-1015)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-238 |#2| |#2|))) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3742 (($ $ (-1 |#2| |#2|) (-687)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-308)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1079)) 155 (OR (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1079))))) ELT) (($ $ (-578 (-1079))) NIL (OR (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1079))))) ELT) (($ $ (-1079) (-687)) NIL (OR (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1079))))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (OR (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1079))))) ELT)) (-2979 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2981 ((|#2| $) 168 (|has| |#1| (-308)) ELT)) (-3932 (((-478) $) 12 T ELT)) (-3479 (($ $) 214 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3620 (($ $) 190 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 210 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3619 (($ $) 186 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3475 (($ $) 206 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3618 (($ $) 182 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3956 (((-177) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-926))) ELT) (((-323) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-926))) ELT) (((-467) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-548 (-467)))) ELT) (((-793 (-323)) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-548 (-793 (-478))))) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-308)) (|has| |#2| (-814))) ELT)) (-2875 (($ $) 138 T ELT)) (-3930 (((-765) $) 268 T ELT) (($ (-478)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-144)) ELT) (($ |#2|) 21 T ELT) (($ (-1079)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-943 (-1079)))) ELT) (($ (-343 (-478))) 171 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3661 ((|#1| $ (-478)) 87 T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-308)) (|has| |#2| (-814))) (|has| |#1| (-116)) (-12 (|has| |#1| (-308)) (|has| |#2| (-116)))) ELT)) (-3109 (((-687)) 157 T CONST)) (-3757 ((|#1| $) 104 T ELT)) (-3114 ((|#2| $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-477))) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3482 (($ $) 220 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 196 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3480 (($ $) 216 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 192 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3484 (($ $) 224 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3472 (($ $) 200 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3754 ((|#1| $ (-478)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-478)))) (|has| |#1| (-15 -3930 (|#1| (-1079))))) ELT)) (-3485 (($ $) 226 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3473 (($ $) 202 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3483 (($ $) 222 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) 198 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3481 (($ $) 218 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3469 (($ $) 194 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3367 (($ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-733))) ELT)) (-2644 (($) 13 T CONST)) (-2650 (($) 18 T CONST)) (-2653 (($ $ (-1 |#2| |#2|) (-687)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-308)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1079))))) ELT) (($ $ (-578 (-1079))) NIL (OR (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1079))))) ELT) (($ $ (-1079) (-687)) NIL (OR (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1079))))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (OR (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1079))))) ELT)) (-2550 (((-83) $ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-749))) ELT)) (-2551 (((-83) $ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-749))) ELT)) (-3037 (((-83) $ $) 74 T ELT)) (-2668 (((-83) $ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-749))) ELT)) (-2669 (((-83) $ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-749))) ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) 165 (|has| |#1| (-308)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3823 (($ $ $) 78 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 86 T ELT) (($ $ (-478)) 162 (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 174 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-308)) ELT) (($ |#2| $) 163 (|has| |#1| (-308)) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-1133 |#1| |#2|) (-1132 |#1| |#2|) (-954) (-1161 |#1|)) (T -1133)) +NIL +((-3718 (((-2 (|:| |contp| (-478)) (|:| -1766 (-578 (-2 (|:| |irr| |#1|) (|:| -2381 (-478)))))) |#1| (-83)) 13 T ELT)) (-3717 (((-341 |#1|) |#1|) 26 T ELT)) (-3716 (((-341 |#1|) |#1|) 24 T ELT))) +(((-1134 |#1|) (-10 -7 (-15 -3716 ((-341 |#1|) |#1|)) (-15 -3717 ((-341 |#1|) |#1|)) (-15 -3718 ((-2 (|:| |contp| (-478)) (|:| -1766 (-578 (-2 (|:| |irr| |#1|) (|:| -2381 (-478)))))) |#1| (-83)))) (-1144 (-478))) (T -1134)) +((-3718 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-5 *2 (-2 (|:| |contp| (-478)) (|:| -1766 (-578 (-2 (|:| |irr| *3) (|:| -2381 (-478))))))) (-5 *1 (-1134 *3)) (-4 *3 (-1144 (-478))))) (-3717 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-1134 *3)) (-4 *3 (-1144 (-478))))) (-3716 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-1134 *3)) (-4 *3 (-1144 (-478)))))) +((-2552 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-3720 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3942 (((-1058 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-748)) ELT)) (-3212 ((|#1| $) 15 T ELT)) (-3214 ((|#1| $) 12 T ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-3210 (((-478) $) 19 T ELT)) (-3211 ((|#1| $) 18 T ELT)) (-3213 ((|#1| $) 13 T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-3719 (((-83) $) 17 T ELT)) (-3947 (((-1058 |#1|) $) 41 (|has| |#1| (-748)) ELT) (((-1058 |#1|) (-578 $)) 40 (|has| |#1| (-748)) ELT)) (-3956 (($ |#1|) 26 T ELT)) (-3930 (($ (-993 |#1|)) 25 T ELT) (((-765) $) 37 (|has| |#1| (-1005)) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-1005)) ELT)) (-3721 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3215 (($ $ (-478)) 14 T ELT)) (-3037 (((-83) $ $) 30 (|has| |#1| (-1005)) ELT))) +(((-1135 |#1|) (-13 (-998 |#1|) (-10 -8 (-15 -3721 ($ |#1|)) (-15 -3720 ($ |#1|)) (-15 -3930 ($ (-993 |#1|))) (-15 -3719 ((-83) $)) (IF (|has| |#1| (-1005)) (-6 (-1005)) |%noBranch|) (IF (|has| |#1| (-748)) (-6 (-999 |#1| (-1058 |#1|))) |%noBranch|))) (-1118)) (T -1135)) +((-3721 (*1 *1 *2) (-12 (-5 *1 (-1135 *2)) (-4 *2 (-1118)))) (-3720 (*1 *1 *2) (-12 (-5 *1 (-1135 *2)) (-4 *2 (-1118)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-993 *3)) (-4 *3 (-1118)) (-5 *1 (-1135 *3)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1135 *3)) (-4 *3 (-1118))))) +((-3942 (((-1058 |#2|) (-1 |#2| |#1|) (-1135 |#1|)) 23 (|has| |#1| (-748)) ELT) (((-1135 |#2|) (-1 |#2| |#1|) (-1135 |#1|)) 17 T ELT))) +(((-1136 |#1| |#2|) (-10 -7 (-15 -3942 ((-1135 |#2|) (-1 |#2| |#1|) (-1135 |#1|))) (IF (|has| |#1| (-748)) (-15 -3942 ((-1058 |#2|) (-1 |#2| |#1|) (-1135 |#1|))) |%noBranch|)) (-1118) (-1118)) (T -1136)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1135 *5)) (-4 *5 (-748)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1058 *6)) (-5 *1 (-1136 *5 *6)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1135 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1135 *6)) (-5 *1 (-1136 *5 *6))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3751 (((-1168 |#2|) $ (-687)) NIL T ELT)) (-3065 (((-578 (-986)) $) NIL T ELT)) (-3749 (($ (-1074 |#2|)) NIL T ELT)) (-3067 (((-1074 $) $ (-986)) NIL T ELT) (((-1074 |#2|) $) NIL T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#2| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#2| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#2| (-489)) ELT)) (-2803 (((-687) $) NIL T ELT) (((-687) $ (-578 (-986))) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3739 (($ $ $) NIL (|has| |#2| (-489)) ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-3759 (($ $) NIL (|has| |#2| (-385)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#2| (-385)) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1#) (-578 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-1595 (((-83) $ $) NIL (|has| |#2| (-308)) ELT)) (-3745 (($ $ (-687)) NIL T ELT)) (-3744 (($ $ (-687)) NIL T ELT)) (-3735 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-385)) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-3 (-986) #1#) $) NIL T ELT)) (-3139 ((|#2| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-986) $) NIL T ELT)) (-3740 (($ $ $ (-986)) NIL (|has| |#2| (-144)) ELT) ((|#2| $ $) NIL (|has| |#2| (-144)) ELT)) (-2548 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-3943 (($ $) NIL T ELT)) (-2265 (((-625 (-478)) (-625 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-625 $) (-1168 $)) NIL T ELT) (((-625 |#2|) (-625 $)) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2547 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-3743 (($ $ $) NIL T ELT)) (-3737 (($ $ $) NIL (|has| |#2| (-489)) ELT)) (-3736 (((-2 (|:| -3938 |#2|) (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#2| (-489)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| |#2| (-308)) ELT)) (-3487 (($ $) NIL (|has| |#2| (-385)) ELT) (($ $ (-986)) NIL (|has| |#2| (-385)) ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3707 (((-83) $) NIL (|has| |#2| (-814)) ELT)) (-1611 (($ $ |#2| (-687) $) NIL T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-986) (-789 (-323))) (|has| |#2| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-986) (-789 (-478))) (|has| |#2| (-789 (-478)))) ELT)) (-3756 (((-687) $ $) NIL (|has| |#2| (-489)) ELT)) (-2396 (((-83) $) NIL T ELT)) (-2404 (((-687) $) NIL T ELT)) (-3429 (((-627 $) $) NIL (|has| |#2| (-1055)) ELT)) (-3068 (($ (-1074 |#2|) (-986)) NIL T ELT) (($ (-1074 $) (-986)) NIL T ELT)) (-3761 (($ $ (-687)) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#2| (-308)) ELT)) (-2805 (((-578 $) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#2| (-687)) 18 T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ (-986)) NIL T ELT) (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL T ELT)) (-2804 (((-687) $) NIL T ELT) (((-687) $ (-986)) NIL T ELT) (((-578 (-687)) $ (-578 (-986))) NIL T ELT)) (-1612 (($ (-1 (-687) (-687)) $) NIL T ELT)) (-3942 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3750 (((-1074 |#2|) $) NIL T ELT)) (-3066 (((-3 (-986) #1#) $) NIL T ELT)) (-2266 (((-625 (-478)) (-1168 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1168 |#2|))) (-1168 $) $) NIL T ELT) (((-625 |#2|) (-1168 $)) NIL T ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) NIL (|has| |#2| (-385)) ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3746 (((-2 (|:| -1960 $) (|:| -2886 $)) $ (-687)) NIL T ELT)) (-2807 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2806 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2808 (((-3 (-2 (|:| |var| (-986)) (|:| -2387 (-687))) #1#) $) NIL T ELT)) (-3796 (($ $) NIL (|has| |#2| (-38 (-343 (-478)))) ELT)) (-3430 (($) NIL (|has| |#2| (-1055)) CONST)) (-3226 (((-1023) $) NIL T ELT)) (-1784 (((-83) $) NIL T ELT)) (-1783 ((|#2| $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#2| (-385)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) NIL (|has| |#2| (-385)) ELT)) (-3722 (($ $ (-687) |#2| $) NIL T ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) NIL (|has| |#2| (-814)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#2| (-814)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-3450 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-489)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#2| (-308)) ELT)) (-3752 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-986) |#2|) NIL T ELT) (($ $ (-578 (-986)) (-578 |#2|)) NIL T ELT) (($ $ (-986) $) NIL T ELT) (($ $ (-578 (-986)) (-578 $)) NIL T ELT)) (-1594 (((-687) $) NIL (|has| |#2| (-308)) ELT)) (-3784 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-343 $) (-343 $) (-343 $)) NIL (|has| |#2| (-489)) ELT) ((|#2| (-343 $) |#2|) NIL (|has| |#2| (-308)) ELT) (((-343 $) $ (-343 $)) NIL (|has| |#2| (-489)) ELT)) (-3748 (((-3 $ #1#) $ (-687)) NIL T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-3741 (($ $ (-986)) NIL (|has| |#2| (-144)) ELT) ((|#2| $) NIL (|has| |#2| (-144)) ELT)) (-3742 (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986))) NIL T ELT) (($ $ (-986)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1079)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#2| (-804 (-1079))) ELT)) (-3932 (((-687) $) NIL T ELT) (((-687) $ (-986)) NIL T ELT) (((-578 (-687)) $ (-578 (-986))) NIL T ELT)) (-3956 (((-793 (-323)) $) NIL (-12 (|has| (-986) (-548 (-793 (-323)))) (|has| |#2| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-986) (-548 (-793 (-478)))) (|has| |#2| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-986) (-548 (-467))) (|has| |#2| (-548 (-467)))) ELT)) (-2801 ((|#2| $) NIL (|has| |#2| (-385)) ELT) (($ $ (-986)) NIL (|has| |#2| (-385)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-814))) ELT)) (-3738 (((-3 $ #1#) $ $) NIL (|has| |#2| (-489)) ELT) (((-3 (-343 $) #1#) (-343 $) $) NIL (|has| |#2| (-489)) ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-986)) NIL T ELT) (($ (-1165 |#1|)) 20 T ELT) (($ (-343 (-478))) NIL (OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#2| (-489)) ELT)) (-3801 (((-578 |#2|) $) NIL T ELT)) (-3661 ((|#2| $ (-687)) NIL T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT)) (-2686 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-814))) (|has| |#2| (-116))) ELT)) (-3109 (((-687)) NIL T CONST)) (-1610 (($ $ $ (-687)) NIL (|has| |#2| (-144)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL (|has| |#2| (-489)) ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) 14 T CONST)) (-2653 (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986))) NIL T ELT) (($ $ (-986)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1079)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) NIL (|has| |#2| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (|has| |#2| (-804 (-1079))) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-1137 |#1| |#2|) (-13 (-1144 |#2|) (-550 (-1165 |#1|)) (-10 -8 (-15 -3722 ($ $ (-687) |#2| $)))) (-1079) (-954)) (T -1137)) +((-3722 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-687)) (-5 *1 (-1137 *4 *3)) (-14 *4 (-1079)) (-4 *3 (-954))))) +((-3942 (((-1137 |#3| |#4|) (-1 |#4| |#2|) (-1137 |#1| |#2|)) 15 T ELT))) +(((-1138 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3942 ((-1137 |#3| |#4|) (-1 |#4| |#2|) (-1137 |#1| |#2|)))) (-1079) (-954) (-1079) (-954)) (T -1138)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1137 *5 *6)) (-14 *5 (-1079)) (-4 *6 (-954)) (-4 *8 (-954)) (-5 *2 (-1137 *7 *8)) (-5 *1 (-1138 *5 *6 *7 *8)) (-14 *7 (-1079))))) +((-3725 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3723 ((|#1| |#3|) 13 T ELT)) (-3724 ((|#3| |#3|) 19 T ELT))) +(((-1139 |#1| |#2| |#3|) (-10 -7 (-15 -3723 (|#1| |#3|)) (-15 -3724 (|#3| |#3|)) (-15 -3725 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-489) (-897 |#1|) (-1144 |#2|)) (T -1139)) +((-3725 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-897 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1139 *4 *5 *3)) (-4 *3 (-1144 *5)))) (-3724 (*1 *2 *2) (-12 (-4 *3 (-489)) (-4 *4 (-897 *3)) (-5 *1 (-1139 *3 *4 *2)) (-4 *2 (-1144 *4)))) (-3723 (*1 *2 *3) (-12 (-4 *4 (-897 *2)) (-4 *2 (-489)) (-5 *1 (-1139 *2 *4 *3)) (-4 *3 (-1144 *4))))) +((-3727 (((-3 |#2| #1="failed") |#2| (-687) |#1|) 35 T ELT)) (-3726 (((-3 |#2| #1#) |#2| (-687)) 36 T ELT)) (-3729 (((-3 (-2 (|:| -3121 |#2|) (|:| -3120 |#2|)) #1#) |#2|) 50 T ELT)) (-3730 (((-578 |#2|) |#2|) 52 T ELT)) (-3728 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) +(((-1140 |#1| |#2|) (-10 -7 (-15 -3726 ((-3 |#2| #1="failed") |#2| (-687))) (-15 -3727 ((-3 |#2| #1#) |#2| (-687) |#1|)) (-15 -3728 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3729 ((-3 (-2 (|:| -3121 |#2|) (|:| -3120 |#2|)) #1#) |#2|)) (-15 -3730 ((-578 |#2|) |#2|))) (-13 (-489) (-118)) (-1144 |#1|)) (T -1140)) +((-3730 (*1 *2 *3) (-12 (-4 *4 (-13 (-489) (-118))) (-5 *2 (-578 *3)) (-5 *1 (-1140 *4 *3)) (-4 *3 (-1144 *4)))) (-3729 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-489) (-118))) (-5 *2 (-2 (|:| -3121 *3) (|:| -3120 *3))) (-5 *1 (-1140 *4 *3)) (-4 *3 (-1144 *4)))) (-3728 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-489) (-118))) (-5 *1 (-1140 *3 *2)) (-4 *2 (-1144 *3)))) (-3727 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-687)) (-4 *4 (-13 (-489) (-118))) (-5 *1 (-1140 *4 *2)) (-4 *2 (-1144 *4)))) (-3726 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-687)) (-4 *4 (-13 (-489) (-118))) (-5 *1 (-1140 *4 *2)) (-4 *2 (-1144 *4))))) +((-3731 (((-3 (-2 (|:| -1960 |#2|) (|:| -2886 |#2|)) "failed") |#2| |#2|) 30 T ELT))) +(((-1141 |#1| |#2|) (-10 -7 (-15 -3731 ((-3 (-2 (|:| -1960 |#2|) (|:| -2886 |#2|)) "failed") |#2| |#2|))) (-489) (-1144 |#1|)) (T -1141)) +((-3731 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-489)) (-5 *2 (-2 (|:| -1960 *3) (|:| -2886 *3))) (-5 *1 (-1141 *4 *3)) (-4 *3 (-1144 *4))))) +((-3732 ((|#2| |#2| |#2|) 22 T ELT)) (-3733 ((|#2| |#2| |#2|) 36 T ELT)) (-3734 ((|#2| |#2| |#2| (-687) (-687)) 44 T ELT))) +(((-1142 |#1| |#2|) (-10 -7 (-15 -3732 (|#2| |#2| |#2|)) (-15 -3733 (|#2| |#2| |#2|)) (-15 -3734 (|#2| |#2| |#2| (-687) (-687)))) (-954) (-1144 |#1|)) (T -1142)) +((-3734 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-687)) (-4 *4 (-954)) (-5 *1 (-1142 *4 *2)) (-4 *2 (-1144 *4)))) (-3733 (*1 *2 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-1142 *3 *2)) (-4 *2 (-1144 *3)))) (-3732 (*1 *2 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-1142 *3 *2)) (-4 *2 (-1144 *3))))) +((-3751 (((-1168 |#2|) $ (-687)) 129 T ELT)) (-3065 (((-578 (-986)) $) 16 T ELT)) (-3749 (($ (-1074 |#2|)) 80 T ELT)) (-2803 (((-687) $) NIL T ELT) (((-687) $ (-578 (-986))) 21 T ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) 216 T ELT)) (-3759 (($ $) 206 T ELT)) (-3955 (((-341 $) $) 204 T ELT)) (-2688 (((-3 (-578 (-1074 $)) #1="failed") (-578 (-1074 $)) (-1074 $)) 95 T ELT)) (-3745 (($ $ (-687)) 84 T ELT)) (-3744 (($ $ (-687)) 86 T ELT)) (-3735 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3140 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 (-478) #1#) $) NIL T ELT) (((-3 (-986) #1#) $) NIL T ELT)) (-3139 ((|#2| $) 130 T ELT) (((-343 (-478)) $) NIL T ELT) (((-478) $) NIL T ELT) (((-986) $) NIL T ELT)) (-3737 (($ $ $) 182 T ELT)) (-3736 (((-2 (|:| -3938 |#2|) (|:| -1960 $) (|:| -2886 $)) $ $) 184 T ELT)) (-3756 (((-687) $ $) 201 T ELT)) (-3429 (((-627 $) $) 149 T ELT)) (-2877 (($ |#2| (-687)) NIL T ELT) (($ $ (-986) (-687)) 59 T ELT) (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT)) (-2804 (((-687) $) NIL T ELT) (((-687) $ (-986)) 54 T ELT) (((-578 (-687)) $ (-578 (-986))) 55 T ELT)) (-3750 (((-1074 |#2|) $) 72 T ELT)) (-3066 (((-3 (-986) #1#) $) 52 T ELT)) (-3746 (((-2 (|:| -1960 $) (|:| -2886 $)) $ (-687)) 83 T ELT)) (-3796 (($ $) 231 T ELT)) (-3430 (($) 134 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 213 T ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) 101 T ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) 99 T ELT)) (-3716 (((-341 $) $) 120 T ELT)) (-3752 (($ $ (-578 (-245 $))) 51 T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-986) |#2|) 39 T ELT) (($ $ (-578 (-986)) (-578 |#2|)) 36 T ELT) (($ $ (-986) $) 32 T ELT) (($ $ (-578 (-986)) (-578 $)) 30 T ELT)) (-1594 (((-687) $) 219 T ELT)) (-3784 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-343 $) (-343 $) (-343 $)) 176 T ELT) ((|#2| (-343 $) |#2|) 218 T ELT) (((-343 $) $ (-343 $)) 200 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 224 T ELT)) (-3742 (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986))) NIL T ELT) (($ $ (-986)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1079)) NIL T ELT) (($ $ (-578 (-1079))) NIL T ELT) (($ $ (-1079) (-687)) NIL T ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL T ELT)) (-3932 (((-687) $) NIL T ELT) (((-687) $ (-986)) 17 T ELT) (((-578 (-687)) $ (-578 (-986))) 23 T ELT)) (-2801 ((|#2| $) NIL T ELT) (($ $ (-986)) 151 T ELT)) (-3738 (((-3 $ #1#) $ $) 192 T ELT) (((-3 (-343 $) #1#) (-343 $) $) 188 T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-986)) 64 T ELT) (($ (-343 (-478))) NIL T ELT) (($ $) NIL T ELT))) +(((-1143 |#1| |#2|) (-10 -7 (-15 -3930 (|#1| |#1|)) (-15 -2692 ((-1074 |#1|) (-1074 |#1|) (-1074 |#1|))) (-15 -3742 (|#1| |#1| (-578 (-1079)) (-578 (-687)))) (-15 -3742 (|#1| |#1| (-1079) (-687))) (-15 -3742 (|#1| |#1| (-578 (-1079)))) (-15 -3742 (|#1| |#1| (-1079))) (-15 -3955 ((-341 |#1|) |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3930 (|#1| (-343 (-478)))) (-15 -3430 (|#1|)) (-15 -3429 ((-627 |#1|) |#1|)) (-15 -3784 ((-343 |#1|) |#1| (-343 |#1|))) (-15 -1594 ((-687) |#1|)) (-15 -2863 ((-2 (|:| -1960 |#1|) (|:| -2886 |#1|)) |#1| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -3784 (|#2| (-343 |#1|) |#2|)) (-15 -3735 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3736 ((-2 (|:| -3938 |#2|) (|:| -1960 |#1|) (|:| -2886 |#1|)) |#1| |#1|)) (-15 -3737 (|#1| |#1| |#1|)) (-15 -3738 ((-3 (-343 |#1|) #1="failed") (-343 |#1|) |#1|)) (-15 -3738 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3756 ((-687) |#1| |#1|)) (-15 -3784 ((-343 |#1|) (-343 |#1|) (-343 |#1|))) (-15 -3742 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3744 (|#1| |#1| (-687))) (-15 -3745 (|#1| |#1| (-687))) (-15 -3746 ((-2 (|:| -1960 |#1|) (|:| -2886 |#1|)) |#1| (-687))) (-15 -3749 (|#1| (-1074 |#2|))) (-15 -3750 ((-1074 |#2|) |#1|)) (-15 -3751 ((-1168 |#2|) |#1| (-687))) (-15 -3742 (|#1| |#1| (-1 |#2| |#2|) (-687))) (-15 -3742 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3742 (|#1| |#1| (-687))) (-15 -3742 (|#1| |#1|)) (-15 -3784 (|#1| |#1| |#1|)) (-15 -3784 (|#2| |#1| |#2|)) (-15 -3716 ((-341 |#1|) |#1|)) (-15 -2691 ((-341 (-1074 |#1|)) (-1074 |#1|))) (-15 -2690 ((-341 (-1074 |#1|)) (-1074 |#1|))) (-15 -2689 ((-341 (-1074 |#1|)) (-1074 |#1|))) (-15 -2688 ((-3 (-578 (-1074 |#1|)) #1#) (-578 (-1074 |#1|)) (-1074 |#1|))) (-15 -2801 (|#1| |#1| (-986))) (-15 -3065 ((-578 (-986)) |#1|)) (-15 -2803 ((-687) |#1| (-578 (-986)))) (-15 -2803 ((-687) |#1|)) (-15 -2877 (|#1| |#1| (-578 (-986)) (-578 (-687)))) (-15 -2877 (|#1| |#1| (-986) (-687))) (-15 -2804 ((-578 (-687)) |#1| (-578 (-986)))) (-15 -2804 ((-687) |#1| (-986))) (-15 -3066 ((-3 (-986) #1#) |#1|)) (-15 -3932 ((-578 (-687)) |#1| (-578 (-986)))) (-15 -3932 ((-687) |#1| (-986))) (-15 -3930 (|#1| (-986))) (-15 -3140 ((-3 (-986) #1#) |#1|)) (-15 -3139 ((-986) |#1|)) (-15 -3752 (|#1| |#1| (-578 (-986)) (-578 |#1|))) (-15 -3752 (|#1| |#1| (-986) |#1|)) (-15 -3752 (|#1| |#1| (-578 (-986)) (-578 |#2|))) (-15 -3752 (|#1| |#1| (-986) |#2|)) (-15 -3752 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3752 (|#1| |#1| |#1| |#1|)) (-15 -3752 (|#1| |#1| (-245 |#1|))) (-15 -3752 (|#1| |#1| (-578 (-245 |#1|)))) (-15 -3932 ((-687) |#1|)) (-15 -2877 (|#1| |#2| (-687))) (-15 -3140 ((-3 (-478) #1#) |#1|)) (-15 -3139 ((-478) |#1|)) (-15 -3140 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3139 ((-343 (-478)) |#1|)) (-15 -3139 (|#2| |#1|)) (-15 -3140 ((-3 |#2| #1#) |#1|)) (-15 -3930 (|#1| |#2|)) (-15 -2804 ((-687) |#1|)) (-15 -2801 (|#2| |#1|)) (-15 -3742 (|#1| |#1| (-986))) (-15 -3742 (|#1| |#1| (-578 (-986)))) (-15 -3742 (|#1| |#1| (-986) (-687))) (-15 -3742 (|#1| |#1| (-578 (-986)) (-578 (-687)))) (-15 -3930 (|#1| (-478))) (-15 -3930 ((-765) |#1|))) (-1144 |#2|) (-954)) (T -1143)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3751 (((-1168 |#1|) $ (-687)) 268 T ELT)) (-3065 (((-578 (-986)) $) 120 T ELT)) (-3749 (($ (-1074 |#1|)) 266 T ELT)) (-3067 (((-1074 $) $ (-986)) 135 T ELT) (((-1074 |#1|) $) 134 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 97 (|has| |#1| (-489)) ELT)) (-2049 (($ $) 98 (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) 100 (|has| |#1| (-489)) ELT)) (-2803 (((-687) $) 122 T ELT) (((-687) $ (-578 (-986))) 121 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3739 (($ $ $) 253 (|has| |#1| (-489)) ELT)) (-2691 (((-341 (-1074 $)) (-1074 $)) 110 (|has| |#1| (-814)) ELT)) (-3759 (($ $) 108 (|has| |#1| (-385)) ELT)) (-3955 (((-341 $) $) 107 (|has| |#1| (-385)) ELT)) (-2688 (((-3 (-578 (-1074 $)) #1="failed") (-578 (-1074 $)) (-1074 $)) 113 (|has| |#1| (-814)) ELT)) (-1595 (((-83) $ $) 238 (|has| |#1| (-308)) ELT)) (-3745 (($ $ (-687)) 261 T ELT)) (-3744 (($ $ (-687)) 260 T ELT)) (-3735 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 248 (|has| |#1| (-385)) ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-343 (-478)) #2#) $) 175 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #2#) $) 173 (|has| |#1| (-943 (-478))) ELT) (((-3 (-986) #2#) $) 150 T ELT)) (-3139 ((|#1| $) 177 T ELT) (((-343 (-478)) $) 176 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) 174 (|has| |#1| (-943 (-478))) ELT) (((-986) $) 151 T ELT)) (-3740 (($ $ $ (-986)) 118 (|has| |#1| (-144)) ELT) ((|#1| $ $) 256 (|has| |#1| (-144)) ELT)) (-2548 (($ $ $) 242 (|has| |#1| (-308)) ELT)) (-3943 (($ $) 168 T ELT)) (-2265 (((-625 (-478)) (-625 $)) 146 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-625 $) (-1168 $)) 145 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-625 $) (-1168 $)) 144 T ELT) (((-625 |#1|) (-625 $)) 143 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2547 (($ $ $) 241 (|has| |#1| (-308)) ELT)) (-3743 (($ $ $) 259 T ELT)) (-3737 (($ $ $) 250 (|has| |#1| (-489)) ELT)) (-3736 (((-2 (|:| -3938 |#1|) (|:| -1960 $) (|:| -2886 $)) $ $) 249 (|has| |#1| (-489)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 236 (|has| |#1| (-308)) ELT)) (-3487 (($ $) 190 (|has| |#1| (-385)) ELT) (($ $ (-986)) 115 (|has| |#1| (-385)) ELT)) (-2802 (((-578 $) $) 119 T ELT)) (-3707 (((-83) $) 106 (|has| |#1| (-814)) ELT)) (-1611 (($ $ |#1| (-687) $) 186 T ELT)) (-2780 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 94 (-12 (|has| (-986) (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 93 (-12 (|has| (-986) (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-3756 (((-687) $ $) 254 (|has| |#1| (-489)) ELT)) (-2396 (((-83) $) 40 T ELT)) (-2404 (((-687) $) 183 T ELT)) (-3429 (((-627 $) $) 234 (|has| |#1| (-1055)) ELT)) (-3068 (($ (-1074 |#1|) (-986)) 127 T ELT) (($ (-1074 $) (-986)) 126 T ELT)) (-3761 (($ $ (-687)) 265 T ELT)) (-1592 (((-3 (-578 $) #3="failed") (-578 $) $) 245 (|has| |#1| (-308)) ELT)) (-2805 (((-578 $) $) 136 T ELT)) (-3921 (((-83) $) 166 T ELT)) (-2877 (($ |#1| (-687)) 167 T ELT) (($ $ (-986) (-687)) 129 T ELT) (($ $ (-578 (-986)) (-578 (-687))) 128 T ELT)) (-3747 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $ (-986)) 130 T ELT) (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 263 T ELT)) (-2804 (((-687) $) 184 T ELT) (((-687) $ (-986)) 132 T ELT) (((-578 (-687)) $ (-578 (-986))) 131 T ELT)) (-1612 (($ (-1 (-687) (-687)) $) 185 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3750 (((-1074 |#1|) $) 267 T ELT)) (-3066 (((-3 (-986) #4="failed") $) 133 T ELT)) (-2266 (((-625 (-478)) (-1168 $)) 148 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1168 (-478)))) (-1168 $) $) 147 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1168 |#1|))) (-1168 $) $) 142 T ELT) (((-625 |#1|) (-1168 $)) 141 T ELT)) (-2878 (($ $) 163 T ELT)) (-3157 ((|#1| $) 162 T ELT)) (-1878 (($ (-578 $)) 104 (|has| |#1| (-385)) ELT) (($ $ $) 103 (|has| |#1| (-385)) ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3746 (((-2 (|:| -1960 $) (|:| -2886 $)) $ (-687)) 262 T ELT)) (-2807 (((-3 (-578 $) #4#) $) 124 T ELT)) (-2806 (((-3 (-578 $) #4#) $) 125 T ELT)) (-2808 (((-3 (-2 (|:| |var| (-986)) (|:| -2387 (-687))) #4#) $) 123 T ELT)) (-3796 (($ $) 246 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3430 (($) 233 (|has| |#1| (-1055)) CONST)) (-3226 (((-1023) $) 12 T ELT)) (-1784 (((-83) $) 180 T ELT)) (-1783 ((|#1| $) 181 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 105 (|has| |#1| (-385)) ELT)) (-3127 (($ (-578 $)) 102 (|has| |#1| (-385)) ELT) (($ $ $) 101 (|has| |#1| (-385)) ELT)) (-2689 (((-341 (-1074 $)) (-1074 $)) 112 (|has| |#1| (-814)) ELT)) (-2690 (((-341 (-1074 $)) (-1074 $)) 111 (|has| |#1| (-814)) ELT)) (-3716 (((-341 $) $) 109 (|has| |#1| (-814)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 244 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 243 (|has| |#1| (-308)) ELT)) (-3450 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-489)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-489)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 237 (|has| |#1| (-308)) ELT)) (-3752 (($ $ (-578 (-245 $))) 159 T ELT) (($ $ (-245 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-578 $) (-578 $)) 156 T ELT) (($ $ (-986) |#1|) 155 T ELT) (($ $ (-578 (-986)) (-578 |#1|)) 154 T ELT) (($ $ (-986) $) 153 T ELT) (($ $ (-578 (-986)) (-578 $)) 152 T ELT)) (-1594 (((-687) $) 239 (|has| |#1| (-308)) ELT)) (-3784 ((|#1| $ |#1|) 278 T ELT) (($ $ $) 277 T ELT) (((-343 $) (-343 $) (-343 $)) 255 (|has| |#1| (-489)) ELT) ((|#1| (-343 $) |#1|) 247 (|has| |#1| (-308)) ELT) (((-343 $) $ (-343 $)) 235 (|has| |#1| (-489)) ELT)) (-3748 (((-3 $ "failed") $ (-687)) 264 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 240 (|has| |#1| (-308)) ELT)) (-3741 (($ $ (-986)) 117 (|has| |#1| (-144)) ELT) ((|#1| $) 257 (|has| |#1| (-144)) ELT)) (-3742 (($ $ (-578 (-986)) (-578 (-687))) 49 T ELT) (($ $ (-986) (-687)) 48 T ELT) (($ $ (-578 (-986))) 47 T ELT) (($ $ (-986)) 45 T ELT) (($ $) 276 T ELT) (($ $ (-687)) 274 T ELT) (($ $ (-1 |#1| |#1|)) 272 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 271 T ELT) (($ $ (-1 |#1| |#1|) $) 258 T ELT) (($ $ (-1079)) 232 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) 230 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) 229 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 228 (|has| |#1| (-804 (-1079))) ELT)) (-3932 (((-687) $) 164 T ELT) (((-687) $ (-986)) 140 T ELT) (((-578 (-687)) $ (-578 (-986))) 139 T ELT)) (-3956 (((-793 (-323)) $) 92 (-12 (|has| (-986) (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) 91 (-12 (|has| (-986) (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) 90 (-12 (|has| (-986) (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT)) (-2801 ((|#1| $) 189 (|has| |#1| (-385)) ELT) (($ $ (-986)) 116 (|has| |#1| (-385)) ELT)) (-2687 (((-3 (-1168 $) #1#) (-625 $)) 114 (-2546 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3738 (((-3 $ "failed") $ $) 252 (|has| |#1| (-489)) ELT) (((-3 (-343 $) "failed") (-343 $) $) 251 (|has| |#1| (-489)) ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 179 T ELT) (($ (-986)) 149 T ELT) (($ (-343 (-478))) 88 (OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ELT) (($ $) 95 (|has| |#1| (-489)) ELT)) (-3801 (((-578 |#1|) $) 182 T ELT)) (-3661 ((|#1| $ (-687)) 169 T ELT) (($ $ (-986) (-687)) 138 T ELT) (($ $ (-578 (-986)) (-578 (-687))) 137 T ELT)) (-2686 (((-627 $) $) 89 (OR (-2546 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3109 (((-687)) 37 T CONST)) (-1610 (($ $ $ (-687)) 187 (|has| |#1| (-144)) ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 99 (|has| |#1| (-489)) ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-578 (-986)) (-578 (-687))) 52 T ELT) (($ $ (-986) (-687)) 51 T ELT) (($ $ (-578 (-986))) 50 T ELT) (($ $ (-986)) 46 T ELT) (($ $) 275 T ELT) (($ $ (-687)) 273 T ELT) (($ $ (-1 |#1| |#1|)) 270 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 269 T ELT) (($ $ (-1079)) 231 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079))) 227 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-1079) (-687)) 226 (|has| |#1| (-804 (-1079))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 225 (|has| |#1| (-804 (-1079))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ |#1|) 170 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 172 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) 171 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-1144 |#1|) (-111) (-954)) (T -1144)) +((-3751 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-1144 *4)) (-4 *4 (-954)) (-5 *2 (-1168 *4)))) (-3750 (*1 *2 *1) (-12 (-4 *1 (-1144 *3)) (-4 *3 (-954)) (-5 *2 (-1074 *3)))) (-3749 (*1 *1 *2) (-12 (-5 *2 (-1074 *3)) (-4 *3 (-954)) (-4 *1 (-1144 *3)))) (-3761 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1144 *3)) (-4 *3 (-954)))) (-3748 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-687)) (-4 *1 (-1144 *3)) (-4 *3 (-954)))) (-3747 (*1 *2 *1 *1) (-12 (-4 *3 (-954)) (-5 *2 (-2 (|:| -1960 *1) (|:| -2886 *1))) (-4 *1 (-1144 *3)))) (-3746 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *4 (-954)) (-5 *2 (-2 (|:| -1960 *1) (|:| -2886 *1))) (-4 *1 (-1144 *4)))) (-3745 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1144 *3)) (-4 *3 (-954)))) (-3744 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1144 *3)) (-4 *3 (-954)))) (-3743 (*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-954)))) (-3742 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1144 *3)) (-4 *3 (-954)))) (-3741 (*1 *2 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-954)) (-4 *2 (-144)))) (-3740 (*1 *2 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-954)) (-4 *2 (-144)))) (-3784 (*1 *2 *2 *2) (-12 (-5 *2 (-343 *1)) (-4 *1 (-1144 *3)) (-4 *3 (-954)) (-4 *3 (-489)))) (-3756 (*1 *2 *1 *1) (-12 (-4 *1 (-1144 *3)) (-4 *3 (-954)) (-4 *3 (-489)) (-5 *2 (-687)))) (-3739 (*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-954)) (-4 *2 (-489)))) (-3738 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1144 *2)) (-4 *2 (-954)) (-4 *2 (-489)))) (-3738 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-343 *1)) (-4 *1 (-1144 *3)) (-4 *3 (-954)) (-4 *3 (-489)))) (-3737 (*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-954)) (-4 *2 (-489)))) (-3736 (*1 *2 *1 *1) (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -3938 *3) (|:| -1960 *1) (|:| -2886 *1))) (-4 *1 (-1144 *3)))) (-3735 (*1 *2 *1 *1) (-12 (-4 *3 (-385)) (-4 *3 (-954)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1144 *3)))) (-3784 (*1 *2 *3 *2) (-12 (-5 *3 (-343 *1)) (-4 *1 (-1144 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-954)) (-4 *2 (-38 (-343 (-478))))))) +(-13 (-854 |t#1| (-687) (-986)) (-238 |t#1| |t#1|) (-238 $ $) (-188) (-182 |t#1|) (-10 -8 (-15 -3751 ((-1168 |t#1|) $ (-687))) (-15 -3750 ((-1074 |t#1|) $)) (-15 -3749 ($ (-1074 |t#1|))) (-15 -3761 ($ $ (-687))) (-15 -3748 ((-3 $ "failed") $ (-687))) (-15 -3747 ((-2 (|:| -1960 $) (|:| -2886 $)) $ $)) (-15 -3746 ((-2 (|:| -1960 $) (|:| -2886 $)) $ (-687))) (-15 -3745 ($ $ (-687))) (-15 -3744 ($ $ (-687))) (-15 -3743 ($ $ $)) (-15 -3742 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1055)) (-6 (-1055)) |%noBranch|) (IF (|has| |t#1| (-144)) (PROGN (-15 -3741 (|t#1| $)) (-15 -3740 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-489)) (PROGN (-6 (-238 (-343 $) (-343 $))) (-15 -3784 ((-343 $) (-343 $) (-343 $))) (-15 -3756 ((-687) $ $)) (-15 -3739 ($ $ $)) (-15 -3738 ((-3 $ "failed") $ $)) (-15 -3738 ((-3 (-343 $) "failed") (-343 $) $)) (-15 -3737 ($ $ $)) (-15 -3736 ((-2 (|:| -3938 |t#1|) (|:| -1960 $) (|:| -2886 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-385)) (-15 -3735 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-6 (-254)) (-6 -3975) (-15 -3784 (|t#1| (-343 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-343 (-478)))) (-15 -3796 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-687)) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ((-550 (-478)) . T) ((-550 (-986)) . T) ((-550 |#1|) . T) ((-550 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308))) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-548 (-467)) -12 (|has| |#1| (-548 (-467))) (|has| (-986) (-548 (-467)))) ((-548 (-793 (-323))) -12 (|has| |#1| (-548 (-793 (-323)))) (|has| (-986) (-548 (-793 (-323))))) ((-548 (-793 (-478))) -12 (|has| |#1| (-548 (-793 (-478)))) (|has| (-986) (-548 (-793 (-478))))) ((-184 $) . T) ((-182 |#1|) . T) ((-188) . T) ((-187) . T) ((-222 |#1|) . T) ((-238 (-343 $) (-343 $)) |has| |#1| (-489)) ((-238 |#1| |#1|) . T) ((-238 $ $) . T) ((-242) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308))) ((-254) |has| |#1| (-308)) ((-256 $) . T) ((-273 |#1| (-687)) . T) ((-322 |#1|) . T) ((-348 |#1|) . T) ((-385) OR (|has| |#1| (-814)) (|has| |#1| (-385)) (|has| |#1| (-308))) ((-447 (-986) |#1|) . T) ((-447 (-986) $) . T) ((-447 $ $) . T) ((-489) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308))) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 (-478)) |has| |#1| (-575 (-478))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308))) ((-575 (-478)) |has| |#1| (-575 (-478))) ((-575 |#1|) . T) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308))) ((-658) . T) ((-799 $ (-986)) . T) ((-799 $ (-1079)) OR (|has| |#1| (-804 (-1079))) (|has| |#1| (-802 (-1079)))) ((-802 (-986)) . T) ((-802 (-1079)) |has| |#1| (-802 (-1079))) ((-804 (-986)) . T) ((-804 (-1079)) OR (|has| |#1| (-804 (-1079))) (|has| |#1| (-802 (-1079)))) ((-789 (-323)) -12 (|has| |#1| (-789 (-323))) (|has| (-986) (-789 (-323)))) ((-789 (-478)) -12 (|has| |#1| (-789 (-478))) (|has| (-986) (-789 (-478)))) ((-854 |#1| (-687) (-986)) . T) ((-814) |has| |#1| (-814)) ((-825) |has| |#1| (-308)) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 (-986)) . T) ((-943 |#1|) . T) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1055) |has| |#1| (-1055)) ((-1118) . T) ((-1123) |has| |#1| (-814))) +((-3942 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) +(((-1145 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3942 (|#4| (-1 |#3| |#1|) |#2|))) (-954) (-1144 |#1|) (-954) (-1144 |#3|)) (T -1145)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-4 *2 (-1144 *6)) (-5 *1 (-1145 *5 *4 *6 *2)) (-4 *4 (-1144 *5))))) +((-3065 (((-578 (-986)) $) 34 T ELT)) (-3943 (($ $) 31 T ELT)) (-2877 (($ |#2| |#3|) NIL T ELT) (($ $ (-986) |#3|) 28 T ELT) (($ $ (-578 (-986)) (-578 |#3|)) 27 T ELT)) (-2878 (($ $) 14 T ELT)) (-3157 ((|#2| $) 12 T ELT)) (-3932 ((|#3| $) 10 T ELT))) +(((-1146 |#1| |#2| |#3|) (-10 -7 (-15 -3065 ((-578 (-986)) |#1|)) (-15 -2877 (|#1| |#1| (-578 (-986)) (-578 |#3|))) (-15 -2877 (|#1| |#1| (-986) |#3|)) (-15 -3943 (|#1| |#1|)) (-15 -2877 (|#1| |#2| |#3|)) (-15 -3932 (|#3| |#1|)) (-15 -2878 (|#1| |#1|)) (-15 -3157 (|#2| |#1|))) (-1147 |#2| |#3|) (-954) (-709)) (T -1146)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3065 (((-578 (-986)) $) 92 T ELT)) (-3815 (((-1079) $) 126 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 68 (|has| |#1| (-489)) ELT)) (-2049 (($ $) 69 (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) 71 (|has| |#1| (-489)) ELT)) (-3755 (($ $ |#2|) 121 T ELT) (($ $ |#2| |#2|) 120 T ELT)) (-3758 (((-1058 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 127 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3943 (($ $) 77 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2876 (((-83) $) 91 T ELT)) (-3756 ((|#2| $) 123 T ELT) ((|#2| $ |#2|) 122 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3761 (($ $ (-823)) 124 T ELT)) (-3921 (((-83) $) 79 T ELT)) (-2877 (($ |#1| |#2|) 78 T ELT) (($ $ (-986) |#2|) 94 T ELT) (($ $ (-578 (-986)) (-578 |#2|)) 93 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-2878 (($ $) 82 T ELT)) (-3157 ((|#1| $) 83 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3753 (($ $ |#2|) 118 T ELT)) (-3450 (((-3 $ "failed") $ $) 67 (|has| |#1| (-489)) ELT)) (-3752 (((-1058 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3784 ((|#1| $ |#2|) 128 T ELT) (($ $ $) 104 (|has| |#2| (-1015)) ELT)) (-3742 (($ $ (-1079)) 116 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-578 (-1079))) 114 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1079) (-687)) 113 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 112 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-687)) 106 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3932 ((|#2| $) 81 T ELT)) (-2875 (($ $) 90 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 (-478))) 74 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) 66 (|has| |#1| (-489)) ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT)) (-3661 ((|#1| $ |#2|) 76 T ELT)) (-2686 (((-627 $) $) 65 (|has| |#1| (-116)) ELT)) (-3109 (((-687)) 37 T CONST)) (-3757 ((|#1| $) 125 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 70 (|has| |#1| (-489)) ELT)) (-3754 ((|#1| $ |#2|) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3930 (|#1| (-1079))))) ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-1079)) 115 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-578 (-1079))) 111 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1079) (-687)) 110 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 109 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-687)) 105 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-343 (-478)) $) 73 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 72 (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-1147 |#1| |#2|) (-111) (-954) (-709)) (T -1147)) +((-3758 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-1058 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-1079)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-1147 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954)))) (-3761 (*1 *1 *1 *2) (-12 (-5 *2 (-823)) (-4 *1 (-1147 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) (-3756 (*1 *2 *1 *2) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) (-3755 (*1 *1 *1 *2) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) (-3755 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) (-3754 (*1 *2 *1 *3) (-12 (-4 *1 (-1147 *2 *3)) (-4 *3 (-709)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3930 (*2 (-1079)))) (-4 *2 (-954)))) (-3753 (*1 *1 *1 *2) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) (-3752 (*1 *2 *1 *3) (-12 (-4 *1 (-1147 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1058 *3))))) +(-13 (-879 |t#1| |t#2| (-986)) (-238 |t#2| |t#1|) (-10 -8 (-15 -3758 ((-1058 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3815 ((-1079) $)) (-15 -3757 (|t#1| $)) (-15 -3761 ($ $ (-823))) (-15 -3756 (|t#2| $)) (-15 -3756 (|t#2| $ |t#2|)) (-15 -3755 ($ $ |t#2|)) (-15 -3755 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3930 (|t#1| (-1079)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3754 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3753 ($ $ |t#2|)) (IF (|has| |t#2| (-1015)) (-6 (-238 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-188)) (IF (|has| |t#1| (-802 (-1079))) (-6 (-802 (-1079))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3752 ((-1058 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-489)) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-550 (-478)) . T) ((-550 |#1|) |has| |#1| (-144)) ((-550 $) |has| |#1| (-489)) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-188) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-187) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238 |#2| |#1|) . T) ((-238 $ $) |has| |#2| (-1015)) ((-242) |has| |#1| (-489)) ((-489) |has| |#1| (-489)) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) |has| |#1| (-489)) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) |has| |#1| (-489)) ((-658) . T) ((-799 $ (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-802 (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-804 (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-879 |#1| |#2| (-986)) . T) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-3759 ((|#2| |#2|) 12 T ELT)) (-3955 (((-341 |#2|) |#2|) 14 T ELT)) (-3760 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-478))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-478)))) 30 T ELT))) +(((-1148 |#1| |#2|) (-10 -7 (-15 -3955 ((-341 |#2|) |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -3760 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-478))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-478)))))) (-489) (-13 (-1144 |#1|) (-489) (-10 -8 (-15 -3127 ($ $ $))))) (T -1148)) +((-3760 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-478)))) (-4 *4 (-13 (-1144 *3) (-489) (-10 -8 (-15 -3127 ($ $ $))))) (-4 *3 (-489)) (-5 *1 (-1148 *3 *4)))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-1148 *3 *2)) (-4 *2 (-13 (-1144 *3) (-489) (-10 -8 (-15 -3127 ($ $ $))))))) (-3955 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-341 *3)) (-5 *1 (-1148 *4 *3)) (-4 *3 (-13 (-1144 *4) (-489) (-10 -8 (-15 -3127 ($ $ $)))))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3065 (((-578 (-986)) $) NIL T ELT)) (-3815 (((-1079) $) 11 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3755 (($ $ (-343 (-478))) NIL T ELT) (($ $ (-343 (-478)) (-343 (-478))) NIL T ELT)) (-3758 (((-1058 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|))) $) NIL T ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3623 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-3021 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1595 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3622 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3802 (($ (-687) (-1058 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|)))) NIL T ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-1128 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1158 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3139 (((-1128 |#1| |#2| |#3|) $) NIL T ELT) (((-1158 |#1| |#2| |#3|) $) NIL T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3943 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3765 (((-343 (-478)) $) 68 T ELT)) (-2547 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3766 (($ (-343 (-478)) (-1128 |#1| |#2| |#3|)) NIL T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-2876 (((-83) $) NIL T ELT)) (-3611 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3756 (((-343 (-478)) $) NIL T ELT) (((-343 (-478)) $ (-343 (-478))) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2995 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3761 (($ $ (-823)) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-343 (-478))) 30 T ELT) (($ $ (-986) (-343 (-478))) NIL T ELT) (($ $ (-578 (-986)) (-578 (-343 (-478)))) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3926 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3764 (((-1128 |#1| |#2| |#3|) $) 71 T ELT)) (-3762 (((-3 (-1128 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3763 (((-1128 |#1| |#2| |#3|) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3796 (($ $) 39 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1079)) NIL (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1104))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3796 (|#1| |#1| (-1079)))) (|has| |#1| (-15 -3065 ((-578 (-1079)) |#1|))))) ELT) (($ $ (-1165 |#2|)) 40 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-308)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3753 (($ $ (-343 (-478))) NIL T ELT)) (-3450 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3927 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3752 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) ELT)) (-1594 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3784 ((|#1| $ (-343 (-478))) NIL T ELT) (($ $ $) NIL (|has| (-343 (-478)) (-1015)) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3742 (($ $ (-1079)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-1165 |#2|)) 38 T ELT)) (-3932 (((-343 (-478)) $) NIL T ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) NIL T ELT)) (-3930 (((-765) $) 107 T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1128 |#1| |#2| |#3|)) 16 T ELT) (($ (-1158 |#1| |#2| |#3|)) 17 T ELT) (($ (-1165 |#2|)) 36 T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3661 ((|#1| $ (-343 (-478))) NIL T ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) NIL T CONST)) (-3757 ((|#1| $) 12 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3754 ((|#1| $ (-343 (-478))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) (|has| |#1| (-15 -3930 (|#1| (-1079))))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2644 (($) 32 T CONST)) (-2650 (($) 26 T CONST)) (-2653 (($ $ (-1079)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-1165 |#2|)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 34 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-1149 |#1| |#2| |#3|) (-13 (-1153 |#1| (-1128 |#1| |#2| |#3|)) (-799 $ (-1165 |#2|)) (-943 (-1158 |#1| |#2| |#3|)) (-550 (-1165 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-343 (-478)))) (-15 -3796 ($ $ (-1165 |#2|))) |%noBranch|))) (-954) (-1079) |#1|) (T -1149)) +((-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3)))) +((-3942 (((-1149 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1149 |#1| |#3| |#5|)) 24 T ELT))) +(((-1150 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3942 ((-1149 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1149 |#1| |#3| |#5|)))) (-954) (-954) (-1079) (-1079) |#1| |#2|) (T -1150)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1149 *5 *7 *9)) (-4 *5 (-954)) (-4 *6 (-954)) (-14 *7 (-1079)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1149 *6 *8 *10)) (-5 *1 (-1150 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1079))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3065 (((-578 (-986)) $) 92 T ELT)) (-3815 (((-1079) $) 126 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 68 (|has| |#1| (-489)) ELT)) (-2049 (($ $) 69 (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) 71 (|has| |#1| (-489)) ELT)) (-3755 (($ $ (-343 (-478))) 121 T ELT) (($ $ (-343 (-478)) (-343 (-478))) 120 T ELT)) (-3758 (((-1058 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|))) $) 127 T ELT)) (-3476 (($ $) 160 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3623 (($ $) 143 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3759 (($ $) 187 (|has| |#1| (-308)) ELT)) (-3955 (((-341 $) $) 188 (|has| |#1| (-308)) ELT)) (-3021 (($ $) 142 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1595 (((-83) $ $) 178 (|has| |#1| (-308)) ELT)) (-3474 (($ $) 159 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3622 (($ $) 144 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3802 (($ (-687) (-1058 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|)))) 196 T ELT)) (-3478 (($ $) 158 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3621 (($ $) 145 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3708 (($) 22 T CONST)) (-2548 (($ $ $) 182 (|has| |#1| (-308)) ELT)) (-3943 (($ $) 77 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2547 (($ $ $) 181 (|has| |#1| (-308)) ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 176 (|has| |#1| (-308)) ELT)) (-3707 (((-83) $) 189 (|has| |#1| (-308)) ELT)) (-2876 (((-83) $) 91 T ELT)) (-3611 (($) 170 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3756 (((-343 (-478)) $) 123 T ELT) (((-343 (-478)) $ (-343 (-478))) 122 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-2995 (($ $ (-478)) 141 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3761 (($ $ (-823)) 124 T ELT) (($ $ (-343 (-478))) 195 T ELT)) (-1592 (((-3 (-578 $) #1="failed") (-578 $) $) 185 (|has| |#1| (-308)) ELT)) (-3921 (((-83) $) 79 T ELT)) (-2877 (($ |#1| (-343 (-478))) 78 T ELT) (($ $ (-986) (-343 (-478))) 94 T ELT) (($ $ (-578 (-986)) (-578 (-343 (-478)))) 93 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3926 (($ $) 167 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2878 (($ $) 82 T ELT)) (-3157 ((|#1| $) 83 T ELT)) (-1878 (($ (-578 $)) 174 (|has| |#1| (-308)) ELT) (($ $ $) 173 (|has| |#1| (-308)) ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 190 (|has| |#1| (-308)) ELT)) (-3796 (($ $) 194 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1079)) 193 (OR (-12 (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1104)) (|has| |#1| (-38 (-343 (-478))))) (-12 (|has| |#1| (-15 -3065 ((-578 (-1079)) |#1|))) (|has| |#1| (-15 -3796 (|#1| |#1| (-1079)))) (|has| |#1| (-38 (-343 (-478)))))) ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 175 (|has| |#1| (-308)) ELT)) (-3127 (($ (-578 $)) 172 (|has| |#1| (-308)) ELT) (($ $ $) 171 (|has| |#1| (-308)) ELT)) (-3716 (((-341 $) $) 186 (|has| |#1| (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 183 (|has| |#1| (-308)) ELT)) (-3753 (($ $ (-343 (-478))) 118 T ELT)) (-3450 (((-3 $ "failed") $ $) 67 (|has| |#1| (-489)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 177 (|has| |#1| (-308)) ELT)) (-3927 (($ $) 168 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3752 (((-1058 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) ELT)) (-1594 (((-687) $) 179 (|has| |#1| (-308)) ELT)) (-3784 ((|#1| $ (-343 (-478))) 128 T ELT) (($ $ $) 104 (|has| (-343 (-478)) (-1015)) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 180 (|has| |#1| (-308)) ELT)) (-3742 (($ $ (-1079)) 116 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079))) 114 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1079) (-687)) 113 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 112 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) 106 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT)) (-3932 (((-343 (-478)) $) 81 T ELT)) (-3479 (($ $) 157 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3620 (($ $) 146 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 156 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3619 (($ $) 147 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3475 (($ $) 155 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3618 (($ $) 148 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) 90 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT) (($ (-343 (-478))) 74 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) 66 (|has| |#1| (-489)) ELT)) (-3661 ((|#1| $ (-343 (-478))) 76 T ELT)) (-2686 (((-627 $) $) 65 (|has| |#1| (-116)) ELT)) (-3109 (((-687)) 37 T CONST)) (-3757 ((|#1| $) 125 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3482 (($ $) 166 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 154 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2048 (((-83) $ $) 70 (|has| |#1| (-489)) ELT)) (-3480 (($ $) 165 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 153 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3484 (($ $) 164 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3472 (($ $) 152 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3754 ((|#1| $ (-343 (-478))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) (|has| |#1| (-15 -3930 (|#1| (-1079))))) ELT)) (-3485 (($ $) 163 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3473 (($ $) 151 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3483 (($ $) 162 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) 150 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3481 (($ $) 161 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3469 (($ $) 149 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-1079)) 115 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079))) 111 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1079) (-687)) 110 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 109 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) 105 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT) (($ $ $) 192 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 191 (|has| |#1| (-308)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 140 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-343 (-478)) $) 73 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 72 (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-1151 |#1|) (-111) (-954)) (T -1151)) +((-3802 (*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-5 *3 (-1058 (-2 (|:| |k| (-343 (-478))) (|:| |c| *4)))) (-4 *4 (-954)) (-4 *1 (-1151 *4)))) (-3761 (*1 *1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-4 *1 (-1151 *3)) (-4 *3 (-954)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-954)) (-4 *2 (-38 (-343 (-478)))))) (-3796 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1079)) (-4 *1 (-1151 *3)) (-4 *3 (-954)) (-12 (-4 *3 (-29 (-478))) (-4 *3 (-864)) (-4 *3 (-1104)) (-4 *3 (-38 (-343 (-478)))))) (-12 (-5 *2 (-1079)) (-4 *1 (-1151 *3)) (-4 *3 (-954)) (-12 (|has| *3 (-15 -3065 ((-578 *2) *3))) (|has| *3 (-15 -3796 (*3 *3 *2))) (-4 *3 (-38 (-343 (-478))))))))) +(-13 (-1147 |t#1| (-343 (-478))) (-10 -8 (-15 -3802 ($ (-687) (-1058 (-2 (|:| |k| (-343 (-478))) (|:| |c| |t#1|))))) (-15 -3761 ($ $ (-343 (-478)))) (IF (|has| |t#1| (-38 (-343 (-478)))) (PROGN (-15 -3796 ($ $)) (IF (|has| |t#1| (-15 -3796 (|t#1| |t#1| (-1079)))) (IF (|has| |t#1| (-15 -3065 ((-578 (-1079)) |t#1|))) (-15 -3796 ($ $ (-1079))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1104)) (IF (|has| |t#1| (-864)) (IF (|has| |t#1| (-29 (-478))) (-15 -3796 ($ $ (-1079))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-908)) (-6 (-1104))) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-343 (-478))) . T) ((-25) . T) ((-38 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-35) |has| |#1| (-38 (-343 (-478)))) ((-66) |has| |#1| (-38 (-343 (-478)))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-550 (-478)) . T) ((-550 |#1|) |has| |#1| (-144)) ((-550 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ((-188) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ((-187) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ((-198) |has| |#1| (-308)) ((-236) |has| |#1| (-38 (-343 (-478)))) ((-238 (-343 (-478)) |#1|) . T) ((-238 $ $) |has| (-343 (-478)) (-1015)) ((-242) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-254) |has| |#1| (-308)) ((-308) |has| |#1| (-308)) ((-385) |has| |#1| (-308)) ((-426) |has| |#1| (-38 (-343 (-478)))) ((-489) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-583 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-649 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-658) . T) ((-799 $ (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ((-802 (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ((-804 (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ((-879 |#1| (-343 (-478)) (-986)) . T) ((-825) |has| |#1| (-308)) ((-908) |has| |#1| (-38 (-343 (-478)))) ((-956 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-961 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1104) |has| |#1| (-38 (-343 (-478)))) ((-1107) |has| |#1| (-38 (-343 (-478)))) ((-1118) . T) ((-1123) |has| |#1| (-308)) ((-1147 |#1| (-343 (-478))) . T)) +((-3171 (((-83) $) 12 T ELT)) (-3140 (((-3 |#3| "failed") $) 17 T ELT)) (-3139 ((|#3| $) 14 T ELT))) +(((-1152 |#1| |#2| |#3|) (-10 -7 (-15 -3140 ((-3 |#3| "failed") |#1|)) (-15 -3139 (|#3| |#1|)) (-15 -3171 ((-83) |#1|))) (-1153 |#2| |#3|) (-954) (-1130 |#2|)) (T -1152)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3065 (((-578 (-986)) $) 92 T ELT)) (-3815 (((-1079) $) 126 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 68 (|has| |#1| (-489)) ELT)) (-2049 (($ $) 69 (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) 71 (|has| |#1| (-489)) ELT)) (-3755 (($ $ (-343 (-478))) 121 T ELT) (($ $ (-343 (-478)) (-343 (-478))) 120 T ELT)) (-3758 (((-1058 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|))) $) 127 T ELT)) (-3476 (($ $) 160 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3623 (($ $) 143 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3759 (($ $) 187 (|has| |#1| (-308)) ELT)) (-3955 (((-341 $) $) 188 (|has| |#1| (-308)) ELT)) (-3021 (($ $) 142 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1595 (((-83) $ $) 178 (|has| |#1| (-308)) ELT)) (-3474 (($ $) 159 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3622 (($ $) 144 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3802 (($ (-687) (-1058 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|)))) 196 T ELT)) (-3478 (($ $) 158 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3621 (($ $) 145 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 |#2| "failed") $) 209 T ELT)) (-3139 ((|#2| $) 210 T ELT)) (-2548 (($ $ $) 182 (|has| |#1| (-308)) ELT)) (-3943 (($ $) 77 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3765 (((-343 (-478)) $) 206 T ELT)) (-2547 (($ $ $) 181 (|has| |#1| (-308)) ELT)) (-3766 (($ (-343 (-478)) |#2|) 207 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 176 (|has| |#1| (-308)) ELT)) (-3707 (((-83) $) 189 (|has| |#1| (-308)) ELT)) (-2876 (((-83) $) 91 T ELT)) (-3611 (($) 170 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3756 (((-343 (-478)) $) 123 T ELT) (((-343 (-478)) $ (-343 (-478))) 122 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-2995 (($ $ (-478)) 141 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3761 (($ $ (-823)) 124 T ELT) (($ $ (-343 (-478))) 195 T ELT)) (-1592 (((-3 (-578 $) #1="failed") (-578 $) $) 185 (|has| |#1| (-308)) ELT)) (-3921 (((-83) $) 79 T ELT)) (-2877 (($ |#1| (-343 (-478))) 78 T ELT) (($ $ (-986) (-343 (-478))) 94 T ELT) (($ $ (-578 (-986)) (-578 (-343 (-478)))) 93 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3926 (($ $) 167 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2878 (($ $) 82 T ELT)) (-3157 ((|#1| $) 83 T ELT)) (-1878 (($ (-578 $)) 174 (|has| |#1| (-308)) ELT) (($ $ $) 173 (|has| |#1| (-308)) ELT)) (-3764 ((|#2| $) 205 T ELT)) (-3762 (((-3 |#2| "failed") $) 203 T ELT)) (-3763 ((|#2| $) 204 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 190 (|has| |#1| (-308)) ELT)) (-3796 (($ $) 194 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1079)) 193 (OR (-12 (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1104)) (|has| |#1| (-38 (-343 (-478))))) (-12 (|has| |#1| (-15 -3065 ((-578 (-1079)) |#1|))) (|has| |#1| (-15 -3796 (|#1| |#1| (-1079)))) (|has| |#1| (-38 (-343 (-478)))))) ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 175 (|has| |#1| (-308)) ELT)) (-3127 (($ (-578 $)) 172 (|has| |#1| (-308)) ELT) (($ $ $) 171 (|has| |#1| (-308)) ELT)) (-3716 (((-341 $) $) 186 (|has| |#1| (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 183 (|has| |#1| (-308)) ELT)) (-3753 (($ $ (-343 (-478))) 118 T ELT)) (-3450 (((-3 $ "failed") $ $) 67 (|has| |#1| (-489)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 177 (|has| |#1| (-308)) ELT)) (-3927 (($ $) 168 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3752 (((-1058 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) ELT)) (-1594 (((-687) $) 179 (|has| |#1| (-308)) ELT)) (-3784 ((|#1| $ (-343 (-478))) 128 T ELT) (($ $ $) 104 (|has| (-343 (-478)) (-1015)) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 180 (|has| |#1| (-308)) ELT)) (-3742 (($ $ (-1079)) 116 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079))) 114 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1079) (-687)) 113 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 112 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) 106 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT)) (-3932 (((-343 (-478)) $) 81 T ELT)) (-3479 (($ $) 157 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3620 (($ $) 146 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 156 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3619 (($ $) 147 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3475 (($ $) 155 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3618 (($ $) 148 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) 90 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT) (($ |#2|) 208 T ELT) (($ (-343 (-478))) 74 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) 66 (|has| |#1| (-489)) ELT)) (-3661 ((|#1| $ (-343 (-478))) 76 T ELT)) (-2686 (((-627 $) $) 65 (|has| |#1| (-116)) ELT)) (-3109 (((-687)) 37 T CONST)) (-3757 ((|#1| $) 125 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3482 (($ $) 166 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 154 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2048 (((-83) $ $) 70 (|has| |#1| (-489)) ELT)) (-3480 (($ $) 165 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 153 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3484 (($ $) 164 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3472 (($ $) 152 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3754 ((|#1| $ (-343 (-478))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) (|has| |#1| (-15 -3930 (|#1| (-1079))))) ELT)) (-3485 (($ $) 163 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3473 (($ $) 151 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3483 (($ $) 162 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) 150 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3481 (($ $) 161 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3469 (($ $) 149 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-1079)) 115 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079))) 111 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1079) (-687)) 110 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 109 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) 105 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT) (($ $ $) 192 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 191 (|has| |#1| (-308)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 140 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-343 (-478)) $) 73 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 72 (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-1153 |#1| |#2|) (-111) (-954) (-1130 |t#1|)) (T -1153)) +((-3932 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1130 *3)) (-5 *2 (-343 (-478))))) (-3766 (*1 *1 *2 *3) (-12 (-5 *2 (-343 (-478))) (-4 *4 (-954)) (-4 *1 (-1153 *4 *3)) (-4 *3 (-1130 *4)))) (-3765 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1130 *3)) (-5 *2 (-343 (-478))))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1130 *3)))) (-3763 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1130 *3)))) (-3762 (*1 *2 *1) (|partial| -12 (-4 *1 (-1153 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1130 *3))))) +(-13 (-1151 |t#1|) (-943 |t#2|) (-550 |t#2|) (-10 -8 (-15 -3766 ($ (-343 (-478)) |t#2|)) (-15 -3765 ((-343 (-478)) $)) (-15 -3764 (|t#2| $)) (-15 -3932 ((-343 (-478)) $)) (-15 -3763 (|t#2| $)) (-15 -3762 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-343 (-478))) . T) ((-25) . T) ((-38 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-35) |has| |#1| (-38 (-343 (-478)))) ((-66) |has| |#1| (-38 (-343 (-478)))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-550 (-478)) . T) ((-550 |#1|) |has| |#1| (-144)) ((-550 |#2|) . T) ((-550 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ((-188) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ((-187) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ((-198) |has| |#1| (-308)) ((-236) |has| |#1| (-38 (-343 (-478)))) ((-238 (-343 (-478)) |#1|) . T) ((-238 $ $) |has| (-343 (-478)) (-1015)) ((-242) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-254) |has| |#1| (-308)) ((-308) |has| |#1| (-308)) ((-385) |has| |#1| (-308)) ((-426) |has| |#1| (-38 (-343 (-478)))) ((-489) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-583 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-649 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-658) . T) ((-799 $ (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ((-802 (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ((-804 (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ((-879 |#1| (-343 (-478)) (-986)) . T) ((-825) |has| |#1| (-308)) ((-908) |has| |#1| (-38 (-343 (-478)))) ((-943 |#2|) . T) ((-956 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-961 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1104) |has| |#1| (-38 (-343 (-478)))) ((-1107) |has| |#1| (-38 (-343 (-478)))) ((-1118) . T) ((-1123) |has| |#1| (-308)) ((-1147 |#1| (-343 (-478))) . T) ((-1151 |#1|) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3065 (((-578 (-986)) $) NIL T ELT)) (-3815 (((-1079) $) 104 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3755 (($ $ (-343 (-478))) 116 T ELT) (($ $ (-343 (-478)) (-343 (-478))) 118 T ELT)) (-3758 (((-1058 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|))) $) 54 T ELT)) (-3476 (($ $) 192 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3623 (($ $) 168 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3759 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3955 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-3021 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1595 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3474 (($ $) 188 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3622 (($ $) 164 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3802 (($ (-687) (-1058 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|)))) 65 T ELT)) (-3478 (($ $) 196 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3621 (($ $) 172 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#2| #1#) $) NIL T ELT)) (-3139 ((|#2| $) NIL T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3943 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) 85 T ELT)) (-3765 (((-343 (-478)) $) 13 T ELT)) (-2547 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3766 (($ (-343 (-478)) |#2|) 11 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3707 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-2876 (((-83) $) 74 T ELT)) (-3611 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3756 (((-343 (-478)) $) 113 T ELT) (((-343 (-478)) $ (-343 (-478))) 114 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2995 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3761 (($ $ (-823)) 130 T ELT) (($ $ (-343 (-478))) 128 T ELT)) (-1592 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-343 (-478))) 33 T ELT) (($ $ (-986) (-343 (-478))) NIL T ELT) (($ $ (-578 (-986)) (-578 (-343 (-478)))) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3926 (($ $) 162 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1878 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3764 ((|#2| $) 12 T ELT)) (-3762 (((-3 |#2| #1#) $) 44 T ELT)) (-3763 ((|#2| $) 45 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-2468 (($ $) 101 (|has| |#1| (-308)) ELT)) (-3796 (($ $) 146 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1079)) 151 (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1104))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3796 (|#1| |#1| (-1079)))) (|has| |#1| (-15 -3065 ((-578 (-1079)) |#1|))))) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) NIL (|has| |#1| (-308)) ELT)) (-3127 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3716 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1593 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3753 (($ $ (-343 (-478))) 122 T ELT)) (-3450 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3927 (($ $) 160 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3752 (((-1058 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) ELT)) (-1594 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3784 ((|#1| $ (-343 (-478))) 108 T ELT) (($ $ $) 94 (|has| (-343 (-478)) (-1015)) ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3742 (($ $ (-1079)) 138 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT)) (-3932 (((-343 (-478)) $) 16 T ELT)) (-3479 (($ $) 198 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3620 (($ $) 174 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 194 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3619 (($ $) 170 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3475 (($ $) 190 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3618 (($ $) 166 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) 120 T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-144)) ELT) (($ |#2|) 34 T ELT) (($ (-343 (-478))) 139 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3661 ((|#1| $ (-343 (-478))) 107 T ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) 127 T CONST)) (-3757 ((|#1| $) 106 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3482 (($ $) 204 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 180 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3480 (($ $) 200 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 176 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3484 (($ $) 208 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3472 (($ $) 184 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3754 ((|#1| $ (-343 (-478))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) (|has| |#1| (-15 -3930 (|#1| (-1079))))) ELT)) (-3485 (($ $) 210 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3473 (($ $) 186 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3483 (($ $) 206 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) 182 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3481 (($ $) 202 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3469 (($ $) 178 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2644 (($) 21 T CONST)) (-2650 (($) 17 T CONST)) (-2653 (($ $ (-1079)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT)) (-3037 (((-83) $ $) 72 T ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) 100 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3823 (($ $ $) 76 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 82 T ELT) (($ $ (-478)) 157 (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 158 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-1154 |#1| |#2|) (-1153 |#1| |#2|) (-954) (-1130 |#1|)) (T -1154)) +NIL +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 37 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-2047 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 (-478) #1#) $) NIL (|has| (-1149 |#2| |#3| |#4|) (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| (-1149 |#2| |#3| |#4|) (-943 (-343 (-478)))) ELT) (((-3 (-1149 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3139 (((-478) $) NIL (|has| (-1149 |#2| |#3| |#4|) (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| (-1149 |#2| |#3| |#4|) (-943 (-343 (-478)))) ELT) (((-1149 |#2| |#3| |#4|) $) NIL T ELT)) (-3943 (($ $) 41 T ELT)) (-3451 (((-3 $ #1#) $) 27 T ELT)) (-3487 (($ $) NIL (|has| (-1149 |#2| |#3| |#4|) (-385)) ELT)) (-1611 (($ $ (-1149 |#2| |#3| |#4|) (-266 |#2| |#3| |#4|) $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2404 (((-687) $) 11 T ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ (-1149 |#2| |#3| |#4|) (-266 |#2| |#3| |#4|)) 25 T ELT)) (-2804 (((-266 |#2| |#3| |#4|) $) NIL T ELT)) (-1612 (($ (-1 (-266 |#2| |#3| |#4|) (-266 |#2| |#3| |#4|)) $) NIL T ELT)) (-3942 (($ (-1 (-1149 |#2| |#3| |#4|) (-1149 |#2| |#3| |#4|)) $) NIL T ELT)) (-3768 (((-3 (-743 |#2|) #1#) $) 91 T ELT)) (-2878 (($ $) NIL T ELT)) (-3157 (((-1149 |#2| |#3| |#4|) $) 20 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-1784 (((-83) $) NIL T ELT)) (-1783 (((-1149 |#2| |#3| |#4|) $) NIL T ELT)) (-3450 (((-3 $ #1#) $ (-1149 |#2| |#3| |#4|)) NIL (|has| (-1149 |#2| |#3| |#4|) (-489)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3767 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1149 |#2| |#3| |#4|)) (|:| |%expon| (-266 |#2| |#3| |#4|)) (|:| |%expTerms| (-578 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#2|)))))) (|:| |%type| (-1062))) #1#) $) 74 T ELT)) (-3932 (((-266 |#2| |#3| |#4|) $) 17 T ELT)) (-2801 (((-1149 |#2| |#3| |#4|) $) NIL (|has| (-1149 |#2| |#3| |#4|) (-385)) ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-1149 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| (-1149 |#2| |#3| |#4|) (-943 (-343 (-478)))) (|has| (-1149 |#2| |#3| |#4|) (-38 (-343 (-478))))) ELT)) (-3801 (((-578 (-1149 |#2| |#3| |#4|)) $) NIL T ELT)) (-3661 (((-1149 |#2| |#3| |#4|) $ (-266 |#2| |#3| |#4|)) NIL T ELT)) (-2686 (((-627 $) $) NIL (|has| (-1149 |#2| |#3| |#4|) (-116)) ELT)) (-3109 (((-687)) NIL T CONST)) (-1610 (($ $ $ (-687)) NIL (|has| (-1149 |#2| |#3| |#4|) (-144)) ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2048 (((-83) $ $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-2650 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ (-1149 |#2| |#3| |#4|)) NIL (|has| (-1149 |#2| |#3| |#4|) (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1149 |#2| |#3| |#4|)) NIL T ELT) (($ (-1149 |#2| |#3| |#4|) $) NIL T ELT) (($ (-343 (-478)) $) NIL (|has| (-1149 |#2| |#3| |#4|) (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| (-1149 |#2| |#3| |#4|) (-38 (-343 (-478)))) ELT))) +(((-1155 |#1| |#2| |#3| |#4|) (-13 (-273 (-1149 |#2| |#3| |#4|) (-266 |#2| |#3| |#4|)) (-489) (-10 -8 (-15 -3768 ((-3 (-743 |#2|) #1="failed") $)) (-15 -3767 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1149 |#2| |#3| |#4|)) (|:| |%expon| (-266 |#2| |#3| |#4|)) (|:| |%expTerms| (-578 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#2|)))))) (|:| |%type| (-1062))) #1#) $)))) (-13 (-943 (-478)) (-575 (-478)) (-385)) (-13 (-27) (-1104) (-357 |#1|)) (-1079) |#2|) (T -1155)) +((-3768 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-943 (-478)) (-575 (-478)) (-385))) (-5 *2 (-743 *4)) (-5 *1 (-1155 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1104) (-357 *3))) (-14 *5 (-1079)) (-14 *6 *4))) (-3767 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-943 (-478)) (-575 (-478)) (-385))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1149 *4 *5 *6)) (|:| |%expon| (-266 *4 *5 *6)) (|:| |%expTerms| (-578 (-2 (|:| |k| (-343 (-478))) (|:| |c| *4)))))) (|:| |%type| (-1062)))) (-5 *1 (-1155 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1104) (-357 *3))) (-14 *5 (-1079)) (-14 *6 *4)))) +((-3386 ((|#2| $) 34 T ELT)) (-3779 ((|#2| $) 18 T ELT)) (-3781 (($ $) 44 T ELT)) (-3769 (($ $ (-478)) 79 T ELT)) (-3009 ((|#2| $ |#2|) 76 T ELT)) (-3770 ((|#2| $ |#2|) 72 T ELT)) (-3772 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3010 (($ $ (-578 $)) 75 T ELT)) (-3780 ((|#2| $) 17 T ELT)) (-3783 (($ $) NIL T ELT) (($ $ (-687)) 52 T ELT)) (-3015 (((-578 $) $) 31 T ELT)) (-3011 (((-83) $ $) 63 T ELT)) (-3511 (((-83) $) 33 T ELT)) (-3782 ((|#2| $) 25 T ELT) (($ $ (-687)) 58 T ELT)) (-3784 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3617 (((-83) $) 23 T ELT)) (-3776 (($ $) 47 T ELT)) (-3774 (($ $) 80 T ELT)) (-3777 (((-687) $) 51 T ELT)) (-3778 (($ $) 50 T ELT)) (-3786 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3506 (((-578 $) $) 32 T ELT)) (-3037 (((-83) $ $) 61 T ELT)) (-3941 (((-687) $) 43 T ELT))) +(((-1156 |#1| |#2|) (-10 -7 (-15 -3037 ((-83) |#1| |#1|)) (-15 -3769 (|#1| |#1| (-478))) (-15 -3772 (|#2| |#1| #1="last" |#2|)) (-15 -3770 (|#2| |#1| |#2|)) (-15 -3772 (|#1| |#1| #2="rest" |#1|)) (-15 -3772 (|#2| |#1| #3="first" |#2|)) (-15 -3774 (|#1| |#1|)) (-15 -3776 (|#1| |#1|)) (-15 -3777 ((-687) |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3779 (|#2| |#1|)) (-15 -3780 (|#2| |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -3782 (|#1| |#1| (-687))) (-15 -3784 (|#2| |#1| #1#)) (-15 -3782 (|#2| |#1|)) (-15 -3783 (|#1| |#1| (-687))) (-15 -3784 (|#1| |#1| #2#)) (-15 -3783 (|#1| |#1|)) (-15 -3784 (|#2| |#1| #3#)) (-15 -3786 (|#1| |#2| |#1|)) (-15 -3786 (|#1| |#1| |#1|)) (-15 -3009 (|#2| |#1| |#2|)) (-15 -3772 (|#2| |#1| #4="value" |#2|)) (-15 -3010 (|#1| |#1| (-578 |#1|))) (-15 -3011 ((-83) |#1| |#1|)) (-15 -3617 ((-83) |#1|)) (-15 -3784 (|#2| |#1| #4#)) (-15 -3386 (|#2| |#1|)) (-15 -3511 ((-83) |#1|)) (-15 -3015 ((-578 |#1|) |#1|)) (-15 -3506 ((-578 |#1|) |#1|)) (-15 -3941 ((-687) |#1|))) (-1157 |#2|) (-1118)) (T -1156)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3386 ((|#1| $) 52 T ELT)) (-3779 ((|#1| $) 71 T ELT)) (-3781 (($ $) 73 T ELT)) (-3769 (($ $ (-478)) 58 (|has| $ (-6 -3980)) ELT)) (-3009 ((|#1| $ |#1|) 43 (|has| $ (-6 -3980)) ELT)) (-3771 (($ $ $) 62 (|has| $ (-6 -3980)) ELT)) (-3770 ((|#1| $ |#1|) 60 (|has| $ (-6 -3980)) ELT)) (-3773 ((|#1| $ |#1|) 64 (|has| $ (-6 -3980)) ELT)) (-3772 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3980)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -3980)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -3980)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -3980)) ELT)) (-3010 (($ $ (-578 $)) 45 (|has| $ (-6 -3980)) ELT)) (-3780 ((|#1| $) 72 T ELT)) (-3708 (($) 7 T CONST)) (-3783 (($ $) 79 T ELT) (($ $ (-687)) 77 T ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-3015 (((-578 $) $) 54 T ELT)) (-3011 (((-83) $ $) 46 (|has| |#1| (-1005)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3014 (((-578 |#1|) $) 49 T ELT)) (-3511 (((-83) $) 53 T ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-3782 ((|#1| $) 76 T ELT) (($ $ (-687)) 74 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-3785 ((|#1| $) 82 T ELT) (($ $ (-687)) 80 T ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3013 (((-478) $ $) 48 T ELT)) (-3617 (((-83) $) 50 T ELT)) (-3776 (($ $) 68 T ELT)) (-3774 (($ $) 65 (|has| $ (-6 -3980)) ELT)) (-3777 (((-687) $) 69 T ELT)) (-3778 (($ $) 70 T ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3384 (($ $) 10 T ELT)) (-3775 (($ $ $) 67 (|has| $ (-6 -3980)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3980)) ELT)) (-3786 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-3506 (((-578 $) $) 55 T ELT)) (-3012 (((-83) $ $) 47 (|has| |#1| (-1005)) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-1157 |#1|) (-111) (-1118)) (T -1157)) +((-3786 (*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3786 (*1 *1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3784 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3785 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1157 *3)) (-4 *3 (-1118)))) (-3783 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3784 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1157 *3)) (-4 *3 (-1118)))) (-3783 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1157 *3)) (-4 *3 (-1118)))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3784 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3782 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1157 *3)) (-4 *3 (-1118)))) (-3781 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3778 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-1118)) (-5 *2 (-687)))) (-3776 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3775 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3775 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3774 (*1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3773 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3772 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -3980)) (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3771 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3772 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -3980)) (-4 *1 (-1157 *3)) (-4 *3 (-1118)))) (-3770 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3772 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -3980)) (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (|has| *1 (-6 -3980)) (-4 *1 (-1157 *3)) (-4 *3 (-1118))))) +(-13 (-916 |t#1|) (-10 -8 (-15 -3786 ($ $ $)) (-15 -3786 ($ |t#1| $)) (-15 -3785 (|t#1| $)) (-15 -3784 (|t#1| $ "first")) (-15 -3785 ($ $ (-687))) (-15 -3783 ($ $)) (-15 -3784 ($ $ "rest")) (-15 -3783 ($ $ (-687))) (-15 -3782 (|t#1| $)) (-15 -3784 (|t#1| $ "last")) (-15 -3782 ($ $ (-687))) (-15 -3781 ($ $)) (-15 -3780 (|t#1| $)) (-15 -3779 (|t#1| $)) (-15 -3778 ($ $)) (-15 -3777 ((-687) $)) (-15 -3776 ($ $)) (IF (|has| $ (-6 -3980)) (PROGN (-15 -3775 ($ $ $)) (-15 -3775 ($ $ |t#1|)) (-15 -3774 ($ $)) (-15 -3773 (|t#1| $ |t#1|)) (-15 -3772 (|t#1| $ "first" |t#1|)) (-15 -3771 ($ $ $)) (-15 -3772 ($ $ "rest" $)) (-15 -3770 (|t#1| $ |t#1|)) (-15 -3772 (|t#1| $ "last" |t#1|)) (-15 -3769 ($ $ (-478)))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-916 |#1|) . T) ((-1005) |has| |#1| (-1005)) ((-1118) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3065 (((-578 (-986)) $) NIL T ELT)) (-3815 (((-1079) $) 90 T ELT)) (-3795 (((-1137 |#2| |#1|) $ (-687)) 73 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2049 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) 143 (|has| |#1| (-489)) ELT)) (-3755 (($ $ (-687)) 128 T ELT) (($ $ (-687) (-687)) 131 T ELT)) (-3758 (((-1058 (-2 (|:| |k| (-687)) (|:| |c| |#1|))) $) 43 T ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3623 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3021 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3622 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3802 (($ (-1058 (-2 (|:| |k| (-687)) (|:| |c| |#1|)))) 52 T ELT) (($ (-1058 |#1|)) NIL T ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3708 (($) NIL T CONST)) (-3789 (($ $) 135 T ELT)) (-3943 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3800 (($ $) 141 T ELT)) (-3798 (((-850 |#1|) $ (-687)) 63 T ELT) (((-850 |#1|) $ (-687) (-687)) 65 T ELT)) (-2876 (((-83) $) NIL T ELT)) (-3611 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3756 (((-687) $) NIL T ELT) (((-687) $ (-687)) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-3792 (($ $) 118 T ELT)) (-2995 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3788 (($ (-478) (-478) $) 137 T ELT)) (-3761 (($ $ (-823)) 140 T ELT)) (-3799 (($ (-1 |#1| (-478)) $) 112 T ELT)) (-3921 (((-83) $) NIL T ELT)) (-2877 (($ |#1| (-687)) 16 T ELT) (($ $ (-986) (-687)) NIL T ELT) (($ $ (-578 (-986)) (-578 (-687))) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 99 T ELT)) (-3926 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2878 (($ $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3793 (($ $) 116 T ELT)) (-3794 (($ $) 114 T ELT)) (-3787 (($ (-478) (-478) $) 139 T ELT)) (-3796 (($ $) 151 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1079)) 157 (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1104))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3796 (|#1| |#1| (-1079)))) (|has| |#1| (-15 -3065 ((-578 (-1079)) |#1|))))) ELT) (($ $ (-1165 |#2|)) 152 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3790 (($ $ (-478) (-478)) 122 T ELT)) (-3753 (($ $ (-687)) 124 T ELT)) (-3450 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-3927 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3791 (($ $) 120 T ELT)) (-3752 (((-1058 |#1|) $ |#1|) 101 (|has| |#1| (-15 ** (|#1| |#1| (-687)))) ELT)) (-3784 ((|#1| $ (-687)) 96 T ELT) (($ $ $) 133 (|has| (-687) (-1015)) ELT)) (-3742 (($ $ (-1079)) 109 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $) 103 (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-1165 |#2|)) 104 T ELT)) (-3932 (((-687) $) NIL T ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) 126 T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) 26 T ELT) (($ (-343 (-478))) 149 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ |#1|) 25 (|has| |#1| (-144)) ELT) (($ (-1137 |#2| |#1|)) 81 T ELT) (($ (-1165 |#2|)) 22 T ELT)) (-3801 (((-1058 |#1|) $) NIL T ELT)) (-3661 ((|#1| $ (-687)) 95 T ELT)) (-2686 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3109 (((-687)) NIL T CONST)) (-3757 ((|#1| $) 91 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2048 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3754 ((|#1| $ (-687)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-687)))) (|has| |#1| (-15 -3930 (|#1| (-1079))))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2644 (($) 18 T CONST)) (-2650 (($) 13 T CONST)) (-2653 (($ $ (-1079)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1079))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-1079) (-687)) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-1165 |#2|)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) 108 T ELT)) (-3823 (($ $ $) 20 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ |#1|) 146 (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 107 T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-1158 |#1| |#2| |#3|) (-13 (-1161 |#1|) (-799 $ (-1165 |#2|)) (-10 -8 (-15 -3930 ($ (-1137 |#2| |#1|))) (-15 -3795 ((-1137 |#2| |#1|) $ (-687))) (-15 -3930 ($ (-1165 |#2|))) (-15 -3794 ($ $)) (-15 -3793 ($ $)) (-15 -3792 ($ $)) (-15 -3791 ($ $)) (-15 -3790 ($ $ (-478) (-478))) (-15 -3789 ($ $)) (-15 -3788 ($ (-478) (-478) $)) (-15 -3787 ($ (-478) (-478) $)) (IF (|has| |#1| (-38 (-343 (-478)))) (-15 -3796 ($ $ (-1165 |#2|))) |%noBranch|))) (-954) (-1079) |#1|) (T -1158)) +((-3930 (*1 *1 *2) (-12 (-5 *2 (-1137 *4 *3)) (-4 *3 (-954)) (-14 *4 (-1079)) (-14 *5 *3) (-5 *1 (-1158 *3 *4 *5)))) (-3795 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1137 *5 *4)) (-5 *1 (-1158 *4 *5 *6)) (-4 *4 (-954)) (-14 *5 (-1079)) (-14 *6 *4))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-954)) (-14 *5 *3))) (-3794 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1079)) (-14 *4 *2))) (-3793 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1079)) (-14 *4 *2))) (-3792 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1079)) (-14 *4 *2))) (-3791 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1079)) (-14 *4 *2))) (-3790 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-1079)) (-14 *5 *3))) (-3789 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1079)) (-14 *4 *2))) (-3788 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-1079)) (-14 *5 *3))) (-3787 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-1079)) (-14 *5 *3))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3)))) +((-3942 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) +(((-1159 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3942 (|#4| (-1 |#2| |#1|) |#3|))) (-954) (-954) (-1161 |#1|) (-1161 |#2|)) (T -1159)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-4 *2 (-1161 *6)) (-5 *1 (-1159 *5 *6 *4 *2)) (-4 *4 (-1161 *5))))) +((-3171 (((-83) $) 17 T ELT)) (-3476 (($ $) 105 T ELT)) (-3623 (($ $) 81 T ELT)) (-3474 (($ $) 101 T ELT)) (-3622 (($ $) 77 T ELT)) (-3478 (($ $) 109 T ELT)) (-3621 (($ $) 85 T ELT)) (-3926 (($ $) 75 T ELT)) (-3927 (($ $) 73 T ELT)) (-3479 (($ $) 111 T ELT)) (-3620 (($ $) 87 T ELT)) (-3477 (($ $) 107 T ELT)) (-3619 (($ $) 83 T ELT)) (-3475 (($ $) 103 T ELT)) (-3618 (($ $) 79 T ELT)) (-3930 (((-765) $) 61 T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3482 (($ $) 117 T ELT)) (-3470 (($ $) 93 T ELT)) (-3480 (($ $) 113 T ELT)) (-3468 (($ $) 89 T ELT)) (-3484 (($ $) 121 T ELT)) (-3472 (($ $) 97 T ELT)) (-3485 (($ $) 123 T ELT)) (-3473 (($ $) 99 T ELT)) (-3483 (($ $) 119 T ELT)) (-3471 (($ $) 95 T ELT)) (-3481 (($ $) 115 T ELT)) (-3469 (($ $) 91 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-343 (-478))) 71 T ELT))) +(((-1160 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-343 (-478)))) (-15 -3623 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -3621 (|#1| |#1|)) (-15 -3620 (|#1| |#1|)) (-15 -3619 (|#1| |#1|)) (-15 -3618 (|#1| |#1|)) (-15 -3469 (|#1| |#1|)) (-15 -3471 (|#1| |#1|)) (-15 -3473 (|#1| |#1|)) (-15 -3472 (|#1| |#1|)) (-15 -3468 (|#1| |#1|)) (-15 -3470 (|#1| |#1|)) (-15 -3475 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -3481 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3927 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3930 (|#1| |#2|)) (-15 -3930 (|#1| |#1|)) (-15 -3930 (|#1| (-343 (-478)))) (-15 -3930 (|#1| (-478))) (-15 ** (|#1| |#1| (-687))) (-15 ** (|#1| |#1| (-823))) (-15 -3171 ((-83) |#1|)) (-15 -3930 ((-765) |#1|))) (-1161 |#2|) (-954)) (T -1160)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3065 (((-578 (-986)) $) 92 T ELT)) (-3815 (((-1079) $) 126 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 68 (|has| |#1| (-489)) ELT)) (-2049 (($ $) 69 (|has| |#1| (-489)) ELT)) (-2047 (((-83) $) 71 (|has| |#1| (-489)) ELT)) (-3755 (($ $ (-687)) 121 T ELT) (($ $ (-687) (-687)) 120 T ELT)) (-3758 (((-1058 (-2 (|:| |k| (-687)) (|:| |c| |#1|))) $) 127 T ELT)) (-3476 (($ $) 160 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3623 (($ $) 143 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3021 (($ $) 142 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) 159 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3622 (($ $) 144 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3802 (($ (-1058 (-2 (|:| |k| (-687)) (|:| |c| |#1|)))) 180 T ELT) (($ (-1058 |#1|)) 178 T ELT)) (-3478 (($ $) 158 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3621 (($ $) 145 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3708 (($) 22 T CONST)) (-3943 (($ $) 77 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3800 (($ $) 177 T ELT)) (-3798 (((-850 |#1|) $ (-687)) 175 T ELT) (((-850 |#1|) $ (-687) (-687)) 174 T ELT)) (-2876 (((-83) $) 91 T ELT)) (-3611 (($) 170 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3756 (((-687) $) 123 T ELT) (((-687) $ (-687)) 122 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-2995 (($ $ (-478)) 141 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3761 (($ $ (-823)) 124 T ELT)) (-3799 (($ (-1 |#1| (-478)) $) 176 T ELT)) (-3921 (((-83) $) 79 T ELT)) (-2877 (($ |#1| (-687)) 78 T ELT) (($ $ (-986) (-687)) 94 T ELT) (($ $ (-578 (-986)) (-578 (-687))) 93 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3926 (($ $) 167 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2878 (($ $) 82 T ELT)) (-3157 ((|#1| $) 83 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3796 (($ $) 172 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1079)) 171 (OR (-12 (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1104)) (|has| |#1| (-38 (-343 (-478))))) (-12 (|has| |#1| (-15 -3065 ((-578 (-1079)) |#1|))) (|has| |#1| (-15 -3796 (|#1| |#1| (-1079)))) (|has| |#1| (-38 (-343 (-478)))))) ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3753 (($ $ (-687)) 118 T ELT)) (-3450 (((-3 $ "failed") $ $) 67 (|has| |#1| (-489)) ELT)) (-3927 (($ $) 168 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3752 (((-1058 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-687)))) ELT)) (-3784 ((|#1| $ (-687)) 128 T ELT) (($ $ $) 104 (|has| (-687) (-1015)) ELT)) (-3742 (($ $ (-1079)) 116 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1079))) 114 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-1079) (-687)) 113 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 112 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-687)) 106 (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT)) (-3932 (((-687) $) 81 T ELT)) (-3479 (($ $) 157 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3620 (($ $) 146 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 156 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3619 (($ $) 147 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3475 (($ $) 155 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3618 (($ $) 148 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) 90 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 (-478))) 74 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) 66 (|has| |#1| (-489)) ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT)) (-3801 (((-1058 |#1|) $) 179 T ELT)) (-3661 ((|#1| $ (-687)) 76 T ELT)) (-2686 (((-627 $) $) 65 (|has| |#1| (-116)) ELT)) (-3109 (((-687)) 37 T CONST)) (-3757 ((|#1| $) 125 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-3482 (($ $) 166 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 154 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2048 (((-83) $ $) 70 (|has| |#1| (-489)) ELT)) (-3480 (($ $) 165 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 153 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3484 (($ $) 164 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3472 (($ $) 152 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3754 ((|#1| $ (-687)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-687)))) (|has| |#1| (-15 -3930 (|#1| (-1079))))) ELT)) (-3485 (($ $) 163 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3473 (($ $) 151 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3483 (($ $) 162 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) 150 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3481 (($ $) 161 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3469 (($ $) 149 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-2653 (($ $ (-1079)) 115 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1079))) 111 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-1079) (-687)) 110 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1079)) (-578 (-687))) 109 (-12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-687)) 105 (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ |#1|) 173 (|has| |#1| (-308)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 140 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-343 (-478)) $) 73 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 72 (|has| |#1| (-38 (-343 (-478)))) ELT))) +(((-1161 |#1|) (-111) (-954)) (T -1161)) +((-3802 (*1 *1 *2) (-12 (-5 *2 (-1058 (-2 (|:| |k| (-687)) (|:| |c| *3)))) (-4 *3 (-954)) (-4 *1 (-1161 *3)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-1161 *3)) (-4 *3 (-954)) (-5 *2 (-1058 *3)))) (-3802 (*1 *1 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-4 *1 (-1161 *3)))) (-3800 (*1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-954)))) (-3799 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-478))) (-4 *1 (-1161 *3)) (-4 *3 (-954)))) (-3798 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-1161 *4)) (-4 *4 (-954)) (-5 *2 (-850 *4)))) (-3798 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-4 *1 (-1161 *4)) (-4 *4 (-954)) (-5 *2 (-850 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-954)) (-4 *2 (-38 (-343 (-478)))))) (-3796 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1079)) (-4 *1 (-1161 *3)) (-4 *3 (-954)) (-12 (-4 *3 (-29 (-478))) (-4 *3 (-864)) (-4 *3 (-1104)) (-4 *3 (-38 (-343 (-478)))))) (-12 (-5 *2 (-1079)) (-4 *1 (-1161 *3)) (-4 *3 (-954)) (-12 (|has| *3 (-15 -3065 ((-578 *2) *3))) (|has| *3 (-15 -3796 (*3 *3 *2))) (-4 *3 (-38 (-343 (-478))))))))) +(-13 (-1147 |t#1| (-687)) (-10 -8 (-15 -3802 ($ (-1058 (-2 (|:| |k| (-687)) (|:| |c| |t#1|))))) (-15 -3801 ((-1058 |t#1|) $)) (-15 -3802 ($ (-1058 |t#1|))) (-15 -3800 ($ $)) (-15 -3799 ($ (-1 |t#1| (-478)) $)) (-15 -3798 ((-850 |t#1|) $ (-687))) (-15 -3798 ((-850 |t#1|) $ (-687) (-687))) (IF (|has| |t#1| (-308)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-343 (-478)))) (PROGN (-15 -3796 ($ $)) (IF (|has| |t#1| (-15 -3796 (|t#1| |t#1| (-1079)))) (IF (|has| |t#1| (-15 -3065 ((-578 (-1079)) |t#1|))) (-15 -3796 ($ $ (-1079))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1104)) (IF (|has| |t#1| (-864)) (IF (|has| |t#1| (-29 (-478))) (-15 -3796 ($ $ (-1079))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-908)) (-6 (-1104))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-687)) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-489)) ((-35) |has| |#1| (-38 (-343 (-478)))) ((-66) |has| |#1| (-38 (-343 (-478)))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-550 (-478)) . T) ((-550 |#1|) |has| |#1| (-144)) ((-550 $) |has| |#1| (-489)) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| (-687) |#1|))) ((-188) |has| |#1| (-15 * (|#1| (-687) |#1|))) ((-187) |has| |#1| (-15 * (|#1| (-687) |#1|))) ((-236) |has| |#1| (-38 (-343 (-478)))) ((-238 (-687) |#1|) . T) ((-238 $ $) |has| (-687) (-1015)) ((-242) |has| |#1| (-489)) ((-426) |has| |#1| (-38 (-343 (-478)))) ((-489) |has| |#1| (-489)) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) |has| |#1| (-489)) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) |has| |#1| (-489)) ((-658) . T) ((-799 $ (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ((-802 (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ((-804 (-1079)) -12 (|has| |#1| (-802 (-1079))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ((-879 |#1| (-687) (-986)) . T) ((-908) |has| |#1| (-38 (-343 (-478)))) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1104) |has| |#1| (-38 (-343 (-478)))) ((-1107) |has| |#1| (-38 (-343 (-478)))) ((-1118) . T) ((-1147 |#1| (-687)) . T)) +((-3805 (((-1 (-1058 |#1|) (-578 (-1058 |#1|))) (-1 |#2| (-578 |#2|))) 24 T ELT)) (-3804 (((-1 (-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3803 (((-1 (-1058 |#1|) (-1058 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3808 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3807 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3809 ((|#2| (-1 |#2| (-578 |#2|)) (-578 |#1|)) 60 T ELT)) (-3810 (((-578 |#2|) (-578 |#1|) (-578 (-1 |#2| (-578 |#2|)))) 66 T ELT)) (-3806 ((|#2| |#2| |#2|) 43 T ELT))) +(((-1162 |#1| |#2|) (-10 -7 (-15 -3803 ((-1 (-1058 |#1|) (-1058 |#1|)) (-1 |#2| |#2|))) (-15 -3804 ((-1 (-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3805 ((-1 (-1058 |#1|) (-578 (-1058 |#1|))) (-1 |#2| (-578 |#2|)))) (-15 -3806 (|#2| |#2| |#2|)) (-15 -3807 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3808 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3809 (|#2| (-1 |#2| (-578 |#2|)) (-578 |#1|))) (-15 -3810 ((-578 |#2|) (-578 |#1|) (-578 (-1 |#2| (-578 |#2|)))))) (-38 (-343 (-478))) (-1161 |#1|)) (T -1162)) +((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 (-1 *6 (-578 *6)))) (-4 *5 (-38 (-343 (-478)))) (-4 *6 (-1161 *5)) (-5 *2 (-578 *6)) (-5 *1 (-1162 *5 *6)))) (-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-578 *2))) (-5 *4 (-578 *5)) (-4 *5 (-38 (-343 (-478)))) (-4 *2 (-1161 *5)) (-5 *1 (-1162 *5 *2)))) (-3808 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1161 *4)) (-5 *1 (-1162 *4 *2)) (-4 *4 (-38 (-343 (-478)))))) (-3807 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1161 *4)) (-5 *1 (-1162 *4 *2)) (-4 *4 (-38 (-343 (-478)))))) (-3806 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1162 *3 *2)) (-4 *2 (-1161 *3)))) (-3805 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-578 *5))) (-4 *5 (-1161 *4)) (-4 *4 (-38 (-343 (-478)))) (-5 *2 (-1 (-1058 *4) (-578 (-1058 *4)))) (-5 *1 (-1162 *4 *5)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1161 *4)) (-4 *4 (-38 (-343 (-478)))) (-5 *2 (-1 (-1058 *4) (-1058 *4) (-1058 *4))) (-5 *1 (-1162 *4 *5)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1161 *4)) (-4 *4 (-38 (-343 (-478)))) (-5 *2 (-1 (-1058 *4) (-1058 *4))) (-5 *1 (-1162 *4 *5))))) +((-3812 ((|#2| |#4| (-687)) 31 T ELT)) (-3811 ((|#4| |#2|) 26 T ELT)) (-3814 ((|#4| (-343 |#2|)) 49 (|has| |#1| (-489)) ELT)) (-3813 (((-1 |#4| (-578 |#4|)) |#3|) 43 T ELT))) +(((-1163 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3811 (|#4| |#2|)) (-15 -3812 (|#2| |#4| (-687))) (-15 -3813 ((-1 |#4| (-578 |#4|)) |#3|)) (IF (|has| |#1| (-489)) (-15 -3814 (|#4| (-343 |#2|))) |%noBranch|)) (-954) (-1144 |#1|) (-595 |#2|) (-1161 |#1|)) (T -1163)) +((-3814 (*1 *2 *3) (-12 (-5 *3 (-343 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-489)) (-4 *4 (-954)) (-4 *2 (-1161 *4)) (-5 *1 (-1163 *4 *5 *6 *2)) (-4 *6 (-595 *5)))) (-3813 (*1 *2 *3) (-12 (-4 *4 (-954)) (-4 *5 (-1144 *4)) (-5 *2 (-1 *6 (-578 *6))) (-5 *1 (-1163 *4 *5 *3 *6)) (-4 *3 (-595 *5)) (-4 *6 (-1161 *4)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *4 (-687)) (-4 *5 (-954)) (-4 *2 (-1144 *5)) (-5 *1 (-1163 *5 *2 *6 *3)) (-4 *6 (-595 *2)) (-4 *3 (-1161 *5)))) (-3811 (*1 *2 *3) (-12 (-4 *4 (-954)) (-4 *3 (-1144 *4)) (-4 *2 (-1161 *4)) (-5 *1 (-1163 *4 *3 *5 *2)) (-4 *5 (-595 *3))))) +NIL +(((-1164) (-111)) (T -1164)) +NIL +(-13 (-10 -7 (-6 -2273))) +((-2552 (((-83) $ $) NIL T ELT)) (-3815 (((-1079)) 12 T ELT)) (-3225 (((-1062) $) 18 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 11 T ELT) (((-1079) $) 8 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 15 T ELT))) +(((-1165 |#1|) (-13 (-1005) (-547 (-1079)) (-10 -8 (-15 -3930 ((-1079) $)) (-15 -3815 ((-1079))))) (-1079)) (T -1165)) +((-3930 (*1 *2 *1) (-12 (-5 *2 (-1079)) (-5 *1 (-1165 *3)) (-14 *3 *2))) (-3815 (*1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-1165 *3)) (-14 *3 *2)))) +((-3822 (($ (-687)) 19 T ELT)) (-3819 (((-625 |#2|) $ $) 41 T ELT)) (-3816 ((|#2| $) 51 T ELT)) (-3817 ((|#2| $) 50 T ELT)) (-3820 ((|#2| $ $) 36 T ELT)) (-3818 (($ $ $) 47 T ELT)) (-3821 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3823 (($ $ $) 15 T ELT)) (* (($ (-478) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) +(((-1166 |#1| |#2|) (-10 -7 (-15 -3816 (|#2| |#1|)) (-15 -3817 (|#2| |#1|)) (-15 -3818 (|#1| |#1| |#1|)) (-15 -3819 ((-625 |#2|) |#1| |#1|)) (-15 -3820 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 -3821 (|#1| |#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -3822 (|#1| (-687))) (-15 -3823 (|#1| |#1| |#1|))) (-1167 |#2|) (-1118)) (T -1166)) +NIL +((-2552 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3822 (($ (-687)) 121 (|has| |#1| (-23)) ELT)) (-2184 (((-1174) $ (-478) (-478)) 44 (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) (-1 (-83) |#1| |#1|) $) 107 T ELT) (((-83) $) 101 (|has| |#1| (-749)) ELT)) (-1717 (($ (-1 (-83) |#1| |#1|) $) 98 (|has| $ (-6 -3980)) ELT) (($ $) 97 (-12 (|has| |#1| (-749)) (|has| $ (-6 -3980))) ELT)) (-2893 (($ (-1 (-83) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-749)) ELT)) (-3772 ((|#1| $ (-478) |#1|) 56 (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) 64 (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3979)) ELT)) (-3708 (($) 7 T CONST)) (-2283 (($ $) 99 (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) 109 T ELT)) (-1340 (($ $) 84 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-3390 (($ |#1| $) 83 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3979)) ELT)) (-1563 ((|#1| $ (-478) |#1|) 57 (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) 55 T ELT)) (-3403 (((-478) (-1 (-83) |#1|) $) 106 T ELT) (((-478) |#1| $) 105 (|has| |#1| (-1005)) ELT) (((-478) |#1| $ (-478)) 104 (|has| |#1| (-1005)) ELT)) (-2873 (((-578 |#1|) $) 30 (|has| $ (-6 -3979)) ELT)) (-3819 (((-625 |#1|) $ $) 114 (|has| |#1| (-954)) ELT)) (-3598 (($ (-687) |#1|) 74 T ELT)) (-2186 (((-478) $) 47 (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) 91 (|has| |#1| (-749)) ELT)) (-3502 (($ (-1 (-83) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-749)) ELT)) (-2592 (((-578 |#1|) $) 29 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-2187 (((-478) $) 48 (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) 92 (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3816 ((|#1| $) 111 (-12 (|has| |#1| (-954)) (|has| |#1| (-908))) ELT)) (-3817 ((|#1| $) 112 (-12 (|has| |#1| (-954)) (|has| |#1| (-908))) ELT)) (-3225 (((-1062) $) 22 (|has| |#1| (-1005)) ELT)) (-2290 (($ |#1| $ (-478)) 66 T ELT) (($ $ $ (-478)) 65 T ELT)) (-2189 (((-578 (-478)) $) 50 T ELT)) (-2190 (((-83) (-478) $) 51 T ELT)) (-3226 (((-1023) $) 21 (|has| |#1| (-1005)) ELT)) (-3785 ((|#1| $) 46 (|has| (-478) (-749)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2185 (($ $ |#1|) 45 (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) 11 T ELT)) (-2188 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) 52 T ELT)) (-3387 (((-83) $) 8 T ELT)) (-3549 (($) 9 T ELT)) (-3784 ((|#1| $ (-478) |#1|) 54 T ELT) ((|#1| $ (-478)) 53 T ELT) (($ $ (-1135 (-478))) 75 T ELT)) (-3820 ((|#1| $ $) 115 (|has| |#1| (-954)) ELT)) (-2291 (($ $ (-478)) 68 T ELT) (($ $ (-1135 (-478))) 67 T ELT)) (-3818 (($ $ $) 113 (|has| |#1| (-954)) ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1005)) (|has| $ (-6 -3979))) ELT)) (-1718 (($ $ $ (-478)) 100 (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) 10 T ELT)) (-3956 (((-467) $) 85 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 76 T ELT)) (-3786 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-578 $)) 70 T ELT)) (-3930 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) 93 (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) 95 (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2668 (((-83) $ $) 94 (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) 96 (|has| |#1| (-749)) ELT)) (-3821 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3823 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-478) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-658)) ELT) (($ $ |#1|) 116 (|has| |#1| (-658)) ELT)) (-3941 (((-687) $) 6 (|has| $ (-6 -3979)) ELT))) +(((-1167 |#1|) (-111) (-1118)) (T -1167)) +((-3823 (*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1118)) (-4 *2 (-25)))) (-3822 (*1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1167 *3)) (-4 *3 (-23)) (-4 *3 (-1118)))) (-3821 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1118)) (-4 *2 (-21)))) (-3821 (*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1118)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-478)) (-4 *1 (-1167 *3)) (-4 *3 (-1118)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1118)) (-4 *2 (-658)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1118)) (-4 *2 (-658)))) (-3820 (*1 *2 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1118)) (-4 *2 (-954)))) (-3819 (*1 *2 *1 *1) (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1118)) (-4 *3 (-954)) (-5 *2 (-625 *3)))) (-3818 (*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1118)) (-4 *2 (-954)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1118)) (-4 *2 (-908)) (-4 *2 (-954)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1118)) (-4 *2 (-908)) (-4 *2 (-954))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3823 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3822 ($ (-687))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3821 ($ $)) (-15 -3821 ($ $ $)) (-15 * ($ (-478) $))) |%noBranch|) (IF (|has| |t#1| (-658)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-954)) (PROGN (-15 -3820 (|t#1| $ $)) (-15 -3819 ((-625 |t#1|) $ $)) (-15 -3818 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-908)) (IF (|has| |t#1| (-954)) (PROGN (-15 -3817 (|t#1| $)) (-15 -3816 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1005)) (|has| |#1| (-749)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1005)) (|has| |#1| (-749)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 (-478) |#1|) . T) ((-238 (-1135 (-478)) $) . T) ((-240 (-478) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-317 |#1|) . T) ((-422 |#1|) . T) ((-533 (-478) |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-749) |has| |#1| (-749)) ((-752) |has| |#1| (-749)) ((-1005) OR (|has| |#1| (-1005)) (|has| |#1| (-749))) ((-1118) . T)) +((-2552 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3822 (($ (-687)) NIL (|has| |#1| (-23)) ELT)) (-3824 (($ (-578 |#1|)) 11 T ELT)) (-2184 (((-1174) $ (-478) (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-1719 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-1717 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3980)) (|has| |#1| (-749))) ELT)) (-2893 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-749)) ELT)) (-3772 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3980)) ELT) ((|#1| $ (-1135 (-478)) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3694 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3708 (($) NIL T CONST)) (-2283 (($ $) NIL (|has| $ (-6 -3980)) ELT)) (-2284 (($ $) NIL T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-3390 (($ |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3826 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3979)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-1563 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-3096 ((|#1| $ (-478)) NIL T ELT)) (-3403 (((-478) (-1 (-83) |#1|) $) NIL T ELT) (((-478) |#1| $) NIL (|has| |#1| (-1005)) ELT) (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1005)) ELT)) (-2873 (((-578 |#1|) $) 16 (|has| $ (-6 -3979)) ELT)) (-3819 (((-625 |#1|) $ $) NIL (|has| |#1| (-954)) ELT)) (-3598 (($ (-687) |#1|) NIL T ELT)) (-2186 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2515 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3502 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2592 (((-578 |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2187 (((-478) $) 12 (|has| (-478) (-749)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1936 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3816 ((|#1| $) NIL (-12 (|has| |#1| (-908)) (|has| |#1| (-954))) ELT)) (-3817 ((|#1| $) NIL (-12 (|has| |#1| (-908)) (|has| |#1| (-954))) ELT)) (-3225 (((-1062) $) NIL (|has| |#1| (-1005)) ELT)) (-2290 (($ |#1| $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2189 (((-578 (-478)) $) NIL T ELT)) (-2190 (((-83) (-478) $) NIL T ELT)) (-3226 (((-1023) $) NIL (|has| |#1| (-1005)) ELT)) (-3785 ((|#1| $) NIL (|has| (-478) (-749)) ELT)) (-1341 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2185 (($ $ |#1|) NIL (|has| $ (-6 -3980)) ELT)) (-1934 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-2188 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-2191 (((-578 |#1|) $) NIL T ELT)) (-3387 (((-83) $) NIL T ELT)) (-3549 (($) NIL T ELT)) (-3784 ((|#1| $ (-478) |#1|) NIL T ELT) ((|#1| $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-3820 ((|#1| $ $) NIL (|has| |#1| (-954)) ELT)) (-2291 (($ $ (-478)) NIL T ELT) (($ $ (-1135 (-478))) NIL T ELT)) (-3818 (($ $ $) NIL (|has| |#1| (-954)) ELT)) (-1933 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#1| (-1005))) ELT)) (-1718 (($ $ $ (-478)) NIL (|has| $ (-6 -3980)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) 20 (|has| |#1| (-548 (-467))) ELT)) (-3514 (($ (-578 |#1|)) 10 T ELT)) (-3786 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3930 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1253 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2550 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2668 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3821 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3823 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-478) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-658)) ELT) (($ $ |#1|) NIL (|has| |#1| (-658)) ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-1168 |#1|) (-13 (-1167 |#1|) (-10 -8 (-15 -3824 ($ (-578 |#1|))))) (-1118)) (T -1168)) +((-3824 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1118)) (-5 *1 (-1168 *3))))) +((-3825 (((-1168 |#2|) (-1 |#2| |#1| |#2|) (-1168 |#1|) |#2|) 13 T ELT)) (-3826 ((|#2| (-1 |#2| |#1| |#2|) (-1168 |#1|) |#2|) 15 T ELT)) (-3942 (((-3 (-1168 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1168 |#1|)) 30 T ELT) (((-1168 |#2|) (-1 |#2| |#1|) (-1168 |#1|)) 18 T ELT))) +(((-1169 |#1| |#2|) (-10 -7 (-15 -3825 ((-1168 |#2|) (-1 |#2| |#1| |#2|) (-1168 |#1|) |#2|)) (-15 -3826 (|#2| (-1 |#2| |#1| |#2|) (-1168 |#1|) |#2|)) (-15 -3942 ((-1168 |#2|) (-1 |#2| |#1|) (-1168 |#1|))) (-15 -3942 ((-3 (-1168 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1168 |#1|)))) (-1118) (-1118)) (T -1169)) +((-3942 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1168 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1168 *6)) (-5 *1 (-1169 *5 *6)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1168 *6)) (-5 *1 (-1169 *5 *6)))) (-3826 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1168 *5)) (-4 *5 (-1118)) (-4 *2 (-1118)) (-5 *1 (-1169 *5 *2)))) (-3825 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1168 *6)) (-4 *6 (-1118)) (-4 *5 (-1118)) (-5 *2 (-1168 *5)) (-5 *1 (-1169 *6 *5))))) +((-3827 (((-401) (-578 (-578 (-847 (-177)))) (-578 (-218))) 22 T ELT) (((-401) (-578 (-578 (-847 (-177))))) 21 T ELT) (((-401) (-578 (-578 (-847 (-177)))) (-776) (-776) (-823) (-578 (-218))) 20 T ELT)) (-3828 (((-1171) (-578 (-578 (-847 (-177)))) (-578 (-218))) 30 T ELT) (((-1171) (-578 (-578 (-847 (-177)))) (-776) (-776) (-823) (-578 (-218))) 29 T ELT)) (-3930 (((-1171) (-401)) 46 T ELT))) +(((-1170) (-10 -7 (-15 -3827 ((-401) (-578 (-578 (-847 (-177)))) (-776) (-776) (-823) (-578 (-218)))) (-15 -3827 ((-401) (-578 (-578 (-847 (-177)))))) (-15 -3827 ((-401) (-578 (-578 (-847 (-177)))) (-578 (-218)))) (-15 -3828 ((-1171) (-578 (-578 (-847 (-177)))) (-776) (-776) (-823) (-578 (-218)))) (-15 -3828 ((-1171) (-578 (-578 (-847 (-177)))) (-578 (-218)))) (-15 -3930 ((-1171) (-401))))) (T -1170)) +((-3930 (*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1171)) (-5 *1 (-1170)))) (-3828 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-578 (-218))) (-5 *2 (-1171)) (-5 *1 (-1170)))) (-3828 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-776)) (-5 *5 (-823)) (-5 *6 (-578 (-218))) (-5 *2 (-1171)) (-5 *1 (-1170)))) (-3827 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-578 (-218))) (-5 *2 (-401)) (-5 *1 (-1170)))) (-3827 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *2 (-401)) (-5 *1 (-1170)))) (-3827 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-776)) (-5 *5 (-823)) (-5 *6 (-578 (-218))) (-5 *2 (-401)) (-5 *1 (-1170))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3846 (((-1062) $ (-1062)) 107 T ELT) (((-1062) $ (-1062) (-1062)) 105 T ELT) (((-1062) $ (-1062) (-578 (-1062))) 104 T ELT)) (-3842 (($) 69 T ELT)) (-3829 (((-1174) $ (-401) (-823)) 54 T ELT)) (-3835 (((-1174) $ (-823) (-1062)) 89 T ELT) (((-1174) $ (-823) (-776)) 90 T ELT)) (-3857 (((-1174) $ (-823) (-323) (-323)) 57 T ELT)) (-3867 (((-1174) $ (-1062)) 84 T ELT)) (-3830 (((-1174) $ (-823) (-1062)) 94 T ELT)) (-3831 (((-1174) $ (-823) (-323) (-323)) 58 T ELT)) (-3868 (((-1174) $ (-823) (-823)) 55 T ELT)) (-3848 (((-1174) $) 85 T ELT)) (-3833 (((-1174) $ (-823) (-1062)) 93 T ELT)) (-3837 (((-1174) $ (-401) (-823)) 41 T ELT)) (-3834 (((-1174) $ (-823) (-1062)) 92 T ELT)) (-3870 (((-578 (-218)) $) 29 T ELT) (($ $ (-578 (-218))) 30 T ELT)) (-3869 (((-1174) $ (-687) (-687)) 52 T ELT)) (-3841 (($ $) 70 T ELT) (($ (-401) (-578 (-218))) 71 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3844 (((-478) $) 48 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3838 (((-1168 (-3 (-401) "undefined")) $) 47 T ELT)) (-3839 (((-1168 (-2 (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)) (|:| -3834 (-478)) (|:| -3832 (-478)) (|:| |spline| (-478)) (|:| -3863 (-478)) (|:| |axesColor| (-776)) (|:| -3835 (-478)) (|:| |unitsColor| (-776)) (|:| |showing| (-478)))) $) 46 T ELT)) (-3840 (((-1174) $ (-823) (-177) (-177) (-177) (-177) (-478) (-478) (-478) (-478) (-776) (-478) (-776) (-478)) 83 T ELT)) (-3843 (((-578 (-847 (-177))) $) NIL T ELT)) (-3836 (((-401) $ (-823)) 43 T ELT)) (-3866 (((-1174) $ (-687) (-687) (-823) (-823)) 50 T ELT)) (-3864 (((-1174) $ (-1062)) 95 T ELT)) (-3832 (((-1174) $ (-823) (-1062)) 91 T ELT)) (-3930 (((-765) $) 102 T ELT)) (-3845 (((-1174) $) 96 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3863 (((-1174) $ (-823) (-1062)) 87 T ELT) (((-1174) $ (-823) (-776)) 88 T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-1171) (-13 (-1005) (-10 -8 (-15 -3843 ((-578 (-847 (-177))) $)) (-15 -3842 ($)) (-15 -3841 ($ $)) (-15 -3870 ((-578 (-218)) $)) (-15 -3870 ($ $ (-578 (-218)))) (-15 -3841 ($ (-401) (-578 (-218)))) (-15 -3840 ((-1174) $ (-823) (-177) (-177) (-177) (-177) (-478) (-478) (-478) (-478) (-776) (-478) (-776) (-478))) (-15 -3839 ((-1168 (-2 (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)) (|:| -3834 (-478)) (|:| -3832 (-478)) (|:| |spline| (-478)) (|:| -3863 (-478)) (|:| |axesColor| (-776)) (|:| -3835 (-478)) (|:| |unitsColor| (-776)) (|:| |showing| (-478)))) $)) (-15 -3838 ((-1168 (-3 (-401) "undefined")) $)) (-15 -3867 ((-1174) $ (-1062))) (-15 -3837 ((-1174) $ (-401) (-823))) (-15 -3836 ((-401) $ (-823))) (-15 -3863 ((-1174) $ (-823) (-1062))) (-15 -3863 ((-1174) $ (-823) (-776))) (-15 -3835 ((-1174) $ (-823) (-1062))) (-15 -3835 ((-1174) $ (-823) (-776))) (-15 -3834 ((-1174) $ (-823) (-1062))) (-15 -3833 ((-1174) $ (-823) (-1062))) (-15 -3832 ((-1174) $ (-823) (-1062))) (-15 -3864 ((-1174) $ (-1062))) (-15 -3845 ((-1174) $)) (-15 -3866 ((-1174) $ (-687) (-687) (-823) (-823))) (-15 -3831 ((-1174) $ (-823) (-323) (-323))) (-15 -3857 ((-1174) $ (-823) (-323) (-323))) (-15 -3830 ((-1174) $ (-823) (-1062))) (-15 -3869 ((-1174) $ (-687) (-687))) (-15 -3829 ((-1174) $ (-401) (-823))) (-15 -3868 ((-1174) $ (-823) (-823))) (-15 -3846 ((-1062) $ (-1062))) (-15 -3846 ((-1062) $ (-1062) (-1062))) (-15 -3846 ((-1062) $ (-1062) (-578 (-1062)))) (-15 -3848 ((-1174) $)) (-15 -3844 ((-478) $)) (-15 -3930 ((-765) $))))) (T -1171)) +((-3930 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1171)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-578 (-847 (-177)))) (-5 *1 (-1171)))) (-3842 (*1 *1) (-5 *1 (-1171))) (-3841 (*1 *1 *1) (-5 *1 (-1171))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-578 (-218))) (-5 *1 (-1171)))) (-3870 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-218))) (-5 *1 (-1171)))) (-3841 (*1 *1 *2 *3) (-12 (-5 *2 (-401)) (-5 *3 (-578 (-218))) (-5 *1 (-1171)))) (-3840 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-823)) (-5 *4 (-177)) (-5 *5 (-478)) (-5 *6 (-776)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-1168 (-2 (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)) (|:| -3834 (-478)) (|:| -3832 (-478)) (|:| |spline| (-478)) (|:| -3863 (-478)) (|:| |axesColor| (-776)) (|:| -3835 (-478)) (|:| |unitsColor| (-776)) (|:| |showing| (-478))))) (-5 *1 (-1171)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-1168 (-3 (-401) "undefined"))) (-5 *1 (-1171)))) (-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3837 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-401)) (-5 *4 (-823)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3836 (*1 *2 *1 *3) (-12 (-5 *3 (-823)) (-5 *2 (-401)) (-5 *1 (-1171)))) (-3863 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3863 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-776)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3835 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3835 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-776)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3834 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3833 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3832 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3864 (*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3866 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-687)) (-5 *4 (-823)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3831 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-823)) (-5 *4 (-323)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3857 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-823)) (-5 *4 (-323)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3830 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3869 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3829 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-401)) (-5 *4 (-823)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3868 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3846 (*1 *2 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-1171)))) (-3846 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-1171)))) (-3846 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-578 (-1062))) (-5 *2 (-1062)) (-5 *1 (-1171)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1171))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3858 (((-1174) $ (-323)) 169 T ELT) (((-1174) $ (-323) (-323) (-323)) 170 T ELT)) (-3846 (((-1062) $ (-1062)) 178 T ELT) (((-1062) $ (-1062) (-1062)) 176 T ELT) (((-1062) $ (-1062) (-578 (-1062))) 175 T ELT)) (-3874 (($) 67 T ELT)) (-3865 (((-1174) $ (-323) (-323) (-323) (-323) (-323)) 141 T ELT) (((-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3831 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))) $) 139 T ELT) (((-1174) $ (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3831 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) 140 T ELT) (((-1174) $ (-478) (-478) (-323) (-323) (-323)) 144 T ELT) (((-1174) $ (-323) (-323)) 145 T ELT) (((-1174) $ (-323) (-323) (-323)) 152 T ELT)) (-3877 (((-323)) 122 T ELT) (((-323) (-323)) 123 T ELT)) (-3879 (((-323)) 117 T ELT) (((-323) (-323)) 119 T ELT)) (-3878 (((-323)) 120 T ELT) (((-323) (-323)) 121 T ELT)) (-3875 (((-323)) 126 T ELT) (((-323) (-323)) 127 T ELT)) (-3876 (((-323)) 124 T ELT) (((-323) (-323)) 125 T ELT)) (-3857 (((-1174) $ (-323) (-323)) 171 T ELT)) (-3867 (((-1174) $ (-1062)) 153 T ELT)) (-3872 (((-1036 (-177)) $) 68 T ELT) (($ $ (-1036 (-177))) 69 T ELT)) (-3853 (((-1174) $ (-1062)) 187 T ELT)) (-3852 (((-1174) $ (-1062)) 188 T ELT)) (-3859 (((-1174) $ (-323) (-323)) 151 T ELT) (((-1174) $ (-478) (-478)) 168 T ELT)) (-3868 (((-1174) $ (-823) (-823)) 160 T ELT)) (-3848 (((-1174) $) 137 T ELT)) (-3856 (((-1174) $ (-1062)) 186 T ELT)) (-3861 (((-1174) $ (-1062)) 134 T ELT)) (-3870 (((-578 (-218)) $) 70 T ELT) (($ $ (-578 (-218))) 71 T ELT)) (-3869 (((-1174) $ (-687) (-687)) 159 T ELT)) (-3871 (((-1174) $ (-687) (-847 (-177))) 193 T ELT)) (-3873 (($ $) 73 T ELT) (($ (-1036 (-177)) (-1062)) 74 T ELT) (($ (-1036 (-177)) (-578 (-218))) 75 T ELT)) (-3850 (((-1174) $ (-323) (-323) (-323)) 131 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3844 (((-478) $) 128 T ELT)) (-3849 (((-1174) $ (-323)) 173 T ELT)) (-3854 (((-1174) $ (-323)) 191 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3855 (((-1174) $ (-323)) 190 T ELT)) (-3860 (((-1174) $ (-1062)) 136 T ELT)) (-3866 (((-1174) $ (-687) (-687) (-823) (-823)) 158 T ELT)) (-3862 (((-1174) $ (-1062)) 133 T ELT)) (-3864 (((-1174) $ (-1062)) 135 T ELT)) (-3847 (((-1174) $ (-128) (-128)) 157 T ELT)) (-3930 (((-765) $) 166 T ELT)) (-3845 (((-1174) $) 138 T ELT)) (-3851 (((-1174) $ (-1062)) 189 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3863 (((-1174) $ (-1062)) 132 T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-1172) (-13 (-1005) (-10 -8 (-15 -3879 ((-323))) (-15 -3879 ((-323) (-323))) (-15 -3878 ((-323))) (-15 -3878 ((-323) (-323))) (-15 -3877 ((-323))) (-15 -3877 ((-323) (-323))) (-15 -3876 ((-323))) (-15 -3876 ((-323) (-323))) (-15 -3875 ((-323))) (-15 -3875 ((-323) (-323))) (-15 -3874 ($)) (-15 -3873 ($ $)) (-15 -3873 ($ (-1036 (-177)) (-1062))) (-15 -3873 ($ (-1036 (-177)) (-578 (-218)))) (-15 -3872 ((-1036 (-177)) $)) (-15 -3872 ($ $ (-1036 (-177)))) (-15 -3871 ((-1174) $ (-687) (-847 (-177)))) (-15 -3870 ((-578 (-218)) $)) (-15 -3870 ($ $ (-578 (-218)))) (-15 -3869 ((-1174) $ (-687) (-687))) (-15 -3868 ((-1174) $ (-823) (-823))) (-15 -3867 ((-1174) $ (-1062))) (-15 -3866 ((-1174) $ (-687) (-687) (-823) (-823))) (-15 -3865 ((-1174) $ (-323) (-323) (-323) (-323) (-323))) (-15 -3865 ((-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3831 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))) $)) (-15 -3865 ((-1174) $ (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3831 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))))) (-15 -3865 ((-1174) $ (-478) (-478) (-323) (-323) (-323))) (-15 -3865 ((-1174) $ (-323) (-323))) (-15 -3865 ((-1174) $ (-323) (-323) (-323))) (-15 -3864 ((-1174) $ (-1062))) (-15 -3863 ((-1174) $ (-1062))) (-15 -3862 ((-1174) $ (-1062))) (-15 -3861 ((-1174) $ (-1062))) (-15 -3860 ((-1174) $ (-1062))) (-15 -3859 ((-1174) $ (-323) (-323))) (-15 -3859 ((-1174) $ (-478) (-478))) (-15 -3858 ((-1174) $ (-323))) (-15 -3858 ((-1174) $ (-323) (-323) (-323))) (-15 -3857 ((-1174) $ (-323) (-323))) (-15 -3856 ((-1174) $ (-1062))) (-15 -3855 ((-1174) $ (-323))) (-15 -3854 ((-1174) $ (-323))) (-15 -3853 ((-1174) $ (-1062))) (-15 -3852 ((-1174) $ (-1062))) (-15 -3851 ((-1174) $ (-1062))) (-15 -3850 ((-1174) $ (-323) (-323) (-323))) (-15 -3849 ((-1174) $ (-323))) (-15 -3848 ((-1174) $)) (-15 -3847 ((-1174) $ (-128) (-128))) (-15 -3846 ((-1062) $ (-1062))) (-15 -3846 ((-1062) $ (-1062) (-1062))) (-15 -3846 ((-1062) $ (-1062) (-578 (-1062)))) (-15 -3845 ((-1174) $)) (-15 -3844 ((-478) $))))) (T -1172)) +((-3879 (*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172)))) (-3879 (*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172)))) (-3878 (*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172)))) (-3878 (*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172)))) (-3877 (*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172)))) (-3876 (*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172)))) (-3876 (*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172)))) (-3875 (*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172)))) (-3875 (*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172)))) (-3874 (*1 *1) (-5 *1 (-1172))) (-3873 (*1 *1 *1) (-5 *1 (-1172))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1036 (-177))) (-5 *3 (-1062)) (-5 *1 (-1172)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1036 (-177))) (-5 *3 (-578 (-218))) (-5 *1 (-1172)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-1036 (-177))) (-5 *1 (-1172)))) (-3872 (*1 *1 *1 *2) (-12 (-5 *2 (-1036 (-177))) (-5 *1 (-1172)))) (-3871 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-687)) (-5 *4 (-847 (-177))) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-578 (-218))) (-5 *1 (-1172)))) (-3870 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-218))) (-5 *1 (-1172)))) (-3869 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3868 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3866 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-687)) (-5 *4 (-823)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3865 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3831 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) (-5 *1 (-1172)))) (-3865 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3831 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3865 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-478)) (-5 *4 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3865 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3865 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3864 (*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3863 (*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3862 (*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3861 (*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3860 (*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3859 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3859 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3858 (*1 *2 *1 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3858 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3857 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3856 (*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3855 (*1 *2 *1 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3854 (*1 *2 *1 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3853 (*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3852 (*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3851 (*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3850 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3849 (*1 *2 *1 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3847 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-128)) (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3846 (*1 *2 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-1172)))) (-3846 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-1172)))) (-3846 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-578 (-1062))) (-5 *2 (-1062)) (-5 *1 (-1172)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1172)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1172))))) +((-3888 (((-578 (-1062)) (-578 (-1062))) 103 T ELT) (((-578 (-1062))) 96 T ELT)) (-3889 (((-578 (-1062))) 94 T ELT)) (-3886 (((-578 (-823)) (-578 (-823))) 69 T ELT) (((-578 (-823))) 64 T ELT)) (-3885 (((-578 (-687)) (-578 (-687))) 61 T ELT) (((-578 (-687))) 55 T ELT)) (-3887 (((-1174)) 71 T ELT)) (-3891 (((-823) (-823)) 87 T ELT) (((-823)) 86 T ELT)) (-3890 (((-823) (-823)) 85 T ELT) (((-823)) 84 T ELT)) (-3883 (((-776) (-776)) 81 T ELT) (((-776)) 80 T ELT)) (-3893 (((-177)) 91 T ELT) (((-177) (-323)) 93 T ELT)) (-3892 (((-823)) 88 T ELT) (((-823) (-823)) 89 T ELT)) (-3884 (((-823) (-823)) 83 T ELT) (((-823)) 82 T ELT)) (-3880 (((-776) (-776)) 75 T ELT) (((-776)) 73 T ELT)) (-3881 (((-776) (-776)) 77 T ELT) (((-776)) 76 T ELT)) (-3882 (((-776) (-776)) 79 T ELT) (((-776)) 78 T ELT))) +(((-1173) (-10 -7 (-15 -3880 ((-776))) (-15 -3880 ((-776) (-776))) (-15 -3881 ((-776))) (-15 -3881 ((-776) (-776))) (-15 -3882 ((-776))) (-15 -3882 ((-776) (-776))) (-15 -3883 ((-776))) (-15 -3883 ((-776) (-776))) (-15 -3884 ((-823))) (-15 -3884 ((-823) (-823))) (-15 -3885 ((-578 (-687)))) (-15 -3885 ((-578 (-687)) (-578 (-687)))) (-15 -3886 ((-578 (-823)))) (-15 -3886 ((-578 (-823)) (-578 (-823)))) (-15 -3887 ((-1174))) (-15 -3888 ((-578 (-1062)))) (-15 -3888 ((-578 (-1062)) (-578 (-1062)))) (-15 -3889 ((-578 (-1062)))) (-15 -3890 ((-823))) (-15 -3891 ((-823))) (-15 -3890 ((-823) (-823))) (-15 -3891 ((-823) (-823))) (-15 -3892 ((-823) (-823))) (-15 -3892 ((-823))) (-15 -3893 ((-177) (-323))) (-15 -3893 ((-177))))) (T -1173)) +((-3893 (*1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-1173)))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *2 (-177)) (-5 *1 (-1173)))) (-3892 (*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1173)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1173)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1173)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1173)))) (-3891 (*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1173)))) (-3890 (*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1173)))) (-3889 (*1 *2) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-1173)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-1173)))) (-3888 (*1 *2) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-1173)))) (-3887 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1173)))) (-3886 (*1 *2 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1173)))) (-3886 (*1 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1173)))) (-3885 (*1 *2 *2) (-12 (-5 *2 (-578 (-687))) (-5 *1 (-1173)))) (-3885 (*1 *2) (-12 (-5 *2 (-578 (-687))) (-5 *1 (-1173)))) (-3884 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1173)))) (-3884 (*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1173)))) (-3883 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1173)))) (-3883 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1173)))) (-3882 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1173)))) (-3882 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1173)))) (-3881 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1173)))) (-3881 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1173)))) (-3880 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1173)))) (-3880 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1173))))) +((-3894 (($) 6 T ELT)) (-3930 (((-765) $) 9 T ELT))) +(((-1174) (-13 (-547 (-765)) (-10 -8 (-15 -3894 ($))))) (T -1174)) +((-3894 (*1 *1) (-5 *1 (-1174)))) +((-3933 (($ $ |#2|) 10 T ELT))) +(((-1175 |#1| |#2|) (-10 -7 (-15 -3933 (|#1| |#1| |#2|))) (-1176 |#2|) (-308)) (T -1175)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3895 (((-105)) 38 T ELT)) (-3930 (((-765) $) 13 T ELT)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ |#1|) 39 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-1176 |#1|) (-111) (-308)) (T -1176)) +((-3933 (*1 *1 *1 *2) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-308)))) (-3895 (*1 *2) (-12 (-4 *1 (-1176 *3)) (-4 *3 (-308)) (-5 *2 (-105))))) +(-13 (-649 |t#1|) (-10 -8 (-15 -3933 ($ $ |t#1|)) (-15 -3895 ((-105))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) . T) ((-649 |#1|) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1005) . T) ((-1118) . T)) +((-3900 (((-578 (-1111 |#1|)) (-1079) (-1111 |#1|)) 83 T ELT)) (-3898 (((-1058 (-1058 (-850 |#1|))) (-1079) (-1058 (-850 |#1|))) 63 T ELT)) (-3901 (((-1 (-1058 (-1111 |#1|)) (-1058 (-1111 |#1|))) (-687) (-1111 |#1|) (-1058 (-1111 |#1|))) 74 T ELT)) (-3896 (((-1 (-1058 (-850 |#1|)) (-1058 (-850 |#1|))) (-687)) 65 T ELT)) (-3899 (((-1 (-1074 (-850 |#1|)) (-850 |#1|)) (-1079)) 32 T ELT)) (-3897 (((-1 (-1058 (-850 |#1|)) (-1058 (-850 |#1|))) (-687)) 64 T ELT))) +(((-1177 |#1|) (-10 -7 (-15 -3896 ((-1 (-1058 (-850 |#1|)) (-1058 (-850 |#1|))) (-687))) (-15 -3897 ((-1 (-1058 (-850 |#1|)) (-1058 (-850 |#1|))) (-687))) (-15 -3898 ((-1058 (-1058 (-850 |#1|))) (-1079) (-1058 (-850 |#1|)))) (-15 -3899 ((-1 (-1074 (-850 |#1|)) (-850 |#1|)) (-1079))) (-15 -3900 ((-578 (-1111 |#1|)) (-1079) (-1111 |#1|))) (-15 -3901 ((-1 (-1058 (-1111 |#1|)) (-1058 (-1111 |#1|))) (-687) (-1111 |#1|) (-1058 (-1111 |#1|))))) (-308)) (T -1177)) +((-3901 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-687)) (-4 *6 (-308)) (-5 *4 (-1111 *6)) (-5 *2 (-1 (-1058 *4) (-1058 *4))) (-5 *1 (-1177 *6)) (-5 *5 (-1058 *4)))) (-3900 (*1 *2 *3 *4) (-12 (-5 *3 (-1079)) (-4 *5 (-308)) (-5 *2 (-578 (-1111 *5))) (-5 *1 (-1177 *5)) (-5 *4 (-1111 *5)))) (-3899 (*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-1 (-1074 (-850 *4)) (-850 *4))) (-5 *1 (-1177 *4)) (-4 *4 (-308)))) (-3898 (*1 *2 *3 *4) (-12 (-5 *3 (-1079)) (-4 *5 (-308)) (-5 *2 (-1058 (-1058 (-850 *5)))) (-5 *1 (-1177 *5)) (-5 *4 (-1058 (-850 *5))))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-1058 (-850 *4)) (-1058 (-850 *4)))) (-5 *1 (-1177 *4)) (-4 *4 (-308)))) (-3896 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-1058 (-850 *4)) (-1058 (-850 *4)))) (-5 *1 (-1177 *4)) (-4 *4 (-308))))) +((-3903 (((-2 (|:| -1998 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) |#2|) 80 T ELT)) (-3902 (((-2 (|:| -1998 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) 79 T ELT))) +(((-1178 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3902 ((-2 (|:| -1998 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))))) (-15 -3903 ((-2 (|:| -1998 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) |#2|))) (-295) (-1144 |#1|) (-1144 |#2|) (-346 |#2| |#3|)) (T -1178)) +((-3903 (*1 *2 *3) (-12 (-4 *4 (-295)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 *3)) (-5 *2 (-2 (|:| -1998 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) (-5 *1 (-1178 *4 *3 *5 *6)) (-4 *6 (-346 *3 *5)))) (-3902 (*1 *2) (-12 (-4 *3 (-295)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| -1998 (-625 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-625 *4)))) (-5 *1 (-1178 *3 *4 *5 *6)) (-4 *6 (-346 *4 *5))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3904 (((-1038) $) 11 T ELT)) (-3905 (((-1038) $) 9 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 17 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-1179) (-13 (-987) (-10 -8 (-15 -3905 ((-1038) $)) (-15 -3904 ((-1038) $))))) (T -1179)) +((-3905 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-1179)))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-1179))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3906 (((-1038) $) 9 T ELT)) (-3930 (((-765) $) 15 T ELT) (($ (-1084)) NIL T ELT) (((-1084) $) NIL T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) +(((-1180) (-13 (-987) (-10 -8 (-15 -3906 ((-1038) $))))) (T -1180)) +((-3906 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-1180))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 58 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 81 T ELT) (($ (-478)) NIL T ELT) (($ |#4|) 65 T ELT) ((|#4| $) 70 T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT)) (-3109 (((-687)) NIL T CONST)) (-3907 (((-1174) (-687)) 16 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 36 T CONST)) (-2650 (($) 84 T CONST)) (-3037 (((-83) $ $) 87 T ELT)) (-3933 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-3821 (($ $) 89 T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 63 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 91 T ELT) (($ |#1| $) NIL (|has| |#1| (-144)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT))) +(((-1181 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-954) (-423 |#4|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-308)) (-15 -3933 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3907 ((-1174) (-687))))) (-954) (-749) (-710) (-854 |#1| |#3| |#2|) (-578 |#2|) (-578 (-687)) (-687)) (T -1181)) +((-3933 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-308)) (-4 *2 (-954)) (-4 *3 (-749)) (-4 *4 (-710)) (-14 *6 (-578 *3)) (-5 *1 (-1181 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-854 *2 *4 *3)) (-14 *7 (-578 (-687))) (-14 *8 (-687)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-687)) (-4 *4 (-954)) (-4 *5 (-749)) (-4 *6 (-710)) (-14 *8 (-578 *5)) (-5 *2 (-1174)) (-5 *1 (-1181 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-854 *4 *6 *5)) (-14 *9 (-578 *3)) (-14 *10 *3)))) +((-2552 (((-83) $ $) NIL T ELT)) (-3665 (((-578 (-2 (|:| -3845 $) (|:| -1689 (-578 |#4|)))) (-578 |#4|)) NIL T ELT)) (-3666 (((-578 $) (-578 |#4|)) 96 T ELT)) (-3065 (((-578 |#3|) $) NIL T ELT)) (-2892 (((-83) $) NIL T ELT)) (-2883 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3677 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3672 ((|#4| |#4| $) NIL T ELT)) (-2893 (((-2 (|:| |under| $) (|:| -3113 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3694 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3708 (($) NIL T CONST)) (-2888 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2890 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2889 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2891 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3673 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 31 T ELT)) (-2884 (((-578 |#4|) (-578 |#4|) $) 28 (|has| |#1| (-489)) ELT)) (-2885 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-489)) ELT)) (-3140 (((-3 $ #1#) (-578 |#4|)) NIL T ELT)) (-3139 (($ (-578 |#4|)) NIL T ELT)) (-3783 (((-3 $ #1#) $) 78 T ELT)) (-3669 ((|#4| |#4| $) 83 T ELT)) (-1340 (($ $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT)) (-3390 (($ |#4| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-2886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-489)) ELT)) (-3678 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3667 ((|#4| |#4| $) NIL T ELT)) (-3826 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3979)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3979)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3680 (((-2 (|:| -3845 (-578 |#4|)) (|:| -1689 (-578 |#4|))) $) NIL T ELT)) (-2873 (((-578 |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3679 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3163 ((|#3| $) 84 T ELT)) (-2592 (((-578 |#4|) $) 32 (|has| $ (-6 -3979)) ELT)) (-3228 (((-83) |#4| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT)) (-3910 (((-3 $ #1#) (-578 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-578 |#4|)) 38 T ELT)) (-1936 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3980)) ELT)) (-3942 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2898 (((-578 |#3|) $) NIL T ELT)) (-2897 (((-83) |#3| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3782 (((-3 |#4| #1#) $) NIL T ELT)) (-3681 (((-578 |#4|) $) 54 T ELT)) (-3675 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3670 ((|#4| |#4| $) 82 T ELT)) (-3683 (((-83) $ $) 93 T ELT)) (-2887 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-489)) ELT)) (-3676 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3671 ((|#4| |#4| $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3785 (((-3 |#4| #1#) $) 77 T ELT)) (-1341 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-3663 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3753 (($ $ |#4|) NIL T ELT)) (-1934 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3752 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-245 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT) (($ $ (-578 (-245 |#4|))) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1005))) ELT)) (-1210 (((-83) $ $) NIL T ELT)) (-3387 (((-83) $) 75 T ELT)) (-3549 (($) 46 T ELT)) (-3932 (((-687) $) NIL T ELT)) (-1933 (((-687) |#4| $) NIL (-12 (|has| $ (-6 -3979)) (|has| |#4| (-1005))) ELT) (((-687) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3384 (($ $) NIL T ELT)) (-3956 (((-467) $) NIL (|has| |#4| (-548 (-467))) ELT)) (-3514 (($ (-578 |#4|)) NIL T ELT)) (-2894 (($ $ |#3|) NIL T ELT)) (-2896 (($ $ |#3|) NIL T ELT)) (-3668 (($ $) NIL T ELT)) (-2895 (($ $ |#3|) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (((-578 |#4|) $) 63 T ELT)) (-3662 (((-687) $) NIL (|has| |#3| (-313)) ELT)) (-3909 (((-3 $ #1#) (-578 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44 T ELT) (((-3 $ #1#) (-578 |#4|)) 45 T ELT)) (-3908 (((-578 $) (-578 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73 T ELT) (((-578 $) (-578 |#4|)) 74 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3682 (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3308 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3674 (((-83) $ (-1 (-83) |#4| (-578 |#4|))) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3979)) ELT)) (-3664 (((-578 |#3|) $) NIL T ELT)) (-3917 (((-83) |#3| $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3941 (((-687) $) NIL (|has| $ (-6 -3979)) ELT))) +(((-1182 |#1| |#2| |#3| |#4|) (-13 (-1113 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3910 ((-3 $ #1="failed") (-578 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3910 ((-3 $ #1#) (-578 |#4|))) (-15 -3909 ((-3 $ #1#) (-578 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3909 ((-3 $ #1#) (-578 |#4|))) (-15 -3908 ((-578 $) (-578 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3908 ((-578 $) (-578 |#4|))))) (-489) (-710) (-749) (-969 |#1| |#2| |#3|)) (T -1182)) +((-3910 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-83) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-1182 *5 *6 *7 *8)))) (-3910 (*1 *1 *2) (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-1182 *3 *4 *5 *6)))) (-3909 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-83) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-1182 *5 *6 *7 *8)))) (-3909 (*1 *1 *2) (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-1182 *3 *4 *5 *6)))) (-3908 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *9)) (-5 *4 (-1 (-83) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-969 *6 *7 *8)) (-4 *6 (-489)) (-4 *7 (-710)) (-4 *8 (-749)) (-5 *2 (-578 (-1182 *6 *7 *8 *9))) (-5 *1 (-1182 *6 *7 *8 *9)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 (-1182 *4 *5 *6 *7))) (-5 *1 (-1182 *4 *5 *6 *7))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3708 (($) 22 T CONST)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 50 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) +(((-1183 |#1|) (-111) (-954)) (T -1183)) +NIL +(-13 (-954) (-80 |t#1| |t#1|) (-550 |t#1|) (-10 -7 (IF (|has| |t#1| (-144)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-144)) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 |#1|) |has| |#1| (-144)) ((-649 |#1|) |has| |#1| (-144)) ((-658) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T)) +((-2552 (((-83) $ $) 67 T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3918 (((-578 |#1|) $) 52 T ELT)) (-3931 (($ $ (-687)) 46 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3919 (($ $ (-687)) 24 (|has| |#2| (-144)) ELT) (($ $ $) 25 (|has| |#2| (-144)) ELT)) (-3708 (($) NIL T CONST)) (-3923 (($ $ $) 70 T ELT) (($ $ (-732 |#1|)) 56 T ELT) (($ $ |#1|) 60 T ELT)) (-3140 (((-3 (-732 |#1|) #1#) $) NIL T ELT)) (-3139 (((-732 |#1|) $) NIL T ELT)) (-3943 (($ $) 39 T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3935 (((-83) $) NIL T ELT)) (-3934 (($ $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2404 (((-687) $) NIL T ELT)) (-2805 (((-578 $) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-3922 (($ (-732 |#1|) |#2|) 38 T ELT)) (-3920 (($ $) 40 T ELT)) (-3925 (((-2 (|:| |k| (-732 |#1|)) (|:| |c| |#2|)) $) 12 T ELT)) (-3939 (((-732 |#1|) $) NIL T ELT)) (-3940 (((-732 |#1|) $) 41 T ELT)) (-3942 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3924 (($ $ $) 69 T ELT) (($ $ (-732 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-1736 (((-2 (|:| |k| (-732 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2878 (((-732 |#1|) $) 35 T ELT)) (-3157 ((|#2| $) 37 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3932 (((-687) $) 43 T ELT)) (-3937 (((-83) $) 47 T ELT)) (-3936 ((|#2| $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-732 |#1|)) 30 T ELT) (($ |#1|) 31 T ELT) (($ |#2|) NIL T ELT) (($ (-478)) NIL T ELT)) (-3801 (((-578 |#2|) $) NIL T ELT)) (-3661 ((|#2| $ (-732 |#1|)) NIL T ELT)) (-3938 ((|#2| $ $) 76 T ELT) ((|#2| $ (-732 |#1|)) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 13 T CONST)) (-2650 (($) 19 T CONST)) (-2649 (((-578 (-2 (|:| |k| (-732 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3037 (((-83) $ $) 44 T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 28 T ELT)) (** (($ $ (-687)) NIL T ELT) (($ $ (-823)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 68 T ELT) (($ |#2| (-732 |#1|)) NIL T ELT) (($ |#1| $) 33 T ELT) (($ $ $) NIL T ELT))) +(((-1184 |#1| |#2|) (-13 (-328 |#2| (-732 |#1|)) (-1191 |#1| |#2|)) (-749) (-954)) (T -1184)) +NIL +((-3926 ((|#3| |#3| (-687)) 28 T ELT)) (-3927 ((|#3| |#3| (-687)) 34 T ELT)) (-3911 ((|#3| |#3| |#3| (-687)) 35 T ELT))) +(((-1185 |#1| |#2| |#3|) (-10 -7 (-15 -3927 (|#3| |#3| (-687))) (-15 -3926 (|#3| |#3| (-687))) (-15 -3911 (|#3| |#3| |#3| (-687)))) (-13 (-954) (-649 (-343 (-478)))) (-749) (-1191 |#2| |#1|)) (T -1185)) +((-3911 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-687)) (-4 *4 (-13 (-954) (-649 (-343 (-478))))) (-4 *5 (-749)) (-5 *1 (-1185 *4 *5 *2)) (-4 *2 (-1191 *5 *4)))) (-3926 (*1 *2 *2 *3) (-12 (-5 *3 (-687)) (-4 *4 (-13 (-954) (-649 (-343 (-478))))) (-4 *5 (-749)) (-5 *1 (-1185 *4 *5 *2)) (-4 *2 (-1191 *5 *4)))) (-3927 (*1 *2 *2 *3) (-12 (-5 *3 (-687)) (-4 *4 (-13 (-954) (-649 (-343 (-478))))) (-4 *5 (-749)) (-5 *1 (-1185 *4 *5 *2)) (-4 *2 (-1191 *5 *4))))) +((-3916 (((-83) $) 15 T ELT)) (-3917 (((-83) $) 14 T ELT)) (-3912 (($ $) 19 T ELT) (($ $ (-687)) 21 T ELT))) +(((-1186 |#1| |#2|) (-10 -7 (-15 -3912 (|#1| |#1| (-687))) (-15 -3912 (|#1| |#1|)) (-15 -3916 ((-83) |#1|)) (-15 -3917 ((-83) |#1|))) (-1187 |#2|) (-308)) (T -1186)) +NIL +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-2050 (((-2 (|:| -1759 $) (|:| -3966 $) (|:| |associate| $)) $) 52 T ELT)) (-2049 (($ $) 51 T ELT)) (-2047 (((-83) $) 49 T ELT)) (-3916 (((-83) $) 111 T ELT)) (-3913 (((-687)) 107 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3759 (($ $) 88 T ELT)) (-3955 (((-341 $) $) 87 T ELT)) (-1595 (((-83) $ $) 72 T ELT)) (-3708 (($) 22 T CONST)) (-3140 (((-3 |#1| "failed") $) 118 T ELT)) (-3139 ((|#1| $) 119 T ELT)) (-2548 (($ $ $) 68 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-2547 (($ $ $) 69 T ELT)) (-2725 (((-2 (|:| -3938 (-578 $)) (|:| -2395 $)) (-578 $)) 63 T ELT)) (-1751 (($ $ (-687)) 104 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT) (($ $) 103 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3707 (((-83) $) 86 T ELT)) (-3756 (((-736 (-823)) $) 101 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-2396 (((-83) $) 40 T ELT)) (-1592 (((-3 (-578 $) #1="failed") (-578 $) $) 65 T ELT)) (-1878 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-2468 (($ $) 85 T ELT)) (-3915 (((-83) $) 110 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-2692 (((-1074 $) (-1074 $) (-1074 $)) 55 T ELT)) (-3127 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3716 (((-341 $) $) 89 T ELT)) (-3914 (((-736 (-823))) 108 T ELT)) (-1593 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2395 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3450 (((-3 $ "failed") $ $) 53 T ELT)) (-2724 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-1594 (((-687) $) 71 T ELT)) (-2863 (((-2 (|:| -1960 $) (|:| -2886 $)) $ $) 70 T ELT)) (-1752 (((-3 (-687) "failed") $ $) 102 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3895 (((-105)) 116 T ELT)) (-3932 (((-736 (-823)) $) 109 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT) (($ |#1|) 117 T ELT)) (-2686 (((-627 $) $) 100 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2048 (((-83) $ $) 50 T ELT)) (-3917 (((-83) $) 112 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3912 (($ $) 106 (|has| |#1| (-313)) ELT) (($ $ (-687)) 105 (|has| |#1| (-313)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) +(((-1187 |#1|) (-111) (-308)) (T -1187)) +((-3917 (*1 *2 *1) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-308)) (-5 *2 (-83)))) (-3916 (*1 *2 *1) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-308)) (-5 *2 (-83)))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-308)) (-5 *2 (-83)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-308)) (-5 *2 (-736 (-823))))) (-3914 (*1 *2) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-308)) (-5 *2 (-736 (-823))))) (-3913 (*1 *2) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-308)) (-5 *2 (-687)))) (-3912 (*1 *1 *1) (-12 (-4 *1 (-1187 *2)) (-4 *2 (-308)) (-4 *2 (-313)))) (-3912 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1187 *3)) (-4 *3 (-308)) (-4 *3 (-313))))) +(-13 (-308) (-943 |t#1|) (-1176 |t#1|) (-10 -8 (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-338)) |%noBranch|) (-15 -3917 ((-83) $)) (-15 -3916 ((-83) $)) (-15 -3915 ((-83) $)) (-15 -3932 ((-736 (-823)) $)) (-15 -3914 ((-736 (-823)))) (-15 -3913 ((-687))) (IF (|has| |t#1| (-313)) (PROGN (-6 (-338)) (-15 -3912 ($ $)) (-15 -3912 ($ $ (-687)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| |#1| (-313)) (|has| |#1| (-116))) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-338) OR (|has| |#1| (-313)) (|has| |#1| (-116))) ((-385) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 |#1|) . T) ((-577 $) . T) ((-649 (-343 (-478))) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-658) . T) ((-825) . T) ((-943 |#1|) . T) ((-956 (-343 (-478))) . T) ((-956 |#1|) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 |#1|) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T) ((-1123) . T) ((-1176 |#1|) . T)) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3918 (((-578 |#1|) $) 52 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3919 (($ $ $) 55 (|has| |#2| (-144)) ELT) (($ $ (-687)) 54 (|has| |#2| (-144)) ELT)) (-3708 (($) 22 T CONST)) (-3923 (($ $ |#1|) 66 T ELT) (($ $ (-732 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3140 (((-3 (-732 |#1|) "failed") $) 76 T ELT)) (-3139 (((-732 |#1|) $) 77 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3935 (((-83) $) 57 T ELT)) (-3934 (($ $) 56 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3921 (((-83) $) 62 T ELT)) (-3922 (($ (-732 |#1|) |#2|) 63 T ELT)) (-3920 (($ $) 61 T ELT)) (-3925 (((-2 (|:| |k| (-732 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-3939 (((-732 |#1|) $) 73 T ELT)) (-3942 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-3924 (($ $ |#1|) 69 T ELT) (($ $ (-732 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3937 (((-83) $) 59 T ELT)) (-3936 ((|#2| $) 58 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-732 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-3938 ((|#2| $ (-732 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) +(((-1188 |#1| |#2|) (-111) (-749) (-954)) (T -1188)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-749)) (-4 *2 (-954)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-732 *3)))) (-3925 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-2 (|:| |k| (-732 *3)) (|:| |c| *4))))) (-3938 (*1 *2 *1 *3) (-12 (-5 *3 (-732 *4)) (-4 *1 (-1188 *4 *2)) (-4 *4 (-749)) (-4 *2 (-954)))) (-3938 (*1 *2 *1 *1) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-749)) (-4 *2 (-954)))) (-3924 (*1 *1 *1 *2) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) (-3924 (*1 *1 *1 *2) (-12 (-5 *2 (-732 *3)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)))) (-3924 (*1 *1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) (-3923 (*1 *1 *1 *2) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) (-3923 (*1 *1 *1 *2) (-12 (-5 *2 (-732 *3)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)))) (-3923 (*1 *1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) (-3922 (*1 *1 *2 *3) (-12 (-5 *2 (-732 *4)) (-4 *4 (-749)) (-4 *1 (-1188 *4 *3)) (-4 *3 (-954)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-83)))) (-3920 (*1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) (-3930 (*1 *1 *2) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-83)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-749)) (-4 *2 (-954)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-83)))) (-3934 (*1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) (-3919 (*1 *1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)) (-4 *3 (-144)))) (-3919 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-4 *4 (-144)))) (-3942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-578 *3))))) +(-13 (-954) (-1183 |t#2|) (-943 (-732 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3939 ((-732 |t#1|) $)) (-15 -3925 ((-2 (|:| |k| (-732 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3938 (|t#2| $ (-732 |t#1|))) (-15 -3938 (|t#2| $ $)) (-15 -3924 ($ $ |t#1|)) (-15 -3924 ($ $ (-732 |t#1|))) (-15 -3924 ($ $ $)) (-15 -3923 ($ $ |t#1|)) (-15 -3923 ($ $ (-732 |t#1|))) (-15 -3923 ($ $ $)) (-15 -3922 ($ (-732 |t#1|) |t#2|)) (-15 -3921 ((-83) $)) (-15 -3920 ($ $)) (-15 -3930 ($ |t#1|)) (-15 -3937 ((-83) $)) (-15 -3936 (|t#2| $)) (-15 -3935 ((-83) $)) (-15 -3934 ($ $)) (IF (|has| |t#2| (-144)) (PROGN (-15 -3919 ($ $ $)) (-15 -3919 ($ $ (-687)))) |%noBranch|) (-15 -3942 ($ (-1 |t#2| |t#2|) $)) (-15 -3918 ((-578 |t#1|) $)) (IF (|has| |t#2| (-6 -3972)) (-6 -3972) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-144)) ((-72) . T) ((-80 |#2| |#2|) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 (-732 |#1|)) . T) ((-550 |#2|) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#2|) . T) ((-583 $) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-577 |#2|) |has| |#2| (-144)) ((-649 |#2|) |has| |#2| (-144)) ((-658) . T) ((-943 (-732 |#1|)) . T) ((-956 |#2|) . T) ((-961 |#2|) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T) ((-1183 |#2|) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3918 (((-578 |#1|) $) 97 T ELT)) (-3931 (($ $ (-687)) 101 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3919 (($ $ $) NIL (|has| |#2| (-144)) ELT) (($ $ (-687)) NIL (|has| |#2| (-144)) ELT)) (-3708 (($) NIL T CONST)) (-3923 (($ $ |#1|) NIL T ELT) (($ $ (-732 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3140 (((-3 (-732 |#1|) #1#) $) NIL T ELT) (((-3 (-796 |#1|) #1#) $) NIL T ELT)) (-3139 (((-732 |#1|) $) NIL T ELT) (((-796 |#1|) $) NIL T ELT)) (-3943 (($ $) 100 T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3935 (((-83) $) 89 T ELT)) (-3934 (($ $) 92 T ELT)) (-3928 (($ $ $ (-687)) 102 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2404 (((-687) $) NIL T ELT)) (-2805 (((-578 $) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-3922 (($ (-732 |#1|) |#2|) NIL T ELT) (($ (-796 |#1|) |#2|) 28 T ELT)) (-3920 (($ $) 118 T ELT)) (-3925 (((-2 (|:| |k| (-732 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3939 (((-732 |#1|) $) NIL T ELT)) (-3940 (((-732 |#1|) $) NIL T ELT)) (-3942 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3924 (($ $ |#1|) NIL T ELT) (($ $ (-732 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3926 (($ $ (-687)) 111 (|has| |#2| (-649 (-343 (-478)))) ELT)) (-1736 (((-2 (|:| |k| (-796 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2878 (((-796 |#1|) $) 82 T ELT)) (-3157 ((|#2| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3927 (($ $ (-687)) 108 (|has| |#2| (-649 (-343 (-478)))) ELT)) (-3932 (((-687) $) 98 T ELT)) (-3937 (((-83) $) 83 T ELT)) (-3936 ((|#2| $) 87 T ELT)) (-3930 (((-765) $) 68 T ELT) (($ (-478)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-732 |#1|)) NIL T ELT) (($ |#1|) 70 T ELT) (($ (-796 |#1|)) NIL T ELT) (($ (-601 |#1| |#2|)) 47 T ELT) (((-1184 |#1| |#2|) $) 75 T ELT) (((-1193 |#1| |#2|) $) 80 T ELT)) (-3801 (((-578 |#2|) $) NIL T ELT)) (-3661 ((|#2| $ (-796 |#1|)) NIL T ELT)) (-3938 ((|#2| $ (-732 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 21 T CONST)) (-2650 (($) 27 T CONST)) (-2649 (((-578 (-2 (|:| |k| (-796 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3929 (((-3 (-601 |#1| |#2|) #1#) $) 117 T ELT)) (-3037 (((-83) $ $) 76 T ELT)) (-3821 (($ $) 110 T ELT) (($ $ $) 109 T ELT)) (-3823 (($ $ $) 20 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-796 |#1|)) NIL T ELT))) +(((-1189 |#1| |#2|) (-13 (-1191 |#1| |#2|) (-328 |#2| (-796 |#1|)) (-10 -8 (-15 -3930 ($ (-601 |#1| |#2|))) (-15 -3930 ((-1184 |#1| |#2|) $)) (-15 -3930 ((-1193 |#1| |#2|) $)) (-15 -3929 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -3928 ($ $ $ (-687))) (IF (|has| |#2| (-649 (-343 (-478)))) (PROGN (-15 -3927 ($ $ (-687))) (-15 -3926 ($ $ (-687)))) |%noBranch|))) (-749) (-144)) (T -1189)) +((-3930 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) (-5 *1 (-1189 *3 *4)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-1184 *3 *4)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)))) (-3929 (*1 *2 *1) (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)))) (-3928 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)))) (-3927 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-1189 *3 *4)) (-4 *4 (-649 (-343 (-478)))) (-4 *3 (-749)) (-4 *4 (-144)))) (-3926 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-1189 *3 *4)) (-4 *4 (-649 (-343 (-478)))) (-4 *3 (-749)) (-4 *4 (-144))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3918 (((-578 (-1079)) $) NIL T ELT)) (-3946 (($ (-1184 (-1079) |#1|)) NIL T ELT)) (-3931 (($ $ (-687)) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3919 (($ $ $) NIL (|has| |#1| (-144)) ELT) (($ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-3708 (($) NIL T CONST)) (-3923 (($ $ (-1079)) NIL T ELT) (($ $ (-732 (-1079))) NIL T ELT) (($ $ $) NIL T ELT)) (-3140 (((-3 (-732 (-1079)) #1#) $) NIL T ELT)) (-3139 (((-732 (-1079)) $) NIL T ELT)) (-3451 (((-3 $ #1#) $) NIL T ELT)) (-3935 (((-83) $) NIL T ELT)) (-3934 (($ $) NIL T ELT)) (-2396 (((-83) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-3922 (($ (-732 (-1079)) |#1|) NIL T ELT)) (-3920 (($ $) NIL T ELT)) (-3925 (((-2 (|:| |k| (-732 (-1079))) (|:| |c| |#1|)) $) NIL T ELT)) (-3939 (((-732 (-1079)) $) NIL T ELT)) (-3940 (((-732 (-1079)) $) NIL T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3924 (($ $ (-1079)) NIL T ELT) (($ $ (-732 (-1079))) NIL T ELT) (($ $ $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3947 (((-1184 (-1079) |#1|) $) NIL T ELT)) (-3932 (((-687) $) NIL T ELT)) (-3937 (((-83) $) NIL T ELT)) (-3936 ((|#1| $) NIL T ELT)) (-3930 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-732 (-1079))) NIL T ELT) (($ (-1079)) NIL T ELT)) (-3938 ((|#1| $ (-732 (-1079))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3109 (((-687)) NIL T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) NIL T CONST)) (-3945 (((-578 (-2 (|:| |k| (-1079)) (|:| |c| $))) $) NIL T ELT)) (-2650 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1079) $) NIL T ELT))) +(((-1190 |#1|) (-13 (-1191 (-1079) |#1|) (-10 -8 (-15 -3947 ((-1184 (-1079) |#1|) $)) (-15 -3946 ($ (-1184 (-1079) |#1|))) (-15 -3945 ((-578 (-2 (|:| |k| (-1079)) (|:| |c| $))) $)))) (-954)) (T -1190)) +((-3947 (*1 *2 *1) (-12 (-5 *2 (-1184 (-1079) *3)) (-5 *1 (-1190 *3)) (-4 *3 (-954)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1184 (-1079) *3)) (-4 *3 (-954)) (-5 *1 (-1190 *3)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| (-1079)) (|:| |c| (-1190 *3))))) (-5 *1 (-1190 *3)) (-4 *3 (-954))))) +((-2552 (((-83) $ $) 7 T ELT)) (-3171 (((-83) $) 21 T ELT)) (-3918 (((-578 |#1|) $) 52 T ELT)) (-3931 (($ $ (-687)) 86 T ELT)) (-1299 (((-3 $ "failed") $ $) 25 T ELT)) (-3919 (($ $ $) 55 (|has| |#2| (-144)) ELT) (($ $ (-687)) 54 (|has| |#2| (-144)) ELT)) (-3708 (($) 22 T CONST)) (-3923 (($ $ |#1|) 66 T ELT) (($ $ (-732 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3140 (((-3 (-732 |#1|) "failed") $) 76 T ELT)) (-3139 (((-732 |#1|) $) 77 T ELT)) (-3451 (((-3 $ "failed") $) 42 T ELT)) (-3935 (((-83) $) 57 T ELT)) (-3934 (($ $) 56 T ELT)) (-2396 (((-83) $) 40 T ELT)) (-3921 (((-83) $) 62 T ELT)) (-3922 (($ (-732 |#1|) |#2|) 63 T ELT)) (-3920 (($ $) 61 T ELT)) (-3925 (((-2 (|:| |k| (-732 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-3939 (((-732 |#1|) $) 73 T ELT)) (-3940 (((-732 |#1|) $) 88 T ELT)) (-3942 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-3924 (($ $ |#1|) 69 T ELT) (($ $ (-732 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3225 (((-1062) $) 11 T ELT)) (-3226 (((-1023) $) 12 T ELT)) (-3932 (((-687) $) 87 T ELT)) (-3937 (((-83) $) 59 T ELT)) (-3936 ((|#2| $) 58 T ELT)) (-3930 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-732 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-3938 ((|#2| $ (-732 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3109 (((-687)) 37 T CONST)) (-1253 (((-83) $ $) 6 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3821 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3823 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) +(((-1191 |#1| |#2|) (-111) (-749) (-954)) (T -1191)) +((-3940 (*1 *2 *1) (-12 (-4 *1 (-1191 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-732 *3)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-1191 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-687)))) (-3931 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1191 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954))))) +(-13 (-1188 |t#1| |t#2|) (-10 -8 (-15 -3940 ((-732 |t#1|) $)) (-15 -3932 ((-687) $)) (-15 -3931 ($ $ (-687))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-144)) ((-72) . T) ((-80 |#2| |#2|) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 (-732 |#1|)) . T) ((-550 |#2|) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#2|) . T) ((-583 $) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-577 |#2|) |has| |#2| (-144)) ((-649 |#2|) |has| |#2| (-144)) ((-658) . T) ((-943 (-732 |#1|)) . T) ((-956 |#2|) . T) ((-961 |#2|) . T) ((-954) . T) ((-962) . T) ((-1015) . T) ((-1005) . T) ((-1118) . T) ((-1183 |#2|) . T) ((-1188 |#1| |#2|) . T)) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3708 (($) NIL T CONST)) (-3140 (((-3 |#2| #1#) $) NIL T ELT)) (-3139 ((|#2| $) NIL T ELT)) (-3943 (($ $) NIL T ELT)) (-3451 (((-3 $ #1#) $) 42 T ELT)) (-3935 (((-83) $) 36 T ELT)) (-3934 (($ $) 37 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-2404 (((-687) $) NIL T ELT)) (-2805 (((-578 $) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-3922 (($ |#2| |#1|) NIL T ELT)) (-3939 ((|#2| $) 24 T ELT)) (-3940 ((|#2| $) 22 T ELT)) (-3942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1736 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2878 ((|#2| $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3937 (((-83) $) 32 T ELT)) (-3936 ((|#1| $) 33 T ELT)) (-3930 (((-765) $) 65 T ELT) (($ (-478)) 46 T ELT) (($ |#1|) 41 T ELT) (($ |#2|) NIL T ELT)) (-3801 (((-578 |#1|) $) NIL T ELT)) (-3661 ((|#1| $ |#2|) NIL T ELT)) (-3938 ((|#1| $ |#2|) 28 T ELT)) (-3109 (((-687)) 14 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 29 T CONST)) (-2650 (($) 11 T CONST)) (-2649 (((-578 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3037 (((-83) $ $) 30 T ELT)) (-3933 (($ $ |#1|) 67 (|has| |#1| (-308)) ELT)) (-3821 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3823 (($ $ $) 50 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 52 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 51 T ELT) (($ |#1| $) 47 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3941 (((-687) $) 16 T ELT))) +(((-1192 |#1| |#2|) (-13 (-954) (-1183 |#1|) (-328 |#1| |#2|) (-550 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3941 ((-687) $)) (-15 -3940 (|#2| $)) (-15 -3939 (|#2| $)) (-15 -3943 ($ $)) (-15 -3938 (|#1| $ |#2|)) (-15 -3937 ((-83) $)) (-15 -3936 (|#1| $)) (-15 -3935 ((-83) $)) (-15 -3934 ($ $)) (-15 -3942 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-308)) (-15 -3933 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3972)) (-6 -3972) |%noBranch|) (IF (|has| |#1| (-6 -3976)) (-6 -3976) |%noBranch|) (IF (|has| |#1| (-6 -3977)) (-6 -3977) |%noBranch|))) (-954) (-747)) (T -1192)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1192 *2 *3)) (-4 *2 (-954)) (-4 *3 (-747)))) (-3943 (*1 *1 *1) (-12 (-5 *1 (-1192 *2 *3)) (-4 *2 (-954)) (-4 *3 (-747)))) (-3942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-1192 *3 *4)) (-4 *4 (-747)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-954)) (-4 *4 (-747)))) (-3940 (*1 *2 *1) (-12 (-4 *2 (-747)) (-5 *1 (-1192 *3 *2)) (-4 *3 (-954)))) (-3939 (*1 *2 *1) (-12 (-4 *2 (-747)) (-5 *1 (-1192 *3 *2)) (-4 *3 (-954)))) (-3938 (*1 *2 *1 *3) (-12 (-4 *2 (-954)) (-5 *1 (-1192 *2 *3)) (-4 *3 (-747)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-954)) (-4 *4 (-747)))) (-3936 (*1 *2 *1) (-12 (-4 *2 (-954)) (-5 *1 (-1192 *2 *3)) (-4 *3 (-747)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-954)) (-4 *4 (-747)))) (-3934 (*1 *1 *1) (-12 (-5 *1 (-1192 *2 *3)) (-4 *2 (-954)) (-4 *3 (-747)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *1 (-1192 *2 *3)) (-4 *2 (-308)) (-4 *2 (-954)) (-4 *3 (-747))))) +((-2552 (((-83) $ $) 27 T ELT)) (-3171 (((-83) $) NIL T ELT)) (-3918 (((-578 |#1|) $) 132 T ELT)) (-3946 (($ (-1184 |#1| |#2|)) 50 T ELT)) (-3931 (($ $ (-687)) 38 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3919 (($ $ $) 54 (|has| |#2| (-144)) ELT) (($ $ (-687)) 52 (|has| |#2| (-144)) ELT)) (-3708 (($) NIL T CONST)) (-3923 (($ $ |#1|) 114 T ELT) (($ $ (-732 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3140 (((-3 (-732 |#1|) #1#) $) NIL T ELT)) (-3139 (((-732 |#1|) $) NIL T ELT)) (-3451 (((-3 $ #1#) $) 122 T ELT)) (-3935 (((-83) $) 117 T ELT)) (-3934 (($ $) 118 T ELT)) (-2396 (((-83) $) NIL T ELT)) (-3921 (((-83) $) NIL T ELT)) (-3922 (($ (-732 |#1|) |#2|) 20 T ELT)) (-3920 (($ $) NIL T ELT)) (-3925 (((-2 (|:| |k| (-732 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3939 (((-732 |#1|) $) 123 T ELT)) (-3940 (((-732 |#1|) $) 126 T ELT)) (-3942 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3924 (($ $ |#1|) 112 T ELT) (($ $ (-732 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3947 (((-1184 |#1| |#2|) $) 94 T ELT)) (-3932 (((-687) $) 129 T ELT)) (-3937 (((-83) $) 81 T ELT)) (-3936 ((|#2| $) 32 T ELT)) (-3930 (((-765) $) 73 T ELT) (($ (-478)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-732 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3938 ((|#2| $ (-732 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3109 (((-687)) 120 T CONST)) (-1253 (((-83) $ $) NIL T ELT)) (-2644 (($) 15 T CONST)) (-3945 (((-578 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2650 (($) 33 T CONST)) (-3037 (((-83) $ $) 14 T ELT)) (-3821 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3823 (($ $ $) 61 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 55 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) 53 T ELT) (($ (-478) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) +(((-1193 |#1| |#2|) (-13 (-1191 |#1| |#2|) (-10 -8 (-15 -3947 ((-1184 |#1| |#2|) $)) (-15 -3946 ($ (-1184 |#1| |#2|))) (-15 -3945 ((-578 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-749) (-954)) (T -1193)) +((-3947 (*1 *2 *1) (-12 (-5 *2 (-1184 *3 *4)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *1 (-1193 *3 *4)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| *3) (|:| |c| (-1193 *3 *4))))) (-5 *1 (-1193 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3949 (($ (-578 (-823))) 10 T ELT)) (-3948 (((-877) $) 12 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3930 (((-765) $) 25 T ELT) (($ (-877)) 14 T ELT) (((-877) $) 13 T ELT)) (-1253 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 17 T ELT))) +(((-1194) (-13 (-1005) (-423 (-877)) (-10 -8 (-15 -3949 ($ (-578 (-823)))) (-15 -3948 ((-877) $))))) (T -1194)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1194)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1194))))) +((-3950 (((-578 (-1058 |#1|)) (-1 (-578 (-1058 |#1|)) (-578 (-1058 |#1|))) (-478)) 16 T ELT) (((-1058 |#1|) (-1 (-1058 |#1|) (-1058 |#1|))) 13 T ELT))) +(((-1195 |#1|) (-10 -7 (-15 -3950 ((-1058 |#1|) (-1 (-1058 |#1|) (-1058 |#1|)))) (-15 -3950 ((-578 (-1058 |#1|)) (-1 (-578 (-1058 |#1|)) (-578 (-1058 |#1|))) (-478)))) (-1118)) (T -1195)) +((-3950 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-578 (-1058 *5)) (-578 (-1058 *5)))) (-5 *4 (-478)) (-5 *2 (-578 (-1058 *5))) (-5 *1 (-1195 *5)) (-4 *5 (-1118)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-1 (-1058 *4) (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1195 *4)) (-4 *4 (-1118))))) +((-3952 (((-578 (-2 (|:| -1734 (-1074 |#1|)) (|:| -3207 (-578 (-850 |#1|))))) (-578 (-850 |#1|))) 174 T ELT) (((-578 (-2 (|:| -1734 (-1074 |#1|)) (|:| -3207 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83)) 173 T ELT) (((-578 (-2 (|:| -1734 (-1074 |#1|)) (|:| -3207 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83) (-83)) 172 T ELT) (((-578 (-2 (|:| -1734 (-1074 |#1|)) (|:| -3207 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83) (-83) (-83)) 171 T ELT) (((-578 (-2 (|:| -1734 (-1074 |#1|)) (|:| -3207 (-578 (-850 |#1|))))) (-951 |#1| |#2|)) 156 T ELT)) (-3951 (((-578 (-951 |#1| |#2|)) (-578 (-850 |#1|))) 85 T ELT) (((-578 (-951 |#1| |#2|)) (-578 (-850 |#1|)) (-83)) 84 T ELT) (((-578 (-951 |#1| |#2|)) (-578 (-850 |#1|)) (-83) (-83)) 83 T ELT)) (-3955 (((-578 (-1049 |#1| (-463 (-766 |#3|)) (-766 |#3|) (-696 |#1| (-766 |#3|)))) (-951 |#1| |#2|)) 73 T ELT)) (-3953 (((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|))) 140 T ELT) (((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83)) 139 T ELT) (((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83) (-83)) 138 T ELT) (((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83) (-83) (-83)) 137 T ELT) (((-578 (-578 (-930 (-343 |#1|)))) (-951 |#1| |#2|)) 132 T ELT)) (-3954 (((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|))) 145 T ELT) (((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83)) 144 T ELT) (((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83) (-83)) 143 T ELT) (((-578 (-578 (-930 (-343 |#1|)))) (-951 |#1| |#2|)) 142 T ELT)) (-3956 (((-578 (-696 |#1| (-766 |#3|))) (-1049 |#1| (-463 (-766 |#3|)) (-766 |#3|) (-696 |#1| (-766 |#3|)))) 111 T ELT) (((-1074 (-930 (-343 |#1|))) (-1074 |#1|)) 102 T ELT) (((-850 (-930 (-343 |#1|))) (-696 |#1| (-766 |#3|))) 109 T ELT) (((-850 (-930 (-343 |#1|))) (-850 |#1|)) 107 T ELT) (((-696 |#1| (-766 |#3|)) (-696 |#1| (-766 |#2|))) 33 T ELT))) +(((-1196 |#1| |#2| |#3|) (-10 -7 (-15 -3951 ((-578 (-951 |#1| |#2|)) (-578 (-850 |#1|)) (-83) (-83))) (-15 -3951 ((-578 (-951 |#1| |#2|)) (-578 (-850 |#1|)) (-83))) (-15 -3951 ((-578 (-951 |#1| |#2|)) (-578 (-850 |#1|)))) (-15 -3952 ((-578 (-2 (|:| -1734 (-1074 |#1|)) (|:| -3207 (-578 (-850 |#1|))))) (-951 |#1| |#2|))) (-15 -3952 ((-578 (-2 (|:| -1734 (-1074 |#1|)) (|:| -3207 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83) (-83) (-83))) (-15 -3952 ((-578 (-2 (|:| -1734 (-1074 |#1|)) (|:| -3207 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83) (-83))) (-15 -3952 ((-578 (-2 (|:| -1734 (-1074 |#1|)) (|:| -3207 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83))) (-15 -3952 ((-578 (-2 (|:| -1734 (-1074 |#1|)) (|:| -3207 (-578 (-850 |#1|))))) (-578 (-850 |#1|)))) (-15 -3953 ((-578 (-578 (-930 (-343 |#1|)))) (-951 |#1| |#2|))) (-15 -3953 ((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83) (-83) (-83))) (-15 -3953 ((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83) (-83))) (-15 -3953 ((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83))) (-15 -3953 ((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)))) (-15 -3954 ((-578 (-578 (-930 (-343 |#1|)))) (-951 |#1| |#2|))) (-15 -3954 ((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83) (-83))) (-15 -3954 ((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83))) (-15 -3954 ((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)))) (-15 -3955 ((-578 (-1049 |#1| (-463 (-766 |#3|)) (-766 |#3|) (-696 |#1| (-766 |#3|)))) (-951 |#1| |#2|))) (-15 -3956 ((-696 |#1| (-766 |#3|)) (-696 |#1| (-766 |#2|)))) (-15 -3956 ((-850 (-930 (-343 |#1|))) (-850 |#1|))) (-15 -3956 ((-850 (-930 (-343 |#1|))) (-696 |#1| (-766 |#3|)))) (-15 -3956 ((-1074 (-930 (-343 |#1|))) (-1074 |#1|))) (-15 -3956 ((-578 (-696 |#1| (-766 |#3|))) (-1049 |#1| (-463 (-766 |#3|)) (-766 |#3|) (-696 |#1| (-766 |#3|)))))) (-13 (-748) (-254) (-118) (-926)) (-578 (-1079)) (-578 (-1079))) (T -1196)) +((-3956 (*1 *2 *3) (-12 (-5 *3 (-1049 *4 (-463 (-766 *6)) (-766 *6) (-696 *4 (-766 *6)))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-14 *6 (-578 (-1079))) (-5 *2 (-578 (-696 *4 (-766 *6)))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-578 (-1079))))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-1074 *4)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-1074 (-930 (-343 *4)))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-578 (-1079))) (-14 *6 (-578 (-1079))))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-696 *4 (-766 *6))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-14 *6 (-578 (-1079))) (-5 *2 (-850 (-930 (-343 *4)))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-578 (-1079))))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-850 *4)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-850 (-930 (-343 *4)))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-578 (-1079))) (-14 *6 (-578 (-1079))))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-696 *4 (-766 *5))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-14 *5 (-578 (-1079))) (-5 *2 (-696 *4 (-766 *6))) (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-578 (-1079))))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-951 *4 *5)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-14 *5 (-578 (-1079))) (-5 *2 (-578 (-1049 *4 (-463 (-766 *6)) (-766 *6) (-696 *4 (-766 *6))))) (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-578 (-1079))))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-578 (-930 (-343 *4))))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-578 (-1079))) (-14 *6 (-578 (-1079))))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-578 (-1079))) (-14 *7 (-578 (-1079))))) (-3954 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-578 (-1079))) (-14 *7 (-578 (-1079))))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-951 *4 *5)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-14 *5 (-578 (-1079))) (-5 *2 (-578 (-578 (-930 (-343 *4))))) (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-578 (-1079))))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-578 (-930 (-343 *4))))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-578 (-1079))) (-14 *6 (-578 (-1079))))) (-3953 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-578 (-1079))) (-14 *7 (-578 (-1079))))) (-3953 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-578 (-1079))) (-14 *7 (-578 (-1079))))) (-3953 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-578 (-1079))) (-14 *7 (-578 (-1079))))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-951 *4 *5)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-14 *5 (-578 (-1079))) (-5 *2 (-578 (-578 (-930 (-343 *4))))) (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-578 (-1079))))) (-3952 (*1 *2 *3) (-12 (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-2 (|:| -1734 (-1074 *4)) (|:| -3207 (-578 (-850 *4)))))) (-5 *1 (-1196 *4 *5 *6)) (-5 *3 (-578 (-850 *4))) (-14 *5 (-578 (-1079))) (-14 *6 (-578 (-1079))))) (-3952 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-2 (|:| -1734 (-1074 *5)) (|:| -3207 (-578 (-850 *5)))))) (-5 *1 (-1196 *5 *6 *7)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1079))) (-14 *7 (-578 (-1079))))) (-3952 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-2 (|:| -1734 (-1074 *5)) (|:| -3207 (-578 (-850 *5)))))) (-5 *1 (-1196 *5 *6 *7)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1079))) (-14 *7 (-578 (-1079))))) (-3952 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-2 (|:| -1734 (-1074 *5)) (|:| -3207 (-578 (-850 *5)))))) (-5 *1 (-1196 *5 *6 *7)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1079))) (-14 *7 (-578 (-1079))))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-951 *4 *5)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-14 *5 (-578 (-1079))) (-5 *2 (-578 (-2 (|:| -1734 (-1074 *4)) (|:| -3207 (-578 (-850 *4)))))) (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-578 (-1079))))) (-3951 (*1 *2 *3) (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-951 *4 *5))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-578 (-1079))) (-14 *6 (-578 (-1079))))) (-3951 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-951 *5 *6))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-578 (-1079))) (-14 *7 (-578 (-1079))))) (-3951 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-951 *5 *6))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-578 (-1079))) (-14 *7 (-578 (-1079)))))) +((-3959 (((-3 (-1168 (-343 (-478))) #1="failed") (-1168 |#1|) |#1|) 21 T ELT)) (-3957 (((-83) (-1168 |#1|)) 12 T ELT)) (-3958 (((-3 (-1168 (-478)) #1#) (-1168 |#1|)) 16 T ELT))) +(((-1197 |#1|) (-10 -7 (-15 -3957 ((-83) (-1168 |#1|))) (-15 -3958 ((-3 (-1168 (-478)) #1="failed") (-1168 |#1|))) (-15 -3959 ((-3 (-1168 (-343 (-478))) #1#) (-1168 |#1|) |#1|))) (-13 (-954) (-575 (-478)))) (T -1197)) +((-3959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-13 (-954) (-575 (-478)))) (-5 *2 (-1168 (-343 (-478)))) (-5 *1 (-1197 *4)))) (-3958 (*1 *2 *3) (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-13 (-954) (-575 (-478)))) (-5 *2 (-1168 (-478))) (-5 *1 (-1197 *4)))) (-3957 (*1 *2 *3) (-12 (-5 *3 (-1168 *4)) (-4 *4 (-13 (-954) (-575 (-478)))) (-5 *2 (-83)) (-5 *1 (-1197 *4))))) +((-2552 (((-83) $ $) NIL T ELT)) (-3171 (((-83) $) 12 T ELT)) (-1299 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3119 (((-687)) 9 T ELT)) (-3708 (($) NIL T CONST)) (-3451 (((-3 $ #1#) $) 57 T ELT)) (-2978 (($) 46 T ELT)) (-2396 (((-83) $) 38 T ELT)) (-3429 (((-627 $) $) 36 T ELT)) (-1996 (((-823) $) 14 T ELT)) (-3225 (((-1062) $) NIL T ELT)) (-3430 (($) 26 T CONST)) (-2386 (($ (-823)) 47 T ELT)) (-3226 (((-1023) $) NIL T ELT)) (-3956 (((-478) $) 16 T ELT)) (-3930 (((-765) $) 21 T ELT) (($ (-478)) 18 T ELT)) (-3109 (((-687)) 10 T CONST)) (-1253 (((-83) $ $) 59 T ELT)) (-2644 (($) 23 T CONST)) (-2650 (($) 25 T CONST)) (-3037 (((-83) $ $) 31 T ELT)) (-3821 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3823 (($ $ $) 29 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 52 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 41 T ELT) (($ $ $) 40 T ELT))) +(((-1198 |#1|) (-13 (-144) (-313) (-548 (-478)) (-1055)) (-823)) (T -1198)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 2797580 2797585 2797590 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2797565 2797570 2797575 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2797550 2797555 2797560 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2797535 2797540 2797545 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1198 2796578 2797453 2797530 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1197 2795793 2795972 2796191 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1196 2786952 2788821 2790755 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1195 2786340 2786493 2786682 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1194 2785802 2786105 2786218 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1193 2783426 2785264 2785467 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1192 2780254 2781843 2782414 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1191 2777599 2779267 2779321 "XPOLYC" 2779606 XPOLYC (NIL T T) -9 NIL 2779719 NIL) (-1190 2775182 2777103 2777306 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1189 2771495 2774041 2774429 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1188 2766430 2768001 2768055 "XFALG" 2770200 XFALG (NIL T T) -9 NIL 2770984 NIL) (-1187 2761674 2764345 2764387 "XF" 2765005 XF (NIL T) -9 NIL 2765401 NIL) (-1186 2761392 2761502 2761669 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1185 2760619 2760741 2760945 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1184 2758425 2760519 2760614 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1183 2757094 2757827 2757869 "XALG" 2757874 XALG (NIL T) -9 NIL 2757983 NIL) (-1182 2750651 2755504 2755982 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1181 2748958 2749896 2750217 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1180 2748558 2748829 2748898 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1179 2748046 2748348 2748441 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1178 2747123 2747333 2747628 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1177 2745419 2745882 2746344 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1176 2744351 2744905 2744947 "VSPACE" 2745083 VSPACE (NIL T) -9 NIL 2745157 NIL) (-1175 2744222 2744255 2744346 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1174 2744065 2744119 2744187 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1173 2741048 2741843 2742580 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1172 2732146 2734747 2736920 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1171 2725723 2727614 2729193 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1170 2724207 2724602 2725008 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1169 2723034 2723315 2723631 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1168 2718148 2722861 2722953 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1167 2711262 2715870 2715913 "VECTCAT" 2716901 VECTCAT (NIL T) -9 NIL 2717485 NIL) (-1166 2710541 2710867 2711257 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1165 2710035 2710277 2710397 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1164 2709968 2709973 2710003 "UTYPE" 2710008 UTYPE (NIL) -9 NIL NIL NIL) (-1163 2708955 2709131 2709392 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1162 2706806 2707314 2707838 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1161 2696776 2702684 2702726 "UTSCAT" 2703824 UTSCAT (NIL T) -9 NIL 2704581 NIL) (-1160 2694841 2695784 2696771 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1159 2694515 2694564 2694695 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1158 2686289 2692711 2693190 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1157 2680296 2683109 2683152 "URAGG" 2685222 URAGG (NIL T) -9 NIL 2685944 NIL) (-1156 2678311 2679273 2680291 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1155 2674082 2677287 2677749 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1154 2666575 2674006 2674077 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1153 2655314 2662739 2662800 "UPXSCCA" 2663368 UPXSCCA (NIL T T) -9 NIL 2663600 NIL) (-1152 2655035 2655137 2655309 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1151 2643675 2650825 2650867 "UPXSCAT" 2651507 UPXSCAT (NIL T) -9 NIL 2652115 NIL) (-1150 2643188 2643273 2643450 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1149 2634938 2642779 2643041 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1148 2633833 2634103 2634453 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1147 2626624 2630047 2630101 "UPSCAT" 2631170 UPSCAT (NIL T T) -9 NIL 2631934 NIL) (-1146 2626044 2626296 2626619 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1145 2625718 2625767 2625898 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1144 2609939 2618828 2618870 "UPOLYC" 2620948 UPOLYC (NIL T) -9 NIL 2622168 NIL) (-1143 2604002 2606848 2609934 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1142 2603438 2603563 2603726 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1141 2603072 2603159 2603298 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1140 2601885 2602152 2602456 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1139 2601218 2601348 2601533 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1138 2600810 2600885 2601032 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1137 2591638 2600576 2600704 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1136 2591000 2591137 2591342 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1135 2589606 2590452 2590725 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1134 2588835 2589032 2589257 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1133 2575709 2588759 2588830 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1132 2555649 2568822 2568883 "ULSCCAT" 2569514 ULSCCAT (NIL T T) -9 NIL 2569801 NIL) (-1131 2554984 2555270 2555644 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1130 2543444 2550516 2550558 "ULSCAT" 2551411 ULSCAT (NIL T) -9 NIL 2552141 NIL) (-1129 2542957 2543042 2543219 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1128 2525138 2542456 2542697 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1127 2524172 2524865 2524979 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2525090) (-1126 2523205 2523898 2524012 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2524123) (-1125 2522238 2522931 2523045 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2523156) (-1124 2521271 2521964 2522078 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2522189) (-1123 2519366 2520525 2520555 "UFD" 2520766 UFD (NIL) -9 NIL 2520879 NIL) (-1122 2519210 2519267 2519361 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1121 2518462 2518669 2518885 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1120 2516682 2517135 2517600 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1119 2516407 2516647 2516677 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1118 2516340 2516345 2516375 "TYPE" 2516380 TYPE (NIL) -9 NIL NIL NIL) (-1117 2515499 2515719 2515959 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1116 2514677 2515108 2515343 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1115 2512831 2513404 2513943 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1114 2511865 2512101 2512337 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1113 2500231 2504699 2504795 "TSETCAT" 2510010 TSETCAT (NIL T T T T) -9 NIL 2511522 NIL) (-1112 2496568 2498384 2500226 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1111 2491024 2495794 2496076 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1110 2486361 2487374 2488303 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1109 2485858 2485933 2486096 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1108 2483934 2484224 2484579 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1107 2483418 2483567 2483597 "TRIGCAT" 2483810 TRIGCAT (NIL) -9 NIL NIL NIL) (-1106 2483169 2483272 2483413 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1105 2480165 2482278 2482556 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1104 2479271 2479967 2479997 "TRANFUN" 2480032 TRANFUN (NIL) -9 NIL 2480098 NIL) (-1103 2478735 2478986 2479266 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1102 2478572 2478610 2478671 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1101 2478029 2478160 2478311 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1100 2476770 2477427 2477663 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1099 2476582 2476619 2476691 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1098 2474796 2475442 2475871 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1097 2473176 2473513 2473835 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1096 2464246 2470989 2471045 "TBAGG" 2471447 TBAGG (NIL T T) -9 NIL 2471660 NIL) (-1095 2460777 2462469 2464241 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1094 2460254 2460379 2460524 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1093 2459764 2460084 2460174 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1092 2459261 2459378 2459516 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1091 2452348 2459163 2459256 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1090 2448101 2449396 2450641 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1089 2447470 2447629 2447810 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1088 2444624 2445377 2446160 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1087 2444398 2444588 2444619 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1086 2443352 2444037 2444163 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2444349) (-1085 2442616 2443164 2443243 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2443303) (-1084 2439439 2440598 2441298 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1083 2437123 2437805 2438439 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1082 2433201 2434247 2435224 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1081 2430364 2432856 2433085 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1080 2429960 2430047 2430169 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1079 2426584 2428058 2428877 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1078 2419608 2425781 2426074 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1077 2411358 2419199 2419461 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1076 2410637 2410776 2410993 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1075 2410321 2410386 2410497 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1074 2401108 2410033 2410158 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1073 2399844 2400140 2400493 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1072 2399252 2399329 2399519 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1071 2381468 2398751 2398992 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1070 2381068 2381339 2381408 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1069 2380404 2380685 2380825 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1068 2375006 2376265 2377218 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1067 2374538 2374638 2374802 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1066 2369649 2370931 2372078 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1065 2364107 2365578 2366889 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1064 2357022 2359086 2360877 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1063 2349852 2356934 2357017 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1062 2344546 2349566 2349681 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1061 2344133 2344216 2344360 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1060 2343284 2343485 2343720 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1059 2343024 2343082 2343175 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1058 2335762 2341229 2341835 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1057 2334938 2335143 2335374 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1056 2334183 2334554 2334701 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1055 2333683 2333925 2333955 "STEP" 2334049 STEP (NIL) -9 NIL 2334120 NIL) (-1054 2326786 2333601 2333678 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1053 2321013 2325596 2325639 "STAGG" 2326066 STAGG (NIL T) -9 NIL 2326240 NIL) (-1052 2319392 2320140 2321008 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1051 2317549 2319219 2319311 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1050 2316872 2317380 2317410 "SRING" 2317415 SRING (NIL) -9 NIL 2317435 NIL) (-1049 2309493 2315410 2315849 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1048 2303267 2304706 2306210 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1047 2295704 2300615 2300645 "SRAGG" 2301944 SRAGG (NIL) -9 NIL 2302548 NIL) (-1046 2295001 2295321 2295699 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1045 2289120 2294323 2294746 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1044 2283333 2286502 2287224 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1043 2279762 2280581 2281218 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1042 2278737 2279042 2279072 "SPFCAT" 2279516 SPFCAT (NIL) -9 NIL NIL NIL) (-1041 2277674 2277926 2278190 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1040 2268450 2270722 2270752 "SPADXPT" 2275387 SPADXPT (NIL) -9 NIL 2277509 NIL) (-1039 2268252 2268298 2268367 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1038 2265910 2268216 2268247 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1037 2257596 2259685 2259727 "SPACEC" 2264042 SPACEC (NIL T) -9 NIL 2265847 NIL) (-1036 2255425 2257543 2257591 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1035 2254358 2254547 2254836 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1034 2252762 2253095 2253506 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1033 2252027 2252261 2252522 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1032 2248207 2249167 2250162 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1031 2244565 2245264 2245993 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1030 2238363 2243917 2244013 "SNTSCAT" 2244018 SNTSCAT (NIL T T T T) -9 NIL 2244088 NIL) (-1029 2232248 2237004 2237394 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1028 2226084 2232167 2232243 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1027 2224516 2224847 2225245 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1026 2216212 2221126 2221228 "SMATCAT" 2222571 SMATCAT (NIL NIL T T T) -9 NIL 2223119 NIL) (-1025 2214053 2215037 2216207 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1024 2211657 2213271 2213314 "SKAGG" 2213575 SKAGG (NIL T) -9 NIL 2213709 NIL) (-1023 2207519 2211308 2211477 "SINT" NIL SINT (NIL) -8 NIL NIL 2211629) (-1022 2207329 2207373 2207439 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1021 2206404 2206636 2206904 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1020 2205408 2205570 2205846 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1019 2204754 2205094 2205217 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1018 2204100 2204407 2204547 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1017 2202211 2202703 2203209 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1016 2195750 2202130 2202206 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1015 2195265 2195502 2195532 "SGROUP" 2195625 SGROUP (NIL) -9 NIL 2195687 NIL) (-1014 2195155 2195187 2195260 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1013 2192578 2193347 2194069 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1012 2186475 2192029 2192125 "SFRTCAT" 2192130 SFRTCAT (NIL T T T T) -9 NIL 2192168 NIL) (-1011 2180867 2181980 2183107 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1010 2175043 2176204 2177368 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1009 2174015 2174917 2175038 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1008 2169635 2170530 2170625 "SEXCAT" 2173238 SEXCAT (NIL T T T T T) -9 NIL 2173789 NIL) (-1007 2168608 2169562 2169630 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1006 2166999 2167584 2167886 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1005 2166534 2166719 2166749 "SETCAT" 2166866 SETCAT (NIL) -9 NIL 2166950 NIL) (-1004 2166366 2166430 2166529 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1003 2162601 2164832 2164875 "SETAGG" 2165743 SETAGG (NIL T) -9 NIL 2166081 NIL) (-1002 2162207 2162359 2162596 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1001 2159161 2162154 2162202 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1000 2158627 2158937 2159037 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-999 2157761 2158127 2158186 "SEGXCAT" 2158469 SEGXCAT (NIL T T) -9 NIL 2158588 NIL) (-998 2156696 2156964 2157005 "SEGCAT" 2157519 SEGCAT (NIL T) -9 NIL 2157740 NIL) (-997 2156385 2156448 2156557 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-996 2155469 2155931 2156134 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-995 2155050 2155329 2155403 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-994 2154428 2154561 2154760 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-993 2153498 2154245 2154423 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-992 2152753 2153448 2153493 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-991 2144354 2152624 2152748 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-990 2143214 2143504 2143821 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-989 2142520 2142732 2142920 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-988 2141870 2142027 2142203 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-987 2141455 2141686 2141714 "SASTCAT" 2141719 SASTCAT (NIL) -9 NIL 2141732 NIL) (-986 2140922 2141347 2141421 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-985 2140525 2140566 2140737 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-984 2140156 2140197 2140354 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-983 2133301 2140073 2140151 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-982 2131951 2132280 2132676 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-981 2130712 2131073 2131373 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-980 2130336 2130557 2130638 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-979 2127796 2128430 2128883 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-978 2127635 2127668 2127736 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-977 2127126 2127429 2127520 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-976 2122754 2123622 2124533 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-975 2111585 2117139 2117233 "RSETCAT" 2121289 RSETCAT (NIL T T T T) -9 NIL 2122377 NIL) (-974 2110123 2110765 2111580 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-973 2103897 2105342 2106849 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-972 2101791 2102348 2102420 "RRCC" 2103493 RRCC (NIL T T) -9 NIL 2103834 NIL) (-971 2101316 2101515 2101786 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-970 2100786 2101096 2101194 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-969 2073429 2084077 2084141 "RPOLCAT" 2094615 RPOLCAT (NIL T T T) -9 NIL 2097760 NIL) (-968 2067528 2070351 2073424 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-967 2063759 2067276 2067414 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-966 2062087 2062826 2063082 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-965 2057818 2060568 2060596 "RNS" 2060858 RNS (NIL) -9 NIL 2061110 NIL) (-964 2056729 2057214 2057745 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-963 2055851 2056252 2056451 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-962 2055151 2055651 2055679 "RNG" 2055684 RNG (NIL) -9 NIL 2055705 NIL) (-961 2054456 2054930 2054970 "RMODULE" 2054975 RMODULE (NIL T) -9 NIL 2055001 NIL) (-960 2053395 2053501 2053831 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-959 2050273 2052985 2053278 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-958 2042965 2045426 2045538 "RMATCAT" 2048843 RMATCAT (NIL NIL NIL T T T) -9 NIL 2049820 NIL) (-957 2042482 2042661 2042960 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-956 2042062 2042273 2042314 "RLINSET" 2042375 RLINSET (NIL T) -9 NIL 2042419 NIL) (-955 2041707 2041788 2041914 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-954 2040642 2041311 2041339 "RING" 2041394 RING (NIL) -9 NIL 2041485 NIL) (-953 2040487 2040543 2040637 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-952 2039544 2039810 2040065 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-951 2030531 2039172 2039373 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-950 2029799 2030279 2030318 "RGBCSPC" 2030375 RGBCSPC (NIL T) -9 NIL 2030426 NIL) (-949 2028876 2029331 2029370 "RGBCMDL" 2029598 RGBCMDL (NIL T) -9 NIL 2029712 NIL) (-948 2028588 2028657 2028758 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-947 2028351 2028392 2028487 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-946 2026775 2027205 2027585 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-945 2024362 2025030 2025698 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-944 2023912 2024010 2024170 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-943 2023534 2023632 2023673 "RETRACT" 2023804 RETRACT (NIL T) -9 NIL 2023891 NIL) (-942 2023414 2023445 2023529 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-941 2023017 2023288 2023355 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-940 2021561 2022388 2022585 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-939 2021252 2021313 2021409 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-938 2020995 2021036 2021141 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-937 2020730 2020771 2020880 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-936 2015800 2017252 2018467 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-935 2012899 2013657 2014465 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-934 2010868 2011490 2012090 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-933 2003502 2009419 2009855 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-932 2002439 2002875 2003122 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-931 2001924 2002039 2002204 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-930 1997581 2001327 2001548 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-929 1996813 1997012 1997225 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-928 1994103 1994941 1995823 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-927 1990685 1991721 1992780 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-926 1990521 1990574 1990602 "REAL" 1990607 REAL (NIL) -9 NIL 1990642 NIL) (-925 1990012 1990315 1990406 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-924 1989492 1989570 1989775 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-923 1988725 1988917 1989128 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-922 1987613 1987910 1988277 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-921 1985880 1986350 1986883 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-920 1984802 1985079 1985466 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-919 1983629 1983938 1984357 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-918 1977068 1980515 1980543 "RCFIELD" 1981820 RCFIELD (NIL) -9 NIL 1982550 NIL) (-917 1975694 1976304 1976995 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-916 1971906 1973798 1973839 "RCAGG" 1974906 RCAGG (NIL T) -9 NIL 1975367 NIL) (-915 1971633 1971743 1971901 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-914 1971078 1971207 1971368 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-913 1970695 1970774 1970893 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-912 1970110 1970260 1970410 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-911 1969892 1969942 1970013 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-910 1962398 1969010 1969318 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-909 1952164 1962265 1962393 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-908 1951798 1951891 1951919 "RADCAT" 1952076 RADCAT (NIL) -9 NIL NIL NIL) (-907 1951636 1951696 1951793 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-906 1949736 1951467 1951556 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-905 1949417 1949466 1949593 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-904 1941795 1945814 1945854 "QUATCAT" 1946632 QUATCAT (NIL T) -9 NIL 1947396 NIL) (-903 1939053 1940331 1941701 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-902 1934957 1939003 1939048 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-901 1932356 1934023 1934064 "QUAGG" 1934439 QUAGG (NIL T) -9 NIL 1934613 NIL) (-900 1931959 1932230 1932297 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-899 1930997 1931595 1931758 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-898 1930678 1930727 1930854 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-897 1920391 1926498 1926538 "QFCAT" 1927196 QFCAT (NIL T) -9 NIL 1928189 NIL) (-896 1917291 1918726 1920297 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-895 1916837 1916971 1917101 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-894 1911033 1912194 1913356 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-893 1910452 1910632 1910864 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-892 1908274 1908802 1909225 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-891 1907173 1907415 1907732 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-890 1905534 1905732 1906085 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-889 1901290 1902506 1902547 "PTRANFN" 1904431 PTRANFN (NIL T) -9 NIL NIL NIL) (-888 1899937 1900282 1900603 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-887 1899630 1899693 1899800 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-886 1893715 1898438 1898478 "PTCAT" 1898770 PTCAT (NIL T) -9 NIL 1898923 NIL) (-885 1893408 1893449 1893573 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-884 1892287 1892603 1892937 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-883 1881166 1883727 1886036 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-882 1874085 1876981 1877075 "PSETCAT" 1880049 PSETCAT (NIL T T T T) -9 NIL 1880856 NIL) (-881 1872535 1873269 1874080 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-880 1871863 1872055 1872083 "PSCURVE" 1872348 PSCURVE (NIL) -9 NIL 1872512 NIL) (-879 1867553 1869311 1869375 "PSCAT" 1870210 PSCAT (NIL T T T) -9 NIL 1870449 NIL) (-878 1866867 1867149 1867548 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-877 1865297 1866179 1866442 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-876 1864788 1865091 1865182 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-875 1855808 1858230 1860418 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-874 1853563 1855140 1855180 "PRQAGG" 1855363 PRQAGG (NIL T) -9 NIL 1855464 NIL) (-873 1852748 1853194 1853222 "PROPLOG" 1853361 PROPLOG (NIL) -9 NIL 1853475 NIL) (-872 1852423 1852486 1852609 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-871 1851859 1851998 1852170 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-870 1850107 1850870 1851167 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-869 1849660 1849791 1849919 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-868 1844316 1848600 1849420 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-867 1844145 1844183 1844242 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-866 1843584 1843724 1843875 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-865 1842052 1842471 1842937 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-864 1841772 1841832 1841860 "PRIMCAT" 1841983 PRIMCAT (NIL) -9 NIL NIL NIL) (-863 1840943 1841139 1841367 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-862 1836821 1840893 1840938 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-861 1836520 1836582 1836693 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-860 1833720 1836169 1836402 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-859 1833177 1833332 1833360 "PPCURVE" 1833563 PPCURVE (NIL) -9 NIL 1833697 NIL) (-858 1832790 1833035 1833118 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-857 1830546 1830967 1831559 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-856 1829989 1830053 1830286 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-855 1826709 1827195 1827806 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-854 1812391 1818455 1818519 "POLYCAT" 1822004 POLYCAT (NIL T T T) -9 NIL 1823881 NIL) (-853 1807901 1810048 1812386 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-852 1807558 1807632 1807751 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-851 1807251 1807314 1807421 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-850 1800678 1806984 1807143 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-849 1799565 1799828 1800104 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-848 1798169 1798482 1798812 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-847 1793331 1798119 1798164 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-846 1791819 1792230 1792605 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-845 1790576 1790885 1791281 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-844 1790247 1790331 1790448 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-843 1789826 1789901 1790075 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-842 1789312 1789408 1789568 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-841 1788784 1788904 1789058 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-840 1787679 1787897 1788274 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-839 1787290 1787375 1787527 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-838 1786841 1786923 1787104 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-837 1786533 1786614 1786727 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-836 1786046 1786121 1786329 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-835 1785394 1785522 1785724 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-834 1784756 1784890 1785053 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-833 1784060 1784242 1784423 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-832 1783786 1783859 1783952 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-831 1780397 1781567 1782467 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-830 1779490 1779688 1779920 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-829 1775113 1776474 1777595 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-828 1755034 1759921 1764768 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-827 1754774 1754827 1754930 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-826 1754215 1754349 1754529 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-825 1752312 1753471 1753499 "PID" 1753696 PID (NIL) -9 NIL 1753823 NIL) (-824 1752100 1752143 1752218 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-823 1751287 1751947 1752034 "PI" NIL PI (NIL) -8 NIL NIL 1752074) (-822 1750739 1750890 1751066 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-821 1747067 1748025 1748930 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-820 1745431 1745720 1746086 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-819 1744873 1744988 1745149 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-818 1741478 1743742 1744095 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-817 1740084 1740364 1740689 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-816 1738849 1739103 1739451 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-815 1737559 1737786 1738138 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-814 1734657 1736155 1736183 "PFECAT" 1736776 PFECAT (NIL) -9 NIL 1737153 NIL) (-813 1734280 1734445 1734652 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-812 1733104 1733386 1733687 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-811 1731286 1731673 1732103 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-810 1727320 1731212 1731281 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-809 1723223 1724370 1725237 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-808 1721167 1722256 1722297 "PERMCAT" 1722696 PERMCAT (NIL T) -9 NIL 1722993 NIL) (-807 1720863 1720910 1721033 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-806 1717312 1718993 1719638 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-805 1714777 1717067 1717188 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-804 1713658 1713921 1713962 "PDSPC" 1714495 PDSPC (NIL T) -9 NIL 1714740 NIL) (-803 1713025 1713291 1713653 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-802 1711748 1712679 1712720 "PDRING" 1712725 PDRING (NIL T) -9 NIL 1712752 NIL) (-801 1710501 1711259 1711312 "PDMOD" 1711317 PDMOD (NIL T T) -9 NIL 1711420 NIL) (-800 1709594 1709806 1710055 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-799 1709211 1709278 1709332 "PDDOM" 1709497 PDDOM (NIL T T) -9 NIL 1709577 NIL) (-798 1709063 1709099 1709206 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-797 1708849 1708888 1708977 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-796 1707171 1707924 1708219 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-795 1706860 1706923 1707032 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-794 1704998 1705428 1705879 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-793 1698626 1700455 1701739 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-792 1698257 1698330 1698462 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-791 1695959 1696639 1697120 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-790 1694163 1694591 1694994 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-789 1693621 1693869 1693910 "PATMAB" 1694017 PATMAB (NIL T) -9 NIL 1694100 NIL) (-788 1692268 1692672 1692929 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-787 1691806 1691937 1691978 "PATAB" 1691983 PATAB (NIL T) -9 NIL 1692155 NIL) (-786 1690349 1690786 1691209 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-785 1690027 1690102 1690204 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-784 1689716 1689779 1689888 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-783 1689521 1689567 1689634 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-782 1689199 1689274 1689376 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-781 1688888 1688951 1689060 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-780 1688579 1688649 1688746 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-779 1688268 1688331 1688440 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-778 1687429 1687808 1687987 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-777 1687036 1687134 1687253 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-776 1686004 1686429 1686648 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-775 1684669 1685323 1685683 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-774 1677823 1684073 1684267 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-773 1670308 1677321 1677505 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-772 1667121 1668974 1669014 "PADICCT" 1669595 PADICCT (NIL NIL) -9 NIL 1669877 NIL) (-771 1665175 1667071 1667116 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-770 1664337 1664547 1664813 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-769 1663679 1663822 1664026 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-768 1662124 1663087 1663365 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-767 1661649 1661907 1662004 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-766 1660708 1661386 1661558 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-765 1651130 1653999 1656198 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-764 1650524 1650836 1650962 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-763 1649807 1650000 1650028 "OUTBCON" 1650344 OUTBCON (NIL) -9 NIL 1650508 NIL) (-762 1649515 1649645 1649802 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-761 1648896 1649041 1649202 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-760 1648268 1648694 1648783 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-759 1647695 1648110 1648138 "OSGROUP" 1648143 OSGROUP (NIL) -9 NIL 1648165 NIL) (-758 1646659 1646920 1647205 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-757 1643992 1646534 1646654 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-756 1641197 1643743 1643869 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-755 1639215 1639743 1640303 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-754 1632645 1635123 1635163 "OREPCAT" 1637484 OREPCAT (NIL T) -9 NIL 1638586 NIL) (-753 1630671 1631605 1632640 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-752 1629880 1630151 1630179 "ORDTYPE" 1630484 ORDTYPE (NIL) -9 NIL 1630642 NIL) (-751 1629414 1629625 1629875 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-750 1628876 1629252 1629409 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-749 1628382 1628745 1628773 "ORDSET" 1628778 ORDSET (NIL) -9 NIL 1628800 NIL) (-748 1627048 1628008 1628036 "ORDRING" 1628041 ORDRING (NIL) -9 NIL 1628069 NIL) (-747 1626308 1626865 1626893 "ORDMON" 1626898 ORDMON (NIL) -9 NIL 1626919 NIL) (-746 1625612 1625774 1625966 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-745 1624835 1625343 1625371 "ORDFIN" 1625436 ORDFIN (NIL) -9 NIL 1625510 NIL) (-744 1624229 1624368 1624554 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-743 1621003 1623197 1623603 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-742 1620410 1620765 1620870 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-741 1620218 1620263 1620329 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-740 1619531 1619807 1619848 "OPERCAT" 1620059 OPERCAT (NIL T) -9 NIL 1620155 NIL) (-739 1619343 1619410 1619526 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-738 1616773 1618145 1618641 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-737 1616194 1616321 1616495 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-736 1613194 1615333 1615699 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-735 1609837 1612636 1612676 "OMSAGG" 1612737 OMSAGG (NIL T) -9 NIL 1612801 NIL) (-734 1608313 1609508 1609676 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-733 1606610 1607789 1607817 "OINTDOM" 1607822 OINTDOM (NIL) -9 NIL 1607843 NIL) (-732 1604040 1605612 1605941 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-731 1603294 1603990 1604035 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-730 1600560 1603135 1603289 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-729 1592161 1600431 1600555 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-728 1585671 1592052 1592156 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-727 1584643 1584880 1585153 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-726 1582277 1582947 1583651 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-725 1578054 1579014 1580037 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-724 1577562 1577650 1577844 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-723 1575011 1575593 1576266 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-722 1572406 1572914 1573510 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-721 1569403 1569942 1570588 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-720 1568758 1568866 1569124 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-719 1567916 1568041 1568262 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-718 1564200 1564996 1565909 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-717 1563640 1563735 1563957 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-716 1563321 1563370 1563497 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-715 1559988 1563120 1563239 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-714 1559191 1559782 1559810 "OCAMON" 1559815 OCAMON (NIL) -9 NIL 1559836 NIL) (-713 1553494 1556243 1556283 "OC" 1557378 OC (NIL T) -9 NIL 1558234 NIL) (-712 1551502 1552426 1553400 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-711 1550930 1551348 1551376 "OASGP" 1551381 OASGP (NIL) -9 NIL 1551401 NIL) (-710 1550036 1550654 1550682 "OAMONS" 1550722 OAMONS (NIL) -9 NIL 1550765 NIL) (-709 1549224 1549774 1549802 "OAMON" 1549859 OAMON (NIL) -9 NIL 1549910 NIL) (-708 1549120 1549152 1549219 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-707 1547914 1548657 1548685 "OAGROUP" 1548831 OAGROUP (NIL) -9 NIL 1548923 NIL) (-706 1547705 1547792 1547909 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-705 1547445 1547501 1547589 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-704 1542507 1544070 1545597 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-703 1539202 1540236 1541271 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-702 1538312 1538545 1538763 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-701 1527170 1530201 1532649 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-700 1521069 1526623 1526717 "NTSCAT" 1526722 NTSCAT (NIL T T T T) -9 NIL 1526760 NIL) (-699 1520410 1520589 1520782 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-698 1520103 1520166 1520273 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-697 1507834 1517723 1518533 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-696 1496907 1507699 1507829 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-695 1495627 1495952 1496309 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-694 1494463 1494727 1495085 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-693 1493630 1493763 1493979 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-692 1491948 1492267 1492673 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-691 1491661 1491695 1491819 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-690 1491480 1491515 1491584 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-689 1491256 1491446 1491475 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-688 1490820 1490887 1491064 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-687 1489138 1490183 1490438 "NNI" NIL NNI (NIL) -8 NIL NIL 1490785) (-686 1487866 1488203 1488567 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-685 1486843 1487095 1487397 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-684 1485933 1486495 1486536 "NETCLT" 1486707 NETCLT (NIL T) -9 NIL 1486788 NIL) (-683 1484837 1485104 1485385 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-682 1484636 1484679 1484754 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-681 1483167 1483555 1483975 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-680 1481843 1482778 1482806 "NASRING" 1482916 NASRING (NIL) -9 NIL 1482996 NIL) (-679 1481688 1481744 1481838 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-678 1480660 1481307 1481335 "NARNG" 1481452 NARNG (NIL) -9 NIL 1481543 NIL) (-677 1480436 1480521 1480655 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-676 1479245 1479968 1480008 "NAALG" 1480087 NAALG (NIL T) -9 NIL 1480148 NIL) (-675 1479115 1479150 1479240 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-674 1474094 1475279 1476465 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-673 1473489 1473576 1473760 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-672 1465590 1470019 1470071 "MTSCAT" 1471131 MTSCAT (NIL T T) -9 NIL 1471645 NIL) (-671 1465356 1465416 1465508 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-670 1465182 1465221 1465281 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-669 1462056 1464745 1464786 "MSETAGG" 1464791 MSETAGG (NIL T) -9 NIL 1464825 NIL) (-668 1458193 1461102 1461420 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-667 1454531 1456290 1457030 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-666 1454168 1454241 1454370 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-665 1453821 1453862 1454006 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-664 1451686 1452023 1452454 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-663 1445148 1451585 1451681 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-662 1444673 1444714 1444922 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-661 1444232 1444281 1444464 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-660 1443506 1443599 1443818 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-659 1442123 1442484 1442874 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-658 1441275 1441654 1441682 "MONOID" 1441900 MONOID (NIL) -9 NIL 1442046 NIL) (-657 1440942 1441090 1441270 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-656 1429968 1436776 1436835 "MONOGEN" 1437509 MONOGEN (NIL T T) -9 NIL 1437965 NIL) (-655 1427980 1428866 1429849 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-654 1426704 1427248 1427276 "MONADWU" 1427667 MONADWU (NIL) -9 NIL 1427904 NIL) (-653 1426252 1426452 1426699 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-652 1425541 1425842 1425870 "MONAD" 1426077 MONAD (NIL) -9 NIL 1426189 NIL) (-651 1425308 1425404 1425536 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-650 1423698 1424468 1424747 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-649 1422875 1423371 1423411 "MODULE" 1423416 MODULE (NIL T) -9 NIL 1423454 NIL) (-648 1422554 1422680 1422870 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-647 1420329 1421151 1421465 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-646 1417572 1418925 1419438 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-645 1416206 1416780 1417056 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-644 1405489 1414871 1415284 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-643 1402509 1404489 1404758 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-642 1401593 1401960 1402150 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-641 1401162 1401211 1401390 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-640 1399075 1400009 1400049 "MLO" 1400466 MLO (NIL T) -9 NIL 1400706 NIL) (-639 1396956 1397483 1398078 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-638 1396424 1396520 1396674 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-637 1396094 1396170 1396293 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-636 1395306 1395492 1395720 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-635 1394799 1394915 1395071 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-634 1394171 1394285 1394470 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-633 1393198 1393471 1393748 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-632 1392631 1392719 1392890 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-631 1389812 1390682 1391552 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-630 1388479 1388827 1389180 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-629 1385148 1387615 1387656 "MDAGG" 1387913 MDAGG (NIL T) -9 NIL 1388058 NIL) (-628 1384422 1384586 1384786 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-627 1383500 1383786 1384016 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-626 1381597 1382174 1382735 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-625 1377367 1381187 1381434 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-624 1373714 1374485 1375219 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-623 1372467 1372636 1372965 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-622 1361992 1365581 1365657 "MATCAT" 1370645 MATCAT (NIL T T T) -9 NIL 1372113 NIL) (-621 1359273 1360579 1361987 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-620 1357674 1358034 1358418 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-619 1356807 1357004 1357226 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-618 1355558 1355884 1356211 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-617 1354720 1355122 1355298 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-616 1354389 1354453 1354576 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-615 1354037 1354110 1354224 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-614 1353572 1353687 1353829 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-613 1351781 1352549 1352850 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-612 1351275 1351577 1351667 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-611 1344796 1349602 1349643 "LZSTAGG" 1350420 LZSTAGG (NIL T) -9 NIL 1350710 NIL) (-610 1341915 1343349 1344791 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-609 1339302 1340268 1340751 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-608 1338883 1339162 1339236 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-607 1331111 1338744 1338878 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-606 1330474 1330619 1330847 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-605 1327958 1328656 1329368 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-604 1326070 1326393 1326841 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-603 1319251 1325169 1325210 "LSAGG" 1325272 LSAGG (NIL T) -9 NIL 1325350 NIL) (-602 1316945 1318044 1319246 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-601 1314457 1316294 1316543 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-600 1314124 1314215 1314338 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-599 1313807 1313886 1313914 "LOGIC" 1314025 LOGIC (NIL) -9 NIL 1314107 NIL) (-598 1313702 1313731 1313802 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-597 1313021 1313179 1313372 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-596 1311806 1312055 1312406 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-595 1307718 1310453 1310493 "LODOCAT" 1310925 LODOCAT (NIL T) -9 NIL 1311136 NIL) (-594 1307511 1307587 1307713 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-593 1304575 1307388 1307506 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-592 1301737 1304525 1304570 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-591 1298888 1301667 1301732 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-590 1297941 1298116 1298418 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-589 1296105 1297203 1297456 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-588 1291212 1294276 1294317 "LNAGG" 1295179 LNAGG (NIL T) -9 NIL 1295614 NIL) (-587 1290599 1290866 1291207 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-586 1287171 1288112 1288749 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-585 1286476 1286950 1286990 "LMODULE" 1286995 LMODULE (NIL T) -9 NIL 1287021 NIL) (-584 1283655 1286213 1286335 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-583 1283235 1283446 1283487 "LLINSET" 1283548 LLINSET (NIL T) -9 NIL 1283592 NIL) (-582 1282911 1283171 1283230 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-581 1282510 1282590 1282729 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-580 1280961 1281309 1281708 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-579 1280132 1280328 1280556 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-578 1273179 1279388 1279642 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-577 1272768 1273001 1273042 "LINSET" 1273047 LINSET (NIL T) -9 NIL 1273080 NIL) (-576 1271701 1272391 1272558 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-575 1270010 1270734 1270774 "LINEXP" 1271260 LINEXP (NIL T) -9 NIL 1271533 NIL) (-574 1268719 1269619 1269800 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-573 1267546 1267818 1268120 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-572 1266759 1267348 1267458 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-571 1264309 1265031 1265781 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-570 1262939 1263236 1263627 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-569 1261775 1262346 1262386 "LIECAT" 1262526 LIECAT (NIL T) -9 NIL 1262677 NIL) (-568 1261649 1261682 1261770 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-567 1255937 1261339 1261567 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-566 1248286 1255613 1255769 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-565 1244738 1245687 1246622 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-564 1243363 1244270 1244298 "LFCAT" 1244505 LFCAT (NIL) -9 NIL 1244644 NIL) (-563 1241605 1241934 1242278 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-562 1239122 1239787 1240468 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-561 1236134 1237112 1237615 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-560 1235626 1235928 1236019 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-559 1234333 1234657 1235057 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-558 1233599 1233684 1233910 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-557 1228666 1232167 1232703 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-556 1228291 1228341 1228501 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-555 1227150 1227861 1227901 "LALG" 1227962 LALG (NIL T) -9 NIL 1228020 NIL) (-554 1226933 1227010 1227145 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-553 1224850 1226201 1226452 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-552 1224679 1224709 1224750 "KVTFROM" 1224812 KVTFROM (NIL T) -9 NIL NIL NIL) (-551 1223613 1224217 1224399 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-550 1223442 1223472 1223513 "KRCFROM" 1223575 KRCFROM (NIL T) -9 NIL NIL NIL) (-549 1222544 1222741 1223036 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-548 1222373 1222403 1222444 "KONVERT" 1222506 KONVERT (NIL T) -9 NIL NIL NIL) (-547 1222202 1222232 1222273 "KOERCE" 1222335 KOERCE (NIL T) -9 NIL NIL NIL) (-546 1221772 1221865 1221997 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-545 1219825 1220719 1221091 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-544 1213014 1218029 1218083 "KDAGG" 1218459 KDAGG (NIL T T) -9 NIL 1218666 NIL) (-543 1212662 1212804 1213009 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-542 1205492 1212443 1212600 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-541 1205145 1205425 1205487 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-540 1204113 1204614 1204863 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-539 1203237 1203688 1203893 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-538 1202103 1202594 1202893 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-537 1201383 1201784 1201945 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-536 1201096 1201330 1201378 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-535 1195383 1200786 1201014 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-534 1194801 1195134 1195254 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-533 1190975 1192990 1193044 "IXAGG" 1193971 IXAGG (NIL T T) -9 NIL 1194428 NIL) (-532 1190181 1190552 1190970 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-531 1185435 1190117 1190176 "IVECTOR" NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-530 1184402 1184677 1184940 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-529 1183064 1183271 1183564 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-528 1182015 1182237 1182520 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-527 1181690 1181753 1181876 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-526 1180952 1181324 1181498 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-525 1178992 1180228 1180502 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-524 1168604 1174309 1175466 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-523 1167852 1168003 1168238 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-522 1167344 1167646 1167737 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-521 1166637 1166728 1166941 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-520 1165769 1165994 1166234 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-519 1164182 1164563 1164991 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-518 1163967 1164011 1164087 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-517 1162817 1163114 1163409 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-516 1162090 1162441 1162592 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-515 1161293 1161424 1161637 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-514 1159448 1159945 1160489 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-513 1156561 1157797 1158486 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-512 1156386 1156426 1156486 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-511 1152448 1156312 1156381 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-510 1150515 1152387 1152443 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-509 1149889 1150187 1150316 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-508 1149342 1149630 1149762 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-507 1148426 1149048 1149174 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-506 1147839 1148330 1148358 "IOBCON" 1148363 IOBCON (NIL) -9 NIL 1148384 NIL) (-505 1147410 1147474 1147656 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-504 1139454 1141825 1144150 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-503 1136565 1137348 1138212 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-502 1136242 1136339 1136456 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-501 1133748 1136178 1136237 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-500 1131860 1132389 1132956 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-499 1131362 1131476 1131616 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-498 1129746 1130152 1130614 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-497 1127525 1128119 1128730 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-496 1124898 1125508 1126228 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-495 1124302 1124460 1124668 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-494 1123821 1123907 1124095 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-493 1122026 1122547 1123004 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-492 1115108 1116761 1118490 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-491 1114474 1114636 1114809 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-490 1112347 1112811 1113355 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-489 1110561 1111449 1111477 "INTDOM" 1111776 INTDOM (NIL) -9 NIL 1111981 NIL) (-488 1110114 1110316 1110556 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-487 1106012 1108419 1108473 "INTCAT" 1109269 INTCAT (NIL T) -9 NIL 1109585 NIL) (-486 1105577 1105697 1105824 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-485 1104417 1104589 1104895 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-484 1103990 1104086 1104243 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-483 1097030 1103845 1103985 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-482 1096328 1096883 1096948 "INT8" NIL INT8 (NIL) -8 NIL NIL 1096982) (-481 1095625 1096180 1096245 "INT64" NIL INT64 (NIL) -8 NIL NIL 1096279) (-480 1094922 1095477 1095542 "INT32" NIL INT32 (NIL) -8 NIL NIL 1095576) (-479 1094219 1094774 1094839 "INT16" NIL INT16 (NIL) -8 NIL NIL 1094873) (-478 1090744 1094138 1094214 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-477 1084892 1088310 1088338 "INS" 1089268 INS (NIL) -9 NIL 1089927 NIL) (-476 1082970 1083884 1084819 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-475 1082029 1082252 1082527 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-474 1081243 1081384 1081581 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-473 1080233 1080374 1080611 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-472 1079385 1079549 1079809 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-471 1078665 1078780 1078968 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-470 1077404 1077673 1077997 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-469 1076684 1076825 1077008 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-468 1076347 1076419 1076517 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-467 1073433 1074919 1075434 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-466 1073032 1073139 1073253 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-465 1072191 1072833 1072934 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-464 1071041 1071309 1071630 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-463 1070113 1070971 1071036 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-462 1069738 1069818 1069935 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-461 1068653 1069197 1069401 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-460 1064748 1065803 1066746 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-459 1063605 1063927 1063955 "INBCON" 1064467 INBCON (NIL) -9 NIL 1064732 NIL) (-458 1063059 1063324 1063600 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-457 1062553 1062855 1062945 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-456 1062010 1062319 1062424 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-455 1058110 1061902 1062005 "IMATRIX" NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-454 1056950 1057089 1057404 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-453 1055374 1055641 1055978 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-452 1053190 1055256 1055369 "IIARRAY2" NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-451 1048097 1053121 1053185 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-450 1047478 1047811 1047926 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-449 1042285 1046916 1047102 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-448 1041347 1042207 1042280 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-447 1040919 1040996 1041050 "IEVALAB" 1041257 IEVALAB (NIL T T) -9 NIL NIL NIL) (-446 1040674 1040754 1040914 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-445 1039747 1040594 1040669 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-444 1038889 1039667 1039742 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-443 1038292 1038823 1038884 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-442 1036784 1037308 1037359 "IDPC" 1037865 IDPC (NIL T T) -9 NIL 1038145 NIL) (-441 1036150 1036706 1036779 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-440 1035399 1036072 1036145 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-439 1035092 1035305 1035365 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-438 1032163 1033044 1033936 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-437 1025789 1027066 1028105 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-436 1025051 1025181 1025380 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-435 1024225 1024723 1024861 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-434 1022614 1022945 1023336 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-433 1018047 1022316 1022428 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-432 1015305 1015929 1016624 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-431 1013531 1014011 1014544 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-430 1011295 1013423 1013526 "IARRAY2" NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-429 1007164 1011233 1011290 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-428 1000807 1006128 1006596 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-427 1000375 1000438 1000611 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-426 999867 1000016 1000044 "HYPCAT" 1000251 HYPCAT (NIL) -9 NIL NIL NIL) (-425 999523 999676 999862 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-424 999136 999381 999464 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-423 998969 999018 999059 "HOMOTOP" 999064 HOMOTOP (NIL T) -9 NIL 999097 NIL) (-422 995549 996923 996964 "HOAGG" 997939 HOAGG (NIL T) -9 NIL 998660 NIL) (-421 994555 995025 995544 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-420 987819 994280 994428 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-419 986754 987012 987275 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-418 985721 986619 986749 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-417 983915 985554 985642 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-416 983230 983582 983715 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-415 976783 983163 983225 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-414 969986 976519 976670 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-413 969439 969596 969759 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-412 962522 969330 969434 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-411 962014 962316 962407 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-410 959628 961801 961980 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-409 955021 959511 959623 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-408 948107 954918 955016 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-407 940108 947476 947731 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-406 939144 939653 939681 "GROUP" 939884 GROUP (NIL) -9 NIL 940018 NIL) (-405 938687 938888 939139 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-404 937359 937698 938085 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-403 936191 936548 936599 "GRMOD" 937128 GRMOD (NIL T T) -9 NIL 937296 NIL) (-402 936010 936058 936186 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-401 932141 933349 934346 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-400 930863 931187 931502 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-399 930416 930544 930685 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-398 929499 929998 930049 "GRALG" 930202 GRALG (NIL T T) -9 NIL 930294 NIL) (-397 929234 929331 929494 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-396 925951 928916 929092 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-395 925364 925427 925684 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-394 921250 922114 922639 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-393 920425 920627 920865 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-392 915428 916355 917374 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-391 915176 915233 915322 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-390 914658 914747 914912 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-389 914167 914208 914421 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-388 912968 913251 913555 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-387 906308 912658 912819 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-386 896121 901098 902202 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-385 894261 895302 895330 "GCDDOM" 895585 GCDDOM (NIL) -9 NIL 895742 NIL) (-384 893884 894041 894256 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-383 884677 887147 889535 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-382 882812 883137 883555 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-381 881753 881942 882209 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-380 880624 880831 881135 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-379 880087 880229 880377 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-378 878699 879047 879360 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-377 877244 877565 877887 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-376 874870 875226 875631 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-375 868122 869783 871361 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-374 867774 867995 868063 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-373 867398 867619 867700 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-372 865495 866178 866638 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-371 864088 864395 864787 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-370 862743 863102 863426 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-369 862046 862170 862357 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-368 861020 861286 861633 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-367 858678 859208 859690 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-366 858261 858321 858490 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-365 856625 857475 857778 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-364 855773 855907 856130 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-363 854944 855105 855332 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-362 850939 853890 853931 "FSAGG" 854301 FSAGG (NIL T) -9 NIL 854560 NIL) (-361 849293 850052 850844 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-360 847249 847545 848089 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-359 846296 846478 846778 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-358 845977 846026 846153 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-357 826357 835759 835800 "FS" 839670 FS (NIL T) -9 NIL 841948 NIL) (-356 818596 822087 826060 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-355 818130 818257 818409 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-354 812696 815823 815863 "FRNAALG" 817183 FRNAALG (NIL T) -9 NIL 817781 NIL) (-353 809437 810688 811946 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-352 809118 809167 809294 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-351 807605 808162 808456 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-350 806891 806984 807271 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-349 804725 805491 805807 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-348 803834 804277 804318 "FRETRCT" 804323 FRETRCT (NIL T) -9 NIL 804494 NIL) (-347 803207 803485 803829 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-346 800039 801497 801556 "FRAMALG" 802438 FRAMALG (NIL T T) -9 NIL 802730 NIL) (-345 798635 799186 799816 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-344 798328 798391 798498 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-343 792033 798133 798323 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-342 791726 791789 791896 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-341 784097 788605 789933 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-340 777963 781404 781432 "FPS" 782551 FPS (NIL) -9 NIL 783107 NIL) (-339 777520 777653 777817 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-338 774419 776399 776427 "FPC" 776652 FPC (NIL) -9 NIL 776794 NIL) (-337 774265 774317 774414 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-336 773054 773763 773804 "FPATMAB" 773809 FPATMAB (NIL T) -9 NIL 773961 NIL) (-335 771484 772080 772427 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-334 771059 771117 771290 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-333 769594 770457 770631 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-332 768221 768726 768754 "FNCAT" 769211 FNCAT (NIL) -9 NIL 769468 NIL) (-331 767678 768188 768216 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-330 766265 767627 767673 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-329 762865 764223 764264 "FMONCAT" 765481 FMONCAT (NIL T) -9 NIL 766085 NIL) (-328 759766 760813 760866 "FMCAT" 762047 FMCAT (NIL T T) -9 NIL 762539 NIL) (-327 758498 759589 759688 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-326 757626 758346 758493 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-325 755813 756265 756759 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-324 753748 754284 754862 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-323 747198 752085 752699 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-322 745722 746792 746832 "FLINEXP" 746837 FLINEXP (NIL T) -9 NIL 746930 NIL) (-321 745131 745390 745717 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-320 744346 744505 744726 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-319 741272 742320 742372 "FLALG" 743599 FLALG (NIL T T) -9 NIL 744066 NIL) (-318 740443 740604 740831 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-317 733864 737874 737915 "FLAGG" 739170 FLAGG (NIL T) -9 NIL 739815 NIL) (-316 732972 733376 733859 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-315 729621 730823 730882 "FINRALG" 732010 FINRALG (NIL T T) -9 NIL 732518 NIL) (-314 729012 729277 729616 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-313 728322 728618 728646 "FINITE" 728842 FINITE (NIL) -9 NIL 728949 NIL) (-312 720326 722886 722926 "FINAALG" 726578 FINAALG (NIL T) -9 NIL 728016 NIL) (-311 716593 717838 718961 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-310 715157 715576 715630 "FILECAT" 716314 FILECAT (NIL T T) -9 NIL 716530 NIL) (-309 714508 714982 715085 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-308 711844 713660 713688 "FIELD" 713728 FIELD (NIL) -9 NIL 713808 NIL) (-307 710869 711330 711839 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-306 708873 709819 710165 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-305 708116 708297 708516 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-304 703450 708054 708111 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-303 703112 703179 703314 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-302 702652 702694 702903 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-301 699332 700209 700986 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-300 694680 699264 699327 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-299 689423 694169 694359 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-298 683968 688704 688962 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-297 678239 683419 683630 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-296 677262 677472 677787 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-295 672791 675433 675461 "FFIELDC" 676080 FFIELDC (NIL) -9 NIL 676455 NIL) (-294 671868 672306 672786 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-293 671483 671541 671665 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-292 669627 670150 670667 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-291 664785 669426 669527 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-290 659947 664574 664681 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-289 654677 659738 659846 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-288 654131 654180 654415 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-287 632794 643766 643852 "FFCAT" 649002 FFCAT (NIL T T T) -9 NIL 650438 NIL) (-286 629034 630260 631566 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-285 623941 628965 629029 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-284 622869 623338 623379 "FEVALAB" 623463 FEVALAB (NIL T) -9 NIL 623724 NIL) (-283 622274 622526 622864 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-282 619144 620024 620139 "FDIVCAT" 621706 FDIVCAT (NIL T T T T) -9 NIL 622142 NIL) (-281 618938 618970 619139 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-280 618245 618338 618615 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-279 616763 617729 617932 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-278 615856 616240 616442 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-277 614978 615467 615607 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-276 606653 611234 611274 "FAXF" 613075 FAXF (NIL T) -9 NIL 613765 NIL) (-275 604569 605373 606188 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-274 599433 604091 604265 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-273 593982 596340 596392 "FAMR" 597403 FAMR (NIL T T) -9 NIL 597862 NIL) (-272 593181 593546 593977 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-271 592234 593123 593176 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-270 589871 590719 590772 "FAMONC" 591713 FAMONC (NIL T T) -9 NIL 592098 NIL) (-269 588459 589729 589866 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-268 586539 586900 587302 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-267 585816 586013 586235 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-266 577740 585263 585462 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-265 575771 576337 576919 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-264 572673 573315 574035 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-263 567830 568537 569342 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-262 567519 567582 567691 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-261 552472 566568 566994 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-260 543063 551792 552080 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-259 542558 542859 542949 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-258 542334 542524 542553 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-257 542023 542091 542204 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-256 541540 541682 541723 "EVALAB" 541893 EVALAB (NIL T) -9 NIL 541997 NIL) (-255 541168 541314 541535 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-254 538299 539832 539860 "EUCDOM" 540414 EUCDOM (NIL) -9 NIL 540763 NIL) (-253 537226 537719 538294 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-252 536951 537007 537107 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-251 536639 536703 536812 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-250 530422 532322 532350 "ES" 535092 ES (NIL) -9 NIL 536476 NIL) (-249 526937 528469 530261 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-248 526285 526438 526614 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-247 519374 526189 526280 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-246 519063 519126 519235 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-245 512789 515815 517248 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-244 509092 510188 511281 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-243 507921 508271 508576 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-242 506894 507563 507591 "ENTIRER" 507596 ENTIRER (NIL) -9 NIL 507640 NIL) (-241 503591 505324 505673 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-240 502695 502906 502960 "ELTAGG" 503340 ELTAGG (NIL T T) -9 NIL 503551 NIL) (-239 502475 502549 502690 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-238 502233 502268 502322 "ELTAB" 502406 ELTAB (NIL T T) -9 NIL 502458 NIL) (-237 501484 501654 501853 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-236 501208 501282 501310 "ELEMFUN" 501415 ELEMFUN (NIL) -9 NIL NIL NIL) (-235 501108 501135 501203 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-234 495666 499161 499202 "ELAGG" 500139 ELAGG (NIL T) -9 NIL 500599 NIL) (-233 494464 495002 495661 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-232 493882 494049 494205 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-231 492795 493114 493393 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-230 486188 488186 489013 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-229 480167 482163 482973 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-228 477981 478387 478858 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-227 468981 470894 472435 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-226 468095 468595 468744 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-225 466805 467479 467519 "DVARCAT" 467802 DVARCAT (NIL T) -9 NIL 467942 NIL) (-224 466224 466488 466800 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-223 458355 466092 466219 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-222 456705 457496 457537 "DSEXT" 457900 DSEXT (NIL T) -9 NIL 458194 NIL) (-221 455510 456034 456700 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-220 455234 455299 455397 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-219 451390 452604 453733 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-218 447048 448399 449459 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-217 445723 446084 446470 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-216 445415 445472 445588 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-215 444400 444694 444980 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-214 443985 444060 444210 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-213 436494 438570 440649 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-212 432075 433070 434125 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-211 428682 430751 430792 "DQAGG" 431421 DQAGG (NIL T) -9 NIL 431694 NIL) (-210 415316 422891 422973 "DPOLCAT" 424810 DPOLCAT (NIL T T T T) -9 NIL 425353 NIL) (-209 411724 413372 415311 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-208 404811 411622 411719 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-207 397807 404640 404806 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-206 397401 397660 397749 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-205 396815 397263 397343 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-204 396101 396426 396577 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-203 389304 395837 395988 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-202 387096 388382 388422 "DMEXT" 388427 DMEXT (NIL T) -9 NIL 388602 NIL) (-201 386752 386814 386958 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-200 380077 386237 386427 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-199 376755 378912 378953 "DLAGG" 379503 DLAGG (NIL T) -9 NIL 379732 NIL) (-198 375194 376003 376031 "DIVRING" 376123 DIVRING (NIL) -9 NIL 376206 NIL) (-197 374645 374889 375189 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-196 373073 373490 373896 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-195 372110 372331 372596 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-194 365683 372042 372105 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-193 354142 360503 360556 "DIRPCAT" 360812 DIRPCAT (NIL NIL T) -9 NIL 361685 NIL) (-192 352156 352924 353805 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-191 351603 351769 351955 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-190 348161 350501 350542 "DIOPS" 350974 DIOPS (NIL T) -9 NIL 351200 NIL) (-189 347821 347965 348156 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-188 346737 347504 347532 "DIFRING" 347537 DIFRING (NIL) -9 NIL 347558 NIL) (-187 346385 346483 346511 "DIFFSPC" 346630 DIFFSPC (NIL) -9 NIL 346705 NIL) (-186 346126 346228 346380 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-185 345072 345666 345706 "DIFFMOD" 345711 DIFFMOD (NIL T) -9 NIL 345808 NIL) (-184 344768 344825 344866 "DIFFDOM" 344987 DIFFDOM (NIL T) -9 NIL 345055 NIL) (-183 344649 344679 344763 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-182 342410 343869 343909 "DIFEXT" 343914 DIFEXT (NIL T) -9 NIL 344066 NIL) (-181 339583 341923 341964 "DIAGG" 341969 DIAGG (NIL T) -9 NIL 341989 NIL) (-180 339139 339329 339578 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-179 334351 338329 338606 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-178 330809 331862 332872 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-177 325422 329963 330290 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-176 323988 324280 324655 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-175 321172 322360 322756 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-174 318892 321003 321092 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-173 318275 318420 318602 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-172 315605 316325 317121 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-171 313720 314176 314736 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-170 313103 313436 313550 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-169 306367 312828 312976 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-168 304287 304797 305301 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-167 303926 303975 304126 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-166 303185 303747 303838 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-165 301209 301651 302011 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-164 300501 300790 300936 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-163 299952 300098 300250 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-162 297314 298107 298834 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-161 296753 296899 297070 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-160 294825 295136 295503 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-159 294382 294637 294738 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-158 293595 293978 294006 "CTORCAT" 294187 CTORCAT (NIL) -9 NIL 294299 NIL) (-157 293298 293432 293590 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-156 292791 293048 293156 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-155 292207 292638 292711 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-154 291666 291783 291936 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-153 288060 288816 289571 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-152 287551 287854 287945 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-151 286770 286979 287207 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-150 286274 286379 286583 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-149 286027 286061 286167 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-148 282966 283728 284446 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-147 282485 282627 282766 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-146 278442 280948 281440 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-145 278316 278343 278371 "CONDUIT" 278408 CONDUIT (NIL) -9 NIL NIL NIL) (-144 277283 277952 277980 "COMRING" 277985 COMRING (NIL) -9 NIL 278035 NIL) (-143 276448 276815 276993 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-142 276144 276185 276313 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-141 275837 275900 276007 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-140 264743 275787 275832 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-139 264204 264343 264503 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-138 263957 263998 264096 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-137 245476 257664 257704 "COMPCAT" 258705 COMPCAT (NIL T) -9 NIL 260047 NIL) (-136 238022 241533 245120 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-135 237781 237815 237917 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-134 237611 237650 237708 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-133 237192 237471 237545 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-132 236769 237010 237097 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-131 235970 236216 236244 "COMBOPC" 236580 COMBOPC (NIL) -9 NIL 236753 NIL) (-130 235034 235286 235528 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-129 231972 232654 233275 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-128 230852 231303 231538 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-127 230344 230646 230737 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-126 230031 230084 230209 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-125 229502 229811 229909 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-124 226064 227120 228186 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-123 224423 225344 225582 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-122 220547 222555 222596 "CLAGG" 223522 CLAGG (NIL T) -9 NIL 224055 NIL) (-121 219440 219967 220542 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-120 219069 219160 219300 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-119 217006 217513 218061 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-118 216055 216724 216752 "CHARZ" 216757 CHARZ (NIL) -9 NIL 216771 NIL) (-117 215849 215895 215973 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-116 214776 215477 215505 "CHARNZ" 215566 CHARNZ (NIL) -9 NIL 215614 NIL) (-115 212254 213351 213874 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-114 211962 212041 212069 "CFCAT" 212180 CFCAT (NIL) -9 NIL NIL NIL) (-113 211305 211434 211616 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-112 207294 210718 210998 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-111 206672 206859 207036 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-110 206200 206619 206667 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-109 205673 205982 206079 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-108 205165 205467 205558 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-107 204414 204574 204795 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-106 200514 201771 202479 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-105 198912 199911 200162 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-104 198493 198772 198846 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-103 197939 198192 198220 "CACHSET" 198352 CACHSET (NIL) -9 NIL 198430 NIL) (-102 197334 197718 197746 "CABMON" 197796 CABMON (NIL) -9 NIL 197852 NIL) (-101 196864 197128 197238 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-100 192197 196523 196693 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-99 191172 191877 192010 "BYTE" NIL BYTE (NIL) -8 NIL NIL 192169) (-98 188647 190943 191047 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-97 186078 188390 188509 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-96 183330 185534 185573 "BTCAT" 185640 BTCAT (NIL T) -9 NIL 185716 NIL) (-95 183081 183179 183325 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-94 178203 182324 182350 "BTAGG" 182461 BTAGG (NIL) -9 NIL 182569 NIL) (-93 177834 177995 178198 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-92 174896 177304 177516 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-91 174166 174318 174496 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-90 170711 172884 172923 "BRAGG" 173564 BRAGG (NIL T) -9 NIL 173821 NIL) (-89 169666 170161 170706 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-88 162264 169171 169352 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-87 160320 162216 162259 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-86 160053 160089 160200 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-85 158292 158725 159173 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-84 154258 155674 156564 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-83 153134 154025 154147 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-82 152732 152889 152915 "BOOLE" 153023 BOOLE (NIL) -9 NIL 153104 NIL) (-81 152637 152664 152727 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-80 151818 152314 152364 "BMODULE" 152369 BMODULE (NIL T T) -9 NIL 152433 NIL) (-79 147435 151675 151744 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-78 146957 147100 147238 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 140227 146687 146832 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 137973 139468 139507 "BGAGG" 139763 BGAGG (NIL T) -9 NIL 139900 NIL) (-75 137842 137880 137968 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 136693 136894 137179 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 133331 135851 136178 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 132928 133021 133047 "BASTYPE" 133218 BASTYPE (NIL) -9 NIL 133314 NIL) (-71 132698 132794 132923 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 132213 132301 132451 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 131112 131787 131972 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 130838 130843 130869 "ATTREG" 130874 ATTREG (NIL) -9 NIL NIL NIL) (-67 130444 130715 130780 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 129944 130093 130119 "ATRIG" 130320 ATRIG (NIL) -9 NIL NIL NIL) (-65 129799 129852 129939 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 129381 129612 129638 "ASTCAT" 129643 ASTCAT (NIL) -9 NIL 129673 NIL) (-63 129180 129257 129376 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 127339 129013 129101 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 126146 126459 126824 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 123946 126050 126141 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 123137 123328 123549 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 118724 122868 122982 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 112902 114934 115009 "ARR2CAT" 117639 ARR2CAT (NIL T T T) -9 NIL 118397 NIL) (-56 111279 112049 112897 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 110647 111018 111140 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 109579 109747 110043 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 109280 109334 109452 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 108663 108809 108965 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 108068 108358 108478 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 105700 106797 107120 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 105225 105485 105581 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 98984 104287 104729 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 94606 96207 96257 "AMR" 96995 AMR (NIL T T) -9 NIL 97592 NIL) (-46 93960 94240 94601 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 77140 93894 93955 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73575 76816 76985 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70585 71245 71852 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 69964 70077 70261 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 66375 67001 67593 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55928 66068 66218 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55245 55399 55577 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54046 54779 54817 "ALGEBRA" 54822 ALGEBRA (NIL T) -9 NIL 54862 NIL) (-37 53832 53909 54041 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 33841 51050 51102 "ALAGG" 51240 ALAGG (NIL T T) -9 NIL 51405 NIL) (-35 33341 33490 33516 "AHYP" 33717 AHYP (NIL) -9 NIL NIL NIL) (-34 32649 32830 32856 "AGG" 33137 AGG (NIL) -9 NIL 33324 NIL) (-33 32446 32531 32644 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30584 31045 31445 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30080 30382 30471 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29457 29748 29902 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17106 26320 26358 "ACFS" 26965 ACFS (NIL T) -9 NIL 27204 NIL) (-28 15729 16339 17101 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11372 13686 13712 "ACF" 14591 ACF (NIL) -9 NIL 15003 NIL) (-26 10468 10874 11367 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 9982 10222 10248 "ABELSG" 10340 ABELSG (NIL) -9 NIL 10405 NIL) (-24 9880 9911 9977 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9156 9499 9525 "ABELMON" 9694 ABELMON (NIL) -9 NIL 9805 NIL) (-22 8907 9014 9151 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8162 8614 8640 "ABELGRP" 8712 ABELGRP (NIL) -9 NIL 8787 NIL) (-20 7776 7941 8157 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 7046 7085 "A1AGG" 7090 A1AGG (NIL T) -9 NIL 7130 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index a8f0543d..fb7e9997 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,15078 +1,14155 @@ -(669735 . 3525483393) +(630509 . 3525500985) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 (-499)))) - (-5 *2 (-1207 (-361 (-499)))) (-5 *1 (-1236 *4))))) + (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-13 (-954) (-575 (-478)))) + (-5 *2 (-1168 (-343 (-478)))) (-5 *1 (-1197 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 (-499)))) - (-5 *2 (-1207 (-499))) (-5 *1 (-1236 *4))))) + (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-13 (-954) (-575 (-478)))) + (-5 *2 (-1168 (-478))) (-5 *1 (-1197 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 (-499)))) (-5 *2 (-85)) - (-5 *1 (-1236 *4))))) + (-12 (-5 *3 (-1168 *4)) (-4 *4 (-13 (-954) (-575 (-478)))) (-5 *2 (-83)) + (-5 *1 (-1197 *4))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-569 *2) (-146))) (-5 *2 (-825 *4)) (-5 *1 (-144 *4 *5 *3)) - (-4 *4 (-1041)) (-4 *3 (-139 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 (-1029 (-775 (-333))))) - (-5 *2 (-599 (-1029 (-775 (-179))))) (-5 *1 (-257)))) + (-12 (-4 *5 (-13 (-548 *2) (-144))) (-5 *2 (-793 *4)) (-5 *1 (-142 *4 *5 *3)) + (-4 *4 (-1005)) (-4 *3 (-137 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1207 *3)) (-4 *3 (-146)) (-4 *1 (-364 *3 *4)) - (-4 *4 (-1183 *3)))) + (-12 (-5 *2 (-1168 *3)) (-4 *3 (-144)) (-4 *1 (-346 *3 *4)) + (-4 *4 (-1144 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) - (-5 *2 (-1207 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-146)) (-4 *1 (-372 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-1207 *3)))) + (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1144 *3)) + (-5 *2 (-1168 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-144)) (-4 *1 (-354 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-1168 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-359 *1)) (-4 *1 (-375 *3)) (-4 *3 (-510)) (-4 *3 (-1041)))) + (-12 (-5 *2 (-341 *1)) (-4 *1 (-357 *3)) (-4 *3 (-489)) (-4 *3 (-1005)))) ((*1 *1 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) - (-4 *5 (-781)) (-5 *1 (-417 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1043)) (-5 *1 (-488)))) - ((*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-1157)))) - ((*1 *1 *2) (-12 (-4 *1 (-573 *2)) (-4 *2 (-1157)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-682 *3 *2)) (-4 *2 (-1183 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) + (-4 *5 (-749)) (-5 *1 (-396 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-467)))) + ((*1 *2 *1) (-12 (-4 *1 (-548 *2)) (-4 *2 (-1118)))) + ((*1 *1 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1118)))) + ((*1 *1 *2) (-12 (-4 *3 (-144)) (-4 *1 (-656 *3 *2)) (-4 *2 (-1144 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) ((*1 *1 *2) - (-12 (-5 *2 (-884 *3)) (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) - (-4 *5 (-569 (-1117))) (-4 *4 (-738)) (-4 *5 (-781)))) + (-12 (-5 *2 (-850 *3)) (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) + (-4 *5 (-548 (-1079))) (-4 *4 (-710)) (-4 *5 (-749)))) ((*1 *1 *2) - (-3677 - (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) - (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-4 *3 (-38 (-499))) - (-4 *5 (-569 (-1117)))) - (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781))) - (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) - (-4 *4 (-738)) (-4 *5 (-781))))) + (OR + (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) + (-12 (-2544 (-4 *3 (-38 (-343 (-478))))) (-4 *3 (-38 (-478))) + (-4 *5 (-548 (-1079)))) + (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749))) + (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1079)))) (-4 *3 (-954)) + (-4 *4 (-710)) (-4 *5 (-749))))) ((*1 *1 *2) - (-12 (-5 *2 (-884 (-361 (-499)))) (-4 *1 (-1005 *3 *4 *5)) - (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117))) (-4 *3 (-989)) - (-4 *4 (-738)) (-4 *5 (-781)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-599 *7)) (|:| -1633 *8))) - (-4 *7 (-1005 *4 *5 *6)) (-4 *8 (-1011 *4 *5 *6 *7)) (-4 *4 (-406)) - (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-1099)) - (-5 *1 (-1009 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-599 *7)) (|:| -1633 *8))) - (-4 *7 (-1005 *4 *5 *6)) (-4 *8 (-1049 *4 *5 *6 *7)) (-4 *4 (-406)) - (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-1099)) - (-5 *1 (-1085 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1043)) (-5 *1 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-1122)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-499)) (-5 *1 (-1137)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-797)) (-5 *3 (-499)) (-5 *1 (-1137)))) - ((*1 *2 *3) - (-12 (-5 *3 (-723 *4 (-798 *5))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) - (-14 *5 (-599 (-1117))) (-5 *2 (-723 *4 (-798 *6))) (-5 *1 (-1235 *4 *5 *6)) - (-14 *6 (-599 (-1117))))) - ((*1 *2 *3) - (-12 (-5 *3 (-884 *4)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) - (-5 *2 (-884 (-964 (-361 *4)))) (-5 *1 (-1235 *4 *5 *6)) - (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117))))) - ((*1 *2 *3) - (-12 (-5 *3 (-723 *4 (-798 *6))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) - (-14 *6 (-599 (-1117))) (-5 *2 (-884 (-964 (-361 *4)))) - (-5 *1 (-1235 *4 *5 *6)) (-14 *5 (-599 (-1117))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1111 *4)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) - (-5 *2 (-1111 (-964 (-361 *4)))) (-5 *1 (-1235 *4 *5 *6)) - (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1086 *4 (-484 (-798 *6)) (-798 *6) (-723 *4 (-798 *6)))) - (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-14 *6 (-599 (-1117))) - (-5 *2 (-599 (-723 *4 (-798 *6)))) (-5 *1 (-1235 *4 *5 *6)) - (-14 *5 (-599 (-1117)))))) -(((*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-512 *3)) (-4 *3 (-498)))) - ((*1 *2 *3) - (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) (-5 *2 (-359 *3)) - (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-888 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) (-4 *7 (-888 *6 *4 *5)) - (-5 *2 (-359 (-1111 *7))) (-5 *1 (-700 *4 *5 *6 *7)) (-5 *3 (-1111 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-406)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-359 *1)) (-4 *1 (-888 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-406)) (-5 *2 (-359 *3)) - (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-888 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-406)) (-4 *7 (-888 *6 *4 *5)) - (-5 *2 (-359 (-1111 (-361 *7)))) (-5 *1 (-1113 *4 *5 *6 *7)) - (-5 *3 (-1111 (-361 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-359 *1)) (-4 *1 (-1162)))) - ((*1 *2 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-359 *3)) (-5 *1 (-1187 *4 *3)) - (-4 *3 (-13 (-1183 *4) (-510) (-10 -8 (-15 -3282 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-986 *4 *5)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) - (-14 *5 (-599 (-1117))) - (-5 *2 (-599 (-1086 *4 (-484 (-798 *6)) (-798 *6) (-723 *4 (-798 *6))))) - (-5 *1 (-1235 *4 *5 *6)) (-14 *6 (-599 (-1117)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-986 *4 *5)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) - (-14 *5 (-599 (-1117))) (-5 *2 (-599 (-599 (-964 (-361 *4))))) - (-5 *1 (-1235 *4 *5 *6)) (-14 *6 (-599 (-1117))))) + (-12 (-5 *2 (-850 (-343 (-478)))) (-4 *1 (-969 *3 *4 *5)) + (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1079))) (-4 *3 (-954)) + (-4 *4 (-710)) (-4 *5 (-749)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -1587 *8))) + (-4 *7 (-969 *4 *5 *6)) (-4 *8 (-975 *4 *5 *6 *7)) (-4 *4 (-385)) + (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-1062)) + (-5 *1 (-973 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -1587 *8))) + (-4 *7 (-969 *4 *5 *6)) (-4 *8 (-1012 *4 *5 *6 *7)) (-4 *4 (-385)) + (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-1062)) + (-5 *1 (-1048 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-1084)))) + ((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1084)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-765)) (-5 *3 (-478)) (-5 *1 (-1098)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-478)) (-5 *1 (-1098)))) + ((*1 *2 *3) + (-12 (-5 *3 (-696 *4 (-766 *5))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) + (-14 *5 (-578 (-1079))) (-5 *2 (-696 *4 (-766 *6))) (-5 *1 (-1196 *4 *5 *6)) + (-14 *6 (-578 (-1079))))) + ((*1 *2 *3) + (-12 (-5 *3 (-850 *4)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) + (-5 *2 (-850 (-930 (-343 *4)))) (-5 *1 (-1196 *4 *5 *6)) + (-14 *5 (-578 (-1079))) (-14 *6 (-578 (-1079))))) + ((*1 *2 *3) + (-12 (-5 *3 (-696 *4 (-766 *6))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) + (-14 *6 (-578 (-1079))) (-5 *2 (-850 (-930 (-343 *4)))) + (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-578 (-1079))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1074 *4)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) + (-5 *2 (-1074 (-930 (-343 *4)))) (-5 *1 (-1196 *4 *5 *6)) + (-14 *5 (-578 (-1079))) (-14 *6 (-578 (-1079))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1049 *4 (-463 (-766 *6)) (-766 *6) (-696 *4 (-766 *6)))) + (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-14 *6 (-578 (-1079))) + (-5 *2 (-578 (-696 *4 (-766 *6)))) (-5 *1 (-1196 *4 *5 *6)) + (-14 *5 (-578 (-1079)))))) +(((*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-491 *3)) (-4 *3 (-477)))) + ((*1 *2 *3) + (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) (-5 *2 (-341 *3)) + (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-854 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) (-4 *7 (-854 *6 *4 *5)) + (-5 *2 (-341 (-1074 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1074 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-385)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-341 *1)) (-4 *1 (-854 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-385)) (-5 *2 (-341 *3)) + (-5 *1 (-885 *4 *5 *6 *3)) (-4 *3 (-854 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-385)) (-4 *7 (-854 *6 *4 *5)) + (-5 *2 (-341 (-1074 (-343 *7)))) (-5 *1 (-1076 *4 *5 *6 *7)) + (-5 *3 (-1074 (-343 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-341 *1)) (-4 *1 (-1123)))) + ((*1 *2 *3) + (-12 (-4 *4 (-489)) (-5 *2 (-341 *3)) (-5 *1 (-1148 *4 *3)) + (-4 *3 (-13 (-1144 *4) (-489) (-10 -8 (-15 -3127 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-951 *4 *5)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) + (-14 *5 (-578 (-1079))) + (-5 *2 (-578 (-1049 *4 (-463 (-766 *6)) (-766 *6) (-696 *4 (-766 *6))))) + (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-578 (-1079)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-951 *4 *5)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) + (-14 *5 (-578 (-1079))) (-5 *2 (-578 (-578 (-930 (-343 *4))))) + (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-578 (-1079))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-780) (-261) (-120) (-960))) - (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) - (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-780) (-261) (-120) (-960))) - (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) - (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) - (-5 *2 (-599 (-599 (-964 (-361 *4))))) (-5 *1 (-1235 *4 *5 *6)) - (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117)))))) + (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) + (-4 *5 (-13 (-748) (-254) (-118) (-926))) + (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1196 *5 *6 *7)) + (-14 *6 (-578 (-1079))) (-14 *7 (-578 (-1079))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) + (-4 *5 (-13 (-748) (-254) (-118) (-926))) + (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1196 *5 *6 *7)) + (-14 *6 (-578 (-1079))) (-14 *7 (-578 (-1079))))) + ((*1 *2 *3) + (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) + (-5 *2 (-578 (-578 (-930 (-343 *4))))) (-5 *1 (-1196 *4 *5 *6)) + (-14 *5 (-578 (-1079))) (-14 *6 (-578 (-1079)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-599 (-1117))) - (-5 *2 (-599 (-599 (-333)))) (-5 *1 (-963)) (-5 *5 (-333)))) + (-12 (-5 *3 (-578 (-850 (-478)))) (-5 *4 (-578 (-1079))) + (-5 *2 (-578 (-578 (-323)))) (-5 *1 (-929)) (-5 *5 (-323)))) ((*1 *2 *3) - (-12 (-5 *3 (-986 *4 *5)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) - (-14 *5 (-599 (-1117))) (-5 *2 (-599 (-599 (-964 (-361 *4))))) - (-5 *1 (-1235 *4 *5 *6)) (-14 *6 (-599 (-1117))))) + (-12 (-5 *3 (-951 *4 *5)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) + (-14 *5 (-578 (-1079))) (-5 *2 (-578 (-578 (-930 (-343 *4))))) + (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-578 (-1079))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-780) (-261) (-120) (-960))) - (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) - (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) + (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) + (-4 *5 (-13 (-748) (-254) (-118) (-926))) + (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1196 *5 *6 *7)) + (-14 *6 (-578 (-1079))) (-14 *7 (-578 (-1079))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-780) (-261) (-120) (-960))) - (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) - (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-780) (-261) (-120) (-960))) - (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) - (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) - (-5 *2 (-599 (-599 (-964 (-361 *4))))) (-5 *1 (-1235 *4 *5 *6)) - (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-986 *4 *5)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) - (-14 *5 (-599 (-1117))) - (-5 *2 (-599 (-2 (|:| -1840 (-1111 *4)) (|:| -3362 (-599 (-884 *4)))))) - (-5 *1 (-1235 *4 *5 *6)) (-14 *6 (-599 (-1117))))) + (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) + (-4 *5 (-13 (-748) (-254) (-118) (-926))) + (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1196 *5 *6 *7)) + (-14 *6 (-578 (-1079))) (-14 *7 (-578 (-1079))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) + (-4 *5 (-13 (-748) (-254) (-118) (-926))) + (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1196 *5 *6 *7)) + (-14 *6 (-578 (-1079))) (-14 *7 (-578 (-1079))))) + ((*1 *2 *3) + (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) + (-5 *2 (-578 (-578 (-930 (-343 *4))))) (-5 *1 (-1196 *4 *5 *6)) + (-14 *5 (-578 (-1079))) (-14 *6 (-578 (-1079)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-951 *4 *5)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) + (-14 *5 (-578 (-1079))) + (-5 *2 (-578 (-2 (|:| -1734 (-1074 *4)) (|:| -3207 (-578 (-850 *4)))))) + (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-578 (-1079))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) - (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) - (-5 *1 (-1235 *5 *6 *7)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117))) - (-14 *7 (-599 (-1117))))) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) + (-5 *2 (-578 (-2 (|:| -1734 (-1074 *5)) (|:| -3207 (-578 (-850 *5)))))) + (-5 *1 (-1196 *5 *6 *7)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1079))) + (-14 *7 (-578 (-1079))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) - (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) - (-5 *1 (-1235 *5 *6 *7)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117))) - (-14 *7 (-599 (-1117))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) - (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) - (-5 *1 (-1235 *5 *6 *7)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117))) - (-14 *7 (-599 (-1117))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-780) (-261) (-120) (-960))) - (-5 *2 (-599 (-2 (|:| -1840 (-1111 *4)) (|:| -3362 (-599 (-884 *4)))))) - (-5 *1 (-1235 *4 *5 *6)) (-5 *3 (-599 (-884 *4))) (-14 *5 (-599 (-1117))) - (-14 *6 (-599 (-1117)))))) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) + (-5 *2 (-578 (-2 (|:| -1734 (-1074 *5)) (|:| -3207 (-578 (-850 *5)))))) + (-5 *1 (-1196 *5 *6 *7)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1079))) + (-14 *7 (-578 (-1079))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) + (-5 *2 (-578 (-2 (|:| -1734 (-1074 *5)) (|:| -3207 (-578 (-850 *5)))))) + (-5 *1 (-1196 *5 *6 *7)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1079))) + (-14 *7 (-578 (-1079))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-748) (-254) (-118) (-926))) + (-5 *2 (-578 (-2 (|:| -1734 (-1074 *4)) (|:| -3207 (-578 (-850 *4)))))) + (-5 *1 (-1196 *4 *5 *6)) (-5 *3 (-578 (-850 *4))) (-14 *5 (-578 (-1079))) + (-14 *6 (-578 (-1079)))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-986 *5 *6))) - (-5 *1 (-1235 *5 *6 *7)) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) + (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) + (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-951 *5 *6))) + (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-578 (-1079))) (-14 *7 (-578 (-1079))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-986 *5 *6))) - (-5 *1 (-1235 *5 *6 *7)) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) + (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) + (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-951 *5 *6))) + (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-578 (-1079))) (-14 *7 (-578 (-1079))))) ((*1 *2 *3) - (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) - (-5 *2 (-599 (-986 *4 *5))) (-5 *1 (-1235 *4 *5 *6)) (-14 *5 (-599 (-1117))) - (-14 *6 (-599 (-1117)))))) + (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) + (-5 *2 (-578 (-951 *4 *5))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-578 (-1079))) + (-14 *6 (-578 (-1079)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1095 *4) (-1095 *4))) (-5 *2 (-1095 *4)) (-5 *1 (-1234 *4)) - (-4 *4 (-1157)))) + (-12 (-5 *3 (-1 (-1058 *4) (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1195 *4)) + (-4 *4 (-1118)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-599 (-1095 *5)) (-599 (-1095 *5)))) (-5 *4 (-499)) - (-5 *2 (-599 (-1095 *5))) (-5 *1 (-1234 *5)) (-4 *5 (-1157))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1233))))) -(((*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-1233))))) + (-12 (-5 *3 (-1 (-578 (-1058 *5)) (-578 (-1058 *5)))) (-5 *4 (-478)) + (-5 *2 (-578 (-1058 *5))) (-5 *1 (-1195 *5)) (-4 *5 (-1118))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1194))))) +(((*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1194))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-857)) (-4 *6 (-510)) (-5 *2 (-599 (-268 *6))) - (-5 *1 (-175 *5 *6)) (-5 *3 (-268 *6)) (-4 *5 (-989)))) - ((*1 *2 *1) (-12 (-5 *1 (-359 *2)) (-4 *2 (-510)))) + (-12 (-5 *4 (-823)) (-4 *6 (-489)) (-5 *2 (-578 (-261 *6))) + (-5 *1 (-173 *5 *6)) (-5 *3 (-261 *6)) (-4 *5 (-954)))) + ((*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-489)))) ((*1 *2 *3) - (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1143))) - (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-599 *5)) - (-5 *1 (-536 *4 *5)))) + (-12 (-5 *3 (-513 *5)) (-4 *5 (-13 (-29 *4) (-1104))) + (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-578 *5)) + (-5 *1 (-515 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-534 (-361 (-884 *4)))) - (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-599 (-268 *4))) - (-5 *1 (-540 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-780)) (-4 *2 (-1090 *3)))) + (-12 (-5 *3 (-513 (-343 (-850 *4)))) + (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-578 (-261 *4))) + (-5 *1 (-519 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-999 *3 *2)) (-4 *3 (-748)) (-4 *2 (-1053 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 *1)) (-4 *1 (-1035 *4 *2)) (-4 *4 (-780)) - (-4 *2 (-1090 *4)))) + (-12 (-5 *3 (-578 *1)) (-4 *1 (-999 *4 *2)) (-4 *4 (-748)) + (-4 *2 (-1053 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104))))) ((*1 *2 *1) - (-12 (-5 *2 (-1223 (-1117) *3)) (-5 *1 (-1229 *3)) (-4 *3 (-989)))) + (-12 (-5 *2 (-1184 (-1079) *3)) (-5 *1 (-1190 *3)) (-4 *3 (-954)))) ((*1 *2 *1) - (-12 (-5 *2 (-1223 *3 *4)) (-5 *1 (-1232 *3 *4)) (-4 *3 (-781)) - (-4 *4 (-989))))) + (-12 (-5 *2 (-1184 *3 *4)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-749)) + (-4 *4 (-954))))) (((*1 *1 *2) - (-12 (-5 *2 (-1223 (-1117) *3)) (-4 *3 (-989)) (-5 *1 (-1229 *3)))) + (-12 (-5 *2 (-1184 (-1079) *3)) (-4 *3 (-954)) (-5 *1 (-1190 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1223 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) - (-5 *1 (-1232 *3 *4))))) + (-12 (-5 *2 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) + (-5 *1 (-1193 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-599 (-2 (|:| |k| (-1117)) (|:| |c| (-1229 *3))))) - (-5 *1 (-1229 *3)) (-4 *3 (-989)))) + (-12 (-5 *2 (-578 (-2 (|:| |k| (-1079)) (|:| |c| (-1190 *3))))) + (-5 *1 (-1190 *3)) (-4 *3 (-954)))) ((*1 *2 *1) - (-12 (-5 *2 (-599 (-2 (|:| |k| *3) (|:| |c| (-1232 *3 *4))))) - (-5 *1 (-1232 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-714)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-857)))) + (-12 (-5 *2 (-578 (-2 (|:| |k| *3) (|:| |c| (-1193 *3 *4))))) + (-5 *1 (-1193 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-687)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-823)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-130)))) + (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-128)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-128)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143))) (-5 *1 (-181 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1052)) (-4 *2 (-1157)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1052)) (-4 *2 (-1157)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-104)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-316 *2)) (-4 *2 (-1041)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-1041)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-337 *3 *2)) (-4 *3 (-989)) (-4 *2 (-781)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-339 *2 *3)) (-4 *2 (-989)) (-4 *3 (-1041)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) + (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1104))) (-5 *1 (-179 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1015)) (-4 *2 (-1118)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1015)) (-4 *2 (-1118)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-102)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1005)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1005)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-327 *3 *2)) (-4 *3 (-954)) (-4 *2 (-749)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-328 *2 *3)) (-4 *2 (-954)) (-4 *3 (-1005)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-329 *2)) (-4 *2 (-1005)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-1005)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-4 *6 (-195 (-4107 *3) (-714))) + (-12 (-14 *3 (-578 (-1079))) (-4 *4 (-144)) (-4 *6 (-193 (-3941 *3) (-687))) (-14 *7 - (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *6)) - (-2 (|:| -2518 *5) (|:| -2519 *6)))) - (-5 *1 (-415 *3 *4 *5 *6 *7 *2)) (-4 *5 (-781)) - (-4 *2 (-888 *4 *6 (-798 *3))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + (-1 (-83) (-2 (|:| -2386 *5) (|:| -2387 *6)) + (-2 (|:| -2386 *5) (|:| -2387 *6)))) + (-5 *1 (-394 *3 *4 *5 *6 *7 *2)) (-4 *5 (-749)) + (-4 *2 (-854 *4 *6 (-766 *3))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) - (-4 *5 (-888 *2 *3 *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-305)) (-5 *1 (-481 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-488))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-546 *3)) (-4 *3 (-989)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) - (-4 *7 (-1041)) (-5 *2 (-1 *7 *5)) (-5 *1 (-642 *5 *6 *7)))) + (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) + (-4 *5 (-854 *2 *3 *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-295)) (-5 *1 (-460 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-467))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-525 *3)) (-4 *3 (-954)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) + (-4 *7 (-1005)) (-5 *2 (-1 *7 *5)) (-5 *1 (-620 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-644 *3 *2 *4)) (-4 *3 (-989)) (-4 *2 (-327 *3)) - (-4 *4 (-327 *3)))) + (-12 (-4 *1 (-622 *3 *2 *4)) (-4 *3 (-954)) (-4 *2 (-317 *3)) + (-4 *4 (-317 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-644 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-327 *3)) - (-4 *2 (-327 *3)))) + (-12 (-4 *1 (-622 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-317 *3)) + (-4 *2 (-317 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)))) + (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) - (-4 *4 (-327 *2)))) + (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) + (-4 *4 (-317 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) - (-4 *4 (-327 *2)))) + (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) + (-4 *4 (-317 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) - (-4 *4 (-327 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-678))) ((*1 *1 *1 *1) (-5 *1 (-797))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) + (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) + (-4 *4 (-317 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-652))) ((*1 *1 *1 *1) (-5 *1 (-765))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1005)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1207 *4)) (-4 *4 (-1183 *3)) (-4 *3 (-510)) - (-5 *1 (-909 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1 *1) (-4 *1 (-1052))) + (-12 (-5 *2 (-1168 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-489)) + (-5 *1 (-875 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *1) (-4 *1 (-1015))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1063 *3 *4 *2 *5)) (-4 *4 (-989)) (-4 *2 (-195 *3 *4)) - (-4 *5 (-195 *3 *4)))) + (-12 (-4 *1 (-1026 *3 *4 *2 *5)) (-4 *4 (-954)) (-4 *2 (-193 *3 *4)) + (-4 *5 (-193 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1063 *3 *4 *5 *2)) (-4 *4 (-989)) (-4 *5 (-195 *3 *4)) - (-4 *2 (-195 *3 *4)))) + (-12 (-4 *1 (-1026 *3 *4 *5 *2)) (-4 *4 (-954)) (-4 *5 (-193 *3 *4)) + (-4 *2 (-193 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-989)) (-4 *4 (-781)) (-5 *1 (-1066 *3 *4 *2)) - (-4 *2 (-888 *3 (-484 *4) *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-881 (-179))) (-5 *3 (-179)) (-5 *1 (-1154)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-684)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-684)))) + (-12 (-4 *3 (-954)) (-4 *4 (-749)) (-5 *1 (-1029 *3 *4 *2)) + (-4 *2 (-854 *3 (-463 *4) *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-847 (-177))) (-5 *3 (-177)) (-5 *1 (-1115)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1118)) (-4 *2 (-658)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1118)) (-4 *2 (-658)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-499)) (-4 *1 (-1206 *3)) (-4 *3 (-1157)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1227 *3 *2)) (-4 *3 (-781)) (-4 *2 (-989)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-989)) (-4 *3 (-779))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)))) - ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-989)) (-14 *3 (-599 (-1117))))) + (-12 (-5 *2 (-478)) (-4 *1 (-1167 *3)) (-4 *3 (-1118)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-749)) (-4 *2 (-954)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-1192 *2 *3)) (-4 *2 (-954)) (-4 *3 (-747))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)))) + ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-954)) (-14 *3 (-578 (-1079))))) ((*1 *1 *1) - (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-989) (-781))) - (-14 *3 (-599 (-1117))))) - ((*1 *1 *1) (-12 (-4 *1 (-339 *2 *3)) (-4 *2 (-989)) (-4 *3 (-1041)))) + (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-954) (-749))) + (-14 *3 (-578 (-1079))))) + ((*1 *1 *1) (-12 (-4 *1 (-328 *2 *3)) (-4 *2 (-954)) (-4 *3 (-1005)))) ((*1 *1 *1) - (-12 (-14 *2 (-599 (-1117))) (-4 *3 (-146)) (-4 *5 (-195 (-4107 *2) (-714))) + (-12 (-14 *2 (-578 (-1079))) (-4 *3 (-144)) (-4 *5 (-193 (-3941 *2) (-687))) (-14 *6 - (-1 (-85) (-2 (|:| -2518 *4) (|:| -2519 *5)) - (-2 (|:| -2518 *4) (|:| -2519 *5)))) - (-5 *1 (-415 *2 *3 *4 *5 *6 *7)) (-4 *4 (-781)) - (-4 *7 (-888 *3 *5 (-798 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-73)) (-4 *3 (-784)))) - ((*1 *1 *1) (-12 (-4 *2 (-510)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1183 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-989)))) + (-1 (-83) (-2 (|:| -2386 *4) (|:| -2387 *5)) + (-2 (|:| -2386 *4) (|:| -2387 *5)))) + (-5 *1 (-394 *2 *3 *4 *5 *6 *7)) (-4 *4 (-749)) + (-4 *7 (-854 *3 *5 (-766 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-72)) (-4 *3 (-752)))) + ((*1 *1 *1) (-12 (-4 *2 (-489)) (-5 *1 (-557 *2 *3)) (-4 *3 (-1144 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-954)))) ((*1 *1 *1) - (-12 (-5 *1 (-693 *2 *3)) (-4 *3 (-781)) (-4 *2 (-989)) (-4 *3 (-684)))) - ((*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)))) + (-12 (-5 *1 (-667 *2 *3)) (-4 *3 (-749)) (-4 *2 (-954)) (-4 *3 (-658)))) + ((*1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) - ((*1 *1 *1) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-989)) (-4 *3 (-779))))) + (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) + ((*1 *1 *1) (-12 (-5 *1 (-1192 *2 *3)) (-4 *2 (-954)) (-4 *3 (-747))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-599 (-1117))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-578 (-1079))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) - (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) + (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) - (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) + (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) - (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) + (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-499)) - (-14 *6 (-714)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) - (-5 *1 (-109 *5 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-106 *5 *6 *7)) (-14 *5 (-478)) + (-14 *6 (-687)) (-4 *7 (-144)) (-4 *8 (-144)) (-5 *2 (-106 *5 *6 *8)) + (-5 *1 (-107 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) - (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-140 *5)) (-4 *5 (-144)) (-4 *6 (-144)) + (-5 *2 (-140 *6)) (-5 *1 (-141 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-268 *3) (-268 *3))) (-4 *3 (-13 (-989) (-781))) - (-5 *1 (-177 *3 *4)) (-14 *4 (-599 (-1117))))) + (-12 (-5 *2 (-1 (-261 *3) (-261 *3))) (-4 *3 (-13 (-954) (-749))) + (-5 *1 (-175 *3 *4)) (-14 *4 (-578 (-1079))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-196 *5 *6)) (-14 *5 (-714)) (-4 *6 (-1157)) - (-4 *7 (-1157)) (-5 *2 (-196 *5 *7)) (-5 *1 (-197 *5 *6 *7)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1157)) (-5 *1 (-247 *3)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-194 *5 *6)) (-14 *5 (-687)) (-4 *6 (-1118)) + (-4 *7 (-1118)) (-5 *2 (-194 *5 *7)) (-5 *1 (-195 *5 *6 *7)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-245 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-247 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) - (-5 *2 (-247 *6)) (-5 *1 (-248 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-566 *1)) (-4 *1 (-252)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-245 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) + (-5 *2 (-245 *6)) (-5 *1 (-246 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-545 *1)) (-4 *1 (-250)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1099)) (-5 *5 (-566 *6)) (-4 *6 (-252)) - (-4 *2 (-1157)) (-5 *1 (-253 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-566 *5)) (-4 *5 (-252)) (-4 *2 (-252)) - (-5 *1 (-254 *5 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1062)) (-5 *5 (-545 *6)) (-4 *6 (-250)) + (-4 *2 (-1118)) (-5 *1 (-251 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-647 *5)) (-4 *5 (-989)) (-4 *6 (-989)) - (-5 *2 (-647 *6)) (-5 *1 (-259 *5 *6)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-545 *5)) (-4 *5 (-250)) (-4 *2 (-250)) + (-5 *1 (-252 *5 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-268 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) - (-5 *2 (-268 *6)) (-5 *1 (-269 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-261 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) + (-5 *2 (-261 *6)) (-5 *1 (-262 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-288 *5 *6 *7 *8)) (-4 *5 (-318)) - (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-4 *8 (-297 *5 *6 *7)) - (-4 *9 (-318)) (-4 *10 (-1183 *9)) (-4 *11 (-1183 (-361 *10))) - (-5 *2 (-288 *9 *10 *11 *12)) (-5 *1 (-289 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-297 *9 *10 *11)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3)) (-4 *3 (-1041)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-279 *5 *6 *7 *8)) (-4 *5 (-308)) + (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-343 *6))) (-4 *8 (-287 *5 *6 *7)) + (-4 *9 (-308)) (-4 *10 (-1144 *9)) (-4 *11 (-1144 (-343 *10))) + (-5 *2 (-279 *9 *10 *11 *12)) (-5 *1 (-280 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-287 *9 *10 *11)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-284 *3)) (-4 *3 (-1005)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1162)) (-4 *8 (-1162)) (-4 *6 (-1183 *5)) - (-4 *7 (-1183 (-361 *6))) (-4 *9 (-1183 *8)) (-4 *2 (-297 *8 *9 *10)) - (-5 *1 (-298 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-297 *5 *6 *7)) - (-4 *10 (-1183 (-361 *9))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1123)) (-4 *8 (-1123)) (-4 *6 (-1144 *5)) + (-4 *7 (-1144 (-343 *6))) (-4 *9 (-1144 *8)) (-4 *2 (-287 *8 *9 *10)) + (-5 *1 (-288 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-287 *5 *6 *7)) + (-4 *10 (-1144 (-343 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-4 *2 (-327 *6)) - (-5 *1 (-328 *5 *4 *6 *2)) (-4 *4 (-327 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-317 *6)) + (-5 *1 (-318 *5 *4 *6 *2)) (-4 *4 (-317 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-510)) (-5 *1 (-359 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1005)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-489)) (-5 *1 (-341 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-359 *5)) (-4 *5 (-510)) (-4 *6 (-510)) - (-5 *2 (-359 *6)) (-5 *1 (-360 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-341 *5)) (-4 *5 (-489)) (-4 *6 (-489)) + (-5 *2 (-341 *6)) (-5 *1 (-342 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-361 *5)) (-4 *5 (-510)) (-4 *6 (-510)) - (-5 *2 (-361 *6)) (-5 *1 (-362 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-343 *5)) (-4 *5 (-489)) (-4 *6 (-489)) + (-5 *2 (-343 *6)) (-5 *1 (-344 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-367 *5 *6 *7 *8)) (-4 *5 (-261)) - (-4 *6 (-931 *5)) (-4 *7 (-1183 *6)) (-4 *8 (-13 (-364 *6 *7) (-978 *6))) - (-4 *9 (-261)) (-4 *10 (-931 *9)) (-4 *11 (-1183 *10)) - (-5 *2 (-367 *9 *10 *11 *12)) (-5 *1 (-368 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-364 *10 *11) (-978 *10))))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-349 *5 *6 *7 *8)) (-4 *5 (-254)) + (-4 *6 (-897 *5)) (-4 *7 (-1144 *6)) (-4 *8 (-13 (-346 *6 *7) (-943 *6))) + (-4 *9 (-254)) (-4 *10 (-897 *9)) (-4 *11 (-1144 *10)) + (-5 *2 (-349 *9 *10 *11 *12)) (-5 *1 (-350 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-346 *10 *11) (-943 *10))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-372 *6)) - (-5 *1 (-370 *4 *5 *2 *6)) (-4 *4 (-372 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-354 *6)) + (-5 *1 (-352 *4 *5 *2 *6)) (-4 *4 (-354 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-4 *2 (-375 *6)) - (-5 *1 (-376 *5 *4 *6 *2)) (-4 *4 (-375 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-4 *2 (-357 *6)) + (-5 *1 (-358 *5 *4 *6 *2)) (-4 *4 (-357 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-380 *6)) - (-5 *1 (-381 *5 *4 *6 *2)) (-4 *4 (-380 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-443 *3)) (-4 *3 (-1157)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-362 *6)) + (-5 *1 (-363 *5 *4 *6 *2)) (-4 *4 (-362 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-422 *3)) (-4 *3 (-1118)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-463 *3 *4)) (-4 *3 (-73)) (-4 *4 (-784)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-442 *3 *4)) (-4 *3 (-72)) (-4 *4 (-752)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-318)) (-4 *6 (-318)) - (-5 *2 (-534 *6)) (-5 *1 (-535 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-513 *5)) (-4 *5 (-308)) (-4 *6 (-308)) + (-5 *2 (-513 *6)) (-5 *1 (-514 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2237 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-318)) - (-4 *6 (-318)) (-5 *2 (-2 (|:| -2237 *6) (|:| |coeff| *6))) - (-5 *1 (-535 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -2122 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-308)) + (-4 *6 (-308)) (-5 *2 (-2 (|:| -2122 *6) (|:| |coeff| *6))) + (-5 *1 (-514 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-318)) - (-4 *2 (-318)) (-5 *1 (-535 *5 *2)))) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-308)) + (-4 *2 (-308)) (-5 *1 (-514 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) - (-4 *5 (-318)) (-4 *6 (-318)) + (-4 *5 (-308)) (-4 *6 (-308)) (-5 *2 (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-535 *5 *6)))) + (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-514 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-551 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) - (-5 *2 (-551 *6)) (-5 *1 (-548 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-530 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) + (-5 *2 (-530 *6)) (-5 *1 (-527 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-551 *6)) (-5 *5 (-551 *7)) - (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-551 *8)) - (-5 *1 (-549 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-530 *6)) (-5 *5 (-530 *7)) + (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-530 *8)) + (-5 *1 (-528 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1095 *6)) (-5 *5 (-551 *7)) - (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-1095 *8)) - (-5 *1 (-549 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1058 *6)) (-5 *5 (-530 *7)) + (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-1058 *8)) + (-5 *1 (-528 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-551 *6)) (-5 *5 (-1095 *7)) - (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-1095 *8)) - (-5 *1 (-549 *6 *7 *8)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-530 *6)) (-5 *5 (-1058 *7)) + (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-1058 *8)) + (-5 *1 (-528 *6 *7 *8)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-530 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) - (-5 *2 (-599 *6)) (-5 *1 (-600 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-578 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) + (-5 *2 (-578 *6)) (-5 *1 (-579 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-599 *7)) - (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-599 *8)) - (-5 *1 (-602 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-578 *6)) (-5 *5 (-578 *7)) + (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-578 *8)) + (-5 *1 (-581 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1118)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-989)) (-4 *8 (-989)) (-4 *6 (-327 *5)) - (-4 *7 (-327 *5)) (-4 *2 (-644 *8 *9 *10)) - (-5 *1 (-645 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-644 *5 *6 *7)) - (-4 *9 (-327 *8)) (-4 *10 (-327 *8)))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-954)) (-4 *8 (-954)) (-4 *6 (-317 *5)) + (-4 *7 (-317 *5)) (-4 *2 (-622 *8 *9 *10)) + (-5 *1 (-623 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-622 *5 *6 *7)) + (-4 *9 (-317 *8)) (-4 *10 (-317 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-989)) (-4 *8 (-989)) - (-4 *6 (-327 *5)) (-4 *7 (-327 *5)) (-4 *2 (-644 *8 *9 *10)) - (-5 *1 (-645 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-644 *5 *6 *7)) - (-4 *9 (-327 *8)) (-4 *10 (-327 *8)))) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-954)) (-4 *8 (-954)) + (-4 *6 (-317 *5)) (-4 *7 (-317 *5)) (-4 *2 (-622 *8 *9 *10)) + (-5 *1 (-623 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-622 *5 *6 *7)) + (-4 *9 (-317 *8)) (-4 *10 (-317 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-510)) (-4 *7 (-510)) (-4 *6 (-1183 *5)) - (-4 *2 (-1183 (-361 *8))) (-5 *1 (-667 *5 *6 *4 *7 *8 *2)) - (-4 *4 (-1183 (-361 *6))) (-4 *8 (-1183 *7)))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-489)) (-4 *7 (-489)) (-4 *6 (-1144 *5)) + (-4 *2 (-1144 (-343 *8))) (-5 *1 (-641 *5 *6 *4 *7 *8 *2)) + (-4 *4 (-1144 (-343 *6))) (-4 *8 (-1144 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-989)) (-4 *9 (-989)) (-4 *5 (-781)) - (-4 *6 (-738)) (-4 *2 (-888 *9 *7 *5)) (-5 *1 (-686 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-738)) (-4 *4 (-888 *8 *6 *5)))) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-954)) (-4 *9 (-954)) (-4 *5 (-749)) + (-4 *6 (-710)) (-4 *2 (-854 *9 *7 *5)) (-5 *1 (-660 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-710)) (-4 *4 (-854 *8 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-781)) (-4 *6 (-781)) (-4 *7 (-738)) - (-4 *9 (-989)) (-4 *2 (-888 *9 *8 *6)) (-5 *1 (-687 *5 *6 *7 *8 *9 *4 *2)) - (-4 *8 (-738)) (-4 *4 (-888 *9 *7 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-749)) (-4 *6 (-749)) (-4 *7 (-710)) + (-4 *9 (-954)) (-4 *2 (-854 *9 *8 *6)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) + (-4 *8 (-710)) (-4 *4 (-854 *9 *7 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-693 *5 *7)) (-4 *5 (-989)) (-4 *6 (-989)) - (-4 *7 (-684)) (-5 *2 (-693 *6 *7)) (-5 *1 (-692 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-667 *5 *7)) (-4 *5 (-954)) (-4 *6 (-954)) + (-4 *7 (-658)) (-5 *2 (-667 *6 *7)) (-5 *1 (-666 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-693 *3 *4)) (-4 *4 (-684)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-667 *3 *4)) (-4 *4 (-658)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-724 *5)) (-4 *5 (-989)) (-4 *6 (-989)) - (-5 *2 (-724 *6)) (-5 *1 (-725 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-697 *5)) (-4 *5 (-954)) (-4 *6 (-954)) + (-5 *2 (-697 *6)) (-5 *1 (-698 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-741 *6)) - (-5 *1 (-744 *4 *5 *2 *6)) (-4 *4 (-741 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-713 *6)) + (-5 *1 (-716 *4 *5 *2 *6)) (-4 *4 (-713 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-766 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) - (-5 *2 (-766 *6)) (-5 *1 (-767 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-736 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) + (-5 *2 (-736 *6)) (-5 *1 (-737 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-766 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-766 *5)) (-4 *5 (-1041)) - (-4 *6 (-1041)) (-5 *1 (-767 *5 *6)))) + (-12 (-5 *2 (-736 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-736 *5)) (-4 *5 (-1005)) + (-4 *6 (-1005)) (-5 *1 (-737 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) - (-5 *2 (-775 *6)) (-5 *1 (-776 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) + (-5 *2 (-743 *6)) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-775 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1041)) - (-4 *6 (-1041)) (-5 *1 (-776 *5 *6)))) + (-12 (-5 *2 (-743 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1005)) + (-4 *6 (-1005)) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-812 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) - (-5 *2 (-812 *6)) (-5 *1 (-811 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-780 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) + (-5 *2 (-780 *6)) (-5 *1 (-779 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) - (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) + (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-817 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) - (-5 *2 (-817 *6)) (-5 *1 (-816 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-785 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) + (-5 *2 (-785 *6)) (-5 *1 (-784 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-823 *5 *6)) (-4 *5 (-1041)) (-4 *6 (-1041)) - (-4 *7 (-1041)) (-5 *2 (-823 *5 *7)) (-5 *1 (-824 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-791 *5 *6)) (-4 *5 (-1005)) (-4 *6 (-1005)) + (-4 *7 (-1005)) (-5 *2 (-791 *5 *7)) (-5 *1 (-792 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) - (-5 *2 (-825 *6)) (-5 *1 (-827 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) + (-5 *2 (-793 *6)) (-5 *1 (-795 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-989)) (-4 *6 (-989)) - (-5 *2 (-884 *6)) (-5 *1 (-885 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-850 *5)) (-4 *5 (-954)) (-4 *6 (-954)) + (-5 *2 (-850 *6)) (-5 *1 (-851 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-781)) (-4 *8 (-989)) - (-4 *6 (-738)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-749)) (-4 *8 (-954)) + (-4 *6 (-710)) (-4 *2 - (-13 (-1041) - (-10 -8 (-15 -3989 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-714)))))) - (-5 *1 (-890 *6 *7 *8 *5 *2)) (-4 *5 (-888 *8 *6 *7)))) + (-13 (-1005) + (-10 -8 (-15 -3823 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-687)))))) + (-5 *1 (-856 *6 *7 *8 *5 *2)) (-4 *5 (-854 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) - (-5 *2 (-896 *6)) (-5 *1 (-897 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-862 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) + (-5 *2 (-862 *6)) (-5 *1 (-863 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-904 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) - (-5 *2 (-904 *6)) (-5 *1 (-906 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) + (-5 *2 (-870 *6)) (-5 *1 (-872 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-989)) (-4 *6 (-989)) - (-5 *2 (-881 *6)) (-5 *1 (-921 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-847 *5)) (-4 *5 (-954)) (-4 *6 (-954)) + (-5 *2 (-847 *6)) (-5 *1 (-887 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-884 *4))) (-4 *4 (-989)) (-4 *2 (-888 (-884 *4) *5 *6)) - (-4 *5 (-738)) + (-12 (-5 *3 (-1 *2 (-850 *4))) (-4 *4 (-954)) (-4 *2 (-854 (-850 *4) *5 *6)) + (-4 *5 (-710)) (-4 *6 - (-13 (-781) - (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ "failed") (-1117)))))) - (-5 *1 (-924 *4 *5 *6 *2)))) + (-13 (-749) + (-10 -8 (-15 -3956 ((-1079) $)) (-15 -3815 ((-3 $ "failed") (-1079)))))) + (-5 *1 (-890 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-510)) (-4 *6 (-510)) (-4 *2 (-931 *6)) - (-5 *1 (-932 *5 *6 *4 *2)) (-4 *4 (-931 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-489)) (-4 *6 (-489)) (-4 *2 (-897 *6)) + (-5 *1 (-898 *5 *6 *4 *2)) (-4 *4 (-897 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-938 *6)) - (-5 *1 (-939 *4 *5 *2 *6)) (-4 *4 (-938 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-904 *6)) + (-5 *1 (-905 *4 *5 *2 *6)) (-4 *4 (-904 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) - (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) + (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) - (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) + (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-989)) (-4 *10 (-989)) (-14 *5 (-714)) - (-14 *6 (-714)) (-4 *8 (-195 *6 *7)) (-4 *9 (-195 *5 *7)) - (-4 *2 (-993 *5 *6 *10 *11 *12)) - (-5 *1 (-995 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-993 *5 *6 *7 *8 *9)) (-4 *11 (-195 *6 *10)) - (-4 *12 (-195 *5 *10)))) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-954)) (-4 *10 (-954)) (-14 *5 (-687)) + (-14 *6 (-687)) (-4 *8 (-193 *6 *7)) (-4 *9 (-193 *5 *7)) + (-4 *2 (-958 *5 *6 *10 *11 *12)) + (-5 *1 (-960 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-958 *5 *6 *7 *8 *9)) (-4 *11 (-193 *6 *10)) + (-4 *12 (-193 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1029 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) - (-5 *2 (-1029 *6)) (-5 *1 (-1030 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-993 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) + (-5 *2 (-993 *6)) (-5 *1 (-994 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1029 *5)) (-4 *5 (-780)) (-4 *5 (-1157)) - (-4 *6 (-1157)) (-5 *2 (-599 *6)) (-5 *1 (-1030 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-993 *5)) (-4 *5 (-748)) (-4 *5 (-1118)) + (-4 *6 (-1118)) (-5 *2 (-578 *6)) (-5 *1 (-994 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1032 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) - (-5 *2 (-1032 *6)) (-5 *1 (-1033 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-996 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) + (-5 *2 (-996 *6)) (-5 *1 (-997 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1035 *4 *2)) (-4 *4 (-780)) - (-4 *2 (-1090 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-999 *4 *2)) (-4 *4 (-748)) + (-4 *2 (-1053 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) - (-5 *2 (-1095 *6)) (-5 *1 (-1097 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) + (-5 *2 (-1058 *6)) (-5 *1 (-1060 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1095 *6)) (-5 *5 (-1095 *7)) - (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-1095 *8)) - (-5 *1 (-1098 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1058 *6)) (-5 *5 (-1058 *7)) + (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-1058 *8)) + (-5 *1 (-1061 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-989)) (-4 *6 (-989)) - (-5 *2 (-1111 *6)) (-5 *1 (-1112 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1074 *5)) (-4 *5 (-954)) (-4 *6 (-954)) + (-5 *2 (-1074 *6)) (-5 *1 (-1075 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1134 *3 *4)) (-4 *3 (-1041)) - (-4 *4 (-1041)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1096 *3 *4)) (-4 *3 (-1005)) + (-4 *4 (-1005)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1167 *5 *7 *9)) (-4 *5 (-989)) - (-4 *6 (-989)) (-14 *7 (-1117)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1167 *6 *8 *10)) (-5 *1 (-1168 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1117)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1128 *5 *7 *9)) (-4 *5 (-954)) + (-4 *6 (-954)) (-14 *7 (-1079)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1128 *6 *8 *10)) (-5 *1 (-1129 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1079)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) - (-5 *2 (-1174 *6)) (-5 *1 (-1175 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1135 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) + (-5 *2 (-1135 *6)) (-5 *1 (-1136 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-780)) (-4 *5 (-1157)) - (-4 *6 (-1157)) (-5 *2 (-1095 *6)) (-5 *1 (-1175 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1135 *5)) (-4 *5 (-748)) (-4 *5 (-1118)) + (-4 *6 (-1118)) (-5 *2 (-1058 *6)) (-5 *1 (-1136 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1176 *5 *6)) (-14 *5 (-1117)) (-4 *6 (-989)) - (-4 *8 (-989)) (-5 *2 (-1176 *7 *8)) (-5 *1 (-1177 *5 *6 *7 *8)) - (-14 *7 (-1117)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1137 *5 *6)) (-14 *5 (-1079)) (-4 *6 (-954)) + (-4 *8 (-954)) (-5 *2 (-1137 *7 *8)) (-5 *1 (-1138 *5 *6 *7 *8)) + (-14 *7 (-1079)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-4 *2 (-1183 *6)) - (-5 *1 (-1184 *5 *4 *6 *2)) (-4 *4 (-1183 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-4 *2 (-1144 *6)) + (-5 *1 (-1145 *5 *4 *6 *2)) (-4 *4 (-1144 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1188 *5 *7 *9)) (-4 *5 (-989)) - (-4 *6 (-989)) (-14 *7 (-1117)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1188 *6 *8 *10)) (-5 *1 (-1189 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1117)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1149 *5 *7 *9)) (-4 *5 (-954)) + (-4 *6 (-954)) (-14 *7 (-1079)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1149 *6 *8 *10)) (-5 *1 (-1150 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1079)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-4 *2 (-1200 *6)) - (-5 *1 (-1198 *5 *6 *4 *2)) (-4 *4 (-1200 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-4 *2 (-1161 *6)) + (-5 *1 (-1159 *5 *6 *4 *2)) (-4 *4 (-1161 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1207 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) - (-5 *2 (-1207 *6)) (-5 *1 (-1208 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) + (-5 *2 (-1168 *6)) (-5 *1 (-1169 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1207 *5)) - (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-1207 *6)) (-5 *1 (-1208 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1168 *5)) + (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1168 *6)) (-5 *1 (-1169 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-1231 *3 *4)) (-4 *4 (-779))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-34)) (-5 *2 (-714)))) - ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-208)))) - ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-911)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-1192 *3 *4)) (-4 *4 (-747))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-34)) (-5 *2 (-687)))) + ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-206)))) + ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-877)))) ((*1 *2 *1) - (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) - (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-499)))) + (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) + (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-478)))) ((*1 *2 *1) - (-12 (-5 *2 (-714)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-989)) (-4 *4 (-779))))) + (-12 (-5 *2 (-687)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-954)) (-4 *4 (-747))))) (((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-762 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-1231 *3 *2)) (-4 *3 (-989))))) + (-12 (-4 *1 (-1191 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-732 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-747)) (-5 *1 (-1192 *3 *2)) (-4 *3 (-954))))) (((*1 *2 *1) - (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-762 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-1231 *3 *2)) (-4 *3 (-989))))) + (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-732 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-747)) (-5 *1 (-1192 *3 *2)) (-4 *3 (-954))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1232 *4 *2)) (-4 *1 (-329 *4 *2)) (-4 *4 (-781)) - (-4 *2 (-146)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1227 *3 *2)) (-4 *3 (-781)) (-4 *2 (-989)))) + (-12 (-5 *3 (-1193 *4 *2)) (-4 *1 (-319 *4 *2)) (-4 *4 (-749)) + (-4 *2 (-144)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-749)) (-4 *2 (-954)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-762 *4)) (-4 *1 (-1227 *4 *2)) (-4 *4 (-781)) (-4 *2 (-989)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-989)) (-5 *1 (-1231 *2 *3)) (-4 *3 (-779))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-233)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) + (-12 (-5 *3 (-732 *4)) (-4 *1 (-1188 *4 *2)) (-4 *4 (-749)) (-4 *2 (-954)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-954)) (-5 *1 (-1192 *2 *3)) (-4 *3 (-747))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-231)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) ((*1 *2 *1) - (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-989)) (-4 *4 (-779))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-954)) (-4 *4 (-747))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1041)) (-5 *2 (-1 *5 *4)) (-5 *1 (-641 *4 *5)) - (-4 *4 (-1041)))) - ((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-268 (-499))) (-5 *1 (-867)))) - ((*1 *2 *2) (-12 (-4 *3 (-1041)) (-5 *1 (-868 *3 *2)) (-4 *2 (-375 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1227 *3 *2)) (-4 *3 (-781)) (-4 *2 (-989)))) - ((*1 *2 *1) (-12 (-4 *2 (-989)) (-5 *1 (-1231 *2 *3)) (-4 *3 (-779))))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1005)) (-5 *2 (-1 *5 *4)) (-5 *1 (-619 *4 *5)) + (-4 *4 (-1005)))) + ((*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-261 (-478))) (-5 *1 (-833)))) + ((*1 *2 *2) (-12 (-4 *3 (-1005)) (-5 *1 (-834 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-749)) (-4 *2 (-954)))) + ((*1 *2 *1) (-12 (-4 *2 (-954)) (-5 *1 (-1192 *2 *3)) (-4 *3 (-747))))) (((*1 *2 *1) - (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-989)) (-4 *4 (-779))))) -(((*1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) - ((*1 *1 *1) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-989)) (-4 *3 (-779))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-954)) (-4 *4 (-747))))) +(((*1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) + ((*1 *1 *1) (-12 (-5 *1 (-1192 *2 *3)) (-4 *2 (-954)) (-4 *3 (-747))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)) (-4 *2 (-318)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-179)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)) (-4 *2 (-308)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-177)))) ((*1 *1 *1 *1) - (-3677 (-12 (-5 *1 (-247 *2)) (-4 *2 (-318)) (-4 *2 (-1157))) - (-12 (-5 *1 (-247 *2)) (-4 *2 (-427)) (-4 *2 (-1157))))) - ((*1 *1 *1 *1) (-4 *1 (-318))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-333)))) + (OR (-12 (-5 *1 (-245 *2)) (-4 *2 (-308)) (-4 *2 (-1118))) + (-12 (-5 *1 (-245 *2)) (-4 *2 (-406)) (-4 *2 (-1118))))) + ((*1 *1 *1 *1) (-4 *1 (-308))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-323)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1065 *3 (-566 *1))) (-4 *3 (-510)) (-4 *3 (-1041)) - (-4 *1 (-375 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-427))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-305)) (-5 *1 (-481 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-488))) + (-12 (-5 *2 (-1028 *3 (-545 *1))) (-4 *3 (-489)) (-4 *3 (-1005)) + (-4 *1 (-357 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-406))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-295)) (-5 *1 (-460 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-467))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-146)) (-5 *1 (-574 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-684) *4)))) + (-12 (-4 *4 (-144)) (-5 *1 (-553 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-658) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-146)) (-5 *1 (-574 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-684) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-590 *2)) (-4 *2 (-146)) (-4 *2 (-318)))) + (-12 (-4 *4 (-144)) (-5 *1 (-553 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-658) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-144)) (-4 *2 (-308)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-146)) (-5 *1 (-610 *2 *4 *3)) (-4 *2 (-675 *4)) - (-4 *3 (|SubsetCategory| (-684) *4)))) + (-12 (-4 *4 (-144)) (-5 *1 (-589 *2 *4 *3)) (-4 *2 (-649 *4)) + (-4 *3 (|SubsetCategory| (-658) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-146)) (-5 *1 (-610 *3 *4 *2)) (-4 *3 (-675 *4)) - (-4 *2 (|SubsetCategory| (-684) *4)))) + (-12 (-4 *4 (-144)) (-5 *1 (-589 *3 *4 *2)) (-4 *3 (-649 *4)) + (-4 *2 (|SubsetCategory| (-658) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) - (-4 *4 (-327 *2)) (-4 *2 (-318)))) - ((*1 *1 *1 *1) (-5 *1 (-797))) + (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) + (-4 *4 (-317 *2)) (-4 *2 (-308)))) + ((*1 *1 *1 *1) (-5 *1 (-765))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-800 *2 *3 *4 *5)) (-4 *2 (-318)) (-4 *2 (-989)) - (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-714))) (-14 *5 (-714)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)))) + (|partial| -12 (-5 *1 (-768 *2 *3 *4 *5)) (-4 *2 (-308)) (-4 *2 (-954)) + (-14 *3 (-578 (-1079))) (-14 *4 (-578 (-687))) (-14 *5 (-687)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1005)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-993 *3 *4 *2 *5 *6)) (-4 *2 (-989)) (-4 *5 (-195 *4 *2)) - (-4 *6 (-195 *3 *2)) (-4 *2 (-318)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-318)))) + (-12 (-4 *1 (-958 *3 *4 *2 *5 *6)) (-4 *2 (-954)) (-4 *5 (-193 *4 *2)) + (-4 *6 (-193 *3 *2)) (-4 *2 (-308)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-308)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-318)) (-4 *2 (-989)) (-4 *3 (-781)) (-4 *4 (-738)) - (-14 *6 (-599 *3)) (-5 *1 (-1220 *2 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-888 *2 *4 *3)) (-14 *7 (-599 (-714))) (-14 *8 (-714)))) + (|partial| -12 (-4 *2 (-308)) (-4 *2 (-954)) (-4 *3 (-749)) (-4 *4 (-710)) + (-14 *6 (-578 *3)) (-5 *1 (-1181 *2 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-854 *2 *4 *3)) (-14 *7 (-578 (-687))) (-14 *8 (-687)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-318)) (-4 *2 (-989)) (-4 *3 (-779))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) + (-12 (-5 *1 (-1192 *2 *3)) (-4 *2 (-308)) (-4 *2 (-954)) (-4 *3 (-747))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) ((*1 *2 *1) - (-12 (-5 *2 (-714)) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) - (-14 *4 (-599 (-1117))))) + (-12 (-5 *2 (-687)) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) + (-14 *4 (-578 (-1079))))) ((*1 *2 *1) - (-12 (-5 *2 (-499)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) - (-14 *4 (-599 (-1117))))) + (-12 (-5 *2 (-478)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) + (-14 *4 (-578 (-1079))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-989)) (-4 *3 (-781)) - (-4 *5 (-227 *3)) (-4 *6 (-738)) (-5 *2 (-714)))) - ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-228)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1111 *8)) (-5 *4 (-599 *6)) (-4 *6 (-781)) - (-4 *8 (-888 *7 *5 *6)) (-4 *5 (-738)) (-4 *7 (-989)) (-5 *2 (-599 (-714))) - (-5 *1 (-275 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-857)))) - ((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) (-5 *2 (-714)))) - ((*1 *2 *1) (-12 (-4 *1 (-424 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-510)) (-5 *2 (-499)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1183 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-666 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) - ((*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) - ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) - ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) + (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-954)) (-4 *3 (-749)) + (-4 *5 (-225 *3)) (-4 *6 (-710)) (-5 *2 (-687)))) + ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-226)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1074 *8)) (-5 *4 (-578 *6)) (-4 *6 (-749)) + (-4 *8 (-854 *7 *5 *6)) (-4 *5 (-710)) (-4 *7 (-954)) (-5 *2 (-578 (-687))) + (-5 *1 (-268 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-823)))) + ((*1 *2 *1) + (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) (-5 *2 (-687)))) + ((*1 *2 *1) (-12 (-4 *1 (-403 *3 *2)) (-4 *3 (-144)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-489)) (-5 *2 (-478)) (-5 *1 (-557 *3 *4)) (-4 *4 (-1144 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-640 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) + ((*1 *2 *1) (-12 (-4 *1 (-754 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) + ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-806 *3)) (-4 *3 (-1005)))) + ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-809 *3)) (-4 *3 (-1005)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-599 *6)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-599 (-714))))) + (-12 (-5 *3 (-578 *6)) (-4 *1 (-854 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-578 (-687))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-888 *4 *5 *3)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) - (-5 *2 (-714)))) + (-12 (-4 *1 (-854 *4 *5 *3)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) + (-5 *2 (-687)))) ((*1 *2 *1) - (-12 (-4 *1 (-913 *3 *2 *4)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *2 (-737)))) + (-12 (-4 *1 (-879 *3 *2 *4)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *2 (-709)))) ((*1 *2 *1) - (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-714)))) + (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-687)))) ((*1 *2 *1) - (-12 (-4 *1 (-1171 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1200 *3)) (-5 *2 (-499)))) + (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1161 *3)) (-5 *2 (-478)))) ((*1 *2 *1) - (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1169 *3)) - (-5 *2 (-361 (-499))))) - ((*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-766 (-857))))) + (-12 (-4 *1 (-1153 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1130 *3)) + (-5 *2 (-343 (-478))))) + ((*1 *2 *1) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-308)) (-5 *2 (-736 (-823))))) ((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-714))))) + (-12 (-4 *1 (-1191 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-687))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-714)) (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)))) + (-12 (-5 *2 (-687)) (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-714)) (-4 *1 (-1230 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989))))) + (-12 (-5 *2 (-687)) (-4 *1 (-1191 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954))))) (((*1 *1 *2) - (-12 (-5 *2 (-1207 *3)) (-4 *3 (-318)) (-14 *6 (-1207 (-647 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1157)))) + (-12 (-5 *2 (-1168 *3)) (-4 *3 (-308)) (-14 *6 (-1168 (-625 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1118)))) ((*1 *2 *3) - (-12 (-5 *3 (-1207 (-647 *4))) (-4 *4 (-146)) - (-5 *2 (-1207 (-647 (-361 (-884 *4))))) (-5 *1 (-163 *4)))) + (-12 (-5 *3 (-1168 (-625 *4))) (-4 *4 (-144)) + (-5 *2 (-1168 (-625 (-343 (-850 *4))))) (-5 *1 (-161 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1032 (-268 *4))) (-4 *4 (-13 (-781) (-510) (-569 (-333)))) - (-5 *2 (-1032 (-333))) (-5 *1 (-218 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-228)))) + (-12 (-5 *3 (-996 (-261 *4))) (-4 *4 (-13 (-749) (-489) (-548 (-323)))) + (-5 *2 (-996 (-323))) (-5 *1 (-216 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-226)))) ((*1 *2 *1) - (-12 (-4 *2 (-1183 *3)) (-5 *1 (-243 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) + (-12 (-4 *2 (-1144 *3)) (-5 *1 (-241 *3 *2 *4 *5 *6 *7)) (-4 *3 (-144)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1188 *4 *5 *6)) (-4 *4 (-13 (-27) (-1143) (-375 *3))) - (-14 *5 (-1117)) (-14 *6 *4) - (-4 *3 (-13 (-978 (-499)) (-596 (-499)) (-406))) - (-5 *1 (-267 *3 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-5 *2 (-268 *5)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 (-1117))) - (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) + (-12 (-5 *2 (-1149 *4 *5 *6)) (-4 *4 (-13 (-27) (-1104) (-357 *3))) + (-14 *5 (-1079)) (-14 *6 *4) + (-4 *3 (-13 (-943 (-478)) (-575 (-478)) (-385))) + (-5 *1 (-260 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-305)) (-4 *2 (-283 *4)) (-5 *1 (-303 *3 *4 *2)) - (-4 *3 (-283 *4)))) + (-12 (-4 *4 (-295)) (-4 *2 (-276 *4)) (-5 *1 (-293 *3 *4 *2)) + (-4 *3 (-276 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-305)) (-4 *2 (-283 *4)) (-5 *1 (-303 *2 *4 *3)) - (-4 *3 (-283 *4)))) + (-12 (-4 *4 (-295)) (-4 *2 (-276 *4)) (-5 *1 (-293 *2 *4 *3)) + (-4 *3 (-276 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) - (-5 *2 (-1232 *3 *4)))) + (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) + (-5 *2 (-1193 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) - (-5 *2 (-1223 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-781)) (-4 *3 (-146)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) - (-4 *1 (-338)))) - ((*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-338)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-338)))) - ((*1 *1 *2) (-12 (-5 *2 (-647 (-657))) (-4 *1 (-338)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) - (-4 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-340)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) - (-4 *1 (-351)))) - ((*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-351)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-351)))) - ((*1 *1 *2) - (-12 (-5 *2 (-247 (-268 (-142 (-333))))) (-5 *1 (-352 *3 *4 *5 *6)) - (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1="void"))) - (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-247 (-268 (-333)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) - (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) - (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-247 (-268 (-499)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) - (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) - (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-268 (-142 (-333)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) - (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) - (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-268 (-333))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) - (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) - (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-268 (-499))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) - (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) - (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-247 (-268 (-652)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) - (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) - (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-247 (-268 (-657)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) - (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) - (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-247 (-268 (-659)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) - (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) - (-14 *6 (-1121)))) + (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) + (-5 *2 (-1184 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-749)) (-4 *3 (-144)))) ((*1 *1 *2) - (-12 (-5 *2 (-268 (-652))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) - (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) - (-14 *6 (-1121)))) + (-12 (-5 *2 (-343 (-850 (-343 *3)))) (-4 *3 (-489)) (-4 *3 (-1005)) + (-4 *1 (-357 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-268 (-657))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) - (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) - (-14 *6 (-1121)))) + (-12 (-5 *2 (-850 (-343 *3))) (-4 *3 (-489)) (-4 *3 (-1005)) + (-4 *1 (-357 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-268 (-659))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) - (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) - (-14 *6 (-1121)))) + (-12 (-5 *2 (-343 *3)) (-4 *3 (-489)) (-4 *3 (-1005)) (-4 *1 (-357 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) - (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) - (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) - (-14 *6 (-1121)))) + (-12 (-5 *2 (-1028 *3 (-545 *1))) (-4 *3 (-954)) (-4 *3 (-1005)) + (-4 *1 (-357 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-599 (-284))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) - (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) - (-14 *6 (-1121)))) + (-12 (-5 *2 (-277 *4)) (-4 *4 (-13 (-749) (-21))) (-5 *1 (-365 *3 *4)) + (-4 *3 (-13 (-144) (-38 (-343 (-478))))))) ((*1 *1 *2) - (-12 (-5 *2 (-284)) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) - (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) - (-14 *6 (-1121)))) + (-12 (-5 *1 (-365 *2 *3)) (-4 *2 (-13 (-144) (-38 (-343 (-478))))) + (-4 *3 (-13 (-749) (-21))))) + ((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-370)))) + ((*1 *2 *1) (-12 (-5 *2 (-1079)) (-5 *1 (-370)))) + ((*1 *1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-370)))) + ((*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-370)))) + ((*1 *1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-372)))) ((*1 *1 *2) - (-12 (-5 *2 (-361 (-884 (-361 *3)))) (-4 *3 (-510)) (-4 *3 (-1041)) - (-4 *1 (-375 *3)))) + (-12 (-5 *2 (-1168 (-343 (-850 *3)))) (-4 *3 (-144)) + (-14 *6 (-1168 (-625 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-14 *4 (-823)) + (-14 *5 (-578 (-1079))))) + ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *1 (-401)))) + ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-884 (-361 *3))) (-4 *3 (-510)) (-4 *3 (-1041)) - (-4 *1 (-375 *3)))) + (-12 (-5 *2 (-1149 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-1079)) (-14 *5 *3) + (-5 *1 (-407 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-361 *3)) (-4 *3 (-510)) (-4 *3 (-1041)) (-4 *1 (-375 *3)))) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-407 *3 *4 *5)) + (-4 *3 (-954)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1065 *3 (-566 *1))) (-4 *3 (-989)) (-4 *3 (-1041)) - (-4 *1 (-375 *3)))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-710)) + (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-578 (-1119))) (-5 *1 (-456)))) + ((*1 *1 *2) (-12 (-5 *2 (-578 (-1119))) (-5 *1 (-534)))) + ((*1 *1 *2) (-12 (-4 *3 (-144)) (-5 *1 (-535 *3 *2)) (-4 *2 (-676 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-547 *2)) (-4 *2 (-1118)))) + ((*1 *1 *2) (-12 (-4 *1 (-550 *2)) (-4 *2 (-1118)))) + ((*1 *1 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-954)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1189 *3 *4)) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) + (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1184 *3 *4)) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) + (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) + ((*1 *1 *2) (-12 (-4 *3 (-144)) (-5 *1 (-567 *3 *2)) (-4 *2 (-676 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-613 *3)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-732 *3)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-732 *3)) (-5 *1 (-613 *3)) (-4 *3 (-749)))) + ((*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-617)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-618 *3)) (-4 *3 (-1005)))) ((*1 *1 *2) - (-12 (-5 *2 (-285 *4)) (-4 *4 (-13 (-781) (-21))) (-5 *1 (-383 *3 *4)) - (-4 *3 (-13 (-146) (-38 (-361 (-499))))))) - ((*1 *1 *2) - (-12 (-5 *1 (-383 *2 *3)) (-4 *2 (-13 (-146) (-38 (-361 (-499))))) - (-4 *3 (-13 (-781) (-21))))) - ((*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-388)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-390)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) - (-4 *1 (-394)))) - ((*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-394)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-394)))) - ((*1 *1 *2) (-12 (-5 *2 (-1207 (-657))) (-4 *1 (-394)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) - (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-395)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1207 (-361 (-884 *3)))) (-4 *3 (-146)) - (-14 *6 (-1207 (-647 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *4 (-857)) - (-14 *5 (-599 (-1117))))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *1 (-422)))) - ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-422)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1188 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3) - (-5 *1 (-428 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-428 *3 *4 *5)) - (-4 *3 (-989)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-318)) (-4 *4 (-738)) - (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-477)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-555)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-556 *3 *2)) (-4 *2 (-702 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-568 *2)) (-4 *2 (-1157)))) - ((*1 *1 *2) (-12 (-4 *1 (-571 *2)) (-4 *2 (-1157)))) - ((*1 *1 *2) (-12 (-4 *1 (-576 *2)) (-4 *2 (-989)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1228 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) - (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1223 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) - (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-588 *3 *2)) (-4 *2 (-702 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-762 *3)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) - ((*1 *2 *1) - (-12 (-5 *2 (-896 (-896 (-896 *3)))) (-5 *1 (-633 *3)) (-4 *3 (-1041)))) - ((*1 *1 *2) - (-12 (-5 *2 (-896 (-896 (-896 *3)))) (-4 *3 (-1041)) (-5 *1 (-633 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-762 *3)) (-5 *1 (-635 *3)) (-4 *3 (-781)))) - ((*1 *1 *2) (-12 (-5 *2 (-1055)) (-5 *1 (-639)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-640 *3)) (-4 *3 (-1041)))) - ((*1 *1 *2) - (-12 (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *2)) (-4 *4 (-327 *3)) - (-4 *2 (-327 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-142 (-333))) (-5 *1 (-652)))) - ((*1 *1 *2) (-12 (-5 *2 (-142 (-659))) (-5 *1 (-652)))) - ((*1 *1 *2) (-12 (-5 *2 (-142 (-657))) (-5 *1 (-652)))) - ((*1 *1 *2) (-12 (-5 *2 (-142 (-499))) (-5 *1 (-652)))) - ((*1 *1 *2) (-12 (-5 *2 (-142 (-333))) (-5 *1 (-652)))) - ((*1 *1 *2) (-12 (-5 *2 (-659)) (-5 *1 (-657)))) - ((*1 *2 *1) (-12 (-5 *2 (-333)) (-5 *1 (-657)))) - ((*1 *2 *3) (-12 (-5 *3 (-268 (-499))) (-5 *2 (-268 (-659))) (-5 *1 (-659)))) - ((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1099)) (-5 *1 (-668)))) - ((*1 *2 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-669 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *2)) (-4 *4 (-317 *3)) + (-4 *2 (-317 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1062)) (-5 *1 (-642)))) + ((*1 *2 *1) + (-12 (-4 *2 (-144)) (-5 *1 (-643 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-144)) (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-599 (-2 (|:| -4104 *3) (|:| -4088 *4)))) (-4 *3 (-989)) - (-4 *4 (-684)) (-5 *1 (-693 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-706)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) - (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) - (|:| |relerr| (-179)))) - (|:| |mdnia| - (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) - (|:| |abserr| (-179)) (|:| |relerr| (-179)))))) - (-5 *1 (-712)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) - (|:| |abserr| (-179)) (|:| |relerr| (-179)))) - (-5 *1 (-712)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) - (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) - (|:| |relerr| (-179)))) - (-5 *1 (-712)))) - ((*1 *2 *3) (-12 (-5 *2 (-716)) (-5 *1 (-717 *3)) (-4 *3 (-1157)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) - (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) - (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) - (|:| |abserr| (-179)) (|:| |relerr| (-179)))) - (-5 *1 (-751)))) + (-12 (-5 *2 (-578 (-2 (|:| -3938 *3) (|:| -3922 *4)))) (-4 *3 (-954)) + (-4 *4 (-658)) (-5 *1 (-667 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-680)))) + ((*1 *2 *3) (-12 (-5 *2 (-689)) (-5 *1 (-690 *3)) (-4 *3 (-1118)))) + ((*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-760)))) + ((*1 *2 *3) (-12 (-5 *3 (-850 (-48))) (-5 *2 (-261 (-478))) (-5 *1 (-777)))) + ((*1 *2 *3) + (-12 (-5 *3 (-343 (-850 (-48)))) (-5 *2 (-261 (-478))) (-5 *1 (-777)))) + ((*1 *1 *2) (-12 (-5 *1 (-796 *2)) (-4 *2 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-732 *3)) (-5 *1 (-796 *3)) (-4 *3 (-749)))) + ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-5 *1 (-806 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1005)) (-5 *1 (-806 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-578 (-806 *3))) (-4 *3 (-1005)) (-5 *1 (-809 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-806 *3))) (-5 *1 (-809 *3)) (-4 *3 (-1005)))) + ((*1 *1 *2) (-12 (-5 *2 (-343 (-341 *3))) (-4 *3 (-254)) (-5 *1 (-818 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-343 *3)) (-5 *1 (-818 *3)) (-4 *3 (-254)))) + ((*1 *2 *3) + (-12 (-5 *3 (-410)) (-5 *2 (-261 *4)) (-5 *1 (-824 *4)) (-4 *4 (-489)))) + ((*1 *2 *3) (-12 (-5 *2 (-1174)) (-5 *1 (-939 *3)) (-4 *3 (-1118)))) + ((*1 *2 *3) (-12 (-5 *3 (-258)) (-5 *1 (-939 *2)) (-4 *2 (-1118)))) ((*1 *1 *2) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) - (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) - (|:| |ub| (-599 (-775 (-179)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))))) - (-5 *1 (-774)))) + (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *1 (-940 *3 *4 *5 *2 *6)) (-4 *2 (-854 *3 *4 *5)) (-14 *6 (-578 *2)))) + ((*1 *2 *3) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-945 *3)) (-4 *3 (-489)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))) - (-5 *1 (-774)))) + (-12 (-4 *3 (-954)) (-4 *4 (-749)) (-5 *1 (-1029 *3 *4 *2)) + (-4 *2 (-854 *3 (-463 *4) *4)))) ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) - (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) - (|:| |ub| (-599 (-775 (-179)))))) - (-5 *1 (-774)))) - ((*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-792)))) - ((*1 *2 *3) (-12 (-5 *3 (-884 (-48))) (-5 *2 (-268 (-499))) (-5 *1 (-809)))) - ((*1 *2 *3) - (-12 (-5 *3 (-361 (-884 (-48)))) (-5 *2 (-268 (-499))) (-5 *1 (-809)))) - ((*1 *1 *2) (-12 (-5 *1 (-828 *2)) (-4 *2 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-762 *3)) (-5 *1 (-828 *3)) (-4 *3 (-781)))) + (-12 (-4 *3 (-954)) (-4 *2 (-749)) (-5 *1 (-1029 *3 *2 *4)) + (-4 *4 (-854 *3 (-463 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-765)))) + ((*1 *1 *2) (-12 (-5 *2 (-115)) (-4 *1 (-1047)))) + ((*1 *2 *3) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1064 *3)) (-4 *3 (-954)))) ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |pde| (-599 (-268 (-179)))) - (|:| |constraints| - (-599 - (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) - (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) - (|:| |dFinish| (-647 (-179)))))) - (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) - (|:| |tol| (-179)))) - (-5 *1 (-834)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-840 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-5 *1 (-840 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-840 *3))) (-4 *3 (-1041)) (-5 *1 (-843 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-840 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) - ((*1 *1 *2) (-12 (-5 *2 (-361 (-359 *3))) (-4 *3 (-261)) (-5 *1 (-852 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-361 *3)) (-5 *1 (-852 *3)) (-4 *3 (-261)))) - ((*1 *2 *3) - (-12 (-5 *3 (-431)) (-5 *2 (-268 *4)) (-5 *1 (-858 *4)) (-4 *4 (-510)))) - ((*1 *2 *3) (-12 (-5 *2 (-1213)) (-5 *1 (-973 *3)) (-4 *3 (-1157)))) - ((*1 *2 *3) (-12 (-5 *3 (-265)) (-5 *1 (-973 *2)) (-4 *2 (-1157)))) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1071 *3 *4 *5)) + (-4 *3 (-954)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *2 (-888 *3 *4 *5)) (-14 *6 (-599 *2)))) - ((*1 *2 *3) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-980 *3)) (-4 *3 (-510)))) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1078 *3 *4 *5)) + (-4 *3 (-954)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-4 *3 (-989)) (-4 *4 (-781)) (-5 *1 (-1066 *3 *4 *2)) - (-4 *2 (-888 *3 (-484 *4) *4)))) + (-12 (-5 *2 (-1137 *4 *3)) (-4 *3 (-954)) (-14 *4 (-1079)) (-14 *5 *3) + (-5 *1 (-1078 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1091 (-1079) (-372))) (-5 *1 (-1083)))) + ((*1 *2 *1) (-12 (-5 *2 (-1062)) (-5 *1 (-1084)))) + ((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-1084)))) + ((*1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-1084)))) + ((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1084)))) + ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1092 *3)) (-4 *3 (-1005)))) + ((*1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *1 (-1099 *3)) (-4 *3 (-1005)))) + ((*1 *1 *2) (-12 (-5 *2 (-850 *3)) (-4 *3 (-954)) (-5 *1 (-1111 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-1111 *3)) (-4 *3 (-954)))) ((*1 *1 *2) - (-12 (-4 *3 (-989)) (-4 *2 (-781)) (-5 *1 (-1066 *3 *2 *4)) - (-4 *4 (-888 *3 (-484 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-797)))) - ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1084)))) - ((*1 *2 *3) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-989)))) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1128 *3 *4 *5)) + (-4 *3 (-954)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-993 *3)) (-4 *3 (-1118)) (-5 *1 (-1135 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) - (-4 *3 (-989)) (-14 *5 *3))) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1158 *3 *4 *5)) + (-4 *3 (-954)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) - (-4 *3 (-989)) (-14 *5 *3))) + (-12 (-5 *2 (-1137 *4 *3)) (-4 *3 (-954)) (-14 *4 (-1079)) (-14 *5 *3) + (-5 *1 (-1158 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1079)) (-5 *1 (-1165 *3)) (-14 *3 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1171)) (-5 *1 (-1170)))) + ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1171)))) + ((*1 *1 *2) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-749)) + (-4 *4 (-144)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1184 *3 *4)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-749)) + (-4 *4 (-144)))) ((*1 *1 *2) - (-12 (-5 *2 (-1176 *4 *3)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3) - (-5 *1 (-1115 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1116)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129 (-1117) (-390))) (-5 *1 (-1121)))) - ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1130 *3)) (-4 *3 (-1041)))) - ((*1 *2 *3) (-12 (-5 *2 (-1137)) (-5 *1 (-1138 *3)) (-4 *3 (-1041)))) - ((*1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-989)) (-5 *1 (-1150 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1150 *3)) (-4 *3 (-989)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1167 *3 *4 *5)) - (-4 *3 (-989)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1029 *3)) (-4 *3 (-1157)) (-5 *1 (-1174 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1197 *3 *4 *5)) - (-4 *3 (-989)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1176 *4 *3)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3) - (-5 *1 (-1197 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1204 *3)) (-14 *3 *2))) - ((*1 *2 *3) (-12 (-5 *3 (-422)) (-5 *2 (-1210)) (-5 *1 (-1209)))) - ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1210)))) - ((*1 *1 *2) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1232 *3 *4)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-781)) - (-4 *4 (-146)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1223 *3 *4)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-781)) - (-4 *4 (-146)))) - ((*1 *1 *2) - (-12 (-5 *2 (-622 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) - (-5 *1 (-1228 *3 *4))))) + (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) + (-5 *1 (-1189 *3 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-1223 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) - (-5 *1 (-622 *3 *4)))) + (|partial| -12 (-5 *2 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) + (-5 *1 (-601 *3 *4)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-622 *3 *4)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-781)) - (-4 *4 (-146))))) + (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-749)) + (-4 *4 (-144))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146)))) + (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *1 (-131 *4 *2)) (-4 *2 (-375 *4)))) + (-12 (-5 *3 (-1079)) (-4 *4 (-489)) (-5 *1 (-129 *4 *2)) (-4 *2 (-357 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1032 *2)) (-4 *2 (-375 *4)) (-4 *4 (-510)) - (-5 *1 (-131 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1032 *1)) (-4 *1 (-133)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1117)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-419 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + (-12 (-5 *3 (-996 *2)) (-4 *2 (-357 *4)) (-4 *4 (-489)) + (-5 *1 (-129 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-131)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1079)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-398 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-714)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146))))) + (-12 (-5 *2 (-687)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144))))) (((*1 *1 *2) - (-12 (-5 *2 (-599 (-499))) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) - (-14 *4 (-599 (-1117))))) + (-12 (-5 *2 (-578 (-478))) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) + (-14 *4 (-578 (-1079))))) ((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) - ((*1 *1 *1) (-4 *1 (-238))) - ((*1 *1 *1) - (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) - (-4 *4 (-343)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) + ((*1 *1 *1) (-4 *1 (-236))) ((*1 *1 *2) - (-12 (-5 *2 (-622 *3 *4)) (-4 *3 (-781)) - (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-5 *1 (-582 *3 *4 *5)) - (-14 *5 (-857)))) + (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-749)) + (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-5 *1 (-561 *3 *4 *5)) + (-14 *5 (-823)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-714)) (-4 *4 (-13 (-989) (-675 (-361 (-499))))) (-4 *5 (-781)) - (-5 *1 (-1224 *4 *5 *2)) (-4 *2 (-1230 *5 *4)))) + (-12 (-5 *3 (-687)) (-4 *4 (-13 (-954) (-649 (-343 (-478))))) (-4 *5 (-749)) + (-5 *1 (-1185 *4 *5 *2)) (-4 *2 (-1191 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-714)) (-5 *1 (-1228 *3 *4)) (-4 *4 (-675 (-361 (-499)))) - (-4 *3 (-781)) (-4 *4 (-146))))) + (-12 (-5 *2 (-687)) (-5 *1 (-1189 *3 *4)) (-4 *4 (-649 (-343 (-478)))) + (-4 *3 (-749)) (-4 *4 (-144))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) - ((*1 *1 *1) (-4 *1 (-238))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) + ((*1 *1 *1) (-4 *1 (-236))) ((*1 *2 *3) - (-12 (-5 *3 (-359 *4)) (-4 *4 (-510)) - (-5 *2 (-599 (-2 (|:| -4104 (-714)) (|:| |logand| *4)))) (-5 *1 (-274 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) - (-4 *4 (-343)))) + (-12 (-5 *3 (-341 *4)) (-4 *4 (-489)) + (-5 *2 (-578 (-2 (|:| -3938 (-687)) (|:| |logand| *4)))) (-5 *1 (-267 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-622 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) - (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) + (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) + (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-714)) (-4 *4 (-13 (-989) (-675 (-361 (-499))))) (-4 *5 (-781)) - (-5 *1 (-1224 *4 *5 *2)) (-4 *2 (-1230 *5 *4)))) + (-12 (-5 *3 (-687)) (-4 *4 (-13 (-954) (-649 (-343 (-478))))) (-4 *5 (-749)) + (-5 *1 (-1185 *4 *5 *2)) (-4 *2 (-1191 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-714)) (-5 *1 (-1228 *3 *4)) (-4 *4 (-675 (-361 (-499)))) - (-4 *3 (-781)) (-4 *4 (-146))))) + (-12 (-5 *2 (-687)) (-5 *1 (-1189 *3 *4)) (-4 *4 (-649 (-343 (-478)))) + (-4 *3 (-749)) (-4 *4 (-144))))) (((*1 *2 *1) - (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) - (-5 *2 (-2 (|:| |k| (-762 *3)) (|:| |c| *4)))))) + (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) + (-5 *2 (-2 (|:| |k| (-732 *3)) (|:| |c| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1232 *3 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) - (-4 *4 (-146)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) + (-12 (-5 *2 (-1193 *3 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) + (-4 *4 (-144)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-329 *2)) (-4 *2 (-1005)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-762 *3)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989))))) + (-12 (-5 *2 (-732 *3)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1232 *3 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) - (-4 *4 (-146)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) + (-12 (-5 *2 (-1193 *3 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) + (-4 *4 (-144)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-329 *2)) (-4 *2 (-1005)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-762 *3)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-339 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1041)))) + (-12 (-5 *2 (-732 *3)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-328 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1005)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-499)) (-5 *2 (-1095 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-989)))) + (-12 (-5 *4 (-478)) (-5 *2 (-1058 *3)) (-5 *1 (-1064 *3)) (-4 *3 (-954)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-762 *4)) (-4 *4 (-781)) (-4 *1 (-1227 *4 *3)) (-4 *3 (-989))))) + (-12 (-5 *2 (-732 *4)) (-4 *4 (-749)) (-4 *1 (-1188 *4 *3)) (-4 *3 (-954))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-85)))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-545 *3)) (-4 *3 (-989)))) + (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1005)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-524 *3)) (-4 *3 (-954)))) ((*1 *2 *1) - (-12 (-4 *3 (-510)) (-5 *2 (-85)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1183 *3)))) + (-12 (-4 *3 (-489)) (-5 *2 (-83)) (-5 *1 (-557 *3 *4)) (-4 *4 (-1144 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-693 *3 *4)) (-4 *3 (-989)) (-4 *4 (-684)))) + (-12 (-5 *2 (-83)) (-5 *1 (-667 *3 *4)) (-4 *3 (-954)) (-4 *4 (-658)))) ((*1 *2 *1) - (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-85))))) -(((*1 *1 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-781)) (-4 *3 (-146)))) + (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-83))))) +(((*1 *1 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-749)) (-4 *3 (-144)))) ((*1 *1 *1) - (-12 (-5 *1 (-582 *2 *3 *4)) (-4 *2 (-781)) - (-4 *3 (-13 (-146) (-675 (-361 (-499))))) (-14 *4 (-857)))) - ((*1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) - ((*1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) - ((*1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989))))) + (-12 (-5 *1 (-561 *2 *3 *4)) (-4 *2 (-749)) + (-4 *3 (-13 (-144) (-649 (-343 (-478))))) (-14 *4 (-823)))) + ((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) + ((*1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) + ((*1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-714)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) - (-4 *4 (-146)))) + (-12 (-5 *2 (-687)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) + (-4 *4 (-144)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)) (-4 *3 (-146))))) + (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)) (-4 *3 (-144))))) (((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) (-5 *2 (-599 *3)))) + (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) (-5 *2 (-578 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-599 *3)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) - (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-635 *3)) (-4 *3 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-762 *3)) (-4 *3 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-828 *3)) (-4 *3 (-781)))) + (-12 (-5 *2 (-578 *3)) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) + (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-613 *3)) (-4 *3 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-732 *3)) (-4 *3 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-796 *3)) (-4 *3 (-749)))) ((*1 *2 *1) - (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-599 *3))))) + (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-578 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1152 *4 *5 *3 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *3 (-781)) - (-4 *6 (-1005 *4 *5 *3)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1113 *4 *5 *3 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *3 (-749)) + (-4 *6 (-969 *4 *5 *3)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-308)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-308)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-308)) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *4 (-318)) (-5 *2 (-857)) (-5 *1 (-282 *3 *4)) (-4 *3 (-283 *4)))) + (-12 (-4 *4 (-308)) (-5 *2 (-823)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) ((*1 *2) - (-12 (-4 *4 (-318)) (-5 *2 (-766 (-857))) (-5 *1 (-282 *3 *4)) - (-4 *3 (-283 *4)))) - ((*1 *2) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-857)))) - ((*1 *2) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-766 (-857)))))) + (-12 (-4 *4 (-308)) (-5 *2 (-736 (-823))) (-5 *1 (-275 *3 *4)) + (-4 *3 (-276 *4)))) + ((*1 *2) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-823)))) + ((*1 *2) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-308)) (-5 *2 (-736 (-823)))))) (((*1 *2) - (-12 (-4 *4 (-318)) (-5 *2 (-714)) (-5 *1 (-282 *3 *4)) (-4 *3 (-283 *4)))) - ((*1 *2) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-714))))) + (-12 (-4 *4 (-308)) (-5 *2 (-687)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) + ((*1 *2) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-308)) (-5 *2 (-687))))) (((*1 *2 *2) - (-12 (-4 *3 (-305)) (-4 *4 (-283 *3)) (-4 *5 (-1183 *4)) - (-5 *1 (-720 *3 *4 *5 *2 *6)) (-4 *2 (-1183 *5)) (-14 *6 (-857)))) + (-12 (-4 *3 (-295)) (-4 *4 (-276 *3)) (-4 *5 (-1144 *4)) + (-5 *1 (-693 *3 *4 *5 *2 *6)) (-4 *2 (-1144 *5)) (-14 *6 (-823)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-714)) (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-4 *3 (-323)))) - ((*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-318)) (-4 *2 (-323))))) + (-12 (-5 *2 (-687)) (-4 *1 (-1187 *3)) (-4 *3 (-308)) (-4 *3 (-313)))) + ((*1 *1 *1) (-12 (-4 *1 (-1187 *2)) (-4 *2 (-308)) (-4 *2 (-313))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-714)) (-4 *4 (-13 (-989) (-675 (-361 (-499))))) (-4 *5 (-781)) - (-5 *1 (-1224 *4 *5 *2)) (-4 *2 (-1230 *5 *4))))) + (-12 (-5 *3 (-687)) (-4 *4 (-13 (-954) (-649 (-343 (-478))))) (-4 *5 (-749)) + (-5 *1 (-1185 *4 *5 *2)) (-4 *2 (-1191 *5 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) - (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-1221 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) + (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-1182 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-599 *8)) (-5 *3 (-1 (-85) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) - (-4 *7 (-781)) (-5 *1 (-1221 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-83) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) + (-4 *7 (-749)) (-5 *1 (-1182 *5 *6 *7 *8))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) - (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-1221 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) + (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-1182 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-599 *8)) (-5 *3 (-1 (-85) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) - (-4 *7 (-781)) (-5 *1 (-1221 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-83) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) + (-4 *7 (-749)) (-5 *1 (-1182 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-599 (-1221 *4 *5 *6 *7))) - (-5 *1 (-1221 *4 *5 *6 *7)))) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-578 (-1182 *4 *5 *6 *7))) + (-5 *1 (-1182 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-599 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1005 *6 *7 *8)) (-4 *6 (-510)) (-4 *7 (-738)) (-4 *8 (-781)) - (-5 *2 (-599 (-1221 *6 *7 *8 *9))) (-5 *1 (-1221 *6 *7 *8 *9))))) + (-12 (-5 *3 (-578 *9)) (-5 *4 (-1 (-83) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-969 *6 *7 *8)) (-4 *6 (-489)) (-4 *7 (-710)) (-4 *8 (-749)) + (-5 *2 (-578 (-1182 *6 *7 *8 *9))) (-5 *1 (-1182 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-800 *4 *5 *6 *7)) (-4 *4 (-989)) - (-14 *5 (-599 (-1117))) (-14 *6 (-599 *3)) (-14 *7 *3))) + (-12 (-5 *3 (-687)) (-5 *2 (-1174)) (-5 *1 (-768 *4 *5 *6 *7)) (-4 *4 (-954)) + (-14 *5 (-578 (-1079))) (-14 *6 (-578 *3)) (-14 *7 *3))) ((*1 *2 *3) - (-12 (-5 *3 (-714)) (-4 *4 (-989)) (-4 *5 (-781)) (-4 *6 (-738)) - (-14 *8 (-599 *5)) (-5 *2 (-1213)) (-5 *1 (-1220 *4 *5 *6 *7 *8 *9 *10)) - (-4 *7 (-888 *4 *6 *5)) (-14 *9 (-599 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-471)))) + (-12 (-5 *3 (-687)) (-4 *4 (-954)) (-4 *5 (-749)) (-4 *6 (-710)) + (-14 *8 (-578 *5)) (-5 *2 (-1174)) (-5 *1 (-1181 *4 *5 *6 *7 *8 *9 *10)) + (-4 *7 (-854 *4 *6 *5)) (-14 *9 (-578 *3)) (-14 *10 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-450)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1041) (-34))) (-5 *1 (-1080 *3 *2)) - (-4 *3 (-13 (-1041) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1219))))) -(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1218))))) -(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1218))))) + (-12 (-4 *2 (-13 (-1005) (-34))) (-5 *1 (-1043 *3 *2)) + (-4 *3 (-13 (-1005) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-1180))))) +(((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-1179))))) +(((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-1179))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) - (-4 *4 (-1183 *3)) + (-12 (-4 *3 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) + (-4 *4 (-1144 *3)) (-5 *2 - (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) - (-5 *1 (-306 *3 *4 *5)) (-4 *5 (-364 *3 *4)))) + (-2 (|:| -1998 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) + (-5 *1 (-296 *3 *4 *5)) (-4 *5 (-346 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-499)) (-4 *4 (-1183 *3)) + (-12 (-5 *3 (-478)) (-4 *4 (-1144 *3)) (-5 *2 - (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) - (-5 *1 (-711 *4 *5)) (-4 *5 (-364 *3 *4)))) + (-2 (|:| -1998 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) + (-5 *1 (-685 *4 *5)) (-4 *5 (-346 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-305)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 *3)) + (-12 (-4 *4 (-295)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 *3)) (-5 *2 - (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) - (-5 *1 (-925 *4 *3 *5 *6)) (-4 *6 (-682 *3 *5)))) + (-2 (|:| -1998 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) + (-5 *1 (-891 *4 *3 *5 *6)) (-4 *6 (-656 *3 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-305)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 *3)) + (-12 (-4 *4 (-295)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 *3)) (-5 *2 - (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) - (-5 *1 (-1217 *4 *3 *5 *6)) (-4 *6 (-364 *3 *5))))) + (-2 (|:| -1998 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) + (-5 *1 (-1178 *4 *3 *5 *6)) (-4 *6 (-346 *3 *5))))) (((*1 *2) - (-12 (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) - (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5)))) + (-12 (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) + (-5 *2 (-1168 *1)) (-4 *1 (-287 *3 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) - (-4 *4 (-1183 *3)) + (-12 (-4 *3 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) + (-4 *4 (-1144 *3)) (-5 *2 - (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) - (-5 *1 (-306 *3 *4 *5)) (-4 *5 (-364 *3 *4)))) + (-2 (|:| -1998 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) + (-5 *1 (-296 *3 *4 *5)) (-4 *5 (-346 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-1183 (-499))) + (-12 (-4 *3 (-1144 (-478))) (-5 *2 - (-2 (|:| -2113 (-647 (-499))) (|:| |basisDen| (-499)) - (|:| |basisInv| (-647 (-499))))) - (-5 *1 (-711 *3 *4)) (-4 *4 (-364 (-499) *3)))) + (-2 (|:| -1998 (-625 (-478))) (|:| |basisDen| (-478)) + (|:| |basisInv| (-625 (-478))))) + (-5 *1 (-685 *3 *4)) (-4 *4 (-346 (-478) *3)))) ((*1 *2) - (-12 (-4 *3 (-305)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 *4)) + (-12 (-4 *3 (-295)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 *4)) (-5 *2 - (-2 (|:| -2113 (-647 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-647 *4)))) - (-5 *1 (-925 *3 *4 *5 *6)) (-4 *6 (-682 *4 *5)))) + (-2 (|:| -1998 (-625 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-625 *4)))) + (-5 *1 (-891 *3 *4 *5 *6)) (-4 *6 (-656 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-305)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 *4)) + (-12 (-4 *3 (-295)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 *4)) (-5 *2 - (-2 (|:| -2113 (-647 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-647 *4)))) - (-5 *1 (-1217 *3 *4 *5 *6)) (-4 *6 (-364 *4 *5))))) + (-2 (|:| -1998 (-625 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-625 *4)))) + (-5 *1 (-1178 *3 *4 *5 *6)) (-4 *6 (-346 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-714)) (-4 *6 (-318)) (-5 *4 (-1150 *6)) - (-5 *2 (-1 (-1095 *4) (-1095 *4))) (-5 *1 (-1216 *6)) (-5 *5 (-1095 *4))))) + (-12 (-5 *3 (-687)) (-4 *6 (-308)) (-5 *4 (-1111 *6)) + (-5 *2 (-1 (-1058 *4) (-1058 *4))) (-5 *1 (-1177 *6)) (-5 *5 (-1058 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-4 *5 (-318)) (-5 *2 (-599 (-1150 *5))) - (-5 *1 (-1216 *5)) (-5 *4 (-1150 *5))))) + (-12 (-5 *3 (-1079)) (-4 *5 (-308)) (-5 *2 (-578 (-1111 *5))) + (-5 *1 (-1177 *5)) (-5 *4 (-1111 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-5 *2 (-1 (-1111 (-884 *4)) (-884 *4))) - (-5 *1 (-1216 *4)) (-4 *4 (-318))))) + (-12 (-5 *3 (-1079)) (-5 *2 (-1 (-1074 (-850 *4)) (-850 *4))) + (-5 *1 (-1177 *4)) (-4 *4 (-308))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-4 *5 (-318)) (-5 *2 (-1095 (-1095 (-884 *5)))) - (-5 *1 (-1216 *5)) (-5 *4 (-1095 (-884 *5)))))) + (-12 (-5 *3 (-1079)) (-4 *5 (-308)) (-5 *2 (-1058 (-1058 (-850 *5)))) + (-5 *1 (-1177 *5)) (-5 *4 (-1058 (-850 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-714)) (-5 *2 (-1 (-1095 (-884 *4)) (-1095 (-884 *4)))) - (-5 *1 (-1216 *4)) (-4 *4 (-318))))) + (-12 (-5 *3 (-687)) (-5 *2 (-1 (-1058 (-850 *4)) (-1058 (-850 *4)))) + (-5 *1 (-1177 *4)) (-4 *4 (-308))))) (((*1 *2 *3) - (-12 (-5 *3 (-714)) (-5 *2 (-1 (-1095 (-884 *4)) (-1095 (-884 *4)))) - (-5 *1 (-1216 *4)) (-4 *4 (-318))))) + (-12 (-5 *3 (-687)) (-5 *2 (-1 (-1058 (-850 *4)) (-1058 (-850 *4)))) + (-5 *1 (-1177 *4)) (-4 *4 (-308))))) (((*1 *2) - (-12 (-14 *4 (-714)) (-4 *5 (-1157)) (-5 *2 (-107)) (-5 *1 (-194 *3 *4 *5)) - (-4 *3 (-195 *4 *5)))) + (-12 (-14 *4 (-687)) (-4 *5 (-1118)) (-5 *2 (-105)) (-5 *1 (-192 *3 *4 *5)) + (-4 *3 (-193 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-282 *3 *4)) (-4 *3 (-283 *4)))) + (-12 (-4 *4 (-308)) (-5 *2 (-105)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) ((*1 *2) - (-12 (-5 *2 (-714)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-146)))) + (-12 (-5 *2 (-687)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-144)))) ((*1 *2 *1) - (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-499)) - (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) + (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-478)) + (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-599 *6)) (-4 *6 (-781)) (-4 *4 (-318)) (-4 *5 (-738)) - (-5 *2 (-499)) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-989)) (-5 *2 (-857)))) - ((*1 *2) (-12 (-4 *1 (-1215 *3)) (-4 *3 (-318)) (-5 *2 (-107))))) -(((*1 *1) (-5 *1 (-1213)))) -(((*1 *2 *3) (-12 (-5 *3 (-333)) (-5 *2 (-179)) (-5 *1 (-1212)))) - ((*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1212))))) -(((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) - ((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212))))) -(((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) - ((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212))))) -(((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) - ((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212))))) -(((*1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1212))))) -(((*1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1212)))) - ((*1 *2 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1212))))) -(((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1212))))) -(((*1 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1212)))) - ((*1 *2 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1212))))) -(((*1 *2) (-12 (-5 *2 (-599 (-714))) (-5 *1 (-1212)))) - ((*1 *2 *2) (-12 (-5 *2 (-599 (-714))) (-5 *1 (-1212))))) -(((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) - ((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212))))) -(((*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) - ((*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212))))) -(((*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) - ((*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212))))) -(((*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) - ((*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212))))) -(((*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) - ((*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212))))) -(((*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) - ((*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211))))) -(((*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) - ((*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211))))) -(((*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) - ((*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211))))) -(((*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) - ((*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211))))) -(((*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) - ((*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211))))) -(((*1 *1) (-5 *1 (-1211)))) + (-12 (-5 *3 (-578 *6)) (-4 *6 (-749)) (-4 *4 (-308)) (-4 *5 (-710)) + (-5 *2 (-478)) (-5 *1 (-437 *4 *5 *6 *7)) (-4 *7 (-854 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-886 *3)) (-4 *3 (-954)) (-5 *2 (-823)))) + ((*1 *2) (-12 (-4 *1 (-1176 *3)) (-4 *3 (-308)) (-5 *2 (-105))))) +(((*1 *1) (-5 *1 (-1174)))) +(((*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *2 (-177)) (-5 *1 (-1173)))) + ((*1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-1173))))) +(((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1173)))) + ((*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1173))))) +(((*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1173)))) + ((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1173))))) +(((*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1173)))) + ((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1173))))) +(((*1 *2) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-1173))))) +(((*1 *2) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-1173)))) + ((*1 *2 *2) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-1173))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1173))))) +(((*1 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1173)))) + ((*1 *2 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1173))))) +(((*1 *2) (-12 (-5 *2 (-578 (-687))) (-5 *1 (-1173)))) + ((*1 *2 *2) (-12 (-5 *2 (-578 (-687))) (-5 *1 (-1173))))) +(((*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1173)))) + ((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1173))))) +(((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1173)))) + ((*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1173))))) +(((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1173)))) + ((*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1173))))) +(((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1173)))) + ((*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1173))))) +(((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1173)))) + ((*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1173))))) +(((*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172)))) + ((*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172))))) +(((*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172)))) + ((*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172))))) +(((*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172)))) + ((*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172))))) +(((*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172)))) + ((*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172))))) +(((*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172)))) + ((*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1172))))) +(((*1 *1) (-5 *1 (-1172)))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1073 (-179))) (-5 *3 (-599 (-220))) (-5 *1 (-1211)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1073 (-179))) (-5 *3 (-1099)) (-5 *1 (-1211)))) - ((*1 *1 *1) (-5 *1 (-1211)))) -(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-1105 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1073 (-179))) (-5 *1 (-1211)))) - ((*1 *2 *1) (-12 (-5 *2 (-1073 (-179))) (-5 *1 (-1211))))) + (-12 (-5 *2 (-1036 (-177))) (-5 *3 (-578 (-218))) (-5 *1 (-1172)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1036 (-177))) (-5 *3 (-1062)) (-5 *1 (-1172)))) + ((*1 *1 *1) (-5 *1 (-1172)))) +(((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-1068 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1068 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1036 (-177))) (-5 *1 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1036 (-177))) (-5 *1 (-1172))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-714)) (-5 *3 (-881 *4)) (-4 *1 (-1074 *4)) (-4 *4 (-989)))) + (-12 (-5 *2 (-687)) (-5 *3 (-847 *4)) (-4 *1 (-1037 *4)) (-4 *4 (-954)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-714)) (-5 *4 (-881 (-179))) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-220))) (-5 *1 (-1210)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-220))) (-5 *1 (-1210)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-220))) (-5 *1 (-1211)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-220))) (-5 *1 (-1211))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-1210)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1213)) (-5 *1 (-1210)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-220)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) + (-12 (-5 *3 (-687)) (-5 *4 (-847 (-177))) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-218))) (-5 *1 (-1171)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-218))) (-5 *1 (-1171)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-218))) (-5 *1 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-218))) (-5 *1 (-1172))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1174)) (-5 *1 (-1171)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1174)) (-5 *1 (-1171)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-218)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1062)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1171)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172))))) (((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-714)) (-5 *4 (-857)) (-5 *2 (-1213)) (-5 *1 (-1210)))) + (-12 (-5 *3 (-687)) (-5 *4 (-823)) (-5 *2 (-1174)) (-5 *1 (-1171)))) ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-714)) (-5 *4 (-857)) (-5 *2 (-1213)) (-5 *1 (-1211))))) + (-12 (-5 *3 (-687)) (-5 *4 (-823)) (-5 *2 (-1174)) (-5 *1 (-1172))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) - (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) - (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *1 (-220)))) + (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3831 (-177)) + (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) + (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) + (-5 *1 (-218)))) ((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) - (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) - (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *3 (-599 (-220))) (-5 *1 (-221)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) + (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3831 (-177)) + (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) + (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) + (-5 *3 (-578 (-218))) (-5 *1 (-219)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172)))) ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-499)) (-5 *4 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) + (-12 (-5 *3 (-478)) (-5 *4 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172)))) ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) - (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) - (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *2 (-1213)) (-5 *1 (-1211)))) + (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3831 (-177)) + (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) + (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) + (-5 *2 (-1174)) (-5 *1 (-1172)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) - (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) - (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *1 (-1211)))) + (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3831 (-177)) + (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) + (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) + (-5 *1 (-1172)))) ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) + (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1171)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-857)) (-5 *4 (-808)) (-5 *2 (-1213)) (-5 *1 (-1210)))) + (-12 (-5 *3 (-823)) (-5 *4 (-776)) (-5 *2 (-1174)) (-5 *1 (-1171)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-1211)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) - ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-865)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143))))) + (-12 (-5 *3 (-823)) (-5 *4 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1171)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1174)) (-5 *1 (-1172)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-993 (-177))) (-5 *1 (-829)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-993 (-177))) (-5 *1 (-829)))) + ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-993 (-177))) (-5 *1 (-831)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1104))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-857)) (-5 *4 (-333)) (-5 *2 (-1213)) (-5 *1 (-1210)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1210)))) - ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1213)) (-5 *1 (-1211))))) + (-12 (-5 *3 (-823)) (-5 *4 (-323)) (-5 *2 (-1174)) (-5 *1 (-1171)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1171)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-128)) (-5 *2 (-1174)) (-5 *1 (-1172))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-1099)) (-5 *1 (-1210)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1210)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1210)))) + (-12 (-5 *3 (-578 (-1062))) (-5 *2 (-1062)) (-5 *1 (-1171)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-1171)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-1171)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-1099)) (-5 *1 (-1211)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1211)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1211))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) - ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1210)))) - ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1211))))) -(((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-422)))) - ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1210)))) - ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1211))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-881 (-179)))) (-5 *1 (-1210))))) -(((*1 *1) (-5 *1 (-1210)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-422)) (-5 *3 (-599 (-220))) (-5 *1 (-1210)))) - ((*1 *1 *1) (-5 *1 (-1210)))) + (-12 (-5 *3 (-578 (-1062))) (-5 *2 (-1062)) (-5 *1 (-1172)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-1172)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-1172))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1171)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-401)))) + ((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1171)))) + ((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1172))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-847 (-177)))) (-5 *1 (-1171))))) +(((*1 *1) (-5 *1 (-1171)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-401)) (-5 *3 (-578 (-218))) (-5 *1 (-1171)))) + ((*1 *1 *1) (-5 *1 (-1171)))) (((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-857)) (-5 *4 (-179)) (-5 *5 (-499)) (-5 *6 (-808)) - (-5 *2 (-1213)) (-5 *1 (-1210))))) + (-12 (-5 *3 (-823)) (-5 *4 (-177)) (-5 *5 (-478)) (-5 *6 (-776)) + (-5 *2 (-1174)) (-5 *1 (-1171))))) (((*1 *2 *1) (-12 (-5 *2 - (-1207 - (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) - (|:| |deltaY| (-179)) (|:| -4000 (-499)) (|:| -3998 (-499)) - (|:| |spline| (-499)) (|:| -4029 (-499)) (|:| |axesColor| (-808)) - (|:| -4001 (-499)) (|:| |unitsColor| (-808)) (|:| |showing| (-499))))) - (-5 *1 (-1210))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) - ((*1 *2 *1) (-12 (-5 *2 (-1207 (-3 (-422) "undefined"))) (-5 *1 (-1210))))) + (-1168 + (-2 (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |deltaX| (-177)) + (|:| |deltaY| (-177)) (|:| -3834 (-478)) (|:| -3832 (-478)) + (|:| |spline| (-478)) (|:| -3863 (-478)) (|:| |axesColor| (-776)) + (|:| -3835 (-478)) (|:| |unitsColor| (-776)) (|:| |showing| (-478))))) + (-5 *1 (-1171))))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168 (-3 (-401) "undefined"))) (-5 *1 (-1171))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-422)) (-5 *4 (-857)) (-5 *2 (-1213)) (-5 *1 (-1210))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-857)) (-5 *2 (-422)) (-5 *1 (-1210))))) + (-12 (-5 *3 (-401)) (-5 *4 (-823)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-823)) (-5 *2 (-401)) (-5 *1 (-1171))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-599 (-333))) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-599 (-333))) (-5 *1 (-422)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-333))) (-5 *1 (-422)))) + (-12 (-5 *2 (-578 (-323))) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-323))) (-5 *1 (-401)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-323))) (-5 *1 (-401)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-857)) (-5 *4 (-808)) (-5 *2 (-1213)) (-5 *1 (-1210)))) + (-12 (-5 *3 (-823)) (-5 *4 (-776)) (-5 *2 (-1174)) (-5 *1 (-1171)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210))))) + (-12 (-5 *3 (-823)) (-5 *4 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1171))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210))))) + (-12 (-5 *3 (-823)) (-5 *4 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1171))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210))))) + (-12 (-5 *3 (-823)) (-5 *4 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1171))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) - ((*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) + (-12 (-5 *3 (-823)) (-5 *4 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1104))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) + ((*1 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-857)) (-5 *4 (-333)) (-5 *2 (-1213)) (-5 *1 (-1210))))) + (-12 (-5 *3 (-823)) (-5 *4 (-323)) (-5 *2 (-1174)) (-5 *1 (-1171))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210))))) + (-12 (-5 *3 (-823)) (-5 *4 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1171))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-422)) (-5 *4 (-857)) (-5 *2 (-1213)) (-5 *1 (-1210))))) + (-12 (-5 *3 (-401)) (-5 *4 (-823)) (-5 *2 (-1174)) (-5 *1 (-1171))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-808)) (-5 *5 (-857)) - (-5 *6 (-599 (-220))) (-5 *2 (-1210)) (-5 *1 (-1209)))) + (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-776)) (-5 *5 (-823)) + (-5 *6 (-578 (-218))) (-5 *2 (-1171)) (-5 *1 (-1170)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-599 (-220))) - (-5 *2 (-1210)) (-5 *1 (-1209))))) + (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-578 (-218))) + (-5 *2 (-1171)) (-5 *1 (-1170))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-808)) (-5 *5 (-857)) - (-5 *6 (-599 (-220))) (-5 *2 (-422)) (-5 *1 (-1209)))) + (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-776)) (-5 *5 (-823)) + (-5 *6 (-578 (-218))) (-5 *2 (-401)) (-5 *1 (-1170)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *2 (-422)) (-5 *1 (-1209)))) + (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *2 (-401)) (-5 *1 (-1170)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-599 (-220))) (-5 *2 (-422)) - (-5 *1 (-1209))))) + (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-578 (-218))) (-5 *2 (-401)) + (-5 *1 (-1170))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1118)) (-4 *2 (-1118)) (-5 *1 (-59 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1041)) (|has| *1 (-6 -4145)) - (-4 *1 (-124 *2)) (-4 *2 (-1157)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1005)) (|has| *1 (-6 -3979)) + (-4 *1 (-122 *2)) (-4 *2 (-1118)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4145)) (-4 *1 (-124 *2)) - (-4 *2 (-1157)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3979)) (-4 *1 (-122 *2)) + (-4 *2 (-1118)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4145)) (-4 *1 (-124 *2)) - (-4 *2 (-1157)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3979)) (-4 *1 (-122 *2)) + (-4 *2 (-1118)))) ((*1 *2 *3) - (-12 (-4 *4 (-989)) (-5 *2 (-2 (|:| -2105 (-1111 *4)) (|:| |deg| (-857)))) - (-5 *1 (-175 *4 *5)) (-5 *3 (-1111 *4)) (-4 *5 (-510)))) + (-12 (-4 *4 (-954)) (-5 *2 (-2 (|:| -1990 (-1074 *4)) (|:| |deg| (-823)))) + (-5 *1 (-173 *4 *5)) (-5 *3 (-1074 *4)) (-4 *5 (-489)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-196 *5 *6)) (-14 *5 (-714)) - (-4 *6 (-1157)) (-4 *2 (-1157)) (-5 *1 (-197 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-194 *5 *6)) (-14 *5 (-687)) + (-4 *6 (-1118)) (-4 *2 (-1118)) (-5 *1 (-195 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-146)) (-5 *1 (-243 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1183 *4)) + (-12 (-4 *4 (-144)) (-5 *1 (-241 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1144 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-510)) (-4 *2 (-1041)))) + ((*1 *1 *1) (-12 (-5 *1 (-261 *2)) (-4 *2 (-489)) (-4 *2 (-1005)))) ((*1 *1 *1) - (-12 (-4 *1 (-291 *2 *3 *4 *5)) (-4 *2 (-318)) (-4 *3 (-1183 *2)) - (-4 *4 (-1183 (-361 *3))) (-4 *5 (-297 *2 *3 *4)))) + (-12 (-4 *1 (-282 *2 *3 *4 *5)) (-4 *2 (-308)) (-4 *3 (-1144 *2)) + (-4 *4 (-1144 (-343 *3))) (-4 *5 (-287 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1157)) (-4 *2 (-1157)) - (-5 *1 (-328 *5 *4 *2 *6)) (-4 *4 (-327 *5)) (-4 *6 (-327 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1118)) (-4 *2 (-1118)) + (-5 *1 (-318 *5 *4 *2 *6)) (-4 *4 (-317 *5)) (-4 *6 (-317 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1041)) (-4 *2 (-1041)) - (-5 *1 (-381 *5 *4 *2 *6)) (-4 *4 (-380 *5)) (-4 *6 (-380 *2)))) - ((*1 *1 *1) (-5 *1 (-449))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1005)) (-4 *2 (-1005)) + (-5 *1 (-363 *5 *4 *2 *6)) (-4 *4 (-362 *5)) (-4 *6 (-362 *2)))) + ((*1 *1 *1) (-5 *1 (-428))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-599 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) - (-5 *1 (-600 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-578 *5)) (-4 *5 (-1118)) (-4 *2 (-1118)) + (-5 *1 (-579 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-989)) (-4 *2 (-989)) (-4 *6 (-327 *5)) - (-4 *7 (-327 *5)) (-4 *8 (-327 *2)) (-4 *9 (-327 *2)) - (-5 *1 (-645 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-644 *5 *6 *7)) - (-4 *10 (-644 *2 *8 *9)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-954)) (-4 *2 (-954)) (-4 *6 (-317 *5)) + (-4 *7 (-317 *5)) (-4 *8 (-317 *2)) (-4 *9 (-317 *2)) + (-5 *1 (-623 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-622 *5 *6 *7)) + (-4 *10 (-622 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-669 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (-12 (-5 *1 (-643 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-989)) (-5 *1 (-670 *3 *2)) (-4 *2 (-1183 *3)))) + ((*1 *1 *2) (-12 (-4 *3 (-954)) (-5 *1 (-644 *3 *2)) (-4 *2 (-1144 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (-12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-361 *4)) (-4 *4 (-1183 *3)) (-4 *3 (-318)) - (-4 *3 (-146)) (-4 *1 (-682 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-682 *3 *2)) (-4 *2 (-1183 *3)))) + (|partial| -12 (-5 *2 (-343 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-308)) + (-4 *3 (-144)) (-4 *1 (-656 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *3 (-144)) (-4 *1 (-656 *3 *2)) (-4 *2 (-1144 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-896 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) - (-5 *1 (-897 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-862 *5)) (-4 *5 (-1118)) (-4 *2 (-1118)) + (-5 *1 (-863 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *2 (-888 *3 *4 *5)) (-14 *6 (-599 *2)))) + (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *1 (-940 *3 *4 *5 *2 *6)) (-4 *2 (-854 *3 *4 *5)) (-14 *6 (-578 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-989)) (-4 *2 (-989)) (-14 *5 (-714)) - (-14 *6 (-714)) (-4 *8 (-195 *6 *7)) (-4 *9 (-195 *5 *7)) - (-4 *10 (-195 *6 *2)) (-4 *11 (-195 *5 *2)) - (-5 *1 (-995 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-993 *5 *6 *7 *8 *9)) (-4 *12 (-993 *5 *6 *2 *10 *11)))) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-954)) (-4 *2 (-954)) (-14 *5 (-687)) + (-14 *6 (-687)) (-4 *8 (-193 *6 *7)) (-4 *9 (-193 *5 *7)) + (-4 *10 (-193 *6 *2)) (-4 *11 (-193 *5 *2)) + (-5 *1 (-960 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-958 *5 *6 *7 *8 *9)) (-4 *12 (-958 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1095 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) - (-5 *1 (-1097 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1058 *5)) (-4 *5 (-1118)) (-4 *2 (-1118)) + (-5 *1 (-1060 *5 *2)))) ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) - (-4 *1 (-1152 *5 *6 *7 *2)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) - (-4 *2 (-1005 *5 *6 *7)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-83) *2 *2)) + (-4 *1 (-1113 *5 *6 *7 *2)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) + (-4 *2 (-969 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1207 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) - (-5 *1 (-1208 *5 *2))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1168 *5)) (-4 *5 (-1118)) (-4 *2 (-1118)) + (-5 *1 (-1169 *5 *2))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1157)) (-4 *5 (-1157)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1118)) (-4 *5 (-1118)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-196 *6 *7)) (-14 *6 (-714)) - (-4 *7 (-1157)) (-4 *5 (-1157)) (-5 *2 (-196 *6 *5)) - (-5 *1 (-197 *6 *7 *5)))) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-194 *6 *7)) (-14 *6 (-687)) + (-4 *7 (-1118)) (-4 *5 (-1118)) (-5 *2 (-194 *6 *5)) + (-5 *1 (-195 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1157)) (-4 *5 (-1157)) (-4 *2 (-327 *5)) - (-5 *1 (-328 *6 *4 *5 *2)) (-4 *4 (-327 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1118)) (-4 *5 (-1118)) (-4 *2 (-317 *5)) + (-5 *1 (-318 *6 *4 *5 *2)) (-4 *4 (-317 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1041)) (-4 *5 (-1041)) (-4 *2 (-380 *5)) - (-5 *1 (-381 *6 *4 *5 *2)) (-4 *4 (-380 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1005)) (-4 *5 (-1005)) (-4 *2 (-362 *5)) + (-5 *1 (-363 *6 *4 *5 *2)) (-4 *4 (-362 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-599 *6)) (-4 *6 (-1157)) (-4 *5 (-1157)) - (-5 *2 (-599 *5)) (-5 *1 (-600 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-578 *6)) (-4 *6 (-1118)) (-4 *5 (-1118)) + (-5 *2 (-578 *5)) (-5 *1 (-579 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-896 *6)) (-4 *6 (-1157)) (-4 *5 (-1157)) - (-5 *2 (-896 *5)) (-5 *1 (-897 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-862 *6)) (-4 *6 (-1118)) (-4 *5 (-1118)) + (-5 *2 (-862 *5)) (-5 *1 (-863 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1095 *6)) (-4 *6 (-1157)) (-4 *3 (-1157)) - (-5 *2 (-1095 *3)) (-5 *1 (-1097 *6 *3)))) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1058 *6)) (-4 *6 (-1118)) (-4 *3 (-1118)) + (-5 *2 (-1058 *3)) (-5 *1 (-1060 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1207 *6)) (-4 *6 (-1157)) (-4 *5 (-1157)) - (-5 *2 (-1207 *5)) (-5 *1 (-1208 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-1207 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-130))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1168 *6)) (-4 *6 (-1118)) (-4 *5 (-1118)) + (-5 *2 (-1168 *5)) (-5 *1 (-1169 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1118)) (-5 *1 (-1168 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-128))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-167 *2)) + (-12 (-5 *1 (-165 *2)) (-4 *2 - (-13 (-781) - (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 ((-1213) $)) - (-15 -2066 ((-1213) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-25)) (-4 *2 (-1157)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-25)) (-4 *2 (-1157)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-104)))) + (-13 (-749) + (-10 -8 (-15 -3784 ((-1062) $ (-1079))) (-15 -3601 ((-1174) $)) + (-15 -1951 ((-1174) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-25)) (-4 *2 (-1118)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-25)) (-4 *2 (-1118)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-270 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-102)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-318) (-120))) (-5 *1 (-353 *3 *2)) (-4 *2 (-1183 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + (-12 (-4 *3 (-13 (-308) (-118))) (-5 *1 (-335 *3 *2)) (-4 *2 (-1144 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) - (-4 *5 (-888 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-488))) + (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) + (-4 *5 (-854 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-467))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) - (-4 *4 (-327 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-797))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-25))))) + (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) + (-4 *4 (-317 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-765))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1005)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1115)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1118)) (-4 *2 (-25))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-714)) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)))) + (-12 (-5 *2 (-687)) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-714)) (-4 *1 (-1206 *3)) (-4 *3 (-23)) (-4 *3 (-1157))))) + (-12 (-5 *2 (-687)) (-4 *1 (-1167 *3)) (-4 *3 (-23)) (-4 *3 (-1118))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-107))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-105))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-167 *2)) + (-12 (-5 *1 (-165 *2)) (-4 *2 - (-13 (-781) - (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 ((-1213) $)) - (-15 -2066 ((-1213) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-21)) (-4 *2 (-1157)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-21)) (-4 *2 (-1157)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + (-13 (-749) + (-10 -8 (-15 -3784 ((-1062) $ (-1079))) (-15 -3601 ((-1174) $)) + (-15 -1951 ((-1174) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1118)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1118)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) - (-4 *4 (-327 *2)))) + (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) + (-4 *4 (-317 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) - (-4 *4 (-327 *2)))) - ((*1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-21))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-195 *3 *2)) (-4 *2 (-1157)) (-4 *2 (-989)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-797)))) - ((*1 *1 *1) (-5 *1 (-797))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-881 (-179))) (-5 *2 (-179)) (-5 *1 (-1154)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-989))))) + (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) + (-4 *4 (-317 *2)))) + ((*1 *1 *1) (-5 *1 (-765))) ((*1 *1 *1 *1) (-5 *1 (-765))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1115)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1118)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1118)) (-4 *2 (-21))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-193 *3 *2)) (-4 *2 (-1118)) (-4 *2 (-954)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-765)))) + ((*1 *1 *1) (-5 *1 (-765))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-847 (-177))) (-5 *2 (-177)) (-5 *1 (-1115)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1118)) (-4 *2 (-954))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1206 *3)) (-4 *3 (-1157)) (-4 *3 (-989)) (-5 *2 (-647 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-989)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-989))))) -(((*1 *2 *3) - (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) - (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4)))) - ((*1 *1 *1) (-4 *1 (-498))) - ((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-635 *3)) (-4 *3 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-762 *3)) (-4 *3 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-828 *3)) (-4 *3 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1157)) (-5 *2 (-714)))) - ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-1155 *3)) (-4 *3 (-1157)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-942)) (-4 *2 (-989))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-942)) (-4 *2 (-989))))) -(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-781)))) + (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1118)) (-4 *3 (-954)) (-5 *2 (-625 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-954)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1115)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1118)) (-4 *2 (-954))))) +(((*1 *2 *3) + (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1104) (-236))) + (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1144 *4)))) + ((*1 *1 *1) (-4 *1 (-477))) + ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-613 *3)) (-4 *3 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-732 *3)) (-4 *3 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-796 *3)) (-4 *3 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-901 *3)) (-4 *3 (-1118)) (-5 *2 (-687)))) + ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-1116 *3)) (-4 *3 (-1118)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1118)) (-4 *2 (-908)) (-4 *2 (-954))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1118)) (-4 *2 (-908)) (-4 *2 (-954))))) +(((*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-749)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-798 *3)) (-14 *3 (-599 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-929)))) + (|partial| -12 (-5 *2 (-1079)) (-5 *1 (-766 *3)) (-14 *3 (-578 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1079)) (-5 *1 (-895)))) ((*1 *2 *1) - (-12 (-4 *4 (-1157)) (-5 *2 (-1117)) (-5 *1 (-998 *3 *4)) - (-4 *3 (-1034 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1032 *3)) (-4 *3 (-1157)))) + (-12 (-4 *4 (-1118)) (-5 *2 (-1079)) (-5 *1 (-963 *3 *4)) (-4 *3 (-998 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1079)) (-5 *1 (-996 *3)) (-4 *3 (-1118)))) ((*1 *2 *1) - (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-1117)))) - ((*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1204 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1147 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-1079)))) + ((*1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-1165 *3)) (-14 *3 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-361 *5)) (-4 *5 (-1183 *4)) (-4 *4 (-510)) (-4 *4 (-989)) - (-4 *2 (-1200 *4)) (-5 *1 (-1202 *4 *5 *6 *2)) (-4 *6 (-616 *5))))) + (-12 (-5 *3 (-343 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-489)) (-4 *4 (-954)) + (-4 *2 (-1161 *4)) (-5 *1 (-1163 *4 *5 *6 *2)) (-4 *6 (-595 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-989)) (-4 *5 (-1183 *4)) (-5 *2 (-1 *6 (-599 *6))) - (-5 *1 (-1202 *4 *5 *3 *6)) (-4 *3 (-616 *5)) (-4 *6 (-1200 *4))))) + (-12 (-4 *4 (-954)) (-4 *5 (-1144 *4)) (-5 *2 (-1 *6 (-578 *6))) + (-5 *1 (-1163 *4 *5 *3 *6)) (-4 *3 (-595 *5)) (-4 *6 (-1161 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-714)) (-4 *5 (-989)) (-4 *2 (-1183 *5)) - (-5 *1 (-1202 *5 *2 *6 *3)) (-4 *6 (-616 *2)) (-4 *3 (-1200 *5))))) + (-12 (-5 *4 (-687)) (-4 *5 (-954)) (-4 *2 (-1144 *5)) + (-5 *1 (-1163 *5 *2 *6 *3)) (-4 *6 (-595 *2)) (-4 *3 (-1161 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-989)) (-4 *3 (-1183 *4)) (-4 *2 (-1200 *4)) - (-5 *1 (-1202 *4 *3 *5 *2)) (-4 *5 (-616 *3))))) + (-12 (-4 *4 (-954)) (-4 *3 (-1144 *4)) (-4 *2 (-1161 *4)) + (-5 *1 (-1163 *4 *3 *5 *2)) (-4 *5 (-595 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 (-1 *6 (-599 *6)))) - (-4 *5 (-38 (-361 (-499)))) (-4 *6 (-1200 *5)) (-5 *2 (-599 *6)) - (-5 *1 (-1201 *5 *6))))) + (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 (-1 *6 (-578 *6)))) + (-4 *5 (-38 (-343 (-478)))) (-4 *6 (-1161 *5)) (-5 *2 (-578 *6)) + (-5 *1 (-1162 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-599 *2))) (-5 *4 (-599 *5)) (-4 *5 (-38 (-361 (-499)))) - (-4 *2 (-1200 *5)) (-5 *1 (-1201 *5 *2))))) + (-12 (-5 *3 (-1 *2 (-578 *2))) (-5 *4 (-578 *5)) (-4 *5 (-38 (-343 (-478)))) + (-4 *2 (-1161 *5)) (-5 *1 (-1162 *5 *2))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-1201 *4 *2)) - (-4 *4 (-38 (-361 (-499))))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1161 *4)) (-5 *1 (-1162 *4 *2)) + (-4 *4 (-38 (-343 (-478))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-1201 *4 *2)) - (-4 *4 (-38 (-361 (-499))))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1161 *4)) (-5 *1 (-1162 *4 *2)) + (-4 *4 (-38 (-343 (-478))))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1201 *3 *2)) (-4 *2 (-1200 *3))))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1162 *3 *2)) (-4 *2 (-1161 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-599 *5))) (-4 *5 (-1200 *4)) (-4 *4 (-38 (-361 (-499)))) - (-5 *2 (-1 (-1095 *4) (-599 (-1095 *4)))) (-5 *1 (-1201 *4 *5))))) + (-12 (-5 *3 (-1 *5 (-578 *5))) (-4 *5 (-1161 *4)) (-4 *4 (-38 (-343 (-478)))) + (-5 *2 (-1 (-1058 *4) (-578 (-1058 *4)))) (-5 *1 (-1162 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-38 (-361 (-499)))) - (-5 *2 (-1 (-1095 *4) (-1095 *4) (-1095 *4))) (-5 *1 (-1201 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1161 *4)) (-4 *4 (-38 (-343 (-478)))) + (-5 *2 (-1 (-1058 *4) (-1058 *4) (-1058 *4))) (-5 *1 (-1162 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-38 (-361 (-499)))) - (-5 *2 (-1 (-1095 *4) (-1095 *4))) (-5 *1 (-1201 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1161 *4)) (-4 *4 (-38 (-343 (-478)))) + (-5 *2 (-1 (-1058 *4) (-1058 *4))) (-5 *1 (-1162 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) - (-5 *2 (-51)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-27) (-1143) (-375 *4))))) + (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) + (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1104) (-357 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) + (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-361 (-499))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) - (-5 *2 (-51)) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) + (-12 (-5 *4 (-343 (-478))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) + (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) - (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-270 *5 *3)))) + (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))) + (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-263 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-247 *3)) (-5 *5 (-361 (-499))) - (-4 *3 (-13 (-27) (-1143) (-375 *6))) - (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-270 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-499))) (-5 *4 (-247 *6)) - (-4 *6 (-13 (-27) (-1143) (-375 *5))) - (-4 *5 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-413 *5 *6)))) + (-12 (-5 *4 (-245 *3)) (-5 *5 (-343 (-478))) + (-4 *3 (-13 (-27) (-1104) (-357 *6))) + (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-263 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-478))) (-5 *4 (-245 *6)) + (-4 *6 (-13 (-27) (-1104) (-357 *5))) + (-4 *5 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-392 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) - (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-413 *6 *3)))) + (-12 (-5 *4 (-1079)) (-5 *5 (-245 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *6))) + (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-392 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-499))) (-5 *4 (-247 *7)) (-5 *5 (-1174 (-499))) - (-4 *7 (-13 (-27) (-1143) (-375 *6))) - (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-413 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-478))) (-5 *4 (-245 *7)) (-5 *5 (-1135 (-478))) + (-4 *7 (-13 (-27) (-1104) (-357 *6))) + (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-392 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-499))) - (-4 *3 (-13 (-27) (-1143) (-375 *7))) - (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-413 *7 *3)))) + (-12 (-5 *4 (-1079)) (-5 *5 (-245 *3)) (-5 *6 (-1135 (-478))) + (-4 *3 (-13 (-27) (-1104) (-357 *7))) + (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-392 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-361 (-499)))) (-5 *4 (-247 *8)) - (-5 *5 (-1174 (-361 (-499)))) (-5 *6 (-361 (-499))) - (-4 *8 (-13 (-27) (-1143) (-375 *7))) - (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-413 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-343 (-478)))) (-5 *4 (-245 *8)) + (-5 *5 (-1135 (-343 (-478)))) (-5 *6 (-343 (-478))) + (-4 *8 (-13 (-27) (-1104) (-357 *7))) + (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-392 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-361 (-499)))) - (-5 *7 (-361 (-499))) (-4 *3 (-13 (-27) (-1143) (-375 *8))) - (-4 *8 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-413 *8 *3)))) + (-12 (-5 *4 (-1079)) (-5 *5 (-245 *3)) (-5 *6 (-1135 (-343 (-478)))) + (-5 *7 (-343 (-478))) (-4 *3 (-13 (-27) (-1104) (-357 *8))) + (-4 *8 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-392 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *3)))) (-4 *3 (-989)) - (-5 *1 (-545 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-546 *3)))) + (-12 (-5 *2 (-1058 (-2 (|:| |k| (-478)) (|:| |c| *3)))) (-4 *3 (-954)) + (-5 *1 (-524 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-525 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *3)))) (-4 *3 (-989)) - (-4 *1 (-1169 *3)))) + (-12 (-5 *2 (-1058 (-2 (|:| |k| (-478)) (|:| |c| *3)))) (-4 *3 (-954)) + (-4 *1 (-1130 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-714)) (-5 *3 (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| *4)))) - (-4 *4 (-989)) (-4 *1 (-1190 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-4 *1 (-1200 *3)))) + (-12 (-5 *2 (-687)) (-5 *3 (-1058 (-2 (|:| |k| (-343 (-478))) (|:| |c| *4)))) + (-4 *4 (-954)) (-4 *1 (-1151 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-4 *1 (-1161 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1095 (-2 (|:| |k| (-714)) (|:| |c| *3)))) (-4 *3 (-989)) - (-4 *1 (-1200 *3))))) + (-12 (-5 *2 (-1058 (-2 (|:| |k| (-687)) (|:| |c| *3)))) (-4 *3 (-954)) + (-4 *1 (-1161 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-599 *3)))) + (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-578 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-599 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-546 *3)) (-4 *3 (-989)))) + (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1005)) (-5 *2 (-578 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-525 *3)) (-4 *3 (-954)))) ((*1 *2 *1) - (-12 (-5 *2 (-599 *3)) (-5 *1 (-693 *3 *4)) (-4 *3 (-989)) (-4 *4 (-684)))) - ((*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-989)) (-5 *2 (-599 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-989)) (-5 *2 (-1095 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-989))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-499))) (-4 *3 (-989)) (-5 *1 (-545 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-499))) (-4 *1 (-1169 *3)) (-4 *3 (-989)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-499))) (-4 *1 (-1200 *3)) (-4 *3 (-989))))) + (-12 (-5 *2 (-578 *3)) (-5 *1 (-667 *3 *4)) (-4 *3 (-954)) (-4 *4 (-658)))) + ((*1 *2 *1) (-12 (-4 *1 (-754 *3)) (-4 *3 (-954)) (-5 *2 (-578 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1161 *3)) (-4 *3 (-954)) (-5 *2 (-1058 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-954))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-478))) (-4 *3 (-954)) (-5 *1 (-524 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-478))) (-4 *1 (-1130 *3)) (-4 *3 (-954)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-478))) (-4 *1 (-1161 *3)) (-4 *3 (-954))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-714)) (-4 *1 (-698 *4 *5)) (-4 *4 (-989)) (-4 *5 (-781)) - (-5 *2 (-884 *4)))) + (-12 (-5 *3 (-687)) (-4 *1 (-672 *4 *5)) (-4 *4 (-954)) (-4 *5 (-749)) + (-5 *2 (-850 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-714)) (-4 *1 (-698 *4 *5)) (-4 *4 (-989)) (-4 *5 (-781)) - (-5 *2 (-884 *4)))) + (-12 (-5 *3 (-687)) (-4 *1 (-672 *4 *5)) (-4 *4 (-954)) (-4 *5 (-749)) + (-5 *2 (-850 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-714)) (-4 *1 (-1200 *4)) (-4 *4 (-989)) (-5 *2 (-884 *4)))) + (-12 (-5 *3 (-687)) (-4 *1 (-1161 *4)) (-4 *4 (-954)) (-5 *2 (-850 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-714)) (-4 *1 (-1200 *4)) (-4 *4 (-989)) (-5 *2 (-884 *4))))) + (-12 (-5 *3 (-687)) (-4 *1 (-1161 *4)) (-4 *4 (-954)) (-5 *2 (-850 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-361 (-499))) (-4 *4 (-978 (-499))) (-4 *4 (-510)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-375 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-107))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-179))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-200)) (-5 *2 (-499)))) + (-12 (-5 *3 (-343 (-478))) (-4 *4 (-943 (-478))) (-4 *4 (-489)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-357 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-105))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-177))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-198)) (-5 *2 (-478)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-361 (-499))) (-4 *4 (-318)) (-4 *4 (-38 *3)) (-4 *5 (-1200 *4)) - (-5 *1 (-231 *4 *5 *2)) (-4 *2 (-1171 *4 *5)))) + (-12 (-5 *3 (-343 (-478))) (-4 *4 (-308)) (-4 *4 (-38 *3)) (-4 *5 (-1161 *4)) + (-5 *1 (-229 *4 *5 *2)) (-4 *2 (-1132 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-361 (-499))) (-4 *4 (-318)) (-4 *4 (-38 *3)) (-4 *5 (-1169 *4)) - (-5 *1 (-232 *4 *5 *2 *6)) (-4 *2 (-1192 *4 *5)) (-4 *6 (-923 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-238))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-316 *2)) (-4 *2 (-1041)))) - ((*1 *1 *1 *1) (-5 *1 (-333))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-341 *2)) (-4 *2 (-1041)))) + (-12 (-5 *3 (-343 (-478))) (-4 *4 (-308)) (-4 *4 (-38 *3)) (-4 *5 (-1130 *4)) + (-5 *1 (-230 *4 *5 *2 *6)) (-4 *2 (-1153 *4 *5)) (-4 *6 (-889 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-236))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-306 *2)) (-4 *2 (-1005)))) + ((*1 *1 *1 *1) (-5 *1 (-323))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-329 *2)) (-4 *2 (-1005)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-714)) (-4 *1 (-375 *3)) (-4 *3 (-1041)) (-4 *3 (-1052)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-427)) (-5 *2 (-499)))) + (-12 (-5 *2 (-687)) (-4 *1 (-357 *3)) (-4 *3 (-1005)) (-4 *3 (-1015)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-478)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-714)) (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) + (-12 (-5 *2 (-687)) (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1207 *4)) (-5 *3 (-499)) (-4 *4 (-305)) (-5 *1 (-481 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-488)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-488)))) + (-12 (-5 *2 (-1168 *4)) (-5 *3 (-478)) (-4 *4 (-295)) (-5 *1 (-460 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-467)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-467)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-714)) (-4 *4 (-1041)) (-5 *1 (-640 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-687)) (-4 *4 (-1005)) (-5 *1 (-618 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)) (-4 *3 (-318)))) + (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)) (-4 *3 (-308)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-714)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)))) + (-12 (-5 *2 (-687)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-647 *4)) (-5 *3 (-714)) (-4 *4 (-989)) (-5 *1 (-648 *4)))) + (-12 (-5 *2 (-625 *4)) (-5 *3 (-687)) (-4 *4 (-954)) (-5 *1 (-626 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-499)) (-4 *3 (-989)) (-5 *1 (-672 *3 *4)) (-4 *4 (-606 *3)))) + (-12 (-5 *2 (-478)) (-4 *3 (-954)) (-5 *1 (-646 *3 *4)) (-4 *4 (-585 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-499)) (-4 *4 (-989)) (-5 *1 (-672 *4 *5)) - (-4 *5 (-606 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-678)) (-5 *2 (-857)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-680)) (-5 *2 (-714)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-684)) (-5 *2 (-714)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-768 *3)) (-4 *3 (-989)))) + (-12 (-5 *2 (-84)) (-5 *3 (-478)) (-4 *4 (-954)) (-5 *1 (-646 *4 *5)) + (-4 *5 (-585 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-652)) (-5 *2 (-823)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-654)) (-5 *2 (-687)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-687)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-738 *3)) (-4 *3 (-954)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-499)) (-5 *1 (-768 *4)) (-4 *4 (-989)))) - ((*1 *1 *1 *1) (-5 *1 (-797))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-942)) (-5 *2 (-361 (-499))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-857)))) + (-12 (-5 *2 (-84)) (-5 *3 (-478)) (-5 *1 (-738 *4)) (-4 *4 (-954)))) + ((*1 *1 *1 *1) (-5 *1 (-765))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1005)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-908)) (-5 *2 (-343 (-478))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-823)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-499)) (-4 *1 (-1063 *3 *4 *5 *6)) (-4 *4 (-989)) - (-4 *5 (-195 *3 *4)) (-4 *6 (-195 *3 *4)) (-4 *4 (-318)))) + (-12 (-5 *2 (-478)) (-4 *1 (-1026 *3 *4 *5 *6)) (-4 *4 (-954)) + (-4 *5 (-193 *3 *4)) (-4 *6 (-193 *3 *4)) (-4 *4 (-308)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1032 (-775 *3))) (-4 *3 (-13 (-1143) (-898) (-29 *5))) - (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) + (-12 (-5 *4 (-996 (-743 *3))) (-4 *3 (-13 (-1104) (-864) (-29 *5))) + (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 - (-3 (|:| |f1| (-775 *3)) (|:| |f2| (-599 (-775 *3))) + (-3 (|:| |f1| (-743 *3)) (|:| |f2| (-578 (-743 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) - (-5 *1 (-173 *5 *3)))) + (-5 *1 (-171 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1032 (-775 *3))) (-5 *5 (-1099)) - (-4 *3 (-13 (-1143) (-898) (-29 *6))) - (-4 *6 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) + (-12 (-5 *4 (-996 (-743 *3))) (-5 *5 (-1062)) + (-4 *3 (-13 (-1104) (-864) (-29 *6))) + (-4 *6 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 - (-3 (|:| |f1| (-775 *3)) (|:| |f2| (-599 (-775 *3))) (|:| |fail| #1#) + (-3 (|:| |f1| (-743 *3)) (|:| |f2| (-578 (-743 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) - (-5 *1 (-173 *6 *3)))) + (-5 *1 (-171 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1032 (-775 (-268 *5)))) - (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) + (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-996 (-743 (-261 *5)))) + (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 - (-3 (|:| |f1| (-775 (-268 *5))) (|:| |f2| (-599 (-775 (-268 *5)))) + (-3 (|:| |f1| (-743 (-261 *5))) (|:| |f2| (-578 (-743 (-261 *5)))) (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) - (-5 *1 (-174 *5)))) + (-5 *1 (-172 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-361 (-884 *6))) (-5 *4 (-1032 (-775 (-268 *6)))) - (-5 *5 (-1099)) (-4 *6 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) + (-12 (-5 *3 (-343 (-850 *6))) (-5 *4 (-996 (-743 (-261 *6)))) (-5 *5 (-1062)) + (-4 *6 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 - (-3 (|:| |f1| (-775 (-268 *6))) (|:| |f2| (-599 (-775 (-268 *6)))) + (-3 (|:| |f1| (-743 (-261 *6))) (|:| |f2| (-578 (-743 (-261 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-174 *6)))) + (-5 *1 (-172 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1032 (-775 (-361 (-884 *5))))) (-5 *3 (-361 (-884 *5))) - (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) + (-12 (-5 *4 (-996 (-743 (-343 (-850 *5))))) (-5 *3 (-343 (-850 *5))) + (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 - (-3 (|:| |f1| (-775 (-268 *5))) (|:| |f2| (-599 (-775 (-268 *5)))) + (-3 (|:| |f1| (-743 (-261 *5))) (|:| |f2| (-578 (-743 (-261 *5)))) (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-174 *5)))) + (-5 *1 (-172 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1032 (-775 (-361 (-884 *6))))) (-5 *5 (-1099)) - (-5 *3 (-361 (-884 *6))) - (-4 *6 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) + (-12 (-5 *4 (-996 (-743 (-343 (-850 *6))))) (-5 *5 (-1062)) + (-5 *3 (-343 (-850 *6))) + (-4 *6 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 - (-3 (|:| |f1| (-775 (-268 *6))) (|:| |f2| (-599 (-775 (-268 *6)))) + (-3 (|:| |f1| (-743 (-261 *6))) (|:| |f2| (-578 (-743 (-261 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-174 *6)))) + (-5 *1 (-172 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) - (-5 *2 (-3 *3 (-599 *3))) (-5 *1 (-384 *5 *3)) - (-4 *3 (-13 (-1143) (-898) (-29 *5))))) + (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) + (-5 *2 (-3 *3 (-578 *3))) (-5 *1 (-366 *5 *3)) + (-4 *3 (-13 (-1104) (-864) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-428 *3 *4 *5)) - (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3))) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-407 *3 *4 *5)) + (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-120) (-978 (-499)))) (-4 *5 (-1183 *4)) - (-5 *2 (-534 (-361 *5))) (-5 *1 (-519 *4 *5)) (-5 *3 (-361 *5)))) + (-12 (-4 *4 (-13 (-308) (-118) (-943 (-478)))) (-4 *5 (-1144 *4)) + (-5 *2 (-513 (-343 *5))) (-5 *1 (-498 *4 *5)) (-5 *3 (-343 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-120)) - (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) - (-5 *2 (-3 (-268 *5) (-599 (-268 *5)))) (-5 *1 (-540 *5)))) + (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1079)) (-4 *5 (-118)) + (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) + (-5 *2 (-3 (-261 *5) (-578 (-261 *5)))) (-5 *1 (-519 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-698 *3 *2)) (-4 *3 (-989)) (-4 *2 (-781)) - (-4 *3 (-38 (-361 (-499)))))) + (-12 (-4 *1 (-672 *3 *2)) (-4 *3 (-954)) (-4 *2 (-749)) + (-4 *3 (-38 (-343 (-478)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1117)) (-5 *1 (-884 *3)) (-4 *3 (-38 (-361 (-499)))) - (-4 *3 (-989)))) + (-12 (-5 *2 (-1079)) (-5 *1 (-850 *3)) (-4 *3 (-38 (-343 (-478)))) + (-4 *3 (-954)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-4 *2 (-781)) - (-5 *1 (-1066 *3 *2 *4)) (-4 *4 (-888 *3 (-484 *2) *2)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-4 *2 (-749)) + (-5 *1 (-1029 *3 *2 *4)) (-4 *4 (-854 *3 (-463 *2) *2)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) - (-5 *1 (-1101 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) + (-5 *1 (-1064 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) - (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3))) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1071 *3 *4 *5)) + (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1114 *3 *4 *5)) - (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3))) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1077 *3 *4 *5)) + (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) - (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3))) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1078 *3 *4 *5)) + (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *1 (-1150 *3)) (-4 *3 (-38 (-361 (-499)))) - (-4 *3 (-989)))) + (-12 (-5 *2 (-1079)) (-5 *1 (-1111 *3)) (-4 *3 (-38 (-343 (-478)))) + (-4 *3 (-954)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1167 *3 *4 *5)) - (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3))) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1128 *3 *4 *5)) + (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-3677 - (-12 (-5 *2 (-1117)) (-4 *1 (-1169 *3)) (-4 *3 (-989)) - (-12 (-4 *3 (-29 (-499))) (-4 *3 (-898)) (-4 *3 (-1143)) - (-4 *3 (-38 (-361 (-499)))))) - (-12 (-5 *2 (-1117)) (-4 *1 (-1169 *3)) (-4 *3 (-989)) - (-12 (|has| *3 (-15 -3204 ((-599 *2) *3))) - (|has| *3 (-15 -3962 (*3 *3 *2))) (-4 *3 (-38 (-361 (-499)))))))) + (OR + (-12 (-5 *2 (-1079)) (-4 *1 (-1130 *3)) (-4 *3 (-954)) + (-12 (-4 *3 (-29 (-478))) (-4 *3 (-864)) (-4 *3 (-1104)) + (-4 *3 (-38 (-343 (-478)))))) + (-12 (-5 *2 (-1079)) (-4 *1 (-1130 *3)) (-4 *3 (-954)) + (-12 (|has| *3 (-15 -3065 ((-578 *2) *3))) + (|has| *3 (-15 -3796 (*3 *3 *2))) (-4 *3 (-38 (-343 (-478)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1169 *2)) (-4 *2 (-989)) (-4 *2 (-38 (-361 (-499)))))) + (-12 (-4 *1 (-1130 *2)) (-4 *2 (-954)) (-4 *2 (-38 (-343 (-478)))))) ((*1 *1 *1) - (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-38 (-361 (-499)))))) + (-12 (-4 *1 (-1144 *2)) (-4 *2 (-954)) (-4 *2 (-38 (-343 (-478)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1188 *3 *4 *5)) - (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3))) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1149 *3 *4 *5)) + (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-3677 - (-12 (-5 *2 (-1117)) (-4 *1 (-1190 *3)) (-4 *3 (-989)) - (-12 (-4 *3 (-29 (-499))) (-4 *3 (-898)) (-4 *3 (-1143)) - (-4 *3 (-38 (-361 (-499)))))) - (-12 (-5 *2 (-1117)) (-4 *1 (-1190 *3)) (-4 *3 (-989)) - (-12 (|has| *3 (-15 -3204 ((-599 *2) *3))) - (|has| *3 (-15 -3962 (*3 *3 *2))) (-4 *3 (-38 (-361 (-499)))))))) + (OR + (-12 (-5 *2 (-1079)) (-4 *1 (-1151 *3)) (-4 *3 (-954)) + (-12 (-4 *3 (-29 (-478))) (-4 *3 (-864)) (-4 *3 (-1104)) + (-4 *3 (-38 (-343 (-478)))))) + (-12 (-5 *2 (-1079)) (-4 *1 (-1151 *3)) (-4 *3 (-954)) + (-12 (|has| *3 (-15 -3065 ((-578 *2) *3))) + (|has| *3 (-15 -3796 (*3 *3 *2))) (-4 *3 (-38 (-343 (-478)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1190 *2)) (-4 *2 (-989)) (-4 *2 (-38 (-361 (-499)))))) + (-12 (-4 *1 (-1151 *2)) (-4 *2 (-954)) (-4 *2 (-38 (-343 (-478)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1197 *3 *4 *5)) - (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3))) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1079)) (-5 *1 (-1158 *3 *4 *5)) + (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-3677 - (-12 (-5 *2 (-1117)) (-4 *1 (-1200 *3)) (-4 *3 (-989)) - (-12 (-4 *3 (-29 (-499))) (-4 *3 (-898)) (-4 *3 (-1143)) - (-4 *3 (-38 (-361 (-499)))))) - (-12 (-5 *2 (-1117)) (-4 *1 (-1200 *3)) (-4 *3 (-989)) - (-12 (|has| *3 (-15 -3204 ((-599 *2) *3))) - (|has| *3 (-15 -3962 (*3 *3 *2))) (-4 *3 (-38 (-361 (-499)))))))) + (OR + (-12 (-5 *2 (-1079)) (-4 *1 (-1161 *3)) (-4 *3 (-954)) + (-12 (-4 *3 (-29 (-478))) (-4 *3 (-864)) (-4 *3 (-1104)) + (-4 *3 (-38 (-343 (-478)))))) + (-12 (-5 *2 (-1079)) (-4 *1 (-1161 *3)) (-4 *3 (-954)) + (-12 (|has| *3 (-15 -3065 ((-578 *2) *3))) + (|has| *3 (-15 -3796 (*3 *3 *2))) (-4 *3 (-38 (-343 (-478)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1200 *2)) (-4 *2 (-989)) (-4 *2 (-38 (-361 (-499))))))) + (-12 (-4 *1 (-1161 *2)) (-4 *2 (-954)) (-4 *2 (-38 (-343 (-478))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-714)) (-5 *2 (-1176 *5 *4)) (-5 *1 (-1115 *4 *5 *6)) - (-4 *4 (-989)) (-14 *5 (-1117)) (-14 *6 *4))) + (-12 (-5 *3 (-687)) (-5 *2 (-1137 *5 *4)) (-5 *1 (-1078 *4 *5 *6)) + (-4 *4 (-954)) (-14 *5 (-1079)) (-14 *6 *4))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-714)) (-5 *2 (-1176 *5 *4)) (-5 *1 (-1197 *4 *5 *6)) - (-4 *4 (-989)) (-14 *5 (-1117)) (-14 *6 *4)))) -(((*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) + (-12 (-5 *3 (-687)) (-5 *2 (-1137 *5 *4)) (-5 *1 (-1158 *4 *5 *6)) + (-4 *4 (-954)) (-14 *5 (-1079)) (-14 *6 *4)))) +(((*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) + (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1079)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) + (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1079)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) + (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1079)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2)))) + (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1079)) (-14 *4 *2)))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1095 *4)) (-5 *3 (-499)) (-4 *4 (-989)) (-5 *1 (-1101 *4)))) + (-12 (-5 *2 (-1058 *4)) (-5 *3 (-478)) (-4 *4 (-954)) (-5 *1 (-1064 *4)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-499)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-1117)) + (-12 (-5 *2 (-478)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-1079)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2)))) + (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1079)) (-14 *4 *2)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1095 *4)) (-5 *3 (-499)) (-4 *4 (-989)) (-5 *1 (-1101 *4)))) + (-12 (-5 *2 (-1058 *4)) (-5 *3 (-478)) (-4 *4 (-954)) (-5 *1 (-1064 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-499)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-1117)) + (-12 (-5 *2 (-478)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-1079)) (-14 *5 *3)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1095 *4)) (-5 *3 (-499)) (-4 *4 (-989)) (-5 *1 (-1101 *4)))) + (-12 (-5 *2 (-1058 *4)) (-5 *3 (-478)) (-4 *4 (-954)) (-5 *1 (-1064 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-499)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-1117)) + (-12 (-5 *2 (-478)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-1079)) (-14 *5 *3)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-975)) (-5 *1 (-257)))) - ((*1 *2 *3) (-12 (-5 *3 (-599 (-975))) (-5 *2 (-975)) (-5 *1 (-257)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1157)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1157)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1157)))) - ((*1 *1 *1 *1) (-5 *1 (-1003))) - ((*1 *2 *3) - (-12 (-5 *3 (-1095 (-1095 *4))) (-5 *2 (-1095 *4)) (-5 *1 (-1096 *4)) - (-4 *4 (-1157)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) - (-12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1041)) (-4 *3 (-781)) (-4 *2 (-1157)))) - ((*1 *2 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) - ((*1 *2 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *2 (-1157)) (-5 *1 (-807 *2 *3)) (-4 *3 (-1157)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-828 *3)) (-4 *3 (-781)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) - (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1196 *3)) (-4 *3 (-1157)))) - ((*1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1118)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1118)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1118)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1118)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1058 (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1059 *4)) + (-4 *4 (-1118)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) + (-12 (-4 *1 (-533 *3 *2)) (-4 *3 (-1005)) (-4 *3 (-749)) (-4 *2 (-1118)))) + ((*1 *2 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) + ((*1 *2 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *2 (-1118)) (-5 *1 (-775 *2 *3)) (-4 *3 (-1118)))) + ((*1 *2 *1) (-12 (-5 *2 (-609 *3)) (-5 *1 (-796 *3)) (-4 *3 (-749)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) + (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1157 *3)) (-4 *3 (-1118)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1157)) (-4 *4 (-327 *2)) - (-4 *5 (-327 *2)))) + (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1118)) (-4 *4 (-317 *2)) + (-4 *5 (-317 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-327 *2)) - (-4 *5 (-327 *2)) (-4 *2 (-1157)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1157)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1157)))) + (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-317 *2)) + (-4 *5 (-317 *2)) (-4 *2 (-1118)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-90 *3)) (-4 *3 (-1118)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-90 *3)) (-4 *3 (-1118)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-599 (-499))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) - (-14 *4 (-499)) (-14 *5 (-714)))) + (-12 (-5 *3 (-578 (-478))) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) + (-14 *4 (-478)) (-14 *5 (-687)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-499)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-714)))) + (-12 (-5 *3 (-478)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-687)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-499)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-714)))) + (-12 (-5 *3 (-478)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-687)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-499)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-714)))) + (-12 (-5 *3 (-478)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-687)))) ((*1 *2 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-499)) (-14 *4 (-714)))) + (-12 (-4 *2 (-144)) (-5 *1 (-106 *3 *4 *2)) (-14 *3 (-478)) (-14 *4 (-687)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1117)) (-5 *2 (-202 (-1099))) (-5 *1 (-167 *4)) + (-12 (-5 *3 (-1079)) (-5 *2 (-200 (-1062))) (-5 *1 (-165 *4)) (-4 *4 - (-13 (-781) - (-10 -8 (-15 -3950 ((-1099) $ *3)) (-15 -3767 ((-1213) $)) - (-15 -2066 ((-1213) $))))))) + (-13 (-749) + (-10 -8 (-15 -3784 ((-1062) $ *3)) (-15 -3601 ((-1174) $)) + (-15 -1951 ((-1174) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-929)) (-5 *1 (-167 *3)) + (-12 (-5 *2 (-895)) (-5 *1 (-165 *3)) (-4 *3 - (-13 (-781) - (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 ((-1213) $)) - (-15 -2066 ((-1213) $))))))) + (-13 (-749) + (-10 -8 (-15 -3784 ((-1062) $ (-1079))) (-15 -3601 ((-1174) $)) + (-15 -1951 ((-1174) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-714)) (-5 *1 (-202 *4)) (-4 *4 (-781)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-202 *3)) (-4 *3 (-781)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-202 *3)) (-4 *3 (-781)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-240 *3 *2)) (-4 *3 (-1157)) (-4 *2 (-1157)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-242 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1157)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-599 *1)) (-4 *1 (-252)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) + (-12 (-5 *3 "count") (-5 *2 (-687)) (-5 *1 (-200 *4)) (-4 *4 (-749)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-200 *3)) (-4 *3 (-749)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-200 *3)) (-4 *3 (-749)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-238 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-240 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1118)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-578 *1)) (-4 *1 (-250)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-297 *2 *3 *4)) (-4 *2 (-1162)) (-4 *3 (-1183 *2)) - (-4 *4 (-1183 (-361 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1099)) (-5 *1 (-456)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-714)) (-5 *1 (-633 *2)) (-4 *2 (-1041)))) + (-12 (-4 *1 (-287 *2 *3 *4)) (-4 *2 (-1123)) (-4 *3 (-1144 *2)) + (-4 *4 (-1144 (-343 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-1062)) (-5 *1 (-435)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-599 (-499))) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) - (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) + (-12 (-5 *2 (-578 (-478))) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) + (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-599 (-825 *4))) (-5 *1 (-825 *4)) - (-4 *4 (-1041)))) + (-12 (-5 *2 (-84)) (-5 *3 (-578 (-793 *4))) (-5 *1 (-793 *4)) + (-4 *4 (-1005)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-714)) (-5 *2 (-840 *4)) (-5 *1 (-843 *4)) (-4 *4 (-1041)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-950 *2)) (-4 *2 (-1157)))) - ((*1 *2 *1) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157)))) + (-12 (-5 *3 (-687)) (-5 *2 (-806 *4)) (-5 *1 (-809 *4)) (-4 *4 (-1005)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-916 *2)) (-4 *2 (-1118)))) + ((*1 *2 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-1118)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *2 *6 *7)) (-4 *2 (-989)) - (-4 *6 (-195 *5 *2)) (-4 *7 (-195 *4 *2)))) + (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *2 *6 *7)) (-4 *2 (-954)) + (-4 *6 (-193 *5 *2)) (-4 *7 (-193 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *2 *6 *7)) (-4 *6 (-195 *5 *2)) - (-4 *7 (-195 *4 *2)) (-4 *2 (-989)))) + (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *2 *6 *7)) (-4 *6 (-193 *5 *2)) + (-4 *7 (-193 *4 *2)) (-4 *2 (-954)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-857)) (-4 *4 (-1041)) - (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-1015 *4 *5 *2)) - (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))))) + (-12 (-5 *3 (-823)) (-4 *4 (-1005)) + (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-979 *4 *5 *2)) + (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-857)) (-4 *4 (-1041)) - (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-1017 *4 *5 *2)) - (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1084))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-1117)))) + (-12 (-5 *3 (-823)) (-4 *4 (-1005)) + (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-981 *4 *5 *2)) + (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1047))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-1079)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-361 *1)) (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) + (-12 (-5 *3 (-343 *1)) (-4 *1 (-1144 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-361 *1)) (-4 *1 (-1183 *3)) (-4 *3 (-989)) (-4 *3 (-510)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1196 *3)) (-4 *3 (-1157)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) -(((*1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) - ((*1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) - ((*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-781)))) + (-12 (-5 *2 (-343 *1)) (-4 *1 (-1144 *3)) (-4 *3 (-954)) (-4 *3 (-489)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1157 *3)) (-4 *3 (-1118)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1157 *2)) (-4 *2 (-1118))))) +(((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) + ((*1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) + ((*1 *1 *1) (-12 (-5 *1 (-796 *2)) (-4 *2 (-749)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1152 *2 *3 *4 *5)) (-4 *2 (-510)) (-4 *3 (-738)) - (-4 *4 (-781)) (-4 *5 (-1005 *2 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1196 *3)) (-4 *3 (-1157)))) - ((*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1036)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) - (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1196 *3)) (-4 *3 (-1157)))) - ((*1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) -(((*1 *1 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157)))) + (|partial| -12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *2 (-489)) (-4 *3 (-710)) + (-4 *4 (-749)) (-4 *5 (-969 *2 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1157 *3)) (-4 *3 (-1118)))) + ((*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1118)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-1000)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) + (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1157 *3)) (-4 *3 (-1118)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118))))) +(((*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1118)))) ((*1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) - ((*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *2 (-1157)) (-5 *1 (-807 *3 *2)) (-4 *3 (-1157)))) - ((*1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) -(((*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-1157)) (-5 *2 (-714))))) -(((*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-201 *2)) (-4 *2 (-1157)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)))) - ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) + ((*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *2 (-1118)) (-5 *1 (-775 *3 *2)) (-4 *3 (-1118)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118))))) +(((*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-1118)) (-5 *2 (-687))))) +(((*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1118))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-199 *2)) (-4 *2 (-1118)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1118)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1118)))) + ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-1157 *2)) (-4 *2 (-1118)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-1157 *2)) (-4 *2 (-1118))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-1157 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-1157 *2)) (-4 *2 (-1118))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1157)) (-4 *4 (-327 *2)) - (-4 *5 (-327 *2)))) + (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1118)) (-4 *4 (-317 *2)) + (-4 *5 (-317 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4146)) (-4 *1 (-92 *3)) (-4 *3 (-1157)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -3980)) (-4 *1 (-90 *3)) (-4 *3 (-1118)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4146)) (-4 *1 (-92 *3)) (-4 *3 (-1157)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -3980)) (-4 *1 (-90 *3)) (-4 *3 (-1118)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4146)) (-4 *1 (-242 *3 *2)) (-4 *3 (-1041)) - (-4 *2 (-1157)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1117)) (-5 *1 (-587)))) + (-12 (|has| *1 (-6 -3980)) (-4 *1 (-240 *3 *2)) (-4 *3 (-1005)) + (-4 *2 (-1118)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1079)) (-5 *1 (-566)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1174 (-499))) (|has| *1 (-6 -4146)) (-4 *1 (-609 *2)) - (-4 *2 (-1157)))) + (-12 (-5 *3 (-1135 (-478))) (|has| *1 (-6 -3980)) (-4 *1 (-588 *2)) + (-4 *2 (-1118)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-599 (-499))) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) - (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) + (-12 (-5 *2 (-578 (-478))) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) + (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4146)) (-4 *1 (-950 *2)) - (-4 *2 (-1157)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -3980)) (-4 *1 (-916 *2)) + (-4 *2 (-1118)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-932 *2)) (-4 *2 (-1118)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1096 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) - (-4 *2 (-1157)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -3980)) (-4 *1 (-1157 *2)) + (-4 *2 (-1118)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4146)) (-4 *1 (-1196 *3)) - (-4 *3 (-1157)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -3980)) (-4 *1 (-1157 *3)) + (-4 *3 (-1118)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) - (-4 *2 (-1157))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1095 *3)) (-4 *3 (-1157)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -3980)) (-4 *1 (-1157 *2)) + (-4 *2 (-1118))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1058 *3)) (-4 *3 (-1118)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-1157 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-1157 *2)) (-4 *2 (-1118))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-499)) (|has| *1 (-6 -4146)) (-4 *1 (-1196 *3)) - (-4 *3 (-1157))))) + (-12 (-5 *2 (-478)) (|has| *1 (-6 -3980)) (-4 *1 (-1157 *3)) + (-4 *3 (-1118))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-978 (-499)) (-596 (-499)) (-406))) - (-5 *2 (-775 *4)) (-5 *1 (-267 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1143) (-375 *3))) (-14 *5 (-1117)) (-14 *6 *4))) + (|partial| -12 (-4 *3 (-13 (-943 (-478)) (-575 (-478)) (-385))) + (-5 *2 (-743 *4)) (-5 *1 (-260 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1104) (-357 *3))) (-14 *5 (-1079)) (-14 *6 *4))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-978 (-499)) (-596 (-499)) (-406))) - (-5 *2 (-775 *4)) (-5 *1 (-1194 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1143) (-375 *3))) (-14 *5 (-1117)) (-14 *6 *4)))) + (|partial| -12 (-4 *3 (-13 (-943 (-478)) (-575 (-478)) (-385))) + (-5 *2 (-743 *4)) (-5 *1 (-1155 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1104) (-357 *3))) (-14 *5 (-1079)) (-14 *6 *4)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-978 (-499)) (-596 (-499)) (-406))) + (|partial| -12 (-4 *3 (-13 (-943 (-478)) (-575 (-478)) (-385))) (-5 *2 (-2 (|:| |%term| - (-2 (|:| |%coef| (-1188 *4 *5 *6)) (|:| |%expon| (-273 *4 *5 *6)) - (|:| |%expTerms| (-599 (-2 (|:| |k| (-361 (-499))) (|:| |c| *4)))))) - (|:| |%type| (-1099)))) - (-5 *1 (-1194 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1143) (-375 *3))) - (-14 *5 (-1117)) (-14 *6 *4)))) + (-2 (|:| |%coef| (-1149 *4 *5 *6)) (|:| |%expon| (-266 *4 *5 *6)) + (|:| |%expTerms| (-578 (-2 (|:| |k| (-343 (-478))) (|:| |c| *4)))))) + (|:| |%type| (-1062)))) + (-5 *1 (-1155 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1104) (-357 *3))) + (-14 *5 (-1079)) (-14 *6 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) - (-5 *2 (-51)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-27) (-1143) (-375 *4))))) + (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) + (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1104) (-357 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) + (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-361 (-499))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) - (-5 *2 (-51)) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) + (-12 (-5 *4 (-343 (-478))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) + (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) - (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-270 *5 *3)))) + (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))) + (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-263 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-247 *3)) (-5 *5 (-361 (-499))) - (-4 *3 (-13 (-27) (-1143) (-375 *6))) - (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-270 *6 *3)))) + (-12 (-5 *4 (-245 *3)) (-5 *5 (-343 (-478))) + (-4 *3 (-13 (-27) (-1104) (-357 *6))) + (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-263 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-361 (-499)))) (-5 *4 (-247 *8)) - (-5 *5 (-1174 (-361 (-499)))) (-5 *6 (-361 (-499))) - (-4 *8 (-13 (-27) (-1143) (-375 *7))) - (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-413 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-343 (-478)))) (-5 *4 (-245 *8)) + (-5 *5 (-1135 (-343 (-478)))) (-5 *6 (-343 (-478))) + (-4 *8 (-13 (-27) (-1104) (-357 *7))) + (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-392 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-361 (-499)))) - (-5 *7 (-361 (-499))) (-4 *3 (-13 (-27) (-1143) (-375 *8))) - (-4 *8 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-413 *8 *3)))) + (-12 (-5 *4 (-1079)) (-5 *5 (-245 *3)) (-5 *6 (-1135 (-343 (-478)))) + (-5 *7 (-343 (-478))) (-4 *3 (-13 (-27) (-1104) (-357 *8))) + (-4 *8 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-392 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-361 (-499))) (-4 *4 (-989)) (-4 *1 (-1192 *4 *3)) - (-4 *3 (-1169 *4))))) + (-12 (-5 *2 (-343 (-478))) (-4 *4 (-954)) (-4 *1 (-1153 *4 *3)) + (-4 *3 (-1130 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1169 *3)) - (-5 *2 (-361 (-499)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1169 *3))))) + (-12 (-4 *1 (-1153 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1130 *3)) + (-5 *2 (-343 (-478)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1153 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1130 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) - (-5 *2 (-51)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-27) (-1143) (-375 *4))))) + (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) + (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1104) (-357 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) + (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-499)) (-4 *5 (-13 (-406) (-978 *4) (-596 *4))) (-5 *2 (-51)) - (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) + (-12 (-5 *4 (-478)) (-4 *5 (-13 (-385) (-943 *4) (-575 *4))) (-5 *2 (-51)) + (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) - (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-270 *5 *3)))) + (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))) + (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-263 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) - (-4 *6 (-13 (-406) (-978 *5) (-596 *5))) (-5 *5 (-499)) (-5 *2 (-51)) - (-5 *1 (-270 *6 *3)))) + (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *6))) + (-4 *6 (-13 (-385) (-943 *5) (-575 *5))) (-5 *5 (-478)) (-5 *2 (-51)) + (-5 *1 (-263 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-499))) (-5 *4 (-247 *7)) (-5 *5 (-1174 (-499))) - (-4 *7 (-13 (-27) (-1143) (-375 *6))) - (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-413 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-478))) (-5 *4 (-245 *7)) (-5 *5 (-1135 (-478))) + (-4 *7 (-13 (-27) (-1104) (-357 *6))) + (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-392 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-499))) - (-4 *3 (-13 (-27) (-1143) (-375 *7))) - (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-413 *7 *3)))) + (-12 (-5 *4 (-1079)) (-5 *5 (-245 *3)) (-5 *6 (-1135 (-478))) + (-4 *3 (-13 (-27) (-1104) (-357 *7))) + (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-392 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-499)) (-4 *4 (-989)) (-4 *1 (-1171 *4 *3)) (-4 *3 (-1200 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1169 *3))))) + (-12 (-5 *2 (-478)) (-4 *4 (-954)) (-4 *1 (-1132 *4 *3)) (-4 *3 (-1161 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1130 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1169 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1183 *3)) (-4 *3 (-989)))) + (|partial| -12 (-4 *1 (-1153 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1130 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1144 *3)) (-4 *3 (-954)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-857)) (-4 *1 (-1186 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-4 *1 (-1190 *3)) (-4 *3 (-989))))) + (-12 (-5 *2 (-823)) (-4 *1 (-1147 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-4 *1 (-1151 *3)) (-4 *3 (-954))))) (((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-499)))) - (-4 *4 (-13 (-1183 *3) (-510) (-10 -8 (-15 -3282 ($ $ $))))) (-4 *3 (-510)) - (-5 *1 (-1187 *3 *4))))) + (|:| |xpnt| (-478)))) + (-4 *4 (-13 (-1144 *3) (-489) (-10 -8 (-15 -3127 ($ $ $))))) (-4 *3 (-489)) + (-5 *1 (-1148 *3 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *2 (-406)))) + (-12 (-4 *1 (-854 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *2 (-385)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) - (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *1)))) - (-4 *1 (-1011 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1162))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) + (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *1)))) + (-4 *1 (-975 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1123))) ((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-1187 *3 *2)) - (-4 *2 (-13 (-1183 *3) (-510) (-10 -8 (-15 -3282 ($ $ $)))))))) + (-12 (-4 *3 (-489)) (-5 *1 (-1148 *3 *2)) + (-4 *2 (-13 (-1144 *3) (-489) (-10 -8 (-15 -3127 ($ $ $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-104)) - (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 *4)))))) + (-12 (-4 *1 (-270 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-102)) + (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3927 *4)))))) ((*1 *2 *1) - (-12 (-4 *1 (-463 *3 *4)) (-4 *3 (-73)) (-4 *4 (-784)) - (-5 *2 (-599 (-807 *4 *3))))) + (-12 (-4 *1 (-442 *3 *4)) (-4 *3 (-72)) (-4 *4 (-752)) + (-5 *2 (-578 (-775 *4 *3))))) ((*1 *2 *1) - (-12 (-5 *2 (-599 (-2 (|:| -4104 *3) (|:| -4088 *4)))) (-5 *1 (-693 *3 *4)) - (-4 *3 (-989)) (-4 *4 (-684)))) + (-12 (-5 *2 (-578 (-2 (|:| -3938 *3) (|:| -3922 *4)))) (-5 *1 (-667 *3 *4)) + (-4 *3 (-954)) (-4 *4 (-658)))) ((*1 *2 *1) - (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) - (-5 *2 (-1095 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *3 (-499)) (-5 *1 (-198)))) + (-12 (-4 *1 (-1147 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) + (-5 *2 (-1058 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1062)) (-5 *3 (-478)) (-5 *1 (-196)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-599 (-1099))) (-5 *3 (-499)) (-5 *4 (-1099)) (-5 *1 (-198)))) - ((*1 *1 *1) (-5 *1 (-797))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) - ((*1 *2 *1) (-12 (-4 *1 (-1186 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989))))) + (-12 (-5 *2 (-578 (-1062))) (-5 *3 (-478)) (-5 *4 (-1062)) (-5 *1 (-196)))) + ((*1 *1 *1) (-5 *1 (-765))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) + ((*1 *2 *1) (-12 (-4 *1 (-1147 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954))))) (((*1 *2 *1) - (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) - (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-714)))) + (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) + (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-687)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-989)) (-4 *3 (-781)) - (-4 *5 (-227 *3)) (-4 *6 (-738)) (-5 *2 (-714)))) - ((*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-781)) (-5 *2 (-714)))) - ((*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-857)))) - ((*1 *2 *3) - (-12 (-5 *3 (-288 *4 *5 *6 *7)) (-4 *4 (-13 (-323) (-318))) - (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) (-4 *7 (-297 *4 *5 *6)) - (-5 *2 (-714)) (-5 *1 (-348 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-356)) (-5 *2 (-766 (-857))))) - ((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-499)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-546 *3)) (-4 *3 (-989)))) - ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-546 *3)) (-4 *3 (-989)))) - ((*1 *2 *1) - (-12 (-4 *3 (-510)) (-5 *2 (-499)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1183 *3)))) + (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-954)) (-4 *3 (-749)) + (-4 *5 (-225 *3)) (-4 *6 (-710)) (-5 *2 (-687)))) + ((*1 *2 *1) (-12 (-4 *1 (-225 *3)) (-4 *3 (-749)) (-5 *2 (-687)))) + ((*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-823)))) + ((*1 *2 *3) + (-12 (-5 *3 (-279 *4 *5 *6 *7)) (-4 *4 (-13 (-313) (-308))) + (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-343 *5))) (-4 *7 (-287 *4 *5 *6)) + (-5 *2 (-687)) (-5 *1 (-334 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-736 (-823))))) + ((*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-478)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-525 *3)) (-4 *3 (-954)))) + ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-525 *3)) (-4 *3 (-954)))) + ((*1 *2 *1) + (-12 (-4 *3 (-489)) (-5 *2 (-478)) (-5 *1 (-557 *3 *4)) (-4 *4 (-1144 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-714)) (-4 *1 (-698 *4 *3)) (-4 *4 (-989)) (-4 *3 (-781)))) + (-12 (-5 *2 (-687)) (-4 *1 (-672 *4 *3)) (-4 *4 (-954)) (-4 *3 (-749)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-698 *4 *3)) (-4 *4 (-989)) (-4 *3 (-781)) (-5 *2 (-714)))) - ((*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-714)))) - ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) - ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-288 *5 *6 *7 *8)) (-4 *5 (-375 *4)) - (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-4 *8 (-297 *5 *6 *7)) - (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-714)) - (-5 *1 (-849 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-288 (-361 (-499)) *4 *5 *6)) - (-4 *4 (-1183 (-361 (-499)))) (-4 *5 (-1183 (-361 *4))) - (-4 *6 (-297 (-361 (-499)) *4 *5)) (-5 *2 (-714)) (-5 *1 (-850 *4 *5 *6)))) + (-12 (-4 *1 (-672 *4 *3)) (-4 *4 (-954)) (-4 *3 (-749)) (-5 *2 (-687)))) + ((*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-5 *2 (-687)))) + ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-806 *3)) (-4 *3 (-1005)))) + ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-809 *3)) (-4 *3 (-1005)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-279 *5 *6 *7 *8)) (-4 *5 (-357 *4)) + (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-343 *6))) (-4 *8 (-287 *5 *6 *7)) + (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-687)) + (-5 *1 (-815 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-279 (-343 (-478)) *4 *5 *6)) + (-4 *4 (-1144 (-343 (-478)))) (-4 *5 (-1144 (-343 *4))) + (-4 *6 (-287 (-343 (-478)) *4 *5)) (-5 *2 (-687)) (-5 *1 (-816 *4 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-288 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-318)) - (-4 *7 (-1183 *6)) (-4 *4 (-1183 (-361 *7))) (-4 *8 (-297 *6 *7 *4)) - (-4 *9 (-13 (-323) (-318))) (-5 *2 (-714)) (-5 *1 (-958 *6 *7 *4 *8 *9)))) + (-12 (-5 *3 (-279 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-308)) + (-4 *7 (-1144 *6)) (-4 *4 (-1144 (-343 *7))) (-4 *8 (-287 *6 *7 *4)) + (-4 *9 (-13 (-313) (-308))) (-5 *2 (-687)) (-5 *1 (-924 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1183 *3)) (-4 *3 (-989)) (-4 *3 (-510)) (-5 *2 (-714)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) - ((*1 *2 *1) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737))))) -(((*1 *1 *1) (-4 *1 (-1000))) - ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737))))) + (-12 (-4 *1 (-1144 *3)) (-4 *3 (-954)) (-4 *3 (-489)) (-5 *2 (-687)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) + ((*1 *2 *1) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709))))) +(((*1 *1 *1) (-4 *1 (-965))) + ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-361 (-499))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-499)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499)))) + (-12 (-5 *2 (-343 (-478))) (-5 *1 (-88 *4)) (-14 *4 *3) (-5 *3 (-478)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-361 (-499))) (-5 *1 (-805 *4)) (-14 *4 *3) (-5 *3 (-499)))) + (-12 (-5 *2 (-343 (-478))) (-5 *1 (-773 *4)) (-14 *4 *3) (-5 *3 (-478)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-361 (-499))) (-5 *1 (-806 *4 *5)) (-5 *3 (-499)) - (-4 *5 (-804 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-952)) (-5 *2 (-361 (-499))))) + (-12 (-14 *4 *3) (-5 *2 (-343 (-478))) (-5 *1 (-774 *4 *5)) (-5 *3 (-478)) + (-4 *5 (-772 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-918)) (-5 *2 (-343 (-478))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1008 *2 *3)) (-4 *2 (-13 (-780) (-318))) (-4 *3 (-1183 *2)))) + (-12 (-4 *1 (-972 *2 *3)) (-4 *2 (-13 (-748) (-308))) (-4 *3 (-1144 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1186 *2 *3)) (-4 *3 (-737)) (|has| *2 (-15 ** (*2 *2 *3))) - (|has| *2 (-15 -4096 (*2 (-1117)))) (-4 *2 (-989))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-148 *3)) (-4 *3 (-261)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-632 *3)) (-4 *3 (-1157)))) + (-12 (-4 *1 (-1147 *2 *3)) (-4 *3 (-709)) (|has| *2 (-15 ** (*2 *2 *3))) + (|has| *2 (-15 -3930 (*2 (-1079)))) (-4 *2 (-954))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-611 *3)) (-4 *3 (-1118)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-714)) (-4 *1 (-698 *3 *4)) (-4 *3 (-989)) (-4 *4 (-781)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *1 (-920 *3)) (-4 *3 (-989)))) + (-12 (-5 *2 (-687)) (-4 *1 (-672 *3 *4)) (-4 *3 (-954)) (-4 *4 (-749)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-886 *3)) (-4 *3 (-954)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-599 *1)) (-5 *3 (-599 *7)) (-4 *1 (-1011 *4 *5 *6 *7)) - (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)))) + (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-975 *4 *5 *6 *7)) + (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *7)))) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) - (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)))) + (-12 (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) + (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) - (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) + (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *2 (-1005 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737))))) + (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *2 (-969 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-361 *5)) (-4 *4 (-1162)) (-4 *5 (-1183 *4)) - (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1183 *3)))) + (-12 (-5 *3 (-343 *5)) (-4 *4 (-1123)) (-4 *5 (-1144 *4)) + (-5 *1 (-119 *4 *5 *2)) (-4 *2 (-1144 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1119 (-361 (-499)))) (-5 *2 (-361 (-499))) (-5 *1 (-164)))) + (-12 (-5 *3 (-1081 (-343 (-478)))) (-5 *2 (-343 (-478))) (-5 *1 (-162)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-599 (-247 *3))) (-4 *3 (-263 *3)) (-4 *3 (-1041)) - (-4 *3 (-1157)) (-5 *1 (-247 *3)))) + (-12 (-5 *2 (-578 (-245 *3))) (-4 *3 (-256 *3)) (-4 *3 (-1005)) + (-4 *3 (-1118)) (-5 *1 (-245 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-263 *2)) (-4 *2 (-1041)) (-4 *2 (-1157)) (-5 *1 (-247 *2)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-252)))) + (-12 (-4 *2 (-256 *2)) (-4 *2 (-1005)) (-4 *2 (-1118)) (-5 *1 (-245 *2)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *1 *1)) (-4 *1 (-250)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-599 *1))) (-4 *1 (-252)))) + (-12 (-5 *2 (-84)) (-5 *3 (-1 *1 (-578 *1))) (-4 *1 (-250)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 (-86))) (-5 *3 (-599 (-1 *1 (-599 *1)))) (-4 *1 (-252)))) + (-12 (-5 *2 (-578 (-84))) (-5 *3 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-250)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 (-86))) (-5 *3 (-599 (-1 *1 *1))) (-4 *1 (-252)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1 *1 *1)) (-4 *1 (-252)))) + (-12 (-5 *2 (-578 (-84))) (-5 *3 (-578 (-1 *1 *1))) (-4 *1 (-250)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1079)) (-5 *3 (-1 *1 *1)) (-4 *1 (-250)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1 *1 (-599 *1))) (-4 *1 (-252)))) + (-12 (-5 *2 (-1079)) (-5 *3 (-1 *1 (-578 *1))) (-4 *1 (-250)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-599 (-1 *1 (-599 *1)))) (-4 *1 (-252)))) + (-12 (-5 *2 (-578 (-1079))) (-5 *3 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-250)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-599 (-1 *1 *1))) (-4 *1 (-252)))) + (-12 (-5 *2 (-578 (-1079))) (-5 *3 (-578 (-1 *1 *1))) (-4 *1 (-250)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-599 (-247 *3))) (-4 *1 (-263 *3)) (-4 *3 (-1041)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-247 *3)) (-4 *1 (-263 *3)) (-4 *3 (-1041)))) + (-12 (-5 *2 (-578 (-245 *3))) (-4 *1 (-256 *3)) (-4 *3 (-1005)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-245 *3)) (-4 *1 (-256 *3)) (-4 *3 (-1005)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-499))) (-5 *4 (-1119 (-361 (-499)))) (-5 *1 (-264 *2)) - (-4 *2 (-38 (-361 (-499)))))) + (-12 (-5 *3 (-1 *2 (-478))) (-5 *4 (-1081 (-343 (-478)))) (-5 *1 (-257 *2)) + (-4 *2 (-38 (-343 (-478)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 *4)) (-5 *3 (-599 *1)) (-4 *1 (-329 *4 *5)) (-4 *4 (-781)) - (-4 *5 (-146)))) - ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-781)) (-4 *3 (-146)))) + (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-749)) + (-4 *5 (-144)))) + ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-749)) (-4 *3 (-144)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1117)) (-5 *3 (-714)) (-5 *4 (-1 *1 *1)) (-4 *1 (-375 *5)) - (-4 *5 (-1041)) (-4 *5 (-989)))) + (-12 (-5 *2 (-1079)) (-5 *3 (-687)) (-5 *4 (-1 *1 *1)) (-4 *1 (-357 *5)) + (-4 *5 (-1005)) (-4 *5 (-954)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1117)) (-5 *3 (-714)) (-5 *4 (-1 *1 (-599 *1))) - (-4 *1 (-375 *5)) (-4 *5 (-1041)) (-4 *5 (-989)))) + (-12 (-5 *2 (-1079)) (-5 *3 (-687)) (-5 *4 (-1 *1 (-578 *1))) + (-4 *1 (-357 *5)) (-4 *5 (-1005)) (-4 *5 (-954)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-599 (-714))) - (-5 *4 (-599 (-1 *1 (-599 *1)))) (-4 *1 (-375 *5)) (-4 *5 (-1041)) - (-4 *5 (-989)))) + (-12 (-5 *2 (-578 (-1079))) (-5 *3 (-578 (-687))) + (-5 *4 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-357 *5)) (-4 *5 (-1005)) + (-4 *5 (-954)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-599 (-714))) (-5 *4 (-599 (-1 *1 *1))) - (-4 *1 (-375 *5)) (-4 *5 (-1041)) (-4 *5 (-989)))) + (-12 (-5 *2 (-578 (-1079))) (-5 *3 (-578 (-687))) (-5 *4 (-578 (-1 *1 *1))) + (-4 *1 (-357 *5)) (-4 *5 (-1005)) (-4 *5 (-954)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-599 (-86))) (-5 *3 (-599 *1)) (-5 *4 (-1117)) (-4 *1 (-375 *5)) - (-4 *5 (-1041)) (-4 *5 (-569 (-488))))) + (-12 (-5 *2 (-578 (-84))) (-5 *3 (-578 *1)) (-5 *4 (-1079)) (-4 *1 (-357 *5)) + (-4 *5 (-1005)) (-4 *5 (-548 (-467))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1117)) (-4 *1 (-375 *4)) (-4 *4 (-1041)) - (-4 *4 (-569 (-488))))) - ((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1041)) (-4 *2 (-569 (-488))))) + (-12 (-5 *2 (-84)) (-5 *3 (-1079)) (-4 *1 (-357 *4)) (-4 *4 (-1005)) + (-4 *4 (-548 (-467))))) + ((*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1005)) (-4 *2 (-548 (-467))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-599 (-1117))) (-4 *1 (-375 *3)) (-4 *3 (-1041)) - (-4 *3 (-569 (-488))))) + (-12 (-5 *2 (-578 (-1079))) (-4 *1 (-357 *3)) (-4 *3 (-1005)) + (-4 *3 (-548 (-467))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041)) - (-4 *3 (-569 (-488))))) - ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1157)))) + (-12 (-5 *2 (-1079)) (-4 *1 (-357 *3)) (-4 *3 (-1005)) + (-4 *3 (-548 (-467))))) + ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1118)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 *4)) (-5 *3 (-599 *5)) (-4 *1 (-468 *4 *5)) (-4 *4 (-1041)) - (-4 *5 (-1157)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-766 *3)) (-4 *3 (-318)) (-5 *1 (-676 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) + (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 *5)) (-4 *1 (-447 *4 *5)) (-4 *4 (-1005)) + (-4 *5 (-1118)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-736 *3)) (-4 *3 (-308)) (-5 *1 (-650 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-361 (-884 *4))) (-5 *3 (-1117)) (-4 *4 (-510)) - (-5 *1 (-980 *4)))) + (-12 (-5 *2 (-343 (-850 *4))) (-5 *3 (-1079)) (-4 *4 (-489)) + (-5 *1 (-945 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-599 (-1117))) (-5 *4 (-599 (-361 (-884 *5)))) - (-5 *2 (-361 (-884 *5))) (-4 *5 (-510)) (-5 *1 (-980 *5)))) + (-12 (-5 *3 (-578 (-1079))) (-5 *4 (-578 (-343 (-850 *5)))) + (-5 *2 (-343 (-850 *5))) (-4 *5 (-489)) (-5 *1 (-945 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-247 (-361 (-884 *4)))) (-5 *2 (-361 (-884 *4))) (-4 *4 (-510)) - (-5 *1 (-980 *4)))) + (-12 (-5 *3 (-245 (-343 (-850 *4)))) (-5 *2 (-343 (-850 *4))) (-4 *4 (-489)) + (-5 *1 (-945 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-599 (-247 (-361 (-884 *4))))) (-5 *2 (-361 (-884 *4))) - (-4 *4 (-510)) (-5 *1 (-980 *4)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) + (-12 (-5 *3 (-578 (-245 (-343 (-850 *4))))) (-5 *2 (-343 (-850 *4))) + (-4 *4 (-489)) (-5 *1 (-945 *4)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1095 *3))))) + (-12 (-4 *1 (-1147 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1058 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-714)) (-4 *1 (-1183 *4)) (-4 *4 (-989)) (-5 *2 (-1207 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-989)) (-5 *2 (-1111 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1111 *3)) (-4 *3 (-989)) (-4 *1 (-1183 *3))))) + (-12 (-5 *3 (-687)) (-4 *1 (-1144 *4)) (-4 *4 (-954)) (-5 *2 (-1168 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1144 *3)) (-4 *3 (-954)) (-5 *2 (-1074 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1074 *3)) (-4 *3 (-954)) (-4 *1 (-1144 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-714)) (-4 *1 (-1183 *3)) (-4 *3 (-989))))) + (|partial| -12 (-5 *2 (-687)) (-4 *1 (-1144 *3)) (-4 *3 (-954))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) - (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-888 *4 *5 *3)))) + (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) + (-5 *2 (-2 (|:| -1960 *1) (|:| -2886 *1))) (-4 *1 (-854 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) - (-4 *1 (-1183 *3))))) + (-12 (-4 *3 (-954)) (-5 *2 (-2 (|:| -1960 *1) (|:| -2886 *1))) + (-4 *1 (-1144 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-714)) (-4 *4 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) - (-4 *1 (-1183 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1183 *3)) (-4 *3 (-989))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1183 *3)) (-4 *3 (-989))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989))))) -(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1157)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-714)))) + (-12 (-5 *3 (-687)) (-4 *4 (-954)) (-5 *2 (-2 (|:| -1960 *1) (|:| -2886 *1))) + (-4 *1 (-1144 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1144 *3)) (-4 *3 (-954))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1144 *3)) (-4 *3 (-954))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-954))))) +(((*1 *2 *1) (-12 (-4 *1 (-184 *2)) (-4 *2 (-1118)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-187)) (-5 *2 (-687)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-714)) (-4 *1 (-224 *4)) (-4 *4 (-1157)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1157)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-687)) (-4 *1 (-222 *4)) (-4 *4 (-1118)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-222 *3)) (-4 *3 (-1118)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) - (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) + (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-318)) (-4 *2 (-836 *3)) (-5 *1 (-534 *2)) (-5 *3 (-1117)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-318)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-797)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-831 *2 *3)) (-4 *3 (-1157)) (-4 *2 (-1157)))) + (-12 (-4 *2 (-308)) (-4 *2 (-802 *3)) (-5 *1 (-513 *2)) (-5 *3 (-1079)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-513 *2)) (-4 *2 (-308)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-765)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-799 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1118)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 *4)) (-5 *3 (-599 (-714))) (-4 *1 (-838 *4)) - (-4 *4 (-1041)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-838 *2)) (-4 *2 (-1041)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *1 (-838 *3)) (-4 *3 (-1041)))) - ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1183 *3)) (-4 *3 (-989))))) -(((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *2 *4)) (-4 *4 (-1183 *2)) - (-4 *2 (-146)))) + (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 (-687))) (-4 *1 (-804 *4)) + (-4 *4 (-1005)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-804 *2)) (-4 *2 (-1005)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-804 *3)) (-4 *3 (-1005)))) + ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1144 *3)) (-4 *3 (-954))))) +(((*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-136 *3 *2)) (-4 *3 (-137 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-315 *2 *4)) (-4 *4 (-1144 *2)) + (-4 *2 (-144)))) ((*1 *2) - (-12 (-4 *4 (-1183 *2)) (-4 *2 (-146)) (-5 *1 (-363 *3 *2 *4)) - (-4 *3 (-364 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1183 *2)) (-4 *2 (-146)))) + (-12 (-4 *4 (-1144 *2)) (-4 *2 (-144)) (-5 *1 (-345 *3 *2 *4)) + (-4 *3 (-346 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-346 *2 *3)) (-4 *3 (-1144 *2)) (-4 *2 (-144)))) ((*1 *2) - (-12 (-4 *3 (-1183 *2)) (-5 *2 (-499)) (-5 *1 (-711 *3 *4)) - (-4 *4 (-364 *2 *3)))) + (-12 (-4 *3 (-1144 *2)) (-5 *2 (-478)) (-5 *1 (-685 *3 *4)) + (-4 *4 (-346 *2 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) - (-4 *3 (-146)))) - ((*1 *2 *3) (-12 (-4 *2 (-510)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1183 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-146))))) + (-12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) + (-4 *3 (-144)))) + ((*1 *2 *3) (-12 (-4 *2 (-489)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1144 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-954)) (-4 *2 (-144))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) - (-4 *3 (-146)))) - ((*1 *2 *3 *3) (-12 (-4 *2 (-510)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1183 *2)))) + (-12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) + (-4 *3 (-144)))) + ((*1 *2 *3 *3) (-12 (-4 *2 (-489)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1144 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *2 (-510)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-146))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3)))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *2 (-489)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-954)) (-4 *2 (-144))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1144 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *2 (-510)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-510))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *2 (-489)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-954)) (-4 *2 (-489))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-361 *1)) (-4 *1 (-1183 *3)) (-4 *3 (-989)) - (-4 *3 (-510)))) + (|partial| -12 (-5 *2 (-343 *1)) (-4 *1 (-1144 *3)) (-4 *3 (-954)) + (-4 *3 (-489)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-510))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-510))))) + (|partial| -12 (-4 *1 (-1144 *2)) (-4 *2 (-954)) (-4 *2 (-489))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-954)) (-4 *2 (-489))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| -4104 *4) (|:| -2075 *3) (|:| -3023 *3))) - (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) + (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| -3938 *4) (|:| -1960 *3) (|:| -2886 *3))) + (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-1005 *3 *4 *5)))) + (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-2 (|:| -1960 *1) (|:| -2886 *1))) (-4 *1 (-969 *3 *4 *5)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-510)) (-4 *3 (-989)) - (-5 *2 (-2 (|:| -4104 *3) (|:| -2075 *1) (|:| -3023 *1))) - (-4 *1 (-1183 *3))))) + (-12 (-4 *3 (-489)) (-4 *3 (-954)) + (-5 *2 (-2 (|:| -3938 *3) (|:| -1960 *1) (|:| -2886 *1))) + (-4 *1 (-1144 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-318)) (-4 *4 (-510)) (-4 *5 (-1183 *4)) - (-5 *2 (-2 (|:| -1862 (-578 *4 *5)) (|:| -1861 (-361 *5)))) - (-5 *1 (-578 *4 *5)) (-5 *3 (-361 *5)))) + (-12 (-4 *4 (-308)) (-4 *4 (-489)) (-4 *5 (-1144 *4)) + (-5 *2 (-2 (|:| -1749 (-557 *4 *5)) (|:| -1748 (-343 *5)))) + (-5 *1 (-557 *4 *5)) (-5 *3 (-343 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-599 (-1105 *3 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) - (-4 *4 (-989)))) + (-12 (-5 *2 (-578 (-1068 *3 *4))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) + (-4 *4 (-954)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-406)) (-4 *3 (-989)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1183 *3))))) + (-12 (-4 *3 (-385)) (-4 *3 (-954)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1144 *3))))) (((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-714)) (-4 *4 (-989)) (-5 *1 (-1181 *4 *2)) (-4 *2 (-1183 *4))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-1181 *3 *2)) (-4 *2 (-1183 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-1181 *3 *2)) (-4 *2 (-1183 *3))))) + (-12 (-5 *3 (-687)) (-4 *4 (-954)) (-5 *1 (-1142 *4 *2)) (-4 *2 (-1144 *4))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-1142 *3 *2)) (-4 *2 (-1144 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-1142 *3 *2)) (-4 *2 (-1144 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-510)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) - (-5 *1 (-1180 *4 *3)) (-4 *3 (-1183 *4))))) + (|partial| -12 (-4 *4 (-489)) (-5 *2 (-2 (|:| -1960 *3) (|:| -2886 *3))) + (-5 *1 (-1141 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-510) (-120))) (-5 *2 (-599 *3)) (-5 *1 (-1179 *4 *3)) - (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-13 (-489) (-118))) (-5 *2 (-578 *3)) (-5 *1 (-1140 *4 *3)) + (-4 *3 (-1144 *4))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-510) (-120))) - (-5 *2 (-2 (|:| -3260 *3) (|:| -3259 *3))) (-5 *1 (-1179 *4 *3)) - (-4 *3 (-1183 *4))))) + (|partial| -12 (-4 *4 (-13 (-489) (-118))) + (-5 *2 (-2 (|:| -3121 *3) (|:| -3120 *3))) (-5 *1 (-1140 *4 *3)) + (-4 *3 (-1144 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-510) (-120))) (-5 *1 (-1179 *3 *2)) - (-4 *2 (-1183 *3))))) + (|partial| -12 (-4 *3 (-13 (-489) (-118))) (-5 *1 (-1140 *3 *2)) + (-4 *2 (-1144 *3))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-714)) (-4 *4 (-13 (-510) (-120))) - (-5 *1 (-1179 *4 *2)) (-4 *2 (-1183 *4))))) + (|partial| -12 (-5 *3 (-687)) (-4 *4 (-13 (-489) (-118))) + (-5 *1 (-1140 *4 *2)) (-4 *2 (-1144 *4))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-714)) (-4 *4 (-13 (-510) (-120))) - (-5 *1 (-1179 *4 *2)) (-4 *2 (-1183 *4))))) + (|partial| -12 (-5 *3 (-687)) (-4 *4 (-13 (-489) (-118))) + (-5 *1 (-1140 *4 *2)) (-4 *2 (-1144 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *5 (-931 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) - (-4 *3 (-327 *5)))) + (-12 (-4 *4 (-489)) (-4 *5 (-897 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-113 *4 *5 *3)) + (-4 *3 (-317 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *5 (-931 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-457 *4 *5 *6 *3)) - (-4 *6 (-327 *4)) (-4 *3 (-327 *5)))) + (-12 (-4 *4 (-489)) (-4 *5 (-897 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-436 *4 *5 *6 *3)) + (-4 *6 (-317 *4)) (-4 *3 (-317 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-647 *5)) (-4 *5 (-931 *4)) (-4 *4 (-510)) - (-5 *2 (-2 (|:| |num| (-647 *4)) (|:| |den| *4))) (-5 *1 (-651 *4 *5)))) + (-12 (-5 *3 (-625 *5)) (-4 *5 (-897 *4)) (-4 *4 (-489)) + (-5 *2 (-2 (|:| |num| (-625 *4)) (|:| |den| *4))) (-5 *1 (-628 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) - (-5 *2 (-2 (|:| -3404 *7) (|:| |rh| (-599 (-361 *6))))) - (-5 *1 (-750 *5 *6 *7 *3)) (-5 *4 (-599 (-361 *6))) (-4 *7 (-616 *6)) - (-4 *3 (-616 (-361 *6))))) + (-12 (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *6 (-1144 *5)) + (-5 *2 (-2 (|:| -3249 *7) (|:| |rh| (-578 (-343 *6))))) + (-5 *1 (-721 *5 *6 *7 *3)) (-5 *4 (-578 (-343 *6))) (-4 *7 (-595 *6)) + (-4 *3 (-595 (-343 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *5 (-931 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1178 *4 *5 *3)) - (-4 *3 (-1183 *5))))) + (-12 (-4 *4 (-489)) (-4 *5 (-897 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1139 *4 *5 *3)) + (-4 *3 (-1144 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-4 *4 (-931 *3)) (-5 *1 (-115 *3 *4 *2)) - (-4 *2 (-327 *4)))) + (-12 (-4 *3 (-489)) (-4 *4 (-897 *3)) (-5 *1 (-113 *3 *4 *2)) + (-4 *2 (-317 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *5 (-931 *4)) (-4 *2 (-327 *4)) - (-5 *1 (-457 *4 *5 *2 *3)) (-4 *3 (-327 *5)))) + (-12 (-4 *4 (-489)) (-4 *5 (-897 *4)) (-4 *2 (-317 *4)) + (-5 *1 (-436 *4 *5 *2 *3)) (-4 *3 (-317 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-647 *5)) (-4 *5 (-931 *4)) (-4 *4 (-510)) (-5 *2 (-647 *4)) - (-5 *1 (-651 *4 *5)))) + (-12 (-5 *3 (-625 *5)) (-4 *5 (-897 *4)) (-4 *4 (-489)) (-5 *2 (-625 *4)) + (-5 *1 (-628 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-510)) (-4 *4 (-931 *3)) (-5 *1 (-1178 *3 *4 *2)) - (-4 *2 (-1183 *4))))) + (-12 (-4 *3 (-489)) (-4 *4 (-897 *3)) (-5 *1 (-1139 *3 *4 *2)) + (-4 *2 (-1144 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-931 *2)) (-4 *2 (-510)) (-5 *1 (-115 *2 *4 *3)) - (-4 *3 (-327 *4)))) + (-12 (-4 *4 (-897 *2)) (-4 *2 (-489)) (-5 *1 (-113 *2 *4 *3)) + (-4 *3 (-317 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-931 *2)) (-4 *2 (-510)) (-5 *1 (-457 *2 *4 *5 *3)) - (-4 *5 (-327 *2)) (-4 *3 (-327 *4)))) + (-12 (-4 *4 (-897 *2)) (-4 *2 (-489)) (-5 *1 (-436 *2 *4 *5 *3)) + (-4 *5 (-317 *2)) (-4 *3 (-317 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-647 *4)) (-4 *4 (-931 *2)) (-4 *2 (-510)) - (-5 *1 (-651 *2 *4)))) + (-12 (-5 *3 (-625 *4)) (-4 *4 (-897 *2)) (-4 *2 (-489)) + (-5 *1 (-628 *2 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-931 *2)) (-4 *2 (-510)) (-5 *1 (-1178 *2 *4 *3)) - (-4 *3 (-1183 *4))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-714)) (-5 *1 (-724 *3)) (-4 *3 (-989)))) + (-12 (-4 *4 (-897 *2)) (-4 *2 (-489)) (-5 *1 (-1139 *2 *4 *3)) + (-4 *3 (-1144 *4))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-687)) (-5 *1 (-697 *3)) (-4 *3 (-954)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-894 *3 *2)) (-4 *2 (-104)) (-4 *3 (-510)) (-4 *3 (-989)) - (-4 *2 (-737)))) - ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-714)) (-5 *1 (-1111 *3)) (-4 *3 (-989)))) + (-12 (-5 *1 (-860 *3 *2)) (-4 *2 (-102)) (-4 *3 (-489)) (-4 *3 (-954)) + (-4 *2 (-709)))) + ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-687)) (-5 *1 (-1074 *3)) (-4 *3 (-954)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-911)) (-4 *2 (-104)) (-5 *1 (-1119 *3)) (-4 *3 (-510)) - (-4 *3 (-989)))) + (-12 (-5 *2 (-877)) (-4 *2 (-102)) (-5 *1 (-1081 *3)) (-4 *3 (-489)) + (-4 *3 (-954)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-714)) (-5 *1 (-1176 *4 *3)) (-14 *4 (-1117)) (-4 *3 (-989))))) -(((*1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157)))) - ((*1 *1 *2) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *2 (-1034 *3)) (-5 *1 (-998 *2 *3)) (-4 *3 (-1157)))) - ((*1 *2 *1) (-12 (-5 *2 (-1029 *3)) (-5 *1 (-1032 *3)) (-4 *3 (-1157)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157)))) - ((*1 *1 *2) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1174 *3)) (-4 *3 (-1157))))) + (-12 (-5 *2 (-687)) (-5 *1 (-1137 *4 *3)) (-14 *4 (-1079)) (-4 *3 (-954))))) +(((*1 *1 *1) (-5 *1 (-765))) ((*1 *1 *1 *1) (-5 *1 (-765))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1118)))) + ((*1 *1 *2) (-12 (-5 *1 (-1135 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *2 (-998 *3)) (-5 *1 (-963 *2 *3)) (-4 *3 (-1118)))) + ((*1 *2 *1) (-12 (-5 *2 (-993 *3)) (-5 *1 (-996 *3)) (-4 *3 (-1118)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1118)))) + ((*1 *1 *2) (-12 (-5 *1 (-1135 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1135 *3)) (-4 *3 (-1118))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) + (-12 (-5 *4 (-83)) (-5 *2 - (-2 (|:| |contp| (-499)) - (|:| -1877 (-599 (-2 (|:| |irr| *3) (|:| -2513 (-499))))))) - (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) + (-2 (|:| |contp| (-478)) + (|:| -1766 (-578 (-2 (|:| |irr| *3) (|:| -2381 (-478))))))) + (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) + (-12 (-5 *4 (-83)) (-5 *2 - (-2 (|:| |contp| (-499)) - (|:| -1877 (-599 (-2 (|:| |irr| *3) (|:| -2513 (-499))))))) - (-5 *1 (-1173 *3)) (-4 *3 (-1183 (-499)))))) + (-2 (|:| |contp| (-478)) + (|:| -1766 (-578 (-2 (|:| |irr| *3) (|:| -2381 (-478))))))) + (-5 *1 (-1134 *3)) (-4 *3 (-1144 (-478)))))) (((*1 *2 *3) - (-12 (-4 *4 (-305)) (-5 *2 (-359 *3)) (-5 *1 (-170 *4 *3)) - (-4 *3 (-1183 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) + (-12 (-4 *4 (-295)) (-5 *2 (-341 *3)) (-5 *1 (-168 *4 *3)) + (-4 *3 (-1144 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) - (-4 *3 (-1183 (-499))))) + (-12 (-5 *4 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) + (-4 *3 (-1144 (-478))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-599 (-714))) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) - (-4 *3 (-1183 (-499))))) + (-12 (-5 *4 (-578 (-687))) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) + (-4 *3 (-1144 (-478))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-599 (-714))) (-5 *5 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) - (-4 *3 (-1183 (-499))))) + (-12 (-5 *4 (-578 (-687))) (-5 *5 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) + (-4 *3 (-1144 (-478))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) - (-4 *3 (-1183 (-499))))) + (-12 (-5 *4 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) + (-4 *3 (-1144 (-478))))) ((*1 *2 *3) - (-12 (-5 *2 (-359 *3)) (-5 *1 (-947 *3)) (-4 *3 (-1183 (-361 (-499)))))) - ((*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-1183 (-499)))))) + (-12 (-5 *2 (-341 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1144 (-343 (-478)))))) + ((*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-1134 *3)) (-4 *3 (-1144 (-478)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-599 (-48))) (-5 *2 (-359 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1183 (-48))))) - ((*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1183 (-48))))) + (-12 (-5 *4 (-578 (-48))) (-5 *2 (-341 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1144 (-48))))) + ((*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1144 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-599 (-48))) (-4 *5 (-781)) (-4 *6 (-738)) (-5 *2 (-359 *3)) - (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-888 (-48) *6 *5)))) + (-12 (-5 *4 (-578 (-48))) (-4 *5 (-749)) (-4 *6 (-710)) (-5 *2 (-341 *3)) + (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-854 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-599 (-48))) (-4 *5 (-781)) (-4 *6 (-738)) - (-4 *7 (-888 (-48) *6 *5)) (-5 *2 (-359 (-1111 *7))) (-5 *1 (-42 *5 *6 *7)) - (-5 *3 (-1111 *7)))) + (-12 (-5 *4 (-578 (-48))) (-4 *5 (-749)) (-4 *6 (-710)) + (-4 *7 (-854 (-48) *6 *5)) (-5 *2 (-341 (-1074 *7))) (-5 *1 (-42 *5 *6 *7)) + (-5 *3 (-1074 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-261)) (-5 *2 (-359 *3)) (-5 *1 (-140 *4 *3)) - (-4 *3 (-1183 (-142 *4))))) + (-12 (-4 *4 (-254)) (-5 *2 (-341 *3)) (-5 *1 (-138 *4 *3)) + (-4 *3 (-1144 (-140 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-85)) (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) + (-12 (-5 *5 (-83)) (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) + (-5 *1 (-153 *4 *3)) (-4 *3 (-1144 (-140 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1183 (-142 *4))))) + (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) (-5 *1 (-153 *4 *3)) + (-4 *3 (-1144 (-140 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1183 (-142 *4))))) + (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) (-5 *1 (-153 *4 *3)) + (-4 *3 (-1144 (-140 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-305)) (-5 *2 (-359 *3)) (-5 *1 (-170 *4 *3)) - (-4 *3 (-1183 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) + (-12 (-4 *4 (-295)) (-5 *2 (-341 *3)) (-5 *1 (-168 *4 *3)) + (-4 *3 (-1144 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) - (-4 *3 (-1183 (-499))))) + (-12 (-5 *4 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) + (-4 *3 (-1144 (-478))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-599 (-714))) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) - (-4 *3 (-1183 (-499))))) + (-12 (-5 *4 (-578 (-687))) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) + (-4 *3 (-1144 (-478))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-599 (-714))) (-5 *5 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) - (-4 *3 (-1183 (-499))))) + (-12 (-5 *4 (-578 (-687))) (-5 *5 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) + (-4 *3 (-1144 (-478))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) - (-4 *3 (-1183 (-499))))) + (-12 (-5 *4 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) + (-4 *3 (-1144 (-478))))) ((*1 *2 *3) - (-12 (-5 *2 (-359 (-142 (-499)))) (-5 *1 (-400)) (-5 *3 (-142 (-499))))) + (-12 (-5 *2 (-341 (-140 (-478)))) (-5 *1 (-379)) (-5 *3 (-140 (-478))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-781) - (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ "failed") (-1117)))))) - (-4 *5 (-738)) (-4 *7 (-510)) (-5 *2 (-359 *3)) - (-5 *1 (-410 *4 *5 *6 *7 *3)) (-4 *6 (-510)) (-4 *3 (-888 *7 *5 *4)))) + (-13 (-749) + (-10 -8 (-15 -3956 ((-1079) $)) (-15 -3815 ((-3 $ "failed") (-1079)))))) + (-4 *5 (-710)) (-4 *7 (-489)) (-5 *2 (-341 *3)) + (-5 *1 (-389 *4 *5 *6 *7 *3)) (-4 *6 (-489)) (-4 *3 (-854 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-261)) (-5 *2 (-359 (-1111 *4))) (-5 *1 (-412 *4)) - (-5 *3 (-1111 *4)))) + (-12 (-4 *4 (-254)) (-5 *2 (-341 (-1074 *4))) (-5 *1 (-391 *4)) + (-5 *3 (-1074 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) - (-4 *7 (-13 (-318) (-120) (-682 *5 *6))) (-5 *2 (-359 *3)) - (-5 *1 (-448 *5 *6 *7 *3)) (-4 *3 (-1183 *7)))) + (-12 (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1144 *5)) (-4 *5 (-308)) + (-4 *7 (-13 (-308) (-118) (-656 *5 *6))) (-5 *2 (-341 *3)) + (-5 *1 (-427 *5 *6 *7 *3)) (-4 *3 (-1144 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-359 (-1111 *7)) (-1111 *7))) (-4 *7 (-13 (-261) (-120))) - (-4 *5 (-781)) (-4 *6 (-738)) (-5 *2 (-359 *3)) (-5 *1 (-493 *5 *6 *7 *3)) - (-4 *3 (-888 *7 *6 *5)))) + (-12 (-5 *4 (-1 (-341 (-1074 *7)) (-1074 *7))) (-4 *7 (-13 (-254) (-118))) + (-4 *5 (-749)) (-4 *6 (-710)) (-5 *2 (-341 *3)) (-5 *1 (-472 *5 *6 *7 *3)) + (-4 *3 (-854 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-359 (-1111 *7)) (-1111 *7))) (-4 *7 (-13 (-261) (-120))) - (-4 *5 (-781)) (-4 *6 (-738)) (-4 *8 (-888 *7 *6 *5)) - (-5 *2 (-359 (-1111 *8))) (-5 *1 (-493 *5 *6 *7 *8)) (-5 *3 (-1111 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-512 *3)) (-4 *3 (-498)))) + (-12 (-5 *4 (-1 (-341 (-1074 *7)) (-1074 *7))) (-4 *7 (-13 (-254) (-118))) + (-4 *5 (-749)) (-4 *6 (-710)) (-4 *8 (-854 *7 *6 *5)) + (-5 *2 (-341 (-1074 *8))) (-5 *1 (-472 *5 *6 *7 *8)) (-5 *3 (-1074 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-491 *3)) (-4 *3 (-477)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-599 *5) *6)) - (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) - (-4 *6 (-1183 *5)) (-5 *2 (-599 (-613 (-361 *6)))) (-5 *1 (-617 *5 *6)) - (-5 *3 (-613 (-361 *6))))) + (-12 (-5 *4 (-1 (-578 *5) *6)) + (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) + (-4 *6 (-1144 *5)) (-5 *2 (-578 (-592 (-343 *6)))) (-5 *1 (-596 *5 *6)) + (-5 *3 (-592 (-343 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) - (-4 *5 (-1183 *4)) (-5 *2 (-599 (-613 (-361 *5)))) (-5 *1 (-617 *4 *5)) - (-5 *3 (-613 (-361 *5))))) + (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) + (-4 *5 (-1144 *4)) (-5 *2 (-578 (-592 (-343 *5)))) (-5 *1 (-596 *4 *5)) + (-5 *3 (-592 (-343 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-762 *4)) (-4 *4 (-781)) (-5 *2 (-599 (-630 *4))) - (-5 *1 (-630 *4)))) + (-12 (-5 *3 (-732 *4)) (-4 *4 (-749)) (-5 *2 (-578 (-609 *4))) + (-5 *1 (-609 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-499)) (-5 *2 (-599 *3)) (-5 *1 (-654 *3)) (-4 *3 (-1183 *4)))) + (-12 (-5 *4 (-478)) (-5 *2 (-578 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1144 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-305)) (-5 *2 (-359 *3)) - (-5 *1 (-656 *4 *5 *6 *3)) (-4 *3 (-888 *6 *5 *4)))) + (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-295)) (-5 *2 (-341 *3)) + (-5 *1 (-632 *4 *5 *6 *3)) (-4 *3 (-854 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-305)) (-4 *7 (-888 *6 *5 *4)) - (-5 *2 (-359 (-1111 *7))) (-5 *1 (-656 *4 *5 *6 *7)) (-5 *3 (-1111 *7)))) + (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-295)) (-4 *7 (-854 *6 *5 *4)) + (-5 *2 (-341 (-1074 *7))) (-5 *1 (-632 *4 *5 *6 *7)) (-5 *3 (-1074 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-738)) + (-12 (-4 *4 (-710)) (-4 *5 - (-13 (-781) - (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ "failed") (-1117)))))) - (-4 *6 (-261)) (-5 *2 (-359 *3)) (-5 *1 (-688 *4 *5 *6 *3)) - (-4 *3 (-888 (-884 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-738)) (-4 *5 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) - (-4 *6 (-510)) (-5 *2 (-359 *3)) (-5 *1 (-690 *4 *5 *6 *3)) - (-4 *3 (-888 (-361 (-884 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-13 (-261) (-120))) - (-5 *2 (-359 *3)) (-5 *1 (-691 *4 *5 *6 *3)) - (-4 *3 (-888 (-361 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-13 (-261) (-120))) - (-5 *2 (-359 *3)) (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-888 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-13 (-261) (-120))) - (-4 *7 (-888 *6 *5 *4)) (-5 *2 (-359 (-1111 *7))) (-5 *1 (-699 *4 *5 *6 *7)) - (-5 *3 (-1111 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-359 *3)) (-5 *1 (-947 *3)) (-4 *3 (-1183 (-361 (-499)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-359 *3)) (-5 *1 (-982 *3)) - (-4 *3 (-1183 (-361 (-884 (-499))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1183 (-361 (-499)))) - (-4 *5 (-13 (-318) (-120) (-682 (-361 (-499)) *4))) (-5 *2 (-359 *3)) - (-5 *1 (-1020 *4 *5 *3)) (-4 *3 (-1183 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1183 (-361 (-884 (-499))))) - (-4 *5 (-13 (-318) (-120) (-682 (-361 (-884 (-499))) *4))) (-5 *2 (-359 *3)) - (-5 *1 (-1021 *4 *5 *3)) (-4 *3 (-1183 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-406)) (-4 *7 (-888 *6 *4 *5)) - (-5 *2 (-359 (-1111 (-361 *7)))) (-5 *1 (-1113 *4 *5 *6 *7)) - (-5 *3 (-1111 (-361 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-359 *1)) (-4 *1 (-1162)))) - ((*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-1183 (-499)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1200 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-90 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-499)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-805 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-805 *2)) (-14 *2 (-499)))) + (-13 (-749) + (-10 -8 (-15 -3956 ((-1079) $)) (-15 -3815 ((-3 $ "failed") (-1079)))))) + (-4 *6 (-254)) (-5 *2 (-341 *3)) (-5 *1 (-662 *4 *5 *6 *3)) + (-4 *3 (-854 (-850 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-710)) (-4 *5 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $))))) + (-4 *6 (-489)) (-5 *2 (-341 *3)) (-5 *1 (-664 *4 *5 *6 *3)) + (-4 *3 (-854 (-343 (-850 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-13 (-254) (-118))) + (-5 *2 (-341 *3)) (-5 *1 (-665 *4 *5 *6 *3)) + (-4 *3 (-854 (-343 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-13 (-254) (-118))) + (-5 *2 (-341 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-854 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-13 (-254) (-118))) + (-4 *7 (-854 *6 *5 *4)) (-5 *2 (-341 (-1074 *7))) (-5 *1 (-673 *4 *5 *6 *7)) + (-5 *3 (-1074 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-341 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1144 (-343 (-478)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-341 *3)) (-5 *1 (-947 *3)) + (-4 *3 (-1144 (-343 (-850 (-478))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1144 (-343 (-478)))) + (-4 *5 (-13 (-308) (-118) (-656 (-343 (-478)) *4))) (-5 *2 (-341 *3)) + (-5 *1 (-984 *4 *5 *3)) (-4 *3 (-1144 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1144 (-343 (-850 (-478))))) + (-4 *5 (-13 (-308) (-118) (-656 (-343 (-850 (-478))) *4))) (-5 *2 (-341 *3)) + (-5 *1 (-985 *4 *5 *3)) (-4 *3 (-1144 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-385)) (-4 *7 (-854 *6 *4 *5)) + (-5 *2 (-341 (-1074 (-343 *7)))) (-5 *1 (-1076 *4 *5 *6 *7)) + (-5 *3 (-1074 (-343 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-341 *1)) (-4 *1 (-1123)))) + ((*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-1134 *3)) (-4 *3 (-1144 (-478)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1161 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-88 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-88 *2)) (-14 *2 (-478)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-773 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-773 *2)) (-14 *2 (-478)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-499)) (-14 *3 *2) (-5 *1 (-806 *3 *4)) (-4 *4 (-804 *3)))) - ((*1 *1 *1) (-12 (-14 *2 (-499)) (-5 *1 (-806 *2 *3)) (-4 *3 (-804 *2)))) + (-12 (-5 *2 (-478)) (-14 *3 *2) (-5 *1 (-774 *3 *4)) (-4 *4 (-772 *3)))) + ((*1 *1 *1) (-12 (-14 *2 (-478)) (-5 *1 (-774 *2 *3)) (-4 *3 (-772 *2)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-499)) (-4 *1 (-1171 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1200 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-989)) (-4 *3 (-1200 *2))))) + (-12 (-5 *2 (-478)) (-4 *1 (-1132 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1161 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-1132 *2 *3)) (-4 *2 (-954)) (-4 *3 (-1161 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) - (-5 *2 (-51)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-27) (-1143) (-375 *4))))) + (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) + (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1104) (-357 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) + (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-714)) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) - (-5 *2 (-51)) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) + (-12 (-5 *4 (-687)) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) + (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) - (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-270 *5 *3)))) + (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))) + (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-263 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-247 *3)) (-5 *5 (-714)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) - (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-270 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-499))) (-5 *4 (-247 *6)) - (-4 *6 (-13 (-27) (-1143) (-375 *5))) - (-4 *5 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-413 *5 *6)))) + (-12 (-5 *4 (-245 *3)) (-5 *5 (-687)) (-4 *3 (-13 (-27) (-1104) (-357 *6))) + (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-263 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-478))) (-5 *4 (-245 *6)) + (-4 *6 (-13 (-27) (-1104) (-357 *5))) + (-4 *5 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-392 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) - (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-413 *6 *3)))) + (-12 (-5 *4 (-1079)) (-5 *5 (-245 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *6))) + (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-392 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-499))) (-5 *4 (-247 *7)) (-5 *5 (-1174 (-714))) - (-4 *7 (-13 (-27) (-1143) (-375 *6))) - (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-413 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-478))) (-5 *4 (-245 *7)) (-5 *5 (-1135 (-687))) + (-4 *7 (-13 (-27) (-1104) (-357 *6))) + (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-392 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-714))) - (-4 *3 (-13 (-27) (-1143) (-375 *7))) - (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) - (-5 *1 (-413 *7 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1200 *3))))) + (-12 (-5 *4 (-1079)) (-5 *5 (-245 *3)) (-5 *6 (-1135 (-687))) + (-4 *3 (-13 (-27) (-1104) (-357 *7))) + (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-5 *1 (-392 *7 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1161 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1200 *3))))) + (|partial| -12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1161 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-499)) (-4 *1 (-1169 *4)) (-4 *4 (-989)) (-4 *4 (-510)) - (-5 *2 (-361 (-884 *4))))) + (-12 (-5 *3 (-478)) (-4 *1 (-1130 *4)) (-4 *4 (-954)) (-4 *4 (-489)) + (-5 *2 (-343 (-850 *4))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-499)) (-4 *1 (-1169 *4)) (-4 *4 (-989)) (-4 *4 (-510)) - (-5 *2 (-361 (-884 *4)))))) -(((*1 *1 *1 *1) (-5 *1 (-101))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1124 *2)) (-14 *2 (-857)))) - ((*1 *1 *1 *1) (-5 *1 (-1163))) ((*1 *1 *1 *1) (-5 *1 (-1164))) - ((*1 *1 *1 *1) (-5 *1 (-1165))) ((*1 *1 *1 *1) (-5 *1 (-1166)))) -(((*1 *1 *1 *1) (-5 *1 (-101))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1124 *2)) (-14 *2 (-857)))) - ((*1 *1 *1 *1) (-5 *1 (-1163))) ((*1 *1 *1 *1) (-5 *1 (-1164))) - ((*1 *1 *1 *1) (-5 *1 (-1165))) ((*1 *1 *1 *1) (-5 *1 (-1166)))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-101))) + (-12 (-5 *3 (-478)) (-4 *1 (-1130 *4)) (-4 *4 (-954)) (-4 *4 (-489)) + (-5 *2 (-343 (-850 *4)))))) +(((*1 *1 *1 *1) (-5 *1 (-99))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1086 *2)) (-14 *2 (-823)))) + ((*1 *1 *1 *1) (-5 *1 (-1124))) ((*1 *1 *1 *1) (-5 *1 (-1125))) + ((*1 *1 *1 *1) (-5 *1 (-1126))) ((*1 *1 *1 *1) (-5 *1 (-1127)))) +(((*1 *1 *1 *1) (-5 *1 (-99))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1086 *2)) (-14 *2 (-823)))) + ((*1 *1 *1 *1) (-5 *1 (-1124))) ((*1 *1 *1 *1) (-5 *1 (-1125))) + ((*1 *1 *1 *1) (-5 *1 (-1126))) ((*1 *1 *1 *1) (-5 *1 (-1127)))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-99))) ((*1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146)))) - ((*1 *1) (-5 *1 (-500))) ((*1 *1) (-5 *1 (-501))) ((*1 *1) (-5 *1 (-502))) - ((*1 *1) (-5 *1 (-503))) ((*1 *1) (-4 *1 (-684))) ((*1 *1) (-5 *1 (-1117))) - ((*1 *1) (-12 (-5 *1 (-1123 *2)) (-14 *2 (-857)))) - ((*1 *1) (-12 (-5 *1 (-1124 *2)) (-14 *2 (-857)))) ((*1 *1) (-5 *1 (-1163))) - ((*1 *1) (-5 *1 (-1164))) ((*1 *1) (-5 *1 (-1165))) ((*1 *1) (-5 *1 (-1166)))) -(((*1 *2 *3) (-12 (-5 *3 (-142 (-499))) (-5 *2 (-85)) (-5 *1 (-400)))) + (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144)))) + ((*1 *1) (-5 *1 (-479))) ((*1 *1) (-5 *1 (-480))) ((*1 *1) (-5 *1 (-481))) + ((*1 *1) (-5 *1 (-482))) ((*1 *1) (-4 *1 (-658))) ((*1 *1) (-5 *1 (-1079))) + ((*1 *1) (-12 (-5 *1 (-1085 *2)) (-14 *2 (-823)))) + ((*1 *1) (-12 (-5 *1 (-1086 *2)) (-14 *2 (-823)))) ((*1 *1) (-5 *1 (-1124))) + ((*1 *1) (-5 *1 (-1125))) ((*1 *1) (-5 *1 (-1126))) ((*1 *1) (-5 *1 (-1127)))) +(((*1 *2 *3) (-12 (-5 *3 (-140 (-478))) (-5 *2 (-83)) (-5 *1 (-379)))) ((*1 *2 *3) (-12 (-5 *3 - (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499))))) - (-14 *4 (-599 (-1117))) (-14 *5 (-714)) (-5 *2 (-85)) (-5 *1 (-459 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-900 *3)) (-4 *3 (-498)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-85))))) -(((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1160))))) + (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478))))) + (-14 *4 (-578 (-1079))) (-14 *5 (-687)) (-5 *2 (-83)) (-5 *1 (-438 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-866 *3)) (-4 *3 (-477)))) + ((*1 *2 *1) (-12 (-4 *1 (-1123)) (-5 *2 (-83))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1121))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3366 (-599 (-1117))) (|:| -3367 (-599 (-1117))))) - (-5 *1 (-1160))))) -(((*1 *2 *3) (-12 (-5 *3 (-599 (-1117))) (-5 *2 (-1213)) (-5 *1 (-1160)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-599 (-1117))) (-5 *2 (-1213)) (-5 *1 (-1160))))) + (-12 (-5 *2 (-2 (|:| -3211 (-578 (-1079))) (|:| -3212 (-578 (-1079))))) + (-5 *1 (-1121))))) +(((*1 *2 *3) (-12 (-5 *3 (-578 (-1079))) (-5 *2 (-1174)) (-5 *1 (-1121)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-578 (-1079))) (-5 *2 (-1174)) (-5 *1 (-1121))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-714)) (-4 *1 (-1090 *4)) (-4 *4 (-1157)) (-5 *2 (-85)))) + (-12 (-5 *3 (-687)) (-4 *1 (-1053 *4)) (-4 *4 (-1118)) (-5 *2 (-83)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-85)) (-5 *1 (-1159 *3)) (-4 *3 (-781)) (-4 *3 (-1041))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1120 *3)) (-4 *3 (-749)) (-4 *3 (-1005))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1159 *2)) - (-4 *2 (-1041)))) + (-12 (-5 *3 (-578 *2)) (-5 *4 (-1 (-83) *2 *2)) (-5 *1 (-1120 *2)) + (-4 *2 (-1005)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-1041)) (-4 *2 (-781)) (-5 *1 (-1159 *2))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1159 *3)) (-4 *3 (-1041))))) + (-12 (-5 *3 (-578 *2)) (-4 *2 (-1005)) (-4 *2 (-749)) (-5 *1 (-1120 *2))))) +(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1120 *3)) (-4 *3 (-1005))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-714)) (-4 *1 (-1090 *4)) (-4 *4 (-1157)) (-5 *2 (-85)))) + (-12 (-5 *3 (-687)) (-4 *1 (-1053 *4)) (-4 *4 (-1118)) (-5 *2 (-83)))) ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1159 *3)) (-4 *3 (-1041)))) + (|partial| -12 (-5 *2 (-83)) (-5 *1 (-1120 *3)) (-4 *3 (-1005)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1041)) (-5 *2 (-85)) - (-5 *1 (-1159 *3))))) + (-12 (-5 *4 (-1 (-83) *3 *3)) (-4 *3 (-1005)) (-5 *2 (-83)) + (-5 *1 (-1120 *3))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3367 (-599 *3)) (|:| -3366 (-599 *3)))) - (-5 *1 (-1159 *3)) (-4 *3 (-1041))))) + (-12 (-5 *2 (-2 (|:| -3212 (-578 *3)) (|:| -3211 (-578 *3)))) + (-5 *1 (-1120 *3)) (-4 *3 (-1005))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 *4)) (-4 *4 (-1041)) (-5 *2 (-1213)) (-5 *1 (-1159 *4)))) + (-12 (-5 *3 (-578 *4)) (-4 *4 (-1005)) (-5 *2 (-1174)) (-5 *1 (-1120 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-599 *4)) (-4 *4 (-1041)) (-5 *2 (-1213)) (-5 *1 (-1159 *4))))) + (-12 (-5 *3 (-578 *4)) (-4 *4 (-1005)) (-5 *2 (-1174)) (-5 *1 (-1120 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-499)) (-4 *5 (-305)) (-5 *2 (-359 (-1111 (-1111 *5)))) - (-5 *1 (-1156 *5)) (-5 *3 (-1111 (-1111 *5)))))) + (-12 (-5 *4 (-478)) (-4 *5 (-295)) (-5 *2 (-341 (-1074 (-1074 *5)))) + (-5 *1 (-1117 *5)) (-5 *3 (-1074 (-1074 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-305)) (-5 *2 (-359 (-1111 (-1111 *4)))) (-5 *1 (-1156 *4)) - (-5 *3 (-1111 (-1111 *4)))))) + (-12 (-4 *4 (-295)) (-5 *2 (-341 (-1074 (-1074 *4)))) (-5 *1 (-1117 *4)) + (-5 *3 (-1074 (-1074 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-305)) (-5 *2 (-359 (-1111 (-1111 *4)))) (-5 *1 (-1156 *4)) - (-5 *3 (-1111 (-1111 *4)))))) + (-12 (-4 *4 (-295)) (-5 *2 (-341 (-1074 (-1074 *4)))) (-5 *1 (-1117 *4)) + (-5 *3 (-1074 (-1074 *4)))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -4145)) (-4 *1 (-124 *3)) - (-4 *3 (-1157)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-632 *3)) (-4 *3 (-1157)))) + (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3979)) (-4 *1 (-122 *3)) + (-4 *3 (-1118)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1118)) (-5 *1 (-530 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-611 *3)) (-4 *3 (-1118)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1152 *4 *5 *3 *2)) (-4 *4 (-510)) (-4 *5 (-738)) - (-4 *3 (-781)) (-4 *2 (-1005 *4 *5 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *1 (-1155 *2)) (-4 *2 (-1157))))) + (|partial| -12 (-4 *1 (-1113 *4 *5 *3 *2)) (-4 *4 (-489)) (-4 *5 (-710)) + (-4 *3 (-749)) (-4 *2 (-969 *4 *5 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *1 (-1116 *2)) (-4 *2 (-1118))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-599 (-599 (-179)))) (-5 *4 (-179)) (-5 *2 (-599 (-881 *4))) - (-5 *1 (-1154)) (-5 *3 (-881 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-499)) (-5 *2 (-599 (-599 (-179)))) (-5 *1 (-1154))))) + (-12 (-5 *5 (-578 (-578 (-177)))) (-5 *4 (-177)) (-5 *2 (-578 (-847 *4))) + (-5 *1 (-1115)) (-5 *3 (-847 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-578 (-578 (-177)))) (-5 *1 (-1115))))) (((*1 *1 *2) - (-12 (-5 *2 (-857)) (-4 *1 (-195 *3 *4)) (-4 *4 (-989)) (-4 *4 (-1157)))) + (-12 (-5 *2 (-823)) (-4 *1 (-193 *3 *4)) (-4 *4 (-954)) (-4 *4 (-1118)))) ((*1 *1 *2) - (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-4 *5 (-195 (-4107 *3) (-714))) + (-12 (-14 *3 (-578 (-1079))) (-4 *4 (-144)) (-4 *5 (-193 (-3941 *3) (-687))) (-14 *6 - (-1 (-85) (-2 (|:| -2518 *2) (|:| -2519 *5)) - (-2 (|:| -2518 *2) (|:| -2519 *5)))) - (-5 *1 (-415 *3 *4 *2 *5 *6 *7)) (-4 *2 (-781)) - (-4 *7 (-888 *4 *5 (-798 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154))))) + (-1 (-83) (-2 (|:| -2386 *2) (|:| -2387 *5)) + (-2 (|:| -2386 *2) (|:| -2387 *5)))) + (-5 *1 (-394 *3 *4 *2 *5 *6 *7)) (-4 *2 (-749)) + (-4 *7 (-854 *4 *5 (-766 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1115))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-881 (-179))) (-5 *4 (-808)) (-5 *2 (-1213)) (-5 *1 (-422)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-989)) (-4 *1 (-920 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-881 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) + (-12 (-5 *3 (-847 (-177))) (-5 *4 (-776)) (-5 *2 (-1174)) (-5 *1 (-401)))) + ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-954)) (-4 *1 (-886 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-847 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-954)) (-4 *1 (-1037 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-847 *3)) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154)) (-5 *3 (-179))))) + (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1115)) (-5 *3 (-177))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-179)) (-5 *5 (-499)) (-5 *2 (-1153 *3)) (-5 *1 (-733 *3)) - (-4 *3 (-914)))) + (-12 (-5 *4 (-177)) (-5 *5 (-478)) (-5 *2 (-1114 *3)) (-5 *1 (-705 *3)) + (-4 *3 (-880)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-85)) (-5 *1 (-1153 *2)) - (-4 *2 (-914))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1153 *3)) (-4 *3 (-914))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1153 *3)) (-4 *3 (-914))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1153 *3)) (-4 *3 (-914))))) -(((*1 *2 *1) - (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *1 (-1153 *3)) (-4 *3 (-914))))) -(((*1 *2 *1) (-12 (-5 *1 (-1153 *2)) (-4 *2 (-914))))) + (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-83)) (-5 *1 (-1114 *2)) + (-4 *2 (-880))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1114 *3)) (-4 *3 (-880))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1114 *3)) (-4 *3 (-880))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1114 *3)) (-4 *3 (-880))))) +(((*1 *2 *1) + (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *1 (-1114 *3)) (-4 *3 (-880))))) +(((*1 *2 *1) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-880))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)) - (-4 *8 (-1011 *4 *5 *6 *7)))) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)) + (-4 *8 (-975 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-85)))) + (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-83)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) - (-4 *8 (-1011 *4 *5 *6 *7)))) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) + (-4 *8 (-975 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) - (-4 *9 (-1005 *6 *7 *8)) (-4 *6 (-510)) (-4 *7 (-738)) (-4 *8 (-781)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3464 (-599 *9)))) (-5 *3 (-599 *9)) - (-4 *1 (-1152 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-1005 *5 *6 *7)) - (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3464 (-599 *8)))) (-5 *3 (-599 *8)) - (-4 *1 (-1152 *5 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-599 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) - (-5 *2 (-2 (|:| -4011 (-599 *6)) (|:| -1795 (-599 *6))))))) + (|partial| -12 (-5 *4 (-1 (-83) *9)) (-5 *5 (-1 (-83) *9 *9)) + (-4 *9 (-969 *6 *7 *8)) (-4 *6 (-489)) (-4 *7 (-710)) (-4 *8 (-749)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3308 (-578 *9)))) (-5 *3 (-578 *9)) + (-4 *1 (-1113 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-83) *8 *8)) (-4 *8 (-969 *5 *6 *7)) + (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3308 (-578 *8)))) (-5 *3 (-578 *8)) + (-4 *1 (-1113 *5 *6 *7 *8))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-578 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) + (-5 *2 (-2 (|:| -3845 (-578 *6)) (|:| -1689 (-578 *6))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-599 *1)) (-4 *1 (-1005 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-85)))) + (-12 (-5 *3 (-578 *1)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-83)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-85)))) + (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1152 *4 *5 *6 *3)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-599 *1)) (-4 *1 (-1005 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-85)))) + (-12 (-5 *3 (-578 *1)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-83)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-85)))) + (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-83)))) ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1152 *5 *6 *7 *3)) (-4 *5 (-510)) - (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-85))))) + (-12 (-5 *4 (-1 (-83) *3 *3)) (-4 *1 (-1113 *5 *6 *7 *3)) (-4 *5 (-489)) + (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1152 *4 *5 *6 *3)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-599 *1)) (-4 *1 (-1005 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-85)))) + (-12 (-5 *3 (-578 *1)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-83)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-85)))) + (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1152 *4 *5 *6 *3)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-599 *1)) (-4 *1 (-1005 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-85)))) + (-12 (-5 *3 (-578 *1)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-83)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-85)))) + (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1152 *4 *5 *6 *3)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-85) *7 (-599 *7))) (-4 *1 (-1152 *4 *5 *6 *7)) - (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) - (-5 *2 (-85))))) + (-12 (-5 *3 (-1 (-83) *7 (-578 *7))) (-4 *1 (-1113 *4 *5 *6 *7)) + (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) + (-5 *2 (-83))))) (((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-599 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) - (-4 *1 (-1152 *5 *6 *7 *8)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) - (-4 *8 (-1005 *5 *6 *7))))) + (-12 (-5 *2 (-578 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-83) *8 *8)) + (-4 *1 (-1113 *5 *6 *7 *8)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) + (-4 *8 (-969 *5 *6 *7))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *2 (-1005 *3 *4 *5))))) + (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *2 (-969 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *2 (-1005 *3 *4 *5))))) + (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *2 (-969 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *2 (-1005 *3 *4 *5))))) + (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *2 (-969 *3 *4 *5))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *2 (-1005 *3 *4 *5))))) + (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *2 (-969 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1152 *2 *3 *4 *5)) (-4 *2 (-510)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *5 (-1005 *2 *3 *4))))) + (-12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *2 (-489)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *5 (-969 *2 *3 *4))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *2 (-1005 *3 *4 *5))))) + (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *2 (-969 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) - (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 *10)) - (-5 *1 (-579 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1011 *5 *6 *7 *8)) - (-4 *10 (-1049 *5 *6 *7 *8)))) + (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) + (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 *10)) + (-5 *1 (-558 *5 *6 *7 *8 *9 *10)) (-4 *9 (-975 *5 *6 *7 *8)) + (-4 *10 (-1012 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) - (-14 *6 (-599 (-1117))) (-5 *2 (-599 (-986 *5 *6))) (-5 *1 (-583 *5 *6)))) + (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) + (-14 *6 (-578 (-1079))) (-5 *2 (-578 (-951 *5 *6))) (-5 *1 (-562 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) - (-14 *6 (-599 (-1117))) - (-5 *2 (-599 (-1086 *5 (-484 (-798 *6)) (-798 *6) (-723 *5 (-798 *6))))) - (-5 *1 (-583 *5 *6)))) + (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) + (-14 *6 (-578 (-1079))) + (-5 *2 (-578 (-1049 *5 (-463 (-766 *6)) (-766 *6) (-696 *5 (-766 *6))))) + (-5 *1 (-562 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) - (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-967 *5 *6 *7 *8))) - (-5 *1 (-967 *5 *6 *7 *8)))) + (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) + (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-933 *5 *6 *7 *8))) + (-5 *1 (-933 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) - (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-967 *5 *6 *7 *8))) - (-5 *1 (-967 *5 *6 *7 *8)))) + (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) + (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-933 *5 *6 *7 *8))) + (-5 *1 (-933 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) - (-14 *6 (-599 (-1117))) (-5 *2 (-599 (-986 *5 *6))) (-5 *1 (-986 *5 *6)))) + (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) + (-14 *6 (-578 (-1079))) (-5 *2 (-578 (-951 *5 *6))) (-5 *1 (-951 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) - (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 *1)) - (-4 *1 (-1011 *5 *6 *7 *8)))) + (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) + (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-975 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) - (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-1086 *5 *6 *7 *8))) - (-5 *1 (-1086 *5 *6 *7 *8)))) + (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) + (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-1049 *5 *6 *7 *8))) + (-5 *1 (-1049 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) - (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-1086 *5 *6 *7 *8))) - (-5 *1 (-1086 *5 *6 *7 *8)))) + (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) + (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-1049 *5 *6 *7 *8))) + (-5 *1 (-1049 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1152 *4 *5 *6 *7))))) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-1113 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) - (-5 *2 (-599 (-2 (|:| -4011 *1) (|:| -1795 (-599 *7))))) (-5 *3 (-599 *7)) - (-4 *1 (-1152 *4 *5 *6 *7))))) + (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) + (-5 *2 (-578 (-2 (|:| -3845 *1) (|:| -1689 (-578 *7))))) (-5 *3 (-578 *7)) + (-4 *1 (-1113 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-599 *5))))) + (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-578 *5))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) - (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5))))) + (|partial| -12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) + (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) (-4 *5 (-323)) (-5 *2 (-714))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989)))) + (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) (-4 *5 (-313)) (-5 *2 (-687))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954)))) ((*1 *2 *1 *1) - (-12 (-4 *2 (-989)) (-5 *1 (-50 *2 *3)) (-14 *3 (-599 (-1117))))) + (-12 (-4 *2 (-954)) (-5 *1 (-50 *2 *3)) (-14 *3 (-578 (-1079))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-599 (-857))) (-4 *2 (-318)) (-5 *1 (-125 *4 *2 *5)) - (-14 *4 (-857)) (-14 *5 (-933 *4 *2)))) + (-12 (-5 *3 (-578 (-823))) (-4 *2 (-308)) (-5 *1 (-123 *4 *2 *5)) + (-14 *4 (-823)) (-14 *5 (-899 *4 *2)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-268 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) - (-14 *4 (-599 (-1117))))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-104)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-339 *2 *3)) (-4 *3 (-1041)) (-4 *2 (-989)))) + (-12 (-5 *2 (-261 *3)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) + (-14 *4 (-578 (-1079))))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-102)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-328 *2 *3)) (-4 *3 (-1005)) (-4 *2 (-954)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-499)) (-4 *2 (-510)) (-5 *1 (-578 *2 *4)) (-4 *4 (-1183 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-666 *2)) (-4 *2 (-989)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-989)) (-5 *1 (-693 *2 *3)) (-4 *3 (-684)))) + (-12 (-5 *3 (-478)) (-4 *2 (-489)) (-5 *1 (-557 *2 *4)) (-4 *4 (-1144 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-640 *2)) (-4 *2 (-954)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-954)) (-5 *1 (-667 *2 *3)) (-4 *3 (-658)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 *5)) (-5 *3 (-599 (-714))) (-4 *1 (-698 *4 *5)) - (-4 *4 (-989)) (-4 *5 (-781)))) + (-12 (-5 *2 (-578 *5)) (-5 *3 (-578 (-687))) (-4 *1 (-672 *4 *5)) + (-4 *4 (-954)) (-4 *5 (-749)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-714)) (-4 *1 (-698 *4 *2)) (-4 *4 (-989)) (-4 *2 (-781)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-786 *2)) (-4 *2 (-989)))) + (-12 (-5 *3 (-687)) (-4 *1 (-672 *4 *2)) (-4 *4 (-954)) (-4 *2 (-749)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-754 *2)) (-4 *2 (-954)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 *6)) (-5 *3 (-599 (-714))) (-4 *1 (-888 *4 *5 *6)) - (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)))) + (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 (-687))) (-4 *1 (-854 *4 *5 *6)) + (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-714)) (-4 *1 (-888 *4 *5 *2)) (-4 *4 (-989)) (-4 *5 (-738)) - (-4 *2 (-781)))) + (-12 (-5 *3 (-687)) (-4 *1 (-854 *4 *5 *2)) (-4 *4 (-954)) (-4 *5 (-710)) + (-4 *2 (-749)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-714)) (-4 *2 (-888 *4 (-484 *5) *5)) (-5 *1 (-1066 *4 *5 *2)) - (-4 *4 (-989)) (-4 *5 (-781)))) + (-12 (-5 *3 (-687)) (-4 *2 (-854 *4 (-463 *5) *5)) (-5 *1 (-1029 *4 *5 *2)) + (-4 *4 (-954)) (-4 *5 (-749)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-714)) (-5 *2 (-884 *4)) (-5 *1 (-1150 *4)) (-4 *4 (-989))))) + (-12 (-5 *3 (-687)) (-5 *2 (-850 *4)) (-5 *1 (-1111 *4)) (-4 *4 (-954))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1066 *4 *3 *5))) (-4 *4 (-38 (-361 (-499)))) (-4 *4 (-989)) - (-4 *3 (-781)) (-5 *1 (-1066 *4 *3 *5)) (-4 *5 (-888 *4 (-484 *3) *3)))) + (-12 (-5 *2 (-1 (-1029 *4 *3 *5))) (-4 *4 (-38 (-343 (-478)))) (-4 *4 (-954)) + (-4 *3 (-749)) (-5 *1 (-1029 *4 *3 *5)) (-4 *5 (-854 *4 (-463 *3) *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1150 *4))) (-5 *3 (-1117)) (-5 *1 (-1150 *4)) - (-4 *4 (-38 (-361 (-499)))) (-4 *4 (-989))))) + (-12 (-5 *2 (-1 (-1111 *4))) (-5 *3 (-1079)) (-5 *1 (-1111 *4)) + (-4 *4 (-38 (-343 (-478)))) (-4 *4 (-954))))) (((*1 *2 *2) - (-12 (-4 *3 (-569 (-825 *3))) (-4 *3 (-821 *3)) (-4 *3 (-406)) - (-5 *1 (-1149 *3 *2)) (-4 *2 (-569 (-825 *3))) (-4 *2 (-821 *3)) - (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-548 (-793 *3))) (-4 *3 (-789 *3)) (-4 *3 (-385)) + (-5 *1 (-1110 *3 *2)) (-4 *2 (-548 (-793 *3))) (-4 *2 (-789 *3)) + (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) -(((*1 *2 *2) (-12 (-5 *2 (-904 *3)) (-4 *3 (-1041)) (-5 *1 (-905 *3)))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) +(((*1 *2 *2) (-12 (-5 *2 (-870 *3)) (-4 *3 (-1005)) (-5 *1 (-871 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-120)) (-4 *2 (-261)) (-4 *2 (-406)) (-4 *3 (-781)) - (-4 *4 (-738)) (-5 *1 (-926 *2 *3 *4 *5)) (-4 *5 (-888 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-268 (-499))) (-5 *1 (-1059)))) + (-12 (-4 *2 (-118)) (-4 *2 (-254)) (-4 *2 (-385)) (-4 *3 (-749)) + (-4 *4 (-710)) (-5 *1 (-892 *2 *3 *4 *5)) (-4 *5 (-854 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-261 (-478))) (-5 *1 (-1022)))) ((*1 *2 *2) - (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) + (-12 (-4 *3 (-385)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-357 *3) (-1104)))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-510)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) - (-5 *1 (-1148 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) + (-12 (-4 *3 (-489)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) + (-5 *1 (-1109 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-510)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) - (-5 *1 (-1148 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) + (-12 (-4 *3 (-489)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) + (-5 *1 (-1109 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-142 (-268 *4))) - (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 (-142 *4)))))) + (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-140 (-261 *4))) + (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 (-140 *4)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-142 *3)) - (-5 *1 (-1147 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4)))))) + (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-140 *3)) + (-5 *1 (-1108 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) - (-4 *3 (-13 (-27) (-1143) (-375 (-142 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) + (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-83)) (-5 *1 (-160 *4 *3)) + (-4 *3 (-13 (-27) (-1104) (-357 (-140 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-85)) - (-5 *1 (-1147 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) + (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-83)) + (-5 *1 (-1108 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-268 *4)) - (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 (-142 *4)))))) + (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-261 *4)) + (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 (-140 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) - (-4 *2 (-13 (-27) (-1143) (-375 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) + (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1108 *3 *2)) + (-4 *2 (-13 (-27) (-1104) (-357 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-268 *4)) - (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 (-142 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)))) + (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-261 *4)) + (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 (-140 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) + ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) - (-4 *2 (-13 (-27) (-1143) (-375 *3)))))) + (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1108 *3 *2)) + (-4 *2 (-13 (-27) (-1104) (-357 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-13 (-27) (-1143) (-375 (-142 *3)))))) + (-12 (-4 *3 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *3 *2)) + (-4 *2 (-13 (-27) (-1104) (-357 (-140 *3)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) - (-4 *2 (-13 (-27) (-1143) (-375 *3)))))) + (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1108 *3 *2)) + (-4 *2 (-13 (-27) (-1104) (-357 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-13 (-27) (-1143) (-375 (-142 *3)))))) + (-12 (-4 *3 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *3 *2)) + (-4 *2 (-13 (-27) (-1104) (-357 (-140 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *4 *2)) - (-4 *2 (-13 (-27) (-1143) (-375 (-142 *4)))))) + (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *4 *2)) + (-4 *2 (-13 (-27) (-1104) (-357 (-140 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) - (-4 *2 (-13 (-27) (-1143) (-375 *3))))) + (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1108 *3 *2)) + (-4 *2 (-13 (-27) (-1104) (-357 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) - (-5 *1 (-1147 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4)))))) + (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) + (-5 *1 (-1108 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-13 (-27) (-1143) (-375 (-142 *3)))))) + (-12 (-4 *3 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *3 *2)) + (-4 *2 (-13 (-27) (-1104) (-357 (-140 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *4 *2)) - (-4 *2 (-13 (-27) (-1143) (-375 (-142 *4)))))) + (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *4 *2)) + (-4 *2 (-13 (-27) (-1104) (-357 (-140 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) - (-4 *2 (-13 (-27) (-1143) (-375 *3))))) + (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1108 *3 *2)) + (-4 *2 (-13 (-27) (-1104) (-357 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) - (-5 *1 (-1147 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4)))))) + (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) + (-5 *1 (-1108 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) - (-4 *4 (-343)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) - ((*1 *1 *1) (-4 *1 (-1146)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) + ((*1 *1 *1) (-4 *1 (-1107)))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-781)))) - ((*1 *1 *1) - (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) - (-4 *4 (-343)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-277 *2)) (-4 *2 (-749)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) - ((*1 *1 *1) (-4 *1 (-1146)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) + ((*1 *1 *1) (-4 *1 (-1107)))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) - ((*1 *1 *1) (-4 *1 (-1146)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) + ((*1 *1 *1) (-4 *1 (-1107)))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) - ((*1 *1 *1) (-4 *1 (-1146)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) + ((*1 *1 *1) (-4 *1 (-1107)))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) - ((*1 *1 *1) (-4 *1 (-1146)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) + ((*1 *1 *1) (-4 *1 (-1107)))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-781)))) - ((*1 *1 *1) - (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) - (-4 *4 (-343)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-277 *2)) (-4 *2 (-749)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) - ((*1 *1 *1) (-4 *1 (-1146)))) -(((*1 *2 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1144 *3)) (-4 *3 (-1041))))) -(((*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1041)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-1144 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3)))) + ((*1 *1 *1) (-4 *1 (-1107)))) +(((*1 *2 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1118)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1105 *3)) (-4 *3 (-1005))))) +(((*1 *1 *2) (-12 (-5 *1 (-1105 *2)) (-4 *2 (-1005)))) + ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-5 *1 (-1105 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-599 (-1144 *2))) (-5 *1 (-1144 *2)) (-4 *2 (-1041))))) -(((*1 *1 *1) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1041))))) + (-12 (-5 *3 (-578 (-1105 *2))) (-5 *1 (-1105 *2)) (-4 *2 (-1005))))) +(((*1 *1 *1) (-12 (-5 *1 (-1105 *2)) (-4 *2 (-1005))))) (((*1 *2 *1) - (-12 (-5 *2 (-599 (-1144 *3))) (-5 *1 (-1144 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1144 *3)) (-4 *3 (-1041))))) + (-12 (-5 *2 (-578 (-1105 *3))) (-5 *1 (-1105 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1105 *3)) (-4 *3 (-1005))))) (((*1 *2 *1) - (-12 (-5 *2 (-599 (-1144 *3))) (-5 *1 (-1144 *3)) (-4 *3 (-1041))))) + (-12 (-5 *2 (-578 (-1105 *3))) (-5 *1 (-1105 *3)) (-4 *3 (-1005))))) (((*1 *2) - (-12 (-4 *2 (-13 (-375 *3) (-942))) (-5 *1 (-229 *3 *2)) (-4 *3 (-510)))) - ((*1 *1) - (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) - (-4 *4 (-343)))) - ((*1 *1) (-5 *1 (-431))) ((*1 *1) (-4 *1 (-1143)))) -(((*1 *2) (-12 (-5 *2 (-1073 (-179))) (-5 *1 (-1141))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1099)) (-5 *2 (-499)) (-5 *1 (-1140 *4)) (-4 *4 (-989))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-499)) (-5 *1 (-1140 *3)) (-4 *3 (-989))))) -(((*1 *2 *1) (-12 (-4 *1 (-735)) (-5 *2 (-499)))) - ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) + (-12 (-4 *2 (-13 (-357 *3) (-908))) (-5 *1 (-227 *3 *2)) (-4 *3 (-489)))) + ((*1 *1) (-5 *1 (-410))) ((*1 *1) (-4 *1 (-1104)))) +(((*1 *2) (-12 (-5 *2 (-1036 (-177))) (-5 *1 (-1102))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1062)) (-5 *2 (-478)) (-5 *1 (-1101 *4)) (-4 *4 (-954))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-478)) (-5 *1 (-1101 *3)) (-4 *3 (-954))))) +(((*1 *2 *1) (-12 (-4 *1 (-707)) (-5 *2 (-478)))) + ((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-806 *3)) (-4 *3 (-1005)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1008 *4 *3)) (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) - (-5 *2 (-499)))) + (-12 (-4 *1 (-972 *4 *3)) (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1144 *4)) + (-5 *2 (-478)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-510) (-978 *2) (-596 *2) (-406))) (-5 *2 (-499)) - (-5 *1 (-1057 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) + (|partial| -12 (-4 *4 (-13 (-489) (-943 *2) (-575 *2) (-385))) (-5 *2 (-478)) + (-5 *1 (-1020 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *4))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-775 *3)) - (-4 *3 (-13 (-27) (-1143) (-375 *6))) - (-4 *6 (-13 (-510) (-978 *2) (-596 *2) (-406))) (-5 *2 (-499)) - (-5 *1 (-1057 *6 *3)))) + (|partial| -12 (-5 *4 (-1079)) (-5 *5 (-743 *3)) + (-4 *3 (-13 (-27) (-1104) (-357 *6))) + (-4 *6 (-13 (-489) (-943 *2) (-575 *2) (-385))) (-5 *2 (-478)) + (-5 *1 (-1020 *6 *3)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-1099)) - (-4 *6 (-13 (-510) (-978 *2) (-596 *2) (-406))) (-5 *2 (-499)) - (-5 *1 (-1057 *6 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))))) + (|partial| -12 (-5 *4 (-1079)) (-5 *5 (-1062)) + (-4 *6 (-13 (-489) (-943 *2) (-575 *2) (-385))) (-5 *2 (-478)) + (-5 *1 (-1020 *6 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *6))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-406)) (-5 *2 (-499)) - (-5 *1 (-1058 *4)))) + (|partial| -12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-385)) (-5 *2 (-478)) + (-5 *1 (-1021 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-775 (-361 (-884 *6)))) - (-5 *3 (-361 (-884 *6))) (-4 *6 (-406)) (-5 *2 (-499)) (-5 *1 (-1058 *6)))) + (|partial| -12 (-5 *4 (-1079)) (-5 *5 (-743 (-343 (-850 *6)))) + (-5 *3 (-343 (-850 *6))) (-4 *6 (-385)) (-5 *2 (-478)) (-5 *1 (-1021 *6)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-361 (-884 *6))) (-5 *4 (-1117)) (-5 *5 (-1099)) - (-4 *6 (-406)) (-5 *2 (-499)) (-5 *1 (-1058 *6)))) - ((*1 *2 *3) (|partial| -12 (-5 *2 (-499)) (-5 *1 (-1140 *3)) (-4 *3 (-989))))) -(((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1139)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1139))))) -(((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1139))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-1139))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-319 *2)) (-4 *2 (-1041)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-1139))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1139))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-797) (-797))) (-5 *1 (-86)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-797) (-599 (-797)))) (-5 *1 (-86)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 (-1 (-797) (-599 (-797))))) (-5 *1 (-86)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1213)) (-5 *1 (-167 *3)) + (|partial| -12 (-5 *3 (-343 (-850 *6))) (-5 *4 (-1079)) (-5 *5 (-1062)) + (-4 *6 (-385)) (-5 *2 (-478)) (-5 *1 (-1021 *6)))) + ((*1 *2 *3) (|partial| -12 (-5 *2 (-478)) (-5 *1 (-1101 *3)) (-4 *3 (-954))))) +(((*1 *2 *1) (-12 (-5 *2 (-1062)) (-5 *1 (-1100)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-1100))))) +(((*1 *2 *1) (-12 (-5 *2 (-1062)) (-5 *1 (-1100))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1062)) (-5 *1 (-1100))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-309 *2)) (-4 *2 (-1005)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1062)) (-5 *1 (-1100))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1100))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-765) (-765))) (-5 *1 (-84)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-765) (-578 (-765)))) (-5 *1 (-84)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 (-1 (-765) (-578 (-765))))) (-5 *1 (-84)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1174)) (-5 *1 (-165 *3)) (-4 *3 - (-13 (-781) - (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 (*2 $)) - (-15 -2066 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-456)))) - ((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-668)))) - ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1137)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-1137))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137))))) + (-13 (-749) + (-10 -8 (-15 -3784 ((-1062) $ (-1079))) (-15 -3601 (*2 $)) + (-15 -1951 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-435)))) + ((*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-642)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1098)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1174)) (-5 *1 (-1098))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-1098))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-1098))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-714)) (-4 *3 (-1157)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)))) - ((*1 *1) (-5 *1 (-145))) - ((*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-857)) (-4 *3 (-1041)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-345)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) + (-12 (-5 *2 (-687)) (-4 *3 (-1118)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)))) + ((*1 *1) (-5 *1 (-143))) + ((*1 *1) (-12 (-5 *1 (-164 *2 *3)) (-14 *2 (-823)) (-4 *3 (-1005)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1062)) (-4 *1 (-332)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-4 *1 (-588 *3)) (-4 *3 (-1118)))) ((*1 *1) - (-12 (-4 *3 (-1041)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1041)) - (-4 *4 (-624 *3)))) - ((*1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) - ((*1 *1 *2) (-12 (-5 *1 (-1082 *3 *2)) (-14 *3 (-714)) (-4 *2 (-989)))) - ((*1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989)))) - ((*1 *1 *1) (-5 *1 (-1117))) ((*1 *1) (-5 *1 (-1117))) - ((*1 *1) (-5 *1 (-1137)))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137))))) -(((*1 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1136))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-51)) (-5 *1 (-1136))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-78 *2)) (-4 *2 (-1157)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-781)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-781)))) - ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-236 *2)) (-4 *2 (-1157)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-653 *2)) (-4 *2 (-1041)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1213)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1041)) (-5 *1 (-1135 *3 *2)) (-4 *3 (-1041))))) + (-12 (-4 *3 (-1005)) (-5 *1 (-788 *2 *3 *4)) (-4 *2 (-1005)) + (-4 *4 (-603 *3)))) + ((*1 *1) (-12 (-5 *1 (-791 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))) + ((*1 *1 *2) (-12 (-5 *1 (-1045 *3 *2)) (-14 *3 (-687)) (-4 *2 (-954)))) + ((*1 *1) (-12 (-5 *1 (-1068 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954)))) + ((*1 *1 *1) (-5 *1 (-1079))) ((*1 *1) (-5 *1 (-1079))) + ((*1 *1) (-5 *1 (-1098)))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-1098))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-1098))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-1098))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-1098))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1118)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-92 *2)) (-4 *2 (-749)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-97 *2)) (-4 *2 (-749)))) + ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-234 *3)) (-4 *3 (-1118)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-234 *2)) (-4 *2 (-1118)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-629 *2)) (-4 *2 (-1005)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1174)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1005)) (-5 *1 (-1097 *3 *2)) (-4 *3 (-1005))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005))))) (((*1 *2) - (-12 (-5 *2 (-1213)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) + (-12 (-5 *2 (-1174)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005))))) (((*1 *2) - (-12 (-5 *2 (-1213)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) + (-12 (-5 *2 (-1174)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005))))) (((*1 *2 *3) - (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1135 *4 *5)) (-4 *4 (-1041)) - (-4 *5 (-1041))))) + (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1097 *4 *5)) (-4 *4 (-1005)) + (-4 *5 (-1005))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1135 *4 *5)) (-4 *4 (-1041)) - (-4 *5 (-1041))))) + (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1097 *4 *5)) (-4 *4 (-1005)) + (-4 *5 (-1005))))) (((*1 *2) - (-12 (-5 *2 (-1213)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) + (-12 (-5 *2 (-1174)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005))))) (((*1 *1 *2) - (-12 (-5 *2 (-599 (-2 (|:| -4010 *3) (|:| |entry| *4)))) (-4 *3 (-1041)) - (-4 *4 (-1041)) (-4 *1 (-1134 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1134 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-1132 *2)) (-4 *2 (-318))))) + (-12 (-5 *2 (-578 (-2 (|:| -3844 *3) (|:| |entry| *4)))) (-4 *3 (-1005)) + (-4 *4 (-1005)) (-4 *1 (-1096 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1096 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-1094 *2)) (-4 *2 (-308))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-857)) (-5 *2 (-1111 *3)) (-5 *1 (-1132 *3)) (-4 *3 (-318))))) -(((*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-5 *1 (-1132 *2)) (-4 *2 (-318))))) + (-12 (-5 *4 (-823)) (-5 *2 (-1074 *3)) (-5 *1 (-1094 *3)) (-4 *3 (-308))))) +(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-1094 *2)) (-4 *2 (-308))))) (((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-32 *3 *4)) (-4 *4 (-375 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-55)) (-5 *1 (-86)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-714)) (-5 *1 (-86)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-86)))) + (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-32 *3 *4)) (-4 *4 (-357 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1079)) (-5 *3 (-55)) (-5 *1 (-84)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1079)) (-5 *3 (-687)) (-5 *1 (-84)))) + ((*1 *1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-84)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-131 *3 *4)) (-4 *4 (-375 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-86)) (-5 *1 (-136)))) + (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-129 *3 *4)) (-4 *4 (-357 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-84)) (-5 *1 (-134)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-229 *3 *4)) - (-4 *4 (-13 (-375 *3) (-942))))) - ((*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-251 *3)) (-4 *3 (-252)))) - ((*1 *2 *2) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) + (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-227 *3 *4)) + (-4 *4 (-13 (-357 *3) (-908))))) + ((*1 *2 *2) (-12 (-5 *2 (-84)) (-5 *1 (-249 *3)) (-4 *3 (-250)))) + ((*1 *2 *2) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *4 (-1041)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) + (-12 (-5 *2 (-84)) (-4 *4 (-1005)) (-5 *1 (-356 *3 *4)) (-4 *3 (-357 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-385 *3 *4)) (-4 *4 (-375 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-566 *3)) (-4 *3 (-1041)))) + (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-367 *3 *4)) (-4 *4 (-357 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-84)) (-5 *1 (-545 *3)) (-4 *3 (-1005)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-584 *3 *4)) - (-4 *4 (-13 (-375 *3) (-942) (-1143))))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-959)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1131 *2)) (-4 *2 (-1041))))) + (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-563 *3 *4)) + (-4 *4 (-13 (-357 *3) (-908) (-1104))))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-925)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1093 *2)) (-4 *2 (-1005))))) (((*1 *2 *1) - (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)) (-5 *2 (-599 (-599 *3))))) + (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)) (-5 *2 (-578 (-578 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) - (-4 *7 (-195 *3 *5)) (-5 *2 (-599 (-599 *5))))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-599 *3))) (-5 *1 (-1130 *3)) (-4 *3 (-1041))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-5 *1 (-1130 *3))))) + (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-5 *2 (-578 (-578 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-578 *3))) (-5 *1 (-1092 *3)) (-4 *3 (-1005))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1005)) (-5 *1 (-1092 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-781)) + (-12 (-4 *4 (-749)) (-5 *2 - (-2 (|:| |f1| (-599 *4)) (|:| |f2| (-599 (-599 (-599 *4)))) - (|:| |f3| (-599 (-599 *4))) (|:| |f4| (-599 (-599 (-599 *4)))))) - (-5 *1 (-1128 *4)) (-5 *3 (-599 (-599 (-599 *4))))))) + (-2 (|:| |f1| (-578 *4)) (|:| |f2| (-578 (-578 (-578 *4)))) + (|:| |f3| (-578 (-578 *4))) (|:| |f4| (-578 (-578 (-578 *4)))))) + (-5 *1 (-1090 *4)) (-5 *3 (-578 (-578 (-578 *4))))))) (((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-781)) (-5 *3 (-599 *6)) (-5 *5 (-599 *3)) + (-12 (-4 *6 (-749)) (-5 *3 (-578 *6)) (-5 *5 (-578 *3)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-599 *5)) (|:| |f3| *5) (|:| |f4| (-599 *5)))) - (-5 *1 (-1128 *6)) (-5 *4 (-599 *5))))) + (-2 (|:| |f1| *3) (|:| |f2| (-578 *5)) (|:| |f3| *5) (|:| |f4| (-578 *5)))) + (-5 *1 (-1090 *6)) (-5 *4 (-578 *5))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-318)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) - (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-308)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) + (-5 *1 (-453 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-510)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) - (-4 *7 (-931 *4)) (-4 *2 (-644 *7 *8 *9)) - (-5 *1 (-475 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-644 *4 *5 *6)) - (-4 *8 (-327 *7)) (-4 *9 (-327 *7)))) + (|partial| -12 (-4 *4 (-489)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) + (-4 *7 (-897 *4)) (-4 *2 (-622 *7 *8 *9)) + (-5 *1 (-454 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-622 *4 *5 *6)) + (-4 *8 (-317 *7)) (-4 *9 (-317 *7)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) - (-4 *4 (-327 *2)) (-4 *2 (-318)))) + (|partial| -12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) + (-4 *4 (-317 *2)) (-4 *2 (-308)))) ((*1 *2 *2) - (|partial| -12 (-4 *3 (-318)) (-4 *3 (-146)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)) (-5 *1 (-646 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) - ((*1 *1 *1) (|partial| -12 (-5 *1 (-647 *2)) (-4 *2 (-318)) (-4 *2 (-989)))) + (|partial| -12 (-4 *3 (-308)) (-4 *3 (-144)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)) (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) + ((*1 *1 *1) (|partial| -12 (-5 *1 (-625 *2)) (-4 *2 (-308)) (-4 *2 (-954)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1063 *2 *3 *4 *5)) (-4 *3 (-989)) - (-4 *4 (-195 *2 *3)) (-4 *5 (-195 *2 *3)) (-4 *3 (-318)))) - ((*1 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-1128 *3))))) + (|partial| -12 (-4 *1 (-1026 *2 *3 *4 *5)) (-4 *3 (-954)) + (-4 *4 (-193 *2 *3)) (-4 *5 (-193 *2 *3)) (-4 *3 (-308)))) + ((*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-1090 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-781)) (-5 *2 (-599 (-599 *4))) (-5 *1 (-1128 *4)) - (-5 *3 (-599 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-781)) (-5 *1 (-1128 *3))))) + (-12 (-4 *4 (-749)) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1090 *4)) + (-5 *3 (-578 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-749)) (-5 *1 (-1090 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-781)) (-5 *2 (-1130 (-599 *4))) (-5 *1 (-1128 *4)) - (-5 *3 (-599 *4))))) + (-12 (-4 *4 (-749)) (-5 *2 (-1092 (-578 *4))) (-5 *1 (-1090 *4)) + (-5 *3 (-578 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-781)) (-5 *2 (-599 (-599 (-599 *4)))) (-5 *1 (-1128 *4)) - (-5 *3 (-599 (-599 *4)))))) + (-12 (-4 *4 (-749)) (-5 *2 (-578 (-578 (-578 *4)))) (-5 *1 (-1090 *4)) + (-5 *3 (-578 (-578 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1130 (-599 *4))) (-4 *4 (-781)) (-5 *2 (-599 (-599 *4))) - (-5 *1 (-1128 *4))))) + (-12 (-5 *3 (-1092 (-578 *4))) (-4 *4 (-749)) (-5 *2 (-578 (-578 *4))) + (-5 *1 (-1090 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 (-599 (-599 *4)))) (-5 *2 (-599 (-599 *4))) - (-5 *1 (-1128 *4)) (-4 *4 (-781))))) + (-12 (-5 *3 (-578 (-578 (-578 *4)))) (-5 *2 (-578 (-578 *4))) + (-5 *1 (-1090 *4)) (-4 *4 (-749))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-599 (-599 (-599 *4)))) (-5 *2 (-599 (-599 *4))) (-4 *4 (-781)) - (-5 *1 (-1128 *4))))) + (-12 (-5 *3 (-578 (-578 (-578 *4)))) (-5 *2 (-578 (-578 *4))) (-4 *4 (-749)) + (-5 *1 (-1090 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-599 (-599 (-599 *4)))) (-5 *3 (-599 *4)) (-4 *4 (-781)) - (-5 *1 (-1128 *4))))) + (-12 (-5 *2 (-578 (-578 (-578 *4)))) (-5 *3 (-578 *4)) (-4 *4 (-749)) + (-5 *1 (-1090 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-599 (-599 (-599 *5)))) (-5 *3 (-1 (-85) *5 *5)) - (-5 *4 (-599 *5)) (-4 *5 (-781)) (-5 *1 (-1128 *5))))) + (-12 (-5 *2 (-578 (-578 (-578 *5)))) (-5 *3 (-1 (-83) *5 *5)) + (-5 *4 (-578 *5)) (-4 *5 (-749)) (-5 *1 (-1090 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-781)) (-5 *4 (-599 *6)) - (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-599 *4)))) - (-5 *1 (-1128 *6)) (-5 *5 (-599 *4))))) -(((*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1127))))) -(((*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1127))))) -(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1127))))) -(((*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1127))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1127))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-361 (-884 *5)))) (-5 *4 (-599 (-1117))) (-4 *5 (-510)) - (-5 *2 (-599 (-599 (-884 *5)))) (-5 *1 (-1126 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-361 (-884 (-499))))) - (-5 *2 (-599 (-599 (-247 (-884 *4))))) (-5 *1 (-335 *4)) - (-4 *4 (-13 (-780) (-318))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-247 (-361 (-884 (-499)))))) - (-5 *2 (-599 (-599 (-247 (-884 *4))))) (-5 *1 (-335 *4)) - (-4 *4 (-13 (-780) (-318))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-361 (-884 (-499)))) (-5 *2 (-599 (-247 (-884 *4)))) - (-5 *1 (-335 *4)) (-4 *4 (-13 (-780) (-318))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-247 (-361 (-884 (-499))))) (-5 *2 (-599 (-247 (-884 *4)))) - (-5 *1 (-335 *4)) (-4 *4 (-13 (-780) (-318))))) + (-12 (-5 *3 (-1 (-83) *6 *6)) (-4 *6 (-749)) (-5 *4 (-578 *6)) + (-5 *2 (-2 (|:| |fs| (-83)) (|:| |sd| *4) (|:| |td| (-578 *4)))) + (-5 *1 (-1090 *6)) (-5 *5 (-578 *4))))) +(((*1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-1089))))) +(((*1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-1089))))) +(((*1 *2) (-12 (-5 *2 (-101)) (-5 *1 (-1089))))) +(((*1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-1089))))) +(((*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-1089))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-578 (-343 (-850 *5)))) (-5 *4 (-578 (-1079))) (-4 *5 (-489)) + (-5 *2 (-578 (-578 (-850 *5)))) (-5 *1 (-1088 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-578 (-343 (-850 (-478))))) + (-5 *2 (-578 (-578 (-245 (-850 *4))))) (-5 *1 (-325 *4)) + (-4 *4 (-13 (-748) (-308))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-578 (-245 (-343 (-850 (-478)))))) + (-5 *2 (-578 (-578 (-245 (-850 *4))))) (-5 *1 (-325 *4)) + (-4 *4 (-13 (-748) (-308))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-343 (-850 (-478)))) (-5 *2 (-578 (-245 (-850 *4)))) + (-5 *1 (-325 *4)) (-4 *4 (-13 (-748) (-308))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-245 (-343 (-850 (-478))))) (-5 *2 (-578 (-245 (-850 *4)))) + (-5 *1 (-325 *4)) (-4 *4 (-13 (-748) (-308))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1117)) - (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) - (-4 *4 (-13 (-29 *6) (-1143) (-898))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2113 (-599 *4)))) - (-5 *1 (-611 *6 *4 *3)) (-4 *3 (-616 *4)))) + (|partial| -12 (-5 *5 (-1079)) + (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) + (-4 *4 (-13 (-29 *6) (-1104) (-864))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -1998 (-578 *4)))) + (-5 *1 (-590 *6 *4 *3)) (-4 *3 (-595 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-599 *2)) - (-4 *2 (-13 (-29 *6) (-1143) (-898))) - (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) - (-5 *1 (-611 *6 *2 *3)) (-4 *3 (-616 *2)))) + (|partial| -12 (-5 *4 (-1079)) (-5 *5 (-578 *2)) + (-4 *2 (-13 (-29 *6) (-1104) (-864))) + (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) + (-5 *1 (-590 *6 *2 *3)) (-4 *3 (-595 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-318)) (-4 *6 (-13 (-327 *5) (-10 -7 (-6 -4146)))) - (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4146)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2113 (-599 *4)))) - (-5 *1 (-625 *5 *6 *4 *3)) (-4 *3 (-644 *5 *6 *4)))) + (-12 (-4 *5 (-308)) (-4 *6 (-13 (-317 *5) (-10 -7 (-6 -3980)))) + (-4 *4 (-13 (-317 *5) (-10 -7 (-6 -3980)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -1998 (-578 *4)))) + (-5 *1 (-604 *5 *6 *4 *3)) (-4 *3 (-622 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-318)) (-4 *6 (-13 (-327 *5) (-10 -7 (-6 -4146)))) - (-4 *7 (-13 (-327 *5) (-10 -7 (-6 -4146)))) - (-5 *2 (-599 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2113 (-599 *7))))) - (-5 *1 (-625 *5 *6 *7 *3)) (-5 *4 (-599 *7)) (-4 *3 (-644 *5 *6 *7)))) + (-12 (-4 *5 (-308)) (-4 *6 (-13 (-317 *5) (-10 -7 (-6 -3980)))) + (-4 *7 (-13 (-317 *5) (-10 -7 (-6 -3980)))) + (-5 *2 (-578 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -1998 (-578 *7))))) + (-5 *1 (-604 *5 *6 *7 *3)) (-5 *4 (-578 *7)) (-4 *3 (-622 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-647 *5)) (-4 *5 (-318)) + (-12 (-5 *3 (-625 *5)) (-4 *5 (-308)) (-5 *2 - (-2 (|:| |particular| (-3 (-1207 *5) #2="failed")) - (|:| -2113 (-599 (-1207 *5))))) - (-5 *1 (-626 *5)) (-5 *4 (-1207 *5)))) + (-2 (|:| |particular| (-3 (-1168 *5) #2="failed")) + (|:| -1998 (-578 (-1168 *5))))) + (-5 *1 (-605 *5)) (-5 *4 (-1168 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-599 *5))) (-4 *5 (-318)) + (-12 (-5 *3 (-578 (-578 *5))) (-4 *5 (-308)) (-5 *2 - (-2 (|:| |particular| (-3 (-1207 *5) #2#)) (|:| -2113 (-599 (-1207 *5))))) - (-5 *1 (-626 *5)) (-5 *4 (-1207 *5)))) + (-2 (|:| |particular| (-3 (-1168 *5) #2#)) (|:| -1998 (-578 (-1168 *5))))) + (-5 *1 (-605 *5)) (-5 *4 (-1168 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-647 *5)) (-4 *5 (-318)) + (-12 (-5 *3 (-625 *5)) (-4 *5 (-308)) (-5 *2 - (-599 - (-2 (|:| |particular| (-3 (-1207 *5) #2#)) - (|:| -2113 (-599 (-1207 *5)))))) - (-5 *1 (-626 *5)) (-5 *4 (-599 (-1207 *5))))) + (-578 + (-2 (|:| |particular| (-3 (-1168 *5) #2#)) + (|:| -1998 (-578 (-1168 *5)))))) + (-5 *1 (-605 *5)) (-5 *4 (-578 (-1168 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-599 *5))) (-4 *5 (-318)) + (-12 (-5 *3 (-578 (-578 *5))) (-4 *5 (-308)) (-5 *2 - (-599 - (-2 (|:| |particular| (-3 (-1207 *5) #2#)) - (|:| -2113 (-599 (-1207 *5)))))) - (-5 *1 (-626 *5)) (-5 *4 (-599 (-1207 *5))))) + (-578 + (-2 (|:| |particular| (-3 (-1168 *5) #2#)) + (|:| -1998 (-578 (-1168 *5)))))) + (-5 *1 (-605 *5)) (-5 *4 (-578 (-1168 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-599 (-1117))) (-4 *5 (-510)) - (-5 *2 (-599 (-599 (-247 (-361 (-884 *5)))))) (-5 *1 (-713 *5)))) + (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-578 (-1079))) (-4 *5 (-489)) + (-5 *2 (-578 (-578 (-245 (-343 (-850 *5)))))) (-5 *1 (-686 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-510)) - (-5 *2 (-599 (-599 (-247 (-361 (-884 *4)))))) (-5 *1 (-713 *4)))) + (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-489)) + (-5 *2 (-578 (-578 (-245 (-343 (-850 *4)))))) (-5 *1 (-686 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1117)) - (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *1 (-715 *5 *2)) - (-4 *2 (-13 (-29 *5) (-1143) (-898))))) + (|partial| -12 (-5 *3 (-84)) (-5 *4 (-1079)) + (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *1 (-688 *5 *2)) + (-4 *2 (-13 (-29 *5) (-1104) (-864))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-647 *7)) (-5 *5 (-1117)) - (-4 *7 (-13 (-29 *6) (-1143) (-898))) - (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) - (-5 *2 (-2 (|:| |particular| (-1207 *7)) (|:| -2113 (-599 (-1207 *7))))) - (-5 *1 (-747 *6 *7)) (-5 *4 (-1207 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-647 *6)) (-5 *4 (-1117)) - (-4 *6 (-13 (-29 *5) (-1143) (-898))) - (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) - (-5 *2 (-599 (-1207 *6))) (-5 *1 (-747 *5 *6)))) + (|partial| -12 (-5 *3 (-625 *7)) (-5 *5 (-1079)) + (-4 *7 (-13 (-29 *6) (-1104) (-864))) + (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) + (-5 *2 (-2 (|:| |particular| (-1168 *7)) (|:| -1998 (-578 (-1168 *7))))) + (-5 *1 (-718 *6 *7)) (-5 *4 (-1168 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-625 *6)) (-5 *4 (-1079)) + (-4 *6 (-13 (-29 *5) (-1104) (-864))) + (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) + (-5 *2 (-578 (-1168 *6))) (-5 *1 (-718 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-599 (-247 *7))) (-5 *4 (-599 (-86))) (-5 *5 (-1117)) - (-4 *7 (-13 (-29 *6) (-1143) (-898))) - (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) - (-5 *2 (-2 (|:| |particular| (-1207 *7)) (|:| -2113 (-599 (-1207 *7))))) - (-5 *1 (-747 *6 *7)))) + (|partial| -12 (-5 *3 (-578 (-245 *7))) (-5 *4 (-578 (-84))) (-5 *5 (-1079)) + (-4 *7 (-13 (-29 *6) (-1104) (-864))) + (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) + (-5 *2 (-2 (|:| |particular| (-1168 *7)) (|:| -1998 (-578 (-1168 *7))))) + (-5 *1 (-718 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-599 *7)) (-5 *4 (-599 (-86))) (-5 *5 (-1117)) - (-4 *7 (-13 (-29 *6) (-1143) (-898))) - (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) - (-5 *2 (-2 (|:| |particular| (-1207 *7)) (|:| -2113 (-599 (-1207 *7))))) - (-5 *1 (-747 *6 *7)))) + (|partial| -12 (-5 *3 (-578 *7)) (-5 *4 (-578 (-84))) (-5 *5 (-1079)) + (-4 *7 (-13 (-29 *6) (-1104) (-864))) + (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) + (-5 *2 (-2 (|:| |particular| (-1168 *7)) (|:| -1998 (-578 (-1168 *7))))) + (-5 *1 (-718 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-247 *7)) (-5 *4 (-86)) (-5 *5 (-1117)) - (-4 *7 (-13 (-29 *6) (-1143) (-898))) - (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) - (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2113 (-599 *7))) *7 #3="failed")) - (-5 *1 (-747 *6 *7)))) + (-12 (-5 *3 (-245 *7)) (-5 *4 (-84)) (-5 *5 (-1079)) + (-4 *7 (-13 (-29 *6) (-1104) (-864))) + (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) + (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1998 (-578 *7))) *7 #3="failed")) + (-5 *1 (-718 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-86)) (-5 *5 (-1117)) - (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) - (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2113 (-599 *3))) *3 #3#)) - (-5 *1 (-747 *6 *3)) (-4 *3 (-13 (-29 *6) (-1143) (-898))))) + (-12 (-5 *4 (-84)) (-5 *5 (-1079)) + (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) + (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1998 (-578 *3))) *3 #3#)) + (-5 *1 (-718 *6 *3)) (-4 *3 (-13 (-29 *6) (-1104) (-864))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-247 *2)) (-5 *4 (-86)) (-5 *5 (-599 *2)) - (-4 *2 (-13 (-29 *6) (-1143) (-898))) (-5 *1 (-747 *6 *2)) - (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))))) + (|partial| -12 (-5 *3 (-245 *2)) (-5 *4 (-84)) (-5 *5 (-578 *2)) + (-4 *2 (-13 (-29 *6) (-1104) (-864))) (-5 *1 (-718 *6 *2)) + (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-86)) (-5 *4 (-247 *2)) (-5 *5 (-599 *2)) - (-4 *2 (-13 (-29 *6) (-1143) (-898))) - (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) - (-5 *1 (-747 *6 *2)))) + (|partial| -12 (-5 *3 (-84)) (-5 *4 (-245 *2)) (-5 *5 (-578 *2)) + (-4 *2 (-13 (-29 *6) (-1104) (-864))) + (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) + (-5 *1 (-718 *6 *2)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 - (-1 (-3 (-2 (|:| |particular| *6) (|:| -2113 (-599 *6))) "failed") *7 *6)) - (-4 *6 (-318)) (-4 *7 (-616 *6)) - (-5 *2 (-2 (|:| |particular| (-1207 *6)) (|:| -2113 (-647 *6)))) - (-5 *1 (-756 *6 *7)) (-5 *3 (-647 *6)) (-5 *4 (-1207 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-884 (-361 (-499)))) (-5 *2 (-599 (-333))) (-5 *1 (-963)) - (-5 *4 (-333)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-884 (-499))) (-5 *2 (-599 (-333))) (-5 *1 (-963)) - (-5 *4 (-333)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) - (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) - (-5 *2 (-599 (-247 (-268 *4)))) (-5 *1 (-1071 *4)) (-5 *3 (-268 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) - (-5 *2 (-599 (-247 (-268 *4)))) (-5 *1 (-1071 *4)) - (-5 *3 (-247 (-268 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) - (-5 *2 (-599 (-247 (-268 *5)))) (-5 *1 (-1071 *5)) - (-5 *3 (-247 (-268 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) - (-5 *2 (-599 (-247 (-268 *5)))) (-5 *1 (-1071 *5)) (-5 *3 (-268 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-599 (-1117))) - (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) - (-5 *2 (-599 (-599 (-247 (-268 *5))))) (-5 *1 (-1071 *5)) - (-5 *3 (-599 (-247 (-268 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-361 (-884 *5)))) (-5 *4 (-599 (-1117))) (-4 *5 (-510)) - (-5 *2 (-599 (-599 (-247 (-361 (-884 *5)))))) (-5 *1 (-1126 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-599 (-1117))) (-4 *5 (-510)) - (-5 *2 (-599 (-599 (-247 (-361 (-884 *5)))))) (-5 *1 (-1126 *5)) - (-5 *3 (-599 (-247 (-361 (-884 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 (-361 (-884 *4)))) (-4 *4 (-510)) - (-5 *2 (-599 (-599 (-247 (-361 (-884 *4)))))) (-5 *1 (-1126 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *4)))))) - (-5 *1 (-1126 *4)) (-5 *3 (-599 (-247 (-361 (-884 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-510)) (-5 *2 (-599 (-247 (-361 (-884 *5))))) - (-5 *1 (-1126 *5)) (-5 *3 (-361 (-884 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-510)) (-5 *2 (-599 (-247 (-361 (-884 *5))))) - (-5 *1 (-1126 *5)) (-5 *3 (-247 (-361 (-884 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-599 (-247 (-361 (-884 *4))))) (-5 *1 (-1126 *4)) - (-5 *3 (-361 (-884 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-599 (-247 (-361 (-884 *4))))) (-5 *1 (-1126 *4)) - (-5 *3 (-247 (-361 (-884 *4))))))) -(((*1 *2 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-568 (-797))))) - ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-810)))) - ((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-810)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-499)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1099)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-460)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-543)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-432)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-110)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-129)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1107)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-581)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1036)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1031)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1013)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-910)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-976)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-266)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-629)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-127)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1093)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-478)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1219)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1006)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-471)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-639)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-67)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1056)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-106)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-555)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1218)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-634)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-477)))) - ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1122))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-1122))) (-5 *1 (-1122)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-599 (-1122))) (-5 *1 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1122))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-460)) (-5 *1 (-233)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-499) (-179) (-460) (-1099) (-1122))) (-5 *1 (-1122))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-599 (-233))) (-5 *1 (-233)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-1122))) (-5 *1 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1122))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2976)) (-5 *2 (-85)) (-5 *1 (-572)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2341)) (-5 *2 (-85)) (-5 *1 (-572)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2975)) (-5 *2 (-85)) (-5 *1 (-572)))) + (-1 (-3 (-2 (|:| |particular| *6) (|:| -1998 (-578 *6))) "failed") *7 *6)) + (-4 *6 (-308)) (-4 *7 (-595 *6)) + (-5 *2 (-2 (|:| |particular| (-1168 *6)) (|:| -1998 (-625 *6)))) + (-5 *1 (-726 *6 *7)) (-5 *3 (-625 *6)) (-5 *4 (-1168 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-850 (-343 (-478)))) (-5 *2 (-578 (-323))) (-5 *1 (-929)) + (-5 *4 (-323)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-850 (-478))) (-5 *2 (-578 (-323))) (-5 *1 (-929)) + (-5 *4 (-323)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) + (-5 *2 (-578 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1144 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) + (-5 *2 (-578 (-245 (-261 *4)))) (-5 *1 (-1034 *4)) (-5 *3 (-261 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) + (-5 *2 (-578 (-245 (-261 *4)))) (-5 *1 (-1034 *4)) + (-5 *3 (-245 (-261 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) + (-5 *2 (-578 (-245 (-261 *5)))) (-5 *1 (-1034 *5)) + (-5 *3 (-245 (-261 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) + (-5 *2 (-578 (-245 (-261 *5)))) (-5 *1 (-1034 *5)) (-5 *3 (-261 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-578 (-1079))) + (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) + (-5 *2 (-578 (-578 (-245 (-261 *5))))) (-5 *1 (-1034 *5)) + (-5 *3 (-578 (-245 (-261 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-578 (-343 (-850 *5)))) (-5 *4 (-578 (-1079))) (-4 *5 (-489)) + (-5 *2 (-578 (-578 (-245 (-343 (-850 *5)))))) (-5 *1 (-1088 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-578 (-1079))) (-4 *5 (-489)) + (-5 *2 (-578 (-578 (-245 (-343 (-850 *5)))))) (-5 *1 (-1088 *5)) + (-5 *3 (-578 (-245 (-343 (-850 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-578 (-343 (-850 *4)))) (-4 *4 (-489)) + (-5 *2 (-578 (-578 (-245 (-343 (-850 *4)))))) (-5 *1 (-1088 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *4)))))) + (-5 *1 (-1088 *4)) (-5 *3 (-578 (-245 (-343 (-850 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1079)) (-4 *5 (-489)) (-5 *2 (-578 (-245 (-343 (-850 *5))))) + (-5 *1 (-1088 *5)) (-5 *3 (-343 (-850 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1079)) (-4 *5 (-489)) (-5 *2 (-578 (-245 (-343 (-850 *5))))) + (-5 *1 (-1088 *5)) (-5 *3 (-245 (-343 (-850 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-489)) (-5 *2 (-578 (-245 (-343 (-850 *4))))) (-5 *1 (-1088 *4)) + (-5 *3 (-343 (-850 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-489)) (-5 *2 (-578 (-245 (-343 (-850 *4))))) (-5 *1 (-1088 *4)) + (-5 *3 (-245 (-343 (-850 *4))))))) +(((*1 *2 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-547 (-765))))) + ((*1 *2 *1) (-12 (-5 *2 (-1062)) (-5 *1 (-778)))) + ((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-778)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-478)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-1062)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-439)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-522)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-411)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-127)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-1070)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-560)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-1000)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-995)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-977)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-876)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-152)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-941)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-259)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-608)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-125)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-1056)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-457)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-1180)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-970)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-450)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-617)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-67)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-1019)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-104)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-534)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-109)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-1179)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-612)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-456)))) + ((*1 *2 *1) (-12 (-5 *2 (-1062)) (-5 *1 (-1084)))) + ((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-1084)))) + ((*1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-1084)))) + ((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1084))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-1084))) (-5 *1 (-1084)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-578 (-1084))) (-5 *1 (-1084))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1084))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-439)) (-5 *1 (-231)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-478) (-177) (-439) (-1062) (-1084))) (-5 *1 (-1084))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-231))) (-5 *1 (-231)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-1084))) (-5 *1 (-1084))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1084))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2839)) (-5 *2 (-83)) (-5 *1 (-551)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2226)) (-5 *2 (-83)) (-5 *1 (-551)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2838)) (-5 *2 (-83)) (-5 *1 (-551)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2471)) (-5 *2 (-85)) (-5 *1 (-649 *4)) - (-4 *4 (-568 (-797))))) + (-12 (-5 *3 (|[\|\|]| -2351)) (-5 *2 (-83)) (-5 *1 (-627 *4)) + (-4 *4 (-547 (-765))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-568 (-797))) (-5 *2 (-85)) - (-5 *1 (-649 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-85)) (-5 *1 (-810)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-460))) (-5 *2 (-85)) (-5 *1 (-810)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-499))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-460))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-543))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-432))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1107))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-581))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1036))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1031))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1013))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-910))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-976))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-266))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-629))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1093))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1219))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1006))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-471))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-639))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1056))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-555))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1218))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-634))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-477))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-85)) (-5 *1 (-1122)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-460))) (-5 *2 (-85)) (-5 *1 (-1122)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1122)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-499))) (-5 *2 (-85)) (-5 *1 (-1122))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-245))) ((*1 *1) (-5 *1 (-797))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-547 (-765))) (-5 *2 (-83)) + (-5 *1 (-627 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1062))) (-5 *2 (-83)) (-5 *1 (-778)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-439))) (-5 *2 (-83)) (-5 *1 (-778)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-1062))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-439))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-411))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-108))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-1070))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-560))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-1000))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-995))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-977))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-876))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-941))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-259))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-608))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-125))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-1056))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-457))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-970))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-450))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-1019))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-104))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-109))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-612))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-170))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1040)) (-5 *3 (|[\|\|]| (-456))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1062))) (-5 *2 (-83)) (-5 *1 (-1084)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-439))) (-5 *2 (-83)) (-5 *1 (-1084)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-177))) (-5 *2 (-83)) (-5 *1 (-1084)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-83)) (-5 *1 (-1084))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-243))) ((*1 *1) (-5 *1 (-765))) ((*1 *1) - (-12 (-4 *2 (-406)) (-4 *3 (-781)) (-4 *4 (-738)) (-5 *1 (-926 *2 *3 *4 *5)) - (-4 *5 (-888 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1025))) + (-12 (-4 *2 (-385)) (-4 *3 (-749)) (-4 *4 (-710)) (-5 *1 (-892 *2 *3 *4 *5)) + (-4 *5 (-854 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-989))) ((*1 *1) - (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) - (-4 *3 (-13 (-1041) (-34))))) - ((*1 *1) (-5 *1 (-1120))) ((*1 *1) (-5 *1 (-1121)))) -(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-390)) (-5 *3 (-1117)) (-5 *1 (-1120)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1117)) (-5 *1 (-1120)))) + (-12 (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1005) (-34))) + (-4 *3 (-13 (-1005) (-34))))) + ((*1 *1) (-5 *1 (-1082))) ((*1 *1) (-5 *1 (-1083)))) +(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-372)) (-5 *3 (-1079)) (-5 *1 (-1082)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1079)) (-5 *1 (-1082)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-390)) (-5 *3 (-599 (-1117))) (-5 *4 (-1117)) (-5 *1 (-1120)))) - ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-390)) (-5 *3 (-1117)) (-5 *1 (-1120)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-390)) (-5 *3 (-1117)) (-5 *1 (-1121)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-390)) (-5 *3 (-599 (-1117))) (-5 *1 (-1121))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-390)) (-5 *1 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-1121))))) + (-12 (-5 *2 (-372)) (-5 *3 (-578 (-1079))) (-5 *4 (-1079)) (-5 *1 (-1082)))) + ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-372)) (-5 *3 (-1079)) (-5 *1 (-1082)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-372)) (-5 *3 (-1079)) (-5 *1 (-1083)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-372)) (-5 *3 (-578 (-1079))) (-5 *1 (-1083))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1079)) (-5 *2 (-372)) (-5 *1 (-1083))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-1079))) (-5 *1 (-1083))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-388)) + (-12 (-5 *3 (-370)) (-5 *2 - (-599 - (-3 (|:| -3690 (-1117)) - (|:| -3363 (-599 (-3 (|:| S (-1117)) (|:| P (-884 (-499))))))))) - (-5 *1 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-1121))))) + (-578 + (-3 (|:| -3526 (-1079)) + (|:| -3208 (-578 (-3 (|:| S (-1079)) (|:| P (-850 (-478))))))))) + (-5 *1 (-1083))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-1079))) (-5 *1 (-1083))))) (((*1 *2 *1) (-12 (-5 *2 - (-599 - (-599 - (-3 (|:| -3690 (-1117)) - (|:| -3363 (-599 (-3 (|:| S (-1117)) (|:| P (-884 (-499)))))))))) - (-5 *1 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-1121))))) -(((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1121))))) + (-578 + (-578 + (-3 (|:| -3526 (-1079)) + (|:| -3208 (-578 (-3 (|:| S (-1079)) (|:| P (-850 (-478)))))))))) + (-5 *1 (-1083))))) +(((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1083))))) +(((*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-1174)) (-5 *1 (-1082)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1083))))) (((*1 *1 *2) - (-12 (-5 *2 (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-390))))) - (-5 *1 (-1121))))) -(((*1 *1) (-5 *1 (-1120)))) -(((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) - ((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1120))))) -(((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120))))) -(((*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1120))))) -(((*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1120))))) -(((*1 *2 *3) (-12 (-5 *3 (-599 (-1117))) (-5 *2 (-1213)) (-5 *1 (-1120)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-599 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) + (-12 (-5 *2 (-578 (-2 (|:| -3844 (-1079)) (|:| |entry| (-372))))) + (-5 *1 (-1083))))) +(((*1 *1) (-5 *1 (-1082)))) +(((*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-1174)) (-5 *1 (-1082)))) + ((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1082))))) +(((*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-1174)) (-5 *1 (-1082))))) +(((*1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-1082))))) +(((*1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-1082))))) +(((*1 *2 *3) (-12 (-5 *3 (-578 (-1079))) (-5 *2 (-1174)) (-5 *1 (-1082)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-578 (-1079))) (-5 *3 (-1079)) (-5 *2 (-1174)) (-5 *1 (-1082)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-599 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120))))) + (-12 (-5 *4 (-578 (-1079))) (-5 *3 (-1079)) (-5 *2 (-1174)) (-5 *1 (-1082))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-388)) (|:| -4060 #1="void"))) (-5 *2 (-1213)) - (-5 *1 (-1120)))) + (-12 (-5 *3 (-3 (|:| |fst| (-370)) (|:| -3894 #1="void"))) (-5 *2 (-1174)) + (-5 *1 (-1082)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) - (-5 *2 (-1213)) (-5 *1 (-1120)))) + (-12 (-5 *3 (-1079)) (-5 *4 (-3 (|:| |fst| (-370)) (|:| -3894 #1#))) + (-5 *2 (-1174)) (-5 *1 (-1082)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1117)) (-5 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) - (-5 *2 (-1213)) (-5 *1 (-1120))))) -(((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1120)))) - ((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120))))) + (-12 (-5 *3 (-1079)) (-5 *4 (-3 (|:| |fst| (-370)) (|:| -3894 #1#))) + (-5 *2 (-1174)) (-5 *1 (-1082))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1082)))) + ((*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-1174)) (-5 *1 (-1082)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1079)) (-5 *2 (-1174)) (-5 *1 (-1082))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1117)) (-5 *2 (-3 (|:| |fst| (-388)) (|:| -4060 "void"))) - (-5 *1 (-1120))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-1120)) (-5 *3 (-1117))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-1121)) (-5 *1 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-599 *4)) (-4 *4 (-989)) (-5 *2 (-1207 *4)) (-5 *1 (-1118 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-857)) (-5 *2 (-1207 *3)) (-5 *1 (-1118 *3)) (-4 *3 (-989))))) -(((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1117))))) -(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-67)))) - ((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-80)))) - ((*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-1041)) (-4 *2 (-1041)))) - ((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-1099)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-392 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-437)))) - ((*1 *2 *1) (-12 (-4 *1 (-770 *2)) (-4 *2 (-1041)))) - ((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-799)))) - ((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-903)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1016 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-1056)))) ((*1 *1 *1) (-5 *1 (-1117)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) + (-12 (-5 *3 (-1079)) (-5 *2 (-3 (|:| |fst| (-370)) (|:| -3894 "void"))) + (-5 *1 (-1082))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-578 (-1079))) (-5 *1 (-1082)) (-5 *3 (-1079))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1079)) (-5 *2 (-1083)) (-5 *1 (-1082))))) +(((*1 *2 *3) + (-12 (-5 *3 (-578 *4)) (-4 *4 (-954)) (-5 *2 (-1168 *4)) (-5 *1 (-1080 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-823)) (-5 *2 (-1168 *3)) (-5 *1 (-1080 *3)) (-4 *3 (-954))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1079))))) +(((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-67)))) + ((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-78)))) + ((*1 *2 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *3 (-1005)) (-4 *2 (-1005)))) + ((*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-1062)))) + ((*1 *2 *1) (-12 (-5 *2 (-1079)) (-5 *1 (-373 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-416)))) + ((*1 *2 *1) (-12 (-4 *1 (-740 *2)) (-4 *2 (-1005)))) + ((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-767)))) + ((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-869)))) + ((*1 *2 *1) (-12 (-5 *2 (-1079)) (-5 *1 (-980 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-1019)))) ((*1 *1 *1) (-5 *1 (-1079)))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1079))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -2703 (-599 (-797))) (|:| -2600 (-599 (-797))) - (|:| |presup| (-599 (-797))) (|:| -2701 (-599 (-797))) - (|:| |args| (-599 (-797))))) - (-5 *1 (-1117))))) + (-2 (|:| -2568 (-578 (-765))) (|:| -2467 (-578 (-765))) + (|:| |presup| (-578 (-765))) (|:| -2566 (-578 (-765))) + (|:| |args| (-578 (-765))))) + (-5 *1 (-1079))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -2703 (-599 (-797))) (|:| -2600 (-599 (-797))) - (|:| |presup| (-599 (-797))) (|:| -2701 (-599 (-797))) - (|:| |args| (-599 (-797))))) - (-5 *1 (-1117)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-599 (-797)))) (-5 *1 (-1117))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-1117))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-1117))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-1117))))) -(((*1 *1 *1) (-5 *1 (-797))) - ((*1 *2 *1) - (-12 (-4 *1 (-1044 *2 *3 *4 *5 *6)) (-4 *3 (-1041)) (-4 *4 (-1041)) - (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041)))) - ((*1 *1 *2) (-12 (-5 *2 (-460)) (-5 *1 (-1099)))) - ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1099)))) - ((*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-1099)))) - ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1117))))) -(((*1 *1 *2) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1157)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-1117))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) - (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) - (-5 *1 (-1116))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) - (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) - (-5 *1 (-1116))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) - (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) - (-5 *1 (-1116))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) - (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) - (-5 *1 (-1116))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) - (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) - (-5 *1 (-1116))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) - (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) - (-5 *1 (-1116))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) - (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) - (-5 *1 (-1116))))) -(((*1 *1 *1) (-5 *1 (-1116))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) - (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) - (-5 *1 (-1116))))) + (-2 (|:| -2568 (-578 (-765))) (|:| -2467 (-578 (-765))) + (|:| |presup| (-578 (-765))) (|:| -2566 (-578 (-765))) + (|:| |args| (-578 (-765))))) + (-5 *1 (-1079)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 (-765)))) (-5 *1 (-1079))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-1079))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-1079))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-1079))))) +(((*1 *1 *1) (-5 *1 (-765))) + ((*1 *2 *1) + (-12 (-4 *1 (-1008 *2 *3 *4 *5 *6)) (-4 *3 (-1005)) (-4 *4 (-1005)) + (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005)))) + ((*1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-1062)))) + ((*1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-1062)))) + ((*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-1062)))) + ((*1 *2 *1) (-12 (-5 *2 (-1062)) (-5 *1 (-1079))))) +(((*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1118)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-1079))) (-5 *1 (-1079))))) (((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-797) (-797) (-797))) (-5 *4 (-499)) (-5 *2 (-797)) - (-5 *1 (-607 *5 *6 *7)) (-4 *5 (-1041)) (-4 *6 (-23)) (-14 *7 *6))) + (-12 (-5 *3 (-1 (-765) (-765) (-765))) (-5 *4 (-478)) (-5 *2 (-765)) + (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1005)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-797)) (-5 *1 (-788 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-70 *3)) + (-12 (-5 *2 (-765)) (-5 *1 (-756 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-797)))) - ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-797)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-797)))) - ((*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1111 *3)) (-4 *3 (-989))))) + ((*1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-765)))) + ((*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-765)))) + ((*1 *1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-765)))) + ((*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1074 *3)) (-4 *3 (-954))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1029 *3)) (-4 *3 (-888 *7 *6 *4)) (-4 *6 (-738)) (-4 *4 (-781)) - (-4 *7 (-510)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-499)))) - (-5 *1 (-544 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-510)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-499)))) (-5 *1 (-544 *5 *4 *6 *3)) - (-4 *3 (-888 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797))) - ((*1 *1 *1) (-5 *1 (-797))) + (-12 (-5 *5 (-993 *3)) (-4 *3 (-854 *7 *6 *4)) (-4 *6 (-710)) (-4 *4 (-749)) + (-4 *7 (-489)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-478)))) + (-5 *1 (-523 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-489)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-478)))) (-5 *1 (-523 *5 *4 *6 *3)) + (-4 *3 (-854 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-765))) ((*1 *1 *1 *1) (-5 *1 (-765))) + ((*1 *1 *1) (-5 *1 (-765))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) - (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-375 *4) (-133) (-27) (-1143))))) + (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) + (-5 *1 (-1072 *4 *2)) (-4 *2 (-13 (-357 *4) (-131) (-27) (-1104))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1032 *2)) (-4 *2 (-13 (-375 *4) (-133) (-27) (-1143))) - (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1109 *4 *2)))) + (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-357 *4) (-131) (-27) (-1104))) + (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1072 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)))) - (-5 *2 (-361 (-884 *5))) (-5 *1 (-1110 *5)) (-5 *3 (-884 *5)))) + (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-489) (-943 (-478)))) + (-5 *2 (-343 (-850 *5))) (-5 *1 (-1073 *5)) (-5 *3 (-850 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)))) - (-5 *2 (-3 (-361 (-884 *5)) (-268 *5))) (-5 *1 (-1110 *5)) - (-5 *3 (-361 (-884 *5))))) + (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-489) (-943 (-478)))) + (-5 *2 (-3 (-343 (-850 *5)) (-261 *5))) (-5 *1 (-1073 *5)) + (-5 *3 (-343 (-850 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1032 (-884 *5))) (-5 *3 (-884 *5)) - (-4 *5 (-13 (-510) (-978 (-499)))) (-5 *2 (-361 *3)) (-5 *1 (-1110 *5)))) + (-12 (-5 *4 (-996 (-850 *5))) (-5 *3 (-850 *5)) + (-4 *5 (-13 (-489) (-943 (-478)))) (-5 *2 (-343 *3)) (-5 *1 (-1073 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1032 (-361 (-884 *5)))) (-5 *3 (-361 (-884 *5))) - (-4 *5 (-13 (-510) (-978 (-499)))) (-5 *2 (-3 *3 (-268 *5))) - (-5 *1 (-1110 *5))))) + (-12 (-5 *4 (-996 (-343 (-850 *5)))) (-5 *3 (-343 (-850 *5))) + (-4 *5 (-13 (-489) (-943 (-478)))) (-5 *2 (-3 *3 (-261 *5))) + (-5 *1 (-1073 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-825 *4)) (-4 *4 (-1041)) (-5 *2 (-1 (-85) *5)) - (-5 *1 (-826 *4 *5)) (-4 *5 (-1157)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1107))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-4 *1 (-124 *3)))) + (-12 (-5 *3 (-793 *4)) (-4 *4 (-1005)) (-5 *2 (-1 (-83) *5)) + (-5 *1 (-794 *4 *5)) (-4 *5 (-1118)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-1070))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1118)) (-4 *1 (-122 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-599 (-2 (|:| -2519 (-714)) (|:| -3923 *4) (|:| |num| *4)))) - (-4 *4 (-1183 *3)) (-4 *3 (-13 (-318) (-120))) (-5 *1 (-353 *3 *4)))) + (-12 (-5 *2 (-578 (-2 (|:| -2387 (-687)) (|:| -3757 *4) (|:| |num| *4)))) + (-4 *4 (-1144 *3)) (-4 *3 (-13 (-308) (-118))) (-5 *1 (-335 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-388)) (|:| -4060 #1="void"))) - (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-85)) (-5 *1 (-390)))) + (-12 (-5 *2 (-3 (|:| |fst| (-370)) (|:| -3894 #1="void"))) + (-5 *3 (-578 (-850 (-478)))) (-5 *4 (-83)) (-5 *1 (-372)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-5 *3 (-599 (-1117))) - (-5 *4 (-85)) (-5 *1 (-390)))) - ((*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1157)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-146)))) + (-12 (-5 *2 (-3 (|:| |fst| (-370)) (|:| -3894 #1#))) (-5 *3 (-578 (-1079))) + (-5 *4 (-83)) (-5 *1 (-372)))) + ((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-530 *3)) (-4 *3 (-1118)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-144)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-781)) (-5 *1 (-622 *3 *4)) (-4 *4 (-146)))) + (-12 (-5 *2 (-609 *3)) (-4 *3 (-749)) (-5 *1 (-601 *3 *4)) (-4 *4 (-144)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-781)) (-5 *1 (-622 *3 *4)) (-4 *4 (-146)))) + (-12 (-5 *2 (-609 *3)) (-4 *3 (-749)) (-5 *1 (-601 *3 *4)) (-4 *4 (-144)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-781)) (-5 *1 (-622 *3 *4)) (-4 *4 (-146)))) - ((*1 *1 *2) - (-12 (-5 *2 (-599 (-599 (-599 *3)))) (-4 *3 (-1041)) (-5 *1 (-633 *3)))) + (-12 (-5 *2 (-609 *3)) (-4 *3 (-749)) (-5 *1 (-601 *3 *4)) (-4 *4 (-144)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-781)) (-4 *3 (-1041)) + (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-749)) (-4 *3 (-1005)) (-14 *4 - (-1 (-85) (-2 (|:| -2518 *2) (|:| -2519 *3)) - (-2 (|:| -2518 *2) (|:| -2519 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-1055)) (-5 *1 (-772)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-807 *2 *3)) (-4 *2 (-1157)) (-4 *3 (-1157)))) + (-1 (-83) (-2 (|:| -2386 *2) (|:| -2387 *3)) + (-2 (|:| -2386 *2) (|:| -2387 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1018)) (-5 *1 (-742)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-775 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) ((*1 *1 *2) - (-12 (-5 *2 (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| *4)))) (-4 *4 (-1041)) - (-5 *1 (-823 *3 *4)) (-4 *3 (-1041)))) + (-12 (-5 *2 (-578 (-2 (|:| -3844 (-1079)) (|:| |entry| *4)))) (-4 *4 (-1005)) + (-5 *1 (-791 *3 *4)) (-4 *3 (-1005)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-599 *5)) (-4 *5 (-13 (-1041) (-34))) - (-5 *2 (-599 (-1080 *3 *5))) (-5 *1 (-1080 *3 *5)) - (-4 *3 (-13 (-1041) (-34))))) + (-12 (-5 *4 (-578 *5)) (-4 *5 (-13 (-1005) (-34))) + (-5 *2 (-578 (-1043 *3 *5))) (-5 *1 (-1043 *3 *5)) + (-4 *3 (-13 (-1005) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-599 (-2 (|:| |val| *4) (|:| -1633 *5)))) - (-4 *4 (-13 (-1041) (-34))) (-4 *5 (-13 (-1041) (-34))) - (-5 *2 (-599 (-1080 *4 *5))) (-5 *1 (-1080 *4 *5)))) + (-12 (-5 *3 (-578 (-2 (|:| |val| *4) (|:| -1587 *5)))) + (-4 *4 (-13 (-1005) (-34))) (-4 *5 (-13 (-1005) (-34))) + (-5 *2 (-578 (-1043 *4 *5))) (-5 *1 (-1043 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1633 *4))) (-4 *3 (-13 (-1041) (-34))) - (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1080 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1587 *4))) (-4 *3 (-13 (-1005) (-34))) + (-4 *4 (-13 (-1005) (-34))) (-5 *1 (-1043 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) - (-4 *3 (-13 (-1041) (-34))))) + (-12 (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1005) (-34))) + (-4 *3 (-13 (-1005) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) - (-4 *3 (-13 (-1041) (-34))))) + (-12 (-5 *4 (-83)) (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1005) (-34))) + (-4 *3 (-13 (-1005) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-599 *3)) (-4 *3 (-13 (-1041) (-34))) (-5 *1 (-1081 *2 *3)) - (-4 *2 (-13 (-1041) (-34))))) + (-12 (-5 *4 (-578 *3)) (-4 *3 (-13 (-1005) (-34))) (-5 *1 (-1044 *2 *3)) + (-4 *2 (-13 (-1005) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-599 (-1080 *2 *3))) (-4 *2 (-13 (-1041) (-34))) - (-4 *3 (-13 (-1041) (-34))) (-5 *1 (-1081 *2 *3)))) + (-12 (-5 *4 (-578 (-1043 *2 *3))) (-4 *2 (-13 (-1005) (-34))) + (-4 *3 (-13 (-1005) (-34))) (-5 *1 (-1044 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-599 (-1081 *2 *3))) (-5 *1 (-1081 *2 *3)) - (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) + (-12 (-5 *4 (-578 (-1044 *2 *3))) (-5 *1 (-1044 *2 *3)) + (-4 *2 (-13 (-1005) (-34))) (-4 *3 (-13 (-1005) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) - (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1081 *3 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-129)))) - ((*1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-432)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-543)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-581)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1041)) (-4 *2 (-13 (-375 *4) (-821 *3) (-569 (-825 *3)))) - (-5 *1 (-1015 *3 *4 *2)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1041)) (-5 *1 (-1106 *2 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-129)))) - ((*1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-432)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-543)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-581)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1041)) (-4 *2 (-13 (-375 *4) (-821 *3) (-569 (-825 *3)))) - (-5 *1 (-1015 *3 *4 *2)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1041)) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-5 *2 (-85)))) - ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) -(((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) -(((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) -(((*1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989))))) + (-12 (-5 *2 (-1043 *3 *4)) (-4 *3 (-13 (-1005) (-34))) + (-4 *4 (-13 (-1005) (-34))) (-5 *1 (-1044 *3 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-1069 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-127)))) + ((*1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1118)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-411)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-522)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-560)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1005)) (-4 *2 (-13 (-357 *4) (-789 *3) (-548 (-793 *3)))) + (-5 *1 (-979 *3 *4 *2)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1005)) (-5 *1 (-1069 *2 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-127)))) + ((*1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1118)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-411)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-522)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-560)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1005)) (-4 *2 (-13 (-357 *4) (-789 *3) (-548 (-793 *3)))) + (-5 *1 (-979 *3 *4 *2)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1005)) (-5 *1 (-1069 *3 *2)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1118)) (-5 *2 (-83)))) + ((*1 *2 *1) + (-12 (-5 *2 (-83)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) +(((*1 *2 *1) + (-12 (-5 *2 (-83)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) +(((*1 *2 *1) + (-12 (-5 *2 (-83)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) +(((*1 *1 *1) (-12 (-5 *1 (-1068 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-714)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) -(((*1 *2 *1) (-12 (-4 *3 (-1157)) (-5 *2 (-599 *1)) (-4 *1 (-950 *3)))) + (-12 (-5 *2 (-687)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) +(((*1 *2 *1) (-12 (-4 *3 (-1118)) (-5 *2 (-578 *1)) (-4 *1 (-916 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-599 (-1105 *3 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) - (-4 *4 (-989))))) + (-12 (-5 *2 (-578 (-1068 *3 *4))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) + (-4 *4 (-954))))) (((*1 *2 *1) - (-12 (-5 *2 (-714)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) -(((*1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989))))) -(((*1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-1157)) (-4 *2 (-781)))) + (-12 (-5 *2 (-687)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) +(((*1 *1 *1) (-12 (-5 *1 (-1068 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954))))) +(((*1 *1 *1) (-12 (-5 *1 (-1068 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-317 *2)) (-4 *2 (-1118)) (-4 *2 (-749)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-327 *3)) (-4 *3 (-1157)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-781)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-989)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) + (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1118)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-874 *2)) (-4 *2 (-749)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-954)))) + ((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) ((*1 *1 *2) - (-12 (-5 *2 (-599 (-1105 *3 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) - (-4 *4 (-989)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989))))) + (-12 (-5 *2 (-578 (-1068 *3 *4))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) + (-4 *4 (-954)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1068 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-881 *5)) (-4 *5 (-989)) (-5 *2 (-714)) (-5 *1 (-1105 *4 *5)) - (-14 *4 (-857)))) + (-12 (-5 *3 (-847 *5)) (-4 *5 (-954)) (-5 *2 (-687)) (-5 *1 (-1068 *4 *5)) + (-14 *4 (-823)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 (-714))) (-5 *3 (-714)) (-5 *1 (-1105 *4 *5)) - (-14 *4 (-857)) (-4 *5 (-989)))) + (-12 (-5 *2 (-578 (-687))) (-5 *3 (-687)) (-5 *1 (-1068 *4 *5)) + (-14 *4 (-823)) (-4 *5 (-954)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 (-714))) (-5 *3 (-881 *5)) (-4 *5 (-989)) - (-5 *1 (-1105 *4 *5)) (-14 *4 (-857))))) + (-12 (-5 *2 (-578 (-687))) (-5 *3 (-847 *5)) (-4 *5 (-954)) + (-5 *1 (-1068 *4 *5)) (-14 *4 (-823))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-881 *4)) (-4 *4 (-989)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857))))) + (-12 (-5 *2 (-847 *4)) (-4 *4 (-954)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-881 *5)) (-5 *3 (-714)) (-4 *5 (-989)) (-5 *1 (-1105 *4 *5)) - (-14 *4 (-857))))) + (-12 (-5 *2 (-847 *5)) (-5 *3 (-687)) (-4 *5 (-954)) (-5 *1 (-1068 *4 *5)) + (-14 *4 (-823))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-714)) (-5 *3 (-881 *5)) (-4 *5 (-989)) (-5 *1 (-1105 *4 *5)) - (-14 *4 (-857)))) + (-12 (-5 *2 (-687)) (-5 *3 (-847 *5)) (-4 *5 (-954)) (-5 *1 (-1068 *4 *5)) + (-14 *4 (-823)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 (-714))) (-5 *3 (-714)) (-5 *1 (-1105 *4 *5)) - (-14 *4 (-857)) (-4 *5 (-989)))) + (-12 (-5 *2 (-578 (-687))) (-5 *3 (-687)) (-5 *1 (-1068 *4 *5)) + (-14 *4 (-823)) (-4 *5 (-954)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 (-714))) (-5 *3 (-881 *5)) (-4 *5 (-989)) - (-5 *1 (-1105 *4 *5)) (-14 *4 (-857))))) + (-12 (-5 *2 (-578 (-687))) (-5 *3 (-847 *5)) (-4 *5 (-954)) + (-5 *1 (-1068 *4 *5)) (-14 *4 (-823))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 (-714))) (-5 *3 (-85)) (-5 *1 (-1105 *4 *5)) - (-14 *4 (-857)) (-4 *5 (-989))))) + (-12 (-5 *2 (-578 (-687))) (-5 *3 (-83)) (-5 *1 (-1068 *4 *5)) + (-14 *4 (-823)) (-4 *5 (-954))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 (-714))) (-5 *3 (-145)) (-5 *1 (-1105 *4 *5)) - (-14 *4 (-857)) (-4 *5 (-989))))) + (-12 (-5 *2 (-578 (-687))) (-5 *3 (-143)) (-5 *1 (-1068 *4 *5)) + (-14 *4 (-823)) (-4 *5 (-954))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-599 (-714))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) - (-4 *4 (-989))))) + (-12 (-5 *2 (-578 (-687))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) + (-4 *4 (-954))))) (((*1 *2 *1) - (-12 (-5 *2 (-881 *4)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) + (-12 (-5 *2 (-847 *4)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) (((*1 *2 *1) - (-12 (-5 *2 (-714)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) + (-12 (-5 *2 (-687)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) (((*1 *2 *1) - (-12 (-5 *2 (-145)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) -(((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-266)))) + (-12 (-5 *2 (-143)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) +(((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-259)))) ((*1 *2 *1) - (-12 (-5 *2 (-714)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) -(((*1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989))))) + (-12 (-5 *2 (-687)) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) +(((*1 *1 *1) (-12 (-5 *1 (-1068 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954))))) (((*1 *2 *1) - (-12 (-5 *2 (-599 (-881 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) - (-4 *4 (-989))))) + (-12 (-5 *2 (-578 (-847 *4))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-823)) + (-4 *4 (-954))))) (((*1 *1 *1) - (-12 (-4 *1 (-280 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)) (-4 *2 (-406)))) + (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)) (-4 *2 (-385)))) ((*1 *1 *1) - (-12 (-4 *1 (-297 *2 *3 *4)) (-4 *2 (-1162)) (-4 *3 (-1183 *2)) - (-4 *4 (-1183 (-361 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-406)))) + (-12 (-4 *1 (-287 *2 *3 *4)) (-4 *2 (-1123)) (-4 *3 (-1144 *2)) + (-4 *4 (-1144 (-343 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-385)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) - (-4 *3 (-406)))) + (-12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) + (-4 *3 (-385)))) ((*1 *1 *1) - (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *2 (-406)))) + (-12 (-4 *1 (-854 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *2 (-385)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-261)) (-4 *3 (-510)) (-5 *1 (-1104 *3 *2)) (-4 *2 (-1183 *3))))) + (-12 (-4 *3 (-254)) (-4 *3 (-489)) (-5 *1 (-1067 *3 *2)) (-4 *2 (-1144 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-896 *3)) (-5 *1 (-1104 *4 *3)) - (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-489)) (-5 *2 (-862 *3)) (-5 *1 (-1067 *4 *3)) + (-4 *3 (-1144 *4))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) - ((*1 *1 *1) (-4 *1 (-447))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) + ((*1 *1 *1) (-4 *1 (-426))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) - ((*1 *1 *1) (-4 *1 (-447))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) + ((*1 *1 *1) (-4 *1 (-426))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) - ((*1 *1 *1) (-4 *1 (-447))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) + ((*1 *1 *1) (-4 *1 (-426))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) - (-4 *4 (-343)))) - ((*1 *1 *1) (-4 *1 (-447))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) + ((*1 *1 *1) (-4 *1 (-426))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) - (-4 *4 (-343)))) - ((*1 *1 *1) (-4 *1 (-447))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) + ((*1 *1 *1) (-4 *1 (-426))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) - (-4 *4 (-343)))) - ((*1 *1 *1) (-4 *1 (-447))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) + ((*1 *1 *1) (-4 *1 (-426))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) -(((*1 *1 *1) (-4 *1 (-66))) ((*1 *1 *1 *1) (-5 *1 (-179))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) +(((*1 *1 *1) (-4 *1 (-66))) ((*1 *1 *1 *1) (-5 *1 (-177))) ((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) - (-4 *4 (-343)))) - ((*1 *1 *1 *1) (-5 *1 (-333))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-323))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) - (-4 *4 (-343)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) - (-4 *2 (-1171 *3 *4)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1161 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1132 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) - (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) - (-4 *4 (-343)))) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1130 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1153 *3 *4)) (-4 *5 (-889 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1065 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1066 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-361 (-499)))) - (-5 *2 (-2 (|:| -3630 (-1095 *4)) (|:| -3631 (-1095 *4)))) - (-5 *1 (-1102 *4)) (-5 *3 (-1095 *4))))) + (-12 (-4 *4 (-38 (-343 (-478)))) + (-5 *2 (-2 (|:| -3474 (-1058 *4)) (|:| -3475 (-1058 *4)))) + (-5 *1 (-1065 *4)) (-5 *3 (-1058 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-361 (-499)))) - (-5 *2 (-2 (|:| -3788 (-1095 *4)) (|:| -3784 (-1095 *4)))) - (-5 *1 (-1102 *4)) (-5 *3 (-1095 *4))))) + (-12 (-4 *4 (-38 (-343 (-478)))) + (-5 *2 (-2 (|:| -3622 (-1058 *4)) (|:| -3618 (-1058 *4)))) + (-5 *1 (-1065 *4)) (-5 *3 (-1058 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-318)) (-4 *3 (-989)) (-5 *1 (-1101 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-308)) (-4 *3 (-954)) (-5 *1 (-1064 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-499))) (-5 *5 (-1 (-1095 *4))) (-4 *4 (-318)) - (-4 *4 (-989)) (-5 *2 (-1095 *4)) (-5 *1 (-1101 *4))))) + (-12 (-5 *3 (-1 *4 (-478))) (-5 *5 (-1 (-1058 *4))) (-4 *4 (-308)) + (-4 *4 (-954)) (-5 *2 (-1058 *4)) (-5 *1 (-1064 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-318)) (-4 *3 (-989)) (-5 *1 (-1101 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-308)) (-4 *3 (-954)) (-5 *1 (-1064 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1095 *4)) (-4 *4 (-38 *3)) (-4 *4 (-989)) (-5 *3 (-361 (-499))) - (-5 *1 (-1101 *4))))) + (-12 (-5 *2 (-1058 *4)) (-4 *4 (-38 *3)) (-4 *4 (-954)) (-5 *3 (-343 (-478))) + (-5 *1 (-1064 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1095 (-1095 *4))) (-5 *2 (-1095 *4)) (-5 *1 (-1101 *4)) - (-4 *4 (-38 (-361 (-499)))) (-4 *4 (-989))))) + (-12 (-5 *3 (-1058 (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1064 *4)) + (-4 *4 (-38 (-343 (-478)))) (-4 *4 (-954))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1095 *3))) (-5 *2 (-1095 *3)) (-5 *1 (-1101 *3)) - (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989))))) + (-12 (-5 *4 (-1 (-1058 *3))) (-5 *2 (-1058 *3)) (-5 *1 (-1064 *3)) + (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954))))) (((*1 *2 *3) - (-12 (-5 *3 (-1095 (-1095 *4))) (-5 *2 (-1095 *4)) (-5 *1 (-1101 *4)) - (-4 *4 (-989))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-829 *2 *3)) (-4 *2 (-1183 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3))))) + (-12 (-5 *3 (-1058 (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1064 *4)) + (-4 *4 (-954))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-797 *2 *3)) (-4 *2 (-1144 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1095 *4)) (-5 *3 (-1 *4 (-499))) (-4 *4 (-989)) - (-5 *1 (-1101 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3))))) + (-12 (-5 *2 (-1058 *4)) (-5 *3 (-1 *4 (-478))) (-4 *4 (-954)) + (-5 *1 (-1064 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) - (-5 *1 (-748 *4 *2)) (-4 *2 (-13 (-29 *4) (-1143) (-898))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797))) - ((*1 *1 *1) (-5 *1 (-797))) - ((*1 *2 *3) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-989))))) + (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) + (-5 *1 (-719 *4 *2)) (-4 *2 (-13 (-29 *4) (-1104) (-864))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-765))) ((*1 *1 *1 *1) (-5 *1 (-765))) + ((*1 *1 *1) (-5 *1 (-765))) + ((*1 *2 *3) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1064 *3)) (-4 *3 (-954))))) (((*1 *2 *3) - (-12 (-5 *2 (-1095 (-499))) (-5 *1 (-1101 *4)) (-4 *4 (-989)) - (-5 *3 (-499))))) + (-12 (-5 *2 (-1058 (-478))) (-5 *1 (-1064 *4)) (-4 *4 (-954)) + (-5 *3 (-478))))) (((*1 *2 *3) - (-12 (-5 *2 (-1095 (-499))) (-5 *1 (-1101 *4)) (-4 *4 (-989)) - (-5 *3 (-499))))) + (-12 (-5 *2 (-1058 (-478))) (-5 *1 (-1064 *4)) (-4 *4 (-954)) + (-5 *3 (-478))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-857)) (-4 *3 (-318)) - (-14 *4 (-933 *2 *3)))) + (|partial| -12 (-5 *1 (-123 *2 *3 *4)) (-14 *2 (-823)) (-4 *3 (-308)) + (-14 *4 (-899 *2 *3)))) ((*1 *1 *1) - (|partial| -12 (-4 *2 (-146)) (-5 *1 (-243 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1183 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (|partial| -12 (-4 *2 (-144)) (-5 *1 (-241 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1144 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-146)) (-4 *2 (-510)))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-144)) (-4 *2 (-489)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) - ((*1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) - ((*1 *1 *1) (|partial| -4 *1 (-680))) ((*1 *1 *1) (|partial| -4 *1 (-684))) + ((*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) + ((*1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) + ((*1 *1 *1) (|partial| -4 *1 (-654))) ((*1 *1 *1) (|partial| -4 *1 (-658))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-719 *5 *6 *7 *3 *4)) - (-4 *4 (-1011 *5 *6 *7 *3)))) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-692 *5 *6 *7 *3 *4)) + (-4 *4 (-975 *5 *6 *7 *3)))) ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1008 *3 *2)) (-4 *3 (-13 (-780) (-318))) - (-4 *2 (-1183 *3)))) + (|partial| -12 (-4 *1 (-972 *3 *2)) (-4 *3 (-13 (-748) (-308))) + (-4 *2 (-1144 *3)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3))))) + (|partial| -12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-510)))) + (|partial| -12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-489)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-280 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)) - (-4 *2 (-510)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-510))) + (|partial| -12 (-4 *1 (-273 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)) + (-4 *2 (-489)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-489))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) - (-4 *4 (-327 *2)) (-4 *2 (-510)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-714))) + (|partial| -12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) + (-4 *4 (-317 *2)) (-4 *2 (-489)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-687))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-510)))) - ((*1 *1 *1 *1) (-5 *1 (-797))) + (|partial| -12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-489)))) + ((*1 *1 *1 *1) (-5 *1 (-765))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1207 *4)) (-4 *4 (-1183 *3)) (-4 *3 (-510)) - (-5 *1 (-909 *3 *4)))) + (-12 (-5 *2 (-1168 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-489)) + (-5 *1 (-875 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-993 *3 *4 *2 *5 *6)) (-4 *2 (-989)) - (-4 *5 (-195 *4 *2)) (-4 *6 (-195 *3 *2)) (-4 *2 (-510)))) + (|partial| -12 (-4 *1 (-958 *3 *4 *2 *5 *6)) (-4 *2 (-954)) + (-4 *5 (-193 *4 *2)) (-4 *6 (-193 *3 *2)) (-4 *2 (-489)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3))))) + (|partial| -12 (-5 *2 (-1058 *3)) (-4 *3 (-954)) (-5 *1 (-1064 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1118)) (-5 *1 (-1058 *3))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-599 *4)) (-4 *4 (-1041)) (-4 *4 (-1157)) (-5 *2 (-85)) - (-5 *1 (-1095 *4))))) + (-12 (-5 *3 (-578 *4)) (-4 *4 (-1005)) (-4 *4 (-1118)) (-5 *2 (-83)) + (-5 *1 (-1058 *4))))) (((*1 *2 *3 *1) (-12 - (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2714 (-714)) (|:| |period| (-714)))) - (-5 *1 (-1095 *4)) (-4 *4 (-1157)) (-5 *3 (-714))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-1095 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1157))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1157)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1095 *2)) (-4 *2 (-1157))))) -(((*1 *1) (-5 *1 (-529))) - ((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-793)))) - ((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-793)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1099)) (-5 *4 (-797)) (-5 *2 (-1213)) (-5 *1 (-793)))) + (-5 *2 (-2 (|:| |cycle?| (-83)) (|:| -2579 (-687)) (|:| |period| (-687)))) + (-5 *1 (-1058 *4)) (-4 *4 (-1118)) (-5 *3 (-687))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-1058 *3))) (-5 *1 (-1058 *3)) (-4 *3 (-1118))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1118)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1058 *2)) (-4 *2 (-1118))))) +(((*1 *1) (-5 *1 (-508))) + ((*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-761)))) + ((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1174)) (-5 *1 (-761)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1062)) (-5 *4 (-765)) (-5 *2 (-1174)) (-5 *1 (-761)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-1095 *4)) (-4 *4 (-1041)) - (-4 *4 (-1157))))) + (-12 (-5 *3 (-478)) (-5 *2 (-1174)) (-5 *1 (-1058 *4)) (-4 *4 (-1005)) + (-4 *4 (-1118))))) (((*1 *2 *1) - (-12 (-5 *2 (-797)) (-5 *1 (-1095 *3)) (-4 *3 (-1041)) (-4 *3 (-1157))))) + (-12 (-5 *2 (-765)) (-5 *1 (-1058 *3)) (-4 *3 (-1005)) (-4 *3 (-1118))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1095 *3)) (-4 *3 (-1041)) (-4 *3 (-1157))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1058 *3)) (-4 *3 (-1005)) (-4 *3 (-1118))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-714)) (-5 *2 (-1207 (-599 (-499)))) (-5 *1 (-434)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3))))) + (-12 (-5 *3 (-687)) (-5 *2 (-1168 (-578 (-478)))) (-5 *1 (-413)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-530 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-1058 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1118)) (-5 *1 (-1058 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1118)) (-5 *1 (-530 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1118)) (-5 *1 (-1058 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1118)) (-5 *1 (-530 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1118)) (-5 *1 (-1058 *3))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-499)) (-4 *4 (-13 (-510) (-120))) (-5 *1 (-490 *4 *2)) - (-4 *2 (-1200 *4)))) + (-12 (-5 *3 (-478)) (-4 *4 (-13 (-489) (-118))) (-5 *1 (-469 *4 *2)) + (-4 *2 (-1161 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-499)) (-4 *4 (-13 (-318) (-323) (-569 *3))) (-4 *5 (-1183 *4)) - (-4 *6 (-682 *4 *5)) (-5 *1 (-494 *4 *5 *6 *2)) (-4 *2 (-1200 *6)))) + (-12 (-5 *3 (-478)) (-4 *4 (-13 (-308) (-313) (-548 *3))) (-4 *5 (-1144 *4)) + (-4 *6 (-656 *4 *5)) (-5 *1 (-473 *4 *5 *6 *2)) (-4 *2 (-1161 *6)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-499)) (-4 *4 (-13 (-318) (-323) (-569 *3))) - (-5 *1 (-495 *4 *2)) (-4 *2 (-1200 *4)))) + (-12 (-5 *3 (-478)) (-4 *4 (-13 (-308) (-313) (-548 *3))) + (-5 *1 (-474 *4 *2)) (-4 *2 (-1161 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1095 *4)) (-5 *3 (-499)) (-4 *4 (-13 (-510) (-120))) - (-5 *1 (-1094 *4))))) + (-12 (-5 *2 (-1058 *4)) (-5 *3 (-478)) (-4 *4 (-13 (-489) (-118))) + (-5 *1 (-1057 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-510) (-120))) (-5 *1 (-490 *3 *2)) (-4 *2 (-1200 *3)))) + (-12 (-4 *3 (-13 (-489) (-118))) (-5 *1 (-469 *3 *2)) (-4 *2 (-1161 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-4 *4 (-1183 *3)) - (-4 *5 (-682 *3 *4)) (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-1200 *5)))) + (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-4 *4 (-1144 *3)) + (-4 *5 (-656 *3 *4)) (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-1161 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-5 *1 (-495 *3 *2)) - (-4 *2 (-1200 *3)))) + (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-5 *1 (-474 *3 *2)) + (-4 *2 (-1161 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-13 (-510) (-120))) (-5 *1 (-1094 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-13 (-489) (-118))) (-5 *1 (-1057 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-510) (-120))) (-5 *1 (-490 *3 *2)) (-4 *2 (-1200 *3)))) + (-12 (-4 *3 (-13 (-489) (-118))) (-5 *1 (-469 *3 *2)) (-4 *2 (-1161 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-4 *4 (-1183 *3)) - (-4 *5 (-682 *3 *4)) (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-1200 *5)))) + (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-4 *4 (-1144 *3)) + (-4 *5 (-656 *3 *4)) (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-1161 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-5 *1 (-495 *3 *2)) - (-4 *2 (-1200 *3)))) + (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-5 *1 (-474 *3 *2)) + (-4 *2 (-1161 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-13 (-510) (-120))) (-5 *1 (-1094 *3))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-13 (-489) (-118))) (-5 *1 (-1057 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-510) (-120))) (-5 *1 (-490 *3 *2)) (-4 *2 (-1200 *3)))) + (-12 (-4 *3 (-13 (-489) (-118))) (-5 *1 (-469 *3 *2)) (-4 *2 (-1161 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-4 *4 (-1183 *3)) - (-4 *5 (-682 *3 *4)) (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-1200 *5)))) + (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-4 *4 (-1144 *3)) + (-4 *5 (-656 *3 *4)) (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-1161 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-5 *1 (-495 *3 *2)) - (-4 *2 (-1200 *3)))) + (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-5 *1 (-474 *3 *2)) + (-4 *2 (-1161 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1095 *3)) (-4 *3 (-13 (-510) (-120))) (-5 *1 (-1094 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-478)))) - ((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-1093))))) -(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1093))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-1075))) (-5 *1 (-1093))))) -(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1093))))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-13 (-489) (-118))) (-5 *1 (-1057 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-457)))) + ((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-1056))))) +(((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-1056))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-1038))) (-5 *1 (-1056))))) +(((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-1056))))) (((*1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) - ((*1 *1) (-4 *1 (-1092)))) -(((*1 *2 *1) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1092))))) -(((*1 *2 *1) (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1157)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1157)) (-5 *2 (-85))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) + ((*1 *1) (-4 *1 (-1055)))) +(((*1 *2 *1) (-12 (-5 *2 (-627 *1)) (-4 *1 (-1055))))) +(((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-1118)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-1118)) (-5 *2 (-83))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-714)) (-4 *1 (-1090 *4)) (-4 *4 (-1157)) (-5 *2 (-85))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-1088 *3))))) + (-12 (-5 *3 (-687)) (-4 *1 (-1053 *4)) (-4 *4 (-1118)) (-5 *2 (-83))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1118)) (-5 *1 (-1051 *3))))) (((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) - (-5 *2 (-599 (-967 *5 *6 *7 *3))) (-5 *1 (-967 *5 *6 *7 *3)) - (-4 *3 (-1005 *5 *6 *7)))) + (-12 (-5 *4 (-83)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) + (-5 *2 (-578 (-933 *5 *6 *7 *3))) (-5 *1 (-933 *5 *6 *7 *3)) + (-4 *3 (-969 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-599 *6)) (-4 *1 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) - (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)))) + (-12 (-5 *2 (-578 *6)) (-4 *1 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) + (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1011 *3 *4 *5 *2)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *2 (-1005 *3 *4 *5)))) + (-12 (-4 *1 (-975 *3 *4 *5 *2)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *2 (-969 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) - (-5 *2 (-599 (-1086 *5 *6 *7 *3))) (-5 *1 (-1086 *5 *6 *7 *3)) - (-4 *3 (-1005 *5 *6 *7))))) + (-12 (-5 *4 (-83)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) + (-5 *2 (-578 (-1049 *5 *6 *7 *3))) (-5 *1 (-1049 *5 *6 *7 *3)) + (-4 *3 (-969 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) - (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-967 *5 *6 *7 *8))) - (-5 *1 (-967 *5 *6 *7 *8)))) + (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) + (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-933 *5 *6 *7 *8))) + (-5 *1 (-933 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) - (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-1086 *5 *6 *7 *8))) - (-5 *1 (-1086 *5 *6 *7 *8))))) + (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) + (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-1049 *5 *6 *7 *8))) + (-5 *1 (-1049 *5 *6 *7 *8))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) - (-4 *8 (-1005 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-599 *8)) (|:| |towers| (-599 (-967 *5 *6 *7 *8))))) - (-5 *1 (-967 *5 *6 *7 *8)) (-5 *3 (-599 *8)))) + (-12 (-5 *4 (-83)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) + (-4 *8 (-969 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-578 *8)) (|:| |towers| (-578 (-933 *5 *6 *7 *8))))) + (-5 *1 (-933 *5 *6 *7 *8)) (-5 *3 (-578 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) - (-4 *8 (-1005 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-599 *8)) (|:| |towers| (-599 (-1086 *5 *6 *7 *8))))) - (-5 *1 (-1086 *5 *6 *7 *8)) (-5 *3 (-599 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-2 (|:| |val| (-599 *8)) (|:| -1633 *9)))) (-5 *4 (-714)) - (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) - (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-1213)) - (-5 *1 (-1009 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-2 (|:| |val| (-599 *8)) (|:| -1633 *9)))) (-5 *4 (-714)) - (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) - (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-1213)) - (-5 *1 (-1085 *5 *6 *7 *8 *9))))) + (-12 (-5 *4 (-83)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) + (-4 *8 (-969 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-578 *8)) (|:| |towers| (-578 (-1049 *5 *6 *7 *8))))) + (-5 *1 (-1049 *5 *6 *7 *8)) (-5 *3 (-578 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -1587 *9)))) (-5 *4 (-687)) + (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) + (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-1174)) + (-5 *1 (-973 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -1587 *9)))) (-5 *4 (-687)) + (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-385)) + (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-1174)) + (-5 *1 (-1048 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-599 *11)) - (|:| |todo| (-599 (-2 (|:| |val| *3) (|:| -1633 *11)))))) - (-5 *6 (-714)) (-5 *2 (-599 (-2 (|:| |val| (-599 *10)) (|:| -1633 *11)))) - (-5 *3 (-599 *10)) (-5 *4 (-599 *11)) (-4 *10 (-1005 *7 *8 *9)) - (-4 *11 (-1011 *7 *8 *9 *10)) (-4 *7 (-406)) (-4 *8 (-738)) (-4 *9 (-781)) - (-5 *1 (-1009 *7 *8 *9 *10 *11)))) + (-2 (|:| |done| (-578 *11)) + (|:| |todo| (-578 (-2 (|:| |val| *3) (|:| -1587 *11)))))) + (-5 *6 (-687)) (-5 *2 (-578 (-2 (|:| |val| (-578 *10)) (|:| -1587 *11)))) + (-5 *3 (-578 *10)) (-5 *4 (-578 *11)) (-4 *10 (-969 *7 *8 *9)) + (-4 *11 (-975 *7 *8 *9 *10)) (-4 *7 (-385)) (-4 *8 (-710)) (-4 *9 (-749)) + (-5 *1 (-973 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-599 *11)) - (|:| |todo| (-599 (-2 (|:| |val| *3) (|:| -1633 *11)))))) - (-5 *6 (-714)) (-5 *2 (-599 (-2 (|:| |val| (-599 *10)) (|:| -1633 *11)))) - (-5 *3 (-599 *10)) (-5 *4 (-599 *11)) (-4 *10 (-1005 *7 *8 *9)) - (-4 *11 (-1049 *7 *8 *9 *10)) (-4 *7 (-406)) (-4 *8 (-738)) (-4 *9 (-781)) - (-5 *1 (-1085 *7 *8 *9 *10 *11))))) + (-2 (|:| |done| (-578 *11)) + (|:| |todo| (-578 (-2 (|:| |val| *3) (|:| -1587 *11)))))) + (-5 *6 (-687)) (-5 *2 (-578 (-2 (|:| |val| (-578 *10)) (|:| -1587 *11)))) + (-5 *3 (-578 *10)) (-5 *4 (-578 *11)) (-4 *10 (-969 *7 *8 *9)) + (-4 *11 (-1012 *7 *8 *9 *10)) (-4 *7 (-385)) (-4 *8 (-710)) (-4 *9 (-749)) + (-5 *1 (-1048 *7 *8 *9 *10 *11))))) (((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5 *6)) (-4 *3 (-318)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 *3 *4 *5)) + (-12 (-4 *1 (-282 *3 *4 *5 *6)) (-4 *3 (-308)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-4 *6 (-287 *3 *4 *5)) (-5 *2 - (-2 (|:| -2442 (-367 *4 (-361 *4) *5 *6)) (|:| |principalPart| *6))))) + (-2 (|:| -2322 (-349 *4 (-343 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) - (-5 *2 (-2 (|:| |poly| *6) (|:| -3212 (-361 *6)) (|:| |special| (-361 *6)))) - (-5 *1 (-685 *5 *6)) (-5 *3 (-361 *6)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-308)) + (-5 *2 (-2 (|:| |poly| *6) (|:| -3073 (-343 *6)) (|:| |special| (-343 *6)))) + (-5 *1 (-659 *5 *6)) (-5 *3 (-343 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-318)) (-5 *2 (-599 *3)) (-5 *1 (-833 *3 *4)) - (-4 *3 (-1183 *4)))) + (-12 (-4 *4 (-308)) (-5 *2 (-578 *3)) (-5 *1 (-800 *3 *4)) + (-4 *3 (-1144 *4)))) ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-714)) (-4 *5 (-318)) - (-5 *2 (-2 (|:| -3260 *3) (|:| -3259 *3))) (-5 *1 (-833 *3 *5)) - (-4 *3 (-1183 *5)))) + (|partial| -12 (-5 *4 (-687)) (-4 *5 (-308)) + (-5 *2 (-2 (|:| -3121 *3) (|:| -3120 *3))) (-5 *1 (-800 *3 *5)) + (-4 *3 (-1144 *5)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-599 *9)) (-5 *3 (-599 *8)) (-5 *4 (-85)) - (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) - (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1009 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-83)) + (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) + (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-973 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-599 *9)) (-5 *3 (-599 *8)) (-5 *4 (-85)) - (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) - (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1009 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-83)) + (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) + (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-973 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-599 *9)) (-5 *3 (-599 *8)) (-5 *4 (-85)) - (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) - (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-83)) + (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-385)) + (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-1048 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-599 *9)) (-5 *3 (-599 *8)) (-5 *4 (-85)) - (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) - (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1085 *5 *6 *7 *8 *9))))) + (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-83)) + (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-385)) + (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-1048 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-714)) (-5 *6 (-85)) (-4 *7 (-406)) (-4 *8 (-738)) - (-4 *9 (-781)) (-4 *3 (-1005 *7 *8 *9)) + (-12 (-5 *5 (-687)) (-5 *6 (-83)) (-4 *7 (-385)) (-4 *8 (-710)) + (-4 *9 (-749)) (-4 *3 (-969 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-599 *4)) - (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) - (-5 *1 (-1009 *7 *8 *9 *3 *4)) (-4 *4 (-1011 *7 *8 *9 *3)))) + (-2 (|:| |done| (-578 *4)) + (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) + (-5 *1 (-973 *7 *8 *9 *3 *4)) (-4 *4 (-975 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-714)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) - (-4 *3 (-1005 *6 *7 *8)) + (-12 (-5 *5 (-687)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) + (-4 *3 (-969 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-599 *4)) - (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) - (-5 *1 (-1009 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) + (-2 (|:| |done| (-578 *4)) + (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) + (-5 *1 (-973 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-599 *4)) - (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) - (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) + (-2 (|:| |done| (-578 *4)) + (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) + (-5 *1 (-973 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-714)) (-5 *6 (-85)) (-4 *7 (-406)) (-4 *8 (-738)) - (-4 *9 (-781)) (-4 *3 (-1005 *7 *8 *9)) + (-12 (-5 *5 (-687)) (-5 *6 (-83)) (-4 *7 (-385)) (-4 *8 (-710)) + (-4 *9 (-749)) (-4 *3 (-969 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-599 *4)) - (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) - (-5 *1 (-1085 *7 *8 *9 *3 *4)) (-4 *4 (-1049 *7 *8 *9 *3)))) + (-2 (|:| |done| (-578 *4)) + (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) + (-5 *1 (-1048 *7 *8 *9 *3 *4)) (-4 *4 (-1012 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-714)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) - (-4 *3 (-1005 *6 *7 *8)) + (-12 (-5 *5 (-687)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) + (-4 *3 (-969 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-599 *4)) - (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) - (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1049 *6 *7 *8 *3)))) + (-2 (|:| |done| (-578 *4)) + (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) + (-5 *1 (-1048 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-599 *4)) - (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) - (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1049 *5 *6 *7 *3))))) + (-2 (|:| |done| (-578 *4)) + (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) + (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-714)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) - (-4 *3 (-1005 *6 *7 *8)) + (-12 (-5 *5 (-687)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) + (-4 *3 (-969 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-599 *4)) - (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) - (-5 *1 (-1009 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) + (-2 (|:| |done| (-578 *4)) + (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) + (-5 *1 (-973 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-599 *4)) - (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) - (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) + (-2 (|:| |done| (-578 *4)) + (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) + (-5 *1 (-973 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-714)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) - (-4 *3 (-1005 *6 *7 *8)) + (-12 (-5 *5 (-687)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) + (-4 *3 (-969 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-599 *4)) - (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) - (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1049 *6 *7 *8 *3)))) + (-2 (|:| |done| (-578 *4)) + (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) + (-5 *1 (-1048 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-599 *4)) - (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) - (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1049 *5 *6 *7 *3))))) + (-2 (|:| |done| (-578 *4)) + (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) + (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) - (-4 *3 (-1005 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-599 *4)) - (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) - (-5 *1 (-1009 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-599 *4)) - (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) - (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1049 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *9)) (-4 *8 (-1005 *5 *6 *7)) - (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) - (-5 *2 (-714)) (-5 *1 (-1009 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *9)) (-4 *8 (-1005 *5 *6 *7)) - (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) - (-5 *2 (-714)) (-5 *1 (-1085 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *9)) (-4 *8 (-1005 *5 *6 *7)) - (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) - (-5 *2 (-714)) (-5 *1 (-1009 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *9)) (-4 *8 (-1005 *5 *6 *7)) - (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) - (-5 *2 (-714)) (-5 *1 (-1085 *5 *6 *7 *8 *9))))) -(((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117))) - ((*1 *1 *1) (-4 *1 (-1084)))) -(((*1 *1 *1) (-4 *1 (-1084)))) -(((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117))) - ((*1 *1 *1) (-4 *1 (-1084)))) -(((*1 *1 *1) (-4 *1 (-1084)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1084)) (-5 *2 (-85))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1084)) (-5 *2 (-85))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1084)) (-5 *3 (-499)) (-5 *2 (-85))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 *6)) (-4 *5 (-1041)) (-4 *6 (-1157)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-601 *5 *6)))) + (-12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) + (-4 *3 (-969 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-578 *4)) + (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) + (-5 *1 (-973 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-578 *4)) + (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))))) + (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-969 *5 *6 *7)) + (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) + (-5 *2 (-687)) (-5 *1 (-973 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-969 *5 *6 *7)) + (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) + (-5 *2 (-687)) (-5 *1 (-1048 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-969 *5 *6 *7)) + (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) + (-5 *2 (-687)) (-5 *1 (-973 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-969 *5 *6 *7)) + (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) + (-5 *2 (-687)) (-5 *1 (-1048 *5 *6 *7 *8 *9))))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1 *1) (-5 *1 (-115))) + ((*1 *1 *1) (-4 *1 (-1047)))) +(((*1 *1 *1) (-4 *1 (-1047)))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1 *1) (-5 *1 (-115))) + ((*1 *1 *1) (-4 *1 (-1047)))) +(((*1 *1 *1) (-4 *1 (-1047)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1047)) (-5 *2 (-83))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1047)) (-5 *2 (-83))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1047)) (-5 *3 (-478)) (-5 *2 (-83))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *6)) (-4 *5 (-1005)) (-4 *6 (-1118)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 *2)) (-4 *5 (-1041)) (-4 *2 (-1157)) - (-5 *1 (-601 *5 *2)))) + (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-4 *5 (-1005)) (-4 *2 (-1118)) + (-5 *1 (-580 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-599 *6)) (-5 *4 (-599 *5)) (-4 *6 (-1041)) (-4 *5 (-1157)) - (-5 *2 (-1 *5 *6)) (-5 *1 (-601 *6 *5)))) + (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 *5)) (-4 *6 (-1005)) (-4 *5 (-1118)) + (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 *2)) (-4 *5 (-1041)) (-4 *2 (-1157)) - (-5 *1 (-601 *5 *2)))) + (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-4 *5 (-1005)) (-4 *2 (-1118)) + (-5 *1 (-580 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-599 *5)) (-5 *4 (-599 *6)) (-4 *5 (-1041)) - (-4 *6 (-1157)) (-5 *1 (-601 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-578 *5)) (-5 *4 (-578 *6)) (-4 *5 (-1005)) + (-4 *6 (-1118)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1041)) - (-4 *2 (-1157)) (-5 *1 (-601 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1084)) (-5 *3 (-117)) (-5 *2 (-714))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1084)) (-5 *3 (-117)) (-5 *2 (-85))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1084)) (-5 *2 (-1174 (-499)))))) -(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-714)))) + (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1005)) + (-4 *2 (-1118)) (-5 *1 (-580 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1047)) (-5 *3 (-115)) (-5 *2 (-687))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1047)) (-5 *3 (-115)) (-5 *2 (-83))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1047)) (-5 *2 (-1135 (-478)))))) +(((*1 *2 *1) (-12 (-4 *1 (-103)) (-5 *2 (-687)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-499)) (-4 *1 (-327 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)))) + (-12 (-5 *2 (-478)) (-4 *1 (-317 *3)) (-4 *3 (-1118)) (-4 *3 (-1005)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-327 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-499)))) + (-12 (-4 *1 (-317 *3)) (-4 *3 (-1118)) (-4 *3 (-1005)) (-5 *2 (-478)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-327 *4)) (-4 *4 (-1157)) (-5 *2 (-499)))) - ((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-482)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-499)) (-5 *3 (-114)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-499))))) -(((*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1183 (-48))))) + (-12 (-5 *3 (-1 (-83) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1118)) (-5 *2 (-478)))) + ((*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-461)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-478)) (-5 *3 (-112)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-478))))) +(((*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1144 (-48))))) ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) - (-5 *1 (-94 *3)) (-4 *3 (-781)))) - ((*1 *2 *2) - (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1143))) - (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-536 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-534 (-361 (-884 *3)))) - (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-540 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-318)) - (-5 *2 (-2 (|:| -3212 *3) (|:| |special| *3))) (-5 *1 (-685 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1207 *5)) (-4 *5 (-318)) (-4 *5 (-989)) - (-5 *2 (-599 (-599 (-647 *5)))) (-5 *1 (-970 *5)) (-5 *3 (-599 (-647 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1207 (-1207 *5))) (-4 *5 (-318)) (-4 *5 (-989)) - (-5 *2 (-599 (-599 (-647 *5)))) (-5 *1 (-970 *5)) (-5 *3 (-599 (-647 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-599 *1)) (-4 *1 (-1084)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-599 *1)) (-4 *1 (-1084))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-117))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-117))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-117))))) + (-12 (-5 *2 (-2 (|:| |less| (-92 *3)) (|:| |greater| (-92 *3)))) + (-5 *1 (-92 *3)) (-4 *3 (-749)))) + ((*1 *2 *2) + (-12 (-5 *2 (-513 *4)) (-4 *4 (-13 (-29 *3) (-1104))) + (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-515 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-513 (-343 (-850 *3)))) + (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-519 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-308)) + (-5 *2 (-2 (|:| -3073 *3) (|:| |special| *3))) (-5 *1 (-659 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1168 *5)) (-4 *5 (-308)) (-4 *5 (-954)) + (-5 *2 (-578 (-578 (-625 *5)))) (-5 *1 (-936 *5)) (-5 *3 (-578 (-625 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1168 (-1168 *5))) (-4 *5 (-308)) (-4 *5 (-954)) + (-5 *2 (-578 (-578 (-625 *5)))) (-5 *1 (-936 *5)) (-5 *3 (-578 (-625 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-112)) (-5 *2 (-578 *1)) (-4 *1 (-1047)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-578 *1)) (-4 *1 (-1047))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-112)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-115))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-112)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-115))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-112)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-115))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-499)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-714)) - (-4 *5 (-146)))) + (-12 (-5 *2 (-478)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-687)) + (-4 *5 (-144)))) ((*1 *1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146)))) + (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144)))) ((*1 *1 *1) - (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) - (-4 *4 (-327 *2)))) + (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) + (-4 *4 (-317 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-989)) (-4 *1 (-644 *3 *2 *4)) (-4 *2 (-327 *3)) - (-4 *4 (-327 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-1082 *2 *3)) (-14 *2 (-714)) (-4 *3 (-989))))) + (-12 (-4 *3 (-954)) (-4 *1 (-622 *3 *2 *4)) (-4 *2 (-317 *3)) + (-4 *4 (-317 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-1045 *2 *3)) (-14 *2 (-687)) (-4 *3 (-954))))) (((*1 *1 *2) - (-12 (-5 *2 (-647 *4)) (-4 *4 (-989)) (-5 *1 (-1082 *3 *4)) (-14 *3 (-714))))) + (-12 (-5 *2 (-625 *4)) (-4 *4 (-954)) (-5 *1 (-1045 *3 *4)) (-14 *3 (-687))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-1081 *2 *3)) (-4 *2 (-13 (-1041) (-34))) - (-4 *3 (-13 (-1041) (-34)))))) + (|partial| -12 (-5 *1 (-1044 *2 *3)) (-4 *2 (-13 (-1005) (-34))) + (-4 *3 (-13 (-1005) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1081 *2 *3)) (-4 *2 (-13 (-1041) (-34))) - (-4 *3 (-13 (-1041) (-34)))))) + (-12 (-5 *1 (-1044 *2 *3)) (-4 *2 (-13 (-1005) (-34))) + (-4 *3 (-13 (-1005) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-599 *4)) (-5 *1 (-1081 *3 *4)) (-4 *3 (-13 (-1041) (-34))) - (-4 *4 (-13 (-1041) (-34)))))) + (-12 (-5 *2 (-578 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-13 (-1005) (-34))) + (-4 *4 (-13 (-1005) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1081 *3 *4)) - (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34)))))) + (-12 (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) (-5 *1 (-1044 *3 *4)) + (-4 *3 (-13 (-1005) (-34))) (-4 *4 (-13 (-1005) (-34)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1080 *4 *5)) (-4 *4 (-13 (-1041) (-34))) - (-4 *5 (-13 (-1041) (-34))) (-5 *2 (-85)) (-5 *1 (-1081 *4 *5))))) + (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-1005) (-34))) + (-4 *5 (-13 (-1005) (-34))) (-5 *2 (-83)) (-5 *1 (-1044 *4 *5))))) (((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1080 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) - (-4 *5 (-13 (-1041) (-34))) (-4 *6 (-13 (-1041) (-34))) (-5 *2 (-85)) - (-5 *1 (-1081 *5 *6))))) + (-12 (-5 *3 (-1043 *5 *6)) (-5 *4 (-1 (-83) *6 *6)) + (-4 *5 (-13 (-1005) (-34))) (-4 *6 (-13 (-1005) (-34))) (-5 *2 (-83)) + (-5 *1 (-1044 *5 *6))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4145)) (-4 *1 (-124 *2)) (-4 *2 (-1157)) - (-4 *2 (-1041)))) + (-12 (|has| *1 (-6 -3979)) (-4 *1 (-122 *2)) (-4 *2 (-1118)) + (-4 *2 (-1005)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -4145)) (-4 *1 (-124 *3)) - (-4 *3 (-1157)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-632 *3)) (-4 *3 (-1157)))) + (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3979)) (-4 *1 (-122 *3)) + (-4 *3 (-1118)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-611 *3)) (-4 *3 (-1118)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-499)) (-4 *4 (-1041)) (-5 *1 (-694 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *1 (-694 *2)) (-4 *2 (-1041)))) + (-12 (-5 *2 (-1 (-83) *4)) (-5 *3 (-478)) (-4 *4 (-1005)) (-5 *1 (-668 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *1 (-668 *2)) (-4 *2 (-1005)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) - (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1081 *3 *4))))) + (-12 (-5 *2 (-1043 *3 *4)) (-4 *3 (-13 (-1005) (-34))) + (-4 *4 (-13 (-1005) (-34))) (-5 *1 (-1044 *3 *4))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -4145)) (-4 *1 (-192 *3)) - (-4 *3 (-1041)))) - ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-192 *2)) (-4 *2 (-1041)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)) (-4 *2 (-1041)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) + (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3979)) (-4 *1 (-190 *3)) + (-4 *3 (-1005)))) + ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -3979)) (-4 *1 (-190 *2)) (-4 *2 (-1005)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1118)) (-4 *2 (-1005)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-234 *3)) (-4 *3 (-1118)))) ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-565 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041)))) + (|partial| -12 (-4 *1 (-544 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-499)) (-4 *4 (-1041)) (-5 *1 (-694 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *1 (-694 *2)) (-4 *2 (-1041)))) + (-12 (-5 *2 (-1 (-83) *4)) (-5 *3 (-478)) (-4 *4 (-1005)) (-5 *1 (-668 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *1 (-668 *2)) (-4 *2 (-1005)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) - (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1081 *3 *4))))) + (-12 (-5 *2 (-1043 *3 *4)) (-4 *3 (-13 (-1005) (-34))) + (-4 *4 (-13 (-1005) (-34))) (-5 *1 (-1044 *3 *4))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 (-1080 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) - (-4 *4 (-13 (-1041) (-34))) (-4 *5 (-13 (-1041) (-34))) - (-5 *1 (-1081 *4 *5)))) + (-12 (-5 *2 (-578 (-1043 *4 *5))) (-5 *3 (-1 (-83) *5 *5)) + (-4 *4 (-13 (-1005) (-34))) (-4 *5 (-13 (-1005) (-34))) + (-5 *1 (-1044 *4 *5)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-599 (-1080 *3 *4))) (-4 *3 (-13 (-1041) (-34))) - (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1081 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) - ((*1 *2 *1) - (-12 (-4 *3 (-406)) (-4 *4 (-781)) (-4 *5 (-738)) (-5 *2 (-85)) - (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) - (-4 *4 (-13 (-1041) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-792)))) - ((*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-903)))) - ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-929)))) - ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1157)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1041) (-34))) (-5 *1 (-1080 *2 *3)) - (-4 *3 (-13 (-1041) (-34)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-406)) (-4 *4 (-781)) (-4 *5 (-738)) (-5 *2 (-85)) - (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) - (-4 *4 (-13 (-1041) (-34)))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-86))) - ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-498))) - ((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) - ((*1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-989)))) + (-12 (-5 *2 (-578 (-1043 *3 *4))) (-4 *3 (-13 (-1005) (-34))) + (-4 *4 (-13 (-1005) (-34))) (-5 *1 (-1044 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-83)))) + ((*1 *2 *1) + (-12 (-4 *3 (-385)) (-4 *4 (-749)) (-4 *5 (-710)) (-5 *2 (-83)) + (-5 *1 (-892 *3 *4 *5 *6)) (-4 *6 (-854 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-83)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-13 (-1005) (-34))) + (-4 *4 (-13 (-1005) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-760)))) + ((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-869)))) + ((*1 *2 *1) (-12 (-5 *2 (-1062)) (-5 *1 (-895)))) + ((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-1118)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1005) (-34))) (-5 *1 (-1043 *2 *3)) + (-4 *3 (-13 (-1005) (-34)))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-385)) (-4 *4 (-749)) (-4 *5 (-710)) (-5 *2 (-83)) + (-5 *1 (-892 *3 *4 *5 *6)) (-4 *6 (-854 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-83)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-13 (-1005) (-34))) + (-4 *4 (-13 (-1005) (-34)))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-84))) + ((*1 *1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-4 *1 (-477))) + ((*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1005)))) + ((*1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-954)))) ((*1 *1 *1) - (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) - (-4 *3 (-13 (-1041) (-34)))))) + (-12 (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1005) (-34))) + (-4 *3 (-13 (-1005) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) - (-4 *3 (-13 (-1041) (-34)))))) + (-12 (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1005) (-34))) + (-4 *3 (-13 (-1005) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1080 *3 *2)) (-4 *3 (-13 (-1041) (-34))) - (-4 *2 (-13 (-1041) (-34)))))) + (-12 (-5 *1 (-1043 *3 *2)) (-4 *3 (-13 (-1005) (-34))) + (-4 *2 (-13 (-1005) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) - (-4 *4 (-13 (-1041) (-34)))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-13 (-1005) (-34))) + (-4 *4 (-13 (-1005) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) - (-4 *3 (-13 (-1041) (-34)))))) + (-12 (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1005) (-34))) + (-4 *3 (-13 (-1005) (-34)))))) (((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) - (-4 *5 (-13 (-1041) (-34))) (-4 *6 (-13 (-1041) (-34))) (-5 *2 (-85)) - (-5 *1 (-1080 *5 *6))))) + (-12 (-5 *3 (-1 (-83) *5 *5)) (-5 *4 (-1 (-83) *6 *6)) + (-4 *5 (-13 (-1005) (-34))) (-4 *6 (-13 (-1005) (-34))) (-5 *2 (-83)) + (-5 *1 (-1043 *5 *6))))) (((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1041) (-34))) (-5 *2 (-85)) - (-5 *1 (-1080 *4 *5)) (-4 *4 (-13 (-1041) (-34)))))) -(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) - ((*1 *1 *1) (-4 *1 (-1079)))) -(((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) - ((*1 *1 *1) (-4 *1 (-1079)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1079)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1079)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1079)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1079)))) -(((*1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) - ((*1 *1 *1) (-4 *1 (-1079))) ((*1 *1 *1 *1) (-4 *1 (-1079)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-714)) (-5 *1 (-180)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-714)) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1079)))) -(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) - ((*1 *1 *1) (-4 *1 (-1079)))) -(((*1 *1 *1 *1) (-5 *1 (-179))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-333))) (-5 *1 (-981)))) - ((*1 *1 *1 *1) (-4 *1 (-1079)))) -(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1000)))) - ((*1 *1 *1) - (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) - (-4 *4 (-343)))) - ((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) - ((*1 *1 *1) (-4 *1 (-735))) - ((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)) (-4 *2 (-1000)))) - ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)) (-4 *2 (-1000)))) - ((*1 *1 *1) (-4 *1 (-1079)))) -(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-1078)))) - ((*1 *2 *3) (-12 (-5 *3 (-599 (-797))) (-5 *2 (-1213)) (-5 *1 (-1078))))) -(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-1078)))) - ((*1 *2 *3) (-12 (-5 *3 (-599 (-797))) (-5 *2 (-1213)) (-5 *1 (-1078))))) -(((*1 *2 *3) (-12 (-5 *3 (-344)) (-5 *2 (-1213)) (-5 *1 (-349)))) - ((*1 *2 *1) (-12 (-4 *1 (-350)) (-5 *2 (-1213)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1099)) (-5 *4 (-797)) (-5 *2 (-1213)) (-5 *1 (-1078)))) - ((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-1078)))) - ((*1 *2 *3) (-12 (-5 *3 (-599 (-797))) (-5 *2 (-1213)) (-5 *1 (-1078))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-599 (-1122))) (-5 *1 (-1076))))) -(((*1 *1 *2) (-12 (-5 *2 (-1105 3 *3)) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) - ((*1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-989))))) + (-12 (-5 *3 (-1 (-83) *5 *5)) (-4 *5 (-13 (-1005) (-34))) (-5 *2 (-83)) + (-5 *1 (-1043 *4 *5)) (-4 *4 (-13 (-1005) (-34)))))) +(((*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) + ((*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) + ((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *1 *1) (-4 *1 (-1042)))) +(((*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) + ((*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) + ((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *1 *1) (-4 *1 (-1042)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1042)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1042)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1042)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1042)))) +(((*1 *1 *1) (-5 *1 (-177))) ((*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) + ((*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) + ((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *1 *1) (-4 *1 (-1042))) ((*1 *1 *1 *1) (-4 *1 (-1042)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-177)) (-5 *3 (-687)) (-5 *1 (-178)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-140 (-177))) (-5 *3 (-687)) (-5 *1 (-178)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1042)))) +(((*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) + ((*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) + ((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *1 *1) (-4 *1 (-1042)))) +(((*1 *1 *1 *1) (-5 *1 (-177))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-323))) (-5 *1 (-946)))) + ((*1 *1 *1 *1) (-4 *1 (-1042)))) +(((*1 *1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-965)))) + ((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *1 *1) (-4 *1 (-707))) + ((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)) (-4 *2 (-965)))) + ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)) (-4 *2 (-965)))) + ((*1 *1 *1) (-4 *1 (-1042)))) +(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1174)) (-5 *1 (-1041)))) + ((*1 *2 *3) (-12 (-5 *3 (-578 (-765))) (-5 *2 (-1174)) (-5 *1 (-1041))))) +(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1174)) (-5 *1 (-1041)))) + ((*1 *2 *3) (-12 (-5 *3 (-578 (-765))) (-5 *2 (-1174)) (-5 *1 (-1041))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1062)) (-5 *4 (-765)) (-5 *2 (-1174)) (-5 *1 (-1041)))) + ((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1174)) (-5 *1 (-1041)))) + ((*1 *2 *3) (-12 (-5 *3 (-578 (-765))) (-5 *2 (-1174)) (-5 *1 (-1041))))) +(((*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-578 (-1084))) (-5 *1 (-1039))))) +(((*1 *1 *2) (-12 (-5 *2 (-1068 3 *3)) (-4 *3 (-954)) (-4 *1 (-1037 *3)))) + ((*1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-954))))) (((*1 *2) - (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) - (-5 *2 (-714)) (-5 *1 (-296 *3 *4 *5 *6)) (-4 *3 (-297 *4 *5 *6)))) + (-12 (-4 *4 (-1123)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-343 *5))) + (-5 *2 (-687)) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-5 *2 (-714)))) - ((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-714))))) -(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-714))))) -(((*1 *2 *1) (-12 (-4 *3 (-989)) (-5 *2 (-599 *1)) (-4 *1 (-1074 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-989)) (-5 *2 (-599 *1)) (-4 *1 (-1074 *3))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-5 *2 (-687)))) + ((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-687))))) +(((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-687))))) +(((*1 *2 *1) (-12 (-4 *3 (-954)) (-5 *2 (-578 *1)) (-4 *1 (-1037 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-954)) (-5 *2 (-578 *1)) (-4 *1 (-1037 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-599 (-881 *4))) (-4 *1 (-1074 *4)) (-4 *4 (-989)) - (-5 *2 (-714))))) -(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1157)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1157)))) - ((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-881 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-881 *3))) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) + (-12 (-5 *3 (-578 (-847 *4))) (-4 *1 (-1037 *4)) (-4 *4 (-954)) + (-5 *2 (-687))))) +(((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-83))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-780 *2)) (-4 *2 (-1118)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1118)))) + ((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-847 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-578 (-847 *3))) (-4 *3 (-954)) (-4 *1 (-1037 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-599 (-599 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) + (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-599 (-881 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989))))) -(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-881 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-881 *3))) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) + (-12 (-5 *2 (-578 (-847 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-954))))) +(((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-847 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-578 (-847 *3))) (-4 *3 (-954)) (-4 *1 (-1037 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-599 (-599 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) + (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-599 (-881 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989))))) -(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-881 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-881 *3))) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) + (-12 (-5 *2 (-578 (-847 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-954))))) +(((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-847 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-578 (-847 *3))) (-4 *3 (-954)) (-4 *1 (-1037 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-599 (-599 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) + (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-954)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-599 (-881 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989))))) -(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85))))) + (-12 (-5 *2 (-578 (-847 *3))) (-4 *1 (-1037 *3)) (-4 *3 (-954))))) +(((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-599 (-881 *3)))))) + (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-578 (-847 *3)))))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-599 (-599 (-881 *4)))) (-5 *3 (-85)) (-4 *4 (-989)) - (-4 *1 (-1074 *4)))) + (-12 (-5 *2 (-578 (-578 (-847 *4)))) (-5 *3 (-83)) (-4 *4 (-954)) + (-4 *1 (-1037 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-599 (-599 (-881 *3)))) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) + (-12 (-5 *2 (-578 (-578 (-847 *3)))) (-4 *3 (-954)) (-4 *1 (-1037 *3)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-599 (-599 (-599 *4)))) (-5 *3 (-85)) (-4 *1 (-1074 *4)) - (-4 *4 (-989)))) + (-12 (-5 *2 (-578 (-578 (-578 *4)))) (-5 *3 (-83)) (-4 *1 (-1037 *4)) + (-4 *4 (-954)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-599 (-599 (-881 *4)))) (-5 *3 (-85)) (-4 *1 (-1074 *4)) - (-4 *4 (-989)))) + (-12 (-5 *2 (-578 (-578 (-847 *4)))) (-5 *3 (-83)) (-4 *1 (-1037 *4)) + (-4 *4 (-954)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-599 (-599 (-599 *5)))) (-5 *3 (-599 (-145))) (-5 *4 (-145)) - (-4 *1 (-1074 *5)) (-4 *5 (-989)))) + (-12 (-5 *2 (-578 (-578 (-578 *5)))) (-5 *3 (-578 (-143))) (-5 *4 (-143)) + (-4 *1 (-1037 *5)) (-4 *5 (-954)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-599 (-599 (-881 *5)))) (-5 *3 (-599 (-145))) (-5 *4 (-145)) - (-4 *1 (-1074 *5)) (-4 *5 (-989))))) -(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-881 *3)))))) + (-12 (-5 *2 (-578 (-578 (-847 *5)))) (-5 *3 (-578 (-143))) (-5 *4 (-143)) + (-4 *1 (-1037 *5)) (-4 *5 (-954))))) +(((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-847 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-599 (-599 (-714)))))))) + (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-578 (-578 (-687)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) - (-5 *2 (-599 (-599 (-599 (-881 *3)))))))) + (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) + (-5 *2 (-578 (-578 (-578 (-847 *3)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-599 (-145))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-145)))))) + (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-578 (-143))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-143)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) + (-12 (-4 *1 (-1037 *3)) (-4 *3 (-954)) (-5 *2 - (-2 (|:| -4000 (-714)) (|:| |curves| (-714)) (|:| |polygons| (-714)) - (|:| |constructs| (-714))))))) + (-2 (|:| -3834 (-687)) (|:| |curves| (-687)) (|:| |polygons| (-687)) + (|:| |constructs| (-687))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-599 (-2 (|:| -3882 (-1111 *6)) (|:| -2519 (-499))))) - (-4 *6 (-261)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) - (-5 *1 (-700 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-989))))) + (-12 (-5 *3 (-578 (-2 (|:| -3716 (-1074 *6)) (|:| -2387 (-478))))) + (-4 *6 (-254)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) + (-5 *1 (-674 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-954))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-1072 *4 *2)) - (-4 *2 (-13 (-554 (-499) *4) (-10 -7 (-6 -4145) (-6 -4146)))))) + (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-1035 *4 *2)) + (-4 *2 (-13 (-533 (-478) *4) (-10 -7 (-6 -3979) (-6 -3980)))))) ((*1 *2 *2) - (-12 (-4 *3 (-781)) (-4 *3 (-1157)) (-5 *1 (-1072 *3 *2)) - (-4 *2 (-13 (-554 (-499) *3) (-10 -7 (-6 -4145) (-6 -4146))))))) + (-12 (-4 *3 (-749)) (-4 *3 (-1118)) (-5 *1 (-1035 *3 *2)) + (-4 *2 (-13 (-533 (-478) *3) (-10 -7 (-6 -3979) (-6 -3980))))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-1072 *4 *2)) - (-4 *2 (-13 (-554 (-499) *4) (-10 -7 (-6 -4145) (-6 -4146)))))) + (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-1035 *4 *2)) + (-4 *2 (-13 (-533 (-478) *4) (-10 -7 (-6 -3979) (-6 -3980)))))) ((*1 *2 *2) - (-12 (-4 *3 (-781)) (-4 *3 (-1157)) (-5 *1 (-1072 *3 *2)) - (-4 *2 (-13 (-554 (-499) *3) (-10 -7 (-6 -4145) (-6 -4146))))))) + (-12 (-4 *3 (-749)) (-4 *3 (-1118)) (-5 *1 (-1035 *3 *2)) + (-4 *2 (-13 (-533 (-478) *3) (-10 -7 (-6 -3979) (-6 -3980))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1207 *4)) (-4 *4 (-989)) (-4 *2 (-1183 *4)) - (-5 *1 (-398 *4 *2)))) + (-12 (-5 *3 (-1168 *4)) (-4 *4 (-954)) (-4 *2 (-1144 *4)) + (-5 *1 (-377 *4 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-361 (-1111 (-268 *5)))) (-5 *3 (-1207 (-268 *5))) - (-5 *4 (-499)) (-4 *5 (-510)) (-5 *1 (-1070 *5))))) + (-12 (-5 *2 (-343 (-1074 (-261 *5)))) (-5 *3 (-1168 (-261 *5))) + (-5 *4 (-478)) (-4 *5 (-489)) (-5 *1 (-1033 *5))))) (((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-361 (-1111 (-268 *3)))) (-4 *3 (-510)) (-5 *1 (-1070 *3))))) + (-12 (-5 *2 (-343 (-1074 (-261 *3)))) (-4 *3 (-489)) (-5 *1 (-1033 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-247 (-361 (-884 *5)))) (-5 *4 (-1117)) - (-4 *5 (-13 (-261) (-120))) - (-5 *2 (-1106 (-599 (-268 *5)) (-599 (-247 (-268 *5))))) - (-5 *1 (-1069 *5)))) + (-12 (-5 *3 (-245 (-343 (-850 *5)))) (-5 *4 (-1079)) + (-4 *5 (-13 (-254) (-118))) + (-5 *2 (-1069 (-578 (-261 *5)) (-578 (-245 (-261 *5))))) + (-5 *1 (-1032 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) - (-5 *2 (-1106 (-599 (-268 *5)) (-599 (-247 (-268 *5))))) - (-5 *1 (-1069 *5))))) + (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-118))) + (-5 *2 (-1069 (-578 (-261 *5)) (-578 (-245 (-261 *5))))) + (-5 *1 (-1032 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) - (-5 *2 (-599 (-268 *5))) (-5 *1 (-1069 *5)))) + (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-118))) + (-5 *2 (-578 (-261 *5))) (-5 *1 (-1032 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-361 (-884 *5)))) (-5 *4 (-599 (-1117))) - (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-599 (-268 *5)))) - (-5 *1 (-1069 *5))))) + (-12 (-5 *3 (-578 (-343 (-850 *5)))) (-5 *4 (-578 (-1079))) + (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-578 (-261 *5)))) + (-5 *1 (-1032 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) - (-5 *2 (-599 (-247 (-268 *5)))) (-5 *1 (-1069 *5)))) + (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-118))) + (-5 *2 (-578 (-245 (-261 *5)))) (-5 *1 (-1032 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-13 (-261) (-120))) - (-5 *2 (-599 (-247 (-268 *4)))) (-5 *1 (-1069 *4)))) + (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-13 (-254) (-118))) + (-5 *2 (-578 (-245 (-261 *4)))) (-5 *1 (-1032 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-247 (-361 (-884 *5)))) (-5 *4 (-1117)) - (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-247 (-268 *5)))) - (-5 *1 (-1069 *5)))) + (-12 (-5 *3 (-245 (-343 (-850 *5)))) (-5 *4 (-1079)) + (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-245 (-261 *5)))) + (-5 *1 (-1032 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-247 (-361 (-884 *4)))) (-4 *4 (-13 (-261) (-120))) - (-5 *2 (-599 (-247 (-268 *4)))) (-5 *1 (-1069 *4)))) + (-12 (-5 *3 (-245 (-343 (-850 *4)))) (-4 *4 (-13 (-254) (-118))) + (-5 *2 (-578 (-245 (-261 *4)))) (-5 *1 (-1032 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-361 (-884 *5)))) (-5 *4 (-599 (-1117))) - (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-599 (-247 (-268 *5))))) - (-5 *1 (-1069 *5)))) + (-12 (-5 *3 (-578 (-343 (-850 *5)))) (-5 *4 (-578 (-1079))) + (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-578 (-245 (-261 *5))))) + (-5 *1 (-1032 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 (-361 (-884 *4)))) (-4 *4 (-13 (-261) (-120))) - (-5 *2 (-599 (-599 (-247 (-268 *4))))) (-5 *1 (-1069 *4)))) + (-12 (-5 *3 (-578 (-343 (-850 *4)))) (-4 *4 (-13 (-254) (-118))) + (-5 *2 (-578 (-578 (-245 (-261 *4))))) (-5 *1 (-1032 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-247 (-361 (-884 *5))))) (-5 *4 (-599 (-1117))) - (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-599 (-247 (-268 *5))))) - (-5 *1 (-1069 *5)))) + (-12 (-5 *3 (-578 (-245 (-343 (-850 *5))))) (-5 *4 (-578 (-1079))) + (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-578 (-245 (-261 *5))))) + (-5 *1 (-1032 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 (-247 (-361 (-884 *4))))) (-4 *4 (-13 (-261) (-120))) - (-5 *2 (-599 (-599 (-247 (-268 *4))))) (-5 *1 (-1069 *4))))) + (-12 (-5 *3 (-578 (-245 (-343 (-850 *4))))) (-4 *4 (-13 (-254) (-118))) + (-5 *2 (-578 (-578 (-245 (-261 *4))))) (-5 *1 (-1032 *4))))) (((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) - (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2))))) + (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) + (-5 *1 (-1031 *3 *2)) (-4 *3 (-1144 *2))))) (((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) - (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2))))) + (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) + (-5 *1 (-1031 *3 *2)) (-4 *3 (-1144 *2))))) (((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) - (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2))))) + (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) + (-5 *1 (-1031 *3 *2)) (-4 *3 (-1144 *2))))) (((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) - (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2))))) + (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) + (-5 *1 (-1031 *3 *2)) (-4 *3 (-1144 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) - (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4)))) + (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) + (-5 *2 (-578 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1144 *4)))) ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) - (-5 *2 (-599 *3)) (-5 *1 (-1068 *4 *3)) (-4 *4 (-1183 *3))))) + (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) + (-5 *2 (-578 *3)) (-5 *1 (-1031 *4 *3)) (-4 *4 (-1144 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) - (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4)))) + (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) + (-5 *2 (-578 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1144 *4)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) - (-5 *2 (-599 *3)) (-5 *1 (-1068 *4 *3)) (-4 *4 (-1183 *3))))) + (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) + (-5 *2 (-578 *3)) (-5 *1 (-1031 *4 *3)) (-4 *4 (-1144 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) - (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4)))) + (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) + (-5 *2 (-578 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1144 *4)))) ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) - (-5 *2 (-599 *3)) (-5 *1 (-1068 *4 *3)) (-4 *4 (-1183 *3))))) + (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) + (-5 *2 (-578 *3)) (-5 *1 (-1031 *4 *3)) (-4 *4 (-1144 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) - (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4)))) + (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) + (-5 *2 (-578 *4)) (-5 *1 (-1031 *3 *4)) (-4 *3 (-1144 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) - (-5 *2 (-599 *3)) (-5 *1 (-1068 *4 *3)) (-4 *4 (-1183 *3))))) + (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) + (-5 *2 (-578 *3)) (-5 *1 (-1031 *4 *3)) (-4 *4 (-1144 *3))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) + (-4 *5 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 - (-2 (|:| |solns| (-599 *5)) - (|:| |maps| (-599 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1068 *3 *5)) (-4 *3 (-1183 *5))))) + (-2 (|:| |solns| (-578 *5)) + (|:| |maps| (-578 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1031 *3 *5)) (-4 *3 (-1144 *5))))) (((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-318)) (-4 *5 (-13 (-327 *4) (-10 -7 (-6 -4146)))) - (-4 *2 (-13 (-327 *4) (-10 -7 (-6 -4146)))) (-5 *1 (-625 *4 *5 *2 *3)) - (-4 *3 (-644 *4 *5 *2)))) + (|partial| -12 (-4 *4 (-308)) (-4 *5 (-13 (-317 *4) (-10 -7 (-6 -3980)))) + (-4 *2 (-13 (-317 *4) (-10 -7 (-6 -3980)))) (-5 *1 (-604 *4 *5 *2 *3)) + (-4 *3 (-622 *4 *5 *2)))) ((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1207 *4)) (-5 *3 (-647 *4)) (-4 *4 (-318)) - (-5 *1 (-626 *4)))) + (|partial| -12 (-5 *2 (-1168 *4)) (-5 *3 (-625 *4)) (-4 *4 (-308)) + (-5 *1 (-605 *4)))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-599 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-318)) - (-5 *1 (-757 *2 *3)) (-4 *3 (-616 *2)))) + (|partial| -12 (-5 *4 (-578 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-308)) + (-5 *1 (-727 *2 *3)) (-4 *3 (-595 *2)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) - (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2))))) + (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) + (-5 *1 (-1031 *3 *2)) (-4 *3 (-1144 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *6)) (-5 *4 (-599 (-1095 *7))) (-4 *6 (-781)) - (-4 *7 (-888 *5 (-484 *6) *6)) (-4 *5 (-989)) (-5 *2 (-1 (-1095 *7) *7)) - (-5 *1 (-1066 *5 *6 *7))))) + (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-1058 *7))) (-4 *6 (-749)) + (-4 *7 (-854 *5 (-463 *6) *6)) (-4 *5 (-954)) (-5 *2 (-1 (-1058 *7) *7)) + (-5 *1 (-1029 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-261)) (-4 *6 (-327 *5)) (-4 *4 (-327 *5)) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2113 (-599 *4)))) - (-5 *1 (-1064 *5 *6 *4 *3)) (-4 *3 (-644 *5 *6 *4))))) + (-12 (-4 *5 (-254)) (-4 *6 (-317 *5)) (-4 *4 (-317 *5)) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1998 (-578 *4)))) + (-5 *1 (-1027 *5 *6 *4 *3)) (-4 *3 (-622 *5 *6 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-261)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) + (-12 (-4 *4 (-254)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1064 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6))))) + (-5 *1 (-1027 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-261)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) - (-5 *1 (-1064 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) + (-12 (-4 *3 (-254)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) + (-5 *1 (-1027 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-261)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1064 *4 *5 *6 *3)) - (-4 *3 (-644 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499)))) + (-12 (-4 *4 (-254)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1027 *4 *5 *6 *3)) + (-4 *3 (-622 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-1074 (-478))) (-5 *1 (-846)) (-5 *3 (-478)))) ((*1 *2 *2) - (-12 (-4 *3 (-261)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) - (-5 *1 (-1064 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) + (-12 (-4 *3 (-254)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) + (-5 *1 (-1027 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-714)) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)))) + (-12 (-5 *2 (-687)) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)))) ((*1 *1 *2) - (-12 (-4 *2 (-989)) (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) - (-4 *5 (-195 *3 *2))))) + (-12 (-4 *2 (-954)) (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) + (-4 *5 (-193 *3 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-599 *1)) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) - (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) + (-12 (-5 *2 (-578 *1)) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) + (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-599 *3)) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) - (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-989)) (-5 *1 (-647 *3)))) + (-12 (-5 *2 (-578 *3)) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) + (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-954)) (-5 *1 (-625 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-599 *4)) (-4 *4 (-989)) (-4 *1 (-1063 *3 *4 *5 *6)) - (-4 *5 (-195 *3 *4)) (-4 *6 (-195 *3 *4))))) + (-12 (-5 *2 (-578 *4)) (-4 *4 (-954)) (-4 *1 (-1026 *3 *4 *5 *6)) + (-4 *5 (-193 *3 *4)) (-4 *6 (-193 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1063 *3 *4 *2 *5)) (-4 *4 (-989)) (-4 *5 (-195 *3 *4)) - (-4 *2 (-195 *3 *4))))) + (-12 (-4 *1 (-1026 *3 *4 *2 *5)) (-4 *4 (-954)) (-4 *5 (-193 *3 *4)) + (-4 *2 (-193 *3 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-857)) (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)))) - ((*1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-318)))) - ((*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-1183 *2)) (-4 *2 (-146)))) + (-12 (-5 *2 (-823)) (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)))) + ((*1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-308)))) + ((*1 *2 *1) (-12 (-4 *1 (-315 *2 *3)) (-4 *3 (-1144 *2)) (-4 *2 (-144)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1207 *4)) (-5 *3 (-857)) (-4 *4 (-305)) (-5 *1 (-481 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) - (-4 *2 (-989))))) -(((*1 *2 *3) - (-12 (-5 *3 (-647 *2)) (-4 *4 (-1183 *2)) - (-4 *2 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) - (-5 *1 (-453 *2 *4 *5)) (-4 *5 (-364 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) - (-4 *2 (-989))))) -(((*1 *2 *3) - (-12 (-4 *4 (-327 *2)) (-4 *5 (-327 *2)) (-4 *2 (-318)) - (-5 *1 (-474 *2 *4 *5 *3)) (-4 *3 (-644 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)) - (|has| *2 (-6 (-4147 "*"))) (-4 *2 (-989)))) - ((*1 *2 *3) - (-12 (-4 *4 (-327 *2)) (-4 *5 (-327 *2)) (-4 *2 (-146)) - (-5 *1 (-646 *2 *4 *5 *3)) (-4 *3 (-644 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) - (|has| *2 (-6 (-4147 "*"))) (-4 *2 (-989))))) -(((*1 *2 *1) - (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)) - (|has| *2 (-6 (-4147 "*"))) (-4 *2 (-989)))) - ((*1 *2 *3) - (-12 (-4 *4 (-327 *2)) (-4 *5 (-327 *2)) (-4 *2 (-146)) - (-5 *1 (-646 *2 *4 *5 *3)) (-4 *3 (-644 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) - (|has| *2 (-6 (-4147 "*"))) (-4 *2 (-989))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) - ((*1 *2 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1157)) (-5 *2 (-714))))) -(((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96))) - ((*1 *1 *1 *1) (-5 *1 (-1060)))) -(((*1 *1 *1) (-12 (-5 *1 (-454 *2)) (-14 *2 (-499)))) - ((*1 *1 *1) (-5 *1 (-1060)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-454 *2)) (-14 *2 (-499)))) - ((*1 *1 *1 *1) (-5 *1 (-1060)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-454 *2)) (-14 *2 (-499)))) - ((*1 *1 *1 *1) (-5 *1 (-1060)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-1055)) (-5 *1 (-1056))))) -(((*1 *2 *1) (-12 (-5 *2 (-1055)) (-5 *1 (-172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1055)) (-5 *1 (-393)))) - ((*1 *2 *1) (-12 (-5 *2 (-1055)) (-5 *1 (-772)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-599 (-1122))) (-5 *3 (-1122)) (-5 *1 (-1055)))) - ((*1 *2 *1) (-12 (-5 *2 (-1055)) (-5 *1 (-1056))))) -(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-639)))) - ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-910)))) - ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1013)))) - ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1055))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-639)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-1122))) (-5 *1 (-1055))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-406)) (-4 *4 (-763)) (-14 *5 (-1117)) - (-5 *2 (-499)) (-5 *1 (-1054 *4 *5))))) + (-12 (-5 *2 (-1168 *4)) (-5 *3 (-823)) (-4 *4 (-295)) (-5 *1 (-460 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) + (-4 *2 (-954))))) +(((*1 *2 *3) + (-12 (-5 *3 (-625 *2)) (-4 *4 (-1144 *2)) + (-4 *2 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) + (-5 *1 (-432 *2 *4 *5)) (-4 *5 (-346 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) + (-4 *2 (-954))))) +(((*1 *2 *3) + (-12 (-4 *4 (-317 *2)) (-4 *5 (-317 *2)) (-4 *2 (-308)) + (-5 *1 (-453 *2 *4 *5 *3)) (-4 *3 (-622 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)) + (|has| *2 (-6 (-3981 "*"))) (-4 *2 (-954)))) + ((*1 *2 *3) + (-12 (-4 *4 (-317 *2)) (-4 *5 (-317 *2)) (-4 *2 (-144)) + (-5 *1 (-624 *2 *4 *5 *3)) (-4 *3 (-622 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) + (|has| *2 (-6 (-3981 "*"))) (-4 *2 (-954))))) +(((*1 *2 *1) + (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)) + (|has| *2 (-6 (-3981 "*"))) (-4 *2 (-954)))) + ((*1 *2 *3) + (-12 (-4 *4 (-317 *2)) (-4 *5 (-317 *2)) (-4 *2 (-144)) + (-5 *1 (-624 *2 *4 *5 *3)) (-4 *3 (-622 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1026 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) + (|has| *2 (-6 (-3981 "*"))) (-4 *2 (-954))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) + ((*1 *2 *1) (-12 (-4 *1 (-1024 *3)) (-4 *3 (-1118)) (-5 *2 (-687))))) +(((*1 *1 *1 *1) (-5 *1 (-83))) ((*1 *1 *1 *1) (-4 *1 (-94))) + ((*1 *1 *1 *1) (-5 *1 (-1023)))) +(((*1 *1 *1) (-12 (-5 *1 (-433 *2)) (-14 *2 (-478)))) + ((*1 *1 *1) (-5 *1 (-1023)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-433 *2)) (-14 *2 (-478)))) + ((*1 *1 *1 *1) (-5 *1 (-1023)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-433 *2)) (-14 *2 (-478)))) + ((*1 *1 *1 *1) (-5 *1 (-1023)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1018)) (-5 *1 (-1019))))) +(((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-170)))) + ((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-374)))) + ((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-742)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-578 (-1084))) (-5 *3 (-1084)) (-5 *1 (-1018)))) + ((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-1019))))) +(((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-152)))) + ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-617)))) + ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-876)))) + ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-977)))) + ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1018))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-1119))) (-5 *1 (-617)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-1084))) (-5 *1 (-1018))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-385)) (-4 *4 (-733)) (-14 *5 (-1079)) + (-5 *2 (-478)) (-5 *1 (-1017 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-406)) (-4 *4 (-763)) (-14 *5 (-1117)) - (-5 *2 (-499)) (-5 *1 (-1054 *4 *5))))) + (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-385)) (-4 *4 (-733)) (-14 *5 (-1079)) + (-5 *2 (-478)) (-5 *1 (-1017 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-499)) - (-5 *1 (-1054 *4 *5))))) + (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-733)) (-14 *5 (-1079)) (-5 *2 (-478)) + (-5 *1 (-1017 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-499)) - (-5 *1 (-1054 *4 *5))))) + (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-733)) (-14 *5 (-1079)) (-5 *2 (-478)) + (-5 *1 (-1017 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-599 *4)) - (-5 *1 (-1054 *4 *5))))) + (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-733)) (-14 *5 (-1079)) (-5 *2 (-578 *4)) + (-5 *1 (-1017 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-599 (-1176 *5 *4))) - (-5 *1 (-1054 *4 *5)) (-5 *3 (-1176 *5 *4))))) + (-12 (-4 *4 (-733)) (-14 *5 (-1079)) (-5 *2 (-578 (-1137 *5 *4))) + (-5 *1 (-1017 *4 *5)) (-5 *3 (-1137 *5 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-599 (-1176 *5 *4))) - (-5 *1 (-1054 *4 *5)) (-5 *3 (-1176 *5 *4))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-1050)) (-5 *3 (-499))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-1050)) (-5 *3 (-499))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-1050)) (-5 *3 (-499))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-1050))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1207 (-499))) (-5 *3 (-499)) (-5 *1 (-1050)))) + (-12 (-4 *4 (-733)) (-14 *5 (-1079)) (-5 *2 (-578 (-1137 *5 *4))) + (-5 *1 (-1017 *4 *5)) (-5 *3 (-1137 *5 *4))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-1013)) (-5 *3 (-478))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-1013)) (-5 *3 (-478))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-1013)) (-5 *3 (-478))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-1013))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1168 (-478))) (-5 *3 (-478)) (-5 *1 (-1013)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1207 (-499))) (-5 *3 (-599 (-499))) (-5 *4 (-499)) - (-5 *1 (-1050))))) + (-12 (-5 *2 (-1168 (-478))) (-5 *3 (-578 (-478))) (-5 *4 (-478)) + (-5 *1 (-1013))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-599 (-499))) (-5 *3 (-599 (-857))) (-5 *4 (-85)) - (-5 *1 (-1050))))) + (-12 (-5 *2 (-578 (-478))) (-5 *3 (-578 (-823))) (-5 *4 (-83)) + (-5 *1 (-1013))))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-647 (-499))) (-5 *3 (-599 (-499))) (-5 *1 (-1050))))) + (-12 (-5 *2 (-625 (-478))) (-5 *3 (-578 (-478))) (-5 *1 (-1013))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-857))) (-5 *4 (-599 (-499))) (-5 *2 (-647 (-499))) - (-5 *1 (-1050))))) + (-12 (-5 *3 (-578 (-823))) (-5 *4 (-578 (-478))) (-5 *2 (-625 (-478))) + (-5 *1 (-1013))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 (-857))) (-5 *2 (-599 (-647 (-499)))) (-5 *1 (-1050))))) + (-12 (-5 *3 (-578 (-823))) (-5 *2 (-578 (-625 (-478)))) (-5 *1 (-1013))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-599 (-499))) (-5 *3 (-647 (-499))) (-5 *1 (-1050))))) + (-12 (-5 *2 (-578 (-478))) (-5 *3 (-625 (-478))) (-5 *1 (-1013))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-599 (-499))) (-5 *2 (-647 (-499))) (-5 *1 (-1050))))) + (-12 (-5 *3 (-578 (-478))) (-5 *2 (-625 (-478))) (-5 *1 (-1013))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) - (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) + (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-599 *4)) (-5 *1 (-1048 *5 *6 *7 *3 *4)) - (-4 *4 (-1011 *5 *6 *7 *3))))) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-578 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) + (-4 *4 (-975 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-85)) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-83)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) - (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1587 *4)))) + (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-599 *4)) (-5 *1 (-1048 *5 *6 *7 *3 *4)) - (-4 *4 (-1011 *5 *6 *7 *3))))) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-578 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) + (-4 *4 (-975 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) - (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1587 *4)))) + (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-599 *4)) (-5 *1 (-1048 *5 *6 *7 *3 *4)) - (-4 *4 (-1011 *5 *6 *7 *3))))) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-578 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) + (-4 *4 (-975 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) - (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1587 *4)))) + (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) - (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) + (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) - (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) + (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) - (-4 *3 (-1005 *6 *7 *8)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) - (-5 *1 (-1048 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) + (-12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) + (-4 *3 (-969 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) + (-5 *1 (-1011 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-599 (-2 (|:| |val| (-599 *8)) (|:| -1633 *9)))) (-5 *5 (-85)) - (-4 *8 (-1005 *6 *7 *4)) (-4 *9 (-1011 *6 *7 *4 *8)) (-4 *6 (-406)) - (-4 *7 (-738)) (-4 *4 (-781)) - (-5 *2 (-599 (-2 (|:| |val| *8) (|:| -1633 *9)))) - (-5 *1 (-1048 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -1587 *9)))) (-5 *5 (-83)) + (-4 *8 (-969 *6 *7 *4)) (-4 *9 (-975 *6 *7 *4 *8)) (-4 *6 (-385)) + (-4 *7 (-710)) (-4 *4 (-749)) + (-5 *2 (-578 (-2 (|:| |val| *8) (|:| -1587 *9)))) + (-5 *1 (-1011 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))) - (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))) + (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) (((*1 *2) - (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) - (-5 *2 (-1213)) (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6)))) + (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) + (-5 *2 (-1174)) (-5 *1 (-976 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) - (-5 *2 (-1213)) (-5 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6))))) + (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) + (-5 *2 (-1174)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) - (-4 *8 (-1011 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1062)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-976 *4 *5 *6 *7 *8)) + (-4 *8 (-975 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1048 *4 *5 *6 *7 *8)) - (-4 *8 (-1011 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1062)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) + (-4 *8 (-975 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) - (-5 *2 (-1213)) (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6)))) + (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) + (-5 *2 (-1174)) (-5 *1 (-976 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) - (-5 *2 (-1213)) (-5 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6))))) + (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) + (-5 *2 (-1174)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) - (-4 *8 (-1011 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1062)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-976 *4 *5 *6 *7 *8)) + (-4 *8 (-975 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1048 *4 *5 *6 *7 *8)) - (-4 *8 (-1011 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1062)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) + (-4 *8 (-975 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) - (-4 *9 (-1005 *6 *7 *8)) - (-5 *2 (-2 (|:| -3404 (-599 *9)) (|:| -1633 *4) (|:| |ineq| (-599 *9)))) - (-5 *1 (-928 *6 *7 *8 *9 *4)) (-5 *3 (-599 *9)) - (-4 *4 (-1011 *6 *7 *8 *9)))) + (|partial| -12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) + (-4 *9 (-969 *6 *7 *8)) + (-5 *2 (-2 (|:| -3249 (-578 *9)) (|:| -1587 *4) (|:| |ineq| (-578 *9)))) + (-5 *1 (-894 *6 *7 *8 *9 *4)) (-5 *3 (-578 *9)) (-4 *4 (-975 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) - (-4 *9 (-1005 *6 *7 *8)) - (-5 *2 (-2 (|:| -3404 (-599 *9)) (|:| -1633 *4) (|:| |ineq| (-599 *9)))) - (-5 *1 (-1047 *6 *7 *8 *9 *4)) (-5 *3 (-599 *9)) - (-4 *4 (-1011 *6 *7 *8 *9))))) + (|partial| -12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) + (-4 *9 (-969 *6 *7 *8)) + (-5 *2 (-2 (|:| -3249 (-578 *9)) (|:| -1587 *4) (|:| |ineq| (-578 *9)))) + (-5 *1 (-1010 *6 *7 *8 *9 *4)) (-5 *3 (-578 *9)) + (-4 *4 (-975 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-599 *10)) (-5 *5 (-85)) (-4 *10 (-1011 *6 *7 *8 *9)) - (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *9 (-1005 *6 *7 *8)) + (-12 (-5 *4 (-578 *10)) (-5 *5 (-83)) (-4 *10 (-975 *6 *7 *8 *9)) + (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *9 (-969 *6 *7 *8)) (-5 *2 - (-599 (-2 (|:| -3404 (-599 *9)) (|:| -1633 *10) (|:| |ineq| (-599 *9))))) - (-5 *1 (-928 *6 *7 *8 *9 *10)) (-5 *3 (-599 *9)))) + (-578 (-2 (|:| -3249 (-578 *9)) (|:| -1587 *10) (|:| |ineq| (-578 *9))))) + (-5 *1 (-894 *6 *7 *8 *9 *10)) (-5 *3 (-578 *9)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-599 *10)) (-5 *5 (-85)) (-4 *10 (-1011 *6 *7 *8 *9)) - (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *9 (-1005 *6 *7 *8)) + (-12 (-5 *4 (-578 *10)) (-5 *5 (-83)) (-4 *10 (-975 *6 *7 *8 *9)) + (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *9 (-969 *6 *7 *8)) (-5 *2 - (-599 (-2 (|:| -3404 (-599 *9)) (|:| -1633 *10) (|:| |ineq| (-599 *9))))) - (-5 *1 (-1047 *6 *7 *8 *9 *10)) (-5 *3 (-599 *9))))) + (-578 (-2 (|:| -3249 (-578 *9)) (|:| -1587 *10) (|:| |ineq| (-578 *9))))) + (-5 *1 (-1010 *6 *7 *8 *9 *10)) (-5 *3 (-578 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-599 (-2 (|:| |val| (-599 *6)) (|:| -1633 *7)))) - (-4 *6 (-1005 *3 *4 *5)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) - (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-578 (-2 (|:| |val| (-578 *6)) (|:| -1587 *7)))) + (-4 *6 (-969 *3 *4 *5)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) + (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-894 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-599 (-2 (|:| |val| (-599 *6)) (|:| -1633 *7)))) - (-4 *6 (-1005 *3 *4 *5)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) - (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-1047 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-578 (-2 (|:| |val| (-578 *6)) (|:| -1587 *7)))) + (-4 *6 (-969 *3 *4 *5)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) + (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-1010 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-599 *7)) (|:| -1633 *8))) - (-4 *7 (-1005 *4 *5 *6)) (-4 *8 (-1011 *4 *5 *6 *7)) (-4 *4 (-406)) - (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -1587 *8))) + (-4 *7 (-969 *4 *5 *6)) (-4 *8 (-975 *4 *5 *6 *7)) (-4 *4 (-385)) + (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-599 *7)) (|:| -1633 *8))) - (-4 *7 (-1005 *4 *5 *6)) (-4 *8 (-1011 *4 *5 *6 *7)) (-4 *4 (-406)) - (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8))))) + (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -1587 *8))) + (-4 *7 (-969 *4 *5 *6)) (-4 *8 (-975 *4 *5 *6 *7)) (-4 *4 (-385)) + (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-599 *7)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) - (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) - (-5 *1 (-928 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-578 *7)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) + (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) + (-5 *1 (-894 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-599 *7)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) - (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) - (-5 *1 (-1047 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-578 *7)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) + (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) + (-5 *1 (-1010 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) + (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-599 *3)) (-4 *3 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) - (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-85)) - (-5 *1 (-928 *5 *6 *7 *8 *3)))) + (-12 (-5 *4 (-578 *3)) (-4 *3 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) + (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-83)) + (-5 *1 (-894 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) + (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-599 *3)) (-4 *3 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) - (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-85)) - (-5 *1 (-1047 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-578 *3)) (-4 *3 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) + (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-83)) + (-5 *1 (-1010 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) - (-4 *3 (-1011 *4 *5 *6 *7)))) + (|partial| -12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) + (-4 *3 (-975 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) - (-4 *3 (-1011 *4 *5 *6 *7))))) + (|partial| -12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) + (-4 *3 (-975 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)) - (-4 *8 (-1011 *4 *5 *6 *7)))) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)) + (-4 *8 (-975 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) - (-4 *8 (-1011 *4 *5 *6 *7))))) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) + (-4 *8 (-975 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)) - (-4 *8 (-1011 *4 *5 *6 *7)))) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)) + (-4 *8 (-975 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) - (-4 *8 (-1011 *4 *5 *6 *7))))) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) + (-4 *8 (-975 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)) - (-4 *8 (-1011 *4 *5 *6 *7)))) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)) + (-4 *8 (-975 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) - (-4 *8 (-1011 *4 *5 *6 *7))))) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) + (-4 *8 (-975 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) + (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7))))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) + (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) + (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7))))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) + (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-599 *7)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) - (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) - (-5 *1 (-928 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-578 *7)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) + (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) + (-5 *1 (-894 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-599 *7)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) - (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) - (-5 *1 (-1047 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-578 *7)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) + (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) + (-5 *1 (-1010 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) + (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7))))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) + (-5 *2 (-83)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) - (-5 *2 (-1213)) (-5 *1 (-928 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6)))) + (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) + (-5 *2 (-1174)) (-5 *1 (-894 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) - (-5 *2 (-1213)) (-5 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6))))) + (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) + (-5 *2 (-1174)) (-5 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-928 *4 *5 *6 *7 *8)) - (-4 *8 (-1011 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1062)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-894 *4 *5 *6 *7 *8)) + (-4 *8 (-975 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) - (-4 *8 (-1011 *4 *5 *6 *7))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1117)) (-5 *3 (-388)) (-4 *5 (-1041)) (-5 *1 (-1046 *5 *4)) - (-4 *4 (-375 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1014)))) + (-12 (-5 *3 (-1062)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) + (-4 *8 (-975 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-978)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) - (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) + (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) - (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) + (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) - (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) + (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) - (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) + (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) - (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) + (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) - (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) + (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) + (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) ((*1 *2 *1) - (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) - (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) - ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-520 *3)) (-4 *3 (-978 (-499))))) + (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) + (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) + ((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-499 *3)) (-4 *3 (-943 (-478))))) ((*1 *2 *1) - (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) - (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) + (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) - (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *3 (-1005)) (-4 *4 (-1005)) + (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *7 (-1005)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-5 *2 (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| *4)))) - (-5 *1 (-823 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) + (-12 (-5 *2 (-578 (-2 (|:| -3844 (-1079)) (|:| |entry| *4)))) + (-5 *1 (-791 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)))) ((*1 *2 *1) - (-12 (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) - (-4 *7 (-1041)) (-5 *2 (-599 *1)) (-4 *1 (-1044 *3 *4 *5 *6 *7))))) + (-12 (-4 *3 (-1005)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) + (-4 *7 (-1005)) (-5 *2 (-578 *1)) (-4 *1 (-1008 *3 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1044 *3 *2 *4 *5 *6)) (-4 *3 (-1041)) (-4 *4 (-1041)) - (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041))))) -(((*1 *2 *3) (-12 (-5 *2 (-499)) (-5 *1 (-520 *3)) (-4 *3 (-978 *2)))) + (-12 (-4 *1 (-1008 *3 *2 *4 *5 *6)) (-4 *3 (-1005)) (-4 *4 (-1005)) + (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005))))) +(((*1 *2 *3) (-12 (-5 *2 (-478)) (-5 *1 (-499 *3)) (-4 *3 (-943 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-1044 *3 *4 *2 *5 *6)) (-4 *3 (-1041)) (-4 *4 (-1041)) - (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-857)) (-4 *1 (-358)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-499)) (-4 *1 (-358)))) + (-12 (-4 *1 (-1008 *3 *4 *2 *5 *6)) (-4 *3 (-1005)) (-4 *4 (-1005)) + (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-478)) (-5 *3 (-823)) (-4 *1 (-340)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-478)) (-4 *1 (-340)))) ((*1 *2 *1) - (-12 (-4 *1 (-1044 *3 *4 *5 *2 *6)) (-4 *3 (-1041)) (-4 *4 (-1041)) - (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041))))) + (-12 (-4 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *3 (-1005)) (-4 *4 (-1005)) + (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005))))) (((*1 *2 *1) - (-12 (-4 *1 (-1044 *3 *4 *5 *6 *2)) (-4 *3 (-1041)) (-4 *4 (-1041)) - (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041))))) + (-12 (-4 *1 (-1008 *3 *4 *5 *6 *2)) (-4 *3 (-1005)) (-4 *4 (-1005)) + (-4 *5 (-1005)) (-4 *6 (-1005)) (-4 *2 (-1005))))) (((*1 *1 *1) - (-12 (-4 *1 (-1044 *2 *3 *4 *5 *6)) (-4 *2 (-1041)) (-4 *3 (-1041)) - (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041))))) + (-12 (-4 *1 (-1008 *2 *3 *4 *5 *6)) (-4 *2 (-1005)) (-4 *3 (-1005)) + (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005))))) (((*1 *1 *1) - (-12 (-4 *1 (-1044 *2 *3 *4 *5 *6)) (-4 *2 (-1041)) (-4 *3 (-1041)) - (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041))))) + (-12 (-4 *1 (-1008 *2 *3 *4 *5 *6)) (-4 *2 (-1005)) (-4 *3 (-1005)) + (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-857)) (-5 *1 (-1042 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) + (|partial| -12 (-5 *2 (-823)) (-5 *1 (-1006 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) (((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-857)) (-5 *1 (-1042 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-629)))) + (|partial| -12 (-5 *2 (-823)) (-5 *1 (-1006 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-1038))) (-5 *1 (-608)))) ((*1 *2 *1) - (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1042 *3 *4)) (-14 *3 (-857)) - (-14 *4 (-857))))) + (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1006 *3 *4)) (-14 *3 (-823)) + (-14 *4 (-823))))) (((*1 *1 *2) - (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1042 *3 *4)) (-14 *3 (-857)) - (-14 *4 (-857))))) + (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1006 *3 *4)) (-14 *3 (-823)) + (-14 *4 (-823))))) (((*1 *2) - (-12 (-5 *2 (-1207 (-1042 *3 *4))) (-5 *1 (-1042 *3 *4)) (-14 *3 (-857)) - (-14 *4 (-857))))) + (-12 (-5 *2 (-1168 (-1006 *3 *4))) (-5 *1 (-1006 *3 *4)) (-14 *3 (-823)) + (-14 *4 (-823))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4145)) (-4 *1 (-443 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) - (-5 *2 (-85)))) + (-12 (|has| *1 (-6 -3979)) (-4 *1 (-422 *3)) (-4 *3 (-1118)) (-4 *3 (-1005)) + (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-840 *4)) (-4 *4 (-1041)) (-5 *2 (-85)) (-5 *1 (-843 *4)))) + (-12 (-5 *3 (-806 *4)) (-4 *4 (-1005)) (-5 *2 (-83)) (-5 *1 (-809 *4)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-857)) (-5 *2 (-85)) (-5 *1 (-1042 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-823)) (-5 *2 (-83)) (-5 *1 (-1006 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-857)) (-5 *2 (-714)) (-5 *1 (-1042 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-823)) (-5 *2 (-687)) (-5 *1 (-1006 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1060))))) -(((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1099))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-1041)) (-5 *2 (-85))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) - ((*1 *1 *1) (-5 *1 (-797))) - ((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-4 *1 (-1039 *3)))) - ((*1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-4 *1 (-1039 *3)))) - ((*1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041))))) +(((*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1023))))) +(((*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1062))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1005)) (-5 *2 (-83))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) + ((*1 *1 *1) (-5 *1 (-765))) + ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-4 *1 (-1003 *3)))) + ((*1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-4 *1 (-1003 *3)))) + ((*1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005))))) (((*1 *1 *2) - (-12 (-5 *2 (-599 (-458 *3 *4 *5 *6))) (-4 *3 (-318)) (-4 *4 (-738)) - (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) + (-12 (-5 *2 (-578 (-437 *3 *4 *5 *6))) (-4 *3 (-308)) (-4 *4 (-710)) + (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) - (-4 *5 (-888 *2 *3 *4)))) + (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) + (-4 *5 (-854 *2 *3 *4)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) - (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)))) + (-12 (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) + (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-599 *1)) (-5 *3 (-599 *7)) (-4 *1 (-1011 *4 *5 *6 *7)) - (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)))) + (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-975 *4 *5 *6 *7)) + (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *7)))) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *7)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) - (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-1041)) (-5 *2 (-85))))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) + (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1005)) (-5 *2 (-83))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-599 (-566 *4))) (-4 *4 (-375 *3)) (-4 *3 (-1041)) - (-5 *1 (-524 *3 *4)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-106)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-127)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-634)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-959)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1006)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-1036))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-1034 *3)) (-4 *3 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-1157)) (-5 *2 (-499))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1099)) (-5 *1 (-929)))) + (-12 (-5 *2 (-578 (-545 *4))) (-4 *4 (-357 *3)) (-4 *3 (-1005)) + (-5 *1 (-503 *3 *4)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-791 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-1038))) (-5 *1 (-104)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-1038))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-125)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-1038))) (-5 *1 (-133)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-170)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-612)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-925)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-970)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-1038))) (-5 *1 (-1000))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-998 *3)) (-4 *3 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-998 *3)) (-4 *3 (-1118)) (-5 *2 (-478))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1118)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1079)) (-5 *3 (-1062)) (-5 *1 (-895)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-4 *4 (-1157)) (-5 *1 (-998 *3 *4)) - (-4 *3 (-1034 *4)))) + (-12 (-5 *2 (-1079)) (-4 *4 (-1118)) (-5 *1 (-963 *3 *4)) (-4 *3 (-998 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1029 *4)) (-4 *4 (-1157)) (-5 *1 (-1032 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-1031))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-881 (-179)) (-881 (-179)))) (-5 *1 (-220)))) + (-12 (-5 *2 (-1079)) (-5 *3 (-993 *4)) (-4 *4 (-1118)) (-5 *1 (-996 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-1038))) (-5 *1 (-995))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-847 (-177)) (-847 (-177)))) (-5 *1 (-218)))) ((*1 *2 *3) - (-12 (-5 *3 (-1207 *1)) (-4 *1 (-283 *4)) (-4 *4 (-318)) (-5 *2 (-647 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-1207 *3)))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-276 *4)) (-4 *4 (-308)) (-5 *2 (-625 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-1168 *3)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-1207 *4)))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-1168 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-315 *4 *5)) (-4 *4 (-144)) + (-4 *5 (-1144 *4)) (-5 *2 (-625 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1183 *4)) (-5 *2 (-1207 *4)))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-315 *4 *5)) (-4 *4 (-144)) + (-4 *5 (-1144 *4)) (-5 *2 (-1168 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1207 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-144)) + (-4 *5 (-1144 *4)) (-5 *2 (-625 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) - (-5 *2 (-1207 *3)))) + (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1144 *3)) + (-5 *2 (-1168 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1207 *1)) (-4 *1 (-372 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-1207 *3)))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-354 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-1168 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1207 *3)) (-5 *1 (-595 *3 *4)) (-4 *3 (-318)) - (-14 *4 (-599 (-1117))))) + (-12 (-5 *2 (-1168 *3)) (-5 *1 (-574 *3 *4)) (-4 *3 (-308)) + (-14 *4 (-578 (-1079))))) ((*1 *2 *1) - (-12 (-5 *2 (-1207 *3)) (-5 *1 (-597 *3 *4)) (-4 *3 (-318)) - (-14 *4 (-599 (-1117))))) + (-12 (-5 *2 (-1168 *3)) (-5 *1 (-576 *3 *4)) (-4 *3 (-308)) + (-14 *4 (-578 (-1079))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-599 (-647 *5))) (-5 *3 (-647 *5)) (-4 *5 (-318)) - (-5 *2 (-1207 *5)) (-5 *1 (-1026 *5))))) + (-12 (-5 *4 (-578 (-625 *5))) (-5 *3 (-625 *5)) (-4 *5 (-308)) + (-5 *2 (-1168 *5)) (-5 *1 (-990 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) - (-5 *2 (-1207 (-647 *4))))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) + (-5 *2 (-1168 (-625 *4))))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1207 (-647 *4))) (-5 *1 (-371 *3 *4)) - (-4 *3 (-372 *4)))) - ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-1207 (-647 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-1117))) (-4 *5 (-318)) - (-5 *2 (-1207 (-647 (-361 (-884 *5))))) (-5 *1 (-1026 *5)) - (-5 *4 (-647 (-361 (-884 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-1117))) (-4 *5 (-318)) (-5 *2 (-1207 (-647 (-884 *5)))) - (-5 *1 (-1026 *5)) (-5 *4 (-647 (-884 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 (-647 *4))) (-4 *4 (-318)) (-5 *2 (-1207 (-647 *4))) - (-5 *1 (-1026 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-149))) (-5 *1 (-1025))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-80))) (-5 *1 (-149)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-80))) (-5 *1 (-1025))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-80)) (-5 *1 (-1025))))) -(((*1 *1) (-5 *1 (-1025)))) -(((*1 *1) (-5 *1 (-1025)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-1024 *2)))) + (-12 (-4 *4 (-144)) (-5 *2 (-1168 (-625 *4))) (-5 *1 (-353 *3 *4)) + (-4 *3 (-354 *4)))) + ((*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-1168 (-625 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-578 (-1079))) (-4 *5 (-308)) + (-5 *2 (-1168 (-625 (-343 (-850 *5))))) (-5 *1 (-990 *5)) + (-5 *4 (-625 (-343 (-850 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-578 (-1079))) (-4 *5 (-308)) (-5 *2 (-1168 (-625 (-850 *5)))) + (-5 *1 (-990 *5)) (-5 *4 (-625 (-850 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-578 (-625 *4))) (-4 *4 (-308)) (-5 *2 (-1168 (-625 *4))) + (-5 *1 (-990 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-147))) (-5 *1 (-989))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-78))) (-5 *1 (-147)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-78))) (-5 *1 (-989))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-989))))) +(((*1 *1) (-5 *1 (-989)))) +(((*1 *1) (-5 *1 (-989)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *2)) (-4 *2 (-103)) (-5 *1 (-988 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-499) *2 *2)) (-4 *2 (-105)) (-5 *1 (-1024 *2))))) -(((*1 *2) (-12 (-5 *2 (-599 *3)) (-5 *1 (-1024 *3)) (-4 *3 (-105))))) -(((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1024 *3)) (-4 *3 (-105))))) -(((*1 *1) (-5 *1 (-1022)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) - (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-599 *3)) (-5 *1 (-542 *5 *6 *7 *8 *3)) - (-4 *3 (-1049 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) - (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) - (-5 *1 (-1018 *5 *6)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-261) (-120))) - (-5 *2 (-599 (-2 (|:| -1840 (-1111 *4)) (|:| -3362 (-599 (-884 *4)))))) - (-5 *1 (-1018 *4 *5)) (-5 *3 (-599 (-884 *4))) (-14 *5 (-599 (-1117))))) + (-12 (-5 *3 (-1 (-478) *2 *2)) (-4 *2 (-103)) (-5 *1 (-988 *2))))) +(((*1 *2) (-12 (-5 *2 (-578 *3)) (-5 *1 (-988 *3)) (-4 *3 (-103))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-988 *3)) (-4 *3 (-103))))) +(((*1 *1) (-5 *1 (-986)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) + (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-578 *3)) (-5 *1 (-521 *5 *6 *7 *8 *3)) + (-4 *3 (-1012 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) + (-5 *2 (-578 (-2 (|:| -1734 (-1074 *5)) (|:| -3207 (-578 (-850 *5)))))) + (-5 *1 (-982 *5 *6)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1079))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-254) (-118))) + (-5 *2 (-578 (-2 (|:| -1734 (-1074 *4)) (|:| -3207 (-578 (-850 *4)))))) + (-5 *1 (-982 *4 *5)) (-5 *3 (-578 (-850 *4))) (-14 *5 (-578 (-1079))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) - (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) - (-5 *1 (-1018 *5 *6)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117)))))) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) + (-5 *2 (-578 (-2 (|:| -1734 (-1074 *5)) (|:| -3207 (-578 (-850 *5)))))) + (-5 *1 (-982 *5 *6)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1079)))))) (((*1 *1 *2) - (-12 (-5 *2 (-599 (-1015 *3 *4 *5))) (-4 *3 (-1041)) - (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))) - (-4 *5 (-13 (-375 *4) (-821 *3) (-569 (-825 *3)))) - (-5 *1 (-1017 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1041)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))) - (-5 *2 (-599 (-1015 *3 *4 *5))) (-5 *1 (-1017 *3 *4 *5)) - (-4 *5 (-13 (-375 *4) (-821 *3) (-569 (-825 *3))))))) + (-12 (-5 *2 (-578 (-979 *3 *4 *5))) (-4 *3 (-1005)) + (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))) + (-4 *5 (-13 (-357 *4) (-789 *3) (-548 (-793 *3)))) (-5 *1 (-981 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1005)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))) + (-5 *2 (-578 (-979 *3 *4 *5))) (-5 *1 (-981 *3 *4 *5)) + (-4 *5 (-13 (-357 *4) (-789 *3) (-548 (-793 *3))))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-599 (-1117))) (-4 *4 (-1041)) - (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-1015 *4 *5 *2)) - (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))))) + (-12 (-5 *3 (-578 (-1079))) (-4 *4 (-1005)) + (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-979 *4 *5 *2)) + (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1041)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))) - (-5 *1 (-1015 *3 *4 *2)) - (-4 *2 (-13 (-375 *4) (-821 *3) (-569 (-825 *3))))))) + (-12 (-4 *3 (-1005)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))) + (-5 *1 (-979 *3 *4 *2)) (-4 *2 (-13 (-357 *4) (-789 *3) (-548 (-793 *3))))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-825 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1041)) (-4 *5 (-1157)) - (-5 *1 (-826 *4 *5)))) + (-12 (-5 *2 (-793 *4)) (-5 *3 (-1 (-83) *5)) (-4 *4 (-1005)) (-4 *5 (-1118)) + (-5 *1 (-794 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-825 *4)) (-5 *3 (-599 (-1 (-85) *5))) (-4 *4 (-1041)) - (-4 *5 (-1157)) (-5 *1 (-826 *4 *5)))) + (-12 (-5 *2 (-793 *4)) (-5 *3 (-578 (-1 (-83) *5))) (-4 *4 (-1005)) + (-4 *5 (-1118)) (-5 *1 (-794 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-825 *5)) (-5 *3 (-599 (-1117))) (-5 *4 (-1 (-85) (-599 *6))) - (-4 *5 (-1041)) (-4 *6 (-1157)) (-5 *1 (-826 *5 *6)))) + (-12 (-5 *2 (-793 *5)) (-5 *3 (-578 (-1079))) (-5 *4 (-1 (-83) (-578 *6))) + (-4 *5 (-1005)) (-4 *6 (-1118)) (-5 *1 (-794 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1157)) - (-5 *2 (-268 (-499))) (-5 *1 (-875 *5)))) + (-12 (-5 *3 (-1079)) (-5 *4 (-1 (-83) *5)) (-4 *5 (-1118)) + (-5 *2 (-261 (-478))) (-5 *1 (-841 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-599 (-1 (-85) *5))) (-4 *5 (-1157)) - (-5 *2 (-268 (-499))) (-5 *1 (-875 *5)))) + (-12 (-5 *3 (-1079)) (-5 *4 (-578 (-1 (-83) *5))) (-4 *5 (-1118)) + (-5 *2 (-261 (-478))) (-5 *1 (-841 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1157)) (-4 *4 (-1041)) - (-5 *1 (-876 *4 *2 *5)) (-4 *2 (-375 *4)))) + (-12 (-5 *3 (-1 (-83) *5)) (-4 *5 (-1118)) (-4 *4 (-1005)) + (-5 *1 (-842 *4 *2 *5)) (-4 *2 (-357 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-599 (-1 (-85) *5))) (-4 *5 (-1157)) (-4 *4 (-1041)) - (-5 *1 (-876 *4 *2 *5)) (-4 *2 (-375 *4)))) + (-12 (-5 *3 (-578 (-1 (-83) *5))) (-4 *5 (-1118)) (-4 *4 (-1005)) + (-5 *1 (-842 *4 *2 *5)) (-4 *2 (-357 *4)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-1 (-85) (-599 *6))) - (-4 *6 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))) (-4 *4 (-1041)) - (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-1015 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1041)) (-4 *4 (-13 (-989) (-821 *3) (-569 *2))) - (-5 *2 (-825 *3)) (-5 *1 (-1015 *3 *4 *5)) - (-4 *5 (-13 (-375 *4) (-821 *3) (-569 *2)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1041)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))) - (-5 *2 (-599 (-1117))) (-5 *1 (-1015 *3 *4 *5)) - (-4 *5 (-13 (-375 *4) (-821 *3) (-569 (-825 *3))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-266)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-910)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-934)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-976)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1013))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) - (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-599 *4)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) - (-4 *4 (-1011 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-85)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) - (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) + (-12 (-5 *2 (-578 (-1079))) (-5 *3 (-1 (-83) (-578 *6))) + (-4 *6 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))) (-4 *4 (-1005)) + (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-979 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1005)) (-4 *4 (-13 (-954) (-789 *3) (-548 *2))) + (-5 *2 (-793 *3)) (-5 *1 (-979 *3 *4 *5)) + (-4 *5 (-13 (-357 *4) (-789 *3) (-548 *2)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1005)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))) + (-5 *2 (-578 (-1079))) (-5 *1 (-979 *3 *4 *5)) + (-4 *5 (-13 (-357 *4) (-789 *3) (-548 (-793 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-152)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-259)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-876)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-900)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-941)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-977))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) + (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-578 *4)) (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-83)) (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1587 *4)))) + (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) - (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) + (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) - (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) + (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) - (-4 *3 (-1005 *6 *7 *8)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) - (-5 *1 (-1012 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) + (-12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) + (-4 *3 (-969 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) + (-5 *1 (-976 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-599 (-2 (|:| |val| (-599 *8)) (|:| -1633 *9)))) (-5 *5 (-85)) - (-4 *8 (-1005 *6 *7 *4)) (-4 *9 (-1011 *6 *7 *4 *8)) (-4 *6 (-406)) - (-4 *7 (-738)) (-4 *4 (-781)) - (-5 *2 (-599 (-2 (|:| |val| *8) (|:| -1633 *9)))) - (-5 *1 (-1012 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -1587 *9)))) (-5 *5 (-83)) + (-4 *8 (-969 *6 *7 *4)) (-4 *9 (-975 *6 *7 *4 *8)) (-4 *6 (-385)) + (-4 *7 (-710)) (-4 *4 (-749)) + (-5 *2 (-578 (-2 (|:| |val| *8) (|:| -1587 *9)))) + (-5 *1 (-976 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))) - (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-578 (-2 (|:| |val| (-578 *3)) (|:| -1587 *4)))) + (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) - (-5 *2 (-3 (-85) (-599 *1))) (-4 *1 (-1011 *4 *5 *6 *3))))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) + (-5 *2 (-3 (-83) (-578 *1))) (-4 *1 (-975 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) + (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) - (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *1)))) - (-4 *1 (-1011 *4 *5 *6 *3))))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) + (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1587 *1)))) + (-4 *1 (-975 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) - (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3))))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) + (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) - (-5 *2 (-3 *3 (-599 *1))) (-4 *1 (-1011 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-510)) (-4 *2 (-989)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3)))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) + (-5 *2 (-3 *3 (-578 *1))) (-4 *1 (-975 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-489)) (-4 *2 (-954)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1144 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *2 (-510)))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *2 (-489)))) ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) - (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *1)))) - (-4 *1 (-1011 *4 *5 *6 *3))))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) + (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *1)))) + (-4 *1 (-975 *4 *5 *6 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-599 *1)) (-5 *3 (-599 *7)) (-4 *1 (-1011 *4 *5 *6 *7)) - (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)))) + (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-975 *4 *5 *6 *7)) + (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *7)))) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) - (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)))) + (-12 (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) + (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) - (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) + (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) - (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) + (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) + (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1008 *4 *3)) (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) - (-5 *2 (-85))))) + (-12 (-4 *1 (-972 *4 *3)) (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1144 *4)) + (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-508 *3)) (-4 *3 (-13 (-358) (-1143))) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-735)) (-5 *2 (-85)))) + (-12 (-4 *1 (-487 *3)) (-4 *3 (-13 (-340) (-1104))) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-4 *1 (-707)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1008 *4 *3)) (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) - (-5 *2 (-85))))) + (-12 (-4 *1 (-972 *4 *3)) (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1144 *4)) + (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-508 *3)) (-4 *3 (-13 (-358) (-1143))) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-737)) (-5 *2 (-85)))) + (-12 (-4 *1 (-487 *3)) (-4 *3 (-13 (-340) (-1104))) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-4 *1 (-709)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1008 *4 *3)) (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) - (-5 *2 (-85))))) + (-12 (-4 *1 (-972 *4 *3)) (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1144 *4)) + (-5 *2 (-83))))) (((*1 *2 *2) - (-12 (-4 *3 (-978 (-499))) (-4 *3 (-510)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-375 *3)))) + (-12 (-4 *3 (-943 (-478))) (-4 *3 (-489)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-357 *3)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1111 *4)) (-5 *1 (-138 *3 *4)) - (-4 *3 (-139 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-989)) (-4 *1 (-252)))) - ((*1 *2) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-1111 *3)))) - ((*1 *2) (-12 (-4 *1 (-682 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1183 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1008 *3 *2)) (-4 *3 (-13 (-780) (-318))) (-4 *2 (-1183 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-884 (-499))) (-5 *2 (-599 *1)) (-4 *1 (-952)))) - ((*1 *2 *3) - (-12 (-5 *3 (-884 (-361 (-499)))) (-5 *2 (-599 *1)) (-4 *1 (-952)))) - ((*1 *2 *3) (-12 (-5 *3 (-884 *1)) (-4 *1 (-952)) (-5 *2 (-599 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1111 (-499))) (-5 *2 (-599 *1)) (-4 *1 (-952)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1111 (-361 (-499)))) (-5 *2 (-599 *1)) (-4 *1 (-952)))) - ((*1 *2 *3) (-12 (-5 *3 (-1111 *1)) (-4 *1 (-952)) (-5 *2 (-599 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) (-5 *2 (-599 *1)) - (-4 *1 (-1008 *4 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1111 *1)) (-5 *3 (-1117)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-884 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-4 *1 (-29 *3)) (-4 *3 (-510)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-510)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1111 *2)) (-5 *4 (-1117)) (-4 *2 (-375 *5)) (-5 *1 (-32 *5 *2)) - (-4 *5 (-510)))) + (-12 (-4 *4 (-144)) (-5 *2 (-1074 *4)) (-5 *1 (-136 *3 *4)) + (-4 *3 (-137 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-954)) (-4 *1 (-250)))) + ((*1 *2) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-1074 *3)))) + ((*1 *2) (-12 (-4 *1 (-656 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1144 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-972 *3 *2)) (-4 *3 (-13 (-748) (-308))) (-4 *2 (-1144 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-850 (-478))) (-5 *2 (-578 *1)) (-4 *1 (-918)))) + ((*1 *2 *3) + (-12 (-5 *3 (-850 (-343 (-478)))) (-5 *2 (-578 *1)) (-4 *1 (-918)))) + ((*1 *2 *3) (-12 (-5 *3 (-850 *1)) (-4 *1 (-918)) (-5 *2 (-578 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1074 (-478))) (-5 *2 (-578 *1)) (-4 *1 (-918)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1074 (-343 (-478)))) (-5 *2 (-578 *1)) (-4 *1 (-918)))) + ((*1 *2 *3) (-12 (-5 *3 (-1074 *1)) (-4 *1 (-918)) (-5 *2 (-578 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1144 *4)) (-5 *2 (-578 *1)) + (-4 *1 (-972 *4 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1074 *1)) (-5 *3 (-1079)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-850 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1079)) (-4 *1 (-29 *3)) (-4 *3 (-489)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-489)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1074 *2)) (-5 *4 (-1079)) (-4 *2 (-357 *5)) (-5 *1 (-32 *5 *2)) + (-4 *5 (-489)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1111 *1)) (-5 *3 (-857)) (-4 *1 (-952)))) + (|partial| -12 (-5 *2 (-1074 *1)) (-5 *3 (-823)) (-4 *1 (-918)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1111 *1)) (-5 *3 (-857)) (-5 *4 (-797)) - (-4 *1 (-952)))) + (|partial| -12 (-5 *2 (-1074 *1)) (-5 *3 (-823)) (-5 *4 (-765)) + (-4 *1 (-918)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-857)) (-4 *4 (-13 (-780) (-318))) - (-4 *1 (-1008 *4 *2)) (-4 *2 (-1183 *4))))) + (|partial| -12 (-5 *3 (-823)) (-4 *4 (-13 (-748) (-308))) + (-4 *1 (-972 *4 *2)) (-4 *2 (-1144 *4))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-361 (-499))) (-5 *1 (-964 *3)) - (-4 *3 (-13 (-780) (-318) (-960))))) + (-12 (-5 *2 (-343 (-478))) (-5 *1 (-930 *3)) + (-4 *3 (-13 (-748) (-308) (-926))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2)))) + (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1144 *2)))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1008 *2 *3)) (-4 *2 (-13 (-780) (-318))) (-4 *3 (-1183 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-127)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-1006))))) + (-12 (-4 *1 (-972 *2 *3)) (-4 *2 (-13 (-748) (-308))) (-4 *3 (-1144 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-1038))) (-5 *1 (-125)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-1038))) (-5 *1 (-970))))) (((*1 *2 *1) - (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-738)) - (-4 *5 (-1005 *3 *4 *2)) (-4 *2 (-781)))) + (-12 (-4 *1 (-882 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-710)) + (-4 *5 (-969 *3 *4 *2)) (-4 *2 (-749)))) ((*1 *2 *1) - (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781))))) + (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749))))) (((*1 *2 *1) - (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-714))))) -(((*1 *2 *1) (-12 (-5 *2 (-437)) (-5 *1 (-172)))) - ((*1 *1 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157)))) - ((*1 *2 *1) (-12 (-5 *2 (-437)) (-5 *1 (-634)))) + (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-687))))) +(((*1 *2 *1) (-12 (-5 *2 (-416)) (-5 *1 (-170)))) + ((*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1118)))) + ((*1 *2 *1) (-12 (-5 *2 (-416)) (-5 *1 (-612)))) ((*1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) (((*1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) (((*1 *2 *1) - (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) - (-4 *1 (-1005 *3 *4 *5))))) + (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) + (-4 *1 (-969 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989)))) - ((*1 *2 *1) (-12 (-4 *2 (-989)) (-5 *1 (-50 *2 *3)) (-14 *3 (-599 (-1117))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954)))) + ((*1 *2 *1) (-12 (-4 *2 (-954)) (-5 *1 (-50 *2 *3)) (-14 *3 (-578 (-1079))))) ((*1 *2 *1) - (-12 (-5 *2 (-268 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) - (-14 *4 (-599 (-1117))))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *2 *3)) (-4 *3 (-1041)) (-4 *2 (-989)))) + (-12 (-5 *2 (-261 *3)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) + (-14 *4 (-578 (-1079))))) + ((*1 *2 *1) (-12 (-4 *1 (-328 *2 *3)) (-4 *3 (-1005)) (-4 *2 (-954)))) ((*1 *2 *1) - (-12 (-14 *3 (-599 (-1117))) (-4 *5 (-195 (-4107 *3) (-714))) + (-12 (-14 *3 (-578 (-1079))) (-4 *5 (-193 (-3941 *3) (-687))) (-14 *6 - (-1 (-85) (-2 (|:| -2518 *4) (|:| -2519 *5)) - (-2 (|:| -2518 *4) (|:| -2519 *5)))) - (-4 *2 (-146)) (-5 *1 (-415 *3 *2 *4 *5 *6 *7)) (-4 *4 (-781)) - (-4 *7 (-888 *2 *5 (-798 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *3 (-784)) (-4 *2 (-73)))) - ((*1 *2 *1) (-12 (-4 *2 (-510)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1183 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-989)))) - ((*1 *2 *1) - (-12 (-4 *2 (-989)) (-5 *1 (-693 *2 *3)) (-4 *3 (-781)) (-4 *3 (-684)))) - ((*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)))) - ((*1 *2 *1) - (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *3 (-737)) (-4 *4 (-781)) (-4 *2 (-989)))) + (-1 (-83) (-2 (|:| -2386 *4) (|:| -2387 *5)) + (-2 (|:| -2386 *4) (|:| -2387 *5)))) + (-4 *2 (-144)) (-5 *1 (-394 *3 *2 *4 *5 *6 *7)) (-4 *4 (-749)) + (-4 *7 (-854 *2 *5 (-766 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *3 (-752)) (-4 *2 (-72)))) + ((*1 *2 *1) (-12 (-4 *2 (-489)) (-5 *1 (-557 *2 *3)) (-4 *3 (-1144 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-954)))) + ((*1 *2 *1) + (-12 (-4 *2 (-954)) (-5 *1 (-667 *2 *3)) (-4 *3 (-749)) (-4 *3 (-658)))) + ((*1 *2 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)))) + ((*1 *2 *1) + (-12 (-4 *1 (-879 *2 *3 *4)) (-4 *3 (-709)) (-4 *4 (-749)) (-4 *2 (-954)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781))))) + (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749))))) (((*1 *2 *3) - (-12 (-4 *4 (-989)) (-5 *2 (-85)) (-5 *1 (-398 *4 *3)) (-4 *3 (-1183 *4)))) + (-12 (-4 *4 (-954)) (-5 *2 (-83)) (-5 *1 (-377 *4 *3)) (-4 *3 (-1144 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-85))))) + (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-85))))) + (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-83))))) (((*1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) (((*1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) (((*1 *2 *1) - (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) - (-4 *1 (-1005 *3 *4 *5))))) + (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) + (-4 *1 (-969 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) - (-4 *1 (-1005 *3 *4 *5))))) + (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) + (-4 *1 (-969 *3 *4 *5))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) - (-4 *5 (-781)) (-5 *2 (-85))))) + (|partial| -12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) + (-4 *5 (-749)) (-5 *2 (-83))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-85))))) + (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-83))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) + (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) + (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) + (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) + (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) - (-5 *2 (-2 (|:| -4104 *1) (|:| |gap| (-714)) (|:| -3023 *1))) - (-4 *1 (-1005 *4 *5 *3)))) + (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) + (-5 *2 (-2 (|:| -3938 *1) (|:| |gap| (-687)) (|:| -2886 *1))) + (-4 *1 (-969 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-2 (|:| -4104 *1) (|:| |gap| (-714)) (|:| -3023 *1))) - (-4 *1 (-1005 *3 *4 *5))))) + (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-2 (|:| -3938 *1) (|:| |gap| (-687)) (|:| -2886 *1))) + (-4 *1 (-969 *3 *4 *5))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -4104 *3) (|:| |gap| (-714)) (|:| -2075 (-724 *3)) - (|:| -3023 (-724 *3)))) - (-5 *1 (-724 *3)) (-4 *3 (-989)))) + (-2 (|:| -3938 *3) (|:| |gap| (-687)) (|:| -1960 (-697 *3)) + (|:| -2886 (-697 *3)))) + (-5 *1 (-697 *3)) (-4 *3 (-954)))) ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) - (-5 *2 (-2 (|:| -4104 *1) (|:| |gap| (-714)) (|:| -2075 *1) (|:| -3023 *1))) - (-4 *1 (-1005 *4 *5 *3)))) + (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) + (-5 *2 (-2 (|:| -3938 *1) (|:| |gap| (-687)) (|:| -1960 *1) (|:| -2886 *1))) + (-4 *1 (-969 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-2 (|:| -4104 *1) (|:| |gap| (-714)) (|:| -2075 *1) (|:| -3023 *1))) - (-4 *1 (-1005 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-989)))) + (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-2 (|:| -3938 *1) (|:| |gap| (-687)) (|:| -1960 *1) (|:| -2886 *1))) + (-4 *1 (-969 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-954)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| |polnum| (-724 *3)) (|:| |polden| *3) (|:| -3621 (-714)))) - (-5 *1 (-724 *3)) (-4 *3 (-989)))) + (-5 *2 (-2 (|:| |polnum| (-697 *3)) (|:| |polden| *3) (|:| -3465 (-687)))) + (-5 *1 (-697 *3)) (-4 *3 (-954)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3621 (-714)))) - (-4 *1 (-1005 *3 *4 *5))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1157)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-884 (-333))) (-5 *1 (-294 *3 *4 *5)) - (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) - (-4 *5 (-343)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-361 (-884 (-333)))) (-5 *1 (-294 *3 *4 *5)) - (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) - (-4 *5 (-343)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-268 (-333))) (-5 *1 (-294 *3 *4 *5)) - (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) - (-4 *5 (-343)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-884 (-499))) (-5 *1 (-294 *3 *4 *5)) - (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) - (-4 *5 (-343)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-361 (-884 (-499)))) (-5 *1 (-294 *3 *4 *5)) - (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) - (-4 *5 (-343)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-268 (-499))) (-5 *1 (-294 *3 *4 *5)) - (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) - (-4 *5 (-343)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 *2)) - (-14 *4 (-599 *2)) (-4 *5 (-343)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-268 *5)) (-4 *5 (-343)) (-5 *1 (-294 *3 *4 *5)) - (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-647 (-361 (-884 (-499))))) (-4 *1 (-340)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-647 (-361 (-884 (-333))))) (-4 *1 (-340)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-884 (-499)))) (-4 *1 (-340)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-884 (-333)))) (-4 *1 (-340)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-268 (-499)))) (-4 *1 (-340)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-268 (-333)))) (-4 *1 (-340)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-361 (-884 (-499)))) (-4 *1 (-351)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-361 (-884 (-333)))) (-4 *1 (-351)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-884 (-499))) (-4 *1 (-351)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-884 (-333))) (-4 *1 (-351)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-268 (-499))) (-4 *1 (-351)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-268 (-333))) (-4 *1 (-351)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1207 (-361 (-884 (-499))))) (-4 *1 (-395)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1207 (-361 (-884 (-333))))) (-4 *1 (-395)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-884 (-499)))) (-4 *1 (-395)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-884 (-333)))) (-4 *1 (-395)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-268 (-499)))) (-4 *1 (-395)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-268 (-333)))) (-4 *1 (-395)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-305)) (-4 *5 (-283 *4)) (-4 *6 (-1183 *5)) - (-5 *2 (-1111 (-1111 *4))) (-5 *1 (-720 *4 *5 *6 *3 *7)) (-4 *3 (-1183 *6)) - (-14 *7 (-857)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-989)) - (-4 *4 (-738)) (-4 *5 (-781)) (-4 *1 (-916 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1157)))) + (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3465 (-687)))) + (-4 *1 (-969 *3 *4 *5))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1118)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-295)) (-4 *5 (-276 *4)) (-4 *6 (-1144 *5)) + (-5 *2 (-1074 (-1074 *4))) (-5 *1 (-693 *4 *5 *6 *3 *7)) (-4 *3 (-1144 *6)) + (-14 *7 (-823)))) ((*1 *1 *2) - (|partial| -3677 - (-12 (-5 *2 (-884 *3)) - (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-2679 (-4 *3 (-38 (-499)))) - (-4 *5 (-569 (-1117)))) - (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))) - (-12 (-5 *2 (-884 *3)) - (-12 (-2679 (-4 *3 (-498))) (-2679 (-4 *3 (-38 (-361 (-499))))) - (-4 *3 (-38 (-499))) (-4 *5 (-569 (-1117)))) - (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))) - (-12 (-5 *2 (-884 *3)) - (-12 (-2679 (-4 *3 (-931 (-499)))) (-4 *3 (-38 (-361 (-499)))) - (-4 *5 (-569 (-1117)))) - (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))))) + (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-954)) + (-4 *4 (-710)) (-4 *5 (-749)) (-4 *1 (-882 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-943 *2)) (-4 *2 (-1118)))) ((*1 *1 *2) - (|partial| -3677 - (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) - (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-4 *3 (-38 (-499))) - (-4 *5 (-569 (-1117)))) - (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781))) - (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) - (-4 *4 (-738)) (-4 *5 (-781))))) + (|partial| OR + (-12 (-5 *2 (-850 *3)) + (-12 (-2544 (-4 *3 (-38 (-343 (-478))))) (-2544 (-4 *3 (-38 (-478)))) + (-4 *5 (-548 (-1079)))) + (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))) + (-12 (-5 *2 (-850 *3)) + (-12 (-2544 (-4 *3 (-477))) (-2544 (-4 *3 (-38 (-343 (-478))))) + (-4 *3 (-38 (-478))) (-4 *5 (-548 (-1079)))) + (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))) + (-12 (-5 *2 (-850 *3)) + (-12 (-2544 (-4 *3 (-897 (-478)))) (-4 *3 (-38 (-343 (-478)))) + (-4 *5 (-548 (-1079)))) + (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-884 (-361 (-499)))) (-4 *1 (-1005 *3 *4 *5)) - (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117))) (-4 *3 (-989)) - (-4 *4 (-738)) (-4 *5 (-781))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1157)))) + (|partial| OR + (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) + (-12 (-2544 (-4 *3 (-38 (-343 (-478))))) (-4 *3 (-38 (-478))) + (-4 *5 (-548 (-1079)))) + (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749))) + (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1079)))) (-4 *3 (-954)) + (-4 *4 (-710)) (-4 *5 (-749))))) ((*1 *1 *2) - (-12 (-5 *2 (-884 (-333))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-333))) - (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) + (|partial| -12 (-5 *2 (-850 (-343 (-478)))) (-4 *1 (-969 *3 *4 *5)) + (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1079))) (-4 *3 (-954)) + (-4 *4 (-710)) (-4 *5 (-749))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1118)))) ((*1 *1 *2) - (-12 (-5 *2 (-361 (-884 (-333)))) (-5 *1 (-294 *3 *4 *5)) - (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) - (-4 *5 (-343)))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) + (-4 *5 (-749)) (-4 *1 (-882 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-943 *2)) (-4 *2 (-1118)))) ((*1 *1 *2) - (-12 (-5 *2 (-268 (-333))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-333))) - (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) + (OR + (-12 (-5 *2 (-850 *3)) + (-12 (-2544 (-4 *3 (-38 (-343 (-478))))) (-2544 (-4 *3 (-38 (-478)))) + (-4 *5 (-548 (-1079)))) + (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))) + (-12 (-5 *2 (-850 *3)) + (-12 (-2544 (-4 *3 (-477))) (-2544 (-4 *3 (-38 (-343 (-478))))) + (-4 *3 (-38 (-478))) (-4 *5 (-548 (-1079)))) + (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))) + (-12 (-5 *2 (-850 *3)) + (-12 (-2544 (-4 *3 (-897 (-478)))) (-4 *3 (-38 (-343 (-478)))) + (-4 *5 (-548 (-1079)))) + (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))))) ((*1 *1 *2) - (-12 (-5 *2 (-884 (-499))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-499))) - (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) + (OR + (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) + (-12 (-2544 (-4 *3 (-38 (-343 (-478))))) (-4 *3 (-38 (-478))) + (-4 *5 (-548 (-1079)))) + (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749))) + (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) + (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1079)))) (-4 *3 (-954)) + (-4 *4 (-710)) (-4 *5 (-749))))) ((*1 *1 *2) - (-12 (-5 *2 (-361 (-884 (-499)))) (-5 *1 (-294 *3 *4 *5)) - (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) - (-4 *5 (-343)))) - ((*1 *1 *2) - (-12 (-5 *2 (-268 (-499))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-499))) - (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1117)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 *2)) - (-14 *4 (-599 *2)) (-4 *5 (-343)))) - ((*1 *1 *2) - (-12 (-5 *2 (-268 *5)) (-4 *5 (-343)) (-5 *1 (-294 *3 *4 *5)) - (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))))) - ((*1 *1 *2) (-12 (-5 *2 (-647 (-361 (-884 (-499))))) (-4 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-647 (-361 (-884 (-333))))) (-4 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-647 (-884 (-499)))) (-4 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-647 (-884 (-333)))) (-4 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-647 (-268 (-499)))) (-4 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-647 (-268 (-333)))) (-4 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-361 (-884 (-499)))) (-4 *1 (-351)))) - ((*1 *1 *2) (-12 (-5 *2 (-361 (-884 (-333)))) (-4 *1 (-351)))) - ((*1 *1 *2) (-12 (-5 *2 (-884 (-499))) (-4 *1 (-351)))) - ((*1 *1 *2) (-12 (-5 *2 (-884 (-333))) (-4 *1 (-351)))) - ((*1 *1 *2) (-12 (-5 *2 (-268 (-499))) (-4 *1 (-351)))) - ((*1 *1 *2) (-12 (-5 *2 (-268 (-333))) (-4 *1 (-351)))) - ((*1 *1 *2) (-12 (-5 *2 (-1207 (-361 (-884 (-499))))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-1207 (-361 (-884 (-333))))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-1207 (-884 (-499)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-1207 (-884 (-333)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-1207 (-268 (-499)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-1207 (-268 (-333)))) (-4 *1 (-395)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) - (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) - (|:| |relerr| (-179)))) - (|:| |mdnia| - (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) - (|:| |abserr| (-179)) (|:| |relerr| (-179)))))) - (-5 *1 (-712)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) - (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) - (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) - (|:| |abserr| (-179)) (|:| |relerr| (-179)))) - (-5 *1 (-751)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) - (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) - (|:| |ub| (-599 (-775 (-179)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))))) - (-5 *1 (-774)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |pde| (-599 (-268 (-179)))) - (|:| |constraints| - (-599 - (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) - (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) - (|:| |dFinish| (-647 (-179)))))) - (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) - (|:| |tol| (-179)))) - (-5 *1 (-834)))) - ((*1 *1 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) - (-4 *5 (-781)) (-4 *1 (-916 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-1157)))) - ((*1 *1 *2) - (-3677 - (-12 (-5 *2 (-884 *3)) - (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-2679 (-4 *3 (-38 (-499)))) - (-4 *5 (-569 (-1117)))) - (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))) - (-12 (-5 *2 (-884 *3)) - (-12 (-2679 (-4 *3 (-498))) (-2679 (-4 *3 (-38 (-361 (-499))))) - (-4 *3 (-38 (-499))) (-4 *5 (-569 (-1117)))) - (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))) - (-12 (-5 *2 (-884 *3)) - (-12 (-2679 (-4 *3 (-931 (-499)))) (-4 *3 (-38 (-361 (-499)))) - (-4 *5 (-569 (-1117)))) - (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))))) - ((*1 *1 *2) - (-3677 - (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) - (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-4 *3 (-38 (-499))) - (-4 *5 (-569 (-1117)))) - (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781))) - (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) - (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) - (-4 *4 (-738)) (-4 *5 (-781))))) - ((*1 *1 *2) - (-12 (-5 *2 (-884 (-361 (-499)))) (-4 *1 (-1005 *3 *4 *5)) - (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117))) (-4 *3 (-989)) - (-4 *4 (-738)) (-4 *5 (-781))))) + (-12 (-5 *2 (-850 (-343 (-478)))) (-4 *1 (-969 *3 *4 *5)) + (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1079))) (-4 *3 (-954)) + (-4 *4 (-710)) (-4 *5 (-749))))) (((*1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *2 (-510))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *2 (-489))))) (((*1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *2 (-510))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *2 (-489))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *2 (-510)))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *2 (-489)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *2 (-510))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *2 (-489))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *2 (-510)))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *2 (-489)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *2 (-510))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *2 (-489))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3282 (-724 *3)) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) - (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989)))) + (-2 (|:| -3127 (-697 *3)) (|:| |coef1| (-697 *3)) (|:| |coef2| (-697 *3)))) + (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-2 (|:| -3282 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1005 *3 *4 *5))))) + (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-2 (|:| -3127 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-969 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3282 (-724 *3)) (|:| |coef1| (-724 *3)))) - (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989)))) + (-12 (-5 *2 (-2 (|:| -3127 (-697 *3)) (|:| |coef1| (-697 *3)))) + (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-2 (|:| -3282 *1) (|:| |coef1| *1))) (-4 *1 (-1005 *3 *4 *5))))) + (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-2 (|:| -3127 *1) (|:| |coef1| *1))) (-4 *1 (-969 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3282 (-724 *3)) (|:| |coef2| (-724 *3)))) - (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989)))) + (-12 (-5 *2 (-2 (|:| -3127 (-697 *3)) (|:| |coef2| (-697 *3)))) + (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-2 (|:| -3282 *1) (|:| |coef2| *1))) (-4 *1 (-1005 *3 *4 *5))))) + (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-2 (|:| -3127 *1) (|:| |coef2| *1))) (-4 *1 (-969 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-599 *1)) (-4 *1 (-1005 *3 *4 *5))))) + (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-578 *1)) (-4 *1 (-969 *3 *4 *5))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-714)) (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) - (-4 *5 (-781)) (-4 *3 (-510))))) + (-12 (-5 *2 (-687)) (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) + (-4 *5 (-749)) (-4 *3 (-489))))) (((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-714)) (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) - (-4 *5 (-781)) (-4 *3 (-510))))) + (-12 (-5 *2 (-687)) (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) + (-4 *5 (-749)) (-4 *3 (-489))))) (((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *2 (-510))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-406)))) - ((*1 *1 *1 *1) (-4 *1 (-406))) - ((*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-5 *1 (-440 *2)) (-4 *2 (-1183 (-499))))) - ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-654 *2)) (-4 *2 (-1183 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-714))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *2 (-489))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-385)))) + ((*1 *1 *1 *1) (-4 *1 (-385))) + ((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-419 *2)) (-4 *2 (-1144 (-478))))) + ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-630 *2)) (-4 *2 (-1144 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-687))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-738)) (-4 *4 (-781)) (-4 *5 (-261)) (-5 *1 (-854 *3 *4 *5 *2)) - (-4 *2 (-888 *5 *3 *4)))) + (-12 (-4 *3 (-710)) (-4 *4 (-749)) (-4 *5 (-254)) (-5 *1 (-820 *3 *4 *5 *2)) + (-4 *2 (-854 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *6 *4 *5)) (-5 *1 (-854 *4 *5 *6 *2)) - (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)))) + (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *6 *4 *5)) (-5 *1 (-820 *4 *5 *6 *2)) + (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1111 *6)) (-4 *6 (-888 *5 *3 *4)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *5 (-261)) (-5 *1 (-854 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1074 *6)) (-4 *6 (-854 *5 *3 *4)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *5 (-254)) (-5 *1 (-820 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 (-1111 *7))) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) - (-5 *2 (-1111 *7)) (-5 *1 (-854 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-857))) + (-12 (-5 *3 (-578 (-1074 *7))) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) + (-5 *2 (-1074 *7)) (-5 *1 (-820 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-823))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-406)) (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3)))) + (-12 (-4 *3 (-385)) (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1144 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *2 (-406))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *2 (-385))))) (((*1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *2 (-406))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *2 (-385))))) (((*1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *2 (-406))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *2 (-385))))) (((*1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *2 (-406))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *2 (-385))))) (((*1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *2 (-406))))) -(((*1 *1) (-5 *1 (-1003)))) -(((*1 *1 *1) (-5 *1 (-1003)))) -(((*1 *1 *1) (-5 *1 (-1003)))) -(((*1 *1 *1) (-5 *1 (-1003)))) -(((*1 *1 *1) (-5 *1 (-1003)))) -(((*1 *1 *1) (-5 *1 (-1003)))) -(((*1 *1 *1) (-5 *1 (-1003)))) -(((*1 *1 *1) (-5 *1 (-1003)))) -(((*1 *1 *1) (-5 *1 (-1003)))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-333)) (-5 *1 (-1003))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-333)) (-5 *1 (-1003))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-333)) (-5 *1 (-1003))))) -(((*1 *2 *1 *3) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1003)) (-5 *3 (-1099))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1003))))) -(((*1 *1) (-5 *1 (-1003)))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1099)) (-5 *3 (-499)) (-5 *1 (-1003))))) -(((*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-1002)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1002))))) -(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1157)))) - ((*1 *1 *1) (-12 (-5 *1 (-630 *2)) (-4 *2 (-781)))) - ((*1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) - ((*1 *1 *1) (-5 *1 (-797))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1157)))) - ((*1 *1 *1) (-12 (-5 *1 (-630 *2)) (-4 *2 (-781)))) - ((*1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) - ((*1 *1 *1) (-5 *1 (-797))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *2 (-385))))) +(((*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-967)))) + ((*1 *1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-967))))) +(((*1 *1 *1) (-12 (-4 *1 (-90 *2)) (-4 *2 (-1118)))) + ((*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-749)))) + ((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) + ((*1 *1 *1) (-5 *1 (-765))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1144 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-90 *2)) (-4 *2 (-1118)))) + ((*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-749)))) + ((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) + ((*1 *1 *1) (-5 *1 (-765))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1144 *2))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1157)) (-5 *2 (-714)) (-5 *1 (-194 *3 *4 *5)) - (-4 *3 (-195 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1118)) (-5 *2 (-687)) (-5 *1 (-192 *3 *4 *5)) + (-4 *3 (-193 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-104)) (-5 *2 (-714)))) + (-12 (-4 *1 (-270 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-102)) (-5 *2 (-687)))) ((*1 *2) - (-12 (-4 *4 (-318)) (-5 *2 (-714)) (-5 *1 (-282 *3 *4)) (-4 *3 (-283 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-316 *3)) (-4 *3 (-1041)))) - ((*1 *2) (-12 (-4 *1 (-323)) (-5 *2 (-714)))) - ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-1041)) (-5 *2 (-714)))) + (-12 (-4 *4 (-308)) (-5 *2 (-687)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-306 *3)) (-4 *3 (-1005)))) + ((*1 *2) (-12 (-4 *1 (-313)) (-5 *2 (-687)))) + ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-1005)) (-5 *2 (-687)))) ((*1 *2) - (-12 (-4 *4 (-1041)) (-5 *2 (-714)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) + (-12 (-4 *4 (-1005)) (-5 *2 (-687)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-714)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-1041)) (-4 *4 (-23)) + (-12 (-5 *2 (-687)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1005)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-146)) (-4 *5 (-1183 *4)) (-5 *2 (-714)) (-5 *1 (-681 *3 *4 *5)) - (-4 *3 (-682 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-946)))) + (-12 (-4 *4 (-144)) (-4 *5 (-1144 *4)) (-5 *2 (-687)) (-5 *1 (-655 *3 *4 *5)) + (-4 *3 (-656 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-912)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2))))) + (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1144 *2))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30)))) + (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1144 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-30)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-359 *4) *4)) (-4 *4 (-510)) (-5 *2 (-359 *4)) - (-5 *1 (-373 *4)))) - ((*1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) - ((*1 *1 *1) (-5 *1 (-865))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-865)))) + (-12 (-5 *3 (-1 (-341 *4) *4)) (-4 *4 (-489)) (-5 *2 (-341 *4)) + (-5 *1 (-355 *4)))) + ((*1 *1 *1) (-5 *1 (-829))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-993 (-177))) (-5 *1 (-829)))) + ((*1 *1 *1) (-5 *1 (-831))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-993 (-177))) (-5 *1 (-831)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) - (-5 *4 (-361 (-499))) (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))))) + (-12 (-5 *2 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) + (-5 *4 (-343 (-478))) (-5 *1 (-927 *3)) (-4 *3 (-1144 (-478))))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) - (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))))) + (-5 *2 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) + (-5 *1 (-927 *3)) (-4 *3 (-1144 (-478))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) - (-5 *4 (-361 (-499))) (-5 *1 (-962 *3)) (-4 *3 (-1183 *4)))) + (-12 (-5 *2 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) + (-5 *4 (-343 (-478))) (-5 *1 (-928 *3)) (-4 *3 (-1144 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) - (-5 *1 (-962 *3)) (-4 *3 (-1183 (-361 (-499)))))) + (-5 *2 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) + (-5 *1 (-928 *3)) (-4 *3 (-1144 (-343 (-478)))))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2))))) + (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1144 *2))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-780) (-318))) (-5 *2 (-85)) (-5 *1 (-1001 *4 *3)) - (-4 *3 (-1183 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-566 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-566 (-48))) (-5 *1 (-48)))) + (-12 (-4 *4 (-13 (-748) (-308))) (-5 *2 (-83)) (-5 *1 (-966 *4 *3)) + (-4 *3 (-1144 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-545 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-545 (-48))) (-5 *1 (-48)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1111 (-48))) (-5 *3 (-599 (-566 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1111 (-48))) (-5 *3 (-566 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) + (-12 (-5 *2 (-1074 (-48))) (-5 *3 (-578 (-545 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1074 (-48))) (-5 *3 (-545 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-318) (-780))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1183 (-142 *2))))) + (-12 (-4 *2 (-13 (-308) (-748))) (-5 *1 (-153 *2 *3)) + (-4 *3 (-1144 (-140 *2))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-857)) (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)))) - ((*1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-318)))) - ((*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-1183 *2)) (-4 *2 (-146)))) + (-12 (-5 *2 (-823)) (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)))) + ((*1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-308)))) + ((*1 *2 *1) (-12 (-4 *1 (-315 *2 *3)) (-4 *3 (-1144 *2)) (-4 *2 (-144)))) ((*1 *2 *1) - (-12 (-4 *4 (-1183 *2)) (-4 *2 (-931 *3)) (-5 *1 (-367 *3 *2 *4 *5)) - (-4 *3 (-261)) (-4 *5 (-13 (-364 *2 *4) (-978 *2))))) + (-12 (-4 *4 (-1144 *2)) (-4 *2 (-897 *3)) (-5 *1 (-349 *3 *2 *4 *5)) + (-4 *3 (-254)) (-4 *5 (-13 (-346 *2 *4) (-943 *2))))) ((*1 *2 *1) - (-12 (-4 *4 (-1183 *2)) (-4 *2 (-931 *3)) (-5 *1 (-369 *3 *2 *4 *5 *6)) - (-4 *3 (-261)) (-4 *5 (-364 *2 *4)) (-14 *6 (-1207 *5)))) + (-12 (-4 *4 (-1144 *2)) (-4 *2 (-897 *3)) (-5 *1 (-351 *3 *2 *4 *5 *6)) + (-4 *3 (-254)) (-4 *5 (-346 *2 *4)) (-14 *6 (-1168 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-857)) (-4 *5 (-989)) - (-4 *2 (-13 (-358) (-978 *5) (-318) (-1143) (-238))) (-5 *1 (-397 *5 *3 *2)) - (-4 *3 (-1183 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-566 (-449)))) (-5 *1 (-449)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-566 (-449))) (-5 *1 (-449)))) + (-12 (-5 *4 (-823)) (-4 *5 (-954)) + (-4 *2 (-13 (-340) (-943 *5) (-308) (-1104) (-236))) (-5 *1 (-376 *5 *3 *2)) + (-4 *3 (-1144 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-545 (-428)))) (-5 *1 (-428)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-545 (-428))) (-5 *1 (-428)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1111 (-449))) (-5 *3 (-599 (-566 (-449)))) (-5 *1 (-449)))) + (-12 (-5 *2 (-1074 (-428))) (-5 *3 (-578 (-545 (-428)))) (-5 *1 (-428)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1111 (-449))) (-5 *3 (-566 (-449))) (-5 *1 (-449)))) + (-12 (-5 *2 (-1074 (-428))) (-5 *3 (-545 (-428))) (-5 *1 (-428)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1207 *4)) (-5 *3 (-857)) (-4 *4 (-305)) (-5 *1 (-481 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-406)) (-4 *5 (-682 *4 *2)) (-4 *2 (-1183 *4)) - (-5 *1 (-718 *4 *2 *5 *3)) (-4 *3 (-1183 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)))) - ((*1 *1 *1) (-4 *1 (-1000)))) -(((*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)) (-4 *2 (-498)))) - ((*1 *1 *1) (-4 *1 (-1000)))) -(((*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)) (-4 *2 (-498)))) - ((*1 *1 *1) (-4 *1 (-1000)))) -(((*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-261)))) - ((*1 *2 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-261)))) - ((*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)) (-4 *2 (-261)))) - ((*1 *2 *1) (-12 (-4 *1 (-1000)) (-5 *2 (-499))))) -(((*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-79)))) - ((*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-441)))) - ((*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)) (-4 *2 (-261)))) - ((*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499)))) - ((*1 *1 *1) (-4 *1 (-1000)))) -(((*1 *1 *1) (-4 *1 (-1000)))) + (-12 (-5 *2 (-1168 *4)) (-5 *3 (-823)) (-4 *4 (-295)) (-5 *1 (-460 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-385)) (-4 *5 (-656 *4 *2)) (-4 *2 (-1144 *4)) + (-5 *1 (-691 *4 *2 *5 *3)) (-4 *3 (-1144 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) + ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)))) + ((*1 *1 *1) (-4 *1 (-965)))) +(((*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)) (-4 *2 (-477)))) + ((*1 *1 *1) (-4 *1 (-965)))) +(((*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)) (-4 *2 (-477)))) + ((*1 *1 *1) (-4 *1 (-965)))) +(((*1 *2 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-254)))) + ((*1 *2 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-254)))) + ((*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)) (-4 *2 (-254)))) + ((*1 *2 *1) (-12 (-4 *1 (-965)) (-5 *2 (-478))))) +(((*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-77)))) + ((*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-169)))) + ((*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-420)))) + ((*1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)) (-4 *2 (-254)))) + ((*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478)))) + ((*1 *1 *1) (-4 *1 (-965)))) +(((*1 *1 *1) (-4 *1 (-965)))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-714)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) + (-12 (-4 *4 (-144)) (-5 *2 (-687)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4)))) ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1157)) (-5 *2 (-714)) (-5 *1 (-194 *3 *4 *5)) - (-4 *3 (-195 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1118)) (-5 *2 (-687)) (-5 *1 (-192 *3 *4 *5)) + (-4 *3 (-193 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-1041)) (-5 *2 (-714)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) - ((*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-497 *3)) (-4 *3 (-498)))) - ((*1 *2) (-12 (-4 *1 (-706)) (-5 *2 (-714)))) + (-12 (-4 *4 (-1005)) (-5 *2 (-687)) (-5 *1 (-356 *3 *4)) (-4 *3 (-357 *4)))) + ((*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-476 *3)) (-4 *3 (-477)))) + ((*1 *2) (-12 (-4 *1 (-680)) (-5 *2 (-687)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-714)) (-5 *1 (-740 *3 *4)) (-4 *3 (-741 *4)))) + (-12 (-4 *4 (-144)) (-5 *2 (-687)) (-5 *1 (-712 *3 *4)) (-4 *3 (-713 *4)))) ((*1 *2) - (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-930 *3 *4)) (-4 *3 (-931 *4)))) + (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-896 *3 *4)) (-4 *3 (-897 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-714)) (-5 *1 (-937 *3 *4)) (-4 *3 (-938 *4)))) - ((*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) - ((*1 *2) (-12 (-4 *1 (-989)) (-5 *2 (-714)))) - ((*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-999 *3)) (-4 *3 (-1000))))) + (-12 (-4 *4 (-144)) (-5 *2 (-687)) (-5 *1 (-903 *3 *4)) (-4 *3 (-904 *4)))) + ((*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-917 *3)) (-4 *3 (-918)))) + ((*1 *2) (-12 (-4 *1 (-954)) (-5 *2 (-687)))) + ((*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-964 *3)) (-4 *3 (-965))))) (((*1 *1 *2) - (-12 (-5 *2 (-647 *5)) (-4 *5 (-989)) (-5 *1 (-994 *3 *4 *5)) (-14 *3 (-714)) - (-14 *4 (-714))))) + (-12 (-5 *2 (-625 *5)) (-4 *5 (-954)) (-5 *1 (-959 *3 *4 *5)) (-14 *3 (-687)) + (-14 *4 (-687))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-714)) (-5 *3 (-1 *4 (-499) (-499))) (-4 *4 (-989)) - (-4 *1 (-644 *4 *5 *6)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)))) + (-12 (-5 *2 (-687)) (-5 *3 (-1 *4 (-478) (-478))) (-4 *4 (-954)) + (-4 *1 (-622 *4 *5 *6)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) - (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-599 (-797)))) (-5 *1 (-797)))) + (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) + (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-765)))) (-5 *1 (-765)))) ((*1 *2 *1) - (-12 (-5 *2 (-1082 *3 *4)) (-5 *1 (-933 *3 *4)) (-14 *3 (-857)) - (-4 *4 (-318)))) + (-12 (-5 *2 (-1045 *3 *4)) (-5 *1 (-899 *3 *4)) (-14 *3 (-823)) + (-4 *4 (-308)))) ((*1 *1 *2) - (-12 (-5 *2 (-599 (-599 *5))) (-4 *5 (-989)) (-4 *1 (-993 *3 *4 *5 *6 *7)) - (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5))))) + (-12 (-5 *2 (-578 (-578 *5))) (-4 *5 (-954)) (-4 *1 (-958 *3 *4 *5 *6 *7)) + (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)) (-5 *2 (-85)))) + (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) - (-4 *7 (-195 *3 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)) (-5 *2 (-85)))) + (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) - (-4 *7 (-195 *3 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)) (-5 *2 (-85)))) + (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) - (-4 *7 (-195 *3 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)) (-5 *2 (-85)))) + (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) - (-4 *7 (-195 *3 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)) (-5 *2 (-499)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)) (-5 *2 (-478)))) ((*1 *2 *1) - (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) - (-4 *7 (-195 *3 *5)) (-5 *2 (-499))))) + (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-5 *2 (-478))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)) (-5 *2 (-499)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)) (-5 *2 (-478)))) ((*1 *2 *1) - (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) - (-4 *7 (-195 *3 *5)) (-5 *2 (-499))))) + (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-5 *2 (-478))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)) (-5 *2 (-499)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)) (-5 *2 (-478)))) ((*1 *2 *1) - (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) - (-4 *7 (-195 *3 *5)) (-5 *2 (-499))))) + (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-5 *2 (-478))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)) (-5 *2 (-499)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)) (-5 *2 (-478)))) ((*1 *2 *1) - (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) - (-4 *7 (-195 *3 *5)) (-5 *2 (-499))))) + (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-5 *2 (-478))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)) (-5 *2 (-714)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)) (-5 *2 (-687)))) ((*1 *2 *1) - (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) - (-4 *7 (-195 *3 *5)) (-5 *2 (-714))))) + (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-5 *2 (-687))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)) (-5 *2 (-714)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)) (-5 *2 (-687)))) ((*1 *2 *1) - (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) - (-4 *7 (-195 *3 *5)) (-5 *2 (-714))))) + (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-5 *2 (-687))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-327 *2)) - (-4 *5 (-327 *2)) (-4 *2 (-1157)))) + (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-317 *2)) + (-4 *5 (-317 *2)) (-4 *2 (-1118)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-714)) (-4 *2 (-1041)) (-5 *1 (-166 *4 *2)) (-14 *4 (-857)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-242 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1157)))) + (-12 (-5 *3 (-687)) (-4 *2 (-1005)) (-5 *1 (-164 *4 *2)) (-14 *4 (-823)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-240 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1118)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *2 *6 *7)) (-4 *6 (-195 *5 *2)) - (-4 *7 (-195 *4 *2)) (-4 *2 (-989))))) + (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *2 *6 *7)) (-4 *6 (-193 *5 *2)) + (-4 *7 (-193 *4 *2)) (-4 *2 (-954))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-499)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1157)) (-4 *5 (-327 *4)) - (-4 *2 (-327 *4)))) + (-12 (-5 *3 (-478)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1118)) (-4 *5 (-317 *4)) + (-4 *2 (-317 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *6 *2 *7)) (-4 *6 (-989)) - (-4 *7 (-195 *4 *6)) (-4 *2 (-195 *5 *6))))) + (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *6 *2 *7)) (-4 *6 (-954)) + (-4 *7 (-193 *4 *6)) (-4 *2 (-193 *5 *6))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-499)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1157)) (-4 *5 (-327 *4)) - (-4 *2 (-327 *4)))) + (-12 (-5 *3 (-478)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1118)) (-4 *5 (-317 *4)) + (-4 *2 (-317 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *6 *7 *2)) (-4 *6 (-989)) - (-4 *7 (-195 *5 *6)) (-4 *2 (-195 *4 *6))))) + (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *6 *7 *2)) (-4 *6 (-954)) + (-4 *7 (-193 *5 *6)) (-4 *2 (-193 *4 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-318)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) - (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) + (-12 (-4 *3 (-308)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) + (-5 *1 (-453 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-4 *7 (-931 *4)) - (-4 *2 (-644 *7 *8 *9)) (-5 *1 (-475 *4 *5 *6 *3 *7 *8 *9 *2)) - (-4 *3 (-644 *4 *5 *6)) (-4 *8 (-327 *7)) (-4 *9 (-327 *7)))) + (-12 (-4 *4 (-489)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-4 *7 (-897 *4)) + (-4 *2 (-622 *7 *8 *9)) (-5 *1 (-454 *4 *5 *6 *3 *7 *8 *9 *2)) + (-4 *3 (-622 *4 *5 *6)) (-4 *8 (-317 *7)) (-4 *9 (-317 *7)))) ((*1 *1 *1) - (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) - (-4 *4 (-327 *2)) (-4 *2 (-261)))) + (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) + (-4 *4 (-317 *2)) (-4 *2 (-254)))) ((*1 *2 *2) - (-12 (-4 *3 (-261)) (-4 *3 (-146)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) - (-5 *1 (-646 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-647 *3)) (-4 *3 (-261)) (-5 *1 (-658 *3)))) + (-12 (-4 *3 (-254)) (-4 *3 (-144)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) + (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-254)) (-5 *1 (-633 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-993 *2 *3 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-195 *3 *4)) - (-4 *6 (-195 *2 *4)) (-4 *4 (-261))))) + (-12 (-4 *1 (-958 *2 *3 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-193 *3 *4)) + (-4 *6 (-193 *2 *4)) (-4 *4 (-254))))) (((*1 *2 *1) - (-12 (-5 *2 (-714)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-499)) (-14 *4 *2) - (-4 *5 (-146)))) + (-12 (-5 *2 (-687)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-478)) (-14 *4 *2) + (-4 *5 (-144)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-857)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-857)))) + (-12 (-4 *4 (-144)) (-5 *2 (-823)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4)))) + ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-823)))) ((*1 *2) - (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) (-5 *2 (-857)))) + (-12 (-4 *1 (-315 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1144 *3)) (-5 *2 (-823)))) ((*1 *2 *3) - (-12 (-4 *4 (-318)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-714)) - (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) + (-12 (-4 *4 (-308)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-687)) + (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-318)) (-4 *6 (-13 (-327 *5) (-10 -7 (-6 -4146)))) - (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-5 *2 (-714)) - (-5 *1 (-625 *5 *6 *4 *3)) (-4 *3 (-644 *5 *6 *4)))) + (-12 (-4 *5 (-308)) (-4 *6 (-13 (-317 *5) (-10 -7 (-6 -3980)))) + (-4 *4 (-13 (-317 *5) (-10 -7 (-6 -3980)))) (-5 *2 (-687)) + (-5 *1 (-604 *5 *6 *4 *3)) (-4 *3 (-622 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-647 *5)) (-5 *4 (-1207 *5)) (-4 *5 (-318)) (-5 *2 (-714)) - (-5 *1 (-626 *5)))) + (-12 (-5 *3 (-625 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-308)) (-5 *2 (-687)) + (-5 *1 (-605 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)) (-4 *3 (-510)) (-5 *2 (-714)))) + (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)) (-4 *3 (-489)) (-5 *2 (-687)))) ((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) - (-5 *2 (-714)) (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) + (-12 (-4 *4 (-489)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) + (-5 *2 (-687)) (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) - (-4 *7 (-195 *3 *5)) (-4 *5 (-510)) (-5 *2 (-714))))) + (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-4 *5 (-489)) (-5 *2 (-687))))) (((*1 *2 *3) - (-12 (-4 *4 (-318)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-714)) - (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) + (-12 (-4 *4 (-308)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-687)) + (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)) (-4 *3 (-510)) (-5 *2 (-714)))) + (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)) (-4 *3 (-489)) (-5 *2 (-687)))) ((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) - (-5 *2 (-714)) (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) + (-12 (-4 *4 (-489)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) + (-5 *2 (-687)) (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) - (-4 *7 (-195 *3 *5)) (-4 *5 (-510)) (-5 *2 (-714))))) + (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-4 *5 (-489)) (-5 *2 (-687))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -4146)) (-4 *4 (-318)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) - (-5 *2 (-599 *6)) (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) + (-12 (|has| *6 (-6 -3980)) (-4 *4 (-308)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) + (-5 *2 (-578 *6)) (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) ((*1 *2 *3) - (-12 (|has| *9 (-6 -4146)) (-4 *4 (-510)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) - (-4 *7 (-931 *4)) (-4 *8 (-327 *7)) (-4 *9 (-327 *7)) (-5 *2 (-599 *6)) - (-5 *1 (-475 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-644 *4 *5 *6)) - (-4 *10 (-644 *7 *8 *9)))) + (-12 (|has| *9 (-6 -3980)) (-4 *4 (-489)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) + (-4 *7 (-897 *4)) (-4 *8 (-317 *7)) (-4 *9 (-317 *7)) (-5 *2 (-578 *6)) + (-5 *1 (-454 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-622 *4 *5 *6)) + (-4 *10 (-622 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)) (-4 *3 (-510)) (-5 *2 (-599 *5)))) + (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)) (-4 *3 (-489)) (-5 *2 (-578 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) - (-5 *2 (-599 *6)) (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) + (-12 (-4 *4 (-489)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) + (-5 *2 (-578 *6)) (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) - (-4 *7 (-195 *3 *5)) (-4 *5 (-510)) (-5 *2 (-599 *7))))) + (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-4 *5 (-489)) (-5 *2 (-578 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1176 *4 *5)) (-5 *3 (-599 *5)) (-14 *4 (-1117)) (-4 *5 (-318)) - (-5 *1 (-860 *4 *5)))) + (-12 (-5 *2 (-1137 *4 *5)) (-5 *3 (-578 *5)) (-14 *4 (-1079)) (-4 *5 (-308)) + (-5 *1 (-826 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-599 *5)) (-4 *5 (-318)) (-5 *2 (-1111 *5)) (-5 *1 (-860 *4 *5)) - (-14 *4 (-1117)))) + (-12 (-5 *3 (-578 *5)) (-4 *5 (-308)) (-5 *2 (-1074 *5)) (-5 *1 (-826 *4 *5)) + (-14 *4 (-1079)))) ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-599 *6)) (-5 *4 (-714)) (-4 *6 (-318)) (-5 *2 (-361 (-884 *6))) - (-5 *1 (-990 *5 *6)) (-14 *5 (-1117))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-987))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-499))) (-5 *1 (-987))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-499))) (-5 *1 (-987))))) -(((*1 *1 *1 *1) (-4 *1 (-116))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498)))) - ((*1 *1 *1 *1) (-5 *1 (-797))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-499))) (-5 *1 (-987)) - (-5 *3 (-499))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1037 *4)) (-4 *4 (-1041)) (-5 *2 (-1 *4)) (-5 *1 (-957 *4)))) - ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-333))) (-5 *1 (-981)) (-5 *3 (-333)))) - ((*1 *2 *3) (-12 (-5 *3 (-1029 (-499))) (-5 *2 (-1 (-499))) (-5 *1 (-987))))) -(((*1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-4 *1 (-984 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-261)) (-5 *2 (-361 (-359 (-884 *4)))) - (-5 *1 (-983 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-333))) (-5 *1 (-981))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-333))) (-5 *1 (-981))))) -(((*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-333))) (-5 *1 (-981))))) + (-12 (-5 *3 (-578 *6)) (-5 *4 (-687)) (-4 *6 (-308)) (-5 *2 (-343 (-850 *6))) + (-5 *1 (-955 *5 *6)) (-14 *5 (-1079))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-952))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-478))) (-5 *1 (-952))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-478))) (-5 *1 (-952))))) +(((*1 *1 *1 *1) (-4 *1 (-114))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477)))) + ((*1 *1 *1 *1) (-5 *1 (-765))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-478))) (-5 *1 (-952)) + (-5 *3 (-478))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1001 *4)) (-4 *4 (-1005)) (-5 *2 (-1 *4)) (-5 *1 (-923 *4)))) + ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-323))) (-5 *1 (-946)) (-5 *3 (-323)))) + ((*1 *2 *3) (-12 (-5 *3 (-993 (-478))) (-5 *2 (-1 (-478))) (-5 *1 (-952))))) +(((*1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-128))) ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-128))) ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-128))) ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-4 *1 (-949 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-254)) (-5 *2 (-343 (-341 (-850 *4)))) + (-5 *1 (-948 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-323))) (-5 *1 (-946))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-323))) (-5 *1 (-946))))) +(((*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-323))) (-5 *1 (-946))))) (((*1 *1 *2) - (-12 (-5 *2 (-1188 *3 *4 *5)) (-4 *3 (-318)) (-14 *4 (-1117)) (-14 *5 *3) - (-5 *1 (-273 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-333))) (-5 *1 (-981)) (-5 *3 (-333))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-333))) (-5 *1 (-981)) (-5 *3 (-333))))) -(((*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-333)) (-5 *1 (-981))))) -(((*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-981))))) -(((*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-981))))) -(((*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-981))))) + (-12 (-5 *2 (-1149 *3 *4 *5)) (-4 *3 (-308)) (-14 *4 (-1079)) (-14 *5 *3) + (-5 *1 (-266 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-323))) (-5 *1 (-946)) (-5 *3 (-323))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-323))) (-5 *1 (-946)) (-5 *3 (-323))))) +(((*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-323)) (-5 *1 (-946))))) +(((*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-946))))) +(((*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-946))))) +(((*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-946))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1111 (-361 (-1111 *2)))) (-5 *4 (-566 *2)) - (-4 *2 (-13 (-375 *5) (-27) (-1143))) - (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) - (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1041)))) + (-12 (-5 *3 (-1074 (-343 (-1074 *2)))) (-5 *4 (-545 *2)) + (-4 *2 (-13 (-357 *5) (-27) (-1104))) + (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) + (-5 *1 (-492 *5 *2 *6)) (-4 *6 (-1005)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1111 *1)) (-4 *1 (-888 *4 *5 *3)) (-4 *4 (-989)) (-4 *5 (-738)) - (-4 *3 (-781)))) + (-12 (-5 *2 (-1074 *1)) (-4 *1 (-854 *4 *5 *3)) (-4 *4 (-954)) (-4 *5 (-710)) + (-4 *3 (-749)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1111 *4)) (-4 *4 (-989)) (-4 *1 (-888 *4 *5 *3)) (-4 *5 (-738)) - (-4 *3 (-781)))) + (-12 (-5 *2 (-1074 *4)) (-4 *4 (-954)) (-4 *1 (-854 *4 *5 *3)) (-4 *5 (-710)) + (-4 *3 (-749)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-361 (-1111 *2))) (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-989)) + (-12 (-5 *3 (-343 (-1074 *2))) (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-954)) (-4 *2 - (-13 (-318) - (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))) - (-5 *1 (-889 *5 *4 *6 *7 *2)) (-4 *7 (-888 *6 *5 *4)))) + (-13 (-308) + (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $))))) + (-5 *1 (-855 *5 *4 *6 *7 *2)) (-4 *7 (-854 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-361 (-1111 (-361 (-884 *5))))) (-5 *4 (-1117)) - (-5 *2 (-361 (-884 *5))) (-5 *1 (-980 *5)) (-4 *5 (-510))))) + (-12 (-5 *3 (-343 (-1074 (-343 (-850 *5))))) (-5 *4 (-1079)) + (-5 *2 (-343 (-850 *5))) (-5 *1 (-945 *5)) (-4 *5 (-489))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-566 *1)) (-4 *1 (-375 *4)) (-4 *4 (-1041)) (-4 *4 (-510)) - (-5 *2 (-361 (-1111 *1))))) + (-12 (-5 *3 (-545 *1)) (-4 *1 (-357 *4)) (-4 *4 (-1005)) (-4 *4 (-489)) + (-5 *2 (-343 (-1074 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-566 *3)) (-4 *3 (-13 (-375 *6) (-27) (-1143))) - (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) - (-5 *2 (-1111 (-361 (-1111 *3)))) (-5 *1 (-513 *6 *3 *7)) (-5 *5 (-1111 *3)) - (-4 *7 (-1041)))) + (-12 (-5 *4 (-545 *3)) (-4 *3 (-13 (-357 *6) (-27) (-1104))) + (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) + (-5 *2 (-1074 (-343 (-1074 *3)))) (-5 *1 (-492 *6 *3 *7)) (-5 *5 (-1074 *3)) + (-4 *7 (-1005)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1204 *5)) (-14 *5 (-1117)) (-4 *6 (-989)) - (-5 *2 (-1176 *5 (-884 *6))) (-5 *1 (-886 *5 *6)) (-5 *3 (-884 *6)))) + (-12 (-5 *4 (-1165 *5)) (-14 *5 (-1079)) (-4 *6 (-954)) + (-5 *2 (-1137 *5 (-850 *6))) (-5 *1 (-852 *5 *6)) (-5 *3 (-850 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-1111 *3)))) + (-12 (-4 *1 (-854 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-1074 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-5 *2 (-1111 *1)) - (-4 *1 (-888 *4 *5 *3)))) + (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-5 *2 (-1074 *1)) + (-4 *1 (-854 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-989)) (-4 *7 (-888 *6 *5 *4)) - (-5 *2 (-361 (-1111 *3))) (-5 *1 (-889 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-954)) (-4 *7 (-854 *6 *5 *4)) + (-5 *2 (-343 (-1074 *3))) (-5 *1 (-855 *5 *4 *6 *7 *3)) (-4 *3 - (-13 (-318) - (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))))) + (-13 (-308) + (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1111 *3)) + (-12 (-5 *2 (-1074 *3)) (-4 *3 - (-13 (-318) - (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))) - (-4 *7 (-888 *6 *5 *4)) (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-989)) - (-5 *1 (-889 *5 *4 *6 *7 *3)))) + (-13 (-308) + (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $))))) + (-4 *7 (-854 *6 *5 *4)) (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-954)) + (-5 *1 (-855 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-510)) (-5 *2 (-361 (-1111 (-361 (-884 *5))))) - (-5 *1 (-980 *5)) (-5 *3 (-361 (-884 *5)))))) + (-12 (-5 *4 (-1079)) (-4 *5 (-489)) (-5 *2 (-343 (-1074 (-343 (-850 *5))))) + (-5 *1 (-945 *5)) (-5 *3 (-343 (-850 *5)))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) - (-4 *2 (-781)))) + (|partial| -12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) + (-4 *2 (-749)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-738)) (-4 *5 (-989)) (-4 *6 (-888 *5 *4 *2)) - (-4 *2 (-781)) (-5 *1 (-889 *4 *2 *5 *6 *3)) + (|partial| -12 (-4 *4 (-710)) (-4 *5 (-954)) (-4 *6 (-854 *5 *4 *2)) + (-4 *2 (-749)) (-5 *1 (-855 *4 *2 *5 *6 *3)) (-4 *3 - (-13 (-318) - (-10 -8 (-15 -4096 ($ *6)) (-15 -3119 (*6 $)) (-15 -3118 (*6 $))))))) + (-13 (-308) + (-10 -8 (-15 -3930 ($ *6)) (-15 -2982 (*6 $)) (-15 -2981 (*6 $))))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-5 *2 (-1117)) - (-5 *1 (-980 *4))))) + (|partial| -12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-5 *2 (-1079)) + (-5 *1 (-945 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1111 *7)) (-4 *7 (-888 *6 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-989)) (-5 *2 (-599 *5)) (-5 *1 (-275 *4 *5 *6 *7)))) - ((*1 *2 *1) - (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-294 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-343)))) - ((*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1041)) (-5 *2 (-599 (-1117))))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) + (-12 (-5 *3 (-1074 *7)) (-4 *7 (-854 *6 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-954)) (-5 *2 (-578 *5)) (-5 *1 (-268 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-357 *3)) (-4 *3 (-1005)) (-5 *2 (-578 (-1079))))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) ((*1 *2 *1) - (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-599 *5)))) + (-12 (-4 *1 (-854 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-578 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) (-4 *7 (-888 *6 *4 *5)) - (-5 *2 (-599 *5)) (-5 *1 (-889 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) (-4 *7 (-854 *6 *4 *5)) + (-5 *2 (-578 *5)) (-5 *1 (-855 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-318) - (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))))) - ((*1 *2 *1) - (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-737)) (-4 *5 (-781)) - (-5 *2 (-599 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-599 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-5 *2 (-599 (-1117))) - (-5 *1 (-980 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-884 *6))) (-5 *4 (-599 (-1117))) - (-4 *6 (-13 (-510) (-978 *5))) (-4 *5 (-510)) - (-5 *2 (-599 (-599 (-247 (-361 (-884 *6)))))) (-5 *1 (-979 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-975))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-975))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-566 *6)) (-4 *6 (-13 (-375 *5) (-27) (-1143))) - (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) - (-5 *2 (-1111 (-361 (-1111 *6)))) (-5 *1 (-513 *5 *6 *7)) (-5 *3 (-1111 *6)) - (-4 *7 (-1041)))) - ((*1 *2 *1) (-12 (-4 *2 (-1183 *3)) (-5 *1 (-670 *3 *2)) (-4 *3 (-989)))) - ((*1 *2 *1) (-12 (-4 *1 (-682 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1183 *3)))) + (-13 (-308) + (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $))))))) + ((*1 *2 *1) + (-12 (-4 *1 (-879 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-709)) (-4 *5 (-749)) + (-5 *2 (-578 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-578 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-5 *2 (-578 (-1079))) + (-5 *1 (-945 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-578 (-850 *6))) (-5 *4 (-578 (-1079))) + (-4 *6 (-13 (-489) (-943 *5))) (-4 *5 (-489)) + (-5 *2 (-578 (-578 (-245 (-343 (-850 *6)))))) (-5 *1 (-944 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-545 *6)) (-4 *6 (-13 (-357 *5) (-27) (-1104))) + (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) + (-5 *2 (-1074 (-343 (-1074 *6)))) (-5 *1 (-492 *5 *6 *7)) (-5 *3 (-1074 *6)) + (-4 *7 (-1005)))) + ((*1 *2 *1) (-12 (-4 *2 (-1144 *3)) (-5 *1 (-644 *3 *2)) (-4 *3 (-954)))) + ((*1 *2 *1) (-12 (-4 *1 (-656 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1144 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1111 *11)) (-5 *6 (-599 *10)) (-5 *7 (-599 (-714))) - (-5 *8 (-599 *11)) (-4 *10 (-781)) (-4 *11 (-261)) (-4 *9 (-738)) - (-4 *5 (-888 *11 *9 *10)) (-5 *2 (-599 (-1111 *5))) - (-5 *1 (-700 *9 *10 *11 *5)) (-5 *3 (-1111 *5)))) + (|partial| -12 (-5 *4 (-1074 *11)) (-5 *6 (-578 *10)) (-5 *7 (-578 (-687))) + (-5 *8 (-578 *11)) (-4 *10 (-749)) (-4 *11 (-254)) (-4 *9 (-710)) + (-4 *5 (-854 *11 *9 *10)) (-5 *2 (-578 (-1074 *5))) + (-5 *1 (-674 *9 *10 *11 *5)) (-5 *3 (-1074 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-888 *3 *4 *5)) (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *3 (-318)) - (-4 *4 (-738)) (-4 *5 (-781)) (-14 *6 (-599 *2))))) + (-12 (-4 *2 (-854 *3 *4 *5)) (-5 *1 (-940 *3 *4 *5 *2 *6)) (-4 *3 (-308)) + (-4 *4 (-710)) (-4 *5 (-749)) (-14 *6 (-578 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-857)) (-5 *1 (-972 *2)) - (-4 *2 (-13 (-1041) (-10 -8 (-15 * ($ $ $)))))))) + (-12 (-5 *3 (-823)) (-5 *1 (-938 *2)) + (-4 *2 (-13 (-1005) (-10 -8 (-15 * ($ $ $)))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-857)) (-5 *1 (-971 *2)) - (-4 *2 (-13 (-1041) (-10 -8 (-15 -3989 ($ $ $)))))))) + (-12 (-5 *3 (-823)) (-5 *1 (-937 *2)) + (-4 *2 (-13 (-1005) (-10 -8 (-15 -3823 ($ $ $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-1207 *5))) (-5 *4 (-499)) (-5 *2 (-1207 *5)) - (-5 *1 (-970 *5)) (-4 *5 (-318)) (-4 *5 (-323)) (-4 *5 (-989))))) + (-12 (-5 *3 (-578 (-1168 *5))) (-5 *4 (-478)) (-5 *2 (-1168 *5)) + (-5 *1 (-936 *5)) (-4 *5 (-308)) (-4 *5 (-313)) (-4 *5 (-954))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-85)) (-5 *5 (-499)) (-4 *6 (-318)) (-4 *6 (-323)) - (-4 *6 (-989)) (-5 *2 (-599 (-599 (-647 *6)))) (-5 *1 (-970 *6)) - (-5 *3 (-599 (-647 *6))))) + (-12 (-5 *4 (-83)) (-5 *5 (-478)) (-4 *6 (-308)) (-4 *6 (-313)) + (-4 *6 (-954)) (-5 *2 (-578 (-578 (-625 *6)))) (-5 *1 (-936 *6)) + (-5 *3 (-578 (-625 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-318)) (-4 *4 (-323)) (-4 *4 (-989)) - (-5 *2 (-599 (-599 (-647 *4)))) (-5 *1 (-970 *4)) (-5 *3 (-599 (-647 *4))))) + (-12 (-4 *4 (-308)) (-4 *4 (-313)) (-4 *4 (-954)) + (-5 *2 (-578 (-578 (-625 *4)))) (-5 *1 (-936 *4)) (-5 *3 (-578 (-625 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-318)) (-4 *5 (-323)) (-4 *5 (-989)) - (-5 *2 (-599 (-599 (-647 *5)))) (-5 *1 (-970 *5)) (-5 *3 (-599 (-647 *5))))) + (-12 (-5 *4 (-83)) (-4 *5 (-308)) (-4 *5 (-313)) (-4 *5 (-954)) + (-5 *2 (-578 (-578 (-625 *5)))) (-5 *1 (-936 *5)) (-5 *3 (-578 (-625 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-857)) (-4 *5 (-318)) (-4 *5 (-323)) (-4 *5 (-989)) - (-5 *2 (-599 (-599 (-647 *5)))) (-5 *1 (-970 *5)) (-5 *3 (-599 (-647 *5)))))) + (-12 (-5 *4 (-823)) (-4 *5 (-308)) (-4 *5 (-313)) (-4 *5 (-954)) + (-5 *2 (-578 (-578 (-625 *5)))) (-5 *1 (-936 *5)) (-5 *3 (-578 (-625 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-647 *5))) (-5 *4 (-499)) (-4 *5 (-318)) (-4 *5 (-989)) - (-5 *2 (-85)) (-5 *1 (-970 *5)))) + (-12 (-5 *3 (-578 (-625 *5))) (-5 *4 (-478)) (-4 *5 (-308)) (-4 *5 (-954)) + (-5 *2 (-83)) (-5 *1 (-936 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 (-647 *4))) (-4 *4 (-318)) (-4 *4 (-989)) (-5 *2 (-85)) - (-5 *1 (-970 *4))))) + (-12 (-5 *3 (-578 (-625 *4))) (-4 *4 (-308)) (-4 *4 (-954)) (-5 *2 (-83)) + (-5 *1 (-936 *4))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-599 (-647 *6))) (-5 *4 (-85)) (-5 *5 (-499)) (-5 *2 (-647 *6)) - (-5 *1 (-970 *6)) (-4 *6 (-318)) (-4 *6 (-989)))) + (-12 (-5 *3 (-578 (-625 *6))) (-5 *4 (-83)) (-5 *5 (-478)) (-5 *2 (-625 *6)) + (-5 *1 (-936 *6)) (-4 *6 (-308)) (-4 *6 (-954)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-599 (-647 *4))) (-5 *2 (-647 *4)) (-5 *1 (-970 *4)) - (-4 *4 (-318)) (-4 *4 (-989)))) + (-12 (-5 *3 (-578 (-625 *4))) (-5 *2 (-625 *4)) (-5 *1 (-936 *4)) + (-4 *4 (-308)) (-4 *4 (-954)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-599 (-647 *5))) (-5 *4 (-499)) (-5 *2 (-647 *5)) - (-5 *1 (-970 *5)) (-4 *5 (-318)) (-4 *5 (-989))))) + (-12 (-5 *3 (-578 (-625 *5))) (-5 *4 (-478)) (-5 *2 (-625 *5)) + (-5 *1 (-936 *5)) (-4 *5 (-308)) (-4 *5 (-954))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-647 *5))) (-5 *4 (-1207 *5)) (-4 *5 (-261)) - (-4 *5 (-989)) (-5 *2 (-647 *5)) (-5 *1 (-970 *5))))) + (-12 (-5 *3 (-578 (-625 *5))) (-5 *4 (-1168 *5)) (-4 *5 (-254)) + (-4 *5 (-954)) (-5 *2 (-625 *5)) (-5 *1 (-936 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-647 *5))) (-4 *5 (-261)) (-4 *5 (-989)) - (-5 *2 (-1207 (-1207 *5))) (-5 *1 (-970 *5)) (-5 *4 (-1207 *5))))) + (-12 (-5 *3 (-578 (-625 *5))) (-4 *5 (-254)) (-4 *5 (-954)) + (-5 *2 (-1168 (-1168 *5))) (-5 *1 (-936 *5)) (-5 *4 (-1168 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-599 (-647 *4))) (-5 *2 (-647 *4)) (-4 *4 (-989)) - (-5 *1 (-970 *4))))) + (-12 (-5 *3 (-578 (-625 *4))) (-5 *2 (-625 *4)) (-4 *4 (-954)) + (-5 *1 (-936 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1207 (-1207 *4))) (-4 *4 (-989)) (-5 *2 (-647 *4)) - (-5 *1 (-970 *4))))) + (-12 (-5 *3 (-1168 (-1168 *4))) (-4 *4 (-954)) (-5 *2 (-625 *4)) + (-5 *1 (-936 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-840 (-499))) (-5 *4 (-499)) (-5 *2 (-647 *4)) (-5 *1 (-969 *5)) - (-4 *5 (-989)))) + (-12 (-5 *3 (-806 (-478))) (-5 *4 (-478)) (-5 *2 (-625 *4)) (-5 *1 (-935 *5)) + (-4 *5 (-954)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 (-499))) (-5 *2 (-647 (-499))) (-5 *1 (-969 *4)) - (-4 *4 (-989)))) + (-12 (-5 *3 (-578 (-478))) (-5 *2 (-625 (-478))) (-5 *1 (-935 *4)) + (-4 *4 (-954)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-840 (-499)))) (-5 *4 (-499)) (-5 *2 (-599 (-647 *4))) - (-5 *1 (-969 *5)) (-4 *5 (-989)))) + (-12 (-5 *3 (-578 (-806 (-478)))) (-5 *4 (-478)) (-5 *2 (-578 (-625 *4))) + (-5 *1 (-935 *5)) (-4 *5 (-954)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 (-599 (-499)))) (-5 *2 (-599 (-647 (-499)))) - (-5 *1 (-969 *4)) (-4 *4 (-989))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-969 *3)))) + (-12 (-5 *3 (-578 (-578 (-478)))) (-5 *2 (-578 (-625 (-478)))) + (-5 *1 (-935 *4)) (-4 *4 (-954))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-935 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-599 (-647 *3))) (-4 *3 (-989)) (-5 *1 (-969 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-969 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-599 (-647 *3))) (-4 *3 (-989)) (-5 *1 (-969 *3))))) + (-12 (-5 *2 (-578 (-625 *3))) (-4 *3 (-954)) (-5 *1 (-935 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-935 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-578 (-625 *3))) (-4 *3 (-954)) (-5 *1 (-935 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-647 *4)) (-5 *3 (-857)) (-4 *4 (-989)) (-5 *1 (-969 *4)))) + (-12 (-5 *2 (-625 *4)) (-5 *3 (-823)) (-4 *4 (-954)) (-5 *1 (-935 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-599 (-647 *4))) (-5 *3 (-857)) (-4 *4 (-989)) - (-5 *1 (-969 *4))))) + (-12 (-5 *2 (-578 (-625 *4))) (-5 *3 (-823)) (-4 *4 (-954)) + (-5 *1 (-935 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-714)) (-5 *2 (-647 (-884 *4))) (-5 *1 (-969 *4)) - (-4 *4 (-989))))) + (-12 (-5 *3 (-687)) (-5 *2 (-625 (-850 *4))) (-5 *1 (-935 *4)) + (-4 *4 (-954))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-647 *4)) (-5 *3 (-857)) (|has| *4 (-6 (-4147 "*"))) - (-4 *4 (-989)) (-5 *1 (-969 *4)))) + (-12 (-5 *2 (-625 *4)) (-5 *3 (-823)) (|has| *4 (-6 (-3981 "*"))) + (-4 *4 (-954)) (-5 *1 (-935 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-599 (-647 *4))) (-5 *3 (-857)) (|has| *4 (-6 (-4147 "*"))) - (-4 *4 (-989)) (-5 *1 (-969 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-647 (-361 (-884 (-499))))) (-5 *2 (-599 (-647 (-268 (-499))))) - (-5 *1 (-968))))) -(((*1 *2 *2) (-12 (-5 *2 (-599 (-647 (-268 (-499))))) (-5 *1 (-968))))) -(((*1 *2 *2) (-12 (-5 *2 (-647 (-268 (-499)))) (-5 *1 (-968))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-647 (-361 (-884 (-499))))) - (-5 *2 (-647 (-268 (-499)))) (-5 *1 (-968))))) -(((*1 *2 *3) - (-12 (-5 *3 (-647 (-361 (-884 (-499))))) (-5 *2 (-599 (-268 (-499)))) - (-5 *1 (-968))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-647 (-361 (-884 (-499))))) (-5 *2 (-599 (-647 (-268 (-499))))) - (-5 *1 (-968)) (-5 *3 (-268 (-499)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-647 (-361 (-884 (-499))))) - (-5 *2 - (-599 - (-2 (|:| |radval| (-268 (-499))) (|:| |radmult| (-499)) - (|:| |radvect| (-599 (-647 (-268 (-499)))))))) - (-5 *1 (-968))))) -(((*1 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-73)) (-5 *2 (-85)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) - ((*1 *1 *1 *1) (-5 *1 (-797))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-966 *3)) (-4 *3 (-1157))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-965 *3 *2)) (-4 *2 (-616 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-318)) (-5 *2 (-2 (|:| -3404 *3) (|:| -2631 (-599 *5)))) - (-5 *1 (-965 *5 *3)) (-5 *4 (-599 *5)) (-4 *3 (-616 *5))))) + (-12 (-5 *2 (-578 (-625 *4))) (-5 *3 (-823)) (|has| *4 (-6 (-3981 "*"))) + (-4 *4 (-954)) (-5 *1 (-935 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-625 (-343 (-850 (-478))))) (-5 *2 (-578 (-625 (-261 (-478))))) + (-5 *1 (-934))))) +(((*1 *2 *2) (-12 (-5 *2 (-578 (-625 (-261 (-478))))) (-5 *1 (-934))))) +(((*1 *2 *2) (-12 (-5 *2 (-625 (-261 (-478)))) (-5 *1 (-934))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-625 (-343 (-850 (-478))))) + (-5 *2 (-625 (-261 (-478)))) (-5 *1 (-934))))) +(((*1 *2 *3) + (-12 (-5 *3 (-625 (-343 (-850 (-478))))) (-5 *2 (-578 (-261 (-478)))) + (-5 *1 (-934))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-625 (-343 (-850 (-478))))) (-5 *2 (-578 (-625 (-261 (-478))))) + (-5 *1 (-934)) (-5 *3 (-261 (-478)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-625 (-343 (-850 (-478))))) + (-5 *2 + (-578 + (-2 (|:| |radval| (-261 (-478))) (|:| |radmult| (-478)) + (|:| |radvect| (-578 (-625 (-261 (-478)))))))) + (-5 *1 (-934))))) +(((*1 *1 *2) (-12 (-5 *1 (-932 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-932 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1118)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) + ((*1 *1 *1 *1) (-5 *1 (-765))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-932 *3)) (-4 *3 (-1118))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-931 *3 *2)) (-4 *2 (-595 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-308)) (-5 *2 (-2 (|:| -3249 *3) (|:| -2497 (-578 *5)))) + (-5 *1 (-931 *5 *3)) (-5 *4 (-578 *5)) (-4 *3 (-595 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1001 (-964 *4) (-1111 (-964 *4)))) (-5 *3 (-797)) - (-5 *1 (-964 *4)) (-4 *4 (-13 (-780) (-318) (-960)))))) + (-12 (-5 *2 (-966 (-930 *4) (-1074 (-930 *4)))) (-5 *3 (-765)) + (-5 *1 (-930 *4)) (-4 *4 (-13 (-748) (-308) (-926)))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1001 (-964 *3) (-1111 (-964 *3)))) (-5 *1 (-964 *3)) - (-4 *3 (-13 (-780) (-318) (-960)))))) + (|partial| -12 (-5 *2 (-966 (-930 *3) (-1074 (-930 *3)))) (-5 *1 (-930 *3)) + (-4 *3 (-13 (-748) (-308) (-926)))))) (((*1 *2 *3) - (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) - (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))))) + (-12 (-5 *2 (-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))))) + (-5 *1 (-927 *3)) (-4 *3 (-1144 (-478))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) - (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))) - (-5 *4 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))))) + (-12 (-5 *2 (-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))))) + (-5 *1 (-927 *3)) (-4 *3 (-1144 (-478))) + (-5 *4 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) - (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))) (-5 *4 (-361 (-499))))) + (-12 (-5 *2 (-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))))) + (-5 *1 (-927 *3)) (-4 *3 (-1144 (-478))) (-5 *4 (-343 (-478))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-361 (-499))) (-5 *2 (-599 (-2 (|:| -3260 *5) (|:| -3259 *5)))) - (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))) - (-5 *4 (-2 (|:| -3260 *5) (|:| -3259 *5))))) + (-12 (-5 *5 (-343 (-478))) (-5 *2 (-578 (-2 (|:| -3121 *5) (|:| -3120 *5)))) + (-5 *1 (-927 *3)) (-4 *3 (-1144 (-478))) + (-5 *4 (-2 (|:| -3121 *5) (|:| -3120 *5))))) ((*1 *2 *3) - (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) - (-5 *1 (-962 *3)) (-4 *3 (-1183 (-361 (-499)))))) + (-12 (-5 *2 (-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))))) + (-5 *1 (-928 *3)) (-4 *3 (-1144 (-343 (-478)))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) - (-5 *1 (-962 *3)) (-4 *3 (-1183 (-361 (-499)))) - (-5 *4 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))))) + (-12 (-5 *2 (-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))))) + (-5 *1 (-928 *3)) (-4 *3 (-1144 (-343 (-478)))) + (-5 *4 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-361 (-499))) (-5 *2 (-599 (-2 (|:| -3260 *4) (|:| -3259 *4)))) - (-5 *1 (-962 *3)) (-4 *3 (-1183 *4)))) + (-12 (-5 *4 (-343 (-478))) (-5 *2 (-578 (-2 (|:| -3121 *4) (|:| -3120 *4)))) + (-5 *1 (-928 *3)) (-4 *3 (-1144 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-361 (-499))) (-5 *2 (-599 (-2 (|:| -3260 *5) (|:| -3259 *5)))) - (-5 *1 (-962 *3)) (-4 *3 (-1183 *5)) - (-5 *4 (-2 (|:| -3260 *5) (|:| -3259 *5)))))) + (-12 (-5 *5 (-343 (-478))) (-5 *2 (-578 (-2 (|:| -3121 *5) (|:| -3120 *5)))) + (-5 *1 (-928 *3)) (-4 *3 (-1144 *5)) + (-5 *4 (-2 (|:| -3121 *5) (|:| -3120 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) - (-5 *2 (-599 (-361 (-499)))) (-5 *1 (-961 *4)) (-4 *4 (-1183 (-499)))))) + (-12 (-5 *3 (-578 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478)))))) + (-5 *2 (-578 (-343 (-478)))) (-5 *1 (-927 *4)) (-4 *4 (-1144 (-478)))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) - (-5 *2 (-361 (-499))) (-5 *1 (-961 *4)) (-4 *4 (-1183 (-499)))))) + (-12 (-5 *3 (-2 (|:| -3121 (-343 (-478))) (|:| -3120 (-343 (-478))))) + (-5 *2 (-343 (-478))) (-5 *1 (-927 *4)) (-4 *4 (-1144 (-478)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1207 *6)) (-5 *4 (-1207 (-499))) (-5 *5 (-499)) (-4 *6 (-1041)) - (-5 *2 (-1 *6)) (-5 *1 (-957 *6))))) + (-12 (-5 *3 (-1168 *6)) (-5 *4 (-1168 (-478))) (-5 *5 (-478)) (-4 *6 (-1005)) + (-5 *2 (-1 *6)) (-5 *1 (-923 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 (-2 (|:| -3542 *4) (|:| -1555 (-499))))) (-4 *4 (-1041)) - (-5 *2 (-1 *4)) (-5 *1 (-957 *4))))) + (-12 (-5 *3 (-578 (-2 (|:| -3386 *4) (|:| -1509 (-478))))) (-4 *4 (-1005)) + (-5 *2 (-1 *4)) (-5 *1 (-923 *4))))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-318) (-120) (-978 (-499)))) (-4 *5 (-1183 *4)) - (-5 *2 (-599 (-361 *5))) (-5 *1 (-956 *4 *5)) (-5 *3 (-361 *5))))) + (|partial| -12 (-4 *4 (-13 (-308) (-118) (-943 (-478)))) (-4 *5 (-1144 *4)) + (-5 *2 (-578 (-343 *5))) (-5 *1 (-922 *4 *5)) (-5 *3 (-343 *5))))) (((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) - (-4 *5 (-13 (-318) (-120) (-978 (-499)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-308) (-118) (-943 (-478)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-361 *6)) (|:| |h| *6) (|:| |c1| (-361 *6)) - (|:| |c2| (-361 *6)) (|:| -3216 *6))) - (-5 *1 (-956 *5 *6)) (-5 *3 (-361 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-343 *6)) (|:| |h| *6) (|:| |c1| (-343 *6)) + (|:| |c2| (-343 *6)) (|:| -3077 *6))) + (-5 *1 (-922 *5 *6)) (-5 *3 (-343 *6))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1183 *6)) - (-4 *6 (-13 (-318) (-120) (-978 *4))) (-5 *4 (-499)) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1144 *6)) + (-4 *6 (-13 (-308) (-118) (-943 *4))) (-5 *4 (-478)) (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) - (|:| -3404 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-83)))) + (|:| -3249 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) - (-5 *1 (-955 *6 *3))))) + (-5 *1 (-921 *6 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-318) (-120) (-978 (-499)))) (-4 *5 (-1183 *4)) - (-5 *2 (-2 (|:| |ans| (-361 *5)) (|:| |nosol| (-85)))) (-5 *1 (-955 *4 *5)) - (-5 *3 (-361 *5))))) + (-12 (-4 *4 (-13 (-308) (-118) (-943 (-478)))) (-4 *5 (-1144 *4)) + (-5 *2 (-2 (|:| |ans| (-343 *5)) (|:| |nosol| (-83)))) (-5 *1 (-921 *4 *5)) + (-5 *3 (-343 *5))))) (((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) - (-4 *5 (-13 (-318) (-120) (-978 (-499)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-308) (-118) (-943 (-478)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-361 *6)) (|:| |c| (-361 *6)) (|:| -3216 *6))) - (-5 *1 (-955 *5 *6)) (-5 *3 (-361 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-343 *6)) (|:| |c| (-343 *6)) (|:| -3077 *6))) + (-5 *1 (-921 *5 *6)) (-5 *3 (-343 *6))))) (((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1117)) + (|partial| -12 (-5 *5 (-1079)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-599 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2237 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1143) (-27) (-375 *8))) - (-4 *8 (-13 (-406) (-120) (-978 *3) (-596 *3))) (-5 *3 (-499)) - (-5 *2 (-599 *4)) (-5 *1 (-954 *8 *4))))) + *4 (-578 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2122 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1104) (-27) (-357 *8))) + (-4 *8 (-13 (-385) (-118) (-943 *3) (-575 *3))) (-5 *3 (-478)) + (-5 *2 (-578 *4)) (-5 *1 (-920 *8 *4))))) (((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1117)) + (-12 (-5 *5 (-1079)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-599 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2237 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1143) (-27) (-375 *8))) - (-4 *8 (-13 (-406) (-120) (-978 *3) (-596 *3))) (-5 *3 (-499)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3259 *4) (|:| |sol?| (-85)))) - (-5 *1 (-953 *8 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) - (-4 *4 (-343)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499)))) - ((*1 *1 *1) (-4 *1 (-942))) ((*1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-952)))) - ((*1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-4 *1 (-952)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-952)) (-5 *2 (-857)))) - ((*1 *1 *1) (-4 *1 (-952)))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-952)) (-5 *2 (-797))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1111 *1)) (-4 *1 (-952))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1111 *1)) (-4 *1 (-952))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-952)) (-5 *2 (-797))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-952)) (-5 *2 (-797))))) -(((*1 *2 *1) (-12 (-4 *3 (-1157)) (-5 *2 (-599 *1)) (-4 *1 (-950 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-5 *2 (-599 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-5 *2 (-499))))) + *4 (-578 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2122 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1104) (-27) (-357 *8))) + (-4 *8 (-13 (-385) (-118) (-943 *3) (-575 *3))) (-5 *3 (-478)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3120 *4) (|:| |sol?| (-83)))) + (-5 *1 (-919 *8 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478)))) + ((*1 *1 *1) (-4 *1 (-908))) ((*1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-918)))) + ((*1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-4 *1 (-918)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-823)))) + ((*1 *1 *1) (-4 *1 (-918)))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-918)) (-5 *2 (-765))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1074 *1)) (-4 *1 (-918))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1074 *1)) (-4 *1 (-918))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-765))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-765))))) +(((*1 *2 *1) (-12 (-4 *3 (-1118)) (-5 *2 (-578 *1)) (-4 *1 (-916 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1118)) (-5 *2 (-578 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1118)) (-5 *2 (-478))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-85))))) + (-12 (-4 *1 (-916 *3)) (-4 *3 (-1118)) (-4 *3 (-1005)) (-5 *2 (-83))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-85))))) + (-12 (-4 *1 (-916 *3)) (-4 *3 (-1118)) (-4 *3 (-1005)) (-5 *2 (-83))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-599 *1)) (|has| *1 (-6 -4146)) (-4 *1 (-950 *3)) - (-4 *3 (-1157))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-950 *2)) (-4 *2 (-1157))))) + (-12 (-5 *2 (-578 *1)) (|has| *1 (-6 -3980)) (-4 *1 (-916 *3)) + (-4 *3 (-1118))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-916 *2)) (-4 *2 (-1118))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-498)) - (-5 *2 (-361 (-499))))) + (|partial| -12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-477)) + (-5 *2 (-343 (-478))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-361 (-499))) (-5 *1 (-359 *3)) (-4 *3 (-498)) - (-4 *3 (-510)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-498)) (-5 *2 (-361 (-499))))) + (|partial| -12 (-5 *2 (-343 (-478))) (-5 *1 (-341 *3)) (-4 *3 (-477)) + (-4 *3 (-489)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-477)) (-5 *2 (-343 (-478))))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-741 *3)) (-4 *3 (-146)) (-4 *3 (-498)) - (-5 *2 (-361 (-499))))) + (|partial| -12 (-4 *1 (-713 *3)) (-4 *3 (-144)) (-4 *3 (-477)) + (-5 *2 (-343 (-478))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-361 (-499))) (-5 *1 (-766 *3)) (-4 *3 (-498)) - (-4 *3 (-1041)))) + (|partial| -12 (-5 *2 (-343 (-478))) (-5 *1 (-736 *3)) (-4 *3 (-477)) + (-4 *3 (-1005)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-361 (-499))) (-5 *1 (-775 *3)) (-4 *3 (-498)) - (-4 *3 (-1041)))) + (|partial| -12 (-5 *2 (-343 (-478))) (-5 *1 (-743 *3)) (-4 *3 (-477)) + (-4 *3 (-1005)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-938 *3)) (-4 *3 (-146)) (-4 *3 (-498)) - (-5 *2 (-361 (-499))))) + (|partial| -12 (-4 *1 (-904 *3)) (-4 *3 (-144)) (-4 *3 (-477)) + (-5 *2 (-343 (-478))))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-361 (-499))) (-5 *1 (-948 *3)) (-4 *3 (-978 *2))))) + (|partial| -12 (-5 *2 (-343 (-478))) (-5 *1 (-914 *3)) (-4 *3 (-943 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-85)))) + (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-359 *3)) (-4 *3 (-498)) (-4 *3 (-510)))) - ((*1 *2 *1) (-12 (-4 *1 (-498)) (-5 *2 (-85)))) + (-12 (-5 *2 (-83)) (-5 *1 (-341 *3)) (-4 *3 (-477)) (-4 *3 (-489)))) + ((*1 *2 *1) (-12 (-4 *1 (-477)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-741 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-85)))) + (-12 (-4 *1 (-713 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-766 *3)) (-4 *3 (-498)) (-4 *3 (-1041)))) + (-12 (-5 *2 (-83)) (-5 *1 (-736 *3)) (-4 *3 (-477)) (-4 *3 (-1005)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-775 *3)) (-4 *3 (-498)) (-4 *3 (-1041)))) + (-12 (-5 *2 (-83)) (-5 *1 (-743 *3)) (-4 *3 (-477)) (-4 *3 (-1005)))) ((*1 *2 *1) - (-12 (-4 *1 (-938 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-85)))) + (-12 (-4 *1 (-904 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-83)))) ((*1 *2 *3) - (-12 (-5 *2 (-85)) (-5 *1 (-948 *3)) (-4 *3 (-978 (-361 (-499))))))) + (-12 (-5 *2 (-83)) (-5 *1 (-914 *3)) (-4 *3 (-943 (-343 (-478))))))) (((*1 *2 *1) - (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-361 (-499))))) + (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-343 (-478))))) ((*1 *2 *1) - (-12 (-5 *2 (-361 (-499))) (-5 *1 (-359 *3)) (-4 *3 (-498)) (-4 *3 (-510)))) - ((*1 *2 *1) (-12 (-4 *1 (-498)) (-5 *2 (-361 (-499))))) + (-12 (-5 *2 (-343 (-478))) (-5 *1 (-341 *3)) (-4 *3 (-477)) (-4 *3 (-489)))) + ((*1 *2 *1) (-12 (-4 *1 (-477)) (-5 *2 (-343 (-478))))) ((*1 *2 *1) - (-12 (-4 *1 (-741 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-361 (-499))))) + (-12 (-4 *1 (-713 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-343 (-478))))) ((*1 *2 *1) - (-12 (-5 *2 (-361 (-499))) (-5 *1 (-766 *3)) (-4 *3 (-498)) (-4 *3 (-1041)))) + (-12 (-5 *2 (-343 (-478))) (-5 *1 (-736 *3)) (-4 *3 (-477)) (-4 *3 (-1005)))) ((*1 *2 *1) - (-12 (-5 *2 (-361 (-499))) (-5 *1 (-775 *3)) (-4 *3 (-498)) (-4 *3 (-1041)))) + (-12 (-5 *2 (-343 (-478))) (-5 *1 (-743 *3)) (-4 *3 (-477)) (-4 *3 (-1005)))) ((*1 *2 *1) - (-12 (-4 *1 (-938 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-361 (-499))))) - ((*1 *2 *3) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-948 *3)) (-4 *3 (-978 *2))))) -(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-946))))) -(((*1 *2 *3) (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-946))))) -(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-946)))) - ((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-946))))) + (-12 (-4 *1 (-904 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-343 (-478))))) + ((*1 *2 *3) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-914 *3)) (-4 *3 (-943 *2))))) +(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-912))))) +(((*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1174)) (-5 *1 (-912))))) +(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-912)))) + ((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-912))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-361 (-499))) (-5 *4 (-499)) (-5 *2 (-51)) (-5 *1 (-945))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499))))) -(((*1 *2 *1) (-12 (-5 *2 (-1095 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499))))) + (-12 (-5 *3 (-343 (-478))) (-5 *4 (-478)) (-5 *2 (-51)) (-5 *1 (-911))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478))))) +(((*1 *2 *1) (-12 (-5 *2 (-1058 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-359 *5)) (-4 *5 (-510)) - (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *5) (|:| |radicand| (-599 *5)))) - (-5 *1 (-274 *5)) (-5 *4 (-714)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-942)) (-5 *2 (-499))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-940 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) - ((*1 *1 *1 *1) (-4 *1 (-427))) - ((*1 *1 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) - ((*1 *2 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-818)))) - ((*1 *1 *1) (-5 *1 (-911))) - ((*1 *1 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157))))) -(((*1 *1 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157))))) + (-12 (-5 *3 (-341 *5)) (-4 *5 (-489)) + (-5 *2 (-2 (|:| -2387 (-687)) (|:| -3938 *5) (|:| |radicand| (-578 *5)))) + (-5 *1 (-267 *5)) (-5 *4 (-687)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-908)) (-5 *2 (-478))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-5 *1 (-906 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) + ((*1 *1 *1 *1) (-4 *1 (-406))) + ((*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) + ((*1 *2 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-786)))) + ((*1 *1 *1) (-5 *1 (-877))) + ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144))))) +(((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) + ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144))))) +(((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) + ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144))))) +(((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) + ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1118))))) +(((*1 *1 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1118))))) (((*1 *1 *2) - (-12 (-5 *2 (-1082 *3 *4)) (-14 *3 (-857)) (-4 *4 (-318)) - (-5 *1 (-933 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1065 (-499) (-566 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1045 *3 *4)) (-14 *3 (-823)) (-4 *4 (-308)) + (-5 *1 (-899 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1028 (-478) (-545 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-261)) (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-5 *2 (-1207 *6)) - (-5 *1 (-367 *3 *4 *5 *6)) (-4 *6 (-13 (-364 *4 *5) (-978 *4))))) + (-12 (-4 *3 (-254)) (-4 *4 (-897 *3)) (-4 *5 (-1144 *4)) (-5 *2 (-1168 *6)) + (-5 *1 (-349 *3 *4 *5 *6)) (-4 *6 (-13 (-346 *4 *5) (-943 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-989)) (-4 *3 (-1041)) (-5 *2 (-1065 *3 (-566 *1))) - (-4 *1 (-375 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1065 (-499) (-566 (-449)))) (-5 *1 (-449)))) + (-12 (-4 *3 (-954)) (-4 *3 (-1005)) (-5 *2 (-1028 *3 (-545 *1))) + (-4 *1 (-357 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1028 (-478) (-545 (-428)))) (-5 *1 (-428)))) ((*1 *2 *1) - (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-574 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-684) *3)))) + (-12 (-4 *3 (-144)) (-4 *2 (-38 *3)) (-5 *1 (-553 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-658) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-146)) (-4 *2 (-675 *3)) (-5 *1 (-610 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-684) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510))))) -(((*1 *2 *1) (-12 (-5 *2 (-1065 (-499) (-566 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *3 (-144)) (-4 *2 (-649 *3)) (-5 *1 (-589 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-658) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489))))) +(((*1 *2 *1) (-12 (-5 *2 (-1028 (-478) (-545 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-931 *2)) (-4 *4 (-1183 *3)) (-4 *2 (-261)) - (-5 *1 (-367 *2 *3 *4 *5)) (-4 *5 (-13 (-364 *3 *4) (-978 *3))))) + (-12 (-4 *3 (-897 *2)) (-4 *4 (-1144 *3)) (-4 *2 (-254)) + (-5 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-13 (-346 *3 *4) (-943 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-510)) (-4 *3 (-1041)) (-5 *2 (-1065 *3 (-566 *1))) - (-4 *1 (-375 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1065 (-499) (-566 (-449)))) (-5 *1 (-449)))) + (-12 (-4 *3 (-489)) (-4 *3 (-1005)) (-5 *2 (-1028 *3 (-545 *1))) + (-4 *1 (-357 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1028 (-478) (-545 (-428)))) (-5 *1 (-428)))) ((*1 *2 *1) - (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-684) *4)) - (-5 *1 (-574 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-144)) (-4 *2 (|SubsetCategory| (-658) *4)) + (-5 *1 (-553 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-684) *4)) - (-5 *1 (-610 *3 *4 *2)) (-4 *3 (-675 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510))))) -(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1041)) (-4 *2 (-989)))) - ((*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510))))) -(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1041)) (-4 *2 (-510)))) - ((*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510))))) + (-12 (-4 *4 (-144)) (-4 *2 (|SubsetCategory| (-658) *4)) + (-5 *1 (-589 *3 *4 *2)) (-4 *3 (-649 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489))))) +(((*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1005)) (-4 *2 (-954)))) + ((*1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489))))) +(((*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1005)) (-4 *2 (-489)))) + ((*1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489))))) (((*1 *2 *3) - (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305)))) + (-12 (-5 *3 (-823)) (-5 *2 (-1074 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305)))) - ((*1 *1) (-4 *1 (-323))) + (-12 (-5 *3 (-823)) (-5 *2 (-1074 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) + ((*1 *1) (-4 *1 (-313))) ((*1 *2 *3) - (-12 (-5 *3 (-857)) (-5 *2 (-1207 *4)) (-5 *1 (-481 *4)) (-4 *4 (-305)))) - ((*1 *1 *1) (-4 *1 (-498))) ((*1 *1) (-4 *1 (-498))) - ((*1 *1 *1) (-5 *1 (-714))) - ((*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) + (-12 (-5 *3 (-823)) (-5 *2 (-1168 *4)) (-5 *1 (-460 *4)) (-4 *4 (-295)))) + ((*1 *1 *1) (-4 *1 (-477))) ((*1 *1) (-4 *1 (-477))) + ((*1 *1 *1) (-5 *1 (-687))) + ((*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-809 *3)) (-4 *3 (-1005)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-499)) (-5 *2 (-840 *4)) (-5 *1 (-843 *4)) (-4 *4 (-1041)))) - ((*1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-498)) (-4 *2 (-510))))) + (-12 (-5 *3 (-478)) (-5 *2 (-806 *4)) (-5 *1 (-809 *4)) (-4 *4 (-1005)))) + ((*1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-477)) (-4 *2 (-489))))) (((*1 *2 *2) (-12 (-5 *2 - (-926 (-361 (-499)) (-798 *3) (-196 *4 (-714)) (-205 *3 (-361 (-499))))) - (-14 *3 (-599 (-1117))) (-14 *4 (-714)) (-5 *1 (-927 *3 *4))))) + (-892 (-343 (-478)) (-766 *3) (-194 *4 (-687)) (-203 *3 (-343 (-478))))) + (-14 *3 (-578 (-1079))) (-14 *4 (-687)) (-5 *1 (-893 *3 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-599 *3)) (-4 *3 (-888 *4 *6 *5)) (-4 *4 (-406)) (-4 *5 (-781)) - (-4 *6 (-738)) (-5 *1 (-926 *4 *5 *6 *3))))) + (-12 (-5 *2 (-578 *3)) (-4 *3 (-854 *4 *6 *5)) (-4 *4 (-385)) (-4 *5 (-749)) + (-4 *6 (-710)) (-5 *1 (-892 *4 *5 *6 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-406)) (-4 *4 (-781)) (-4 *5 (-738)) - (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4))))) + (-12 (-5 *2 (-3 (-83) "failed")) (-4 *3 (-385)) (-4 *4 (-749)) (-4 *5 (-710)) + (-5 *1 (-892 *3 *4 *5 *6)) (-4 *6 (-854 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-406)) (-4 *4 (-781)) (-4 *5 (-738)) (-5 *2 (-599 *6)) - (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4))))) + (-12 (-4 *3 (-385)) (-4 *4 (-749)) (-4 *5 (-710)) (-5 *2 (-578 *6)) + (-5 *1 (-892 *3 *4 *5 *6)) (-4 *6 (-854 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-888 *3 *5 *4)) (-5 *1 (-926 *3 *4 *5 *2)) (-4 *3 (-406)) - (-4 *4 (-781)) (-4 *5 (-738))))) + (-12 (-4 *2 (-854 *3 *5 *4)) (-5 *1 (-892 *3 *4 *5 *2)) (-4 *3 (-385)) + (-4 *4 (-749)) (-4 *5 (-710))))) (((*1 *1 *1) - (-12 (-4 *2 (-406)) (-4 *3 (-781)) (-4 *4 (-738)) (-5 *1 (-926 *2 *3 *4 *5)) - (-4 *5 (-888 *2 *4 *3))))) + (-12 (-4 *2 (-385)) (-4 *3 (-749)) (-4 *4 (-710)) (-5 *1 (-892 *2 *3 *4 *5)) + (-4 *5 (-854 *2 *4 *3))))) (((*1 *2 *3) - (-12 (-4 *3 (-1183 *2)) (-4 *2 (-1183 *4)) (-5 *1 (-925 *4 *2 *3 *5)) - (-4 *4 (-305)) (-4 *5 (-682 *2 *3))))) + (-12 (-4 *3 (-1144 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-891 *4 *2 *3 *5)) + (-4 *4 (-295)) (-4 *5 (-656 *2 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-738)) (-4 *3 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) - (-4 *5 (-510)) (-5 *1 (-690 *4 *3 *5 *2)) - (-4 *2 (-888 (-361 (-884 *5)) *4 *3)))) + (-12 (-4 *4 (-710)) (-4 *3 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $))))) + (-4 *5 (-489)) (-5 *1 (-664 *4 *3 *5 *2)) + (-4 *2 (-854 (-343 (-850 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-989)) (-4 *5 (-738)) + (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 - (-13 (-781) - (-10 -8 (-15 -4122 ((-1117) $)) - (-15 -3981 ((-3 $ #1="failed") (-1117)))))) - (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-888 (-884 *4) *5 *3)))) + (-13 (-749) + (-10 -8 (-15 -3956 ((-1079) $)) + (-15 -3815 ((-3 $ #1="failed") (-1079)))))) + (-5 *1 (-890 *4 *5 *3 *2)) (-4 *2 (-854 (-850 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-599 *6)) + (-12 (-5 *3 (-578 *6)) (-4 *6 - (-13 (-781) - (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ #1#) (-1117)))))) - (-4 *4 (-989)) (-4 *5 (-738)) (-5 *1 (-924 *4 *5 *6 *2)) - (-4 *2 (-888 (-884 *4) *5 *6))))) + (-13 (-749) + (-10 -8 (-15 -3956 ((-1079) $)) (-15 -3815 ((-3 $ #1#) (-1079)))))) + (-4 *4 (-954)) (-4 *5 (-710)) (-5 *1 (-890 *4 *5 *6 *2)) + (-4 *2 (-854 (-850 *4) *5 *6))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-738)) (-4 *3 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) - (-4 *5 (-510)) (-5 *1 (-690 *4 *3 *5 *2)) - (-4 *2 (-888 (-361 (-884 *5)) *4 *3)))) + (-12 (-4 *4 (-710)) (-4 *3 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $))))) + (-4 *5 (-489)) (-5 *1 (-664 *4 *3 *5 *2)) + (-4 *2 (-854 (-343 (-850 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-989)) (-4 *5 (-738)) + (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 - (-13 (-781) - (-10 -8 (-15 -4122 ((-1117) $)) - (-15 -3981 ((-3 $ #1="failed") (-1117)))))) - (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-888 (-884 *4) *5 *3)))) + (-13 (-749) + (-10 -8 (-15 -3956 ((-1079) $)) + (-15 -3815 ((-3 $ #1="failed") (-1079)))))) + (-5 *1 (-890 *4 *5 *3 *2)) (-4 *2 (-854 (-850 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-599 *6)) + (-12 (-5 *3 (-578 *6)) (-4 *6 - (-13 (-781) - (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ #1#) (-1117)))))) - (-4 *4 (-989)) (-4 *5 (-738)) (-5 *1 (-924 *4 *5 *6 *2)) - (-4 *2 (-888 (-884 *4) *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) + (-13 (-749) + (-10 -8 (-15 -3956 ((-1079) $)) (-15 -3815 ((-3 $ #1#) (-1079)))))) + (-4 *4 (-954)) (-4 *5 (-710)) (-5 *1 (-890 *4 *5 *6 *2)) + (-4 *2 (-854 (-850 *4) *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1104))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-714)) (-4 *1 (-923 *2)) (-4 *2 (-1143))))) -(((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-808)))) - ((*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) -(((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-130)))) - ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-808)))) - ((*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) -(((*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-130)))) - ((*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) -(((*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) -(((*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) -(((*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) -(((*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) -(((*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) -(((*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-318)) - (-5 *2 (-599 (-2 (|:| C (-647 *5)) (|:| |g| (-1207 *5))))) (-5 *1 (-918 *5)) - (-5 *3 (-647 *5)) (-5 *4 (-1207 *5))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-857)) (-5 *1 (-657)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-647 *5)) (-5 *3 (-70 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-318)) - (-5 *1 (-918 *5))))) + (|partial| -12 (-5 *3 (-687)) (-4 *1 (-889 *2)) (-4 *2 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-776)))) + ((*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) +(((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-128)))) + ((*1 *2 *1) (-12 (-5 *2 (-128)) (-5 *1 (-776)))) + ((*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) +(((*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-128)))) + ((*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) +(((*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) +(((*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) +(((*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) +(((*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) +(((*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) +(((*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-308)) + (-5 *2 (-578 (-2 (|:| C (-625 *5)) (|:| |g| (-1168 *5))))) (-5 *1 (-884 *5)) + (-5 *3 (-625 *5)) (-5 *4 (-1168 *5))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-625 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-308)) + (-5 *1 (-884 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-318)) (-4 *4 (-406)) - (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-401 *4 *5 *6 *2)))) + (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *4 *5 *6)) (-4 *4 (-308)) (-4 *4 (-385)) + (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-380 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-70 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-318)) - (-5 *2 (-2 (|:| R (-647 *6)) (|:| A (-647 *6)) (|:| |Ainv| (-647 *6)))) - (-5 *1 (-918 *6)) (-5 *3 (-647 *6))))) + (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-308)) + (-5 *2 (-2 (|:| R (-625 *6)) (|:| A (-625 *6)) (|:| |Ainv| (-625 *6)))) + (-5 *1 (-884 *6)) (-5 *3 (-625 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-261)) - (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-254)) + (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-261)) - (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-254)) + (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-261)) - (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-254)) + (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-406)) (-4 *3 (-510)) - (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-385)) (-4 *3 (-489)) + (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-406)) (-4 *3 (-510)) - (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-385)) (-4 *3 (-489)) + (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-406)) (-4 *3 (-510)) - (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-385)) (-4 *3 (-489)) + (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-406)) (-4 *3 (-510)) - (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-385)) (-4 *3 (-489)) + (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-599 *7)) (-5 *3 (-85)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) - (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-917 *4 *5 *6 *7))))) + (-12 (-5 *2 (-578 *7)) (-5 *3 (-83)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) + (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-883 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-406)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) - (-5 *2 (-599 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6))))) + (-12 (-4 *4 (-385)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) + (-5 *2 (-578 *3)) (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-599 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) - (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) - (-5 *1 (-917 *5 *6 *7 *8))))) + (-12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-83) *8 *8)) (-5 *4 (-1 *8 *8 *8)) + (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) + (-5 *1 (-883 *5 *6 *7 *8))))) (((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-599 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1005 *6 *7 *8)) (-4 *6 (-510)) (-4 *7 (-738)) - (-4 *8 (-781)) (-5 *1 (-917 *6 *7 *8 *9))))) + (-12 (-5 *2 (-578 *9)) (-5 *3 (-1 (-83) *9)) (-5 *4 (-1 (-83) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-969 *6 *7 *8)) (-4 *6 (-489)) (-4 *7 (-710)) + (-4 *8 (-749)) (-5 *1 (-883 *6 *7 *8 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) - (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) + (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *7 (-1005 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-430 *4 *5 *6 *7)) (|:| -3464 (-599 *7)))) - (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7))))) + (|partial| -12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *7 (-969 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-409 *4 *5 *6 *7)) (|:| -3308 (-578 *7)))) + (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) - (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) + (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *1 (-917 *4 *5 *6 *2))))) + (-12 (-5 *3 (-578 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *1 (-883 *4 *5 *6 *2))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) - (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) + (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-599 *7)) (-5 *3 (-85)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) - (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-917 *4 *5 *6 *7))))) + (-12 (-5 *2 (-578 *7)) (-5 *3 (-83)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) + (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-883 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-599 *7)) (|:| |badPols| (-599 *7)))) - (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7))))) + (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) + (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) - (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6))))) + (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) + (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-599 *7)) (|:| |badPols| (-599 *7)))) - (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7))))) + (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) + (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) - (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6))))) + (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) + (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-599 *7)) (|:| |badPols| (-599 *7)))) - (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7))))) + (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) + (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) - (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6))))) + (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) + (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-599 *7)) (|:| |badPols| (-599 *7)))) - (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7))))) + (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) + (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-1 (-85) *8))) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) - (-4 *6 (-738)) (-4 *7 (-781)) - (-5 *2 (-2 (|:| |goodPols| (-599 *8)) (|:| |badPols| (-599 *8)))) - (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-599 *8))))) + (-12 (-5 *3 (-578 (-1 (-83) *8))) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) + (-4 *6 (-710)) (-4 *7 (-749)) + (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) + (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-578 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-1 (-85) *8))) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) - (-4 *6 (-738)) (-4 *7 (-781)) - (-5 *2 (-2 (|:| |goodPols| (-599 *8)) (|:| |badPols| (-599 *8)))) - (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-599 *8))))) + (-12 (-5 *3 (-578 (-1 (-83) *8))) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) + (-4 *6 (-710)) (-4 *7 (-749)) + (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) + (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-578 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) - (-4 *6 (-738)) (-4 *7 (-781)) - (-5 *2 (-2 (|:| |goodPols| (-599 *8)) (|:| |badPols| (-599 *8)))) - (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-599 *8))))) + (-12 (-5 *3 (-1 (-83) *8)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) + (-4 *6 (-710)) (-4 *7 (-749)) + (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) + (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-578 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-917 *4 *5 *6 *7))))) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-883 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-599 (-599 *8))) (-5 *3 (-599 *8)) (-4 *8 (-1005 *5 *6 *7)) - (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-85)) - (-5 *1 (-917 *5 *6 *7 *8))))) + (-12 (-5 *4 (-578 (-578 *8))) (-5 *3 (-578 *8)) (-4 *8 (-969 *5 *6 *7)) + (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-83)) + (-5 *1 (-883 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-917 *4 *5 *6 *7))))) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-883 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) - (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) + (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 *3)) - (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6)))) + (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 *3)) + (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-599 *3)) (-4 *3 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *1 (-917 *4 *5 *6 *3)))) + (-12 (-5 *2 (-578 *3)) (-4 *3 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *1 (-883 *4 *5 *6 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) - (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) + (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-599 *7) (-599 *7))) (-5 *2 (-599 *7)) - (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) - (-5 *1 (-917 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1 (-578 *7) (-578 *7))) (-5 *2 (-578 *7)) + (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) + (-5 *1 (-883 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 *3)) - (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6))))) + (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 *3)) + (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) - (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) + (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-599 *5))))) + (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-578 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-916 *4 *5 *3 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) - (-4 *6 (-1005 *4 *5 *3)) (-5 *2 (-85))))) + (-12 (-4 *1 (-882 *4 *5 *3 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) + (-4 *6 (-969 *4 *5 *3)) (-5 *2 (-83))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) - (-4 *5 (-1005 *3 *4 *2))))) + (-12 (-4 *1 (-882 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) + (-4 *5 (-969 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) - (-4 *5 (-1005 *3 *4 *2))))) + (-12 (-4 *1 (-882 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) + (-4 *5 (-969 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) - (-4 *5 (-1005 *3 *4 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-1157)) (-4 *2 (-781)))) + (-12 (-4 *1 (-882 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) + (-4 *5 (-969 *3 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-317 *2)) (-4 *2 (-1118)) (-4 *2 (-749)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-327 *3)) (-4 *3 (-1157)))) - ((*1 *2 *2) (-12 (-5 *2 (-599 (-840 *3))) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) + (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1118)))) + ((*1 *2 *2) (-12 (-5 *2 (-578 (-806 *3))) (-5 *1 (-806 *3)) (-4 *3 (-1005)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-4 *6 (-1005 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3252 *1) (|:| |upper| *1))) - (-4 *1 (-916 *4 *5 *3 *6))))) + (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-4 *6 (-969 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3113 *1) (|:| |upper| *1))) + (-4 *1 (-882 *4 *5 *3 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85))))) + (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85))))) + (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85))))) + (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85))))) + (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *3 (-1005 *4 *5 *6)) (-4 *4 (-510)) + (-12 (-4 *1 (-882 *4 *5 *6 *3)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *3 (-969 *4 *5 *6)) (-4 *4 (-489)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *3 (-1005 *4 *5 *6)) (-4 *4 (-510)) + (-12 (-4 *1 (-882 *4 *5 *6 *3)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *3 (-969 *4 *5 *6)) (-4 *4 (-489)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-599 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) - (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510))))) + (-12 (-5 *2 (-578 *6)) (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) + (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-599 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) - (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510))))) -(((*1 *2 *1) - (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-599 (-599 (-881 (-179))))))) - ((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-599 (-599 (-881 (-179)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-1029 (-179))))) - ((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1029 (-179)))))) -(((*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-1029 (-179))))) - ((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1029 (-179)))))) -(((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1029 (-179)))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1041)))) - ((*1 *2 *1) - (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-4 *6 (-195 (-4107 *3) (-714))) + (-12 (-5 *2 (-578 *6)) (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) + (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489))))) +(((*1 *2 *1) + (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-578 (-578 (-847 (-177))))))) + ((*1 *2 *1) (-12 (-4 *1 (-880)) (-5 *2 (-578 (-578 (-847 (-177)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-993 (-177))))) + ((*1 *2 *1) (-12 (-4 *1 (-880)) (-5 *2 (-993 (-177)))))) +(((*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-993 (-177))))) + ((*1 *2 *1) (-12 (-4 *1 (-880)) (-5 *2 (-993 (-177)))))) +(((*1 *2 *1) (-12 (-4 *1 (-880)) (-5 *2 (-993 (-177)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)))) + ((*1 *2 *1) (-12 (-4 *1 (-328 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1005)))) + ((*1 *2 *1) + (-12 (-14 *3 (-578 (-1079))) (-4 *4 (-144)) (-4 *6 (-193 (-3941 *3) (-687))) (-14 *7 - (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *6)) - (-2 (|:| -2518 *5) (|:| -2519 *6)))) - (-5 *2 (-671 *5 *6 *7)) (-5 *1 (-415 *3 *4 *5 *6 *7 *8)) (-4 *5 (-781)) - (-4 *8 (-888 *4 *6 (-798 *3))))) + (-1 (-83) (-2 (|:| -2386 *5) (|:| -2387 *6)) + (-2 (|:| -2386 *5) (|:| -2387 *6)))) + (-5 *2 (-645 *5 *6 *7)) (-5 *1 (-394 *3 *4 *5 *6 *7 *8)) (-4 *5 (-749)) + (-4 *8 (-854 *4 *6 (-766 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-684)) (-4 *2 (-781)) (-5 *1 (-693 *3 *2)) (-4 *3 (-989)))) + (-12 (-4 *2 (-658)) (-4 *2 (-749)) (-5 *1 (-667 *3 *2)) (-4 *3 (-954)))) ((*1 *1 *1) - (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-737)) (-4 *4 (-781))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)))) + (-12 (-4 *1 (-879 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-709)) (-4 *4 (-749))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-599 (-857))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-857)) - (-4 *2 (-318)) (-14 *5 (-933 *4 *2)))) + (-12 (-5 *3 (-578 (-823))) (-5 *1 (-123 *4 *2 *5)) (-14 *4 (-823)) + (-4 *2 (-308)) (-14 *5 (-899 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-671 *5 *6 *7)) (-4 *5 (-781)) (-4 *6 (-195 (-4107 *4) (-714))) + (-12 (-5 *3 (-645 *5 *6 *7)) (-4 *5 (-749)) (-4 *6 (-193 (-3941 *4) (-687))) (-14 *7 - (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *6)) - (-2 (|:| -2518 *5) (|:| -2519 *6)))) - (-14 *4 (-599 (-1117))) (-4 *2 (-146)) (-5 *1 (-415 *4 *2 *5 *6 *7 *8)) - (-4 *8 (-888 *2 *6 (-798 *4))))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-73)) (-4 *3 (-784)))) + (-1 (-83) (-2 (|:| -2386 *5) (|:| -2387 *6)) + (-2 (|:| -2386 *5) (|:| -2387 *6)))) + (-14 *4 (-578 (-1079))) (-4 *2 (-144)) (-5 *1 (-394 *4 *2 *5 *6 *7 *8)) + (-4 *8 (-854 *2 *6 (-766 *4))))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-72)) (-4 *3 (-752)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-499)) (-4 *2 (-510)) (-5 *1 (-578 *2 *4)) (-4 *4 (-1183 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-666 *2)) (-4 *2 (-989)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-693 *2 *3)) (-4 *2 (-989)) (-4 *3 (-684)))) + (-12 (-5 *3 (-478)) (-4 *2 (-489)) (-5 *1 (-557 *2 *4)) (-4 *4 (-1144 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-640 *2)) (-4 *2 (-954)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-667 *2 *3)) (-4 *2 (-954)) (-4 *3 (-658)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 *5)) (-5 *3 (-599 (-714))) (-4 *1 (-698 *4 *5)) - (-4 *4 (-989)) (-4 *5 (-781)))) + (-12 (-5 *2 (-578 *5)) (-5 *3 (-578 (-687))) (-4 *1 (-672 *4 *5)) + (-4 *4 (-954)) (-4 *5 (-749)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-714)) (-4 *1 (-698 *4 *2)) (-4 *4 (-989)) (-4 *2 (-781)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-786 *2)) (-4 *2 (-989)))) + (-12 (-5 *3 (-687)) (-4 *1 (-672 *4 *2)) (-4 *4 (-954)) (-4 *2 (-749)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-754 *2)) (-4 *2 (-954)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 *6)) (-5 *3 (-599 (-714))) (-4 *1 (-888 *4 *5 *6)) - (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)))) + (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 (-687))) (-4 *1 (-854 *4 *5 *6)) + (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-714)) (-4 *1 (-888 *4 *5 *2)) (-4 *4 (-989)) (-4 *5 (-738)) - (-4 *2 (-781)))) + (-12 (-5 *3 (-687)) (-4 *1 (-854 *4 *5 *2)) (-4 *4 (-954)) (-4 *5 (-710)) + (-4 *2 (-749)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 *6)) (-5 *3 (-599 *5)) (-4 *1 (-913 *4 *5 *6)) - (-4 *4 (-989)) (-4 *5 (-737)) (-4 *6 (-781)))) + (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 *5)) (-4 *1 (-879 *4 *5 *6)) + (-4 *4 (-954)) (-4 *5 (-709)) (-4 *6 (-749)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-913 *4 *3 *2)) (-4 *4 (-989)) (-4 *3 (-737)) (-4 *2 (-781))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-546 *3)) (-4 *3 (-989)))) - ((*1 *2 *1) - (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-737)) (-4 *5 (-781)) - (-5 *2 (-85))))) -(((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-261)))) - ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) - ((*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1157)))) - ((*1 *1 *1) (-4 *1 (-804 *2))) + (-12 (-4 *1 (-879 *4 *3 *2)) (-4 *4 (-954)) (-4 *3 (-709)) (-4 *2 (-749))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-525 *3)) (-4 *3 (-954)))) + ((*1 *2 *1) + (-12 (-4 *1 (-879 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-709)) (-4 *5 (-749)) + (-5 *2 (-83))))) +(((*1 *1 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-254)))) + ((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162)))) + ((*1 *1 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1118)))) + ((*1 *1 *1) (-4 *1 (-772 *2))) ((*1 *1 *1) - (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-737)) (-4 *4 (-781))))) -(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-911))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)) (-5 *2 (-599 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4145)) (-4 *1 (-443 *3)) (-4 *3 (-1157)) - (-5 *2 (-599 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-911))))) -(((*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1095 (-911))) (-5 *1 (-911))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-807 (-857) (-857)))) (-5 *1 (-911))))) -(((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-911))))) + (-12 (-4 *1 (-879 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-709)) (-4 *4 (-749))))) +(((*1 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477)))) + ((*1 *1 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-877))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)) (-5 *2 (-578 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -3979)) (-4 *1 (-422 *3)) (-4 *3 (-1118)) + (-5 *2 (-578 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-877))))) +(((*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1058 (-877))) (-5 *1 (-877))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-775 (-823) (-823)))) (-5 *1 (-877))))) +(((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-877))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3906 *4))) - (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3740 *4))) + (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-510)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3906 *4))) - (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-510)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1183 *2))))) + (-12 (-4 *4 (-489)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3740 *4))) + (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-489)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1144 *2))))) (((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3))))) + (-12 (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1144 *3))))) (((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-714)) (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3))))) + (-12 (-5 *4 (-687)) (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1144 *3))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-714)) (-4 *2 (-510)) (-5 *1 (-909 *2 *4)) (-4 *4 (-1183 *2))))) + (-12 (-5 *3 (-687)) (-4 *2 (-489)) (-5 *1 (-875 *2 *4)) (-4 *4 (-1144 *2))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-261)))) + (-12 (-5 *2 (-2 (|:| -1960 *1) (|:| -2886 *1))) (-4 *1 (-254)))) ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1041)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) - (-4 *1 (-341 *3)))) + (|partial| -12 (-4 *3 (-1005)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) + (-4 *1 (-329 *3)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2075 (-714)) (|:| -3023 (-714)))) (-5 *1 (-714)))) + (-12 (-5 *2 (-2 (|:| -1960 (-687)) (|:| -2886 (-687)))) (-5 *1 (-687)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) - (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| -1960 *3) (|:| -2886 *3))) + (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-406)) (-4 *4 (-510)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2997 *4))) (-5 *1 (-909 *4 *3)) - (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-385)) (-4 *4 (-489)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -2860 *4))) (-5 *1 (-875 *4 *3)) + (-4 *3 (-1144 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-406)) (-4 *4 (-510)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2997 *4))) - (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-385)) (-4 *4 (-489)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2860 *4))) + (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-510)) (-4 *2 (-406)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1183 *2))))) + (-12 (-4 *2 (-489)) (-4 *2 (-385)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1144 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-599 (-714))) (-5 *1 (-909 *4 *3)) - (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-489)) (-5 *2 (-578 (-687))) (-5 *1 (-875 *4 *3)) + (-4 *3 (-1144 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-599 *3)) (-5 *1 (-909 *4 *3)) - (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-489)) (-5 *2 (-578 *3)) (-5 *1 (-875 *4 *3)) + (-4 *3 (-1144 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3907 *4))) - (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3741 *4))) + (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3907 *4))) - (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-489)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3741 *4))) + (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3282 *3))) - (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3127 *3))) + (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3282 *3))) - (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3127 *3))) + (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-510)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3282 *3))) - (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-489)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3127 *3))) + (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-510)) + (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) + (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-714)) (-4 *5 (-510)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-909 *5 *3)) - (-4 *3 (-1183 *5))))) + (-12 (-5 *4 (-687)) (-4 *5 (-489)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-875 *5 *3)) + (-4 *3 (-1144 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-714)) (-4 *5 (-510)) + (-12 (-5 *4 (-687)) (-4 *5 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-909 *5 *3)) (-4 *3 (-1183 *5))))) + (-5 *1 (-875 *5 *3)) (-4 *3 (-1144 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-714)) (-4 *4 (-510)) (-5 *1 (-909 *4 *2)) (-4 *2 (-1183 *4))))) + (-12 (-5 *3 (-687)) (-4 *4 (-489)) (-5 *1 (-875 *4 *2)) (-4 *2 (-1144 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-714)) (-4 *5 (-510)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-909 *5 *3)) - (-4 *3 (-1183 *5))))) + (-12 (-5 *4 (-687)) (-4 *5 (-489)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-875 *5 *3)) + (-4 *3 (-1144 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-714)) (-4 *5 (-510)) + (-12 (-5 *4 (-687)) (-4 *5 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-909 *5 *3)) (-4 *3 (-1183 *5))))) + (-5 *1 (-875 *5 *3)) (-4 *3 (-1144 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-714)) (-4 *4 (-510)) (-5 *1 (-909 *4 *2)) (-4 *2 (-1183 *4))))) + (-12 (-5 *3 (-687)) (-4 *4 (-489)) (-5 *1 (-875 *4 *2)) (-4 *2 (-1144 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3906 *4))) - (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3740 *4))) + (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3906 *4))) - (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3740 *4))) + (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-510)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3906 *4))) - (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-489)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3740 *4))) + (-5 *1 (-875 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *1) - (-12 (-4 *1 (-358)) (-2679 (|has| *1 (-6 -4136))) - (-2679 (|has| *1 (-6 -4128))))) - ((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1041)) (-4 *2 (-781)))) - ((*1 *1) (-4 *1 (-777))) ((*1 *1 *1 *1) (-4 *1 (-784))) - ((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-781))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)) (-4 *2 (-781)))) + (-12 (-4 *1 (-340)) (-2544 (|has| *1 (-6 -3970))) + (-2544 (|has| *1 (-6 -3962))))) + ((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1005)) (-4 *2 (-749)))) + ((*1 *1) (-4 *1 (-745))) ((*1 *1 *1 *1) (-4 *1 (-752))) + ((*1 *2 *1) (-12 (-4 *1 (-874 *2)) (-4 *2 (-749))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1118)) (-4 *2 (-749)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-781))))) -(((*1 *1) (-4 *1 (-907)))) -(((*1 *1) (-4 *1 (-907)))) -(((*1 *1 *1 *1) (-4 *1 (-907)))) -(((*1 *1 *1 *1) (-4 *1 (-907)))) -(((*1 *1 *2) (-12 (-5 *2 (-593 *3)) (-14 *3 (-599 (-1117))) (-5 *1 (-168 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-599 (-1117))) (-5 *1 (-593 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-904 *3)) (-4 *3 (-1041)) (-5 *1 (-905 *3))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1041)) (-5 *2 (-823 *3 *4)) (-5 *1 (-820 *3 *4 *5)) - (-4 *3 (-1041)) (-4 *5 (-624 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-904 *4)) (-4 *4 (-1041)) (-5 *2 (-1037 *4)) (-5 *1 (-905 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) - (-12 (-5 *2 (-649 (-807 (-904 *3) (-904 *3)))) (-5 *1 (-904 *3)) - (-4 *3 (-1041))))) -(((*1 *2 *1) - (-12 (-5 *2 (-649 (-807 (-904 *3) (-904 *3)))) (-5 *1 (-904 *3)) - (-4 *3 (-1041))))) -(((*1 *2 *1) - (-12 (-5 *2 (-649 (-807 (-904 *3) (-904 *3)))) (-5 *1 (-904 *3)) - (-4 *3 (-1041))))) -(((*1 *2 *1) - (-12 (-5 *2 (-649 (-807 (-904 *3) (-904 *3)))) (-5 *1 (-904 *3)) - (-4 *3 (-1041))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1041))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1041))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-716))) (-5 *1 (-86)))) - ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-716)) (-5 *1 (-86)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-1043)) (-5 *1 (-903))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-4 *2 (-1041)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-4 *2 (-1041)) (-5 *1 (-902 *3 *2)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-797)))) - ((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-901))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-599 *3)) (-5 *1 (-900 *3)) (-4 *3 (-498))))) -(((*1 *2 *2) (-12 (-5 *1 (-900 *2)) (-4 *2 (-498))))) -(((*1 *2 *2) (-12 (-5 *1 (-900 *2)) (-4 *2 (-498))))) -(((*1 *1) (-4 *1 (-305))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 *5)) (-4 *5 (-375 *4)) (-4 *4 (-13 (-510) (-120))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-599 (-1111 *5))) - (|:| |prim| (-1111 *5)))) - (-5 *1 (-386 *4 *5)))) + (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-234 *3)) (-4 *3 (-1118)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-874 *2)) (-4 *2 (-749))))) +(((*1 *1) (-4 *1 (-873)))) +(((*1 *1) (-4 *1 (-873)))) +(((*1 *1 *1 *1) (-4 *1 (-873)))) +(((*1 *1 *1 *1) (-4 *1 (-873)))) +(((*1 *1 *2) (-12 (-5 *2 (-572 *3)) (-14 *3 (-578 (-1079))) (-5 *1 (-166 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 *3)) (-14 *3 (-578 (-1079))) (-5 *1 (-572 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-870 *3)) (-4 *3 (-1005)) (-5 *1 (-871 *3))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1005)) (-5 *2 (-791 *3 *4)) (-5 *1 (-788 *3 *4 *5)) + (-4 *3 (-1005)) (-4 *5 (-603 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-870 *4)) (-4 *4 (-1005)) (-5 *2 (-1001 *4)) (-5 *1 (-871 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-870 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-870 *3))) (-5 *1 (-870 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) + (-12 (-5 *2 (-627 (-775 (-870 *3) (-870 *3)))) (-5 *1 (-870 *3)) + (-4 *3 (-1005))))) +(((*1 *2 *1) + (-12 (-5 *2 (-627 (-775 (-870 *3) (-870 *3)))) (-5 *1 (-870 *3)) + (-4 *3 (-1005))))) +(((*1 *2 *1) + (-12 (-5 *2 (-627 (-775 (-870 *3) (-870 *3)))) (-5 *1 (-870 *3)) + (-4 *3 (-1005))))) +(((*1 *2 *1) + (-12 (-5 *2 (-627 (-775 (-870 *3) (-870 *3)))) (-5 *1 (-870 *3)) + (-4 *3 (-1005))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1005))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1005))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-689))) (-5 *1 (-84)))) + ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1062)) (-5 *2 (-689)) (-5 *1 (-84)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1007)) (-5 *1 (-869))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-4 *2 (-1005)) (-5 *1 (-868 *2 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-4 *2 (-1005)) (-5 *1 (-868 *3 *2)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-765)))) + ((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1174)) (-5 *1 (-867))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-578 *3)) (-5 *1 (-866 *3)) (-4 *3 (-477))))) +(((*1 *2 *2) (-12 (-5 *1 (-866 *2)) (-4 *2 (-477))))) +(((*1 *2 *2) (-12 (-5 *1 (-866 *2)) (-4 *2 (-477))))) +(((*1 *1) (-4 *1 (-295))) + ((*1 *2 *3) + (-12 (-5 *3 (-578 *5)) (-4 *5 (-357 *4)) (-4 *4 (-13 (-489) (-118))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-578 (-1074 *5))) + (|:| |prim| (-1074 *5)))) + (-5 *1 (-368 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-510) (-120))) + (-12 (-4 *4 (-13 (-489) (-118))) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1111 *3)) (|:| |pol2| (-1111 *3)) - (|:| |prim| (-1111 *3)))) - (-5 *1 (-386 *4 *3)) (-4 *3 (-27)) (-4 *3 (-375 *4)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1074 *3)) (|:| |pol2| (-1074 *3)) + (|:| |prim| (-1074 *3)))) + (-5 *1 (-368 *4 *3)) (-4 *3 (-27)) (-4 *3 (-357 *4)))) ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-884 *5)) (-5 *4 (-1117)) (-4 *5 (-13 (-318) (-120))) + (-12 (-5 *3 (-850 *5)) (-5 *4 (-1079)) (-4 *5 (-13 (-308) (-118))) (-5 *2 - (-2 (|:| |coef1| (-499)) (|:| |coef2| (-499)) (|:| |prim| (-1111 *5)))) - (-5 *1 (-899 *5)))) + (-2 (|:| |coef1| (-478)) (|:| |coef2| (-478)) (|:| |prim| (-1074 *5)))) + (-5 *1 (-865 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-599 (-1117))) - (-4 *5 (-13 (-318) (-120))) + (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-578 (-1079))) + (-4 *5 (-13 (-308) (-118))) (-5 *2 - (-2 (|:| -4104 (-599 (-499))) (|:| |poly| (-599 (-1111 *5))) - (|:| |prim| (-1111 *5)))) - (-5 *1 (-899 *5)))) + (-2 (|:| -3938 (-578 (-478))) (|:| |poly| (-578 (-1074 *5))) + (|:| |prim| (-1074 *5)))) + (-5 *1 (-865 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-599 (-884 *6))) (-5 *4 (-599 (-1117))) (-5 *5 (-1117)) - (-4 *6 (-13 (-318) (-120))) + (-12 (-5 *3 (-578 (-850 *6))) (-5 *4 (-578 (-1079))) (-5 *5 (-1079)) + (-4 *6 (-13 (-308) (-118))) (-5 *2 - (-2 (|:| -4104 (-599 (-499))) (|:| |poly| (-599 (-1111 *6))) - (|:| |prim| (-1111 *6)))) - (-5 *1 (-899 *6))))) + (-2 (|:| -3938 (-578 (-478))) (|:| |poly| (-578 (-1074 *6))) + (|:| |prim| (-1074 *6)))) + (-5 *1 (-865 *6))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1117)) (-5 *1 (-534 *2)) (-4 *2 (-978 *3)) (-4 *2 (-318)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-318)))) + (-12 (-5 *3 (-1079)) (-5 *1 (-513 *2)) (-4 *2 (-943 *3)) (-4 *2 (-308)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-513 *2)) (-4 *2 (-308)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *1 (-584 *4 *2)) - (-4 *2 (-13 (-375 *4) (-942) (-1143))))) + (-12 (-5 *3 (-1079)) (-4 *4 (-489)) (-5 *1 (-563 *4 *2)) + (-4 *2 (-13 (-357 *4) (-908) (-1104))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1032 *2)) (-4 *2 (-13 (-375 *4) (-942) (-1143))) (-4 *4 (-510)) - (-5 *1 (-584 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-898)) (-5 *2 (-1117)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1032 *1)) (-4 *1 (-898))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-857)) (-4 *5 (-510)) (-5 *2 (-647 *5)) - (-5 *1 (-895 *5 *3)) (-4 *3 (-616 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-892))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-510)) (-4 *3 (-888 *7 *5 *6)) - (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *3) (|:| |radicand| (-599 *3)))) - (-5 *1 (-891 *5 *6 *7 *3 *8)) (-5 *4 (-714)) + (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-357 *4) (-908) (-1104))) (-4 *4 (-489)) + (-5 *1 (-563 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-864)) (-5 *2 (-1079)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-864))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-823)) (-4 *5 (-489)) (-5 *2 (-625 *5)) + (-5 *1 (-861 *5 *3)) (-4 *3 (-595 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-858))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-489)) (-4 *3 (-854 *7 *5 *6)) + (-5 *2 (-2 (|:| -2387 (-687)) (|:| -3938 *3) (|:| |radicand| (-578 *3)))) + (-5 *1 (-857 *5 *6 *7 *3 *8)) (-5 *4 (-687)) (-4 *8 - (-13 (-318) - (-10 -8 (-15 -4096 ($ *3)) (-15 -3119 (*3 $)) (-15 -3118 (*3 $)))))))) + (-13 (-308) + (-10 -8 (-15 -3930 ($ *3)) (-15 -2982 (*3 $)) (-15 -2981 (*3 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-510)) - (-4 *8 (-888 *7 *5 *6)) - (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *3) (|:| |radicand| *3))) - (-5 *1 (-891 *5 *6 *7 *8 *3)) (-5 *4 (-714)) + (-12 (-4 *7 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-489)) + (-4 *8 (-854 *7 *5 *6)) + (-5 *2 (-2 (|:| -2387 (-687)) (|:| -3938 *3) (|:| |radicand| *3))) + (-5 *1 (-857 *5 *6 *7 *8 *3)) (-5 *4 (-687)) (-4 *3 - (-13 (-318) - (-10 -8 (-15 -4096 ($ *8)) (-15 -3119 (*8 $)) (-15 -3118 (*8 $)))))))) + (-13 (-308) + (-10 -8 (-15 -3930 ($ *8)) (-15 -2982 (*8 $)) (-15 -2981 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-361 (-499))) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-510)) - (-4 *8 (-888 *7 *5 *6)) - (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *9) (|:| |radicand| *9))) - (-5 *1 (-891 *5 *6 *7 *8 *9)) (-5 *4 (-714)) + (-12 (-5 *3 (-343 (-478))) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-489)) + (-4 *8 (-854 *7 *5 *6)) + (-5 *2 (-2 (|:| -2387 (-687)) (|:| -3938 *9) (|:| |radicand| *9))) + (-5 *1 (-857 *5 *6 *7 *8 *9)) (-5 *4 (-687)) (-4 *9 - (-13 (-318) - (-10 -8 (-15 -4096 ($ *8)) (-15 -3119 (*8 $)) (-15 -3118 (*8 $)))))))) + (-13 (-308) + (-10 -8 (-15 -3930 ($ *8)) (-15 -2982 (*8 $)) (-15 -2981 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-510)) (-4 *7 (-888 *3 *5 *6)) - (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *8) (|:| |radicand| *8))) - (-5 *1 (-891 *5 *6 *3 *7 *8)) (-5 *4 (-714)) + (-12 (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-489)) (-4 *7 (-854 *3 *5 *6)) + (-5 *2 (-2 (|:| -2387 (-687)) (|:| -3938 *8) (|:| |radicand| *8))) + (-5 *1 (-857 *5 *6 *3 *7 *8)) (-5 *4 (-687)) (-4 *8 - (-13 (-318) - (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $)))))))) + (-13 (-308) + (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-989)) (-4 *3 (-1041)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2519 (-499)))) (-4 *1 (-375 *3)))) + (|partial| -12 (-4 *3 (-954)) (-4 *3 (-1005)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2387 (-478)))) (-4 *1 (-357 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-825 *3)) (|:| -2519 (-825 *3)))) - (-5 *1 (-825 *3)) (-4 *3 (-1041)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-793 *3)) (|:| -2387 (-793 *3)))) + (-5 *1 (-793 *3)) (-4 *3 (-1005)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) - (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2519 (-499)))) - (-5 *1 (-889 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) + (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2387 (-478)))) + (-5 *1 (-855 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-318) - (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $)))))))) + (-13 (-308) + (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $)))))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1117)) (-4 *4 (-989)) (-4 *4 (-1041)) - (-5 *2 (-2 (|:| |var| (-566 *1)) (|:| -2519 (-499)))) (-4 *1 (-375 *4)))) + (|partial| -12 (-5 *3 (-1079)) (-4 *4 (-954)) (-4 *4 (-1005)) + (-5 *2 (-2 (|:| |var| (-545 *1)) (|:| -2387 (-478)))) (-4 *1 (-357 *4)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-86)) (-4 *4 (-989)) (-4 *4 (-1041)) - (-5 *2 (-2 (|:| |var| (-566 *1)) (|:| -2519 (-499)))) (-4 *1 (-375 *4)))) + (|partial| -12 (-5 *3 (-84)) (-4 *4 (-954)) (-4 *4 (-1005)) + (-5 *2 (-2 (|:| |var| (-545 *1)) (|:| -2387 (-478)))) (-4 *1 (-357 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1052)) (-4 *3 (-1041)) - (-5 *2 (-2 (|:| |var| (-566 *1)) (|:| -2519 (-499)))) (-4 *1 (-375 *3)))) + (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-1005)) + (-5 *2 (-2 (|:| |var| (-545 *1)) (|:| -2387 (-478)))) (-4 *1 (-357 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-825 *3)) (|:| -2519 (-714)))) - (-5 *1 (-825 *3)) (-4 *3 (-1041)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-793 *3)) (|:| -2387 (-687)))) + (-5 *1 (-793 *3)) (-4 *3 (-1005)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) - (-4 *5 (-781)) (-5 *2 (-2 (|:| |var| *5) (|:| -2519 (-714)))))) + (|partial| -12 (-4 *1 (-854 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) + (-4 *5 (-749)) (-5 *2 (-2 (|:| |var| *5) (|:| -2387 (-687)))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) - (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2519 (-499)))) - (-5 *1 (-889 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) + (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2387 (-478)))) + (-5 *1 (-855 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-318) - (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $)))))))) + (-13 (-308) + (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1052)) (-4 *3 (-1041)) (-5 *2 (-599 *1)) - (-4 *1 (-375 *3)))) + (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-1005)) (-5 *2 (-578 *1)) + (-4 *1 (-357 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) + (|partial| -12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) - (-4 *1 (-888 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) + (-4 *1 (-854 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) - (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-599 *3)) (-5 *1 (-889 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) + (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-578 *3)) (-5 *1 (-855 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-318) - (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $)))))))) + (-13 (-308) + (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1041)) (-5 *2 (-599 *1)) - (-4 *1 (-375 *3)))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1005)) (-5 *2 (-578 *1)) + (-4 *1 (-357 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) + (|partial| -12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) - (-4 *1 (-888 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) + (-4 *1 (-854 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) - (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-599 *3)) (-5 *1 (-889 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) + (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-578 *3)) (-5 *1 (-855 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-318) - (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $)))))))) + (-13 (-308) + (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-599 *1)) (-4 *1 (-339 *3 *4)))) + (-12 (-4 *3 (-954)) (-4 *4 (-1005)) (-5 *2 (-578 *1)) (-4 *1 (-328 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-599 (-693 *3 *4))) (-5 *1 (-693 *3 *4)) (-4 *3 (-989)) - (-4 *4 (-684)))) + (-12 (-5 *2 (-578 (-667 *3 *4))) (-5 *1 (-667 *3 *4)) (-4 *3 (-954)) + (-4 *4 (-658)))) ((*1 *2 *1) - (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) - (-4 *1 (-888 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) - ((*1 *2 *1) (-12 (-4 *1 (-666 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) - ((*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) + (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) + (-4 *1 (-854 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) + ((*1 *2 *1) (-12 (-4 *1 (-640 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) + ((*1 *2 *1) (-12 (-4 *1 (-754 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-599 *6)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-599 (-714))))) + (-12 (-5 *3 (-578 *6)) (-4 *1 (-854 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-578 (-687))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-888 *4 *5 *3)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) - (-5 *2 (-714))))) + (-12 (-4 *1 (-854 *4 *5 *3)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) + (-5 *2 (-687))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-599 *6)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-714)))) + (-12 (-5 *3 (-578 *6)) (-4 *1 (-854 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-687)))) ((*1 *2 *1) - (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-714))))) + (-12 (-4 *1 (-854 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-687))))) (((*1 *2 *1) - (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) - (-4 *1 (-888 *3 *4 *5))))) + (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) + (-4 *1 (-854 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-280 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989)) (-4 *2 (-406)))) + (-12 (-4 *1 (-273 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954)) (-4 *2 (-385)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 *4)) (-4 *4 (-1183 (-499))) (-5 *2 (-599 (-499))) - (-5 *1 (-440 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-406)))) + (-12 (-5 *3 (-578 *4)) (-4 *4 (-1144 (-478))) (-5 *2 (-578 (-478))) + (-5 *1 (-419 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-385)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) - (-4 *3 (-406))))) + (-12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) + (-4 *3 (-385))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-599 *5)) (-5 *4 (-499)) (-4 *5 (-780)) (-4 *5 (-318)) - (-5 *2 (-714)) (-5 *1 (-883 *5 *6)) (-4 *6 (-1183 *5))))) + (-12 (-5 *3 (-578 *5)) (-5 *4 (-478)) (-4 *5 (-748)) (-4 *5 (-308)) + (-5 *2 (-687)) (-5 *1 (-849 *5 *6)) (-4 *6 (-1144 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 *4)) (-4 *4 (-780)) (-4 *4 (-318)) (-5 *2 (-714)) - (-5 *1 (-883 *4 *5)) (-4 *5 (-1183 *4))))) + (-12 (-5 *3 (-578 *4)) (-4 *4 (-748)) (-4 *4 (-308)) (-5 *2 (-687)) + (-5 *1 (-849 *4 *5)) (-4 *5 (-1144 *4))))) (((*1 *2 *3) - (-12 (-4 *2 (-318)) (-4 *2 (-780)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1183 *2))))) + (-12 (-4 *2 (-308)) (-4 *2 (-748)) (-5 *1 (-849 *2 *3)) (-4 *3 (-1144 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-318)) (-5 *2 (-599 *3)) (-5 *1 (-883 *4 *3)) - (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-308)) (-5 *2 (-578 *3)) (-5 *1 (-849 *4 *3)) + (-4 *3 (-1144 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-318)) (-5 *2 (-599 *3)) (-5 *1 (-883 *4 *3)) - (-4 *3 (-1183 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-884 *5)) (-4 *5 (-989)) (-5 *2 (-205 *4 *5)) - (-5 *1 (-882 *4 *5)) (-14 *4 (-599 (-1117)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-205 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-989)) - (-5 *2 (-884 *5)) (-5 *1 (-882 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-435 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-989)) - (-5 *2 (-884 *5)) (-5 *1 (-882 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-884 *5)) (-4 *5 (-989)) (-5 *2 (-435 *4 *5)) - (-5 *1 (-882 *4 *5)) (-14 *4 (-599 (-1117)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-435 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-989)) - (-5 *2 (-205 *4 *5)) (-5 *1 (-882 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-205 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-989)) - (-5 *2 (-435 *4 *5)) (-5 *1 (-882 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) - ((*1 *2 *3) (-12 (-5 *2 (-1111 (-361 (-499)))) (-5 *1 (-880)) (-5 *3 (-499))))) -(((*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499))))) -(((*1 *2 *3) (-12 (-5 *3 (-1111 (-499))) (-5 *2 (-499)) (-5 *1 (-880))))) -(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) - ((*1 *2 *3) (-12 (-5 *2 (-1111 (-361 (-499)))) (-5 *1 (-880)) (-5 *3 (-499))))) -(((*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-165)) (-5 *3 (-499)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-726 *2)) (-4 *2 (-146)))) - ((*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146)))) - ((*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146)))) - ((*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499))))) -(((*1 *2 *3) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-514)) (-5 *3 (-499)))) - ((*1 *2 *3) (-12 (-5 *2 (-1111 (-361 (-499)))) (-5 *1 (-880)) (-5 *3 (-499))))) + (-12 (-4 *4 (-308)) (-5 *2 (-578 *3)) (-5 *1 (-849 *4 *3)) + (-4 *3 (-1144 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-850 *5)) (-4 *5 (-954)) (-5 *2 (-203 *4 *5)) + (-5 *1 (-848 *4 *5)) (-14 *4 (-578 (-1079)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-203 *4 *5)) (-14 *4 (-578 (-1079))) (-4 *5 (-954)) + (-5 *2 (-850 *5)) (-5 *1 (-848 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-414 *4 *5)) (-14 *4 (-578 (-1079))) (-4 *5 (-954)) + (-5 *2 (-850 *5)) (-5 *1 (-848 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-850 *5)) (-4 *5 (-954)) (-5 *2 (-414 *4 *5)) + (-5 *1 (-848 *4 *5)) (-14 *4 (-578 (-1079)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-414 *4 *5)) (-14 *4 (-578 (-1079))) (-4 *5 (-954)) + (-5 *2 (-203 *4 *5)) (-5 *1 (-848 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-203 *4 *5)) (-14 *4 (-578 (-1079))) (-4 *5 (-954)) + (-5 *2 (-414 *4 *5)) (-5 *1 (-848 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) + ((*1 *2 *3) (-12 (-5 *2 (-1074 (-343 (-478)))) (-5 *1 (-846)) (-5 *3 (-478))))) +(((*1 *2 *3) (-12 (-5 *2 (-1074 (-478))) (-5 *1 (-846)) (-5 *3 (-478))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074 (-478))) (-5 *2 (-478)) (-5 *1 (-846))))) +(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) + ((*1 *2 *3) (-12 (-5 *2 (-1074 (-343 (-478)))) (-5 *1 (-846)) (-5 *3 (-478))))) +(((*1 *2 *3) (-12 (-5 *2 (-1074 (-478))) (-5 *1 (-163)) (-5 *3 (-478)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-699 *2)) (-4 *2 (-144)))) + ((*1 *2 *3) (-12 (-5 *2 (-1074 (-478))) (-5 *1 (-846)) (-5 *3 (-478))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144)))) + ((*1 *2 *3) (-12 (-5 *2 (-1074 (-478))) (-5 *1 (-846)) (-5 *3 (-478))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144)))) + ((*1 *2 *3) (-12 (-5 *2 (-1074 (-478))) (-5 *1 (-846)) (-5 *3 (-478))))) +(((*1 *2 *3) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-493)) (-5 *3 (-478)))) + ((*1 *2 *3) (-12 (-5 *2 (-1074 (-343 (-478)))) (-5 *1 (-846)) (-5 *3 (-478))))) (((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 (-825 *6))) - (-5 *5 (-1 (-823 *6 *8) *8 (-825 *6) (-823 *6 *8))) (-4 *6 (-1041)) - (-4 *8 (-13 (-989) (-569 (-825 *6)) (-978 *7))) (-5 *2 (-823 *6 *8)) - (-4 *7 (-989)) (-5 *1 (-879 *6 *7 *8))))) + (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-793 *6))) + (-5 *5 (-1 (-791 *6 *8) *8 (-793 *6) (-791 *6 *8))) (-4 *6 (-1005)) + (-4 *8 (-13 (-954) (-548 (-793 *6)) (-943 *7))) (-5 *2 (-791 *6 *8)) + (-4 *7 (-954)) (-5 *1 (-845 *6 *7 *8))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-823 *5 *3)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-4 *3 (-139 *6)) - (-4 (-884 *6) (-821 *5)) (-4 *6 (-13 (-821 *5) (-146))) - (-5 *1 (-152 *5 *6 *3)))) + (-12 (-5 *2 (-791 *5 *3)) (-5 *4 (-793 *5)) (-4 *5 (-1005)) (-4 *3 (-137 *6)) + (-4 (-850 *6) (-789 *5)) (-4 *6 (-13 (-789 *5) (-144))) + (-5 *1 (-150 *5 *6 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-823 *4 *1)) (-5 *3 (-825 *4)) (-4 *1 (-821 *4)) - (-4 *4 (-1041)))) + (-12 (-5 *2 (-791 *4 *1)) (-5 *3 (-793 *4)) (-4 *1 (-789 *4)) + (-4 *4 (-1005)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-823 *5 *6)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) - (-4 *6 (-13 (-1041) (-978 *3))) (-4 *3 (-821 *5)) (-5 *1 (-869 *5 *3 *6)))) + (-12 (-5 *2 (-791 *5 *6)) (-5 *4 (-793 *5)) (-4 *5 (-1005)) + (-4 *6 (-13 (-1005) (-943 *3))) (-4 *3 (-789 *5)) (-5 *1 (-835 *5 *3 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-823 *5 *3)) (-4 *5 (-1041)) - (-4 *3 (-13 (-375 *6) (-569 *4) (-821 *5) (-978 (-566 $)))) - (-5 *4 (-825 *5)) (-4 *6 (-13 (-510) (-821 *5))) (-5 *1 (-870 *5 *6 *3)))) + (-12 (-5 *2 (-791 *5 *3)) (-4 *5 (-1005)) + (-4 *3 (-13 (-357 *6) (-548 *4) (-789 *5) (-943 (-545 $)))) + (-5 *4 (-793 *5)) (-4 *6 (-13 (-489) (-789 *5))) (-5 *1 (-836 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-823 (-499) *3)) (-5 *4 (-825 (-499))) (-4 *3 (-498)) - (-5 *1 (-871 *3)))) + (-12 (-5 *2 (-791 (-478) *3)) (-5 *4 (-793 (-478))) (-4 *3 (-477)) + (-5 *1 (-837 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-823 *5 *6)) (-5 *3 (-566 *6)) (-4 *5 (-1041)) - (-4 *6 (-13 (-1041) (-978 (-566 $)) (-569 *4) (-821 *5))) (-5 *4 (-825 *5)) - (-5 *1 (-872 *5 *6)))) + (-12 (-5 *2 (-791 *5 *6)) (-5 *3 (-545 *6)) (-4 *5 (-1005)) + (-4 *6 (-13 (-1005) (-943 (-545 $)) (-548 *4) (-789 *5))) (-5 *4 (-793 *5)) + (-5 *1 (-838 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-820 *5 *6 *3)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) - (-4 *6 (-821 *5)) (-4 *3 (-624 *6)) (-5 *1 (-873 *5 *6 *3)))) + (-12 (-5 *2 (-788 *5 *6 *3)) (-5 *4 (-793 *5)) (-4 *5 (-1005)) + (-4 *6 (-789 *5)) (-4 *3 (-603 *6)) (-5 *1 (-839 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-823 *6 *3) *8 (-825 *6) (-823 *6 *3))) (-4 *8 (-781)) - (-5 *2 (-823 *6 *3)) (-5 *4 (-825 *6)) (-4 *6 (-1041)) - (-4 *3 (-13 (-888 *9 *7 *8) (-569 *4))) (-4 *7 (-738)) - (-4 *9 (-13 (-989) (-821 *6))) (-5 *1 (-874 *6 *7 *8 *9 *3)))) + (-12 (-5 *5 (-1 (-791 *6 *3) *8 (-793 *6) (-791 *6 *3))) (-4 *8 (-749)) + (-5 *2 (-791 *6 *3)) (-5 *4 (-793 *6)) (-4 *6 (-1005)) + (-4 *3 (-13 (-854 *9 *7 *8) (-548 *4))) (-4 *7 (-710)) + (-4 *9 (-13 (-954) (-789 *6))) (-5 *1 (-840 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-823 *5 *3)) (-4 *5 (-1041)) - (-4 *3 (-13 (-888 *8 *6 *7) (-569 *4))) (-5 *4 (-825 *5)) (-4 *7 (-821 *5)) - (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-13 (-989) (-821 *5))) - (-5 *1 (-874 *5 *6 *7 *8 *3)))) + (-12 (-5 *2 (-791 *5 *3)) (-4 *5 (-1005)) + (-4 *3 (-13 (-854 *8 *6 *7) (-548 *4))) (-5 *4 (-793 *5)) (-4 *7 (-789 *5)) + (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-13 (-954) (-789 *5))) + (-5 *1 (-840 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-823 *5 *3)) (-4 *5 (-1041)) (-4 *3 (-931 *6)) - (-4 *6 (-13 (-510) (-821 *5) (-569 *4))) (-5 *4 (-825 *5)) - (-5 *1 (-877 *5 *6 *3)))) + (-12 (-5 *2 (-791 *5 *3)) (-4 *5 (-1005)) (-4 *3 (-897 *6)) + (-4 *6 (-13 (-489) (-789 *5) (-548 *4))) (-5 *4 (-793 *5)) + (-5 *1 (-843 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-823 *5 (-1117))) (-5 *3 (-1117)) (-5 *4 (-825 *5)) - (-4 *5 (-1041)) (-5 *1 (-878 *5)))) + (-12 (-5 *2 (-791 *5 (-1079))) (-5 *3 (-1079)) (-5 *4 (-793 *5)) + (-4 *5 (-1005)) (-5 *1 (-844 *5)))) ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-599 (-825 *7))) (-5 *5 (-1 *9 (-599 *9))) - (-5 *6 (-1 (-823 *7 *9) *9 (-825 *7) (-823 *7 *9))) (-4 *7 (-1041)) - (-4 *9 (-13 (-989) (-569 (-825 *7)) (-978 *8))) (-5 *2 (-823 *7 *9)) - (-5 *3 (-599 *9)) (-4 *8 (-989)) (-5 *1 (-879 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1041) (-978 *5))) (-4 *5 (-821 *4)) - (-4 *4 (-1041)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-869 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-268 (-499))) (-5 *1 (-867)))) - ((*1 *2 *2) (-12 (-4 *3 (-1041)) (-5 *1 (-868 *3 *2)) (-4 *2 (-375 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-268 (-499))) (-5 *1 (-867)))) - ((*1 *2 *2) (-12 (-4 *3 (-1041)) (-5 *1 (-868 *3 *2)) (-4 *2 (-375 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-460)) (-5 *1 (-86)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-460)) (-5 *2 (-268 (-499))) (-5 *1 (-867)))) + (-12 (-5 *4 (-578 (-793 *7))) (-5 *5 (-1 *9 (-578 *9))) + (-5 *6 (-1 (-791 *7 *9) *9 (-793 *7) (-791 *7 *9))) (-4 *7 (-1005)) + (-4 *9 (-13 (-954) (-548 (-793 *7)) (-943 *8))) (-5 *2 (-791 *7 *9)) + (-5 *3 (-578 *9)) (-4 *8 (-954)) (-5 *1 (-845 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-83) *6)) (-4 *6 (-13 (-1005) (-943 *5))) (-4 *5 (-789 *4)) + (-4 *4 (-1005)) (-5 *2 (-1 (-83) *5)) (-5 *1 (-835 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-261 (-478))) (-5 *1 (-833)))) + ((*1 *2 *2) (-12 (-4 *3 (-1005)) (-5 *1 (-834 *3 *2)) (-4 *2 (-357 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1079)) (-5 *2 (-261 (-478))) (-5 *1 (-833)))) + ((*1 *2 *2) (-12 (-4 *3 (-1005)) (-5 *1 (-834 *3 *2)) (-4 *2 (-357 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-84)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1079)) (-5 *4 (-439)) (-5 *2 (-261 (-478))) (-5 *1 (-833)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-460)) (-4 *4 (-1041)) (-5 *1 (-868 *4 *2)) (-4 *2 (-375 *4))))) + (-12 (-5 *3 (-439)) (-4 *4 (-1005)) (-5 *1 (-834 *4 *2)) (-4 *2 (-357 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *2 (-599 (-1029 (-179)))) - (-5 *1 (-866))))) + (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *2 (-578 (-993 (-177)))) + (-5 *1 (-832))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-881 (-179)) (-179))) (-5 *3 (-1029 (-179))) - (-5 *1 (-863)))) + (-12 (-5 *2 (-1 (-847 (-177)) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-829)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-881 (-179)) (-179))) (-5 *3 (-1029 (-179))) - (-5 *1 (-863)))) + (-12 (-5 *2 (-1 (-847 (-177)) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-829)))) ((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-881 (-179)) (-179))) (-5 *3 (-1029 (-179))) - (-5 *1 (-865)))) + (-12 (-5 *2 (-1 (-847 (-177)) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-831)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-881 (-179)) (-179))) (-5 *3 (-1029 (-179))) - (-5 *1 (-865))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) + (-12 (-5 *2 (-1 (-847 (-177)) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-831))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-993 (-177))) (-5 *1 (-829)))) ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) + (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-829)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) + (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-829)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-599 (-1 (-179) (-179)))) (-5 *3 (-1029 (-179))) - (-5 *1 (-863)))) + (-12 (-5 *2 (-578 (-1 (-177) (-177)))) (-5 *3 (-993 (-177))) (-5 *1 (-829)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-599 (-1 (-179) (-179)))) (-5 *3 (-1029 (-179))) - (-5 *1 (-863)))) + (-12 (-5 *2 (-578 (-1 (-177) (-177)))) (-5 *3 (-993 (-177))) (-5 *1 (-829)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) + (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-829)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) + (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-829)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1117)) (-5 *5 (-1029 (-179))) (-5 *2 (-863)) (-5 *1 (-864 *3)) - (-4 *3 (-569 (-488))))) + (-12 (-5 *4 (-1079)) (-5 *5 (-993 (-177))) (-5 *2 (-829)) (-5 *1 (-830 *3)) + (-4 *3 (-548 (-467))))) ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1117)) (-5 *5 (-1029 (-179))) (-5 *2 (-863)) (-5 *1 (-864 *3)) - (-4 *3 (-569 (-488))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-865)))) + (-12 (-5 *4 (-1079)) (-5 *5 (-993 (-177))) (-5 *2 (-829)) (-5 *1 (-830 *3)) + (-4 *3 (-548 (-467))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-993 (-177))) (-5 *1 (-831)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-865)))) + (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-831)))) ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-865))))) -(((*1 *2 *1) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) - ((*1 *2 *1) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-865))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-599 (-179)))) (-5 *1 (-865))))) -(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865))))) -(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865))))) -(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865))))) -(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865))))) -(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865))))) -(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-865))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-865))))) -(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-865))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-863)))) + (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-831))))) +(((*1 *2 *1) (-12 (-5 *2 (-993 (-177))) (-5 *1 (-829)))) + ((*1 *2 *1) (-12 (-5 *2 (-993 (-177))) (-5 *1 (-831))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-177)))) (-5 *1 (-831))))) +(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831))))) +(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831))))) +(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831))))) +(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831))))) +(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831))))) +(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831))))) +(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-831))))) +(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-831))))) +(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831))))) +(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-831))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-829)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) + (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-993 (-177))) (-5 *1 (-829)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1117)) (-5 *5 (-1029 (-179))) (-5 *2 (-863)) (-5 *1 (-864 *3)) - (-4 *3 (-569 (-488))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-5 *2 (-863)) (-5 *1 (-864 *3)) (-4 *3 (-569 (-488)))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-863))))) -(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) - ((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) - ((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863))))) -(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863))))) -(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) - ((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) - ((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863))))) -(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863))))) -(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) - ((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) - ((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863))))) -(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-863))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-863))))) -(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-863))))) -(((*1 *2 *3) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) - (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-85)) - (-5 *1 (-862 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-13 (-261) (-120))) - (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-85)) - (-5 *1 (-862 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-261) (-120))) (-4 *4 (-13 (-781) (-569 (-1117)))) - (-4 *5 (-738)) (-5 *1 (-862 *3 *4 *5 *2)) (-4 *2 (-888 *3 *5 *4))))) + (-12 (-5 *4 (-1079)) (-5 *5 (-993 (-177))) (-5 *2 (-829)) (-5 *1 (-830 *3)) + (-4 *3 (-548 (-467))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1079)) (-5 *2 (-829)) (-5 *1 (-830 *3)) (-4 *3 (-548 (-467)))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-829))))) +(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) + ((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) + ((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829))))) +(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829))))) +(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) + ((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) + ((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829))))) +(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829))))) +(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) + ((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) + ((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829))))) +(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829))))) +(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-829))))) +(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-829))))) +(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829))))) +(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-829))))) +(((*1 *2 *3) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) + (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 (-83)) + (-5 *1 (-828 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-13 (-254) (-118))) + (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 (-83)) + (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-854 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-254) (-118))) (-4 *4 (-13 (-749) (-548 (-1079)))) + (-4 *5 (-710)) (-5 *1 (-828 *3 *4 *5 *2)) (-4 *2 (-854 *3 *5 *4))))) (((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499))))) - (-5 *4 (-647 *12)) (-5 *5 (-599 (-361 (-884 *9)))) (-5 *6 (-599 (-599 *12))) - (-5 *7 (-714)) (-5 *8 (-499)) (-4 *9 (-13 (-261) (-120))) - (-4 *12 (-888 *9 *11 *10)) (-4 *10 (-13 (-781) (-569 (-1117)))) - (-4 *11 (-738)) - (-5 *2 - (-2 (|:| |eqzro| (-599 *12)) (|:| |neqzro| (-599 *12)) - (|:| |wcond| (-599 (-884 *9))) + (-2 (|:| |det| *12) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478))))) + (-5 *4 (-625 *12)) (-5 *5 (-578 (-343 (-850 *9)))) (-5 *6 (-578 (-578 *12))) + (-5 *7 (-687)) (-5 *8 (-478)) (-4 *9 (-13 (-254) (-118))) + (-4 *12 (-854 *9 *11 *10)) (-4 *10 (-13 (-749) (-548 (-1079)))) + (-4 *11 (-710)) + (-5 *2 + (-2 (|:| |eqzro| (-578 *12)) (|:| |neqzro| (-578 *12)) + (|:| |wcond| (-578 (-850 *9))) (|:| |bsoln| - (-2 (|:| |partsol| (-1207 (-361 (-884 *9)))) - (|:| -2113 (-599 (-1207 (-361 (-884 *9))))))))) - (-5 *1 (-862 *9 *10 *11 *12))))) + (-2 (|:| |partsol| (-1168 (-343 (-850 *9)))) + (|:| -1998 (-578 (-1168 (-343 (-850 *9))))))))) + (-5 *1 (-828 *9 *10 *11 *12))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-647 *7)) (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *6 *5)) - (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) - (-4 *6 (-738)) (-5 *1 (-862 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-647 *8)) (-5 *4 (-714)) (-4 *8 (-888 *5 *7 *6)) - (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) - (-4 *7 (-738)) - (-5 *2 - (-599 - (-2 (|:| |det| *8) (|:| |rows| (-599 (-499))) - (|:| |cols| (-599 (-499)))))) - (-5 *1 (-862 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-599 (-599 *8))) (-5 *3 (-599 *8)) (-4 *8 (-888 *5 *7 *6)) - (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) - (-4 *7 (-738)) (-5 *2 (-85)) (-5 *1 (-862 *5 *6 *7 *8))))) + (-12 (-5 *2 (-625 *7)) (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *6 *5)) + (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) + (-4 *6 (-710)) (-5 *1 (-828 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-625 *8)) (-5 *4 (-687)) (-4 *8 (-854 *5 *7 *6)) + (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1079)))) + (-4 *7 (-710)) + (-5 *2 + (-578 + (-2 (|:| |det| *8) (|:| |rows| (-578 (-478))) + (|:| |cols| (-578 (-478)))))) + (-5 *1 (-828 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-578 (-578 *8))) (-5 *3 (-578 *8)) (-4 *8 (-854 *5 *7 *6)) + (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1079)))) + (-4 *7 (-710)) (-5 *2 (-83)) (-5 *1 (-828 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) - (-4 *6 (-738)) (-5 *2 (-599 (-599 (-499)))) (-5 *1 (-862 *4 *5 *6 *7)) - (-5 *3 (-499)) (-4 *7 (-888 *4 *6 *5))))) + (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) + (-4 *6 (-710)) (-5 *2 (-578 (-578 (-478)))) (-5 *1 (-828 *4 *5 *6 *7)) + (-5 *3 (-478)) (-4 *7 (-854 *4 *6 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-599 (-599 *6))) (-4 *6 (-888 *3 *5 *4)) - (-4 *3 (-13 (-261) (-120))) (-4 *4 (-13 (-781) (-569 (-1117)))) - (-4 *5 (-738)) (-5 *1 (-862 *3 *4 *5 *6))))) + (-12 (-5 *2 (-578 (-578 *6))) (-4 *6 (-854 *3 *5 *4)) + (-4 *3 (-13 (-254) (-118))) (-4 *4 (-13 (-749) (-548 (-1079)))) + (-4 *5 (-710)) (-5 *1 (-828 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-599 - (-2 (|:| -3231 (-714)) + (-578 + (-2 (|:| -3092 (-687)) (|:| |eqns| - (-599 - (-2 (|:| |det| *7) (|:| |rows| (-599 (-499))) - (|:| |cols| (-599 (-499)))))) - (|:| |fgb| (-599 *7))))) - (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) - (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-714)) - (-5 *1 (-862 *4 *5 *6 *7))))) + (-578 + (-2 (|:| |det| *7) (|:| |rows| (-578 (-478))) + (|:| |cols| (-578 (-478)))))) + (|:| |fgb| (-578 *7))))) + (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) + (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 (-687)) + (-5 *1 (-828 *4 *5 *6 *7))))) (((*1 *2 *3) (-12 (-5 *3 - (-599 - (-2 (|:| -3231 (-714)) + (-578 + (-2 (|:| -3092 (-687)) (|:| |eqns| - (-599 - (-2 (|:| |det| *7) (|:| |rows| (-599 (-499))) - (|:| |cols| (-599 (-499)))))) - (|:| |fgb| (-599 *7))))) - (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) - (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-714)) - (-5 *1 (-862 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) - (-4 *6 (-738)) (-5 *2 (-599 *3)) (-5 *1 (-862 *4 *5 *6 *3)) - (-4 *3 (-888 *4 *6 *5))))) + (-578 + (-2 (|:| |det| *7) (|:| |rows| (-578 (-478))) + (|:| |cols| (-578 (-478)))))) + (|:| |fgb| (-578 *7))))) + (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) + (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 (-687)) + (-5 *1 (-828 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) + (-4 *6 (-710)) (-5 *2 (-578 *3)) (-5 *1 (-828 *4 *5 *6 *3)) + (-4 *3 (-854 *4 *6 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -1673 (-647 (-361 (-884 *4)))) (|:| |vec| (-599 (-361 (-884 *4)))) - (|:| -3231 (-714)) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499))))) - (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) - (-4 *6 (-738)) - (-5 *2 - (-2 (|:| |partsol| (-1207 (-361 (-884 *4)))) - (|:| -2113 (-599 (-1207 (-361 (-884 *4))))))) - (-5 *1 (-862 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5))))) + (-2 (|:| |mat| (-625 (-343 (-850 *4)))) (|:| |vec| (-578 (-343 (-850 *4)))) + (|:| -3092 (-687)) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478))))) + (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) + (-4 *6 (-710)) + (-5 *2 + (-2 (|:| |partsol| (-1168 (-343 (-850 *4)))) + (|:| -1998 (-578 (-1168 (-343 (-850 *4))))))) + (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-854 *4 *6 *5))))) (((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| |partsol| (-1207 (-361 (-884 *4)))) - (|:| -2113 (-599 (-1207 (-361 (-884 *4))))))) - (-5 *3 (-599 *7)) (-4 *4 (-13 (-261) (-120))) (-4 *7 (-888 *4 *6 *5)) - (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) - (-5 *1 (-862 *4 *5 *6 *7))))) + (-2 (|:| |partsol| (-1168 (-343 (-850 *4)))) + (|:| -1998 (-578 (-1168 (-343 (-850 *4))))))) + (-5 *3 (-578 *7)) (-4 *4 (-13 (-254) (-118))) (-4 *7 (-854 *4 *6 *5)) + (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) + (-5 *1 (-828 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-647 *8)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-261) (-120))) - (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) + (-12 (-5 *3 (-625 *8)) (-4 *8 (-854 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) + (-4 *6 (-13 (-749) (-548 (-1079)))) (-4 *7 (-710)) (-5 *2 - (-599 - (-2 (|:| -3231 (-714)) + (-578 + (-2 (|:| -3092 (-687)) (|:| |eqns| - (-599 - (-2 (|:| |det| *8) (|:| |rows| (-599 (-499))) - (|:| |cols| (-599 (-499)))))) - (|:| |fgb| (-599 *8))))) - (-5 *1 (-862 *5 *6 *7 *8)) (-5 *4 (-714))))) + (-578 + (-2 (|:| |det| *8) (|:| |rows| (-578 (-478))) + (|:| |cols| (-578 (-478)))))) + (|:| |fgb| (-578 *8))))) + (-5 *1 (-828 *5 *6 *7 *8)) (-5 *4 (-687))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) - (-4 *6 (-738)) (-4 *7 (-888 *4 *6 *5)) - (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-599 *7)) (|:| |n0| (-599 *7)))) - (-5 *1 (-862 *4 *5 *6 *7)) (-5 *3 (-599 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-884 *4)) (-4 *4 (-13 (-261) (-120))) (-4 *2 (-888 *4 *6 *5)) - (-5 *1 (-862 *4 *5 *6 *2)) (-4 *5 (-13 (-781) (-569 (-1117)))) - (-4 *6 (-738))))) -(((*1 *2 *3) - (-12 (-5 *3 (-599 (-1117))) (-4 *4 (-13 (-261) (-120))) - (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) - (-5 *2 (-599 (-361 (-884 *4)))) (-5 *1 (-862 *4 *5 *6 *7)) - (-4 *7 (-888 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) - (-4 *6 (-738)) (-5 *2 (-361 (-884 *4))) (-5 *1 (-862 *4 *5 *6 *3)) - (-4 *3 (-888 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-647 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) - (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) - (-5 *2 (-647 (-361 (-884 *4)))) (-5 *1 (-862 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) - (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) - (-5 *2 (-599 (-361 (-884 *4)))) (-5 *1 (-862 *4 *5 *6 *7))))) + (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) + (-4 *6 (-710)) (-4 *7 (-854 *4 *6 *5)) + (-5 *2 (-2 (|:| |sysok| (-83)) (|:| |z0| (-578 *7)) (|:| |n0| (-578 *7)))) + (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-850 *4)) (-4 *4 (-13 (-254) (-118))) (-4 *2 (-854 *4 *6 *5)) + (-5 *1 (-828 *4 *5 *6 *2)) (-4 *5 (-13 (-749) (-548 (-1079)))) + (-4 *6 (-710))))) +(((*1 *2 *3) + (-12 (-5 *3 (-578 (-1079))) (-4 *4 (-13 (-254) (-118))) + (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) + (-5 *2 (-578 (-343 (-850 *4)))) (-5 *1 (-828 *4 *5 *6 *7)) + (-4 *7 (-854 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1079)))) + (-4 *6 (-710)) (-5 *2 (-343 (-850 *4))) (-5 *1 (-828 *4 *5 *6 *3)) + (-4 *3 (-854 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-625 *7)) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) + (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) + (-5 *2 (-625 (-343 (-850 *4)))) (-5 *1 (-828 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) + (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) + (-5 *2 (-578 (-343 (-850 *4)))) (-5 *1 (-828 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-647 *11)) (-5 *4 (-599 (-361 (-884 *8)))) (-5 *5 (-714)) - (-5 *6 (-1099)) (-4 *8 (-13 (-261) (-120))) (-4 *11 (-888 *8 *10 *9)) - (-4 *9 (-13 (-781) (-569 (-1117)))) (-4 *10 (-738)) + (-12 (-5 *3 (-625 *11)) (-5 *4 (-578 (-343 (-850 *8)))) (-5 *5 (-687)) + (-5 *6 (-1062)) (-4 *8 (-13 (-254) (-118))) (-4 *11 (-854 *8 *10 *9)) + (-4 *9 (-13 (-749) (-548 (-1079)))) (-4 *10 (-710)) (-5 *2 (-2 (|:| |rgl| - (-599 - (-2 (|:| |eqzro| (-599 *11)) (|:| |neqzro| (-599 *11)) - (|:| |wcond| (-599 (-884 *8))) + (-578 + (-2 (|:| |eqzro| (-578 *11)) (|:| |neqzro| (-578 *11)) + (|:| |wcond| (-578 (-850 *8))) (|:| |bsoln| - (-2 (|:| |partsol| (-1207 (-361 (-884 *8)))) - (|:| -2113 (-599 (-1207 (-361 (-884 *8)))))))))) - (|:| |rgsz| (-499)))) - (-5 *1 (-862 *8 *9 *10 *11)) (-5 *7 (-499))))) + (-2 (|:| |partsol| (-1168 (-343 (-850 *8)))) + (|:| -1998 (-578 (-1168 (-343 (-850 *8)))))))))) + (|:| |rgsz| (-478)))) + (-5 *1 (-828 *8 *9 *10 *11)) (-5 *7 (-478))))) (((*1 *2 *3) - (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-261) (-120))) - (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) + (-12 (-5 *3 (-1062)) (-4 *4 (-13 (-254) (-118))) + (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 - (-599 - (-2 (|:| |eqzro| (-599 *7)) (|:| |neqzro| (-599 *7)) - (|:| |wcond| (-599 (-884 *4))) + (-578 + (-2 (|:| |eqzro| (-578 *7)) (|:| |neqzro| (-578 *7)) + (|:| |wcond| (-578 (-850 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1207 (-361 (-884 *4)))) - (|:| -2113 (-599 (-1207 (-361 (-884 *4)))))))))) - (-5 *1 (-862 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5))))) + (-2 (|:| |partsol| (-1168 (-343 (-850 *4)))) + (|:| -1998 (-578 (-1168 (-343 (-850 *4)))))))))) + (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-854 *4 *6 *5))))) (((*1 *2 *3 *4) (-12 (-5 *3 - (-599 - (-2 (|:| |eqzro| (-599 *8)) (|:| |neqzro| (-599 *8)) - (|:| |wcond| (-599 (-884 *5))) + (-578 + (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) + (|:| |wcond| (-578 (-850 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1207 (-361 (-884 *5)))) - (|:| -2113 (-599 (-1207 (-361 (-884 *5)))))))))) - (-5 *4 (-1099)) (-4 *5 (-13 (-261) (-120))) (-4 *8 (-888 *5 *7 *6)) - (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 (-499)) - (-5 *1 (-862 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-647 *8)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-261) (-120))) - (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) - (-5 *2 - (-599 - (-2 (|:| |eqzro| (-599 *8)) (|:| |neqzro| (-599 *8)) - (|:| |wcond| (-599 (-884 *5))) + (-2 (|:| |partsol| (-1168 (-343 (-850 *5)))) + (|:| -1998 (-578 (-1168 (-343 (-850 *5)))))))))) + (-5 *4 (-1062)) (-4 *5 (-13 (-254) (-118))) (-4 *8 (-854 *5 *7 *6)) + (-4 *6 (-13 (-749) (-548 (-1079)))) (-4 *7 (-710)) (-5 *2 (-478)) + (-5 *1 (-828 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-625 *8)) (-4 *8 (-854 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) + (-4 *6 (-13 (-749) (-548 (-1079)))) (-4 *7 (-710)) + (-5 *2 + (-578 + (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) + (|:| |wcond| (-578 (-850 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1207 (-361 (-884 *5)))) - (|:| -2113 (-599 (-1207 (-361 (-884 *5)))))))))) - (-5 *1 (-862 *5 *6 *7 *8)) (-5 *4 (-599 *8)))) + (-2 (|:| |partsol| (-1168 (-343 (-850 *5)))) + (|:| -1998 (-578 (-1168 (-343 (-850 *5)))))))))) + (-5 *1 (-828 *5 *6 *7 *8)) (-5 *4 (-578 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-647 *8)) (-5 *4 (-599 (-1117))) (-4 *8 (-888 *5 *7 *6)) - (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) - (-4 *7 (-738)) + (-12 (-5 *3 (-625 *8)) (-5 *4 (-578 (-1079))) (-4 *8 (-854 *5 *7 *6)) + (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1079)))) + (-4 *7 (-710)) (-5 *2 - (-599 - (-2 (|:| |eqzro| (-599 *8)) (|:| |neqzro| (-599 *8)) - (|:| |wcond| (-599 (-884 *5))) + (-578 + (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) + (|:| |wcond| (-578 (-850 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1207 (-361 (-884 *5)))) - (|:| -2113 (-599 (-1207 (-361 (-884 *5)))))))))) - (-5 *1 (-862 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1168 (-343 (-850 *5)))) + (|:| -1998 (-578 (-1168 (-343 (-850 *5)))))))))) + (-5 *1 (-828 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-647 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) - (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) + (-12 (-5 *3 (-625 *7)) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) + (-4 *5 (-13 (-749) (-548 (-1079)))) (-4 *6 (-710)) (-5 *2 - (-599 - (-2 (|:| |eqzro| (-599 *7)) (|:| |neqzro| (-599 *7)) - (|:| |wcond| (-599 (-884 *4))) + (-578 + (-2 (|:| |eqzro| (-578 *7)) (|:| |neqzro| (-578 *7)) + (|:| |wcond| (-578 (-850 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1207 (-361 (-884 *4)))) - (|:| -2113 (-599 (-1207 (-361 (-884 *4)))))))))) - (-5 *1 (-862 *4 *5 *6 *7)))) + (-2 (|:| |partsol| (-1168 (-343 (-850 *4)))) + (|:| -1998 (-578 (-1168 (-343 (-850 *4)))))))))) + (-5 *1 (-828 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-647 *9)) (-5 *5 (-857)) (-4 *9 (-888 *6 *8 *7)) - (-4 *6 (-13 (-261) (-120))) (-4 *7 (-13 (-781) (-569 (-1117)))) - (-4 *8 (-738)) + (-12 (-5 *3 (-625 *9)) (-5 *5 (-823)) (-4 *9 (-854 *6 *8 *7)) + (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-749) (-548 (-1079)))) + (-4 *8 (-710)) (-5 *2 - (-599 - (-2 (|:| |eqzro| (-599 *9)) (|:| |neqzro| (-599 *9)) - (|:| |wcond| (-599 (-884 *6))) + (-578 + (-2 (|:| |eqzro| (-578 *9)) (|:| |neqzro| (-578 *9)) + (|:| |wcond| (-578 (-850 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1207 (-361 (-884 *6)))) - (|:| -2113 (-599 (-1207 (-361 (-884 *6)))))))))) - (-5 *1 (-862 *6 *7 *8 *9)) (-5 *4 (-599 *9)))) + (-2 (|:| |partsol| (-1168 (-343 (-850 *6)))) + (|:| -1998 (-578 (-1168 (-343 (-850 *6)))))))))) + (-5 *1 (-828 *6 *7 *8 *9)) (-5 *4 (-578 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-647 *9)) (-5 *4 (-599 (-1117))) (-5 *5 (-857)) - (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-261) (-120))) - (-4 *7 (-13 (-781) (-569 (-1117)))) (-4 *8 (-738)) + (-12 (-5 *3 (-625 *9)) (-5 *4 (-578 (-1079))) (-5 *5 (-823)) + (-4 *9 (-854 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) + (-4 *7 (-13 (-749) (-548 (-1079)))) (-4 *8 (-710)) (-5 *2 - (-599 - (-2 (|:| |eqzro| (-599 *9)) (|:| |neqzro| (-599 *9)) - (|:| |wcond| (-599 (-884 *6))) + (-578 + (-2 (|:| |eqzro| (-578 *9)) (|:| |neqzro| (-578 *9)) + (|:| |wcond| (-578 (-850 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1207 (-361 (-884 *6)))) - (|:| -2113 (-599 (-1207 (-361 (-884 *6)))))))))) - (-5 *1 (-862 *6 *7 *8 *9)))) + (-2 (|:| |partsol| (-1168 (-343 (-850 *6)))) + (|:| -1998 (-578 (-1168 (-343 (-850 *6)))))))))) + (-5 *1 (-828 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-647 *8)) (-5 *4 (-857)) (-4 *8 (-888 *5 *7 *6)) - (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) - (-4 *7 (-738)) + (-12 (-5 *3 (-625 *8)) (-5 *4 (-823)) (-4 *8 (-854 *5 *7 *6)) + (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1079)))) + (-4 *7 (-710)) (-5 *2 - (-599 - (-2 (|:| |eqzro| (-599 *8)) (|:| |neqzro| (-599 *8)) - (|:| |wcond| (-599 (-884 *5))) + (-578 + (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) + (|:| |wcond| (-578 (-850 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1207 (-361 (-884 *5)))) - (|:| -2113 (-599 (-1207 (-361 (-884 *5)))))))))) - (-5 *1 (-862 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1168 (-343 (-850 *5)))) + (|:| -1998 (-578 (-1168 (-343 (-850 *5)))))))))) + (-5 *1 (-828 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-647 *9)) (-5 *4 (-599 *9)) (-5 *5 (-1099)) - (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-261) (-120))) - (-4 *7 (-13 (-781) (-569 (-1117)))) (-4 *8 (-738)) (-5 *2 (-499)) - (-5 *1 (-862 *6 *7 *8 *9)))) + (-12 (-5 *3 (-625 *9)) (-5 *4 (-578 *9)) (-5 *5 (-1062)) + (-4 *9 (-854 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) + (-4 *7 (-13 (-749) (-548 (-1079)))) (-4 *8 (-710)) (-5 *2 (-478)) + (-5 *1 (-828 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-647 *9)) (-5 *4 (-599 (-1117))) (-5 *5 (-1099)) - (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-261) (-120))) - (-4 *7 (-13 (-781) (-569 (-1117)))) (-4 *8 (-738)) (-5 *2 (-499)) - (-5 *1 (-862 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-647 *8)) (-5 *4 (-1099)) (-4 *8 (-888 *5 *7 *6)) - (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) - (-4 *7 (-738)) (-5 *2 (-499)) (-5 *1 (-862 *5 *6 *7 *8)))) + (-12 (-5 *3 (-625 *9)) (-5 *4 (-578 (-1079))) (-5 *5 (-1062)) + (-4 *9 (-854 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) + (-4 *7 (-13 (-749) (-548 (-1079)))) (-4 *8 (-710)) (-5 *2 (-478)) + (-5 *1 (-828 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-625 *8)) (-5 *4 (-1062)) (-4 *8 (-854 *5 *7 *6)) + (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1079)))) + (-4 *7 (-710)) (-5 *2 (-478)) (-5 *1 (-828 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-647 *10)) (-5 *4 (-599 *10)) (-5 *5 (-857)) (-5 *6 (-1099)) - (-4 *10 (-888 *7 *9 *8)) (-4 *7 (-13 (-261) (-120))) - (-4 *8 (-13 (-781) (-569 (-1117)))) (-4 *9 (-738)) (-5 *2 (-499)) - (-5 *1 (-862 *7 *8 *9 *10)))) + (-12 (-5 *3 (-625 *10)) (-5 *4 (-578 *10)) (-5 *5 (-823)) (-5 *6 (-1062)) + (-4 *10 (-854 *7 *9 *8)) (-4 *7 (-13 (-254) (-118))) + (-4 *8 (-13 (-749) (-548 (-1079)))) (-4 *9 (-710)) (-5 *2 (-478)) + (-5 *1 (-828 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-647 *10)) (-5 *4 (-599 (-1117))) (-5 *5 (-857)) (-5 *6 (-1099)) - (-4 *10 (-888 *7 *9 *8)) (-4 *7 (-13 (-261) (-120))) - (-4 *8 (-13 (-781) (-569 (-1117)))) (-4 *9 (-738)) (-5 *2 (-499)) - (-5 *1 (-862 *7 *8 *9 *10)))) + (-12 (-5 *3 (-625 *10)) (-5 *4 (-578 (-1079))) (-5 *5 (-823)) (-5 *6 (-1062)) + (-4 *10 (-854 *7 *9 *8)) (-4 *7 (-13 (-254) (-118))) + (-4 *8 (-13 (-749) (-548 (-1079)))) (-4 *9 (-710)) (-5 *2 (-478)) + (-5 *1 (-828 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-647 *9)) (-5 *4 (-857)) (-5 *5 (-1099)) (-4 *9 (-888 *6 *8 *7)) - (-4 *6 (-13 (-261) (-120))) (-4 *7 (-13 (-781) (-569 (-1117)))) - (-4 *8 (-738)) (-5 *2 (-499)) (-5 *1 (-862 *6 *7 *8 *9))))) + (-12 (-5 *3 (-625 *9)) (-5 *4 (-823)) (-5 *5 (-1062)) (-4 *9 (-854 *6 *8 *7)) + (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-749) (-548 (-1079)))) + (-4 *8 (-710)) (-5 *2 (-478)) (-5 *1 (-828 *6 *7 *8 *9))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-599 *4)) (-4 *4 (-318)) (-4 *2 (-1183 *4)) - (-5 *1 (-861 *4 *2))))) + (-12 (-5 *3 (-578 *4)) (-4 *4 (-308)) (-4 *2 (-1144 *4)) + (-5 *1 (-827 *4 *2))))) (((*1 *2 *3) - (-12 (-4 *1 (-859)) (-5 *2 (-2 (|:| -4104 (-599 *1)) (|:| -2527 *1))) - (-5 *3 (-599 *1))))) + (-12 (-4 *1 (-825)) (-5 *2 (-2 (|:| -3938 (-578 *1)) (|:| -2395 *1))) + (-5 *3 (-578 *1))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-859)) (-5 *2 (-649 (-599 *1))) (-5 *3 (-599 *1))))) + (-12 (-4 *1 (-825)) (-5 *2 (-627 (-578 *1))) (-5 *3 (-578 *1))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-599 (-884 *4))) (-5 *3 (-599 (-1117))) (-4 *4 (-406)) - (-5 *1 (-856 *4))))) + (-12 (-5 *2 (-578 (-850 *4))) (-5 *3 (-578 (-1079))) (-4 *4 (-385)) + (-5 *1 (-822 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-599 (-884 *4))) (-5 *3 (-599 (-1117))) (-4 *4 (-406)) - (-5 *1 (-856 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) - ((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-843 (-499))) (-5 *1 (-855))))) -(((*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855))))) -(((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) - ((*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855))))) -(((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) - ((*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855))))) -(((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) - ((*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855))))) -(((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) - ((*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855))))) -(((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) - ((*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855))))) -(((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) - ((*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) - ((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) - ((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855))))) -(((*1 *2 *3) (-12 (-5 *3 (-599 (-857))) (-5 *2 (-843 (-499))) (-5 *1 (-855))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) - ((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) - ((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855))))) + (-12 (-5 *2 (-578 (-850 *4))) (-5 *3 (-578 (-1079))) (-4 *4 (-385)) + (-5 *1 (-822 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) + ((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-809 (-478))) (-5 *1 (-821))))) +(((*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821))))) +(((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) + ((*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821))))) +(((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) + ((*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821))))) +(((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) + ((*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821))))) +(((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) + ((*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821))))) +(((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) + ((*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821))))) +(((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) + ((*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821))))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) + ((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821))))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) + ((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821))))) +(((*1 *2 *3) (-12 (-5 *3 (-578 (-823))) (-5 *2 (-809 (-478))) (-5 *1 (-821))))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) + ((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821))))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) + ((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-738)) (-4 *4 (-781)) (-4 *5 (-261)) (-5 *1 (-854 *3 *4 *5 *2)) - (-4 *2 (-888 *5 *3 *4)))) + (-12 (-4 *3 (-710)) (-4 *4 (-749)) (-4 *5 (-254)) (-5 *1 (-820 *3 *4 *5 *2)) + (-4 *2 (-854 *5 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1111 *6)) (-4 *6 (-888 *5 *3 *4)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *5 (-261)) (-5 *1 (-854 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1074 *6)) (-4 *6 (-854 *5 *3 *4)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *5 (-254)) (-5 *1 (-820 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *6 *4 *5)) (-5 *1 (-854 *4 *5 *6 *2)) - (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-359 *2)) (-4 *2 (-261)) (-5 *1 (-852 *2)))) + (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *6 *4 *5)) (-5 *1 (-820 *4 *5 *6 *2)) + (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-341 *2)) (-4 *2 (-254)) (-5 *1 (-818 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) - (-5 *2 (-51)) (-5 *1 (-853 *5)))) + (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-118))) + (-5 *2 (-51)) (-5 *1 (-819 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-359 (-884 *6))) (-5 *5 (-1117)) (-5 *3 (-884 *6)) - (-4 *6 (-13 (-261) (-120))) (-5 *2 (-51)) (-5 *1 (-853 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-261))))) -(((*1 *2 *1) (-12 (-5 *2 (-359 *3)) (-5 *1 (-852 *3)) (-4 *3 (-261))))) -(((*1 *2 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-261))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-852 *3)) (-4 *3 (-261))))) -(((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-852 *3)) (-4 *3 (-261))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1111 *3)) (-5 *1 (-852 *3)) (-4 *3 (-261))))) -(((*1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-261))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1183 (-361 (-499)))) (-5 *1 (-851 *3 *2)) - (-4 *2 (-1183 (-361 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1183 (-361 *2))) (-5 *2 (-499)) (-5 *1 (-851 *4 *3)) - (-4 *3 (-1183 (-361 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-599 (-2 (|:| |den| (-499)) (|:| |gcdnum| (-499))))) - (-4 *4 (-1183 (-361 *2))) (-5 *2 (-499)) (-5 *1 (-851 *4 *5)) - (-4 *5 (-1183 (-361 *4)))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1183 (-361 (-499)))) - (-5 *2 (-2 (|:| |den| (-499)) (|:| |gcdnum| (-499)))) (-5 *1 (-851 *3 *4)) - (-4 *4 (-1183 (-361 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1183 (-361 *2))) (-5 *2 (-499)) (-5 *1 (-851 *4 *3)) - (-4 *3 (-1183 (-361 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-499)) (-4 *4 (-1183 (-361 *3))) (-5 *2 (-857)) - (-5 *1 (-851 *4 *5)) (-4 *5 (-1183 (-361 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-288 *5 *6 *7 *8)) (-4 *5 (-375 *4)) - (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-4 *8 (-297 *5 *6 *7)) - (-4 *4 (-13 (-510) (-978 (-499)))) - (-5 *2 (-2 (|:| -3922 (-714)) (|:| -2501 *8))) - (-5 *1 (-849 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-288 (-361 (-499)) *4 *5 *6)) - (-4 *4 (-1183 (-361 (-499)))) (-4 *5 (-1183 (-361 *4))) - (-4 *6 (-297 (-361 (-499)) *4 *5)) - (-5 *2 (-2 (|:| -3922 (-714)) (|:| -2501 *6))) (-5 *1 (-850 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-288 *5 *6 *7 *8)) (-4 *5 (-375 *4)) (-4 *6 (-1183 *5)) - (-4 *7 (-1183 (-361 *6))) (-4 *8 (-297 *5 *6 *7)) - (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-85)) - (-5 *1 (-849 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-288 (-361 (-499)) *4 *5 *6)) (-4 *4 (-1183 (-361 (-499)))) - (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 (-361 (-499)) *4 *5)) (-5 *2 (-85)) - (-5 *1 (-850 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-406)))) + (-12 (-5 *4 (-341 (-850 *6))) (-5 *5 (-1079)) (-5 *3 (-850 *6)) + (-4 *6 (-13 (-254) (-118))) (-5 *2 (-51)) (-5 *1 (-819 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-341 *3)) (-5 *1 (-818 *3)) (-4 *3 (-254))))) +(((*1 *2 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-254))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-818 *3)) (-4 *3 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-818 *3)) (-4 *3 (-254))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1074 *3)) (-5 *1 (-818 *3)) (-4 *3 (-254))))) +(((*1 *1 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-254))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1144 (-343 (-478)))) (-5 *1 (-817 *3 *2)) + (-4 *2 (-1144 (-343 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1144 (-343 *2))) (-5 *2 (-478)) (-5 *1 (-817 *4 *3)) + (-4 *3 (-1144 (-343 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-578 (-2 (|:| |den| (-478)) (|:| |gcdnum| (-478))))) + (-4 *4 (-1144 (-343 *2))) (-5 *2 (-478)) (-5 *1 (-817 *4 *5)) + (-4 *5 (-1144 (-343 *4)))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1144 (-343 (-478)))) + (-5 *2 (-2 (|:| |den| (-478)) (|:| |gcdnum| (-478)))) (-5 *1 (-817 *3 *4)) + (-4 *4 (-1144 (-343 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1144 (-343 *2))) (-5 *2 (-478)) (-5 *1 (-817 *4 *3)) + (-4 *3 (-1144 (-343 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-478)) (-4 *4 (-1144 (-343 *3))) (-5 *2 (-823)) + (-5 *1 (-817 *4 *5)) (-4 *5 (-1144 (-343 *4)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-279 *5 *6 *7 *8)) (-4 *5 (-357 *4)) + (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-343 *6))) (-4 *8 (-287 *5 *6 *7)) + (-4 *4 (-13 (-489) (-943 (-478)))) + (-5 *2 (-2 (|:| -3756 (-687)) (|:| -2369 *8))) + (-5 *1 (-815 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-279 (-343 (-478)) *4 *5 *6)) + (-4 *4 (-1144 (-343 (-478)))) (-4 *5 (-1144 (-343 *4))) + (-4 *6 (-287 (-343 (-478)) *4 *5)) + (-5 *2 (-2 (|:| -3756 (-687)) (|:| -2369 *6))) (-5 *1 (-816 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-279 *5 *6 *7 *8)) (-4 *5 (-357 *4)) (-4 *6 (-1144 *5)) + (-4 *7 (-1144 (-343 *6))) (-4 *8 (-287 *5 *6 *7)) + (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-83)) + (-5 *1 (-815 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-279 (-343 (-478)) *4 *5 *6)) (-4 *4 (-1144 (-343 (-478)))) + (-4 *5 (-1144 (-343 *4))) (-4 *6 (-287 (-343 (-478)) *4 *5)) (-5 *2 (-83)) + (-5 *1 (-816 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-385)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1111 *6)) (-4 *6 (-888 *5 *3 *4)) (-4 *3 (-738)) (-4 *4 (-781)) - (-4 *5 (-848)) (-5 *1 (-411 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-848))))) -(((*1 *2 *3) - (-12 (-5 *2 (-359 (-1111 *1))) (-5 *1 (-268 *4)) (-5 *3 (-1111 *1)) - (-4 *4 (-406)) (-4 *4 (-510)) (-4 *4 (-1041)))) - ((*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *2 (-359 (-1111 *1))) (-5 *3 (-1111 *1))))) -(((*1 *2 *3) - (-12 (-5 *2 (-359 (-1111 *1))) (-5 *1 (-268 *4)) (-5 *3 (-1111 *1)) - (-4 *4 (-406)) (-4 *4 (-510)) (-4 *4 (-1041)))) - ((*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *2 (-359 (-1111 *1))) (-5 *3 (-1111 *1))))) -(((*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *2 (-359 (-1111 *1))) (-5 *3 (-1111 *1))))) + (-12 (-5 *2 (-1074 *6)) (-4 *6 (-854 *5 *3 *4)) (-4 *3 (-710)) (-4 *4 (-749)) + (-4 *5 (-814)) (-5 *1 (-390 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-814))))) +(((*1 *2 *3) + (-12 (-5 *2 (-341 (-1074 *1))) (-5 *1 (-261 *4)) (-5 *3 (-1074 *1)) + (-4 *4 (-385)) (-4 *4 (-489)) (-4 *4 (-1005)))) + ((*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *2 (-341 (-1074 *1))) (-5 *3 (-1074 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-341 (-1074 *1))) (-5 *1 (-261 *4)) (-5 *3 (-1074 *1)) + (-4 *4 (-385)) (-4 *4 (-489)) (-4 *4 (-1005)))) + ((*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *2 (-341 (-1074 *1))) (-5 *3 (-1074 *1))))) +(((*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *2 (-341 (-1074 *1))) (-5 *3 (-1074 *1))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-599 (-1111 *5))) (-5 *3 (-1111 *5)) (-4 *5 (-139 *4)) - (-4 *4 (-498)) (-5 *1 (-122 *4 *5)))) + (|partial| -12 (-5 *2 (-578 (-1074 *5))) (-5 *3 (-1074 *5)) (-4 *5 (-137 *4)) + (-4 *4 (-477)) (-5 *1 (-120 *4 *5)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-599 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-1183 *4)) - (-4 *4 (-305)) (-5 *1 (-313 *4 *5 *3)))) + (|partial| -12 (-5 *2 (-578 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-1144 *4)) + (-4 *4 (-295)) (-5 *1 (-303 *4 *5 *3)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-599 (-1111 (-499)))) (-5 *3 (-1111 (-499))) - (-5 *1 (-523)))) + (|partial| -12 (-5 *2 (-578 (-1074 (-478)))) (-5 *3 (-1074 (-478))) + (-5 *1 (-502)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-599 (-1111 *1))) (-5 *3 (-1111 *1)) (-4 *1 (-848))))) + (|partial| -12 (-5 *2 (-578 (-1074 *1))) (-5 *3 (-1074 *1)) (-4 *1 (-814))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-647 *1)) (-4 *1 (-305)) (-5 *2 (-1207 *1)))) + (|partial| -12 (-5 *3 (-625 *1)) (-4 *1 (-295)) (-5 *2 (-1168 *1)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-647 *1)) (-4 *1 (-118)) (-4 *1 (-848)) - (-5 *2 (-1207 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 *1)) (-4 *1 (-118)))) - ((*1 *1 *1) (-4 *1 (-305))) - ((*1 *2 *1) (-12 (-5 *2 (-649 *1)) (-4 *1 (-118)) (-4 *1 (-848))))) + (|partial| -12 (-5 *3 (-625 *1)) (-4 *1 (-116)) (-4 *1 (-814)) + (-5 *2 (-1168 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 *1)) (-4 *1 (-116)))) + ((*1 *1 *1) (-4 *1 (-295))) + ((*1 *2 *1) (-12 (-5 *2 (-627 *1)) (-4 *1 (-116)) (-4 *1 (-814))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-781)) (-4 *5 (-848)) (-4 *6 (-738)) - (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-359 (-1111 *8))) (-5 *1 (-845 *5 *6 *7 *8)) - (-5 *4 (-1111 *8)))) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-749)) (-4 *5 (-814)) (-4 *6 (-710)) + (-4 *8 (-854 *5 *6 *7)) (-5 *2 (-341 (-1074 *8))) (-5 *1 (-811 *5 *6 *7 *8)) + (-5 *4 (-1074 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-848)) (-4 *5 (-1183 *4)) (-5 *2 (-359 (-1111 *5))) - (-5 *1 (-846 *4 *5)) (-5 *3 (-1111 *5))))) + (-12 (-4 *4 (-814)) (-4 *5 (-1144 *4)) (-5 *2 (-341 (-1074 *5))) + (-5 *1 (-812 *4 *5)) (-5 *3 (-1074 *5))))) (((*1 *2) - (-12 (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-848)) (-5 *1 (-411 *3 *4 *2 *5)) - (-4 *5 (-888 *2 *3 *4)))) + (-12 (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-814)) (-5 *1 (-390 *3 *4 *2 *5)) + (-4 *5 (-854 *2 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-848)) (-5 *1 (-845 *2 *3 *4 *5)) - (-4 *5 (-888 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-848)) (-5 *1 (-846 *2 *3)) (-4 *3 (-1183 *2))))) + (-12 (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-814)) (-5 *1 (-811 *2 *3 *4 *5)) + (-4 *5 (-854 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-814)) (-5 *1 (-812 *2 *3)) (-4 *3 (-1144 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-848)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-888 *4 *5 *6)) - (-5 *2 (-359 (-1111 *7))) (-5 *1 (-845 *4 *5 *6 *7)) (-5 *3 (-1111 *7)))) + (-12 (-4 *4 (-814)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-854 *4 *5 *6)) + (-5 *2 (-341 (-1074 *7))) (-5 *1 (-811 *4 *5 *6 *7)) (-5 *3 (-1074 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-848)) (-4 *5 (-1183 *4)) (-5 *2 (-359 (-1111 *5))) - (-5 *1 (-846 *4 *5)) (-5 *3 (-1111 *5))))) + (-12 (-4 *4 (-814)) (-4 *5 (-1144 *4)) (-5 *2 (-341 (-1074 *5))) + (-5 *1 (-812 *4 *5)) (-5 *3 (-1074 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-848)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-888 *4 *5 *6)) - (-5 *2 (-359 (-1111 *7))) (-5 *1 (-845 *4 *5 *6 *7)) (-5 *3 (-1111 *7)))) + (-12 (-4 *4 (-814)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-854 *4 *5 *6)) + (-5 *2 (-341 (-1074 *7))) (-5 *1 (-811 *4 *5 *6 *7)) (-5 *3 (-1074 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-848)) (-4 *5 (-1183 *4)) (-5 *2 (-359 (-1111 *5))) - (-5 *1 (-846 *4 *5)) (-5 *3 (-1111 *5))))) + (-12 (-4 *4 (-814)) (-4 *5 (-1144 *4)) (-5 *2 (-341 (-1074 *5))) + (-5 *1 (-812 *4 *5)) (-5 *3 (-1074 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-599 (-1111 *7))) (-5 *3 (-1111 *7)) - (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-848)) (-4 *5 (-738)) (-4 *6 (-781)) - (-5 *1 (-845 *4 *5 *6 *7)))) + (|partial| -12 (-5 *2 (-578 (-1074 *7))) (-5 *3 (-1074 *7)) + (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-814)) (-4 *5 (-710)) (-4 *6 (-749)) + (-5 *1 (-811 *4 *5 *6 *7)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-599 (-1111 *5))) (-5 *3 (-1111 *5)) - (-4 *5 (-1183 *4)) (-4 *4 (-848)) (-5 *1 (-846 *4 *5))))) + (|partial| -12 (-5 *2 (-578 (-1074 *5))) (-5 *3 (-1074 *5)) + (-4 *5 (-1144 *4)) (-4 *4 (-814)) (-5 *1 (-812 *4 *5))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-599 (-1111 *7))) (-5 *3 (-1111 *7)) - (-4 *7 (-888 *5 *6 *4)) (-4 *5 (-848)) (-4 *6 (-738)) (-4 *4 (-781)) - (-5 *1 (-845 *5 *6 *4 *7))))) -(((*1 *2 *1) - (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *6)) - (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-840 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-857)))) ((*1 *1) (-4 *1 (-498))) - ((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-657)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-840 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) - (-12 (-5 *2 (-599 (-599 (-714)))) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-840 *3))) (-4 *3 (-1041)) (-5 *1 (-843 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-842 *3)) (-4 *3 (-1041)) (-5 *2 (-1037 *3)))) + (|partial| -12 (-5 *2 (-578 (-1074 *7))) (-5 *3 (-1074 *7)) + (-4 *7 (-854 *5 *6 *4)) (-4 *5 (-814)) (-4 *6 (-710)) (-4 *4 (-749)) + (-5 *1 (-811 *5 *6 *4 *7))))) +(((*1 *2 *1) + (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *6)) + (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-806 *3))) (-5 *1 (-809 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-823)))) ((*1 *1) (-4 *1 (-477))) + ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-809 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-806 *3))) (-5 *1 (-809 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) + (-12 (-5 *2 (-578 (-578 (-687)))) (-5 *1 (-809 *3)) (-4 *3 (-1005))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-806 *3))) (-4 *3 (-1005)) (-5 *1 (-809 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-808 *3)) (-4 *3 (-1005)) (-5 *2 (-1001 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1041)) (-5 *2 (-1037 (-599 *4))) (-5 *1 (-843 *4)) - (-5 *3 (-599 *4)))) + (-12 (-4 *4 (-1005)) (-5 *2 (-1001 (-578 *4))) (-5 *1 (-809 *4)) + (-5 *3 (-578 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1041)) (-5 *2 (-1037 (-1037 *4))) (-5 *1 (-843 *4)) - (-5 *3 (-1037 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *2 (-1037 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) + (-12 (-4 *4 (-1005)) (-5 *2 (-1001 (-1001 *4))) (-5 *1 (-809 *4)) + (-5 *3 (-1001 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-809 *3)) (-4 *3 (-1005))))) (((*1 *2 *1) - (-12 (-5 *2 (-1037 (-1037 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) + (-12 (-5 *2 (-1001 (-1001 *3))) (-5 *1 (-809 *3)) (-4 *3 (-1005))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-840 *4)) (-4 *4 (-1041)) (-5 *2 (-599 (-714))) - (-5 *1 (-843 *4))))) + (-12 (-5 *3 (-806 *4)) (-4 *4 (-1005)) (-5 *2 (-578 (-687))) + (-5 *1 (-809 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-840 *4)) (-4 *4 (-1041)) (-5 *2 (-599 (-714))) - (-5 *1 (-843 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-842 *3)) (-4 *3 (-1041)) (-5 *2 (-1037 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1037 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-797))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-842 *3)) (-4 *3 (-1041)) (-5 *2 (-85)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-797))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) + (-12 (-5 *3 (-806 *4)) (-4 *4 (-1005)) (-5 *2 (-578 (-687))) + (-5 *1 (-809 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-808 *3)) (-4 *3 (-1005)) (-5 *2 (-1001 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-809 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-752)) (-5 *2 (-83)))) + ((*1 *1 *1 *1) (-5 *1 (-765))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-808 *3)) (-4 *3 (-1005)) (-5 *2 (-83)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-809 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-752)) (-5 *2 (-83)))) + ((*1 *1 *1 *1) (-5 *1 (-765))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-809 *3)) (-4 *3 (-1005))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-843 *4)) (-4 *4 (-1041)))) - ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-4 *1 (-842 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-4 *1 (-842 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1082 *4 *2)) (-14 *4 (-857)) - (-4 *2 (-13 (-989) (-10 -7 (-6 (-4147 "*"))))) (-5 *1 (-841 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-599 *3)) (|:| |image| (-599 *3)))) - (-5 *1 (-840 *3)) (-4 *3 (-1041))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-5 *1 (-840 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-5 *1 (-840 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-840 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-840 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-4 *1 (-978 (-499))) (-4 *1 (-252)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-498)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-840 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-4 *1 (-978 (-499))) (-4 *1 (-252)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-498)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-840 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1037 *3)) (-5 *1 (-840 *3)) (-4 *3 (-323)) (-4 *3 (-1041))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-840 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1041)))) - ((*1 *1 *2) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1041))))) -(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1157)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-714)))) + (-12 (-5 *3 (-478)) (-5 *2 (-1174)) (-5 *1 (-809 *4)) (-4 *4 (-1005)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-809 *3)) (-4 *3 (-1005))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-4 *1 (-808 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1005)) (-4 *1 (-808 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1045 *4 *2)) (-14 *4 (-823)) + (-4 *2 (-13 (-954) (-10 -7 (-6 (-3981 "*"))))) (-5 *1 (-807 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-578 *3)) (|:| |image| (-578 *3)))) + (-5 *1 (-806 *3)) (-4 *3 (-1005))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1005)) (-5 *1 (-806 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1005)) (-5 *1 (-806 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-806 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-806 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-4 *1 (-943 (-478))) (-4 *1 (-250)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-4 *1 (-477)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-806 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-4 *1 (-943 (-478))) (-4 *1 (-250)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-4 *1 (-477)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-806 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1001 *3)) (-5 *1 (-806 *3)) (-4 *3 (-313)) (-4 *3 (-1005))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-5 *1 (-806 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-1005)))) + ((*1 *1 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-1005))))) +(((*1 *2 *1) (-12 (-4 *1 (-184 *2)) (-4 *2 (-1118)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-187)) (-5 *2 (-687)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-714)) (-4 *1 (-224 *4)) (-4 *4 (-1157)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1157)))) - ((*1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-831 *2 *3)) (-4 *3 (-1157)) (-4 *2 (-1157)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-687)) (-4 *1 (-222 *4)) (-4 *4 (-1118)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-222 *3)) (-4 *3 (-1118)))) + ((*1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-799 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1118)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 *4)) (-5 *3 (-599 (-714))) (-4 *1 (-838 *4)) - (-4 *4 (-1041)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-838 *2)) (-4 *2 (-1041)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *1 (-838 *3)) (-4 *3 (-1041))))) + (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 (-687))) (-4 *1 (-804 *4)) + (-4 *4 (-1005)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-804 *2)) (-4 *2 (-1005)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-804 *3)) (-4 *3 (-1005))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-714)) (-4 *4 (-318)) (-5 *1 (-833 *2 *4)) (-4 *2 (-1183 *4))))) + (-12 (-5 *3 (-687)) (-4 *4 (-308)) (-5 *1 (-800 *2 *4)) (-4 *2 (-1144 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-318)) (-5 *1 (-833 *2 *3)) (-4 *2 (-1183 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *1 (-730)) (-5 *3 (-1003)) - (-5 *4 - (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) - (|:| |abserr| (-179)) (|:| |relerr| (-179)))) - (-5 *2 - (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)) - (|:| |extra| (-975)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-730)) (-5 *3 (-1003)) - (-5 *4 - (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) - (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) - (|:| |relerr| (-179)))) - (-5 *2 - (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)) - (|:| |extra| (-975)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-745)) (-5 *3 (-1003)) - (-5 *4 - (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) - (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) - (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) - (|:| |abserr| (-179)) (|:| |relerr| (-179)))) - (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-773)) (-5 *3 (-1003)) - (-5 *4 (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))) - (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-773)) (-5 *3 (-1003)) - (-5 *4 - (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) - (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) - (|:| |ub| (-599 (-775 (-179)))))) - (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-832)) (-5 *3 (-1003)) - (-5 *4 - (-2 (|:| |pde| (-599 (-268 (-179)))) - (|:| |constraints| - (-599 - (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) - (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) - (|:| |dFinish| (-647 (-179)))))) - (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) - (|:| |tol| (-179)))) - (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099))))))) -(((*1 *2 *3) - (-12 (-4 *1 (-832)) - (-5 *3 - (-2 (|:| |pde| (-599 (-268 (-179)))) - (|:| |constraints| - (-599 - (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) - (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) - (|:| |dFinish| (-647 (-179)))))) - (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) - (|:| |tol| (-179)))) - (-5 *2 (-975))))) -(((*1 *1) (-12 (-4 *1 (-419 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-488))) ((*1 *1) (-4 *1 (-680))) ((*1 *1) (-4 *1 (-684))) - ((*1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) - ((*1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-781))))) -(((*1 *2 *1) - (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) - (-5 *2 (-599 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-599 (-2 (|:| |k| (-828 *3)) (|:| |c| *4)))) - (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) - (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-630 *3))) (-5 *1 (-828 *3)) (-4 *3 (-781))))) -(((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) - (-14 *4 (-599 (-1117))))) - ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1157)))) - ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) - (-14 *4 (-599 (-1117))))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-635 *3)) (-4 *3 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-828 *3)) (-4 *3 (-781))))) -(((*1 *2 *3) - (-12 (-5 *3 (-825 *4)) (-4 *4 (-1041)) (-5 *2 (-599 *5)) (-5 *1 (-826 *4 *5)) - (-4 *5 (-1157))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) + (|partial| -12 (-4 *3 (-308)) (-5 *1 (-800 *2 *3)) (-4 *2 (-1144 *3))))) +(((*1 *1) (-12 (-4 *1 (-398 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-467))) ((*1 *1) (-4 *1 (-654))) ((*1 *1) (-4 *1 (-658))) + ((*1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1005)))) + ((*1 *1) (-12 (-5 *1 (-796 *2)) (-4 *2 (-749))))) +(((*1 *2 *1) + (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1005)) + (-5 *2 (-578 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-578 (-2 (|:| |k| (-796 *3)) (|:| |c| *4)))) + (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) + (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-609 *3))) (-5 *1 (-796 *3)) (-4 *3 (-749))))) +(((*1 *2 *1) + (-12 (-5 *2 (-83)) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) + (-14 *4 (-578 (-1079))))) + ((*1 *2 *3) + (-12 (-5 *3 (-51)) (-5 *2 (-83)) (-5 *1 (-52 *4)) (-4 *4 (-1118)))) + ((*1 *2 *1) + (-12 (-5 *2 (-83)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) + (-14 *4 (-578 (-1079))))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-613 *3)) (-4 *3 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-796 *3)) (-4 *3 (-749))))) +(((*1 *2 *3) + (-12 (-5 *3 (-793 *4)) (-4 *4 (-1005)) (-5 *2 (-578 *5)) (-5 *1 (-794 *4 *5)) + (-4 *5 (-1118))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-793 *3)) (-4 *3 (-1005)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-825 *4)) (-4 *4 (-1041)) (-5 *1 (-826 *4 *3)) (-4 *3 (-1157))))) + (-12 (-5 *2 (-793 *4)) (-4 *4 (-1005)) (-5 *1 (-794 *4 *3)) (-4 *3 (-1118))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-825 *4)) (-4 *4 (-1041)) (-5 *2 (-85)) - (-5 *1 (-823 *4 *5)) (-4 *5 (-1041)))) + (|partial| -12 (-5 *3 (-793 *4)) (-4 *4 (-1005)) (-5 *2 (-83)) + (-5 *1 (-791 *4 *5)) (-4 *5 (-1005)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-5 *2 (-85)) (-5 *1 (-826 *5 *3)) - (-4 *3 (-1157)))) + (-12 (-5 *4 (-793 *5)) (-4 *5 (-1005)) (-5 *2 (-83)) (-5 *1 (-794 *5 *3)) + (-4 *3 (-1118)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *6)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-4 *6 (-1157)) - (-5 *2 (-85)) (-5 *1 (-826 *5 *6))))) + (-12 (-5 *3 (-578 *6)) (-5 *4 (-793 *5)) (-4 *5 (-1005)) (-4 *6 (-1118)) + (-5 *2 (-83)) (-5 *1 (-794 *5 *6))))) (((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-488))) ((*1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041))))) + ((*1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-467))) ((*1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1005))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| -2631 (-86)) (|:| |arg| (-599 (-825 *3))))) - (-5 *1 (-825 *3)) (-4 *3 (-1041)))) + (|partial| -12 (-5 *2 (-2 (|:| -2497 (-84)) (|:| |arg| (-578 (-793 *3))))) + (-5 *1 (-793 *3)) (-4 *3 (-1005)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-86)) (-5 *2 (-599 (-825 *4))) (-5 *1 (-825 *4)) - (-4 *4 (-1041))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-268 (-179))) (-5 *1 (-257)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |num| (-825 *3)) (|:| |den| (-825 *3)))) - (-5 *1 (-825 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) + (|partial| -12 (-5 *3 (-84)) (-5 *2 (-578 (-793 *4))) (-5 *1 (-793 *4)) + (-4 *4 (-1005))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |num| (-793 *3)) (|:| |den| (-793 *3)))) + (-5 *1 (-793 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-51))) (-5 *1 (-793 *3)) (-4 *3 (-1005))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-51))) (-5 *1 (-793 *3)) (-4 *3 (-1005))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-51))) (-5 *1 (-793 *3)) (-4 *3 (-1005))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-85)) (-5 *1 (-825 *4)) (-4 *4 (-1041))))) + (-12 (-5 *2 (-1079)) (-5 *3 (-83)) (-5 *1 (-793 *4)) (-4 *4 (-1005))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-51)) (-5 *1 (-825 *4)) (-4 *4 (-1041))))) + (-12 (-5 *2 (-578 (-1079))) (-5 *3 (-51)) (-5 *1 (-793 *4)) (-4 *4 (-1005))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-599 (-1117))) (|:| |pred| (-51)))) - (-5 *1 (-825 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) -(((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) + (-12 (-5 *2 (-2 (|:| |var| (-578 (-1079))) (|:| |pred| (-51)))) + (-5 *1 (-793 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1005))))) +(((*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-51))) (-5 *1 (-793 *3)) (-4 *3 (-1005))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) + (|partial| -12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1005))))) (((*1 *2 *1) - (-12 (-4 *4 (-1041)) (-5 *2 (-85)) (-5 *1 (-820 *3 *4 *5)) (-4 *3 (-1041)) - (-4 *5 (-624 *4)))) + (-12 (-4 *4 (-1005)) (-5 *2 (-83)) (-5 *1 (-788 *3 *4 *5)) (-4 *3 (-1005)) + (-4 *5 (-603 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-823 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) + (-12 (-5 *2 (-83)) (-5 *1 (-791 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005))))) (((*1 *1) - (-12 (-4 *3 (-1041)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1041)) - (-4 *4 (-624 *3)))) - ((*1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041))))) + (-12 (-4 *3 (-1005)) (-5 *1 (-788 *2 *3 *4)) (-4 *2 (-1005)) + (-4 *4 (-603 *3)))) + ((*1 *1) (-12 (-5 *1 (-791 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-825 *4)) (-4 *4 (-1041)) (-4 *2 (-1041)) - (-5 *1 (-823 *4 *2))))) + (|partial| -12 (-5 *3 (-793 *4)) (-4 *4 (-1005)) (-4 *2 (-1005)) + (-5 *1 (-791 *4 *2))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-825 *4)) (-4 *4 (-1041)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1041))))) + (-12 (-5 *2 (-793 *4)) (-4 *4 (-1005)) (-5 *1 (-791 *4 *3)) (-4 *3 (-1005))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-825 *4)) (-4 *4 (-1041)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1041))))) + (-12 (-5 *2 (-793 *4)) (-4 *4 (-1005)) (-5 *1 (-791 *4 *3)) (-4 *3 (-1005))))) (((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-825 *4)) (-4 *4 (-1041)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1041))))) + (-12 (-5 *2 (-793 *4)) (-4 *4 (-1005)) (-5 *1 (-791 *4 *3)) (-4 *3 (-1005))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1041)) (-4 *6 (-821 *5)) (-5 *2 (-820 *5 *6 (-599 *6))) - (-5 *1 (-822 *5 *6 *4)) (-5 *3 (-599 *6)) (-4 *4 (-569 (-825 *5))))) + (-12 (-4 *5 (-1005)) (-4 *6 (-789 *5)) (-5 *2 (-788 *5 *6 (-578 *6))) + (-5 *1 (-790 *5 *6 *4)) (-5 *3 (-578 *6)) (-4 *4 (-548 (-793 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1041)) (-5 *2 (-599 (-247 *3))) (-5 *1 (-822 *5 *3 *4)) - (-4 *3 (-978 (-1117))) (-4 *3 (-821 *5)) (-4 *4 (-569 (-825 *5))))) + (-12 (-4 *5 (-1005)) (-5 *2 (-578 (-245 *3))) (-5 *1 (-790 *5 *3 *4)) + (-4 *3 (-943 (-1079))) (-4 *3 (-789 *5)) (-4 *4 (-548 (-793 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1041)) (-5 *2 (-599 (-247 (-884 *3)))) (-5 *1 (-822 *5 *3 *4)) - (-4 *3 (-989)) (-2679 (-4 *3 (-978 (-1117)))) (-4 *3 (-821 *5)) - (-4 *4 (-569 (-825 *5))))) + (-12 (-4 *5 (-1005)) (-5 *2 (-578 (-245 (-850 *3)))) (-5 *1 (-790 *5 *3 *4)) + (-4 *3 (-954)) (-2544 (-4 *3 (-943 (-1079)))) (-4 *3 (-789 *5)) + (-4 *4 (-548 (-793 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1041)) (-5 *2 (-823 *5 *3)) (-5 *1 (-822 *5 *3 *4)) - (-2679 (-4 *3 (-978 (-1117)))) (-2679 (-4 *3 (-989))) (-4 *3 (-821 *5)) - (-4 *4 (-569 (-825 *5)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-252)) (-5 *3 (-1117)) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-252)) (-5 *3 (-86)) (-5 *2 (-85)))) + (-12 (-4 *5 (-1005)) (-5 *2 (-791 *5 *3)) (-5 *1 (-790 *5 *3 *4)) + (-2544 (-4 *3 (-943 (-1079)))) (-2544 (-4 *3 (-954))) (-4 *3 (-789 *5)) + (-4 *4 (-548 (-793 *5)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-250)) (-5 *3 (-1079)) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-250)) (-5 *3 (-84)) (-5 *2 (-83)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1117)) (-5 *2 (-85)) (-5 *1 (-566 *4)) (-4 *4 (-1041)))) + (-12 (-5 *3 (-1079)) (-5 *2 (-83)) (-5 *1 (-545 *4)) (-4 *4 (-1005)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-566 *4)) (-4 *4 (-1041)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-770 *3)) (-4 *3 (-1041)) (-5 *2 (-85)))) + (-12 (-5 *3 (-84)) (-5 *2 (-83)) (-5 *1 (-545 *4)) (-4 *4 (-1005)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-740 *3)) (-4 *3 (-1005)) (-5 *2 (-83)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1041)) (-5 *2 (-85)) (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-821 *5)) - (-4 *4 (-569 (-825 *5))))) + (-12 (-4 *5 (-1005)) (-5 *2 (-83)) (-5 *1 (-790 *5 *3 *4)) (-4 *3 (-789 *5)) + (-4 *4 (-548 (-793 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *6)) (-4 *6 (-821 *5)) (-4 *5 (-1041)) (-5 *2 (-85)) - (-5 *1 (-822 *5 *6 *4)) (-4 *4 (-569 (-825 *5)))))) + (-12 (-5 *3 (-578 *6)) (-4 *6 (-789 *5)) (-4 *5 (-1005)) (-5 *2 (-83)) + (-5 *1 (-790 *5 *6 *4)) (-4 *4 (-548 (-793 *5)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-823 *4 *5)) (-5 *3 (-823 *4 *6)) (-4 *4 (-1041)) - (-4 *5 (-1041)) (-4 *6 (-624 *5)) (-5 *1 (-820 *4 *5 *6))))) + (-12 (-5 *2 (-791 *4 *5)) (-5 *3 (-791 *4 *6)) (-4 *4 (-1005)) + (-4 *5 (-1005)) (-4 *6 (-603 *5)) (-5 *1 (-788 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *4 (-1041)) (-5 *2 (-823 *3 *5)) (-5 *1 (-820 *3 *4 *5)) - (-4 *3 (-1041)) (-4 *5 (-624 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *1 (-818)) (-5 *3 (-499))))) + (-12 (-4 *4 (-1005)) (-5 *2 (-791 *3 *5)) (-5 *1 (-788 *3 *4 *5)) + (-4 *3 (-1005)) (-4 *5 (-603 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1058 (-578 (-478)))) (-5 *1 (-786)) (-5 *3 (-478))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *1 (-818)) (-5 *3 (-599 (-499))))) + (-12 (-5 *2 (-1058 (-578 (-478)))) (-5 *1 (-786)) (-5 *3 (-578 (-478))))) ((*1 *2 *3) - (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *1 (-818)) (-5 *3 (-599 (-499)))))) + (-12 (-5 *2 (-1058 (-578 (-478)))) (-5 *1 (-786)) (-5 *3 (-578 (-478)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *3 (-599 (-499))) (-5 *1 (-818))))) + (-12 (-5 *2 (-1058 (-578 (-478)))) (-5 *3 (-578 (-478))) (-5 *1 (-786))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *1 (-818)) (-5 *3 (-599 (-499)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1095 (-599 (-857)))) (-5 *1 (-818))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *1 (-812 *2)) (-4 *2 (-1157)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *1 (-814 *2)) (-4 *2 (-1157)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *1 (-817 *2)) (-4 *2 (-1157))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-1157))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-599 (-1122))) (-5 *1 (-815))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808))))) -(((*1 *2 *3) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-198)) (-5 *3 (-1099)))) - ((*1 *2 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-198)))) - ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-807 *2 *3)) (-4 *2 (-1157)) (-4 *3 (-1157))))) -(((*1 *2 *1) - (-12 (-5 *2 (-148 (-361 (-499)))) (-5 *1 (-90 *3)) (-14 *3 (-499)))) - ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-261)) (-5 *1 (-148 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-361 *3)) (-4 *3 (-261)) (-5 *1 (-148 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-148 (-499))) (-5 *1 (-708 *3)) (-4 *3 (-358)))) - ((*1 *2 *1) - (-12 (-5 *2 (-148 (-361 (-499)))) (-5 *1 (-805 *3)) (-14 *3 (-499)))) - ((*1 *2 *1) - (-12 (-14 *3 (-499)) (-5 *2 (-148 (-361 (-499)))) (-5 *1 (-806 *3 *4)) - (-4 *4 (-804 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-357 *3)) (-4 *3 (-358)))) - ((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-357 *3)) (-4 *3 (-358)))) - ((*1 *2 *2) (-12 (-5 *2 (-857)) (|has| *1 (-6 -4136)) (-4 *1 (-358)))) - ((*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-857)))) - ((*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-1095 (-499)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-243 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1183 *3)) (-14 *5 (-1 *4 *4 *2)) + (-12 (-5 *2 (-1058 (-578 (-478)))) (-5 *1 (-786)) (-5 *3 (-578 (-478)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1058 (-578 (-823)))) (-5 *1 (-786))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *1 (-780 *2)) (-4 *2 (-1118)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *1 (-782 *2)) (-4 *2 (-1118)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *1 (-785 *2)) (-4 *2 (-1118))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-785 *2)) (-4 *2 (-1118))))) +(((*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-578 (-1084))) (-5 *1 (-783))))) +(((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776))))) +(((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776))))) +(((*1 *2 *3) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-196)) (-5 *3 (-1062)))) + ((*1 *2 *2) (-12 (-5 *2 (-578 (-1062))) (-5 *1 (-196)))) + ((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776))))) +(((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776))))) +(((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-775 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118))))) +(((*1 *2 *1) + (-12 (-5 *2 (-146 (-343 (-478)))) (-5 *1 (-88 *3)) (-14 *3 (-478)))) + ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-254)) (-5 *1 (-146 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-343 *3)) (-4 *3 (-254)) (-5 *1 (-146 *3)))) + ((*1 *2 *3) (-12 (-5 *2 (-146 (-478))) (-5 *1 (-682 *3)) (-4 *3 (-340)))) + ((*1 *2 *1) + (-12 (-5 *2 (-146 (-343 (-478)))) (-5 *1 (-773 *3)) (-14 *3 (-478)))) + ((*1 *2 *1) + (-12 (-14 *3 (-478)) (-5 *2 (-146 (-343 (-478)))) (-5 *1 (-774 *3 *4)) + (-4 *4 (-772 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-339 *3)) (-4 *3 (-340)))) + ((*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-339 *3)) (-4 *3 (-340)))) + ((*1 *2 *2) (-12 (-5 *2 (-823)) (|has| *1 (-6 -3970)) (-4 *1 (-340)))) + ((*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-823)))) + ((*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-5 *2 (-1058 (-478)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-144)) (-4 *2 (-23)) (-5 *1 (-241 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1144 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-669 *3 *2 *4 *5 *6)) (-4 *3 (-146)) + (-12 (-4 *2 (-23)) (-5 *1 (-643 *3 *2 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1183 *3)) (-5 *1 (-670 *3 *2)) (-4 *3 (-989)))) + ((*1 *2) (-12 (-4 *2 (-1144 *3)) (-5 *1 (-644 *3 *2)) (-4 *3 (-954)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-673 *3 *2 *4 *5 *6)) (-4 *3 (-146)) + (-12 (-4 *2 (-23)) (-5 *1 (-647 *3 *2 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499))))) -(((*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499))))) -(((*1 *1 *1) (-4 *1 (-804 *2)))) -(((*1 *1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1) (-5 *1 (-797))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *3 (-499)) (-4 *1 (-804 *4))))) + ((*1 *2) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478))))) +(((*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478))))) +(((*1 *1 *1) (-4 *1 (-772 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-765))) ((*1 *1 *1) (-5 *1 (-765))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1074 (-478))) (-5 *3 (-478)) (-4 *1 (-772 *4))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-714)) (-4 *5 (-318)) (-5 *2 (-361 *6)) - (-5 *1 (-801 *5 *4 *6)) (-4 *4 (-1200 *5)) (-4 *6 (-1183 *5)))) + (|partial| -12 (-5 *3 (-687)) (-4 *5 (-308)) (-5 *2 (-343 *6)) + (-5 *1 (-769 *5 *4 *6)) (-4 *4 (-1161 *5)) (-4 *6 (-1144 *5)))) ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-714)) (-5 *4 (-1197 *5 *6 *7)) (-4 *5 (-318)) - (-14 *6 (-1117)) (-14 *7 *5) (-5 *2 (-361 (-1176 *6 *5))) - (-5 *1 (-802 *5 *6 *7)))) + (|partial| -12 (-5 *3 (-687)) (-5 *4 (-1158 *5 *6 *7)) (-4 *5 (-308)) + (-14 *6 (-1079)) (-14 *7 *5) (-5 *2 (-343 (-1137 *6 *5))) + (-5 *1 (-770 *5 *6 *7)))) ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-714)) (-5 *4 (-1197 *5 *6 *7)) (-4 *5 (-318)) - (-14 *6 (-1117)) (-14 *7 *5) (-5 *2 (-361 (-1176 *6 *5))) - (-5 *1 (-802 *5 *6 *7))))) + (|partial| -12 (-5 *3 (-687)) (-5 *4 (-1158 *5 *6 *7)) (-4 *5 (-308)) + (-14 *6 (-1079)) (-14 *7 *5) (-5 *2 (-343 (-1137 *6 *5))) + (-5 *1 (-770 *5 *6 *7))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-714)) (-4 *5 (-318)) (-5 *2 (-148 *6)) - (-5 *1 (-801 *5 *4 *6)) (-4 *4 (-1200 *5)) (-4 *6 (-1183 *5))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4145)) (-4 *1 (-443 *3)) (-4 *3 (-1157)) - (-5 *2 (-599 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1041)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-393))) (-5 *1 (-799))))) -(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-797))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-797))))) -(((*1 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-797))))) -(((*1 *2 *1) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143))))) - ((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) - ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-797))))) -(((*1 *2 *1) (-12 (-4 *1 (-213 *3)) (-4 *3 (-1157)) (-5 *2 (-714)))) - ((*1 *2 *1) (-12 (-4 *1 (-252)) (-5 *2 (-714)))) - ((*1 *2 *3) - (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) - (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-566 *3)) (-4 *3 (-1041)))) - ((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) - ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-797))))) -(((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-797))))) -(((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-797))))) -(((*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797))))) -(((*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) - ((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) - ((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-797))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797))))) -(((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-797))))) -(((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-252)))) - ((*1 *1 *1) (-4 *1 (-252))) ((*1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) - (-5 *4 (-268 (-142 (-333)))) (-5 *1 (-284)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-333))) - (-5 *1 (-284)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-499))) - (-5 *1 (-284)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-142 (-333))))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-333)))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-499)))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-142 (-333))))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-333)))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-499)))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-142 (-333)))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-333))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-499))) (-5 *1 (-284)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-652))) - (-5 *1 (-284)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-657))) - (-5 *1 (-284)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-659))) - (-5 *1 (-284)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-652)))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-657)))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-659)))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-652)))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-657)))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-659)))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-652))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-657))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-659))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-652))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-657))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-659))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-652))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-657))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-659))) (-5 *1 (-284)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1099)) (-5 *1 (-284)))) - ((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797))))) -(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-797)))) - ((*1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797))) - ((*1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) - ((*1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-252)))) - ((*1 *1 *1) (-4 *1 (-252))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) - ((*1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-73)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-797)))) + (|partial| -12 (-5 *3 (-687)) (-4 *5 (-308)) (-5 *2 (-146 *6)) + (-5 *1 (-769 *5 *4 *6)) (-4 *4 (-1161 *5)) (-4 *6 (-1144 *5))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -3979)) (-4 *1 (-422 *3)) (-4 *3 (-1118)) + (-5 *2 (-578 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-668 *3)) (-4 *3 (-1005)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-374))) (-5 *1 (-767))))) +(((*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-765))))) +(((*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-765))))) +(((*1 *2 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-765))))) +(((*1 *2 *1) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1104))))) + ((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) + ((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-765))))) +(((*1 *2 *1) (-12 (-4 *1 (-211 *3)) (-4 *3 (-1118)) (-5 *2 (-687)))) + ((*1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-687)))) + ((*1 *2 *3) + (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1104) (-236))) + (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1144 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-545 *3)) (-4 *3 (-1005)))) + ((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) + ((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-765))))) +(((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-765))))) +(((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-765))))) +(((*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765))))) +(((*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) + ((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) + ((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-765))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765))))) +(((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-765))))) +(((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-250)))) + ((*1 *1 *1) (-4 *1 (-250))) ((*1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765))))) +(((*1 *1) (-5 *1 (-115))) ((*1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-765)))) + ((*1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-765))) ((*1 *1 *1 *1) (-5 *1 (-765))) + ((*1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) + ((*1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-250)))) + ((*1 *1 *1) (-4 *1 (-250))) + ((*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) + ((*1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83)))) + ((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-752)) (-5 *2 (-83)))) + ((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-752)) (-5 *2 (-83)))) + ((*1 *1 *1 *1) (-5 *1 (-765)))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-762 *3)) (|:| |rm| (-762 *3)))) - (-5 *1 (-762 *3)) (-4 *3 (-781)))) - ((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1 *1) (-4 *1 (-261))) ((*1 *1 *1 *1) (-5 *1 (-714))) - ((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1 *1) (-4 *1 (-261))) ((*1 *1 *1 *1) (-5 *1 (-714))) - ((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-797)))) -(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-796)))) - ((*1 *1 *2) (-12 (-5 *2 (-344)) (-5 *1 (-796))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-482)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-528)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-796))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-795)) (-5 *2 (-649 (-101))) (-5 *3 (-101))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-795)) (-5 *2 (-649 (-503))) (-5 *3 (-503))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-795)) (-5 *2 (-649 (-1166))) (-5 *3 (-1166))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-795)) (-5 *3 (-102)) (-5 *2 (-714))))) -(((*1 *2 *3) (-12 (-5 *3 (-599 (-51))) (-5 *2 (-1213)) (-5 *1 (-793))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-732 *3)) (|:| |rm| (-732 *3)))) + (-5 *1 (-732 *3)) (-4 *3 (-749)))) + ((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1 *1) (-5 *1 (-687))) + ((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1 *1) (-5 *1 (-687))) + ((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *1) (-4 *1 (-82))) ((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *1) (-4 *1 (-82))) ((*1 *1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *1) (-4 *1 (-82))) ((*1 *1 *1) (-5 *1 (-765)))) +(((*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-764)))) + ((*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-461)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-507)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-764))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-763)) (-5 *2 (-627 (-99))) (-5 *3 (-99))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-763)) (-5 *2 (-627 (-482))) (-5 *3 (-482))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-763)) (-5 *2 (-627 (-1127))) (-5 *3 (-1127))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-763)) (-5 *3 (-100)) (-5 *2 (-687))))) +(((*1 *2 *3) (-12 (-5 *3 (-578 (-51))) (-5 *2 (-1174)) (-5 *1 (-761))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-38 (-361 (-499)))) - (-4 *2 (-146))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146)))) - ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146))))) + (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-38 (-343 (-478)))) + (-4 *2 (-144))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144)))) + ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-318)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) - (-4 *1 (-786 *3)))) + (-12 (-4 *3 (-308)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -1960 *1) (|:| -2886 *1))) + (-4 *1 (-754 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-70 *5)) (-4 *5 (-318)) (-4 *5 (-989)) - (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-787 *5 *3)) - (-4 *3 (-786 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-308)) (-4 *5 (-954)) + (-5 *2 (-2 (|:| -1960 *3) (|:| -2886 *3))) (-5 *1 (-755 *5 *3)) + (-4 *3 (-754 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-318)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) - (-5 *1 (-709 *3 *4)) (-4 *3 (-666 *4)))) + (-12 (-4 *4 (-308)) (-5 *2 (-2 (|:| -1960 *3) (|:| -2886 *3))) + (-5 *1 (-683 *3 *4)) (-4 *3 (-640 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-318)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) - (-4 *1 (-786 *3)))) + (-12 (-4 *3 (-308)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -1960 *1) (|:| -2886 *1))) + (-4 *1 (-754 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-70 *5)) (-4 *5 (-318)) (-4 *5 (-989)) - (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-787 *5 *3)) - (-4 *3 (-786 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-308)) (-4 *5 (-954)) + (-5 *2 (-2 (|:| -1960 *3) (|:| -2886 *3))) (-5 *1 (-755 *5 *3)) + (-4 *3 (-754 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) - (-4 *1 (-786 *3)))) + (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -1960 *1) (|:| -2886 *1))) + (-4 *1 (-754 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-70 *5)) (-4 *5 (-510)) (-4 *5 (-989)) - (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-787 *5 *3)) - (-4 *3 (-786 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-489)) (-4 *5 (-954)) + (-5 *2 (-2 (|:| -1960 *3) (|:| -2886 *3))) (-5 *1 (-755 *5 *3)) + (-4 *3 (-754 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) - (-4 *1 (-786 *3)))) + (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -1960 *1) (|:| -2886 *1))) + (-4 *1 (-754 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-70 *5)) (-4 *5 (-510)) (-4 *5 (-989)) - (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-787 *5 *3)) - (-4 *3 (-786 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-489)) (-4 *5 (-954)) + (-5 *2 (-2 (|:| -1960 *3) (|:| -2886 *3))) (-5 *1 (-755 *5 *3)) + (-4 *3 (-754 *5))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-606 *5)) (-4 *5 (-989)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-786 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-647 *3)) (-4 *1 (-372 *3)) (-4 *3 (-146)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-954)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-754 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-625 *3)) (-4 *1 (-354 *3)) (-4 *3 (-144)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-70 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-989)) (-5 *1 (-787 *2 *3)) - (-4 *3 (-786 *2))))) + (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-954)) (-5 *1 (-755 *2 *3)) + (-4 *3 (-754 *2))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-70 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-989)) (-5 *1 (-787 *5 *2)) - (-4 *2 (-786 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) + (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-954)) (-5 *1 (-755 *5 *2)) + (-4 *2 (-754 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) + (|partial| -12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) + (|partial| -12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-318)) (-4 *3 (-989)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2527 *1))) - (-4 *1 (-786 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) + (-12 (-4 *3 (-308)) (-4 *3 (-954)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2395 *1))) + (-4 *1 (-754 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) + (|partial| -12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-318)) (-4 *3 (-989)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2527 *1))) - (-4 *1 (-786 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) + (-12 (-4 *3 (-308)) (-4 *3 (-954)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2395 *1))) + (-4 *1 (-754 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) (((*1 *1) - (-12 (-4 *1 (-358)) (-2679 (|has| *1 (-6 -4136))) - (-2679 (|has| *1 (-6 -4128))))) - ((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1041)) (-4 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-781)))) ((*1 *1) (-4 *1 (-777))) - ((*1 *1 *1 *1) (-4 *1 (-784)))) + (-12 (-4 *1 (-340)) (-2544 (|has| *1 (-6 -3970))) + (-2544 (|has| *1 (-6 -3962))))) + ((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1005)) (-4 *2 (-749)))) + ((*1 *2 *1) (-12 (-4 *1 (-735 *2)) (-4 *2 (-749)))) ((*1 *1) (-4 *1 (-745))) + ((*1 *1 *1 *1) (-4 *1 (-752)))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1207 *5)) (-4 *5 (-737)) (-5 *2 (-85)) (-5 *1 (-778 *4 *5)) - (-14 *4 (-714))))) + (-12 (-5 *3 (-1168 *5)) (-4 *5 (-709)) (-5 *2 (-83)) (-5 *1 (-746 *4 *5)) + (-14 *4 (-687))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1207 *5)) (-4 *5 (-737)) (-5 *2 (-85)) (-5 *1 (-778 *4 *5)) - (-14 *4 (-714))))) + (-12 (-5 *3 (-1168 *5)) (-4 *5 (-709)) (-5 *2 (-83)) (-5 *1 (-746 *4 *5)) + (-14 *4 (-687))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1207 *5)) (-4 *5 (-737)) (-5 *2 (-85)) (-5 *1 (-778 *4 *5)) - (-14 *4 (-714))))) -(((*1 *2) (-12 (-5 *2 (-775 (-499))) (-5 *1 (-487)))) - ((*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1041))))) -(((*1 *2) (-12 (-5 *2 (-775 (-499))) (-5 *1 (-487)))) - ((*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-766 *3)) (-4 *3 (-1041)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-775 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-766 *3)) (-4 *3 (-1041)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-775 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-775 *3)) (-4 *3 (-1041))))) -(((*1 *2 *3) - (-12 (-4 *1 (-773)) - (-5 *3 - (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) - (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) - (|:| |ub| (-599 (-775 (-179)))))) - (-5 *2 (-975)))) - ((*1 *2 *3) - (-12 (-4 *1 (-773)) - (-5 *3 (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))) - (-5 *2 (-975))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-167 (-456))) (-5 *1 (-771))))) -(((*1 *2 *1) (-12 (-4 *1 (-770 *3)) (-4 *3 (-1041)) (-5 *2 (-55))))) -(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)))) - ((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) - (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-646 *4 *5 *6 *3)) - (-4 *3 (-644 *4 *5 *6)))) + (-12 (-5 *3 (-1168 *5)) (-4 *5 (-709)) (-5 *2 (-83)) (-5 *1 (-746 *4 *5)) + (-14 *4 (-687))))) +(((*1 *2) (-12 (-5 *2 (-743 (-478))) (-5 *1 (-466)))) + ((*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1005))))) +(((*1 *2) (-12 (-5 *2 (-743 (-478))) (-5 *1 (-466)))) + ((*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-105)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-736 *3)) (-4 *3 (-1005)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-743 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-736 *3)) (-4 *3 (-1005)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-743 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-743 *3)) (-4 *3 (-1005))))) +(((*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-165 (-435))) (-5 *1 (-741))))) +(((*1 *2 *1) (-12 (-4 *1 (-740 *3)) (-4 *3 (-1005)) (-5 *2 (-55))))) +(((*1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)))) + ((*1 *2 *3) + (-12 (-4 *4 (-489)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) + (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-624 *4 *5 *6 *3)) + (-4 *3 (-622 *4 *5 *6)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-146)) (-4 *2 (-989)) (-5 *1 (-672 *2 *3)) (-4 *3 (-606 *2)))) + (-12 (-4 *2 (-144)) (-4 *2 (-954)) (-5 *1 (-646 *2 *3)) (-4 *3 (-585 *2)))) ((*1 *1 *1) - (-12 (-4 *2 (-146)) (-4 *2 (-989)) (-5 *1 (-672 *2 *3)) (-4 *3 (-606 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-768 *2)) (-4 *2 (-146)) (-4 *2 (-989)))) - ((*1 *1 *1) (-12 (-5 *1 (-768 *2)) (-4 *2 (-146)) (-4 *2 (-989))))) + (-12 (-4 *2 (-144)) (-4 *2 (-954)) (-5 *1 (-646 *2 *3)) (-4 *3 (-585 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-144)) (-4 *2 (-954)))) + ((*1 *1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-144)) (-4 *2 (-954))))) (((*1 *2 *2) - (-12 (-4 *2 (-146)) (-4 *2 (-989)) (-5 *1 (-672 *2 *3)) (-4 *3 (-606 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-768 *2)) (-4 *2 (-146)) (-4 *2 (-989))))) + (-12 (-4 *2 (-144)) (-4 *2 (-954)) (-5 *1 (-646 *2 *3)) (-4 *3 (-585 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-144)) (-4 *2 (-954))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-86)) (-5 *4 (-599 *2)) (-5 *1 (-87 *2)) - (-4 *2 (-1041)))) + (|partial| -12 (-5 *3 (-84)) (-5 *4 (-578 *2)) (-5 *1 (-85 *2)) + (-4 *2 (-1005)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-599 *4))) (-4 *4 (-1041)) - (-5 *1 (-87 *4)))) + (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 (-578 *4))) (-4 *4 (-1005)) + (-5 *1 (-85 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1041)) (-5 *1 (-87 *4)))) + (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1005)) (-5 *1 (-85 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-599 *4))) (-5 *1 (-87 *4)) - (-4 *4 (-1041)))) + (|partial| -12 (-5 *3 (-84)) (-5 *2 (-1 *4 (-578 *4))) (-5 *1 (-85 *4)) + (-4 *4 (-1005)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-606 *3)) (-4 *3 (-989)) - (-5 *1 (-672 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-768 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-954)) + (-5 *1 (-646 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-738 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-606 *3)) (-4 *3 (-989)) - (-5 *1 (-672 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-768 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-954)) + (-5 *1 (-646 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-738 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-86)) (-4 *4 (-989)) (-5 *1 (-672 *4 *2)) (-4 *2 (-606 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-768 *2)) (-4 *2 (-989))))) + (-12 (-5 *3 (-84)) (-4 *4 (-954)) (-5 *1 (-646 *4 *2)) (-4 *2 (-585 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-84)) (-5 *1 (-738 *2)) (-4 *2 (-954))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-316 (-86))) (-4 *2 (-989)) (-5 *1 (-672 *2 *4)) - (-4 *4 (-606 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-316 (-86))) (-5 *1 (-768 *2)) (-4 *2 (-989))))) -(((*1 *2) (-12 (-5 *2 (-766 (-499))) (-5 *1 (-487)))) - ((*1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-1041))))) -(((*1 *1 *2) (-12 (-4 *3 (-989)) (-5 *1 (-764 *2 *3)) (-4 *2 (-666 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-666 *3)) (-5 *1 (-764 *2 *3)) (-4 *3 (-989))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-635 *3)) (-4 *3 (-781)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-762 *3)) (-4 *3 (-781))))) + (-12 (-5 *3 (-306 (-84))) (-4 *2 (-954)) (-5 *1 (-646 *2 *4)) + (-4 *4 (-585 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-306 (-84))) (-5 *1 (-738 *2)) (-4 *2 (-954))))) +(((*1 *2) (-12 (-5 *2 (-736 (-478))) (-5 *1 (-466)))) + ((*1 *1) (-12 (-5 *1 (-736 *2)) (-4 *2 (-1005))))) +(((*1 *1 *2) (-12 (-4 *3 (-954)) (-5 *1 (-734 *2 *3)) (-4 *2 (-640 *3))))) +(((*1 *2 *1) (-12 (-4 *2 (-640 *3)) (-5 *1 (-734 *2 *3)) (-4 *3 (-954))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-613 *3)) (-4 *3 (-749)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-732 *3)) (-4 *3 (-749))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-599 *4)) (-4 *4 (-318)) (-5 *2 (-1207 *4)) - (-5 *1 (-757 *4 *3)) (-4 *3 (-616 *4))))) + (|partial| -12 (-5 *5 (-578 *4)) (-4 *4 (-308)) (-5 *2 (-1168 *4)) + (-5 *1 (-727 *4 *3)) (-4 *3 (-595 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 *4)) (-4 *4 (-318)) (-5 *2 (-647 *4)) (-5 *1 (-757 *4 *5)) - (-4 *5 (-616 *4)))) + (-12 (-5 *3 (-578 *4)) (-4 *4 (-308)) (-5 *2 (-625 *4)) (-5 *1 (-727 *4 *5)) + (-4 *5 (-595 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *5)) (-5 *4 (-714)) (-4 *5 (-318)) (-5 *2 (-647 *5)) - (-5 *1 (-757 *5 *6)) (-4 *6 (-616 *5))))) + (-12 (-5 *3 (-578 *5)) (-5 *4 (-687)) (-4 *5 (-308)) (-5 *2 (-625 *5)) + (-5 *1 (-727 *5 *6)) (-4 *6 (-595 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-599 (-1117))) (-4 *5 (-510)) - (-5 *2 (-599 (-599 (-247 (-361 (-884 *5)))))) (-5 *1 (-713 *5)))) + (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-578 (-1079))) (-4 *5 (-489)) + (-5 *2 (-578 (-578 (-245 (-343 (-850 *5)))))) (-5 *1 (-686 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-510)) - (-5 *2 (-599 (-599 (-247 (-361 (-884 *4)))))) (-5 *1 (-713 *4)))) + (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-489)) + (-5 *2 (-578 (-578 (-245 (-343 (-850 *4)))))) (-5 *1 (-686 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-647 *7)) + (-12 (-5 *3 (-625 *7)) (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2113 (-599 *6))) *7 *6)) - (-4 *6 (-318)) (-4 *7 (-616 *6)) + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1998 (-578 *6))) *7 *6)) + (-4 *6 (-308)) (-4 *7 (-595 *6)) (-5 *2 - (-2 (|:| |particular| (-3 (-1207 *6) "failed")) - (|:| -2113 (-599 (-1207 *6))))) - (-5 *1 (-756 *6 *7)) (-5 *4 (-1207 *6))))) + (-2 (|:| |particular| (-3 (-1168 *6) "failed")) + (|:| -1998 (-578 (-1168 *6))))) + (-5 *1 (-726 *6 *7)) (-5 *4 (-1168 *6))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-318)) + (-12 (-4 *5 (-308)) (-5 *2 - (-2 (|:| A (-647 *5)) + (-2 (|:| A (-625 *5)) (|:| |eqs| - (-599 - (-2 (|:| C (-647 *5)) (|:| |g| (-1207 *5)) (|:| -3404 *6) + (-578 + (-2 (|:| C (-625 *5)) (|:| |g| (-1168 *5)) (|:| -3249 *6) (|:| |rh| *5)))))) - (-5 *1 (-756 *5 *6)) (-5 *3 (-647 *5)) (-5 *4 (-1207 *5)) - (-4 *6 (-616 *5)))) + (-5 *1 (-726 *5 *6)) (-5 *3 (-625 *5)) (-5 *4 (-1168 *5)) + (-4 *6 (-595 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-318)) (-4 *6 (-616 *5)) - (-5 *2 (-2 (|:| -1673 (-647 *6)) (|:| |vec| (-1207 *5)))) - (-5 *1 (-756 *5 *6)) (-5 *3 (-647 *6)) (-5 *4 (-1207 *5))))) + (-12 (-4 *5 (-308)) (-4 *6 (-595 *5)) + (-5 *2 (-2 (|:| |mat| (-625 *6)) (|:| |vec| (-1168 *5)))) + (-5 *1 (-726 *5 *6)) (-5 *3 (-625 *6)) (-5 *4 (-1168 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-613 (-361 *6))) (-5 *4 (-1 (-599 *5) *6)) - (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) - (-4 *6 (-1183 *5)) (-5 *2 (-599 (-361 *6))) (-5 *1 (-755 *5 *6)))) + (-12 (-5 *3 (-592 (-343 *6))) (-5 *4 (-1 (-578 *5) *6)) + (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) + (-4 *6 (-1144 *5)) (-5 *2 (-578 (-343 *6))) (-5 *1 (-725 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-613 (-361 *7))) (-5 *4 (-1 (-599 *6) *7)) - (-5 *5 (-1 (-359 *7) *7)) - (-4 *6 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) - (-4 *7 (-1183 *6)) (-5 *2 (-599 (-361 *7))) (-5 *1 (-755 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-614 *6 (-361 *6))) (-5 *4 (-1 (-599 *5) *6)) - (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) - (-4 *6 (-1183 *5)) (-5 *2 (-599 (-361 *6))) (-5 *1 (-755 *5 *6)))) + (-12 (-5 *3 (-592 (-343 *7))) (-5 *4 (-1 (-578 *6) *7)) + (-5 *5 (-1 (-341 *7) *7)) + (-4 *6 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) + (-4 *7 (-1144 *6)) (-5 *2 (-578 (-343 *7))) (-5 *1 (-725 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-593 *6 (-343 *6))) (-5 *4 (-1 (-578 *5) *6)) + (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) + (-4 *6 (-1144 *5)) (-5 *2 (-578 (-343 *6))) (-5 *1 (-725 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-614 *7 (-361 *7))) (-5 *4 (-1 (-599 *6) *7)) - (-5 *5 (-1 (-359 *7) *7)) - (-4 *6 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) - (-4 *7 (-1183 *6)) (-5 *2 (-599 (-361 *7))) (-5 *1 (-755 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-613 (-361 *5))) (-4 *5 (-1183 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) - (-5 *2 (-599 (-361 *5))) (-5 *1 (-755 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-613 (-361 *6))) (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) - (-4 *5 (-27)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) - (-5 *2 (-599 (-361 *6))) (-5 *1 (-755 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-614 *5 (-361 *5))) (-4 *5 (-1183 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) - (-5 *2 (-599 (-361 *5))) (-5 *1 (-755 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-614 *6 (-361 *6))) (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) - (-4 *5 (-27)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) - (-5 *2 (-599 (-361 *6))) (-5 *1 (-755 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-599 *5) *6)) - (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) - (-5 *2 (-599 (-2 (|:| |poly| *6) (|:| -3404 *3)))) - (-5 *1 (-752 *5 *6 *3 *7)) (-4 *3 (-616 *6)) (-4 *7 (-616 (-361 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-599 *5) *6)) - (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) - (-4 *6 (-1183 *5)) - (-5 *2 (-599 (-2 (|:| |poly| *6) (|:| -3404 (-614 *6 (-361 *6)))))) - (-5 *1 (-755 *5 *6)) (-5 *3 (-614 *6 (-361 *6)))))) + (-12 (-5 *3 (-593 *7 (-343 *7))) (-5 *4 (-1 (-578 *6) *7)) + (-5 *5 (-1 (-341 *7) *7)) + (-4 *6 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) + (-4 *7 (-1144 *6)) (-5 *2 (-578 (-343 *7))) (-5 *1 (-725 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-343 *5))) (-4 *5 (-1144 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) + (-5 *2 (-578 (-343 *5))) (-5 *1 (-725 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-343 *6))) (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1144 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) + (-5 *2 (-578 (-343 *6))) (-5 *1 (-725 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-593 *5 (-343 *5))) (-4 *5 (-1144 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) + (-5 *2 (-578 (-343 *5))) (-5 *1 (-725 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-593 *6 (-343 *6))) (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1144 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) + (-5 *2 (-578 (-343 *6))) (-5 *1 (-725 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-578 *5) *6)) + (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *6 (-1144 *5)) + (-5 *2 (-578 (-2 (|:| |poly| *6) (|:| -3249 *3)))) + (-5 *1 (-722 *5 *6 *3 *7)) (-4 *3 (-595 *6)) (-4 *7 (-595 (-343 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-578 *5) *6)) + (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) + (-4 *6 (-1144 *5)) + (-5 *2 (-578 (-2 (|:| |poly| *6) (|:| -3249 (-593 *6 (-343 *6)))))) + (-5 *1 (-725 *5 *6)) (-5 *3 (-593 *6 (-343 *6)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-599 *7) *7 (-1111 *7))) (-5 *5 (-1 (-359 *7) *7)) - (-4 *7 (-1183 *6)) (-4 *6 (-13 (-318) (-120) (-978 (-361 (-499))))) - (-5 *2 (-599 (-2 (|:| |frac| (-361 *7)) (|:| -3404 *3)))) - (-5 *1 (-752 *6 *7 *3 *8)) (-4 *3 (-616 *7)) (-4 *8 (-616 (-361 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) - (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) - (-5 *2 (-599 (-2 (|:| |frac| (-361 *6)) (|:| -3404 (-614 *6 (-361 *6)))))) - (-5 *1 (-755 *5 *6)) (-5 *3 (-614 *6 (-361 *6)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-318)) (-4 *7 (-1183 *5)) (-4 *4 (-682 *5 *7)) - (-5 *2 (-2 (|:| -1673 (-647 *6)) (|:| |vec| (-1207 *5)))) - (-5 *1 (-754 *5 *6 *7 *4 *3)) (-4 *6 (-616 *5)) (-4 *3 (-616 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-613 (-361 *2))) (-4 *2 (-1183 *4)) (-5 *1 (-753 *4 *2)) - (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-614 *2 (-361 *2))) (-4 *2 (-1183 *4)) (-5 *1 (-753 *4 *2)) - (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-613 (-361 *6))) (-5 *4 (-361 *6)) (-4 *6 (-1183 *5)) - (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2113 (-599 *4)))) - (-5 *1 (-753 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-613 (-361 *6))) (-4 *6 (-1183 *5)) - (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) - (-5 *2 (-2 (|:| -2113 (-599 (-361 *6))) (|:| -1673 (-647 *5)))) - (-5 *1 (-753 *5 *6)) (-5 *4 (-599 (-361 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-614 *6 (-361 *6))) (-5 *4 (-361 *6)) (-4 *6 (-1183 *5)) - (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2113 (-599 *4)))) - (-5 *1 (-753 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-614 *6 (-361 *6))) (-4 *6 (-1183 *5)) - (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) - (-5 *2 (-2 (|:| -2113 (-599 (-361 *6))) (|:| -1673 (-647 *5)))) - (-5 *1 (-753 *5 *6)) (-5 *4 (-599 (-361 *6)))))) + (-12 (-5 *4 (-1 (-578 *7) *7 (-1074 *7))) (-5 *5 (-1 (-341 *7) *7)) + (-4 *7 (-1144 *6)) (-4 *6 (-13 (-308) (-118) (-943 (-343 (-478))))) + (-5 *2 (-578 (-2 (|:| |frac| (-343 *7)) (|:| -3249 *3)))) + (-5 *1 (-722 *6 *7 *3 *8)) (-4 *3 (-595 *7)) (-4 *8 (-595 (-343 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) + (-5 *2 (-578 (-2 (|:| |frac| (-343 *6)) (|:| -3249 (-593 *6 (-343 *6)))))) + (-5 *1 (-725 *5 *6)) (-5 *3 (-593 *6 (-343 *6)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-308)) (-4 *7 (-1144 *5)) (-4 *4 (-656 *5 *7)) + (-5 *2 (-2 (|:| |mat| (-625 *6)) (|:| |vec| (-1168 *5)))) + (-5 *1 (-724 *5 *6 *7 *4 *3)) (-4 *6 (-595 *5)) (-4 *3 (-595 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-343 *2))) (-4 *2 (-1144 *4)) (-5 *1 (-723 *4 *2)) + (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-593 *2 (-343 *2))) (-4 *2 (-1144 *4)) (-5 *1 (-723 *4 *2)) + (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-343 *6))) (-5 *4 (-343 *6)) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -1998 (-578 *4)))) + (-5 *1 (-723 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-343 *6))) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) + (-5 *2 (-2 (|:| -1998 (-578 (-343 *6))) (|:| |mat| (-625 *5)))) + (-5 *1 (-723 *5 *6)) (-5 *4 (-578 (-343 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-593 *6 (-343 *6))) (-5 *4 (-343 *6)) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -1998 (-578 *4)))) + (-5 *1 (-723 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-593 *6 (-343 *6))) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) + (-5 *2 (-2 (|:| -1998 (-578 (-343 *6))) (|:| |mat| (-625 *5)))) + (-5 *1 (-723 *5 *6)) (-5 *4 (-578 (-343 *6)))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *3 (-1183 *4)) - (-5 *1 (-752 *4 *3 *2 *5)) (-4 *2 (-616 *3)) (-4 *5 (-616 (-361 *3))))) + (-12 (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *3 (-1144 *4)) + (-5 *1 (-722 *4 *3 *2 *5)) (-4 *2 (-595 *3)) (-4 *5 (-595 (-343 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-361 *5)) (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) - (-4 *5 (-1183 *4)) (-5 *1 (-752 *4 *5 *2 *6)) (-4 *2 (-616 *5)) - (-4 *6 (-616 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-599 *5) *6)) - (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) - (-5 *2 (-599 (-2 (|:| -4102 *5) (|:| -3404 *3)))) (-5 *1 (-752 *5 *6 *3 *7)) - (-4 *3 (-616 *6)) (-4 *7 (-616 (-361 *6)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) - (-5 *2 (-599 (-2 (|:| |deg| (-714)) (|:| -3404 *5)))) - (-5 *1 (-752 *4 *5 *3 *6)) (-4 *3 (-616 *5)) (-4 *6 (-616 (-361 *5)))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1183 *4)) (-5 *1 (-752 *4 *2 *3 *5)) - (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *3 (-616 *2)) - (-4 *5 (-616 (-361 *2)))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1183 *4)) (-5 *1 (-750 *4 *2 *3 *5)) - (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *3 (-616 *2)) - (-4 *5 (-616 (-361 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1183 *4)) (-5 *1 (-750 *4 *2 *5 *3)) - (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *5 (-616 *2)) - (-4 *3 (-616 (-361 *2)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) - (-5 *2 (-599 (-2 (|:| -3923 *5) (|:| -3364 *5)))) (-5 *1 (-750 *4 *5 *3 *6)) - (-4 *3 (-616 *5)) (-4 *6 (-616 (-361 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *4 (-1183 *5)) - (-5 *2 (-599 (-2 (|:| -3923 *4) (|:| -3364 *4)))) (-5 *1 (-750 *5 *4 *3 *6)) - (-4 *3 (-616 *4)) (-4 *6 (-616 (-361 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) - (-5 *2 (-599 (-2 (|:| -3923 *5) (|:| -3364 *5)))) (-5 *1 (-750 *4 *5 *6 *3)) - (-4 *6 (-616 *5)) (-4 *3 (-616 (-361 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *4 (-1183 *5)) - (-5 *2 (-599 (-2 (|:| -3923 *4) (|:| -3364 *4)))) (-5 *1 (-750 *5 *4 *6 *3)) - (-4 *6 (-616 *4)) (-4 *3 (-616 (-361 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-361 *2)) (-4 *2 (-1183 *5)) - (-5 *1 (-750 *5 *2 *3 *6)) (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) - (-4 *3 (-616 *2)) (-4 *6 (-616 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-599 (-361 *2))) (-4 *2 (-1183 *5)) (-5 *1 (-750 *5 *2 *3 *6)) - (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *3 (-616 *2)) - (-4 *6 (-616 (-361 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-613 *4)) (-4 *4 (-297 *5 *6 *7)) - (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) - (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2113 (-599 *4)))) - (-5 *1 (-749 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-748 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1143) (-898)))))) + (-12 (-5 *3 (-343 *5)) (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) + (-4 *5 (-1144 *4)) (-5 *1 (-722 *4 *5 *2 *6)) (-4 *2 (-595 *5)) + (-4 *6 (-595 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-578 *5) *6)) + (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *6 (-1144 *5)) + (-5 *2 (-578 (-2 (|:| -3936 *5) (|:| -3249 *3)))) (-5 *1 (-722 *5 *6 *3 *7)) + (-4 *3 (-595 *6)) (-4 *7 (-595 (-343 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *5 (-1144 *4)) + (-5 *2 (-578 (-2 (|:| |deg| (-687)) (|:| -3249 *5)))) + (-5 *1 (-722 *4 *5 *3 *6)) (-4 *3 (-595 *5)) (-4 *6 (-595 (-343 *5)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1144 *4)) (-5 *1 (-722 *4 *2 *3 *5)) + (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *3 (-595 *2)) + (-4 *5 (-595 (-343 *2)))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1144 *4)) (-5 *1 (-721 *4 *2 *3 *5)) + (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *3 (-595 *2)) + (-4 *5 (-595 (-343 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1144 *4)) (-5 *1 (-721 *4 *2 *5 *3)) + (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *5 (-595 *2)) + (-4 *3 (-595 (-343 *2)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *5 (-1144 *4)) + (-5 *2 (-578 (-2 (|:| -3757 *5) (|:| -3209 *5)))) (-5 *1 (-721 *4 *5 *3 *6)) + (-4 *3 (-595 *5)) (-4 *6 (-595 (-343 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *4 (-1144 *5)) + (-5 *2 (-578 (-2 (|:| -3757 *4) (|:| -3209 *4)))) (-5 *1 (-721 *5 *4 *3 *6)) + (-4 *3 (-595 *4)) (-4 *6 (-595 (-343 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *5 (-1144 *4)) + (-5 *2 (-578 (-2 (|:| -3757 *5) (|:| -3209 *5)))) (-5 *1 (-721 *4 *5 *6 *3)) + (-4 *6 (-595 *5)) (-4 *3 (-595 (-343 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *4 (-1144 *5)) + (-5 *2 (-578 (-2 (|:| -3757 *4) (|:| -3209 *4)))) (-5 *1 (-721 *5 *4 *6 *3)) + (-4 *6 (-595 *4)) (-4 *3 (-595 (-343 *4)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-343 *2)) (-4 *2 (-1144 *5)) + (-5 *1 (-721 *5 *2 *3 *6)) (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) + (-4 *3 (-595 *2)) (-4 *6 (-595 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-578 (-343 *2))) (-4 *2 (-1144 *5)) (-5 *1 (-721 *5 *2 *3 *6)) + (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *3 (-595 *2)) + (-4 *6 (-595 (-343 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 *4)) (-4 *4 (-287 *5 *6 *7)) + (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) + (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-343 *6))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1998 (-578 *4)))) + (-5 *1 (-720 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-719 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1104) (-864)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) - (-5 *1 (-748 *4 *2)) (-4 *2 (-13 (-29 *4) (-1143) (-898)))))) + (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) + (-5 *1 (-719 *4 *2)) (-4 *2 (-13 (-29 *4) (-1104) (-864)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1117)) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) - (-4 *4 (-13 (-29 *6) (-1143) (-898))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2113 (-599 *4)))) - (-5 *1 (-746 *6 *4 *3)) (-4 *3 (-616 *4))))) -(((*1 *2 *3) - (-12 (-4 *1 (-745)) - (-5 *3 - (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) - (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) - (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) - (|:| |abserr| (-179)) (|:| |relerr| (-179)))) - (-5 *2 (-975))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-146)) (-5 *1 (-743 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146))))) -(((*1 *1 *1) (-4 *1 (-200))) + (-12 (-5 *5 (-1079)) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) + (-4 *4 (-13 (-29 *6) (-1104) (-864))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -1998 (-578 *4)))) + (-5 *1 (-717 *6 *4 *3)) (-4 *3 (-595 *4))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-144)) (-5 *1 (-715 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144))))) +(((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144))))) +(((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144))))) +(((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144))))) +(((*1 *1 *1) (-4 *1 (-198))) ((*1 *1 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-243 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1183 *2)) + (-12 (-4 *2 (-144)) (-5 *1 (-241 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1144 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-3677 (-12 (-5 *1 (-247 *2)) (-4 *2 (-318)) (-4 *2 (-1157))) - (-12 (-5 *1 (-247 *2)) (-4 *2 (-427)) (-4 *2 (-1157))))) - ((*1 *1 *1) (-4 *1 (-427))) - ((*1 *2 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-305)) (-5 *1 (-481 *3)))) + (OR (-12 (-5 *1 (-245 *2)) (-4 *2 (-308)) (-4 *2 (-1118))) + (-12 (-5 *1 (-245 *2)) (-4 *2 (-406)) (-4 *2 (-1118))))) + ((*1 *1 *1) (-4 *1 (-406))) + ((*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-295)) (-5 *1 (-460 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (-12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)) (-4 *2 (-318))))) -(((*1 *2 *1) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143))))) - ((*1 *1 *1 *1) (-4 *1 (-738)))) + ((*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)) (-4 *2 (-308))))) +(((*1 *2 *1) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1104))))) + ((*1 *1 *1 *1) (-4 *1 (-710)))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) + (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 - (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) - (|:| |success| (-85)))) - (-5 *1 (-732)) (-5 *5 (-499))))) + (-2 (|:| -3386 *4) (|:| -1583 *4) (|:| |totalpts| (-478)) + (|:| |success| (-83)))) + (-5 *1 (-704)) (-5 *5 (-478))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) + (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 - (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) - (|:| |success| (-85)))) - (-5 *1 (-732)) (-5 *5 (-499))))) + (-2 (|:| -3386 *4) (|:| -1583 *4) (|:| |totalpts| (-478)) + (|:| |success| (-83)))) + (-5 *1 (-704)) (-5 *5 (-478))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) + (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 - (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) - (|:| |success| (-85)))) - (-5 *1 (-732)) (-5 *5 (-499))))) + (-2 (|:| -3386 *4) (|:| -1583 *4) (|:| |totalpts| (-478)) + (|:| |success| (-83)))) + (-5 *1 (-704)) (-5 *5 (-478))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) + (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 - (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) - (|:| |success| (-85)))) - (-5 *1 (-732)) (-5 *5 (-499))))) + (-2 (|:| -3386 *4) (|:| -1583 *4) (|:| |totalpts| (-478)) + (|:| |success| (-83)))) + (-5 *1 (-704)) (-5 *5 (-478))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) + (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 - (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) - (|:| |success| (-85)))) - (-5 *1 (-732)) (-5 *5 (-499))))) + (-2 (|:| -3386 *4) (|:| -1583 *4) (|:| |totalpts| (-478)) + (|:| |success| (-83)))) + (-5 *1 (-704)) (-5 *5 (-478))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) + (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 - (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) - (|:| |success| (-85)))) - (-5 *1 (-732)) (-5 *5 (-499))))) + (-2 (|:| -3386 *4) (|:| -1583 *4) (|:| |totalpts| (-478)) + (|:| |success| (-83)))) + (-5 *1 (-704)) (-5 *5 (-478))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) + (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 - (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) - (|:| |success| (-85)))) - (-5 *1 (-732)) (-5 *5 (-499))))) + (-2 (|:| -3386 *4) (|:| -1583 *4) (|:| |totalpts| (-478)) + (|:| |success| (-83)))) + (-5 *1 (-704)) (-5 *5 (-478))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) + (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 - (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) - (|:| |success| (-85)))) - (-5 *1 (-732)) (-5 *5 (-499))))) + (-2 (|:| -3386 *4) (|:| -1583 *4) (|:| |totalpts| (-478)) + (|:| |success| (-83)))) + (-5 *1 (-704)) (-5 *5 (-478))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) + (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 - (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) - (|:| |success| (-85)))) - (-5 *1 (-732)) (-5 *5 (-499))))) + (-2 (|:| -3386 *4) (|:| -1583 *4) (|:| |totalpts| (-478)) + (|:| |success| (-83)))) + (-5 *1 (-704)) (-5 *5 (-478))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-499)) (-5 *6 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) - (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731))))) + (-12 (-5 *4 (-478)) (-5 *6 (-1 (-1174) (-1168 *5) (-1168 *5) (-323))) + (-5 *3 (-1168 (-323))) (-5 *5 (-323)) (-5 *2 (-1174)) (-5 *1 (-703))))) (((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-499)) - (-5 *6 (-2 (|:| |tryValue| (-333)) (|:| |did| (-333)) (|:| -1508 (-333)))) - (-5 *7 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) (-5 *3 (-1207 (-333))) - (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731)))) + (-12 (-5 *4 (-478)) + (-5 *6 (-2 (|:| |tryValue| (-323)) (|:| |did| (-323)) (|:| -1462 (-323)))) + (-5 *7 (-1 (-1174) (-1168 *5) (-1168 *5) (-323))) (-5 *3 (-1168 (-323))) + (-5 *5 (-323)) (-5 *2 (-1174)) (-5 *1 (-703)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-499)) - (-5 *6 (-2 (|:| |tryValue| (-333)) (|:| |did| (-333)) (|:| -1508 (-333)))) - (-5 *7 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) (-5 *3 (-1207 (-333))) - (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731))))) + (-12 (-5 *4 (-478)) + (-5 *6 (-2 (|:| |tryValue| (-323)) (|:| |did| (-323)) (|:| -1462 (-323)))) + (-5 *7 (-1 (-1174) (-1168 *5) (-1168 *5) (-323))) (-5 *3 (-1168 (-323))) + (-5 *5 (-323)) (-5 *2 (-1174)) (-5 *1 (-703))))) (((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-499)) (-5 *6 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) - (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731))))) + (-12 (-5 *4 (-478)) (-5 *6 (-1 (-1174) (-1168 *5) (-1168 *5) (-323))) + (-5 *3 (-1168 (-323))) (-5 *5 (-323)) (-5 *2 (-1174)) (-5 *1 (-703))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-499)) (-5 *6 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) - (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731)))) + (-12 (-5 *4 (-478)) (-5 *6 (-1 (-1174) (-1168 *5) (-1168 *5) (-323))) + (-5 *3 (-1168 (-323))) (-5 *5 (-323)) (-5 *2 (-1174)) (-5 *1 (-703)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-499)) (-5 *6 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) - (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-730)) (-5 *2 (-975)) - (-5 *3 - (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) - (|:| |abserr| (-179)) (|:| |relerr| (-179)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-730)) (-5 *2 (-975)) - (-5 *3 - (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) - (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) - (|:| |relerr| (-179))))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-729))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-729))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-857)) (-5 *1 (-729))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1099)) (-5 *1 (-729))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-857)) (-5 *1 (-729))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1099)) (-5 *1 (-729))))) + (-12 (-5 *4 (-478)) (-5 *6 (-1 (-1174) (-1168 *5) (-1168 *5) (-323))) + (-5 *3 (-1168 (-323))) (-5 *5 (-323)) (-5 *2 (-1174)) (-5 *1 (-703))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1062)) (-5 *2 (-323)) (-5 *1 (-702))))) +(((*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-323)) (-5 *1 (-702))))) +(((*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-823)) (-5 *1 (-702))))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1062)) (-5 *1 (-702))))) +(((*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-823)) (-5 *1 (-702))))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1062)) (-5 *1 (-702))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-884 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-569 (-333))) - (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) + (|partial| -12 (-5 *3 (-850 (-140 *4))) (-4 *4 (-144)) (-4 *4 (-548 (-323))) + (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-884 (-142 *5))) (-5 *4 (-857)) (-4 *5 (-146)) - (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) + (|partial| -12 (-5 *3 (-850 (-140 *5))) (-5 *4 (-823)) (-4 *5 (-144)) + (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-884 *4)) (-4 *4 (-989)) (-4 *4 (-569 (-333))) - (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) + (|partial| -12 (-5 *3 (-850 *4)) (-4 *4 (-954)) (-4 *4 (-548 (-323))) + (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-884 *5)) (-5 *4 (-857)) (-4 *5 (-989)) - (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) + (|partial| -12 (-5 *3 (-850 *5)) (-5 *4 (-823)) (-4 *5 (-954)) + (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-4 *4 (-569 (-333))) - (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) + (|partial| -12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-4 *4 (-548 (-323))) + (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-857)) (-4 *5 (-510)) - (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) + (|partial| -12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-823)) (-4 *5 (-489)) + (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-361 (-884 (-142 *4)))) (-4 *4 (-510)) - (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) + (|partial| -12 (-5 *3 (-343 (-850 (-140 *4)))) (-4 *4 (-489)) + (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-361 (-884 (-142 *5)))) (-5 *4 (-857)) (-4 *5 (-510)) - (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) + (|partial| -12 (-5 *3 (-343 (-850 (-140 *5)))) (-5 *4 (-823)) (-4 *5 (-489)) + (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-268 *4)) (-4 *4 (-510)) (-4 *4 (-781)) - (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) + (|partial| -12 (-5 *3 (-261 *4)) (-4 *4 (-489)) (-4 *4 (-749)) + (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-268 *5)) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) - (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) + (|partial| -12 (-5 *3 (-261 *5)) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) + (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-268 (-142 *4))) (-4 *4 (-510)) (-4 *4 (-781)) - (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) + (|partial| -12 (-5 *3 (-261 (-140 *4))) (-4 *4 (-489)) (-4 *4 (-749)) + (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-268 (-142 *5))) (-5 *4 (-857)) (-4 *5 (-510)) - (-4 *5 (-781)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) - (-5 *1 (-728 *5))))) + (|partial| -12 (-5 *3 (-261 (-140 *5))) (-5 *4 (-823)) (-4 *5 (-489)) + (-4 *5 (-749)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) + (-5 *1 (-701 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-884 *4)) (-4 *4 (-989)) (-4 *4 (-569 *2)) - (-5 *2 (-333)) (-5 *1 (-728 *4)))) + (|partial| -12 (-5 *3 (-850 *4)) (-4 *4 (-954)) (-4 *4 (-548 *2)) + (-5 *2 (-323)) (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-884 *5)) (-5 *4 (-857)) (-4 *5 (-989)) - (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5)))) + (|partial| -12 (-5 *3 (-850 *5)) (-5 *4 (-823)) (-4 *5 (-954)) + (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-4 *4 (-569 *2)) - (-5 *2 (-333)) (-5 *1 (-728 *4)))) + (|partial| -12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-4 *4 (-548 *2)) + (-5 *2 (-323)) (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-857)) (-4 *5 (-510)) - (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5)))) + (|partial| -12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-823)) (-4 *5 (-489)) + (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-268 *4)) (-4 *4 (-510)) (-4 *4 (-781)) - (-4 *4 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *4)))) + (|partial| -12 (-5 *3 (-261 *4)) (-4 *4 (-489)) (-4 *4 (-749)) + (-4 *4 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-268 *5)) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) - (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5))))) + (|partial| -12 (-5 *3 (-261 *5)) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) + (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-142 (-333))) (-5 *1 (-728 *3)) (-4 *3 (-569 (-333))))) + (-12 (-5 *2 (-140 (-323))) (-5 *1 (-701 *3)) (-4 *3 (-548 (-323))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-857)) (-5 *2 (-142 (-333))) (-5 *1 (-728 *3)) - (-4 *3 (-569 (-333))))) + (-12 (-5 *4 (-823)) (-5 *2 (-140 (-323))) (-5 *1 (-701 *3)) + (-4 *3 (-548 (-323))))) ((*1 *2 *3) - (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-569 (-333))) - (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) + (-12 (-5 *3 (-140 *4)) (-4 *4 (-144)) (-4 *4 (-548 (-323))) + (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-142 *5)) (-5 *4 (-857)) (-4 *5 (-146)) (-4 *5 (-569 (-333))) - (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) + (-12 (-5 *3 (-140 *5)) (-5 *4 (-823)) (-4 *5 (-144)) (-4 *5 (-548 (-323))) + (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-884 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-569 (-333))) - (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) + (-12 (-5 *3 (-850 (-140 *4))) (-4 *4 (-144)) (-4 *4 (-548 (-323))) + (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-884 (-142 *5))) (-5 *4 (-857)) (-4 *5 (-146)) - (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) + (-12 (-5 *3 (-850 (-140 *5))) (-5 *4 (-823)) (-4 *5 (-144)) + (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-884 *4)) (-4 *4 (-989)) (-4 *4 (-569 (-333))) - (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) + (-12 (-5 *3 (-850 *4)) (-4 *4 (-954)) (-4 *4 (-548 (-323))) + (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-884 *5)) (-5 *4 (-857)) (-4 *5 (-989)) (-4 *5 (-569 (-333))) - (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) + (-12 (-5 *3 (-850 *5)) (-5 *4 (-823)) (-4 *5 (-954)) (-4 *5 (-548 (-323))) + (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-4 *4 (-569 (-333))) - (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) + (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-4 *4 (-548 (-323))) + (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-857)) (-4 *5 (-510)) - (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) + (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-823)) (-4 *5 (-489)) + (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-361 (-884 (-142 *4)))) (-4 *4 (-510)) (-4 *4 (-569 (-333))) - (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) + (-12 (-5 *3 (-343 (-850 (-140 *4)))) (-4 *4 (-489)) (-4 *4 (-548 (-323))) + (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-361 (-884 (-142 *5)))) (-5 *4 (-857)) (-4 *5 (-510)) - (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) + (-12 (-5 *3 (-343 (-850 (-140 *5)))) (-5 *4 (-823)) (-4 *5 (-489)) + (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-268 *4)) (-4 *4 (-510)) (-4 *4 (-781)) (-4 *4 (-569 (-333))) - (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) + (-12 (-5 *3 (-261 *4)) (-4 *4 (-489)) (-4 *4 (-749)) (-4 *4 (-548 (-323))) + (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-268 *5)) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) - (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) + (-12 (-5 *3 (-261 *5)) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) + (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-268 (-142 *4))) (-4 *4 (-510)) (-4 *4 (-781)) - (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) + (-12 (-5 *3 (-261 (-140 *4))) (-4 *4 (-489)) (-4 *4 (-749)) + (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-268 (-142 *5))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) - (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-333)) (-5 *1 (-728 *3)) (-4 *3 (-569 *2)))) + (-12 (-5 *3 (-261 (-140 *5))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) + (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-323)) (-5 *1 (-701 *3)) (-4 *3 (-548 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-857)) (-5 *2 (-333)) (-5 *1 (-728 *3)) (-4 *3 (-569 *2)))) + (-12 (-5 *4 (-823)) (-5 *2 (-323)) (-5 *1 (-701 *3)) (-4 *3 (-548 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-884 *4)) (-4 *4 (-989)) (-4 *4 (-569 *2)) (-5 *2 (-333)) - (-5 *1 (-728 *4)))) + (-12 (-5 *3 (-850 *4)) (-4 *4 (-954)) (-4 *4 (-548 *2)) (-5 *2 (-323)) + (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-884 *5)) (-5 *4 (-857)) (-4 *5 (-989)) (-4 *5 (-569 *2)) - (-5 *2 (-333)) (-5 *1 (-728 *5)))) + (-12 (-5 *3 (-850 *5)) (-5 *4 (-823)) (-4 *5 (-954)) (-4 *5 (-548 *2)) + (-5 *2 (-323)) (-5 *1 (-701 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-4 *4 (-569 *2)) (-5 *2 (-333)) - (-5 *1 (-728 *4)))) + (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-4 *4 (-548 *2)) (-5 *2 (-323)) + (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-569 *2)) - (-5 *2 (-333)) (-5 *1 (-728 *5)))) + (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-548 *2)) + (-5 *2 (-323)) (-5 *1 (-701 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-268 *4)) (-4 *4 (-510)) (-4 *4 (-781)) (-4 *4 (-569 *2)) - (-5 *2 (-333)) (-5 *1 (-728 *4)))) + (-12 (-5 *3 (-261 *4)) (-4 *4 (-489)) (-4 *4 (-749)) (-4 *4 (-548 *2)) + (-5 *2 (-323)) (-5 *1 (-701 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-268 *5)) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) - (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5))))) + (-12 (-5 *3 (-261 *5)) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) + (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-714)) (-5 *1 (-726 *2)) (-4 *2 (-38 (-361 (-499)))) - (-4 *2 (-146))))) + (-12 (-5 *3 (-687)) (-5 *1 (-699 *2)) (-4 *2 (-38 (-343 (-478)))) + (-4 *2 (-144))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-714)) (-5 *1 (-726 *2)) (-4 *2 (-38 (-361 (-499)))) - (-4 *2 (-146))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-989))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-989))))) + (-12 (-5 *3 (-687)) (-5 *1 (-699 *2)) (-4 *2 (-38 (-343 (-478)))) + (-4 *2 (-144))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-954))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-954))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-599 (-724 *3))) (-5 *1 (-724 *3)) (-4 *3 (-510)) - (-4 *3 (-989))))) + (-12 (-5 *2 (-578 (-697 *3))) (-5 *1 (-697 *3)) (-4 *3 (-489)) + (-4 *3 (-954))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| -3906 *3) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) - (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989))))) + (-5 *2 (-2 (|:| -3740 *3) (|:| |coef1| (-697 *3)) (|:| |coef2| (-697 *3)))) + (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3906 *3) (|:| |coef1| (-724 *3)))) (-5 *1 (-724 *3)) - (-4 *3 (-510)) (-4 *3 (-989))))) + (-12 (-5 *2 (-2 (|:| -3740 *3) (|:| |coef1| (-697 *3)))) (-5 *1 (-697 *3)) + (-4 *3 (-489)) (-4 *3 (-954))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3906 *3) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) - (-4 *3 (-510)) (-4 *3 (-989))))) + (-12 (-5 *2 (-2 (|:| -3740 *3) (|:| |coef2| (-697 *3)))) (-5 *1 (-697 *3)) + (-4 *3 (-489)) (-4 *3 (-954))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-647 (-361 (-499)))) + (-12 (-5 *3 (-625 (-343 (-478)))) (-5 *2 - (-599 - (-2 (|:| |outval| *4) (|:| |outmult| (-499)) - (|:| |outvect| (-599 (-647 *4)))))) - (-5 *1 (-722 *4)) (-4 *4 (-13 (-318) (-780)))))) + (-578 + (-2 (|:| |outval| *4) (|:| |outmult| (-478)) + (|:| |outvect| (-578 (-625 *4)))))) + (-5 *1 (-695 *4)) (-4 *4 (-13 (-308) (-748)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-647 (-361 (-499)))) (-5 *2 (-599 *4)) (-5 *1 (-722 *4)) - (-4 *4 (-13 (-318) (-780)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-647 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2)))) + (-12 (-5 *3 (-625 (-343 (-478)))) (-5 *2 (-578 *4)) (-5 *1 (-695 *4)) + (-4 *4 (-13 (-308) (-748)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-625 *2)) (-4 *2 (-144)) (-5 *1 (-117 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-146)) (-4 *2 (-1183 *4)) (-5 *1 (-151 *4 *2 *3)) - (-4 *3 (-682 *4 *2)))) + (-12 (-4 *4 (-144)) (-4 *2 (-1144 *4)) (-5 *1 (-149 *4 *2 *3)) + (-4 *3 (-656 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-647 (-361 (-884 *5)))) (-5 *4 (-1117)) (-5 *2 (-884 *5)) - (-5 *1 (-246 *5)) (-4 *5 (-406)))) + (-12 (-5 *3 (-625 (-343 (-850 *5)))) (-5 *4 (-1079)) (-5 *2 (-850 *5)) + (-5 *1 (-244 *5)) (-4 *5 (-385)))) ((*1 *2 *3) - (-12 (-5 *3 (-647 (-361 (-884 *4)))) (-5 *2 (-884 *4)) (-5 *1 (-246 *4)) - (-4 *4 (-406)))) - ((*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1183 *3)))) + (-12 (-5 *3 (-625 (-343 (-850 *4)))) (-5 *2 (-850 *4)) (-5 *1 (-244 *4)) + (-4 *4 (-385)))) + ((*1 *2 *1) (-12 (-4 *1 (-315 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1144 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-647 (-142 (-361 (-499))))) (-5 *2 (-884 (-142 (-361 (-499))))) - (-5 *1 (-707 *4)) (-4 *4 (-13 (-318) (-780))))) + (-12 (-5 *3 (-625 (-140 (-343 (-478))))) (-5 *2 (-850 (-140 (-343 (-478))))) + (-5 *1 (-681 *4)) (-4 *4 (-13 (-308) (-748))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-647 (-142 (-361 (-499))))) (-5 *4 (-1117)) - (-5 *2 (-884 (-142 (-361 (-499))))) (-5 *1 (-707 *5)) - (-4 *5 (-13 (-318) (-780))))) + (-12 (-5 *3 (-625 (-140 (-343 (-478))))) (-5 *4 (-1079)) + (-5 *2 (-850 (-140 (-343 (-478))))) (-5 *1 (-681 *5)) + (-4 *5 (-13 (-308) (-748))))) ((*1 *2 *3) - (-12 (-5 *3 (-647 (-361 (-499)))) (-5 *2 (-884 (-361 (-499)))) - (-5 *1 (-722 *4)) (-4 *4 (-13 (-318) (-780))))) + (-12 (-5 *3 (-625 (-343 (-478)))) (-5 *2 (-850 (-343 (-478)))) + (-5 *1 (-695 *4)) (-4 *4 (-13 (-308) (-748))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-647 (-361 (-499)))) (-5 *4 (-1117)) - (-5 *2 (-884 (-361 (-499)))) (-5 *1 (-722 *5)) (-4 *5 (-13 (-318) (-780)))))) + (-12 (-5 *3 (-625 (-343 (-478)))) (-5 *4 (-1079)) + (-5 *2 (-850 (-343 (-478)))) (-5 *1 (-695 *5)) (-4 *5 (-13 (-308) (-748)))))) (((*1 *2 *3) - (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) (-5 *2 (-599 (-714))) - (-5 *1 (-721 *3 *4 *5 *6 *7)) (-4 *3 (-1183 *6)) (-4 *7 (-888 *6 *4 *5))))) + (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) (-5 *2 (-578 (-687))) + (-5 *1 (-694 *3 *4 *5 *6 *7)) (-4 *3 (-1144 *6)) (-4 *7 (-854 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1183 *9)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *9 (-261)) - (-4 *10 (-888 *9 *7 *8)) + (-12 (-4 *6 (-1144 *9)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *9 (-254)) + (-4 *10 (-854 *9 *7 *8)) (-5 *2 - (-2 (|:| |deter| (-599 (-1111 *10))) - (|:| |dterm| (-599 (-599 (-2 (|:| -3199 (-714)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-599 *6)) (|:| |nlead| (-599 *10)))) - (-5 *1 (-721 *6 *7 *8 *9 *10)) (-5 *3 (-1111 *10)) (-5 *4 (-599 *6)) - (-5 *5 (-599 *10))))) + (-2 (|:| |deter| (-578 (-1074 *10))) + (|:| |dterm| (-578 (-578 (-2 (|:| -3062 (-687)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-578 *6)) (|:| |nlead| (-578 *10)))) + (-5 *1 (-694 *6 *7 *8 *9 *10)) (-5 *3 (-1074 *10)) (-5 *4 (-578 *6)) + (-5 *5 (-578 *10))))) (((*1 *2 *3) - (-12 (-4 *4 (-305)) (-4 *5 (-283 *4)) (-4 *6 (-1183 *5)) (-5 *2 (-599 *3)) - (-5 *1 (-720 *4 *5 *6 *3 *7)) (-4 *3 (-1183 *6)) (-14 *7 (-857))))) + (-12 (-4 *4 (-295)) (-4 *5 (-276 *4)) (-4 *6 (-1144 *5)) (-5 *2 (-578 *3)) + (-5 *1 (-693 *4 *5 *6 *3 *7)) (-4 *3 (-1144 *6)) (-14 *7 (-823))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) - (-5 *1 (-719 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1587 *4)))) + (-5 *1 (-692 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1099)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) - (-4 *4 (-1005 *6 *7 *8)) (-5 *2 (-1213)) (-5 *1 (-719 *6 *7 *8 *4 *5)) - (-4 *5 (-1011 *6 *7 *8 *4))))) + (-12 (-5 *3 (-1062)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) + (-4 *4 (-969 *6 *7 *8)) (-5 *2 (-1174)) (-5 *1 (-692 *6 *7 *8 *4 *5)) + (-4 *5 (-975 *6 *7 *8 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *3 *2)) - (-4 *2 (-13 (-27) (-1143) (-375 *3))))) + (-12 (-4 *3 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *3 *2)) + (-4 *2 (-13 (-27) (-1104) (-357 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) - (-5 *1 (-230 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4))))) - ((*1 *1 *1) (-5 *1 (-333))) + (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) + (-5 *1 (-228 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *4))))) + ((*1 *1 *1) (-5 *1 (-323))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) - (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) - (-5 *1 (-719 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) + (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1587 *4)))) + (-5 *1 (-692 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *2 (-1005 *4 *5 *6)) - (-5 *1 (-719 *4 *5 *6 *2 *3)) (-4 *3 (-1011 *4 *5 *6 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-333)))) - ((*1 *1 *1 *1) (-4 *1 (-498))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) - ((*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-714))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-445)) (-5 *4 (-892)) (-5 *2 (-649 (-486))) (-5 *1 (-486)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-892)) (-4 *3 (-1041)) (-5 *2 (-649 *1)) (-4 *1 (-710 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-710 *3)) (-4 *3 (-1041)) (-5 *2 (-85))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-647 (-142 (-361 (-499))))) - (-5 *2 - (-599 - (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-499)) - (|:| |outvect| (-599 (-647 (-142 *4))))))) - (-5 *1 (-707 *4)) (-4 *4 (-13 (-318) (-780)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-647 (-142 (-361 (-499))))) (-5 *2 (-599 (-142 *4))) - (-5 *1 (-707 *4)) (-4 *4 (-13 (-318) (-780)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-704)))) -(((*1 *1 *1 *1) (-4 *1 (-427))) ((*1 *1 *1 *1) (-4 *1 (-704)))) -(((*1 *1 *1 *1) (-4 *1 (-704)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-857)) (-4 *1 (-702 *3)) (-4 *3 (-146))))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *2 (-969 *4 *5 *6)) + (-5 *1 (-692 *4 *5 *6 *2 *3)) (-4 *3 (-975 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-323)))) + ((*1 *1 *1 *1) (-4 *1 (-477))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) + ((*1 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-687))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-424)) (-5 *4 (-858)) (-5 *2 (-627 (-465))) (-5 *1 (-465)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-858)) (-4 *3 (-1005)) (-5 *2 (-627 *1)) (-4 *1 (-684 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1005)) (-5 *2 (-83))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-625 (-140 (-343 (-478))))) + (-5 *2 + (-578 + (-2 (|:| |outval| (-140 *4)) (|:| |outmult| (-478)) + (|:| |outvect| (-578 (-625 (-140 *4))))))) + (-5 *1 (-681 *4)) (-4 *4 (-13 (-308) (-748)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-625 (-140 (-343 (-478))))) (-5 *2 (-578 (-140 *4))) + (-5 *1 (-681 *4)) (-4 *4 (-13 (-308) (-748)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-678)))) +(((*1 *1 *1 *1) (-4 *1 (-406))) ((*1 *1 *1 *1) (-4 *1 (-678)))) +(((*1 *1 *1 *1) (-4 *1 (-678)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-823)) (-4 *1 (-676 *3)) (-4 *3 (-144))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1111 *6)) (-5 *3 (-499)) (-4 *6 (-261)) (-4 *4 (-738)) - (-4 *5 (-781)) (-5 *1 (-700 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5))))) + (-12 (-5 *2 (-1074 *6)) (-5 *3 (-478)) (-4 *6 (-254)) (-4 *4 (-710)) + (-4 *5 (-749)) (-5 *1 (-674 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1111 *9)) (-5 *4 (-599 *7)) (-4 *7 (-781)) - (-4 *9 (-888 *8 *6 *7)) (-4 *6 (-738)) (-4 *8 (-261)) (-5 *2 (-599 (-714))) - (-5 *1 (-700 *6 *7 *8 *9)) (-5 *5 (-714))))) + (-12 (-5 *3 (-1074 *9)) (-5 *4 (-578 *7)) (-4 *7 (-749)) + (-4 *9 (-854 *8 *6 *7)) (-4 *6 (-710)) (-4 *8 (-254)) (-5 *2 (-578 (-687))) + (-5 *1 (-674 *6 *7 *8 *9)) (-5 *5 (-687))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-499)) (-5 *4 (-359 *2)) (-4 *2 (-888 *7 *5 *6)) - (-5 *1 (-700 *5 *6 *7 *2)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-261))))) + (-12 (-5 *3 (-478)) (-5 *4 (-341 *2)) (-4 *2 (-854 *7 *5 *6)) + (-5 *1 (-674 *5 *6 *7 *2)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-254))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1111 *9)) (-5 *4 (-599 *7)) (-5 *5 (-599 (-599 *8))) - (-4 *7 (-781)) (-4 *8 (-261)) (-4 *9 (-888 *8 *6 *7)) (-4 *6 (-738)) + (-12 (-5 *3 (-1074 *9)) (-5 *4 (-578 *7)) (-5 *5 (-578 (-578 *8))) + (-4 *7 (-749)) (-4 *8 (-254)) (-4 *9 (-854 *8 *6 *7)) (-4 *6 (-710)) (-5 *2 - (-2 (|:| |upol| (-1111 *8)) (|:| |Lval| (-599 *8)) - (|:| |Lfact| (-599 (-2 (|:| -3882 (-1111 *8)) (|:| -2519 (-499))))) + (-2 (|:| |upol| (-1074 *8)) (|:| |Lval| (-578 *8)) + (|:| |Lfact| (-578 (-2 (|:| -3716 (-1074 *8)) (|:| -2387 (-478))))) (|:| |ctpol| *8))) - (-5 *1 (-700 *6 *7 *8 *9))))) + (-5 *1 (-674 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-599 *7)) (-5 *5 (-599 (-599 *8))) (-4 *7 (-781)) (-4 *8 (-261)) - (-4 *6 (-738)) (-4 *9 (-888 *8 *6 *7)) + (-12 (-5 *4 (-578 *7)) (-5 *5 (-578 (-578 *8))) (-4 *7 (-749)) (-4 *8 (-254)) + (-4 *6 (-710)) (-4 *9 (-854 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) - (|:| |suPart| (-599 (-2 (|:| -3882 (-1111 *9)) (|:| -2519 (-499))))))) - (-5 *1 (-700 *6 *7 *8 *9)) (-5 *3 (-1111 *9))))) + (|:| |suPart| (-578 (-2 (|:| -3716 (-1074 *9)) (|:| -2387 (-478))))))) + (-5 *1 (-674 *6 *7 *8 *9)) (-5 *3 (-1074 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-499)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-261)) - (-4 *9 (-888 *8 *6 *7)) - (-5 *2 (-2 (|:| -2105 (-1111 *9)) (|:| |polval| (-1111 *8)))) - (-5 *1 (-700 *6 *7 *8 *9)) (-5 *3 (-1111 *9)) (-5 *4 (-1111 *8))))) + (-12 (-5 *5 (-478)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-254)) + (-4 *9 (-854 *8 *6 *7)) + (-5 *2 (-2 (|:| -1990 (-1074 *9)) (|:| |polval| (-1074 *8)))) + (-5 *1 (-674 *6 *7 *8 *9)) (-5 *3 (-1074 *9)) (-5 *4 (-1074 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-261)) (-5 *2 (-359 *3)) - (-5 *1 (-700 *5 *4 *6 *3)) (-4 *3 (-888 *6 *5 *4))))) + (-12 (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-254)) (-5 *2 (-341 *3)) + (-5 *1 (-674 *5 *4 *6 *3)) (-4 *3 (-854 *6 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 (-2 (|:| -3882 (-1111 *6)) (|:| -2519 (-499))))) - (-4 *6 (-261)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-499)) - (-5 *1 (-700 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5))))) + (-12 (-5 *3 (-578 (-2 (|:| -3716 (-1074 *6)) (|:| -2387 (-478))))) + (-4 *6 (-254)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-478)) + (-5 *1 (-674 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) (-5 *2 (-359 *3)) - (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-888 *6 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-697 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-696))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-694 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1041)))) - ((*1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1041))))) + (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) (-5 *2 (-341 *3)) + (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-854 *6 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-671 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-670))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-5 *1 (-668 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1005)))) + ((*1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1005))))) (((*1 *2 *1) - (-12 (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-714)))) + (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-687)))) ((*1 *2 *1) - (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-714)))) + (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1005)) (-5 *2 (-687)))) ((*1 *2 *1) - (-12 (-5 *2 (-714)) (-5 *1 (-693 *3 *4)) (-4 *3 (-989)) (-4 *4 (-684))))) + (-12 (-5 *2 (-687)) (-5 *1 (-667 *3 *4)) (-4 *3 (-954)) (-4 *4 (-658))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-510)) (-4 *2 (-888 *3 *5 *4)) (-5 *1 (-690 *5 *4 *6 *2)) - (-5 *3 (-361 (-884 *6))) (-4 *5 (-738)) - (-4 *4 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)))))))) + (-12 (-4 *6 (-489)) (-4 *2 (-854 *3 *5 *4)) (-5 *1 (-664 *5 *4 *6 *2)) + (-5 *3 (-343 (-850 *6))) (-4 *5 (-710)) + (-4 *4 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1111 (-884 *6))) (-4 *6 (-510)) - (-4 *2 (-888 (-361 (-884 *6)) *5 *4)) (-5 *1 (-690 *5 *4 *6 *2)) - (-4 *5 (-738)) (-4 *4 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)))))))) + (-12 (-5 *3 (-1074 (-850 *6))) (-4 *6 (-489)) + (-4 *2 (-854 (-343 (-850 *6)) *5 *4)) (-5 *1 (-664 *5 *4 *6 *2)) + (-4 *5 (-710)) (-4 *4 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1111 *2)) (-4 *2 (-888 (-361 (-884 *6)) *5 *4)) - (-5 *1 (-690 *5 *4 *6 *2)) (-4 *5 (-738)) - (-4 *4 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) (-4 *6 (-510))))) + (-12 (-5 *3 (-1074 *2)) (-4 *2 (-854 (-343 (-850 *6)) *5 *4)) + (-5 *1 (-664 *5 *4 *6 *2)) (-4 *5 (-710)) + (-4 *4 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $))))) (-4 *6 (-489))))) (((*1 *2 *3) - (-12 (-4 *4 (-738)) (-4 *5 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) - (-4 *6 (-510)) (-5 *2 (-2 (|:| -2600 (-884 *6)) (|:| -2159 (-884 *6)))) - (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-888 (-361 (-884 *6)) *4 *5))))) + (-12 (-4 *4 (-710)) (-4 *5 (-13 (-749) (-10 -8 (-15 -3956 ((-1079) $))))) + (-4 *6 (-489)) (-5 *2 (-2 (|:| -2467 (-850 *6)) (|:| -2044 (-850 *6)))) + (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-854 (-343 (-850 *6)) *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-499)) - (-14 *6 (-714)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) - (-5 *1 (-109 *5 *6 *7 *8)))) + (-12 (-5 *3 (-578 *8)) (-5 *4 (-106 *5 *6 *7)) (-14 *5 (-478)) + (-14 *6 (-687)) (-4 *7 (-144)) (-4 *8 (-144)) (-5 *2 (-106 *5 *6 *8)) + (-5 *1 (-107 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *9)) (-4 *9 (-989)) (-4 *5 (-781)) (-4 *6 (-738)) - (-4 *8 (-989)) (-4 *2 (-888 *9 *7 *5)) (-5 *1 (-686 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-738)) (-4 *4 (-888 *8 *6 *5))))) + (-12 (-5 *3 (-578 *9)) (-4 *9 (-954)) (-4 *5 (-749)) (-4 *6 (-710)) + (-4 *8 (-954)) (-4 *2 (-854 *9 *7 *5)) (-5 *1 (-660 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-710)) (-4 *4 (-854 *8 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-361 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1183 *5)) - (-5 *1 (-685 *5 *2)) (-4 *5 (-318))))) + (-12 (-5 *3 (-343 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1144 *5)) + (-5 *1 (-659 *5 *2)) (-4 *5 (-308))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-318)) - (-5 *2 (-2 (|:| -3212 (-359 *3)) (|:| |special| (-359 *3)))) - (-5 *1 (-685 *5 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-308)) + (-5 *2 (-2 (|:| -3073 (-341 *3)) (|:| |special| (-341 *3)))) + (-5 *1 (-659 *5 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) - (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-680)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-684)) (-5 *2 (-85))))) + (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) + (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-654)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-4 *1 (-658)) (-5 *2 (-83))))) (((*1 *1 *2) - (-12 (-5 *2 (-714)) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) - (-14 *4 (-599 (-1117))))) + (-12 (-5 *2 (-687)) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) + (-14 *4 (-578 (-1079))))) ((*1 *1 *2) - (-12 (-5 *2 (-714)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) - (-14 *4 (-599 (-1117))))) - ((*1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-323)) (-4 *2 (-318)))) + (-12 (-5 *2 (-687)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) + (-14 *4 (-578 (-1079))))) + ((*1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-313)) (-4 *2 (-308)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-291 *3 *4 *5 *2)) (-4 *3 (-318)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-4 *2 (-297 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-282 *3 *4 *5 *2)) (-4 *3 (-308)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-4 *2 (-287 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-714)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-146)))) - ((*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-682 *2 *3)) (-4 *3 (-1183 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1207 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-318)) - (-4 *1 (-682 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1183 *5)) (-5 *2 (-647 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-678)) (-5 *2 (-857)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-680)) (-5 *2 (-714))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-678)) (-5 *2 (-857)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-680)) (-5 *2 (-714))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-146)) (-4 *2 (-510)))) - ((*1 *1 *1) (|partial| -4 *1 (-680)))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-146)) (-4 *2 (-510)))) - ((*1 *1 *1) (|partial| -4 *1 (-680)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318))))) + (-12 (-5 *2 (-687)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-144)))) + ((*1 *1) (-12 (-4 *2 (-144)) (-4 *1 (-656 *2 *3)) (-4 *3 (-1144 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1168 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-308)) + (-4 *1 (-656 *5 *6)) (-4 *5 (-144)) (-4 *6 (-1144 *5)) (-5 *2 (-625 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-652)) (-5 *2 (-823)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-654)) (-5 *2 (-687))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-652)) (-5 *2 (-823)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-654)) (-5 *2 (-687))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-144)) (-4 *2 (-489)))) + ((*1 *1 *1) (|partial| -4 *1 (-654)))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-144)) (-4 *2 (-489)))) + ((*1 *1 *1) (|partial| -4 *1 (-654)))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-146)) (-5 *1 (-243 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1183 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (|partial| -12 (-4 *2 (-144)) (-5 *1 (-241 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1144 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-669 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-643 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1188 *3 *4 *5)) (-5 *1 (-273 *3 *4 *5)) (-4 *3 (-318)) - (-14 *4 (-1117)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-499)))) - ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-359 *3)) (-4 *3 (-510)))) - ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-657)))) + (-12 (-5 *2 (-1149 *3 *4 *5)) (-5 *1 (-266 *3 *4 *5)) (-4 *3 (-308)) + (-14 *4 (-1079)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-478)))) + ((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-341 *3)) (-4 *3 (-489)))) ((*1 *2 *1) - (-12 (-4 *2 (-1041)) (-5 *1 (-671 *3 *2 *4)) (-4 *3 (-781)) + (-12 (-4 *2 (-1005)) (-5 *1 (-645 *3 *2 *4)) (-4 *3 (-749)) (-14 *4 - (-1 (-85) (-2 (|:| -2518 *3) (|:| -2519 *2)) - (-2 (|:| -2518 *3) (|:| -2519 *2))))))) -(((*1 *1 *2) (-12 (-5 *2 (-857)) (-4 *1 (-323)))) + (-1 (-83) (-2 (|:| -2386 *3) (|:| -2387 *2)) + (-2 (|:| -2386 *3) (|:| -2387 *2))))))) +(((*1 *1 *2) (-12 (-5 *2 (-823)) (-4 *1 (-313)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-857)) (-5 *2 (-1207 *4)) (-5 *1 (-481 *4)) (-4 *4 (-305)))) + (-12 (-5 *3 (-823)) (-5 *2 (-1168 *4)) (-5 *1 (-460 *4)) (-4 *4 (-295)))) ((*1 *2 *1) - (-12 (-4 *2 (-781)) (-5 *1 (-671 *2 *3 *4)) (-4 *3 (-1041)) + (-12 (-4 *2 (-749)) (-5 *1 (-645 *2 *3 *4)) (-4 *3 (-1005)) (-14 *4 - (-1 (-85) (-2 (|:| -2518 *2) (|:| -2519 *3)) - (-2 (|:| -2518 *2) (|:| -2519 *3))))))) -(((*1 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-670 *3 *2)) (-4 *2 (-1183 *3))))) + (-1 (-83) (-2 (|:| -2386 *2) (|:| -2387 *3)) + (-2 (|:| -2386 *2) (|:| -2387 *3))))))) +(((*1 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-644 *3 *2)) (-4 *2 (-1144 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-989)) (-5 *2 (-1207 *3)) (-5 *1 (-670 *3 *4)) - (-4 *4 (-1183 *3))))) + (-12 (-4 *3 (-954)) (-5 *2 (-1168 *3)) (-5 *1 (-644 *3 *4)) + (-4 *4 (-1144 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-1207 *3)) (-4 *3 (-989)) (-5 *1 (-670 *3 *4)) - (-4 *4 (-1183 *3))))) + (-12 (-5 *2 (-1168 *3)) (-4 *3 (-954)) (-5 *1 (-644 *3 *4)) + (-4 *4 (-1144 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-989)) (-5 *2 (-1207 *3)) (-5 *1 (-670 *3 *4)) - (-4 *4 (-1183 *3))))) + (-12 (-4 *3 (-954)) (-5 *2 (-1168 *3)) (-5 *1 (-644 *3 *4)) + (-4 *4 (-1144 *3))))) (((*1 *2) - (-12 (-4 *3 (-989)) (-5 *2 (-896 (-670 *3 *4))) (-5 *1 (-670 *3 *4)) - (-4 *4 (-1183 *3))))) + (-12 (-4 *3 (-954)) (-5 *2 (-862 (-644 *3 *4))) (-5 *1 (-644 *3 *4)) + (-4 *4 (-1144 *3))))) (((*1 *2) - (-12 (-4 *3 (-989)) (-5 *2 (-896 (-670 *3 *4))) (-5 *1 (-670 *3 *4)) - (-4 *4 (-1183 *3))))) + (-12 (-4 *3 (-954)) (-5 *2 (-862 (-644 *3 *4))) (-5 *1 (-644 *3 *4)) + (-4 *4 (-1144 *3))))) (((*1 *1 *1) - (-12 (-4 *2 (-305)) (-4 *2 (-989)) (-5 *1 (-670 *2 *3)) (-4 *3 (-1183 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1099)) (-5 *1 (-668))))) -(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1099)) (-5 *1 (-668))))) -(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1099)) (-5 *1 (-668))))) + (-12 (-4 *2 (-295)) (-4 *2 (-954)) (-5 *1 (-644 *2 *3)) (-4 *3 (-1144 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1062)) (-5 *1 (-642))))) +(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1062)) (-5 *1 (-642))))) +(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1062)) (-5 *1 (-642))))) (((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-599 (-1111 *13))) (-5 *3 (-1111 *13)) - (-5 *4 (-599 *12)) (-5 *5 (-599 *10)) (-5 *6 (-599 *13)) - (-5 *7 (-599 (-599 (-2 (|:| -3199 (-714)) (|:| |pcoef| *13))))) - (-5 *8 (-599 (-714))) (-5 *9 (-1207 (-599 (-1111 *10)))) (-4 *12 (-781)) - (-4 *10 (-261)) (-4 *13 (-888 *10 *11 *12)) (-4 *11 (-738)) - (-5 *1 (-665 *11 *12 *10 *13))))) + (|partial| -12 (-5 *2 (-578 (-1074 *13))) (-5 *3 (-1074 *13)) + (-5 *4 (-578 *12)) (-5 *5 (-578 *10)) (-5 *6 (-578 *13)) + (-5 *7 (-578 (-578 (-2 (|:| -3062 (-687)) (|:| |pcoef| *13))))) + (-5 *8 (-578 (-687))) (-5 *9 (-1168 (-578 (-1074 *10)))) (-4 *12 (-749)) + (-4 *10 (-254)) (-4 *13 (-854 *10 *11 *12)) (-4 *11 (-710)) + (-5 *1 (-639 *11 *12 *10 *13))))) (((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-599 *11)) (-5 *5 (-599 (-1111 *9))) (-5 *6 (-599 *9)) - (-5 *7 (-599 *12)) (-5 *8 (-599 (-714))) (-4 *11 (-781)) (-4 *9 (-261)) - (-4 *12 (-888 *9 *10 *11)) (-4 *10 (-738)) (-5 *2 (-599 (-1111 *12))) - (-5 *1 (-665 *10 *11 *9 *12)) (-5 *3 (-1111 *12))))) + (|partial| -12 (-5 *4 (-578 *11)) (-5 *5 (-578 (-1074 *9))) (-5 *6 (-578 *9)) + (-5 *7 (-578 *12)) (-5 *8 (-578 (-687))) (-4 *11 (-749)) (-4 *9 (-254)) + (-4 *12 (-854 *9 *10 *11)) (-4 *10 (-710)) (-5 *2 (-578 (-1074 *12))) + (-5 *1 (-639 *10 *11 *9 *12)) (-5 *3 (-1074 *12))))) (((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-599 (-1111 *11))) (-5 *3 (-1111 *11)) - (-5 *4 (-599 *10)) (-5 *5 (-599 *8)) (-5 *6 (-599 (-714))) - (-5 *7 (-1207 (-599 (-1111 *8)))) (-4 *10 (-781)) (-4 *8 (-261)) - (-4 *11 (-888 *8 *9 *10)) (-4 *9 (-738)) (-5 *1 (-665 *9 *10 *8 *11))))) + (|partial| -12 (-5 *2 (-578 (-1074 *11))) (-5 *3 (-1074 *11)) + (-5 *4 (-578 *10)) (-5 *5 (-578 *8)) (-5 *6 (-578 (-687))) + (-5 *7 (-1168 (-578 (-1074 *8)))) (-4 *10 (-749)) (-4 *8 (-254)) + (-4 *11 (-854 *8 *9 *10)) (-4 *9 (-710)) (-5 *1 (-639 *9 *10 *8 *11))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1117)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-660 *3 *5 *6 *7)) - (-4 *3 (-569 (-488))) (-4 *5 (-1157)) (-4 *6 (-1157)) (-4 *7 (-1157)))) + (-12 (-5 *4 (-1079)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-634 *3 *5 *6 *7)) + (-4 *3 (-548 (-467))) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *3 *5 *6)) - (-4 *3 (-569 (-488))) (-4 *5 (-1157)) (-4 *6 (-1157))))) + (-12 (-5 *4 (-1079)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *3 *5 *6)) + (-4 *3 (-548 (-467))) (-4 *5 (-1118)) (-4 *6 (-1118))))) (((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *4 *5 *6)) - (-4 *4 (-569 (-488))) (-4 *5 (-1157)) (-4 *6 (-1157))))) + (-12 (-5 *3 (-1079)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *4 *5 *6)) + (-4 *4 (-548 (-467))) (-4 *5 (-1118)) (-4 *6 (-1118))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-663 *3 *4)) - (-4 *3 (-1157)) (-4 *4 (-1157))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-1117)) (-5 *1 (-488)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-662 *3)) (-4 *3 (-569 (-488))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-637 *3 *4)) + (-4 *3 (-1118)) (-4 *4 (-1118))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1079))) (-5 *3 (-1079)) (-5 *1 (-467)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-636 *3)) (-4 *3 (-548 (-467))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1117)) (-5 *1 (-662 *3)) (-4 *3 (-569 (-488))))) + (-12 (-5 *2 (-1079)) (-5 *1 (-636 *3)) (-4 *3 (-548 (-467))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1117)) (-5 *1 (-662 *3)) (-4 *3 (-569 (-488))))) + (-12 (-5 *2 (-1079)) (-5 *1 (-636 *3)) (-4 *3 (-548 (-467))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-599 (-1117))) (-5 *2 (-1117)) (-5 *1 (-662 *3)) - (-4 *3 (-569 (-488)))))) + (-12 (-5 *4 (-578 (-1079))) (-5 *2 (-1079)) (-5 *1 (-636 *3)) + (-4 *3 (-548 (-467)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-661 *3)) - (-4 *3 (-569 (-488))))) + (-12 (-5 *4 (-1079)) (-5 *2 (-1 (-177) (-177))) (-5 *1 (-635 *3)) + (-4 *3 (-548 (-467))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1117)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-661 *3)) - (-4 *3 (-569 (-488)))))) + (-12 (-5 *4 (-1079)) (-5 *2 (-1 (-177) (-177) (-177))) (-5 *1 (-635 *3)) + (-4 *3 (-548 (-467)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-660 *4 *5 *6 *7)) - (-4 *4 (-569 (-488))) (-4 *5 (-1157)) (-4 *6 (-1157)) (-4 *7 (-1157))))) -(((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-659)))) - ((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-659))))) + (-12 (-5 *3 (-1079)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-634 *4 *5 *6 *7)) + (-4 *4 (-548 (-467))) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-261)) (-4 *3 (-146)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) - (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-646 *3 *4 *5 *6)) - (-4 *6 (-644 *3 *4 *5)))) + (-12 (-4 *3 (-254)) (-4 *3 (-144)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) + (-5 *2 (-2 (|:| -1960 *3) (|:| -2886 *3))) (-5 *1 (-624 *3 *4 *5 *6)) + (-4 *6 (-622 *3 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-658 *3)) - (-4 *3 (-261))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-647 *3)) (-4 *3 (-261)) (-5 *1 (-658 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-647 *3)) (-4 *3 (-261)) (-5 *1 (-658 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-261)) (-5 *1 (-658 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-499)))) - ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-657))))) -(((*1 *2 *2) (-12 (-5 *2 (-857)) (|has| *1 (-6 -4136)) (-4 *1 (-358)))) - ((*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-857)))) - ((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-657)))) - ((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-657))))) -(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-657)))) - ((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-657))))) -(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-657)))) - ((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-657))))) + (-12 (-5 *2 (-2 (|:| -1960 *3) (|:| -2886 *3))) (-5 *1 (-633 *3)) + (-4 *3 (-254))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-254)) (-5 *1 (-633 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-254)) (-5 *1 (-633 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-254)) (-5 *1 (-633 *3))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) - (-5 *4 (-1 (-179) (-179) (-179) (-179))) - (-5 *2 (-1 (-881 (-179)) (-179) (-179))) (-5 *1 (-655))))) + (-12 (-5 *3 (-1 (-177) (-177) (-177))) + (-5 *4 (-1 (-177) (-177) (-177) (-177))) + (-5 *2 (-1 (-847 (-177)) (-177) (-177))) (-5 *1 (-631))))) (((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) - (-5 *6 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-655))))) + (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-993 (-177))) + (-5 *6 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-631))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) - (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined")) - (-5 *5 (-1029 (-179))) (-5 *6 (-599 (-220))) (-5 *2 (-1073 (-179))) - (-5 *1 (-655))))) + (-12 (-5 *3 (-1 (-177) (-177) (-177))) + (-5 *4 (-3 (-1 (-177) (-177) (-177) (-177)) "undefined")) + (-5 *5 (-993 (-177))) (-5 *6 (-578 (-218))) (-5 *2 (-1036 (-177))) + (-5 *1 (-631))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) - (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined")) - (-5 *5 (-1029 (-179))) (-5 *6 (-599 (-220))) (-5 *2 (-1073 (-179))) - (-5 *1 (-655)))) + (-12 (-5 *3 (-1 (-177) (-177) (-177))) + (-5 *4 (-3 (-1 (-177) (-177) (-177) (-177)) "undefined")) + (-5 *5 (-993 (-177))) (-5 *6 (-578 (-218))) (-5 *2 (-1036 (-177))) + (-5 *1 (-631)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-179))) - (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-655)))) + (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-993 (-177))) + (-5 *5 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-631)))) ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1073 (-179))) (-5 *3 (-1 (-881 (-179)) (-179) (-179))) - (-5 *4 (-1029 (-179))) (-5 *5 (-599 (-220))) (-5 *1 (-655))))) + (-12 (-5 *2 (-1036 (-177))) (-5 *3 (-1 (-847 (-177)) (-177) (-177))) + (-5 *4 (-993 (-177))) (-5 *5 (-578 (-218))) (-5 *1 (-631))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-714)) (-4 *4 (-305)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1183 *4)))) + (-12 (-5 *3 (-687)) (-4 *4 (-295)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1144 *4)))) ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-499)) (-5 *1 (-654 *2)) (-4 *2 (-1183 *3))))) + (-12 (-5 *3 (-478)) (-5 *1 (-630 *2)) (-4 *2 (-1144 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 (-2 (|:| |deg| (-714)) (|:| -2694 *5)))) (-4 *5 (-1183 *4)) - (-4 *4 (-305)) (-5 *2 (-599 *5)) (-5 *1 (-170 *4 *5)))) + (-12 (-5 *3 (-578 (-2 (|:| |deg| (-687)) (|:| -2559 *5)))) (-4 *5 (-1144 *4)) + (-4 *4 (-295)) (-5 *2 (-578 *5)) (-5 *1 (-168 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-2 (|:| -3882 *5) (|:| -4098 (-499))))) (-5 *4 (-499)) - (-4 *5 (-1183 *4)) (-5 *2 (-599 *5)) (-5 *1 (-654 *5))))) + (-12 (-5 *3 (-578 (-2 (|:| -3716 *5) (|:| -3932 (-478))))) (-5 *4 (-478)) + (-4 *5 (-1144 *4)) (-5 *2 (-578 *5)) (-5 *1 (-630 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-499)) (-5 *2 (-599 (-2 (|:| -3882 *3) (|:| -4098 *4)))) - (-5 *1 (-654 *3)) (-4 *3 (-1183 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-654 *2)) (-4 *2 (-1183 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)) (-4 *2 (-1041)))) - ((*1 *1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1041))))) + (-12 (-5 *4 (-478)) (-5 *2 (-578 (-2 (|:| -3716 *3) (|:| -3932 *4)))) + (-5 *1 (-630 *3)) (-4 *3 (-1144 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-630 *2)) (-4 *2 (-1144 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1118)) (-4 *2 (-1005)))) + ((*1 *1 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1005))))) (((*1 *2 *1) - (-12 (-4 *1 (-653 *3)) (-4 *3 (-1041)) - (-5 *2 (-599 (-2 (|:| |entry| *3) (|:| -2048 (-714)))))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-714)) (-4 *6 (-1041)) (-4 *7 (-836 *6)) (-5 *2 (-647 *7)) - (-5 *1 (-650 *6 *7 *3 *4)) (-4 *3 (-327 *7)) - (-4 *4 (-13 (-327 *6) (-10 -7 (-6 -4145))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1041)) (-4 *6 (-836 *5)) (-5 *2 (-647 *6)) - (-5 *1 (-650 *5 *6 *3 *4)) (-4 *3 (-327 *6)) - (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4145))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-714)) (-4 *6 (-1041)) (-4 *3 (-836 *6)) (-5 *2 (-647 *3)) - (-5 *1 (-650 *6 *3 *7 *4)) (-4 *7 (-327 *3)) - (-4 *4 (-13 (-327 *6) (-10 -7 (-6 -4145))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1041)) (-4 *3 (-836 *5)) (-5 *2 (-647 *3)) - (-5 *1 (-650 *5 *3 *6 *4)) (-4 *6 (-327 *3)) - (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4145))))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1041)) (-4 *2 (-836 *4)) (-5 *1 (-650 *4 *2 *5 *3)) - (-4 *5 (-327 *2)) (-4 *3 (-13 (-327 *4) (-10 -7 (-6 -4145))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1041)) (-4 *2 (-836 *5)) (-5 *1 (-650 *5 *2 *3 *4)) - (-4 *3 (-327 *2)) (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4145))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1041)) (-4 *3 (-836 *5)) (-5 *2 (-1207 *3)) - (-5 *1 (-650 *5 *3 *6 *4)) (-4 *6 (-327 *3)) - (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4145))))))) -(((*1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-568 (-797)))))) -(((*1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-568 (-797)))))) + (-12 (-4 *1 (-629 *3)) (-4 *3 (-1005)) + (-5 *2 (-578 (-2 (|:| |entry| *3) (|:| -1933 (-687)))))))) +(((*1 *1 *2) (-12 (-5 *1 (-627 *2)) (-4 *2 (-547 (-765)))))) +(((*1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-547 (-765)))))) (((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-647 *4)) (-5 *3 (-714)) (-4 *4 (-989)) (-5 *1 (-648 *4))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3)))) - ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-510)) (-4 *3 (-146)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3)) (-5 *1 (-646 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-510)) (-4 *3 (-146)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) - (-5 *1 (-646 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) + (-12 (-5 *2 (-625 *4)) (-5 *3 (-687)) (-4 *4 (-954)) (-5 *1 (-626 *4))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3)))) + ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-489)) (-4 *3 (-144)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3)) (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-489)) (-4 *3 (-144)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) + (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-499)) (-4 *3 (-146)) (-4 *5 (-327 *3)) (-4 *6 (-327 *3)) - (-5 *1 (-646 *3 *5 *6 *2)) (-4 *2 (-644 *3 *5 *6))))) + (-12 (-5 *4 (-478)) (-4 *3 (-144)) (-4 *5 (-317 *3)) (-4 *6 (-317 *3)) + (-5 *1 (-624 *3 *5 *6 *2)) (-4 *2 (-622 *3 *5 *6))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-499)) (-4 *3 (-146)) (-4 *5 (-327 *3)) (-4 *6 (-327 *3)) - (-5 *1 (-646 *3 *5 *6 *2)) (-4 *2 (-644 *3 *5 *6))))) + (-12 (-5 *4 (-478)) (-4 *3 (-144)) (-4 *5 (-317 *3)) (-4 *6 (-317 *3)) + (-5 *1 (-624 *3 *5 *6 *2)) (-4 *2 (-622 *3 *5 *6))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-499)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) - (-5 *1 (-646 *4 *5 *6 *2)) (-4 *2 (-644 *4 *5 *6))))) + (-12 (-5 *3 (-478)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) + (-5 *1 (-624 *4 *5 *6 *2)) (-4 *2 (-622 *4 *5 *6))))) (((*1 *1 *1) - (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) - (-4 *4 (-327 *2))))) + (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) + (-4 *4 (-317 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) - (-4 *4 (-327 *2))))) + (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) + (-4 *4 (-317 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) - (-4 *4 (-327 *2))))) + (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) + (-4 *4 (-317 *2))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3))))) + (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3))))) + (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3))))) (((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3))))) + (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3))))) (((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) - (-4 *5 (-327 *3))))) + (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) + (-4 *5 (-317 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) - (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-642 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) + (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-620 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-642 *4 *5 *6)) (-4 *4 (-1041))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-620 *4 *5 *6)) (-4 *4 (-1005))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1041)) (-4 *6 (-1041)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-642 *4 *5 *6)) (-4 *5 (-1041))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1005)) (-4 *6 (-1005)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-620 *4 *5 *6)) (-4 *5 (-1005))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-4 *6 (-1005)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1041)) (-4 *4 (-1041)) (-4 *6 (-1041)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *5 *4 *6))))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1005)) (-4 *4 (-1005)) (-4 *6 (-1005)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *5 *4 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-641 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-619 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-5 *2 (-1 *5)) - (-5 *1 (-641 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1005)) (-4 *5 (-1005)) (-5 *2 (-1 *5)) + (-5 *1 (-619 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-641 *4 *3)) (-4 *4 (-1041)) - (-4 *3 (-1041))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-619 *4 *3)) (-4 *4 (-1005)) + (-4 *3 (-1005))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-714) *2)) (-5 *4 (-714)) (-4 *2 (-1041)) - (-5 *1 (-636 *2)))) - ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-714) *3)) (-4 *3 (-1041)) (-5 *1 (-640 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1041))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-640 *2)) (-4 *2 (-1041)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-599 *5) (-599 *5))) (-5 *4 (-499)) (-5 *2 (-599 *5)) - (-5 *1 (-640 *5)) (-4 *5 (-1041))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-640 *3)) (-4 *3 (-1041))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-599 (-1158))) (-5 *3 (-1158)) (-5 *1 (-639))))) + (-12 (-5 *3 (-1 *2 (-687) *2)) (-5 *4 (-687)) (-4 *2 (-1005)) + (-5 *1 (-614 *2)))) + ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-687) *3)) (-4 *3 (-1005)) (-5 *1 (-618 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1005))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-618 *2)) (-4 *2 (-1005)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-578 *5) (-578 *5))) (-5 *4 (-478)) (-5 *2 (-578 *5)) + (-5 *1 (-618 *5)) (-4 *5 (-1005))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-618 *3)) (-4 *3 (-1005))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-578 (-1119))) (-5 *3 (-1119)) (-5 *1 (-617))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) - (-4 *2 (-1041)) (-5 *1 (-638 *5 *6 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *1 (-637 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041))))) -(((*1 *2 *2 *3) (-12 (-5 *1 (-637 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1005)) (-4 *6 (-1005)) + (-4 *2 (-1005)) (-5 *1 (-616 *5 *6 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *1 (-615 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005))))) +(((*1 *2 *2 *3) (-12 (-5 *1 (-615 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-714)) (-4 *2 (-1041)) (-5 *1 (-636 *2))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-884 (-499))) (-5 *2 (-284)) (-5 *1 (-286)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-1032 (-884 (-499)))) (-5 *2 (-284)) - (-5 *1 (-286)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-714)) (-5 *1 (-633 *3)) (-4 *3 (-989)) (-4 *3 (-1041))))) -(((*1 *1 *2) - (-12 (-5 *2 (-714)) (-5 *1 (-633 *3)) (-4 *3 (-989)) (-4 *3 (-1041))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-989)) (-4 *2 (-1041))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-714)) (-5 *1 (-633 *2)) (-4 *2 (-1041))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-633 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-1207 (-714))) (-5 *1 (-633 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) (-12 (-4 *1 (-632 *3)) (-4 *3 (-1157)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-632 *3)) (-4 *3 (-1157)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-632 *3)) (-4 *3 (-1157)) (-5 *2 (-85))))) -(((*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1157))))) -(((*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-632 *3)) (-4 *3 (-1157)) (-5 *2 (-714))))) -(((*1 *2 *3) - (-12 (-5 *3 (-762 *4)) (-4 *4 (-781)) (-5 *2 (-85)) (-5 *1 (-630 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-762 *3)) (-4 *3 (-781)) (-5 *1 (-630 *3))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-687)) (-4 *2 (-1005)) (-5 *1 (-614 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-611 *3)) (-4 *3 (-1118)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-611 *3)) (-4 *3 (-1118)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-611 *3)) (-4 *3 (-1118)) (-5 *2 (-83))))) +(((*1 *1 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1118))))) +(((*1 *1 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-611 *3)) (-4 *3 (-1118)) (-5 *2 (-687))))) +(((*1 *2 *3) + (-12 (-5 *3 (-732 *4)) (-4 *4 (-749)) (-5 *2 (-83)) (-5 *1 (-609 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-732 *3)) (-4 *3 (-749)) (-5 *1 (-609 *3))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-762 *3)) (-4 *3 (-781)) (-5 *1 (-630 *3))))) + (|partial| -12 (-5 *2 (-732 *3)) (-4 *3 (-749)) (-5 *1 (-609 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *5)) (-5 *4 (-857)) (-4 *5 (-781)) - (-5 *2 (-58 (-599 (-630 *5)))) (-5 *1 (-630 *5))))) + (-12 (-5 *3 (-578 *5)) (-5 *4 (-823)) (-4 *5 (-749)) + (-5 *2 (-58 (-578 (-609 *5)))) (-5 *1 (-609 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *5)) (-5 *4 (-857)) (-4 *5 (-781)) (-5 *2 (-599 (-630 *5))) - (-5 *1 (-630 *5))))) + (-12 (-5 *3 (-578 *5)) (-5 *4 (-823)) (-4 *5 (-749)) (-5 *2 (-578 (-609 *5))) + (-5 *1 (-609 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *7)) (-4 *7 (-781)) - (-4 *8 (-888 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) + (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *7)) (-4 *7 (-749)) + (-4 *8 (-854 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-5 *2 - (-2 (|:| |particular| (-3 (-1207 (-361 *8)) "failed")) - (|:| -2113 (-599 (-1207 (-361 *8)))))) - (-5 *1 (-627 *5 *6 *7 *8))))) + (-2 (|:| |particular| (-3 (-1168 (-343 *8)) "failed")) + (|:| -1998 (-578 (-1168 (-343 *8)))))) + (-5 *1 (-606 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-318)) (-4 *6 (-13 (-327 *5) (-10 -7 (-6 -4146)))) - (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-5 *2 (-85)) - (-5 *1 (-625 *5 *6 *4 *3)) (-4 *3 (-644 *5 *6 *4)))) + (-12 (-4 *5 (-308)) (-4 *6 (-13 (-317 *5) (-10 -7 (-6 -3980)))) + (-4 *4 (-13 (-317 *5) (-10 -7 (-6 -3980)))) (-5 *2 (-83)) + (-5 *1 (-604 *5 *6 *4 *3)) (-4 *3 (-622 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-647 *5)) (-5 *4 (-1207 *5)) (-4 *5 (-318)) (-5 *2 (-85)) - (-5 *1 (-626 *5))))) + (-12 (-5 *3 (-625 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-308)) (-5 *2 (-83)) + (-5 *1 (-605 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-599 (-1111 *4))) (-5 *3 (-1111 *4)) (-4 *4 (-848)) - (-5 *1 (-621 *4))))) -(((*1 *1 *1) (-4 *1 (-620)))) -(((*1 *1 *1 *1) (-4 *1 (-620)))) -(((*1 *1 *1 *1) (-4 *1 (-620)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) + (|partial| -12 (-5 *2 (-578 (-1074 *4))) (-5 *3 (-1074 *4)) (-4 *4 (-814)) + (-5 *1 (-600 *4))))) +(((*1 *1 *1) (-4 *1 (-599)))) +(((*1 *1 *1 *1) (-4 *1 (-599)))) +(((*1 *1 *1 *1) (-4 *1 (-599)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-318)) (-5 *1 (-618 *4 *2)) - (-4 *2 (-616 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-308)) (-5 *1 (-597 *4 *2)) + (-4 *2 (-595 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-714)) (-4 *1 (-616 *3)) (-4 *3 (-989)) (-4 *3 (-318)))) + (-12 (-5 *2 (-687)) (-4 *1 (-595 *3)) (-4 *3 (-954)) (-4 *3 (-308)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-714)) (-5 *4 (-1 *5 *5)) (-4 *5 (-318)) (-5 *1 (-618 *5 *2)) - (-4 *2 (-616 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) + (-12 (-5 *3 (-687)) (-5 *4 (-1 *5 *5)) (-4 *5 (-308)) (-5 *1 (-597 *5 *2)) + (-4 *2 (-595 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-318)) (-5 *1 (-618 *4 *2)) - (-4 *2 (-616 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-308)) (-5 *1 (-597 *4 *2)) + (-4 *2 (-595 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) - (-4 *5 (-1183 *4)) (-5 *2 (-599 (-613 (-361 *5)))) (-5 *1 (-617 *4 *5)) - (-5 *3 (-613 (-361 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1174 (-499))) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-609 *3)) (-4 *3 (-1157))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-609 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) - (-12 (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 *4)))) - (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-1041)) (-4 *4 (-23)) (-14 *5 *4)))) + (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) + (-4 *5 (-1144 *4)) (-5 *2 (-578 (-592 (-343 *5)))) (-5 *1 (-596 *4 *5)) + (-5 *3 (-592 (-343 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1135 (-478))) (-4 *1 (-588 *3)) (-4 *3 (-1118)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-588 *3)) (-4 *3 (-1118))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-588 *3)) (-4 *3 (-1118)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-588 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) + (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3927 *4)))) + (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1005)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2) - (-12 (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 *4)))) (-4 *3 (-1041)) - (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-607 *3 *4 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-316 *3)) (-4 *3 (-1041)))) + (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3927 *4)))) (-4 *3 (-1005)) + (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-306 *3)) (-4 *3 (-1005)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-499)) (-4 *1 (-341 *4)) (-4 *4 (-1041)) (-5 *2 (-714)))) + (-12 (-5 *3 (-478)) (-4 *1 (-329 *4)) (-4 *4 (-1005)) (-5 *2 (-687)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-499)) (-4 *2 (-23)) (-5 *1 (-607 *4 *2 *5)) (-4 *4 (-1041)) + (-12 (-5 *3 (-478)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) (-4 *4 (-1005)) (-14 *5 *2)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-499)) (-4 *1 (-277 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1041)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *1 (-316 *2)) (-4 *2 (-1041)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-341 *2)) (-4 *2 (-1041)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510)))) + (-12 (-5 *3 (-478)) (-4 *1 (-270 *2 *4)) (-4 *4 (-102)) (-4 *2 (-1005)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *1 (-306 *2)) (-4 *2 (-1005)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-329 *2)) (-4 *2 (-1005)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-499)) (-4 *2 (-1041)) (-5 *1 (-607 *2 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *3 (-478)) (-4 *2 (-1005)) (-5 *1 (-586 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-1157)))) - ((*1 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-398 *3 *2)) (-4 *2 (-1183 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-317 *2)) (-4 *2 (-1118)))) + ((*1 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-377 *3 *2)) (-4 *2 (-1144 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157)))) - ((*1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-327 *2)) (-4 *2 (-1157)))) + (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1118)))) + ((*1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-317 *2)) (-4 *2 (-1118)))) ((*1 *1 *1) - (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1) - (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2 *1) - (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1005)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-1041)) (-4 *4 (-23)) + (-12 (-5 *2 (-83)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1005)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-499) (-499))) (-5 *1 (-316 *3)) (-4 *3 (-1041)))) + (-12 (-5 *2 (-1 (-478) (-478))) (-5 *1 (-306 *3)) (-4 *3 (-1005)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-714) (-714))) (-4 *1 (-341 *3)) (-4 *3 (-1041)))) + (-12 (-5 *2 (-1 (-687) (-687))) (-4 *1 (-329 *3)) (-4 *3 (-1005)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-607 *3 *4 *5)) - (-4 *3 (-1041))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)) + (-4 *3 (-1005))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-277 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-104)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1041)) (-5 *1 (-316 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-341 *3)) (-4 *3 (-1041)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-270 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-102)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1005)) (-5 *1 (-306 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-329 *3)) (-4 *3 (-1005)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1041)) (-5 *1 (-607 *3 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1005)) (-5 *1 (-586 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-605 *3)) (-4 *3 (-1041))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1041))))) -(((*1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-599 *3)) (-4 *3 (-1157))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1157))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1041)) (-4 *2 (-1157))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1041)) (-4 *2 (-1157))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1041)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-584 *3)) (-4 *3 (-1005))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1005))))) +(((*1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-578 *3)) (-4 *3 (-1118))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1118))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1005)) (-4 *2 (-1118))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1005)) (-4 *2 (-1118))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1005)) (-4 *2 (-1118))))) (((*1 *1 *2) - (-12 (-5 *2 (-599 *3)) (-4 *3 (-318)) (-5 *1 (-597 *3 *4)) - (-14 *4 (-599 (-1117)))))) + (-12 (-5 *2 (-578 *3)) (-4 *3 (-308)) (-5 *1 (-576 *3 *4)) + (-14 *4 (-578 (-1079)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1207 *1)) (-4 *1 (-596 *4)) (-4 *4 (-989)) - (-5 *2 (-2 (|:| -1673 (-647 *4)) (|:| |vec| (-1207 *4)))))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-575 *4)) (-4 *4 (-954)) + (-5 *2 (-2 (|:| |mat| (-625 *4)) (|:| |vec| (-1168 *4)))))) ((*1 *2 *3) - (-12 (-5 *3 (-1207 *1)) (-4 *1 (-596 *4)) (-4 *4 (-989)) (-5 *2 (-647 *4))))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-575 *4)) (-4 *4 (-954)) (-5 *2 (-625 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-647 *1)) (-5 *4 (-1207 *1)) (-4 *1 (-596 *5)) (-4 *5 (-989)) - (-5 *2 (-2 (|:| -1673 (-647 *5)) (|:| |vec| (-1207 *5)))))) + (-12 (-5 *3 (-625 *1)) (-5 *4 (-1168 *1)) (-4 *1 (-575 *5)) (-4 *5 (-954)) + (-5 *2 (-2 (|:| |mat| (-625 *5)) (|:| |vec| (-1168 *5)))))) ((*1 *2 *3) - (-12 (-5 *3 (-647 *1)) (-4 *1 (-596 *4)) (-4 *4 (-989)) (-5 *2 (-647 *4))))) + (-12 (-5 *3 (-625 *1)) (-4 *1 (-575 *4)) (-4 *4 (-954)) (-5 *2 (-625 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-599 *3)) (-4 *3 (-318)) (-5 *1 (-595 *3 *4)) - (-14 *4 (-599 (-1117)))))) + (-12 (-5 *2 (-578 *3)) (-4 *3 (-308)) (-5 *1 (-574 *3 *4)) + (-14 *4 (-578 (-1079)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 *5))) - (-4 *5 (-318)) (-4 *5 (-510)) (-5 *2 (-1207 *5)) (-5 *1 (-594 *5 *4)))) + (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-13 (-954) (-575 *5))) + (-4 *5 (-308)) (-4 *5 (-489)) (-5 *2 (-1168 *5)) (-5 *1 (-573 *5 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 *5))) - (-2679 (-4 *5 (-318))) (-4 *5 (-510)) (-5 *2 (-1207 (-361 *5))) - (-5 *1 (-594 *5 *4))))) + (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-13 (-954) (-575 *5))) + (-2544 (-4 *5 (-308))) (-4 *5 (-489)) (-5 *2 (-1168 (-343 *5))) + (-5 *1 (-573 *5 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1207 *5)) (-4 *5 (-13 (-989) (-596 *4))) - (-4 *4 (-510)) (-5 *2 (-1207 *4)) (-5 *1 (-594 *4 *5))))) + (|partial| -12 (-5 *3 (-1168 *5)) (-4 *5 (-13 (-954) (-575 *4))) + (-4 *4 (-489)) (-5 *2 (-1168 *4)) (-5 *1 (-573 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1207 *5)) (-4 *5 (-13 (-989) (-596 *4))) (-4 *4 (-510)) - (-5 *2 (-85)) (-5 *1 (-594 *4 *5))))) + (-12 (-5 *3 (-1168 *5)) (-4 *5 (-13 (-954) (-575 *4))) (-4 *4 (-489)) + (-5 *2 (-83)) (-5 *1 (-573 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-247 (-775 *3))) (-4 *3 (-13 (-27) (-1143) (-375 *5))) - (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) + (-12 (-5 *4 (-245 (-743 *3))) (-4 *3 (-13 (-27) (-1104) (-357 *5))) + (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 - (-3 (-775 *3) - (-2 (|:| |leftHandLimit| (-3 (-775 *3) #1="failed")) - (|:| |rightHandLimit| (-3 (-775 *3) #1#))) + (-3 (-743 *3) + (-2 (|:| |leftHandLimit| (-3 (-743 *3) #1="failed")) + (|:| |rightHandLimit| (-3 (-743 *3) #1#))) "failed")) - (-5 *1 (-591 *5 *3)))) + (-5 *1 (-570 *5 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-247 *3)) (-5 *5 (-1099)) - (-4 *3 (-13 (-27) (-1143) (-375 *6))) - (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-775 *3)) - (-5 *1 (-591 *6 *3)))) + (|partial| -12 (-5 *4 (-245 *3)) (-5 *5 (-1062)) + (-4 *3 (-13 (-27) (-1104) (-357 *6))) + (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-743 *3)) + (-5 *1 (-570 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-247 (-775 (-884 *5)))) (-4 *5 (-406)) + (-12 (-5 *4 (-245 (-743 (-850 *5)))) (-4 *5 (-385)) (-5 *2 - (-3 (-775 (-361 (-884 *5))) - (-2 (|:| |leftHandLimit| (-3 (-775 (-361 (-884 *5))) #2="failed")) - (|:| |rightHandLimit| (-3 (-775 (-361 (-884 *5))) #2#))) + (-3 (-743 (-343 (-850 *5))) + (-2 (|:| |leftHandLimit| (-3 (-743 (-343 (-850 *5))) #2="failed")) + (|:| |rightHandLimit| (-3 (-743 (-343 (-850 *5))) #2#))) #3="failed")) - (-5 *1 (-592 *5)) (-5 *3 (-361 (-884 *5))))) + (-5 *1 (-571 *5)) (-5 *3 (-343 (-850 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-247 (-361 (-884 *5)))) (-5 *3 (-361 (-884 *5))) (-4 *5 (-406)) + (-12 (-5 *4 (-245 (-343 (-850 *5)))) (-5 *3 (-343 (-850 *5))) (-4 *5 (-385)) (-5 *2 - (-3 (-775 *3) - (-2 (|:| |leftHandLimit| (-3 (-775 *3) #2#)) - (|:| |rightHandLimit| (-3 (-775 *3) #2#))) + (-3 (-743 *3) + (-2 (|:| |leftHandLimit| (-3 (-743 *3) #2#)) + (|:| |rightHandLimit| (-3 (-743 *3) #2#))) #3#)) - (-5 *1 (-592 *5)))) + (-5 *1 (-571 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-247 (-361 (-884 *6)))) (-5 *5 (-1099)) - (-5 *3 (-361 (-884 *6))) (-4 *6 (-406)) (-5 *2 (-775 *3)) - (-5 *1 (-592 *6))))) + (|partial| -12 (-5 *4 (-245 (-343 (-850 *6)))) (-5 *5 (-1062)) + (-5 *3 (-343 (-850 *6))) (-4 *6 (-385)) (-5 *2 (-743 *3)) + (-5 *1 (-571 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-247 (-766 *3))) - (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-766 *3)) - (-5 *1 (-591 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) + (|partial| -12 (-5 *4 (-245 (-736 *3))) + (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-736 *3)) + (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-247 (-766 (-884 *5)))) (-4 *5 (-406)) - (-5 *2 (-766 (-361 (-884 *5)))) (-5 *1 (-592 *5)) (-5 *3 (-361 (-884 *5))))) + (-12 (-5 *4 (-245 (-736 (-850 *5)))) (-4 *5 (-385)) + (-5 *2 (-736 (-343 (-850 *5)))) (-5 *1 (-571 *5)) (-5 *3 (-343 (-850 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-247 (-361 (-884 *5)))) (-5 *3 (-361 (-884 *5))) (-4 *5 (-406)) - (-5 *2 (-766 *3)) (-5 *1 (-592 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-344)) (-5 *1 (-587))))) -(((*1 *1 *1) (-12 (-5 *1 (-563 *2)) (-4 *2 (-1041)))) - ((*1 *1 *1) (-5 *1 (-587)))) + (-12 (-5 *4 (-245 (-343 (-850 *5)))) (-5 *3 (-343 (-850 *5))) (-4 *5 (-385)) + (-5 *2 (-736 *3)) (-5 *1 (-571 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-566))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-1005)))) + ((*1 *1 *1) (-5 *1 (-566)))) (((*1 *2 *3) - (-12 (-5 *3 (-205 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-406)) - (-5 *2 (-435 *4 *5)) (-5 *1 (-586 *4 *5))))) + (-12 (-5 *3 (-203 *4 *5)) (-14 *4 (-578 (-1079))) (-4 *5 (-385)) + (-5 *2 (-414 *4 *5)) (-5 *1 (-565 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-599 (-205 *4 *5))) (-5 *2 (-205 *4 *5)) (-14 *4 (-599 (-1117))) - (-4 *5 (-406)) (-5 *1 (-586 *4 *5))))) + (-12 (-5 *3 (-578 (-203 *4 *5))) (-5 *2 (-203 *4 *5)) (-14 *4 (-578 (-1079))) + (-4 *5 (-385)) (-5 *1 (-565 *4 *5))))) (((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-599 (-435 *4 *5))) (-5 *3 (-798 *4)) (-14 *4 (-599 (-1117))) - (-4 *5 (-406)) (-5 *1 (-586 *4 *5))))) + (-12 (-5 *2 (-578 (-414 *4 *5))) (-5 *3 (-766 *4)) (-14 *4 (-578 (-1079))) + (-4 *5 (-385)) (-5 *1 (-565 *4 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-599 *6)) (-5 *4 (-599 (-205 *5 *6))) (-4 *6 (-406)) - (-5 *2 (-205 *5 *6)) (-14 *5 (-599 (-1117))) (-5 *1 (-586 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-881 (-179)) (-881 (-179)))) (-5 *1 (-220)))) + (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-203 *5 *6))) (-4 *6 (-385)) + (-5 *2 (-203 *5 *6)) (-14 *5 (-578 (-1079))) (-5 *1 (-565 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-847 (-177)) (-847 (-177)))) (-5 *1 (-218)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-881 (-179)) (-881 (-179)))) (-5 *3 (-599 (-220))) - (-5 *1 (-221)))) + (-12 (-5 *2 (-1 (-847 (-177)) (-847 (-177)))) (-5 *3 (-578 (-218))) + (-5 *1 (-219)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-599 (-435 *5 *6))) (-5 *3 (-435 *5 *6)) (-14 *5 (-599 (-1117))) - (-4 *6 (-406)) (-5 *2 (-1207 *6)) (-5 *1 (-586 *5 *6))))) + (-12 (-5 *4 (-578 (-414 *5 *6))) (-5 *3 (-414 *5 *6)) (-14 *5 (-578 (-1079))) + (-4 *6 (-385)) (-5 *2 (-1168 *6)) (-5 *1 (-565 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-599 (-435 *3 *4))) (-14 *3 (-599 (-1117))) (-4 *4 (-406)) - (-5 *1 (-586 *3 *4))))) + (-12 (-5 *2 (-578 (-414 *3 *4))) (-14 *3 (-578 (-1079))) (-4 *4 (-385)) + (-5 *1 (-565 *3 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-599 (-435 *5 *6))) (-5 *4 (-798 *5)) (-14 *5 (-599 (-1117))) - (-5 *2 (-435 *5 *6)) (-5 *1 (-586 *5 *6)) (-4 *6 (-406)))) + (-12 (-5 *3 (-578 (-414 *5 *6))) (-5 *4 (-766 *5)) (-14 *5 (-578 (-1079))) + (-5 *2 (-414 *5 *6)) (-5 *1 (-565 *5 *6)) (-4 *6 (-385)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-435 *5 *6))) (-5 *4 (-798 *5)) (-14 *5 (-599 (-1117))) - (-5 *2 (-435 *5 *6)) (-5 *1 (-586 *5 *6)) (-4 *6 (-406))))) + (-12 (-5 *3 (-578 (-414 *5 *6))) (-5 *4 (-766 *5)) (-14 *5 (-578 (-1079))) + (-5 *2 (-414 *5 *6)) (-5 *1 (-565 *5 *6)) (-4 *6 (-385))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 (-435 *4 *5))) (-14 *4 (-599 (-1117))) (-4 *5 (-406)) - (-5 *2 (-599 (-205 *4 *5))) (-5 *1 (-586 *4 *5))))) + (-12 (-5 *3 (-578 (-414 *4 *5))) (-14 *4 (-578 (-1079))) (-4 *5 (-385)) + (-5 *2 (-578 (-203 *4 *5))) (-5 *1 (-565 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-599 (-1117))) (-4 *5 (-406)) - (-5 *2 (-2 (|:| |glbase| (-599 (-205 *4 *5))) (|:| |glval| (-599 (-499))))) - (-5 *1 (-586 *4 *5)) (-5 *3 (-599 (-205 *4 *5)))))) + (-12 (-14 *4 (-578 (-1079))) (-4 *5 (-385)) + (-5 *2 (-2 (|:| |glbase| (-578 (-203 *4 *5))) (|:| |glval| (-578 (-478))))) + (-5 *1 (-565 *4 *5)) (-5 *3 (-578 (-203 *4 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 (-435 *4 *5))) (-14 *4 (-599 (-1117))) (-4 *5 (-406)) - (-5 *2 (-2 (|:| |gblist| (-599 (-205 *4 *5))) (|:| |gvlist| (-599 (-499))))) - (-5 *1 (-586 *4 *5))))) + (-12 (-5 *3 (-578 (-414 *4 *5))) (-14 *4 (-578 (-1079))) (-4 *5 (-385)) + (-5 *2 (-2 (|:| |gblist| (-578 (-203 *4 *5))) (|:| |gvlist| (-578 (-478))))) + (-5 *1 (-565 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) - (-4 *2 (-13 (-375 *3) (-942) (-1143))))) - ((*1 *1 *1) (-4 *1 (-585)))) + (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) + (-4 *2 (-13 (-357 *3) (-908) (-1104))))) + ((*1 *1 *1) (-4 *1 (-564)))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) - (-4 *2 (-13 (-375 *3) (-942) (-1143))))) - ((*1 *1 *1) (-4 *1 (-585)))) + (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) + (-4 *2 (-13 (-357 *3) (-908) (-1104))))) + ((*1 *1 *1) (-4 *1 (-564)))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) - (-4 *2 (-13 (-375 *3) (-942) (-1143))))) - ((*1 *1 *1) (-4 *1 (-585)))) + (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) + (-4 *2 (-13 (-357 *3) (-908) (-1104))))) + ((*1 *1 *1) (-4 *1 (-564)))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) - (-4 *2 (-13 (-375 *3) (-942) (-1143))))) - ((*1 *1 *1) (-4 *1 (-585)))) + (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) + (-4 *2 (-13 (-357 *3) (-908) (-1104))))) + ((*1 *1 *1) (-4 *1 (-564)))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) - (-4 *2 (-13 (-375 *3) (-942) (-1143))))) - ((*1 *1 *1) (-4 *1 (-585)))) + (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) + (-4 *2 (-13 (-357 *3) (-908) (-1104))))) + ((*1 *1 *1) (-4 *1 (-564)))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) - (-4 *2 (-13 (-375 *3) (-942) (-1143))))) - ((*1 *1 *1) (-4 *1 (-585)))) + (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) + (-4 *2 (-13 (-357 *3) (-908) (-1104))))) + ((*1 *1 *1) (-4 *1 (-564)))) (((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-375 *4)))) + (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-357 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) - (-4 *5 (-375 *4)))) + (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-129 *4 *5)) + (-4 *5 (-357 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-229 *4 *5)) - (-4 *5 (-13 (-375 *4) (-942))))) + (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-227 *4 *5)) + (-4 *5 (-13 (-357 *4) (-908))))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-251 *4)) (-4 *4 (-252)))) - ((*1 *2 *3) (-12 (-4 *1 (-252)) (-5 *3 (-86)) (-5 *2 (-85)))) + (-12 (-5 *3 (-84)) (-5 *2 (-83)) (-5 *1 (-249 *4)) (-4 *4 (-250)))) + ((*1 *2 *3) (-12 (-4 *1 (-250)) (-5 *3 (-84)) (-5 *2 (-83)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *5 (-1041)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5)) - (-4 *4 (-375 *5)))) + (-12 (-5 *3 (-84)) (-4 *5 (-1005)) (-5 *2 (-83)) (-5 *1 (-356 *4 *5)) + (-4 *4 (-357 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-385 *4 *5)) - (-4 *5 (-375 *4)))) + (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-367 *4 *5)) + (-4 *5 (-357 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-584 *4 *5)) - (-4 *5 (-13 (-375 *4) (-942) (-1143)))))) + (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-563 *4 *5)) + (-4 *5 (-13 (-357 *4) (-908) (-1104)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) - (-14 *6 (-599 (-1117))) - (-5 *2 (-599 (-1086 *5 (-484 (-798 *6)) (-798 *6) (-723 *5 (-798 *6))))) - (-5 *1 (-583 *5 *6))))) + (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) + (-14 *6 (-578 (-1079))) + (-5 *2 (-578 (-1049 *5 (-463 (-766 *6)) (-766 *6) (-696 *5 (-766 *6))))) + (-5 *1 (-562 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) - (-14 *6 (-599 (-1117))) (-5 *2 (-599 (-986 *5 *6))) (-5 *1 (-583 *5 *6))))) + (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) + (-14 *6 (-578 (-1079))) (-5 *2 (-578 (-951 *5 *6))) (-5 *1 (-562 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-599 (-884 *3))) (-4 *3 (-406)) (-5 *1 (-315 *3 *4)) - (-14 *4 (-599 (-1117))))) + (-12 (-5 *2 (-578 (-850 *3))) (-4 *3 (-385)) (-5 *1 (-305 *3 *4)) + (-14 *4 (-578 (-1079))))) ((*1 *2 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-406)) (-4 *4 (-738)) - (-4 *5 (-781)) (-5 *1 (-401 *3 *4 *5 *6)))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-385)) (-4 *4 (-710)) + (-4 *5 (-749)) (-5 *1 (-380 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-599 *7)) (-5 *3 (-1099)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) - (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-401 *4 *5 *6 *7)))) + (-12 (-5 *2 (-578 *7)) (-5 *3 (-1062)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) + (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-380 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-599 *7)) (-5 *3 (-1099)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) - (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-401 *4 *5 *6 *7)))) + (-12 (-5 *2 (-578 *7)) (-5 *3 (-1062)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) + (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-380 *4 *5 *6 *7)))) ((*1 *1 *1) - (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) - (-4 *5 (-888 *2 *3 *4)))) + (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) + (-4 *5 (-854 *2 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-599 (-723 *3 (-798 *4)))) (-4 *3 (-406)) - (-14 *4 (-599 (-1117))) (-5 *1 (-583 *3 *4))))) + (-12 (-5 *2 (-578 (-696 *3 (-766 *4)))) (-4 *3 (-385)) + (-14 *4 (-578 (-1079))) (-5 *1 (-562 *3 *4))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-599 (-884 *3))) (-4 *3 (-406)) (-5 *1 (-315 *3 *4)) - (-14 *4 (-599 (-1117))))) + (|partial| -12 (-5 *2 (-578 (-850 *3))) (-4 *3 (-385)) (-5 *1 (-305 *3 *4)) + (-14 *4 (-578 (-1079))))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-599 (-723 *3 (-798 *4)))) (-4 *3 (-406)) - (-14 *4 (-599 (-1117))) (-5 *1 (-583 *3 *4))))) + (|partial| -12 (-5 *2 (-578 (-696 *3 (-766 *4)))) (-4 *3 (-385)) + (-14 *4 (-578 (-1079))) (-5 *1 (-562 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-406)) (-5 *2 (-85)) - (-5 *1 (-315 *4 *5)) (-14 *5 (-599 (-1117))))) + (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-385)) (-5 *2 (-83)) + (-5 *1 (-305 *4 *5)) (-14 *5 (-578 (-1079))))) ((*1 *2 *3) - (-12 (-5 *3 (-599 (-723 *4 (-798 *5)))) (-4 *4 (-406)) - (-14 *5 (-599 (-1117))) (-5 *2 (-85)) (-5 *1 (-583 *4 *5))))) + (-12 (-5 *3 (-578 (-696 *4 (-766 *5)))) (-4 *4 (-385)) + (-14 *5 (-578 (-1079))) (-5 *2 (-83)) (-5 *1 (-562 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 *4)) (-4 *4 (-781)) (-5 *2 (-599 (-622 *4 *5))) - (-5 *1 (-582 *4 *5 *6)) (-4 *5 (-13 (-146) (-675 (-361 (-499))))) - (-14 *6 (-857))))) + (-12 (-5 *3 (-578 *4)) (-4 *4 (-749)) (-5 *2 (-578 (-601 *4 *5))) + (-5 *1 (-561 *4 *5 *6)) (-4 *5 (-13 (-144) (-649 (-343 (-478))))) + (-14 *6 (-823))))) (((*1 *2 *1) - (-12 (-5 *2 (-599 (-2 (|:| |k| (-630 *3)) (|:| |c| *4)))) - (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) - (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857))))) + (-12 (-5 *2 (-578 (-2 (|:| |k| (-609 *3)) (|:| |c| *4)))) + (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) + (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-599 (-247 *4))) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) - (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857))))) + (-12 (-5 *2 (-578 (-245 *4))) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) + (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823))))) (((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) - (|:| -1877 (-599 (-2 (|:| |irr| *10) (|:| -2513 (-499))))))) - (-5 *6 (-599 *3)) (-5 *7 (-599 *8)) (-4 *8 (-781)) (-4 *3 (-261)) - (-4 *10 (-888 *3 *9 *8)) (-4 *9 (-738)) + (|:| -1766 (-578 (-2 (|:| |irr| *10) (|:| -2381 (-478))))))) + (-5 *6 (-578 *3)) (-5 *7 (-578 *8)) (-4 *8 (-749)) (-4 *3 (-254)) + (-4 *10 (-854 *3 *9 *8)) (-4 *9 (-710)) (-5 *2 - (-2 (|:| |polfac| (-599 *10)) (|:| |correct| *3) - (|:| |corrfact| (-599 (-1111 *3))))) - (-5 *1 (-580 *8 *9 *3 *10)) (-5 *4 (-599 (-1111 *3)))))) + (-2 (|:| |polfac| (-578 *10)) (|:| |correct| *3) + (|:| |corrfact| (-578 (-1074 *3))))) + (-5 *1 (-559 *8 *9 *3 *10)) (-5 *4 (-578 (-1074 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-714)) (-5 *5 (-599 *3)) (-4 *3 (-261)) (-4 *6 (-781)) - (-4 *7 (-738)) (-5 *2 (-85)) (-5 *1 (-580 *6 *7 *3 *8)) - (-4 *8 (-888 *3 *7 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) - (-5 *1 (-579 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1011 *3 *4 *5 *6)) - (-4 *2 (-1049 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *2 (-510)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1183 *2))))) + (-12 (-5 *4 (-687)) (-5 *5 (-578 *3)) (-4 *3 (-254)) (-4 *6 (-749)) + (-4 *7 (-710)) (-5 *2 (-83)) (-5 *1 (-559 *6 *7 *3 *8)) + (-4 *8 (-854 *3 *7 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) + (-5 *1 (-558 *3 *4 *5 *6 *7 *2)) (-4 *7 (-975 *3 *4 *5 *6)) + (-4 *2 (-1012 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *2 (-489)) (-5 *1 (-557 *2 *3)) (-4 *3 (-1144 *2))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) - (-5 *1 (-577 *4 *2)) (-4 *2 (-13 (-1143) (-898) (-29 *4)))))) -(((*1 *1) (-5 *1 (-572)))) + (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) + (-5 *1 (-556 *4 *2)) (-4 *2 (-13 (-1104) (-864) (-29 *4)))))) +(((*1 *1) (-5 *1 (-551)))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-120) (-27) (-978 (-499)) (-978 (-361 (-499))))) - (-4 *5 (-1183 *4)) (-5 *2 (-1111 (-361 *5))) (-5 *1 (-570 *4 *5)) - (-5 *3 (-361 *5)))) + (|partial| -12 (-4 *4 (-13 (-118) (-27) (-943 (-478)) (-943 (-343 (-478))))) + (-4 *5 (-1144 *4)) (-5 *2 (-1074 (-343 *5))) (-5 *1 (-549 *4 *5)) + (-5 *3 (-343 *5)))) ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) - (-4 *5 (-13 (-120) (-27) (-978 (-499)) (-978 (-361 (-499))))) - (-5 *2 (-1111 (-361 *6))) (-5 *1 (-570 *5 *6)) (-5 *3 (-361 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-566 *4)) (-4 *4 (-1041)) (-4 *2 (-1041)) - (-5 *1 (-567 *2 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-566 *4)) (-5 *1 (-567 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) -(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1143)))) - ((*1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-566 *3)) (-4 *3 (-1041))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-599 *1)) (-4 *1 (-252)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-566 *3)) (-4 *3 (-1041)))) + (|partial| -12 (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-118) (-27) (-943 (-478)) (-943 (-343 (-478))))) + (-5 *2 (-1074 (-343 *6))) (-5 *1 (-549 *5 *6)) (-5 *3 (-343 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-545 *4)) (-4 *4 (-1005)) (-4 *2 (-1005)) + (-5 *1 (-546 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-545 *4)) (-5 *1 (-546 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005))))) +(((*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-1104)))) + ((*1 *2 *1) (-12 (-5 *1 (-277 *2)) (-4 *2 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-545 *3)) (-4 *3 (-1005))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-578 *1)) (-4 *1 (-250)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) + ((*1 *1 *2) (-12 (-5 *2 (-1079)) (-5 *1 (-545 *3)) (-4 *3 (-1005)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-86)) (-5 *3 (-599 *5)) (-5 *4 (-714)) (-4 *5 (-1041)) - (-5 *1 (-566 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-566 *3)) (-4 *3 (-1041))))) + (-12 (-5 *2 (-84)) (-5 *3 (-578 *5)) (-5 *4 (-687)) (-4 *5 (-1005)) + (-5 *1 (-545 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1079)) (-5 *1 (-545 *3)) (-4 *3 (-1005))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-565 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-5 *2 (-85))))) + (-12 (-4 *1 (-544 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-565 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-5 *2 (-599 *3))))) + (-12 (-4 *1 (-544 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-5 *2 (-578 *3))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-565 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041))))) -(((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561)))) -(((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561)))) -(((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561)))) -(((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561)))) -(((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561)))) -(((*1 *1) (-5 *1 (-561)))) -(((*1 *1) (-5 *1 (-561)))) -(((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-561)))) -(((*1 *1) (-5 *1 (-561)))) -(((*1 *1) (-5 *1 (-560)))) -(((*1 *1) (-5 *1 (-560)))) -(((*1 *1) (-5 *1 (-559)))) -(((*1 *1) (-5 *1 (-559)))) -(((*1 *1) (-5 *1 (-559)))) -(((*1 *1) (-5 *1 (-559)))) -(((*1 *1) (-5 *1 (-559)))) -(((*1 *1) (-5 *1 (-559)))) -(((*1 *1) (-5 *1 (-559)))) -(((*1 *1) (-5 *1 (-559)))) -(((*1 *1) (-5 *1 (-559)))) -(((*1 *1) (-5 *1 (-559)))) -(((*1 *1) (-5 *1 (-559)))) -(((*1 *1) (-5 *1 (-558)))) -(((*1 *1) (-5 *1 (-558)))) -(((*1 *2 *1) (-12 (-5 *2 (-896 (-158 (-112)))) (-5 *1 (-287)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-555))))) -(((*1 *2 *1) - (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1157)) (-5 *2 (-599 *4))))) + (|partial| -12 (-4 *1 (-544 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005))))) +(((*1 *1) (-5 *1 (-537))) ((*1 *1) (-5 *1 (-539))) ((*1 *1) (-5 *1 (-540)))) +(((*1 *1) (-5 *1 (-539))) ((*1 *1) (-5 *1 (-540)))) +(((*1 *1) (-5 *1 (-539))) ((*1 *1) (-5 *1 (-540)))) +(((*1 *1) (-5 *1 (-539))) ((*1 *1) (-5 *1 (-540)))) +(((*1 *1) (-5 *1 (-537))) ((*1 *1) (-5 *1 (-539))) ((*1 *1) (-5 *1 (-540)))) +(((*1 *1) (-5 *1 (-540)))) +(((*1 *1) (-5 *1 (-540)))) +(((*1 *1) (-5 *1 (-537))) ((*1 *1) (-5 *1 (-540)))) +(((*1 *1) (-5 *1 (-540)))) +(((*1 *1) (-5 *1 (-539)))) +(((*1 *1) (-5 *1 (-539)))) +(((*1 *1) (-5 *1 (-538)))) +(((*1 *1) (-5 *1 (-538)))) +(((*1 *1) (-5 *1 (-538)))) +(((*1 *1) (-5 *1 (-538)))) +(((*1 *1) (-5 *1 (-538)))) +(((*1 *1) (-5 *1 (-538)))) +(((*1 *1) (-5 *1 (-538)))) +(((*1 *1) (-5 *1 (-538)))) +(((*1 *1) (-5 *1 (-538)))) +(((*1 *1) (-5 *1 (-538)))) +(((*1 *1) (-5 *1 (-538)))) +(((*1 *1) (-5 *1 (-537)))) +(((*1 *1) (-5 *1 (-537)))) +(((*1 *2 *1) (-12 (-5 *2 (-862 (-156 (-110)))) (-5 *1 (-278)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-1119))) (-5 *1 (-534))))) +(((*1 *2 *1) + (-12 (-4 *1 (-533 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1118)) (-5 *2 (-578 *4))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1157)) (-5 *2 (-85))))) + (-12 (-4 *1 (-533 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1118)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1157)) (-5 *2 (-599 *3))))) + (-12 (-4 *1 (-533 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1118)) (-5 *2 (-578 *3))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4145)) (-4 *1 (-554 *4 *3)) (-4 *4 (-1041)) - (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-85))))) + (-12 (|has| *1 (-6 -3979)) (-4 *1 (-533 *4 *3)) (-4 *4 (-1005)) + (-4 *3 (-1118)) (-4 *3 (-1005)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-554 *2 *3)) (-4 *3 (-1157)) (-4 *2 (-1041)) (-4 *2 (-781))))) + (-12 (-4 *1 (-533 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1005)) (-4 *2 (-749))))) (((*1 *2 *1) - (-12 (-4 *1 (-554 *2 *3)) (-4 *3 (-1157)) (-4 *2 (-1041)) (-4 *2 (-781))))) + (-12 (-4 *1 (-533 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1005)) (-4 *2 (-749))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1157)) (-4 *3 (-327 *2)) - (-4 *4 (-327 *2)))) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-317 *2)) + (-4 *4 (-317 *2)))) ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4146)) (-4 *1 (-554 *3 *2)) (-4 *3 (-1041)) - (-4 *2 (-1157))))) + (-12 (|has| *1 (-6 -3980)) (-4 *1 (-533 *3 *2)) (-4 *3 (-1005)) + (-4 *2 (-1118))))) (((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4146)) (-4 *1 (-554 *3 *4)) (-4 *3 (-1041)) - (-4 *4 (-1157)) (-5 *2 (-1213))))) + (-12 (|has| *1 (-6 -3980)) (-4 *1 (-533 *3 *4)) (-4 *3 (-1005)) + (-4 *4 (-1118)) (-5 *2 (-1174))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-599 (-566 *2))) (-5 *4 (-599 (-1117))) - (-4 *2 (-13 (-375 (-142 *5)) (-942) (-1143))) (-4 *5 (-510)) - (-5 *1 (-550 *5 *6 *2)) (-4 *6 (-13 (-375 *5) (-942) (-1143)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-142 *5)) (-5 *1 (-550 *4 *5 *3)) - (-4 *5 (-13 (-375 *4) (-942) (-1143))) - (-4 *3 (-13 (-375 (-142 *4)) (-942) (-1143)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *2 (-13 (-375 (-142 *4)) (-942) (-1143))) - (-5 *1 (-550 *4 *3 *2)) (-4 *3 (-13 (-375 *4) (-942) (-1143)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-510)) (-4 *2 (-13 (-375 *4) (-942) (-1143))) - (-5 *1 (-550 *4 *2 *3)) (-4 *3 (-13 (-375 (-142 *4)) (-942) (-1143)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-375 *4) (-942) (-1143))) (-4 *4 (-510)) - (-4 *2 (-13 (-375 (-142 *4)) (-942) (-1143))) (-5 *1 (-550 *4 *5 *2))))) -(((*1 *1) (-5 *1 (-547)))) -(((*1 *1) (-5 *1 (-547)))) -(((*1 *1) (-5 *1 (-547)))) -(((*1 *1) (-5 *1 (-547)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-547))) (-5 *1 (-547))))) + (-12 (-5 *3 (-578 (-545 *2))) (-5 *4 (-578 (-1079))) + (-4 *2 (-13 (-357 (-140 *5)) (-908) (-1104))) (-4 *5 (-489)) + (-5 *1 (-529 *5 *6 *2)) (-4 *6 (-13 (-357 *5) (-908) (-1104)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-489)) (-5 *2 (-140 *5)) (-5 *1 (-529 *4 *5 *3)) + (-4 *5 (-13 (-357 *4) (-908) (-1104))) + (-4 *3 (-13 (-357 (-140 *4)) (-908) (-1104)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-489)) (-4 *2 (-13 (-357 (-140 *4)) (-908) (-1104))) + (-5 *1 (-529 *4 *3 *2)) (-4 *3 (-13 (-357 *4) (-908) (-1104)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-489)) (-4 *2 (-13 (-357 *4) (-908) (-1104))) + (-5 *1 (-529 *4 *2 *3)) (-4 *3 (-13 (-357 (-140 *4)) (-908) (-1104)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-140 *5)) (-4 *5 (-13 (-357 *4) (-908) (-1104))) (-4 *4 (-489)) + (-4 *2 (-13 (-357 (-140 *4)) (-908) (-1104))) (-5 *1 (-529 *4 *5 *2))))) +(((*1 *1) (-5 *1 (-526)))) +(((*1 *1) (-5 *1 (-526)))) +(((*1 *1) (-5 *1 (-526)))) +(((*1 *1) (-5 *1 (-526)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-526))) (-5 *1 (-526))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-966 (-775 (-499)))) - (-5 *3 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *4)))) (-4 *4 (-989)) - (-5 *1 (-545 *4))))) + (-12 (-5 *2 (-932 (-743 (-478)))) + (-5 *3 (-1058 (-2 (|:| |k| (-478)) (|:| |c| *4)))) (-4 *4 (-954)) + (-5 *1 (-524 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-966 (-775 (-499)))) (-5 *1 (-545 *3)) (-4 *3 (-989))))) + (-12 (-5 *2 (-932 (-743 (-478)))) (-5 *1 (-524 *3)) (-4 *3 (-954))))) (((*1 *2 *1) - (-12 (-5 *2 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *3)))) (-5 *1 (-545 *3)) - (-4 *3 (-989))))) + (-12 (-5 *2 (-1058 (-2 (|:| |k| (-478)) (|:| |c| *3)))) (-5 *1 (-524 *3)) + (-4 *3 (-954))))) (((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-85)) (-5 *1 (-545 *3)) (-4 *3 (-989))))) -(((*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-989))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-989))))) + (|partial| -12 (-5 *2 (-83)) (-5 *1 (-524 *3)) (-4 *3 (-954))))) +(((*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-954))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-954))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *6)))) - (-5 *4 (-966 (-775 (-499)))) (-5 *5 (-1117)) (-5 *7 (-361 (-499))) - (-4 *6 (-989)) (-5 *2 (-797)) (-5 *1 (-545 *6))))) + (-12 (-5 *3 (-1058 (-2 (|:| |k| (-478)) (|:| |c| *6)))) + (-5 *4 (-932 (-743 (-478)))) (-5 *5 (-1079)) (-5 *7 (-343 (-478))) + (-4 *6 (-954)) (-5 *2 (-765)) (-5 *1 (-524 *6))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-361 (-499))) (-5 *1 (-545 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-989))))) + (-12 (-5 *2 (-343 (-478))) (-5 *1 (-524 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *1 *1) - (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) + (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-599 *3)) (-4 *3 (-1049 *5 *6 *7 *8)) - (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) - (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-542 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-578 *3)) (-4 *3 (-1012 *5 *6 *7 *8)) + (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) + (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-521 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-857))) (-5 *4 (-840 (-499))) (-5 *2 (-647 (-499))) - (-5 *1 (-541)))) + (-12 (-5 *3 (-578 (-823))) (-5 *4 (-806 (-478))) (-5 *2 (-625 (-478))) + (-5 *1 (-520)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 (-857))) (-5 *2 (-599 (-647 (-499)))) (-5 *1 (-541)))) + (-12 (-5 *3 (-578 (-823))) (-5 *2 (-578 (-625 (-478)))) (-5 *1 (-520)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-857))) (-5 *4 (-599 (-840 (-499)))) - (-5 *2 (-599 (-647 (-499)))) (-5 *1 (-541))))) -(((*1 *2 *3) (-12 (-5 *3 (-599 (-857))) (-5 *2 (-714)) (-5 *1 (-541))))) + (-12 (-5 *3 (-578 (-823))) (-5 *4 (-578 (-806 (-478)))) + (-5 *2 (-578 (-625 (-478)))) (-5 *1 (-520))))) +(((*1 *2 *3) (-12 (-5 *3 (-578 (-823))) (-5 *2 (-687)) (-5 *1 (-520))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) - (-5 *1 (-382 *4 *2)) (-4 *2 (-13 (-1143) (-29 *4))))) + (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) + (-5 *1 (-364 *4 *2)) (-4 *2 (-13 (-1104) (-29 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-120)) - (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-268 *5)) - (-5 *1 (-540 *5))))) + (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1079)) (-4 *5 (-118)) + (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-261 *5)) + (-5 *1 (-519 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1143))) (-5 *1 (-536 *4 *2)) - (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))))) + (-12 (-5 *3 (-513 *2)) (-4 *2 (-13 (-29 *4) (-1104))) (-5 *1 (-515 *4 *2)) + (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))))) ((*1 *2 *3) - (-12 (-5 *3 (-534 (-361 (-884 *4)))) - (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-268 *4)) - (-5 *1 (-540 *4))))) + (-12 (-5 *3 (-513 (-343 (-850 *4)))) + (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-261 *4)) + (-5 *1 (-519 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-539 *4)) (-4 *4 (-305))))) -(((*1 *2 *2) (-12 (-5 *1 (-538 *2)) (-4 *2 (-498))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-538 *2)) (-4 *2 (-498))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-538 *3)) (-4 *3 (-498))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-714)) (-5 *1 (-538 *2)) (-4 *2 (-498))))) + (-12 (-5 *3 (-823)) (-5 *2 (-1074 *4)) (-5 *1 (-518 *4)) (-4 *4 (-295))))) +(((*1 *2 *2) (-12 (-5 *1 (-517 *2)) (-4 *2 (-477))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-517 *2)) (-4 *2 (-477))))) +(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-517 *3)) (-4 *3 (-477))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-687)) (-5 *1 (-517 *2)) (-4 *2 (-477))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-714)) (-5 *1 (-538 *2)) (-4 *2 (-498)))) + (|partial| -12 (-5 *3 (-687)) (-5 *1 (-517 *2)) (-4 *2 (-477)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2815 *3) (|:| -2519 (-714)))) (-5 *1 (-538 *3)) - (-4 *3 (-498))))) + (-12 (-5 *2 (-2 (|:| -2678 *3) (|:| -2387 (-687)))) (-5 *1 (-517 *3)) + (-4 *3 (-477))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-714)) (-5 *2 (-85)) (-5 *1 (-538 *3)) (-4 *3 (-498))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-547)) (-5 *1 (-537))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-547)) (-5 *1 (-537))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-460)) (-5 *3 (-547)) (-5 *1 (-537))))) + (-12 (-5 *4 (-687)) (-5 *2 (-83)) (-5 *1 (-517 *3)) (-4 *3 (-477))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-526)) (-5 *1 (-516))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-526)) (-5 *1 (-516))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-526)) (-5 *1 (-516))))) (((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-599 - (-2 (|:| |scalar| (-361 (-499))) (|:| |coeff| (-1111 *2)) - (|:| |logand| (-1111 *2))))) - (-5 *4 (-599 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-318)) - (-5 *1 (-534 *2))))) -(((*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-318))))) + (-578 + (-2 (|:| |scalar| (-343 (-478))) (|:| |coeff| (-1074 *2)) + (|:| |logand| (-1074 *2))))) + (-5 *4 (-578 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-308)) + (-5 *1 (-513 *2))))) +(((*1 *2 *1) (-12 (-5 *1 (-513 *2)) (-4 *2 (-308))))) (((*1 *2 *1) (-12 (-5 *2 - (-599 - (-2 (|:| |scalar| (-361 (-499))) (|:| |coeff| (-1111 *3)) - (|:| |logand| (-1111 *3))))) - (-5 *1 (-534 *3)) (-4 *3 (-318))))) -(((*1 *2 *1) - (-12 (-5 *2 (-599 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-534 *3)) (-4 *3 (-318))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-534 *3)) (-4 *3 (-318))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-533))))) -(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-530))))) -(((*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-530))))) -(((*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-649 (-530))) (-5 *1 (-530))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-1 (-488) (-599 (-488))))) (-5 *1 (-86)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-488) (-599 (-488)))) (-5 *1 (-86)))) - ((*1 *1) (-5 *1 (-529)))) -(((*1 *1) (-5 *1 (-529)))) -(((*1 *1) (-5 *1 (-529)))) -(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-528)))) - ((*1 *1 *2) (-12 (-5 *2 (-344)) (-5 *1 (-528))))) + (-578 + (-2 (|:| |scalar| (-343 (-478))) (|:| |coeff| (-1074 *3)) + (|:| |logand| (-1074 *3))))) + (-5 *1 (-513 *3)) (-4 *3 (-308))))) +(((*1 *2 *1) + (-12 (-5 *2 (-578 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-513 *3)) (-4 *3 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-513 *3)) (-4 *3 (-308))))) +(((*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-512))))) +(((*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-509))))) +(((*1 *2 *1) (-12 (-5 *2 (-164 4 (-99))) (-5 *1 (-509))))) +(((*1 *2 *3) (-12 (-5 *3 (-424)) (-5 *2 (-627 (-509))) (-5 *1 (-509))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-1 (-467) (-578 (-467))))) (-5 *1 (-84)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-467) (-578 (-467)))) (-5 *1 (-84)))) + ((*1 *1) (-5 *1 (-508)))) +(((*1 *1) (-5 *1 (-508)))) +(((*1 *1) (-5 *1 (-508)))) +(((*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-507)))) + ((*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-507))))) (((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1117)) - (-4 *4 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *1 (-526 *4 *2)) - (-4 *2 (-13 (-1143) (-898) (-1079) (-29 *4)))))) + (|partial| -12 (-5 *3 (-1079)) + (-4 *4 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *1 (-505 *4 *2)) + (-4 *2 (-13 (-1104) (-864) (-1042) (-29 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-318)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-525 *5 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-308)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-504 *5 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-308)) (-5 *2 - (-2 (|:| |ir| (-534 (-361 *6))) (|:| |specpart| (-361 *6)) + (-2 (|:| |ir| (-513 (-343 *6))) (|:| |specpart| (-343 *6)) (|:| |polypart| *6))) - (-5 *1 (-525 *5 *6)) (-5 *3 (-361 *6))))) + (-5 *1 (-504 *5 *6)) (-5 *3 (-343 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-578 *4 *5)) - (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3259 *4) (|:| |sol?| (-85))) (-499) *4)) - (-4 *4 (-318)) (-4 *5 (-1183 *4)) (-5 *1 (-525 *4 *5))))) + (|partial| -12 (-5 *2 (-557 *4 *5)) + (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3120 *4) (|:| |sol?| (-83))) (-478) *4)) + (-4 *4 (-308)) (-4 *5 (-1144 *4)) (-5 *1 (-504 *4 *5))))) (((*1 *2 *2 *3 *4) (|partial| -12 - (-5 *3 (-1 (-3 (-2 (|:| -2237 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-318)) (-5 *1 (-525 *4 *2)) (-4 *2 (-1183 *4))))) + (-5 *3 (-1 (-3 (-2 (|:| -2122 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-308)) (-5 *1 (-504 *4 *2)) (-4 *2 (-1144 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-599 (-361 *7))) (-4 *7 (-1183 *6)) - (-5 *3 (-361 *7)) (-4 *6 (-318)) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-578 (-343 *7))) (-4 *7 (-1144 *6)) + (-5 *3 (-343 *7)) (-4 *6 (-308)) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-525 *6 *7))))) + (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-504 *6 *7))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) - (-5 *2 (-2 (|:| -2237 (-361 *6)) (|:| |coeff| (-361 *6)))) - (-5 *1 (-525 *5 *6)) (-5 *3 (-361 *6))))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-308)) + (-5 *2 (-2 (|:| -2122 (-343 *6)) (|:| |coeff| (-343 *6)))) + (-5 *1 (-504 *5 *6)) (-5 *3 (-343 *6))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3259 *7) (|:| |sol?| (-85))) (-499) *7)) - (-5 *6 (-599 (-361 *8))) (-4 *7 (-318)) (-4 *8 (-1183 *7)) (-5 *3 (-361 *8)) + (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3120 *7) (|:| |sol?| (-83))) (-478) *7)) + (-5 *6 (-578 (-343 *8))) (-4 *7 (-308)) (-4 *8 (-1144 *7)) (-5 *3 (-343 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-525 *7 *8))))) + (-5 *1 (-504 *7 *8))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-3 (-2 (|:| -2237 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-599 (-361 *8))) (-4 *7 (-318)) (-4 *8 (-1183 *7)) (-5 *3 (-361 *8)) + (-5 *5 (-1 (-3 (-2 (|:| -2122 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-578 (-343 *8))) (-4 *7 (-308)) (-4 *8 (-1144 *7)) (-5 *3 (-343 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-525 *7 *8))))) + (-5 *1 (-504 *7 *8))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3259 *6) (|:| |sol?| (-85))) (-499) *6)) - (-4 *6 (-318)) (-4 *7 (-1183 *6)) + (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3120 *6) (|:| |sol?| (-83))) (-478) *6)) + (-4 *6 (-308)) (-4 *7 (-1144 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-361 *7)) (|:| |a0| *6)) - (-2 (|:| -2237 (-361 *7)) (|:| |coeff| (-361 *7))) "failed")) - (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7))))) + (-3 (-2 (|:| |answer| (-343 *7)) (|:| |a0| *6)) + (-2 (|:| -2122 (-343 *7)) (|:| |coeff| (-343 *7))) "failed")) + (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2237 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-318)) (-4 *7 (-1183 *6)) + (-5 *5 (-1 (-3 (-2 (|:| -2122 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-308)) (-4 *7 (-1144 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-361 *7)) (|:| |a0| *6)) - (-2 (|:| -2237 (-361 *7)) (|:| |coeff| (-361 *7))) "failed")) - (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7))))) + (-3 (-2 (|:| |answer| (-343 *7)) (|:| |a0| *6)) + (-2 (|:| -2122 (-343 *7)) (|:| |coeff| (-343 *7))) "failed")) + (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-599 *6) "failed") (-499) *6 *6)) - (-4 *6 (-318)) (-4 *7 (-1183 *6)) - (-5 *2 (-2 (|:| |answer| (-534 (-361 *7))) (|:| |a0| *6))) - (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7))))) + (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-578 *6) "failed") (-478) *6 *6)) + (-4 *6 (-308)) (-4 *7 (-1144 *6)) + (-5 *2 (-2 (|:| |answer| (-513 (-343 *7))) (|:| |a0| *6))) + (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3259 *6) (|:| |sol?| (-85))) (-499) *6)) - (-4 *6 (-318)) (-4 *7 (-1183 *6)) - (-5 *2 (-2 (|:| |answer| (-534 (-361 *7))) (|:| |a0| *6))) - (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7))))) + (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3120 *6) (|:| |sol?| (-83))) (-478) *6)) + (-4 *6 (-308)) (-4 *7 (-1144 *6)) + (-5 *2 (-2 (|:| |answer| (-513 (-343 *7))) (|:| |a0| *6))) + (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2237 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-318)) (-4 *7 (-1183 *6)) - (-5 *2 (-2 (|:| |answer| (-534 (-361 *7))) (|:| |a0| *6))) - (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7))))) + (-5 *5 (-1 (-3 (-2 (|:| -2122 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-308)) (-4 *7 (-1144 *6)) + (-5 *2 (-2 (|:| |answer| (-513 (-343 *7))) (|:| |a0| *6))) + (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-534 *3) *3 (-1117))) + (-12 (-5 *5 (-1 (-513 *3) *3 (-1079))) (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1117))) - (-4 *3 (-238)) (-4 *3 (-585)) (-4 *3 (-978 *4)) (-4 *3 (-375 *7)) - (-5 *4 (-1117)) (-4 *7 (-569 (-825 (-499)))) (-4 *7 (-406)) - (-4 *7 (-821 (-499))) (-4 *7 (-1041)) (-5 *2 (-534 *3)) - (-5 *1 (-524 *7 *3))))) + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1079))) + (-4 *3 (-236)) (-4 *3 (-564)) (-4 *3 (-943 *4)) (-4 *3 (-357 *7)) + (-5 *4 (-1079)) (-4 *7 (-548 (-793 (-478)))) (-4 *7 (-385)) + (-4 *7 (-789 (-478))) (-4 *7 (-1005)) (-5 *2 (-513 *3)) + (-5 *1 (-503 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-406)) (-4 *4 (-1041)) (-5 *1 (-524 *4 *2)) - (-4 *2 (-238)) (-4 *2 (-375 *4))))) + (-12 (-5 *3 (-1079)) (-4 *4 (-385)) (-4 *4 (-1005)) (-5 *1 (-503 *4 *2)) + (-4 *2 (-236)) (-4 *2 (-357 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-4 *4 (-1041)) (-5 *1 (-524 *4 *2)) - (-4 *2 (-375 *4))))) + (-12 (-5 *3 (-1079)) (-4 *4 (-489)) (-4 *4 (-1005)) (-5 *1 (-503 *4 *2)) + (-4 *2 (-357 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *6)) (-5 *4 (-1117)) (-4 *6 (-375 *5)) (-4 *5 (-1041)) - (-5 *2 (-599 (-566 *6))) (-5 *1 (-524 *5 *6))))) + (-12 (-5 *3 (-578 *6)) (-5 *4 (-1079)) (-4 *6 (-357 *5)) (-4 *5 (-1005)) + (-5 *2 (-578 (-545 *6))) (-5 *1 (-503 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-599 (-566 *6))) (-5 *4 (-1117)) (-5 *2 (-566 *6)) - (-4 *6 (-375 *5)) (-4 *5 (-1041)) (-5 *1 (-524 *5 *6))))) + (-12 (-5 *3 (-578 (-545 *6))) (-5 *4 (-1079)) (-5 *2 (-545 *6)) + (-4 *6 (-357 *5)) (-4 *5 (-1005)) (-5 *1 (-503 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 (-566 *5))) (-4 *4 (-1041)) (-5 *2 (-566 *5)) - (-5 *1 (-524 *4 *5)) (-4 *5 (-375 *4))))) + (-12 (-5 *3 (-578 (-545 *5))) (-4 *4 (-1005)) (-5 *2 (-545 *5)) + (-5 *1 (-503 *4 *5)) (-4 *5 (-357 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-599 (-566 *5))) (-5 *3 (-1117)) (-4 *5 (-375 *4)) - (-4 *4 (-1041)) (-5 *1 (-524 *4 *5))))) + (-12 (-5 *2 (-578 (-545 *5))) (-5 *3 (-1079)) (-4 *5 (-357 *4)) + (-4 *4 (-1005)) (-5 *1 (-503 *4 *5))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)) (-120))) - (-5 *2 (-2 (|:| -2237 (-361 (-884 *5))) (|:| |coeff| (-361 (-884 *5))))) - (-5 *1 (-521 *5)) (-5 *3 (-361 (-884 *5)))))) + (|partial| -12 (-5 *4 (-1079)) (-4 *5 (-13 (-489) (-943 (-478)) (-118))) + (-5 *2 (-2 (|:| -2122 (-343 (-850 *5))) (|:| |coeff| (-343 (-850 *5))))) + (-5 *1 (-500 *5)) (-5 *3 (-343 (-850 *5)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-599 (-361 (-884 *6)))) - (-5 *3 (-361 (-884 *6))) (-4 *6 (-13 (-510) (-978 (-499)) (-120))) + (|partial| -12 (-5 *4 (-1079)) (-5 *5 (-578 (-343 (-850 *6)))) + (-5 *3 (-343 (-850 *6))) (-4 *6 (-13 (-489) (-943 (-478)) (-118))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-521 *6))))) + (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-500 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-361 (-884 *4))) (-5 *3 (-1117)) - (-4 *4 (-13 (-510) (-978 (-499)) (-120))) (-5 *1 (-521 *4))))) + (|partial| -12 (-5 *2 (-343 (-850 *4))) (-5 *3 (-1079)) + (-4 *4 (-13 (-489) (-943 (-478)) (-118))) (-5 *1 (-500 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) - (-5 *2 (-534 *3)) (-5 *1 (-382 *5 *3)) (-4 *3 (-13 (-1143) (-29 *5))))) + (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) + (-5 *2 (-513 *3)) (-5 *1 (-364 *5 *3)) (-4 *3 (-13 (-1104) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)) (-120))) - (-5 *2 (-534 (-361 (-884 *5)))) (-5 *1 (-521 *5)) (-5 *3 (-361 (-884 *5)))))) + (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-489) (-943 (-478)) (-118))) + (-5 *2 (-513 (-343 (-850 *5)))) (-5 *1 (-500 *5)) (-5 *3 (-343 (-850 *5)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-499)) (-5 *1 (-520 *3)) (-4 *3 (-978 *2))))) + (|partial| -12 (-5 *2 (-478)) (-5 *1 (-499 *3)) (-4 *3 (-943 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-599 (-361 *6))) (-5 *3 (-361 *6)) (-4 *6 (-1183 *5)) - (-4 *5 (-13 (-318) (-120) (-978 (-499)))) + (|partial| -12 (-5 *4 (-578 (-343 *6))) (-5 *3 (-343 *6)) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-308) (-118) (-943 (-478)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-519 *5 *6))))) + (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-498 *5 *6))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-318) (-120) (-978 (-499)))) (-4 *5 (-1183 *4)) - (-5 *2 (-2 (|:| -2237 (-361 *5)) (|:| |coeff| (-361 *5)))) - (-5 *1 (-519 *4 *5)) (-5 *3 (-361 *5))))) + (|partial| -12 (-4 *4 (-13 (-308) (-118) (-943 (-478)))) (-4 *5 (-1144 *4)) + (-5 *2 (-2 (|:| -2122 (-343 *5)) (|:| |coeff| (-343 *5)))) + (-5 *1 (-498 *4 *5)) (-5 *3 (-343 *5))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-361 *4)) (-4 *4 (-1183 *3)) - (-4 *3 (-13 (-318) (-120) (-978 (-499)))) (-5 *1 (-519 *3 *4))))) + (|partial| -12 (-5 *2 (-343 *4)) (-4 *4 (-1144 *3)) + (-4 *3 (-13 (-308) (-118) (-943 (-478)))) (-5 *1 (-498 *3 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-569 (-825 (-499)))) - (-4 *5 (-821 (-499))) (-4 *5 (-13 (-978 (-499)) (-406) (-596 (-499)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-518 *5 *3)) - (-4 *3 (-585)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) + (|partial| -12 (-5 *4 (-1079)) (-4 *5 (-548 (-793 (-478)))) + (-4 *5 (-789 (-478))) (-4 *5 (-13 (-943 (-478)) (-385) (-575 (-478)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-497 *5 *3)) + (-4 *3 (-564)) (-4 *3 (-13 (-27) (-1104) (-357 *5))))) ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1117)) (-5 *4 (-775 *2)) (-4 *2 (-1079)) - (-4 *2 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-569 (-825 (-499)))) - (-4 *5 (-821 (-499))) (-4 *5 (-13 (-978 (-499)) (-406) (-596 (-499)))) - (-5 *1 (-518 *5 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-569 (-825 (-499)))) - (-4 *5 (-821 (-499))) (-4 *5 (-13 (-978 (-499)) (-406) (-596 (-499)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-518 *5 *3)) - (-4 *3 (-585)) (-4 *3 (-13 (-27) (-1143) (-375 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-978 (-499)) (-406) (-596 (-499)))) - (-5 *2 (-2 (|:| -2444 *3) (|:| |nconst| *3))) (-5 *1 (-518 *5 *3)) - (-4 *3 (-13 (-27) (-1143) (-375 *5)))))) + (|partial| -12 (-5 *3 (-1079)) (-5 *4 (-743 *2)) (-4 *2 (-1042)) + (-4 *2 (-13 (-27) (-1104) (-357 *5))) (-4 *5 (-548 (-793 (-478)))) + (-4 *5 (-789 (-478))) (-4 *5 (-13 (-943 (-478)) (-385) (-575 (-478)))) + (-5 *1 (-497 *5 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1079)) (-4 *5 (-548 (-793 (-478)))) + (-4 *5 (-789 (-478))) (-4 *5 (-13 (-943 (-478)) (-385) (-575 (-478)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-497 *5 *3)) + (-4 *3 (-564)) (-4 *3 (-13 (-27) (-1104) (-357 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-943 (-478)) (-385) (-575 (-478)))) + (-5 *2 (-2 (|:| -2324 *3) (|:| |nconst| *3))) (-5 *1 (-497 *5 *3)) + (-4 *3 (-13 (-27) (-1104) (-357 *5)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-566 *4)) (-5 *6 (-1117)) (-4 *4 (-13 (-375 *7) (-27) (-1143))) - (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2113 (-599 *4)))) - (-5 *1 (-517 *7 *4 *3)) (-4 *3 (-616 *4)) (-4 *3 (-1041))))) + (-12 (-5 *5 (-545 *4)) (-5 *6 (-1079)) (-4 *4 (-13 (-357 *7) (-27) (-1104))) + (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1998 (-578 *4)))) + (-5 *1 (-496 *7 *4 *3)) (-4 *3 (-595 *4)) (-4 *3 (-1005))))) (((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-566 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1117))) - (-4 *2 (-13 (-375 *5) (-27) (-1143))) - (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) - (-5 *1 (-517 *5 *2 *6)) (-4 *6 (-1041))))) + (|partial| -12 (-5 *3 (-545 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1079))) + (-4 *2 (-13 (-357 *5) (-27) (-1104))) + (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) + (-5 *1 (-496 *5 *2 *6)) (-4 *6 (-1005))))) (((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-599 *3)) - (-4 *3 (-13 (-375 *6) (-27) (-1143))) - (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) + (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-578 *3)) + (-4 *3 (-13 (-357 *6) (-27) (-1104))) + (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1041))))) + (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-496 *6 *3 *7)) (-4 *7 (-1005))))) (((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-566 *3)) (-4 *3 (-13 (-375 *5) (-27) (-1143))) - (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) - (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-517 *5 *3 *6)) - (-4 *6 (-1041))))) + (|partial| -12 (-5 *4 (-545 *3)) (-4 *3 (-13 (-357 *5) (-27) (-1104))) + (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) + (-5 *2 (-2 (|:| -2122 *3) (|:| |coeff| *3))) (-5 *1 (-496 *5 *3 *6)) + (-4 *6 (-1005))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-566 *3)) (-4 *3 (-13 (-375 *5) (-27) (-1143))) - (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-534 *3)) - (-5 *1 (-517 *5 *3 *6)) (-4 *6 (-1041))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) - (-4 *7 (-1183 (-361 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2236 *3))) - (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-297 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) - (-5 *2 - (-2 (|:| |answer| (-361 *6)) (|:| -2236 (-361 *6)) - (|:| |specpart| (-361 *6)) (|:| |polypart| *6))) - (-5 *1 (-516 *5 *6)) (-5 *3 (-361 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-714)) (-5 *1 (-514))))) -(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514))))) -(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514))))) -(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514))))) -(((*1 *2 *3) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-514)) (-5 *3 (-499))))) -(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514))))) -(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514))))) -(((*1 *2 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-514)) (-5 *3 (-499))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-599 *2)) (-5 *1 (-153 *2)) (-4 *2 (-261)))) + (-12 (-5 *4 (-545 *3)) (-4 *3 (-13 (-357 *5) (-27) (-1104))) + (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-513 *3)) + (-5 *1 (-496 *5 *3 *6)) (-4 *6 (-1005))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-308)) + (-4 *7 (-1144 (-343 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2121 *3))) + (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-287 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-308)) + (-5 *2 + (-2 (|:| |answer| (-343 *6)) (|:| -2121 (-343 *6)) + (|:| |specpart| (-343 *6)) (|:| |polypart| *6))) + (-5 *1 (-495 *5 *6)) (-5 *3 (-343 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-478)) (-5 *3 (-687)) (-5 *1 (-493))))) +(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493))))) +(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493))))) +(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493))))) +(((*1 *2 *3) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-493)) (-5 *3 (-478))))) +(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493))))) +(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493))))) +(((*1 *2 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-493)) (-5 *3 (-478))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-151 *2)) (-4 *2 (-254)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-599 (-599 *4))) (-5 *2 (-599 *4)) (-4 *4 (-261)) - (-5 *1 (-153 *4)))) + (-12 (-5 *3 (-578 (-578 *4))) (-5 *2 (-578 *4)) (-4 *4 (-254)) + (-5 *1 (-151 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-599 *8)) + (-12 (-5 *3 (-578 *8)) (-5 *4 - (-599 - (-2 (|:| -2113 (-647 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-647 *7))))) - (-5 *5 (-714)) (-4 *8 (-1183 *7)) (-4 *7 (-1183 *6)) (-4 *6 (-305)) - (-5 *2 - (-2 (|:| -2113 (-647 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-647 *7)))) - (-5 *1 (-452 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514))))) + (-578 + (-2 (|:| -1998 (-625 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-625 *7))))) + (-5 *5 (-687)) (-4 *8 (-1144 *7)) (-4 *7 (-1144 *6)) (-4 *6 (-295)) + (-5 *2 + (-2 (|:| -1998 (-625 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-625 *7)))) + (-5 *1 (-431 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-566 *4)) (-5 *6 (-1111 *4)) - (-4 *4 (-13 (-375 *7) (-27) (-1143))) - (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2113 (-599 *4)))) - (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-616 *4)) (-4 *3 (-1041)))) + (-12 (-5 *5 (-545 *4)) (-5 *6 (-1074 *4)) + (-4 *4 (-13 (-357 *7) (-27) (-1104))) + (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -1998 (-578 *4)))) + (-5 *1 (-492 *7 *4 *3)) (-4 *3 (-595 *4)) (-4 *3 (-1005)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-566 *4)) (-5 *6 (-361 (-1111 *4))) - (-4 *4 (-13 (-375 *7) (-27) (-1143))) - (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2113 (-599 *4)))) - (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-616 *4)) (-4 *3 (-1041))))) + (-12 (-5 *5 (-545 *4)) (-5 *6 (-343 (-1074 *4))) + (-4 *4 (-13 (-357 *7) (-27) (-1104))) + (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -1998 (-578 *4)))) + (-5 *1 (-492 *7 *4 *3)) (-4 *3 (-595 *4)) (-4 *3 (-1005))))) (((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-566 *2)) - (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1117))) (-5 *5 (-1111 *2)) - (-4 *2 (-13 (-375 *6) (-27) (-1143))) - (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) - (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1041)))) + (|partial| -12 (-5 *3 (-545 *2)) + (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1079))) (-5 *5 (-1074 *2)) + (-4 *2 (-13 (-357 *6) (-27) (-1104))) + (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) + (-5 *1 (-492 *6 *2 *7)) (-4 *7 (-1005)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-566 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1117))) - (-5 *5 (-361 (-1111 *2))) (-4 *2 (-13 (-375 *6) (-27) (-1143))) - (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) - (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1041))))) + (|partial| -12 (-5 *3 (-545 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1079))) + (-5 *5 (-343 (-1074 *2))) (-4 *2 (-13 (-357 *6) (-27) (-1104))) + (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) + (-5 *1 (-492 *6 *2 *7)) (-4 *7 (-1005))))) (((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-599 *3)) (-5 *6 (-1111 *3)) - (-4 *3 (-13 (-375 *7) (-27) (-1143))) - (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) + (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-578 *3)) (-5 *6 (-1074 *3)) + (-4 *3 (-13 (-357 *7) (-27) (-1104))) + (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1041)))) + (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-492 *7 *3 *8)) (-4 *8 (-1005)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-599 *3)) (-5 *6 (-361 (-1111 *3))) - (-4 *3 (-13 (-375 *7) (-27) (-1143))) - (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) + (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-578 *3)) (-5 *6 (-343 (-1074 *3))) + (-4 *3 (-13 (-357 *7) (-27) (-1104))) + (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1041))))) + (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-492 *7 *3 *8)) (-4 *8 (-1005))))) (((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-1111 *3)) - (-4 *3 (-13 (-375 *6) (-27) (-1143))) - (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) - (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) - (-4 *7 (-1041)))) + (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-1074 *3)) + (-4 *3 (-13 (-357 *6) (-27) (-1104))) + (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) + (-5 *2 (-2 (|:| -2122 *3) (|:| |coeff| *3))) (-5 *1 (-492 *6 *3 *7)) + (-4 *7 (-1005)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-361 (-1111 *3))) - (-4 *3 (-13 (-375 *6) (-27) (-1143))) - (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) - (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) - (-4 *7 (-1041))))) + (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-343 (-1074 *3))) + (-4 *3 (-13 (-357 *6) (-27) (-1104))) + (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) + (-5 *2 (-2 (|:| -2122 *3) (|:| |coeff| *3))) (-5 *1 (-492 *6 *3 *7)) + (-4 *7 (-1005))))) (((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-566 *3)) (-5 *5 (-1111 *3)) - (-4 *3 (-13 (-375 *6) (-27) (-1143))) - (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-534 *3)) - (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1041)))) + (-12 (-5 *4 (-545 *3)) (-5 *5 (-1074 *3)) + (-4 *3 (-13 (-357 *6) (-27) (-1104))) + (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-513 *3)) + (-5 *1 (-492 *6 *3 *7)) (-4 *7 (-1005)))) ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-566 *3)) (-5 *5 (-361 (-1111 *3))) - (-4 *3 (-13 (-375 *6) (-27) (-1143))) - (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-534 *3)) - (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1041))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-512 *2)) (-4 *2 (-498))))) -(((*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-512 *3)) (-4 *3 (-498))))) + (-12 (-5 *4 (-545 *3)) (-5 *5 (-343 (-1074 *3))) + (-4 *3 (-13 (-357 *6) (-27) (-1104))) + (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-513 *3)) + (-5 *1 (-492 *6 *3 *7)) (-4 *7 (-1005))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-491 *2)) (-4 *2 (-477))))) +(((*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-491 *3)) (-4 *3 (-477))))) (((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1117)) (-5 *6 (-599 (-566 *3))) (-5 *5 (-566 *3)) - (-4 *3 (-13 (-27) (-1143) (-375 *7))) - (-4 *7 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) - (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-511 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) - (-5 *2 (-534 *3)) (-5 *1 (-511 *5 *3)) - (-4 *3 (-13 (-27) (-1143) (-375 *5)))))) + (|partial| -12 (-5 *4 (-1079)) (-5 *6 (-578 (-545 *3))) (-5 *5 (-545 *3)) + (-4 *3 (-13 (-27) (-1104) (-357 *7))) + (-4 *7 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) + (-5 *2 (-2 (|:| -2122 *3) (|:| |coeff| *3))) (-5 *1 (-490 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) + (-5 *2 (-513 *3)) (-5 *1 (-490 *5 *3)) + (-4 *3 (-13 (-27) (-1104) (-357 *5)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1117)) - (-4 *4 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) (-5 *1 (-511 *4 *2)) - (-4 *2 (-13 (-27) (-1143) (-375 *4)))))) + (|partial| -12 (-5 *3 (-1079)) + (-4 *4 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) (-5 *1 (-490 *4 *2)) + (-4 *2 (-13 (-27) (-1104) (-357 *4)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-599 *3)) - (-4 *3 (-13 (-27) (-1143) (-375 *6))) - (-4 *6 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) + (|partial| -12 (-5 *4 (-1079)) (-5 *5 (-578 *3)) + (-4 *3 (-13 (-27) (-1104) (-357 *6))) + (-4 *6 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-511 *6 *3))))) + (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-490 *6 *3))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1117)) - (-4 *5 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) - (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-511 *5 *3)) - (-4 *3 (-13 (-27) (-1143) (-375 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1870 *1) (|:| -4132 *1) (|:| |associate| *1))) - (-4 *1 (-510))))) -(((*1 *1 *1) (-4 *1 (-510)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-510)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-85))))) + (|partial| -12 (-5 *4 (-1079)) + (-4 *5 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) + (-5 *2 (-2 (|:| -2122 *3) (|:| |coeff| *3))) (-5 *1 (-490 *5 *3)) + (-4 *3 (-13 (-27) (-1104) (-357 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -1759 *1) (|:| -3966 *1) (|:| |associate| *1))) + (-4 *1 (-489))))) +(((*1 *1 *1) (-4 *1 (-489)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-489)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-489)) (-5 *2 (-83))))) (((*1 *1 *2) - (-12 (-5 *2 (-361 (-499))) (-4 *1 (-508 *3)) (-4 *3 (-13 (-358) (-1143))))) - ((*1 *1 *2) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143)))))) -(((*1 *2 *1) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143)))))) + (-12 (-5 *2 (-343 (-478))) (-4 *1 (-487 *3)) (-4 *3 (-13 (-340) (-1104))))) + ((*1 *1 *2) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1104))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1104)))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1104)))))) +(((*1 *2 *1) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1104)))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-508 *3)) (-4 *3 (-13 (-358) (-1143))) (-5 *2 (-85))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-499)) (-5 *2 (-85)) (-5 *1 (-507))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-507))))) -(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-507))))) + (-12 (-4 *1 (-487 *3)) (-4 *3 (-13 (-340) (-1104))) (-5 *2 (-83))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-478)) (-5 *2 (-83)) (-5 *1 (-486))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-486))))) +(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-486))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1183 *5)) - (-4 *5 (-13 (-27) (-375 *4))) (-4 *4 (-13 (-510) (-978 (-499)))) - (-4 *7 (-1183 (-361 *6))) (-5 *1 (-506 *4 *5 *6 *7 *2)) - (-4 *2 (-297 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1183 *6)) (-4 *6 (-13 (-27) (-375 *5))) - (-4 *5 (-13 (-510) (-978 (-499)))) (-4 *8 (-1183 (-361 *7))) - (-5 *2 (-534 *3)) (-5 *1 (-506 *5 *6 *7 *8 *3)) (-4 *3 (-297 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1183 *6)) (-4 *6 (-13 (-27) (-375 *5))) - (-4 *5 (-13 (-510) (-978 (-499)))) (-4 *8 (-1183 (-361 *7))) - (-5 *2 (-534 *3)) (-5 *1 (-506 *5 *6 *7 *8 *3)) (-4 *3 (-297 *6 *7 *8))))) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-27) (-357 *4))) (-4 *4 (-13 (-489) (-943 (-478)))) + (-4 *7 (-1144 (-343 *6))) (-5 *1 (-485 *4 *5 *6 *7 *2)) + (-4 *2 (-287 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1144 *6)) (-4 *6 (-13 (-27) (-357 *5))) + (-4 *5 (-13 (-489) (-943 (-478)))) (-4 *8 (-1144 (-343 *7))) + (-5 *2 (-513 *3)) (-5 *1 (-485 *5 *6 *7 *8 *3)) (-4 *3 (-287 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1144 *6)) (-4 *6 (-13 (-27) (-357 *5))) + (-4 *5 (-13 (-489) (-943 (-478)))) (-4 *8 (-1144 (-343 *7))) + (-5 *2 (-513 *3)) (-5 *1 (-485 *5 *6 *7 *8 *3)) (-4 *3 (-287 *6 *7 *8))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-566 *3)) (-5 *5 (-1 (-1111 *3) (-1111 *3))) - (-4 *3 (-13 (-27) (-375 *6))) (-4 *6 (-510)) (-5 *2 (-534 *3)) - (-5 *1 (-505 *6 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-498)) (-5 *2 (-85))))) -(((*1 *1 *1 *1) (-4 *1 (-498)))) -(((*1 *1 *1 *1) (-4 *1 (-498)))) -(((*1 *1 *1) (-4 *1 (-498)))) -(((*1 *1 *1) (-4 *1 (-498)))) -(((*1 *1 *1) (-4 *1 (-498)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-498)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-498)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-498)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-498)))) -(((*1 *1 *1 *1) (-4 *1 (-498)))) + (-12 (-5 *4 (-545 *3)) (-5 *5 (-1 (-1074 *3) (-1074 *3))) + (-4 *3 (-13 (-27) (-357 *6))) (-4 *6 (-489)) (-5 *2 (-513 *3)) + (-5 *1 (-484 *6 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-477)) (-5 *2 (-83))))) +(((*1 *1 *1 *1) (-4 *1 (-477)))) +(((*1 *1 *1 *1) (-4 *1 (-477)))) +(((*1 *1 *1) (-4 *1 (-477)))) +(((*1 *1 *1) (-4 *1 (-477)))) +(((*1 *1 *1) (-4 *1 (-477)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-477)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-477)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-477)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-477)))) +(((*1 *1 *1 *1) (-4 *1 (-477)))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-499) #1="failed") *5)) (-4 *5 (-989)) - (-5 *2 (-499)) (-5 *1 (-496 *5 *3)) (-4 *3 (-1183 *5)))) + (|partial| -12 (-5 *4 (-1 (-3 (-478) #1="failed") *5)) (-4 *5 (-954)) + (-5 *2 (-478)) (-5 *1 (-475 *5 *3)) (-4 *3 (-1144 *5)))) ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-499) #1#) *4)) (-4 *4 (-989)) (-5 *2 (-499)) - (-5 *1 (-496 *4 *3)) (-4 *3 (-1183 *4)))) + (|partial| -12 (-5 *5 (-1 (-3 (-478) #1#) *4)) (-4 *4 (-954)) (-5 *2 (-478)) + (-5 *1 (-475 *4 *3)) (-4 *3 (-1144 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-499) #1#) *4)) (-4 *4 (-989)) (-5 *2 (-499)) - (-5 *1 (-496 *4 *3)) (-4 *3 (-1183 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-261)) (-5 *1 (-409 *3 *2)) (-4 *2 (-1183 *3)))) - ((*1 *2 *2 *3) (-12 (-4 *3 (-261)) (-5 *1 (-414 *3 *2)) (-4 *2 (-1183 *3)))) + (|partial| -12 (-5 *5 (-1 (-3 (-478) #1#) *4)) (-4 *4 (-954)) (-5 *2 (-478)) + (-5 *1 (-475 *4 *3)) (-4 *3 (-1144 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-254)) (-5 *1 (-388 *3 *2)) (-4 *2 (-1144 *3)))) + ((*1 *2 *2 *3) (-12 (-4 *3 (-254)) (-5 *1 (-393 *3 *2)) (-4 *2 (-1144 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-261)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-714))) - (-5 *1 (-492 *3 *2 *4 *5)) (-4 *2 (-1183 *3))))) + (-12 (-4 *3 (-254)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-687))) + (-5 *1 (-471 *3 *2 *4 *5)) (-4 *2 (-1144 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-1183 *4)) (-5 *1 (-492 *4 *2 *5 *6)) - (-4 *4 (-261)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-714)))))) + (-12 (-5 *3 (-578 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-471 *4 *2 *5 *6)) + (-4 *4 (-254)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-687)))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-1183 *4)) (-5 *1 (-492 *4 *2 *5 *6)) - (-4 *4 (-261)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-714)))))) + (-12 (-5 *3 (-578 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-471 *4 *2 *5 *6)) + (-4 *4 (-254)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-687)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *6)) (-5 *4 (-599 (-1117))) (-4 *6 (-318)) - (-5 *2 (-599 (-247 (-884 *6)))) (-5 *1 (-491 *5 *6 *7)) (-4 *5 (-406)) - (-4 *7 (-13 (-318) (-780)))))) + (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-1079))) (-4 *6 (-308)) + (-5 *2 (-578 (-245 (-850 *6)))) (-5 *1 (-470 *5 *6 *7)) (-4 *5 (-385)) + (-4 *7 (-13 (-308) (-748)))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-599 (-884 *6))) (-5 *4 (-599 (-1117))) (-4 *6 (-406)) - (-5 *2 (-599 (-599 *7))) (-5 *1 (-491 *6 *7 *5)) (-4 *7 (-318)) - (-4 *5 (-13 (-318) (-780)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1111 *5)) (-4 *5 (-406)) (-5 *2 (-599 *6)) - (-5 *1 (-491 *5 *6 *4)) (-4 *6 (-318)) (-4 *4 (-13 (-318) (-780))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-884 *5)) (-4 *5 (-406)) (-5 *2 (-599 *6)) - (-5 *1 (-491 *5 *6 *4)) (-4 *6 (-318)) (-4 *4 (-13 (-318) (-780)))))) -(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-488)))) - ((*1 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-489 *2)) (-4 *2 (-1157))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-5 *2 (-488)) (-5 *1 (-489 *4)) (-4 *4 (-1157))))) -(((*1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-79)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-488))) (-5 *1 (-488))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-488))))) -(((*1 *1 *1) (-5 *1 (-488)))) -(((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-488))))) -(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-488))))) -(((*1 *2 *3) (-12 (-5 *3 (-599 (-488))) (-5 *2 (-1117)) (-5 *1 (-488))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-488))) (-5 *1 (-488))))) + (-12 (-5 *3 (-578 (-850 *6))) (-5 *4 (-578 (-1079))) (-4 *6 (-385)) + (-5 *2 (-578 (-578 *7))) (-5 *1 (-470 *6 *7 *5)) (-4 *7 (-308)) + (-4 *5 (-13 (-308) (-748)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1074 *5)) (-4 *5 (-385)) (-5 *2 (-578 *6)) + (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-308)) (-4 *4 (-13 (-308) (-748))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-850 *5)) (-4 *5 (-385)) (-5 *2 (-578 *6)) + (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-308)) (-4 *4 (-13 (-308) (-748)))))) +(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-467)))) + ((*1 *2 *3) (-12 (-5 *3 (-467)) (-5 *1 (-468 *2)) (-4 *2 (-1118))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1079)) (-5 *2 (-467)) (-5 *1 (-468 *4)) (-4 *4 (-1118))))) +(((*1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-77)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-467))) (-5 *1 (-467))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-1079))) (-5 *1 (-467))))) +(((*1 *1 *1) (-5 *1 (-467)))) +(((*1 *2 *1) (-12 (-5 *2 (-1062)) (-5 *1 (-467))))) +(((*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-467))))) +(((*1 *2 *3) (-12 (-5 *3 (-578 (-467))) (-5 *2 (-1079)) (-5 *1 (-467))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1079)) (-5 *3 (-578 (-467))) (-5 *1 (-467))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-647 *6)) (-5 *5 (-1 (-359 (-1111 *6)) (-1111 *6))) - (-4 *6 (-318)) + (-12 (-5 *3 (-625 *6)) (-5 *5 (-1 (-341 (-1074 *6)) (-1074 *6))) + (-4 *6 (-308)) (-5 *2 - (-599 - (-2 (|:| |outval| *7) (|:| |outmult| (-499)) - (|:| |outvect| (-599 (-647 *7)))))) - (-5 *1 (-485 *6 *7 *4)) (-4 *7 (-318)) (-4 *4 (-13 (-318) (-780)))))) + (-578 + (-2 (|:| |outval| *7) (|:| |outmult| (-478)) + (|:| |outvect| (-578 (-625 *7)))))) + (-5 *1 (-464 *6 *7 *4)) (-4 *7 (-308)) (-4 *4 (-13 (-308) (-748)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1111 *5)) (-4 *5 (-318)) (-5 *2 (-599 *6)) - (-5 *1 (-485 *5 *6 *4)) (-4 *6 (-318)) (-4 *4 (-13 (-318) (-780)))))) + (-12 (-5 *3 (-1074 *5)) (-4 *5 (-308)) (-5 *2 (-578 *6)) + (-5 *1 (-464 *5 *6 *4)) (-4 *6 (-308)) (-4 *4 (-13 (-308) (-748)))))) (((*1 *2 *3) - (-12 (-5 *3 (-647 *4)) (-4 *4 (-318)) (-5 *2 (-1111 *4)) - (-5 *1 (-485 *4 *5 *6)) (-4 *5 (-318)) (-4 *6 (-13 (-318) (-780)))))) + (-12 (-5 *3 (-625 *4)) (-4 *4 (-308)) (-5 *2 (-1074 *4)) + (-5 *1 (-464 *4 *5 *6)) (-4 *5 (-308)) (-4 *6 (-13 (-308) (-748)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-483 *3)) (-4 *3 (-13 (-684) (-25)))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-462 *3)) (-4 *3 (-13 (-658) (-25)))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-483 *3)) (-4 *3 (-13 (-684) (-25)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-482)))) - ((*1 *1 *2) (-12 (-5 *2 (-344)) (-5 *1 (-482))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-482))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-482))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-462 *3)) (-4 *3 (-13 (-658) (-25)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-461)))) + ((*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-461))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-461))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-461))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-857)) (-4 *4 (-323)) (-4 *4 (-318)) (-5 *2 (-1111 *1)) - (-4 *1 (-283 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-1111 *3)))) + (-12 (-5 *3 (-823)) (-4 *4 (-313)) (-4 *4 (-308)) (-5 *2 (-1074 *1)) + (-4 *1 (-276 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-1074 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-146)) (-4 *3 (-318)) (-4 *2 (-1183 *3)))) + (-12 (-4 *1 (-315 *3 *2)) (-4 *3 (-144)) (-4 *3 (-308)) (-4 *2 (-1144 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1207 *4)) (-4 *4 (-305)) (-5 *2 (-1111 *4)) (-5 *1 (-481 *4))))) -(((*1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-323)) (-4 *2 (-318)))) + (-12 (-5 *3 (-1168 *4)) (-4 *4 (-295)) (-5 *2 (-1074 *4)) (-5 *1 (-460 *4))))) +(((*1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-313)) (-4 *2 (-308)))) ((*1 *2 *3) - (-12 (-5 *3 (-857)) (-5 *2 (-1207 *4)) (-5 *1 (-481 *4)) (-4 *4 (-305))))) + (-12 (-5 *3 (-823)) (-5 *2 (-1168 *4)) (-5 *1 (-460 *4)) (-4 *4 (-295))))) (((*1 *2 *2) - (-12 (-5 *2 (-1207 *4)) (-4 *4 (-372 *3)) (-4 *3 (-261)) (-4 *3 (-510)) + (-12 (-5 *2 (-1168 *4)) (-4 *4 (-354 *3)) (-4 *3 (-254)) (-4 *3 (-489)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-857)) (-4 *4 (-318)) (-5 *2 (-1207 *1)) (-4 *1 (-283 *4)))) - ((*1 *2) (-12 (-4 *3 (-318)) (-5 *2 (-1207 *1)) (-4 *1 (-283 *3)))) + (-12 (-5 *3 (-823)) (-4 *4 (-308)) (-5 *2 (-1168 *1)) (-4 *1 (-276 *4)))) + ((*1 *2) (-12 (-4 *3 (-308)) (-5 *2 (-1168 *1)) (-4 *1 (-276 *3)))) ((*1 *2) - (-12 (-4 *3 (-146)) (-4 *4 (-1183 *3)) (-5 *2 (-1207 *1)) - (-4 *1 (-364 *3 *4)))) + (-12 (-4 *3 (-144)) (-4 *4 (-1144 *3)) (-5 *2 (-1168 *1)) + (-4 *1 (-346 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-261)) (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-5 *2 (-1207 *6)) - (-5 *1 (-367 *3 *4 *5 *6)) (-4 *6 (-13 (-364 *4 *5) (-978 *4))))) + (-12 (-4 *3 (-254)) (-4 *4 (-897 *3)) (-4 *5 (-1144 *4)) (-5 *2 (-1168 *6)) + (-5 *1 (-349 *3 *4 *5 *6)) (-4 *6 (-13 (-346 *4 *5) (-943 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-261)) (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-5 *2 (-1207 *6)) - (-5 *1 (-369 *3 *4 *5 *6 *7)) (-4 *6 (-364 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1207 *1)) (-4 *1 (-372 *3)))) + (-12 (-4 *3 (-254)) (-4 *4 (-897 *3)) (-4 *5 (-1144 *4)) (-5 *2 (-1168 *6)) + (-5 *1 (-351 *3 *4 *5 *6 *7)) (-4 *6 (-346 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-144)) (-5 *2 (-1168 *1)) (-4 *1 (-354 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-857)) (-5 *2 (-1207 (-1207 *4))) (-5 *1 (-481 *4)) - (-4 *4 (-305))))) + (-12 (-5 *3 (-823)) (-5 *2 (-1168 (-1168 *4))) (-5 *1 (-460 *4)) + (-4 *4 (-295))))) (((*1 *2 *1) - (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)) (-5 *2 (-85)))) + (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)) (-5 *2 (-83)))) ((*1 *2 *3) - (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) (-5 *2 (-85)) (-5 *1 (-311 *4)))) + (-12 (-5 *3 (-1074 *4)) (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-301 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1207 *4)) (-4 *4 (-305)) (-5 *2 (-85)) (-5 *1 (-481 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-323)) (-5 *2 (-857)))) + (-12 (-5 *3 (-1168 *4)) (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-460 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-823)))) ((*1 *2 *3) - (-12 (-5 *3 (-1207 *4)) (-4 *4 (-305)) (-5 *2 (-857)) (-5 *1 (-481 *4))))) + (-12 (-5 *3 (-1168 *4)) (-4 *4 (-295)) (-5 *2 (-823)) (-5 *1 (-460 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1207 *4)) (-5 *3 (-499)) (-4 *4 (-305)) (-5 *1 (-481 *4))))) + (-12 (-5 *2 (-1168 *4)) (-5 *3 (-478)) (-4 *4 (-295)) (-5 *1 (-460 *4))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1207 *4)) (-5 *3 (-1060)) (-4 *4 (-305)) (-5 *1 (-481 *4))))) + (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1023)) (-4 *4 (-295)) (-5 *1 (-460 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1207 *4)) (-5 *3 (-714)) (-4 *4 (-305)) (-5 *1 (-481 *4))))) + (-12 (-5 *2 (-1168 *4)) (-5 *3 (-687)) (-4 *4 (-295)) (-5 *1 (-460 *4))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1207 *5)) (-5 *3 (-714)) (-5 *4 (-1060)) (-4 *5 (-305)) - (-5 *1 (-481 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-714)) (-5 *2 (-1111 *4)) (-5 *1 (-481 *4)) (-4 *4 (-305))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1207 *4)) (-4 *4 (-305)) (-5 *2 (-1111 *4)) (-5 *1 (-481 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) - (-4 *4 (-305)) (-5 *2 (-1213)) (-5 *1 (-481 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-101)))))) -(((*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-503)))))) -(((*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-1166)))))) -(((*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-500)))))) -(((*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-1163)))))) -(((*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-501)))))) -(((*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-1164)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-480)) (-5 *3 (-102)) (-5 *2 (-714))))) -(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-478))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-477))))) -(((*1 *2 *2) - (-12 (-4 *3 (-318)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) - (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-471))))) -(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-471))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-281 *3)))) + (-12 (-5 *2 (-1168 *5)) (-5 *3 (-687)) (-5 *4 (-1023)) (-4 *5 (-295)) + (-5 *1 (-460 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-687)) (-5 *2 (-1074 *4)) (-5 *1 (-460 *4)) (-4 *4 (-295))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168 *4)) (-4 *4 (-295)) (-5 *2 (-1074 *4)) (-5 *1 (-460 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1168 (-578 (-2 (|:| -3386 *4) (|:| -2386 (-1023)))))) + (-4 *4 (-295)) (-5 *2 (-1174)) (-5 *1 (-460 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-99)))))) +(((*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-482)))))) +(((*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-1127)))))) +(((*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-479)))))) +(((*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-1124)))))) +(((*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-480)))))) +(((*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-1125)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-459)) (-5 *3 (-100)) (-5 *2 (-687))))) +(((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-457))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-1119))) (-5 *1 (-456))))) +(((*1 *2 *2) + (-12 (-4 *3 (-308)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) + (-5 *1 (-453 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-450))))) +(((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-450))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1118)) (-5 *1 (-274 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-470 *3 *4)) (-14 *4 (-499))))) -(((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-281 *3)) (-4 *3 (-1157)))) + (-12 (-5 *2 (-578 *3)) (-4 *3 (-1118)) (-5 *1 (-449 *3 *4)) (-14 *4 (-478))))) +(((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-274 *3)) (-4 *3 (-1118)))) ((*1 *2 *1) - (-12 (-5 *2 (-714)) (-5 *1 (-470 *3 *4)) (-4 *3 (-1157)) (-14 *4 (-499))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-281 *3)) (-4 *3 (-1157)))) + (-12 (-5 *2 (-687)) (-5 *1 (-449 *3 *4)) (-4 *3 (-1118)) (-14 *4 (-478))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-274 *3)) (-4 *3 (-1118)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-499)) (-5 *1 (-470 *3 *4)) (-4 *3 (-1157)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-1157)))) + (-12 (-5 *2 (-478)) (-5 *1 (-449 *3 *4)) (-4 *3 (-1118)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-274 *3)) (-4 *3 (-1118)))) ((*1 *2 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-470 *3 *4)) (-4 *3 (-1157)) (-14 *4 (-499))))) -(((*1 *2 *1) (-12 (-4 *1 (-463 *3 *2)) (-4 *3 (-73)) (-4 *2 (-784))))) -(((*1 *1) (-5 *1 (-460)))) + (-12 (-5 *2 (-83)) (-5 *1 (-449 *3 *4)) (-4 *3 (-1118)) (-14 *4 (-478))))) +(((*1 *2 *1) (-12 (-4 *1 (-442 *3 *2)) (-4 *3 (-72)) (-4 *2 (-752))))) +(((*1 *1) (-5 *1 (-439)))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-499)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-714)) - (-4 *5 (-146)))) + (-12 (-5 *2 (-478)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-687)) + (-4 *5 (-144)))) ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-499)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-714)) - (-4 *5 (-146)))) + (-12 (-5 *2 (-478)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-687)) + (-4 *5 (-144)))) ((*1 *2 *2 *3) (-12 (-5 *2 - (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499))))) - (-5 *3 (-599 (-798 *4))) (-14 *4 (-599 (-1117))) (-14 *5 (-714)) - (-5 *1 (-459 *4 *5))))) + (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478))))) + (-5 *3 (-578 (-766 *4))) (-14 *4 (-578 (-1079))) (-14 *5 (-687)) + (-5 *1 (-438 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-599 (-1117))) (-14 *5 (-714)) + (-12 (-14 *4 (-578 (-1079))) (-14 *5 (-687)) (-5 *2 - (-599 - (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499)))))) - (-5 *1 (-459 *4 *5)) + (-578 + (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478)))))) + (-5 *1 (-438 *4 *5)) (-5 *3 - (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499)))))))) + (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478)))))))) (((*1 *2 *2) (-12 (-5 *2 - (-458 (-361 (-499)) (-196 *4 (-714)) (-798 *3) (-205 *3 (-361 (-499))))) - (-14 *3 (-599 (-1117))) (-14 *4 (-714)) (-5 *1 (-459 *3 *4))))) + (-437 (-343 (-478)) (-194 *4 (-687)) (-766 *3) (-203 *3 (-343 (-478))))) + (-14 *3 (-578 (-1079))) (-14 *4 (-687)) (-5 *1 (-438 *3 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499))))) - (-14 *4 (-599 (-1117))) (-14 *5 (-714)) (-5 *2 (-85)) (-5 *1 (-459 *4 *5))))) + (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478))))) + (-14 *4 (-578 (-1079))) (-14 *5 (-687)) (-5 *2 (-83)) (-5 *1 (-438 *4 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499))))) - (-14 *4 (-599 (-1117))) (-14 *5 (-714)) (-5 *2 (-85)) (-5 *1 (-459 *4 *5))))) + (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478))))) + (-14 *4 (-578 (-1079))) (-14 *5 (-687)) (-5 *2 (-83)) (-5 *1 (-438 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-318)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) - (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-179)) (-5 *2 (-85)) (-5 *1 (-256 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1029 (-775 (-179)))) (-5 *3 (-179)) (-5 *2 (-85)) - (-5 *1 (-257)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) - (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5))))) + (-12 (-4 *4 (-308)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) + (-5 *1 (-437 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) + (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-318)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) - (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6))))) + (-12 (-4 *4 (-308)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) + (-5 *1 (-437 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) - (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) + (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) + (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-599 *6)) (-4 *6 (-781)) (-4 *4 (-318)) (-4 *5 (-738)) - (-5 *2 (-85)) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6))))) + (-12 (-5 *3 (-578 *6)) (-4 *6 (-749)) (-4 *4 (-308)) (-4 *5 (-710)) + (-5 *2 (-83)) (-5 *1 (-437 *4 *5 *6 *7)) (-4 *7 (-854 *4 *5 *6))))) (((*1 *1 *1 *2) - (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *2)) - (-4 *2 (-888 *3 *4 *5)))) + (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *2)) + (-4 *2 (-854 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) - (-4 *5 (-888 *2 *3 *4))))) + (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) + (-4 *5 (-854 *2 *3 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-599 *6)) (-4 *6 (-781)) (-4 *4 (-318)) (-4 *5 (-738)) + (-12 (-5 *3 (-578 *6)) (-4 *6 (-749)) (-4 *4 (-308)) (-4 *5 (-710)) (-5 *2 - (-2 (|:| |mval| (-647 *4)) (|:| |invmval| (-647 *4)) - (|:| |genIdeal| (-458 *4 *5 *6 *7)))) - (-5 *1 (-458 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6))))) + (-2 (|:| |mval| (-625 *4)) (|:| |invmval| (-625 *4)) + (|:| |genIdeal| (-437 *4 *5 *6 *7)))) + (-5 *1 (-437 *4 *5 *6 *7)) (-4 *7 (-854 *4 *5 *6))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |mval| (-647 *3)) (|:| |invmval| (-647 *3)) - (|:| |genIdeal| (-458 *3 *4 *5 *6)))) - (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6)) - (-4 *6 (-888 *3 *4 *5))))) + (-2 (|:| |mval| (-625 *3)) (|:| |invmval| (-625 *3)) + (|:| |genIdeal| (-437 *3 *4 *5 *6)))) + (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6)) + (-4 *6 (-854 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) - (-4 *5 (-888 *2 *3 *4))))) + (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) + (-4 *5 (-854 *2 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5 *6)) (-4 *3 (-318)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 *3 *4 *5)) - (-5 *2 (-367 *4 (-361 *4) *5 *6)))) + (-12 (-4 *1 (-282 *3 *4 *5 *6)) (-4 *3 (-308)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-4 *6 (-287 *3 *4 *5)) + (-5 *2 (-349 *4 (-343 *4) *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-1207 *6)) (-4 *6 (-13 (-364 *4 *5) (-978 *4))) - (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-4 *3 (-261)) - (-5 *1 (-367 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1168 *6)) (-4 *6 (-13 (-346 *4 *5) (-943 *4))) + (-4 *4 (-897 *3)) (-4 *5 (-1144 *4)) (-4 *3 (-254)) + (-5 *1 (-349 *3 *4 *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-318)) (-4 *4 (-738)) - (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6))))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-710)) + (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-318)) (-4 *4 (-738)) - (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6))))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-710)) + (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) - (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5))))) + (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) + (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-599 *6)) (-4 *6 (-781)) (-4 *4 (-318)) (-4 *5 (-738)) - (-5 *1 (-458 *4 *5 *6 *2)) (-4 *2 (-888 *4 *5 *6)))) + (-12 (-5 *3 (-578 *6)) (-4 *6 (-749)) (-4 *4 (-308)) (-4 *5 (-710)) + (-5 *1 (-437 *4 *5 *6 *2)) (-4 *2 (-854 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *2)) - (-4 *2 (-888 *3 *4 *5))))) + (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *2)) + (-4 *2 (-854 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *5 *6)) (-4 *6 (-569 (-1117))) - (-4 *4 (-318)) (-4 *5 (-738)) (-4 *6 (-781)) - (-5 *2 (-1106 (-599 (-884 *4)) (-599 (-247 (-884 *4))))) - (-5 *1 (-458 *4 *5 *6 *7))))) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *5 *6)) (-4 *6 (-548 (-1079))) + (-4 *4 (-308)) (-4 *5 (-710)) (-4 *6 (-749)) + (-5 *2 (-1069 (-578 (-850 *4)) (-578 (-245 (-850 *4))))) + (-5 *1 (-437 *4 *5 *6 *7))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-857)) (-5 *2 (-1213)) (-5 *1 (-167 *4)) + (-12 (-5 *3 (-823)) (-5 *2 (-1174)) (-5 *1 (-165 *4)) (-4 *4 - (-13 (-781) - (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 (*2 $)) - (-15 -2066 (*2 $))))))) + (-13 (-749) + (-10 -8 (-15 -3784 ((-1062) $ (-1079))) (-15 -3601 (*2 $)) + (-15 -1951 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-1213)) (-5 *1 (-167 *3)) + (-12 (-5 *2 (-1174)) (-5 *1 (-165 *3)) (-4 *3 - (-13 (-781) - (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 (*2 $)) - (-15 -2066 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-456))))) + (-13 (-749) + (-10 -8 (-15 -3784 ((-1062) $ (-1079))) (-15 -3601 (*2 $)) + (-15 -1951 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-435))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-989)) (-4 *7 (-989)) (-4 *6 (-1183 *5)) - (-5 *2 (-1111 (-1111 *7))) (-5 *1 (-455 *5 *6 *4 *7)) (-4 *4 (-1183 *6))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-954)) (-4 *7 (-954)) (-4 *6 (-1144 *5)) + (-5 *2 (-1074 (-1074 *7))) (-5 *1 (-434 *5 *6 *4 *7)) (-4 *4 (-1144 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-647 (-1111 *8))) - (-4 *5 (-989)) (-4 *8 (-989)) (-4 *6 (-1183 *5)) (-5 *2 (-647 *6)) - (-5 *1 (-455 *5 *6 *7 *8)) (-4 *7 (-1183 *6))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-625 (-1074 *8))) + (-4 *5 (-954)) (-4 *8 (-954)) (-4 *6 (-1144 *5)) (-5 *2 (-625 *6)) + (-5 *1 (-434 *5 *6 *7 *8)) (-4 *7 (-1144 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1111 *7)) - (-4 *5 (-989)) (-4 *7 (-989)) (-4 *2 (-1183 *5)) (-5 *1 (-455 *5 *2 *6 *7)) - (-4 *6 (-1183 *2))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1074 *7)) + (-4 *5 (-954)) (-4 *7 (-954)) (-4 *2 (-1144 *5)) (-5 *1 (-434 *5 *2 *6 *7)) + (-4 *6 (-1144 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1111 *7)) (-4 *5 (-989)) (-4 *7 (-989)) - (-4 *2 (-1183 *5)) (-5 *1 (-455 *5 *2 *6 *7)) (-4 *6 (-1183 *2)))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1074 *7)) (-4 *5 (-954)) (-4 *7 (-954)) + (-4 *2 (-1144 *5)) (-5 *1 (-434 *5 *2 *6 *7)) (-4 *6 (-1144 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-989)) (-4 *7 (-989)) (-4 *4 (-1183 *5)) - (-5 *2 (-1111 *7)) (-5 *1 (-455 *5 *4 *6 *7)) (-4 *6 (-1183 *4))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-954)) (-4 *7 (-954)) (-4 *4 (-1144 *5)) + (-5 *2 (-1074 *7)) (-5 *1 (-434 *5 *4 *6 *7)) (-4 *6 (-1144 *4))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) - (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *4 (-1183 *3)) - (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4))))) + (-2 (|:| -1998 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) + (-4 *3 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) (-4 *4 (-1144 *3)) + (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-647 *3)) (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) - (-4 *4 (-1183 *3)) (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4))))) + (-12 (-5 *2 (-625 *3)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) + (-4 *4 (-1144 *3)) (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-647 *3)) (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) - (-4 *4 (-1183 *3)) (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4)))) + (-12 (-5 *2 (-625 *3)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) + (-4 *4 (-1144 *3)) (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-647 *3)) (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) - (-4 *4 (-1183 *3)) (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4))))) + (-12 (-5 *2 (-625 *3)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) + (-4 *4 (-1144 *3)) (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-714)) (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) - (-4 *4 (-1183 *3)) (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4))))) + (-12 (-5 *2 (-687)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) + (-4 *4 (-1144 *3)) (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4))))) (((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-647 *2)) (-5 *4 (-499)) - (-4 *2 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *5 (-1183 *2)) - (-5 *1 (-453 *2 *5 *6)) (-4 *6 (-364 *2 *5))))) + (-12 (-5 *3 (-625 *2)) (-5 *4 (-478)) + (-4 *2 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) (-4 *5 (-1144 *2)) + (-5 *1 (-432 *2 *5 *6)) (-4 *6 (-346 *2 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-647 *2)) (-5 *4 (-714)) - (-4 *2 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *5 (-1183 *2)) - (-5 *1 (-453 *2 *5 *6)) (-4 *6 (-364 *2 *5))))) + (-12 (-5 *3 (-625 *2)) (-5 *4 (-687)) + (-4 *2 (-13 (-254) (-10 -8 (-15 -3955 ((-341 $) $))))) (-4 *5 (-1144 *2)) + (-5 *1 (-432 *2 *5 *6)) (-4 *6 (-346 *2 *5))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-714)) (-4 *5 (-305)) (-4 *6 (-1183 *5)) + (-12 (-5 *4 (-687)) (-4 *5 (-295)) (-4 *6 (-1144 *5)) (-5 *2 - (-599 - (-2 (|:| -2113 (-647 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-647 *6))))) - (-5 *1 (-452 *5 *6 *7)) + (-578 + (-2 (|:| -1998 (-625 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-625 *6))))) + (-5 *1 (-431 *5 *6 *7)) (-5 *3 - (-2 (|:| -2113 (-647 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-647 *6)))) - (-4 *7 (-1183 *6))))) + (-2 (|:| -1998 (-625 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-625 *6)))) + (-4 *7 (-1144 *6))))) (((*1 *2 *1) (-12 (-5 *2 - (-599 + (-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-499))))) - (-5 *1 (-359 *3)) (-4 *3 (-510)))) + (|:| |xpnt| (-478))))) + (-5 *1 (-341 *3)) (-4 *3 (-489)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-714)) (-4 *3 (-305)) (-4 *5 (-1183 *3)) - (-5 *2 (-599 (-1111 *3))) (-5 *1 (-452 *3 *5 *6)) (-4 *6 (-1183 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-449))))) -(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-445))))) + (-12 (-5 *4 (-687)) (-4 *3 (-295)) (-4 *5 (-1144 *3)) + (-5 *2 (-578 (-1074 *3))) (-5 *1 (-431 *3 *5 *6)) (-4 *6 (-1144 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-428))))) +(((*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-424))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) - (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1118)) + (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4146)) (-4 *1 (-443 *3)) - (-4 *3 (-1157))))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3980)) (-4 *1 (-422 *3)) + (-4 *3 (-1118))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -4145)) (-4 *1 (-443 *4)) - (-4 *4 (-1157)) (-5 *2 (-85))))) + (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3979)) (-4 *1 (-422 *4)) + (-4 *4 (-1118)) (-5 *2 (-83))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -4145)) (-4 *1 (-443 *4)) - (-4 *4 (-1157)) (-5 *2 (-85))))) + (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3979)) (-4 *1 (-422 *4)) + (-4 *4 (-1118)) (-5 *2 (-83))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4145)) (-4 *1 (-443 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) - (-5 *2 (-714)))) + (-12 (|has| *1 (-6 -3979)) (-4 *1 (-422 *3)) (-4 *3 (-1118)) (-4 *3 (-1005)) + (-5 *2 (-687)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -4145)) (-4 *1 (-443 *4)) - (-4 *4 (-1157)) (-5 *2 (-714))))) -(((*1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-441))))) -(((*1 *2 *3) - (-12 (-5 *3 (-599 (-499))) (-5 *2 (-499)) (-5 *1 (-440 *4)) - (-4 *4 (-1183 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1183 (-499))) (-5 *1 (-440 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1183 (-499))) (-5 *1 (-440 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-5 *1 (-440 *2)) (-4 *2 (-1183 (-499)))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-438 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-599 (-810))) (-5 *1 (-437))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-460))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-810))) (-5 *1 (-437))))) + (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3979)) (-4 *1 (-422 *4)) + (-4 *4 (-1118)) (-5 *2 (-687))))) +(((*1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-420))))) +(((*1 *2 *3) + (-12 (-5 *3 (-578 (-478))) (-5 *2 (-478)) (-5 *1 (-419 *4)) + (-4 *4 (-1144 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1144 (-478))) (-5 *1 (-419 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1144 (-478))) (-5 *1 (-419 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-419 *2)) (-4 *2 (-1144 (-478)))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-417 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-578 (-778))) (-5 *1 (-416))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-439))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-778))) (-5 *1 (-416))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-599 (-499))) (-5 *1 (-205 *3 *4)) (-14 *3 (-599 (-1117))) - (-4 *4 (-989)))) + (-12 (-5 *2 (-578 (-478))) (-5 *1 (-203 *3 *4)) (-14 *3 (-578 (-1079))) + (-4 *4 (-954)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-599 (-499))) (-14 *3 (-599 (-1117))) (-5 *1 (-408 *3 *4 *5)) - (-4 *4 (-989)) (-4 *5 (-195 (-4107 *3) (-714))))) + (-12 (-5 *2 (-578 (-478))) (-14 *3 (-578 (-1079))) (-5 *1 (-387 *3 *4 *5)) + (-4 *4 (-954)) (-4 *5 (-193 (-3941 *3) (-687))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-599 (-499))) (-5 *1 (-435 *3 *4)) (-14 *3 (-599 (-1117))) - (-4 *4 (-989))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-499)) (-5 *2 (-85)) (-5 *1 (-434))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-434))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-599 (-798 *5))) (-14 *5 (-599 (-1117))) (-4 *6 (-406)) - (-5 *2 (-2 (|:| |dpolys| (-599 (-205 *5 *6))) (|:| |coords| (-599 (-499))))) - (-5 *1 (-425 *5 *6 *7)) (-5 *3 (-599 (-205 *5 *6))) (-4 *7 (-406))))) + (-12 (-5 *2 (-578 (-478))) (-5 *1 (-414 *3 *4)) (-14 *3 (-578 (-1079))) + (-4 *4 (-954))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-478)) (-5 *2 (-83)) (-5 *1 (-413))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-413))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-578 (-766 *5))) (-14 *5 (-578 (-1079))) (-4 *6 (-385)) + (-5 *2 (-2 (|:| |dpolys| (-578 (-203 *5 *6))) (|:| |coords| (-578 (-478))))) + (-5 *1 (-404 *5 *6 *7)) (-5 *3 (-578 (-203 *5 *6))) (-4 *7 (-385))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-599 (-435 *4 *5))) (-5 *3 (-599 (-798 *4))) - (-14 *4 (-599 (-1117))) (-4 *5 (-406)) (-5 *1 (-425 *4 *5 *6)) - (-4 *6 (-406))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-599 (-798 *5))) (-14 *5 (-599 (-1117))) (-4 *6 (-406)) - (-5 *2 (-599 (-599 (-205 *5 *6)))) (-5 *1 (-425 *5 *6 *7)) - (-5 *3 (-599 (-205 *5 *6))) (-4 *7 (-406))))) -(((*1 *1) (-5 *1 (-422)))) + (|partial| -12 (-5 *2 (-578 (-414 *4 *5))) (-5 *3 (-578 (-766 *4))) + (-14 *4 (-578 (-1079))) (-4 *5 (-385)) (-5 *1 (-404 *4 *5 *6)) + (-4 *6 (-385))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-578 (-766 *5))) (-14 *5 (-578 (-1079))) (-4 *6 (-385)) + (-5 *2 (-578 (-578 (-203 *5 *6)))) (-5 *1 (-404 *5 *6 *7)) + (-5 *3 (-578 (-203 *5 *6))) (-4 *7 (-385))))) +(((*1 *1) (-5 *1 (-401)))) (((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *3 (-599 (-808))) - (-5 *4 (-599 (-857))) (-5 *5 (-599 (-220))) (-5 *1 (-422)))) + (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *3 (-578 (-776))) + (-5 *4 (-578 (-823))) (-5 *5 (-578 (-218))) (-5 *1 (-401)))) ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *3 (-599 (-808))) - (-5 *4 (-599 (-857))) (-5 *1 (-422)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *1 (-422)))) - ((*1 *1 *1) (-5 *1 (-422)))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *1 (-422))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-220)))) + (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *3 (-578 (-776))) + (-5 *4 (-578 (-823))) (-5 *1 (-401)))) + ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *1 (-401)))) + ((*1 *1 *1) (-5 *1 (-401)))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *1 (-401))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-993 (-323)))) (-5 *1 (-218)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-422)))) - ((*1 *2 *1) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-422))))) + (-12 (-5 *2 (-578 (-993 (-323)))) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-993 (-323)))) (-5 *1 (-401)))) + ((*1 *2 *1) (-12 (-5 *2 (-578 (-993 (-323)))) (-5 *1 (-401))))) (((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-881 (-179))) (-5 *4 (-808)) (-5 *5 (-857)) (-5 *2 (-1213)) - (-5 *1 (-422)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-881 (-179))) (-5 *2 (-1213)) (-5 *1 (-422)))) + (-12 (-5 *3 (-847 (-177))) (-5 *4 (-776)) (-5 *5 (-823)) (-5 *2 (-1174)) + (-5 *1 (-401)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-847 (-177))) (-5 *2 (-1174)) (-5 *1 (-401)))) ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-599 (-881 (-179)))) (-5 *4 (-808)) (-5 *5 (-857)) - (-5 *2 (-1213)) (-5 *1 (-422))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-881 (-179))) (-5 *2 (-1213)) (-5 *1 (-422))))) + (-12 (-5 *3 (-578 (-847 (-177)))) (-5 *4 (-776)) (-5 *5 (-823)) + (-5 *2 (-1174)) (-5 *1 (-401))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-847 (-177))) (-5 *2 (-1174)) (-5 *1 (-401))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *3 (-599 (-808))) - (-5 *1 (-422))))) -(((*1 *2 *3) - (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *2 (-599 (-179))) - (-5 *1 (-422))))) -(((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-220)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) - ((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421)))) - ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421)))) - ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421)))) - ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421))))) -(((*1 *2 *3) - (-12 (-5 *3 (-857)) (-5 *2 (-1207 (-1207 (-499)))) (-5 *1 (-420))))) + (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *3 (-578 (-776))) + (-5 *1 (-401))))) +(((*1 *2 *3) + (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *2 (-578 (-177))) + (-5 *1 (-401))))) +(((*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-218)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) + ((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400)))) + ((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400))))) +(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400)))) + ((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400))))) +(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400)))) + ((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400))))) +(((*1 *2 *3) + (-12 (-5 *3 (-823)) (-5 *2 (-1168 (-1168 (-478)))) (-5 *1 (-399))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1207 (-1207 (-499)))) (-5 *3 (-857)) (-5 *1 (-420))))) + (-12 (-5 *2 (-1168 (-1168 (-478)))) (-5 *3 (-823)) (-5 *1 (-399))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-781)) (-4 *5 (-738)) (-4 *6 (-510)) - (-4 *7 (-888 *6 *5 *3)) (-5 *1 (-416 *5 *3 *6 *7 *2)) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-749)) (-4 *5 (-710)) (-4 *6 (-489)) + (-4 *7 (-854 *6 *5 *3)) (-5 *1 (-395 *5 *3 *6 *7 *2)) (-4 *2 - (-13 (-978 (-361 (-499))) (-318) - (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $)))))))) + (-13 (-943 (-343 (-478))) (-308) + (-10 -8 (-15 -3930 ($ *7)) (-15 -2982 (*7 $)) (-15 -2981 (*7 $)))))))) (((*1 *2 *1) - (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) + (-12 (-14 *3 (-578 (-1079))) (-4 *4 (-144)) (-14 *6 - (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *2)) - (-2 (|:| -2518 *5) (|:| -2519 *2)))) - (-4 *2 (-195 (-4107 *3) (-714))) (-5 *1 (-415 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-781)) (-4 *7 (-888 *4 *2 (-798 *3)))))) + (-1 (-83) (-2 (|:| -2386 *5) (|:| -2387 *2)) + (-2 (|:| -2386 *5) (|:| -2387 *2)))) + (-4 *2 (-193 (-3941 *3) (-687))) (-5 *1 (-394 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-749)) (-4 *7 (-854 *4 *2 (-766 *3)))))) (((*1 *2 *1) - (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-4 *5 (-195 (-4107 *3) (-714))) + (-12 (-14 *3 (-578 (-1079))) (-4 *4 (-144)) (-4 *5 (-193 (-3941 *3) (-687))) (-14 *6 - (-1 (-85) (-2 (|:| -2518 *2) (|:| -2519 *5)) - (-2 (|:| -2518 *2) (|:| -2519 *5)))) - (-4 *2 (-781)) (-5 *1 (-415 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-888 *4 *5 (-798 *3)))))) + (-1 (-83) (-2 (|:| -2386 *2) (|:| -2387 *5)) + (-2 (|:| -2386 *2) (|:| -2387 *5)))) + (-4 *2 (-749)) (-5 *1 (-394 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-854 *4 *5 (-766 *3)))))) (((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-599 (-1117))) (-4 *2 (-146)) (-4 *4 (-195 (-4107 *5) (-714))) + (-12 (-14 *5 (-578 (-1079))) (-4 *2 (-144)) (-4 *4 (-193 (-3941 *5) (-687))) (-14 *6 - (-1 (-85) (-2 (|:| -2518 *3) (|:| -2519 *4)) - (-2 (|:| -2518 *3) (|:| -2519 *4)))) - (-5 *1 (-415 *5 *2 *3 *4 *6 *7)) (-4 *3 (-781)) - (-4 *7 (-888 *2 *4 (-798 *5)))))) + (-1 (-83) (-2 (|:| -2386 *3) (|:| -2387 *4)) + (-2 (|:| -2386 *3) (|:| -2387 *4)))) + (-5 *1 (-394 *5 *2 *3 *4 *6 *7)) (-4 *3 (-749)) + (-4 *7 (-854 *2 *4 (-766 *5)))))) (((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-599 (-1117))) (-4 *2 (-146)) (-4 *3 (-195 (-4107 *4) (-714))) + (-12 (-14 *4 (-578 (-1079))) (-4 *2 (-144)) (-4 *3 (-193 (-3941 *4) (-687))) (-14 *6 - (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *3)) - (-2 (|:| -2518 *5) (|:| -2519 *3)))) - (-5 *1 (-415 *4 *2 *5 *3 *6 *7)) (-4 *5 (-781)) - (-4 *7 (-888 *2 *3 (-798 *4)))))) + (-1 (-83) (-2 (|:| -2386 *5) (|:| -2387 *3)) + (-2 (|:| -2386 *5) (|:| -2387 *3)))) + (-5 *1 (-394 *4 *2 *5 *3 *6 *7)) (-4 *5 (-749)) + (-4 *7 (-854 *2 *3 (-766 *4)))))) (((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-599 *3)) (-5 *5 (-857)) (-4 *3 (-1183 *4)) (-4 *4 (-261)) - (-5 *1 (-414 *4 *3))))) + (-12 (-5 *2 (-578 *3)) (-5 *5 (-823)) (-4 *3 (-1144 *4)) (-4 *4 (-254)) + (-5 *1 (-393 *4 *3))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-857)) (-4 *5 (-261)) (-4 *3 (-1183 *5)) - (-5 *2 (-2 (|:| |plist| (-599 *3)) (|:| |modulo| *5))) (-5 *1 (-414 *5 *3)) - (-5 *4 (-599 *3))))) + (-12 (-5 *6 (-823)) (-4 *5 (-254)) (-4 *3 (-1144 *5)) + (-5 *2 (-2 (|:| |plist| (-578 *3)) (|:| |modulo| *5))) (-5 *1 (-393 *5 *3)) + (-5 *4 (-578 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-599 *5)) (-4 *5 (-1183 *3)) (-4 *3 (-261)) (-5 *2 (-85)) - (-5 *1 (-409 *3 *5))))) + (-12 (-5 *4 (-578 *5)) (-4 *5 (-1144 *3)) (-4 *3 (-254)) (-5 *2 (-83)) + (-5 *1 (-388 *3 *5))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1207 (-599 *3))) (-4 *4 (-261)) (-5 *2 (-599 *3)) - (-5 *1 (-409 *4 *3)) (-4 *3 (-1183 *4))))) + (|partial| -12 (-5 *5 (-1168 (-578 *3))) (-4 *4 (-254)) (-5 *2 (-578 *3)) + (-5 *1 (-388 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-714)) (-4 *4 (-261)) (-4 *6 (-1183 *4)) - (-5 *2 (-1207 (-599 *6))) (-5 *1 (-409 *4 *6)) (-5 *5 (-599 *6))))) + (|partial| -12 (-5 *3 (-687)) (-4 *4 (-254)) (-4 *6 (-1144 *4)) + (-5 *2 (-1168 (-578 *6))) (-5 *1 (-388 *4 *6)) (-5 *5 (-578 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-599 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-261)) (-5 *2 (-714)) - (-5 *1 (-409 *5 *3))))) + (-12 (-5 *4 (-578 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-254)) (-5 *2 (-687)) + (-5 *1 (-388 *5 *3))))) (((*1 *2) - (|partial| -12 (-4 *3 (-510)) (-4 *3 (-146)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2113 (-599 *1)))) (-4 *1 (-322 *3)))) + (|partial| -12 (-4 *3 (-489)) (-4 *3 (-144)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -1998 (-578 *1)))) (-4 *1 (-312 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-407 *3 *4 *5 *6)) - (|:| -2113 (-599 (-407 *3 *4 *5 *6))))) - (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-857)) - (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3)))))) + (-2 (|:| |particular| (-386 *3 *4 *5 *6)) + (|:| -1998 (-578 (-386 *3 *4 *5 *6))))) + (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-823)) + (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3)))))) (((*1 *2) - (|partial| -12 (-4 *3 (-510)) (-4 *3 (-146)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2113 (-599 *1)))) (-4 *1 (-322 *3)))) + (|partial| -12 (-4 *3 (-489)) (-4 *3 (-144)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -1998 (-578 *1)))) (-4 *1 (-312 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-407 *3 *4 *5 *6)) - (|:| -2113 (-599 (-407 *3 *4 *5 *6))))) - (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-857)) - (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3)))))) + (-2 (|:| |particular| (-386 *3 *4 *5 *6)) + (|:| -1998 (-578 (-386 *3 *4 *5 *6))))) + (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-823)) + (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1207 (-1117))) (-5 *3 (-1207 (-407 *4 *5 *6 *7))) - (-5 *1 (-407 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-857)) - (-14 *6 (-599 (-1117))) (-14 *7 (-1207 (-647 *4))))) + (-12 (-5 *2 (-1168 (-1079))) (-5 *3 (-1168 (-386 *4 *5 *6 *7))) + (-5 *1 (-386 *4 *5 *6 *7)) (-4 *4 (-144)) (-14 *5 (-823)) + (-14 *6 (-578 (-1079))) (-14 *7 (-1168 (-625 *4))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-407 *4 *5 *6 *7))) - (-5 *1 (-407 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-857)) (-14 *6 (-599 *2)) - (-14 *7 (-1207 (-647 *4))))) + (-12 (-5 *2 (-1079)) (-5 *3 (-1168 (-386 *4 *5 *6 *7))) + (-5 *1 (-386 *4 *5 *6 *7)) (-4 *4 (-144)) (-14 *5 (-823)) (-14 *6 (-578 *2)) + (-14 *7 (-1168 (-625 *4))))) ((*1 *1 *2) - (-12 (-5 *2 (-1207 (-407 *3 *4 *5 *6))) (-5 *1 (-407 *3 *4 *5 *6)) - (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) - (-14 *6 (-1207 (-647 *3))))) + (-12 (-5 *2 (-1168 (-386 *3 *4 *5 *6))) (-5 *1 (-386 *3 *4 *5 *6)) + (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) + (-14 *6 (-1168 (-625 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1207 (-1117))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-146)) - (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) + (-12 (-5 *2 (-1168 (-1079))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-144)) + (-14 *4 (-823)) (-14 *5 (-578 (-1079))) (-14 *6 (-1168 (-625 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1117)) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-146)) - (-14 *4 (-857)) (-14 *5 (-599 *2)) (-14 *6 (-1207 (-647 *3))))) + (-12 (-5 *2 (-1079)) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-144)) + (-14 *4 (-823)) (-14 *5 (-578 *2)) (-14 *6 (-1168 (-625 *3))))) ((*1 *1) - (-12 (-5 *1 (-407 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-857)) - (-14 *4 (-599 (-1117))) (-14 *5 (-1207 (-647 *2)))))) + (-12 (-5 *1 (-386 *2 *3 *4 *5)) (-4 *2 (-144)) (-14 *3 (-823)) + (-14 *4 (-578 (-1079))) (-14 *5 (-1168 (-625 *2)))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1111 (-884 *4))) (-5 *1 (-371 *3 *4)) - (-4 *3 (-372 *4)))) + (-12 (-4 *4 (-144)) (-5 *2 (-1074 (-850 *4))) (-5 *1 (-353 *3 *4)) + (-4 *3 (-354 *4)))) ((*1 *2) - (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-4 *3 (-318)) - (-5 *2 (-1111 (-884 *3))))) + (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-4 *3 (-308)) + (-5 *2 (-1074 (-850 *3))))) ((*1 *2) - (-12 (-5 *2 (-1111 (-361 (-884 *3)))) (-5 *1 (-407 *3 *4 *5 *6)) - (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) - (-14 *6 (-1207 (-647 *3)))))) + (-12 (-5 *2 (-1074 (-343 (-850 *3)))) (-5 *1 (-386 *3 *4 *5 *6)) + (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) + (-14 *6 (-1168 (-625 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1111 (-361 (-884 *3)))) (-5 *1 (-407 *3 *4 *5 *6)) - (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) - (-14 *6 (-1207 (-647 *3)))))) + (-12 (-5 *2 (-1074 (-343 (-850 *3)))) (-5 *1 (-386 *3 *4 *5 *6)) + (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) + (-14 *6 (-1168 (-625 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) - (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) - (-14 *6 (-1207 (-647 *3)))))) + (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) + (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) + (-14 *6 (-1168 (-625 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) - (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) - (-14 *6 (-1207 (-647 *3)))))) + (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) + (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) + (-14 *6 (-1168 (-625 *3)))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1111 (-884 *4))) (-5 *1 (-371 *3 *4)) - (-4 *3 (-372 *4)))) + (-12 (-4 *4 (-144)) (-5 *2 (-1074 (-850 *4))) (-5 *1 (-353 *3 *4)) + (-4 *3 (-354 *4)))) ((*1 *2) - (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-4 *3 (-318)) - (-5 *2 (-1111 (-884 *3))))) + (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-4 *3 (-308)) + (-5 *2 (-1074 (-850 *3))))) ((*1 *2) - (-12 (-5 *2 (-1111 (-361 (-884 *3)))) (-5 *1 (-407 *3 *4 *5 *6)) - (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) - (-14 *6 (-1207 (-647 *3)))))) + (-12 (-5 *2 (-1074 (-343 (-850 *3)))) (-5 *1 (-386 *3 *4 *5 *6)) + (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) + (-14 *6 (-1168 (-625 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1111 (-361 (-884 *3)))) (-5 *1 (-407 *3 *4 *5 *6)) - (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) - (-14 *6 (-1207 (-647 *3)))))) + (-12 (-5 *2 (-1074 (-343 (-850 *3)))) (-5 *1 (-386 *3 *4 *5 *6)) + (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) + (-14 *6 (-1168 (-625 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) - (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) - (-14 *6 (-1207 (-647 *3)))))) + (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) + (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) + (-14 *6 (-1168 (-625 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) - (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) - (-14 *6 (-1207 (-647 *3)))))) + (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) + (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) + (-14 *6 (-1168 (-625 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) - (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) - (-14 *6 (-1207 (-647 *3)))))) + (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) + (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) + (-14 *6 (-1168 (-625 *3)))))) (((*1 *2) - (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) - (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) - (-14 *6 (-1207 (-647 *3)))))) + (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) + (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) + (-14 *6 (-1168 (-625 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) - (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) - (-14 *6 (-1207 (-647 *3)))))) + (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) + (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) + (-14 *6 (-1168 (-625 *3)))))) (((*1 *2) - (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) - (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) - (-14 *6 (-1207 (-647 *3)))))) + (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) + (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) + (-14 *6 (-1168 (-625 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) - (-5 *2 (-599 (-884 *4))))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) + (-5 *2 (-578 (-850 *4))))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-599 (-884 *4))) (-5 *1 (-371 *3 *4)) - (-4 *3 (-372 *4)))) - ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-599 (-884 *3))))) + (-12 (-4 *4 (-144)) (-5 *2 (-578 (-850 *4))) (-5 *1 (-353 *3 *4)) + (-4 *3 (-354 *4)))) + ((*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-578 (-850 *3))))) ((*1 *2) - (-12 (-5 *2 (-599 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) - (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) - (-14 *6 (-1207 (-647 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1207 (-407 *4 *5 *6 *7))) (-5 *2 (-599 (-884 *4))) - (-5 *1 (-407 *4 *5 *6 *7)) (-4 *4 (-510)) (-4 *4 (-146)) (-14 *5 (-857)) - (-14 *6 (-599 (-1117))) (-14 *7 (-1207 (-647 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-406)))) - ((*1 *1 *1 *1) (-4 *1 (-406)))) -(((*1 *2 *3) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-714)) - (-5 *1 (-404 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6))))) + (-12 (-5 *2 (-578 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) + (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1079))) + (-14 *6 (-1168 (-625 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1168 (-386 *4 *5 *6 *7))) (-5 *2 (-578 (-850 *4))) + (-5 *1 (-386 *4 *5 *6 *7)) (-4 *4 (-489)) (-4 *4 (-144)) (-14 *5 (-823)) + (-14 *6 (-578 (-1079))) (-14 *7 (-1168 (-625 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-385)))) + ((*1 *1 *1 *1) (-4 *1 (-385)))) +(((*1 *2 *3) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-687)) + (-5 *1 (-383 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-714)) (|:| -2105 *4))) (-5 *5 (-714)) - (-4 *4 (-888 *6 *7 *8)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) + (-12 (-5 *3 (-2 (|:| |totdeg| (-687)) (|:| -1990 *4))) (-5 *5 (-687)) + (-4 *4 (-854 *6 *7 *8)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) - (-5 *1 (-404 *6 *7 *8 *4))))) + (-5 *1 (-383 *6 *7 *8 *4))))) (((*1 *2 *3 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-714)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-687)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-738)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *6 (-781)) - (-5 *2 (-85)) (-5 *1 (-404 *4 *5 *6 *7))))) + (-4 *5 (-710)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *6 (-749)) + (-5 *2 (-83)) (-5 *1 (-383 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-499)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) - (-5 *2 (-1213)) (-5 *1 (-404 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6))))) + (-12 (-5 *3 (-478)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) + (-5 *2 (-1174)) (-5 *1 (-383 *4 *5 *6 *7)) (-4 *7 (-854 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *2 (-1213)) (-5 *1 (-404 *4 *5 *6 *7))))) + (-12 (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *2 (-1174)) (-5 *1 (-383 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-499)) + (-12 (-5 *2 (-478)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-714)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-687)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-738)) (-4 *4 (-888 *5 *6 *7)) (-4 *5 (-406)) (-4 *7 (-781)) - (-5 *1 (-404 *5 *6 *7 *4))))) + (-4 *6 (-710)) (-4 *4 (-854 *5 *6 *7)) (-4 *5 (-385)) (-4 *7 (-749)) + (-5 *1 (-383 *5 *6 *7 *4))))) (((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-499)) + (-12 (-5 *2 (-478)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-714)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-687)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-738)) (-4 *4 (-888 *5 *6 *7)) (-4 *5 (-406)) (-4 *7 (-781)) - (-5 *1 (-404 *5 *6 *7 *4))))) + (-4 *6 (-710)) (-4 *4 (-854 *5 *6 *7)) (-4 *5 (-385)) (-4 *7 (-749)) + (-5 *1 (-383 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-1213)) - (-5 *1 (-404 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6))))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-1174)) + (-5 *1 (-383 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-499)) - (-5 *1 (-404 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6))))) + (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-478)) + (-5 *1 (-383 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-406)) (-4 *4 (-738)) - (-4 *5 (-781)) (-5 *1 (-404 *3 *4 *5 *6))))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-385)) (-4 *4 (-710)) + (-4 *5 (-749)) (-5 *1 (-383 *3 *4 *5 *6))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-599 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-714)) (|:| |poli| *6) + (-578 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-687)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-738)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-406)) (-4 *5 (-781)) - (-5 *1 (-404 *3 *4 *5 *6))))) + (-4 *4 (-710)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-385)) (-4 *5 (-749)) + (-5 *1 (-383 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-714)) (|:| |poli| *2) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-687)) (|:| |poli| *2) (|:| |polj| *2))) - (-4 *5 (-738)) (-4 *2 (-888 *4 *5 *6)) (-5 *1 (-404 *4 *5 *6 *2)) - (-4 *4 (-406)) (-4 *6 (-781))))) + (-4 *5 (-710)) (-4 *2 (-854 *4 *5 *6)) (-5 *1 (-383 *4 *5 *6 *2)) + (-4 *4 (-385)) (-4 *6 (-749))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-599 (-2 (|:| |totdeg| (-714)) (|:| -2105 *3)))) (-5 *4 (-714)) - (-4 *3 (-888 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) - (-5 *1 (-404 *5 *6 *7 *3))))) + (-12 (-5 *2 (-578 (-2 (|:| |totdeg| (-687)) (|:| -1990 *3)))) (-5 *4 (-687)) + (-4 *3 (-854 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) + (-5 *1 (-383 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-404 *3 *4 *5 *2)) - (-4 *2 (-888 *3 *4 *5))))) + (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-383 *3 *4 *5 *2)) + (-4 *2 (-854 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-599 *3)) (-4 *3 (-888 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) - (-4 *7 (-781)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-404 *5 *6 *7 *3))))) + (-12 (-5 *4 (-578 *3)) (-4 *3 (-854 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) + (-4 *7 (-749)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-383 *5 *6 *7 *3))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-599 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-714)) (|:| |poli| *6) + (-578 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-687)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *3 (-738)) (-4 *6 (-888 *4 *3 *5)) (-4 *4 (-406)) (-4 *5 (-781)) - (-5 *1 (-404 *4 *3 *5 *6))))) + (-4 *3 (-710)) (-4 *6 (-854 *4 *3 *5)) (-4 *4 (-385)) (-4 *5 (-749)) + (-5 *1 (-383 *4 *3 *5 *6))))) (((*1 *2 *2) (-12 (-5 *2 - (-599 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-714)) (|:| |poli| *6) + (-578 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-687)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-738)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-406)) (-4 *5 (-781)) - (-5 *1 (-404 *3 *4 *5 *6))))) + (-4 *4 (-710)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-385)) (-4 *5 (-749)) + (-5 *1 (-383 *3 *4 *5 *6))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-599 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-714)) (|:| |poli| *3) + (-578 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-687)) (|:| |poli| *3) (|:| |polj| *3)))) - (-4 *5 (-738)) (-4 *3 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *6 (-781)) - (-5 *1 (-404 *4 *5 *6 *3))))) + (-4 *5 (-710)) (-4 *3 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *6 (-749)) + (-5 *1 (-383 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-406)) (-4 *3 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) - (-5 *1 (-404 *4 *3 *5 *6)) (-4 *6 (-888 *4 *3 *5))))) + (-12 (-4 *4 (-385)) (-4 *3 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) + (-5 *1 (-383 *4 *3 *5 *6)) (-4 *6 (-854 *4 *3 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-406)) (-4 *3 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) - (-5 *1 (-404 *4 *3 *5 *6)) (-4 *6 (-888 *4 *3 *5))))) + (-12 (-4 *4 (-385)) (-4 *3 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) + (-5 *1 (-383 *4 *3 *5 *6)) (-4 *6 (-854 *4 *3 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-714)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-687)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-738)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *6 (-781)) - (-5 *2 (-85)) (-5 *1 (-404 *4 *5 *6 *7))))) + (-4 *5 (-710)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *6 (-749)) + (-5 *2 (-83)) (-5 *1 (-383 *4 *5 *6 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-599 *7)) (-5 *3 (-499)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) - (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-404 *4 *5 *6 *7))))) + (-12 (-5 *2 (-578 *7)) (-5 *3 (-478)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) + (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-383 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *1 (-404 *4 *5 *6 *2))))) + (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *1 (-383 *4 *5 *6 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *1 (-404 *4 *5 *6 *2))))) + (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *1 (-383 *4 *5 *6 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-599 (-599 *7))) (-5 *1 (-403 *4 *5 *6 *7)) - (-5 *3 (-599 *7)))) + (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *7 (-854 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-382 *4 *5 *6 *7)) + (-5 *3 (-578 *7)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) - (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-599 (-599 *8))) (-5 *1 (-403 *5 *6 *7 *8)) - (-5 *3 (-599 *8)))) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) + (-4 *8 (-854 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-382 *5 *6 *7 *8)) + (-5 *3 (-578 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-599 (-599 *7))) (-5 *1 (-403 *4 *5 *6 *7)) - (-5 *3 (-599 *7)))) + (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *7 (-854 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-382 *4 *5 *6 *7)) + (-5 *3 (-578 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) - (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-599 (-599 *8))) (-5 *1 (-403 *5 *6 *7 *8)) - (-5 *3 (-599 *8))))) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) + (-4 *8 (-854 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-382 *5 *6 *7 *8)) + (-5 *3 (-578 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-738)) (-4 *6 (-781)) - (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-599 (-599 *7))) (-5 *1 (-403 *4 *5 *6 *7)) - (-5 *3 (-599 *7)))) + (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-710)) (-4 *6 (-749)) + (-4 *7 (-854 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-382 *4 *5 *6 *7)) + (-5 *3 (-578 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) - (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-599 (-599 *8))) (-5 *1 (-403 *5 *6 *7 *8)) - (-5 *3 (-599 *8))))) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) + (-4 *8 (-854 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-382 *5 *6 *7 *8)) + (-5 *3 (-578 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-261)) (-4 *4 (-738)) - (-4 *5 (-781)) (-5 *1 (-402 *3 *4 *5 *6)))) + (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-254)) (-4 *4 (-710)) + (-4 *5 (-749)) (-5 *1 (-381 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-599 *7)) (-5 *3 (-1099)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-261)) - (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-402 *4 *5 *6 *7)))) + (-12 (-5 *2 (-578 *7)) (-5 *3 (-1062)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-254)) + (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-381 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-599 *7)) (-5 *3 (-1099)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-261)) - (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-402 *4 *5 *6 *7))))) + (-12 (-5 *2 (-578 *7)) (-5 *3 (-1062)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-254)) + (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-381 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-261)) (-4 *5 (-738)) - (-4 *6 (-781)) (-5 *1 (-402 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-400)) (-5 *3 (-499))))) + (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *4 *5 *6)) (-4 *4 (-254)) (-4 *5 (-710)) + (-4 *6 (-749)) (-5 *1 (-381 *4 *5 *6 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-379)) (-5 *3 (-478))))) (((*1 *2 *2) - (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-358)) (-4 *3 (-989)))) - ((*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-358)) (-4 *3 (-989))))) + (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-340)) (-4 *3 (-954)))) + ((*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-340)) (-4 *3 (-954))))) (((*1 *2 *3) - (-12 (-5 *2 (-499)) (-5 *1 (-399 *3)) (-4 *3 (-358)) (-4 *3 (-989))))) + (-12 (-5 *2 (-478)) (-5 *1 (-378 *3)) (-4 *3 (-340)) (-4 *3 (-954))))) (((*1 *2 *3) - (-12 (-5 *2 (-499)) (-5 *1 (-399 *3)) (-4 *3 (-358)) (-4 *3 (-989))))) -(((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-399 *3)) (-4 *3 (-989))))) -(((*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-989))))) -(((*1 *2 *2) (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-989)))) - ((*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-989))))) + (-12 (-5 *2 (-478)) (-5 *1 (-378 *3)) (-4 *3 (-340)) (-4 *3 (-954))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-378 *3)) (-4 *3 (-954))))) +(((*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-954))))) +(((*1 *2 *2) (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-954)))) + ((*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-954))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-714)) (-5 *4 (-499)) (-5 *1 (-399 *2)) (-4 *2 (-989))))) + (-12 (-5 *3 (-687)) (-5 *4 (-478)) (-5 *1 (-378 *2)) (-4 *2 (-954))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-857)) (-5 *4 (-359 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-989)) - (-5 *2 (-599 *6)) (-5 *1 (-398 *5 *6))))) + (-12 (-5 *3 (-823)) (-5 *4 (-341 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-954)) + (-5 *2 (-578 *6)) (-5 *1 (-377 *5 *6))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-857)) (-5 *1 (-396 *2)) (-4 *2 (-1183 (-499))))) + (|partial| -12 (-5 *3 (-823)) (-5 *1 (-375 *2)) (-4 *2 (-1144 (-478))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-857)) (-5 *4 (-714)) (-5 *1 (-396 *2)) - (-4 *2 (-1183 (-499))))) + (|partial| -12 (-5 *3 (-823)) (-5 *4 (-687)) (-5 *1 (-375 *2)) + (-4 *2 (-1144 (-478))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-857)) (-5 *4 (-599 (-714))) (-5 *1 (-396 *2)) - (-4 *2 (-1183 (-499))))) + (|partial| -12 (-5 *3 (-823)) (-5 *4 (-578 (-687))) (-5 *1 (-375 *2)) + (-4 *2 (-1144 (-478))))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-857)) (-5 *4 (-599 (-714))) (-5 *5 (-714)) - (-5 *1 (-396 *2)) (-4 *2 (-1183 (-499))))) + (|partial| -12 (-5 *3 (-823)) (-5 *4 (-578 (-687))) (-5 *5 (-687)) + (-5 *1 (-375 *2)) (-4 *2 (-1144 (-478))))) ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-857)) (-5 *4 (-599 (-714))) (-5 *5 (-714)) - (-5 *6 (-85)) (-5 *1 (-396 *2)) (-4 *2 (-1183 (-499))))) + (|partial| -12 (-5 *3 (-823)) (-5 *4 (-578 (-687))) (-5 *5 (-687)) + (-5 *6 (-83)) (-5 *1 (-375 *2)) (-4 *2 (-1144 (-478))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-857)) (-5 *4 (-359 *2)) (-4 *2 (-1183 *5)) (-5 *1 (-398 *5 *2)) - (-4 *5 (-989))))) + (-12 (-5 *3 (-823)) (-5 *4 (-341 *2)) (-4 *2 (-1144 *5)) (-5 *1 (-377 *5 *2)) + (-4 *5 (-954))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 (-2 (|:| -3882 *4) (|:| -4098 (-499))))) - (-4 *4 (-1183 (-499))) (-5 *2 (-694 (-714))) (-5 *1 (-396 *4)))) + (-12 (-5 *3 (-578 (-2 (|:| -3716 *4) (|:| -3932 (-478))))) + (-4 *4 (-1144 (-478))) (-5 *2 (-668 (-687))) (-5 *1 (-375 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-359 *5)) (-4 *5 (-1183 *4)) (-4 *4 (-989)) - (-5 *2 (-694 (-714))) (-5 *1 (-398 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-989)) (-5 *1 (-398 *3 *2)) (-4 *2 (-1183 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-989)) (-5 *1 (-398 *3 *2)) (-4 *2 (-1183 *3))))) + (-12 (-5 *3 (-341 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-954)) + (-5 *2 (-668 (-687))) (-5 *1 (-377 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-954)) (-5 *1 (-377 *3 *2)) (-4 *2 (-1144 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-954)) (-5 *1 (-377 *3 *2)) (-4 *2 (-1144 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) - (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1104) (-236))) + (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1144 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) - (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1104) (-236))) + (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1144 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-714)) (-4 *5 (-989)) (-5 *2 (-499)) (-5 *1 (-397 *5 *3 *6)) - (-4 *3 (-1183 *5)) (-4 *6 (-13 (-358) (-978 *5) (-318) (-1143) (-238))))) + (-12 (-5 *4 (-687)) (-4 *5 (-954)) (-5 *2 (-478)) (-5 *1 (-376 *5 *3 *6)) + (-4 *3 (-1144 *5)) (-4 *6 (-13 (-340) (-943 *5) (-308) (-1104) (-236))))) ((*1 *2 *3) - (-12 (-4 *4 (-989)) (-5 *2 (-499)) (-5 *1 (-397 *4 *3 *5)) (-4 *3 (-1183 *4)) - (-4 *5 (-13 (-358) (-978 *4) (-318) (-1143) (-238)))))) + (-12 (-4 *4 (-954)) (-5 *2 (-478)) (-5 *1 (-376 *4 *3 *5)) (-4 *3 (-1144 *4)) + (-4 *5 (-13 (-340) (-943 *4) (-308) (-1104) (-236)))))) (((*1 *2 *3) - (-12 (-4 *4 (-989)) (-5 *2 (-499)) (-5 *1 (-397 *4 *3 *5)) (-4 *3 (-1183 *4)) - (-4 *5 (-13 (-358) (-978 *4) (-318) (-1143) (-238)))))) + (-12 (-4 *4 (-954)) (-5 *2 (-478)) (-5 *1 (-376 *4 *3 *5)) (-4 *3 (-1144 *4)) + (-4 *5 (-13 (-340) (-943 *4) (-308) (-1104) (-236)))))) (((*1 *2 *3) - (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) - (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4)))) + (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1104) (-236))) + (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1144 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-857)) (-4 *5 (-989)) - (-4 *2 (-13 (-358) (-978 *5) (-318) (-1143) (-238))) (-5 *1 (-397 *5 *3 *2)) - (-4 *3 (-1183 *5))))) + (-12 (-5 *4 (-823)) (-4 *5 (-954)) + (-4 *2 (-13 (-340) (-943 *5) (-308) (-1104) (-236))) (-5 *1 (-376 *5 *3 *2)) + (-4 *3 (-1144 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-989)) (-5 *2 (-499)) (-5 *1 (-397 *4 *3 *5)) (-4 *3 (-1183 *4)) - (-4 *5 (-13 (-358) (-978 *4) (-318) (-1143) (-238)))))) + (-12 (-4 *4 (-954)) (-5 *2 (-478)) (-5 *1 (-376 *4 *3 *5)) (-4 *3 (-1144 *4)) + (-4 *5 (-13 (-340) (-943 *4) (-308) (-1104) (-236)))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-85)) (-5 *5 (-1037 (-714))) (-5 *6 (-714)) - (-5 *2 - (-2 (|:| |contp| (-499)) - (|:| -1877 (-599 (-2 (|:| |irr| *3) (|:| -2513 (-499))))))) - (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2697 (-499)) (|:| -1877 (-599 *3)))) (-5 *1 (-396 *3)) - (-4 *3 (-1183 (-499)))))) -(((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-359 *3)) (-4 *3 (-510)))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 (-2 (|:| -3882 *4) (|:| -4098 (-499))))) - (-4 *4 (-1183 (-499))) (-5 *2 (-714)) (-5 *1 (-396 *4))))) -(((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) - ((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) -(((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) - ((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) + (-12 (-5 *4 (-83)) (-5 *5 (-1001 (-687))) (-5 *6 (-687)) + (-5 *2 + (-2 (|:| |contp| (-478)) + (|:| -1766 (-578 (-2 (|:| |irr| *3) (|:| -2381 (-478))))))) + (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478)))))) +(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478)))))) +(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478)))))) +(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478)))))) +(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478)))))) +(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478)))))) +(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478)))))) +(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2562 (-478)) (|:| -1766 (-578 *3)))) (-5 *1 (-375 *3)) + (-4 *3 (-1144 (-478)))))) +(((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-341 *3)) (-4 *3 (-489)))) + ((*1 *2 *3) + (-12 (-5 *3 (-578 (-2 (|:| -3716 *4) (|:| -3932 (-478))))) + (-4 *4 (-1144 (-478))) (-5 *2 (-687)) (-5 *1 (-375 *4))))) +(((*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) + ((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478)))))) +(((*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478))))) + ((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3)) (-4 *3 (-1144 (-478)))))) (((*1 *1 *2 *3) (-12 (-5 *3 - (-599 + (-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-499))))) - (-4 *2 (-510)) (-5 *1 (-359 *2)))) + (|:| |xpnt| (-478))))) + (-4 *2 (-489)) (-5 *1 (-341 *2)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |contp| (-499)) - (|:| -1877 (-599 (-2 (|:| |irr| *4) (|:| -2513 (-499))))))) - (-4 *4 (-1183 (-499))) (-5 *2 (-359 *4)) (-5 *1 (-396 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-344)) (-5 *1 (-391)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-344)) (-5 *1 (-391))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-391))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-391))))) -(((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-391))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-388)) (|:| -4060 "void"))) (-5 *1 (-390))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-884 (-499)))) (-5 *1 (-390))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-390))))) -(((*1 *1) (-5 *1 (-390)))) -(((*1 *1) (-5 *1 (-390)))) -(((*1 *1) (-5 *1 (-390)))) -(((*1 *1) (-5 *1 (-390)))) -(((*1 *1) (-5 *1 (-390)))) -(((*1 *1) (-5 *1 (-390)))) -(((*1 *1) (-5 *1 (-390)))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-978 (-48))) (-4 *4 (-13 (-510) (-978 (-499)))) - (-4 *5 (-375 *4)) (-5 *2 (-359 (-1111 (-48)))) (-5 *1 (-389 *4 *5 *3)) - (-4 *3 (-1183 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-4 *5 (-375 *4)) - (-5 *2 - (-3 (|:| |overq| (-1111 (-361 (-499)))) (|:| |overan| (-1111 (-48))) - (|:| -2758 (-85)))) - (-5 *1 (-389 *4 *5 *3)) (-4 *3 (-1183 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-510) (-978 (-499)))) (-4 *5 (-375 *4)) - (-5 *2 (-359 (-1111 (-361 (-499))))) (-5 *1 (-389 *4 *5 *3)) - (-4 *3 (-1183 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-4 *5 (-375 *4)) (-5 *2 (-359 *3)) - (-5 *1 (-389 *4 *5 *3)) (-4 *3 (-1183 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388))))) + (-2 (|:| |contp| (-478)) + (|:| -1766 (-578 (-2 (|:| |irr| *4) (|:| -2381 (-478))))))) + (-4 *4 (-1144 (-478))) (-5 *2 (-341 *4)) (-5 *1 (-375 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-370)) (|:| -3894 "void"))) (-5 *1 (-372))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-850 (-478)))) (-5 *1 (-372))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372))))) +(((*1 *1) (-5 *1 (-372)))) +(((*1 *1) (-5 *1 (-372)))) +(((*1 *1) (-5 *1 (-372)))) +(((*1 *1) (-5 *1 (-372)))) +(((*1 *1) (-5 *1 (-372)))) +(((*1 *1) (-5 *1 (-372)))) +(((*1 *1) (-5 *1 (-372)))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-943 (-48))) (-4 *4 (-13 (-489) (-943 (-478)))) + (-4 *5 (-357 *4)) (-5 *2 (-341 (-1074 (-48)))) (-5 *1 (-371 *4 *5 *3)) + (-4 *3 (-1144 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-4 *5 (-357 *4)) + (-5 *2 + (-3 (|:| |overq| (-1074 (-343 (-478)))) (|:| |overan| (-1074 (-48))) + (|:| -2623 (-83)))) + (-5 *1 (-371 *4 *5 *3)) (-4 *3 (-1144 *5))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-489) (-943 (-478)))) (-4 *5 (-357 *4)) + (-5 *2 (-341 (-1074 (-343 (-478))))) (-5 *1 (-371 *4 *5 *3)) + (-4 *3 (-1144 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-4 *5 (-357 *4)) (-5 *2 (-341 *3)) + (-5 *1 (-371 *4 *5 *3)) (-4 *3 (-1144 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370))))) (((*1 *2) - (-12 (-4 *3 (-13 (-510) (-978 (-499)))) (-5 *2 (-1213)) (-5 *1 (-387 *3 *4)) - (-4 *4 (-375 *3))))) + (-12 (-4 *3 (-13 (-489) (-943 (-478)))) (-5 *2 (-1174)) (-5 *1 (-369 *3 *4)) + (-4 *4 (-357 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-361 (-499))) - (-5 *1 (-387 *4 *3)) (-4 *3 (-375 *4)))) + (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-343 (-478))) + (-5 *1 (-369 *4 *3)) (-4 *3 (-357 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-566 *3)) (-4 *3 (-375 *5)) (-4 *5 (-13 (-510) (-978 (-499)))) - (-5 *2 (-1111 (-361 (-499)))) (-5 *1 (-387 *5 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3))))) + (-12 (-5 *4 (-545 *3)) (-4 *3 (-357 *5)) (-4 *5 (-13 (-489) (-943 (-478)))) + (-5 *2 (-1074 (-343 (-478)))) (-5 *1 (-369 *5 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-13 (-146) (-38 (-361 (-499))))) - (-4 *2 (-13 (-781) (-21)))))) + (-12 (-5 *1 (-365 *3 *2)) (-4 *3 (-13 (-144) (-38 (-343 (-478))))) + (-4 *2 (-13 (-749) (-21)))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-13 (-146) (-38 (-361 (-499))))) - (-4 *2 (-13 (-781) (-21)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) - (-5 *2 (-534 *3)) (-5 *1 (-382 *5 *3)) (-4 *3 (-13 (-1143) (-29 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-1041)) (-5 *2 (-714))))) -(((*1 *1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1041)) (-4 *2 (-323))))) -(((*1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-323)) (-4 *2 (-1041))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) - (-5 *1 (-377 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1143) (-375 *3))) - (-14 *4 (-1117)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) - (-4 *2 (-13 (-27) (-1143) (-375 *3) (-10 -8 (-15 -4096 ($ *4))))) - (-4 *4 (-780)) + (-12 (-5 *1 (-365 *3 *2)) (-4 *3 (-13 (-144) (-38 (-343 (-478))))) + (-4 *2 (-13 (-749) (-21)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) + (-5 *2 (-513 *3)) (-5 *1 (-364 *5 *3)) (-4 *3 (-13 (-1104) (-29 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-1005)) (-5 *2 (-687))))) +(((*1 *1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1005)) (-4 *2 (-313))))) +(((*1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-313)) (-4 *2 (-1005))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) + (-5 *1 (-359 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1104) (-357 *3))) + (-14 *4 (-1079)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) + (-4 *2 (-13 (-27) (-1104) (-357 *3) (-10 -8 (-15 -3930 ($ *4))))) + (-4 *4 (-748)) (-4 *5 - (-13 (-1186 *2 *4) (-318) (-1143) - (-10 -8 (-15 -3908 ($ $)) (-15 -3962 ($ $))))) - (-5 *1 (-378 *3 *2 *4 *5 *6 *7)) (-4 *6 (-923 *5)) (-14 *7 (-1117))))) + (-13 (-1147 *2 *4) (-308) (-1104) + (-10 -8 (-15 -3742 ($ $)) (-15 -3796 ($ $))))) + (-5 *1 (-360 *3 *2 *4 *5 *6 *7)) (-4 *6 (-889 *5)) (-14 *7 (-1079))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-85)) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) - (-4 *3 (-13 (-27) (-1143) (-375 *6) (-10 -8 (-15 -4096 ($ *7))))) - (-4 *7 (-780)) + (-12 (-5 *4 (-83)) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) + (-4 *3 (-13 (-27) (-1104) (-357 *6) (-10 -8 (-15 -3930 ($ *7))))) + (-4 *7 (-748)) (-4 *8 - (-13 (-1186 *3 *7) (-318) (-1143) - (-10 -8 (-15 -3908 ($ $)) (-15 -3962 ($ $))))) + (-13 (-1147 *3 *7) (-308) (-1104) + (-10 -8 (-15 -3742 ($ $)) (-15 -3796 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099)))))) - (-5 *1 (-378 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1099)) (-4 *9 (-923 *8)) - (-14 *10 (-1117))))) + (|:| |%problem| (-2 (|:| |func| (-1062)) (|:| |prob| (-1062)))))) + (-5 *1 (-360 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1062)) (-4 *9 (-889 *8)) + (-14 *10 (-1079))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-85)) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) - (-4 *3 (-13 (-27) (-1143) (-375 *6) (-10 -8 (-15 -4096 ($ *7))))) - (-4 *7 (-780)) + (-12 (-5 *4 (-83)) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) + (-4 *3 (-13 (-27) (-1104) (-357 *6) (-10 -8 (-15 -3930 ($ *7))))) + (-4 *7 (-748)) (-4 *8 - (-13 (-1186 *3 *7) (-318) (-1143) - (-10 -8 (-15 -3908 ($ $)) (-15 -3962 ($ $))))) + (-13 (-1147 *3 *7) (-308) (-1104) + (-10 -8 (-15 -3742 ($ $)) (-15 -3796 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099)))))) - (-5 *1 (-378 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1099)) (-4 *9 (-923 *8)) - (-14 *10 (-1117))))) + (|:| |%problem| (-2 (|:| |func| (-1062)) (|:| |prob| (-1062)))))) + (-5 *1 (-360 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1062)) (-4 *9 (-889 *8)) + (-14 *10 (-1079))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 - (-3 (|:| |%expansion| (-267 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099)))))) - (-5 *1 (-377 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) - (-14 *6 (-1117)) (-14 *7 *3)))) + (-3 (|:| |%expansion| (-260 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1062)) (|:| |prob| (-1062)))))) + (-5 *1 (-359 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1104) (-357 *5))) + (-14 *6 (-1079)) (-14 *7 *3)))) (((*1 *2 *1) - (-12 (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1041)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-280 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989)))) - ((*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1041))))) + (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-4 *1 (-357 *3)) (-4 *3 (-1005)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954)))) + ((*1 *2 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1005))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-599 *1)) (-4 *1 (-375 *4)) (-4 *4 (-1041)))) + (-12 (-5 *2 (-1079)) (-5 *3 (-578 *1)) (-4 *1 (-357 *4)) (-4 *4 (-1005)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041)))) - ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1041)) - (-5 *2 (-2 (|:| -4104 (-499)) (|:| |var| (-566 *1)))) (-4 *1 (-375 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-359 *3)) (-4 *3 (-510)) (-5 *1 (-373 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-318)) (-4 *1 (-283 *3)))) + (-12 (-5 *2 (-1079)) (-4 *1 (-357 *3)) (-4 *3 (-1005)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1079)) (-4 *1 (-357 *3)) (-4 *3 (-1005)))) + ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1079)) (-4 *1 (-357 *3)) (-4 *3 (-1005)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1079)) (-4 *1 (-357 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1005)) + (-5 *2 (-2 (|:| -3938 (-478)) (|:| |var| (-545 *1)))) (-4 *1 (-357 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-341 *3)) (-4 *3 (-489)) (-5 *1 (-355 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-308)) (-4 *1 (-276 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1207 *3)) (-4 *3 (-1183 *4)) (-4 *4 (-1162)) - (-4 *1 (-297 *4 *3 *5)) (-4 *5 (-1183 (-361 *3))))) + (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1144 *4)) (-4 *4 (-1123)) + (-4 *1 (-287 *4 *3 *5)) (-4 *5 (-1144 (-343 *3))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1207 *4)) (-5 *3 (-1207 *1)) (-4 *4 (-146)) (-4 *1 (-322 *4)))) + (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1168 *1)) (-4 *4 (-144)) (-4 *1 (-312 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1207 *4)) (-5 *3 (-1207 *1)) (-4 *4 (-146)) - (-4 *1 (-325 *4 *5)) (-4 *5 (-1183 *4)))) + (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1168 *1)) (-4 *4 (-144)) + (-4 *1 (-315 *4 *5)) (-4 *5 (-1144 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1207 *3)) (-4 *3 (-146)) (-4 *1 (-364 *3 *4)) - (-4 *4 (-1183 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-146)) (-4 *1 (-372 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *2)) (-4 *2 (-146)))) - ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-371 *3 *2)) (-4 *3 (-372 *2)))) - ((*1 *2) (-12 (-4 *1 (-372 *2)) (-4 *2 (-146))))) -(((*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *2)) (-4 *2 (-146)))) - ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-371 *3 *2)) (-4 *3 (-372 *2)))) - ((*1 *2) (-12 (-4 *1 (-372 *2)) (-4 *2 (-146))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) + (-12 (-5 *2 (-1168 *3)) (-4 *3 (-144)) (-4 *1 (-346 *3 *4)) + (-4 *4 (-1144 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-144)) (-4 *1 (-354 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *2)) (-4 *2 (-144)))) + ((*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-353 *3 *2)) (-4 *3 (-354 *2)))) + ((*1 *2) (-12 (-4 *1 (-354 *2)) (-4 *2 (-144))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *2)) (-4 *2 (-144)))) + ((*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-353 *3 *2)) (-4 *3 (-354 *2)))) + ((*1 *2) (-12 (-4 *1 (-354 *2)) (-4 *2 (-144))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-647 *4)) (-5 *1 (-371 *3 *4)) - (-4 *3 (-372 *4)))) - ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-647 *3))))) + (-12 (-4 *4 (-144)) (-5 *2 (-625 *4)) (-5 *1 (-353 *3 *4)) + (-4 *3 (-354 *4)))) + ((*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-625 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-647 *4)) (-5 *1 (-371 *3 *4)) - (-4 *3 (-372 *4)))) - ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-647 *3))))) + (-12 (-4 *4 (-144)) (-5 *2 (-625 *4)) (-5 *1 (-353 *3 *4)) + (-4 *3 (-354 *4)))) + ((*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-625 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-647 *3))))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-625 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-647 *3))))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-625 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-367 *3 *4 *5 *6)) (-4 *6 (-978 *4)) (-4 *3 (-261)) - (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-4 *6 (-364 *4 *5)) - (-14 *7 (-1207 *6)) (-5 *1 (-369 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-349 *3 *4 *5 *6)) (-4 *6 (-943 *4)) (-4 *3 (-254)) + (-4 *4 (-897 *3)) (-4 *5 (-1144 *4)) (-4 *6 (-346 *4 *5)) + (-14 *7 (-1168 *6)) (-5 *1 (-351 *3 *4 *5 *6 *7)))) ((*1 *1 *2) - (-12 (-5 *2 (-1207 *6)) (-4 *6 (-364 *4 *5)) (-4 *4 (-931 *3)) - (-4 *5 (-1183 *4)) (-4 *3 (-261)) (-5 *1 (-369 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-1168 *6)) (-4 *6 (-346 *4 *5)) (-4 *4 (-897 *3)) + (-4 *5 (-1144 *4)) (-4 *3 (-254)) (-5 *1 (-351 *3 *4 *5 *6 *7)) (-14 *7 *2)))) (((*1 *1 *1) - (-12 (-4 *2 (-261)) (-4 *3 (-931 *2)) (-4 *4 (-1183 *3)) - (-5 *1 (-367 *2 *3 *4 *5)) (-4 *5 (-13 (-364 *3 *4) (-978 *3)))))) + (-12 (-4 *2 (-254)) (-4 *3 (-897 *2)) (-4 *4 (-1144 *3)) + (-5 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-13 (-346 *3 *4) (-943 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-714)) (-5 *4 (-1207 *2)) (-4 *5 (-261)) (-4 *6 (-931 *5)) - (-4 *2 (-13 (-364 *6 *7) (-978 *6))) (-5 *1 (-367 *5 *6 *7 *2)) - (-4 *7 (-1183 *6))))) + (-12 (-5 *3 (-687)) (-5 *4 (-1168 *2)) (-4 *5 (-254)) (-4 *6 (-897 *5)) + (-4 *2 (-13 (-346 *6 *7) (-943 *6))) (-5 *1 (-349 *5 *6 *7 *2)) + (-4 *7 (-1144 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-315 *4 *5)) (-4 *4 (-144)) + (-4 *5 (-1144 *4)) (-5 *2 (-625 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)) - (-5 *1 (-363 *3 *4 *5)) (-4 *3 (-364 *4 *5)))) + (-12 (-4 *4 (-144)) (-4 *5 (-1144 *4)) (-5 *2 (-625 *4)) + (-5 *1 (-345 *3 *4 *5)) (-4 *3 (-346 *4 *5)))) ((*1 *2) - (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) - (-5 *2 (-647 *3))))) + (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1144 *3)) + (-5 *2 (-625 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-315 *4 *5)) (-4 *4 (-144)) + (-4 *5 (-1144 *4)) (-5 *2 (-625 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) - (-5 *2 (-647 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510))))) + (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1144 *3)) + (-5 *2 (-625 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489))))) (((*1 *2 *1) - (-12 (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 (-499))))) (-5 *1 (-316 *3)) - (-4 *3 (-1041)))) + (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3927 (-478))))) (-5 *1 (-306 *3)) + (-4 *3 (-1005)))) ((*1 *2 *1) - (-12 (-4 *1 (-341 *3)) (-4 *3 (-1041)) - (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 (-714))))))) + (-12 (-4 *1 (-329 *3)) (-4 *3 (-1005)) + (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3927 (-687))))))) ((*1 *2 *1) - (-12 (-5 *2 (-599 (-2 (|:| -3882 *3) (|:| -2519 (-499))))) (-5 *1 (-359 *3)) - (-4 *3 (-510))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-359 *3)) (-4 *3 (-510))))) + (-12 (-5 *2 (-578 (-2 (|:| -3716 *3) (|:| -2387 (-478))))) (-5 *1 (-341 *3)) + (-4 *3 (-489))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-341 *3)) (-4 *3 (-489))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-499)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-359 *4)) (-4 *4 (-510))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510))))) + (-12 (-5 *3 (-478)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-341 *4)) (-4 *4 (-489))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-499)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-359 *2)) (-4 *2 (-510))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-333))) (-5 *1 (-220)))) - ((*1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-510)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-5 *1 (-359 *2)) (-4 *2 (-510))))) -(((*1 *1 *1) (-12 (-5 *1 (-359 *2)) (-4 *2 (-510))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-5 *3 (-85)) (-5 *1 (-81)))) - ((*1 *2 *2) (-12 (-5 *2 (-857)) (|has| *1 (-6 -4136)) (-4 *1 (-358)))) - ((*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-857))))) -(((*1 *2 *3) - (-12 (-5 *3 (-499)) (|has| *1 (-6 -4136)) (-4 *1 (-358)) (-5 *2 (-857))))) -(((*1 *2 *3) - (-12 (-5 *3 (-499)) (|has| *1 (-6 -4136)) (-4 *1 (-358)) (-5 *2 (-857))))) -(((*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-714)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-356)) (-5 *2 (-714))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-356)) (-5 *2 (-714)))) - ((*1 *1 *1) (-4 *1 (-356)))) + (-12 (-5 *3 (-478)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-341 *2)) (-4 *2 (-489))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-323))) (-5 *1 (-218)))) + ((*1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-489)) (-4 *2 (-144)))) + ((*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-489))))) +(((*1 *1 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-489))))) +(((*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-478))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-5 *3 (-83)) (-5 *1 (-79)))) + ((*1 *2 *2) (-12 (-5 *2 (-823)) (|has| *1 (-6 -3970)) (-4 *1 (-340)))) + ((*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-823))))) +(((*1 *2 *2) (-12 (-5 *2 (-823)) (|has| *1 (-6 -3970)) (-4 *1 (-340)))) + ((*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-823))))) +(((*1 *2 *3) + (-12 (-5 *3 (-478)) (|has| *1 (-6 -3970)) (-4 *1 (-340)) (-5 *2 (-823))))) +(((*1 *2 *3) + (-12 (-5 *3 (-478)) (|has| *1 (-6 -3970)) (-4 *1 (-340)) (-5 *2 (-823))))) +(((*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-687)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-338)) (-5 *2 (-687))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-687)))) + ((*1 *1 *1) (-4 *1 (-338)))) (((*1 *1 *2) - (-12 (-5 *2 (-361 *4)) (-4 *4 (-1183 *3)) (-4 *3 (-13 (-318) (-120))) - (-5 *1 (-353 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1183 *3)) (-5 *1 (-353 *3 *2)) (-4 *3 (-13 (-318) (-120)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-318) (-120))) - (-5 *2 (-599 (-2 (|:| -2519 (-714)) (|:| -3923 *4) (|:| |num| *4)))) - (-5 *1 (-353 *3 *4)) (-4 *4 (-1183 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-349))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-599 (-599 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-599 (-3 (|:| |array| (-599 *3)) (|:| |scalar| (-1117))))) - (-5 *6 (-599 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1043)) (-5 *1 (-349)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-599 (-599 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-599 (-3 (|:| |array| (-599 *3)) (|:| |scalar| (-1117))))) - (-5 *6 (-599 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1043)) (-5 *1 (-349)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-599 (-1117))) (-5 *5 (-1120)) (-5 *3 (-1117)) (-5 *2 (-1043)) - (-5 *1 (-349))))) -(((*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-347))))) -(((*1 *2 *3) (-12 (-5 *3 (-344)) (-5 *2 (-1213)) (-5 *1 (-347)))) - ((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-347))))) -(((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-347))))) -(((*1 *2) (-12 (-5 *2 (-1088 (-1099))) (-5 *1 (-347))))) -(((*1 *2) (-12 (-5 *2 (-1088 (-1099))) (-5 *1 (-347))))) -(((*1 *2 *1) - (-12 (-5 *2 (-797)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-714)) (-14 *4 (-714)) - (-4 *5 (-146))))) -(((*1 *2 *1) - (-12 (-5 *2 (-797)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-714)) (-14 *4 (-714)) - (-4 *5 (-146))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-345))))) -(((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-1099))))) -(((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-1099))))) -(((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-85))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-1041))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-1041))))) + (-12 (-5 *2 (-343 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-13 (-308) (-118))) + (-5 *1 (-335 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1144 *3)) (-5 *1 (-335 *3 *2)) (-4 *3 (-13 (-308) (-118)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-308) (-118))) + (-5 *2 (-578 (-2 (|:| -2387 (-687)) (|:| -3757 *4) (|:| |num| *4)))) + (-5 *1 (-335 *3 *4)) (-4 *4 (-1144 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-765)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-687)) (-14 *4 (-687)) + (-4 *5 (-144))))) +(((*1 *2 *1) + (-12 (-5 *2 (-765)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-687)) (-14 *4 (-687)) + (-4 *5 (-144))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1062)) (-4 *1 (-332))))) +(((*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-1062))))) +(((*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-1062))))) +(((*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-83))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-1005))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-1005))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-1041)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-341 *3))))) + (-12 (-4 *3 (-1005)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-329 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) + (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1005)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-599 (-361 (-884 (-499))))) (-5 *4 (-599 (-1117))) - (-5 *2 (-599 (-599 *5))) (-5 *1 (-335 *5)) (-4 *5 (-13 (-780) (-318))))) + (-12 (-5 *3 (-578 (-343 (-850 (-478))))) (-5 *4 (-578 (-1079))) + (-5 *2 (-578 (-578 *5))) (-5 *1 (-325 *5)) (-4 *5 (-13 (-748) (-308))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-361 (-884 (-499)))) (-5 *2 (-599 *4)) (-5 *1 (-335 *4)) - (-4 *4 (-13 (-780) (-318)))))) + (-12 (-5 *3 (-343 (-850 (-478)))) (-5 *2 (-578 *4)) (-5 *1 (-325 *4)) + (-4 *4 (-13 (-748) (-308)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-361 (-884 (-142 (-499))))) (-5 *2 (-599 (-142 *4))) - (-5 *1 (-334 *4)) (-4 *4 (-13 (-318) (-780))))) + (-12 (-5 *3 (-343 (-850 (-140 (-478))))) (-5 *2 (-578 (-140 *4))) + (-5 *1 (-324 *4)) (-4 *4 (-13 (-308) (-748))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-599 (-361 (-884 (-142 (-499)))))) (-5 *4 (-599 (-1117))) - (-5 *2 (-599 (-599 (-142 *5)))) (-5 *1 (-334 *5)) - (-4 *5 (-13 (-318) (-780)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-361 (-884 (-142 (-499)))))) - (-5 *2 (-599 (-599 (-247 (-884 (-142 *4)))))) (-5 *1 (-334 *4)) - (-4 *4 (-13 (-318) (-780))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-247 (-361 (-884 (-142 (-499))))))) - (-5 *2 (-599 (-599 (-247 (-884 (-142 *4)))))) (-5 *1 (-334 *4)) - (-4 *4 (-13 (-318) (-780))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-361 (-884 (-142 (-499))))) - (-5 *2 (-599 (-247 (-884 (-142 *4))))) (-5 *1 (-334 *4)) - (-4 *4 (-13 (-318) (-780))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-247 (-361 (-884 (-142 (-499)))))) - (-5 *2 (-599 (-247 (-884 (-142 *4))))) (-5 *1 (-334 *4)) - (-4 *4 (-13 (-318) (-780)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-499)) (-5 *1 (-333))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-361 (-499))) (-5 *1 (-179)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *2 (-361 (-499))) (-5 *1 (-179)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-361 (-499))) (-5 *1 (-333)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *2 (-361 (-499))) (-5 *1 (-333))))) -(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-333))) - ((*1 *1) (-5 *1 (-333)))) -(((*1 *1 *1) (-5 *1 (-179))) - ((*1 *1 *1) - (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) - (-4 *4 (-343)))) - ((*1 *1 *1) (-5 *1 (-333))) ((*1 *1) (-5 *1 (-333)))) -(((*1 *1) (-5 *1 (-179))) ((*1 *1) (-5 *1 (-333)))) -(((*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-333)))) - ((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-333))))) -(((*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-333)))) - ((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-333))))) -(((*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-333)))) - ((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-333))))) -(((*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-333))))) + (-12 (-5 *3 (-578 (-343 (-850 (-140 (-478)))))) (-5 *4 (-578 (-1079))) + (-5 *2 (-578 (-578 (-140 *5)))) (-5 *1 (-324 *5)) + (-4 *5 (-13 (-308) (-748)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-578 (-343 (-850 (-140 (-478)))))) + (-5 *2 (-578 (-578 (-245 (-850 (-140 *4)))))) (-5 *1 (-324 *4)) + (-4 *4 (-13 (-308) (-748))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-578 (-245 (-343 (-850 (-140 (-478))))))) + (-5 *2 (-578 (-578 (-245 (-850 (-140 *4)))))) (-5 *1 (-324 *4)) + (-4 *4 (-13 (-308) (-748))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-343 (-850 (-140 (-478))))) + (-5 *2 (-578 (-245 (-850 (-140 *4))))) (-5 *1 (-324 *4)) + (-4 *4 (-13 (-308) (-748))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-245 (-343 (-850 (-140 (-478)))))) + (-5 *2 (-578 (-245 (-850 (-140 *4))))) (-5 *1 (-324 *4)) + (-4 *4 (-13 (-308) (-748)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-478)) (-5 *1 (-323))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-343 (-478))) (-5 *1 (-177)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *2 (-343 (-478))) (-5 *1 (-177)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-343 (-478))) (-5 *1 (-323)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *2 (-343 (-478))) (-5 *1 (-323))))) +(((*1 *1 *1) (-5 *1 (-177))) ((*1 *1 *1) (-5 *1 (-323))) + ((*1 *1) (-5 *1 (-323)))) +(((*1 *1 *1) (-5 *1 (-177))) ((*1 *1 *1) (-5 *1 (-323))) + ((*1 *1) (-5 *1 (-323)))) +(((*1 *1) (-5 *1 (-177))) ((*1 *1) (-5 *1 (-323)))) +(((*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1174)) (-5 *1 (-323)))) + ((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-323))))) +(((*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1174)) (-5 *1 (-323)))) + ((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-323))))) +(((*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1174)) (-5 *1 (-323)))) + ((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-323))))) +(((*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1174)) (-5 *1 (-323))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-330 *4 *2)) - (-4 *2 (-13 (-327 *4) (-10 -7 (-6 -4146))))))) + (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-320 *4 *2)) + (-4 *2 (-13 (-317 *4) (-10 -7 (-6 -3980))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-330 *4 *2)) - (-4 *2 (-13 (-327 *4) (-10 -7 (-6 -4146))))))) + (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-320 *4 *2)) + (-4 *2 (-13 (-317 *4) (-10 -7 (-6 -3980))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-330 *4 *2)) - (-4 *2 (-13 (-327 *4) (-10 -7 (-6 -4146))))))) + (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-320 *4 *2)) + (-4 *2 (-13 (-317 *4) (-10 -7 (-6 -3980))))))) (((*1 *1 *2) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-781)) (-4 *1 (-329 *3 *4)) (-4 *4 (-146))))) + (-12 (-5 *2 (-609 *3)) (-4 *3 (-749)) (-4 *1 (-319 *3 *4)) (-4 *4 (-144))))) (((*1 *2 *1) - (-12 (-4 *1 (-327 *3)) (-4 *3 (-1157)) (-4 *3 (-781)) (-5 *2 (-85)))) + (-12 (-4 *1 (-317 *3)) (-4 *3 (-1118)) (-4 *3 (-749)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-327 *4)) (-4 *4 (-1157)) - (-5 *2 (-85))))) + (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *1 (-317 *4)) (-4 *4 (-1118)) + (-5 *2 (-83))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-499)) (|has| *1 (-6 -4146)) (-4 *1 (-327 *3)) (-4 *3 (-1157))))) + (-12 (-5 *2 (-478)) (|has| *1 (-6 -3980)) (-4 *1 (-317 *3)) (-4 *3 (-1118))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4146)) (-4 *1 (-327 *2)) (-4 *2 (-1157)) (-4 *2 (-781)))) + (-12 (|has| *1 (-6 -3980)) (-4 *1 (-317 *2)) (-4 *2 (-1118)) (-4 *2 (-749)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -4146)) (-4 *1 (-327 *3)) - (-4 *3 (-1157))))) -(((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1207 *1)) (-4 *1 (-322 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-1111 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-1111 *3))))) + (-12 (-5 *2 (-1 (-83) *3 *3)) (|has| *1 (-6 -3980)) (-4 *1 (-317 *3)) + (-4 *3 (-1118))))) +(((*1 *2) (-12 (-4 *3 (-144)) (-5 *2 (-1168 *1)) (-4 *1 (-312 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144))))) +(((*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144))))) +(((*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144))))) +(((*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144))))) +(((*1 *2 *1) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-1074 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-1074 *3))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) + ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) + ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) + ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) + ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) + ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) + ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) + ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) -(((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) + ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) +(((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) + ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) + ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) + ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) + ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) + ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) + ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-599 (-1207 *4))) (-5 *1 (-321 *3 *4)) - (-4 *3 (-322 *4)))) + (-12 (-4 *4 (-144)) (-5 *2 (-578 (-1168 *4))) (-5 *1 (-311 *3 *4)) + (-4 *3 (-312 *4)))) ((*1 *2) - (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-4 *3 (-510)) - (-5 *2 (-599 (-1207 *3)))))) + (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-4 *3 (-489)) + (-5 *2 (-578 (-1168 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-4 *3 (-510)) (-5 *2 (-1111 *3))))) + (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-4 *3 (-489)) (-5 *2 (-1074 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-4 *3 (-510)) (-5 *2 (-1111 *3))))) -(((*1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-510)) (-4 *2 (-146))))) -(((*1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-510)) (-4 *2 (-146))))) + (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-4 *3 (-489)) (-5 *2 (-1074 *3))))) +(((*1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-489)) (-4 *2 (-144))))) +(((*1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-489)) (-4 *2 (-144))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1099)) (-4 *1 (-320 *2 *4)) (-4 *2 (-1041)) (-4 *4 (-1041)))) - ((*1 *1 *2) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041))))) + (-12 (-5 *3 (-1062)) (-4 *1 (-310 *2 *4)) (-4 *2 (-1005)) (-4 *4 (-1005)))) + ((*1 *1 *2) (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1099)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) -(((*1 *1 *1) (-4 *1 (-147))) - ((*1 *1 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041))))) + (-12 (-5 *2 (-1062)) (-4 *1 (-310 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005))))) +(((*1 *1 *1) (-4 *1 (-145))) + ((*1 *1 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-1005))))) (((*1 *2 *1) - (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-5 *2 (-1099))))) -(((*1 *2 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041))))) + (-12 (-4 *1 (-310 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)) (-5 *2 (-1062))))) +(((*1 *2 *1) (-12 (-4 *1 (-310 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-310 *3 *2)) (-4 *3 (-1005)) (-4 *2 (-1005))))) (((*1 *2 *3) - (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) + (-12 (-5 *3 (-1074 *4)) (-4 *4 (-295)) (-4 *2 - (-13 (-356) - (-10 -7 (-15 -4096 (*2 *4)) (-15 -2111 ((-857) *2)) - (-15 -2113 ((-1207 *2) (-857))) (-15 -4078 (*2 *2))))) - (-5 *1 (-312 *2 *4))))) + (-13 (-338) + (-10 -7 (-15 -3930 (*2 *4)) (-15 -1996 ((-823) *2)) + (-15 -1998 ((-1168 *2) (-823))) (-15 -3912 (*2 *2))))) + (-5 *1 (-302 *2 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-305)) (-5 *2 (-896 (-1111 *4))) (-5 *1 (-311 *4)) - (-5 *3 (-1111 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3))))) + (-12 (-4 *4 (-295)) (-5 *2 (-862 (-1074 *4))) (-5 *1 (-301 *4)) + (-5 *3 (-1074 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1074 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3))))) + (|partial| -12 (-5 *2 (-1074 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3))))) + (|partial| -12 (-5 *2 (-1074 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3))))) + (|partial| -12 (-5 *2 (-1074 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3))))) + (|partial| -12 (-5 *2 (-1074 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3))))) + (|partial| -12 (-5 *2 (-1074 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305))))) + (-12 (-5 *3 (-823)) (-5 *2 (-1074 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295))))) (((*1 *2 *3) - (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305))))) + (-12 (-5 *3 (-823)) (-5 *2 (-1074 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295))))) (((*1 *2 *3) - (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305))))) + (-12 (-5 *3 (-823)) (-5 *2 (-1074 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295))))) (((*1 *2 *3) - (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305))))) + (-12 (-5 *3 (-823)) (-5 *2 (-1074 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295))))) (((*1 *2 *3) - (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305))))) -(((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-311 *3)) (-4 *3 (-305))))) -(((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-311 *3)) (-4 *3 (-305))))) -(((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-311 *3)) (-4 *3 (-305))))) -(((*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-85)))) + (-12 (-5 *3 (-823)) (-5 *2 (-1074 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295))))) +(((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-301 *3)) (-4 *3 (-295))))) +(((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-301 *3)) (-4 *3 (-295))))) +(((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-301 *3)) (-4 *3 (-295))))) +(((*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-83)))) ((*1 *2 *3) - (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) (-5 *2 (-85)) (-5 *1 (-311 *4))))) + (-12 (-5 *3 (-1074 *4)) (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-301 *4))))) (((*1 *2) - (-12 (-5 *2 (-1207 (-599 (-2 (|:| -3542 (-844 *3)) (|:| -2518 (-1060)))))) - (-5 *1 (-307 *3 *4)) (-14 *3 (-857)) (-14 *4 (-857)))) + (-12 (-5 *2 (-1168 (-578 (-2 (|:| -3386 (-810 *3)) (|:| -2386 (-1023)))))) + (-5 *1 (-297 *3 *4)) (-14 *3 (-823)) (-14 *4 (-823)))) ((*1 *2) - (-12 (-5 *2 (-1207 (-599 (-2 (|:| -3542 *3) (|:| -2518 (-1060)))))) - (-5 *1 (-308 *3 *4)) (-4 *3 (-305)) (-14 *4 (-3 (-1111 *3) *2)))) + (-12 (-5 *2 (-1168 (-578 (-2 (|:| -3386 *3) (|:| -2386 (-1023)))))) + (-5 *1 (-298 *3 *4)) (-4 *3 (-295)) (-14 *4 (-3 (-1074 *3) *2)))) ((*1 *2) - (-12 (-5 *2 (-1207 (-599 (-2 (|:| -3542 *3) (|:| -2518 (-1060)))))) - (-5 *1 (-309 *3 *4)) (-4 *3 (-305)) (-14 *4 (-857))))) + (-12 (-5 *2 (-1168 (-578 (-2 (|:| -3386 *3) (|:| -2386 (-1023)))))) + (-5 *1 (-299 *3 *4)) (-4 *3 (-295)) (-14 *4 (-823))))) (((*1 *2) - (-12 (-5 *2 (-647 (-844 *3))) (-5 *1 (-307 *3 *4)) (-14 *3 (-857)) - (-14 *4 (-857)))) + (-12 (-5 *2 (-625 (-810 *3))) (-5 *1 (-297 *3 *4)) (-14 *3 (-823)) + (-14 *4 (-823)))) ((*1 *2) - (-12 (-5 *2 (-647 *3)) (-5 *1 (-308 *3 *4)) (-4 *3 (-305)) + (-12 (-5 *2 (-625 *3)) (-5 *1 (-298 *3 *4)) (-4 *3 (-295)) (-14 *4 - (-3 (-1111 *3) (-1207 (-599 (-2 (|:| -3542 *3) (|:| -2518 (-1060))))))))) + (-3 (-1074 *3) (-1168 (-578 (-2 (|:| -3386 *3) (|:| -2386 (-1023))))))))) ((*1 *2) - (-12 (-5 *2 (-647 *3)) (-5 *1 (-309 *3 *4)) (-4 *3 (-305)) (-14 *4 (-857))))) + (-12 (-5 *2 (-625 *3)) (-5 *1 (-299 *3 *4)) (-4 *3 (-295)) (-14 *4 (-823))))) (((*1 *2 *3) - (-12 (-5 *3 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) - (-4 *4 (-305)) (-5 *2 (-714)) (-5 *1 (-302 *4)))) + (-12 (-5 *3 (-1168 (-578 (-2 (|:| -3386 *4) (|:| -2386 (-1023)))))) + (-4 *4 (-295)) (-5 *2 (-687)) (-5 *1 (-292 *4)))) ((*1 *2) - (-12 (-5 *2 (-714)) (-5 *1 (-307 *3 *4)) (-14 *3 (-857)) (-14 *4 (-857)))) + (-12 (-5 *2 (-687)) (-5 *1 (-297 *3 *4)) (-14 *3 (-823)) (-14 *4 (-823)))) ((*1 *2) - (-12 (-5 *2 (-714)) (-5 *1 (-308 *3 *4)) (-4 *3 (-305)) + (-12 (-5 *2 (-687)) (-5 *1 (-298 *3 *4)) (-4 *3 (-295)) (-14 *4 - (-3 (-1111 *3) (-1207 (-599 (-2 (|:| -3542 *3) (|:| -2518 (-1060))))))))) + (-3 (-1074 *3) (-1168 (-578 (-2 (|:| -3386 *3) (|:| -2386 (-1023))))))))) ((*1 *2) - (-12 (-5 *2 (-714)) (-5 *1 (-309 *3 *4)) (-4 *3 (-305)) (-14 *4 (-857))))) + (-12 (-5 *2 (-687)) (-5 *1 (-299 *3 *4)) (-4 *3 (-295)) (-14 *4 (-823))))) (((*1 *2) - (-12 (-4 *1 (-305)) - (-5 *2 (-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499)))))))) -(((*1 *2 *3) (-12 (-4 *1 (-305)) (-5 *3 (-499)) (-5 *2 (-1129 (-857) (-714)))))) -(((*1 *1) (-4 *1 (-305)))) + (-12 (-4 *1 (-295)) + (-5 *2 (-578 (-2 (|:| -3716 (-478)) (|:| -2387 (-478)))))))) +(((*1 *2 *3) (-12 (-4 *1 (-295)) (-5 *3 (-478)) (-5 *2 (-1091 (-823) (-687)))))) +(((*1 *1) (-4 *1 (-295)))) (((*1 *2) - (-12 (-4 *1 (-305)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) + (-12 (-4 *1 (-295)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-5 *3 (-857)) + (-12 (-5 *3 (-823)) (-5 *2 - (-3 (-1111 *4) (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060))))))) - (-5 *1 (-302 *4)) (-4 *4 (-305))))) + (-3 (-1074 *4) (-1168 (-578 (-2 (|:| -3386 *4) (|:| -2386 (-1023))))))) + (-5 *1 (-292 *4)) (-4 *4 (-295))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-857)) - (-5 *2 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) - (-5 *1 (-302 *4)) (-4 *4 (-305))))) + (|partial| -12 (-5 *3 (-823)) + (-5 *2 (-1168 (-578 (-2 (|:| -3386 *4) (|:| -2386 (-1023)))))) + (-5 *1 (-292 *4)) (-4 *4 (-295))))) (((*1 *2 *3) - (-12 (-5 *3 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) - (-4 *4 (-305)) (-5 *2 (-647 *4)) (-5 *1 (-302 *4))))) + (-12 (-5 *3 (-1168 (-578 (-2 (|:| -3386 *4) (|:| -2386 (-1023)))))) + (-4 *4 (-295)) (-5 *2 (-625 *4)) (-5 *1 (-292 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) - (-5 *2 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) - (-5 *1 (-302 *4))))) + (-12 (-5 *3 (-1074 *4)) (-4 *4 (-295)) + (-5 *2 (-1168 (-578 (-2 (|:| -3386 *4) (|:| -2386 (-1023)))))) + (-5 *1 (-292 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) (-5 *2 (-896 (-1060))) - (-5 *1 (-302 *4))))) + (-12 (-5 *3 (-1074 *4)) (-4 *4 (-295)) (-5 *2 (-862 (-1023))) + (-5 *1 (-292 *4))))) (((*1 *2) - (-12 (-5 *2 (-896 (-1060))) (-5 *1 (-299 *3 *4)) (-14 *3 (-857)) - (-14 *4 (-857)))) + (-12 (-5 *2 (-862 (-1023))) (-5 *1 (-289 *3 *4)) (-14 *3 (-823)) + (-14 *4 (-823)))) ((*1 *2) - (-12 (-5 *2 (-896 (-1060))) (-5 *1 (-300 *3 *4)) (-4 *3 (-305)) - (-14 *4 (-1111 *3)))) + (-12 (-5 *2 (-862 (-1023))) (-5 *1 (-290 *3 *4)) (-4 *3 (-295)) + (-14 *4 (-1074 *3)))) ((*1 *2) - (-12 (-5 *2 (-896 (-1060))) (-5 *1 (-301 *3 *4)) (-4 *3 (-305)) - (-14 *4 (-857))))) + (-12 (-5 *2 (-862 (-1023))) (-5 *1 (-291 *3 *4)) (-4 *3 (-295)) + (-14 *4 (-823))))) (((*1 *2) - (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) - (-5 *2 (-714)) (-5 *1 (-296 *3 *4 *5 *6)) (-4 *3 (-297 *4 *5 *6)))) + (-12 (-4 *4 (-1123)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-343 *5))) + (-5 *2 (-687)) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-5 *2 (-714))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-5 *2 (-687))))) (((*1 *2) - (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) - (-5 *2 (-85)) (-5 *1 (-296 *3 *4 *5 *6)) (-4 *3 (-297 *4 *5 *6)))) + (-12 (-4 *4 (-1123)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-343 *5))) + (-5 *2 (-83)) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-1162)) (-4 *5 (-1183 *3)) (-4 *6 (-1183 (-361 *5))) - (-5 *2 (-85)) (-5 *1 (-296 *4 *3 *5 *6)) (-4 *4 (-297 *3 *5 *6)))) + (-12 (-4 *3 (-1123)) (-4 *5 (-1144 *3)) (-4 *6 (-1144 (-343 *5))) + (-5 *2 (-83)) (-5 *1 (-286 *4 *3 *5 *6)) (-4 *4 (-287 *3 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83))))) (((*1 *2 *3) - (-12 (-4 *1 (-297 *4 *3 *5)) (-4 *4 (-1162)) (-4 *3 (-1183 *4)) - (-4 *5 (-1183 (-361 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1144 *4)) + (-4 *5 (-1144 (-343 *3))) (-5 *2 (-83)))) ((*1 *2 *3) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83))))) (((*1 *2 *3) - (-12 (-4 *1 (-297 *4 *3 *5)) (-4 *4 (-1162)) (-4 *3 (-1183 *4)) - (-4 *5 (-1183 (-361 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1144 *4)) + (-4 *5 (-1144 (-343 *3))) (-5 *2 (-83)))) ((*1 *2 *3) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83))))) (((*1 *2 *3) - (-12 (-4 *1 (-297 *4 *3 *5)) (-4 *4 (-1162)) (-4 *3 (-1183 *4)) - (-4 *5 (-1183 (-361 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1144 *4)) + (-4 *5 (-1144 (-343 *3))) (-5 *2 (-83)))) ((*1 *2 *3) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) - (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5))))) + (-12 (-4 *3 (-1123)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) + (-5 *2 (-1168 *1)) (-4 *1 (-287 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-297 *4 *3 *5)) (-4 *4 (-1162)) (-4 *3 (-1183 *4)) - (-4 *5 (-1183 (-361 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1144 *4)) + (-4 *5 (-1144 (-343 *3))) (-5 *2 (-83)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-5 *2 (-83))))) (((*1 *2 *2) - (-12 (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) - (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4)))))) + (-12 (-5 *2 (-1168 *1)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) + (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) - (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4)))))) + (-12 (-5 *2 (-1168 *1)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) + (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) - (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4)))))) + (-12 (-5 *2 (-1168 *1)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) + (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4)))))) (((*1 *2) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-5 *2 (-647 (-361 *4)))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-5 *2 (-625 (-343 *4)))))) (((*1 *2) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-5 *2 (-647 (-361 *4)))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-5 *2 (-625 (-343 *4)))))) (((*1 *2) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-5 *2 (-647 (-361 *4)))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-5 *2 (-625 (-343 *4)))))) (((*1 *2) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-5 *2 (-647 (-361 *4)))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-5 *2 (-625 (-343 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) - (-5 *2 (-2 (|:| |num| (-1207 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) + (-5 *2 (-2 (|:| |num| (-1168 *4)) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) - (-5 *2 (-2 (|:| |num| (-1207 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) + (-5 *2 (-2 (|:| |num| (-1168 *4)) (|:| |den| *4)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1207 *3)) (-4 *3 (-1183 *4)) (-4 *4 (-1162)) - (-4 *1 (-297 *4 *3 *5)) (-4 *5 (-1183 (-361 *3)))))) + (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1144 *4)) (-4 *4 (-1123)) + (-4 *1 (-287 *4 *3 *5)) (-4 *5 (-1144 (-343 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-297 *4 *5 *6)) (-4 *4 (-1162)) - (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) - (-5 *2 (-2 (|:| |num| (-647 *5)) (|:| |den| *5)))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-287 *4 *5 *6)) (-4 *4 (-1123)) + (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-343 *5))) + (-5 *2 (-2 (|:| |num| (-625 *5)) (|:| |den| *5)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-318) (-1143) (-942))))) + (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) + (-4 *3 (-13 (-308) (-1104) (-908))))) ((*1 *2) - (|partial| -12 (-4 *4 (-1162)) (-4 *5 (-1183 (-361 *2))) (-4 *2 (-1183 *4)) - (-5 *1 (-296 *3 *4 *2 *5)) (-4 *3 (-297 *4 *2 *5)))) + (|partial| -12 (-4 *4 (-1123)) (-4 *5 (-1144 (-343 *2))) (-4 *2 (-1144 *4)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *3 (-287 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-297 *3 *2 *4)) (-4 *3 (-1162)) - (-4 *4 (-1183 (-361 *2))) (-4 *2 (-1183 *3))))) + (|partial| -12 (-4 *1 (-287 *3 *2 *4)) (-4 *3 (-1123)) + (-4 *4 (-1144 (-343 *2))) (-4 *2 (-1144 *3))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1162)) (-4 *5 (-1183 (-361 *2))) (-4 *2 (-1183 *4)) - (-5 *1 (-296 *3 *4 *2 *5)) (-4 *3 (-297 *4 *2 *5)))) + (|partial| -12 (-4 *4 (-1123)) (-4 *5 (-1144 (-343 *2))) (-4 *2 (-1144 *4)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *3 (-287 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-297 *3 *2 *4)) (-4 *3 (-1162)) - (-4 *4 (-1183 (-361 *2))) (-4 *2 (-1183 *3))))) + (|partial| -12 (-4 *1 (-287 *3 *2 *4)) (-4 *3 (-1123)) + (-4 *4 (-1144 (-343 *2))) (-4 *2 (-1144 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1183 *4)) (-4 *4 (-1162)) - (-4 *6 (-1183 (-361 *5))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-1123)) + (-4 *6 (-1144 (-343 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) - (-4 *1 (-297 *4 *5 *6))))) + (-4 *1 (-287 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *5 (-1162)) (-4 *6 (-1183 *5)) - (-4 *7 (-1183 (-361 *6))) (-5 *2 (-599 (-884 *5))) - (-5 *1 (-296 *4 *5 *6 *7)) (-4 *4 (-297 *5 *6 *7)))) + (-12 (-5 *3 (-1079)) (-4 *5 (-1123)) (-4 *6 (-1144 *5)) + (-4 *7 (-1144 (-343 *6))) (-5 *2 (-578 (-850 *5))) + (-5 *1 (-286 *4 *5 *6 *7)) (-4 *4 (-287 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *1 (-297 *4 *5 *6)) (-4 *4 (-1162)) - (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) (-4 *4 (-318)) - (-5 *2 (-599 (-884 *4)))))) + (-12 (-5 *3 (-1079)) (-4 *1 (-287 *4 *5 *6)) (-4 *4 (-1123)) + (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-343 *5))) (-4 *4 (-308)) + (-5 *2 (-578 (-850 *4)))))) (((*1 *2) - (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) - (-5 *2 (-599 (-599 *4))) (-5 *1 (-296 *3 *4 *5 *6)) - (-4 *3 (-297 *4 *5 *6)))) + (-12 (-4 *4 (-1123)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-343 *5))) + (-5 *2 (-578 (-578 *4))) (-5 *1 (-286 *3 *4 *5 *6)) + (-4 *3 (-287 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-4 *3 (-323)) (-5 *2 (-599 (-599 *3)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 (-1117))) - (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) - ((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 (-1117))) - (-14 *4 (-599 (-1117))) (-4 *5 (-343))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-4 *3 (-313)) (-5 *2 (-578 (-578 *3)))))) (((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-318)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 (-361 *3))) - (-4 *1 (-291 *4 *3 *5 *2)) (-4 *2 (-297 *4 *3 *5)))) + (-12 (-4 *4 (-308)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 (-343 *3))) + (-4 *1 (-282 *4 *3 *5 *2)) (-4 *2 (-287 *4 *3 *5)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-499)) (-4 *2 (-318)) (-4 *4 (-1183 *2)) - (-4 *5 (-1183 (-361 *4))) (-4 *1 (-291 *2 *4 *5 *6)) - (-4 *6 (-297 *2 *4 *5)))) + (-12 (-5 *3 (-478)) (-4 *2 (-308)) (-4 *4 (-1144 *2)) + (-4 *5 (-1144 (-343 *4))) (-4 *1 (-282 *2 *4 *5 *6)) + (-4 *6 (-287 *2 *4 *5)))) ((*1 *1 *2 *2) - (-12 (-4 *2 (-318)) (-4 *3 (-1183 *2)) (-4 *4 (-1183 (-361 *3))) - (-4 *1 (-291 *2 *3 *4 *5)) (-4 *5 (-297 *2 *3 *4)))) + (-12 (-4 *2 (-308)) (-4 *3 (-1144 *2)) (-4 *4 (-1144 (-343 *3))) + (-4 *1 (-282 *2 *3 *4 *5)) (-4 *5 (-287 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) - (-4 *1 (-291 *3 *4 *5 *2)) (-4 *2 (-297 *3 *4 *5)))) + (-12 (-4 *3 (-308)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) + (-4 *1 (-282 *3 *4 *5 *2)) (-4 *2 (-287 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-367 *4 (-361 *4) *5 *6)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 *3 *4 *5)) (-4 *3 (-318)) - (-4 *1 (-291 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5 *6)) (-4 *3 (-318)) (-4 *4 (-1183 *3)) - (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 *3 *4 *5)) (-5 *2 (-85))))) -(((*1 *2 *1) - (-12 (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) - (-5 *2 (-1207 *6)) (-5 *1 (-288 *3 *4 *5 *6)) (-4 *6 (-297 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) - (-5 *2 (-1207 *6)) (-5 *1 (-288 *3 *4 *5 *6)) (-4 *6 (-297 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-287))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-807 (-1122) (-714)))) (-5 *1 (-287))))) -(((*1 *2 *1) (-12 (-5 *2 (-896 (-714))) (-5 *1 (-287))))) -(((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-287))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-884 (-499))) (-5 *2 (-284)) (-5 *1 (-286))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-884 (-499))) (-5 *2 (-284)) (-5 *1 (-286))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-884 (-499))) (-5 *2 (-284)) (-5 *1 (-286))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-285 *3)) (-4 *3 (-781))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1032 (-884 (-499)))) (-5 *3 (-884 (-499))) (-5 *1 (-284)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1032 (-884 (-499)))) (-5 *1 (-284))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-284))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-284))))) -(((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-284))))) -(((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-284))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-284)))) - ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-284))))) -(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-284))))) -(((*1 *1 *2) (-12 (-5 *2 (-268 (-142 (-333)))) (-5 *1 (-284)))) - ((*1 *1 *2) (-12 (-5 *2 (-268 (-499))) (-5 *1 (-284)))) - ((*1 *1 *2) (-12 (-5 *2 (-268 (-333))) (-5 *1 (-284)))) - ((*1 *1 *2) (-12 (-5 *2 (-268 (-652))) (-5 *1 (-284)))) - ((*1 *1 *2) (-12 (-5 *2 (-268 (-659))) (-5 *1 (-284)))) - ((*1 *1 *2) (-12 (-5 *2 (-268 (-657))) (-5 *1 (-284)))) - ((*1 *1) (-5 *1 (-284)))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-284)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-284))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-5 *1 (-284))))) -(((*1 *1) (-5 *1 (-284)))) -(((*1 *1) (-5 *1 (-284)))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-284))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-599 (-1117))) (-5 *2 (-1117)) (-5 *1 (-284))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") - (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") - (|:| |Goto| "goto") (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-284))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1117)) (|:| |arrayIndex| (-599 (-884 (-499)))) - (|:| |rand| (-2 (|:| |ints2Floats?| (-85)) (|:| -3391 (-797)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1117)) (|:| |rand| (-797)) - (|:| |ints2Floats?| (-85)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1116)) (|:| |thenClause| (-284)) - (|:| |elseClause| (-284)))) - (|:| |returnBranch| - (-2 (|:| -3543 (-85)) - (|:| -3542 (-2 (|:| |ints2Floats?| (-85)) (|:| -3391 (-797)))))) - (|:| |blockBranch| (-599 (-284))) (|:| |commentBranch| (-599 (-1099))) - (|:| |callBranch| (-1099)) - (|:| |forBranch| - (-2 (|:| -1539 (-1032 (-884 (-499)))) (|:| |span| (-884 (-499))) - (|:| -3371 (-284)))) - (|:| |labelBranch| (-1060)) - (|:| |loopBranch| (-2 (|:| |switch| (-1116)) (|:| -3371 (-284)))) - (|:| |commonBranch| - (-2 (|:| -3690 (-1117)) (|:| |contents| (-599 (-1117))))) - (|:| |printBranch| (-599 (-797))))) - (-5 *1 (-284))))) -(((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-284))))) -(((*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-284))))) -(((*1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-284))))) -(((*1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-323)) (-4 *2 (-318))))) + (-12 (-5 *2 (-349 *4 (-343 *4) *5 *6)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-4 *6 (-287 *3 *4 *5)) (-4 *3 (-308)) + (-4 *1 (-282 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-282 *3 *4 *5 *6)) (-4 *3 (-308)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-343 *4))) (-4 *6 (-287 *3 *4 *5)) (-5 *2 (-83))))) +(((*1 *2 *1) + (-12 (-4 *3 (-308)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) + (-5 *2 (-1168 *6)) (-5 *1 (-279 *3 *4 *5 *6)) (-4 *6 (-287 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-308)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-343 *4))) + (-5 *2 (-1168 *6)) (-5 *1 (-279 *3 *4 *5 *6)) (-4 *6 (-287 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-206)) (-5 *1 (-278))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-775 (-1084) (-687)))) (-5 *1 (-278))))) +(((*1 *2 *1) (-12 (-5 *2 (-862 (-687))) (-5 *1 (-278))))) +(((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-278))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-277 *3)) (-4 *3 (-749))))) +(((*1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-313)) (-4 *2 (-308))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1111 *3)) (-4 *3 (-323)) (-4 *1 (-283 *3)) (-4 *3 (-318))))) + (-12 (-5 *2 (-1074 *3)) (-4 *3 (-313)) (-4 *1 (-276 *3)) (-4 *3 (-308))))) (((*1 *2 *1) - (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)) (-5 *2 (-1111 *3))))) + (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)) (-5 *2 (-1074 *3))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)) - (-5 *2 (-1111 *3)))) + (|partial| -12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)) + (-5 *2 (-1074 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)) (-5 *2 (-1111 *3))))) + (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)) (-5 *2 (-1074 *3))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-280 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-714)) (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) - (-4 *3 (-146))))) + (-12 (-5 *2 (-687)) (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) + (-4 *3 (-144))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-499)) (-4 *1 (-277 *4 *2)) (-4 *4 (-1041)) (-4 *2 (-104))))) + (-12 (-5 *3 (-478)) (-4 *1 (-270 *4 *2)) (-4 *4 (-1005)) (-4 *2 (-102))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-104))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-270 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-102))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-104)) (-4 *3 (-737))))) + (-12 (-4 *1 (-270 *2 *3)) (-4 *2 (-1005)) (-4 *3 (-102)) (-4 *3 (-709))))) (((*1 *2 *3) - (-12 (-5 *3 (-499)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-989)) - (-5 *1 (-275 *4 *5 *2 *6)) (-4 *6 (-888 *2 *4 *5))))) + (-12 (-5 *3 (-478)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-954)) + (-5 *1 (-268 *4 *5 *2 *6)) (-4 *6 (-854 *2 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1111 *7)) (-5 *3 (-499)) (-4 *7 (-888 *6 *4 *5)) (-4 *4 (-738)) - (-4 *5 (-781)) (-4 *6 (-989)) (-5 *1 (-275 *4 *5 *6 *7))))) + (-12 (-5 *2 (-1074 *7)) (-5 *3 (-478)) (-4 *7 (-854 *6 *4 *5)) (-4 *4 (-710)) + (-4 *5 (-749)) (-4 *6 (-954)) (-5 *1 (-268 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1111 *6)) (-4 *6 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) - (-5 *2 (-1111 *7)) (-5 *1 (-275 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5))))) + (-12 (-5 *3 (-1074 *6)) (-4 *6 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-5 *2 (-1074 *7)) (-5 *1 (-268 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1111 *7)) (-4 *7 (-888 *6 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781)) - (-4 *6 (-989)) (-5 *2 (-1111 *6)) (-5 *1 (-275 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1074 *7)) (-4 *7 (-854 *6 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749)) + (-4 *6 (-954)) (-5 *2 (-1074 *6)) (-5 *1 (-268 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1111 *9)) (-5 *4 (-599 *7)) (-5 *5 (-599 *8)) (-4 *7 (-781)) - (-4 *8 (-989)) (-4 *9 (-888 *8 *6 *7)) (-4 *6 (-738)) (-5 *2 (-1111 *8)) - (-5 *1 (-275 *6 *7 *8 *9))))) + (-12 (-5 *3 (-1074 *9)) (-5 *4 (-578 *7)) (-5 *5 (-578 *8)) (-4 *7 (-749)) + (-4 *8 (-954)) (-4 *9 (-854 *8 *6 *7)) (-4 *6 (-710)) (-5 *2 (-1074 *8)) + (-5 *1 (-268 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-5 *2 (-361 (-499))) (-5 *1 (-273 *3 *4 *5)) (-4 *3 (-318)) - (-14 *4 (-1117)) (-14 *5 *3)))) + (-12 (-5 *2 (-343 (-478))) (-5 *1 (-266 *3 *4 *5)) (-4 *3 (-308)) + (-14 *4 (-1079)) (-14 *5 *3)))) (((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) - (-5 *6 (-499)) (-5 *2 (-1153 (-865))) (-5 *1 (-272)))) + (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-993 (-177))) + (-5 *6 (-478)) (-5 *2 (-1114 (-831))) (-5 *1 (-265)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) - (-5 *6 (-499)) (-5 *7 (-1099)) (-5 *2 (-1153 (-865))) (-5 *1 (-272)))) + (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-993 (-177))) + (-5 *6 (-478)) (-5 *7 (-1062)) (-5 *2 (-1114 (-831))) (-5 *1 (-265)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) - (-5 *6 (-179)) (-5 *7 (-499)) (-5 *2 (-1153 (-865))) (-5 *1 (-272)))) + (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-993 (-177))) + (-5 *6 (-177)) (-5 *7 (-478)) (-5 *2 (-1114 (-831))) (-5 *1 (-265)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) - (-5 *6 (-179)) (-5 *7 (-499)) (-5 *8 (-1099)) (-5 *2 (-1153 (-865))) - (-5 *1 (-272))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-272)) (-5 *3 (-179))))) + (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-993 (-177))) + (-5 *6 (-177)) (-5 *7 (-478)) (-5 *8 (-1062)) (-5 *2 (-1114 (-831))) + (-5 *1 (-265))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-265)) (-5 *3 (-177))))) (((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-247 *6)) (-5 *4 (-86)) (-4 *6 (-375 *5)) - (-4 *5 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *5 *6)))) + (-12 (-5 *3 (-245 *6)) (-5 *4 (-84)) (-4 *6 (-357 *5)) + (-4 *5 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *5 *6)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-247 *7)) (-5 *4 (-86)) (-5 *5 (-599 *7)) (-4 *7 (-375 *6)) - (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *7)))) + (-12 (-5 *3 (-245 *7)) (-5 *4 (-84)) (-5 *5 (-578 *7)) (-4 *7 (-357 *6)) + (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *7)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-599 (-247 *7))) (-5 *4 (-599 (-86))) (-5 *5 (-247 *7)) - (-4 *7 (-375 *6)) (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) - (-5 *1 (-271 *6 *7)))) + (-12 (-5 *3 (-578 (-245 *7))) (-5 *4 (-578 (-84))) (-5 *5 (-245 *7)) + (-4 *7 (-357 *6)) (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) + (-5 *1 (-264 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-599 (-247 *8))) (-5 *4 (-599 (-86))) (-5 *5 (-247 *8)) - (-5 *6 (-599 *8)) (-4 *8 (-375 *7)) (-4 *7 (-13 (-510) (-569 (-488)))) - (-5 *2 (-51)) (-5 *1 (-271 *7 *8)))) + (-12 (-5 *3 (-578 (-245 *8))) (-5 *4 (-578 (-84))) (-5 *5 (-245 *8)) + (-5 *6 (-578 *8)) (-4 *8 (-357 *7)) (-4 *7 (-13 (-489) (-548 (-467)))) + (-5 *2 (-51)) (-5 *1 (-264 *7 *8)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-599 *7)) (-5 *4 (-599 (-86))) (-5 *5 (-247 *7)) - (-4 *7 (-375 *6)) (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) - (-5 *1 (-271 *6 *7)))) + (-12 (-5 *3 (-578 *7)) (-5 *4 (-578 (-84))) (-5 *5 (-245 *7)) + (-4 *7 (-357 *6)) (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) + (-5 *1 (-264 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 (-86))) (-5 *6 (-599 (-247 *8))) - (-4 *8 (-375 *7)) (-5 *5 (-247 *8)) (-4 *7 (-13 (-510) (-569 (-488)))) - (-5 *2 (-51)) (-5 *1 (-271 *7 *8)))) + (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-84))) (-5 *6 (-578 (-245 *8))) + (-4 *8 (-357 *7)) (-5 *5 (-245 *8)) (-4 *7 (-13 (-489) (-548 (-467)))) + (-5 *2 (-51)) (-5 *1 (-264 *7 *8)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-247 *5)) (-5 *4 (-86)) (-4 *5 (-375 *6)) - (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *5)))) + (-12 (-5 *3 (-245 *5)) (-5 *4 (-84)) (-4 *5 (-357 *6)) + (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *5)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-86)) (-5 *5 (-247 *3)) (-4 *3 (-375 *6)) - (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *3)))) + (-12 (-5 *4 (-84)) (-5 *5 (-245 *3)) (-4 *3 (-357 *6)) + (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *3)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-86)) (-5 *5 (-247 *3)) (-4 *3 (-375 *6)) - (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *3)))) + (-12 (-5 *4 (-84)) (-5 *5 (-245 *3)) (-4 *3 (-357 *6)) + (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-86)) (-5 *5 (-247 *3)) (-5 *6 (-599 *3)) (-4 *3 (-375 *7)) - (-4 *7 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *7 *3))))) + (-12 (-5 *4 (-84)) (-5 *5 (-245 *3)) (-5 *6 (-578 *3)) (-4 *3 (-357 *7)) + (-4 *7 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *7 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-268 *3)) (-4 *3 (-510)) (-4 *3 (-1041))))) + (-12 (-5 *2 (-83)) (-5 *1 (-261 *3)) (-4 *3 (-489)) (-4 *3 (-1005))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-499)) (-5 *1 (-268 *3)) (-4 *3 (-510)) (-4 *3 (-1041))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-261)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-261)) (-5 *2 (-714))))) + (-12 (-5 *2 (-478)) (-5 *1 (-261 *3)) (-4 *3 (-489)) (-4 *3 (-1005))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-687))))) (((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-261)))) + (-4 *1 (-254)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2527 *1))) - (-4 *1 (-261))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-599 *1)) (-4 *1 (-261))))) -(((*1 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-780)) (-5 *1 (-258 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-179))) (-5 *4 (-714)) (-5 *2 (-647 (-179))) - (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-361 (-499))) (-5 *2 (-179)) (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-268 (-333))) (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-884 (-179))) (-5 *2 (-179)) (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-884 (-179))) (-5 *2 (-268 (-333))) (-5 *1 (-257))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-333)) (|:| |stability| (-333)) - (|:| |expense| (-333)) (|:| |accuracy| (-333)) - (|:| |intermediateResults| (-333)))) - (-5 *2 (-975)) (-5 *1 (-257))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1095 (-179))) - (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1539 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-975)) (-5 *1 (-257))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2787 (-333)) (|:| -3690 (-1099)) - (|:| |explanations| (-599 (-1099))))) - (-5 *2 (-975)) (-5 *1 (-257)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2787 (-333)) (|:| -3690 (-1099)) - (|:| |explanations| (-599 (-1099))) (|:| |extra| (-975)))) - (-5 *2 (-975)) (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1099)) (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-1029 (-775 (-179)))) (-5 *2 (-179)) (-5 *1 (-255)))) - ((*1 *2 *3) (-12 (-5 *3 (-1029 (-775 (-179)))) (-5 *2 (-179)) (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-1029 (-775 (-179)))) (-5 *2 (-179)) (-5 *1 (-255)))) - ((*1 *2 *3) (-12 (-5 *3 (-1029 (-775 (-179)))) (-5 *2 (-179)) (-5 *1 (-257))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1095 (-179))) (-5 *2 (-599 (-1099))) (-5 *1 (-255)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1095 (-179))) (-5 *2 (-599 (-1099))) (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-599 (-1099))) (-5 *1 (-255)))) - ((*1 *2 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-599 (-1099))) (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1099)) (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-1099)) (-5 *1 (-255)))) - ((*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-1099)) (-5 *1 (-257))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1207 (-268 (-179)))) (-5 *2 (-1207 (-268 (-333)))) - (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-268 (-179))) (-5 *2 (-268 (-333))) (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-1207 (-657))) (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-657)) (-5 *1 (-257))))) -(((*1 *2 *3) - (-12 (-5 *3 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) - (-5 *2 (-599 (-179))) (-5 *1 (-257))))) -(((*1 *2 *2) (-12 (-5 *2 (-1029 (-775 (-179)))) (-5 *1 (-257))))) -(((*1 *2 *3) - (-12 (-5 *3 (-268 (-179))) (-5 *2 (-268 (-361 (-499)))) (-5 *1 (-257))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1207 (-268 (-179)))) - (-5 *2 - (-2 (|:| |additions| (-499)) (|:| |multiplications| (-499)) - (|:| |exponentiations| (-499)) (|:| |functionCalls| (-499)))) - (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-1207 (-268 (-179)))) (-5 *2 (-333)) (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-268 (-179))) (-5 *2 (-179)) (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-268 (-179))) (-5 *2 (-361 (-499))) (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-361 (-499))) (-5 *1 (-257))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1029 (-775 (-333)))) (-5 *2 (-1029 (-775 (-179)))) - (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-775 (-333))) (-5 *2 (-775 (-179))) (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-268 (-333))) (-5 *2 (-268 (-179))) (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-333)) (-5 *2 (-179)) (-5 *1 (-257))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-884 (-361 (-499)))) (-5 *4 (-1117)) - (-5 *5 (-1029 (-775 (-179)))) (-5 *2 (-599 (-179))) (-5 *1 (-255))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-268 (-179))) (-5 *4 (-599 (-1117))) - (-5 *5 (-1029 (-775 (-179)))) (-5 *2 (-1095 (-179))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1207 (-268 (-179)))) (-5 *4 (-599 (-1117))) - (-5 *5 (-1029 (-775 (-179)))) (-5 *2 (-1095 (-179))) (-5 *1 (-255))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1111 *1)) (-5 *4 (-1117)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1111 *1)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-884 *1)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *2 (-599 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-510)) (-5 *2 (-599 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-268 (-179))) (-5 *4 (-599 (-1117))) - (-5 *5 (-1029 (-775 (-179)))) (-5 *2 (-1095 (-179))) (-5 *1 (-255))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-268 (-179))) (-5 *4 (-1117)) (-5 *5 (-1029 (-775 (-179)))) - (-5 *2 (-599 (-179))) (-5 *1 (-255))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) - (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) - (|:| |relerr| (-179)))) - (-5 *2 (-85)) (-5 *1 (-255))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-252)) (-4 *2 (-1157)))) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2395 *1))) + (-4 *1 (-254))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-578 *1)) (-4 *1 (-254))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-250)) (-4 *2 (-1118)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-599 (-566 *1))) (-5 *3 (-599 *1)) (-4 *1 (-252)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-247 *1))) (-4 *1 (-252)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-247 *1)) (-4 *1 (-252))))) -(((*1 *1 *1 *1) (-4 *1 (-252))) ((*1 *1 *1) (-4 *1 (-252)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-566 *1)) (-4 *1 (-252))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-566 *1))) (-4 *1 (-252))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-566 *1))) (-4 *1 (-252))))) -(((*1 *2 *1) (-12 (-4 *1 (-252)) (-5 *2 (-599 (-86)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-252)) (-5 *3 (-1117)) (-5 *2 (-85)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-252)) (-5 *2 (-85))))) -(((*1 *2 *3) - (-12 (-5 *3 (-566 *5)) (-4 *5 (-375 *4)) (-4 *4 (-978 (-499))) (-4 *4 (-510)) - (-5 *2 (-1111 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-566 *1)) (-4 *1 (-989)) (-4 *1 (-252)) (-5 *2 (-1111 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-265)) (-5 *1 (-250)))) - ((*1 *2 *3) (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-265)) (-5 *1 (-250)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-265)) (-5 *1 (-250)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-599 (-1099))) (-5 *3 (-1099)) (-5 *2 (-265)) (-5 *1 (-250))))) -(((*1 *2 *2) - (-12 (-4 *3 (-989)) (-4 *4 (-1183 *3)) (-5 *1 (-137 *3 *4 *2)) - (-4 *2 (-1183 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157))))) -(((*1 *1 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-21)) (-4 *2 (-1157))))) -(((*1 *1 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-21)) (-4 *2 (-1157))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-247 *2)) (-4 *2 (-684)) (-4 *2 (-1157))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-247 *2)) (-4 *2 (-684)) (-4 *2 (-1157))))) -(((*1 *2 *1) - (-12 (-5 *2 (-599 (-247 *3))) (-5 *1 (-247 *3)) (-4 *3 (-510)) - (-4 *3 (-1157))))) -(((*1 *2 *3) - (-12 (-4 *4 (-406)) - (-5 *2 - (-599 - (-2 (|:| |eigval| (-3 (-361 (-884 *4)) (-1106 (-1117) (-884 *4)))) - (|:| |eigmult| (-714)) (|:| |eigvec| (-599 (-647 (-361 (-884 *4)))))))) - (-5 *1 (-246 *4)) (-5 *3 (-647 (-361 (-884 *4))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-406)) - (-5 *2 - (-599 - (-2 (|:| |eigval| (-3 (-361 (-884 *4)) (-1106 (-1117) (-884 *4)))) - (|:| |geneigvec| (-599 (-647 (-361 (-884 *4)))))))) - (-5 *1 (-246 *4)) (-5 *3 (-647 (-361 (-884 *4))))))) + (-12 (-5 *2 (-578 (-545 *1))) (-5 *3 (-578 *1)) (-4 *1 (-250)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-245 *1))) (-4 *1 (-250)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-245 *1)) (-4 *1 (-250))))) +(((*1 *1 *1 *1) (-4 *1 (-250))) ((*1 *1 *1) (-4 *1 (-250)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-545 *1)) (-4 *1 (-250))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-545 *1))) (-4 *1 (-250))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-545 *1))) (-4 *1 (-250))))) +(((*1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-578 (-84)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-250)) (-5 *3 (-1079)) (-5 *2 (-83)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-83))))) +(((*1 *2 *3) + (-12 (-5 *3 (-545 *5)) (-4 *5 (-357 *4)) (-4 *4 (-943 (-478))) (-4 *4 (-489)) + (-5 *2 (-1074 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-545 *1)) (-4 *1 (-954)) (-4 *1 (-250)) (-5 *2 (-1074 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-258)) (-5 *1 (-248)))) + ((*1 *2 *3) (-12 (-5 *3 (-578 (-1062))) (-5 *2 (-258)) (-5 *1 (-248)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-258)) (-5 *1 (-248)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-578 (-1062))) (-5 *3 (-1062)) (-5 *2 (-258)) (-5 *1 (-248))))) +(((*1 *2 *2) + (-12 (-4 *3 (-954)) (-4 *4 (-1144 *3)) (-5 *1 (-135 *3 *4 *2)) + (-4 *2 (-1144 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1118))))) +(((*1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1118))))) +(((*1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1118))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-245 *2)) (-4 *2 (-658)) (-4 *2 (-1118))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-245 *2)) (-4 *2 (-658)) (-4 *2 (-1118))))) +(((*1 *2 *1) + (-12 (-5 *2 (-578 (-245 *3))) (-5 *1 (-245 *3)) (-4 *3 (-489)) + (-4 *3 (-1118))))) +(((*1 *2 *3) + (-12 (-4 *4 (-385)) + (-5 *2 + (-578 + (-2 (|:| |eigval| (-3 (-343 (-850 *4)) (-1069 (-1079) (-850 *4)))) + (|:| |eigmult| (-687)) (|:| |eigvec| (-578 (-625 (-343 (-850 *4)))))))) + (-5 *1 (-244 *4)) (-5 *3 (-625 (-343 (-850 *4))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-385)) + (-5 *2 + (-578 + (-2 (|:| |eigval| (-3 (-343 (-850 *4)) (-1069 (-1079) (-850 *4)))) + (|:| |geneigvec| (-578 (-625 (-343 (-850 *4)))))))) + (-5 *1 (-244 *4)) (-5 *3 (-625 (-343 (-850 *4))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-361 (-884 *6)) (-1106 (-1117) (-884 *6)))) (-5 *5 (-714)) - (-4 *6 (-406)) (-5 *2 (-599 (-647 (-361 (-884 *6))))) (-5 *1 (-246 *6)) - (-5 *4 (-647 (-361 (-884 *6)))))) + (-12 (-5 *3 (-3 (-343 (-850 *6)) (-1069 (-1079) (-850 *6)))) (-5 *5 (-687)) + (-4 *6 (-385)) (-5 *2 (-578 (-625 (-343 (-850 *6))))) (-5 *1 (-244 *6)) + (-5 *4 (-625 (-343 (-850 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-361 (-884 *5)) (-1106 (-1117) (-884 *5)))) - (|:| |eigmult| (-714)) (|:| |eigvec| (-599 *4)))) - (-4 *5 (-406)) (-5 *2 (-599 (-647 (-361 (-884 *5))))) (-5 *1 (-246 *5)) - (-5 *4 (-647 (-361 (-884 *5))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-361 (-884 *5)) (-1106 (-1117) (-884 *5)))) (-4 *5 (-406)) - (-5 *2 (-599 (-647 (-361 (-884 *5))))) (-5 *1 (-246 *5)) - (-5 *4 (-647 (-361 (-884 *5))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-647 (-361 (-884 *4)))) (-4 *4 (-406)) - (-5 *2 (-599 (-3 (-361 (-884 *4)) (-1106 (-1117) (-884 *4))))) - (-5 *1 (-246 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-1025))) (-5 *1 (-245))))) -(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-1043))) (-5 *1 (-245))))) -(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-460)) (-5 *3 (-1043)) (-5 *1 (-245))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-460)) (-5 *2 (-599 (-903))) (-5 *1 (-245))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-460)) (-5 *3 (-599 (-903))) (-5 *1 (-245))))) -(((*1 *1) (-5 *1 (-245)))) -(((*1 *1) (-5 *1 (-245)))) -(((*1 *1) (-5 *1 (-245)))) + (-2 (|:| |eigval| (-3 (-343 (-850 *5)) (-1069 (-1079) (-850 *5)))) + (|:| |eigmult| (-687)) (|:| |eigvec| (-578 *4)))) + (-4 *5 (-385)) (-5 *2 (-578 (-625 (-343 (-850 *5))))) (-5 *1 (-244 *5)) + (-5 *4 (-625 (-343 (-850 *5))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-343 (-850 *5)) (-1069 (-1079) (-850 *5)))) (-4 *5 (-385)) + (-5 *2 (-578 (-625 (-343 (-850 *5))))) (-5 *1 (-244 *5)) + (-5 *4 (-625 (-343 (-850 *5))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-625 (-343 (-850 *4)))) (-4 *4 (-385)) + (-5 *2 (-578 (-3 (-343 (-850 *4)) (-1069 (-1079) (-850 *4))))) + (-5 *1 (-244 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-989))) (-5 *1 (-243))))) +(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-1007))) (-5 *1 (-243))))) +(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1007)) (-5 *1 (-243))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-578 (-869))) (-5 *1 (-243))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-578 (-869))) (-5 *1 (-243))))) +(((*1 *1) (-5 *1 (-243)))) +(((*1 *1) (-5 *1 (-243)))) +(((*1 *1) (-5 *1 (-243)))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1157)) (-4 *4 (-327 *2)) - (-4 *5 (-327 *2)))) + (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1118)) (-4 *4 (-317 *2)) + (-4 *5 (-317 *2)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4146)) (-4 *1 (-242 *3 *2)) (-4 *3 (-1041)) - (-4 *2 (-1157))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-318)) (-5 *2 (-599 (-1095 *4))) (-5 *1 (-239 *4 *5)) - (-5 *3 (-1095 *4)) (-4 *5 (-1200 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-239 *3 *2)) (-4 *2 (-1200 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-239 *3 *2)) (-4 *2 (-1200 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-239 *3 *2)) (-4 *2 (-1200 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1174 (-499))) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-236 *3)) (-4 *3 (-1157))))) + (-12 (|has| *1 (-6 -3980)) (-4 *1 (-240 *3 *2)) (-4 *3 (-1005)) + (-4 *2 (-1118))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-308)) (-5 *2 (-578 (-1058 *4))) (-5 *1 (-237 *4 *5)) + (-5 *3 (-1058 *4)) (-4 *5 (-1161 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-237 *3 *2)) (-4 *2 (-1161 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-237 *3 *2)) (-4 *2 (-1161 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-237 *3 *2)) (-4 *2 (-1161 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1135 (-478))) (-4 *1 (-234 *3)) (-4 *3 (-1118)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-234 *3)) (-4 *3 (-1118))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -4145)) (-4 *1 (-192 *3)) - (-4 *3 (-1041)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-236 *3)) (-4 *3 (-1157))))) + (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3979)) (-4 *1 (-190 *3)) + (-4 *3 (-1005)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-234 *3)) (-4 *3 (-1118))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-537)) (-5 *3 (-547)) (-5 *4 (-245)) (-5 *1 (-234))))) -(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-234))))) -(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-234))))) -(((*1 *2 *1) (-12 (-5 *2 (-245)) (-5 *1 (-234))))) -(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-233))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1043)) (-5 *1 (-233))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-233))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-460)) (-5 *1 (-233))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-233))))) + (-12 (-5 *2 (-516)) (-5 *3 (-526)) (-5 *4 (-243)) (-5 *1 (-232))))) +(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-232))))) +(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-232))))) +(((*1 *2 *1) (-12 (-5 *2 (-243)) (-5 *1 (-232))))) +(((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-231))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1007)) (-5 *1 (-231))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-231))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-439)) (-5 *1 (-231))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-231))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-361 (-499))) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) - (-5 *1 (-230 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4)))))) + (-12 (-5 *3 (-343 (-478))) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) + (-5 *1 (-228 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *4)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-566 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4))) - (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *4 *2))))) + (-12 (-5 *3 (-545 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *4))) + (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *4 *2))))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-599 (-566 *2))) (-5 *4 (-1117)) - (-4 *2 (-13 (-27) (-1143) (-375 *5))) - (-4 *5 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *5 *2))))) + (|partial| -12 (-5 *3 (-578 (-545 *2))) (-5 *4 (-1079)) + (-4 *2 (-13 (-27) (-1104) (-357 *5))) + (-4 *5 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *5 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *3 *2)) - (-4 *2 (-13 (-27) (-1143) (-375 *3))))) + (-12 (-4 *3 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *3 *2)) + (-4 *2 (-13 (-27) (-1104) (-357 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) - (-5 *1 (-230 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4)))))) + (-12 (-5 *3 (-1079)) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) + (-5 *1 (-228 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-357 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)) (-596 (-499)))) + (-12 (-5 *4 (-1079)) (-4 *5 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-599 (-566 *3))) (|:| |vals| (-599 *3)))) - (-5 *1 (-230 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5)))))) + (-2 (|:| |func| *3) (|:| |kers| (-578 (-545 *3))) (|:| |vals| (-578 *3)))) + (-5 *1 (-228 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-357 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-229 *4 *3)) - (-4 *3 (-13 (-375 *4) (-942)))))) + (-12 (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-227 *4 *3)) + (-4 *3 (-13 (-357 *4) (-908)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-599 (-2 (|:| |func| *2) (|:| |pole| (-85))))) - (-4 *2 (-13 (-375 *4) (-942))) (-4 *4 (-510)) (-5 *1 (-229 *4 *2))))) + (|partial| -12 (-5 *3 (-578 (-2 (|:| |func| *2) (|:| |pole| (-83))))) + (-4 *2 (-13 (-357 *4) (-908))) (-4 *4 (-489)) (-5 *1 (-227 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) + (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-375 *3) (-942))) (-5 *1 (-229 *3 *2)) (-4 *3 (-510))))) + (-12 (-4 *2 (-13 (-357 *3) (-908))) (-5 *1 (-227 *3 *2)) (-4 *3 (-489))))) (((*1 *2) - (-12 (-4 *2 (-13 (-375 *3) (-942))) (-5 *1 (-229 *3 *2)) (-4 *3 (-510))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-228))))) -(((*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-228))))) -(((*1 *2 *1) - (-12 (-4 *3 (-190)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *5 (-227 *4)) - (-4 *6 (-738)) (-5 *2 (-1 *1 (-714))) (-4 *1 (-212 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-989)) (-4 *3 (-781)) (-4 *5 (-227 *3)) (-4 *6 (-738)) - (-5 *2 (-1 *1 (-714))) (-4 *1 (-212 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-227 *2)) (-4 *2 (-781))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-86)))) - ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-86)))) + (-12 (-4 *2 (-13 (-357 *3) (-908))) (-5 *1 (-227 *3 *2)) (-4 *3 (-489))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-226))))) +(((*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-226))))) +(((*1 *2 *1) + (-12 (-4 *3 (-188)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *5 (-225 *4)) + (-4 *6 (-710)) (-5 *2 (-1 *1 (-687))) (-4 *1 (-210 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-954)) (-4 *3 (-749)) (-4 *5 (-225 *3)) (-4 *6 (-710)) + (-5 *2 (-1 *1 (-687))) (-4 *1 (-210 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-225 *2)) (-4 *2 (-749))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-84)))) + ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-84)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-989)) (-4 *3 (-781)) - (-4 *5 (-227 *3)) (-4 *6 (-738)) (-5 *2 (-714)))) - ((*1 *2 *1) - (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) - (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-714)))) - ((*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-781)) (-5 *2 (-714))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-599 (-220))) (-5 *4 (-1117)) (-5 *2 (-51)) - (-5 *1 (-220)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-599 (-220))) (-5 *4 (-1117)) (-5 *1 (-222 *2)) - (-4 *2 (-1157))))) -(((*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-220)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-333)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-220)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) -(((*1 *1) (-5 *1 (-117))) - ((*1 *1 *2) (-12 (-5 *2 (-1073 (-179))) (-5 *1 (-220)))) - ((*1 *2 *3) (-12 (-5 *3 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-220)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-220)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-808)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-808)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-220)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-220)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) -(((*1 *2 *3) - (-12 (-5 *3 (-863)) - (-5 *2 - (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) - (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) - (-5 *1 (-126)))) + (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-954)) (-4 *3 (-749)) + (-4 *5 (-225 *3)) (-4 *6 (-710)) (-5 *2 (-687)))) + ((*1 *2 *1) + (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) + (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-687)))) + ((*1 *2 *1) (-12 (-4 *1 (-225 *3)) (-4 *3 (-749)) (-5 *2 (-687))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-578 (-218))) (-5 *4 (-1079)) (-5 *2 (-51)) + (-5 *1 (-218)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-578 (-218))) (-5 *4 (-1079)) (-5 *1 (-220 *2)) + (-4 *2 (-1118))))) +(((*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-218)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-323)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) +(((*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-218)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-823)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) +(((*1 *1) (-5 *1 (-115))) + ((*1 *1 *2) (-12 (-5 *2 (-1036 (-177))) (-5 *1 (-218)))) + ((*1 *2 *3) (-12 (-5 *3 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-219))))) +(((*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-218)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-823)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) +(((*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-218)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-823)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-776)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-776)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) +(((*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-218)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) +(((*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-218)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1062)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) +(((*1 *2 *3) + (-12 (-5 *3 (-829)) + (-5 *2 + (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) + (|:| |yValues| (-993 (-177))))) + (-5 *1 (-124)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-863)) (-5 *4 (-361 (-499))) + (-12 (-5 *3 (-829)) (-5 *4 (-343 (-478))) (-5 *2 - (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) - (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) - (-5 *1 (-126)))) + (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) + (|:| |yValues| (-993 (-177))))) + (-5 *1 (-124)))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) - (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) - (-5 *1 (-126)) (-5 *3 (-599 (-881 (-179)))))) + (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) + (|:| |yValues| (-993 (-177))))) + (-5 *1 (-124)) (-5 *3 (-578 (-847 (-177)))))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) - (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) - (-5 *1 (-126)) (-5 *3 (-599 (-599 (-881 (-179))))))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-220)))) - ((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-220))))) -(((*1 *1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-220)))) - ((*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-220))))) -(((*1 *1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-220)))) - ((*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-220))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-220)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-220)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-220))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-1029 (-361 (-499))))) (-5 *1 (-220)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-220))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-220))) (-5 *4 (-1117)) (-5 *2 (-85)) (-5 *1 (-220))))) + (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) + (|:| |yValues| (-993 (-177))))) + (-5 *1 (-124)) (-5 *3 (-578 (-578 (-847 (-177))))))) + ((*1 *1 *2) (-12 (-5 *2 (-578 (-993 (-323)))) (-5 *1 (-218)))) + ((*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-218))))) +(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-218)))) + ((*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-218))))) +(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-218)))) + ((*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-218))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177) (-177) (-177))) (-5 *1 (-218)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177) (-177))) (-5 *1 (-218)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-218))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-993 (-343 (-478))))) (-5 *1 (-218)))) + ((*1 *1 *2) (-12 (-5 *2 (-578 (-993 (-323)))) (-5 *1 (-218))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-578 (-218))) (-5 *4 (-1079)) (-5 *2 (-83)) (-5 *1 (-218))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1210)) - (-5 *1 (-214 *3)) (-4 *3 (-13 (-569 (-488)) (-1041))))) + (-12 (-5 *4 (-996 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1171)) + (-5 *1 (-212 *3)) (-4 *3 (-13 (-548 (-467)) (-1005))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1032 (-333))) (-5 *2 (-1210)) (-5 *1 (-214 *3)) - (-4 *3 (-13 (-569 (-488)) (-1041))))) + (-12 (-5 *4 (-996 (-323))) (-5 *2 (-1171)) (-5 *1 (-212 *3)) + (-4 *3 (-13 (-548 (-467)) (-1005))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-812 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) - (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1210)) (-5 *1 (-214 *6)))) + (-12 (-5 *3 (-780 *6)) (-5 *4 (-996 (-323))) (-5 *5 (-578 (-218))) + (-4 *6 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1171)) (-5 *1 (-212 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-812 *5)) (-5 *4 (-1032 (-333))) - (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1210)) (-5 *1 (-214 *5)))) + (-12 (-5 *3 (-780 *5)) (-5 *4 (-996 (-323))) + (-4 *5 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1171)) (-5 *1 (-212 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-814 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) - (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1211)) (-5 *1 (-214 *6)))) + (-12 (-5 *3 (-782 *6)) (-5 *4 (-996 (-323))) (-5 *5 (-578 (-218))) + (-4 *6 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1172)) (-5 *1 (-212 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-814 *5)) (-5 *4 (-1032 (-333))) - (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1211)) (-5 *1 (-214 *5)))) + (-12 (-5 *3 (-782 *5)) (-5 *4 (-996 (-323))) + (-4 *5 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1172)) (-5 *1 (-212 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1211)) - (-5 *1 (-214 *3)) (-4 *3 (-13 (-569 (-488)) (-1041))))) + (-12 (-5 *4 (-996 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1172)) + (-5 *1 (-212 *3)) (-4 *3 (-13 (-548 (-467)) (-1005))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1032 (-333))) (-5 *2 (-1211)) (-5 *1 (-214 *3)) - (-4 *3 (-13 (-569 (-488)) (-1041))))) + (-12 (-5 *4 (-996 (-323))) (-5 *2 (-1172)) (-5 *1 (-212 *3)) + (-4 *3 (-13 (-548 (-467)) (-1005))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-817 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) - (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1211)) (-5 *1 (-214 *6)))) + (-12 (-5 *3 (-785 *6)) (-5 *4 (-996 (-323))) (-5 *5 (-578 (-218))) + (-4 *6 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1172)) (-5 *1 (-212 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-817 *5)) (-5 *4 (-1032 (-333))) - (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1211)) (-5 *1 (-214 *5)))) + (-12 (-5 *3 (-785 *5)) (-5 *4 (-996 (-323))) + (-4 *5 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1172)) (-5 *1 (-212 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) - (-5 *2 (-1210)) (-5 *1 (-215)))) + (-12 (-5 *3 (-1 (-177) (-177))) (-5 *4 (-993 (-323))) (-5 *5 (-578 (-218))) + (-5 *2 (-1171)) (-5 *1 (-213)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1210)) - (-5 *1 (-215)))) + (-12 (-5 *3 (-1 (-177) (-177))) (-5 *4 (-993 (-323))) (-5 *2 (-1171)) + (-5 *1 (-213)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-812 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) - (-5 *5 (-599 (-220))) (-5 *2 (-1210)) (-5 *1 (-215)))) + (-12 (-5 *3 (-780 (-1 (-177) (-177)))) (-5 *4 (-993 (-323))) + (-5 *5 (-578 (-218))) (-5 *2 (-1171)) (-5 *1 (-213)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-812 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *2 (-1210)) - (-5 *1 (-215)))) + (-12 (-5 *3 (-780 (-1 (-177) (-177)))) (-5 *4 (-993 (-323))) (-5 *2 (-1171)) + (-5 *1 (-213)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-814 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) - (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) + (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-993 (-323))) + (-5 *5 (-578 (-218))) (-5 *2 (-1172)) (-5 *1 (-213)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-814 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *2 (-1211)) - (-5 *1 (-215)))) + (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-993 (-323))) (-5 *2 (-1172)) + (-5 *1 (-213)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-881 (-179)) (-179))) (-5 *4 (-1029 (-333))) - (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) + (-12 (-5 *3 (-1 (-847 (-177)) (-177))) (-5 *4 (-993 (-323))) + (-5 *5 (-578 (-218))) (-5 *2 (-1172)) (-5 *1 (-213)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-881 (-179)) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1211)) - (-5 *1 (-215)))) + (-12 (-5 *3 (-1 (-847 (-177)) (-177))) (-5 *4 (-993 (-323))) (-5 *2 (-1172)) + (-5 *1 (-213)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1029 (-333))) - (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) + (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-993 (-323))) + (-5 *5 (-578 (-218))) (-5 *2 (-1172)) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1211)) - (-5 *1 (-215)))) + (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-993 (-323))) (-5 *2 (-1172)) + (-5 *1 (-213)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-333))) - (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) + (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-993 (-323))) + (-5 *5 (-578 (-218))) (-5 *2 (-1172)) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-333))) - (-5 *2 (-1211)) (-5 *1 (-215)))) + (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-993 (-323))) + (-5 *2 (-1172)) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-817 (-1 (-179) (-179) (-179)))) (-5 *4 (-1029 (-333))) - (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) + (-12 (-5 *3 (-785 (-1 (-177) (-177) (-177)))) (-5 *4 (-993 (-323))) + (-5 *5 (-578 (-218))) (-5 *2 (-1172)) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-817 (-1 (-179) (-179) (-179)))) (-5 *4 (-1029 (-333))) - (-5 *2 (-1211)) (-5 *1 (-215)))) + (-12 (-5 *3 (-785 (-1 (-177) (-177) (-177)))) (-5 *4 (-993 (-323))) + (-5 *2 (-1172)) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-247 *7)) (-5 *4 (-1117)) (-5 *5 (-599 (-220))) - (-4 *7 (-375 *6)) (-4 *6 (-13 (-510) (-781) (-978 (-499)))) (-5 *2 (-1210)) - (-5 *1 (-216 *6 *7)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-1210)) (-5 *1 (-219)))) + (-12 (-5 *3 (-245 *7)) (-5 *4 (-1079)) (-5 *5 (-578 (-218))) + (-4 *7 (-357 *6)) (-4 *6 (-13 (-489) (-749) (-943 (-478)))) (-5 *2 (-1171)) + (-5 *1 (-214 *6 *7)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-578 (-177))) (-5 *2 (-1171)) (-5 *1 (-217)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-599 (-179))) (-5 *4 (-599 (-220))) (-5 *2 (-1210)) - (-5 *1 (-219)))) - ((*1 *2 *3) (-12 (-5 *3 (-599 (-881 (-179)))) (-5 *2 (-1210)) (-5 *1 (-219)))) + (-12 (-5 *3 (-578 (-177))) (-5 *4 (-578 (-218))) (-5 *2 (-1171)) + (-5 *1 (-217)))) + ((*1 *2 *3) (-12 (-5 *3 (-578 (-847 (-177)))) (-5 *2 (-1171)) (-5 *1 (-217)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-881 (-179)))) (-5 *4 (-599 (-220))) (-5 *2 (-1210)) - (-5 *1 (-219)))) - ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-1211)) (-5 *1 (-219)))) + (-12 (-5 *3 (-578 (-847 (-177)))) (-5 *4 (-578 (-218))) (-5 *2 (-1171)) + (-5 *1 (-217)))) + ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-578 (-177))) (-5 *2 (-1172)) (-5 *1 (-217)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-599 (-179))) (-5 *4 (-599 (-220))) (-5 *2 (-1211)) - (-5 *1 (-219))))) -(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-217))))) -(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-217))))) -(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-217))))) + (-12 (-5 *3 (-578 (-177))) (-5 *4 (-578 (-218))) (-5 *2 (-1172)) + (-5 *1 (-217))))) +(((*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-215))))) +(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-215))))) +(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-215))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1029 (-179))) - (-5 *2 (-1211)) (-5 *1 (-217))))) + (-12 (-5 *3 (-1 (-140 (-177)) (-140 (-177)))) (-5 *4 (-993 (-177))) + (-5 *2 (-1172)) (-5 *1 (-215))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1029 (-179))) - (-5 *5 (-85)) (-5 *2 (-1211)) (-5 *1 (-217))))) + (-12 (-5 *3 (-1 (-140 (-177)) (-140 (-177)))) (-5 *4 (-993 (-177))) + (-5 *5 (-83)) (-5 *2 (-1172)) (-5 *1 (-215))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-881 (-179)) (-179) (-179))) - (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-215))))) + (-12 (-5 *2 (-1 (-847 (-177)) (-177) (-177))) + (-5 *3 (-1 (-177) (-177) (-177) (-177))) (-5 *1 (-213))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-814 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) - (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1073 (-179))) - (-5 *1 (-214 *6)))) + (-12 (-5 *3 (-782 *6)) (-5 *4 (-996 (-323))) (-5 *5 (-578 (-218))) + (-4 *6 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1036 (-177))) + (-5 *1 (-212 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-814 *5)) (-5 *4 (-1032 (-333))) - (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1073 (-179))) - (-5 *1 (-214 *5)))) + (-12 (-5 *3 (-782 *5)) (-5 *4 (-996 (-323))) + (-4 *5 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1036 (-177))) + (-5 *1 (-212 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) - (-5 *1 (-214 *3)) (-4 *3 (-13 (-569 (-488)) (-1041))))) + (-12 (-5 *4 (-996 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1036 (-177))) + (-5 *1 (-212 *3)) (-4 *3 (-13 (-548 (-467)) (-1005))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1032 (-333))) (-5 *2 (-1073 (-179))) (-5 *1 (-214 *3)) - (-4 *3 (-13 (-569 (-488)) (-1041))))) + (-12 (-5 *4 (-996 (-323))) (-5 *2 (-1036 (-177))) (-5 *1 (-212 *3)) + (-4 *3 (-13 (-548 (-467)) (-1005))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-817 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) - (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1073 (-179))) - (-5 *1 (-214 *6)))) + (-12 (-5 *3 (-785 *6)) (-5 *4 (-996 (-323))) (-5 *5 (-578 (-218))) + (-4 *6 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1036 (-177))) + (-5 *1 (-212 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-817 *5)) (-5 *4 (-1032 (-333))) - (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1073 (-179))) - (-5 *1 (-214 *5)))) + (-12 (-5 *3 (-785 *5)) (-5 *4 (-996 (-323))) + (-4 *5 (-13 (-548 (-467)) (-1005))) (-5 *2 (-1036 (-177))) + (-5 *1 (-212 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-814 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) - (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) + (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-993 (-323))) + (-5 *5 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-814 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) - (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) + (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-993 (-323))) + (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-881 (-179)) (-179))) (-5 *4 (-1029 (-333))) - (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) + (-12 (-5 *3 (-1 (-847 (-177)) (-177))) (-5 *4 (-993 (-323))) + (-5 *5 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-881 (-179)) (-179))) (-5 *4 (-1029 (-333))) - (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) + (-12 (-5 *3 (-1 (-847 (-177)) (-177))) (-5 *4 (-993 (-323))) + (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1029 (-333))) - (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) + (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-993 (-323))) + (-5 *5 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1029 (-333))) - (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) + (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-993 (-323))) + (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-333))) - (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) + (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-993 (-323))) + (-5 *5 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-333))) - (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) + (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-993 (-323))) + (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-817 (-1 (-179) (-179) (-179)))) (-5 *4 (-1029 (-333))) - (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) + (-12 (-5 *3 (-785 (-1 (-177) (-177) (-177)))) (-5 *4 (-993 (-323))) + (-5 *5 (-578 (-218))) (-5 *2 (-1036 (-177))) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-817 (-1 (-179) (-179) (-179)))) (-5 *4 (-1029 (-333))) - (-5 *2 (-1073 (-179))) (-5 *1 (-215))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-176 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-4 *1 (-213 *3)))) - ((*1 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) - (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) - (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-599 *4))))) + (-12 (-5 *3 (-785 (-1 (-177) (-177) (-177)))) (-5 *4 (-993 (-323))) + (-5 *2 (-1036 (-177))) (-5 *1 (-213))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-5 *1 (-174 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1118)) (-4 *1 (-211 *3)))) + ((*1 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1118))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1118))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) + (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) + (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-578 *4))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-989)) (-4 *3 (-781)) - (-4 *5 (-227 *3)) (-4 *6 (-738)) (-5 *2 (-599 (-714))))) + (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-954)) (-4 *3 (-749)) + (-4 *5 (-225 *3)) (-4 *6 (-710)) (-5 *2 (-578 (-687))))) ((*1 *2 *1) - (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) - (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-599 (-714)))))) + (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) + (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-578 (-687)))))) (((*1 *2 *1) - (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) - (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-85))))) + (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) + (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-212 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *5 (-738)) - (-4 *2 (-227 *4))))) + (-12 (-4 *1 (-210 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *5 (-710)) + (-4 *2 (-225 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-212 *2 *3 *4 *5)) (-4 *2 (-989)) (-4 *3 (-781)) - (-4 *4 (-227 *3)) (-4 *5 (-738))))) + (-12 (-4 *1 (-210 *2 *3 *4 *5)) (-4 *2 (-954)) (-4 *3 (-749)) + (-4 *4 (-225 *3)) (-4 *5 (-710))))) (((*1 *1 *1) - (-12 (-4 *1 (-212 *2 *3 *4 *5)) (-4 *2 (-989)) (-4 *3 (-781)) - (-4 *4 (-227 *3)) (-4 *5 (-738))))) -(((*1 *2 *1) (-12 (-5 *2 (-287)) (-5 *1 (-207))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) - ((*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) - ((*1 *2 *1) (-12 (-5 *2 (-207)) (-5 *1 (-206))))) -(((*1 *2 *1) (-12 (-5 *2 (-158 (-207))) (-5 *1 (-206))))) -(((*1 *1 *2) (-12 (-5 *2 (-158 (-207))) (-5 *1 (-206))))) -(((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-206))))) + (-12 (-4 *1 (-210 *2 *3 *4 *5)) (-4 *2 (-954)) (-4 *3 (-749)) + (-4 *4 (-225 *3)) (-4 *5 (-710))))) +(((*1 *2 *1) (-12 (-5 *2 (-278)) (-5 *1 (-205))))) +(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-111)))) + ((*1 *2 *1) (-12 (-5 *1 (-156 *2)) (-4 *2 (-158)))) + ((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-204))))) +(((*1 *2 *1) (-12 (-5 *2 (-156 (-205))) (-5 *1 (-204))))) +(((*1 *1 *2) (-12 (-5 *2 (-156 (-205))) (-5 *1 (-204))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-204))))) (((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-714)) - (-4 *3 (-13 (-684) (-323) (-10 -7 (-15 ** (*3 *3 (-499)))))) - (-5 *1 (-203 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-202 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157))))) -(((*1 *1 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-201 *2)) (-4 *2 (-1157))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-201 *2)) (-4 *2 (-1157))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-499)) (-5 *1 (-198)))) - ((*1 *2 *3) (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-499)) (-5 *1 (-198))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-198)))) - ((*1 *2 *3) (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-1213)) (-5 *1 (-198))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *3 (-499)) (-5 *1 (-198))))) -(((*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-198))))) -(((*1 *1 *2) (-12 (-5 *2 (-1207 *4)) (-4 *4 (-1157)) (-4 *1 (-195 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-247 (-884 (-499)))) - (-5 *2 - (-2 (|:| |varOrder| (-599 (-1117))) - (|:| |inhom| (-3 (-599 (-1207 (-714))) "failed")) - (|:| |hom| (-599 (-1207 (-714)))))) - (-5 *1 (-193))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-4 *1 (-192 *3)))) - ((*1 *1) (-12 (-4 *1 (-192 *2)) (-4 *2 (-1041))))) -(((*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143)))))) -(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143)))))) -(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143)))))) -(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))) -(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) + (|partial| -12 (-5 *2 (-687)) + (-4 *3 (-13 (-658) (-313) (-10 -7 (-15 ** (*3 *3 (-478)))))) + (-5 *1 (-201 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-200 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1118))))) +(((*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1118))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-199 *2)) (-4 *2 (-1118))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-199 *2)) (-4 *2 (-1118))))) +(((*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-478)) (-5 *1 (-196)))) + ((*1 *2 *3) (-12 (-5 *3 (-578 (-1062))) (-5 *2 (-478)) (-5 *1 (-196))))) +(((*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-1174)) (-5 *1 (-196)))) + ((*1 *2 *3) (-12 (-5 *3 (-578 (-1062))) (-5 *2 (-1174)) (-5 *1 (-196))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1062)) (-5 *3 (-478)) (-5 *1 (-196))))) +(((*1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-196))))) +(((*1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-4 *4 (-1118)) (-4 *1 (-193 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-245 (-850 (-478)))) + (-5 *2 + (-2 (|:| |varOrder| (-578 (-1079))) + (|:| |inhom| (-3 (-578 (-1168 (-687))) "failed")) + (|:| |hom| (-578 (-1168 (-687)))))) + (-5 *1 (-191))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-4 *1 (-190 *3)))) + ((*1 *1) (-12 (-4 *1 (-190 *2)) (-4 *2 (-1005))))) +(((*1 *1) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1104)))))) +(((*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1104)))))) +(((*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1104)))))) +(((*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1104)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178))))) +(((*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) + ((*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-177))))) (((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-85)) (-5 *3 (-884 *6)) (-5 *4 (-1117)) - (-5 *5 (-775 *7)) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) - (-4 *7 (-13 (-1143) (-29 *6))) (-5 *1 (-178 *6 *7)))) + (|partial| -12 (-5 *2 (-83)) (-5 *3 (-850 *6)) (-5 *4 (-1079)) + (-5 *5 (-743 *7)) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) + (-4 *7 (-13 (-1104) (-29 *6))) (-5 *1 (-176 *6 *7)))) ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1111 *6)) (-5 *4 (-775 *6)) - (-4 *6 (-13 (-1143) (-29 *5))) - (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-178 *5 *6))))) + (|partial| -12 (-5 *2 (-83)) (-5 *3 (-1074 *6)) (-5 *4 (-743 *6)) + (-4 *6 (-13 (-1104) (-29 *5))) + (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-176 *5 *6))))) (((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-775 *4)) (-5 *3 (-566 *4)) (-5 *5 (-85)) - (-4 *4 (-13 (-1143) (-29 *6))) - (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-178 *6 *4))))) + (|partial| -12 (-5 *2 (-743 *4)) (-5 *3 (-545 *4)) (-5 *5 (-83)) + (-4 *4 (-13 (-1104) (-29 *6))) + (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-176 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) - (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1143) (-29 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-989)) (-14 *3 (-599 (-1117))))) + (-12 (-5 *3 (-1062)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) + (-5 *2 (-83)) (-5 *1 (-176 *4 *5)) (-4 *5 (-13 (-1104) (-29 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-954)) (-14 *3 (-578 (-1079))))) ((*1 *1 *1) - (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-989) (-781))) - (-14 *3 (-599 (-1117)))))) + (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-954) (-749))) + (-14 *3 (-578 (-1079)))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) - (-14 *4 (-599 (-1117))))) + (-12 (-5 *2 (-83)) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) + (-14 *4 (-578 (-1079))))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) - (-14 *4 (-599 (-1117)))))) + (-12 (-5 *2 (-83)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) + (-14 *4 (-578 (-1079)))))) (((*1 *1 *2) - (-12 (-5 *2 (-268 *3)) (-4 *3 (-13 (-989) (-781))) (-5 *1 (-177 *3 *4)) - (-14 *4 (-599 (-1117)))))) + (-12 (-5 *2 (-261 *3)) (-4 *3 (-13 (-954) (-749))) (-5 *1 (-175 *3 *4)) + (-14 *4 (-578 (-1079)))))) (((*1 *1 *1) - (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-989) (-781))) - (-14 *3 (-599 (-1117)))))) + (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-954) (-749))) + (-14 *3 (-578 (-1079)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1117)) (-5 *6 (-85)) - (-4 *7 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) - (-4 *3 (-13 (-1143) (-898) (-29 *7))) + (-12 (-5 *4 (-1079)) (-5 *6 (-83)) + (-4 *7 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) + (-4 *3 (-13 (-1104) (-864) (-29 *7))) (-5 *2 - (-3 (|:| |f1| (-775 *3)) (|:| |f2| (-599 (-775 *3))) (|:| |fail| "failed") + (-3 (|:| |f1| (-743 *3)) (|:| |f2| (-578 (-743 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-173 *7 *3)) (-5 *5 (-775 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-171))))) + (-5 *1 (-171 *7 *3)) (-5 *5 (-743 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-169))))) (((*1 *2 *3) - (-12 (-4 *4 (-305)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-714)) (-4 *4 (-305)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1183 *4))))) + (-12 (-5 *3 (-687)) (-4 *4 (-295)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1144 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-714)) (-4 *4 (-305)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1183 *4))))) + (-12 (-5 *3 (-687)) (-4 *4 (-295)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1144 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-305)) (-5 *2 (-599 (-2 (|:| |deg| (-714)) (|:| -2694 *3)))) - (-5 *1 (-170 *4 *3)) (-4 *3 (-1183 *4))))) + (-12 (-4 *4 (-295)) (-5 *2 (-578 (-2 (|:| |deg| (-687)) (|:| -2559 *3)))) + (-5 *1 (-168 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-305)) + (-12 (-5 *4 (-83)) (-4 *5 (-295)) (-5 *2 (-2 (|:| |cont| *5) - (|:| -1877 (-599 (-2 (|:| |irr| *3) (|:| -2513 (-499))))))) - (-5 *1 (-170 *5 *3)) (-4 *3 (-1183 *5))))) + (|:| -1766 (-578 (-2 (|:| |irr| *3) (|:| -2381 (-478))))))) + (-5 *1 (-168 *5 *3)) (-4 *3 (-1144 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-318)) (-4 *6 (-1183 (-361 *2))) - (-4 *2 (-1183 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-297 *5 *2 *6))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-308)) (-4 *6 (-1144 (-343 *2))) + (-4 *2 (-1144 *5)) (-5 *1 (-167 *5 *2 *6 *3)) (-4 *3 (-287 *5 *2 *6))))) (((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-714)) (-5 *1 (-166 *4 *2)) (-14 *4 (-857)) (-4 *2 (-1041))))) -(((*1 *2 *3) (-12 (-5 *2 (-359 (-1111 (-499)))) (-5 *1 (-165)) (-5 *3 (-499))))) -(((*1 *2 *3) (-12 (-5 *2 (-599 (-1111 (-499)))) (-5 *1 (-165)) (-5 *3 (-499))))) + (-12 (-5 *3 (-687)) (-5 *1 (-164 *4 *2)) (-14 *4 (-823)) (-4 *2 (-1005))))) +(((*1 *2 *3) (-12 (-5 *2 (-341 (-1074 (-478)))) (-5 *1 (-163)) (-5 *3 (-478))))) +(((*1 *2 *3) (-12 (-5 *2 (-578 (-1074 (-478)))) (-5 *1 (-163)) (-5 *3 (-478))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-599 (-499))) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) + (-12 (-5 *3 (-578 (-478))) (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 (-857))) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) + (-12 (-5 *3 (-578 (-823))) (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1119 (-361 (-499)))) (-5 *2 (-361 (-499))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1207 (-647 *4))) (-4 *4 (-146)) - (-5 *2 (-1207 (-647 (-884 *4)))) (-5 *1 (-163 *4))))) -(((*1 *1) (-5 *1 (-161)))) -(((*1 *1) (-5 *1 (-161)))) -(((*1 *1) (-5 *1 (-161)))) -(((*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161))))) -(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-599 (-85)))))) -(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-599 (-799)))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-1122))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) -(((*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-157))) (-5 *1 (-157))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1157)) (-5 *1 (-156 *3 *2)) (-4 *2 (-632 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1157)) (-5 *2 (-714)) (-5 *1 (-156 *4 *3)) (-4 *3 (-632 *4))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1157)) (-5 *1 (-156 *3 *2)) (-4 *2 (-632 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-780))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1877 (-359 *3)))) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1183 (-142 *4)))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-318) (-780))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1183 (-142 *2)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-318) (-780))) - (-4 *3 (-1183 *2))))) + (-12 (-5 *3 (-1081 (-343 (-478)))) (-5 *2 (-343 (-478))) (-5 *1 (-162))))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162))))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162))))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162))))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162))))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1081 (-343 (-478)))) (-5 *1 (-162))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168 (-625 *4))) (-4 *4 (-144)) + (-5 *2 (-1168 (-625 (-850 *4)))) (-5 *1 (-161 *4))))) +(((*1 *1) (-5 *1 (-159)))) +(((*1 *1) (-5 *1 (-159)))) +(((*1 *1) (-5 *1 (-159)))) +(((*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-159))))) +(((*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-578 (-83)))))) +(((*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-578 (-767)))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-1084))) (-5 *1 (-156 *3)) (-4 *3 (-158))))) +(((*1 *2 *3) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-155))) (-5 *1 (-155))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1118)) (-5 *1 (-154 *3 *2)) (-4 *2 (-611 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1118)) (-5 *2 (-687)) (-5 *1 (-154 *4 *3)) (-4 *3 (-611 *4))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1118)) (-5 *1 (-154 *3 *2)) (-4 *2 (-611 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-748))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1766 (-341 *3)))) (-5 *1 (-153 *4 *3)) + (-4 *3 (-1144 (-140 *4)))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-308) (-748))) (-5 *1 (-153 *2 *3)) + (-4 *3 (-1144 (-140 *2)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-140 *4)) (-5 *1 (-153 *4 *3)) (-4 *4 (-13 (-308) (-748))) + (-4 *3 (-1144 *2))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-318) (-780))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1183 (-142 *2))))) + (-12 (-4 *2 (-13 (-308) (-748))) (-5 *1 (-153 *2 *3)) + (-4 *3 (-1144 (-140 *2))))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-318) (-780))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1183 (-142 *2)))))) + (-12 (-4 *2 (-13 (-308) (-748))) (-5 *1 (-153 *2 *3)) + (-4 *3 (-1144 (-140 *2)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-318) (-780))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-1183 (-142 *3)))))) + (-12 (-4 *3 (-13 (-308) (-748))) (-5 *1 (-153 *3 *2)) + (-4 *2 (-1144 (-140 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-85)) (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) + (-12 (-5 *5 (-83)) (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) + (-5 *1 (-153 *4 *3)) (-4 *3 (-1144 (-140 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1183 (-142 *4)))))) + (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) (-5 *1 (-153 *4 *3)) + (-4 *3 (-1144 (-140 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-318) (-780))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-1183 (-142 *3)))))) + (-12 (-4 *3 (-13 (-308) (-748))) (-5 *1 (-153 *3 *2)) + (-4 *2 (-1144 (-140 *3)))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-318) (-780))) - (-5 *2 (-599 (-2 (|:| -1877 (-599 *3)) (|:| -1629 *5)))) - (-5 *1 (-155 *5 *3)) (-4 *3 (-1183 (-142 *5))))) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-308) (-748))) + (-5 *2 (-578 (-2 (|:| -1766 (-578 *3)) (|:| -1583 *5)))) + (-5 *1 (-153 *5 *3)) (-4 *3 (-1144 (-140 *5))))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-318) (-780))) - (-5 *2 (-599 (-2 (|:| -1877 (-599 *3)) (|:| -1629 *4)))) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4)))))) + (-12 (-4 *4 (-13 (-308) (-748))) + (-5 *2 (-578 (-2 (|:| -1766 (-578 *3)) (|:| -1583 *4)))) + (-5 *1 (-153 *4 *3)) (-4 *3 (-1144 (-140 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-599 (-142 *4))) (-5 *1 (-128 *3 *4)) - (-4 *3 (-1183 (-142 (-499)))) (-4 *4 (-13 (-318) (-780))))) + (-12 (-5 *2 (-578 (-140 *4))) (-5 *1 (-126 *3 *4)) + (-4 *3 (-1144 (-140 (-478)))) (-4 *4 (-13 (-308) (-748))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-599 (-142 *4))) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) + (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-578 (-140 *4))) + (-5 *1 (-153 *4 *3)) (-4 *3 (-1144 (-140 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-599 (-142 *4))) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-599 *3)) (-4 *3 (-261)) (-5 *1 (-153 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-261)) (-5 *1 (-153 *3))))) + (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-578 (-140 *4))) + (-5 *1 (-153 *4 *3)) (-4 *3 (-1144 (-140 *4)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-254)) (-5 *1 (-151 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-254)) (-5 *1 (-151 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-318) (-1143) (-942)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-318) (-1143) (-942)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-318) (-1143) (-942)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-318) (-1143) (-942)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-318) (-1143) (-942)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-318) (-1143) (-942)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-318) (-1143) (-942)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) - (-5 *1 (-150 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) - (-5 *1 (-150 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) - (-5 *1 (-150 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) - (-5 *1 (-150 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) - (-5 *1 (-150 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) - (-5 *1 (-150 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) - (-5 *1 (-150 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-80))) (-5 *1 (-149))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-80)) (-5 *1 (-149))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-261)) (-5 *1 (-148 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261))))) -(((*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261))))) -(((*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261))))) -(((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-261))))) -(((*1 *2 *1) (-12 (-5 *2 (-1095 (-361 *3))) (-5 *1 (-148 *3)) (-4 *3 (-261))))) -(((*1 *2 *1) (-12 (-5 *2 (-1095 (-361 *3))) (-5 *1 (-148 *3)) (-4 *3 (-261))))) -(((*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261))))) -(((*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-245)) (-5 *1 (-141))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-649 (-234))) (-5 *1 (-141))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-599 (-649 (-234)))) (-5 *1 (-141))))) -(((*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) - (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-1000)) (-4 *3 (-1143)) + (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) + (-4 *3 (-13 (-308) (-1104) (-908)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) + (-4 *3 (-13 (-308) (-1104) (-908)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) + (-4 *3 (-13 (-308) (-1104) (-908)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) + (-4 *3 (-13 (-308) (-1104) (-908)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) + (-4 *3 (-13 (-308) (-1104) (-908)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) + (-4 *3 (-13 (-308) (-1104) (-908)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) + (-4 *3 (-13 (-308) (-1104) (-908)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1104) (-908))) + (-5 *1 (-148 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1104) (-908))) + (-5 *1 (-148 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1104) (-908))) + (-5 *1 (-148 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1104) (-908))) + (-5 *1 (-148 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1104) (-908))) + (-5 *1 (-148 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1104) (-908))) + (-5 *1 (-148 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1104) (-908))) + (-5 *1 (-148 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-78))) (-5 *1 (-147))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-147))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-254)) (-5 *1 (-146 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254))))) +(((*1 *1 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-1058 (-343 *3))) (-5 *1 (-146 *3)) (-4 *3 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-1058 (-343 *3))) (-5 *1 (-146 *3)) (-4 *3 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-143))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-143))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1038)) (-5 *3 (-243)) (-5 *1 (-139))))) +(((*1 *2 *3) (-12 (-5 *3 (-1038)) (-5 *2 (-627 (-232))) (-5 *1 (-139))))) +(((*1 *2 *3) (-12 (-5 *3 (-1062)) (-5 *2 (-578 (-627 (-232)))) (-5 *1 (-139))))) +(((*1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144))))) +(((*1 *2 *1) + (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-965)) (-4 *3 (-1104)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *1 *1 *1) (-5 *1 (-134))) - ((*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-134))))) -(((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) +(((*1 *1 *1 *1) (-5 *1 (-132))) + ((*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-132))))) +(((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *1 (-131 *4 *2)) (-4 *2 (-375 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1117)))) - ((*1 *1 *1) (-4 *1 (-133)))) + (-12 (-5 *3 (-1079)) (-4 *4 (-489)) (-5 *1 (-129 *4 *2)) (-4 *2 (-357 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1079)))) + ((*1 *1 *1) (-4 *1 (-131)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *1 (-131 *4 *2)) (-4 *2 (-375 *4)))) + (-12 (-5 *3 (-1079)) (-4 *4 (-489)) (-5 *1 (-129 *4 *2)) (-4 *2 (-357 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1032 *2)) (-4 *2 (-375 *4)) (-4 *4 (-510)) - (-5 *1 (-131 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1032 *1)) (-4 *1 (-133)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1117))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498))))) -(((*1 *1 *1 *1) (-4 *1 (-116))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-498)) (-5 *1 (-132 *2))))) -(((*1 *1 *1) (-4 *1 (-116))) - ((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498))))) -(((*1 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-510))))) -(((*1 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-510))))) -(((*1 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-510))))) -(((*1 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-510))))) -(((*1 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-510))))) -(((*1 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-510))))) -(((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-130))))) + (-12 (-5 *3 (-996 *2)) (-4 *2 (-357 *4)) (-4 *4 (-489)) + (-5 *1 (-129 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-131)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1079))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477))))) +(((*1 *1 *1 *1) (-4 *1 (-114))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-477)) (-5 *1 (-130 *2))))) +(((*1 *1 *1) (-4 *1 (-114))) + ((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477))))) +(((*1 *2 *3) + (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) + (-4 *4 (-489))))) +(((*1 *2 *3) + (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) + (-4 *4 (-489))))) +(((*1 *2 *3) + (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) + (-4 *4 (-489))))) +(((*1 *2 *3) + (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) + (-4 *4 (-489))))) +(((*1 *2 *3) + (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) + (-4 *4 (-489))))) +(((*1 *2 *3) + (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) + (-4 *4 (-489))))) +(((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3))))) +(((*1 *1) (-5 *1 (-128)))) +(((*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-128))))) (((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-179)) + (-12 (-5 *4 (-177)) (-5 *2 - (-2 (|:| |brans| (-599 (-599 (-881 *4)))) (|:| |xValues| (-1029 *4)) - (|:| |yValues| (-1029 *4)))) - (-5 *1 (-126)) (-5 *3 (-599 (-599 (-881 *4))))))) + (-2 (|:| |brans| (-578 (-578 (-847 *4)))) (|:| |xValues| (-993 *4)) + (|:| |yValues| (-993 *4)))) + (-5 *1 (-124)) (-5 *3 (-578 (-578 (-847 *4))))))) (((*1 *2 *3) - (-12 (-5 *3 (-863)) + (-12 (-5 *3 (-829)) (-5 *2 - (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) - (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) - (-5 *1 (-126)))) + (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) + (|:| |yValues| (-993 (-177))))) + (-5 *1 (-124)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-863)) (-5 *4 (-361 (-499))) + (-12 (-5 *3 (-829)) (-5 *4 (-343 (-478))) (-5 *2 - (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) - (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) - (-5 *1 (-126))))) + (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-993 (-177))) + (|:| |yValues| (-993 (-177))))) + (-5 *1 (-124))))) (((*1 *1 *2) - (-12 (-5 *2 (-857)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-318)) - (-14 *5 (-933 *3 *4))))) + (-12 (-5 *2 (-823)) (-5 *1 (-123 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-308)) + (-14 *5 (-899 *3 *4))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1157))))) + (|partial| -12 (-5 *3 (-1 (-83) *2)) (-4 *1 (-122 *2)) (-4 *2 (-1118))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4145)) (-4 *1 (-124 *2)) (-4 *2 (-1157)) - (-4 *2 (-1041))))) + (-12 (|has| *1 (-6 -3979)) (-4 *1 (-122 *2)) (-4 *2 (-1118)) + (-4 *2 (-1005))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) + (-12 (-4 *4 (-1123)) (-4 *5 (-1144 *4)) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-361 *5)) - (|:| |c2| (-361 *5)) (|:| |deg| (-714)))) - (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1183 (-361 *5)))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-343 *5)) + (|:| |c2| (-343 *5)) (|:| |deg| (-687)))) + (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1144 (-343 *5)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1183 *2)) (-4 *2 (-1162)) (-5 *1 (-121 *2 *4 *3)) - (-4 *3 (-1183 (-361 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-361 *6)) (-4 *5 (-1162)) (-4 *6 (-1183 *5)) - (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *3) (|:| |radicand| *6))) - (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-714)) (-4 *7 (-1183 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) - (-5 *2 (-2 (|:| |radicand| (-361 *5)) (|:| |deg| (-714)))) - (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1183 (-361 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) - (-5 *2 (-2 (|:| -4104 (-361 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) - (-4 *3 (-1183 (-361 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-117))))) -(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-117)))) - ((*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-117))))) -(((*1 *1) (-5 *1 (-117)))) -(((*1 *1) (-5 *1 (-117)))) -(((*1 *1) (-5 *1 (-117)))) -(((*1 *1) (-5 *1 (-117)))) -(((*1 *1) (-5 *1 (-117)))) -(((*1 *1) (-5 *1 (-117)))) -(((*1 *1) (-5 *1 (-117)))) -(((*1 *1) (-5 *1 (-117)))) -(((*1 *1) (-5 *1 (-117)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 (-117))) (-5 *1 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-114))))) -(((*1 *1) (-5 *1 (-114)))) -(((*1 *1) (-5 *1 (-114)))) -(((*1 *1) (-5 *1 (-114)))) -(((*1 *1) (-5 *1 (-114)))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-772))) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-158 (-112)))) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-158 (-112)))) (-5 *1 (-113))))) + (-12 (-4 *4 (-1144 *2)) (-4 *2 (-1123)) (-5 *1 (-119 *2 *4 *3)) + (-4 *3 (-1144 (-343 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-343 *6)) (-4 *5 (-1123)) (-4 *6 (-1144 *5)) + (-5 *2 (-2 (|:| -2387 (-687)) (|:| -3938 *3) (|:| |radicand| *6))) + (-5 *1 (-119 *5 *6 *7)) (-5 *4 (-687)) (-4 *7 (-1144 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1123)) (-4 *5 (-1144 *4)) + (-5 *2 (-2 (|:| |radicand| (-343 *5)) (|:| |deg| (-687)))) + (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1144 (-343 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1123)) (-4 *5 (-1144 *4)) + (-5 *2 (-2 (|:| -3938 (-343 *5)) (|:| |poly| *3))) (-5 *1 (-119 *4 *5 *3)) + (-4 *3 (-1144 (-343 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-115))))) +(((*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-115))))) +(((*1 *1) (-5 *1 (-115)))) +(((*1 *1) (-5 *1 (-115)))) +(((*1 *1) (-5 *1 (-115)))) +(((*1 *1) (-5 *1 (-115)))) +(((*1 *1) (-5 *1 (-115)))) +(((*1 *1) (-5 *1 (-115)))) +(((*1 *1) (-5 *1 (-115)))) +(((*1 *1) (-5 *1 (-115)))) +(((*1 *1) (-5 *1 (-115)))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 (-115))) (-5 *1 (-112)))) + ((*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-112))))) +(((*1 *1) (-5 *1 (-112)))) +(((*1 *1) (-5 *1 (-112)))) +(((*1 *1) (-5 *1 (-112)))) +(((*1 *1) (-5 *1 (-112)))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-742))) (-5 *1 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-156 (-110)))) (-5 *1 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-156 (-110)))) (-5 *1 (-111))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-599 (-499))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-499)) - (-14 *4 (-714)) (-4 *5 (-146))))) + (-12 (-5 *2 (-578 (-478))) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-478)) + (-14 *4 (-687)) (-4 *5 (-144))))) (((*1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146))))) + (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144))))) (((*1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146))))) + (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144))))) (((*1 *2 *1) - (-12 (-5 *2 (-599 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-499)) - (-14 *4 (-714)) (-4 *5 (-146))))) + (-12 (-5 *2 (-578 *5)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-478)) + (-14 *4 (-687)) (-4 *5 (-144))))) (((*1 *1 *2) - (-12 (-5 *2 (-599 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-499)) - (-14 *4 (-714))))) -(((*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-107))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-714)) (-5 *2 (-1213))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-104)))) -(((*1 *1) (-5 *1 (-103)))) -(((*1 *1) (-5 *1 (-103)))) -(((*1 *1) (-5 *1 (-103)))) -(((*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-102))))) -(((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-102))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-102))))) -(((*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-101))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1041)))) - ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1041))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-99 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1041))))) -(((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))) -(((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-94 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-781))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499)))))) -(((*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499))))) - ((*1 *2 *2) (-12 (-5 *2 (-714)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499)))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499))))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499)))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-92 *2)) (-4 *2 (-1157))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-92 *2)) (-4 *2 (-1157))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-978 (-361 *2)))) (-5 *2 (-499)) (-5 *1 (-88 *4 *3)) - (-4 *3 (-1183 *4))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1041))))) -(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1041))))) + (-12 (-5 *2 (-578 *5)) (-4 *5 (-144)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-478)) + (-14 *4 (-687))))) +(((*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-105))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-105))))) +(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-105))))) +(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-105))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-103)) (-5 *3 (-687)) (-5 *2 (-1174))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-102)))) +(((*1 *1) (-5 *1 (-101)))) +(((*1 *1) (-5 *1 (-101)))) +(((*1 *1) (-5 *1 (-101)))) +(((*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-100))))) +(((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-100))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-100))))) +(((*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-99))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-98 *2)) (-4 *2 (-1005)))) + ((*1 *1 *2) (-12 (-5 *1 (-98 *2)) (-4 *2 (-1005))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-97 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-96 *2)) (-4 *2 (-1005))))) +(((*1 *1 *1 *1) (-5 *1 (-83))) ((*1 *1 *1 *1) (-4 *1 (-94)))) +(((*1 *1 *1 *1) (-5 *1 (-83))) ((*1 *1 *1 *1) (-4 *1 (-94)))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-92 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-92 *2)) (-4 *2 (-749))))) +(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1144 (-478)))))) +(((*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-91 *3)) (-4 *3 (-1144 (-478))))) + ((*1 *2 *2) (-12 (-5 *2 (-687)) (-5 *1 (-91 *3)) (-4 *3 (-1144 (-478)))))) +(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1144 (-478))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1144 (-478)))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-90 *2)) (-4 *2 (-1118))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3980)) (-4 *1 (-90 *2)) (-4 *2 (-1118))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-943 (-343 *2)))) (-5 *2 (-478)) (-5 *1 (-86 *4 *3)) + (-4 *3 (-1144 *4))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-84)) (-5 *1 (-85 *2)) (-4 *2 (-1005))))) +(((*1 *2 *3) (-12 (-5 *2 (-84)) (-5 *1 (-85 *3)) (-4 *3 (-1005))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-599 (-1 *4 (-599 *4)))) (-4 *4 (-1041)) - (-5 *1 (-87 *4)))) + (-12 (-5 *2 (-84)) (-5 *3 (-578 (-1 *4 (-578 *4)))) (-4 *4 (-1005)) + (-5 *1 (-85 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1041)) (-5 *1 (-87 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-86)) (-5 *2 (-599 (-1 *4 (-599 *4)))) - (-5 *1 (-87 *4)) (-4 *4 (-1041))))) -(((*1 *2 *1) (-12 (-5 *2 (-599 (-903))) (-5 *1 (-80)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1099) (-716))) (-5 *1 (-86))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-460)) (-5 *2 (-85)) (-5 *1 (-86))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-460)) (-5 *1 (-86)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-86))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-716)) (-5 *1 (-86)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-716)) (-5 *1 (-86))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1099) (-716))) (-5 *1 (-86))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-599 (-903))) (-5 *1 (-80))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-4 *1 (-78 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-78 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-78 *2)) (-4 *2 (-1157))))) -(((*1 *2) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-76))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1117)) - (-5 *2 - (-2 (|:| |zeros| (-1095 (-179))) (|:| |ones| (-1095 (-179))) - (|:| |singularities| (-1095 (-179))))) - (-5 *1 (-76))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4147 "*"))) (-4 *5 (-327 *2)) (-4 *6 (-327 *2)) - (-4 *2 (-989)) (-5 *1 (-75 *2 *3 *4 *5 *6)) (-4 *3 (-1183 *2)) - (-4 *4 (-644 *2 *5 *6))))) + (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1005)) (-5 *1 (-85 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-84)) (-5 *2 (-578 (-1 *4 (-578 *4)))) + (-5 *1 (-85 *4)) (-4 *4 (-1005))))) +(((*1 *2 *1) (-12 (-5 *2 (-578 (-869))) (-5 *1 (-78)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1062) (-689))) (-5 *1 (-84))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-83) (-84) (-84))) (-5 *1 (-84))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-83) (-84) (-84))) (-5 *1 (-84))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-439)) (-5 *2 (-83)) (-5 *1 (-84))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-84)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-84))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-689)) (-5 *1 (-84)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1062)) (-5 *3 (-689)) (-5 *1 (-84))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1062) (-689))) (-5 *1 (-84))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-578 (-869))) (-5 *1 (-78))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1118)) (-4 *1 (-76 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1118))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-3981 "*"))) (-4 *5 (-317 *2)) (-4 *6 (-317 *2)) + (-4 *2 (-954)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1144 *2)) + (-4 *4 (-622 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4147 "*"))) (-4 *5 (-327 *2)) (-4 *6 (-327 *2)) - (-4 *2 (-989)) (-5 *1 (-75 *2 *3 *4 *5 *6)) (-4 *3 (-1183 *2)) - (-4 *4 (-644 *2 *5 *6))))) + (-12 (|has| *2 (-6 (-3981 "*"))) (-4 *5 (-317 *2)) (-4 *6 (-317 *2)) + (-4 *2 (-954)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1144 *2)) + (-4 *4 (-622 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-989)) (-4 *2 (-644 *4 *5 *6)) (-5 *1 (-75 *4 *3 *2 *5 *6)) - (-4 *3 (-1183 *4)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4))))) + (-12 (-4 *4 (-954)) (-4 *2 (-622 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) + (-4 *3 (-1144 *4)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-989)) (-4 *2 (-644 *4 *5 *6)) (-5 *1 (-75 *4 *3 *2 *5 *6)) - (-4 *3 (-1183 *4)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-5 *1 (-74 *3)) (-4 *3 (-1041))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-74 *3))))) + (-12 (-4 *4 (-954)) (-4 *2 (-622 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) + (-4 *3 (-1144 *4)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-5 *1 (-73 *3)) (-4 *3 (-1005))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-5 *1 (-73 *3))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1041)) (-5 *1 (-74 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-74 *2)) (-4 *2 (-1041))))) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1005)) (-5 *1 (-73 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1005))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-599 *2) *2 *2 *2)) (-4 *2 (-1041)) (-5 *1 (-74 *2)))) + (-12 (-5 *3 (-1 (-578 *2) *2 *2 *2)) (-4 *2 (-1005)) (-5 *1 (-73 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1041)) (-5 *1 (-74 *2))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-73)) (-5 *2 (-85))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1005)) (-5 *1 (-73 *2))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-406) (-120))) (-5 *2 (-359 *3)) (-5 *1 (-71 *4 *3)) - (-4 *3 (-1183 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-599 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-13 (-406) (-120))) - (-5 *2 (-359 *3)) (-5 *1 (-71 *5 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-499))) (-4 *3 (-989)) (-5 *1 (-70 *3)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-70 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-70 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68))))) -(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68))))) -(((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-68))))) -(((*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-68))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-333)) (-5 *3 (-1099)) (-5 *1 (-68)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-333)) (-5 *3 (-1099)) (-5 *1 (-68))))) -(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-62 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-318)) (-4 *5 (-510)) - (-5 *2 - (-2 (|:| |minor| (-599 (-857))) (|:| -3404 *3) - (|:| |minors| (-599 (-599 (-857)))) (|:| |ops| (-599 *3)))) - (-5 *1 (-61 *5 *3)) (-5 *4 (-857)) (-4 *3 (-616 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-1207 (-647 *4))) (-5 *1 (-61 *4 *5)) - (-5 *3 (-647 *4)) (-4 *5 (-616 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-510)) - (-5 *2 (-2 (|:| -1673 (-647 *5)) (|:| |vec| (-1207 (-599 (-857)))))) - (-5 *1 (-61 *5 *3)) (-5 *4 (-857)) (-4 *3 (-616 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-5 *1 (-58 *3)) (-4 *3 (-1157)))) - ((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-58 *3))))) + (-12 (-4 *4 (-13 (-385) (-118))) (-5 *2 (-341 *3)) (-5 *1 (-70 *4 *3)) + (-4 *3 (-1144 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-578 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-13 (-385) (-118))) + (-5 *2 (-341 *3)) (-5 *1 (-70 *5 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-478))) (-4 *3 (-954)) (-5 *1 (-69 *3)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-69 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-69 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1005)) (-5 *1 (-62 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-308)) (-4 *5 (-489)) + (-5 *2 + (-2 (|:| |minor| (-578 (-823))) (|:| -3249 *3) + (|:| |minors| (-578 (-578 (-823)))) (|:| |ops| (-578 *3)))) + (-5 *1 (-61 *5 *3)) (-5 *4 (-823)) (-4 *3 (-595 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-489)) (-5 *2 (-1168 (-625 *4))) (-5 *1 (-61 *4 *5)) + (-5 *3 (-625 *4)) (-4 *5 (-595 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-489)) + (-5 *2 (-2 (|:| |mat| (-625 *5)) (|:| |vec| (-1168 (-578 (-823)))))) + (-5 *1 (-61 *5 *3)) (-5 *4 (-823)) (-4 *3 (-595 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-5 *1 (-58 *3)) (-4 *3 (-1118)))) + ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1118)) (-5 *1 (-58 *3))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-499)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1157)) (-4 *3 (-327 *4)) - (-4 *5 (-327 *4))))) + (-12 (-5 *2 (-478)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1118)) (-4 *3 (-317 *4)) + (-4 *5 (-317 *4))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-499)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1157)) (-4 *5 (-327 *4)) - (-4 *3 (-327 *4))))) + (-12 (-5 *2 (-478)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1118)) (-4 *5 (-317 *4)) + (-4 *3 (-317 *4))))) (((*1 *1) (-5 *1 (-55)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-599 (-1117))) (-4 *4 (-1041)) - (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4))))))) + (-12 (-5 *3 (-578 (-1079))) (-4 *4 (-1005)) + (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-599 (-1015 *4 *5 *2))) (-4 *4 (-1041)) - (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) - (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-54 *4 *5 *2)))) + (-12 (-5 *3 (-578 (-979 *4 *5 *2))) (-4 *4 (-1005)) + (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) + (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-54 *4 *5 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-599 (-1015 *5 *6 *2))) (-5 *4 (-857)) (-4 *5 (-1041)) - (-4 *6 (-13 (-989) (-821 *5) (-569 (-825 *5)))) - (-4 *2 (-13 (-375 *6) (-821 *5) (-569 (-825 *5)))) (-5 *1 (-54 *5 *6 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1043)) (-5 *3 (-716)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-716)) (-5 *1 (-51))))) + (-12 (-5 *3 (-578 (-979 *5 *6 *2))) (-5 *4 (-823)) (-4 *5 (-1005)) + (-4 *6 (-13 (-954) (-789 *5) (-548 (-793 *5)))) + (-4 *2 (-13 (-357 *6) (-789 *5) (-548 (-793 *5)))) (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1007)) (-5 *3 (-689)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-51))))) (((*1 *2) - (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3))))) + (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3))))) (((*1 *2) - (-12 (-4 *3 (-510)) (-5 *2 (-599 (-647 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-372 *3))))) + (-12 (-4 *3 (-489)) (-5 *2 (-578 (-625 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-354 *3))))) (((*1 *2) - (-12 (-4 *3 (-510)) (-5 *2 (-599 (-647 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-372 *3))))) + (-12 (-4 *3 (-489)) (-5 *2 (-578 (-625 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-354 *3))))) (((*1 *2) - (-12 (-4 *3 (-510)) (-5 *2 (-599 (-647 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-372 *3))))) + (-12 (-4 *3 (-489)) (-5 *2 (-578 (-625 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-354 *3))))) (((*1 *2) - (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3))))) + (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3))))) (((*1 *2) - (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3))))) + (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3))))) (((*1 *2) - (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3))))) + (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3))))) (((*1 *2) - (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3))))) + (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3))))) (((*1 *2) - (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3))))) + (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-599 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4))))) + (-12 (-4 *4 (-489)) (-5 *2 (-578 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-599 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4))))) + (-12 (-4 *4 (-489)) (-5 *2 (-578 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4))))) (((*1 *2) - (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3))))) + (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4))))) + (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4))))) + (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4))))) + (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4))))) + (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4))))) + (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-86)) (-5 *4 (-714)) (-4 *5 (-13 (-406) (-978 (-499)))) - (-4 *5 (-510)) (-5 *1 (-41 *5 *2)) (-4 *2 (-375 *5)) + (-12 (-5 *3 (-84)) (-5 *4 (-687)) (-4 *5 (-13 (-385) (-943 (-478)))) + (-4 *5 (-489)) (-5 *1 (-41 *5 *2)) (-4 *2 (-357 *5)) (-4 *2 - (-13 (-318) (-252) - (-10 -8 (-15 -3119 ((-1065 *5 (-566 $)) $)) - (-15 -3118 ((-1065 *5 (-566 $)) $)) - (-15 -4096 ($ (-1065 *5 (-566 $)))))))))) + (-13 (-308) (-250) + (-10 -8 (-15 -2982 ((-1028 *5 (-545 $)) $)) + (-15 -2981 ((-1028 *5 (-545 $)) $)) + (-15 -3930 ($ (-1028 *5 (-545 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-406) (-978 (-499)))) (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-375 *3)) + (-12 (-4 *3 (-13 (-385) (-943 (-478)))) (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-357 *3)) (-4 *2 - (-13 (-318) (-252) - (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) - (-15 -3118 ((-1065 *3 (-566 $)) $)) - (-15 -4096 ($ (-1065 *3 (-566 $)))))))))) + (-13 (-308) (-250) + (-10 -8 (-15 -2982 ((-1028 *3 (-545 $)) $)) + (-15 -2981 ((-1028 *3 (-545 $)) $)) + (-15 -3930 ($ (-1028 *3 (-545 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-406) (-978 (-499)))) (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-375 *3)) + (-12 (-4 *3 (-13 (-385) (-943 (-478)))) (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-357 *3)) (-4 *2 - (-13 (-318) (-252) - (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) - (-15 -3118 ((-1065 *3 (-566 $)) $)) - (-15 -4096 ($ (-1065 *3 (-566 $)))))))))) + (-13 (-308) (-250) + (-10 -8 (-15 -2982 ((-1028 *3 (-545 $)) $)) + (-15 -2981 ((-1028 *3 (-545 $)) $)) + (-15 -3930 ($ (-1028 *3 (-545 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-406) (-978 (-499)))) (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-375 *3)) + (-12 (-4 *3 (-13 (-385) (-943 (-478)))) (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-357 *3)) (-4 *2 - (-13 (-318) (-252) - (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) - (-15 -3118 ((-1065 *3 (-566 $)) $)) - (-15 -4096 ($ (-1065 *3 (-566 $)))))))))) + (-13 (-308) (-250) + (-10 -8 (-15 -2982 ((-1028 *3 (-545 $)) $)) + (-15 -2981 ((-1028 *3 (-545 $)) $)) + (-15 -3930 ($ (-1028 *3 (-545 $)))))))))) (((*1 *2 *3) - (-12 (-4 *4 (-510)) (-5 *2 (-1111 *3)) (-5 *1 (-41 *4 *3)) + (-12 (-4 *4 (-489)) (-5 *2 (-1074 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 - (-13 (-318) (-252) - (-10 -8 (-15 -3119 ((-1065 *4 (-566 $)) $)) - (-15 -3118 ((-1065 *4 (-566 $)) $)) - (-15 -4096 ($ (-1065 *4 (-566 $)))))))))) + (-13 (-308) (-250) + (-10 -8 (-15 -2982 ((-1028 *4 (-545 $)) $)) + (-15 -2981 ((-1028 *4 (-545 $)) $)) + (-15 -3930 ($ (-1028 *4 (-545 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-318) (-252) - (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) - (-15 -3118 ((-1065 *3 (-566 $)) $)) - (-15 -4096 ($ (-1065 *3 (-566 $))))))))) + (-13 (-308) (-250) + (-10 -8 (-15 -2982 ((-1028 *3 (-545 $)) $)) + (-15 -2981 ((-1028 *3 (-545 $)) $)) + (-15 -3930 ($ (-1028 *3 (-545 $))))))))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-318) (-252) - (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) - (-15 -3118 ((-1065 *3 (-566 $)) $)) - (-15 -4096 ($ (-1065 *3 (-566 $))))))))) + (-13 (-308) (-250) + (-10 -8 (-15 -2982 ((-1028 *3 (-545 $)) $)) + (-15 -2981 ((-1028 *3 (-545 $)) $)) + (-15 -3930 ($ (-1028 *3 (-545 $))))))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-599 *2)) + (-12 (-5 *3 (-578 *2)) (-4 *2 - (-13 (-318) (-252) - (-10 -8 (-15 -3119 ((-1065 *4 (-566 $)) $)) - (-15 -3118 ((-1065 *4 (-566 $)) $)) - (-15 -4096 ($ (-1065 *4 (-566 $))))))) - (-4 *4 (-510)) (-5 *1 (-41 *4 *2)))) + (-13 (-308) (-250) + (-10 -8 (-15 -2982 ((-1028 *4 (-545 $)) $)) + (-15 -2981 ((-1028 *4 (-545 $)) $)) + (-15 -3930 ($ (-1028 *4 (-545 $))))))) + (-4 *4 (-489)) (-5 *1 (-41 *4 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-599 (-566 *2))) + (-12 (-5 *3 (-578 (-545 *2))) (-4 *2 - (-13 (-318) (-252) - (-10 -8 (-15 -3119 ((-1065 *4 (-566 $)) $)) - (-15 -3118 ((-1065 *4 (-566 $)) $)) - (-15 -4096 ($ (-1065 *4 (-566 $))))))) - (-4 *4 (-510)) (-5 *1 (-41 *4 *2))))) + (-13 (-308) (-250) + (-10 -8 (-15 -2982 ((-1028 *4 (-545 $)) $)) + (-15 -2981 ((-1028 *4 (-545 $)) $)) + (-15 -3930 ($ (-1028 *4 (-545 $))))))) + (-4 *4 (-489)) (-5 *1 (-41 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-318) (-252) - (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) - (-15 -3118 ((-1065 *3 (-566 $)) $)) - (-15 -4096 ($ (-1065 *3 (-566 $)))))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-714)) (-4 *4 (-318)) (-4 *5 (-1183 *4)) (-5 *2 (-1213)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1183 (-361 *5))) (-14 *7 *6)))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1183 (-48)))))) + (-13 (-308) (-250) + (-10 -8 (-15 -2982 ((-1028 *3 (-545 $)) $)) + (-15 -2981 ((-1028 *3 (-545 $)) $)) + (-15 -3930 ($ (-1028 *3 (-545 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-687)) (-4 *4 (-308)) (-4 *5 (-1144 *4)) (-5 *2 (-1174)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1144 (-343 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-39 *3)) (-4 *3 (-1144 (-48)))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)) - (-5 *2 (-2 (|:| -4010 *3) (|:| |entry| *4)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85))))) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1005)) (-4 *4 (-1005)) + (-5 *2 (-2 (|:| -3844 *3) (|:| |entry| *4)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-83))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-499)) (-4 *2 (-375 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-978 *4)) - (-4 *3 (-510))))) + (-12 (-5 *4 (-478)) (-4 *2 (-357 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-943 *4)) + (-4 *3 (-489))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 *5)) (-4 *5 (-375 *4)) (-4 *4 (-510)) (-5 *2 (-797)) + (-12 (-5 *3 (-578 *5)) (-4 *5 (-357 *4)) (-4 *4 (-489)) (-5 *2 (-765)) (-5 *1 (-32 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1111 *2)) (-4 *2 (-375 *4)) (-4 *4 (-510)) + (-12 (-5 *3 (-1074 *2)) (-4 *2 (-357 *4)) (-4 *4 (-489)) (-5 *1 (-32 *4 *2))))) (((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-884 (-499))) (-5 *3 (-1117)) (-5 *4 (-1029 (-361 (-499)))) + (-12 (-5 *2 (-850 (-478))) (-5 *3 (-1079)) (-5 *4 (-993 (-343 (-478)))) (-5 *1 (-30))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1111 *1)) (-5 *4 (-1117)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1111 *1)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-884 *1)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) + (-12 (-5 *3 (-1074 *1)) (-5 *4 (-1079)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1074 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-850 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1079)) (-4 *4 (-489)) (-5 *2 (-578 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-489)) (-5 *2 (-578 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1074 *1)) (-5 *3 (-1079)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-850 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1079)) (-4 *1 (-29 *3)) (-4 *3 (-489)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-489))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1074 *1)) (-5 *4 (-1079)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1074 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-850 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *2 (-599 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-510)) (-5 *2 (-599 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1111 *1)) (-5 *3 (-1117)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-884 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-4 *1 (-29 *3)) (-4 *3 (-510)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-510))))) -((-1242 . 669433) (-1243 . 669037) (-1244 . 668916) (-1245 . 668814) - (-1246 . 668701) (-1247 . 668585) (-1248 . 668532) (-1249 . 668395) - (-1250 . 668320) (-1251 . 668164) (-1252 . 667936) (-1253 . 666972) - (-1254 . 666725) (-1255 . 666441) (-1256 . 666157) (-1257 . 665873) - (-1258 . 665554) (-1259 . 665462) (-1260 . 665370) (-1261 . 665278) - (-1262 . 665186) (-1263 . 665094) (-1264 . 665002) (-1265 . 664907) - (-1266 . 664812) (-1267 . 664720) (-1268 . 664628) (-1269 . 664536) - (-1270 . 664444) (-1271 . 664352) (-1272 . 664250) (-1273 . 664148) - (-1274 . 664046) (-1275 . 663954) (-1276 . 663903) (-1277 . 663851) - (-1278 . 663781) (-1279 . 663359) (-1280 . 663165) (-1281 . 663138) - (-1282 . 663015) (-1283 . 662892) (-1284 . 662748) (-1285 . 662578) - (-1286 . 662454) (-1287 . 662215) (-1288 . 662142) (-1289 . 662001) - (-1290 . 661950) (-1291 . 661901) (-1292 . 661831) (-1293 . 661696) - (-1294 . 661561) (-1295 . 661336) (-1296 . 661090) (-1297 . 661037) - (-1298 . 660859) (-1299 . 660690) (-1300 . 660614) (-1301 . 660541) - (-1302 . 660388) (-1303 . 660235) (-1304 . 660051) (-1305 . 659870) - (-1306 . 659694) (-1307 . 659638) (-1308 . 659583) (-1309 . 659528) - (-1310 . 659455) (-1311 . 659379) (-1312 . 659311) (-1313 . 659168) - (-1314 . 659061) (-1315 . 658993) (-1316 . 658923) (-1317 . 658853) - (-1318 . 658803) (-1319 . 658753) (-1320 . 658703) (-1321 . 658582) - (-1322 . 658266) (-1323 . 658197) (-1324 . 658118) (-1325 . 657999) - (-1326 . 657919) (-1327 . 657839) (-1328 . 657686) (-1329 . 657537) - (-1330 . 657461) (-1331 . 657404) (-1332 . 657332) (-1333 . 657269) - (-1334 . 657206) (-1335 . 657145) (-1336 . 657073) (-1337 . 656957) - (-1338 . 656905) (-1339 . 656850) (-1340 . 656798) (-1341 . 656746) - (-1342 . 656718) (-1343 . 656690) (-1344 . 656662) (-1345 . 656618) - (-1346 . 656547) (-1347 . 656496) (-1348 . 656448) (-1349 . 656397) - (-1350 . 656345) (-1351 . 656229) (-1352 . 656113) (-1353 . 656021) - (-1354 . 655929) (-1355 . 655806) (-1356 . 655740) (-1357 . 655674) - (-1358 . 655615) (-1359 . 655587) (-1360 . 655559) (-1361 . 655531) - (-1362 . 655503) (-1363 . 655393) (-1364 . 655342) (-1365 . 655291) - (-1366 . 655240) (-1367 . 655189) (-1368 . 655138) (-1369 . 655087) - (-1370 . 655059) (-1371 . 655031) (-1372 . 655003) (-1373 . 654975) - (-1374 . 654947) (-1375 . 654919) (-1376 . 654891) (-1377 . 654863) - (-1378 . 654835) (-1379 . 654732) (-1380 . 654680) (-1381 . 654514) - (-1382 . 654330) (-1383 . 654119) (-1384 . 654004) (-1385 . 653771) - (-1386 . 653672) (-1387 . 653579) (-1388 . 653464) (-1389 . 653066) - (-1390 . 652848) (-1391 . 652799) (-1392 . 652771) (-1393 . 652695) - (-1394 . 652596) (-1395 . 652497) (-1396 . 652398) (-1397 . 652299) - (-1398 . 652200) (-1399 . 652101) (-1400 . 651943) (-1401 . 651867) - (-1402 . 651700) (-1403 . 651642) (-1404 . 651584) (-1405 . 651275) - (-1406 . 651021) (-1407 . 650937) (-1408 . 650804) (-1409 . 650746) - (-1410 . 650694) (-1411 . 650612) (-1412 . 650537) (-1413 . 650466) - (-1414 . 650412) (-1415 . 650361) (-1416 . 650287) (-1417 . 650213) - (-1418 . 650132) (-1419 . 650051) (-1420 . 649996) (-1421 . 649922) - (-1422 . 649848) (-1423 . 649774) (-1424 . 649697) (-1425 . 649643) - (-1426 . 649585) (-1427 . 649486) (-1428 . 649387) (-1429 . 649288) - (-1430 . 649189) (-1431 . 649090) (-1432 . 648991) (-1433 . 648892) - (-1434 . 648778) (-1435 . 648664) (-1436 . 648550) (-1437 . 648436) - (-1438 . 648322) (-1439 . 648208) (-1440 . 648091) (-1441 . 648015) - (-1442 . 647939) (-1443 . 647552) (-1444 . 647207) (-1445 . 647105) - (-1446 . 646844) (-1447 . 646742) (-1448 . 646537) (-1449 . 646424) - (-1450 . 646322) (-1451 . 646165) (-1452 . 646076) (-1453 . 645982) - (-1454 . 645902) (-1455 . 645828) (-1456 . 645750) (-1457 . 645691) - (-1458 . 645633) (-1459 . 645531) (-7 . 645503) (-8 . 645475) (-9 . 645447) - (-1463 . 645328) (-1464 . 645246) (-1465 . 645164) (-1466 . 645082) - (-1467 . 645000) (-1468 . 644918) (-1469 . 644824) (-1470 . 644754) - (-1471 . 644684) (-1472 . 644593) (-1473 . 644499) (-1474 . 644417) - (-1475 . 644335) (-1476 . 644237) (-1477 . 644077) (-1478 . 643879) - (-1479 . 643743) (-1480 . 643643) (-1481 . 643543) (-1482 . 643450) - (-1483 . 643391) (-1484 . 643058) (-1485 . 642958) (-1486 . 642840) - (-1487 . 642628) (-1488 . 642449) (-1489 . 642291) (-1490 . 642088) - (-1491 . 641670) (-1492 . 641619) (-1493 . 641510) (-1494 . 641395) - (-1495 . 641326) (-1496 . 641257) (-1497 . 641188) (-1498 . 641122) - (-1499 . 640997) (-1500 . 640780) (-1501 . 640702) (-1502 . 640652) - (-1503 . 640581) (-1504 . 640438) (-1505 . 640297) (-1506 . 640216) - (-1507 . 640135) (-1508 . 640079) (-1509 . 640023) (-1510 . 639950) - (-1511 . 639810) (-1512 . 639757) (-1513 . 639698) (-1514 . 639639) - (-1515 . 639484) (-1516 . 639432) (-1517 . 639315) (-1518 . 639198) - (-1519 . 639081) (-1520 . 638950) (-1521 . 638671) (-1522 . 638536) - (-1523 . 638480) (-1524 . 638424) (-1525 . 638365) (-1526 . 638306) - (-1527 . 638250) (-1528 . 638194) (-1529 . 637997) (-1530 . 635655) - (-1531 . 635528) (-1532 . 635383) (-1533 . 635255) (-1534 . 635203) - (-1535 . 635151) (-1536 . 635099) (-1537 . 631061) (-1538 . 630967) - (-1539 . 630828) (-1540 . 630619) (-1541 . 630517) (-1542 . 630415) - (-1543 . 629500) (-1544 . 629424) (-1545 . 629295) (-1546 . 629170) - (-1547 . 629093) (-1548 . 629016) (-1549 . 628889) (-1550 . 628762) - (-1551 . 628596) (-1552 . 628469) (-1553 . 628342) (-1554 . 628125) - (-1555 . 627691) (-1556 . 627327) (-1557 . 627275) (-1558 . 627216) - (-1559 . 627128) (-1560 . 627040) (-1561 . 626949) (-1562 . 626858) - (-1563 . 626767) (-1564 . 626676) (-1565 . 626585) (-1566 . 626494) - (-1567 . 626403) (-1568 . 626312) (-1569 . 626221) (-1570 . 626130) - (-1571 . 626039) (-1572 . 625948) (-1573 . 625857) (-1574 . 625766) - (-1575 . 625675) (-1576 . 625584) (-1577 . 625493) (-1578 . 625402) - (-1579 . 625311) (-1580 . 625220) (-1581 . 625129) (-1582 . 625038) - (-1583 . 624947) (-1584 . 624856) (-1585 . 624765) (-1586 . 624674) - (-1587 . 624512) (-1588 . 624404) (-1589 . 624161) (-1590 . 623874) - (-1591 . 623679) (-1592 . 623523) (-1593 . 623363) (-1594 . 623312) - (-1595 . 623250) (-1596 . 623199) (-1597 . 623136) (-1598 . 623083) - (-1599 . 623031) (-1600 . 622979) (-1601 . 622927) (-1602 . 622837) - (-1603 . 622650) (-1604 . 622496) (-1605 . 622416) (-1606 . 622336) - (-1607 . 622256) (-1608 . 622126) (-1609 . 621894) (-1610 . 621866) - (-1611 . 621838) (-1612 . 621810) (-1613 . 621730) (-1614 . 621653) - (-1615 . 621576) (-1616 . 621495) (-1617 . 621435) (-1618 . 621277) - (-1619 . 621084) (-1620 . 620599) (-1621 . 620357) (-1622 . 620095) - (-1623 . 619994) (-1624 . 619913) (-1625 . 619832) (-1626 . 619762) - (-1627 . 619692) (-1628 . 619534) (-1629 . 619230) (-1630 . 619002) - (-1631 . 618880) (-1632 . 618822) (-1633 . 618760) (-1634 . 618698) - (-1635 . 618633) (-1636 . 618571) (-1637 . 618292) (-1638 . 618083) - (-1639 . 617945) (-1640 . 617405) (-1641 . 617107) (-1642 . 616962) - (-1643 . 616895) (-1644 . 616814) (-1645 . 616733) (-1646 . 616631) - (-1647 . 616557) (-1648 . 616476) (-1649 . 616402) (-1650 . 616320) - (-1651 . 616107) (-1652 . 616017) (-1653 . 615950) (-1654 . 615814) - (-1655 . 615747) (-1656 . 615665) (-1657 . 615584) (-1658 . 615482) - (-1659 . 615348) (-1660 . 615280) (-1661 . 615118) (-1662 . 614950) - (-1663 . 614788) (-1664 . 614626) (-1665 . 614558) (-1666 . 614225) - (-1667 . 613225) (-1668 . 613006) (-1669 . 612925) (-1670 . 612851) - (-1671 . 612777) (-1672 . 612703) (-1673 . 612599) (-1674 . 612526) - (-1675 . 612458) (-1676 . 612248) (-1677 . 612196) (-1678 . 612142) - (-1679 . 612051) (-1680 . 611964) (-1681 . 610217) (-1682 . 610138) - (-1683 . 609393) (-1684 . 609276) (-1685 . 609070) (-1686 . 608909) - (-1687 . 608748) (-1688 . 608588) (-1689 . 608450) (-1690 . 608356) - (-1691 . 608258) (-1692 . 608164) (-1693 . 608050) (-1694 . 607968) - (-1695 . 607871) (-1696 . 607675) (-1697 . 607584) (-1698 . 607490) - (-1699 . 607423) (-1700 . 607370) (-1701 . 607317) (-1702 . 607264) - (-1703 . 606130) (-1704 . 605620) (-1705 . 605541) (-1706 . 605482) - (-1707 . 605454) (-1708 . 605426) (-1709 . 605367) (-1710 . 605254) - (-1711 . 604877) (-1712 . 604824) (-1713 . 604713) (-1714 . 604660) - (-1715 . 604607) (-1716 . 604551) (-1717 . 604495) (-1718 . 604330) - (-1719 . 604261) (-1720 . 604166) (-1721 . 604071) (-1722 . 603976) - (-1723 . 603924) (-1724 . 603865) (-1725 . 603791) (-1726 . 603739) - (-1727 . 603582) (-1728 . 603425) (-1729 . 603273) (-1730 . 602515) - (-1731 . 602264) (-1732 . 601953) (-1733 . 601601) (-1734 . 601384) - (-1735 . 601121) (-1736 . 600746) (-1737 . 600562) (-1738 . 600428) - (-1739 . 600262) (-1740 . 600096) (-1741 . 599962) (-1742 . 599828) - (-1743 . 599694) (-1744 . 599560) (-1745 . 599429) (-1746 . 599298) - (-1747 . 599167) (-1748 . 598787) (-1749 . 598661) (-1750 . 598533) - (-1751 . 598283) (-1752 . 598160) (-1753 . 597910) (-1754 . 597787) - (-1755 . 597537) (-1756 . 597414) (-1757 . 597131) (-1758 . 596860) - (-1759 . 596587) (-1760 . 596289) (-1761 . 596187) (-1762 . 596042) - (-1763 . 595901) (-1764 . 595750) (-1765 . 595589) (-1766 . 595501) - (-1767 . 595473) (-1768 . 595391) (-1769 . 595294) (-1770 . 594826) - (-1771 . 594475) (-1772 . 594042) (-1773 . 593903) (-1774 . 593833) - (-1775 . 593763) (-1776 . 593693) (-1777 . 593602) (-1778 . 593511) - (-1779 . 593420) (-1780 . 593329) (-1781 . 593238) (-1782 . 593152) - (-1783 . 593066) (-1784 . 592980) (-1785 . 592894) (-1786 . 592808) - (-1787 . 592734) (-1788 . 592629) (-1789 . 592403) (-1790 . 592325) - (-1791 . 592250) (-1792 . 592157) (-1793 . 592053) (-1794 . 591957) - (-1795 . 591788) (-1796 . 591711) (-1797 . 591634) (-1798 . 591543) - (-1799 . 591452) (-1800 . 591252) (-1801 . 591099) (-1802 . 590946) - (-1803 . 590793) (-1804 . 590640) (-1805 . 590487) (-1806 . 590334) - (-1807 . 590268) (-1808 . 590115) (-1809 . 589962) (-1810 . 589809) - (-1811 . 589656) (-1812 . 589503) (-1813 . 589350) (-1814 . 589197) - (-1815 . 589044) (-1816 . 588970) (-1817 . 588896) (-1818 . 588841) - (-1819 . 588786) (-1820 . 588731) (-1821 . 588676) (-1822 . 588605) - (-1823 . 588401) (-1824 . 588300) (-1825 . 588112) (-1826 . 588019) - (-1827 . 587883) (-1828 . 587747) (-1829 . 587611) (-1830 . 587543) - (-1831 . 587427) (-1832 . 587311) (-1833 . 587195) (-1834 . 587142) - (-1835 . 586945) (-1836 . 586860) (-1837 . 586552) (-1838 . 586497) - (-1839 . 585845) (-1840 . 585530) (-1841 . 585246) (-1842 . 585128) - (-1843 . 585009) (-1844 . 584950) (-1845 . 584891) (-1846 . 584840) - (-1847 . 584789) (-1848 . 584738) (-1849 . 584685) (-1850 . 584632) - (-1851 . 584573) (-1852 . 584460) (-1853 . 584347) (-1854 . 584289) - (-1855 . 584231) (-1856 . 584181) (-1857 . 584046) (-1858 . 583996) - (-1859 . 583399) (-1860 . 583339) (-1861 . 583172) (-1862 . 583080) - (-1863 . 582967) (-1864 . 582883) (-1865 . 582768) (-1866 . 582677) - (-1867 . 582586) (-1868 . 582399) (-1869 . 582344) (-1870 . 582157) - (-1871 . 582034) (-1872 . 581961) (-1873 . 581888) (-1874 . 581768) - (-1875 . 581695) (-1876 . 581622) (-1877 . 581282) (-1878 . 581209) - (-1879 . 580989) (-1880 . 580656) (-1881 . 580473) (-1882 . 580330) - (-1883 . 579970) (-1884 . 579802) (-1885 . 579634) (-1886 . 579378) - (-1887 . 579122) (-1888 . 578927) (-1889 . 578732) (-1890 . 578138) - (-1891 . 578062) (-1892 . 577923) (-1893 . 577516) (-1894 . 577389) - (-1895 . 577232) (-1896 . 576915) (-1897 . 576435) (-1898 . 575955) - (-1899 . 575453) (-1900 . 575385) (-1901 . 575314) (-1902 . 575243) - (-1903 . 575071) (-1904 . 574952) (-1905 . 574833) (-1906 . 574757) - (-1907 . 574681) (-1908 . 574408) (-1909 . 574294) (-1910 . 574243) - (-1911 . 574192) (-1912 . 574141) (-1913 . 574090) (-1914 . 574039) - (-1915 . 573898) (-1916 . 573725) (-1917 . 573494) (-1918 . 573308) - (-1919 . 573280) (-1920 . 573252) (-1921 . 573224) (-1922 . 573196) - (-1923 . 573168) (-1924 . 573140) (-1925 . 573112) (-1926 . 573061) - (-1927 . 572995) (-1928 . 572905) (-1929 . 572855) (-1930 . 572786) - (-1931 . 572717) (-1932 . 572612) (-1933 . 572241) (-1934 . 572090) - (-1935 . 571939) (-1936 . 571734) (-1937 . 571612) (-1938 . 571538) - (-1939 . 571461) (-1940 . 571387) (-1941 . 571310) (-1942 . 571233) - (-1943 . 571159) (-1944 . 571082) (-1945 . 570849) (-1946 . 570696) - (-1947 . 570401) (-1948 . 570248) (-1949 . 569926) (-1950 . 569788) - (-1951 . 569650) (-1952 . 569570) (-1953 . 569490) (-1954 . 569226) - (-1955 . 568495) (-1956 . 568359) (-1957 . 568269) (-1958 . 568134) - (-1959 . 568067) (-1960 . 567999) (-1961 . 567912) (-1962 . 567825) - (-1963 . 567658) (-1964 . 567584) (-1965 . 567440) (-1966 . 566980) - (-1967 . 566601) (-1968 . 565839) (-1969 . 565695) (-1970 . 565551) - (-1971 . 565389) (-1972 . 565152) (-1973 . 565012) (-1974 . 564866) - (-1975 . 564627) (-1976 . 564391) (-1977 . 564152) (-1978 . 563960) - (-1979 . 563837) (-1980 . 563633) (-1981 . 563410) (-1982 . 563171) - (-1983 . 563030) (-1984 . 562892) (-1985 . 562753) (-1986 . 562500) - (-1987 . 562244) (-1988 . 562087) (-1989 . 561933) (-1990 . 561693) - (-1991 . 561408) (-1992 . 561270) (-1993 . 561183) (-1994 . 560517) - (-1995 . 560341) (-1996 . 560159) (-1997 . 559983) (-1998 . 559801) - (-1999 . 559622) (-2000 . 559443) (-2001 . 559256) (-2002 . 558874) - (-2003 . 558695) (-2004 . 558516) (-2005 . 558329) (-2006 . 557947) - (-2007 . 556954) (-2008 . 556570) (-2009 . 556186) (-2010 . 556068) - (-2011 . 555911) (-2012 . 555769) (-2013 . 555652) (-2014 . 555470) - (-2015 . 555346) (-2016 . 555057) (-2017 . 554768) (-2018 . 554485) - (-2019 . 554202) (-2020 . 553924) (-2021 . 553836) (-2022 . 553751) - (-2023 . 553654) (-2024 . 553557) (-2025 . 553337) (-2026 . 553237) - (-2027 . 553134) (-2028 . 553056) (-2029 . 552731) (-2030 . 552439) - (-2031 . 552366) (-2032 . 551981) (-2033 . 551953) (-2034 . 551754) - (-2035 . 551580) (-2036 . 551339) (-2037 . 551284) (-2038 . 551209) - (-2039 . 550841) (-2040 . 550726) (-2041 . 550649) (-2042 . 550576) - (-2043 . 550495) (-2044 . 550414) (-2045 . 550333) (-2046 . 550232) - (-2047 . 550173) (-2048 . 549935) (-2049 . 549813) (-2050 . 549691) - (-2051 . 549464) (-2052 . 549411) (-2053 . 549357) (-2054 . 549025) - (-2055 . 548701) (-2056 . 548513) (-2057 . 548322) (-2058 . 548158) - (-2059 . 547823) (-2060 . 547656) (-2061 . 547415) (-2062 . 547091) - (-2063 . 546901) (-2064 . 546686) (-2065 . 546515) (-2066 . 546093) - (-2067 . 545866) (-2068 . 545595) (-2069 . 545458) (-2070 . 545317) - (-2071 . 544840) (-2072 . 544717) (-2073 . 544481) (-2074 . 544227) - (-2075 . 543977) (-2076 . 543684) (-2077 . 543544) (-2078 . 543203) - (-2079 . 543063) (-2080 . 542874) (-2081 . 542685) (-2082 . 542510) - (-2083 . 542236) (-2084 . 541801) (-2085 . 541773) (-2086 . 541701) - (-2087 . 541542) (-2088 . 541379) (-2089 . 541218) (-2090 . 541051) - (-2091 . 540998) (-2092 . 540945) (-2093 . 540816) (-2094 . 540756) - (-2095 . 540703) (-2096 . 540633) (-2097 . 540573) (-2098 . 540514) - (-2099 . 540454) (-2100 . 540395) (-2101 . 540335) (-2102 . 540276) - (-2103 . 540217) (-2104 . 540075) (-2105 . 539980) (-2106 . 539889) - (-2107 . 539773) (-2108 . 539679) (-2109 . 539581) (-2110 . 539487) - (-2111 . 539346) (-2112 . 539084) (-2113 . 538228) (-2114 . 538072) - (-2115 . 537703) (-2116 . 537647) (-2117 . 537596) (-2118 . 537493) - (-2119 . 537408) (-2120 . 537320) (-2121 . 537174) (-2122 . 537025) - (-2123 . 536735) (-2124 . 536657) (-2125 . 536582) (-2126 . 536529) - (-2127 . 536476) (-2128 . 536445) (-2129 . 536382) (-2130 . 536264) - (-2131 . 536175) (-2132 . 536055) (-2133 . 535760) (-2134 . 535566) - (-2135 . 535378) (-2136 . 535233) (-2137 . 535088) (-2138 . 534802) - (-2139 . 534360) (-2140 . 534326) (-2141 . 534289) (-2142 . 534252) - (-2143 . 534215) (-2144 . 534178) (-2145 . 534147) (-2146 . 534116) - (-2147 . 534085) (-2148 . 534051) (-2149 . 534017) (-2150 . 533963) - (-2151 . 533787) (-2152 . 533553) (-2153 . 533319) (-2154 . 533090) - (-2155 . 533038) (-2156 . 532983) (-2157 . 532914) (-2158 . 532826) - (-2159 . 532757) (-2160 . 532685) (-2161 . 532455) (-2162 . 532404) - (-2163 . 532350) (-2164 . 532319) (-2165 . 532213) (-2166 . 531988) - (-2167 . 531678) (-2168 . 531504) (-2169 . 531322) (-2170 . 531051) - (-2171 . 530978) (-2172 . 530913) (-2173 . 530437) (-2174 . 529875) - (-2175 . 529149) (-2176 . 528588) (-2177 . 527960) (-2178 . 527381) - (-2179 . 527307) (-2180 . 527255) (-2181 . 527203) (-2182 . 527129) - (-2183 . 527074) (-2184 . 527022) (-2185 . 526970) (-2186 . 526918) - (-2187 . 526848) (-2188 . 526400) (-2189 . 526194) (-2190 . 525945) - (-2191 . 525611) (-2192 . 525357) (-2193 . 525055) (-2194 . 524852) - (-2195 . 524563) (-2196 . 524015) (-2197 . 523878) (-2198 . 523676) - (-2199 . 523396) (-2200 . 523311) (-2201 . 522978) (-2202 . 522837) - (-2203 . 522546) (-2204 . 522326) (-2205 . 522200) (-2206 . 522075) - (-2207 . 521928) (-2208 . 521784) (-2209 . 521668) (-2210 . 521537) - (-2211 . 521165) (-2212 . 520905) (-2213 . 520635) (-2214 . 520395) - (-2215 . 520065) (-2216 . 519725) (-2217 . 519317) (-2218 . 518899) - (-2219 . 518702) (-2220 . 518427) (-2221 . 518259) (-2222 . 518063) - (-2223 . 517841) (-2224 . 517686) (-2225 . 517501) (-2226 . 517398) - (-2227 . 517370) (-2228 . 517342) (-2229 . 517168) (-2230 . 517094) - (-2231 . 517033) (-2232 . 516980) (-2233 . 516911) (-2234 . 516842) - (-2235 . 516723) (-2236 . 516545) (-2237 . 516490) (-2238 . 516244) - (-2239 . 516171) (-2240 . 516101) (-2241 . 516031) (-2242 . 515942) - (-2243 . 515752) (-2244 . 515679) (-2245 . 515610) (-2246 . 515545) - (-2247 . 515490) (-2248 . 515399) (-2249 . 515108) (-2250 . 514782) - (-2251 . 514708) (-2252 . 514386) (-2253 . 514180) (-2254 . 514095) - (-2255 . 514010) (-2256 . 513925) (-2257 . 513840) (-2258 . 513755) - (-2259 . 513670) (-2260 . 513585) (-2261 . 513500) (-2262 . 513415) - (-2263 . 513330) (-2264 . 513245) (-2265 . 513160) (-2266 . 513075) - (-2267 . 512990) (-2268 . 512905) (-2269 . 512820) (-2270 . 512735) - (-2271 . 512650) (-2272 . 512565) (-2273 . 512480) (-2274 . 512395) - (-2275 . 512310) (-2276 . 512225) (-2277 . 512140) (-2278 . 512055) - (-2279 . 511970) (-2280 . 511868) (-2281 . 511780) (-2282 . 511572) - (-2283 . 511514) (-2284 . 511459) (-2285 . 511372) (-2286 . 511261) - (-2287 . 511175) (-2288 . 511029) (-2289 . 510967) (-2290 . 510939) - (-2291 . 510911) (-2292 . 510883) (-2293 . 510855) (-2294 . 510686) - (-2295 . 510535) (-2296 . 510384) (-2297 . 510212) (-2298 . 510004) - (-2299 . 509880) (-2300 . 509672) (-2301 . 509580) (-2302 . 509488) - (-2303 . 509353) (-2304 . 509258) (-2305 . 509164) (-2306 . 509069) - (-2307 . 508945) (-2308 . 508917) (-2309 . 508889) (-2310 . 508861) - (-2311 . 508833) (-2312 . 508805) (-2313 . 508777) (-2314 . 508749) - (-2315 . 508721) (-2316 . 508693) (-2317 . 508665) (-2318 . 508637) - (-2319 . 508609) (-2320 . 508581) (-2321 . 508553) (-2322 . 508525) - (-2323 . 508497) (-2324 . 508444) (-2325 . 508416) (-2326 . 508388) - (-2327 . 508310) (-2328 . 508257) (-2329 . 508204) (-2330 . 508151) - (-2331 . 508073) (-2332 . 507983) (-2333 . 507888) (-2334 . 507794) - (-2335 . 507712) (-2336 . 507406) (-2337 . 507210) (-2338 . 507115) - (-2339 . 507007) (-2340 . 506596) (-2341 . 506568) (-2342 . 506404) - (-2343 . 506327) (-2344 . 506138) (-2345 . 505959) (-2346 . 505535) - (-2347 . 505383) (-2348 . 505203) (-2349 . 505030) (-2350 . 504770) - (-2351 . 504518) (-2352 . 503707) (-2353 . 503540) (-2354 . 503322) - (-2355 . 502498) (-2356 . 502367) (-2357 . 502236) (-2358 . 502105) - (-2359 . 501974) (-2360 . 501843) (-2361 . 501712) (-2362 . 501517) - (-2363 . 501323) (-2364 . 501180) (-2365 . 500865) (-2366 . 500750) - (-2367 . 500410) (-2368 . 500250) (-2369 . 500111) (-2370 . 499972) - (-2371 . 499843) (-2372 . 499758) (-2373 . 499706) (-2374 . 499226) - (-2375 . 497964) (-2376 . 497837) (-2377 . 497695) (-2378 . 497359) - (-2379 . 497254) (-2380 . 497005) (-2381 . 496773) (-2382 . 496668) - (-2383 . 496593) (-2384 . 496518) (-2385 . 496443) (-2386 . 496384) - (-2387 . 496314) (-2388 . 496261) (-2389 . 496199) (-2390 . 496129) - (-2391 . 495766) (-2392 . 495479) (-2393 . 495369) (-2394 . 495276) - (-2395 . 495183) (-2396 . 495096) (-2397 . 494876) (-2398 . 494657) - (-2399 . 494239) (-2400 . 493967) (-2401 . 493824) (-2402 . 493731) - (-2403 . 493588) (-2404 . 493436) (-2405 . 493282) (-2406 . 493212) - (-2407 . 493005) (-2408 . 492828) (-2409 . 492619) (-2410 . 492442) - (-2411 . 492408) (-2412 . 492374) (-2413 . 492343) (-2414 . 492225) - (-2415 . 491912) (-2416 . 491634) (-2417 . 491513) (-2418 . 491386) - (-2419 . 491301) (-2420 . 491228) (-2421 . 491139) (-2422 . 491068) - (-2423 . 491012) (-2424 . 490956) (-2425 . 490900) (-2426 . 490830) - (-2427 . 490760) (-2428 . 490690) (-2429 . 490611) (-2430 . 490533) - (-2431 . 490448) (-2432 . 490189) (-2433 . 490101) (-2434 . 489804) - (-2435 . 489706) (-2436 . 489628) (-2437 . 489550) (-2438 . 489407) - (-2439 . 489328) (-2440 . 489256) (-2441 . 489053) (-2442 . 488997) - (-2443 . 488809) (-2444 . 488710) (-2445 . 488592) (-2446 . 488471) - (-2447 . 488328) (-2448 . 488185) (-2449 . 488045) (-2450 . 487905) - (-2451 . 487762) (-2452 . 487636) (-2453 . 487507) (-2454 . 487384) - (-2455 . 487261) (-2456 . 487156) (-2457 . 487051) (-2458 . 486949) - (-2459 . 486799) (-2460 . 486646) (-2461 . 486493) (-2462 . 486349) - (-2463 . 486195) (-2464 . 486119) (-2465 . 486040) (-2466 . 485887) - (-2467 . 485808) (-2468 . 485729) (-2469 . 485650) (-2470 . 485548) - (-2471 . 485489) (-2472 . 485427) (-2473 . 485252) (-2474 . 485099) - (-2475 . 484946) (-2476 . 484772) (-2477 . 484580) (-2478 . 484406) - (-2479 . 484211) (-2480 . 484094) (-2481 . 483968) (-2482 . 483891) - (-2483 . 483759) (-2484 . 483453) (-2485 . 483270) (-2486 . 482725) - (-2487 . 482505) (-2488 . 482331) (-2489 . 482161) (-2490 . 482062) - (-2491 . 481963) (-2492 . 481745) (-2493 . 481643) (-2494 . 481570) - (-2495 . 481494) (-2496 . 481415) (-2497 . 481118) (-2498 . 481019) - (-2499 . 480857) (-2500 . 480623) (-2501 . 480181) (-2502 . 480051) - (-2503 . 479911) (-2504 . 479602) (-2505 . 479300) (-2506 . 478984) - (-2507 . 478578) (-2508 . 478510) (-2509 . 478442) (-2510 . 478374) - (-2511 . 478280) (-2512 . 478173) (-2513 . 478066) (-2514 . 477965) - (-2515 . 477864) (-2516 . 477763) (-2517 . 477686) (-2518 . 477363) - (-2519 . 476896) (-2520 . 476269) (-2521 . 476205) (-2522 . 476086) - (-2523 . 475967) (-2524 . 475859) (-2525 . 475751) (-2526 . 475595) - (-2527 . 474995) (-2528 . 474712) (-2529 . 474544) (-2530 . 474422) - (-2531 . 474026) (-2532 . 473790) (-2533 . 473589) (-2534 . 473381) - (-2535 . 473188) (-2536 . 472921) (-2537 . 472742) (-2538 . 472673) - (-2539 . 472597) (-2540 . 472456) (-2541 . 472253) (-2542 . 472109) - (-2543 . 471859) (-2544 . 471551) (-2545 . 471195) (-2546 . 471036) - (-2547 . 470830) (-2548 . 470670) (-2549 . 470597) (-2550 . 470563) - (-2551 . 470498) (-2552 . 470461) (-2553 . 470324) (-2554 . 470086) - (-2555 . 470016) (-2556 . 469830) (-2557 . 469581) (-2558 . 469423) - (-2559 . 468898) (-2560 . 468699) (-2561 . 468485) (-2562 . 468323) - (-2563 . 467924) (-2564 . 467757) (-2565 . 466682) (-2566 . 466559) - (-2567 . 466342) (-2568 . 466212) (-2569 . 466082) (-2570 . 465925) - (-2571 . 465822) (-2572 . 465764) (-2573 . 465706) (-2574 . 465600) - (-2575 . 465494) (-2576 . 464578) (-2577 . 462451) (-2578 . 461637) - (-2579 . 459834) (-2580 . 459766) (-2581 . 459698) (-2582 . 459630) - (-2583 . 459562) (-2584 . 459494) (-2585 . 459416) (-2586 . 459016) - (-2587 . 458660) (-2588 . 458478) (-2589 . 457939) (-2590 . 457763) - (-2591 . 457542) (-2592 . 457321) (-2593 . 457100) (-2594 . 456882) - (-2595 . 456664) (-2596 . 456446) (-2597 . 456228) (-2598 . 456010) - (-2599 . 455792) (-2600 . 455691) (-2601 . 454958) (-2602 . 454903) - (-2603 . 454848) (-2604 . 454793) (-2605 . 454738) (-2606 . 454588) - (-2607 . 454296) (-2608 . 454048) (-2609 . 453887) (-2610 . 453707) - (-2611 . 453420) (-2612 . 453034) (-2613 . 452162) (-2614 . 451822) - (-2615 . 451654) (-2616 . 451432) (-2617 . 451182) (-2618 . 450834) - (-2619 . 449824) (-2620 . 449513) (-2621 . 449301) (-2622 . 448737) - (-2623 . 448224) (-2624 . 446468) (-2625 . 445996) (-2626 . 445397) - (-2627 . 445147) (-2628 . 445013) (-2629 . 444801) (-2630 . 444725) - (-2631 . 444649) (-2632 . 444542) (-2633 . 444360) (-2634 . 444195) - (-2635 . 444017) (-2636 . 443436) (-2637 . 443275) (-2638 . 442702) - (-2639 . 442632) (-2640 . 442557) (-2641 . 442193) (-2642 . 442121) - (-2643 . 441983) (-2644 . 441796) (-2645 . 441689) (-2646 . 441582) - (-2647 . 441467) (-2648 . 441352) (-2649 . 441237) (-2650 . 440959) - (-2651 . 440809) (-2652 . 440666) (-2653 . 440593) (-2654 . 440508) - (-2655 . 440435) (-2656 . 440362) (-2657 . 440289) (-2658 . 440146) - (-2659 . 439996) (-2660 . 439822) (-2661 . 439672) (-2662 . 439522) - (-2663 . 439396) (-2664 . 439010) (-2665 . 438726) (-2666 . 438442) - (-2667 . 438033) (-2668 . 437749) (-2669 . 437676) (-2670 . 437529) - (-2671 . 437423) (-2672 . 437349) (-2673 . 437279) (-2674 . 437200) - (-2675 . 437123) (-2676 . 437046) (-2677 . 436897) (-2678 . 436794) - (-2679 . 436736) (-2680 . 436672) (-2681 . 436608) (-2682 . 436511) - (-2683 . 436414) (-2684 . 436254) (-2685 . 436168) (-2686 . 436082) - (-2687 . 435997) (-2688 . 435938) (-2689 . 435879) (-2690 . 435820) - (-2691 . 435761) (-2692 . 435591) (-2693 . 435503) (-2694 . 435406) - (-2695 . 435372) (-2696 . 435341) (-2697 . 435257) (-2698 . 435201) - (-2699 . 435139) (-2700 . 435105) (-2701 . 435071) (-2702 . 435037) - (-2703 . 435003) (-2704 . 434969) (-2705 . 432216) (-2706 . 432182) - (-2707 . 432148) (-2708 . 432114) (-2709 . 432002) (-2710 . 431968) - (-2711 . 431917) (-2712 . 431883) (-2713 . 431786) (-2714 . 431724) - (-2715 . 431633) (-2716 . 431542) (-2717 . 431487) (-2718 . 431435) - (-2719 . 431383) (-2720 . 431331) (-2721 . 431279) (-2722 . 430856) - (-2723 . 430690) (-2724 . 430637) (-2725 . 430568) (-2726 . 430515) - (-2727 . 430285) (-2728 . 430129) (-2729 . 429608) (-2730 . 429467) - (-2731 . 429433) (-2732 . 429378) (-2733 . 428668) (-2734 . 428353) - (-2735 . 427849) (-2736 . 427771) (-2737 . 427719) (-2738 . 427667) - (-2739 . 427483) (-2740 . 427431) (-2741 . 427379) (-2742 . 427303) - (-2743 . 427241) (-2744 . 427023) (-2745 . 426956) (-2746 . 426862) - (-2747 . 426768) (-2748 . 426585) (-2749 . 426503) (-2750 . 426381) - (-2751 . 426235) (-2752 . 425584) (-2753 . 424882) (-2754 . 424778) - (-2755 . 424677) (-2756 . 424576) (-2757 . 424465) (-2758 . 424297) - (-2759 . 424093) (-2760 . 424000) (-2761 . 423923) (-2762 . 423867) - (-2763 . 423797) (-2764 . 423677) (-2765 . 423576) (-2766 . 423479) - (-2767 . 423399) (-2768 . 423319) (-2769 . 423242) (-2770 . 423172) - (-2771 . 423102) (-2772 . 423032) (-2773 . 422962) (-2774 . 422892) - (-2775 . 422822) (-2776 . 422729) (-2777 . 422534) (-2778 . 422292) - (-2779 . 422122) (-2780 . 421753) (-2781 . 421584) (-2782 . 421468) - (-2783 . 420972) (-2784 . 420591) (-2785 . 420345) (-2786 . 419917) - (-2787 . 417989) (-2788 . 417897) (-2789 . 417800) (-2790 . 417138) - (-2791 . 417025) (-2792 . 416951) (-2793 . 416859) (-2794 . 416669) - (-2795 . 416479) (-2796 . 416408) (-2797 . 416337) (-2798 . 416256) - (-2799 . 416175) (-2800 . 416050) (-2801 . 415917) (-2802 . 415836) - (-2803 . 415762) (-2804 . 415597) (-2805 . 415440) (-2806 . 415212) - (-2807 . 415064) (-2808 . 414960) (-2809 . 414856) (-2810 . 414771) - (-2811 . 414403) (-2812 . 414322) (-2813 . 414235) (-2814 . 414154) - (-2815 . 413908) (-2816 . 413688) (-2817 . 413501) (-2818 . 413179) - (-2819 . 412886) (-2820 . 412593) (-2821 . 412283) (-2822 . 411966) - (-2823 . 411814) (-2824 . 411626) (-2825 . 411153) (-2826 . 411071) - (-2827 . 410855) (-2828 . 410639) (-2829 . 410380) (-2830 . 409959) - (-2831 . 409446) (-2832 . 409316) (-2833 . 409042) (-2834 . 408863) - (-2835 . 408748) (-2836 . 408644) (-2837 . 408589) (-2838 . 408512) - (-2839 . 408442) (-2840 . 408369) (-2841 . 408314) (-2842 . 408241) - (-2843 . 408186) (-2844 . 407831) (-2845 . 407423) (-2846 . 407270) - (-2847 . 407117) (-2848 . 407036) (-2849 . 406883) (-2850 . 406730) - (-2851 . 406595) (-2852 . 406460) (-2853 . 406325) (-2854 . 406190) - (-2855 . 406055) (-2856 . 405920) (-2857 . 405864) (-2858 . 405711) - (-2859 . 405600) (-2860 . 405489) (-2861 . 405404) (-2862 . 405294) - (-2863 . 405191) (-2864 . 401040) (-2865 . 400592) (-2866 . 400165) - (-2867 . 399548) (-2868 . 398947) (-2869 . 398729) (-2870 . 398551) - (-2871 . 398292) (-2872 . 397881) (-2873 . 397587) (-2874 . 397144) - (-2875 . 396966) (-2876 . 396573) (-2877 . 396180) (-2878 . 395995) - (-2879 . 395788) (-2880 . 395568) (-2881 . 395262) (-2882 . 395063) - (-2883 . 394434) (-2884 . 394277) (-2885 . 393888) (-2886 . 393837) - (-2887 . 393788) (-2888 . 393737) (-2889 . 393689) (-2890 . 393637) - (-2891 . 393491) (-2892 . 393439) (-2893 . 393293) (-2894 . 393241) - (-2895 . 393095) (-2896 . 393044) (-2897 . 392669) (-2898 . 392618) - (-2899 . 392569) (-2900 . 392518) (-2901 . 392470) (-2902 . 392418) - (-2903 . 392369) (-2904 . 392317) (-2905 . 392268) (-2906 . 392216) - (-2907 . 392167) (-2908 . 392101) (-2909 . 391983) (-2910 . 390821) - (-2911 . 390404) (-2912 . 390296) (-2913 . 390054) (-2914 . 389904) - (-2915 . 389754) (-2916 . 389593) (-2917 . 387386) (-2918 . 387125) - (-2919 . 386971) (-2920 . 386825) (-2921 . 386679) (-2922 . 386460) - (-2923 . 386328) (-2924 . 386253) (-2925 . 386178) (-2926 . 386043) - (-2927 . 385914) (-2928 . 385785) (-2929 . 385659) (-2930 . 385533) - (-2931 . 385407) (-2932 . 385281) (-2933 . 385178) (-2934 . 385078) - (-2935 . 384984) (-2936 . 384854) (-2937 . 384703) (-2938 . 384327) - (-2939 . 384213) (-2940 . 383972) (-2941 . 383514) (-2942 . 383204) - (-2943 . 382637) (-2944 . 382068) (-2945 . 381058) (-2946 . 380516) - (-2947 . 380203) (-2948 . 379865) (-2949 . 379534) (-2950 . 379214) - (-2951 . 379161) (-2952 . 379034) (-2953 . 378532) (-2954 . 377389) - (-2955 . 377334) (-2956 . 377279) (-2957 . 377203) (-2958 . 377084) - (-2959 . 377009) (-2960 . 376934) (-2961 . 376856) (-2962 . 376633) - (-2963 . 376574) (-2964 . 376515) (-2965 . 376412) (-2966 . 376309) - (-2967 . 376206) (-2968 . 376103) (-2969 . 376022) (-2970 . 375948) - (-2971 . 375733) (-2972 . 375499) (-2973 . 375465) (-2974 . 375431) - (-2975 . 375403) (-2976 . 375375) (-2977 . 375158) (-2978 . 374880) - (-2979 . 374730) (-2980 . 374600) (-2981 . 374470) (-2982 . 374370) - (-2983 . 374193) (-2984 . 374033) (-2985 . 373933) (-2986 . 373756) - (-2987 . 373596) (-2988 . 373437) (-2989 . 373298) (-2990 . 373148) - (-2991 . 373018) (-2992 . 372888) (-2993 . 372741) (-2994 . 372614) - (-2995 . 372511) (-2996 . 372404) (-2997 . 372307) (-2998 . 372142) - (-2999 . 371994) (-3000 . 371579) (-3001 . 371479) (-3002 . 371376) - (-3003 . 371288) (-3004 . 371208) (-3005 . 371058) (-3006 . 370928) - (-3007 . 370876) (-3008 . 370803) (-3009 . 370728) (-3010 . 370452) - (-3011 . 370340) (-3012 . 370028) (-3013 . 369851) (-3014 . 368253) - (-3015 . 367625) (-3016 . 367565) (-3017 . 367447) (-3018 . 367329) - (-3019 . 367185) (-3020 . 367032) (-3021 . 366872) (-3022 . 366712) - (-3023 . 366505) (-3024 . 366317) (-3025 . 366164) (-3026 . 366008) - (-3027 . 365852) (-3028 . 365699) (-3029 . 365561) (-3030 . 365137) - (-3031 . 365010) (-3032 . 364883) (-3033 . 364756) (-3034 . 364615) - (-3035 . 364473) (-3036 . 364331) (-3037 . 364186) (-3038 . 363433) - (-3039 . 363274) (-3040 . 363087) (-3041 . 362931) (-3042 . 362692) - (-3043 . 362446) (-3044 . 362200) (-3045 . 361989) (-3046 . 361851) - (-3047 . 361640) (-3048 . 361502) (-3049 . 361291) (-3050 . 361153) - (-3051 . 360942) (-3052 . 360637) (-3053 . 360492) (-3054 . 360350) - (-3055 . 360126) (-3056 . 359984) (-3057 . 359761) (-3058 . 359563) - (-3059 . 359406) (-3060 . 359077) (-3061 . 358917) (-3062 . 358757) - (-3063 . 358597) (-3064 . 358425) (-3065 . 358253) (-3066 . 358078) - (-3067 . 357726) (-3068 . 357532) (-3069 . 357370) (-3070 . 357297) - (-3071 . 357224) (-3072 . 357151) (-3073 . 357078) (-3074 . 357005) - (-3075 . 356932) (-3076 . 356809) (-3077 . 356636) (-3078 . 356513) - (-3079 . 356427) (-3080 . 356361) (-3081 . 356295) (-3082 . 356229) - (-3083 . 356163) (-3084 . 356097) (-3085 . 356031) (-3086 . 355965) - (-3087 . 355899) (-3088 . 355833) (-3089 . 355767) (-3090 . 355701) - (-3091 . 355635) (-3092 . 355569) (-3093 . 355503) (-3094 . 355437) - (-3095 . 355371) (-3096 . 355305) (-3097 . 355239) (-3098 . 355173) - (-3099 . 355107) (-3100 . 355041) (-3101 . 354975) (-3102 . 354909) - (-3103 . 354843) (-3104 . 354777) (-3105 . 354711) (-3106 . 354064) - (-3107 . 353417) (-3108 . 353289) (-3109 . 353166) (-3110 . 353043) - (-3111 . 352902) (-3112 . 352748) (-3113 . 352604) (-3114 . 352429) - (-3115 . 351819) (-3116 . 351695) (-3117 . 351571) (-3118 . 350893) - (-3119 . 350196) (-3120 . 350095) (-3121 . 350039) (-3122 . 349983) - (-3123 . 349927) (-3124 . 349871) (-3125 . 349812) (-3126 . 349748) - (-3127 . 349640) (-3128 . 349532) (-3129 . 349424) (-3130 . 349145) - (-3131 . 349071) (-3132 . 348845) (-3133 . 348764) (-3134 . 348686) - (-3135 . 348608) (-3136 . 348530) (-3137 . 348451) (-3138 . 348373) - (-3139 . 348280) (-3140 . 348181) (-3141 . 348113) (-3142 . 348064) - (-3143 . 347373) (-3144 . 346733) (-3145 . 345942) (-3146 . 345861) - (-3147 . 345757) (-3148 . 345666) (-3149 . 345575) (-3150 . 345501) - (-3151 . 345427) (-3152 . 345353) (-3153 . 345298) (-3154 . 345243) - (-3155 . 345177) (-3156 . 345111) (-3157 . 345049) (-3158 . 344662) - (-3159 . 344170) (-3160 . 343712) (-3161 . 343459) (-3162 . 343271) - (-3163 . 342930) (-3164 . 342634) (-3165 . 342466) (-3166 . 342335) - (-3167 . 342195) (-3168 . 342040) (-3169 . 341871) (-3170 . 340485) - (-3171 . 340351) (-3172 . 340209) (-3173 . 339980) (-3174 . 339715) - (-3175 . 339656) (-3176 . 339600) (-3177 . 339544) (-3178 . 339332) - (-3179 . 339193) (-3180 . 339086) (-3181 . 338969) (-3182 . 338903) - (-3183 . 338830) (-3184 . 338716) (-3185 . 338463) (-3186 . 338363) - (-3187 . 338169) (-3188 . 337861) (-3189 . 337395) (-3190 . 337290) - (-3191 . 337184) (-3192 . 337035) (-3193 . 336895) (-3194 . 336483) - (-3195 . 336239) (-3196 . 335581) (-3197 . 335428) (-3198 . 335314) - (-3199 . 335204) (-3200 . 334384) (-3201 . 334333) (-3202 . 334282) - (-3203 . 334088) (-3204 . 332950) (-3205 . 332502) (-3206 . 331113) - (-3207 . 330262) (-3208 . 330213) (-3209 . 330164) (-3210 . 330115) - (-3211 . 330048) (-3212 . 329973) (-3213 . 329783) (-3214 . 329711) - (-3215 . 329636) (-3216 . 329564) (-3217 . 329447) (-3218 . 329396) - (-3219 . 329317) (-3220 . 329238) (-3221 . 329159) (-3222 . 329108) - (-3223 . 328864) (-3224 . 328562) (-3225 . 328480) (-3226 . 328398) - (-3227 . 328337) (-3228 . 327948) (-3229 . 327076) (-3230 . 326503) - (-3231 . 325268) (-3232 . 324461) (-3233 . 324211) (-3234 . 323961) - (-3235 . 323536) (-3236 . 323292) (-3237 . 323048) (-3238 . 322804) - (-3239 . 322560) (-3240 . 322316) (-3241 . 322072) (-3242 . 321830) - (-3243 . 321588) (-3244 . 321346) (-3245 . 321104) (-3246 . 320526) - (-3247 . 320410) (-3248 . 319567) (-3249 . 319535) (-3250 . 319189) - (-3251 . 318962) (-3252 . 318862) (-3253 . 318762) (-3254 . 316995) - (-3255 . 316882) (-3256 . 315831) (-3257 . 315738) (-3258 . 314815) - (-3259 . 314481) (-3260 . 314147) (-3261 . 314042) (-3262 . 313955) - (-3263 . 313926) (-3264 . 313869) (-3265 . 313789) (-3266 . 313717) - (-3267 . 313642) (-3268 . 313567) (-3269 . 313535) (-3270 . 313503) - (-3271 . 313471) (-3272 . 313439) (-3273 . 313407) (-3274 . 313375) - (-3275 . 313343) (-3276 . 313311) (-3277 . 313282) (-3278 . 313170) - (-3279 . 313058) (-3280 . 312946) (-3281 . 312834) (-3282 . 311746) - (-3283 . 311625) (-3284 . 311489) (-3285 . 311356) (-3286 . 311223) - (-3287 . 310928) (-3288 . 310633) (-3289 . 310287) (-3290 . 310059) - (-3291 . 309831) (-3292 . 309719) (-3293 . 309607) (-3294 . 304340) - (-3295 . 299981) (-3296 . 299671) (-3297 . 299518) (-3298 . 298993) - (-3299 . 298662) (-3300 . 298467) (-3301 . 298272) (-3302 . 298077) - (-3303 . 297882) (-3304 . 297768) (-3305 . 297644) (-3306 . 297529) - (-3307 . 297414) (-3308 . 297320) (-3309 . 297226) (-3310 . 297115) - (-3311 . 296913) (-3312 . 295768) (-3313 . 295674) (-3314 . 295559) - (-3315 . 295465) (-3316 . 295217) (-3317 . 295105) (-3318 . 294889) - (-3319 . 294770) (-3320 . 294471) (-3321 . 293742) (-3322 . 293165) - (-3323 . 292686) (-3324 . 292441) (-3325 . 292196) (-3326 . 291852) - (-3327 . 291238) (-3328 . 290792) (-3329 . 290635) (-3330 . 290489) - (-3331 . 290165) (-3332 . 290008) (-3333 . 289866) (-3334 . 289724) - (-3335 . 289582) (-3336 . 289303) (-3337 . 289081) (-3338 . 288556) - (-3339 . 288341) (-3340 . 288126) (-3341 . 287740) (-3342 . 287560) - (-3343 . 287348) (-3344 . 287039) (-3345 . 286846) (-3346 . 286672) - (-3347 . 285535) (-3348 . 285165) (-3349 . 284963) (-3350 . 284758) - (-3351 . 283918) (-3352 . 283889) (-3353 . 283820) (-3354 . 283749) - (-3355 . 283583) (-3356 . 283554) (-3357 . 283525) (-3358 . 283470) - (-3359 . 283319) (-3360 . 283259) (-3361 . 282563) (-3362 . 281177) - (-3363 . 281116) (-3364 . 280792) (-3365 . 280720) (-3366 . 280663) - (-3367 . 280606) (-3368 . 280549) (-3369 . 280492) (-3370 . 280417) - (-3371 . 279826) (-3372 . 279466) (-3373 . 279392) (-3374 . 279332) - (-3375 . 279214) (-3376 . 278263) (-3377 . 278136) (-3378 . 277923) - (-3379 . 277849) (-3380 . 277795) (-3381 . 277741) (-3382 . 277632) - (-3383 . 277322) (-3384 . 277214) (-3385 . 277111) (-3386 . 276950) - (-3387 . 276849) (-3388 . 276751) (-3389 . 276613) (-3390 . 276475) - (-3391 . 276337) (-3392 . 276075) (-3393 . 275866) (-3394 . 275728) - (-3395 . 275437) (-3396 . 275285) (-3397 . 275010) (-3398 . 274790) - (-3399 . 274638) (-3400 . 274486) (-3401 . 274334) (-3402 . 274182) - (-3403 . 274030) (-3404 . 273822) (-3405 . 273702) (-3406 . 273311) - (-3407 . 272976) (-3408 . 272633) (-3409 . 272282) (-3410 . 271939) - (-3411 . 271596) (-3412 . 271211) (-3413 . 270826) (-3414 . 270441) - (-3415 . 270072) (-3416 . 269346) (-3417 . 268995) (-3418 . 268546) - (-3419 . 268117) (-3420 . 267502) (-3421 . 266903) (-3422 . 266511) - (-3423 . 266175) (-3424 . 265783) (-3425 . 265447) (-3426 . 265225) - (-3427 . 264700) (-3428 . 264485) (-3429 . 264270) (-3430 . 264055) - (-3431 . 263875) (-3432 . 263660) (-3433 . 263480) (-3434 . 263094) - (-3435 . 262914) (-3436 . 262702) (-3437 . 262612) (-3438 . 262522) - (-3439 . 262431) (-3440 . 262319) (-3441 . 262229) (-3442 . 262122) - (-3443 . 261933) (-3444 . 261877) (-3445 . 261796) (-3446 . 261715) - (-3447 . 261634) (-3448 . 261499) (-3449 . 261364) (-3450 . 261240) - (-3451 . 261119) (-3452 . 261001) (-3453 . 260865) (-3454 . 260732) - (-3455 . 260613) (-3456 . 260354) (-3457 . 260069) (-3458 . 259997) - (-3459 . 259905) (-3460 . 259813) (-3461 . 259727) (-3462 . 259631) - (-3463 . 259490) (-3464 . 259433) (-3465 . 259376) (-3466 . 259316) - (-3467 . 258921) (-3468 . 258399) (-3469 . 258122) (-3470 . 257702) - (-3471 . 257590) (-3472 . 257152) (-3473 . 256922) (-3474 . 256719) - (-3475 . 256537) (-3476 . 256407) (-3477 . 256201) (-3478 . 255994) - (-3479 . 255804) (-3480 . 255239) (-3481 . 254983) (-3482 . 254692) - (-3483 . 254398) (-3484 . 254101) (-3485 . 253801) (-3486 . 253671) - (-3487 . 253538) (-3488 . 253402) (-3489 . 253263) (-3490 . 252046) - (-3491 . 251738) (-3492 . 251374) (-3493 . 251277) (-3494 . 251037) - (-3495 . 250742) (-3496 . 250447) (-3497 . 250188) (-3498 . 250014) - (-3499 . 249936) (-3500 . 249849) (-3501 . 249749) (-3502 . 249655) - (-3503 . 249574) (-3504 . 249504) (-3505 . 248713) (-3506 . 248643) - (-3507 . 248315) (-3508 . 248245) (-3509 . 247917) (-3510 . 247847) - (-3511 . 247402) (-3512 . 247332) (-3513 . 247228) (-3514 . 247154) - (-3515 . 247080) (-3516 . 247009) (-3517 . 246667) (-3518 . 246539) - (-3519 . 246462) (-3520 . 246114) (-3521 . 245971) (-3522 . 245828) - (-3523 . 245374) (-3524 . 245044) (-3525 . 244831) (-3526 . 244576) - (-3527 . 244226) (-3528 . 244001) (-3529 . 243776) (-3530 . 243551) - (-3531 . 243326) (-3532 . 243113) (-3533 . 242900) (-3534 . 242750) - (-3535 . 242569) (-3536 . 242464) (-3537 . 242342) (-3538 . 242234) - (-3539 . 242126) (-3540 . 241801) (-3541 . 241537) (-3542 . 241226) - (-3543 . 240924) (-3544 . 240615) (-3545 . 239886) (-3546 . 239297) - (-3547 . 239122) (-3548 . 238978) (-3549 . 238823) (-3550 . 238700) - (-3551 . 238595) (-3552 . 238480) (-3553 . 238385) (-3554 . 237904) - (-3555 . 237794) (-3556 . 237684) (-3557 . 237574) (-3558 . 236502) - (-3559 . 235991) (-3560 . 235924) (-3561 . 235851) (-3562 . 234978) - (-3563 . 234905) (-3564 . 234850) (-3565 . 234795) (-3566 . 234763) - (-3567 . 234677) (-3568 . 234645) (-3569 . 234559) (-3570 . 234135) - (-3571 . 233711) (-3572 . 233155) (-3573 . 232043) (-3574 . 230321) - (-3575 . 228763) (-3576 . 227967) (-3577 . 227463) (-3578 . 226975) - (-3579 . 226571) (-3580 . 225915) (-3581 . 225840) (-3582 . 225749) - (-3583 . 225678) (-3584 . 225607) (-3585 . 225551) (-3586 . 225430) - (-3587 . 225376) (-3588 . 225315) (-3589 . 225261) (-3590 . 225158) - (-3591 . 224718) (-3592 . 224278) (-3593 . 223838) (-3594 . 223316) - (-3595 . 223155) (-3596 . 222994) (-3597 . 222683) (-3598 . 222597) - (-3599 . 222507) (-3600 . 222149) (-3601 . 222032) (-3602 . 221951) - (-3603 . 221793) (-3604 . 221680) (-3605 . 221605) (-3606 . 220759) - (-3607 . 219574) (-3608 . 219475) (-3609 . 219376) (-3610 . 219047) - (-3611 . 218969) (-3612 . 218894) (-3613 . 218788) (-3614 . 218632) - (-3615 . 218525) (-3616 . 218390) (-3617 . 218255) (-3618 . 218133) - (-3619 . 218038) (-3620 . 217890) (-3621 . 217795) (-3622 . 217640) - (-3623 . 217485) (-3624 . 216821) (-3625 . 216157) (-3626 . 215430) - (-3627 . 214878) (-3628 . 214326) (-3629 . 213774) (-3630 . 213109) - (-3631 . 212444) (-3632 . 211779) (-3633 . 211226) (-3634 . 210673) - (-3635 . 210120) (-3636 . 209568) (-3637 . 209016) (-3638 . 208464) - (-3639 . 207912) (-3640 . 207360) (-3641 . 206808) (-3642 . 206704) - (-3643 . 206119) (-3644 . 206014) (-3645 . 205939) (-3646 . 205797) - (-3647 . 205705) (-3648 . 205614) (-3649 . 205522) (-3650 . 205427) - (-3651 . 205322) (-3652 . 205199) (-3653 . 205077) (-3654 . 204713) - (-3655 . 204591) (-3656 . 204493) (-3657 . 204132) (-3658 . 203603) - (-3659 . 203528) (-3660 . 203453) (-3661 . 203361) (-3662 . 203180) - (-3663 . 203085) (-3664 . 203010) (-3665 . 202919) (-3666 . 202828) - (-3667 . 202669) (-3668 . 202119) (-3669 . 201569) (-3670 . 198774) - (-3671 . 198602) (-3672 . 197192) (-3673 . 196632) (-3674 . 196433) - (-12 . 196261) (-3676 . 196089) (-3677 . 195917) (-3678 . 195745) - (-3679 . 195573) (-3680 . 195401) (-3681 . 195229) (-3682 . 195114) - (-3683 . 194742) (-3684 . 194679) (-3685 . 194616) (-3686 . 194553) - (-3687 . 194275) (-3688 . 194008) (-3689 . 193956) (-3690 . 193314) - (-3691 . 193263) (-3692 . 193075) (-3693 . 193002) (-3694 . 192922) - (-3695 . 192809) (-3696 . 192619) (-3697 . 192255) (-3698 . 191983) - (-3699 . 191932) (-3700 . 191881) (-3701 . 191811) (-3702 . 191692) - (-3703 . 191663) (-3704 . 191559) (-3705 . 191437) (-3706 . 191383) - (-3707 . 191206) (-3708 . 191145) (-3709 . 190964) (-3710 . 190903) - (-3711 . 190831) (-3712 . 190356) (-3713 . 189981) (-3714 . 186447) - (-3715 . 186395) (-3716 . 186267) (-3717 . 186117) (-3718 . 186065) - (-3719 . 185924) (-3720 . 183864) (-3721 . 176221) (-3722 . 176070) - (-3723 . 176000) (-3724 . 175949) (-3725 . 175899) (-3726 . 175848) - (-3727 . 175797) (-3728 . 175601) (-3729 . 175459) (-3730 . 175345) - (-3731 . 175224) (-3732 . 175106) (-3733 . 174994) (-3734 . 174876) - (-3735 . 174771) (-3736 . 174690) (-3737 . 174586) (-3738 . 173652) - (-3739 . 173432) (-3740 . 173195) (-3741 . 173113) (-3742 . 172769) - (-3743 . 171630) (-3744 . 171556) (-3745 . 171461) (-3746 . 171387) - (-3747 . 171183) (-3748 . 171092) (-3749 . 170976) (-3750 . 170863) - (-3751 . 170772) (-3752 . 170681) (-3753 . 170592) (-3754 . 170503) - (-3755 . 170414) (-3756 . 170326) (-3757 . 169838) (-3758 . 169770) - (-3759 . 169716) (-3760 . 169652) (-3761 . 169588) (-3762 . 169524) - (-3763 . 169463) (-3764 . 168723) (-3765 . 168662) (-3766 . 168601) - (-3767 . 167975) (-3768 . 167923) (-3769 . 167795) (-3770 . 167731) - (-3771 . 167677) (-3772 . 167568) (-3773 . 166270) (-3774 . 166189) - (-3775 . 166100) (-3776 . 166042) (-3777 . 165793) (-3778 . 165708) - (-3779 . 165634) (-3780 . 165549) (-3781 . 165492) (-3782 . 165276) - (-3783 . 165137) (-3784 . 164418) (-3785 . 163864) (-3786 . 163310) - (-3787 . 162756) (-3788 . 162037) (-3789 . 161371) (-3790 . 160811) - (-3791 . 160251) (-3792 . 159989) (-3793 . 159550) (-3794 . 159217) - (-3795 . 158878) (-3796 . 158573) (-3797 . 158440) (-3798 . 158307) - (-3799 . 157919) (-3800 . 157826) (-3801 . 157733) (-3802 . 157640) - (-3803 . 157547) (-3804 . 157454) (-3805 . 157361) (-3806 . 157268) - (-3807 . 157175) (-3808 . 157082) (-3809 . 156989) (-3810 . 156896) - (-3811 . 156803) (-3812 . 156710) (-3813 . 156617) (-3814 . 156524) - (-3815 . 156431) (-3816 . 156338) (-3817 . 156245) (-3818 . 156152) - (-3819 . 156059) (-3820 . 155966) (-3821 . 155873) (-3822 . 155780) - (-3823 . 155687) (-3824 . 155594) (-3825 . 155409) (-3826 . 155099) - (-3827 . 153541) (-3828 . 153386) (-3829 . 153248) (-3830 . 153105) - (-3831 . 152902) (-3832 . 150963) (-3833 . 150835) (-3834 . 150710) - (-3835 . 150582) (-3836 . 150359) (-3837 . 150136) (-3838 . 150008) - (-3839 . 149806) (-3840 . 149629) (-3841 . 149108) (-3842 . 148587) - (-3843 . 148308) (-3844 . 147896) (-3845 . 147375) (-3846 . 147190) - (-3847 . 147047) (-3848 . 146550) (-3849 . 145913) (-3850 . 145857) - (-3851 . 145763) (-3852 . 145644) (-3853 . 145574) (-3854 . 145501) - (-3855 . 145271) (-3856 . 144652) (-3857 . 144222) (-3858 . 144140) - (-3859 . 143998) (-3860 . 143523) (-3861 . 143401) (-3862 . 143279) - (-3863 . 143139) (-3864 . 142952) (-3865 . 142836) (-3866 . 142556) - (-3867 . 142488) (-3868 . 142290) (-3869 . 142110) (-3870 . 141955) - (-3871 . 141848) (-3872 . 141797) (-3873 . 141420) (-3874 . 140892) - (-3875 . 140670) (-3876 . 140448) (-3877 . 140209) (-3878 . 140119) - (-3879 . 138377) (-3880 . 137795) (-3881 . 137717) (-3882 . 132255) - (-3883 . 131465) (-3884 . 131088) (-3885 . 131017) (-3886 . 130752) - (-3887 . 130577) (-3888 . 130092) (-3889 . 129670) (-3890 . 129230) - (-3891 . 128367) (-3892 . 128243) (-3893 . 128116) (-3894 . 128007) - (-3895 . 127855) (-3896 . 127741) (-3897 . 127602) (-3898 . 127521) - (-3899 . 127440) (-3900 . 127336) (-3901 . 126918) (-3902 . 126496) - (-3903 . 126422) (-3904 . 126159) (-3905 . 125894) (-3906 . 125514) - (-3907 . 124815) (-3908 . 123772) (-3909 . 123713) (-3910 . 123639) - (-3911 . 123565) (-3912 . 123443) (-3913 . 123193) (-3914 . 123107) - (-3915 . 123032) (-3916 . 122957) (-3917 . 122862) (-3918 . 119087) - (-3919 . 117908) (-3920 . 117247) (-3921 . 117062) (-3922 . 114857) - (-3923 . 114532) (-3924 . 114050) (-3925 . 113607) (-3926 . 113372) - (-3927 . 113127) (-3928 . 113037) (-3929 . 111602) (-3930 . 111524) - (-3931 . 111419) (-3932 . 109943) (-3933 . 109538) (-3934 . 109137) - (-3935 . 109035) (-3936 . 108953) (-3937 . 108795) (-3938 . 107504) - (-3939 . 107422) (-3940 . 107343) (-3941 . 106988) (-3942 . 106931) - (-3943 . 106859) (-3944 . 106802) (-3945 . 106745) (-3946 . 106615) - (-3947 . 106412) (-3948 . 106043) (-3949 . 105621) (-3950 . 101677) - (-3951 . 101074) (-3952 . 100449) (-3953 . 100236) (-3954 . 100023) - (-3955 . 99857) (-3956 . 99644) (-3957 . 99478) (-3958 . 99312) - (-3959 . 99146) (-3960 . 98980) (-3961 . 98710) (-3962 . 93287) (** . 90334) - (-3964 . 89918) (-3965 . 89677) (-3966 . 89621) (-3967 . 89129) - (-3968 . 86321) (-3969 . 86171) (-3970 . 86007) (-3971 . 85843) - (-3972 . 85747) (-3973 . 85629) (-3974 . 85505) (-3975 . 85362) - (-3976 . 85191) (-3977 . 85065) (-3978 . 84921) (-3979 . 84769) - (-3980 . 84610) (-3981 . 84097) (-3982 . 84008) (-3983 . 83343) - (-3984 . 83151) (-3985 . 83056) (-3986 . 82748) (-3987 . 81576) - (-3988 . 81370) (-3989 . 80195) (-3990 . 80120) (-3991 . 78939) - (-3992 . 75357) (-3993 . 74993) (-3994 . 74716) (-3995 . 74624) - (-3996 . 74531) (-3997 . 74254) (-3998 . 74161) (-3999 . 74068) - (-4000 . 73975) (-4001 . 73591) (-4002 . 73520) (-4003 . 73428) - (-4004 . 73270) (-4005 . 72916) (-4006 . 72758) (-4007 . 72650) - (-4008 . 72621) (-4009 . 72554) (-4010 . 72400) (-4011 . 72242) - (-4012 . 71848) (-4013 . 71773) (-4014 . 71667) (-4015 . 71595) - (-4016 . 71517) (-4017 . 71444) (-4018 . 71371) (-4019 . 71298) - (-4020 . 71226) (-4021 . 71154) (-4022 . 71081) (-4023 . 70840) - (-4024 . 70500) (-4025 . 70352) (-4026 . 70279) (-4027 . 70206) - (-4028 . 70133) (-4029 . 69879) (-4030 . 69735) (-4031 . 68399) - (-4032 . 68205) (-4033 . 67934) (-4034 . 67786) (-4035 . 67638) - (-4036 . 67398) (-4037 . 67204) (-4038 . 66936) (-4039 . 66740) - (-4040 . 66711) (-4041 . 66610) (-4042 . 66509) (-4043 . 66408) - (-4044 . 66307) (-4045 . 66206) (-4046 . 66105) (-4047 . 66004) - (-4048 . 65903) (-4049 . 65802) (-4050 . 65701) (-4051 . 65586) - (-4052 . 65471) (-4053 . 65420) (-4054 . 65303) (-4055 . 65245) - (-4056 . 65144) (-4057 . 65043) (-4058 . 64942) (-4059 . 64826) - (-4060 . 64797) (-4061 . 64066) (-4062 . 63941) (-4063 . 63816) - (-4064 . 63676) (-4065 . 63558) (-4066 . 63433) (-4067 . 63278) - (-4068 . 62295) (-4069 . 61436) (-4070 . 61382) (-4071 . 61328) - (-4072 . 61120) (-4073 . 60748) (-4074 . 60335) (-4075 . 59975) - (-4076 . 59615) (-4077 . 59463) (-4078 . 59161) (-4079 . 59005) - (-4080 . 58679) (-4081 . 58609) (-4082 . 58539) (-4083 . 58329) - (-4084 . 57720) (-4085 . 57516) (-4086 . 57143) (-4087 . 56634) - (-4088 . 56369) (-4089 . 55888) (-4090 . 55407) (-4091 . 55282) - (-4092 . 54070) (-4093 . 52882) (-4094 . 52309) (-4095 . 52091) - (-4096 . 36762) (-4097 . 36577) (-4098 . 34493) (-4099 . 32325) - (-4100 . 32179) (-4101 . 32001) (-4102 . 31594) (-4103 . 31299) - (-4104 . 30951) (-4105 . 30785) (-4106 . 30619) (-4107 . 30206) - (-4108 . 16198) (-4109 . 15090) (* . 11043) (-4111 . 10789) (-4112 . 10605) - (-4113 . 9648) (-4114 . 9595) (-4115 . 9535) (-4116 . 9266) (-4117 . 8639) - (-4118 . 7366) (-4119 . 6122) (-4120 . 5253) (-4121 . 3990) (-4122 . 420) - (-4123 . 306) (-4124 . 173) (-4125 . 30))
\ No newline at end of file + (-12 (-5 *3 (-1079)) (-4 *4 (-489)) (-5 *2 (-578 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-489)) (-5 *2 (-578 *1)) (-4 *1 (-29 *3))))) +((-1203 . 630113) (-1204 . 629811) (-1205 . 629415) (-1206 . 629295) + (-1207 . 629193) (-1208 . 629080) (-1209 . 628964) (-1210 . 628911) + (-1211 . 628774) (-1212 . 628699) (-1213 . 628543) (-1214 . 628315) + (-1215 . 627351) (-1216 . 627104) (-1217 . 626820) (-1218 . 626536) + (-1219 . 626252) (-1220 . 625933) (-1221 . 625841) (-1222 . 625749) + (-1223 . 625657) (-1224 . 625565) (-1225 . 625473) (-1226 . 625381) + (-1227 . 625286) (-1228 . 625191) (-1229 . 625099) (-1230 . 625007) + (-1231 . 624915) (-1232 . 624823) (-1233 . 624731) (-1234 . 624629) + (-1235 . 624527) (-1236 . 624425) (-1237 . 624333) (-1238 . 624282) + (-1239 . 624230) (-1240 . 624160) (-1241 . 623740) (-1242 . 623546) + (-1243 . 623519) (-1244 . 623396) (-1245 . 623273) (-1246 . 623129) + (-1247 . 622959) (-1248 . 622835) (-1249 . 622596) (-1250 . 622523) + (-1251 . 622298) (-1252 . 622052) (-1253 . 621999) (-1254 . 621821) + (-1255 . 621652) (-1256 . 621576) (-1257 . 621503) (-1258 . 621350) + (-1259 . 621197) (-1260 . 621013) (-1261 . 620832) (-1262 . 620777) + (-1263 . 620722) (-1264 . 620649) (-1265 . 620573) (-1266 . 620505) + (-1267 . 620362) (-1268 . 620255) (-1269 . 620187) (-1270 . 620117) + (-1271 . 620047) (-1272 . 619997) (-1273 . 619947) (-1274 . 619897) + (-1275 . 619776) (-1276 . 619460) (-1277 . 619391) (-1278 . 619312) + (-1279 . 619193) (-1280 . 619113) (-1281 . 619033) (-1282 . 618880) + (-1283 . 618731) (-1284 . 618655) (-1285 . 618598) (-1286 . 618526) + (-1287 . 618463) (-1288 . 618400) (-1289 . 618339) (-1290 . 618267) + (-1291 . 618153) (-1292 . 618102) (-1293 . 618047) (-1294 . 617995) + (-1295 . 617943) (-1296 . 617915) (-1297 . 617887) (-1298 . 617859) + (-1299 . 617815) (-1300 . 617744) (-1301 . 617693) (-1302 . 617645) + (-1303 . 617594) (-1304 . 617542) (-1305 . 617426) (-1306 . 617310) + (-1307 . 617218) (-1308 . 617126) (-1309 . 617003) (-1310 . 616937) + (-1311 . 616871) (-1312 . 616812) (-1313 . 616784) (-1314 . 616756) + (-1315 . 616728) (-1316 . 616700) (-1317 . 616590) (-1318 . 616539) + (-1319 . 616488) (-1320 . 616437) (-1321 . 616386) (-1322 . 616335) + (-1323 . 616284) (-1324 . 616256) (-1325 . 616228) (-1326 . 616200) + (-1327 . 616172) (-1328 . 616144) (-1329 . 616116) (-1330 . 616088) + (-1331 . 616060) (-1332 . 616032) (-1333 . 615929) (-1334 . 615877) + (-1335 . 615711) (-1336 . 615527) (-1337 . 615316) (-1338 . 615201) + (-1339 . 614968) (-1340 . 614869) (-1341 . 614776) (-1342 . 614661) + (-1343 . 614267) (-1344 . 614051) (-1345 . 614002) (-1346 . 613974) + (-1347 . 613898) (-1348 . 613799) (-1349 . 613700) (-1350 . 613601) + (-1351 . 613502) (-1352 . 613403) (-1353 . 613304) (-1354 . 613146) + (-1355 . 613070) (-1356 . 612903) (-1357 . 612845) (-1358 . 612787) + (-1359 . 612480) (-1360 . 612226) (-1361 . 612142) (-1362 . 612010) + (-1363 . 611952) (-1364 . 611900) (-1365 . 611818) (-1366 . 611743) + (-1367 . 611672) (-1368 . 611618) (-1369 . 611567) (-1370 . 611493) + (-1371 . 611419) (-1372 . 611338) (-1373 . 611257) (-1374 . 611202) + (-1375 . 611128) (-1376 . 611054) (-1377 . 610980) (-1378 . 610903) + (-1379 . 610849) (-1380 . 610791) (-1381 . 610692) (-1382 . 610593) + (-1383 . 610494) (-1384 . 610395) (-1385 . 610296) (-1386 . 610197) + (-1387 . 610098) (-1388 . 609984) (-1389 . 609870) (-1390 . 609756) + (-1391 . 609642) (-1392 . 609528) (-1393 . 609414) (-1394 . 609297) + (-1395 . 609221) (-1396 . 609145) (-1397 . 608758) (-1398 . 608413) + (-1399 . 608311) (-1400 . 608050) (-1401 . 607948) (-1402 . 607743) + (-1403 . 607630) (-1404 . 607528) (-1405 . 607371) (-1406 . 607282) + (-1407 . 607188) (-1408 . 607108) (-1409 . 607034) (-1410 . 606956) + (-1411 . 606897) (-1412 . 606839) (-1413 . 606737) (-7 . 606709) (-8 . 606681) + (-9 . 606653) (-1417 . 606534) (-1418 . 606452) (-1419 . 606370) + (-1420 . 606288) (-1421 . 606206) (-1422 . 606124) (-1423 . 606030) + (-1424 . 605960) (-1425 . 605890) (-1426 . 605799) (-1427 . 605705) + (-1428 . 605623) (-1429 . 605541) (-1430 . 605443) (-1431 . 605283) + (-1432 . 605085) (-1433 . 604949) (-1434 . 604849) (-1435 . 604749) + (-1436 . 604656) (-1437 . 604597) (-1438 . 604264) (-1439 . 604164) + (-1440 . 604046) (-1441 . 603834) (-1442 . 603655) (-1443 . 603497) + (-1444 . 603294) (-1445 . 602876) (-1446 . 602825) (-1447 . 602716) + (-1448 . 602601) (-1449 . 602532) (-1450 . 602463) (-1451 . 602394) + (-1452 . 602328) (-1453 . 602203) (-1454 . 601986) (-1455 . 601908) + (-1456 . 601858) (-1457 . 601787) (-1458 . 601644) (-1459 . 601503) + (-1460 . 601422) (-1461 . 601341) (-1462 . 601285) (-1463 . 601229) + (-1464 . 601156) (-1465 . 601016) (-1466 . 600963) (-1467 . 600904) + (-1468 . 600845) (-1469 . 600690) (-1470 . 600638) (-1471 . 600521) + (-1472 . 600404) (-1473 . 600287) (-1474 . 600156) (-1475 . 599877) + (-1476 . 599742) (-1477 . 599686) (-1478 . 599630) (-1479 . 599571) + (-1480 . 599512) (-1481 . 599456) (-1482 . 599400) (-1483 . 599203) + (-1484 . 596877) (-1485 . 596750) (-1486 . 596606) (-1487 . 596479) + (-1488 . 596427) (-1489 . 596375) (-1490 . 596323) (-1491 . 592309) + (-1492 . 592215) (-1493 . 592078) (-1494 . 591869) (-1495 . 591767) + (-1496 . 591665) (-1497 . 590759) (-1498 . 590683) (-1499 . 590554) + (-1500 . 590429) (-1501 . 590352) (-1502 . 590275) (-1503 . 590148) + (-1504 . 590021) (-1505 . 589855) (-1506 . 589728) (-1507 . 589601) + (-1508 . 589384) (-1509 . 588950) (-1510 . 588586) (-1511 . 588534) + (-1512 . 588475) (-1513 . 588387) (-1514 . 588299) (-1515 . 588208) + (-1516 . 588117) (-1517 . 588026) (-1518 . 587935) (-1519 . 587844) + (-1520 . 587753) (-1521 . 587662) (-1522 . 587571) (-1523 . 587480) + (-1524 . 587389) (-1525 . 587298) (-1526 . 587207) (-1527 . 587116) + (-1528 . 587025) (-1529 . 586934) (-1530 . 586843) (-1531 . 586752) + (-1532 . 586661) (-1533 . 586570) (-1534 . 586479) (-1535 . 586388) + (-1536 . 586297) (-1537 . 586206) (-1538 . 586115) (-1539 . 586024) + (-1540 . 585933) (-1541 . 585771) (-1542 . 585663) (-1543 . 585420) + (-1544 . 585133) (-1545 . 584938) (-1546 . 584782) (-1547 . 584622) + (-1548 . 584571) (-1549 . 584509) (-1550 . 584458) (-1551 . 584395) + (-1552 . 584342) (-1553 . 584290) (-1554 . 584238) (-1555 . 584186) + (-1556 . 584096) (-1557 . 583909) (-1558 . 583755) (-1559 . 583675) + (-1560 . 583595) (-1561 . 583515) (-1562 . 583385) (-1563 . 583153) + (-1564 . 583125) (-1565 . 583097) (-1566 . 583069) (-1567 . 582989) + (-1568 . 582912) (-1569 . 582835) (-1570 . 582754) (-1571 . 582695) + (-1572 . 582537) (-1573 . 582344) (-1574 . 581859) (-1575 . 581617) + (-1576 . 581355) (-1577 . 581254) (-1578 . 581173) (-1579 . 581092) + (-1580 . 581022) (-1581 . 580952) (-1582 . 580794) (-1583 . 580490) + (-1584 . 580262) (-1585 . 580140) (-1586 . 580082) (-1587 . 580020) + (-1588 . 579958) (-1589 . 579893) (-1590 . 579831) (-1591 . 579552) + (-1592 . 579484) (-1593 . 579274) (-1594 . 579222) (-1595 . 579168) + (-1596 . 579077) (-1597 . 578990) (-1598 . 577243) (-1599 . 577164) + (-1600 . 576423) (-1601 . 576306) (-1602 . 576100) (-1603 . 575939) + (-1604 . 575778) (-1605 . 575618) (-1606 . 575480) (-1607 . 575386) + (-1608 . 575288) (-1609 . 575194) (-1610 . 575080) (-1611 . 574998) + (-1612 . 574901) (-1613 . 574705) (-1614 . 574614) (-1615 . 574520) + (-1616 . 574453) (-1617 . 574384) (-1618 . 574332) (-1619 . 574273) + (-1620 . 574199) (-1621 . 574147) (-1622 . 573990) (-1623 . 573833) + (-1624 . 573681) (-1625 . 572923) (-1626 . 572612) (-1627 . 572260) + (-1628 . 572043) (-1629 . 571780) (-1630 . 571405) (-1631 . 571221) + (-1632 . 571087) (-1633 . 570921) (-1634 . 570755) (-1635 . 570621) + (-1636 . 570487) (-1637 . 570353) (-1638 . 570219) (-1639 . 570088) + (-1640 . 569957) (-1641 . 569826) (-1642 . 569446) (-1643 . 569320) + (-1644 . 569192) (-1645 . 568942) (-1646 . 568819) (-1647 . 568569) + (-1648 . 568446) (-1649 . 568196) (-1650 . 568073) (-1651 . 567790) + (-1652 . 567519) (-1653 . 567246) (-1654 . 566948) (-1655 . 566846) + (-1656 . 566701) (-1657 . 566560) (-1658 . 566409) (-1659 . 566248) + (-1660 . 566160) (-1661 . 566132) (-1662 . 566050) (-1663 . 565953) + (-1664 . 565485) (-1665 . 565134) (-1666 . 564701) (-1667 . 564562) + (-1668 . 564492) (-1669 . 564422) (-1670 . 564352) (-1671 . 564261) + (-1672 . 564170) (-1673 . 564079) (-1674 . 563988) (-1675 . 563897) + (-1676 . 563811) (-1677 . 563725) (-1678 . 563639) (-1679 . 563553) + (-1680 . 563467) (-1681 . 563393) (-1682 . 563288) (-1683 . 563062) + (-1684 . 562984) (-1685 . 562909) (-1686 . 562816) (-1687 . 562712) + (-1688 . 562616) (-1689 . 562447) (-1690 . 562370) (-1691 . 562293) + (-1692 . 562202) (-1693 . 562111) (-1694 . 561911) (-1695 . 561758) + (-1696 . 561605) (-1697 . 561452) (-1698 . 561299) (-1699 . 561146) + (-1700 . 560993) (-1701 . 560927) (-1702 . 560774) (-1703 . 560621) + (-1704 . 560468) (-1705 . 560315) (-1706 . 560162) (-1707 . 560009) + (-1708 . 559856) (-1709 . 559703) (-1710 . 559629) (-1711 . 559555) + (-1712 . 559500) (-1713 . 559445) (-1714 . 559390) (-1715 . 559335) + (-1716 . 559264) (-1717 . 559060) (-1718 . 558959) (-1719 . 558771) + (-1720 . 558678) (-1721 . 558542) (-1722 . 558406) (-1723 . 558270) + (-1724 . 558202) (-1725 . 558086) (-1726 . 557970) (-1727 . 557854) + (-1728 . 557801) (-1729 . 557716) (-1730 . 557631) (-1731 . 557323) + (-1732 . 557268) (-1733 . 556616) (-1734 . 556301) (-1735 . 556017) + (-1736 . 555899) (-1737 . 555780) (-1738 . 555721) (-1739 . 555662) + (-1740 . 555611) (-1741 . 555560) (-1742 . 555509) (-1743 . 555456) + (-1744 . 555403) (-1745 . 555344) (-1746 . 555231) (-1747 . 555118) + (-1748 . 554951) (-1749 . 554859) (-1750 . 554746) (-1751 . 554662) + (-1752 . 554547) (-1753 . 554456) (-1754 . 554365) (-1755 . 554244) + (-1756 . 554057) (-1757 . 554005) (-1758 . 553950) (-1759 . 553763) + (-1760 . 553640) (-1761 . 553567) (-1762 . 553494) (-1763 . 553374) + (-1764 . 553301) (-1765 . 553228) (-1766 . 552888) (-1767 . 552815) + (-1768 . 552595) (-1769 . 552262) (-1770 . 552079) (-1771 . 551936) + (-1772 . 551576) (-1773 . 551408) (-1774 . 551240) (-1775 . 550984) + (-1776 . 550728) (-1777 . 550533) (-1778 . 550338) (-1779 . 549744) + (-1780 . 549668) (-1781 . 549529) (-1782 . 549122) (-1783 . 548995) + (-1784 . 548838) (-1785 . 548521) (-1786 . 548041) (-1787 . 547561) + (-1788 . 547059) (-1789 . 546991) (-1790 . 546920) (-1791 . 546849) + (-1792 . 546677) (-1793 . 546558) (-1794 . 546439) (-1795 . 546363) + (-1796 . 546287) (-1797 . 546014) (-1798 . 545900) (-1799 . 545849) + (-1800 . 545798) (-1801 . 545747) (-1802 . 545696) (-1803 . 545645) + (-1804 . 545504) (-1805 . 545331) (-1806 . 545100) (-1807 . 544914) + (-1808 . 544886) (-1809 . 544858) (-1810 . 544830) (-1811 . 544802) + (-1812 . 544774) (-1813 . 544746) (-1814 . 544718) (-1815 . 544667) + (-1816 . 544601) (-1817 . 544511) (-1818 . 544140) (-1819 . 543989) + (-1820 . 543838) (-1821 . 543633) (-1822 . 543511) (-1823 . 543437) + (-1824 . 543360) (-1825 . 543286) (-1826 . 543209) (-1827 . 543132) + (-1828 . 543058) (-1829 . 542981) (-1830 . 542748) (-1831 . 542595) + (-1832 . 542300) (-1833 . 542147) (-1834 . 541825) (-1835 . 541687) + (-1836 . 541549) (-1837 . 541469) (-1838 . 541389) (-1839 . 541125) + (-1840 . 540394) (-1841 . 540258) (-1842 . 540168) (-1843 . 540033) + (-1844 . 539966) (-1845 . 539898) (-1846 . 539811) (-1847 . 539724) + (-1848 . 539557) (-1849 . 539483) (-1850 . 539339) (-1851 . 538879) + (-1852 . 538500) (-1853 . 537738) (-1854 . 537594) (-1855 . 537450) + (-1856 . 537288) (-1857 . 537051) (-1858 . 536911) (-1859 . 536765) + (-1860 . 536526) (-1861 . 536290) (-1862 . 536051) (-1863 . 535859) + (-1864 . 535736) (-1865 . 535532) (-1866 . 535309) (-1867 . 535070) + (-1868 . 534929) (-1869 . 534791) (-1870 . 534652) (-1871 . 534399) + (-1872 . 534143) (-1873 . 533986) (-1874 . 533832) (-1875 . 533592) + (-1876 . 533307) (-1877 . 533169) (-1878 . 533082) (-1879 . 532416) + (-1880 . 532240) (-1881 . 532058) (-1882 . 531882) (-1883 . 531700) + (-1884 . 531521) (-1885 . 531342) (-1886 . 531155) (-1887 . 530773) + (-1888 . 530594) (-1889 . 530415) (-1890 . 530228) (-1891 . 529846) + (-1892 . 528853) (-1893 . 528469) (-1894 . 528085) (-1895 . 527967) + (-1896 . 527810) (-1897 . 527668) (-1898 . 527551) (-1899 . 527369) + (-1900 . 527245) (-1901 . 526956) (-1902 . 526667) (-1903 . 526384) + (-1904 . 526101) (-1905 . 525823) (-1906 . 525735) (-1907 . 525650) + (-1908 . 525553) (-1909 . 525456) (-1910 . 525236) (-1911 . 525136) + (-1912 . 525033) (-1913 . 524955) (-1914 . 524630) (-1915 . 524342) + (-1916 . 524269) (-1917 . 523884) (-1918 . 523856) (-1919 . 523657) + (-1920 . 523483) (-1921 . 523242) (-1922 . 523187) (-1923 . 523112) + (-1924 . 522744) (-1925 . 522629) (-1926 . 522552) (-1927 . 522479) + (-1928 . 522398) (-1929 . 522317) (-1930 . 522236) (-1931 . 522135) + (-1932 . 522076) (-1933 . 521838) (-1934 . 521716) (-1935 . 521594) + (-1936 . 521367) (-1937 . 521314) (-1938 . 521260) (-1939 . 520928) + (-1940 . 520604) (-1941 . 520416) (-1942 . 520225) (-1943 . 520061) + (-1944 . 519726) (-1945 . 519559) (-1946 . 519318) (-1947 . 518994) + (-1948 . 518804) (-1949 . 518589) (-1950 . 518418) (-1951 . 517996) + (-1952 . 517769) (-1953 . 517498) (-1954 . 517361) (-1955 . 517220) + (-1956 . 516743) (-1957 . 516620) (-1958 . 516384) (-1959 . 516130) + (-1960 . 515880) (-1961 . 515587) (-1962 . 515447) (-1963 . 515307) + (-1964 . 515167) (-1965 . 514978) (-1966 . 514789) (-1967 . 514614) + (-1968 . 514340) (-1969 . 513905) (-1970 . 513877) (-1971 . 513805) + (-1972 . 513646) (-1973 . 513483) (-1974 . 513322) (-1975 . 513155) + (-1976 . 513102) (-1977 . 513049) (-1978 . 512920) (-1979 . 512860) + (-1980 . 512807) (-1981 . 512737) (-1982 . 512677) (-1983 . 512618) + (-1984 . 512558) (-1985 . 512499) (-1986 . 512439) (-1987 . 512380) + (-1988 . 512322) (-1989 . 512180) (-1990 . 512085) (-1991 . 511994) + (-1992 . 511878) (-1993 . 511784) (-1994 . 511686) (-1995 . 511592) + (-1996 . 511451) (-1997 . 511189) (-1998 . 510333) (-1999 . 510177) + (-2000 . 509808) (-2001 . 509752) (-2002 . 509701) (-2003 . 509598) + (-2004 . 509513) (-2005 . 509425) (-2006 . 509279) (-2007 . 509130) + (-2008 . 508840) (-2009 . 508762) (-2010 . 508687) (-2011 . 508634) + (-2012 . 508581) (-2013 . 508550) (-2014 . 508487) (-2015 . 508369) + (-2016 . 508280) (-2017 . 508160) (-2018 . 507865) (-2019 . 507671) + (-2020 . 507483) (-2021 . 507338) (-2022 . 507193) (-2023 . 506907) + (-2024 . 506465) (-2025 . 506431) (-2026 . 506394) (-2027 . 506357) + (-2028 . 506320) (-2029 . 506283) (-2030 . 506252) (-2031 . 506221) + (-2032 . 506190) (-2033 . 506156) (-2034 . 506122) (-2035 . 506068) + (-2036 . 505892) (-2037 . 505658) (-2038 . 505424) (-2039 . 505195) + (-2040 . 505143) (-2041 . 505088) (-2042 . 505019) (-2043 . 504931) + (-2044 . 504862) (-2045 . 504790) (-2046 . 504560) (-2047 . 504509) + (-2048 . 504455) (-2049 . 504424) (-2050 . 504318) (-2051 . 504093) + (-2052 . 503783) (-2053 . 503609) (-2054 . 503427) (-2055 . 503156) + (-2056 . 503083) (-2057 . 503018) (-2058 . 502542) (-2059 . 501980) + (-2060 . 501254) (-2061 . 500693) (-2062 . 500065) (-2063 . 499486) + (-2064 . 499412) (-2065 . 499360) (-2066 . 499308) (-2067 . 499234) + (-2068 . 499179) (-2069 . 499127) (-2070 . 499075) (-2071 . 499023) + (-2072 . 498953) (-2073 . 498505) (-2074 . 498299) (-2075 . 498050) + (-2076 . 497716) (-2077 . 497462) (-2078 . 497160) (-2079 . 496957) + (-2080 . 496668) (-2081 . 496120) (-2082 . 495983) (-2083 . 495781) + (-2084 . 495501) (-2085 . 495416) (-2086 . 495083) (-2087 . 494942) + (-2088 . 494651) (-2089 . 494431) (-2090 . 494305) (-2091 . 494180) + (-2092 . 494033) (-2093 . 493889) (-2094 . 493773) (-2095 . 493642) + (-2096 . 493270) (-2097 . 493010) (-2098 . 492740) (-2099 . 492500) + (-2100 . 492170) (-2101 . 491830) (-2102 . 491422) (-2103 . 491004) + (-2104 . 490807) (-2105 . 490532) (-2106 . 490364) (-2107 . 490168) + (-2108 . 489946) (-2109 . 489791) (-2110 . 489606) (-2111 . 489503) + (-2112 . 489475) (-2113 . 489447) (-2114 . 489273) (-2115 . 489199) + (-2116 . 489139) (-2117 . 489086) (-2118 . 489017) (-2119 . 488948) + (-2120 . 488829) (-2121 . 488651) (-2122 . 488596) (-2123 . 488350) + (-2124 . 488277) (-2125 . 488207) (-2126 . 488137) (-2127 . 488048) + (-2128 . 487858) (-2129 . 487785) (-2130 . 487716) (-2131 . 487651) + (-2132 . 487596) (-2133 . 487505) (-2134 . 487214) (-2135 . 486888) + (-2136 . 486814) (-2137 . 486492) (-2138 . 486287) (-2139 . 486202) + (-2140 . 486117) (-2141 . 486032) (-2142 . 485947) (-2143 . 485862) + (-2144 . 485777) (-2145 . 485692) (-2146 . 485607) (-2147 . 485522) + (-2148 . 485437) (-2149 . 485352) (-2150 . 485267) (-2151 . 485182) + (-2152 . 485097) (-2153 . 485012) (-2154 . 484927) (-2155 . 484842) + (-2156 . 484757) (-2157 . 484672) (-2158 . 484587) (-2159 . 484502) + (-2160 . 484417) (-2161 . 484332) (-2162 . 484247) (-2163 . 484162) + (-2164 . 484077) (-2165 . 483975) (-2166 . 483887) (-2167 . 483679) + (-2168 . 483621) (-2169 . 483566) (-2170 . 483479) (-2171 . 483368) + (-2172 . 483282) (-2173 . 483136) (-2174 . 483074) (-2175 . 483046) + (-2176 . 483018) (-2177 . 482990) (-2178 . 482962) (-2179 . 482793) + (-2180 . 482642) (-2181 . 482491) (-2182 . 482319) (-2183 . 482111) + (-2184 . 481987) (-2185 . 481779) (-2186 . 481687) (-2187 . 481595) + (-2188 . 481460) (-2189 . 481365) (-2190 . 481271) (-2191 . 481176) + (-2192 . 481052) (-2193 . 481024) (-2194 . 480996) (-2195 . 480968) + (-2196 . 480940) (-2197 . 480912) (-2198 . 480884) (-2199 . 480856) + (-2200 . 480828) (-2201 . 480800) (-2202 . 480772) (-2203 . 480744) + (-2204 . 480716) (-2205 . 480688) (-2206 . 480660) (-2207 . 480632) + (-2208 . 480604) (-2209 . 480551) (-2210 . 480523) (-2211 . 480495) + (-2212 . 480417) (-2213 . 480364) (-2214 . 480311) (-2215 . 480258) + (-2216 . 480180) (-2217 . 480090) (-2218 . 479995) (-2219 . 479901) + (-2220 . 479819) (-2221 . 479513) (-2222 . 479317) (-2223 . 479222) + (-2224 . 479114) (-2225 . 478703) (-2226 . 478675) (-2227 . 478511) + (-2228 . 478434) (-2229 . 478247) (-2230 . 478068) (-2231 . 477644) + (-2232 . 477492) (-2233 . 477312) (-2234 . 477139) (-2235 . 476879) + (-2236 . 476627) (-2237 . 475816) (-2238 . 475649) (-2239 . 475431) + (-2240 . 474607) (-2241 . 474476) (-2242 . 474345) (-2243 . 474214) + (-2244 . 474083) (-2245 . 473952) (-2246 . 473821) (-2247 . 473626) + (-2248 . 473432) (-2249 . 473289) (-2250 . 472974) (-2251 . 472859) + (-2252 . 472519) (-2253 . 472359) (-2254 . 472220) (-2255 . 472081) + (-2256 . 471952) (-2257 . 471867) (-2258 . 471815) (-2259 . 471335) + (-2260 . 470073) (-2261 . 469946) (-2262 . 469804) (-2263 . 469468) + (-2264 . 469363) (-2265 . 469114) (-2266 . 468882) (-2267 . 468777) + (-2268 . 468702) (-2269 . 468627) (-2270 . 468552) (-2271 . 468493) + (-2272 . 468423) (-2273 . 468370) (-2274 . 468308) (-2275 . 468238) + (-2276 . 467875) (-2277 . 467588) (-2278 . 467478) (-2279 . 467291) + (-2280 . 467198) (-2281 . 467105) (-2282 . 467018) (-2283 . 466798) + (-2284 . 466579) (-2285 . 466161) (-2286 . 465889) (-2287 . 465746) + (-2288 . 465653) (-2289 . 465510) (-2290 . 465358) (-2291 . 465204) + (-2292 . 465134) (-2293 . 464927) (-2294 . 464750) (-2295 . 464541) + (-2296 . 464364) (-2297 . 464330) (-2298 . 464296) (-2299 . 464265) + (-2300 . 464147) (-2301 . 463834) (-2302 . 463556) (-2303 . 463435) + (-2304 . 463308) (-2305 . 463223) (-2306 . 463150) (-2307 . 463061) + (-2308 . 462990) (-2309 . 462934) (-2310 . 462878) (-2311 . 462822) + (-2312 . 462752) (-2313 . 462682) (-2314 . 462612) (-2315 . 462514) + (-2316 . 462436) (-2317 . 462358) (-2318 . 462215) (-2319 . 462136) + (-2320 . 462064) (-2321 . 461861) (-2322 . 461805) (-2323 . 461617) + (-2324 . 461518) (-2325 . 461400) (-2326 . 461279) (-2327 . 461136) + (-2328 . 460993) (-2329 . 460853) (-2330 . 460713) (-2331 . 460570) + (-2332 . 460444) (-2333 . 460315) (-2334 . 460192) (-2335 . 460069) + (-2336 . 459964) (-2337 . 459859) (-2338 . 459757) (-2339 . 459607) + (-2340 . 459454) (-2341 . 459301) (-2342 . 459157) (-2343 . 459003) + (-2344 . 458927) (-2345 . 458848) (-2346 . 458695) (-2347 . 458616) + (-2348 . 458537) (-2349 . 458458) (-2350 . 458356) (-2351 . 458297) + (-2352 . 458235) (-2353 . 458118) (-2354 . 457992) (-2355 . 457915) + (-2356 . 457783) (-2357 . 457477) (-2358 . 457294) (-2359 . 456752) + (-2360 . 456533) (-2361 . 456360) (-2362 . 456190) (-2363 . 456117) + (-2364 . 456041) (-2365 . 455962) (-2366 . 455665) (-2367 . 455503) + (-2368 . 455269) (-2369 . 454827) (-2370 . 454697) (-2371 . 454557) + (-2372 . 454248) (-2373 . 453946) (-2374 . 453630) (-2375 . 453224) + (-2376 . 453156) (-2377 . 453088) (-2378 . 453020) (-2379 . 452926) + (-2380 . 452819) (-2381 . 452712) (-2382 . 452611) (-2383 . 452510) + (-2384 . 452409) (-2385 . 452332) (-2386 . 452009) (-2387 . 451592) + (-2388 . 450965) (-2389 . 450901) (-2390 . 450782) (-2391 . 450663) + (-2392 . 450555) (-2393 . 450447) (-2394 . 450291) (-2395 . 449691) + (-2396 . 449408) (-2397 . 449240) (-2398 . 449118) (-2399 . 448722) + (-2400 . 448486) (-2401 . 448285) (-2402 . 448077) (-2403 . 447884) + (-2404 . 447617) (-2405 . 447438) (-2406 . 447369) (-2407 . 447293) + (-2408 . 447152) (-2409 . 446949) (-2410 . 446805) (-2411 . 446555) + (-2412 . 446247) (-2413 . 445891) (-2414 . 445732) (-2415 . 445526) + (-2416 . 445366) (-2417 . 445293) (-2418 . 445259) (-2419 . 445194) + (-2420 . 445157) (-2421 . 445020) (-2422 . 444782) (-2423 . 444712) + (-2424 . 444526) (-2425 . 444277) (-2426 . 444121) (-2427 . 443598) + (-2428 . 443401) (-2429 . 443189) (-2430 . 443027) (-2431 . 442628) + (-2432 . 442461) (-2433 . 441386) (-2434 . 441263) (-2435 . 441046) + (-2436 . 440916) (-2437 . 440786) (-2438 . 440629) (-2439 . 440526) + (-2440 . 440468) (-2441 . 440410) (-2442 . 440304) (-2443 . 440198) + (-2444 . 439282) (-2445 . 437155) (-2446 . 436341) (-2447 . 434538) + (-2448 . 434470) (-2449 . 434402) (-2450 . 434334) (-2451 . 434266) + (-2452 . 434198) (-2453 . 434120) (-2454 . 433764) (-2455 . 433582) + (-2456 . 433043) (-2457 . 432867) (-2458 . 432646) (-2459 . 432425) + (-2460 . 432204) (-2461 . 431986) (-2462 . 431768) (-2463 . 431550) + (-2464 . 431332) (-2465 . 431114) (-2466 . 430896) (-2467 . 430795) + (-2468 . 430062) (-2469 . 430007) (-2470 . 429952) (-2471 . 429897) + (-2472 . 429842) (-2473 . 429692) (-2474 . 429444) (-2475 . 429283) + (-2476 . 429103) (-2477 . 428816) (-2478 . 428430) (-2479 . 427558) + (-2480 . 427218) (-2481 . 427050) (-2482 . 426828) (-2483 . 426578) + (-2484 . 426230) (-2485 . 425220) (-2486 . 424909) (-2487 . 424697) + (-2488 . 424133) (-2489 . 423620) (-2490 . 421864) (-2491 . 421392) + (-2492 . 420793) (-2493 . 420543) (-2494 . 420409) (-2495 . 420197) + (-2496 . 420121) (-2497 . 420045) (-2498 . 419938) (-2499 . 419756) + (-2500 . 419591) (-2501 . 419413) (-2502 . 418832) (-2503 . 418671) + (-2504 . 418098) (-2505 . 418028) (-2506 . 417953) (-2507 . 417881) + (-2508 . 417743) (-2509 . 417556) (-2510 . 417449) (-2511 . 417342) + (-2512 . 417227) (-2513 . 417112) (-2514 . 416997) (-2515 . 416719) + (-2516 . 416569) (-2517 . 416426) (-2518 . 416353) (-2519 . 416268) + (-2520 . 416195) (-2521 . 416122) (-2522 . 416049) (-2523 . 415906) + (-2524 . 415756) (-2525 . 415582) (-2526 . 415432) (-2527 . 415282) + (-2528 . 415156) (-2529 . 414770) (-2530 . 414486) (-2531 . 414202) + (-2532 . 413793) (-2533 . 413509) (-2534 . 413436) (-2535 . 413289) + (-2536 . 413183) (-2537 . 413109) (-2538 . 413039) (-2539 . 412960) + (-2540 . 412883) (-2541 . 412808) (-2542 . 412659) (-2543 . 412556) + (-2544 . 412498) (-2545 . 412434) (-2546 . 412370) (-2547 . 412273) + (-2548 . 412176) (-2549 . 412016) (-2550 . 411930) (-2551 . 411844) + (-2552 . 411759) (-2553 . 411700) (-2554 . 411641) (-2555 . 411582) + (-2556 . 411523) (-2557 . 411353) (-2558 . 411265) (-2559 . 411168) + (-2560 . 411134) (-2561 . 411103) (-2562 . 411019) (-2563 . 410963) + (-2564 . 410901) (-2565 . 410867) (-2566 . 410833) (-2567 . 410799) + (-2568 . 410765) (-2569 . 410731) (-2570 . 410697) (-2571 . 410663) + (-2572 . 410629) (-2573 . 410595) (-2574 . 410483) (-2575 . 410449) + (-2576 . 410398) (-2577 . 410364) (-2578 . 410267) (-2579 . 410205) + (-2580 . 410114) (-2581 . 410023) (-2582 . 409968) (-2583 . 409916) + (-2584 . 409864) (-2585 . 409812) (-2586 . 409760) (-2587 . 409337) + (-2588 . 409171) (-2589 . 409118) (-2590 . 409049) (-2591 . 408996) + (-2592 . 408766) (-2593 . 408610) (-2594 . 408089) (-2595 . 407948) + (-2596 . 407914) (-2597 . 407859) (-2598 . 407149) (-2599 . 406834) + (-2600 . 406330) (-2601 . 406252) (-2602 . 406200) (-2603 . 406148) + (-2604 . 405964) (-2605 . 405912) (-2606 . 405860) (-2607 . 405784) + (-2608 . 405722) (-2609 . 405504) (-2610 . 405437) (-2611 . 405343) + (-2612 . 405249) (-2613 . 405066) (-2614 . 404984) (-2615 . 404862) + (-2616 . 404716) (-2617 . 404065) (-2618 . 403363) (-2619 . 403259) + (-2620 . 403158) (-2621 . 403057) (-2622 . 402946) (-2623 . 402778) + (-2624 . 402574) (-2625 . 402481) (-2626 . 402404) (-2627 . 402348) + (-2628 . 402278) (-2629 . 402158) (-2630 . 402057) (-2631 . 401960) + (-2632 . 401880) (-2633 . 401800) (-2634 . 401723) (-2635 . 401653) + (-2636 . 401583) (-2637 . 401513) (-2638 . 401443) (-2639 . 401373) + (-2640 . 401303) (-2641 . 401210) (-2642 . 401082) (-2643 . 400840) + (-2644 . 400670) (-2645 . 400301) (-2646 . 400132) (-2647 . 400016) + (-2648 . 399520) (-2649 . 399139) (-2650 . 398893) (-2651 . 398801) + (-2652 . 398704) (-2653 . 398042) (-2654 . 397929) (-2655 . 397855) + (-2656 . 397763) (-2657 . 397573) (-2658 . 397383) (-2659 . 397312) + (-2660 . 397241) (-2661 . 397160) (-2662 . 397079) (-2663 . 396954) + (-2664 . 396821) (-2665 . 396740) (-2666 . 396666) (-2667 . 396501) + (-2668 . 396344) (-2669 . 396116) (-2670 . 395968) (-2671 . 395864) + (-2672 . 395760) (-2673 . 395675) (-2674 . 395307) (-2675 . 395226) + (-2676 . 395139) (-2677 . 395058) (-2678 . 394862) (-2679 . 394642) + (-2680 . 394455) (-2681 . 394133) (-2682 . 393840) (-2683 . 393547) + (-2684 . 393237) (-2685 . 392920) (-2686 . 392768) (-2687 . 392580) + (-2688 . 392107) (-2689 . 392025) (-2690 . 391809) (-2691 . 391593) + (-2692 . 391334) (-2693 . 390913) (-2694 . 390400) (-2695 . 390270) + (-2696 . 389996) (-2697 . 389817) (-2698 . 389702) (-2699 . 389598) + (-2700 . 389543) (-2701 . 389466) (-2702 . 389396) (-2703 . 389323) + (-2704 . 389268) (-2705 . 389195) (-2706 . 389140) (-2707 . 388785) + (-2708 . 388377) (-2709 . 388224) (-2710 . 388071) (-2711 . 387990) + (-2712 . 387837) (-2713 . 387684) (-2714 . 387549) (-2715 . 387414) + (-2716 . 387279) (-2717 . 387144) (-2718 . 387009) (-2719 . 386874) + (-2720 . 386818) (-2721 . 386665) (-2722 . 386554) (-2723 . 386443) + (-2724 . 386358) (-2725 . 386248) (-2726 . 386145) (-2727 . 381994) + (-2728 . 381546) (-2729 . 381119) (-2730 . 380502) (-2731 . 379901) + (-2732 . 379683) (-2733 . 379505) (-2734 . 379246) (-2735 . 378835) + (-2736 . 378541) (-2737 . 378098) (-2738 . 377920) (-2739 . 377527) + (-2740 . 377134) (-2741 . 376949) (-2742 . 376742) (-2743 . 376522) + (-2744 . 376216) (-2745 . 376017) (-2746 . 375388) (-2747 . 375231) + (-2748 . 374842) (-2749 . 374791) (-2750 . 374742) (-2751 . 374691) + (-2752 . 374643) (-2753 . 374591) (-2754 . 374445) (-2755 . 374393) + (-2756 . 374247) (-2757 . 374195) (-2758 . 374049) (-2759 . 373998) + (-2760 . 373625) (-2761 . 373574) (-2762 . 373525) (-2763 . 373474) + (-2764 . 373426) (-2765 . 373374) (-2766 . 373325) (-2767 . 373273) + (-2768 . 373224) (-2769 . 373172) (-2770 . 373123) (-2771 . 373057) + (-2772 . 372941) (-2773 . 371797) (-2774 . 371396) (-2775 . 371289) + (-2776 . 371047) (-2777 . 370897) (-2778 . 370747) (-2779 . 370586) + (-2780 . 368379) (-2781 . 368118) (-2782 . 367964) (-2783 . 367818) + (-2784 . 367672) (-2785 . 367453) (-2786 . 367321) (-2787 . 367246) + (-2788 . 367171) (-2789 . 367036) (-2790 . 366907) (-2791 . 366778) + (-2792 . 366652) (-2793 . 366526) (-2794 . 366400) (-2795 . 366274) + (-2796 . 366171) (-2797 . 366071) (-2798 . 365977) (-2799 . 365847) + (-2800 . 365696) (-2801 . 365320) (-2802 . 365206) (-2803 . 364965) + (-2804 . 364507) (-2805 . 364197) (-2806 . 363630) (-2807 . 363061) + (-2808 . 362051) (-2809 . 361509) (-2810 . 361196) (-2811 . 360858) + (-2812 . 360527) (-2813 . 360207) (-2814 . 360154) (-2815 . 360027) + (-2816 . 359527) (-2817 . 358384) (-2818 . 358329) (-2819 . 358274) + (-2820 . 358198) (-2821 . 358079) (-2822 . 358004) (-2823 . 357929) + (-2824 . 357851) (-2825 . 357628) (-2826 . 357569) (-2827 . 357510) + (-2828 . 357407) (-2829 . 357304) (-2830 . 357201) (-2831 . 357098) + (-2832 . 357017) (-2833 . 356943) (-2834 . 356728) (-2835 . 356494) + (-2836 . 356460) (-2837 . 356426) (-2838 . 356398) (-2839 . 356370) + (-2840 . 356153) (-2841 . 355875) (-2842 . 355725) (-2843 . 355595) + (-2844 . 355465) (-2845 . 355365) (-2846 . 355188) (-2847 . 355028) + (-2848 . 354928) (-2849 . 354751) (-2850 . 354591) (-2851 . 354432) + (-2852 . 354293) (-2853 . 354143) (-2854 . 354013) (-2855 . 353883) + (-2856 . 353736) (-2857 . 353609) (-2858 . 353506) (-2859 . 353399) + (-2860 . 353302) (-2861 . 353137) (-2862 . 352989) (-2863 . 352574) + (-2864 . 352474) (-2865 . 352371) (-2866 . 352283) (-2867 . 352203) + (-2868 . 352053) (-2869 . 351923) (-2870 . 351871) (-2871 . 351798) + (-2872 . 351723) (-2873 . 351447) (-2874 . 351335) (-2875 . 351023) + (-2876 . 350846) (-2877 . 349248) (-2878 . 348620) (-2879 . 348561) + (-2880 . 348445) (-2881 . 348329) (-2882 . 348185) (-2883 . 348033) + (-2884 . 347874) (-2885 . 347715) (-2886 . 347509) (-2887 . 347322) + (-2888 . 347170) (-2889 . 347015) (-2890 . 346860) (-2891 . 346708) + (-2892 . 346571) (-2893 . 346148) (-2894 . 346022) (-2895 . 345896) + (-2896 . 345770) (-2897 . 345630) (-2898 . 345489) (-2899 . 345348) + (-2900 . 345204) (-2901 . 344456) (-2902 . 344298) (-2903 . 344112) + (-2904 . 343957) (-2905 . 343719) (-2906 . 343474) (-2907 . 343229) + (-2908 . 343019) (-2909 . 342882) (-2910 . 342672) (-2911 . 342535) + (-2912 . 342325) (-2913 . 342188) (-2914 . 341978) (-2915 . 341675) + (-2916 . 341531) (-2917 . 341390) (-2918 . 341167) (-2919 . 341026) + (-2920 . 340804) (-2921 . 340607) (-2922 . 340451) (-2923 . 340124) + (-2924 . 339965) (-2925 . 339806) (-2926 . 339647) (-2927 . 339476) + (-2928 . 339305) (-2929 . 339131) (-2930 . 338779) (-2931 . 338656) + (-2932 . 338494) (-2933 . 338421) (-2934 . 338348) (-2935 . 338275) + (-2936 . 338202) (-2937 . 338129) (-2938 . 338056) (-2939 . 337933) + (-2940 . 337760) (-2941 . 337637) (-2942 . 337551) (-2943 . 337485) + (-2944 . 337419) (-2945 . 337353) (-2946 . 337287) (-2947 . 337221) + (-2948 . 337155) (-2949 . 337089) (-2950 . 337023) (-2951 . 336957) + (-2952 . 336891) (-2953 . 336825) (-2954 . 336759) (-2955 . 336693) + (-2956 . 336627) (-2957 . 336561) (-2958 . 336495) (-2959 . 336429) + (-2960 . 336363) (-2961 . 336297) (-2962 . 336231) (-2963 . 336165) + (-2964 . 336099) (-2965 . 336033) (-2966 . 335967) (-2967 . 335901) + (-2968 . 335835) (-2969 . 335188) (-2970 . 334541) (-2971 . 334413) + (-2972 . 334290) (-2973 . 334167) (-2974 . 334026) (-2975 . 333872) + (-2976 . 333728) (-2977 . 333553) (-2978 . 332943) (-2979 . 332819) + (-2980 . 332695) (-2981 . 332017) (-2982 . 331320) (-2983 . 331219) + (-2984 . 331163) (-2985 . 331107) (-2986 . 331051) (-2987 . 330995) + (-2988 . 330936) (-2989 . 330872) (-2990 . 330764) (-2991 . 330656) + (-2992 . 330548) (-2993 . 330269) (-2994 . 330195) (-2995 . 329969) + (-2996 . 329888) (-2997 . 329810) (-2998 . 329732) (-2999 . 329654) + (-3000 . 329575) (-3001 . 329497) (-3002 . 329404) (-3003 . 329305) + (-3004 . 329237) (-3005 . 329188) (-3006 . 328497) (-3007 . 327857) + (-3008 . 327066) (-3009 . 326985) (-3010 . 326881) (-3011 . 326790) + (-3012 . 326699) (-3013 . 326625) (-3014 . 326551) (-3015 . 326477) + (-3016 . 326422) (-3017 . 326367) (-3018 . 326301) (-3019 . 326235) + (-3020 . 326173) (-3021 . 325898) (-3022 . 325406) (-3023 . 324948) + (-3024 . 324695) (-3025 . 324507) (-3026 . 324166) (-3027 . 323870) + (-3028 . 323702) (-3029 . 323571) (-3030 . 323431) (-3031 . 323276) + (-3032 . 323107) (-3033 . 321721) (-3034 . 321588) (-3035 . 321447) + (-3036 . 321218) (-3037 . 320953) (-3038 . 320894) (-3039 . 320838) + (-3040 . 320782) (-3041 . 320570) (-3042 . 320431) (-3043 . 320324) + (-3044 . 320207) (-3045 . 320141) (-3046 . 320068) (-3047 . 319954) + (-3048 . 319701) (-3049 . 319601) (-3050 . 319407) (-3051 . 319099) + (-3052 . 318633) (-3053 . 318528) (-3054 . 318422) (-3055 . 318273) + (-3056 . 318133) (-3057 . 317721) (-3058 . 317477) (-3059 . 316819) + (-3060 . 316666) (-3061 . 316552) (-3062 . 316442) (-3063 . 315622) + (-3064 . 315428) (-3065 . 314402) (-3066 . 313954) (-3067 . 312565) + (-3068 . 311714) (-3069 . 311665) (-3070 . 311616) (-3071 . 311567) + (-3072 . 311500) (-3073 . 311425) (-3074 . 311235) (-3075 . 311163) + (-3076 . 311088) (-3077 . 311016) (-3078 . 310899) (-3079 . 310848) + (-3080 . 310769) (-3081 . 310690) (-3082 . 310611) (-3083 . 310560) + (-3084 . 310317) (-3085 . 310015) (-3086 . 309933) (-3087 . 309851) + (-3088 . 309790) (-3089 . 309401) (-3090 . 308529) (-3091 . 307956) + (-3092 . 306721) (-3093 . 305914) (-3094 . 305664) (-3095 . 305414) + (-3096 . 304989) (-3097 . 304745) (-3098 . 304501) (-3099 . 304257) + (-3100 . 304013) (-3101 . 303769) (-3102 . 303525) (-3103 . 303283) + (-3104 . 303041) (-3105 . 302799) (-3106 . 302557) (-3107 . 301979) + (-3108 . 301863) (-3109 . 301021) (-3110 . 300990) (-3111 . 300645) + (-3112 . 300419) (-3113 . 300320) (-3114 . 300221) (-3115 . 298455) + (-3116 . 298343) (-3117 . 297295) (-3118 . 297203) (-3119 . 296281) + (-3120 . 295948) (-3121 . 295615) (-3122 . 295512) (-3123 . 295401) + (-3124 . 295290) (-3125 . 295179) (-3126 . 295068) (-3127 . 293981) + (-3128 . 293861) (-3129 . 293726) (-3130 . 293594) (-3131 . 293462) + (-3132 . 293168) (-3133 . 292874) (-3134 . 292529) (-3135 . 292303) + (-3136 . 292077) (-3137 . 291966) (-3138 . 291855) (-3139 . 290393) + (-3140 . 288689) (-3141 . 288380) (-3142 . 288228) (-3143 . 287705) + (-3144 . 287376) (-3145 . 287183) (-3146 . 286990) (-3147 . 286797) + (-3148 . 286604) (-3149 . 286491) (-3150 . 286368) (-3151 . 286254) + (-3152 . 286140) (-3153 . 286047) (-3154 . 285954) (-3155 . 285844) + (-3156 . 285643) (-3157 . 284499) (-3158 . 284406) (-3159 . 284292) + (-3160 . 284199) (-3161 . 283952) (-3162 . 283841) (-3163 . 283627) + (-3164 . 283509) (-3165 . 283212) (-3166 . 282484) (-3167 . 281908) + (-3168 . 281430) (-3169 . 281186) (-3170 . 280942) (-3171 . 280599) + (-3172 . 279993) (-3173 . 279550) (-3174 . 279395) (-3175 . 279251) + (-3176 . 278931) (-3177 . 278776) (-3178 . 278636) (-3179 . 278496) + (-3180 . 278356) (-3181 . 278081) (-3182 . 277862) (-3183 . 277343) + (-3184 . 277131) (-3185 . 276919) (-3186 . 276539) (-3187 . 276365) + (-3188 . 276156) (-3189 . 275848) (-3190 . 275656) (-3191 . 275483) + (-3192 . 274347) (-3193 . 273982) (-3194 . 273782) (-3195 . 273582) + (-3196 . 272746) (-3197 . 272718) (-3198 . 272650) (-3199 . 272580) + (-3200 . 272416) (-3201 . 272388) (-3202 . 272360) (-3203 . 272306) + (-3204 . 272156) (-3205 . 272097) (-3206 . 271404) (-3207 . 270019) + (-3208 . 269959) (-3209 . 269641) (-3210 . 269570) (-3211 . 269514) + (-3212 . 269458) (-3213 . 269402) (-3214 . 269346) (-3215 . 269272) + (-3216 . 268682) (-3217 . 268322) (-3218 . 268248) (-3219 . 268188) + (-3220 . 268070) (-3221 . 267127) (-3222 . 267000) (-3223 . 266787) + (-3224 . 266713) (-3225 . 266659) (-3226 . 266605) (-3227 . 266496) + (-3228 . 266186) (-3229 . 266078) (-3230 . 265975) (-3231 . 265814) + (-3232 . 265713) (-3233 . 265615) (-3234 . 265477) (-3235 . 265339) + (-3236 . 265201) (-3237 . 264939) (-3238 . 264730) (-3239 . 264592) + (-3240 . 264301) (-3241 . 264149) (-3242 . 263874) (-3243 . 263654) + (-3244 . 263502) (-3245 . 263350) (-3246 . 263198) (-3247 . 263046) + (-3248 . 262894) (-3249 . 262687) (-3250 . 262300) (-3251 . 261969) + (-3252 . 261630) (-3253 . 261283) (-3254 . 260944) (-3255 . 260605) + (-3256 . 260224) (-3257 . 259843) (-3258 . 259462) (-3259 . 259097) + (-3260 . 258379) (-3261 . 258032) (-3262 . 257587) (-3263 . 257162) + (-3264 . 256551) (-3265 . 255959) (-3266 . 255572) (-3267 . 255241) + (-3268 . 254854) (-3269 . 254523) (-3270 . 254303) (-3271 . 253782) + (-3272 . 253569) (-3273 . 253356) (-3274 . 253143) (-3275 . 252965) + (-3276 . 252752) (-3277 . 252574) (-3278 . 252192) (-3279 . 252014) + (-3280 . 251804) (-3281 . 251714) (-3282 . 251624) (-3283 . 251533) + (-3284 . 251421) (-3285 . 251331) (-3286 . 251224) (-3287 . 251035) + (-3288 . 250979) (-3289 . 250898) (-3290 . 250817) (-3291 . 250736) + (-3292 . 250601) (-3293 . 250466) (-3294 . 250342) (-3295 . 250221) + (-3296 . 250103) (-3297 . 249967) (-3298 . 249834) (-3299 . 249715) + (-3300 . 249457) (-3301 . 249172) (-3302 . 249100) (-3303 . 249008) + (-3304 . 248916) (-3305 . 248830) (-3306 . 248734) (-3307 . 248593) + (-3308 . 248536) (-3309 . 248479) (-3310 . 248419) (-3311 . 248024) + (-3312 . 247502) (-3313 . 247225) (-3314 . 246805) (-3315 . 246693) + (-3316 . 246255) (-3317 . 246025) (-3318 . 245822) (-3319 . 245640) + (-3320 . 245510) (-3321 . 245304) (-3322 . 245097) (-3323 . 244907) + (-3324 . 244342) (-3325 . 244086) (-3326 . 243795) (-3327 . 243501) + (-3328 . 243204) (-3329 . 242904) (-3330 . 242774) (-3331 . 242641) + (-3332 . 242505) (-3333 . 242366) (-3334 . 241149) (-3335 . 240841) + (-3336 . 240477) (-3337 . 240380) (-3338 . 240140) (-3339 . 239845) + (-3340 . 239550) (-3341 . 239291) (-3342 . 239117) (-3343 . 239039) + (-3344 . 238952) (-3345 . 238852) (-3346 . 238758) (-3347 . 238677) + (-3348 . 238607) (-3349 . 237816) (-3350 . 237746) (-3351 . 237418) + (-3352 . 237348) (-3353 . 237020) (-3354 . 236950) (-3355 . 236505) + (-3356 . 236435) (-3357 . 236331) (-3358 . 236257) (-3359 . 236183) + (-3360 . 236112) (-3361 . 235770) (-3362 . 235642) (-3363 . 235565) + (-3364 . 235334) (-3365 . 235191) (-3366 . 235048) (-3367 . 234709) + (-3368 . 234379) (-3369 . 234166) (-3370 . 233911) (-3371 . 233561) + (-3372 . 233336) (-3373 . 233111) (-3374 . 232886) (-3375 . 232661) + (-3376 . 232448) (-3377 . 232235) (-3378 . 232085) (-3379 . 231904) + (-3380 . 231799) (-3381 . 231677) (-3382 . 231569) (-3383 . 231461) + (-3384 . 231136) (-3385 . 230872) (-3386 . 230561) (-3387 . 230259) + (-3388 . 229950) (-3389 . 229221) (-3390 . 228632) (-3391 . 228457) + (-3392 . 228313) (-3393 . 228158) (-3394 . 228035) (-3395 . 227930) + (-3396 . 227815) (-3397 . 227720) (-3398 . 227239) (-3399 . 227129) + (-3400 . 227019) (-3401 . 226909) (-3402 . 225837) (-3403 . 225326) + (-3404 . 225259) (-3405 . 225186) (-3406 . 224313) (-3407 . 224240) + (-3408 . 224185) (-3409 . 224130) (-3410 . 224098) (-3411 . 224012) + (-3412 . 223980) (-3413 . 223894) (-3414 . 223474) (-3415 . 223054) + (-3416 . 222502) (-3417 . 221398) (-3418 . 219688) (-3419 . 218138) + (-3420 . 217346) (-3421 . 216846) (-3422 . 216360) (-3423 . 215958) + (-3424 . 215308) (-3425 . 215233) (-3426 . 215142) (-3427 . 215071) + (-3428 . 215000) (-3429 . 214944) (-3430 . 214824) (-3431 . 214770) + (-3432 . 214709) (-3433 . 214655) (-3434 . 214552) (-3435 . 214112) + (-3436 . 213672) (-3437 . 213232) (-3438 . 212710) (-3439 . 212549) + (-3440 . 212388) (-3441 . 212077) (-3442 . 211991) (-3443 . 211901) + (-3444 . 211543) (-3445 . 211426) (-3446 . 211345) (-3447 . 211187) + (-3448 . 211074) (-3449 . 210999) (-3450 . 210153) (-3451 . 208971) + (-3452 . 208872) (-3453 . 208773) (-3454 . 208444) (-3455 . 208366) + (-3456 . 208291) (-3457 . 208185) (-3458 . 208029) (-3459 . 207922) + (-3460 . 207787) (-3461 . 207652) (-3462 . 207530) (-3463 . 207435) + (-3464 . 207287) (-3465 . 207192) (-3466 . 207037) (-3467 . 206882) + (-3468 . 206330) (-3469 . 205778) (-3470 . 205163) (-3471 . 204611) + (-3472 . 204059) (-3473 . 203507) (-3474 . 202954) (-3475 . 202401) + (-3476 . 201848) (-3477 . 201295) (-3478 . 200742) (-3479 . 200189) + (-3480 . 199637) (-3481 . 199085) (-3482 . 198533) (-3483 . 197981) + (-3484 . 197429) (-3485 . 196877) (-3486 . 196773) (-3487 . 196188) + (-3488 . 196083) (-3489 . 196008) (-3490 . 195866) (-3491 . 195774) + (-3492 . 195683) (-3493 . 195591) (-3494 . 195496) (-3495 . 195391) + (-3496 . 195268) (-3497 . 195146) (-3498 . 194782) (-3499 . 194660) + (-3500 . 194562) (-3501 . 194201) (-3502 . 193672) (-3503 . 193597) + (-3504 . 193522) (-3505 . 193430) (-3506 . 193249) (-3507 . 193154) + (-3508 . 193079) (-3509 . 192988) (-3510 . 192897) (-3511 . 192738) + (-3512 . 192189) (-3513 . 191640) (-3514 . 188933) (-3515 . 188761) + (-3516 . 187355) (-3517 . 186795) (-3518 . 186680) (-3519 . 186308) + (-3520 . 186245) (-3521 . 186182) (-3522 . 186119) (-3523 . 185841) + (-3524 . 185574) (-3525 . 185522) (-3526 . 184881) (-3527 . 184830) + (-3528 . 184642) (-3529 . 184569) (-3530 . 184489) (-3531 . 184376) + (-3532 . 184186) (-3533 . 183822) (-3534 . 183550) (-3535 . 183499) + (-3536 . 183448) (-3537 . 183378) (-3538 . 183259) (-3539 . 183230) + (-3540 . 183126) (-3541 . 183004) (-3542 . 182950) (-3543 . 182773) + (-3544 . 182712) (-3545 . 182531) (-3546 . 182470) (-3547 . 182398) + (-3548 . 181923) (-3549 . 181549) (-3550 . 178018) (-3551 . 177966) + (-3552 . 177838) (-3553 . 177688) (-3554 . 177636) (-3555 . 177495) + (-3556 . 175438) (-3557 . 167795) (-3558 . 167644) (-3559 . 167574) + (-3560 . 167523) (-3561 . 167473) (-3562 . 167422) (-3563 . 167371) + (-3564 . 167175) (-3565 . 167033) (-3566 . 166919) (-3567 . 166798) + (-3568 . 166680) (-3569 . 166568) (-3570 . 166450) (-3571 . 166345) + (-3572 . 166264) (-3573 . 166160) (-3574 . 165226) (-3575 . 165006) + (-3576 . 164769) (-3577 . 164687) (-3578 . 164343) (-3579 . 163204) + (-3580 . 163130) (-3581 . 163035) (-3582 . 162961) (-3583 . 162757) + (-3584 . 162666) (-3585 . 162550) (-3586 . 162437) (-3587 . 162346) + (-3588 . 162255) (-3589 . 162166) (-3590 . 162077) (-3591 . 161988) + (-3592 . 161900) (-3593 . 161412) (-3594 . 161348) (-3595 . 161284) + (-3596 . 161220) (-3597 . 161159) (-3598 . 160419) (-3599 . 160358) + (-3600 . 160297) (-3601 . 159671) (-3602 . 159619) (-3603 . 159491) + (-3604 . 159427) (-3605 . 159373) (-3606 . 159264) (-3607 . 157967) + (-3608 . 157886) (-3609 . 157797) (-3610 . 157739) (-3611 . 157599) + (-3612 . 157514) (-3613 . 157440) (-3614 . 157355) (-3615 . 157298) + (-3616 . 157082) (-3617 . 156943) (-3618 . 156336) (-3619 . 155782) + (-3620 . 155228) (-3621 . 154674) (-3622 . 154067) (-3623 . 153513) + (-3624 . 152953) (-3625 . 152393) (-3626 . 152131) (-3627 . 151692) + (-3628 . 151359) (-3629 . 151020) (-3630 . 150715) (-3631 . 150582) + (-3632 . 150449) (-3633 . 150061) (-3634 . 149968) (-3635 . 149875) + (-3636 . 149782) (-3637 . 149689) (-3638 . 149596) (-3639 . 149503) + (-3640 . 149410) (-3641 . 149317) (-3642 . 149224) (-3643 . 149131) + (-3644 . 149038) (-3645 . 148945) (-3646 . 148852) (-3647 . 148759) + (-3648 . 148666) (-3649 . 148573) (-3650 . 148480) (-3651 . 148387) + (-3652 . 148294) (-3653 . 148201) (-3654 . 148108) (-3655 . 148015) + (-3656 . 147922) (-3657 . 147829) (-3658 . 147736) (-3659 . 147551) + (-3660 . 147241) (-3661 . 145683) (-3662 . 145529) (-3663 . 145392) + (-3664 . 145250) (-3665 . 145048) (-3666 . 143121) (-3667 . 142994) + (-3668 . 142870) (-3669 . 142743) (-3670 . 142522) (-3671 . 142301) + (-3672 . 142174) (-3673 . 141973) (-3674 . 141797) (-3675 . 141280) + (-3676 . 140763) (-3677 . 140486) (-3678 . 140077) (-3679 . 139560) + (-3680 . 139376) (-3681 . 139234) (-3682 . 138739) (-3683 . 138108) + (-3684 . 138052) (-3685 . 137958) (-3686 . 137839) (-3687 . 137769) + (-3688 . 137696) (-3689 . 137466) (-3690 . 136847) (-3691 . 136417) + (-3692 . 136335) (-3693 . 136193) (-3694 . 135719) (-3695 . 135597) + (-3696 . 135475) (-3697 . 135335) (-3698 . 135148) (-3699 . 135032) + (-3700 . 134752) (-3701 . 134684) (-3702 . 134486) (-3703 . 134306) + (-3704 . 134151) (-3705 . 134044) (-3706 . 133993) (-3707 . 133616) + (-3708 . 133089) (-3709 . 132868) (-3710 . 132647) (-3711 . 132408) + (-3712 . 132318) (-3713 . 130576) (-3714 . 129994) (-3715 . 129916) + (-3716 . 124456) (-3717 . 123666) (-3718 . 123289) (-3719 . 123218) + (-3720 . 122957) (-3721 . 122783) (-3722 . 122298) (-3723 . 121876) + (-3724 . 121436) (-3725 . 120573) (-3726 . 120449) (-3727 . 120322) + (-3728 . 120213) (-3729 . 120061) (-3730 . 119947) (-3731 . 119808) + (-3732 . 119727) (-3733 . 119646) (-3734 . 119542) (-3735 . 119124) + (-3736 . 118703) (-3737 . 118629) (-3738 . 118366) (-3739 . 118102) + (-3740 . 117723) (-3741 . 117024) (-3742 . 115981) (-3743 . 115922) + (-3744 . 115848) (-3745 . 115774) (-3746 . 115652) (-3747 . 115402) + (-3748 . 115316) (-3749 . 115241) (-3750 . 115166) (-3751 . 115071) + (-3752 . 111296) (-3753 . 110126) (-3754 . 109466) (-3755 . 109282) + (-3756 . 107077) (-3757 . 106752) (-3758 . 106270) (-3759 . 105829) + (-3760 . 105594) (-3761 . 105349) (-3762 . 105259) (-3763 . 103824) + (-3764 . 103746) (-3765 . 103641) (-3766 . 102165) (-3767 . 101760) + (-3768 . 101359) (-3769 . 101257) (-3770 . 101175) (-3771 . 101017) + (-3772 . 99726) (-3773 . 99644) (-3774 . 99565) (-3775 . 99210) + (-3776 . 99153) (-3777 . 99081) (-3778 . 99024) (-3779 . 98967) + (-3780 . 98837) (-3781 . 98635) (-3782 . 98267) (-3783 . 97846) + (-3784 . 93982) (-3785 . 93380) (-3786 . 92913) (-3787 . 92700) + (-3788 . 92487) (-3789 . 92321) (-3790 . 92108) (-3791 . 91942) + (-3792 . 91776) (-3793 . 91610) (-3794 . 91444) (-3795 . 91174) + (-3796 . 85766) (** . 82813) (-3798 . 82397) (-3799 . 82156) (-3800 . 82100) + (-3801 . 81608) (-3802 . 78800) (-3803 . 78650) (-3804 . 78486) + (-3805 . 78322) (-3806 . 78226) (-3807 . 78108) (-3808 . 77984) + (-3809 . 77841) (-3810 . 77670) (-3811 . 77544) (-3812 . 77400) + (-3813 . 77248) (-3814 . 77089) (-3815 . 76581) (-3816 . 76492) + (-3817 . 75827) (-3818 . 75635) (-3819 . 75540) (-3820 . 75232) + (-3821 . 74060) (-3822 . 73854) (-3823 . 72679) (-3824 . 72604) + (-3825 . 71423) (-3826 . 67842) (-3827 . 67478) (-3828 . 67201) + (-3829 . 67109) (-3830 . 67016) (-3831 . 66739) (-3832 . 66646) + (-3833 . 66553) (-3834 . 66460) (-3835 . 66076) (-3836 . 66005) + (-3837 . 65913) (-3838 . 65755) (-3839 . 65401) (-3840 . 65243) + (-3841 . 65135) (-3842 . 65106) (-3843 . 65039) (-3844 . 64885) + (-3845 . 64727) (-3846 . 64333) (-3847 . 64258) (-3848 . 64152) + (-3849 . 64080) (-3850 . 64002) (-3851 . 63929) (-3852 . 63856) + (-3853 . 63783) (-3854 . 63711) (-3855 . 63639) (-3856 . 63566) + (-3857 . 63325) (-3858 . 62988) (-3859 . 62840) (-3860 . 62767) + (-3861 . 62694) (-3862 . 62621) (-3863 . 62367) (-3864 . 62223) + (-3865 . 60887) (-3866 . 60693) (-3867 . 60422) (-3868 . 60274) + (-3869 . 60126) (-3870 . 59886) (-3871 . 59692) (-3872 . 59424) + (-3873 . 59228) (-3874 . 59199) (-3875 . 59098) (-3876 . 58997) + (-3877 . 58896) (-3878 . 58795) (-3879 . 58694) (-3880 . 58593) + (-3881 . 58492) (-3882 . 58391) (-3883 . 58290) (-3884 . 58189) + (-3885 . 58074) (-3886 . 57959) (-3887 . 57908) (-3888 . 57791) + (-3889 . 57733) (-3890 . 57632) (-3891 . 57531) (-3892 . 57430) + (-3893 . 57314) (-3894 . 57285) (-3895 . 56554) (-3896 . 56429) + (-3897 . 56304) (-3898 . 56164) (-3899 . 56046) (-3900 . 55921) + (-3901 . 55766) (-3902 . 54783) (-3903 . 53924) (-3904 . 53870) + (-3905 . 53816) (-3906 . 53608) (-3907 . 53236) (-3908 . 52825) + (-3909 . 52467) (-3910 . 52109) (-3911 . 51957) (-3912 . 51655) + (-3913 . 51499) (-3914 . 51173) (-3915 . 51103) (-3916 . 51033) + (-3917 . 50824) (-3918 . 50215) (-3919 . 50011) (-3920 . 49638) + (-3921 . 49129) (-3922 . 48864) (-3923 . 48383) (-3924 . 47902) + (-3925 . 47777) (-3926 . 46677) (-3927 . 45601) (-3928 . 45030) + (-3929 . 44812) (-3930 . 36489) (-3931 . 36304) (-3932 . 34221) + (-3933 . 32053) (-3934 . 31907) (-3935 . 31729) (-3936 . 31322) + (-3937 . 31027) (-3938 . 30679) (-3939 . 30513) (-3940 . 30347) + (-3941 . 29934) (-3942 . 16069) (-3943 . 14962) (* . 10915) (-3945 . 10661) + (-3946 . 10477) (-3947 . 9522) (-3948 . 9469) (-3949 . 9409) (-3950 . 9140) + (-3951 . 8513) (-3952 . 7240) (-3953 . 5996) (-3954 . 5127) (-3955 . 3864) + (-3956 . 420) (-3957 . 306) (-3958 . 173) (-3959 . 30))
\ No newline at end of file |